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Abstract. Firewalls are a common solution to protect information sys-
tems from intrusions. In this paper, we apply an automata-based method-
ology to resolve several NP-Hard problems which have been shown in the
literature to be fundamental for the study of firewall security policies.
We also compute space and time complexities of our resolution methods.

1 Introduction

An essential component of a firewall is its security policy that consists of a table
of filtering rules specifying which packets are accepted and which ones are dis-
carded from the network [1]. Designing and analyzing a firewall are not easy
tasks when we have thousands of filtering rules as is usually the case. To per-
form such tasks properly, one requires to solve thousands of instances of known
fundamental NP-Hard problems identified in [2]. Recognizing the importance of
these problems, their solutions can significantly enhance the ability to design and
analyze firewalls. Henceforth, the terms policy and rule denote “firewall security
policy” and “filtering rule”, respectively.

In this work, we apply the automata-based methodology of [3] to resolve
the 13 NP-Hard problems of [2]. The basic principle of the approach is to
describe policies as automata and then to develop analysis methods applicable
to automata. We also evaluate time and space complexities of the 13 resolutions.

The paper is organized as follows. Section 2 presents related work on ana-
lyzing policies. Section 3 contains preliminaries on policies. Section 4 introduces
the methodology of [3]. In Sects. 5 and 6, we resolve the 13 NP-Hard problems
of [2] by using the methodology of [3]. Section 7 evaluates the space and time
complexities of the 13 resolutions. We conclude in Sect. 8.

2 Related Work

Previous work on firewalls, such as [4–6], provide practical analysis algorithms,
while [7–11] provide fundamental analysis algorithms with estimations of their
time complexities. [2] proves that many firewall analysis problems are NP-Hard.
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[12,13] present techniques to detect anomalies in a policy. An anomaly is
defined in [14] as the existence of several rules that match the same packet.
A policy is described by a Policy tree in [12] and a Decision tree in [13].

[15,16] provide solutions to analyze and handle stateful firewall anomalies.
[11] proposes a method to detect discrepancies between implementations of a

policy. The policy is modeled by a Firewall Decision Diagram (FDD) [17] which
maps each packet to the decision taken by the firewall for such a packet.

[18] introduces Fireman, which is a toolkit that permits to detect errors such
as violation of a policy and inconsistency in a policy. Fireman is implemented
using Binary Decision Diagrams (BDD) [19].

[20] generates test sequences to validate the conformance of a policy, where
the system’s behavior is specified by an extended finite state machine [21] and
the policy is specified with the model OrBAC [22].

[23] verifies equivalence between two policies by extracting and comparing
equivalent policies whose filtering rules are disjoint.

[24] presents a visualization tool to analyze firewall configurations, where the
policy is modeled in a specific hierarchical way.

In each of the above works, a specific formalism is used to solve a specific
problem. A policy is modeled: by a policy tree to study anomalies, by a FDD
to study discrepancies, by a BDD to study policy violation and inconsistency,
etc. This observation motivated the work of [3,25], where automata are used to
study several aspects of policies. The main contribution of the present article is
the resolution of the 13 NP-Hard problems of [2] by using the methodology of
[3]. Space and time complexities of the 13 resolutions are provided.

3 Preliminaries

The behavior of a firewall is controlled by its policy which consists of a list of
rules defining the actions to take each time a packet tries to cross the firewall.
The packets are specified by an n-tuple of headers that are taken into account
by the policy. A rule is in the form: if some conditions are satisfied, then a given
action must be taken to authorize or refuse the access. Therefore, a rule can be
specified as (Condition, Action), where:

– Condition is a set of filtering fields F 0, · · · , Fm−1 corresponding to respective
headers H0, · · · ,Hm−1 of a packet arriving at the firewall. Each F i defines
the set of values that are authorized to Hi. Condition is satisfied for a packet
P , if for every i = 0 · · · m − 1 the value of Hi of P belongs to F i. We say that
P matches a rule R (or R matches P ) when the condition of R is satisfied for
P . Otherwise, P does not match R (or R does not match P ).

– Action is Accept or Deny, to authorize or forbid a packet to go through the
firewall, respectively.

The rules are denoted R1,R2, · · · , and their actions are denoted a1, a2, · · ·
respectively. The rules are in decreasing priority order, that is, when a packet P
arrives at the firewall, matching of P and R1 is verified: if P matches R1, then
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action a1 is executed; if P does not match R1, then matching of P and R2 is
verified. And so on, the process is repeated until a rule Ri matching P is found
or all the rules are examined.

An accept-rule (resp. deny-rule) is a rule whose action is Accept (resp. Deny).
An all-rule is a rule whose condition is TRUE, i.e. it matches all packets. We
also combine the definitions to obtain all-accept-rule and all-deny-rule. A policy
is said complete if every packet matches at least one of its rules.

Table 1 contains an example of policy. The condition of each rule Ri is defined
by four fields: IPsrc, IPdst, Port and Protocol, and its action is in the last column.
The term Any in the column of a field F j means any value in the domain of
F j . The term a.b.c.0/x denotes an interval of IP addresses obtained from the
32-bit address a.b.c.0 by keeping constant the first x bits and varying the other
bits. A packet P arriving at the firewall matches a rule Ri if: P comes from
an address belonging to IPsrc, P is destined to an address belonging to IPdst,
P is transmitted through a port belonging to Port, and P is transmitted by a
protocol belonging to Protocol.

Table 1. Example of rules

Rule IPsrc IPdst Port Protocol Action

R1 Any 212.217.65.201 80 TCP Accept

R2 192.168.10.0/24 81.10.10.0/24 Any Any Deny

R3 194.204.201.0/28 212.217.65.202 21 Any Accept

R4 192.168.10.0/24 Any Any Any Accept

4 Synthesis Procedure

The basis of the methodology of [3] is a procedure that synthesizes an automa-
ton from a policy. The input of the procedure is a policy F specified by n rules
R1, · · · ,Rn ordered in decreasing priority. The result is an automaton ΓF imple-
menting F .

The synthesis procedure is presented in detail in [3]. In this section, we illus-
trate it by the example of policy F of Table 1, for which the synthesis procedure
generates the automaton ΓF of Fig. 1. The states are organized by levels, where
the states of level j are reached after j transitions from the initial state (rep-
resented with a small incoming arrow). A transition is said of level j if it links
a state of level j to a state of level j + 1. Transitions of level j are labeled by
sets of values of the field F j . There are two types of final states (represented in
bold):

– A match state is associated to the action Accept or Deny (noted A or D in the
figure). There may be one or several match states in a synthesized automaton.
The automaton of Fig. 1 has 5 match states.
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– A no-match state is indicated by a star ∗. There may be at most one no-match
state in a synthesized automaton. The automaton of Fig. 1 has 1 no-match
state.

In Fig. 1 and subsequent figures, some transitions are labeled in the form Any
or not(X), where X is one or more sets of values. A label Any in a transition of
level j denotes the whole domain of values of the field F j . A label not(X) in a
transition of level j denotes the complementary of X in the domain of F j .

The fundamental characteristics of ΓF is that it implements F as stated by
the following theorem taken from [3]:

Theorem 1. Consider a packet P arriving at the firewall, and let
H0, · · · ,Hm−1 be its headers. From the initial state of ΓF , we execute the m con-
secutive transitions labeled by the sets σ0, · · · , σm−1 that contain H0, · · · ,Hm−1,
respectively. Let r be the (final) reached state of ΓF :

– r is a match state iff1 P matches at least one rule of F .
– If r is a match state, then the action (Accept or Deny) associated to r is the

action of the most priority rule matching P .

Let us illustrate the fact that ΓF of Fig. 1 implements F of Table 1. Consider
a packet P which arrives at the firewall and assume that its four headers H0

to H3 are (192.168.10.12), (212.217.65.201), (25), (TCP), respectively. We start
in the initial state 〈0〉. The transition labeled 192.168.10.0/24 (comprising H0)
is executed and leads to state 〈1〉. Then, the transition labeled 212.217.65.201
(comprising H1) is executed and leads to state 〈4〉. Then, the transition labeled
not(80) (comprising H2) is executed and leads to state 〈10〉. Finally, the transi-
tion labeled Any (comprising H3) is executed and leads to the second match
state. Since the reached match state is associated to Accept, the packet is
accepted.

Consider now a packet whose four headers H0 to H3 are (194.204.201.20),
(212.217.65.201), (25), (TCP), respectively. We start in the initial state 〈0〉. The
transition labeled 194.204.201.0/28 (comprising H0) is executed and leads to
state 〈2〉. Then, the transition labeled 212.217.65.201 (comprising H1) is exe-
cuted and leads to state 〈8〉. Then, the transition labeled not(80) (comprising
H2) is executed and leads to the no-match state 〈∗〉. Therefore, no rule of the
policy matches such a packet.

5 Resolution of FC, FA and SP

Let us demonstrate the applicability of our synthesis procedure for the resolution
of 5 of the 13 problems of [2]: FC, FA-d, FA-a, SP-d and SP-a.

1 iff means: if and only if.
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Fig. 1. Automaton synthesized from the policy of Table 1.

5.1 Resolution of Firewall Completeness (FC) Problem

Firewall Completeness (FC) problem is to design an algorithm that takes as
input a policy F and determines whether every packet arriving at the firewall
matches at least one of the filtering rules of F . From Theorem 1, we obtain:

Proposition 1 (FC). A policy F is complete iff its automaton ΓF has no
no-match state.

Therefore, FC problem of F is solved by constructing the automaton ΓF and
verifying if it contains the no-match state. For example, the policy F of Table 1
is incomplete, because ΓF of Fig. 1 contains the no-match state.

5.2 Resolution of Firewall Adequacy Problems: FA-d, FA-a

There are two Firewall Adequacy (FA) problems:

FA-d: to design an algorithm that takes as input a policy F and determines
whether there exists at least one packet which is denied by F .

FA-a: to design an algorithm that takes as input a policy F and determines
whether there exists at least one packet which is accepted by F .

From Theorem 1, we obtain:

Proposition 2 (FA-d). A policy F denies one or more packets iff its automa-
ton ΓF has one or more match states associated to the action Deny.

Proposition 3 (FA-a). A policy F accepts one or more packets iff its automa-
ton ΓF has one or more match states associated to the action Accept.
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Therefore, FA-d (resp. FA-a) problem of F is solved by constructing the
automaton ΓF and verifying if it contains match state(s) associated to the action
Deny (resp. Accept). For example, the policy F of Table 1 denies and accepts
packets, because ΓF of Fig. 1 contains 1 match state with action Deny and 4
match states with action Accept.

5.3 Resolution of Slice Probing Problems: SP-d, SP-a

We first define the following two types of policies:
Discard slice: it is a policy consisting of zero or more accept rules followed

by a last all-deny-rule.
Accept slice: it is a policy consisting of zero or more deny rules followed by

a last all-accept-rule.
There are two Slice Probing (SP) problems:
SP-d: to design an algorithm that takes as input a discard slice F and

determines whether there exists at least one packet which is denied by F .
SP-a: to design an algorithm that takes as input an accept slice F and

determines whether there exists at least one packet which is accepted by F .
We have two ways to solve SP: by using FC or FA.

Solving SP-d and SP-a by using FC: Consider a discard slice F consisting
of n rules R1, · · · ,Rn, i.e. R1, · · · ,Rn−1 are accept rules and Rn is an all-deny-
rule. Therefore, F denies a packet P iff P matches none of the accept-rules of
F , and hence matches only the last all-deny-rule of F . Clearly, this situation
occurs iff the policy F\Rn is incomplete, where F\Rn denotes F from which Rn

is removed. In the same way, we obtain that an accept slice F accepts at least
one packet iff the policy F\Rn is incomplete. From Proposition 1:

Proposition 4 (SP-d). A discard slice F consisting of rules R1, · · · ,Rn denies
one or more packets iff the automaton ΓF\Rn

has the no-match state.

Proposition 5 (SP-a). An accept slice F consisting of rules R1, · · · ,Rn

accepts one or more packets iff the automaton ΓF\Rn
has the no-match state.

Therefore, SP-d and SP-a problems of F are solved by constructing the
automaton ΓF\Rn

and verifying if it contains the no-match state.

Solving SP-d (resp. SP-a) by using FA-d (resp. FA-a): SP-d is a par-
ticular case of FA-d which considers only discard slices, instead of any policy.
Similarly, SP-a is a particular case of FA-a which considers only accept slices.
Therefore, SP-d and SP-a can be solved by solving FA-d and FA-a, respec-
tively. Hence, from Propositions 2 and 3, we obtain:

Proposition 6 (SP-d). A discard slice F denies one or more packets iff the
automaton ΓF has one or more match states associated to the action Deny.

Proposition 7 (SP-a). An accept slice F accepts one or more packets iff the
automaton ΓF has one or more match states associated to the action Accept.
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Example of Accept Slice: Due to the symmetry between SP-d and SP-a,
we will illustrate only the resolution of SP-a by the example of the accept slice
of Table 2. The symbol # means “same as the field of the preceding rule”.

Table 2. Example of accept slice.

Rule IPsrc IPdst Port Protocol Action

R1 192.168.10.0/24 81.10.10.0/24 Any Any Deny

R2 194.204.201.0/28 212.217.65.202 not(21) Any

R3 # 212.217.65.201 not(80) Any

R4 # # 80 UDP

R5 # not(212.217.65.201,
212.217.65.202)

Any Any

R6 not(192.168.10.0/24,
194.204.201.0/28)

212.217.65.201 not(80) Any

R7 # # 80 UDP

R8 # not(212.217.65.201) Any Any

R9 Any Any Any Any Accept

Illustration of SP-a Resolution by Using FC: Figure 2 represents the
automaton ΓF\R9 synthesized from the accept slice of Table 2 without R9. From
Proposition 5 and the fact that ΓF\R9 contains the no-match state, we deduce
that this accept slice accepts packets.
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Fig. 2. Automaton ΓF\R9 of the accept slice of Table 2 without R9.

Illustration of SP-a resolution by using FA-a: Fig. 3 represents the automa-
ton ΓF synthesized from the accept slice F of Table 2. From Proposition 7 and
the fact that ΓF has 4 match states associated to the action Accept, we deduce
that this accept slice accepts packets.
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Fig. 3. Automaton ΓF obtained from the accept slice F of Table 2.

6 Resolution of FI, FV, FE and FR

Let us demonstrate the applicability of our synthesis procedure for the resolution
of 8 problems of [2]: FI-d, FI-a, FV-d, FV-a, FE-d, FE-a, FR-d and FR-a.

6.1 Resolution of Firewall Implication Problems: FI-d, FI-a

There are two Firewall Implication (FI) problems:
FI-d: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F2 denies all the packets denied by F1.
FI-a: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F2 accepts all the packets accepted by F1.
We solve FI-d and FI-a by the 3-step procedure below.

Step 1: We apply the synthesis procedure of Sect. 4 to generate the automata
ΓF1 and ΓF2 from F1 and F2.

Step 2: ΓF1 and ΓF1 are combined into a single automaton denoted ΩF1,F2 , by
applying to them the product operator (this operator is also used in the synthesis
procedure of Sect. 4, as shown in [3]). Each state of ΩF1,F2 is defined in the form
〈φ1, φ2〉, where each φi is a state of ΓFi

. Intuitively, for every packet P , a state
〈φ1, φ2〉 of ΩF1,F2 is reached, iff the states φ1 and φ2 are reached in ΓF1 and
ΓF1 , respectively. A state 〈φ1, φ2〉 of ΩF1,F2 is said final if φ1 and φ2 are final
states in Γ1 and Γ2, respectively. Hence, a final state of ΩF1,F2 is in one of the
following forms, where qi is a match state of Fi and Ei is the no-match state of
Fi: 〈q1, q2〉 associated to two actions a1 and a2, 〈q1, E2〉 associated to a single
action a1, 〈E1, q2〉 associated to a single action a2, and 〈E1, E2〉 associated to
no action.
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Step 3: From Theorem 1, when a final state r of ΩF1,F2 is reached for a packet
P , the actions a1 and a2 associated to r, if any, are dictated by F1 and F2,
respectively. We obtain:

Proposition 8 (FI-d). F2 denies all the packets denied by F1 iff, for every
final state r of ΩF1,F2 associated to actions (a1, a2): a1=Deny implies a2=Deny.

Proposition 9 (FI-a). F2 accepts all the packets accepted by F1 iff, for every
final state r of ΩF1,F2 associated to (a1, a2): a1=Accept implies a2=Accept.

Therefore, FI-d (resp. FI-a) problem of (F1,F2) is solved by constructing
the automaton ΩF1,F2 and verifying if all its final states satisfy the condition of
Proposition 8 (resp. Proposition 9).

Due to the symmetry between FI-d and FI-a, we illustrate only the resolu-
tion of FI-d. We consider the previous policies F1 of Table 1 and F2 of Table 2.
The automata ΓF1 and ΓF2 have been previously given in Figs. 1 and 3, respec-
tively. The product automaton ΩF1,F2 of ΓF1 and ΓF2 , is represented in Fig. 4.
The notation X-Y associated to the final states means that the actions dictated
by F1 and F2 are X and Y, respectively. * means the absence of action. For
example, *-D means that a2 is Deny and there is no a1. Since we have no state
with D-A or D-*, we deduce from Proposition 8 that the accept slice of Table 2
denies every packet which is denied by the policy of Table 1.
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Fig. 4. Product ΩF1,F2 of ΓF1 and ΓF2 of Figs. 1 and 3.

6.2 Resolution of Firewall Verification Problems: FV-d, FV-a

We first define the following two particular properties:
Discard property: it has exactly the same form and semantics as a filtering

rule with the action Deny.
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Accept property: it has exactly the same form and semantics as a filtering
rule with the action Accept.

There are two Firewall Verification problems (FV):
FV-d: to design an algorithm that takes as input a policy F and a discard

property P, and determines whether F denies all the packets denied by P.
FV-a: to design an algorithm that takes as input a policy F and an accept

property P, and determines whether F accepts all the packets accepted by P.
FV-d and FV-a are particular cases of FI-d and FI-a, respectively, because

a discard property and an accept property are particular policies consisting of a
single rule. We can therefore solve FV-d and FV-a by using exactly the same
3-step method used for solving FI-d and FI-a. We obtain:

Proposition 10. F denies all the packets denied by a discard property P iff, for
every final state r of ΩP,F associated to (a1, a2): a1 = Deny implies a2 = Deny

Proposition 11. F accepts all the packets accepted by an accept property P
iff, for every final state r of ΩP,F associated to (a1, a2): a1 = Accept implies
a2 = Accept

Therefore, FV-d (resp. FV-a) problem of (P,F) is solved by constructing
the automaton ΩP,F and verifying if all its final states satisfy the condition of
Proposition 10 (resp. Proposition 11).

Due to the symmetry between FV-d and FV-a, we illustrate only the res-
olution of FV-a. We consider the policy F of Table 1 (Sect. 3) and the accept
property P of Table 3. In Step 1, we construct automata ΓF and ΓP . ΓF has
been seen in Fig. 1 and ΓP is represented in Fig. 5. In Step 2, we construct the
product ΩP,F of ΓP and ΓF , which is represented in Fig. 6. Since ΩP,F has no
state with A-D or A-*, we deduce from Proposition 11 that F of Table 1 accepts
every packet which is accepted by P of Table 3.

Table 3. Example of accept property

Rule IPsrc IPdst Port Protocol Action

R1 192.168.10.0/24 212.217.65.201 Any Any Accept

1 2 3 4
192.168.10.0/24 212.217.65.201

not(212.217.65.202)

Any

not(192.168.10.0/24)

Any

*

A

Fig. 5. Automaton ΓP obtained from the accept property P of Table 3.
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Fig. 6. Product ΩP,F of ΓP and ΓF of Figs. 5 and 3.

6.3 Resolution of Firewall Equivalence Problems: FE-d, FE-a

There are two Firewall Equivalence (FE) problems:
FE-d: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F1 and F2 deny the same set of packets.
FE-a: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F1 and F2 accept the same set of packets.
FE-d and FE-a can be obviously solved by solving FI-d and FI-a. Indeed,

F1 and F2 deny the same set of packets is equivalent to: F1 denies at least all
the packets denied by F2 AND F2 denies at least all the packets denied by F1.
Similarly, F1 and F2 accept the same set of packets is equivalent to: F1 accepts
at least all the packets accepted by F2 AND F2 accepts at least all the packets
accepted by F1. We obtain:

Proposition 12. F1 and F2 deny the same set of packets iff, for every final
state r of ΩF1,F2 associated to (a1, a2): a1 = Deny iff a2 = Deny.

Proposition 13. F1 and F2 accept the same set of packets iff, for every final
state r of ΩF1,F2 associated to (a1, a2): a1 = Accept iff a2 = Accept.

Therefore, FE-d (resp. FE-a) problem of (F1,F2) is solved by constructing
the automaton ΩF1,F2 and verifying if all its final states satisfy the condition of
Proposition 12 (resp. Proposition 13).

Due to the symmetry between FE-d and FE-a, we illustrate only the resolu-
tion of FE-a. We use the same example used to illustrate the resolution of FI-d.
We consider therefore the previous policies F1 of Table 1 and F2 of Table 2. The
automata ΓF1 , ΓF2 and ΩF1,F2 have been represented in Figs. 1, 3 and 4, respec-
tively. Since every final state in Fig. 4 has either two actions Accept or no action
Accept, we deduce from Proposition 13 that the accept slice of Table 2 and the
policy of Table 1 accept the same set of packets.
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6.4 Resolution of Firewall Redundancy Problems: FR-d, FR-a

Let F\R denote a policy F from which a filtering rule R is removed. There are
two Firewall Redundancy (FR) problems:

FR-d: to design an algorithm that takes as input a policy F and one of
its discard rules R, and determines whether F and F \R deny the same set of
packets.

FR-a: to design an algorithm that takes as input a policy F and one of its
accept rules R, and determines whether F and F \R accept the same set of
packets.

FR-d and FR-a are obviously particular cases of FE-d and FE-a, respec-
tively. We can therefore solve FR-d and FR-a as we have solved FE-d and
FE-a. We obtain: (R is one of the rules of a policy F)

Proposition 14. F and F \R deny the same set of packets iff, for every final
state r of ΩF,F\R associated to actions (a1, a2): a1 = Deny iff a2 = Deny.

Proposition 15. F and F\R accept the same set of packets iff, for every final
state r of ΩF,F\R associated to actions (a1, a2): a1 = Accept iff a2 = Accept.

Therefore, FR-d (resp. FR-a) problem of (F ,R) is solved by constructing
the automaton ΩF,F\R and verifying if all its final states satisfy the condition of
Proposition 14 (resp. Proposition 15).

Due to the symmetry between FR-d and FR-a, we illustrate only the reso-
lution of FR-d. We consider the policy F of Table 4 which is obtained by adding
the rule R5 to the policy of Table 1. Let us verify that F and F \R5 deny the
same packets. The automaton ΓF\R5 has been seen in Fig. 1. The automaton ΓF
is identical to ΓF\R5 , because R5 is “shadowed” by R4 and hence never takes
effect. The product ΩF,F\R is represented in Fig. 7. Since every final state in
Fig. 7 has either two actions Deny or no action Deny, we deduce from Proposi-
tion 14 that F of Table 4 and F\R5 deny the same set of packets.

Table 4. Policy to illustrate FR-d resolution

Rule IPsrc IPdst Port Protocol Action

R1 Any 212.217.65.201 80 TCP Accept

R2 192.168.10.0/24 81.10.10.0/24 Any Any Deny

R3 194.204.201.0/28 212.217.65.202 21 Any Accept

R4 192.168.10.0/24 Any Any Any Accept

R5 192.168.10.0/24 Any 80 UDP Deny
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Fig. 7. Product ΩF,F\R5 obtained for the policy of Table 4.

7 Evaluation of Space and Time Complexities

We call great field a field whose domain contains more than n values, and small
field a field whose domain contains at most n values. Consider for example the
four fields IPsrc, IPdst, Port and Protocol and assume n = 1000. IPsrc, IPdst
and Port are great fields, because their domains contain 232, 232 and 216 values,
respectively, hence more than 1000 values. Protocol is a small field, because its
domain contains much less than 1000 values (the number of considered protocols
is negligible to 1000). In addition to n and m, we define:

di = number of bits necessary to code the values of field F i, for i = 0, · · · ,m−1.
Hence, 2di is the number of possible values of F i.

D = sum of the number of bits to code all the fields, i.e. D = d0 + · · · + dm−1

μ = number of great fields.
δ = sum of the number of bits to code the small fields.

In our computation of complexities, we assume that di ≥ 1 (i.e. several
possible values for each field), n > D (hence n > m) and 2n > nm which is
realistic when we have hundreds or thousands of filtering rules.

For example, for the m = 4 fields IPsrc, IPdst, Port and Protocol, we have
used d0 = d1 = 32 (each IPsrc and IPdst is coded in 32 bits), d2 = 16 (Port
is coded in 16 bits), d3 = 1 (Protocol is coded in 1 bit since we consider only
TCP and UDP), and D = 32 + 32 + 16 + 1 = 81. For 81 < n < 216, the above
assumptions (all di ≥ 1, n > 81 and 2n > n4) are obviously satisfied. Since
IPsrc, IPdst and Port are great fields and Protocol is a small field, we obtain
μ = 3 (number of great fields) and δ = d3 = 1 (1 bit is used to code the unique
small field protocol).

We have the following result:

Theorem 2. The space and time complexities for solving each of the 13 prob-
lems are in O(nμ+1 × 2δ), which is bounded by both O(nm+1) and O(n × 2D).
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For space limit, we do not present the proof of Theorem2.
By using results in [26], the authors of [2] prove that the 13 problems studied

in this article are NP-Hard. In our context, their result is that the time com-
plexity is in O(n × 2D). On the other hand, the authors of [7–11] solve some
of the 13 problems with algorithms whose time complexity is in O(nm+1). Our
contribution here is that the two expressions O(nm+1) and O(n× 2D) are upper
bounds of our more precise expression O(nμ+1 × 2δ) which shows explicitly the
influence of the size of fields (through μ and δ) on the complexity.

8 Conclusion

We have applied the automata-based methodology of [3] to resolve the 13 NP-
hard problems of firewalls of [2]. We have also evaluated space and time com-
plexities of the 13 resolutions.

As near future work, we plan to apply our synthesis procedure for the design
of efficient security policies that adapt dynamically to the filtered traffic. We
also plan to adapt our approach in other areas, such as policies in intelligent
health-care (e-health).
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Y., Miège, A., Saurel, C., Trouessin, G.: Organization based access control. In:
IEEE 4th International Workshop on Policies for Distributed Systems and Net-
works (POLICY), Lake Come, Italy, June 2003

23. Lu, L., Safavi-Naini, R., Horton, J., Susilo, W.: Comparing and debugging firewall
rule tables. IET Inf. Secur. 1(4), 143–151 (2007)
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