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Abstract. A nonrepudiation protocol from party S to party R performs
two tasks. First, the protocol enables party S to send to party R some
text x along with sufficient evidence (that can convince a judge) that x
was indeed sent by S. Second, the protocol enables party R to receive text
x from S and to send to S sufficient evidence (that can convince a judge)
that x was indeed received by R. Almost every published nonrepudiation
protocol from party S to party R involves three parties: the two original
parties S and R, and a third party that is often called a trusted party. A
well-known nonrepudiation protocol that does not involve a third party
is based on an assumption that party S knows an upper bound on the
computing power of party R. This assumption does not seem reasonable
especially since by violating this assumption, party R can manipulate the
nonrepudiation protocol so that R obtains all its needed evidence without
supplying party S with all its needed evidence. In this paper, we show
that nonrepudiation protocols that do not involve a third party can be
designed under reasonable assumptions. Moreover, we identify necessary
and sufficient (reasonable) assumptions under which these protocols can
be designed. Finally, we present the first ever �-nonrepudiation protocol
that involves � parties (none of which is trusted), where � ≥ 2.

1 Introduction

A nonrepudiation protocol from party S to party R performs two tasks. First,
the protocol enables party S to send to party R some text along with sufficient
evidence (that can convince a judge) that the text was indeed sent by S to R.
Second, the protocol enables party R to receive the sent text from S and to send
to S sufficient evidence (that can convince a judge) that the text was indeed
received by R from S.

Each nonrepudiation protocol is also required to fulfill the following oppor-
tunism requirement. During any execution of the nonrepudiation protocol from
S to R, once a party (S or R, respectively) recognizes that it has already col-
lected all its needed evidence, then this party concludes that it gains nothing
by continuing to execute the protocol and so it terminates. The other party (R
or S, respectively) continues to execute the protocol with the hope that it will
eventually collect all its needed evidence.
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The opportunism requirement which is satisfied by each party in a nonrepu-
diation protocol can be thought of as a failure of that party. It is important to
contrast this failure model with the failure model used in the celebrated paper
of Cleve [6]. Recall that Cleve’s paper states an impossibility result regarding
agreement on random bits chosen by two processes provided that one of the
processes is faulty. In Cleve’s paper the faulty process can fail at any time dur-
ing the execution of the protocol. Therefore, Cleve’s impossibility result is not
applicable in our case, as in our model, failures occur only as dictated by the
opportunism requirement.

The intuitive reasoning behind our failure model is that parties do not wish
to stop executing the protocol (and thus fail) before collecting their needed
evidence. Once a party recognizes that it has already collected all its needed
evidence, this party decides to stop executing the protocol (i.e., fail) because it
gains nothing by continuing to execute the protocol.

The opportunism requirement, that needs to be fulfilled by each nonrepudi-
ation protocol, makes the task of designing nonrepudiation protocols very hard.
This is because once a party in a nonrepudiation protocol terminates (because it
has recognized that it has already collected all its needed evidence), then from
where will the other party continue to receive its needed evidence?

The standard answer to this question is to assume that a nonrepudiation
protocol from party S to party R involves three parties: the two original parties
S and R and a third party T , which is often referred to as a trusted party.
Note that the objective of each original party is to collect its own evidence,
whereas the objective of the third party is to help the two original parties collect
their respective evidence. Therefore, the opportunism requirement for the third
party T can be stated as follows. Once T recognizes that the two original parties
have already collected their evidence (or are guaranteed to collect their evidence
soon), T terminates.

An execution of a nonrepudiation protocol from party S to party R that
involves the three parties S, R, and T can proceed in three steps as follows:

1. Party S sends some text to party T which forwards it to party R.
2. Party T computes sufficient evidence to establish that S has sent the text to

R then T forwards this evidence to R.
3. Party T computes sufficient evidence to establish that R has received the text

from S then T forwards this evidence to S.

Most nonrepudiation protocols that have been published in the literature involve
three parties: the two original parties and a third party [10]. A nonrepudiation
protocol that does not involve a third party was published in [12]. We refer to
this protocol as the MR protocol in reference to its two authors Markowitch
and Roggeman. Unfortunately, the correctness of this protocol is questionable
as discussed next.

In the MR protocol, party S first sends to party R the text encrypted using
a symmetric key SK that only S knows. Then party S sends to party R an
arbitrary number of random numbers, each of which looks like, but in fact is
quite different from, the symmetric key SK. Finally, party S sends to party R
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the symmetric key SK. After R receives each of these messages from S, R sends
to S an ack message that acknowledges receiving the message from S.

The evidence that R needs to collect is the first message (containing the
text encrypted using SK) and the last message (containing SK). The evidence
that S needs to collect is the acknowledgements of R receiving the first and last
messages.

In the MR protocol, when party R receives the i-th message from S, where i
is at least 2, R recognizes that the message content is either a random number
or the symmetric key SK. Thus, R can use the message content in an attempt
to decrypt the encrypted text (which R has received in the first message). If this
attempt fails, then R recognizes that the message content is a random number
and proceeds to send an ack message to S. If this attempt succeeds, then R
recognizes that the message content is the symmetric key SK and terminates
right away (in order to fulfill the opportunism requirement) without sending the
expected ack message to S. In this case, R succeeds in collecting all the evidence
that it needs while S fails in collecting all the evidence that it needs.

To prevent this problematic scenario, the designers of the MR protocol
adopted the following three assumptions: (1) there is a lower bound lb on the
time needed by R to decrypt the encrypted text, (2) S knows an upper bound ub
on the round trip delay from S to R and back to S, and (3) lb is larger than ub.
Based on these assumptions, if party S sends a random number to party R and
does not receive back the expected ack message for at least ub time units, then
S recognizes that R has tried to cheat (but failed) by attempting to decrypt
the encrypted text using the received random number. In this case, party S
aborts executing the protocol and both S and R fail to collect all their needed
evidence. Now, if party S sends a random number to party R and receives back
the expected ack message within ub time units, then both parties continue to
execute the protocol.

Unfortunately, party R can secretly decrease the value of lb, for example by
employing a super computer to decrypt the encrypted text, such that assumption
(3) above is violated. By violating assumption (3), the attempts of R to cheat
can go undetected by party S and the MR protocol can end up in a compromised
state where party R has terminated after collecting all its needed evidence but
party S is still waiting to collect its needed evidence that will never arrive. This
problematic scenario calls into question the correctness of the MR protocol.

In this paper, we discuss how to design nonrepudiation protocols that do not
involve a trusted party. We make the following five contributions:

1. We first state the round-trip assumption as follows: Party R knows an upper
bound on the round trip delay from R to S and back to R. Then we show
that adopting this assumption is both necessary and sufficient for designing
nonrepudiation protocols from S to R that do not involve a third trusted
party and where no sent message is lost.

2. Our sufficiency proof in 1 consists of designing the first (provably correct)
nonrepudiation protocol from S to R that does not involve a third party and
where no sent message is lost.
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3. We state the bounded-loss assumption as follows: Party R knows an upper
bound on the number of messages that can be lost during any execution of the
protocol. Then we show that adopting both the round-trip assumption and
the bounded-loss assumption is both necessary and sufficient in designing
nonrepudiation protocols from S to R that do not involve a third trusted
party and where every sent message may be lost.

4. Our sufficiency proof in 3 consists of designing the first (provably correct)
nonrepudiation protocol from S to R that does not involve a third party and
where every sent message may be lost.

5. We extend the nonrepudiation protocol in 2 that involves only two parties,
S and R, into an �-nonrepudiation protocol that involves � parties (none of
which is trusted), where � ≥ 2.

The proofs of all the theorems that appear in this paper are described in the
technical report [1]

2 Related Work

The most cited nonrepudiation protocol was published by Zhou and Gollmann in
1996 [15]. This protocol involves three parties S, R, and a trusted third party T .
It turns out that each execution of this protocol requires the active participation
of all three parties S, R, and T . A year later, Zhou and Gollmann published
a second version [16] of their protocol, where each execution requires the active
participation of parties S and R, but does not necessarily require the partici-
pation of party T . (Thus, some executions of this second version requires the
participation of T and some don’t.)

Later, Kremer and Markowitch generalized nonrepudiation protocols that are
from a party S to a party R into protocols that are from a party S to several
parties R1, · · · , R.n. They referred to the generalized protocols as multiparty
protocols, and published the first two multiparty protocols [9,11].

Most nonrepudiation protocols involve the services of a third party for suc-
cessful completion of the protocol [8,9,11,15,16]. There are protocols which
involve a third party in every execution of the protocol from party S to party
R [9,15]. These protocols are said to have on-line third party. The involvement of
third party in every execution can become a bottleneck therefore protocols were
proposed to limit the involvement of third party [8,11,16]. In such protocols, the
third party is not involved in every execution of the protocol. Such protocols are
said to have an off-line third party, and are known as optimistic nonrepudiation
protocols. Nonrepudiation has also found a number of applications [14,17].

The problem of designing nonrepudiation protocols is similar to the problem
of designing contract signing protocols. However, in contract signing protocols
the contract C to be signed is known to all parties before the execution of
contract signing protocol begins, while in nonrepudiation protocols the text x
is only known to party S before the execution of the nonrepudiation protocol
begins. Most contract signing protocols do make use of a trusted third party.
See for example [2,3]. However, the trusted third party in some of the published
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contract signing protocols is rather weak [4,13]. For example, the trusted third
party in Rabin’s protocol [13] does not receive any messages from either of the
two parties S or R. Rather, Rabin’s third party periodically generates random
numbers and sends them to the original parties S and R.

Some published contract signing protocols do not employ a trusted third
party. See for example [5,7]. However, the opportunism requirement that is ful-
filled by these protocols is weaker than our opportunism requirement. Thus,
in each of these protocols, a party (S or R) may continue to execute the con-
tract signing protocol even after this party recognizes that it has collected all its
needed evidence with the hope that the cost of processing its collected evidence
can be reduced dramatically.

3 Nonrepudiation Protocols

In this section, we present our specification of a nonrepudiation protocol that
does not involve a third party. A nonrepudiation protocol from party S to party
R that does not involve a third party is a communication protocol between
parties S and R that fulfills the following requirements.

(a) Message Loss: During each execution of the protocol, each message that
is sent by either party (S or R, respectively) is eventually received by the
other party (R or S, respectively).

(b) Message Alternation: During any execution of the protocol, the two par-
ties S and R exchange a sequence of messages. First, party S sends msg.1
to party R. Then when party R receives msg.1, it sends back msg.2 to party
S, and so on. At the end when R receives msg.(r − 1), where r is an even
integer whose value is at least 2, R sends back msg.r to S. This exchange
of messages can be represented as follows:

S → R:msg.1
S ← R:msg.2
· · ·
S → R:msg.(r − 1)
S ← R:msg.r

(c) Message Signatures: Party S has a private key that only S knows and the
corresponding public key that all parties know. Party S uses its private key
to sign every message before sending this message to R so that S can’t later
repudiate that it has generated this message. Similarly, Party R has a private
key that only R knows and the corresponding public key that all parties
know. Party R uses its private key to sign every message before sending
this message to S so that R can’t later repudiate that it has generated this
message.

(d) Collected Evidence: Both parties S and R collect evidence during execu-
tion of the protocol. The evidence collected by party S is a subset of those
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messages received by party S (from party R). Similarly, the evidence col-
lected by party R is a subset of those messages received by party R (from
party S).

(e) Guaranteed Termination: Every execution of the protocol is guaranteed
to terminate in a finite time.

(f) Termination Requirement: Party S terminates only after S sends some
text to R and only after S receives from R sufficient evidence to establish
that R has indeed received the sent text from S. Similarly, party R termi-
nates only after R receives from S both the sent text and sufficient evidence
to establish that S has indeed sent this text to R.

(g) Opportunism Requirement: If during any execution of the protocol,
party S recognizes that it has already sent some text to R and has later
received from R sufficient evidence to establish that R has indeed received
this text, then S terminates. Similarly, if during any execution of the proto-
col, party R recognizes that it has received from S some text and sufficient
evidence to establish that S has indeed sent this text, then R terminates.

(h) Judge: Anytime after execution of the nonrepudiation protocol terminates,
each of the two parties, S or R, can submit its collected evidence to a
judge that can decide whether the submitted evidence is valid and should
be accepted or it is invalid and should be rejected. The decision of the judge
is final and legally binding on both S and R. To help the judge make the
right decision, we assume that the judge knows the public keys of S and R.
We also assume that the judge has a public key (that both S and R know)
and a corresponding private key (that only the judge knows). (Note that
the role of the judge is different than that of a trusted third party. The
trusted third party is used to generate and distribute the needed evidence
to the two parties, S and R. Therefore, the trusted third party is directly
involved during the execution of the nonrepudiation protocol. The judge,
however, is not directly involved during the execution of the protocol, and
it never generates nor distributes any part of the needed evidence to either
party. The judge only verifies the submitted evidence after it has already
been collected during execution of the protocol. In fact every nonrepudiation
protocol that has been published in the past has both a trusted third party
and a judge)

The opportunism requirement needs some explanation. Once party S recognizes
that it has already collected sufficient evidence to establish that party R has
indeed received the text from S, S concludes that it gains nothing by continuing
to participate in executing the protocol and so S terminates. (In this case, only
R may gain by continuing to participate in executing the protocol.)

Similarly, once party R recognizes that it has already collected sufficient
evidence to establish that party S has indeed sent the text to R, R concludes
that it gains nothing by continuing to participate in executing the protocol and
so R terminates.
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Next, we state a condition, named the round-trip assumption and show in
the next section that adopting this assumption is both necessary and sufficient
to design nonrepudiation protocols from party S to party R that do not involve
a third party.

Round-Trip Assumption: Party R knows an upper bound t (in time units)
on the round trip delay from R to S and back to R.

4 Necessary and Sufficient Conditions for Nonrepudiation
Protocols

We prove that it is necessary to adopt the round-trip assumption when designing
nonrepudiation protocols from party S to party R that do not involve a third
party.

Theorem 1. In designing a nonrepudiation protocol from party S to party R,
that does not involve a third party, it is necessary to adopt the round-trip assump-
tion. (The proof of this theorem is omitted due to lack of space.)

Next, we prove that it is sufficient to adopt the round-trip assumption in order to
design a nonrepudiation protocol from party S to party R that does not involve
a third party.

Theorem 2. It is sufficient to adopt the round-trip assumption in order to
design a nonrepudiation protocol from party S to party R that does not involve
a third party.

Proof. We present a design of a nonrepudiation protocol from party S to party R
that does not involve a third party and show that correctness of this protocol is
based on adopting the round-trip assumption. Our presentation of this protocol
consists of four steps. In each step, we start with a version of the protocol then
show that this version is incorrect (by showing that it violates one of the require-
ments in Sect. 3). We then proceed to modify this protocol version in an attempt
to make it correct. After four steps, we end up with a correct nonrepudiation
protocol (that satisfies all eight requirements in Sect. 3).

First Protocol Version: In this protocol version, party S sends a txt message
to party R which replies by sending back an ack message. The exchange of
messages in this protocol version can be represented as follows.

S → R: txt
S ← R: ack

The txt message contains: (1) the message sender S and receiver R, (2) the text
that S needs to send to R, and (3) signature of the message using the private key
of the message sender S. Similarly, the ack message contains: (1) the message
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sender R and receiver S, (2) the text that S needs to send to R, and (3) signature
of the message using the private key of the message sender R.

The txt message is the evidence that R needs to collect and can later present
to the judge to get the judge to declare that the text in the message was indeed
sent by S to R. Similarly, the ack message is the evidence that S needs to collect
and can later present to the judge to get the judge to declare that the text in
the message was indeed received by R from S.

This protocol version is incorrect for the following reason. When R receives
the txt message, it recognizes that it has already collected sufficient evidence
to establish that S has indeed sent the text to R and so R terminates, by the
opportunism requirement, before it sends the ack message to S. Party S ends
up waiting indefinitely for the ack message that will never arrive violating the
guaranteed termination requirement.

To make this protocol version correct, we need to devise a technique by which
R does not recognize that it has collected sufficient evidence to establish that S
has indeed sent the text to R, even after R has collected such evidence.

Second Protocol Version: In this protocol version, party S sends n txt mes-
sages to party R, where n is a positive integer selected at random by S and is
kept as a secret from R. The exchange of messages in this protocol version can
be represented as follows.

S → R: txt.1
S ← R: ack.1
· · ·
S → R: txt.n
S ← R: ack.n

Each txt.i message contains: (1) the message sender S and receiver R, (2) the
text that S needs to send to R, (3) the sequence number of the message i, and
(4) signature of the message using the private key of the message sender S.
Similarly, each ack.i message contains: (1) the message sender R and receiver S,
(2) the text that S needs to send to R, (3) the sequence number of the message i,
and (4) signature of the message using the private key of the message sender R.

The txt.n message is the evidence that R needs to collect and can later
present to the judge to get the judge to declare that the text in the message was
indeed sent by S to R. Similarly, the ack.n message is the evidence that S needs
to collect and can later present to the judge to get the judge to declare that the
text in the message was indeed received by R from S.

When R receives the txt.n message from S, then (because R does not know
the value of n) R does not recognize that it has just received sufficient evidence
to establish that S has indeed sent the text to R. Thus, R does not terminate
and instead proceeds to send the ack.n message to S.

When S receives the ack.n message from R, then (because S knows the value
of n) S recognizes that it has just received sufficient evidence to establish that R
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has received the text sent from S to R. Thus, by the opportunism requirement,
S terminates and R ends up waiting indefinitely for the txt.(n+1) message that
will never arrive violating the guaranteed termination requirement.

This protocol version is incorrect. To make it correct, we need to devise a
technique by which party R recognizes, after S terminates, that R has already
collected sufficient evidence to establish that S has indeed sent the text to R.

Third Protocol Version: This protocol version is designed by modifying the
second protocol version (discussed above) taking into account the adopted round-
trip assumption, namely that R knows an upper bound t (in time units) on the
round trip delay from R to S and back to R.

The exchange of messages in the third protocol version is the same as that in
the second protocol version. However, in the third protocol version, every time
R sends an ack.i message to S, R activates a time-out to expire after t time
units.

If R receives the next txt.(i + 1) before the activated time-out expires, then
R cancels the timeout. If the activated time-out expires before R receives the
next txt.(i + 1) message, then R recognizes that the last received txt.i message
is in fact the txt.n message and so R recognizes that it has already collected
sufficient evidence to establish that S has already sent the text to R and so R
terminates (by the opportunism requirement). Execution of this protocol version
can be represented as follows:

S → R: txt.1
S ← R: ack.1;R activates time-out
S → R: txt.2;R cancels time-out
· · ·
S → R: txt.n;R cancels time-out
S ← R: ack.n;R activates time-out; S terminates
time-out expires;R terminates

This protocol version still has a problem. After execution of the protocol ter-
minates, party R may decide to submit its collected evidence, namely the txt.n
message, to the judge so that the judge can certify that S has indeed sent the
text in the txt.n message. The judge can make this certification if it observes
that the sequence number of the txt.n message equals the random integer n that
S selected when execution of the protocol started. Unfortunately, the value of n
is not included in the txt.n message.

Similarly, after execution of the protocol terminates, party S may decide to
submit its collected evidence, namely the ack.n message, to the judge so that
the judge can certify that R has indeed received the text in the ack.n message.
The judge can make this certification if it observes that the sequence number of
the ack.n message equals the random integer n that S selected when execution
of the protocol started. Unfortunately, the value of n is not included in the ack.n
message.
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To solve these two problems, we need to devise a technique by which the
value of n is included in every txt.i message and every ack.i message such that
the following two conditions hold. First, the judge can extract the value of n
from any txt.i or ack.i message. Second, party R can’t extract the value of n
from any txt.i message nor from any ack.i message.

Fourth Protocol Version: In this protocol version, two more fields are added
to each txt.i message and each ack.i message. The first field stores the encryption
of n using a symmetric key KE that is generated by party S and is kept as a
secret from party R. The second field stores the encryption of the symmetric key
KE using the public key of the judge.

These two fields are computed by party S when execution of the protocol
starts and are included in every txt.i message before this message is sent from S
to R. When party R receives a txt.i message from party S, party R copies these
two fields from the received txt.i message into the next ack.i message before this
message is sent from R to S.

After execution of this protocol version terminates, party S can submit its
collected evidence, namely the last ack.i message that S has received from R, to
the judge so that the judge can examine the ack.i message and certify that R has
received the text in this message from S. The judge makes this certification by
checking, among other things, that the sequence number i of the ack.i message is
greater than or equal to n. The judge then forwards its certification to party S.

Similarly, after execution of this protocol version terminates, party R can
submit its collected evidence, namely the last txt.i message that R has received
from S, to the judge so that the judge can examine the txt.i message and certify
that S has sent the text in this message to R. The judge makes this certification
by checking, among other things, that the sequence number i of the txt.i message
is greater than or equal to n. The judge then forwards its certification to party R.

Note that the judge can certify at most one ack.i message from party S, and
at most one txt.i message from party R. This restriction forces S to send to the
judge only the last ack.i message that S has received from R. This restriction
also forces R to send to the judge only the last txt.i message that R has received
from S. ��

5 Nonrepudiation Protocols with Message Loss

In the remainder of this paper, we consider a richer class of nonrepudiation pro-
tocols where sent messages may be lost before they are received. Each protocol
in this class is required to fulfill the following requirements.

(a) Message Loss: During each execution of the protocol, each message that
is sent by either party (S or R, respectively) can be lost before it is received
by the other party (R or S, respectively).

(b) Message Alternation: During any execution of the protocol where no sent
message is lost, the two parties S and R exchange a sequence of messages.
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First, party S sends msg.1 to party R. Then when party R receives msg.1,
it sends back msg.2 to party S, and so on. At the end when R receives
msg.(r − 1), where r is an even integer whose value is at least 2, R sends
back msg.r to S. This exchange of messages can be represented as follows:

S → R:msg.1
S ← R:msg.2
· · ·
S → R:msg.(r − 1)
S ← R:msg.r

(c) Message Signatures: This requirement is the same as the message signa-
ture requirement in Sect. 3.

(d) Collected Evidence: This requirement is the same as the collected evi-
dence requirement in Sect. 3.

(e) Guaranteed Termination: This requirement is the same as the guaran-
teed termination requirement in Sect. 3.

(f) Termination Requirement: This requirement is the same as the termi-
nation requirement in Sect. 3.

(g) Opportunism Requirement: This requirement is the same as the oppor-
tunism requirement in Sect. 3.

(h) Judge: This requirement is the same as the requirement of the judge in
Sect. 3.

Next, we state a condition, named the bounded-loss assumption. We then
show in the next section that adopting this assumption along with the round-
trip assumption (stated in Sect. 3) is both necessary and sufficient to design
nonrepudiation protocols from party S to Party R that do not involve a third
party and where sent messages can be lost.

Bounded-Loss Assumption: Party R knows an upper bound K on the num-
ber of messages that can be lost during any execution of the nonrepudiation
protocols.

6 Necessary and Sufficient Conditions for Nonrepudiation
Protocols with Message Loss

We prove that it is necessary to adopt both the round-trip assumption and the
bounded-loss assumption when designing nonrepudiation protocols from party
S to party R that do not involve a third party and where sent messages may be
lost.

Theorem 3. In designing a nonrepudiation protocol from party S to party R
that does not involve a third party and where sent messages may be lost, it
is necessary to adopt the round-trip assumption. (The proof of this theorem is
omitted due to lack of space.)
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Theorem 4. In designing a nonrepudiation protocol from party S to party R
that does not involve a third party and where sent messages may be lost, it is
necessary to adopt the bounded-loss assumption. (The proof of this theorem is
omitted due to lack of space)

Next, we prove that it is sufficient to adopt both the round-trip assumption and
the bounded-loss assumption in order to design a nonrepudiation protocol from
party S to party R that does not involve a third party and where sent messages
may be lost.

Theorem 5. It is sufficient to adopt both the round-trip assumption and the
bounded-loss assumption in order to design a nonrepudiation protocol from party
S to party R that does not involve a third party and where sent messages may
be lost.

Proof. In our proof of Theorem2, we adopted the round-trip assumption in order
to design a nonrepudiation protocol, which we refer to in this proof as protocol
P , from party S to party R that does not involve a third party and where no sent
message is ever lost. In the current proof, we adopt the bounded-loss assumption
in order to modify protocol P into protocol Q, which is a nonrepudiation protocol
from party S to party R that does not involve a third party and where sent
messages may be lost.

In protocol P , every time party R sends an ack.i message to party S, R acti-
vates a time-out to expire after t time units, where (by the round-trip assump-
tion) t is an upper bound on the round trip delay from R to S and back to R.
Because no sent message is ever lost in protocol P , then if the activated time-out
expires before R receives the next txt.(i + 1) message from S, R concludes that
S has already terminated, the next txt.(i + 1) message will never arrive, and R
has already collected sufficient evidence to establish that S has sent the text to
R. In this case, R also terminates fulfilling the opportunism requirement.

In protocol Q, every time party R sends an ack.i message to party S, R
activates a time-out to expire after t time units. However, because every sent
message in protocol Q may be lost, if the activated time-out expires before R
receives the next txt.(i + 1) message from S, then R concludes that either the
ack.i message or the txt.(i + 1) message is lost, and in this case R sends the
ack.i message once more to S and activates a new time-out to expire after t time
units, and the cycle repeats.

By the bounded-loss assumption, R knows an upper bound K on the number
of messages that can be lost during any execution of protocol Q. Therefore, the
cycle of R sending an ack.i message then the activated time-out expiring after t
time units can be repeated at most K times.

If the activated time-out expires for the (K + 1)-th time, then R concludes
that S has already terminated, the next txt.(i + 1) message will never arrive,
and R has already collected sufficient evidence to establish that S has sent the
text to R. In this case, R terminates fulfilling the opportunism requirement. ��
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7 An �-Nonrepudiation Protocol

In the Proof of Theorem 2, we presented a nonrepudiation protocol from party
S to party R that does not involve a trusted party and where no sent message
is lost. In this section, we discuss how to extend this protocol to a nonrepudi-
ation protocol that involves � parties, namely P1, · · · , P�, and satisfies three
conditions: (1) � ≥ 2, (2) none of the involved parties in the protocol is a trusted
party, and (3) no sent message during any execution of the protocol is lost. We
refer to this extended protocol as an �-nonrepudiation protocol.

The objectives of an �-nonrepudiation protocol are as follows. For each two
parties in the protocol, say Pi and Pj, the protocol achieves two objectives:

1. One of the two parties, say Pi, is enabled to send the text to the other party
Pj and to receive from Pj sufficient evidence that can convince a judge that
Pj has indeed received the text from Pi.

2. The other party Pj is enabled to receive the text from Pi and to receive
sufficient evidence from Pi that can convince a judge that Pi has indeed sent
the text to Pj.

Therefore, each party Pi ends up collecting sufficient evidence from every other
party Pj indicating that either Pj has indeed received the text from Pi or Pj
has indeed sent the text to Pi.

Before we describe our �-nonrepudiation protocol, as an extension of the 2-
nonrepudiation protocol in the proof of Theorem 2, we need to introduce two
useful concepts: parent and child of a party Pi. Each of the parties P1, · · · ,
P (i − 1) is called a parent of party Pi. Also each of the parties P (i + 1), · · · ,
P� is called a child of party Pi. Note that party P1 has no parents and parent
P� has no children. Note also that the number of parents plus the number of
children for each party is (� − 1).
Execution of our �-nonrepudiation protocol proceeds as follows:

1. Party P1 starts by sending a txt.1 message to each one of its children.
2. When a party Pi, where i �= 1 and i �= �, receives a txt.1 message from each

one of its parents, party Pi sends a txt.1 message to each one of its children.
3. When party P� receives a txt.1 message from each one of its parents, party

P� sends back an ack.1 message to each one of its parents.
4. When a party Pi, where i �= 1 and i �= �, receives an ack.1 message from

each one of its children, party Pi sends an ack.1 message to each one of its
parents.

5. When party P1 receives an ack.1 message from each one of its children, party
P1 sends a txt.2 message to each one of its children, and the cycle consisting
of Steps 2, 3, 4, and 5 is repeated n times until P1 receives an ack.n message
from each one of its children. In this case, party P1 collects as evidence the
ack.n messages that P1 has received from all its children, then P1 terminates.
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6. Each party Pi, where i �= 1, waits to receive a txt.(n + 1) message (that will
never arrive) from each one of its parents, then times out after (i−1)*T time
units, collects as evidence the txt.n messages that Pi has received from all
its parents and the ack.n messages that Pi has received from all its children,
then Pi terminates.

Note that T is an upper bound on the round trip delay from any party Pi
to any other party Pj and back to Pi. It is assumed that each party, other than
P1, knows this upper bound T .

8 Concluding Remarks

In this paper, we address several problems concerning the design of nonrepudi-
ation protocols from a party S to a party R that do not involve a trusted third
party. In such a protocol, S sends to R some text x along with sufficient evidence
to establish that S is the party that sent x to R, and R sends to S sufficient
evidence that R is the party that received x from S.

Designing such a protocol is not an easy task because the protocol is required
to fulfill the following opportunism requirement. During any execution of the
protocol, once a party recognizes that it has received its sufficient evidence from
the other party, this party terminates right away without sending any message
to the other party. In this case, the other party needs to obtain its evidence
without the help of the first party. (To fulfill this opportunism requirement,
most published nonrepudiation protocols involve a trusted third party T so that
when one of the two original parties recognizes that it has already received its
sufficient evidence and terminates, the other party can still receive its evidence
from T .)

Our main result in this paper is the identification of two simple conditions
that are both necessary and sufficient for designing nonrepudiation protocols
that do not involve a trusted third party.

In proving that these two conditions are sufficient for designing nonrepudia-
tion protocols, we presented an elegant nonrepudiation protocol that is based on
the following novel idea. By the time party S recognizes that it has received its
evidence, party S has already sent to R its evidence, but R has not yet recognized
that it has received all its evidence. In this case, S terminates as dictated by
the opportunism requirement but R continues to wait for the rest of its evidence
from S. Eventually R times-out and recognizes that S will not send any more
evidence. This can only mean that party S has terminated after it has already
sent all the evidence to R. Thus, R terminates as dictated by the opportunism
requirement.
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