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Abstract A solid oxide fuel cell (SOFC) is a complex system consisting of dif-
ferent components, in which interconnected physical phenomena occur simulta-
neously and contribute to determine the global thermo-electrochemical response of
the system. The simulation and prediction of the response of an SOFC are of
paramount importance for the analysis of possible applications without resorting to
extensive experimental investigations. Simulating the SOFC response requires to
develop reliable models that can describe the significant phenomena occurring in
the system. Different approaches can be followed for the SOFC modeling,
depending on the goals of the model. This chapter will provide an introduction to
SOFC modeling focusing on a macroscopic, physically based approach.

Abbreviations

List of Symbols

a Thermodynamic activity
Bp Permeability (m2)
Cf Drag constant
Cp Specific heat at constant pressure (J kg−1 K−1)
d Molecule, particle, pore diameter (m, μm)
D Diffusion coefficient (m2 s−1, cm2 s−1)
DT Thermal diffusion coefficient (kg m−1 s−1)
E Equilibrium, electrode potential (V)
Eact Activation energy (J mol−1)
Eb Emissive power of black body (W m−2)
f Volume fraction of ionic/electronic phase in the electrode
f Body forces acting on the fluid (m s−2)
F Faraday’s constant (C mol−1)
F Volume force (N m−3)
Fi−j View factor between i and j surface elements
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�g Molar Gibbs free energy variation (J mol−1)
�h Molar enthalpy (J mol−1)
H0 Incident irradiation (W m−2)
i Current density (A m−2)
i0 Exchange current density (A m−2)
iv Volumetric current density (A m−3)
iTPB Current per unit of TPB length (A m−1)
I Current (A)
~j Mass flux (kg m−2 s−1)
k Thermal conductivity (W m−1 K−1)
kB Boltzmann constant (J K−1)
Kr Equilibrium constant of r reaction
Lp Characteristic size of the pore (m)
Mn Molecular weight (kg mol−1)
n Number of electrons involved in redox reactions
p Pressure (Pa, bar)
P Percolation probability
q Rate of charge-transfer reaction (mol m−1 s−1)
~q Heat flux (W m−2)
Q Volumetric heat source (W m−3)
r Reaction rate (mol m−3 s−1)
R Ideal gas constant (J mol−1 K−1)
Rcon Contact resistance (Ω cm2)
�s Molar entropy (J mol−1 K−1)
_sk Molar rate of k species (mol cm−2 s−1)
S Mass source term (kg m−3 s−1)
t Time (s)
T Temperature (K)
u Fluid velocity vector (m s−1)
�u Superficial velocity (m s−1)
V Cell voltage (V)
Va Atomic diffusion volumes (cm3 mol−1)
x Mass fraction
[X] Molar concentration (mol m−3, mol m−2)
y Molar fraction

Greek Symbols

α Symmetry coefficient of Butler–Volmer equation
β Symmetry coefficient of charge-transfer reaction
be Extinction coefficient of the medium (m−1)
γ Pre-exponential activation parameter (A cm−2)
cs Scaling factor (1 or m−1)
c0i Sticking coefficient of i-reaction
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Γ Surface site density (mol cm−2)
ε Porosity
η Overpotential (V)
hk Surface coverage of k species
λ Mean free path (m)
kTPB Volumetric TPB density (m−2)
μ Gas viscosity (Pa s)
v Stoichiometric coefficient
ξ Surface emissivity
ρ Density (kg m−3)
σ Electronic, ionic conductivity (S m−1)
rB Stefan–Boltzmann constant (W m−2 K−4)
rk Coordination number of k species
rab Average collision diameter (Å)
sg Tortuosity
~s Stress tensor (Pa)
/ Electronic, ionic potential (V)
/v Viscous dissipation (kg m−1 s−3)
v Volumetric charge density (C m−3)
w Volumetric charge source (C s−1 m−3)
Xab Collision integral

List of Subscripts and Superscripts

act Activation
adv Advection
an Anode
cat Cathode
chem Chemical
con Contact
conc Concentration
diff Diffusion
eff Effective
eq Equilibrium
irr Irreversible
mol Molecular
oc Open-circuit
ohm Ohmic
rad Radiative
react Reaction
res Resistance
rev Reversible
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List of Acronyms

BV Butler–Volmer
DGM Dusty gas model
SMM Stefan–Maxwell model
SOFC Solid oxide fuel cell
SRU Stack repeating unit
TPB Three phase boundary

The scope of this chapter is to provide an introduction to solid oxide fuel cell
(SOFC) modeling. A SOFC is a complex system consisting of three main com-
ponents (electrolyte and porous electrodes, i.e., anode and cathode), each one
composed of peculiar materials in which interconnected physical phenomena occur
simultaneously involving gas and solid phases.

In SOFC applications, the individual cells are stacked together to increase the
generated power, and if we consider the single unit of a stack of cells, which is
called SRU (i.e., stack repeating unit), other components as interconnects, seals,
and gas channels must be taken into account. Finally, if we look at the entire stack
of cells, gas manifolds, insulation, and current collection plates have to be con-
sidered. Therefore, the modeling SOFC cells, SRUs, and stacks are the challenging
tasks due to the wide variety of the components involved.

SOFC modeling can be carried out following different approaches, techniques,
and levels of details depending on the objective of the model (e.g., cell performance
simulation, study of the degradation of materials, and optimization of fluid distri-
bution) and on the particular component or group of components on which the
model is focused.

From a general point of view, SOFC systems (whether they are single cells,
SRUs or stacks) can be considered as nonlinear dynamic systems with multiple
inputs and outputs in which mass, momentum, energy, and charge transfer take
place together with chemical and catalytic reactions. The goal of modeling is to
develop mathematical tools capable of simulating the response of the system, with
the purpose to provide models that can be applied to the design, analysis, control, or
diagnostic of SOFC systems.

SOFC models can be generally classified into two main categories: experi-
mentally based and physically based models (Wang et al. 2011a).

Experimentally based models of SOFC systems are developed using statistical
data-driven approaches without applying equations derived from the knowledge of
the involved physics. Regression-based and artificial neutral network techniques are
applied to experimental databases in order to identify the relationship between
inputs and outputs of the system that are implemented into predictive models which
are mostly applied in the design of SOFC control strategies.

In the SOFC literature, most of the models are physically based. These models
range from microscale (atomic or molecular level) to macroscale due to the fact that
physical processes of SOFC systems have characteristic length and time scales from
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angstrom and femtoseconds to centimeters and seconds. Consequently, the mod-
eling techniques adopted strictly depend on the length and time scale of the
described phenomena (Fig. 1).

At the scale of the electronic structure of matter, ab initio methods are used for
the study of atomic interactions, followed by molecular dynamics and Monte Carlo
techniques at the level of molecular structures, while discrete elements and phase
field methods are adopted at the characteristic length of grain and crystals. Lattice
Boltzmann Methods can be applied for the study of the fluid transport within
microstructures, and finally the modeling methods that follow the continuum
approach and use volume-averaged equations can be applied from the length scale
of micrometers onwards to describe the physics of SOFC systems from the
macroscopic point of view (Grew and Chiu 2012).

The modeling approaches presented in this chapter are physically based and
focus on the macroscopic description of the phenomena.

In general, macroscopic models describe SOFC systems by using conservation
laws and governing equations of the involved physics and range from 0-D to 3-D
depending on the model objectives. Multidimensional models take into account the
spatial distribution of the physical variables (temperature, species concentration,
etc.) and are typically aimed at simulate cell/stack for design or optimization

Fig. 1 Multidimensional SOFCmodeling. [Reprinted with permission fromGrew and Chiu (2012)]
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purposes. The prediction of the steady state and transient response at cell, stack, and
system level for diagnostic and control is frequently addressed by 0-D and 1-D
models, due to their low computational cost.

When a macroscopic approach is adopted, many physical phenomena that are
implicitly derived in the atomistic and molecular modeling are described by using
empirical parameters. In particular, the representation of microscopic structures,
chemical, and electrochemical kinetics is assigned to macroscopic parameters (e.g.,
porosity, tortuosity, and exchange current density) that can be estimated directly or
indirectly (i.e., by fitting) from experimental measurements. Thus, in order to
develop a physically based model, a representative set of experimental data is
necessary.

Finally, physically based macroscopic models of SOFCs can follow two main
goals: they can be oriented to the simulation of the performance or they can study
the degradation processes occurring in the materials. In the first case, the models
calculate system responses mainly in terms of voltage, current, temperature,
chemical species, and pressure distributions; in the second, simulations focus on the
calculation of thermal stresses, strain, and stress fields.

In the following sections, the discussion will be focused on the mathematical
modeling of the physical phenomena that determine the SOFC performance.
Transport and conservation of mass, momentum, charge, and energy are described
and the basics of electrochemical and chemical reactions modeling are given.

1 Modeling the Mass Transfer in SOFCs

In SOFC systems, mass transfer takes place both in the gas phase (i.e., stack
manifolds, gas channels, and porous electrodes) and in the solid phase (i.e.,
transport of ions in the electrolyte). The mass transfer of gases is studied in this
section, while the transport of ions in the electrolyte is addressed in Sect. 4.

Mass transfer in the gas phase occurs by advection and diffusion. In general,
mass transport and conservation can be expressed by using the continuity equation
in the advection–diffusion form:

@q
@t

þr � ~jadv þ~jdiff
� � ¼ S ð1Þ

where ρ is the fluid density, t is the time,~jadv is the advective flux of mass due to the
motion of the fluid,~jdiff is the total diffusive flux of mass related to local gradients
of temperature and partial pressures, and S accounts for the volumetric mass sources
or sinks.

At the high operating temperatures of SOFC systems, fluids can be considered as
ideal gases with a good approximation, thus the ideal gas law can be applied for the
calculation of the fluid density:

296 D. Ferrero et al.



q ¼ pMn

RT
ð2Þ

where p is the total pressure of the gas mixture, Mn is the molecular weight of the
mixture, T is the temperature, and R is the ideal gas constant.

The composition of gas mixtures in SOFC systems is not spatially homogeneous
due to chemical and electrochemical reactions; moreover, a gas that moves in the
electrodes can occupy only the void fraction of the porous domains. Hence, the
mass transport Eq. (1) has to be re-elaborated in order to formulate a species
balance that takes into account the porosity of materials and the mass fractions of
chemical species in the gas mixture. For each component, the mass balance can be
written as:

@ðeqxaÞ
@t

þr � ð~jadv;a þ~jdiff;aÞ ¼ Sa ð3Þ

where ε is the porosity and xa is the mass fraction of the α component. Equation (3)
is also valid in non-porous domains, where the porosity assumes the value of 1. For
non-porous domains, the advective term of Eq. (3) can be expressed as:

~jadv;a ¼ qxau ð4Þ

where u is the fluid velocity field. In porous media, the advection term can be
written as:

~jadv;a ¼ qxa�u ð5Þ

where �u is the superficial velocity of the fluid in the porous domain (also called
velocity of permeation, filtration or Darcy velocity). The superficial velocity is
given by the Dupuit–Forchheimer relationship: �u ¼ eU, being U the mean velocity
of the fluid through the pore space of the electrode, obtained by averaging the fluid
velocity over a macroscopic volume of the electrode (Nield and Bejan 2006).

The source term of Eq. (3) accounts for the net volumetric production of the α
species due to the electrochemical and chemical reactions. In general, Sa is given
by:

Sa ¼ Ma

X
i

csimairi ð6Þ

where ri is the molar rate of the i-reaction, mai is the net stoichiometric coefficient of
α species in the i-reaction, and csi is a scaling factor that assumes either a unitary
value if the i-reaction rate is given per unit volume or it has the unit of inverse
length (i.e., surface area per unit volume) if the i-reaction has a rate expressed per
unit surface.
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The molar rates of electrochemical reactions are given by the Faraday’s law:

ri ¼ ivj j
nF

ð7Þ

where F is Faraday’s constant, n is the number of electrons released during the
reaction of one fuel molecule, and iv is the volumetric current density. The cal-
culation of the current density requires an electrochemical model that describes the
charge-transfer chemistry in the SOFC electrodes, this topic will be treated in
Sect. 4.

The molar rates of chemical reactions can be calculated from the study of global
or detailed reaction mechanisms, as described in Sect. 5.

The electrochemical reactions involve limited regions of electrodes where
charge-transfer reactions occur on the electrochemically reactive sites characterized
by the coexistence of electron and ion conductor phases in the presence of
gas-phase reactants. These regions are called triple- or three-phase boundaries
(TPBs) and spread from the electrode/electrolyte interface of SOFCs into the
electrode volume. In anode-supported cell models, the three-phase boundary is
frequently assumed as a layer of negligible thickness at the anode/electrolyte
interface (Costamagna et al. 2004; Ni 2009; Laurencin et al. 2011; Ferrero
et al. 2015) and the mass sources due to the electrochemical reactions are imposed
as boundary conditions at the border between electrode and electrolyte, instead of
being included in the source term Sa.

Chemical reactions take place within the gas phase (i.e., homogeneous reactions)
or on the surface of the solid medium of the electrode that acts as a catalyst for the
reactions (i.e., heterogeneous reactions). In both cases, the volume in which
chemical reactions occur covers the entire domain of SOFCs electrodes, and the
reaction rates must be included in the volumetric source term of Eq. (3).

As stated before, the total diffusive flux of mass is due to the presence of
temperature and partial pressures gradients. The thermal diffusion can be easily
highlighted:

~jdiff;a ¼~jd;a � Da;T
rT
T

ð8Þ

where Da;T is the thermal diffusion coefficient. The thermal diffusion of mass is also
referred to as the Soret effect, which occurs in mixtures with high temperature
gradients and large variations in molecular weight of the species. This type of
diffusion is always neglected in SOFC models. The diffusive flux~jd;a related to
partial pressure gradients of the species will be described in detail in the following
sections, where different diffusion models are introduced.

The solution of the mass balances requires to combine Eqs. (3) and (2) with a
momentum balance (see Sect. 2) for the determination of the fluid velocity field,
with a gas diffusion model for the calculation of the diffusive fluxes of the species,
with an energy balance (see Sect. 3) for the determination of the temperature
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distribution, and also with electrochemical and chemical models (see Sects. 4 and
5), which are required for the calculation of the species source term [see Eq. (6)].

As will be shown later, some gas diffusion models for the porous media [i.e.,
Fick’s model in the advection–diffusion form (22) and dusty gas model (29)]
already include the momentum balance. In these models, the mass flux determined
by Eq. (5)—usually expressed as a function of the total pressure gradient by the
application of Darcy’s law (38) for the conservation of momentum—is included in
the calculation of the total diffusive flux and referred to as a viscous flux.

The modeling of the gas diffusion depends on the medium where the diffusion
occurs (i.e., porous or non-porous) and on the characteristics of the gas mixture
(i.e., binary or multicomponent).

Before introducing the mathematical description of the diffusive flux~jd;a; a brief
presentation of the diffusive models is given.

In the SOFC literature, three theoretical models are usually applied to describe
the diffusive mass transport: Fick model, Stefan–Maxwell model, and dusty gas
model.

Diffusion models based on Fick’s law assume that the flux of a chemical species
in a gas mixture is proportional to its concentration gradient. These models are often
presented in the advective-diffusive form, in which molecular diffusion due to
concentration gradients and viscous flow due to pressure gradients are linearly
combined (Webb and Pruess 2003). Fick’s law is rigorously valid only for binary
mixtures or in the case of diffusion of dilute species in a multicomponent mixture
(Krishna and Wesselingh 1997; He et al. 2014a, b), and its application to the
diffusion in porous media is consistent in a very narrow range of conditions (Bertei
and Nicolella 2015). Nevertheless, Fick-based models are widely employed not
only in modeling the diffusion in binary mixtures, but also in the modeling of
concentrated species diffusion in multicomponent mixtures in both porous and
non-porous media, due to their simplicity (Ferguson et al. 1996; Ho et al. 2008,
2009; Goldin et al. 2009; Elizalde-Blancas et al. 2013).

The Stefan–Maxwell model is frequently used in the literature to overcome the
limitations of Fick’s law (Krishna and Wesselingh 1997; Suwanwarangkul et al.
2003). This model is derived from the kinetic theory and correctly describes the
multicomponent diffusion in non-porous domains, but it does not include the
interaction between pore walls and gas molecules (Webb and Pruess 2003;
Suwanwarangkul et al. 2003). In some diffusion models, the Stefan–Maxwell
equations have been modified to include the gas-pore interactions, as in the binary
friction model of Kerkhof (1996) or in the work of Hussain et al. (2005).

The dusty gas model (Mason and Malinauskas 1983), which takes into account
both the interactions between the different components of a gas mixture and the
gas–wall collisions, has proven to be the most suitable and rigorous model for the
description of multicomponent diffusion in porous media (Suwanwarangkul et al.
2003; Hernández-Pacheco et al. 2004). Even if it has the higher predictive capa-
bility, the dusty gas model is not widely applied as the Fick’s one due to its
complexity. In particular, Fick and Stefan–Maxwell models can be solved
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analytically by deriving explicit expressions for the diffusion fluxes, while the dusty
gas model requires a numerical solution (Suwanwarangkul et al. 2003). For this
reason, the dusty gas model is frequently presented in simplified forms in the SOFC
literature, usually by assuming uniform pressure in the electrodes (Jiang and Virkar
2003; Hernández-Pacheco et al. 2004; Janardhanan and Deutschmann 2006;
Matsuzaki et al. 2011; Geisler et al. 2014; Ferrero et al. 2015), and in the work of
Kong et al. (2012) it has been reformulated in the form of a Fickian model in order
to facilitate its implementation.

Modeling diffusion in non-porous domains: Fick and Stefan–Maxwell models
In the non-porous domains (i.e., gas channels and manifolds),~jd;a is the mass flux
originated by the molecular diffusion of the species α in the gas mixture that can be
binary (i.e., typically air in the cathode channels) or multicomponent. The molec-
ular diffusion (also called continuum or ordinary diffusion) is due to the relative
motion of the different species of the gas mixture driven by partial pressure gra-
dients. For the diffusion modeling in non-porous media, Fick and Stefan–Maxwell
models are usually applied in the literature.

The simplest diffusion model is the Fick’s one. The model is given by (Bird et al.
2006):

~jd;a ¼ �qDamrxa ð9Þ

where Dam is the diffusivity of the species α in the gas mixture. For a binary
mixture, Dam coincides with the ordinary diffusion coefficient of the gas phase, Dab,
which is independent of the gas mixture composition and can be calculated using
the theoretical correlation of Chapman–Enskog (Poling et al. 2001):

Dab ¼ 0:00266ffiffiffi
2

p 1
Ma

þ 1
Mb

� �1=2 T3=2

pr2abXab
ð10Þ

where Ma and Mb are molecular weights, rab is the average collision diameter, Xab

denotes the collision integral, and p is the total pressure of the mixture (bar). In the
literature, the empirical correlations of Fuller et al. (1966) are frequently used for
the calculation of the binary diffusion coefficients:

Dab ¼ 0:00143 � T1:75

p 2
ð1=Ma þ 1=MbÞ
h i1=2

RVaAð Þ1=3 þ RVaBð Þ1=3
h i2 ð11Þ

where RVai are the sums of the atomic diffusion volumes, p is the total pressure of
the mixture (bar), and Dab is expressed in (cm2 s−1).

Many researchers have applied Fick’s law to multicomponent diffusion model-
ing; in this case, the ordinary diffusivity of the species α in the gas mixture is
usually given by the Wilke’s formula (Yakabe et al. 2000; Wilke 1950a, b):
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Dam ¼ 1� yaP
b 6¼a

yb
Dab

ð12Þ

Equation (12) is strictly valid for the diffusion of gases in a stagnant multi-
component mixture. When this assumption is not satisfied, as in the case of dif-
fusion in SOFC channels, manifolds, and electrodes, the solution of the system of
Eq. (9) leads to an intrinsic flux inconsistency, i.e., the sum of the diffusive fluxes is
not zero (Désilets et al. 1997). In order to overcome this drawback of the model, it
is necessary to replace one of the Eq. (9) with the consistency condition:

X
8a

~jd;a ¼ 0 ð13Þ

In this way, one of the diffusion mass fluxes is “artificially” calculated so that
their sum gives zero. A consistent method that combines Fick’s law and flux
consistency has been proposed by Ramshaw (1990):

~jd;a ¼ �qDamrxa þ qxa
X
8b

ðDbmrxbÞ ð14Þ

The Stefan–Maxwell model describes the multicomponent mass transport fol-
lowing a rigorous theoretical approach that allows to correctly describe the coun-
terdiffusion effects of ternary mixtures of gases. Stefan–Maxwell equations are
formulated as force balances on the chemical species of a gas mixture. The equa-
tions are written as a balance between the driving force of the motion of a species
(i.e., the partial pressure gradient) and the friction between that species and each of
the other species of the mixture (Krishna and Wesselingh 1997). The equations are
given by:

X
b 6¼a

yb~Jd;a � ya~Jd;b
Dab

¼ � p
RT

rya ð15Þ

where ~Jd;a is the molar diffusive flux relative to concentration gradients, and the
Stefan–Maxwell diffusion coefficient Dab is equal to the binary diffusion coefficient
used for Fick’s law (11). Equation (15) can be rearranged to show the mass dif-
fusive fluxes:

X
b 6¼a

Mn

Mb

xb~jd;a � xa~jd;b
Dab

 !
¼ �qrxa ð16Þ

It is worth noting that Stefan–Maxwell expressed with Eqs. (15)–(16) does not
take into account the effect of total pressure gradients, as well as the Fick’s model
(9).
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Some authors have proposed different diffusion models based on Stefan–
Maxwell equations that also include the viscous effects due to the presence of a total
pressure gradient.

In the works of Andersson et al. (2010), Stefan–Maxwell equations are for-
mulated with a different approach (Curtiss and Bird 1999) that includes the total
pressure gradient in the forces balance on the gas species:

~jd;a ¼ � qxa
X
i

Daidi

 !
ð17Þ

where di is the diffusional driving force:

di ¼ ryi þ 1
p
ðyi � xiÞrp½ � ð18Þ

In the work of Novaresio et al. (2012), Stefan–Maxwell equations are derived by
using a thermodynamic approach in which partial pressure gradients are expressed
as the sum of the pressure gradients due to diffusive and viscous effects. The
equation obtained is given by:

1
RT

rpa ¼
X
b 6¼a

ya~Jd;b � yb~Jd;a
Dab

þ 1
RT

xarp ð19Þ

For a multicomponent mixture composed of n gases, the Stefan–Maxwell model
expressed by (15), (17), or (19) is a system of n equations in the n flux unknowns.
However, only n − 1 of the equations are linearly independent (Ramshaw 1990).
Thus, the flux consistency (13) has to be imposed to close the system of equations.

Finally, it is worth noting that both the Fick and Stefan–Maxwell models pre-
sented in this section do not comprise a momentum balance; thus, in the formu-
lation of the complete mass transport model for the fluid, the momentum
conservation equations have to be added. A complete comparison of the perfor-
mance between Fick’s and Stefan–Maxwell models is given in the works of Krishna
and Wesselingh (1997) and Suwanwarangkul et al. (2003).

Modeling diffusion in porous domains: Fick and dusty gas models The pre-
diction of partial pressure profiles within porous electrodes is of paramount
importance to allow the correct estimation of current density, electrode potential,
and local reaction rates in a cell model. In order to correctly model the gas transport
in SOFC electrodes, it is necessary to describe the motion of gas mixtures in porous
media by taking into account the interactions of the gas species among themselves
and with the walls of the pores.

The mass transport of gases in porous media is generally described by three
mechanisms: viscous flow, molecular diffusion, and Knudsen diffusion. The vis-
cous flow is related to total pressure gradients, the molecular diffusion to partial
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pressure gradients, and the Knudsen diffusion is produced by both type of gradients
combined with molecule-pore wall collisions. The transport of adsorbed gas
molecules on the solid surfaces of pores is another transport mechanism that takes
place in porous structures; however, its contribution to the diffusivity is usually
neglected (Froment et al. 1990; Kast and Hohenthanner 2000).

In order to identify the type of transport mechanism that is dominant in the
porous electrode, the Knudsen number is usually adopted (He et al. 2014a, b):

Kn ¼ k
Lp

ð20Þ

where λ is mean free path of gas molecules and Lp is the characteristic size of the
pore, typically its diameter if pores are assumed as spherical. The mean free path of
a gas molecule can be directly calculated from the kinetic theory:

k ¼ kBTffiffiffi
2

p
ppd2mol

ð21Þ

where dmol is the molecule diameter and kB is the Boltzmann constant.
Depending on the value assumed by the Knudsen number, three different flow

regimes can be identified: a continuum regime for Kn smaller than 0.01, a transition
regime for Kn in the range of 0.01–10, and a Knudsen regime when Kn is larger
than 10.

Molecular diffusion and viscous flow are the dominant mechanisms in the
continuum regime; in this case, the momentum transfer occurs by collisions
between molecules, which are more frequent than the surface collisions between
molecules and pore walls. In the continuum regime, concentration gradients lead to
mass transfer due to molecular diffusion and a total pressure gradient produces a
viscous flow.

In the Knudsen regime, the molecule-pore collisions are more frequent than the
intermolecular collisions, and the momentum transfer is determined by the inter-
actions between molecules and pore walls. In this regime, a gradient of pressure or
concentration leads to a mass transfer due to Knudsen flow, as there is no dis-
tinction between flow and diffusion in a non-continuum regime (Kast and
Hohenthanner 2000).

In an SOFC electrode, the gas flow takes place in a transitional regime, as the
mean pore diameter usually ranges between 0.4 and 2.6 μm (Funahashi et al. 2007;
Greene et al. 2006; Hao et al. 2008; Jung et al. 2006; Lanzini et al. 2009; Moon
et al. 2008; Park et al. 2009; Yakabe et al. 2000; Zhu and Kee 2003) and the mean
free path for typical SOFC gases and operating conditions is about 0.2–0.5 μm
(Hirschfelder et al. 1954); thus, in the presence of concentration and pressure
gradients, all the three mechanisms must be taken into account.

For the diffusion modeling in porous media, Fick and dusty gas model are
usually applied in the literature.
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The Fick model given by Eq. (9) is also applied in the porous media. In order to
consider the viscous diffusion, the model is frequently presented in the
advective-diffusive form (Webb and Pruess 2003):

~jdþ a;a ¼ �qðDeff
amKrxa þ Bpxa

lg
rpÞ ð22Þ

where Bp is the permeability of the porous medium, lg is the gas viscosity, and
Deff

amK is the effective diffusive coefficient which takes into account both the
molecular and Knudsen diffusivity. The permeability can be expressed by thy
Kozeny–Carman relationship (Bear 1972), which is based on the assumption that
the porous electrode is formed by closely packed spherical particles:

Bp ¼
e3d2p

72sgð1� eÞ2 ð23Þ

where sg is the tortuosity parameter and dp is the diameter of the particles (μm).
Firstly introduced by Carman (1956), the tortuosity takes into account the com-
plexity of the diffusion path of a fluid inside the porous media and can be defined as
the ratio between the lengths of real diffusion path and straight path. There is a
strong disagreement in the literature about the value of the tortuosity in fuel cell
electrodes; the survey of Brus et al. (2014) shows values between 1 and 10 and
indicates that the most precise estimations of tortuosity can be derived from the
image analysis of real electrodes obtained by FIB–SEM methods (Lanzini et al.
2009; Wilson et al. 2011; Joos et al. 2011; Lee et al. 2013; Iwai et al. 2010;
Kishimoto et al. 2011) (Fig. 2).

Using these techniques, the typical tortuosity of SOFC anodes is in the range of
1.5–4 (Brus et al. 2014).

The Knudsen diffusivity of the gas species α in a porous media is given by
Lehnert et al. (2000):

DK;a ¼ de
3

ffiffiffiffiffiffiffiffiffi
8RT
pMa

r
ð24Þ

where de is the mean pore size of the porous media (μm).
The molecular and Knudsen diffusion coefficients can be combined in a global

diffusion coefficient (Welty et al. 2001):

1
DamK

¼ 1
DK;a

þ 1� � ya
Dam

ð25Þ

The coefficient Y is usually assumed to be zero in the SOFC literature, leading to
the Bosanquet formula (Suwanwarangkul et al. 2003; Pollard and Present 1948;
Veldsink et al. 1995):
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DamK ¼ 1
DK;a

þ 1
Dam

� ��1

ð26Þ

The Bosanquet relation is based on diffusion in aligned cylindrical pores, and it
does not take into account the real geometry of the electrode structure in which
gases diffuse through convoluted paths. The effective diffusivity has been studied
by Bruggeman (1935) who analyzed the properties of various heterogeneous sub-
stances. If the porous electrode is assumed as composed of a solid phase made of
spheres and the bed phase surrounding the spheres is treated as the void fraction of
the electrode, the Bruggeman’s equation for the diffusivity can be used:

Fig. 2 Microstructural
characterization of SOFC: in
the upper panel, the EDS
element mapping of Ni/YSZ
anode regions (red Ni, green
Zr, black pore); in the lower
panel, the average phase
distribution of the anode.
[Reprinted with permission
from Lanzini et al. (2009)]
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Deff
amK ¼ e1:5DamK ð27Þ

In the SOFC literature, the effective diffusivity is usually presented (Chan et al.
2001; Hajimolana et al. 2011) in a different form, which takes into account the
tortuosity of the porous structure:

Deff
amK ¼ e

sg
DamK ð28Þ

In the work of Webb and Preuss (2003), the Knudsen diffusion is included in the
advective-diffusive form of the Fick model through the use of the Klinkenberg
factor to obtain an effective permeability, while in the first term of Eq. (22), the
effective diffusivity used does not include the Knudsen effect.

As stated before, numerous studies have shown the limitations and drawbacks of
the use of Fick’s law to predict the diffusion fluxes for multicomponent mixtures in
porous media. In particular, the work of Bertei and Nicolella (2015) has pointed out
how the use of Bosanquet formulation, which is strictly valid for self-diffusion or
equimolar counter transfer (Welty et al. 2001), can lead to inconsistent results in the
diffusive flow calculations.

The dusty gas model is derived from the kinetic theory and treats the porous
medium as one component of the gas mixture. The medium is assumed as a gaseous
phase of giant molecules (the “dust”) uniformly distributed in the porous domain,
motionless and with infinite molar mass (Krishna and Wesselingh 1997). By
applying the Stefan–Maxwell equations to this mixture, the transport of gases is
described by an implicit expression that includes the effect of concentration and
total pressure gradients (Mason and Malinauskas 1983):

� 1
RT

rpa ¼
X
b 6¼a

yb~Ja � ya~Jb
Deff

ab

þ
~Ja
Deff

Ka
þ 1

Deff
Ka

pa
RT

Bp

lg
rp ð29Þ

where Deff
ab and Deff

Ka are the effective multicomponent and Knudsen diffusivities,
directly calculated from Dab and DK;a by using (27) or (28). The dusty gas model
includes the momentum balance in the form of Darcy’s Law, as can be seen from
the last term of Eq. (29), which is the viscous flow, and intrinsically ensures the flux
consistency. A large number of studies have shown the validity of the dusty gas
model (Krishna and Wesselingh 1997; Veldsink et al. 1995; Tseronis et al. 2008;
Wang et al. 2012) for multicomponent flows in porous media.

In the work of García-Camprubí et al. (2010), the total flux of a species in a
multicomponent mixture obtained from the application of the dusty gas model has
been expressed as the contribution of three terms:

~Ja ¼ �Carpa þ~vpapa þ~vNa pa ð30Þ
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where

Ca ¼ 1

RT
P

b 6¼a
pb
Deff

ab

� �
þ 1

Deff
Ka

� � ð31Þ

~vpa ¼
Ca

Deff
Ka

�Bp

lg
rp

" #
ð32Þ

~vNa ¼ CaRT
X
b 6¼a

~Jb
pDeff

ab

" #
ð33Þ

The first term represents the total diffusion of the species related to concentration
gradients (i.e., a purely diffusive term), the second is the viscous flux due to
pressure gradients, and the third is the flow of the species α induced by the motion
of the other species. The last term, peculiar of the dusty gas model and totally
neglected by Fick-based models, has a growing importance with the increasing of
the current density. For this reason, the application of dusty gas model is recom-
mended (Suwanwarangkul et al. 2003; Cayan et al. 2009) for predicting concen-
tration overpotentials in SOFC models in the polarization regions where limiting
currents occur due to the presence of high current densities and low concentration
of electrochemical reactants.

The implicit formulation of fluxes and the presence of a term dependent on the
pressure gradient make it difficult to solve the equations of dusty gas model.
Therefore, many authors assume the viscous flow to be negligible and use the
model in combination with the momentum equation given by Darcy’s Law.
However, the dusty gas model applied with the uniform pressure simplification no
longer guarantees the flux consistency, and Eq. (13) must be applied to calculate the
flux of one species. In particular, Bertei and Nicolella (2015) have shown that the
uniform pressure assumption is equivalent to assume the Graham’s law of effusion,
which is rigorously valid only in a confined system in the absence of reactions and
pressure gradients, conditions that are not satisfied in an SOFC electrode.

2 Momentum Conservation

The momentum conservation equations derive directly from the application of the
second Newton’s law of motion. Mathematically, the momentum conservation in
the non-porous domains (i.e., gas channel and manifolds) is described by the
Navier–Stokes equations for compressible fluids:
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@ðquÞ
@t

þr � quuð Þ ¼ �rpþr �~sþF ð34Þ

where F are the body forces (e.g., gravity and electromagnetic forces.) and~s is the
stress tensor. Equation (34) represents a force balance on the fluid particles; it states
that the total force applied to the particles is the sum of three contributions: pres-
sure, stress, and external forces. The external forces in SOFC channels are usually
neglected. For a Newtonian compressible fluid, the stress tensor is given by:

~s ¼ lg ruþðruÞT� �� 2
3
lgðr � uÞ

� �
ð35Þ

where lg is the dynamic viscosity of the fluid. This property can be estimated
through the combination of the viscosities of single components by using the
Wilke’s formula (Wilke 1950a, b):

l ¼
X
8i

yiliP
8j yjhij
� �

" #
ð36Þ

where hij is given by the equation:

hij ¼
1þ li

lj

	 
1=2 Mj

Mi

	 
1=2� �2

4=
ffiffiffi
2

p� �
1þ Mi

Mj

	 
h i1=2 ð37Þ

The fluid flow through porous media is characterized by convoluted paths, and it
is not possible to apply the classical laws of mechanics separately to fluid and solid
phases, due to the complex configuration of the contact boundaries between the
phases. A continuum approximation has to be applied in order to formulate the
momentum balance, and the macroscopic equations are derived by using averaging
methods.

Several approaches have been proposed to formulate the momentum balance
through a porous media; in the simplest form, the momentum conservation is
expressed by Darcy’s law, which assumes a linear proportionality between the flow
velocity and the applied pressure difference:

�u ¼ �Bp

lg
rp ð38Þ

This equation describes the balance on the fluid between the force applied by the
pressure gradient and the frictional resistance due to the presence of a porous
medium. In the Darcy’s equation, the inertia forces are neglected, and the validity of
the model is limited to laminar flows in low-porosity media dominated by viscous
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forces. Typically, the linear relation of Darcy’s equation is valid for Reynolds
number of the flow in the order of unity or smaller (Nield and Bejan 2006).

An extension of the Darcy model to high velocity flows in porous media, or to
high porosity media, is given by the Forchheimer’s equation:

rp ¼ � lg
Bp

�u� Cfq
�uj j�uffiffiffiffiffi
Bp

p ð39Þ

where Cf is a dimensionless drag constant. The last term of Eq. (39) is referred to as
Forchheimer term and takes into account the inertia effects in the fluid flow. The Cf

coefficient varies with the characteristics of the porous medium; a thorough dis-
cussion on the several different approaches adopted in the literature for the eval-
uation of this coefficient can be found in Nield and Bejan (2006).

The main limitation of the Darcy and Forchheimer equations is the impossibility
to impose the no-slip boundary condition (Amhalhel and Furmański 1997). Hence,
when Eqs. (38) or (39) is imposed in the porous medium, it is difficult to define
interfacial conditions with an adjacent domain in which there is a free-flow and
Navier–Stokes equations are applied, as typically happens at the electrode/channel
interface of SOFC cells (Andersson et al. 2010).

The Brinkmann–Darcy flow model can be adopted to overcome the limitations
of Darcy–Forchheimer equations. The Brinkmann–Darcy equations are given by
Brinkman (1949a, b):

rp ¼ � lg
Bp

�uþ ~lgr2�u ð40Þ

where ~lg is an effective dynamic viscosity that Brinkman set equal to the gas
viscosity. More recent studies have shown that the effective viscosity is a function
of the characteristic of the porous medium, in particular of the porosity (Amhalhel
and Furmański 1997; Nield and Bejan 2006). The Brinkman–Darcy flow model
allows to account for all boundary conditions at a solid or fluid interface.

A generalized flow model that includes the Forchheimer term into the
Brinkman–Darcy equation has been derived by Hsu and Cheng (1990) starting from
the Navier–Stokes equations and utilizing volume-averaging techniques:

1
e

@ðq�uÞ
@t

þr � q
e
�u�u

	 
� �
¼ �rpþr � ~s

e

� �
þ lgr2�u� lg

Bp
�u� Cfq

�uj j�uffiffiffiffiffi
Bp

p þ F
e

ð41Þ

Equation (41) is known as Darcy–Brinkman–Forchheimer (DBF) flow model. In
the work of Lage (1993), a complete study on the influence of each term of the DBF
equation depending on the flow regime is presented.

The Darcy–Brinkman–Forchheimer equation is the most complete formulation
of momentum conservation in the porous medium. When the free-flow
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approximation (i.e., infinite permeability and e ¼ 1) is applied in Eq. (41), the
equation reduces to the Navier–Stokes form (34). Therefore, when modeling a fuel
cell, it is possible to apply Eq. (41) in both free-flow and porous-medium domains.
With this approach, the velocity field is continuous in the entire domain and cou-
pling conditions between porous electrodes and free channels are not need. The
Darcy–Brinkman flow model (with or without the Forchheimer term) is the stan-
dard model used by many CFD softwares (Fluent, COMSOL Multiphysics,
OpenFOAM, etc.) to deal with fluid transport problems in porous media.

3 Energy Transport and Conservation

Modeling the heat transfer in SOFC systems allows the prediction of temperature
distribution within cells and stacks, which is necessary for an accurate simulation of
cell performance and for the prediction of thermo-mechanical degradation of cells
and stack components.

Heat transport models must take into account the different heat transfer mech-
anisms, namely convective heat transfer between solid surfaces and gas mixtures,
conductive heat transfer in gaseous and solid phases, and radiative heat transfer.
Moreover, energy conservation equations must include the presence of heat sources
(or sinks) due to chemical and electrochemical reactions, and the heat production
due to the motion of electronic and ionic charges.

The conservation of energy can be implemented in a model by applying the first
law of thermodynamics, which assumes different forms depending on the heat
transfer phenomena that dominate the domain under investigation.

In the following part of the section, the equations describing heat transfer and
conservation are introduced by type of domain from the non-porous fluid and solid
domains to the porous domains of the electrodes.

Heat transfer in non-porous media: fluid domains The general form of the
energy conservation equation for the heat transfer in a fluid domain is given by the
enthalpy conservation equation, which can be expressed in terms of temperature, as
follows:

@ qCpT
� �
@t

þr � qCpTu
� �þr �~q ¼ Dp

Dt
þ/v þ qfuþQ ð42Þ

where ~q is the heat flux by conduction, /v is the viscous dissipation, f are the
specific body forces acting on the fluid (e.g., gravity), and Q represents the volu-
metric heat sources. The energy dissipation due to viscous forces is important for
highly viscous fluids at high velocity but is negligible for gas flows under the
typical laminar regimes of SOFCs. Also the pressure work may be neglected, since
the pressure differences of fuel cells are very small. Moreover, it can be assumed
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with a good approximation that the body forces are irrelevant in the energy balance.
Thus, Eq. (42) can be rewritten as follows:

@ qCpT
� �
@t

þr � qCpTu
� �þr �~q ¼ Q ð43Þ

The conductive heat transfer is given by the Fourier’s law:

~q ¼ �kgrT ð44Þ

where kg is the thermal conductivity of the gas mixture. This property can be
calculated by the Wilke’s formula [see Eq. (36)], as in the case of the viscosity.

The volumetric heat sources in fluid domains are chemical reactions and
radiative heating. The latter heating mechanism is related to the absorption, scat-
tering, and emission of radiation by the fluid that occurs in the presence of par-
ticipating gases.

The heat source term is negligible when considering the cathodic fluids of
SOFCs, because they are composed of non polar molecules (i.e., oxygen and
nitrogen) that do not react with each other and that can be considered as transparent
gases non-interacting with thermal radiation at the conditions of SOFC applications.

Chemical reactions between the typical fuel mixture components (i.e., H2, H2O,
CO, CO2, and CH4) at SOFC operating conditions occur when the gas flow comes
in contact with suitable catalysts, as typically happens within the porous structure of
the anode. The studies of Gupta et al. (2006) and Walters et al. (2003) have shown
that homogeneous reactions cannot be ignored in non-catalytic regions of SOFCs
only with particular fuel mixtures, specifically air/methane and dry natural gas.
However, if we consider the typical fuel mixtures in stack manifolds and cell
channels, chemical reactions between components can be neglected. Moreover, the
calculated gas transmittance for a typical SOFC fuel stream composition at atmo-
spheric pressure yields a value approaching unity (Damm and Fedorov 2005); thus,
the fuel gas medium can be treated as transparent. Hence, the Q term is negligible
for both anodic and cathodic gas mixtures in the non-porous domains of a SOFC
system.

Once the conservation equation has been imposed in the fluid domains of the
model, proper boundary conditions have to be chosen.

The conditions imposed at the boundaries of fluid domains strictly depend on the
geometry and assumptions of the model. Most the models impose a fixed tem-
perature at the fluid inlets and a convective flux at the outlets. Typical boundary
conditions at the walls of fluid domains are thermal insulation, convective heat
transfer, continuity of the temperature field across the boundary, or periodic
boundary conditions, depending on the model. Even if heat transfer by radiation is
not included into the energy conservation equation, the radiative exchange between
the surfaces of channel and manifolds should be considered when defining the
boundary conditions at the walls of the fluid domains. The surface-to-surface
radiation is usually modeled using view-factor methods (Sánchez et al. 2007;
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Damm and Fedorov 2005), and the radiative flux for an infinitesimal element of a
surface is given by (García-Camprubí 2011):

~qrad;i ¼ ni Eb;i �
X
j

Fi�jEb;j
� �� H0;i þ

X
j

1
nj
� 1

� �
Fi�jqrad;j

� �" #
~n ð45Þ

where n is the emissivity of the surface, Eb is the emissive power of a black body,
H0 is the incident radiation, and Fi�j is the view factor between two infinitesimal
elements i and j. The view factor of Eq. (45) represents the fraction of radiation
emitted by the surface element i that is directly incident on the element j. In the case
of domains with high aspect ratio, typical of planar-type SOFC channels, the walls
can be treated as black surfaces with unitary emissivity (i.e., ni = 1). The radiative
heat flux calculated at the surface can be then imposed as a boundary flux:

�r � krTð Þ ¼ r �~qrad ð46Þ

The modeling study of Yakabe et al. (2001) on a planar SOFC has shown that
when the surface-to-surface heat exchange is taken into account, the temperature
distribution in the cell is flatter and the maximum temperature is 30 °C lower with
respect to profiles obtained without considering the radiant heat exchange.

Heat transfer in non-porous media: solid domains In the solid domains of
SOFC systems (i.e., electrolyte, interconnects, and other impervious stack com-
ponents), conduction is the dominant heat transfer mechanism, and radiation can
play a role, while the convection is negligible since the material is not moving. In
the absence of convective terms, the energy conservation equation is given by:

@ qCpT
� �
@t

þr �~q ¼ Qv ð47Þ
In order to determine whether or not to include radiation in the heat transfer

model of solid domains, it is necessary to evaluate the magnitude of the heat
transfer by radiation and compare it with that of the conductive heat flux. A simple
evaluation method is suggested by Damm and Fedorov (2005), which is based on
the comparison of the maximum possible heat flux exchanged by radiation between
two black walls separated by a transparent medium with the conductive flux cal-
culated by the Fourier’s law. If the magnitude of the radiation is not negligible, the
heat flux exchanged by radiation should be included in Eq. (47) into the source or
heat flux terms.

The radiative heat flux can be calculated by solving the radiative transfer
equation (RTE) (Modest 2013). The RTE is an integro-differential equation, whose
analytic solution exists only for few simple cases, and its numerical solution has a
high computational cost; thus, the radiative flux is usually evaluated using
approximate solutions of the RTE.

If the material is optically thin, radiation can be included in the energy con-
servation equation as a volumetric source that is accounted for in the Qv term. In
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Eq. (47), the total volumetric heat source Qv can be expressed as the sum of the
Joule heating, which occurs in electrically conductive materials traversed by ionic
or electronic current, and the radiative heating. Electrochemical and chemical
reactions take place in the electrode domains and should not be accounted for in the
source term. The resulting total source is given by:

Qv ¼ Qohm þQrad ¼
ie=i
�� ��2
re=i

�r � qr: ð48Þ

where re=i is the ionic/electronic conductivity of the material, ie=i
�� �� is the local

current density (see Sect. 4), and qr is the radiative heat flux, which derives from
approximate solutions of the RTE, for example the Schuster–Schwartzchild
two-flux approximation in the case of 1-D models (Murthy and Fedorov 2003). The
traditional YSZ electrolyte of SOFCs can be considered as an optically thin material
(Damm and Fedorov 2004); thus, Eq. (48) is applicable in the YSZ domains. The
work of Murthy and Fedorov (2003) has shown that the radiative heat flux strongly
affects the temperature distribution in thick electrolytes (i.e., electrolyte supported
cells), while the effect of radiation is negligible for thin electrolytes (i.e.,
anode-supported cells).

If the material is optically thick, the radiative heat flux can be calculated by the
Rosseland diffusion approximation and included into the ~q term of Eq. (47)
(Murthy and Fedorov 2003). The term~q takes into account both the conductive and
radiative heat fluxes and is given by:

~q ¼ � ks þ kradð ÞrT ð49Þ

where ks is thermal conductivity of the solid and krad expressed by the Rosseland
approximation is given by:

kr ¼ 16n2r rBT
3

3be
ð50Þ

where nr is the refractive index of the medium, rB is Stefan–Boltzmann constant,
and be is the spectrally averaged mean extinction coefficient of the medium.

Heat transfer in porous media The problem of modeling the heat transfer in the
porous domains of SOFCs, which are composed of mixed solid and gas phases, is
usually addressed employing a local thermal equilibrium (LTE) approach that
locally assumes the same temperature for gas species and solid structure. The LTE
assumption is very common in thermal modeling of SOFCs and allows to use only
one energy conservation equation for both the phases in the computational domain
of the porous medium (Andersson et al. 2013; Haberman and Young 2004; Ferrero
et al. 2015). The conservation equation is given by:
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qCp
� �

eff

@T
@t

þ qgCpgu � rT ¼ r � keffrTð ÞþQv ð51Þ

where the terms qCp
� �

eff and keff are effective transport parameters, namely the
energy stored per unit volume and the effective heat conduction flux, both obtained
as volume averages of the quantities defined for the gas and solid phases. The
effective properties are given by:

qCp
� �

eff¼ eqgCpg þ 1� eð ÞqsCps ð52Þ

keff ¼ ekg þ 1� eð Þks ð53Þ

where the subscripts “g” and “s” stand for gas and solid.
The validity of the LTE approach has been discussed by Damm and Fedorov for

hydrogen fueled SOFCs (Damm and Fedorov 2006) and subsequently by Zheng
et al. (2013) who investigated the local thermal non-equilibrium (LTNE) effects in
SOFCs electrodes in the presence of methane reforming and ammonia thermal
cracking. Both studies indicates that LTNE effects within SOFC electrodes lead to
insignificant local temperature differences between gas and solid phases of the order
10−2–10−3 K; thus, the LTE assumption can be safely adopted in the thermal
modeling of SOFCs.

The heat transfer by radiation is not included in Eq. (51), since SOFC electrodes
are opaque to radiation and have a negligible radiative conductivity (Damm and
Fedorov 2005). However, the radiative heat flux should be considered when
defining the boundary conditions by using the same approach described for the heat
transfer in fluid domains. In this case, surface-to-surface radiation is imposed on the
boundary between electrode and gas channel.

The volumetric heat source term of Eq. (51) must include all the sources (or
sinks) related to the phenomena that occur within the SOFC electrode in both the
solid and gas phases. Heat generation is related to three different phenomena:
(1) electrochemical reactions, (2) chemical reactions, and (3) Ohmic losses due to
the resistance of the materials to the charge flow (i.e., Joule effect).

The heat generation due to the electrochemical reactions can be divided in
reversible and irreversible; the first one account for the thermodynamic heat
released by the ideal reactions and the second one takes into account the heat
released for the activation of the charge-transfer reactions. These source terms are
given by:

Qel;rev ¼ � ivj j
nF

� �
TD�s ð54Þ

Qel;irr ¼ gact ivj j ð55Þ
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where D�s is the molar entropy change of the electrochemical reactions, the term
ivj j=nFð Þ is the molar volumetric flow of reacted molecules steaming from the

Faraday’s Law, and gact is the activation overpotential (see Sect. 4). As previously
stated, anode-supported cells models frequently assume the electrochemical reac-
tions to be confined at the interface between the fuel electrode and the electrolyte. If
this assumption is adopted, the electrochemical heat generation should be imposed
as a boundary condition at the electrode/electrolyte border instead of being included
in the source term of Eq. (51).

In typical SOFC systems, chemical reactions between the gas species occur in
the anode, where gas streams typically containing H2, H2O, CO, CO2, and CH4

come in contact with the metal phase of the porous structure—usually nickel—
which promotes the heterogeneous chemical reactions (see Sect. 5). The chemical
reactions can be endothermic or exothermic, thus the chemical source term of
Eq. (51) can be positive or negative depending on the reaction. The chemical heat
source is given by:

Qchem ¼ �
X
i

csiriD�hi ð56Þ

where D�hi is the molar enthalpy of reaction.
The ohmic losses are due to electronic and ionic resistivities of the solid structure

of the electrode. Under operating conditions, SOFC electrodes are traversed by
ionic and electronic currents—which depend on electrode morphology, tempera-
ture, and reactant distributions—that can be determined by using an electrochemical
model of the cell (see Sect. 4). The heat released in the electrode volume due to the
ohmic losses is calculated as in Eq. (48) by using the effective conductivity of the
electronic/ionic phase in the porous media, whose expression is given in Eq. (81).

Finally, ohmic heating due to contact resistance between electrodes and inter-
connects should also be taken into account when defining the thermal boundary
conditions.

�n � ð�keffrTÞ ¼ Qohm;res ð57Þ

This type of resistance is usually expressed in terms of an area-specific resistance
(i.e., Ω cm2) that depends on the contact method, the interface area between the
materials and their resistivities (Wu et al. 2013). The heating source is given by:

Qohm;res ¼ Rcon~ib
�� ��2 ð58Þ

where ~ib
�� �� is the absolute loss of the local current per unit surface that is crossing the

boundary interface.
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4 Electrochemical Modeling

The goal of an electrochemical SOFC model is to provide a mathematical formu-
lation of the relation between the electrical variables of the fuel cell (i.e., current and
voltage) and the thermo-fluidic and chemical ones (i.e., temperature and species
partial pressures). In order to do this, it is necessary to implement in the model
equations that give a suitable description of the electrochemical phenomena
occurring in a fuel cell.

Before going into the details of the physics-based modeling, a brief introduction
is given to highlight the main phenomena that an electrochemical model must
address.

A SOFC is an electrochemical device that performs the direct conversion of the
chemical energy of a fuel into electricity through redox reactions. The reactants
(fuel and oxygen) are supplied in the gaseous form to the electrodes of the cell,
where the electrochemical reactions take place, and an ion conductive layer—the
electrolyte—ensures that the charged molecules produced in the redox processes
can move between the electrodes. A potential difference arises between electrodes
when reactants are supplied to them; if the electrodes are not electrically connected,
this potential difference is exactly the electromotive force due to redox reactions
and represents the maximum potential difference that the cell could achieve with
these reactants. Instead, if the electrodes are connected through an external elec-
trical circuit, the electrons move from an electrode to the other driven by the
potential difference and irreversible phenomena connected to electrochemical
reactions and charge transport occur and reduce the available potential difference.

A complete electrochemical model should encompass all these phenomena and
give a mathematical description of the following: (1) generation of potential dif-
ference between electrodes, (2) electrochemical reactions, and (3) charge transport.

In the following sections, the description of the three aforementioned phenom-
ena is given by presenting an overview of the approaches usually followed in the
physical-based SOFC modeling.

Modeling the Equilibrium Potential The generation of a potential difference
between the anode and cathode of a fuel cell depends on the redox reactions
occurring at the electrodes. In general, the overall half-cell reactions consist in the
oxidation of fuel molecules at the anode and the reduction of oxygen (or other
oxidizing agents) at the cathode.

Typical fuels that are oxidized at the anode are hydrogen and carbon monoxide,
but solid carbon, hydrogen sulfide, methane, and other higher hydrocarbons can
participate directly to the electrochemical oxidation. In this chapter, the analysis
will be limited to reactions involving H2 and CO, as they are the electrochemical
fuels in the vast majority of SOFC applications. The methane is frequently provided
directly to the SOFC; however, it plays a role more as a reactant into the internal
reforming reactions in which H2 and CO are produced (see Sect. 5) rather than
being the principal fuel in the electrochemical oxidation processes.
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The half-cell oxidation reactions for H2 and CO in SOFCs with
oxygen-conductive electrolytes are given by:

H2 gð ÞþO2� elð Þ � H2O gð Þþ 2e� ð59Þ

CO gð ÞþO2� elð Þ � CO2 gð Þþ 2e� ð60Þ

The oxygen reduction at cathode is given by:

O2 gð Þþ 4e� � 2O2� elð Þ ð61Þ

The reversible potential of the cell generated by the redox reactions—which is
also called equilibrium, open-circuit, Nernst potential, or voltage—is the theoretical
maximum potential difference that a fuel cell can produce between the electrodes
for a given reactants composition. The reversible potential can be expressed as the
difference between the equilibrium potentials of the reactions occurring at the anode
and the cathode (Bagotsky 2005):

Erev ¼ Eeq;c � Eeq;a ð62Þ

The equilibrium potentials are functions of the Gibbs free energy of reaction,
which depends on the temperature and activities of reactants and products. The
equilibrium potential of the single electrode is given by:

Eeq ¼ 1
neF

D�goe þRTln
Y
k

avkk

" #
ð63Þ

where ne is the number of electrons exchanged per molecule of fuel/oxidant in the
electrode reaction, D�goe is the molar standard-state free energy change of the
reaction, ak is the activity of species k, and mk is the stoichiometric coefficient of the
species (negative for reactants). In the case of gaseous reactants/products at low
pressure—typical conditions of SOFC electrodes—the activity can be expressed as
the ratio of the partial pressure of the gas over the standard pressure. For the
coupled reactions (59)–(61) and (60)–(61), Eqs. (62) and (63) (84) result in the
Nernst’s formulation of the reversible potential:

Erev;H2�H2O ¼ RT
4F

ln
pTPBO2

po

� �
� 1
2F

D�goH2�H2O þRTln
pTPBH2O

pTPBH2

 !" #
ð64Þ

Erev;CO�CO2
¼ RT

4F
ln

pTPBO2

po

� �
� 1
2F

D�goCO�CO2
þRTln

pTPBCO2

pTPBCO

� �� �
ð65Þ

where the partial pressures are those of the species on the reacting surfaces, i.e., the
TPB.
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In most of the SOFCs models, the potentials given by Eqs. (64) or (65) are
rearranged to show the species concentration in the bulk of the feeding gases:

Erev;H2�H2O ¼ �D�goH2�H2O

2F
þ RT

2F
ln

pbH2

pbH2O

pbO2

po

 !1=2
2
4

3
5� gconc;a � gconc;c ð66Þ

where the first two terms on the right side grouped together are referred to as
reversible voltage under open-circuit conditions—usually named Voc—and gconc is
the concentration overpotential due to the variation of the partial pressure of the
species from the bulk of feeding streams to the reacting regions of the electrodes.
The concentration overpotential is given by:

gconc ¼
RT
neF

ln
Y
k

pb
mk

k

pTPB
mk

k

 !
ð67Þ

The difference in species concentration between the feeding flow and the
reacting zone is usually attributed to the depletion of fuel/oxidizer due to the
electrochemical reactions and to the mass transfer limitations in the electrodes that
determine lower partial pressure of reactants in the TPB. Thus, the concentration
overpotentials are frequently neglected at open-circuit, when electrochemical
reactions do not occur. However, this is an oversimplification if gas streams contain
components that can chemically react among themselves; in this case, the species
concentrations also vary because of the chemical reactions even if the cell is at
open-circuit.

A large part of SOFC models use Eq. (66) in combination with the activation
and ohmic overpotentials to obtain the voltage of the cell:

Vcell ¼ Voc � gconc;a � gconc;c � gact;a � gact;a � gohm ð68Þ

This is the standard expression of the cell polarization, usually adopted in the
models to impose a constraint to the sum of the overpotentials of the cell (Fig. 3).

Given certain temperature and species distributions calculated from the
thermo-fluidic models, the dependent variable of the polarization equation is the
current density, which is given by the solution of Eq. (68). It is worth noting that
the use of the Nernst’s equation for the calculation of the reversible potential is not
rigorously valid or applicable in all the models, unless proper assumptions are
made. In particular, the Nernst’s potential is a singular scalar value, whose calcu-
lation requires to evaluate the difference between the equilibrium potentials of
anode and cathode; however, these two potentials are defined in different domains
and the subtraction can be made if and only if each of them assumes a single scalar
value. This is always true in 0-D models, but for higher dimension models the
equilibrium potentials in general are not constant within the electrodes. Common
assumptions adopted in 1-D and 2-D models impose the electrochemical reactions
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at the electrode/electrolyte interface and assume the electrodes as ideal electron
conductors on which the electronic potential is constant (Ferrero et al. 2015; Ni
2009; Janardhanan and Deutschmann 2007). In this way, the TPBs are treated as
lines on which the equilibrium potential varies with the position along the length of
the electrode, and the Nernst potential can be calculated as the difference between
the anodic and cathodic equilibrium potentials at each position of the electrode
length. Another further assumption can be made by considering the equilibrium
potential of the cathode as a constant, because in SOFC applications the compo-
sition of the air electrode mixture is less variable than the anodic one during the
operations.

The use of Nernst’s equation has no meaning in 3-D models or 2-D models
where electrochemical reactions are imposed in the volume instead of being
assumed at the electrolyte/electrode interface. In this case, a more general modeling
approach based on the implementation of equations which contain the electronic
and ionic potentials of the cell as dependent variables should be used. With this
approach, it is not necessary to calculate a reversible potential to be introduced in a
polarization equation, but it is sufficient to calculate the local equilibrium potential
with Eq. (66) or by using the potential expression dependent on oxygen partial
pressure in the gas mixture at equilibrium, as shown later in the case of multi-fuel
mixtures. The current density produced in the cell can be then calculated as a
function of the difference between electronic, ionic, and equilibrium potentials in
the TPBs regions by implementing a Butler–Volmer equation for the
charge-transfer reactions, as will be shown in the next pages, and the transport of
charge is the result of the gradients of the potentials. In the general approach based
on the potentials, the voltage of the cell is imposed on the surface of one of the
electrodes as a boundary condition for the electrical potential, while on the surface
of the other the ground potential (i.e., zero potential) can be assumed.

Some considerations have to be spent in the case of multi-fuel mixtures. In
principle, when two or more different electrochemical reactants (i.e., H2 and CO)

Fig. 3 Polarization curve.
[Reprinted with permission
from Kim et al. (2009)]

Solid Oxide Fuel Cells Modeling 319



are present at the anode at the same time, each oxidation reaction has a different
value of equilibrium potential, and thus, it seems not possible to define a unique
value of reversible potential. However, it is possible to demonstrate that, under the
assumption of having the fuel mixture in equilibrium conditions on the TPB sur-
faces of the electrode, the equilibrium potential is the same for all the fuels, and
consequently, it is possible to define unambiguously the reversible potential of the
cell.

When the chemical equilibrium of the gaseous species within the electrode is
assumed, the Nernst’s voltage can be also re-written in terms of the oxygen partial
pressures in the anode and cathode TPBs:

Erev ¼ RT
4F

ln
pTPB;catO2

pTPB;anO2

 !
ð69Þ

where the partial pressure of oxygen at the anode is directly evaluated by calcu-
lating the equilibrium composition of the gas mixture. Expression (69) is useful to
evaluate the ideal reversible potential of multi-fuel mixtures inside the anode just
from the equilibrium composition of the fuel mixture.

It is worth noting that the equality between the equilibrium potentials of different
reactions in multi-fuel mixtures is not valid when the gas mixture within the anode
is far from equilibrium. If we consider anode-supported SOFCs with Ni/YSZ
anodes, the equilibrium assumption can be considered applicable because the fuel
gas has to cross a large volume of electrode before reaching the TPB, and thus, it
has a sufficient contact time with the nickel catalyst that allow gas-shift and other
reactions to reach the equilibrium. However, the gas equilibrium assumption has to
be carefully verified case by case before applying it into a model.

If the gas mixture is not in equilibrium, it is not possible to define a single value
of equilibrium potential within the electrode and both the Nernst- and
potentials-based approach are not applicable. In this case, an elementary
mass-action formulation based on the modeling of the rates of the single
charge-transfer reactions is needed (Goodwin et al. 2009). As will be shown in the
next section, with this approach, it is possible to avoid the calculation of the
equilibrium potentials because the current generated by the electrochemical reac-
tions is computed directly from the rates of the single charge-transfer reactions and
the use of Butler–Volmer formalism is not required.

Electrochemical Reactions Modeling The electrochemical reactions can occur
only where electron conductive, ion conductive, and gas phase coexist. The
simultaneous presence of the three phases allows the conduction of electrons, the
migration of ions, and the transport of gas molecules to/from the reaction sites. As
stated before, these are the TPB regions of the electrodes.

The mere presence of the TPB is not sufficient to ensure the electrochemical
reactions to happen, but the TPB must be connected to the rest of the structure. If
either the electronic, ionic, or pore network is interrupted or badly interconnected,
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the electrochemical reactions cannot take place properly because electrons, ions, or
gaseous reactants/products cannot reach or leave the TPB surfaces. Most of the
electrode materials are predominantly electronic conductors (e.g., Ni metal and La–
Sr–Mn oxides), and when these materials are used, the TPB is limited to the contact
region between the electrode and the electrolyte. In particular, the commonly used
anode Ni–YSZ cermets have a TPB extension that several studies have estimated in
the order of 5–20 μm (Cai et al. 2011; Zhu and Kee 2008). The TPB length of
SOFC cathodes can be typically higher, when mixed ionic and electronic con-
ductors are used as cathode materials.

The reaction mechanisms that occur on the TPB consist of complex chains of
intertwined physiochemical phenomena, which include adsorption/desorption of
gas molecules on/from the electrode surface, dissociation, surface transport and
solid-state diffusion of adsorbed species, and charge-transfer reactions. The study of
electrochemical reaction mechanisms of SOFC electrodes has been addressed by
countless works, and it is out of the scope of this chapter, a thorough review of the
literature pertaining these mechanisms has been presented by Hanna et al. (2014)
and Li et al. (2010).

The problem of modeling the electrochemical reaction mechanisms is usually
addressed by following two different approaches: (1) by assuming a charge-transfer
step to be the rate-determining step of the entire reaction mechanism and using
Butler–Volmer expressions for the calculation of the current electrochemically
generated in SOFC (Noren and Hoffman 2005) or (2) by using fundamental
mass-action kinetics to describe each elementary reaction of the entire mechanism
and calculating the electrochemical current from the rates of the elementary
charge-transfer reactions (Goodwin et al. 2009).

In the following paragraphs, these two different modeling approaches are
described.

In both approaches, it is necessary to define what the elementary steps of the
reactions are, but in the first one, the total rate of the electrochemical reaction is
assumed to be controlled only by the transfer of the electric charge at the TPB and
not by the transport of the species. Most of the SOFC models adopt this approach
and use the Butler–Volmer equation either combined with a polarization equation
that couples the reversible cell potential—usually calculated by the Nernst’s
equation—with the voltage losses (i.e., overpotentials) related to the irreversible
phenomena, namely the activation; ohmic and concentration overpotentials are
expressed as a function of the electric, ionic, and equilibrium potentials. Some
authors have also adopted a mixed approach where the description of elementary
charge-transfer reactions through mass-action kinetics is introduced into the Butler–
Volmer formulation by adopting simplifying assumptions (Zhu et al. 2005; Menon
et al. 2013).

When the global electrochemical reaction is assumed to be controlled by a
charge-transfer step, the Butler–Volmer equation can be used to calculate the net
current density generated in the electrode by the reaction (Bagotsky 2005):
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i ¼ i0 exp af
nBVFgact

RT

� �
� exp �ab

nBVFgact
RT

� �� �
ð70Þ

where i0 is the exchange current density of the electrode reaction, af and ab are
symmetry parameters of forward and backward reactions, gact is the activation
overpotential of the reaction, and nBV is the number of electrons transferred in the
charge-transfer step. It is worth noting that only if the electrochemistry is repre-
sented with a single, global charge-transfer process that corresponds with the
half-cell reaction (Shi et al. 2011), then nBV is the number of electrons transferred in
the half-cell reaction.

If the Bulter–Volmer equation is describing a global charge-transfer reaction, the
coefficients af and ab have no constraints, while for elementary reactions—in which
only one electron is transferred—these factors take on values between 0 and 1 and
their sum is constrained to 1 (Goodwin et al. 2009).

The activation overpotential arises because the electric charge cannot move
directly between the ionic and electronic conductive phases of a cell. Both the
phases have free charge carriers and are globally neutral, however an excess charge
is distributed on their surfaces. Therefore, at the interface between the phases—the
TPB—an electric double layer is formed, with the charged surfaces behaving as the
plates of a capacitor. During the charge-transfer reaction, the electrons are trans-
ferred across the double layer moving against the potential difference existing
between the ionic and electronic phases. When the net current crossing the double
layer is zero, the potential difference between the phases is equal to the equilibrium
potential of the electrode, while if a potential difference higher than the equilibrium
is needed to allow a non-zero net current to exist. The activation overpotential
measures the disequilibrium between the potential difference in the phases and the
equilibrium potential:

gact ¼ /e � /i � Eeq ð71Þ

where /e is the electronic potential of the electrode, /i is the ionic potential and Eeq

is the equilibrium potential of the electrode that can be expressed by using Eq. (63).
In most of models that use a Butler–Volmer approach, the activation overpo-

tential is related to the current density by Eq. (71) that is coupled to the polarization
Eq. (68) to solve the electrochemical problem and obtain the current density dis-
tribution without explicitly introduce the ionic and electronic potentials in the
equations (Chan et al. 2001; Ni et al. 2007; Ferrero et al. 2015). However, for the
distributed charge-transfer modeling in 2-D and 3-D models, the electronic and
ionic potentials are frequently used as dependent variables instead of the current
density; in this case, the activation overpotential is expressed by using Eq. (71) and
the Butler–Volmer equation is coupled with the charge transport equations to define
the current density distribution within the electrodes (Zhu et al. 2005; Klein et al.
2007; Shi et al. 2007; Andersson et al. 2012).
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The exchange current density provides a quantitative measure of the electro-
catalytic activity of the electrode for a certain electrochemical reaction. Its value
depends on the charge-transfer kinetics, temperature, partial pressures, and elec-
trode microstructure. The dependency of i0 on so many parameters makes it difficult
to define it without the use of semi-empirical relations. In most of the SOFC
literature, the exchange current density is expressed as the product of
temperature-dependent terms, written in Arrhenius form, and pressure-dependent
terms (Costamagna and Honegger 1998; Hosoi et al. 2015):

i0 ¼ c � exp �Eact

RT

� �Y
k

pk
pk;ref

� �ek

ð72Þ

where pk is the partial pressure of the k species involved in the electrochemical
reaction as reactant or product and pk;ref is a reference pressure for the k species. Eact

is the activation energy of the electrode reaction, which depends on reaction and
materials, ek is a dimensionless exponent and c is a pre-exponential parameter
dependent on electrode materials and microstructure, and in some cases also on the
temperature (Leonide 2010). The values of c and ek are widely scattered in the
literature.

Equation (72) is a semi-empirical relation in which the parameter c is usually
determined by fitting experimental data. Theoretical expressions of the exchange
current density have been derived by Hosoi et al. (2015) and Zhu et al. (2005) from
the study of reaction mechanisms. In these works, the current density is expressed
as a function of rates and equilibrium constants of the elementary reactions that are
assumed to compose the entire reaction mechanism. The theoretical formulation of
the exchange current density allows to describe its dependency on the partial
pressures in a physically based way; however, the high number of constant
dependent on reactions and materials makes it necessary to use empirical data for a
quantitative evaluation of i0.

It is worth noting that the current density evaluated by Eq. (70) is expressed per
unit of electrochemically active area of the electrode; thus, in order to obtain the
volumetric current generated in the electrode, namely iv. The current density has to
be multiplied by the active electrode area per unit volume (Costamagna et al. 1998):

iv ¼ Avi ð73Þ

The use of Butler–Volmer equation is consistent when the charge transfer is the
rate-determining step of the electrochemical reaction, and its application requires
the definition of an equilibrium potential within the electrode; however, if the gas
mixture is not in equilibrium, it is not possible to define properly the equilibrium
potential and the Butler–Volmer is not applicable. In this case, the current density
generated by the electrochemical reaction can be calculated by using an elementary
mass-action formulation of the rates of the elementary charge-transfer reactions
(Goodwin et al. 2009).
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In general, a charge-transfer reaction can be written as:

Aa þBb � Cc þDd þ tee
�: ð74Þ

where A, B, C, and D are the species having charge a, b, c, and d that are involved
in the transfer of te electrons. For an elementary charge-transfer reaction, the
coefficient te assumes the value of +1 for the forward (i.e., anodic) reaction—which
“produces” electrons—and −1 for the backward (i.e., cathodic) reaction. The net
rate of the reaction is given by the difference in the forward and backward rates of
the charge-transfer reaction, which can be written as follows:

qi;f ¼ kf Tð Þ
Y
i;r

aiexp
bfFEel

RT

� �
ð75Þ

qi;b ¼ kb Tð Þ
Y
i;p

ai exp � bbFEel

RT

� �
ð76Þ

where the rate constants k can be expressed in the Arrhenius form, ai are the
activities either of the reactants in the case of the forward reaction or of the products
for the backward one. The coefficient bf and bb are the symmetry coefficients,
which range between 0 and 1 and are constrained to have sum equal to one. Eel is
the electrode potential, which is given by:

Eel ¼ /e � /i ð77Þ

The current generated for unit of TPB length is given by:

iTPB ¼ F
X
i

qi;f � qi;b
� � ð78Þ

where the summation includes all the charge-transfer reactions. The volumetric
current density is related to iTPB by the volume-specific TPB length (Janardhanan
et al. 2008):

iv ¼ kTPBiTPB ð79Þ

With this approach, it is possible to calculate the current generated by the
electrochemical reactions by avoiding the Butler–Volmer formulation.

Charge transport and conservation In an SOFC stack, the charge transport takes
place in the solid phases—ionic and electronic—of cells and components.

Both the ionic and the electronic conductive materials exert a resistance to the
charge flow and the movement of charges is driven by the potential difference
existing between the electrodes of the cells. The charge flux is referred to as the
current density, which is given by the Ohm’s Law:
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ii=e ¼ �ri=er/i=e ð80Þ

where r/i=e is the gradient of the ionic/electronic potential that drives the charge
flow and ri=e is the conductivity of the material. In the case of the impervious solids
(i.e., electrolyte, interconnects, and current collectors), the conductivity is that of
the pure material, while in the porous electrodes, an effective conductivity must be
calculated in order to take into account the presence of pores and
electron-conductive phase. The effective conductivity can be calculated by using a
statistical approach in which the porous electrode is assumed as system of packed
spherical particles (Nam and Jeon 2006). The effective conductivity is given by:

reffi=e ¼ ri=e 1� eð Þfi=ePi=e

� k ð81Þ

where fi=e is the volume fraction of the ionic/electronic phase in the electrode and
Pi=e is the percolation probability. The exponent k, generally larger than 1, depends
on the distribution of the conductive phase in the electrode.

The conservation equation must be applied in the model to enforce the con-
servation of charge:

dve=i
dt

þr � ie=i ¼ wi=e ð82Þ

where ve=i is the volumetric charge density and wi=e is the volumetric charge source.
The term wi=e is different from zero only when the charge-transfer reactions are
assumed to take place in the volume of the electrode. In this case, the charge is
transferred from the ionic to the electronic phase of the electrodes in the TPB
volume of the electrodes; the variation of ionic and electronic currents is given by:

wi=e ¼ �iv ð83Þ

where iv is the current that is transferred at the TPB, which is calculated from
Eqs. (73) or (79).

When the electrochemical reactions are imposed at the interface between elec-
trode and electrolyte, the volumetric charge source is null, and the continuity
between the ionic and electronic current is imposed on the boundary.

In SOFC models, the charge transport in the electronic conductive materials is
usually neglected by assuming them as ideal conductors (i.e., infinite conductivity)
and only the transport of ions in the electrolyte is taken into account. Also, the ions
transport is frequently assumed to be one-dimensional and normal to the
electrolyte/electrode interfaces. This assumption is valid for thin electrolytes and
allows to express the potential drop due to ion transport as the difference between
the potentials at electrode/electrolyte interfaces:
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gohm ¼ /i;an � /i;cat ð84Þ

Equation (71) involves the electric/ionic potentials as dependent variables,
which are put in relation by Butler–Volmer (70) or elementary rate Eqs. (75) and
(76) imposed on the TPB boundary or volume. On the external surface of the
electrodes or on the current-collecting plates in the case of a stack, where only the
electrical potential is defined because the ionic phase is not present, a boundary
condition is needed in order to solve the charge-conservation equation. The cell (or
stack) voltage is usually imposed on one of the electrode (or current collector)
surfaces, while on the other the ground (i.e., zero) potential is fixed.

Another possible approach is to impose the ground potential on one of the
electric boundaries and fix the total current value on the other by imposing a
constraint to the integral of the current density:

Z
@X

i �~ndS ¼ Itot ð85Þ

With this approach, the input of the electrical model is the current, while the
voltage of the SOFC cell/stack can be calculated from the difference between the
potentials on the two electric boundaries.

5 Modeling the Heterogeneous Chemistry in SOFCs

Chemical reactions can occur within the fuel stream at the typical operating con-
ditions of SOFCs. In particular, when fuels other than hydrogen are fed to the cells,
the operating temperatures are sufficient to promote both homogeneous and
heterogeneous reactions between the fuel components.

If we consider the typical SOFC mixtures—which contain H2, H2O, CO, CO2

and CH4—and operating conditions, the reactions that occur within the gas phase
are very slow when compared to the heterogeneous ones; thus, the homogeneous
chemistry can be safely neglected in the anode domains (Zhu et al. 2005). In
particular, when the fuel mixture comes in contact with the porous structure of the
anode, typically made by a Ni/YSZ cermet, the heterogeneous reactions are pro-
moted by the presence of the nickel that acts as a catalyst for the reactions, such as
methane reforming and gas shifting. However, homogeneous reactions can play a
non-negligible role in non-catalytic SOFC regions when dry natural gas (Walters
et al. 2003) or higher hydrocarbons are fed to the cells—especially at very high
temperatures (T > 800 °C)—or when partial oxidation conditions are reached
(Gupta et al. 2006) due to the presence of oxygen or air into the fuel stream.

This chapter will focus on the modeling of the heterogeneous reactions in SOFC
anodes. Modeling the reactions means to find a suitable mathematical description of
the physics that allows to calculate the rates of the reactions. In particular, rates are
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necessary to interface the chemical model with the thermal and fluidic ones through
the source terms of Eqs. (6) and (56).

The problem of describing the heterogeneous reaction rates has been addressed
in the SOFC literature in two different ways: by using global expressions for the
calculation of an overall reaction rate or through detailed kinetic models that
include intermediate reaction steps. Both the approaches are based on the
mean-field approximation, which describes the surface state with average quantities
and neglects the non-uniformity of the catalytic surfaces.

Global reaction mechanism Two different approaches can be adopted when
modeling the chemistry by using global rate expressions: one is based on the
assumption that the reaction is controlled by kinetics and the other assumes that the
reaction rate is limited by the equilibrium.

The first approach is based on modeling each reaction in a single step whose rate
can be generally expressed by a kinetic power law expression:

rreact ¼ cr
Y
i

pmi exp � Ea

RT

� �
ð86Þ

where cr and reaction orders m of the i species participating to the reaction are
derived from the fitting of experimental data. Alternatively, to power law models,
Langmuir–Hinshelwood type models are used to describe the kinetics.

With the second approach, the reaction velocity is expressed through an
equilibrium-limited rate expression defined by:

rreact ¼ rf 1�
Q

pmproductsQ
pmreactants

1
Kr

� �
ð87Þ

where m is the stoichiometric coefficient of the gaseous species, Kr is the equilibrium
constant of the reaction, and rf is the rate of the forward reaction, usually given by a
power law expression. It is worth noting that the rate expressed by Eq. (87) goes to
zero when the equilibrium composition is reached.

The applicability of the equilibrium rather than the kinetic approach strictly
depends on the reaction and on the complexity of the model. In general, if a lumped
0-D model is used for the cell, the equilibrium of the reactions can be safely
assumed, while if a multidimensional model is adopted, then it is more appropriate
to apply a kinetic description of the reaction for the calculation of local rates.

The approaches described by Eqs. (86) and (87) are valid for any reaction;
however, their application requires to fit the kinetic expressions to experimental
data measured under reaction conditions that are relevant for the model.
Experimental data are available in the literature for the most common reactions and
cell materials; however if the model has to include particular reactions, conditions,
or materials, it is necessary to build specific experimental data sets in order to
characterize the reactions and describe the catalytic activity of materials with
respect to the investigated reactions.
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The most common reactions included in SOFC models are the heterogeneous
methane steam reforming (STR) and water–gas shift (WGS) reactions within
Ni/YSZ anodes:

CH4 þH2O � COþ 3H2 ð88Þ

COþH2O � CO2 þH2 ð89Þ

When these reactions are modeled using a global-mechanism approximation, the
kinetic approach is usually adopted for the steam reforming reaction (88), while the
water–gas shift (89) is frequently described under the equilibrium assumption. The
kinetic expressions used for the steam reforming reactions are commonly derived
from experimental studies either over commercial nickel-based catalysts (Xu and
Froment 1989; Hou and Hughes 2001) or directly on Ni/YSZ anodes (Drescher
et al. 1998; Achenbach and Riensche 1994; Ahmed and Foger 2000; Lee et al.
1990; Belyaev et al. 1995; Dicks et al. 2000). In the study of Nagel et al. (2008)
different steam reforming models given by power law; Langmuir–Hinshelwood and
equilibrium expressions have been compared showing the effect of the STR kinetics
on the temperature distribution in the cell.

In the work of Sanchez et al. (2008), the equilibrium and kinetics approaches
have been compared for both reactions (88) and (89). The work highlights that the
rates of reactions are controlled either by kinetics or equilibrium depending on the
local conditions of the cell, thus the choice between one approach and the other is
strictly connected to the peculiarities of the modeled system and cannot be assumed
a priori.

Besides the STR and WGS, other reactions frequently included in SOFC models
by using global kinetics expressions are as follows: dry reforming (CH4 þCO2

� 2COþ 2H2), methanation (CH4 þ 2H2O � CO2 þ 4H2), Boudouard (2CO �
CO2 þC), and methane cracking (CH4 � Cþ 2H2) (Wang et al. 2011b; Ni 2013).

It is worth noting that the equations introduced in this section for the calculation
of an overall reaction rate do not include neither the concentrations of intermediate
surface species on the anodic structure nor explicit information on the
microstructure of the electrode, even if they are describing heterogeneous kinetics.

Detailed surface reaction kinetics Alternatively to the global rate expressions, the
problem of modeling the heterogeneous chemistry can be addressed by using a
mass-action formulation of the kinetics of the elementary reaction steps.

The principle is analogous to that showed when modeling the charge transfer
with the mass-action formula instead of approximating the reaction with a global
mechanism; a multi-step mechanism is developed and a rate is calculated for each
step of the reaction.

The total molar rate of the i-th reaction step is given by the difference between
forward and backward rates of reaction:
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rreact;i ¼ kfi
YK
k¼1

Xk½ �m0ki�kri
YK
k¼1

½Xk�m
00
ki ð90Þ

where kfi and kri are the rate constants of the reaction, K is the total number of
species—gaseous and adsorbed on the surface—involved in the reaction step, ½Xk�
is the concentration of the k species and the exponents m0ki and m00ki are the stoi-
chiometric coefficients of reactants and products. The concentration of the k species
is expressed either as molar volumetric (mol/m3) for the gas-phase species or as
molar superficial (mol/m2) for the surface species.

If Eq. (90) is applied to all the reaction steps involving the k species, the
resulting net molar rate is given by:

_sk ¼
XKr

i¼1

m00ki � m0ki
� �

ki
YKg þKs

k¼1

½X�m0kik

" #
ð91Þ

In Eq. (91), Kr is the total number of reaction steps, Kg is the number of
gas-phase species in the i-th step, and Ks is that of the surface species. The surface
molar concentration can be expressed as a function of the surface coverage of the
species:

Xk½ � ¼ hkC
rk

ð92Þ

where hk is the surface coverage of the k species, rk is the coordination number
(i.e., the number of source sites that are occupied by species k), and C is the total
surface site density.

The rate constants are expressed in Arrhenius form and can be also dependent on
the surface coverage of adsorbed species:

ki ¼ AiT
bi exp � Eai

RT

� �YKs

k¼1

hlkik exp �2ki hk
RT

� �
ð93Þ

where lki and 2ki are parameters for modeling the coverage dependence. When the
elementary step is an adsorption reaction of a gas-phase species on the catalyst
surface, the rate constant is given by:

ki ¼ c0i
Cð Þm

ffiffiffiffiffiffiffiffiffiffiffi
RT

2pMg

s
ð94Þ

where 1i is the sticking coefficient of the reaction (i.e., a measure of the probability
that the adsorption reaction takes place when the molecule collide with the surface,
its value lies between 0 and 1), m is the sum of the stoichiometric coefficients of the
reactants, and Mg is the molecular weight of the gas-phase species adsorbed.
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When Eq. (91) is solved for all the k species in combination with the fluidic,
thermal, and electrochemical equations, the surface coverages are included in the
dependent variables and must be determined as a part of the solutions.

The surface coverage of a species depends on the position, because the local
temperature and gas species concentrations vary within the electrode. However, the
mean-field approximation ensures that the surface species do not interact laterally;
thus, the surface coverage in a point of the surface is not influenced by the cov-
erages in the neighboring positions of the computational domains and the
time-dependent variation of hk can be written as follows:

@hk
@t

¼ rk _sk
C

ð95Þ

Equation (95) has to be imposed for all the surface coverages, and the solution
of the resulting system of differential equations provides the values of hk . However,
the times scales of the surface reactions are several order magnitudes lower than
those of the variation of temperature and gas-species concentrations. Therefore, the
steady state approximation can be applied and the system of Eq. (95) reduces to a
set of algebraic equations in which the net molar rates of the surface species are
imposed to be equal to zero.

The approach based on elementary reaction mechanisms has a broader validity
with respect global mechanism approaches since it can include all the possible
chemical reactions occurring within the porous anode. Moreover, the mass-action
formulation has a general validity can be applied also to homogeneous chemistry.

A multi-step reaction mechanism for the internal reforming of CH4–CO–CO2–

H2–H2O–O2 mixtures has been developed and validated over Ni/YSZ cermets by
Hecht et al. (2005). The mechanism, which consists of 42-reaction steps that
involve 6 gas-phase species and 12 surface species, has been recently applied in the
modeling and validation of the heterogeneous chemistry in tubular SOFCs fed by
biogas (Santarelli et al. 2013), and its comparison with a global kinetic approach is
reported by Hoffman et al. (2009). The multi-step mechanism predicts slower
methane conversion with respect to the global kinetic approximation (Hoffman
et al. 2009) and shows that thermodynamic equilibrium conditions are not fully
achieved inside the anode of a tubular fuel cell, consistently with the experimental
observations (Santarelli et al. 2013).

6 SOFC Modeling: Examples of a Multidimensional
Approach

The modeling approach presented in this chapter provides a mathematical
description of the physical phenomena occurring in SOFCs from a macroscopic
point of view.
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In the literature, macroscopic SOFC models have been developed from 0-D to
3-D depending on the model objectives. The following sections provide some
representative examples of the multidimensional approaches followed in the
physically based SOFC modeling.

0-D models Zero-dimensional models are box models that allow the calculation of
scalar variables, returning results independent from a spatial description of the
physics. These models are typically used to simulate the polarization of an SOFC
and analyze the cell performance with the variation of operating conditions (e.g.,
mean cell temperature and pressure) or geometrical parameters (e.g., electrode
thickness).

An example is the zero-dimensional SOFC electrochemical model presented by
Chan et al. (2001), which describes the polarization characteristic of a cell operating
with H2/H2O mixtures by calculating the cell voltage using Eq. (68). The model
takes into account the diffusion in porous electrodes by integrating diffusive Fick’s
flows along the thickness of the electrodes and describes the activation overpo-
tential by the Butler–Volmer Eq. (70). Sensitivity analyses are performed with the
model to investigate the effect of electrodes’ thickness on polarization curve and
cell overpotentials (Fig. 4).

Fig. 4 Cell voltage, polarization losses, and power density for an anode-supported SOFC (anode
thickness 750 µm) operating at 800 °C. [Reprinted with permission from Chan et al. (2001)]
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1-D models One-dimensional models give a spatial-dependent description of the
phenomena. Typically, 1-D models are used to describe the evolution of
thermo-electrochemical variables within the cell by considering one dominant
geometrical dimension—usually the gas flow direction—and simplifying the
equations in the other directions.

A one-dimensional model for the simulation of biogas reforming in a tubular,
anode-supported SOFC with Ni/YSZ anode has been presented by Santarelli et al.
(2013). The model divides the SOFC in series of elements along the axial direction
of the cell and each of them is solved unidimensionally along the radial coordinate
by assuming that diffusive transport is dominant over convection. The reforming
process is modeled following an elementary kinetics approach by including in the
model the multi-step reaction mechanisms developed by Hecht et al. (2005). The
anode volume is approximated by a surface located at the channel/electrolyte
interface, and the model resolves the species conservation Eq. (3) with chemical
source terms calculated from the kinetic model and electrochemical sources eval-
uated by imposing the current density on the anode boundary and evaluating the
species molar fluxes by Faraday’s law (7). The model evaluates the evolution of
mole fractions of chemical species along the fuel channel for a given temperature
and current (Fig. 5). Model results are close to gas compositions obtained from
experimental measurements and indicate that thermodynamic equilibrium is not
completely achieved within the anode channel, as at the outlet composition is
different from that predicted by chemical equilibrium.

2-D models Two-dimensional models are generally used for the simulation of cells
and SRUs. Cell models of tubular SOFCs can be implemented by taking advantage
of the axis-symmetric geometry, while planar SOFC models require the selection of
a 2-D section representative of the entire cell/SRU, which is typically a cross
section parallel to gas flow.

Fig. 5 Simulated
mole-fraction profiles of
chemical species along the
fuel channel with CO2/biogas
ratio of 1, at 800 °C and 50 %
of fuel utilization. [Reprinted
with permission from
Santarelli et al. (2013)]
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An example of 2-D model that encompasses both the electrochemical and
chemical phenomena occurring in an SOFC is that developed by Zhu et al. (2005).
The model describes a planar, anode-supported SOFC operating with
carbon/hydrogen mixtures with co-flowing channels. A steady plug-flow model is
applied to describe the channel flows, and the DGM model (29) is used to describe
the diffusion in porous electrodes. Electrochemistry is implemented by considering
Nernst (64) and Butler–Volmer Eqs. (70) for the hydrogen oxidation reaction,
while the heterogeneous chemistry is described by implementing the elementary
kinetics of the reaction mechanism assumed for hydrogen/carbon mixtures over
Ni/YSZ. The model predicts the current–voltage performance of the cell and the
species distribution in the channels and within the anode structure (Fig. 6).

3-D models Three-dimensional models are generally used for the simulation at
full-stack or SRU level to accurately describe fluidic and thermal fields on complex
geometries.

An example is the 3-D model developed by Qu et al. (2011). The model
describes an anode-supported planar SOFC with corrugated bipolar plates acting
both as gas channels and current collectors (Fig. 7).

Fig. 6 Simulated distribution of species and current density for a fuel mixture of 66 % H2, 22 %
CO, and 12 % CH4 entering the anode channel. Cell is operating at constant temperature (800 °C)
and atmospheric pressure. The upper panel shows mole fractions and current density as functions
of distance along the channel length. Lower panels show mole fractions and surface coverages
through the thickness of the porous anode at different positions along the channel. [Reprinted with
permission from Zhu et al. (2005)]
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The model applies the Navier–Stokes equations in the fluidic domains and
describes the diffusion by using the SMM model (15). Heat transfer by conduction
and convection is considered in the model, and the electrochemistry is described by
applying the polarization Eq. (68) in which Nernst (64) and Butler–Volmer equa-
tions (70) are used to describe reversible voltage and activation overpotentials. The
conservation of mass, momentum, energy, and species are solved together with the
electrochemical equations, and the distributions of temperature, flow velocity,
pressure, and species concentrations through the cell structure and gas channels are
obtained.

The model is applied to study the current distribution in the SRU and results
indicate that quite uniform distributions of current density over the active cell area
can be achieved with the investigated geometry. The results also indicate that the
geometry of cathode gas channel has a non-negligible effect on the oxygen dis-
tribution and thus on the overall cell performance (Fig. 8).

Fig. 7 Schematic drawing of the fuel flow and configuration of the modeled SOFC. [Reprinted
with permission from Qu et al. (2011)]
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Fig. 8 Mole fraction of H2 in the anode. Upper panel top view of anode surface; lower panel SRU
cross section (half-cell length). Simulations performed at 973 K, with 5000 A/m2 average current
density and 95 % H2–5 % H2O inlet fuel and air on the cathode side. [Reprinted with permission
from Qu et al. (2011)]
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7 Summary and Conclusions

A SOFC is a complex system consisting of different components, each one com-
posed of peculiar materials in which interconnected physical phenomena occur
simultaneously involving gas and solid phases. Modeling an SOFC can be per-
formed following different approaches, depending on the particular component on
which the model is focused. This chapter introduced a physically based modeling
approach, which entails the macroscopic description of the phenomena.

The equations of mass, energy, momentum, charge transport, and conservation
were introduced, and their application in the different domains (i.e., fluid, porous,
and solid) was assessed. Common approaches for modeling electrochemistry and
heterogeneous chemical reactions were discussed.

Results from the literature were also presented to show multidimensional
applications of the physically based modeling approach described. The mathe-
matical models introduced and the examples given show that a universal formu-
lation suitable for solving all SOFC modeling problems does not exist. Indeed, the
way in which the description of the interconnected phenomena is established in a
model framework strongly depends on the level of approximation desired and on
the final objective of the model.
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