
Chapter 11

Imperialist Competitive Algorithm

11.1 Introduction

In this chapter an optimization method is presented based on a sociopolitically

motivated strategy, called imperialist competitive algorithm (ICA). ICA is a multi-

agent algorithm with each agent being a country, which is either a colony or an

imperialist. These countries form some empires in the search space. Movement of

the colonies toward their related imperialist, and imperialistic competition among

the empires, forms the basis of the ICA. During these movements, the powerful

imperialists are reinforced, and the weak ones are weakened and gradually col-

lapsed, directing the algorithm toward optimum points. Here, ICA is utilized to

optimize the skeletal structures which are based on [1, 2].

This algorithm is proposed by Atashpaz et al. [3, 4] and is a sociopolitically

motivated optimization algorithm which similar to many other evolutionary algo-

rithms starts with a random initial population. Each individual agent of an empire is

called a country, and the countries are categorized into colony and imperialist states
that collectively form empires. Imperialistic competitions among these empires

form the basis of the ICA. During this competition, weak empires collapse and

powerful ones take possession of their colonies. Imperialistic competitions direct

the search process toward the powerful imperialists or the optimum points.

On the other hand, finding the optimum design of the skeletal structures is known

as benchmark examples in the field of difficult optimization problems due to the

presence of many design variables, large size of the search space, and many

constraints. Thus, this chapter presents an ICA-based algorithm to address optimi-

zation of skeletal structures problems which can be considered as a suitable field to

investigate the efficiency of the new algorithm. This chapter covers both the

discrete and continuous structural design problems. The comparison of the results

of the ICA with some well-known metaheuristics demonstrates the efficiency of the

present algorithm.
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11.2 Optimum Design of Skeletal Structures

The aim of optimizing a structure is to find a set of design variables that has the

minimum weight satisfying certain constraints. This can be expressed as:

Find xf g ¼ x1; x2; . . . ; xng
� �

,

xi 2 Di

to minimize W xf gð Þ ¼
Xnm
i¼1

ρi � xi � Li
subject to : gj xf gð Þ � 0 j ¼ 1, 2, ::::, n

ð11:1Þ

where {x} is the set of design variables; ng is the number of member groups in

structure (number of design variables); Di is the allowable set of values for the

design variable xi; W({x}) presents weight of the structure; nm is the number of

members of the structure; ρi denotes the material density of member i; Li and xi are
the length and the cross section of member i, respectively; gj({x}) denotes design
constraints; and n is the number of the constraints.

Di can be considered either as a continuous set or as a discrete one [5]. In the

continuous problems, the design variables can vary continuously in the optimiza-

tion process:

Di ¼ xi
��xi 2 xi,min; xi,max½ �� � ð11:2Þ

where xi,min and xi,max are minimum and maximum allowable values for the design

variable i, respectively. If the design variables are supposed to be selected form a

list:

Di ¼ di, 1; di, 2; . . . ; di, r ið Þ
� � ð11:3Þ

then the problem is considered as a discrete one, where r(i) is the number of

available discrete values for the ith design variable.

In order to handle the constraints, a penalty approach is utilized. In this method,

the aim of the optimization is redefined by introducing the cost function as:

f cost xf gð Þ ¼ 1þ ε1 � υð Þε2 �W xf gð Þ, υ ¼
Xn
i¼1

max 0; υi½ � ð11:4Þ

where n represents the number of evaluated constraints for each individual design.

The constants ε1 and ε2 are selected considering the exploration and the exploitation
rate of the search space. Here, ε1 is set to unity; ε2 is selected in a way that it

decreases the penalties and reduces the cross-sectional areas. Thus, in the first steps

of the search process, ε2 is set to 1.5 and ultimately increased to 3.
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This chapter investigates two types of skeletal structures consisting of trusses

and frames. The constraint conditions for these structures are briefly explained in

the following sections.

11.2.1 Constraints for Truss Structures

For truss structures, the stress limitations of the members are imposed according to

the provisions of ASD-AISC [6] as follows:

σþi ¼ 0:6Fy f or σi � 0

σ�i f or σi < 0

�
ð11:5Þ

where σ�i is calculated according to the slenderness ratio:

σ�i ¼
1� λ2i

2C2
C

 !
Fy

" #�
5

3
þ 3λi
8CC

� λ3i
8C3

C

 !
f or λi < CC

12π2E

23λ2i
f or λi � CC

8>>>><
>>>>:

ð11:6Þ

where E is the modulus of elasticity; Fy is the yield stress of steel; CC denotes the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions; and λi
represents the slenderness ratio.

The other constraint is the limitation of the nodal displacements:

δi � δui i ¼ 1, 2, ::::, nn ð11:7Þ

where δi is the nodal deflection; δui is the allowable deflection of node i; and nn is the
number of nodes.

11.2.2 Constraints for Steel Frames

Optimal design of frame structures is subjected to the following constraints

according to LRFD–AISC provisions [7]:

Maximum lateral displacement

ΔT

H
� R ð11:8Þ
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Inter-story displacement constraints

i ¼ 1, 2, . . . , ns
di
hi

� RI; ð11:9Þ

The strength constraints

Pu

2φcPn
þ Mux

φbMnx
þ Muy

φbMny

	 

� 1, For

Pu

φcPn
< 0:2

Pu

φcPn
þ 8

9

Mux

φbMnx
þ Muy

φbMny

	 

� 1, For

Pu

φcPn
� 0:2

ð11:10Þ

where ΔT is the maximum lateral displacement; H is the height of the frame

structure; R is the maximum drift index (1/300); di is the inter-story drift; hi is the
story height of the ith floor; ns is the total number of stories; RI presents the inter-

story drift index permitted by the code of the practice (1/300); Pu is the required

strength (tension or compression); Pn is the nominal axial strength (tension or

compression); φc is the resistance factor (φc ¼ 0:9 for tension, φc ¼ 0:85 for

compression); Mux and Muy are the required flexural strengths in the x and

y directions, respectively; Mnx and Mny are the nominal flexural strengths in the

x and y directions (for two-dimensional structures, Mny ¼ 0); and φb denotes the

flexural resistance reduction factor (φb ¼ 0:90). The nominal tensile strength for

yielding in the gross section is computed as:

Pn ¼ Ag � Fy ð11:11Þ

and the nominal compressive strength of a member is computed as:

Pn ¼ Ag � Fcr ð11:12Þ
Fcr ¼ 0:658λ

2
c

� �
Fy, For λc � 1:5

Fcr ¼ 0:877

λ2c

 !
Fy, For λc > 1:5

ð11:13Þ

λc ¼ kl

rπ

ffiffiffiffiffi
Fy

E

r
ð11:14Þ

where Ag is the cross-sectional area of a member.
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11.3 Imperialist Competitive Algorithm

ICA simulates the social–political process of imperialism and imperialistic com-

petition. This algorithm contains a population of agents or countries. The steps of

the algorithm are as follows:

Step 1: Initialization

The primary locations of the agents or countries are determined by the set of values

assigned to each decision variable randomly as:

x
oð Þ
i, j ¼ xi,min þ rand � xi,max � xi,minð Þ ð11:15Þ

where x
ðoÞ
i;j determines the initial value of the ith variable for the jth country; xi,min

and xi,max are the minimum and the maximum allowable values for the ith variable;
and rand is a random number in the interval [0,1]. If the allowable search space is a

discrete one, using a rounding function will also be necessary.

For each country, the cost identifies its usefulness. In the optimization process,

the cost is proportional to the penalty function. When the values of cost for initial

countries are calculated [as defined by Eq. (11.4)], some of the best countries

(in optimization terminology, countries with the least costs) will be selected to be

the imperialist states, and the remaining countries will form the colonies of these

imperialists. The total number of initial countries is set to Ncountry, and the number

of the most powerful countries to form the empires is equal to Nimp. The remaining

Ncol of the initial countries will be the colonies each of which belongs to an empire.

In this chapter, a population of 30 countries consisting of 3 empires and 27 colonies

are used. All the colonies of initial countries are divided among the imperialists

based on their power. The power of each country, the counterpart of fitness value, is

inversely proportional to its cost value. That is, the number of colonies of an empire

should be directly proportional to its power. In order to proportionally divide the

colonies among the imperialists, a normalized cost for an imperialist is defined as:

Cj ¼ f
imp;jð Þ
cost �max

i
f
imp;ið Þ
cost

� �
ð11:16Þ

where f
ðimp;jÞ
cos t is the cost of the jth imperialist and Cj is its normalized cost. The

colonies are divided among empires based on their power or normalized cost, and

for the jth empire it will be as follows:
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NCj ¼ Round
CjXNimp

i¼1

Ci

����������

����������
� Ncol

0
BBBB@

1
CCCCA ð11:17Þ

where NCj is the initial number of colonies associated with the jth empire which are

selected randomly among the colonies. These colonies together with the jth impe-

rialist form the empire number j.

Step 2: Colonies Movement

In the ICA, the assimilation policy pursued by some of former imperialist states is

modeled by moving all the colonies toward the imperialist. This movement is

shown in Fig. 11.1a in which a colony moves toward the imperialist by a random

value that is uniformly distributed between 0 and β� d [3]:

xf gnew ¼ xf gold þ U 0, β � dð Þ � V1f g ð11:18Þ

where β is a parameter with a value greater than one and d is the distance between

colony and imperialist. β> 1 persuades the colonies to get closer to the imperialist

state from both sides. β>> 1 gradually results in a divergence of colonies from the

imperialist state, while a very close value to 1 for β reduces the search ability of the

algorithm. {V1} is a vector for which the starting point is the previous location of

the colony, and its direction is toward the imperialist locations. The length of this

vector is set to unity.

In order to increase the searching around the imperialist, a random amount of

deviation is added to the direction of movement. Figure 11.1b shows the new

direction which is obtained by deviating the previous location of the country as

big as θ. In this figure θ is a random number with uniform distribution as:

θ ¼ U �γ, þ γð Þ ð11:19Þ

where γ is a parameter that adjusts the deviation from the original direction. In most

of the implementations, a value of about 2 for β [3] and about 0.1 (Rad) for γ results
in a good convergence of the countries to the global minimum.

In order to improve the performance of the ICA, we change the movement step

as follows:

First: different random values are utilized for different components of the

solution vector in place of only one value [Eq. (11.18)] as:

xf gnew ¼ xf gold þ β � d � randf g � V1f g ð11:20Þ

where {V1} is the base vector starting from the previous location of the colony and

directed to the imperialist; {rand} is a random vector and the sign “�” denotes an

element-by-element multiplication. Since these random values are not necessarily
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the same, the colony is deviated automatically without using the definition of θ.
However, for having a suitable exploration ability, the utilization of θ is modified

by defining a new vector.

Second: From the above equation, it is possible to obtain the orthogonal colony-

imperialistic contacting line (denoted by {V2}). Then, deviation process is

performed by utilizing this vector in place of using θ as:

Fig. 11.1 Movements of colonies to its new location in the ICA [2]: (a) toward their relevant

imperialist, (b) in a deviated direction, (c) using various random values
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xf gnew ¼ xf gold þ β � d � randf g � V1f g þ U �1, þ 1ð Þ � tan θð Þ�
d � V2f g, V1f g � V2f g ¼ 0,

���� V2f g���� ¼ 1 ð11:21Þ

Figure 11.1c describes the performance of this movement. In order to access the

discrete results after performing the movement process, a rounding function is

utilized which changes the magnitude of the results by the value of the nearest

discrete value. Although this may reduce the exploration of the algorithm [8], as

explained above, we increase this ability by considering different random values

and by defining a new deviation step.

Step 3: Imperialist Updating

If the new position of the colony is better than that of its relevant imperialist

(considering the cost function), the imperialist and the colony change their posi-

tions, and the new location with a lower cost becomes the imperialist. Then the

other colonies move toward this new position.

Step 4: Imperialistic Competition

Imperialistic competition is another strategy utilized in the ICA methodology. All

empires try to take the possession of colonies of other empires and control them.

The imperialistic competition gradually reduces the power of weaker empires and

increases the power of more powerful ones. The imperialistic competition is

modeled by just picking some (usually one) of the weakest colonies of the weakest

empires and making a competition among all empires to possess these (this)

colonies. In this competition based on their total power, each of the empires will

have a likelihood of taking possession of the mentioned colonies.

The total power of an empire is mainly affected by the power of imperialist

country. But the power of the colonies of an empire has an effect, though negligible,

on the total power of that empire. This fact is modeled by defining the total cost as:

TCj ¼ f
imp;jð Þ
cos t þ ξ �

XNCj

i¼1

f
col;ið Þ
cos t

NCj
ð11:22Þ

where TCn is the total cost of the jth empire and ξ is a positive number which is

considered to be less than 1. A small value for ξ causes the total power of the empire

to be determined by just the imperialist and increasing it will add to the role of the

colonies in determining the total power of the corresponding empire. The value of

0.1 for ξ is found to be a suitable value in most of the implementations [3]. Similar

to Eq. (11.16), the normalized total cost is defined as:

NTCj ¼ TCj �max
i

TCið Þ ð11:23Þ

where NTCj is the normalized total cost of the jth empire. Having the normalized

total cost, the possession probability of each empire is evaluated by:
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Pj ¼ NTCjXNimp

i¼1

NTCi

����������

����������
ð11:24Þ

Step 5: Implementation

When an empire loses all of its colonies, it is assumed to be collapsed. In this model

implementation, where the powerless empires collapse in the imperialistic compe-

tition, the corresponding colonies will be divided among the other empires.

Step 6: Terminating Criterion Control

Moving colonies toward imperialists are continued, and imperialistic competition

and implementations are performed during the search process. When the number of

iterations reaches to a predefined value or the amount of improvement in the best

result reduces to a predefined value, the searching process is stopped.

The movement of colonies toward their relevant imperialist states along with

competition among empires and also the collapse mechanism will hopefully cause

all the countries to converge to a state in which there exists just one empire in the

world and all the other countries are colonies of that empire. In this ideal new world,

colonies will have the same position and power as the imperialist.

11.4 Design Examples

In this section, the optimal design of four steel structures is performed by the

present algorithm. The final results are compared to the solutions of other methods

to demonstrate the efficiency of the present approach. The examples contain a

dome-shaped truss example with continuous search space and a 72-bar spatial truss

with discrete variables. In addition, two benchmark frames are optimized by the

ICA to find the optimum designs.

11.4.1 Design of a 120-Bar Dome-Shaped Truss

The topology and elements group numbers of 120-bar dome truss are shown in

Fig. 11.2. The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material

density is 0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi

(400 MPa). The dome is considered to be subjected to vertical loading at all the

unsupported joints. These loads are taken as �13.49 kips (�60 kN) at node

1, �6.744 kips (�30 kN) at nodes 2 through 14, and �2.248 kips (�10 kN) at
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Fig. 11.2 Schematic of a 120-bar dome-shaped truss
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the rest of the nodes. The minimum cross-sectional area of all members is 0.775 in2

(2 cm2), and the maximum cross-sectional area is taken as 20.0 in2 (129.03 cm2).

The constraints are stress constraints [as defined by Eqs. (11.5), (11.6)] and

displacement limitations of 	0.1969 in (	5 mm) imposed on all nodes in x, y,
and z directions.

Table 11.1 shows the best solution vectors, the corresponding weights, and the

required number of analyses for convergence of the present algorithm and some

other metaheuristic algorithms. ICA-based algorithm needs 6000 analyses to find

the best solution while this number is equal to 150,000, 32,600, 10,000, 10,000, and

7000 analyses for a PSO-based algorithm [9]; a PSO and ACO hybrid algorithm [9];

a combined algorithm based on PSO, ACO, and HS [9]; an improved BB–BC

method using PSO properties [10]; and the CSS algorithm [11], respectively. As a

result, the ICA optimization algorithm has best convergence rates among the

considered metaheuristics. Figure 11.3 shows the convergence history for the best

results of the ICA. Comparing the final results of the ICA and those of the other

metaheuristics, ICA finds the third best result while the difference between the

result of the ICA and those obtained by the HPSACO and the CSS methods, as the

first and second best results, are very small. The maximum value for displacement

is equal to 0.1969 in (5 mm), and the maximum stress ratio is equal to 99.999%.

11.4.2 Design of a 72-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 11.4, the material density is

0.1 lb/in3 (2767.990 kg/m3), and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The members are subjected to the stress limits of 	25 ksi

Table 11.1 Performance comparison for the 120-bar dome truss

Element

group

Optimal cross-sectional areas (in.2)

PSOPC

[13]

PSACO

[13]

HPSACO

[13]

HBB–BC

[14] CSS [6]

Present work [2]

in2 cm2

1 A1 3.040 3.026 3.095 3.037 3.027 3.0275 19.532

2 A2 13.149 15.222 14.405 14.431 14.606 14.4596 93.288

3 A3 5.646 4.904 5.020 5.130 5.044 5.2446 33.836

4 A4 3.143 3.123 3.352 3.134 3.139 3.1413 20.266

5 A5 8.759 8.341 8.631 8.591 8.543 8.4541 54.543

6 A6 3.758 3.418 3.432 3.377 3.367 3.3567 21.656

7 A7 2.502 2.498 2.499 2.500 2.497 2.4947 16.095

Best

weight

(lb)

33,481.2 33,263.9 33,248.9 33,287.9 33,251.9 33,256.2 147,931 N

No. of

required

analyses

150,000 32,600 10,000 10,000 7000 6000
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Fig. 11.3 Convergence curves for the dome-shaped truss obtained by the ICA [2]

Fig. 11.4 Schematic of a 72-bar spatial truss
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(	172.375 MPa). The nodes are subjected to the displacement limits of 	0.25 in

(	0.635 cm). The 72 structural members of this spatial truss are categorized as

16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18,

(5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48,

(11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66, (15), A67–A70, and

(16) A71–A72. The discrete variables are selected from Table 11.2. The values and

directions of the two load cases applied to the 72-bar spatial truss are listed in

Table 11.3.

The ICA algorithm can find the best design among the other existing studies. The

best weight of the ICA algorithm is 392.84 lb (178.19 kg), while it is 393.38 lb

Table 11.2 The available

cross-section areas of the

AISC code

No. in.2 mm2 No. in.2 mm2

1 0.111 (71.613) 33 3.840 (2477.414)

2 0.141 (90.968) 34 3.870 (2496.769)

3 0.196 (126.451) 35 3.880 (2503.221)

4 0.250 (161.290) 36 4.180 (2696.769)

5 0.307 (198.064) 37 4.220 (2722.575)

6 0.391 (252.258) 38 4.490 (2896.768)

7 0.442 (285.161) 39 4.590 (2961.284)

8 0.563 (363.225) 40 4.800 (3096.768)

9 0.602 (388.386) 41 4.970 (3206.445)

10 0.766 (494.193) 42 5.120 (3303.219)

11 0.785 (506.451) 43 5.740 (3703.218)

12 0.994 (641.289) 44 7.220 (4658.055)

13 1.000 (645.160) 45 7.970 (5141.925)

14 1.228 (792.256) 46 8.530 (5503.215)

15 1.266 (816.773) 47 9.300 (5999.988)

16 1.457 (939.998) 48 10.850 (6999.986)

17 1.563 (1008.385) 49 11.500 (7419.430)

18 1.620 (1045.159) 50 13.500 (8709.660)

19 1.800 (1161.288) 51 13.900 (8967.724)

20 1.990 (1283.868) 52 14.200 (9161.272)

21 2.130 (1374.191) 53 15.500 (9999.980)

22 2.380 (1535.481) 54 16.000 (10,322.560)

23 2.620 (1690.319) 55 16.900 (10,903.204)

24 2.630 (1696.771) 56 18.800 (12,129.008)

25 2.880 (1858.061) 57 19.900 (12,838.684)

26 2.930 (1890.319) 58 22.000 (14,193.520)

27 3.090 (1993.544) 59 22.900 (14,774.164)

28 1.130 (729.031) 60 24.500 (15,806.420)

29 3.380 (2180.641) 61 26.500 (17,096.740)

30 3.470 (2238.705) 62 28.000 (18,064.480)

31 3.550 (2290.318) 63 30.000 (19,354.800)

32 3.630 (2341.931) 64 33.500 (21,612.860)
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(178.43 kg) for the HPSACO [8]. The weight of the GA-based algorithm is equal to

427.203 lb (193.77 kg) [12]. The PSOPC and the standard PSO algorithms do not

find optimal results when the maximum number of iterations is reached [13]. The

HPSO and HPSACO algorithms get the optimal solution after 50,000 [13] and 5330

[9] analyses while it takes only 4500 analyses for the ICA. Table 11.4 compares the

results of the CSS algorithm to those of the previously reported methods in the

literature. In this example, stress constraints are not dominant while the maximum

nodal displacement (0.2499 in or 0.635 cm) is close to its allowable value.

Table 11.3 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

PX
kips (kN)

PY
kips (kN)

PZ
kips (kN) PX PY

PZ
kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (22.25) 0.0 0.0 �5.0 (22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

Table 11.4 Optimal design comparison for the 72-bar spatial truss

Element group

Optimal cross-sectional areas (in2)

GA [12] PSOPC [13] HPSO [13] HPSACO [9] Present work [2]

1 A1 ~A4 0.196 4.490 4.970 1.800 1.99

2 A5 ~A12 0.602 1.457 1.228 0.442 0.442

3 A13 ~A16 0.307 0.111 0.111 0.141 0.111

4 A17 ~A18 0.766 0.111 0.111 0.111 0.141

5 A19 ~A22 0.391 2.620 2.880 1.228 1.228

6 A23 ~A30 0.391 1.130 1.457 0.563 0.602

7 A31 ~A34 0.141 0.196 0.141 0.111 0.111

8 A35 ~A36 0.111 0.111 0.111 0.111 0.141

9 A37 ~A40 1.800 1.266 1.563 0.563 0.563

10 A41 ~A48 0.602 1.457 1.228 0.563 0.563

11 A49 ~A52 0.141 0.111 0.111 0.111 0.111

12 A53 ~A54 0.307 0.111 0.196 0.250 0.111

13 A55 ~A58 1.563 0.442 0.391 0.196 0.196

14 A59 ~A66 0.766 1.457 1.457 0.563 0.563

15 A67 ~A70 0.141 1.228 0.766 0.442 0.307

16 A71 ~A72 0.111 1.457 1.563 0.563 0.602

Weight (lb) 427.203 941.82 933.09 393.380 392.84

No. of required

analyses

– 150,000 50,000 5330 4500
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11.4.3 Design of a 3-Bay 15-Story Frame

The configuration and applied loads of a 3-bay 15-story frame structure [5] is shown

in Fig. 11.5. The displacement and AISC combined strength constraints are the

performance constraints of this frame. The sway of the top story is limited to

23.5 cm (9.25 in.). The material has a modulus of elasticity equal to E¼ 200 GPa

(29,000 ksi) and a yield stress of Fy¼ 248.2 MPa (36 ksi). The effective length

factors of the members are calculated asKx � 0 for a sway-permitted frame, and the

out-of-plane effective length factor is specified as Ky¼ 1.0. Each column is con-

sidered as non-braced along its length, and the unbraced length for each beam

member is specified as one-fifth of the span length.

The optimum design of the frame is obtained after 6000 analyses by using the

ICA, having the minimum weight of 417.46 kN (93.85 kips). The optimum designs

for HBB–BC [14], HPSACO, PSOPC, and PSO [5] have the weights of 434.54

(97.65 kN), 426.36 (95.85), 452.34 kN (101.69 kips), and 496.68 kN (111.66 kips),

respectively. Table 11.5 summarizes the optimal designs for these algorithms. The

HBB–BC approach could find the result after 9900 analyses [14], and the HSPACO

needs 6800 analyses to reach a solution [5].

Figure 11.6 shows the convergence history for the result of the ICA method. The

global sway at the top story is 11.52 cm, which is less than the maximum sway. The

maximum value for the stress ratio is equal to 98.45%. Also, the maximum inter-

story drift is equal to 1.04 cm.

11.4.4 Design of a 3-Bay 24-Story Frame

Figure 11.7 shows the topology and the service loading conditions of a 3-bay

24-story frame consisting of 168 members originally designed by Davison and

Adams [15]. Camp et al. utilized ant colony optimization [16], Degertekin devel-

oped least-weight frame designs for this structure using a harmony search [17], and

Kaveh and Talatahari utilized a hybrid PSO and BB–BC algorithm to solve this

example [14].

The frame is designed following the LRFD specifications and uses an inter-story

drift displacement constraint. The material properties are the modulus of elasticity

E¼ 205 GPa (29,732 ksi) and a yield stress of Fy¼ 230.3 MPa (33.4 ksi). The

detailed information is available in Ref. [14].

Table 11.6 lists the designs developed by the ICA, the HBB–BC algorithm [14],

the ant colony algorithm [16], and harmony search [17]. The ICA algorithm

required 7500 frame analyses to converge to a solution, while 10,500 analyses

were required by HBB–BC [14], 15,500 analyses by ACO [16], and 13,924

analyses by HS [17]. In this example, ICA can find the best results with

946.25 kN which is 3.67%, 1.01%, and 1.60% lighter than the results of the

ACO [16], HS [17], and HBB–BC [14], respectively. The global sway at the top

story is 25.52 cm (10.05 in.) which is less than the maximum sway. The maximum
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Fig. 11.5 Schematic of a

3-bay 15-story frame
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value for the stress ratio is 99.37%, and the maximum inter-story drift is equal to

1.215 cm (0.4784 in.). Figure 11.8 shows the values of the stress ratios for all

elements of the optimum design obtained by the ICA algorithm.

Table 11.5 Optimal design comparison for the 3-bay 15-story frame

Element group

Optimal W-shaped sections

PSO [5] PSOPC [5]

HPSACO

[5]

HBB–BC

[14]

Present work

[2]

1 W33� 118 W26� 129 W21� 111 W24� 117 W24� 117

2 W33� 263 W24� 131 W18� 158 W21� 132 W21� 147

3 W24� 76 W24� 103 W10� 88 W12� 95 W27� 84

4 W36� 256 W33� 141 W30� 116 W18� 119 W27� 114

5 W21� 73 W24� 104 W21� 83 W21� 93 W14� 74

6 W18� 86 W10� 88 W24� 103 W18� 97 W18� 86

7 W18� 65 W14� 74 W21� 55 W18� 76 W12� 96

8 W21� 68 W26� 94 W26� 114 W18� 65 W24� 68

9 W18� 60 W21� 57 W10� 33 W18� 60 W10� 39

10 W18� 65 W18� 71 W18� 46 W10� 39 W12� 40

11 W21� 44 W21� 44 W21� 44 W21� 48 W21� 44

Weight (kN) 496.68 452.34 426.36 434.54 417.466

No. of required

analyses

50,000 50,000 6800 9900 6000

0 50 100 150 200

Iteration
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Fig. 11.6 Convergence

curves for the 3-bay

15-story frame obtained by

the ICA [2]
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Fig. 11.7 Schematic of a

3-bay 24-story frame
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Table 11.6 Optimal design comparison for the 3-bay 24-story frame

Element group

Optimal W-shaped sections

Camp et al.

[16]

Degertekin

[17]

ACO HS

HBB–BC

[14]

Present work

[2]

1 W30� 90 W30� 90 W30� 90 W30� 90

2 W8� 18 W10� 22 W21� 48 W21� 50

3 W24� 55 W18� 40 W18� 46 W24� 55

4 W8� 21 W12� 16 W8� 21 W8� 28

5 W14� 145 W14� 176 W14� 176 W14� 109

6 W14� 132 W14� 176 W14� 159 W14� 159

7 W14� 132 W14� 132 W14� 109 W14� 120

8 W14� 132 W14� 109 W14� 90 W14� 90

9 W14� 68 W14� 82 W14� 82 W14� 74

10 W14� 53 W14� 74 W14� 74 W14� 68

11 W14� 43 W14� 34 W14� 38 W14� 30

12 W14� 43 W14� 22 W14� 30 W14� 38

13 W14� 145 W14� 145 W14� 159 W14� 159

14 W14� 145 W14� 132 W14� 132 W14� 132

15 W14� 120 W14� 109 W14� 109 W14� 99

16 W14� 90 W14� 82 W14� 82 W14� 82

17 W14� 90 W14� 61 W14� 68 W14� 68

18 W14� 61 W14� 48 W14� 48 W14� 48

19 W14� 30 W14� 30 W14� 34 W14� 34

20 W14� 26 W14� 22 W14� 26 W14� 22

Weight (kN) 980.63 956.13 960.90 946.25

No. of required

analyses

15,500 13,924 10,500 7500

1 20 40 60 80 100 120 140 168
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Fig. 11.8 The values of the

stress ratios of elements for

the ICA result [2]
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11.5 Discussions

Many of the metaheuristic algorithms are proposed based on the simulation of the

natural processes. The genetic algorithms, particle swarm optimization, ant colony

optimization, harmony search, and charged system search are the most well-known

metaheuristic algorithms. As an alternative to these metaheuristic approaches, this

chapter investigates the performance of a new metaheuristic algorithm to optimize

the design of skeletal structures. This method is called imperialist competitive

algorithm (ICA) which is a sociopolitically motivated optimization algorithm.

In the ICA, an agent or a country can be treated as a colony or imperialist and the

agents collectively form a number of empires. This algorithm starts with some

random initial countries. Some of the best countries are selected to be the imperi-

alist states, and all the other countries form the colonies of these imperialists.

Imperialistic competitions among the empires direct the search process toward

the powerful imperialist and thus to the optimum points. During the competition,

when weak empires collapse, the powerful ones take possession of their colonies. In

addition, colonies of an empire move toward their related imperialist. In order to

improve the ICA performance, here two movement steps are defined by using

(1) different random values for the components of the solution vector instead of

only one value and (2) deviation through orthogonal colony-imperialistic

contacting line instead of using θ.
Four design examples consisting of two trusses and two frames are considered to

illustrate the efficiency of the present algorithm. The comparisons of the numerical

results of these structures utilizing the ICA and those obtained by other advanced

optimization methods are performed to demonstrate the robustness of the present

algorithm in finding good results in a less number of iterations. In order to highlight

the positive characters of the ICA, a comparison of the ICA and the PSO algorithm

is provided in the following:

– In the ICA algorithm, there is no need to save the previous location of agents

(velocity), while the PSO requires two positions saving memory (the current

position and the previous position).

– In the ICA algorithm, {V1} determines the movement direction of agents, while

in the PSO, this is performed by the global and local best vectors. The vector

{V1} is the best of the empire, i.e., it is the best agent among a predefined number

of agents, while in the PSO the global best, denoted by {Pg}, is the position of

the best agent of all agents. Therefore, {V1} will change for different agents

during an iteration (depending on the empire which they belong to) and this

helps the algorithm to increase the exploration ability, while {Pg} is constant for

all the agents in an iteration.

– In the ICA algorithm, saving the local best position of agents is not necessary,

and instead the vector {V2} is utilized.
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