
Serious Games Architectures and Engines

Heinrich Söbke1(✉) and Alexander Streicher2

1 Bauhaus-Institute for Infrastructure Solutions (b.is), Bauhaus-Universität Weimar,
Weimar, Germany

heinrich.soebke@uni-weimar.de
2 Fraunhofer IOSB, Karlsruhe, Germany

alexander.streicher@iosb.fraunhofer.de

Abstract. The term Serious Game includes a wide, heterogeneous field of digital
games with varying purposes and objectives and for a multitude of different
application areas. All in common is the underlying software. This chapter gives
an overview on the technical aspects of serious games including their software
architectures and engines. As the general topic is manifold and the technical
aspects of serious game software are quite comprehensive, this chapter covers the
basic principles of and requirements for serious game software. It depicts selected
software architectures and provides examples for game engines including a
description of selected components.

Keywords: Serious games architecture · Game engine · Serious game
development · Distributed architecture · Game component · Schema

1 Introduction

What are serious games and how can they be categorized? Schmidt et al. [1] suggest a
categorization according to the purpose of the game: they follow the work of Connolly
et al. [2] and classify the purposes of a game as Attention, Motivation, Knowledge or
skill acquisition, Process Support, Joy/Playfulness and Information. Michael and Chen
[3] identify eight categories as markets for serious games: Military, government, educa‐
tion, corporate games, healthcare, politics, religion and art. These are only two of the
suggested categorizations – Djaouti et al. [4] present a literature review of serious games
categorization in their work to develop their G/P/S model. This model divides a serious
game into Game aspects and serious aspects (Purpose and Scope). Another classification
has been defined by Ratan and Ritterfeld [5]. Their proposed dimensions to classify
serious games comprise Primary Educational Content, Primary Learning Principles,
Target Age Group and Game Platform.

The amount and depth of all those classifications can be taken as an indicator for the
great diversity in the field of serious games. Sophisticated distributed virtual training
systems for military operations [6] are subsumed under this term as it is done for multi‐
player online games [7], or for a simple gamified quiz app [8]. Software is a common
component of all these games. This requires a non-trivial software development process.
Such a process, the chosen software architecture and the employed software development

© Springer International Publishing AG 2016
R. Dörner et al. (Eds.): Entertainment Computing and Serious Games, LNCS 9970, pp. 148–173, 2016.
DOI: 10.1007/978-3-319-46152-6_7



tools depend on the planned serious game. Obviously, neither a universal serious game
template nor a universal, all-inclusive software architecture does exist yet. Nevertheless,
in order to provide an orientation regarding the technical necessities for software archi‐
tectures and engines in serious game development, this article discusses the following
content: First, the specific needs of serious game development in contrast to the needs of
game development and software development are identified. The following section on
architectures introduces basic game architectures as well as distributed architectures, and
it discusses approaches and standards for interoperability. Especially schemes for learning
objects and serious games metadata can be considered as essential principles of intero‐
perable architectures. The section about game engines presents a general overview and
lists exemplary game engines. Afterwards, a selection of open research questions is
followed by summarizing conclusion and further recommended readings.

2 Requirements to Software Development

Although serious games consist of a wide range of manifestations regarding purposes,
game mechanisms and technical implementation, there may be a common core of prev‐
alent requirements and characteristics of appropriate architectures and engines. In a first
approach to gather further hints, we have a look at the development process. As system‐
atic research about serious game development is rare, we have included game develop‐
ment in our literature review as well. Generally, serious games are a subset of digital
games, which are a significant part and driving factor of the creative industries.

2.1 Game Development

It is common practice to describe game development by comparison to software devel‐
opment. This approach is followed by Murphy-Hill et al. [9]. They state that software
development for digital games is not a well-researched topic yet. However, they iden‐
tified tendencies and first important findings in the results of their survey: in game
development, the requirements to the product are more unclear compared to conven‐
tional software development. Therefore, requirements often are subject to change during
the development process. This finding is backed by the complex, non-deterministic and
non-linear but iterative process of game design in order to develop working, fun-creating
game mechanics. That is, if implemented game mechanics do not seem to work, changes
have to be made in order to achieve the development goal [10]. Such a process requires
agile development methods, which are in fact more prevalent in game development
projects. Murphy-Hill et al. [9] consider the ability to communicate with non-engineers
or domain experts as a key-skill of game developers and coin the term of “software
cowboys” as one archetype of a successful game developer. Accordingly, Hagan et al.
[11] point out, that the combination of people from different disciplines imposes specific
importance on communication and team building: “effective collaboration requires a
team that respects each other’s contributions, communicates frequently and shares a
similar conceptual model of the product and goals”. Cooper and Scacchi [12] even
underline that game development is a broad and comprising field, which leads to

Serious Games Architectures and Engines 149



developers being narrowly skilled in probably only one game genre. For the field of
online game development Morgan [13] postulates that “the commercial success of online
gaming [..] has masked the technological inadequacies”. He mentions missing standards
for content sharing and non-given interoperability between games (Morgado [14]
extends this deficit to virtual worlds) and unavailable model-driven development proce‐
dures. The proliferation of Minecraft [15] in educational and research contexts [16, 17]
illustrates, that content sharing standards and interoperability can facilitate the use of
games: gaming scenarios from a broad range of versatile contexts can easily be provided
and deployed by the usage of a standardized platform.

Ampatzoglou and Stamelos [18] conducted a systematic literature review about
research topics in game engineering. According to their findings, software development
for games recently has become a more vital research field increasing year by year at a
disproportionately higher rate compared to software engineering research in general.
The thesis of a game development as an emerging and progressing field is supported by
Prakash et al. [19]. Most prevalent topics are requirements and specification, manage‐
ment and coding tools and techniques. Software architecture and software reuse are
among the less focused topics. Ampatzoglou and Stamelos [18] cite McShaffry [20],
who found diverse criteria to “differentiate game software engineering from classical
software engineering”, and they conclude that games have a shorter-lifecycle as well as
a shorter development period. Product maintenance consists mainly of bug fixing; there‐
fore, no revenues are generated from maintenance releases. Nevertheless, sequels and
extensions are considered as a kind of maintenance releases, which create revenues.

Another result of Murphy-Hill et al. [9] is that game development relies often on in-
house tools in contrast to standard software. However, Wang and Nordmark [21] identify
integration of third party components as one tendency in game development.

Blow [22] uses case studies to describe that game development becomes more
complex as technical options progress. Kanode and Haddad [23] identify the combina‐
tion of multiple and diverse kinds of assets like graphics, videos, code, sound effects as
one challenge of game development in contrast to software development. Hagan et al.
[11] add that innovation and speed to market are vital in game development.

2.2 Serious Game Development

Serious game development has – compared to plain game development – the additional
burden of integrating the “serious” element into the game. This demand complicates the
development process further as it removes degrees of freedom from the design process
(see chapter “Processes and Models for Serious Game Design & Development” in this
volume) in order to achieve a seamless integration of content and game [24].

Among the differences to conventional game development is that the hardware
requirements should be rather low [3]. For example, educational application settings of
serious games are often connected to schools where not always the most recent hardware
is available. In addition, target systems and target groups may be more heterogeneous. The
application setting of a serious game may comprise target groups that are not necessarily
gamers. As the example of Social Network Games (SNGs) shows (cf. e.g. [25, 26] and
chapter “Social Network Games”), hereby further requirements are imposed on the user

150 H. Söbke and A. Streicher



interface design beyond digital game standards. Another characteristic of serious games
is the necessity of more accurate simulation models. In conventional digital games, simu‐
lation models are optimized for entertainment purposes, in most serious games the simu‐
lation models are a significant part of the serious content and have to be close to reality.

Testing of serious games not only comprises play tests (in order to ensure fun creating
game mechanics). Furthermore, validation steps must be included to test if the actual
purpose of the game can be fulfilled. For this reason, monitoring functionality has to be
integrated. One approach to accomplish this is the employment of third party tools
through the support of standardized interfaces. The possibility to conduct Learning
Analytics has become an impacting side-goal in serious game design [27, 28].

These additional requirements to design and implementation of serious games are
often diametrically opposed to low budgets, and it is considered as one of the main
contradiction in serious game development [29]. There are only few cases with excep‐
tional high budgets, e.g. serious games for military training. The most prevalent attempt
to face this dilemma is to reduce technical complexity of serious games [30, 31].
Authoring tools are a relevant contribution in this category. Lester et al. [32] define a
list of requirement for the specific case of authoring tools for pedagogical agents. They
request familiar user interface paradigms with standard editing features, support for
author collaboration and rapid iteration and testing. In addition, different levels of expe‐
rience should be accommodated as well as automation of complex and tedious tasks.
Usage should be eased by templates and tutorials [32].

Between developers of commercial entertainment games it is controversially
discussed, if in-house game engines or third-party game engines are preferable [33].
Whereas the creation of an own engine can free game developers from vendor-depend‐
ency, serious game development typically does not have the necessary budgets to
develop an in-house game engine. Thus, this make-or-by-decision commonly is taken
away from serious game development in favor of freely available or affordable engines.

In conclusion, serious game development is a complex task in a technically fast
moving environment. Whereas commercial games can just focus on achieving a great
portion of fun, the development of serious games also has to adhere to the integration
of the “serious” goal. In addition to this increased difficulty, technological progress also
boosts the capabilities of commercial entertainment games that can be considered as a
benchmark for attractiveness of serious games. This tremendously complex task is faced
by commonly low budgets. The lack of resources can be compensated at least partially
by functionality and efficiency of the underlying software, tools and their compositions,
i.e. architectures.

3 Architectures

In its basic form “software architecture deals with abstraction, decomposition and
composition, and style and aesthetics” as stated by Kruchten in his 4+1 view model of
architecture [34], which is depicted in Fig. 1.

Serious Games Architectures and Engines 151



Fig. 1. 4+1 view model of architecture by Kruchten [34]

Kruchten [34] suggests four views of a software architecture to describe its model:
(I) a logical view illustrates the object model, (II) a process view deals with concurrency
and synchronization issues, (III) a physical view describes the “mapping of the software
onto the hardware and reflects its distributed aspects” and (IV) a development view
represents the software’s static organization in its development environment”. Bass et al.
[35] add the concepts of components, their interfaces and their interrelated compositions.

The notion of software architecture as a composition of components becomes
especially apparent in depictions of game engines, as shown in Fig. 2. Self-contained
components with well-defined interfaces are arranged to build a game engine. This
representation suggests that the views I and II of Kruchten’s 4+1 model [34] are

Fig. 2. Game engine: software architecture as a composition of components and interfaces [36]

152 H. Söbke and A. Streicher



handed by the game engine’s architecture: object models have to follow the game
engines’ technical conventions and within their game loop they frame the handling
of synchronization and concurrency issues. The views III and IV are applicable to
game architecture itself: the distribution of components among the involved hard‐
ware is handled by the physical model. The development model describes the inte‐
grated components and libraries. Therefore, we differentiate between the architecture
of a game engine and the architecture of a game. While we deal with the latter in this
section, the first is handled in Sect. 4.

3.1 Game Architectures and Its Typical Components

Apart from game engines (software frameworks that provide basic services for game
development in order to enable an efficient development process – cf. Sect. 4), there are
further components, which are typically included in architectures for (serious) games.
Hereafter we look at typical examples of serious games and describe their architectures,
focusing on the aspects of the physical and the development view; each of the described
exemplars illustrates typical facets. We use the platform categorization from Connolly
et al. [2] which comprises Mobile, Internet, PC and Console. Non-digital games are
excluded, because they do not require a software infrastructure. The category Virtual
World is disregarded, as the results of Connolly et al. do not indicate significance in the
past for the field of serious games (which probably may change with the raise of head-
mounted virtual reality displays as Oculus Rift [37]). From a technical point of view,
this distinction becomes - at least partially – obsolete. game development environments,
which support multiple (target) platforms, are evolving (e.g. Unity [38]). However, a
complete unification for all platforms will not take place: there is a continuous stream
of emerging hardware devices, which facilitate new forms of gaming. Recent develop‐
ments in this context are, for example, mobile devices, virtual reality displays or sensors.
The emergence of new hardware devices leads to further developments of new archi‐
tectures.

This section continues with a short overview on exemplary architectures for preva‐
lent platforms. It shortly discusses sensors as architecture components and concludes
with a paragraph about common components.

PC. Mobility is a city-builder game with the focus on traffic simulation [39, 40]. It has
been released in 2000 and has been developed with the support of a German industrial
and governmental consortium that contributed a budget of approximately € 500.000.
Developed as an educational game and installed a million times, it also received popu‐
larity as an entertainment game [41]. Its architecture is simple: As a PC game it is
installed on a Microsoft Windows-based computer. It does not require an internet
connection. Regarding the development view, it is remarkable that it was developed
without a dedicated game engine. The entire game has been created from scratch using
a C++ programming environment. The monolithic simulation model has been defined
beforehand; it comprises 112 relevant factors.

Minecraft [15] is an example of a widespread PC based game, which is used in
educational contexts. It has been developed in Java and is able to run without a

Serious Games Architectures and Engines 153



network connection. The multiplayer mode requires a network connection and a
server that hosts a common virtual world.

Mobile Games. JuraShooter StGB [42] is a learning app for law students. It facilitates
multiple response questions (MRQ) for learning and animates the answering process.
From a physical view, there are three components: the app itself, a content management
system and the Apple Game Center as a rudimentary assessment administration tool (see
Fig. 3).

Fig. 3. Physical view of JuraShooter StGB

Fig. 4. Development view of the LernShooter architecture

154 H. Söbke and A. Streicher



The JuraShooter StGB has been developed using Cocos2d [43], an open source soft‐
ware development framework. The software structure of JuraShooter StGB is based on
a framework called LernShooter: by supplying another set of graphics, video, sound
effects (SFX) and content in the form of MRQs a new app can easily be created. This
has been done various times (e.g. KanalrattenShooter [8]). Figure 4 depicts the devel‐
opment view of a new LernShooter app. Its content will be supplied by the content
management system (see Fig. 3).

Fig. 5. Development view of a web-based game (Energetika)

Web-Based Games. Web-based Games are operable in a web browser. Energetika
[44] is an example for a web-based serious game. It received attention, as it has been
awarded the Deutscher Computerspielpreis (the most important award for digital games
in Germany) in the category Serious Game in 2011. In that year the nuclear disaster of
Fukushima led to a turnaround in Germany’s energy policy. Energetika helps to illustrate
characteristics and consequences of different energy sources. It is a simulation game
about the energy supply for industrial nations, raising issues like carbon dioxide emis‐
sions and radioactive waste repositories. Its technical base is the proprietary, Adobe
Flash-based framework Epigene [45]. The implemented simulation model is compre‐
hensive and self-contained. It is not intended for subsequent extension. The attached
database stores high scores of different categories. Among the categories are the energy
mix and achievements (see Fig. 6). The deployment is managed via dedicated web
servers (see Fig. 5).

Serious Games Architectures and Engines 155



Fig. 6. Physical view of a web-based game (Energetika)

Video Console. Serious games developed for video game consoles are rare. In a review
of 129 publications concerning effects of digital games and serious games, Connolly
et al. [2] identified 26 that related to console-based entertainment games in serious
contexts. However, they could collect only two papers about console games intended
for learning purposes and none for other purposes. In general, the deliveries and services
of consoles, which are specifically designed hardware devices for gaming, can also be
provided by personal computers (PCs). PCs are by far more widespread than consoles
and have no functional limitations compared to consoles. In general, console games do
not differ significantly from PC games. However, console games make more use of
additional sensory input devices, like the Nintendo Wii Remote or the Microsoft
Kinect. Microsoft Kinect tracks the movements of the players, based on a range-camera.
It can facilitate for instance sport simulation games [46]. The Wii Remote achieves a
similar effect by using a combination of accelerometer and optical sensors.

Sensors as Architecture Components. As consoles and PCs are by and large func‐
tionally equivalent as deployment platforms, we focus on the aspect of sensors as
components of serious games. An example of a serious game processing sensor data is
the Aiming Game. It uses sensor-provided biofeedback by means of electroencephalog‐
raphy and electromyography to train emotion regulation [47]. The game Letterbird is
an example for an exergame and intends to control the load of endurance training. It
processes sensor data of the athlete (heartrate) and the training device (ergometer, pedal
rate and resistance setting) [48]. In this context, Hardy et al. [49] have developed a
Framework for adaptive Serious Games for Health (see Fig. 7). Besides pointing to
sensors as an essential part of this framework, it is an example of components forming

156 H. Söbke and A. Streicher



a system architecture. A kind of exergame, following the metaphor of an air puck, with
an additional social dimension has been described by Maier et al. [50]. The experimental
setup consists of two PCs, each equipped with a Kinect sensor and connected via local
area network (LAN). Players’ performances are balanced by an adaptation component.
As a result, impaired patients can match up with non-impaired.

Fig. 7. Framework for adaptive Serious Games for Health derived from Hardy et al. [49]

In general, the integration of sensors opens further application areas for serious
games. Among these are exergames, Games for Health (see chapter Games for Health
in this volume), Pervasive Games (see chapter Pervasive Games in this volume) and
embodied interaction (see chapter Embodied Interaction in Play in this volume).
Regarding the architecture, it expands the physical view with hardware-based sensors
and probably further game engine components. The development view is extended with
drivers and programming interfaces.

Common Components. Summarizing the previous examples, a game engine (see
Sect. 4) is an important part of the development view of almost any architecture of
serious games. Commonly, web-based architectures include servers, which host the
game itself and deliver it to the web browser. Additionally, they host authoring tools or
content management systems as well as the databases with content, user data, sensory
input data, etc. Another component used in professional web-based game development
is a client-server-middleware handling request management. SmartFoxServer [51] is an
example for such a middleware. Furthermore, to select an appropriate client/server
model is crucial in case of highly frequented virtual worlds [14, 52].

Serious Games Architectures and Engines 157



3.2 Distributed Architectures

Distributed software architectures are widely applied to various kinds of application
areas where software components are not just located on a single computer but on
networked computer systems. Advantages of distributed architectures like shared use
of resources (assets, code, logic blocks, etc.), openness, parallelism, scalability or trans‐
parency also apply for games. Examples of distributed software architectures are client-
server, peer-to-peer or n-tier architectures (web applications are a prominent example
for the latter). For further reference, Coulouris et al. [53] give a detailed overview of
distributed systems, including the theoretical foundation of distributed algorithms.
Regarding games, a prominent example of a distributed system are massively multi‐
player online games (MMOG) where hundreds of players are interconnected over the
internet and play the same game instance in the same game world [54, 55]. Whereas
first games have been completely monolithic, today’s games are often modular and
dynamic. They can load new game content, game states or mechanics from the internet
and incorporate them at runtime. Distributed architectures with interoperable data
models are needed to realize such games. In the broader field of distributed virtual reality
environments and distributed simulations several architectures have been proposed,
notably MASSIVE [56], DIVE [57], and the High Level Architecture (HLA) or its
predecessor Distributed Interactive Simulation (DIS).

Whereas distributed game architectures are commonly used in popular commercial
games, they are rarely applied to serious games. Carvalho et al. [58] introduce the
concept of a service-oriented architecture (SOA) as an architectural model for serious
games. In this model, the game components are distributed to various servers offering
their services through web interfaces. The advantages are up-to-date components, auto‐
mated detection of services and exchangeability of service providers in case of stand‐
ardized interfaces. Furthermore, it removes special hardware requirements from clients
as web browser access enables ubiquitous accessibility.

A distributed, multi-agent system has been presented by van Oijen et al. [59] in their
CIGA middleware for intelligent virtual agents (IVAs). CIGA is a software architecture
to connect multi-agent systems to game engines using ontologies as a design contract.
The CIGA middleware negotiates between the physical layer of game engines and the
cognitive layer of multi-agent systems (IVA).

Jepp et al. [60] describe an agent-based architecture for modular serious games. The
framework strives to provide serious games with believable, emotional agents to help
players learn skills and evaluate their performance. It is part of the TARGET platform
helping learners to train competencies in game scenarios. The framework is interlinked
with a game engine, a dialogue system and a narrative engine via a so-called translation
engine handling synchronization and communication.

A distributed architecture for testing, training and simulation in the military domain
is TENA by the U.S. Department of Defense (DoD) [61]. This extensive architecture
focuses on interoperability for military test and training systems. At its core, the TNA
middleware interconnects various TENA applications and tools for the management,
monitoring, analysis, etc. of military assets. Via a gateway service, they can be linked

158 H. Söbke and A. Streicher



with other DIS or HLA conformant simulators that provide real sensor data or data from
live, virtual and constructive simulations (LVC) for the TENA environment.

Peirce et al. [62] present the ALIGN architecture to enable the adaptability of serious
games in a minimal-invasively fashion. The ALIGN system architecture decouples the
adaptation logic from the actual game without mitigating the game play. It is divided
into four conceptual processes: the accumulation of context information about the game
state; the interpretation of the current learner state; the search for matching intervention
constraints; and a recommendation engine, which applies adaptation rules to the game.
ALIGN is not included in the actual game but communicates with attached game engines
via TCP/IP. It has been applied in the educational adventure game of the ELEKTRA
project [62].

3.3 Data Models and Interoperability

While the software architecture specifies the structure of a software system and how
data flows through it, the technical specification of the data itself (the schema) is also
part of the overall system specification and the specification of the scenarios. This section
focuses on the data schemas for interoperability. In the domain of Modeling and Simu‐
lation (M&S) exist various standards to describe virtual environments, e.g. the Simula‐
tion Reference Markup Language (SRML) [63, 64] or state-machine models like State-
Chart XML (SCXML) [65].

Standards for technical data representation enable systems to be interoperable, that
is to effectively exchange data and information. In sustainable IT environments the
interoperability of data and processes is one of the core aspects for efficiency, respon‐
siveness and cost reduction. This applies to serious games as well: Only when data
schemas are interoperable with other serious games, true data exchange is effectively
possible (e.g. data exchange on usage activity or content). Stãnescu et al. [66] give an
overview of the interoperability of serious games. They propose a Serious Games Multi‐
dimensional Framework (SG-MIF) to consider different levels of interoperability,
regarding serious games components, their ecosystem and how to handle topics
following the use of serious games [66].

For learning management systems (LMS) various data models and exchange formats
have been proposed, notably the IEEE Learning Object Metadata LOM) [67] or the
exchange format Shareable Content Object Reference Model (SCORM) [68]. The IEEE-
LOM is a base schema to annotate learning resources with metadata. Annotated learning
resources are called Learning Objects (LO). LOM was developed to facilitate the search,
acquisition, exchange and use of LOs. It allows the specification of new application
profiles with mixed element sets and references to other vocabularies. Whereas LOM
specifies a schema for metadata annotation, SCORM makes use of it in its own LOM
application profile: It provides a collection of standards for the communication and data
exchange of LOs. SCORM includes a specification about packaging LOs for interchange
between different LMSs. What sounds good in theory has its pitfalls in reality. A simple
exchange of learning resources via SCORM proved to be difficult and far from “plug &
learn”. Simple, static data can be exchanged but dynamic content or learning settings
cannot, because of the different learning concepts of the LMSs. For Intelligent Tutoring

Serious Games Architectures and Engines 159



Systems (ITS) and adaptive learning systems LOM is a key model for repurposing
content or aligning it along adaptive learning pathways [69, 70]. The effective reusability
and repurposing of learning objects offer the possibility of an efficient game development
process. It enables the computer to personalize and adapt games to individual users by,
e.g. rearranging content. The reusability of learning objects has already been demon‐
strated between web-based LMS and game-based LMS [71]. The data exchange between
games and LMS has been shown in the <e-Adventure> platform by Torrente et al. [72].
It is a set of platforms for developing inexpensive, educational games, including an API
for tracking and assessment. The API can transfer results of the game play to a learning
management system (LMS), and thus, students’ performances can be monitored and
aggregated. Similarly, the API implemented by the <e-Adventure> platform follows
the SCORM specifications [68], which eases integrations with LMS servers that adhere
to this standard.

Further research has to be done to establish a commonly accepted metadata schema
for serious games. LOM as an already accepted base schema, provides the foundation
for such a schema. A taxonomy of educational games that is compatible to IEEE-LOM
is presented by Silva et al. [73].

El Borji and Khadi [74] present an application profile of the IEEE LOM as the so-
called SG-LOM for serious games (see Fig. 8). The intention is to use serious games as
learning resources that are integrated into existing LMS. This metadata schema allows
to exchange tracking and assessment data between serious games and LMS.

Fig. 8. Learning Object Model (LOM) application profile for serious games [74]

160 H. Söbke and A. Streicher



4 Engines

This section gives a short introduction to game engines in general. It describes the func‐
tion of common core components, lists examples of popular game engines and presents
methods how to categorize them.

4.1 Overview

In software engineering, the term engine is reserved for a self-contained software frame‐
work that processes input data into output data (input-process-output model). The
applied processes as well as the input and output data can be described formally, e.g.
using formal modeling standards like UML2 [75], State-Chart XML [65], etc., or using
XML schema to define the data models. There are different kinds of software engines,
e.g. simulation engines, search engines, inference engines, etc. An engine is a part of a
software system; thus, a game engine is usually an essential part of game software.
Engines offer services that free programmers from developing low-level algorithms, like
algorithms for computer graphics and rendering or for user-adaptive non-player char‐
acter (NPC) behavior, thus engines contribute to efficient game development. For
example, a game engine often provides the service of visualizing 2D or 3D worlds.
Rucker [76] describes the game development framework Pop, which has been developed
for educational purposes. It documents basic requirements, processes in development
and the usage of an elementary game engine.

In his description of the evolution of game engines, Gregory “reserve[s] the term
‘game engine’ for software that is extensible and can be used as the foundation for many
different games without major modification” [77]. In a short definition Anderson et al.
[78] identify reusable software components as game engines. They point out that
different game genres require different game engines. Gregory supports this statement:
a game genre often has specific requirements on a game engine. However, he admits
that borders have blurred with the technical progress of game engines. Nowadays there
are game engines that are capable of being applied to various genres. Resulting games
may not achieve the quality of commercial games, but they deliver astonishingly accept‐
able player experiences [77].

Often a game engine provides multiple aspects that are included in game play. A set
of aspects of digital games, which commonly are handled by game engines, are shown
in Fig. 2. This figure also includes the main structure (i.e. architecture) of a typical game
engine. A main control loop handles events and calls and coordinates various compo‐
nents of the engine. Often these components themselves are called “engines” as they
handle a single aspect of the game engine. Therefore, the audio engine is responsible
for providing an acoustical environment in the game.

Authoring environments for games (e.g. StoryTec, G-Flash, <e-Adventure> and
SeGAE [72, 79–81]) differ from game engines: the game designer has to provide content
to create a self-contained game. In contrast to an authoring environment a game engine
provides just the base for a digital game – game designers have to design the game and
programmers have to transform it into a working game using the game engine’s services.

Serious Games Architectures and Engines 161



Game engines provide very powerful concepts. One challenge in game design is to
use these concepts purposefully to provide immersive and engaging games. Usage of
features which are not appropriately integrated in the game design concept (e.g. the
narrative) may cause an unwanted distraction and may lead to “breaking the magic
circle” [82]. In his discussion of physics in a game, Gregory points out that non-
purposefully used physics features may distract the player from the intended game
experience [67].

4.2 Selected Components

Although most functionalities of a game engine are provided unrecognized as trans‐
parent services to the game developers, it is reasonable to introduce some components
in detail. This may be useful as they have to be developed or adapted to serious games
(like personalization or adaptation); or the knowledge about their principles helps to
understand the development process (as in the case of 2D/3D engines or physics
engines).

2D/3D-Engine. The graphics engine is a component on the view- or presentation-layer
and handles all rendering of graphics, text and symbols (i.e. all visuals). Graphics are
an important part of a game. Graphical effects and quality are often considered as to play
a significant role in the playing experience. Almost every game engine includes a
graphics engine. Functionalities of a graphics engine primarily comprise visualization
of geometric objects and handling of textures. Additionally, visual effects like shading,
transparency and reflections also belong to the capabilities of a graphics engine.
Rendering is the process of creating an image from the 2D or 3D model. An introduction
to the principles of a graphics engine is given in [20].

Artificial Intelligence (AI). In order to provide challenging scenarios for players, AI
is introduced into games. A common purpose of AI is to NPC. To challenge the player,
the AI plans the reactions of the NPCs in real-time, according to the player’s actions.
The implementation of AI is demonstrated for example in the first-person-shooter
F.E.A.R. [83] or in other fight games [84]. Recently, a main goal in the field of AI
focusses on the design of more reasonable and believable AI behavior. Besides these
extensions, Yannakakis, discusses three further areas of AI in games [85]: (1) Player
experience modeling (PEM) adopts the game environment to the player’s capabilities
and preferences. It can provide an individualized and therefore intriguing game play.
(2) Procedural content generation (PCG) deals with the automated generation of game
elements, e.g. creation of new game levels. As content has not to be created manually,
it reduces development costs. Furthermore, the created content can be adapted to the
player (see chapter Content generation for Serious Games in this volume). Additionally,
Yannakakis points out the capability of PCG to contribute to design solutions beyond
human imagination. The last application area discussed is (3) Massive-scale Game Data
Mining. It is used to optimize a game “around the player”. Conventional algorithms can
no longer handle the amount of available data (“Big Data”). This has led to the facili‐
tation of data mining algorithms in games: Collaborative filtering, for example, searches

162 H. Söbke and A. Streicher



for recurring patterns in interaction data of other human users. The data is matched to
the user model of the current user to provide more human-like behaviors.

Commonly a game engine does not support the complete range of AI engines.
Instead, AI engines are available as plugins. The Unity game engine for example [38]
supports a limited set of AI technologies including algorithms for finite state machines,
pathfinding and navigation. Additional plugins can be found in Unity’s distribution
platform Asset Store. For instance RAIN for Unity adds behavior trees to control the
behavior, navigation, motion or animation [86].

Physics. Virtual worlds in games often include simulations of physics. Some genres,
like shooter games, depend on it. In game development classical laws of mechanics are
subsumed under the term physics [87]. Based on the concept of gravity (an object falls
down) further phenomena like rigid bodies dynamics (an object is not deformed when
external forces impact it) and collision detection (two objects partly overlap during their
movement trajectories) are implemented by physics engines. Although a physics engine
is often implemented as a separate software component, most game engines include
them. Other game engines facilitate third party engines. For example, PhysX, an engine
by NVIDIA that outsources calculations to the graphical processing unit (GPU) is used
by Unity [88]. Physics engines allow the programmer to model a virtual world by means
of configuration to avoid manual programming. As physics calculations are often
computationally demanding, offline pre-calculations of movement sequences can be an
appropriate optimization strategy [77].

4.3 Game Engine Examples

In literature, a few selection processes of game engines for serious contexts are docu‐
mented. As already mentioned in Sect. 2.2, a relevant criterion is the ease of use. It
should enable even domain experts, who are not experienced game developers, to create
serious games and related tools [32]. Cowan and Kapralos [89] emphasize available
budgets as a main difference between commercial and serious game development. They
conducted a literature research to identify prevalent game engines and frameworks in
the context of serious games. Their results indicate that mostly game engines produced
for commercial entertainment settings are used for developing serious games. The ten
top-most named game engines or frameworks identified (in combination with the
keywords simulator, serious game and educational game) are, ordered by decreasing
frequency: Second Life, Unity [38], Unreal [90], Flash, XNA, Torque, OGRE, Game‐
Maker [91], StoryTec and OLIVE.

In 2007 Marks et al. [92] describe the selection of a game engine as a well-tested
foundation for simulated surgical training. Their main selection criteria have been inex‐
pensiveness and popularity of the game engines. The final list of candidates consisted
of Unreal Engine, id Tech 4 and Source Engine. Examination criteria have been the
availability of editing features, integration of further content and support of multiple
users of the simulator.

As resources for serious game development are often are limited, the results of
Rocha et al. [93] are relevant: In 2010 they evaluated the market of open source 3D

Serious Games Architectures and Engines 163



game engines. Their sub-criteria have been: (a) recent stable version, (b) source code
is available, (c) support for both operating systems, Windows and Linux, (d) not
restricted to a specific game genre and (e) documentation is available and a lively
community of users. They found the following game engines and tool kits: Blender
Game Engine [94], Crystal Space [95], Delta3D [96], Irrlicht [97], jMonkey Engine
[98], Ogre3D [99], OpenSceneGraph [100] and Panda3D [101]. These engines are
discussed regarding the categories of graphics and non-graphics features, their devel‐
opment support and their organizational and technical maturity.

Petridis et al. [102] propose a framework for selecting game engines for serious
games in high fidelity applications. Fidelity in their context refers to audiovisual and
functional fidelity. Among the applied criteria are audiovisual fidelity (to enable
immersion), functional fidelity (to support learning goals), composability (which
relates to the reuse of existing components), accessibility (as serious games have to
support inexperienced players, serious games should not require knowledge about
standard game operations), networking (to enable multiple users to create a social
context), and heterogeneity (i.e. multiplatform support). In order to validate this frame‐
work, they reduced a comprehensive list of game engines according to the criteria of
wide usage, availability, modularity and innovative features. Finally they evaluated four
game engines: CryEngine [103], Valve’s Source Engine1 [104], Unreal [90], and Unity
[38]. These engines can be considered as a good match to the provided framework.
However, it needs further refinement as the field progresses at a fast pace.

Table 1. Criteria for selecting game engines as proposed by Westhofen and Alexander [105]

Software Development Acquisition
Audiovisual display
• Rendering
• Animation
• Sound
• Streaming

Accessibility
• Documentation
• Support
• Code access
• Introduction effort

Accessibility
• Licensing
• Cost
• System requirements

Functional display
• Scripting
• Supported AI
• Physics Engine
• Event handling
Combinability
• Component export/

import
• Development tools
Networking
• Client-Server
• Peer-to-Peer
Heterogeneity
• Multi-platform support

1 Source Engine has been discontinued in 2014. Its successor, Source Engine 2, has been
announced [125].

164 H. Söbke and A. Streicher



Westhoven and Alexander [105] proposed a further methodological attempt to struc‐
ture the selection process of game engines. They extended the framework of Petridis
et al. [102] with aspects mentioned by Marks et al. [92] and Sarhan [106] (cf. Table 1)
to select a game engine for a Virtual Reality (VR) application. They divided their criteria
catalog into three categories: software-related criteria, which focus on the technical
capabilities of the game engine; development-related criteria, which characterize
requirements for the development process; and finally acquisition-related criteria. The
latter categorie summarizes criteria which impact the provision of a game engine in a
concrete development setting. In their case study they demonstrate that the proposed
selection criteria have to be taylored to specific requirements. They evaluated Unity and
CryENGINE as potential development platforms for their VR application.

Besides commercial game engines, there are specific educational game engines.
These are mainly applied in contexts where the process of creating games itself is an
educational measure. GameMaker [91] is a typical representative of this group. A more
complete list of game making tools is maintained on Google Docs [107].

Another kind of game engines is specialized on browser games. These game engines
mostly use HTML5 technology or provide browser-plugin support. GameMaker, for
example, provides export to HTML5 besides other formats.

Seldom game engines are created from scratch by a game developer studio. The
reasons for own developments are to support a specific genre and to reuse results for
other games – as it has been done in the case of CryEngine, SourceEngine and Unreal.
An remarkable attempt has been undertaken for SimCity 5 [108], because not only
graphics but also the modeling of the simulation itself can be adapted: the underlying
GlassBox engine, which has not been disclosed to the public, uses agent-based simula‐
tion and adheres to the What You See Is What You Simulate Principle [109, 110].

5 Research Questions (Starting Points for PhDs)

The most prominent research questions mostly concern the efficient game development
process. As stated in Sect. 2, serious games require a huge development effort by design.
Because of their multidisciplinary nature, their development could in fact cost more than
business applications. Concepts for easy transferable – or even universally applicable –
architectures, as well as supporting and flexible game engines are needed.

Before thinking about universally applicable architectures first steps towards
commonly accepted architecture blueprints have to be devised. In software engi‐
neering, architecture blueprints are a proven tool in the efficient development of good
and sustainable software products [111]. Standardization of architectures and data
schemas could provide the community with interoperable data models and facilitate the
data exchange between applications.

The integration of emerging end user interfaces into serious games is another
reoccurring topic of research [14]. Such technologies could include cloud-based
rendering (e.g. OTOY [112]) and virtual (e.g. Oculus Rift [37]) and augmented
reality devices (e.g. Google Glasses). Data from other sources (e.g. Internet of

Serious Games Architectures and Engines 165



Things) and sensors (e.g. eye tracking devices, Xbox Kinect, etc.) could enable new
fields of application of serious games.

In general, arising gaming technologies have to reviewed regarding to their facil‐
itation of serious gaming (e.g. cloud gaming or computation offloading [113]).

Domain-specific game engines can increase the efficiency of development. An
example is SimCity’s GlassBox engine. It eases development by visualizing the simu‐
lation processes specific to city building games. The same principle can be used to
integrate further domain specific features into game engines or integrated develop‐
ment environments (IDEs). A candidate could be the integration of learning analytics
components and further supporting tools for educational games.

Model driven development decreases development efforts. Providing tools to
generate games from models would ease the development process and probably lower
the requirements to the technical knowledge of game designers and developers.
Authoring tools ease game development in a similar way, but probably have a limited
variability of resulting products.

Interoperability and data exchange has been identified as crucial for a widespread
usage of serious game. However, it is not applied in practice at a reasonable rate. Among
the reasons are technical limitations, which have to be eliminated.

6 Summary and Outlook

Serious game development is a highly complex and demanding process that relies on
expert knowledge and software development experience. Currently available game
engines and common architectures support the creation of decent serious games.
However, there is potential for improvements.

There are some main challenges in serious game development: heterogeneous teams
and a perpetual tendency of changing requirements. These issues are by far more specific
to game development than to conventional software development. Commercial digital
games provide a benchmark in terms of fun and entertainment. The need for “serious”
content complicates game design. Development budgets are often comparatively small.
Additional components like sensors and data have to be included in game architectures.
Technical possibilities change at a fast pace.

The main contribution of architectures and game engines is to improve the efficiency
of the development process. The quality of serious games in terms of resulting engage‐
ment level has to follow those of pure entertainment games. For this reason, there will
always be a pressure to enhance the technical foundation of serious games. This technical
foundation includes tools specific to the requirements of serious games (e.g. the inte‐
gration of learning analytics in educational games).

Although in recent years the technical foundation has improved significantly, there
is still great potential to enhance the efficiency of serious game development. Established
principles of conventional software development have not yet been applied to serious
games. Therefore, besides developing game specific technologies and algorithms,
conventional software development can be used as a pool of inspiration and ideas to
streamline serious game development.

166 H. Söbke and A. Streicher



Further Readings and Resources

Books

• Gregory, J. Game Engine Architecture (2014). A basic reading about the internals
of game engines. It is one of the standard references for services offered by game
engines and therein applied algorithms and principles [77].

• Cooper, K.M.L., and Scacchi, W. Computer Games and Software Engineering
(2015). A recent collection of academic articles giving an overview about difficulties
in software engineering for digital games. It serves as a starting point for a more
theoretical approach to the topic [114].

• McShaffry, M., Graham, D. Game Coding Complete (2012). The fourth edition of
a standard work in game development. It gives an overview of the (technical) chal‐
lenges in game development and delivers recipes to master them. [20]

• Hocking, J. Unity in Action: Multiplatform Game Development in C# with Unity
5 (2015). A well-written recent introduction into the currently leading game devel‐
opment tool. This book is an excellent resource in case a concrete initial implemen‐
tation, based on the widespread game engine Unity, is intended [115].

• Nystrom, B. Game Programming Patterns (2014). A well-received book about the
principles of game development. It covers specific patterns, which solve problems
occurring specifically in game development. Thus, this book helps both to understand
common game engines and game architectures and to design and implement propri‐
etary ones [116].

Among further notable books are [54, 55, 117].

Websites

Gamasutra is a considerable online magazine about commercial digital game devel‐
opment. Among websites about technical aspects of game development are further
gamedev.net [118] and AIGameDev [119]. A Q&A-platform about game development
is provided by StackExchange [120].

Databases collecting information about game engines can be found on the websites
DevMaster [121] and HTML5 Game Engines [122].

Conferences

All issues of commercial game development are addressed at the Game Developers
Conference (GDC). It is the most renowned, mainly non-academic conference about
development of digital games.

In the academic sector there are a few conferences dedicated to serious games, which
allow discussions about their technical foundations. Among them are the European
Conference on Games Based Learning (EGBL) and the Joint Conference on Serious
Games (JCSG). Technical aspects of game development in general are handled for
example by IFIP International Conference on Entertainment Computing (ICEC)

Serious Games Architectures and Engines 167



and Advances in Computer Entertainment Technology (ACE). Digital games in
general are discussed at the renowned DiGRA Conference and Foundations of Digital
Games (FDG).

Mailing Lists

The DiGRA-Mailing List [123] is highly frequented and discusses all topics of digital
games. Another relevant mailing list is maintained by the IFIP Entertainment
Computing Community [124].

References

1. Schmidt, R., Emmerich, K., Schmidt, B.: Applied games – in search of a new definition. In:
Chorianopoulos, K., Divitini, M., Hauge, J.B., Jaccheri, L., Malaka, R. (eds.) ICEC 2015.
LNCS, vol. 9353, pp. 100–111. Springer, Heidelberg (2015)

2. Connolly, T.M., Boyle, E.A., MacArthur, E., Hainey, T., Boyle, J.M.: A systematic literature
review of empirical evidence on computer games and serious games. Comput. Educ. 59,
661–686 (2012)

3. Michael, D.R., Chen, S.L.: Serious Games: Games That Educate, Train, and Inform. Course
Technology, Mason (2005)

4. Djaouti, D., Alvarez, J., Jessel, J.-P.: Classifying serious games: the G/P/S model. In: Felicia,
P. (ed.) Handbook of Research on Improving Learning and Motivation Through Educational
Games: Multidisciplinary Approaches, pp. 118–136. IGI Global, Hershey (2011)

5. Ratan, R., Ritterfeld, U.: Classifying serious games. In: Ritterfeld, U., Cody, M., Vorderer,
P. (eds.) Serious Games: Mechanisms and Effects, pp. 10–22. Routledge, New York (2009)

6. Streicher, A., Szentes, D., Roller, W.: Scenario assistant for complex system configurations.
IADIS Int. J. Comput. Sci. Inf. Syst. 9, 38–52 (2014)

7. Reuter, C., Tregel, T., Mehm, F., Göbel, S., Steinmetz, R.: Rapid prototyping for multiplayer
serious games. In: Busch, C. (ed.) Proceedings of the 8th European Conference on Games
Based Learning, Reading, vol. 2, pp. 478–486 (2014)

8. Söbke, H., Chan, E., von Buttlar, R., Große-Wortmann, J., Londong, J.: Cat king’s
metamorphosis. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, vol. 8395, pp.
12–22. Springer, Heidelberg (2014)

9. Murphy-Hill, E., Zimmermann, T., Nagappan, N.: Cowboys, ankle sprains, and keepers of
quality: how is video game development different from software development? In: 36th
International Conference on Software Engineering (ACM), pp. 1–11 (2014)

10. Fullerton, T.: Game Design Workshop: A Playcentric Approach to Creating Innovative
Games. Morgan Kaufmann, Burlington (2008)

11. Osborne O’Hagan, A., Coleman, G., O’Connor, R.V.: Software development processes for
games: a systematic literature review. In: Barafort, B., O’Connor, R.V., Poth, A., Messnarz,
R. (eds.) EuroSPI 2014. CCIS, vol. 425, pp. 182–193. Springer, Heidelberg (2014)

12. Cooper, K.M.L., Scacchi, W.: Introducing computer games and software engineering. In:
Cooper, K.M.L., Scacchi, W. (eds.) Computer Games and Software Engineering, pp. 1–27.
Chapman and Hall/CRC, Boca Raton (2015)

13. Morgan, G.: Challenges of online game development: a review. Simul. Gaming 40, 688–
710 (2009)

168 H. Söbke and A. Streicher



14. Morgado, L.: Technology challenges of virtual worlds in education and training - research
directions. In: 2013 5th International Conference on Games Virtual Worlds Serious
Applications (VS-GAMES), pp. 1–5 (2013)

15. Mojang: Minecraft. https://minecraft.net/
16. Nebel, S., Schneider, S., Rey, G.D.: Mining learning and crafting scientific experiments: a

literature review on the use of minecraft in education and research. J. Educ. Technol. Soc.
19, 355–366 (2016)

17. Petrov, A.: Using minecraft in education: a qualitative study on benefits and challenges of
game-based education (2014). https://tspace.library.utoronto.ca/bitstream/1807/67048/1/
Petrov_Anton_201406_MT_MTRP.pdf

18. Ampatzoglou, A., Stamelos, I.: Software engineering research for computer games: a
systematic review. Inf. Softw. Technol. 52, 888–901 (2010)

19. Prakash, E., Brindle, G., Jones, K., Zhou, S., Chaudhari, N.S., Wong, K.-W.: Advances in
games technology: software, models, and intelligence. Simul. Gaming 40, 752–801 (2009)

20. McShaffry, M., Graham, D.: Game Coding Complete. Course Technology, Boston (2012)
21. Wang, A.I., Nordmark, N.: Software architectures and the creative processes in game

development. In: Chorianopoulos, K., Divitini, M., Hauge, J.B., Jaccheri, L., Malaka, R.
(eds.) ICEC 2015. LNCS, vol. 9353, pp. 272–285. Springer, Heidelberg (2015). doi:
10.1007/978-3-319-24589-8_21

22. Blow, J.: Game development: harder than you think. Queue 1, 28–37 (2004)
23. Kanode, C.M., Haddad, H.M.: Software engineering challenges in game development. In:

Sixth International Conference on Information Technology: New Generations, 2009, ITNG
2009, pp. 260–265. IEEE (2009)

24. Habgood, M.P.J., Ainsworth, S.E.: Motivating children to learn effectively: exploring the
value of intrinsic integration in educational games. J. Learn. Sci. 20, 169–206 (2011)

25. Fields, T.: Mobile and Social Game Design: Monetization Methods and Mechanics. A K
Peters/CRC Press, Boca Raton (2014)

26. Kinder, K.: “You have a Farmville gift request”: Thesen zum Erfolg von Social Casual
Gaming auf Facebook. kommunikation@gesellschaft. 13, 19 pages (2012)

27. Khalil, M., Ebner, M.: Learning analytics: principles and constraints. In: Proceedings of
World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp.
1326–1336. Association for the Advancement of Computing in Education (AACE) (2015)

28. Serrano-Laguna, Á., Torrente, J., Moreno-Ger, P., Fernández-Manjón, B.: Tracing a little
for big improvements: application of learning analytics and videogames for student
assessment. Procedia Comput. Sci. 15, 203–209 (2012)

29. Torrente, J., Mera, P.L., Moreno-Ger, P., Fernández-Manjón, B.: Coordinating heterogeneous
game-based learning approaches in online learning environments. In: Pan, Z., Cheok, A.D.,
Müller, W., Rhalibi, A.E. (eds.) Transactions on Edutainment II. LNCS, vol. 5660, pp. 1–18.
Springer, Heidelberg (2009)

30. Moreno-Ger, P., Torrente, J., Bustamante, J., Fernández-Galaz, C., Fernández-Manjón, B.,
Comas-Rengifo, M.D.: Application of a low-cost web-based simulation to improve students’
practical skills in medical education. Int. J. Med. Inform. 79, 459–467 (2010)

31. Warren, S.J., Jones, G.: Overcoming educational game development costs with lateral
innovation: chalk house, the door, and broken window. J. Appl. Instr. Des. 4, 51–63 (2012)

32. Lester, J., Mott, B., Rowe, J., Taylor, R.: Design principles for pedagogical agent authoring
tools. In: Sottilare, R.A., Graesser, A.C., Hu, X., Brawner, K. (eds.) Design
Recommendations for Intelligent Tutoring Systems Volume 3 Authoring Tools and Expert
Modeling Techniques, pp. 151–160. U.S. Army Research Laboratory, Orlando, FL, USA
(2015)

Serious Games Architectures and Engines 169

https://minecraft.net/
https://tspace.library.utoronto.ca/bitstream/1807/67048/1/Petrov_Anton_201406_MT_MTRP.pdf
https://tspace.library.utoronto.ca/bitstream/1807/67048/1/Petrov_Anton_201406_MT_MTRP.pdf
http://dx.doi.org/10.1007/978-3-319-24589-8_21


33. Hauser, D.D.: License an engine or create your own. Mak. Games 6, 41–45 (2015)
34. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Softw. 12, 42–50 (1995)
35. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley,

Boston (2003)
36. Masuch, M., Abbadi, M., Konert, J., Streicher, A., Söbke, H., Dey, R.: Lecture “Serious

Game Technology”. In: Dagstuhl GI Seminar 15283 on Entertainment Computing and
Serious Games (2015)

37. Oculus VR LLC: Oculus. https://www.oculus.com/
38. Unity Technologies: Unity - Game Engine. https://unity3d.com/
39. Brannolte, U., Harder, R.J., Kraus, T.J.: Virtual city and traffic simulation game based on

scientific models. In: Zupančič, B., Karba, R., and Blažič, S. (eds.) EUROSIM 2007:
Proceedings of the 6th EUROSIM Congress on Modelling and Simulation, Ljubljana,
Slovenia, 9–13 September 2007, vol. 1. Argesim (2007)

40. Glamus GmbH: Mobility - A city in motion! http://www.mobility-online.de
41. Schmitz, P.: CD-ROM-Kritik: mobility. c’t Mag. für Comput. 252 (2000)
42. von Buttlar, R., Kurkowski, S., Schmidt, F.A., Pannicke, D.: Die Jagd nach dem

Katzenkönig. In: Kaminski, W., Lorber, M. (eds.) Gamebased Learning: Clash of Realities
2012, pp. 201–214. Kopäd, München (2012)

43. cocos2d.org: Cocos2d (2008). http://cocos2d.org/
44. Takomat GmbH: Energetika. http://www.wir-ernten-was-wir-saeen.de/energiespiel/
45. Takomat GmbH: Good Games - takomat Games|Neue Lebensformen für Medien. http://

www.takomat-games.com/en/games/good-games.html
46. Rare: Kinect Sports (2010)
47. Cederholm, H., Hilborn, O., Lindley, C., Sennersten, C., Eriksson, J.: The aiming game:

using a game with biofeedback for training in emotion regulation. In: Copier, A., Kennedy,
M., and Waern, H. (eds.) DiGRA 2011 - Proceedings of the 2011 DiGRA International
Conference: Think Design Play. DiGRA/Utrecht School of the Arts (2011)

48. Hoffmann, K., Wiemeyer, J., Hardy, S., Göbel, S.: Personalized adaptive control of training
load in exergames from a sport-scientific perspective. In: Göbel, S., Wiemeyer, J. (eds.)
GameDays 2014. LNCS, vol. 8395, pp. 129–140. Springer, Heidelberg (2014)

49. Hardy, S., Dutz, T., Wiemeyer, J., Göbel, S., Steinmetz, R.: Framework for personalized
and adaptive game-based training programs in health sport. Multimed. Tools Appl. 74,
5289–5311 (2015)

50. Maier, M., Rubio Ballester, B., Duarte, E., Duff, A., Verschure, P.F.: Social integration of
stroke patients through the multiplayer rehabilitation gaming system. In: Göbel, S.,
Wiemeyer, J. (eds.) GameDays 2014. LNCS, vol. 8395, pp. 100–114. Springer, Heidelberg
(2014)

51. SmartFoxServer. http://www.smartfoxserver.com/
52. Street, S.: Massively multiplayer games using a distributed services approach. In: Alexander,

T. (ed.) Massively Multiplayer Game Development, pp. 233–241. Charles River Media,
Boston (2005)

53. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Concepts and
Design. Pearson, Harlow (2011)

54. Hall, R., Novak, J.: Game Development Essentials: Online Game Development. Delmar,
Clifton Park (2008)

55. Alexander, T. (ed.): Massively Multiplayer Game Development 2. Charles River Media,
Newton Centre (2005)

56. Greenhalgh, C., Benford, S.: MASSIVE: a collaborative virtual environment for
teleconferencing. ACM Trans. Comput. Interact. 2, 239–261 (1995)

170 H. Söbke and A. Streicher

https://www.oculus.com/
https://unity3d.com/
http://www.mobility-online.de
http://cocos2d.org/
http://www.wir-ernten-was-wir-saeen.de/energiespiel/
http://www.takomat-games.com/en/games/good-games.html
http://www.takomat-games.com/en/games/good-games.html
http://www.smartfoxserver.com/


57. Frécon, E., Stenius, M.: DIVE: a scalable network architecture for distributed virtual
environments. Distrib. Syst. Eng. 5, 91–100 (1998)

58. Carvalho, M.B., Bellotti, F., Berta, R., De Gloria, A., Gazzarata, G., Hu, J., Kickmeier-Rust,
M.: A case study on service-oriented architecture for serious games. Entertain. Comput. 6,
1–10 (2015)

59. van Oijen, J., Vanhée, L., Dignum, F.: CIGA: a middleware for intelligent agents in virtual
environments. In: Beer, M., Brom, C., Dignum, F., Soo, V.-W. (eds.) AEGS 2011. LNCS,
vol. 7471, pp. 22–37. Springer, Heidelberg (2012)

60. Jepp, P., Fradinho, M., Pereira, J.M.: An agent framework for a modular serious game. In:
2nd International Conference on Games and Virtual Worlds for Serious Applications, VS-
GAMES 2010, pp. 19–26 (2010)

61. Noseworthy, J.R.: The test and training enabling architecture (TENA) supporting the
decentralized development of distributed applications and LVC simulations. In: 12th IEEE/
ACM International Symposium on Distributed Simulation and Real-Time Applications,
2008, DS-RT 2008, pp. 259–268 (2008)

62. Peirce, N., Conlan, O., Wade, V.: Adaptive educational games: providing non-invasive
personalised learning experiences. In: 2008 Second IEEE International Conference on
Digital Game and Intelligent Toy Enhanced Learning, pp. 28–35. IEEE (2008)

63. Reichenthal, S.W.: The simulation reference markup language (SRML): a foundation for
representing BOMs and supporting reuse. In: Proceedings Fall 2002 Simulation
Interoperability Workshop, vol. 1, pp. 285–290 (2002)

64. Reichenthal, S.W.: SRML - Simulation Reference Markup Language. https://www.w3.org/
TR/SRML/

65. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D.C., Carter, J., McGlashan, S.,
Lager, T., Helbing, M., Hosn, R., Raman, T.V., Reifenrath, K., Rosenthal, N., Roxendal, J.:
State Chart XML (SCXML): State machine notation for control abstraction. https://
www.w3.org/TR/scxml/

66. Stãnescu, I.A., Stefan, A., Kravcik, M., Lim, T., Bidarra, R.: Interoperability strategies for
serious games development. In: Internet Learning, pp. 33–40. DigitalCommons@APUS
(2013)

67. IEEE Learning Technology Standards Comittee: IEEE standard for learning object
metadata. IEEE Stand. 1484, 2004–2007 (2002)

68. ADLnet: SCORM. http://www.adlnet.org/scorm/
69. Henning, P.A., Heberle, F., Fuchs, K., Swertz, C., Schmölz, A., Forstner, A., Zielinski, A.:

INTUITEL - intelligent tutoring interface for technology enhanced learning. International
Workshop on Perspective Approaches for Learning Environment, 4 pp. (2014)

70. Szentes, D., Bargel, B.-A., Streicher, A., Roller, W.: Enhanced test evaluation for web based
adaptive learning paths. In: 2011 7th International Conference on Next Generation Web
Services Practices, pp. 352–356 (2011)

71. Minović, M., Milovanović, M., Starcevic, D.: Using learning objects in games. In: Lytras,
M.D., Ordonez De Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds.)
WSKS 2010. CCIS, vol. 111, pp. 297–305. Springer, Heidelberg (2010)

72. adelbla, Marchiori, E., EUCM-Developer, Martinez, Torrente, J., Moreno-Ger, P.:
eAdventure (2015). http://sourceforge.net/projects/e-adventure/

73. Silva, J., Teixeira, F., de Jesus, E., Sá, V., Fernandes, C.T.: A taxonomy of educational games
compatible with the LOM-IEEE data model. Proceedings of Interdisciplinary Studies in
Computer Science, SCIENTIA, pp. 44–59 (2008)

74. El Borji, Y., Khaldi, M.: An IEEE LOM application profile to describe serious games «SG-
LOM». Int. J. Comput. Appl. 86, 1–8 (2014)

Serious Games Architectures and Engines 171

https://www.w3.org/TR/SRML/
https://www.w3.org/TR/SRML/
https://www.w3.org/TR/scxml/
https://www.w3.org/TR/scxml/
http://www.adlnet.org/scorm/
http://sourceforge.net/projects/e-adventure/


75. Object Management Group: Unified Modeling LanguageTM (UML®) Resource Page.
http://www.uml.org/

76. Rucker, R.: Software Engineering and Computer Games. Addison-Wesley, Harlow (2003)
77. Gregory, J.: Game Engine Architecture. A K Peters/CRC Press, Boca Raton (2014)
78. Anderson, E.F., Engel, S., Comninos, P., McLoughlin, L.: The case for research in game

engine architecture. In: Proceedings of 2008 Conference on Future Play: Research, Play,
Share – Future, Play 2008, pp. 228–231 (2008)

79. Göbel, S., Salvatore, L., Konrad, R.: StoryTec: a digital storytelling platform for the
authoring and experiencing of interactive and non-linear stories. In: International
Conference on Automated Solutions for Cross Media Content and Multi-channel
Distribution, 2008, AXMEDIS 2008, pp. 103–110 (2008)

80. Jumail, A., Rambli, D.R.A., Sulaiman, S.: G-Flash: an authoring tool for guided digital
storytelling. In: 2011 IEEE Symposium on Computers Informatics (ISCI), pp. 396–401
(2011)

81. Yessad, A., Labat, J.M., Kermorvant, F.: SeGAE: a serious game authoring environment.
In: Proceedings of 10th IEEE International Conference on Advanced Learning
Technologies, ICALT 2010, pp. 538–540 (2010)

82. Huizinga, J.: Homo Ludens. Routledge & Kegan Paul, London, Boston, Henley (1949)
83. Orkin, J.: Three states and a plan: the AI of FEAR. In: Game Developer’s Conference 2006,

pp. 1–18 (2006)
84. Majchrzak, K., Quadflieg, J., Rudolph, G.: Advanced dynamic scripting for fighting game

AI. In: Chorianopoulos, K., Divitini, M., Hauge, J.B., Jaccheri, L., Malaka, R. (eds.) ICEC
2015. LNCS, vol. 9353, pp. 86–99. Springer, Heidelberg (2015)

85. Yannakakis, G.N.: Game AI revisited. In: Proceedings of the 9th Conference on Computing
Frontiers, pp. 285–292 (2012)

86. Rival Theory: RAIN AI for Unity (2014). https://www.assetstore.unity3d.com/en/#!/
content/23569

87. Millington, I.: Game Physics Engine Development. Morgan Kaufmann Publishers,
Amsterdam (2010)

88. Anthony: High-performance physics in Unity 5. http://blogs.unity3d.com/2014/07/08/high-
performance-physics-in-unity-5/

89. Cowan, B., Kapralos, B.: A survey of frameworks and game engines for serious game
development. In: 2014 IEEE 14th International Conference on Advanced Learning
Technologies (ICALT), pp. 662–664 (2014)

90. Epic Games: Unreal Engine (2015). http://www.unrealengine.com/
91. YOYOGames: Gamemaker. http://www.yoyogames.com/gamemaker
92. Marks, S., Windsor, J., Wünsche, B.: Evaluation of game engines for simulated surgical

training. In: Proceedings of the 5th International Conference on Computer Graphics and
Interactive Techniques in Australia and Southeast Asia - GRAPHITE 2007, pp. 273–280.
ACM, New York (2007)

93. Rocha, R., Araújo, R.: Selecting the best open source 3D games engines. In: Proceedings
of Brazilian Symposium on Games and Digital Entertainment, Florianópolis, St. Catarina,
pp. 333–336 (2010)

94. Blender. https://www.blender.org/
95. Crystal Space. http://www.crystalspace3d.org/main/Main_Page
96. Delta3d. http://www.delta3d.org/
97. Gebhardt, N., Stehno, C., Davidson, G., Celis, A.F., Hoschke, L., MacDonald, C., Zeilfelder,

M., Nadrowski, P., Hilali, A., Wadsworth, D., Alten, T., Jam, Goewert, J.: Irrlicht 3D Engine.
http://irrlicht.sourceforge.net/

172 H. Söbke and A. Streicher

http://www.uml.org/
https://www.assetstore.unity3d.com/en/%23!/content/23569
https://www.assetstore.unity3d.com/en/%23!/content/23569
http://blogs.unity3d.com/2014/07/08/high-performance-physics-in-unity-5/
http://blogs.unity3d.com/2014/07/08/high-performance-physics-in-unity-5/
http://www.unrealengine.com/
http://www.yoyogames.com/gamemaker
https://www.blender.org/
http://www.crystalspace3d.org/main/Main_Page
http://www.delta3d.org/
http://irrlicht.sourceforge.net/


98. jMonkeyEngine. http://jmonkeyengine.org/
99. OGRE (2001). http://www.ogre3d.org/

100. OpenSceneGraph. http://www.openscenegraph.org/
101. Walt Disney Imagineering Carnegie Mellon University: Panda3D. http://www.panda3d.org/
102. Petridis, P., Dunwell, I., Panzoli, D., Arnab, S., Protopsaltis, A., Hendrix, M., Freitas, S.:

Game engines selection framework for high-fidelity serious applications. Int. J. Interact.
Worlds 2012, 1–19 (2012)

103. Crytek GmbH: CryEngine (2015). http://cryengine.com/
104. Valve: Source Engine (2014)
105. Westhoven, M., Alexander, T.: Towards a structured selection of game engines for virtual

environments. In: Shumaker, R., Lackey, S. (eds.) VAMR 2015. LNCS, vol. 9179, pp. 142–
152. Springer, Heidelberg (2015)

106. Sarhan, A.: The utilisation of games technology for environmental design education. Ph.D.
thesis, University of Nottingham (2012)

107. Chen, M.D.: Game making tools round up. http://markdangerchen.net/2015/08/27/game-
making-tools-round-up/

108. Electronic Arts Inc.: SimCity. www.simcity.com
109. Cifaldi, F.: Breaking down SimCity’s Glassbox engine. http://www.gamasutra.com/view/

news/164870/gdc_2012_breaking_down_simcitys_.php
110. Willmott, A.: Inside GlassBox. http://www.andrewwillmott.com/talks/inside-glassbox
111. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture: A System of Patterns, vol. 1. Wiley, Chichester (1996)
112. OTOY Inc.: OTOY. https://home.otoy.com/
113. Messaoudi, F., Simon, G., Ksentini, A.: Dissecting games engines: the case of Unity3D. In:

2015 International Workshop on Network and Systems Support for Games (NetGames), pp.
1–6 (2015)

114. Cooper, K.M.L., Scacchi, W. (eds.): Computer Games and Software Engineering. Chapman
& Hall/CRC, Boca Raton (2015)

115. Hocking, J.: Unity in Action: Multiplatform Game Development in C# with Unity 5.
Manning Publications, Shelter Island (2015)

116. Nystrom, B.: Game Programming Patterns. Genever Benning, Carrollton (2014)
117. Schuller, D.: C# Game Programming: For Serious Game Creation. Cengage Learning PTR,

Boston (2010)
118. GameDevNet LLC: gamedev.net. http://gamedev.net
119. AiGameDev.com KG: AIGameDev.com. http://aigamedev.com
120. Stack Exchange Inc.: Game Development – Stackexchange. http://gamedev.stackexch

ange.com/
121. DevMaster LLC: Engines|DevNaster. http://devmaster.net/devdb/engines
122. clay games: HTML5 game engines - find which is right for you. https://html5game

engine.com/
123. Gamesnetwork list at listserv.uta.fi. https://listserv.uta.fi/archives/gamesnetwork.html
124. ICEC – mailing list of the IFIP entertainment computing community. http://listserver.tue.nl/

mailman/listinfo/icec
125. Mahardy, M.: GDC 2015: Valve announces source 2 engine. http://www.ign.com/articles/

2015/03/04/gdc-2015-valve-announces-source-2-engine

Serious Games Architectures and Engines 173

http://jmonkeyengine.org/
http://www.ogre3d.org/
http://www.openscenegraph.org/
http://www.panda3d.org/
http://cryengine.com/
http://markdangerchen.net/2015/08/27/game-making-tools-round-up/
http://markdangerchen.net/2015/08/27/game-making-tools-round-up/
http://www.simcity.com
http://www.gamasutra.com/view/news/164870/gdc_2012_breaking_down_simcitys_.php
http://www.gamasutra.com/view/news/164870/gdc_2012_breaking_down_simcitys_.php
http://www.andrewwillmott.com/talks/inside-glassbox
https://home.otoy.com/
http://gamedev.net
http://aigamedev.com
http://gamedev.stackexchange.com/
http://gamedev.stackexchange.com/
http://devmaster.net/devdb/engines
https://html5gameengine.com/
https://html5gameengine.com/
https://listserv.uta.fi/archives/gamesnetwork.html
http://listserver.tue.nl/mailman/listinfo/icec
http://listserver.tue.nl/mailman/listinfo/icec
http://www.ign.com/articles/2015/03/04/gdc-2015-valve-announces-source-2-engine
http://www.ign.com/articles/2015/03/04/gdc-2015-valve-announces-source-2-engine

	Serious Games Architectures and Engines
	Abstract
	1 Introduction
	2 Requirements to Software Development
	2.1 Game Development
	2.2 Serious Game Development

	3 Architectures
	3.1 Game Architectures and Its Typical Components
	3.2 Distributed Architectures
	3.3 Data Models and Interoperability

	4 Engines
	4.1 Overview
	4.2 Selected Components
	4.3 Game Engine Examples

	5 Research Questions (Starting Points for PhDs)
	6 Summary and Outlook
	Further Readings and Resources
	Books
	Websites
	Conferences
	Mailing Lists

	References


