
Parosh Aziz Abdulla
Carole Delporte-Gallet (Eds.)

 123

LN
CS

 9
94

4

4th International Conference, NETYS 2016
Marrakech, Morocco, May 18–20, 2016
Revised Selected Papers

Networked Systems

Lecture Notes in Computer Science 9944

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Parosh Aziz Abdulla • Carole Delporte-Gallet (Eds.)

Networked Systems
4th International Conference, NETYS 2016
Marrakech, Morocco, May 18–20, 2016
Revised Selected Papers

123

Editors
Parosh Aziz Abdulla
Uppsala University
Uppsala
Sweden

Carole Delporte-Gallet
Université Paris Diderot
Paris
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46139-7 ISBN 978-3-319-46140-3 (eBook)
DOI 10.1007/978-3-319-46140-3

Library of Congress Control Number: 2016950896

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

NETYS 2016 received 121 submissions. The reviewing process was undertaken by a
Program Committee of 31 international experts in the areas of networking, distributed
computing, security, formal methods, and verification. This process led to the definition
of a strong scientific program. The Program Committee accepted 22 regular papers and
11 short papers. In addition, 19 papers were selected for poster presentation. Besides
these high-quality contributions, the program of NETYS 2016 included keynote talks
by three world-renowned researchers:

Joost-Pieter Katoen (RWTH Aachen University, Germany),
Andreas Podelski (University of Freiburg, Germany), and
Luis Rodrigues (Universidade de Lisboa, Portugal).

We warmly thank all the authors for their great contributions, all the Program
Committee members for their hard work and their commitment, all the external
reviewers for their valuable help, and the three keynote speakers to whom we are
deeply grateful for their support. Special thanks to the two conference general chairs,
Mohammed Erradi (ENSIAS, Rabat, Morocco), and Rachid Guerraoui (EPFL, Lau-
sanne, Switzerland), for their invaluable guidance and tremendous help.

June 2016 Parosh Aziz Abdulla
Carole Delporte-Gallet

Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Mohamed Faouzi Atig Uppsala University, Sweden
Slimane Bah Ecole Mohammadia d’Ingénieurs - Mohammed V

University, Morocco
Gregor Bochmann University of Ottawa, Canada
Silvia Bonomi Sapienza Università di Roma, Italy
Ahmed Bouajjani LIAFA, University Paris Diderot, France
Carole Delporte-Gallet University Paris Diderot, France
Stéphane Devismes VERIMAG UMR 5104, France
Mohamed El Kamili LiM, FSDM, USMBA, Fès, Morocco
Mohammed El Koutbi ENSIAS, Morocco
Michael Emmi IMDEA Software Institute, Spain
Javier Esparza Technische Universität München, Germany
Panagiota Fatourou University of Crete & FORTH ICS, Greece
Hugues Fauconnier LIAFA, France
Bernd Freisleben University of Marburg, Germany
Maurice Herlihy Brown University, USA
Zahi Jarir Cadi Ayyad University, Marrakech, Morocco
Mohamed Jmaiel ReDCAD, ENIS, Tunisia
Anne-Marie Kermarrec Inria, France
Akash Lal Microsoft Research, India
Roland Meyer University of Kaiserslautern, Germany
Ouzzif Mohammed ESTC, Morocco
Madhavan Mukund Chennai Mathematical Institute, India
Madan Musuvathi Microsoft Research, USA
Guevara Noubir Northeastern University, USA
Franck Petit LiP6 CNRS-INRIA UPMC Sorbonne Universités, France
Michel Raynal IRISA, France
Ahmed Rezine Linköping University, Sweden
Liuba Shrira Brandeis University, USA
Serdar Tasiran Koc University, Turkey
Viktor Vafeiadis MPI-SWS, Germany

Contents

Nonrepudiation Protocols Without a Trusted Party 1
Muqeet Ali, Rezwana Reaz, and Mohamed G. Gouda

Exploiting Concurrency in Domain-Specific Data Structures: A Concurrent
Order Book and Workload Generator for Online Trading 16

Raphaël P. Barazzutti, Yaroslav Hayduk, Pascal Felber,
and Etienne Rivière

Fault Tolerant P2P RIA Crawling . 32
Khaled Ben Hafaiedh, Gregor von Bochmann, Guy-Vincent Jourdan,
and Iosif Viorel Onut

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 48
Yahya Benkaouz, Mohammed Erradi, and Anne-Marie Kermarrec

Accurate Optimization Method for Allocation of Heterogeneous Resources
in Embedded Systems . 63

Aissam Berrahou

Understanding the Memory Consumption of the MiBench
Embedded Benchmark . 71

Antoine Blin, Cédric Courtaud, Julien Sopena, Julia Lawall,
and Gilles Muller

Benchmarking Energy-Centric Broadcast Protocols in Wireless
Sensor Networks . 87

Quentin Bramas and Sébastien Tixeuil

Transactional Pointers: Experiences with HTM-Based Reference
Counting in C++. 102

Maria Carpen-Amarie, Dave Dice, Gaël Thomas, and Pascal Felber

A Multi-channel Energy Efficient Cooperative MIMO Routing Protocol
for Clustered WSNs . 117

Alami Chaibrassou and Ahmed Mouhsen

Counting in Practical Anonymous Dynamic Networks is Polynomial 131
Maitri Chakraborty, Alessia Milani, and Miguel A. Mosteiro

Internet Computing: Using Reputation to Select Workers from a Pool 137
Evgenia Christoforou, Antonio Fernández Anta, Chryssis Georgiou,
and Miguel A. Mosteiro

http://dx.doi.org/10.1007/978-3-319-46140-3_1
http://dx.doi.org/10.1007/978-3-319-46140-3_2
http://dx.doi.org/10.1007/978-3-319-46140-3_2
http://dx.doi.org/10.1007/978-3-319-46140-3_3
http://dx.doi.org/10.1007/978-3-319-46140-3_4
http://dx.doi.org/10.1007/978-3-319-46140-3_5
http://dx.doi.org/10.1007/978-3-319-46140-3_5
http://dx.doi.org/10.1007/978-3-319-46140-3_6
http://dx.doi.org/10.1007/978-3-319-46140-3_6
http://dx.doi.org/10.1007/978-3-319-46140-3_7
http://dx.doi.org/10.1007/978-3-319-46140-3_7
http://dx.doi.org/10.1007/978-3-319-46140-3_8
http://dx.doi.org/10.1007/978-3-319-46140-3_8
http://dx.doi.org/10.1007/978-3-319-46140-3_9
http://dx.doi.org/10.1007/978-3-319-46140-3_9
http://dx.doi.org/10.1007/978-3-319-46140-3_10
http://dx.doi.org/10.1007/978-3-319-46140-3_11

Asynchronous Consensus with Bounded Memory . 154
Carole Delporte-Gallet and Hugues Fauconnier

A Fuzzy AHP Approach to Network Selection Improvement
in Heterogeneous Wireless Networks . 169

Maroua Drissi, Mohammed Oumsis, and Driss Aboutajdine

A Fault-Tolerant Sequentially Consistent DSM with a Compositional
Correctness Proof . 183

Niklas Ekström and Seif Haridi

Exploiting Crowd Sourced Reviews to Explain Movie Recommendation 193
Sara El Aouad, Christophe Dupuy, Renata Teixeira, Francis Bach,
and Christophe Diot

A Formal Model for WebRTC Signaling Using SDL. 202
Asma El Hamzaoui, Hicham Bensaid, and Abdeslam En-Nouaary

An Incremental Proof-Based Process of the NetBill Electronic
Commerce Protocol . 209

Sanae El Mimouni and Mohamed Bouhdadi

Securing NFC Credit Card Payments Against Malicious Retailers 214
Oliver Jensen, Tyler O’Meara, and Mohamed Gouda

An Approach to Resolve NP-Hard Problems of Firewalls. 229
Ahmed Khoumsi, Mohamed Erradi, Meryeme Ayache,
and Wadie Krombi

Hybrid Encryption Approach Using Dynamic Key Generation
and Symmetric Key Algorithm for RFID Systems . 244

Zouheir Labbi, Ahmed Maarof, Mohamed Senhadji,
and Mostafa Belkasmi

Time-Efficient Read/Write Register in Crash-Prone Asynchronous
Message-Passing Systems. 250

Achour Mostéfaoui and Michel Raynal

Traffic Lights Optimization with Distributed Ant Colony Optimization
Based on Multi-agent System . 266

Mouhcine Elgarej, Mansouri Khalifa, and Mohamed Youssfi

A Mechanized Refinement Proof of the Chase-Lev Deque
Using a Proof System . 280

Suha Orhun Mutluergil and Serdar Tasiran

VIII Contents

http://dx.doi.org/10.1007/978-3-319-46140-3_12
http://dx.doi.org/10.1007/978-3-319-46140-3_13
http://dx.doi.org/10.1007/978-3-319-46140-3_13
http://dx.doi.org/10.1007/978-3-319-46140-3_14
http://dx.doi.org/10.1007/978-3-319-46140-3_14
http://dx.doi.org/10.1007/978-3-319-46140-3_15
http://dx.doi.org/10.1007/978-3-319-46140-3_16
http://dx.doi.org/10.1007/978-3-319-46140-3_17
http://dx.doi.org/10.1007/978-3-319-46140-3_17
http://dx.doi.org/10.1007/978-3-319-46140-3_18
http://dx.doi.org/10.1007/978-3-319-46140-3_19
http://dx.doi.org/10.1007/978-3-319-46140-3_20
http://dx.doi.org/10.1007/978-3-319-46140-3_20
http://dx.doi.org/10.1007/978-3-319-46140-3_21
http://dx.doi.org/10.1007/978-3-319-46140-3_21
http://dx.doi.org/10.1007/978-3-319-46140-3_22
http://dx.doi.org/10.1007/978-3-319-46140-3_22
http://dx.doi.org/10.1007/978-3-319-46140-3_23
http://dx.doi.org/10.1007/978-3-319-46140-3_23

The Out-of-core KNN Awakens: The Light Side of Computation Force
on Large Datasets . 295

Nitin Chiluka, Anne-Marie Kermarrec, and Javier Olivares

The 4-Octahedron Abstract Domain. 311
Rachid Oucheikh, Ismail Berrada, and Outman El Hichami

Reversible Phase Transitions in a Structured Overlay Network with Churn. . . 318
Ruma R. Paul, Peter Van Roy, and Vladimir Vlassov

Verification of Common Business Rules in BPMN Process Models. 334
Anass Rachdi, Abdeslam En-Nouaary, and Mohamed Dahchour

Is Youtube Popularity Prediction a Good Way to Improve
Caching Efficiency? . 340

Nada Sbihi and Mounir Ghogho

Waiting in Concurrent Algorithms. 345
Gadi Taubenfeld

Corona Product Complexity of Planar Graph and S-chain Graph 361
Fouad Yakoubi and Mohamed El Marraki

Vehicular Ad-Hoc Network: Evaluation of QoS and QoE
for Multimedia Application . 367

Imane Zaimi, Zineb Squalli Houssaini, Abdelali Boushaba,
Mohammed Oumsis, and Driss Aboutajdine

Abstracts of Posters

An Implementation of the Keccak Hash Function . 375
Soufiane El Moumni, Mohamed Fettach, and Abderrahim Tragha

A Secure Processor Using Homomorphic Encryption. 376
Bouchra Echandouri, Youssef Gahi, Mouhcine Guennoun,
and Fouzia Omary

An Ontology Based Social Search System . 377
Anas El-ansari, Abderrahim Beni-hssane, and Mostafa Saadi

An Adaptive Routing Scheme in Scale-Free Networks 378
Nora Ben Haddou, Hamid Ez-zahraouy, and Abdelilah Benyoussef

Communication Interface for Distributed SDN . 379
Fouad Benamrane, Mouad Ben Mamoun, and Redouane Benaini

Contents IX

http://dx.doi.org/10.1007/978-3-319-46140-3_24
http://dx.doi.org/10.1007/978-3-319-46140-3_24
http://dx.doi.org/10.1007/978-3-319-46140-3_25
http://dx.doi.org/10.1007/978-3-319-46140-3_26
http://dx.doi.org/10.1007/978-3-319-46140-3_27
http://dx.doi.org/10.1007/978-3-319-46140-3_28
http://dx.doi.org/10.1007/978-3-319-46140-3_28
http://dx.doi.org/10.1007/978-3-319-46140-3_29
http://dx.doi.org/10.1007/978-3-319-46140-3_30
http://dx.doi.org/10.1007/978-3-319-46140-3_31
http://dx.doi.org/10.1007/978-3-319-46140-3_31
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3

Hybrid Homomorphic Encryption for Cloud Privacy 380
Yasmina Bensitel and Romadi Rahal

Static Hand Gesture Recognition Using RGB-D Data 381
Abdessamad Elboushaki, Rachida Hannane, Karim Afdel,
and Lahcen Koutti

Deep Neural Networks for Medical Images . 382
Issam Elaalyani and Mohammed Erradi

IoT for Livestock Monitoring in the Desert . 383
Younes Driouch, Abdellah Boulouz, Mohamed Ben Salah,
and Congduc Pham

Dynamic Clustering Algorithm for Targets Tracking 384
Mohamed Toumi, Abderrahim Maizate, Mohammed Ouzzif,
and Med said Salah

ABAC Model for Collaborative Cloud Services . 385
Mohamed Amine Madani and Mohammed Erradi

A Review on Big Data and Hadoop Security . 386
Hayat Khaloufi, Abderrahim Beni-Hssane, Karim Abouelmehdi,
and Mostafa Saadi

Performance Analysis of Black Hole Attack in VANET. 387
Badreddine Cherkaoui, Abderrahim Beni-hssane,
and Mohammed Erritali

SNA: Detecting Influencers over Social Networks . 388
Ali Aghmadi, Mohammed Erradi, and Abdellatif Kobbane

Performance Evaluation of Smart Grid Infrastructures 389
Zahid Soufiane, En-Nouaary Abdeslam, and Bah Slimane

Communities Detection in Social Networks . 390
Imane Tamimi and Mohamed El Kamili

Keyframe Extraction Using Entropy Singular Values 391
Rachida Hannane, Abdessamad Elboushaki, and Karim Afdel

Autonomous Vehicular Systems Based on Multi Agents 392
Najoua Ayache, Ali Yahyaouy, and Sabri My Abdelouahed

The Integration of Multi-homing in 5G Networks . 393
Salma Ibnalfakih, Essaid Sabir, and Mohammed Sadik

Author Index . 395

X Contents

http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3
http://dx.doi.org/10.1007/978-3-319-46140-3

Nonrepudiation Protocols
Without a Trusted Party

Muqeet Ali(B), Rezwana Reaz, and Mohamed G. Gouda

Department of Computer Science, University of Texas at Austin,
Austin, TX 78712, USA

{muqeet,rezwana,gouda}@cs.utexas.edu

Abstract. A nonrepudiation protocol from party S to party R performs
two tasks. First, the protocol enables party S to send to party R some
text x along with sufficient evidence (that can convince a judge) that x
was indeed sent by S. Second, the protocol enables party R to receive text
x from S and to send to S sufficient evidence (that can convince a judge)
that x was indeed received by R. Almost every published nonrepudiation
protocol from party S to party R involves three parties: the two original
parties S and R, and a third party that is often called a trusted party. A
well-known nonrepudiation protocol that does not involve a third party
is based on an assumption that party S knows an upper bound on the
computing power of party R. This assumption does not seem reasonable
especially since by violating this assumption, party R can manipulate the
nonrepudiation protocol so that R obtains all its needed evidence without
supplying party S with all its needed evidence. In this paper, we show
that nonrepudiation protocols that do not involve a third party can be
designed under reasonable assumptions. Moreover, we identify necessary
and sufficient (reasonable) assumptions under which these protocols can
be designed. Finally, we present the first ever �-nonrepudiation protocol
that involves � parties (none of which is trusted), where � ≥ 2.

1 Introduction

A nonrepudiation protocol from party S to party R performs two tasks. First,
the protocol enables party S to send to party R some text along with sufficient
evidence (that can convince a judge) that the text was indeed sent by S to R.
Second, the protocol enables party R to receive the sent text from S and to send
to S sufficient evidence (that can convince a judge) that the text was indeed
received by R from S.

Each nonrepudiation protocol is also required to fulfill the following oppor-
tunism requirement. During any execution of the nonrepudiation protocol from
S to R, once a party (S or R, respectively) recognizes that it has already col-
lected all its needed evidence, then this party concludes that it gains nothing
by continuing to execute the protocol and so it terminates. The other party (R
or S, respectively) continues to execute the protocol with the hope that it will
eventually collect all its needed evidence.
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 1–15, 2016.
DOI: 10.1007/978-3-319-46140-3 1

2 M. Ali et al.

The opportunism requirement which is satisfied by each party in a nonrepu-
diation protocol can be thought of as a failure of that party. It is important to
contrast this failure model with the failure model used in the celebrated paper
of Cleve [6]. Recall that Cleve’s paper states an impossibility result regarding
agreement on random bits chosen by two processes provided that one of the
processes is faulty. In Cleve’s paper the faulty process can fail at any time dur-
ing the execution of the protocol. Therefore, Cleve’s impossibility result is not
applicable in our case, as in our model, failures occur only as dictated by the
opportunism requirement.

The intuitive reasoning behind our failure model is that parties do not wish
to stop executing the protocol (and thus fail) before collecting their needed
evidence. Once a party recognizes that it has already collected all its needed
evidence, this party decides to stop executing the protocol (i.e., fail) because it
gains nothing by continuing to execute the protocol.

The opportunism requirement, that needs to be fulfilled by each nonrepudi-
ation protocol, makes the task of designing nonrepudiation protocols very hard.
This is because once a party in a nonrepudiation protocol terminates (because it
has recognized that it has already collected all its needed evidence), then from
where will the other party continue to receive its needed evidence?

The standard answer to this question is to assume that a nonrepudiation
protocol from party S to party R involves three parties: the two original parties
S and R and a third party T , which is often referred to as a trusted party.
Note that the objective of each original party is to collect its own evidence,
whereas the objective of the third party is to help the two original parties collect
their respective evidence. Therefore, the opportunism requirement for the third
party T can be stated as follows. Once T recognizes that the two original parties
have already collected their evidence (or are guaranteed to collect their evidence
soon), T terminates.

An execution of a nonrepudiation protocol from party S to party R that
involves the three parties S, R, and T can proceed in three steps as follows:

1. Party S sends some text to party T which forwards it to party R.
2. Party T computes sufficient evidence to establish that S has sent the text to

R then T forwards this evidence to R.
3. Party T computes sufficient evidence to establish that R has received the text

from S then T forwards this evidence to S.

Most nonrepudiation protocols that have been published in the literature involve
three parties: the two original parties and a third party [10]. A nonrepudiation
protocol that does not involve a third party was published in [12]. We refer to
this protocol as the MR protocol in reference to its two authors Markowitch
and Roggeman. Unfortunately, the correctness of this protocol is questionable
as discussed next.

In the MR protocol, party S first sends to party R the text encrypted using
a symmetric key SK that only S knows. Then party S sends to party R an
arbitrary number of random numbers, each of which looks like, but in fact is
quite different from, the symmetric key SK. Finally, party S sends to party R

Nonrepudiation Protocols Without a Trusted Party 3

the symmetric key SK. After R receives each of these messages from S, R sends
to S an ack message that acknowledges receiving the message from S.

The evidence that R needs to collect is the first message (containing the
text encrypted using SK) and the last message (containing SK). The evidence
that S needs to collect is the acknowledgements of R receiving the first and last
messages.

In the MR protocol, when party R receives the i-th message from S, where i
is at least 2, R recognizes that the message content is either a random number
or the symmetric key SK. Thus, R can use the message content in an attempt
to decrypt the encrypted text (which R has received in the first message). If this
attempt fails, then R recognizes that the message content is a random number
and proceeds to send an ack message to S. If this attempt succeeds, then R
recognizes that the message content is the symmetric key SK and terminates
right away (in order to fulfill the opportunism requirement) without sending the
expected ack message to S. In this case, R succeeds in collecting all the evidence
that it needs while S fails in collecting all the evidence that it needs.

To prevent this problematic scenario, the designers of the MR protocol
adopted the following three assumptions: (1) there is a lower bound lb on the
time needed by R to decrypt the encrypted text, (2) S knows an upper bound ub
on the round trip delay from S to R and back to S, and (3) lb is larger than ub.
Based on these assumptions, if party S sends a random number to party R and
does not receive back the expected ack message for at least ub time units, then
S recognizes that R has tried to cheat (but failed) by attempting to decrypt
the encrypted text using the received random number. In this case, party S
aborts executing the protocol and both S and R fail to collect all their needed
evidence. Now, if party S sends a random number to party R and receives back
the expected ack message within ub time units, then both parties continue to
execute the protocol.

Unfortunately, party R can secretly decrease the value of lb, for example by
employing a super computer to decrypt the encrypted text, such that assumption
(3) above is violated. By violating assumption (3), the attempts of R to cheat
can go undetected by party S and the MR protocol can end up in a compromised
state where party R has terminated after collecting all its needed evidence but
party S is still waiting to collect its needed evidence that will never arrive. This
problematic scenario calls into question the correctness of the MR protocol.

In this paper, we discuss how to design nonrepudiation protocols that do not
involve a trusted party. We make the following five contributions:

1. We first state the round-trip assumption as follows: Party R knows an upper
bound on the round trip delay from R to S and back to R. Then we show
that adopting this assumption is both necessary and sufficient for designing
nonrepudiation protocols from S to R that do not involve a third trusted
party and where no sent message is lost.

2. Our sufficiency proof in 1 consists of designing the first (provably correct)
nonrepudiation protocol from S to R that does not involve a third party and
where no sent message is lost.

4 M. Ali et al.

3. We state the bounded-loss assumption as follows: Party R knows an upper
bound on the number of messages that can be lost during any execution of the
protocol. Then we show that adopting both the round-trip assumption and
the bounded-loss assumption is both necessary and sufficient in designing
nonrepudiation protocols from S to R that do not involve a third trusted
party and where every sent message may be lost.

4. Our sufficiency proof in 3 consists of designing the first (provably correct)
nonrepudiation protocol from S to R that does not involve a third party and
where every sent message may be lost.

5. We extend the nonrepudiation protocol in 2 that involves only two parties,
S and R, into an �-nonrepudiation protocol that involves � parties (none of
which is trusted), where � ≥ 2.

The proofs of all the theorems that appear in this paper are described in the
technical report [1]

2 Related Work

The most cited nonrepudiation protocol was published by Zhou and Gollmann in
1996 [15]. This protocol involves three parties S, R, and a trusted third party T .
It turns out that each execution of this protocol requires the active participation
of all three parties S, R, and T . A year later, Zhou and Gollmann published
a second version [16] of their protocol, where each execution requires the active
participation of parties S and R, but does not necessarily require the partici-
pation of party T . (Thus, some executions of this second version requires the
participation of T and some don’t.)

Later, Kremer and Markowitch generalized nonrepudiation protocols that are
from a party S to a party R into protocols that are from a party S to several
parties R1, · · · , R.n. They referred to the generalized protocols as multiparty
protocols, and published the first two multiparty protocols [9,11].

Most nonrepudiation protocols involve the services of a third party for suc-
cessful completion of the protocol [8,9,11,15,16]. There are protocols which
involve a third party in every execution of the protocol from party S to party
R [9,15]. These protocols are said to have on-line third party. The involvement of
third party in every execution can become a bottleneck therefore protocols were
proposed to limit the involvement of third party [8,11,16]. In such protocols, the
third party is not involved in every execution of the protocol. Such protocols are
said to have an off-line third party, and are known as optimistic nonrepudiation
protocols. Nonrepudiation has also found a number of applications [14,17].

The problem of designing nonrepudiation protocols is similar to the problem
of designing contract signing protocols. However, in contract signing protocols
the contract C to be signed is known to all parties before the execution of
contract signing protocol begins, while in nonrepudiation protocols the text x
is only known to party S before the execution of the nonrepudiation protocol
begins. Most contract signing protocols do make use of a trusted third party.
See for example [2,3]. However, the trusted third party in some of the published

Nonrepudiation Protocols Without a Trusted Party 5

contract signing protocols is rather weak [4,13]. For example, the trusted third
party in Rabin’s protocol [13] does not receive any messages from either of the
two parties S or R. Rather, Rabin’s third party periodically generates random
numbers and sends them to the original parties S and R.

Some published contract signing protocols do not employ a trusted third
party. See for example [5,7]. However, the opportunism requirement that is ful-
filled by these protocols is weaker than our opportunism requirement. Thus,
in each of these protocols, a party (S or R) may continue to execute the con-
tract signing protocol even after this party recognizes that it has collected all its
needed evidence with the hope that the cost of processing its collected evidence
can be reduced dramatically.

3 Nonrepudiation Protocols

In this section, we present our specification of a nonrepudiation protocol that
does not involve a third party. A nonrepudiation protocol from party S to party
R that does not involve a third party is a communication protocol between
parties S and R that fulfills the following requirements.

(a) Message Loss: During each execution of the protocol, each message that
is sent by either party (S or R, respectively) is eventually received by the
other party (R or S, respectively).

(b) Message Alternation: During any execution of the protocol, the two par-
ties S and R exchange a sequence of messages. First, party S sends msg.1
to party R. Then when party R receives msg.1, it sends back msg.2 to party
S, and so on. At the end when R receives msg.(r − 1), where r is an even
integer whose value is at least 2, R sends back msg.r to S. This exchange
of messages can be represented as follows:

S → R:msg.1
S ← R:msg.2
· · ·
S → R:msg.(r − 1)
S ← R:msg.r

(c) Message Signatures: Party S has a private key that only S knows and the
corresponding public key that all parties know. Party S uses its private key
to sign every message before sending this message to R so that S can’t later
repudiate that it has generated this message. Similarly, Party R has a private
key that only R knows and the corresponding public key that all parties
know. Party R uses its private key to sign every message before sending
this message to S so that R can’t later repudiate that it has generated this
message.

(d) Collected Evidence: Both parties S and R collect evidence during execu-
tion of the protocol. The evidence collected by party S is a subset of those

6 M. Ali et al.

messages received by party S (from party R). Similarly, the evidence col-
lected by party R is a subset of those messages received by party R (from
party S).

(e) Guaranteed Termination: Every execution of the protocol is guaranteed
to terminate in a finite time.

(f) Termination Requirement: Party S terminates only after S sends some
text to R and only after S receives from R sufficient evidence to establish
that R has indeed received the sent text from S. Similarly, party R termi-
nates only after R receives from S both the sent text and sufficient evidence
to establish that S has indeed sent this text to R.

(g) Opportunism Requirement: If during any execution of the protocol,
party S recognizes that it has already sent some text to R and has later
received from R sufficient evidence to establish that R has indeed received
this text, then S terminates. Similarly, if during any execution of the proto-
col, party R recognizes that it has received from S some text and sufficient
evidence to establish that S has indeed sent this text, then R terminates.

(h) Judge: Anytime after execution of the nonrepudiation protocol terminates,
each of the two parties, S or R, can submit its collected evidence to a
judge that can decide whether the submitted evidence is valid and should
be accepted or it is invalid and should be rejected. The decision of the judge
is final and legally binding on both S and R. To help the judge make the
right decision, we assume that the judge knows the public keys of S and R.
We also assume that the judge has a public key (that both S and R know)
and a corresponding private key (that only the judge knows). (Note that
the role of the judge is different than that of a trusted third party. The
trusted third party is used to generate and distribute the needed evidence
to the two parties, S and R. Therefore, the trusted third party is directly
involved during the execution of the nonrepudiation protocol. The judge,
however, is not directly involved during the execution of the protocol, and
it never generates nor distributes any part of the needed evidence to either
party. The judge only verifies the submitted evidence after it has already
been collected during execution of the protocol. In fact every nonrepudiation
protocol that has been published in the past has both a trusted third party
and a judge)

The opportunism requirement needs some explanation. Once party S recognizes
that it has already collected sufficient evidence to establish that party R has
indeed received the text from S, S concludes that it gains nothing by continuing
to participate in executing the protocol and so S terminates. (In this case, only
R may gain by continuing to participate in executing the protocol.)

Similarly, once party R recognizes that it has already collected sufficient
evidence to establish that party S has indeed sent the text to R, R concludes
that it gains nothing by continuing to participate in executing the protocol and
so R terminates.

Nonrepudiation Protocols Without a Trusted Party 7

Next, we state a condition, named the round-trip assumption and show in
the next section that adopting this assumption is both necessary and sufficient
to design nonrepudiation protocols from party S to party R that do not involve
a third party.

Round-Trip Assumption: Party R knows an upper bound t (in time units)
on the round trip delay from R to S and back to R.

4 Necessary and Sufficient Conditions for Nonrepudiation
Protocols

We prove that it is necessary to adopt the round-trip assumption when designing
nonrepudiation protocols from party S to party R that do not involve a third
party.

Theorem 1. In designing a nonrepudiation protocol from party S to party R,
that does not involve a third party, it is necessary to adopt the round-trip assump-
tion. (The proof of this theorem is omitted due to lack of space.)

Next, we prove that it is sufficient to adopt the round-trip assumption in order to
design a nonrepudiation protocol from party S to party R that does not involve
a third party.

Theorem 2. It is sufficient to adopt the round-trip assumption in order to
design a nonrepudiation protocol from party S to party R that does not involve
a third party.

Proof. We present a design of a nonrepudiation protocol from party S to party R
that does not involve a third party and show that correctness of this protocol is
based on adopting the round-trip assumption. Our presentation of this protocol
consists of four steps. In each step, we start with a version of the protocol then
show that this version is incorrect (by showing that it violates one of the require-
ments in Sect. 3). We then proceed to modify this protocol version in an attempt
to make it correct. After four steps, we end up with a correct nonrepudiation
protocol (that satisfies all eight requirements in Sect. 3).

First Protocol Version: In this protocol version, party S sends a txt message
to party R which replies by sending back an ack message. The exchange of
messages in this protocol version can be represented as follows.

S → R: txt
S ← R: ack

The txt message contains: (1) the message sender S and receiver R, (2) the text
that S needs to send to R, and (3) signature of the message using the private key
of the message sender S. Similarly, the ack message contains: (1) the message

8 M. Ali et al.

sender R and receiver S, (2) the text that S needs to send to R, and (3) signature
of the message using the private key of the message sender R.

The txt message is the evidence that R needs to collect and can later present
to the judge to get the judge to declare that the text in the message was indeed
sent by S to R. Similarly, the ack message is the evidence that S needs to collect
and can later present to the judge to get the judge to declare that the text in
the message was indeed received by R from S.

This protocol version is incorrect for the following reason. When R receives
the txt message, it recognizes that it has already collected sufficient evidence
to establish that S has indeed sent the text to R and so R terminates, by the
opportunism requirement, before it sends the ack message to S. Party S ends
up waiting indefinitely for the ack message that will never arrive violating the
guaranteed termination requirement.

To make this protocol version correct, we need to devise a technique by which
R does not recognize that it has collected sufficient evidence to establish that S
has indeed sent the text to R, even after R has collected such evidence.

Second Protocol Version: In this protocol version, party S sends n txt mes-
sages to party R, where n is a positive integer selected at random by S and is
kept as a secret from R. The exchange of messages in this protocol version can
be represented as follows.

S → R: txt.1
S ← R: ack.1
· · ·
S → R: txt.n
S ← R: ack.n

Each txt.i message contains: (1) the message sender S and receiver R, (2) the
text that S needs to send to R, (3) the sequence number of the message i, and
(4) signature of the message using the private key of the message sender S.
Similarly, each ack.i message contains: (1) the message sender R and receiver S,
(2) the text that S needs to send to R, (3) the sequence number of the message i,
and (4) signature of the message using the private key of the message sender R.

The txt.n message is the evidence that R needs to collect and can later
present to the judge to get the judge to declare that the text in the message was
indeed sent by S to R. Similarly, the ack.n message is the evidence that S needs
to collect and can later present to the judge to get the judge to declare that the
text in the message was indeed received by R from S.

When R receives the txt.n message from S, then (because R does not know
the value of n) R does not recognize that it has just received sufficient evidence
to establish that S has indeed sent the text to R. Thus, R does not terminate
and instead proceeds to send the ack.n message to S.

When S receives the ack.n message from R, then (because S knows the value
of n) S recognizes that it has just received sufficient evidence to establish that R

Nonrepudiation Protocols Without a Trusted Party 9

has received the text sent from S to R. Thus, by the opportunism requirement,
S terminates and R ends up waiting indefinitely for the txt.(n+1) message that
will never arrive violating the guaranteed termination requirement.

This protocol version is incorrect. To make it correct, we need to devise a
technique by which party R recognizes, after S terminates, that R has already
collected sufficient evidence to establish that S has indeed sent the text to R.

Third Protocol Version: This protocol version is designed by modifying the
second protocol version (discussed above) taking into account the adopted round-
trip assumption, namely that R knows an upper bound t (in time units) on the
round trip delay from R to S and back to R.

The exchange of messages in the third protocol version is the same as that in
the second protocol version. However, in the third protocol version, every time
R sends an ack.i message to S, R activates a time-out to expire after t time
units.

If R receives the next txt.(i + 1) before the activated time-out expires, then
R cancels the timeout. If the activated time-out expires before R receives the
next txt.(i + 1) message, then R recognizes that the last received txt.i message
is in fact the txt.n message and so R recognizes that it has already collected
sufficient evidence to establish that S has already sent the text to R and so R
terminates (by the opportunism requirement). Execution of this protocol version
can be represented as follows:

S → R: txt.1
S ← R: ack.1;R activates time-out
S → R: txt.2;R cancels time-out
· · ·
S → R: txt.n;R cancels time-out
S ← R: ack.n;R activates time-out; S terminates
time-out expires;R terminates

This protocol version still has a problem. After execution of the protocol ter-
minates, party R may decide to submit its collected evidence, namely the txt.n
message, to the judge so that the judge can certify that S has indeed sent the
text in the txt.n message. The judge can make this certification if it observes
that the sequence number of the txt.n message equals the random integer n that
S selected when execution of the protocol started. Unfortunately, the value of n
is not included in the txt.n message.

Similarly, after execution of the protocol terminates, party S may decide to
submit its collected evidence, namely the ack.n message, to the judge so that
the judge can certify that R has indeed received the text in the ack.n message.
The judge can make this certification if it observes that the sequence number of
the ack.n message equals the random integer n that S selected when execution
of the protocol started. Unfortunately, the value of n is not included in the ack.n
message.

10 M. Ali et al.

To solve these two problems, we need to devise a technique by which the
value of n is included in every txt.i message and every ack.i message such that
the following two conditions hold. First, the judge can extract the value of n
from any txt.i or ack.i message. Second, party R can’t extract the value of n
from any txt.i message nor from any ack.i message.

Fourth Protocol Version: In this protocol version, two more fields are added
to each txt.i message and each ack.i message. The first field stores the encryption
of n using a symmetric key KE that is generated by party S and is kept as a
secret from party R. The second field stores the encryption of the symmetric key
KE using the public key of the judge.

These two fields are computed by party S when execution of the protocol
starts and are included in every txt.i message before this message is sent from S
to R. When party R receives a txt.i message from party S, party R copies these
two fields from the received txt.i message into the next ack.i message before this
message is sent from R to S.

After execution of this protocol version terminates, party S can submit its
collected evidence, namely the last ack.i message that S has received from R, to
the judge so that the judge can examine the ack.i message and certify that R has
received the text in this message from S. The judge makes this certification by
checking, among other things, that the sequence number i of the ack.i message is
greater than or equal to n. The judge then forwards its certification to party S.

Similarly, after execution of this protocol version terminates, party R can
submit its collected evidence, namely the last txt.i message that R has received
from S, to the judge so that the judge can examine the txt.i message and certify
that S has sent the text in this message to R. The judge makes this certification
by checking, among other things, that the sequence number i of the txt.i message
is greater than or equal to n. The judge then forwards its certification to party R.

Note that the judge can certify at most one ack.i message from party S, and
at most one txt.i message from party R. This restriction forces S to send to the
judge only the last ack.i message that S has received from R. This restriction
also forces R to send to the judge only the last txt.i message that R has received
from S. ��

5 Nonrepudiation Protocols with Message Loss

In the remainder of this paper, we consider a richer class of nonrepudiation pro-
tocols where sent messages may be lost before they are received. Each protocol
in this class is required to fulfill the following requirements.

(a) Message Loss: During each execution of the protocol, each message that
is sent by either party (S or R, respectively) can be lost before it is received
by the other party (R or S, respectively).

(b) Message Alternation: During any execution of the protocol where no sent
message is lost, the two parties S and R exchange a sequence of messages.

Nonrepudiation Protocols Without a Trusted Party 11

First, party S sends msg.1 to party R. Then when party R receives msg.1,
it sends back msg.2 to party S, and so on. At the end when R receives
msg.(r − 1), where r is an even integer whose value is at least 2, R sends
back msg.r to S. This exchange of messages can be represented as follows:

S → R:msg.1
S ← R:msg.2
· · ·
S → R:msg.(r − 1)
S ← R:msg.r

(c) Message Signatures: This requirement is the same as the message signa-
ture requirement in Sect. 3.

(d) Collected Evidence: This requirement is the same as the collected evi-
dence requirement in Sect. 3.

(e) Guaranteed Termination: This requirement is the same as the guaran-
teed termination requirement in Sect. 3.

(f) Termination Requirement: This requirement is the same as the termi-
nation requirement in Sect. 3.

(g) Opportunism Requirement: This requirement is the same as the oppor-
tunism requirement in Sect. 3.

(h) Judge: This requirement is the same as the requirement of the judge in
Sect. 3.

Next, we state a condition, named the bounded-loss assumption. We then
show in the next section that adopting this assumption along with the round-
trip assumption (stated in Sect. 3) is both necessary and sufficient to design
nonrepudiation protocols from party S to Party R that do not involve a third
party and where sent messages can be lost.

Bounded-Loss Assumption: Party R knows an upper bound K on the num-
ber of messages that can be lost during any execution of the nonrepudiation
protocols.

6 Necessary and Sufficient Conditions for Nonrepudiation
Protocols with Message Loss

We prove that it is necessary to adopt both the round-trip assumption and the
bounded-loss assumption when designing nonrepudiation protocols from party
S to party R that do not involve a third party and where sent messages may be
lost.

Theorem 3. In designing a nonrepudiation protocol from party S to party R
that does not involve a third party and where sent messages may be lost, it
is necessary to adopt the round-trip assumption. (The proof of this theorem is
omitted due to lack of space.)

12 M. Ali et al.

Theorem 4. In designing a nonrepudiation protocol from party S to party R
that does not involve a third party and where sent messages may be lost, it is
necessary to adopt the bounded-loss assumption. (The proof of this theorem is
omitted due to lack of space)

Next, we prove that it is sufficient to adopt both the round-trip assumption and
the bounded-loss assumption in order to design a nonrepudiation protocol from
party S to party R that does not involve a third party and where sent messages
may be lost.

Theorem 5. It is sufficient to adopt both the round-trip assumption and the
bounded-loss assumption in order to design a nonrepudiation protocol from party
S to party R that does not involve a third party and where sent messages may
be lost.

Proof. In our proof of Theorem2, we adopted the round-trip assumption in order
to design a nonrepudiation protocol, which we refer to in this proof as protocol
P , from party S to party R that does not involve a third party and where no sent
message is ever lost. In the current proof, we adopt the bounded-loss assumption
in order to modify protocol P into protocol Q, which is a nonrepudiation protocol
from party S to party R that does not involve a third party and where sent
messages may be lost.

In protocol P , every time party R sends an ack.i message to party S, R acti-
vates a time-out to expire after t time units, where (by the round-trip assump-
tion) t is an upper bound on the round trip delay from R to S and back to R.
Because no sent message is ever lost in protocol P , then if the activated time-out
expires before R receives the next txt.(i + 1) message from S, R concludes that
S has already terminated, the next txt.(i + 1) message will never arrive, and R
has already collected sufficient evidence to establish that S has sent the text to
R. In this case, R also terminates fulfilling the opportunism requirement.

In protocol Q, every time party R sends an ack.i message to party S, R
activates a time-out to expire after t time units. However, because every sent
message in protocol Q may be lost, if the activated time-out expires before R
receives the next txt.(i + 1) message from S, then R concludes that either the
ack.i message or the txt.(i + 1) message is lost, and in this case R sends the
ack.i message once more to S and activates a new time-out to expire after t time
units, and the cycle repeats.

By the bounded-loss assumption, R knows an upper bound K on the number
of messages that can be lost during any execution of protocol Q. Therefore, the
cycle of R sending an ack.i message then the activated time-out expiring after t
time units can be repeated at most K times.

If the activated time-out expires for the (K + 1)-th time, then R concludes
that S has already terminated, the next txt.(i + 1) message will never arrive,
and R has already collected sufficient evidence to establish that S has sent the
text to R. In this case, R terminates fulfilling the opportunism requirement. ��

Nonrepudiation Protocols Without a Trusted Party 13

7 An �-Nonrepudiation Protocol

In the Proof of Theorem 2, we presented a nonrepudiation protocol from party
S to party R that does not involve a trusted party and where no sent message
is lost. In this section, we discuss how to extend this protocol to a nonrepudi-
ation protocol that involves � parties, namely P1, · · · , P�, and satisfies three
conditions: (1) � ≥ 2, (2) none of the involved parties in the protocol is a trusted
party, and (3) no sent message during any execution of the protocol is lost. We
refer to this extended protocol as an �-nonrepudiation protocol.

The objectives of an �-nonrepudiation protocol are as follows. For each two
parties in the protocol, say Pi and Pj, the protocol achieves two objectives:

1. One of the two parties, say Pi, is enabled to send the text to the other party
Pj and to receive from Pj sufficient evidence that can convince a judge that
Pj has indeed received the text from Pi.

2. The other party Pj is enabled to receive the text from Pi and to receive
sufficient evidence from Pi that can convince a judge that Pi has indeed sent
the text to Pj.

Therefore, each party Pi ends up collecting sufficient evidence from every other
party Pj indicating that either Pj has indeed received the text from Pi or Pj
has indeed sent the text to Pi.

Before we describe our �-nonrepudiation protocol, as an extension of the 2-
nonrepudiation protocol in the proof of Theorem 2, we need to introduce two
useful concepts: parent and child of a party Pi. Each of the parties P1, · · · ,
P (i − 1) is called a parent of party Pi. Also each of the parties P (i + 1), · · · ,
P� is called a child of party Pi. Note that party P1 has no parents and parent
P� has no children. Note also that the number of parents plus the number of
children for each party is (� − 1).
Execution of our �-nonrepudiation protocol proceeds as follows:

1. Party P1 starts by sending a txt.1 message to each one of its children.
2. When a party Pi, where i �= 1 and i �= �, receives a txt.1 message from each

one of its parents, party Pi sends a txt.1 message to each one of its children.
3. When party P� receives a txt.1 message from each one of its parents, party

P� sends back an ack.1 message to each one of its parents.
4. When a party Pi, where i �= 1 and i �= �, receives an ack.1 message from

each one of its children, party Pi sends an ack.1 message to each one of its
parents.

5. When party P1 receives an ack.1 message from each one of its children, party
P1 sends a txt.2 message to each one of its children, and the cycle consisting
of Steps 2, 3, 4, and 5 is repeated n times until P1 receives an ack.n message
from each one of its children. In this case, party P1 collects as evidence the
ack.n messages that P1 has received from all its children, then P1 terminates.

14 M. Ali et al.

6. Each party Pi, where i �= 1, waits to receive a txt.(n + 1) message (that will
never arrive) from each one of its parents, then times out after (i−1)*T time
units, collects as evidence the txt.n messages that Pi has received from all
its parents and the ack.n messages that Pi has received from all its children,
then Pi terminates.

Note that T is an upper bound on the round trip delay from any party Pi
to any other party Pj and back to Pi. It is assumed that each party, other than
P1, knows this upper bound T .

8 Concluding Remarks

In this paper, we address several problems concerning the design of nonrepudi-
ation protocols from a party S to a party R that do not involve a trusted third
party. In such a protocol, S sends to R some text x along with sufficient evidence
to establish that S is the party that sent x to R, and R sends to S sufficient
evidence that R is the party that received x from S.

Designing such a protocol is not an easy task because the protocol is required
to fulfill the following opportunism requirement. During any execution of the
protocol, once a party recognizes that it has received its sufficient evidence from
the other party, this party terminates right away without sending any message
to the other party. In this case, the other party needs to obtain its evidence
without the help of the first party. (To fulfill this opportunism requirement,
most published nonrepudiation protocols involve a trusted third party T so that
when one of the two original parties recognizes that it has already received its
sufficient evidence and terminates, the other party can still receive its evidence
from T .)

Our main result in this paper is the identification of two simple conditions
that are both necessary and sufficient for designing nonrepudiation protocols
that do not involve a trusted third party.

In proving that these two conditions are sufficient for designing nonrepudia-
tion protocols, we presented an elegant nonrepudiation protocol that is based on
the following novel idea. By the time party S recognizes that it has received its
evidence, party S has already sent to R its evidence, but R has not yet recognized
that it has received all its evidence. In this case, S terminates as dictated by
the opportunism requirement but R continues to wait for the rest of its evidence
from S. Eventually R times-out and recognizes that S will not send any more
evidence. This can only mean that party S has terminated after it has already
sent all the evidence to R. Thus, R terminates as dictated by the opportunism
requirement.

Acknowledgement. Research of Mohamed Gouda is supported in part by the NSF
award #1440035.

Nonrepudiation Protocols Without a Trusted Party 15

References

1. Ali, M., Reaz, R., Gouda, M.: Nonrepudiation protocols without a trusted party.
University of Texas at Austin, Department of Computer Science. TR-16-02 (regular
tech. report) (2016)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange.
In: Proceedings of the 4th ACM Conference on Computer and Communications
Security, CCS 1997, pp. 7–17. ACM, New York (1997)

3. Baum-Waidner, B.: Optimistic asynchronous multi-party contract signing with
reduced number of rounds. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 898–911. Springer, Heidelberg (2001)

4. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts (extended abstract). In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194,
pp. 43–52. Springer, Heidelberg (1985)

5. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

6. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC 1986, pp. 364–369. ACM, New York (1986)

7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

8. Hernandez-Ardieta, J.L., Gonzalez-Tablas, A.I., Alvarez, B.R.: An optimistic fair
exchange protocol based on signature policies. Comput. Secur. 27(7), 309–322
(2008)

9. Kremer, S., Markowitch, O.: A multi-party non-repudiation protocol. In: Qing, S.,
Eloff, J.H.P. (eds.) Information Security for Global Information Infrastructures.
IFIP, vol. 47, pp. 271–280. Springer, New York (2000)

10. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Comput. Commun. 25(17), 1606–1621 (2002)

11. Markowitch, O., Kremer, S.: A multi-party optimistic non-repudiation protocol. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, p. 109. Springer, Heidelberg (2001)

12. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted
third party. In: Second Conference on Security in Communication Networks,
Amalfi, Italy (1999)

13. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983)

14. Xiao, Z., Xiao, Y., Du, D.C.: Non-repudiation in neighborhood area networks for
smart grid. IEEE Commun. Mag. 51(1), 18–26 (2013)

15. Zhou, J., Gollman, D.: A fair non-repudiation protocol. In: 1996 IEEE Symposium
on Security and Privacy, pp. 55–61. IEEE Computer Society (1996)

16. Zhou, J., Gollmann, D.: An efficient non-repudiation protocol. In: 10th Proceedings
of Computer Security Foundations Workshopp, pp. 126–132. IEEE (1997)

17. Zhou, J., Lam, K.Y.: Undeniable billing in mobile communication. In: Proceedings
of the 4th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, pp. 284–290. ACM (1998)

Exploiting Concurrency in Domain-Specific Data
Structures: A Concurrent Order Book

and Workload Generator for Online Trading

Raphaël P. Barazzutti(B), Yaroslav Hayduk, Pascal Felber,
and Etienne Rivière

University of Neuchâtel, Neuchâtel, Switzerland
{raphael.barazzutti,yaroslav.hayduk,pascal.felber,

etienne.riviere}@unine.ch

Abstract. Concurrent programming is essential to exploit parallel
processing capabilities of modern multi-core CPUs. While there exist
many languages and tools to simplify the development of concurrent
programs, they are not always readily applicable to domain-specific prob-
lems that rely on complex shared data structures associated with vari-
ous semantics (e.g., priorities or consistency). In this paper, we explore
such a domain-specific application from the financial field, where a data
structure—an order book—is used to store and match orders from buyers
and sellers arriving at a high rate. This application has interesting char-
acteristics as it exhibits some clear potential for parallelism, but at the
same time it is relatively complex and must meet some strict guarantees,
notably w.r.t. the ordering of operations. We first present an accurate
yet slightly simplified description of the order book problem and describe
the challenges in parallelizing it. We then introduce several approaches
for introducing concurrency in the shared data structure, in increasing
order of sophistication starting from lock-based techniques to partially
lock-free designs. We propose a comprehensive workload generator for
constructing histories of orders according to realistic models from the
financial domain. We finally perform an evaluation and comparison of
the different concurrent designs.

1 Introduction

Stock exchanges provide fully automated order matching platforms to their
clients. For each security available on the market, a stock exchange broker main-
tains a structure called an order book, that agglomerates orders received from
clients (see Fig. 1). Orders can be of two kinds. Bid orders offer to buy a given
security at a target (maximal) price, while ask orders propose to sell it, also at
a target (minimal) price. A matching engine is in charge of comparing incoming
bid and ask orders, triggering trade operations when a match exists.

With the advent of high-frequency trading, clients expect very low latencies
from order matching platforms. The offered latency is actually a key commercial
argument for stock exchange services [1]. Brokers and traders expect the latencies
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 16–31, 2016.
DOI: 10.1007/978-3-319-46140-3 2

Exploiting Concurrency in Domain-Specific Data Structures 17

Fig. 1. An order book, as seen on real trading platform.

to be in the order of a few milliseconds. This means that the stock exchange
matching service needs to have internal latencies that are at least one order of
magnitude lower. To achieve such low latencies, designers of brokers started using
new communication mechanisms [2] to gain advantages of a few milliseconds
to even microseconds, sometimes resorting to dedicated hardware and custom
algorithms running on FPGAs [3].

Instead of concentrating on communication mechanisms, we focus in this
paper on the effectiveness of the matching engine in order to minimize ser-
vice latency and maximize throughput. The matching engine improvements are
largely independent from those of communication mechanisms: as an incom-
ing order must be processed by the matching engine before a response can be
sent to the clients, a reduced matching time will improve end-to-end latency.
State-of-the art matching engines thus far work sequentially [4], which means
that, despite the system capacity to receive multiple orders concurrently, the
processing of orders is handled one after the other. There is a great potential for
obtaining performance gains for the matching operation, by taking advantage of
the parallel processing capabilities of modern multi-core CPUs. We investigate
in this paper the support of concurrent order processing, and explore different
design strategies to introduce parallelism in the non-trivial data structure that is
the order book, starting from basic lock-based techniques to more sophisticated
partially lock-free algorithms. The primary objective of this study is to demon-
strate how one can turn a sequential data structure into a concurrent one by
carefully combining different synchronization mechanisms and reasoning about
concurrency under domain-specific constraints.

Order matching has interesting characteristics as it exhibits some clear poten-
tial for parallelism: there are multiple clients and two types of orders, and match-
ing takes place only at the frontier between the two. At the same time, it is not
trivial and presents a number of challenges that must be carefully addressed.

18 R.P. Barazzutti et al.

First, we need to ensure that the output of the matching process in the con-
current case is the same as in the sequential case, notably when it comes to
processing orders exactly once and according to arrival rank,1 because clients
are paying customers and real money is being traded. Second, as the system
handles a variety of messages types (add/remove, sell/buy), it is not clear how
to safely capture all message interactions in the concurrent case. Lastly, to ful-
fil an order, the matching engine can potentially access more than one existing
order already stored in the book. In the concurrent case this might lead to sev-
eral matching operations simultaneously accessing the same shared state, and
special care needs to be taken to avoid possible data corruption associated with
concurrency hazards. As such, the implementation need to be carefully designed
so that the synchronization costs and algorithmic complexity do not outweigh
the benefits associated with concurrent processing.

The first contribution of this work is the proposal and the evaluation of
domain-specific strategies for processing orders concurrently in the order book.
Specifically, the concurrent strategies we explore include: (1) a baseline thread-
safe design based on a single global lock; (2) a fine-grained design for locking
parts of the order book; and (3) several variants of partially lock-free designs,
which trade runtime performance for weaker consistency guarantees. The second
contribution of this work is the implementation of a synthetic workload generator
that complies with widely-accepted models [5,6]. We further use this workload
generator to assess the effectiveness of our concurrent matching algorithms.

2 Online Trading and the Order Book

We first describe the principle and guarantees for trading operations. We start
by defining some domain-specific terms. An order is an investor’s instruction
to a broker to buy (bid) or sell (ask) securities. There are two types of orders:
limit and market orders. A limit order specifies a maximum purchase price
or minimum selling price. A market order does not specify a price and will
be immediately matched with outstanding orders, at the best available price for
this security. The volume indicates the amount of securities in an order as an
integer value. The order book is a data structure for storing unfulfilled limit
orders sent for a particular security. It features two queues, one for asks and
one for bids orders. Orders stored in the book can be cancelled with a specific
command. Finally, the top of the book consists of the ask with the lowest price
and the bid with the highest price, and the difference between these two prices
is the spread.

An order book maintains two separate queues, one for bid orders, and one
for ask orders. Both data structures are organized in a way that facilitates the
fast extraction of the best order as well as the quick insertion of new orders. In
each of the queues, orders with the same price are aggregated, i.e., queues are
1 To avoid possible confusion with the word “order” used to designate trading requests

and for prioritizing operations (arrival and processing order), we will only use it in
the former sense and resort to alternative expressions for the latter.

Exploiting Concurrency in Domain-Specific Data Structures 19

Fig. 2. Internal structure of the order book.

organized as maps, where keys represent prices (with a granularity going up to
the cent) and values are pending limit orders for a particular price. Pending
orders for a particular price are sorted according to arrival rank and, thus, upon
arrival are stored in a first-in first-out (FIFO) queue (Fig. 2).

Matching occurs only during order processing, when an incoming ask order
satisfies some bid(s) or, vice versa, an incoming bid can be satisfied by some
ask(s). When a match occurs, the associated existing orders are removed from
the book. The priority of matching is driven by price, i.e., lowest selling prices
(resp., highest) are sold (bought) first. If multiple orders have the same price,
they are matched according to arrival time starting with the oldest. If there are
no pending order to process, the system is in a stable state where the spread is
positive and the two types of orders do not overlap.

To fulfil an order, the matching engine can “consume” more than one order
on the other side of the book. This happens when an incoming order matches
the best order on the opposite side of the order book, but it is not completely
fulfilled and continues to match the next best order. This aggregation process
stops once the incoming order has been filled completely, or when there are no
more orders that can be consumed given the price and volume constraints. The
remaining part of the incoming order is then added to the order book. Similarly,
when the already existing order in the order book cannot be fully matched with
the incoming order, the partially-matched order remains in the book with its
volume decreased by the volume subsumed by the transactions.

The pseudo-code for the baseline sequential matching algorithm is shown
in Algorithms 1 and 2. Sell and buy orders are stored it two separate heaps,
each holding FIFO queues with orders of identical price sorted according to
their arrival time. Queues are sorted by increasing price in the asks heap, and
by decreasing price in the bids heap. The algorithm matches incoming orders
against existing ones from the opposite heap, possibly adding them to the book
if they are not completely fulfilled. To keep the pseudo-code as simple as possible,
we assume that the heap at other side of the book is not empty when inserting
an order and we do not explicitly handle the creation and removal of the queues
in the heaps. This code is used as a basis for the concurrent variants presented
in Sect. 3.

20 R.P. Barazzutti et al.

Algorithm 1. Helper functions.
1: Type order is:
2: type: {LIMITED, MARKET} � Limited or market price?
3: operation: {BUY, SELL} � Buy or sell?
4: volume: integer � How many securities?
5: price: float � At what price?

. . .
6: id: integer � Timestamp (for concurrent algorithms)
7: status: {IDLE, MATCHING, REMOVED} � Status (for concurrent algorithms)

8: Type book is:
9: asks: heap of FIFO queues (orders of same price) � Sorted by increasing price

10: bids: heap of FIFO queues (orders of same price) � Sorted by decreasing price
. . .

11: function can match(node, order) � Can incoming order match node in book?
12: if order.operation = node.operation then � Need order of opposite type
13: return false
14: if order.type = MARKET then � Market orders always match
15: return true
16: if order.operation = SELL then
17: return order.price ≤ node.price

18: else
19: return order.price ≥ node.price

Algorithm 2. Sequential order insertion (single-threaded).
1: function handle order seq(order)
2: sell ← (order.operation = SELL)
3: while order.volume > 0 do
4: q ← top(sell ? book.bids : book.asks) � Non-empty top queue on other side
5: n ← first(q) � Top order in the queue
6: if ¬can match(n, order) then
7: q ← get(sell ? book.asks : book.bids, order.price) � Queue at price
8: push(q, order) � Store order in book (append to queue)
9: break

10: if n.volume > order.volume then
11: n.volume ← n.volume − order.volume
12: break
13: order.volume ← order.volume − n.volume
14: pop(q) � Remove top order from other heap

15: return SUCCESS

3 A Concurrent Order Book

We now describe different strategies for supporting concurrency in the order
book. This data structure is interesting because it is non-trivial and the matching
operation may be time-consuming (e.g., when an incoming order matches and
“consumes” many existing orders from the book). Hence, taking advantage of
the parallel processing capabilities of recent multi-core architectures is obviously
desirable.

Exploiting Concurrency in Domain-Specific Data Structures 21

It is, however, not easy to perform concurrent operations on the order book
while at the same time preserving consistency. Some synchronization is necessary
for correctness, but too much synchronization may hamper performance. We
will start by discussing simple synchronization techniques and gradually move
to more sophisticated strategies that achieve higher levels of concurrency.

In all concurrent approaches discussed below, requests to the order book are
handled and processed by a pool of threads. As we would like the order book to
yield the same output in a concurrent execution as when processing operations
one at a time, we need to process requests in the same sequence as they have been
received. We therefore insert incoming requests in a FIFO queue2 and assign to
each request a unique, monotonously increasing timestamp that we use to sort
operations (see Algorithm 3, lines 1–8). We will discuss later scenarios where
we can process some requests in a different sequence while still preserving the
linearizability of the order book operations.

Before discussing our strategies for handling concurrent operations, let us
first consider some observations about the specific properties of the order book.
First, matching always occur at the top of the book. Therefore, the matching
operation has interesting locality properties, and it will not conflict, for instance,
with operations that are “far enough” from the top of the book. Second, an order
that is matched upon insertion only needs to be inserted in the book if it is not
fully matched. We can thus identify two interesting common cases: (1) an order
is not inserted at the top of the book and hence no matching occurs, and (2) an
order inserted at the top of the book is fully subsumed by existing orders and
therefore does not need to be inserted in the book.

Finally, there are several scenarios where we can straightforwardly determine
that two concurrent limit orders do not conflict. For instance, insertions of an ask
and a bid can take place concurrently if there is no price overlap between them,
i.e., the ask has a higher price than the sell, as they cannot both yield a match.
As another example, insertions of two limit asks or two limit bids can take place
concurrently if they have different prices (i.e., they are in different queues) and
they do not both yield a match. These observations will be instrumental for the
design of advanced concurrency strategies.

3.1 Coarse-Grained Locking

We first consider the trivial approach of using a single lock (SGL) to serial-
ize accesses to the shared data structure. To simplify the presentation of con-
current algorithms, we assume that threads from the pool repeatedly execute
the function thread process to process one order from the incoming queue,
and the result of this function is then returned to the corresponding client. The
basic operating principle of the coarse-grained approach is shown in Algorithm3,
lines 9–14. Threads from the pool acquire the main lock, process the next order

2 We assume that this queue is thread-safe as processing threads may dequeue orders
concurrently with one another and with the (unique) thread that enqueues incoming
orders.

22 R.P. Barazzutti et al.

from the queue, and release the lock before the response is sent back to the client.
Hence, the processing of orders is completely serialized and no parallelism takes
place for this operation. The main advantage of this approach is its simplicity,
which also makes the algorithm easy to prove correct. It will serve as a baseline
for the rest of the paper.

Algorithm 3. Coarse-grained locking and common functions.
1: Variables:
2: incoming: FIFO queue (orders) � Thread-safe queue for incoming orders
3: ts: integer � Timestamp for incoming orders (initially 0)
4: sgl: lock � Single global lock (initially unlocked)

. . .

5: upon receive(order): � Reception of an order from a client (single thread)
6: order.id ← ts � Assign unique timestamp
7: push(incoming, order) � Append order to queue
8: ts ← ts + 1

9: function thread processsgl � Processing of an order by a thread
10: order ← pop(incoming) � Take next order from queue
11: lock(sgl) � Serialize processing
12: r ← handle order seq(order) � Use sequential algorithm
13: unlock(sgl)
14: return r

3.2 Two-Level Fine-Grained Locking

We now explore opportunities for finer-grained locking to increase the level of
concurrency. We start from the observation that two threads accessing limit
orders from the book with different prices, i.e., located in different queues in the
heaps, can do so concurrently without conflicts. Therefore, it is only necessary
to control access to the queues that are accessed by both threads.

The principle of the two-level locking strategy is shown in Algorithm4. As
before, threads first attempt to acquire the main lock (line 3). Once a given
thread acquires the main lock, it traverses the queues in the opposite heap of the
book in sequence, starting from the top, and locks each visited queue individually
(lines 7–12). This process stops as soon as the accumulated volume of orders in
already traversed queues reaches the volume of the incoming order. In case of
a limit buy or ask order, the process also stops whenever visiting a queue at
a price that is higher, respectively lower, than the price of the incoming order.
Finally, if the incoming order has not been fully matched, it needs to be inserted
in the book and we also lock the queue associated with the price of the incoming
order (lines 13–15). The algorithm then releases the main lock (line 16). It can
now safely perform the actual matching operations on the previously locked
queues, including the optional insertion of the incoming order in the book if some
unmatched volume remains, and release the individual locks as soon as they are

Exploiting Concurrency in Domain-Specific Data Structures 23

Algorithm 4. Fine-grained locking.
1: function thread processfgl � Processing of an order by a thread
2: order ← pop(incoming) � Take next order from queue
3: lock(sgl) � Serialize traversal of heap
4: sell ← (order.operation = SELL)
5: v ← order.volume
6: q ← top(sell ? book.bids : book.asks) � Top queue at other side
7: while v > 0 do
8: if ¬can match(first(q), order) then
9: break

10: lock(q) � Acquire lock on queue
11: v ← v − volume(q) � Subtract volume of all orders in queue
12: q ← next(q) � Next queue from heap

13: if (v > 0) then
14: q ← get(sell ? book.asks : book.bids, order.price) � Queue at price
15: lock(q) � Acquire lock on queue

16: unlock(sgl)
17: r ← handle order seqfgl(order) � Use sequential algorithm
18: return r

function handle order seqfgl ≡ handle order seqsgl � Algorithm 2
. . . unlock(q) . . . � All locks released once no longer needed (before line 15)

no longer needed. To that end, we simply reuse the sequential algorithms with
the addition of lock release, which happen right before line 15 in Algorithm2 or
whenever a queue becomes empty.3

This approach provides higher concurrency than coarse-grained locking
because the algorithm holds the main lock for a shorter duration, when deter-
mining which queues from the book will be accessed. To ensure consistency, it
uses a second level of locks for concurrency control at the level of individual
queues. Therefore, multiple orders can execute concurrently if they operate in
different parts of the order book, but they are serialized if the sets of queues
they access overlap.

3.3 Toward Lock-Free Algorithms

The final stage in our quest for concurrency is to try to reduce the dependencies
on locks, whether coarse- or fine-grained, as they introduce a serial bottleneck
and may hamper progress. In particular, a thread that is slow, faulty, or pre-
empted by the OS scheduler while holding a lock may prevent other threads
from moving forward.

Our objective is thus to substitute locking operations by lock-free alterna-
tives. To that end, we first need to remove the locks protecting the queues and
permit threads to enqueue and dequeue orders concurrently. We do so by replac-
ing the queues in Algorithm 1, lines 9–10, by a concurrent heap structure for

3 Some implementation details, such as avoiding a second traversal of the heap by
keeping track of locked queues, are omitted for simplicity.

24 R.P. Barazzutti et al.

backing the order book. Specifically, we use a concurrent map,4 which imposes
a custom sorting of the orders it contains. First, orders are sorted according to
prices, and then, according to the timestamp.

To handle concurrent accesses explicitly, we also add in the order object an
additional status flag that we use to indicate whether the order is being processed
or has been removed by some thread. We modify this flag in a lock-free manner
using an atomic compare-and-set (CAS) operation.

The order.status flag (Algorithm 1, line 7) can be in one of three states: IDLE
indicates that the order is not being processed by any thread; MATCHING specifies
that some thread is processing the order; and REMOVED means that the order,
although still present in the order book, has been logically deleted.

We have developed three variants of the concurrent, almost5 lock-free algo-
rithm, with each having different guarantees. The first algorithm, which we call
LF-Greedy, provides the least guarantees in terms of the sequence in which
orders are processed. The second algorithm, LF-Priority, prevents an incoming
order from consuming new orders that have arrived later. The last algorithm,
LF-FIFO, additionally prevents incoming orders arriving later from stealing
existing orders from incoming orders arriving earlier.

For the sake of simplicity, the pseudo-code as presented further does not
show the handling of market orders. Instead it only considers the more general
case of limit orders. In the case of market orders, if there is no or only a partial
match, the unmatched orders are returned back to the issuer. We furthermore
omit obvious implementation-specific details, e.g., an incoming order is naturally
matched against the opposite side of the order book.

The LF-Greedy Algorithm. The LF-Greedy algorithm (see Algorithm 5,
omitting text within square brackets) works as follows. After the incoming order
order has been received and scheduled for processing, the worker thread obtains
the best order n from the order book’s heap. Orders in our lock-free algorithms
can be marked as MATCHING to indicate that they are being processed, or as
REMOVED when logically deleted but still physically present in the order book. As
such, the thread first checks if n has been marked as removed (line 5). If so, it
removes n from the order book (line 6) and continues to another iteration of the
algorithm. Otherwise, we know that n has not been removed, and we need to
check whether some other thread has already started processing n, in which case
we wait until the processing has finished by polling the n.status flag (line 8).
Thereafter, we attempt to change the status of n from IDLE to MATCHING using
CAS (line 9). If the CAS operation succeeds, then we know that the order was
indeed idle (note that it could have been removed in the meantime, or taken over
for matching by another thread) and the thread has successfully taken exclusive

4 java.util.concurrent.ConcurrentSkipListMap.
5 While the algorithms do not use explicit locks, they are not completely “lock-free”

as in some situations a thread may be blocked waiting for the status flag to be
updated by another thread. Techniques based on “helping” could be used to avoid
such situations, at the price of increased complexity in the algorithms. We therefore
slightly abuse the word “lock-free” in the rest of the paper.

Exploiting Concurrency in Domain-Specific Data Structures 25

Algorithm 5. Greedy [and priority] order insertion algorithm.
1: function thread processGreedy/Priority � Processing of an order by a thread
2: order ← pop(incoming)
3: while order.volume > 0 do
4: n ← 1st node from heap [such that n.id < order.id]
5: if n.status = REMOVED then � Order logically removed?
6: heap ← heap \ {n} � Yes: remove order from book
7: continue
8: wait until n.status �= MATCHING � Avoid useless CAS

9: if ¬cas(n.status, IDLE, MATCHING) then � Take ownership of node
10: continue
11: if ¬can match(n, order) then � Can we match order?
12: heap ← heap ∪ {order} � No: store order in book
13: n.status ← IDLE
14: break
15: if n.volume > order.volume then � Order fully satisfied
16: n.volume ← n.volume − order.volume
17: n.status ← IDLE
18: break
19: order.volume ← order.volume − n.volume � Node fully consumed
20: n.status ← REMOVED
21: return SUCCESS

ownership over it. If the CAS operation fails, then some other thread must have
just changed the order’s status to either MATCHING or REMOVED and we continue
to another iteration of the algorithm.

After taking ownership of n, we need to check if the price of the incoming
order order could be matched with the price of n. If not, we store order in
the order book and release n by setting its status to IDLE (line 13), effectively
finishing the matching process of the incoming order. Otherwise, if the prices of
n and order can be matched, we check if the incoming order order could fully
consume n. If so, we decrease the incoming order’s volume (line 19) and mark
n as REMOVED. Note, that we do not physically remove n from the heap at this
step; instead, we rely on other threads’ help for removing it lazily (lines 5 and 6).
If the volume of n is larger than order can consume, we decrease it and unlock
n (line 17). This implies that the outstanding volume of n remains in the order
book and can be consumed by other threads.

If the incoming order has a large volume, it can potentially consume multiple
orders from the book. In this version of the algorithm we do not enforce any
restrictions on which existing orders can be consumed by the incoming order,
i.e., concurrent threads might consume existing orders that are interleaved in
the heap.

The LF-Priority Algorithm. The LF-Priority algorithm provides more
guarantees in terms of sequence in which incoming orders consume existing
orders stored in the book. Specifically, when matching an incoming order order
with the content of the book, we want to only consider existing orders that have

26 R.P. Barazzutti et al.

been received strictly before order has been received. To that end, we rely on the
timestamp order.id assigned to each order upon arrival (Algorithm3, lines 6).
We then modify Algorithm5 by adding an extra condition (line 4 between square
brackets), which restricts order to only process orders from the order book hav-
ing a smaller timestamp. This condition can be supported straightforwardly in
our implementation because of the key we use to store orders in the concurrent
heap. Indeed, we use the same concurrent map as before and, when retrieving
the best order, we apply an extra filter condition to select orders having keys
with timestamps that are smaller than the currently processed order.

The LF-FIFO Algorithm. To introduce the LF-FIFO algorithm, we first
informally discuss where LF-Priority is lacking and how its shortcomings can
be addressed. In Algorithm 5, if the thread processing an order is delayed (e.g.,
preempted by the OS scheduler), an order arriving later might consume the best
outstanding orders in the book. This is a problem if one needs to enforce that
orders arriving first are given precedence over orders arriving later. Furthermore,
concurrent orders may consume interleaved orders from the book, i.e., an incom-
ing order may be matched against a set of existing orders that does not represent
a continuous sequence in the book, hence breaking atomicity. The main idea of
LF-FIFO is therefore to prevent threads from consuming orders from the book
before the processing of incoming orders received earlier has finished.

To provide these stricter guarantees, we employ ideas from the hand-over-
hand locking [7] technique. The principle is that, when traversing a list, the
lock for the next node needs to be obtained while still holding the lock of the
current node. That way, threads cannot overtake one another. The pseudo-code
of the LF-FIFO is show in Algorithm 6. A thread processing an incoming order
order, which would consume multiple existing orders, first performs a CAS on
the first best order (line 12), marking it as removed in the end (line 26). Then
it saves the first best order in a local variable (line 28) and continues to another
iteration, during which it select the second best node (line 5) and perform a CAS
to atomically change its status to MATCHING. Upon success and only then do we
physically remove the first best node from the heap (line 15).

The process describing order removals is distinctly different from that which
was presented in prior algorithms. In LF-Greedy and LF-Priority algo-
rithms, when an arbitrary thread detects that an order has been marked as
REMOVED (Algorithm 5, line 5), it helps by removing that order (i.e., lazy removal
with helping). In contrast, instead of assisting in the removal of n from the
heap, the LF-FIFO algorithm restarts from the beginning (line 9), relying on
the thread that has marked n as REMOVED to also physically remove it from the
heap (lines 15 and 30). Therefore, the LF-FIFO algorithms provides weaker
progress guarantees but better fairness between threads.

Exploiting Concurrency in Domain-Specific Data Structures 27

Algorithm 6. Order insertion algorithm with FIFO properties.
1: function thread processFIFO � Processing of an order by a thread
2: order ← pop(incoming)
3: p ← ⊥ � Previous node fully matched by thread
4: while order.volume > 0 do
5: n ← 1st node n �= p from heap such that n.id < order.id
6: if n = ⊥ then � Any matching order in book?
7: heap ← heap ∪ {order} � No: store order in book
8: break
9: if n.status = REMOVED then � Order logically removed?

10: continue � Yes: wait until physically removed

11: wait until n.status �= MATCHING � Avoid useless CAS

12: if ¬cas(n.status, IDLE, MATCHING) then � Take ownership of node
13: continue
14: if p �= ⊥ then
15: heap ← heap \ {p} � Delayed removal
16: p ← ⊥
17: if ¬can match(n, order) then � Can we match order?
18: heap ← heap ∪ {order} � No: store order in book
19: n.status ← IDLE
20: break
21: if n.volume > order.volume then � Order fully satisfied
22: n.volume ← n.volume − order.volume
23: n.status ← IDLE
24: break
25: order.volume ← order.volume − n.volume � Node fully consumed
26: n.status ← REMOVED
27: n.id ← order.id � Prioritize concurrent insertions
28: p ← n � Keep in book (to avoid being overtaken)

29: if p �= ⊥ then
30: heap ← heap \ {p} � Remove last consumed order

31: return SUCCESS

4 Generating Workloads

Besides algorithms for exploiting concurrency in the order book operation,
we contribute in this section a workload generator that allows evaluating the
throughput of the matching operation under realistic workload assumptions.

The sensitive nature of financial data and the strict rights of disclosures
signed between clients of stock quote operators typically prevent from using real
datasets and call instead for appropriate models for synthetic data generation.
Models emerged in economics and econophysics (i.e., physicists’ approaches to
tackle problems in economics) such as the ones by Maslov [5], Bartolozzi [8] and
Bak et al. [9]. These models allow understanding the properties of the order
book in terms of the total volume of securities available or requested at each
price point in the bid and ask queues. This aggregated information is enough
for the targeted users of these models, who are interested in modelling and
implementing investment strategies based on the total volume of securities at
each price point, independently from their origin or destination. The distribution

28 R.P. Barazzutti et al.

of individual order sizes has been studied separately, and shown to follow a power
law by several authors [6,10,11]. Some models that consider individual orders
nonetheless use a unit order size rather than a distribution in the interest of
simplicity [5,12].

We implement a variation of the model proposed by Maslov [5], which uses
simple rules and which output has been shown to compare well with the behav-
iour of a real limit order-driven market. The original model assumes however,
similarly to [12], that all orders have the same volume of one single security.
This simplification is problematic for testing a matching engine, in particular
for testing its behaviour and performance in the presence of partially matched
orders. We therefore extend the model by allowing orders to feature arbitrary
volumes and assign volumes following a power law distribution based on findings
made by Maslov and Mills in [6]. We note that another limitation of this model
is that it does not consider changes to existing orders stored in the order book,
unlike for instance the Bak-Paczuski-Shubik model [9]. We choose not to address
this limitation as it does not fundamentally limit the representativeness of the
behaviour of clients using the order book for what concerns the matching algo-
rithm itself. The expiry mechanism for existing orders proposed by the model,
along with new insertions is indeed enough to model dynamics.

We now proceed to detailing the model itself. An average price p is fixed
at the beginning of the generation, which starts by the generation of one bid
and one ask limit order. Thereafter, orders are generated by first deciding on
their operation (bid or ask), with equal priority. Each order is a limit order with
priority qlo, and a market order otherwise. The price attached to a limit order
is generated based on the base price b of the best available order on the other
side of the order book: the cheapest ask for a bid, and the largest bid for an
ask. A random variation Δ, generated randomly in {1, 2, ...,Δmax} is applied:
the price for the order is set to p(t) + Δ for a bid, or to p(t) − Δ for an ask. The
volume v for each order is generated according to the power law identified in [6].
For market orders, P [v] ∝ v−1−µmarket where μmarket = 1.4. For limit orders,

P [v] ∝ 1
v e− (A−ln(v))2

B , where A = 7 and B = 4. These values for μmarket, A and
B are the ones suggested in the original paper [6], as are the values we use for
the other parameters: qlo = 1

2 , and Δ = 4. We use an initial price of p = 1, 000.
In order to prevent limit orders staying indefinitely in the order book, an

expiry mechanism removes unmatched limit orders from the order book after
λmax time steps. The expiry mechanism prevents the accumulation of limit
orders having prices that differ significantly from the current market price.
In the real market, this operation is performed by either traders or by the
stock exchange itself. For instance, the New York Stock Exchange purges all
unmatched orders at the end of the day. Maslov indicates that for any reason-
ably large value of the cut-off parameter λmax, the model produces the same
scaling properties of price fluctuations. We use λmax = 1, 000 as in the original
paper.

Exploiting Concurrency in Domain-Specific Data Structures 29

5 Evaluation

We experiment on two different architectures. The first is an Intel i7-5960X
Haswell CPU (8 cores, 16 hardware threads with hyperthreading enabled) with
32 GB of RAM. The second is an IBM POWER8 S822 server (10 cores, 80 hard-
ware threads) with 32 GB of RAM. We run our experiments in OpenJDK’s
Runtime Environment, build 1.8.0 40, with default options.

For all concurrent order book implementations considered, we process 100,000
orders in total. We vary the thread count from 1 to the maximum number of
threads supported by each architecture. We run all experiments 10 times and
present the average. The orders are generated offline using the model from Sect. 4,
kept in memory and replayed directly to each of the order book implementations.
For each of the experiments performed, we also plot the obtained speedup related
to the baseline sequential matching engine running with a single thread.

For all the tests, we observe that the lock-free approaches outperform fine-
grained locking. The latter approach does not scale beyond 4 threads for the
Haswell architecture and 8 threads for POWER8. When more threads are used,
however, its performance does not degrade significantly and remains relatively
constant. In contrast, when looking at the lock-free approaches, we see that
they scale almost linearly. Also, we see that the more guarantees in terms of the
sequence in which orders are processed a lock-free algorithm provides, the slower
it performs. The variations in performance are, however, minimal.

Fig. 3. Order processing time (average over 100,000) and speedup for different order
book implementations on the Intel Haswell (top) and IBM POWER8 (bottom) archi-
tectures.

30 R.P. Barazzutti et al.

6 Related Work

Strategies for optimizing the operation of matching platforms can be broadly
divided into two categories: the reduction of latency and optimizations related to
order processing. To achieve ultra-low latencies, high-frequency trading servers
are typically housed in the same building as the matching engine servers [2].
Additionally, novel communication technologies, such as microwaves, are gaining
popularity as they promise to convey orders faster than fibre optic [13].

Significant effort was also spent towards efficient middleware systems for
order handling, besides the matching operation itself. LMAX Disruptor [14] is
an integrated trading system running on the JVM. It implements the reception
and pre-processing of orders. It stores the received orders in a queue with order-
ing guarantees similar to the incoming queue used in our algorithms. Disrup-
tor features a simple single-threaded matching engine that fetches and process
orders from the queue sequentially, but it also allows the implementation of
more sophisticated matching or order processing engines including those using
multiple-threads implementation. It is therefore complementary to our study,
which concentrates on the internal of the matching engine.

Although, to the best of our knowledge, there does not exist concurrent
lock-free implementations of matching engines, substantial effort has been ded-
icated to developing efficient single-threaded implementations. For instance,
Shetty et al. [15] propose such an implementation for the .NET platform. The
authors detail the steps required for locking the order book when accessing it
from multiple threads concurrently, similarly to our baseline coarse-grain locking
algorithm.

In addition to the models for generating orders that we mentioned in Sect. 4,
several authors investigated the dynamics of order books. Huang et al. [16] pro-
pose a market simulator to help compute execution costs of complex trading
strategies. They do so by viewing the order book as a Markov chain and by
assuming that the intensities of the order flows depend only on the current state
of the order book. Cont et al. [17] propose using a continuous-time stochastic
model, capturing key empirical properties of order book dynamics. Alternatively,
Kercheval et al. [18] use a machine learning framework to build a learning model
for each order book metric with the help of multi-class support vector machines.

7 Conclusion

We proposed in this paper strategies for performing order matching in the order
book in a concurrent manner. We started with two lock-based implementations
using coarse- and fine-grained locking designs. We then proposed three algo-
rithms that do not use explicit locks and provide different guarantees in terms of
the sequence of order processing. We also contributed a workload generator that
allows us to evaluate the throughput of order matching under realistic workload
assumptions. Experimental results suggest that, although the fine-grained app-
roach scales only up to a few cores, by carefully substituting locking operations

Exploiting Concurrency in Domain-Specific Data Structures 31

by lock-free alternatives, we can achieve high performance and good scalabil-
ity. Future work might target combining our concurrent matching engine with
LMAX Disruptor, forming a cohesive framework where both, order dispatch and
matching, are executed in an almost lock-free manner.

References

1. Ende, B., Uhle, T., Weber, M.C.: The impact of a millisecond: measuring latency
effects in securities trading. In: Wirtschaftsinformatik Proceedings, Paper 116
(2011)

2. WIRED: Raging bulls: how wall street got addicted to light-speed trading (2012).
http://www.wired.com/2012/08/ff wallstreet trading/2/

3. Leber, C., Geib, B., Litz, H.: High frequency trading acceleration using FPGAs.
In: International Conference on Field Programmable Logic and Applications, FPL
(2011)

4. Preis, T.: Ökonophysik - Die Physik des Finanzmarktes. Springer, Wiesbaden
(2011)

5. Maslov, S.: Simple model of a limit order-driven market. Phys. A Stat. Mech. Appl.
278(3), 571–578 (2000)

6. Maslov, S., Mills, M.: Price fluctuations from the order book perspective - empirical
facts and a simple model. Phys. A Stat. Mech. Appl. 299(1), 234–246 (2001)

7. Lea, D.: Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, Boston (1996)

8. Bartolozzi, M.: Price variations in a stock market with many agents. Eur. Phys. J.
B 78(2), 265–273 (2010)

9. Bak, P., Paczuski, M., Shubik, M.: Price variations in a stock market with many
agents. Phys. A Stat. Mech. Appl. 246(3–4), 430–453 (1997)

10. Gabaix, X.: Power laws in economics and finance, Technical report. National
Bureau of Economic Research (2008)

11. Bouchaud, J.-P., Mézard, M., Potters, M.: Statistical properties of stock order
books: empirical results and models. Quant. Finan. 2(4), 251–256 (2002)

12. Khanna, K., Smith, M., Wu, D., Zhang, T.: Reconstructing the order book, Tech-
nical report. Stanford University (2009)

13. Singla, A., Chandrasekaran, B., Godfrey, P.B., Maggs, B.: The internet at the speed
of light. In: 13th ACM Workshop on Hot Topics in Networks, HotNets (2014)

14. Thompson, M., Farley, D., Barker, M., Gee, P., Stewart, A.: Disruptor: high
performance alternative to bounded queues for exchanging data between con-
current threads. White paper (2011). http://disruptor.googlecode.com/files/
Disruptor-1.0.pdf

15. Shetty, Y., Jayaswal, S.: The order-matching engine. In: Practical .NET for Finan-
cial Markets. Apress, pp. 41–103 (2006)

16. Huang, W., Lehalle, C.-A., Rosenbaum, M.: Simulating, analyzing order book data:
the queue-reactive model. J. Am. Stat. Assoc. 110(509), 107–122 (2013)

17. Cont, R., Stoikov, S., Talreja, R.: A stochastic model for order book dynamics. J.
Am. Stat. Assoc. 58(3), 549–563 (2010)

18. Kercheval, A.N., Zhang, Y.: Modelling high-frequency limit order book dynamics
with support vector machines. Quant. Financ. 15(8), 1315–1329 (2015)

http://www.wired.com/2012/08/ff_wallstreet_trading/2/
http://disruptor.googlecode.com/files/Disruptor-1.0.pdf
http://disruptor.googlecode.com/files/Disruptor-1.0.pdf

Fault Tolerant P2P RIA Crawling

Khaled Ben Hafaiedh(B), Gregor von Bochmann, Guy-Vincent Jourdan,
and Iosif Viorel Onut

EECS, University of Ottawa, Ottawa, ON, Canada
hafaiedh.khaled@uottawa.ca, {bochmann,gvj}@eecs.uottawa.ca,

vioonut@ca.ibm.com

http://ssrg.site.uottawa.ca/

Abstract. Rich Internet Applications (RIAs) have been widely used in
the web over the last decade as they were found to be responsive and
user friendly compared to traditional web applications. Distributed RIA
crawling has been introduced with the aim of decreasing the crawling
time due to the large size of RIAs. However, the current RIA crawling
systems do not allow for tolerance to failures that occur in one of their
components. In this paper, we address the resilience problem when crawl-
ing RIAs in a distributed environment and we introduce an efficient RIA
crawling system that is fault tolerant. Our approach is to partition the
RIA model that results from the crawling over several storage devices
in a peer-to-peer (P2P) network. This makes the distributed data struc-
ture invulnerable to the single point of failure. We introduce three data
recovery mechanisms for crawling RIAs in an unreliable environment:
The Retry, the Redundancy and the Combined mechanisms. We evalu-
ate the performance of the recovery mechanisms and their impact on the
crawling performance through analytical reasoning.

Keywords: Fault tolerance · Data recovery · Rich internet applica-
tions · Web crawling · Distributed RIA crawling · P2P Networks

1 Introduction

In a traditional web application, each web page is identified by its URL. The
basic function of a crawler in traditional web applications consists of downloading
a given set of URLs, extracting all hyperlinks contained in the pages that follow
from loading these URLs, and iteratively downloading the web pages that follow
from these hyperlinks. Distributed traditional web crawling has been introduced
to reduce the crawling time by distributing the work among multiple crawlers. In
a concurrent environment, each crawler explores only a subset of the state space
by contacting one or more units that are responsible for storing the application
URLs and coordinating the exploration task among crawlers, called controllers.
In a centralized distributed system, the single controller is responsible for stor-
ing a list of the newly discovered URLs and gives the instruction of loading each
unexplored URL to an idle crawler [6]. However, this system has a single point
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 32–47, 2016.
DOI: 10.1007/978-3-319-46140-3 3

Fault Tolerant P2P RIA Crawling 33

of failure. P2P traditional crawling systems have been introduced to avoid the
single point of failure and to continue the crawling task in case of a node failure,
possibly at a reduced level, rather than failing completely. In this system, the
URLs are partitioned over several controllers in which each controller is respon-
sible for a set of URLs. Crawlers can find locally the identifiers of a database
by mapping the hash of each discovered URL information using the Distributed
Hash Table (DHT) [11], i.e. each URL is associated to a single controller in
the DHT. P2P systems [4] have been used in traditional web crawling and are
well-known for their decentralization and scalability.

As the web has evolved towards dynamic content, modern web technologies
allowed for interactive and more responsive applications, called Rich Internet
Applications (RIAs), which combine client-side scripting with new features such
as AJAX (Asynchronous JavaScript and XML) [13]. In a RIA, JavaScript func-
tions allow the client to modify the currently displayed page and to execute
JavaScript events in response to user input asynchronously, without having the
user to wait for a response from the server. A RIA model [15] is composed of
states and transitions, where states describe the distinct pages (DOM instances)
and transitions illustrate the possible ways to move from one page to another
by triggering a JavaScript event at the user interface.

The triple (SourceState, event, DestinationState) describes a transition in
a RIA model where event refers to the triggered JavaScript event, SourceState
refers to the page where the event is triggered and DestinationState refers to the
next page that follows from triggering the event. The status of a RIA transition
can take the following values: free, assigned or executed. A free transition refers
to the initial status of the transition where the destination state is not known. An
assigned transition refers to a transition that has been assigned to a crawler, and
an executed transition is a transition that has been explored, i.e. the destination
state is known. The task of crawling a RIA application consists of finding all the
RIA states, starting from the original application URL. In order to ensure that
all states have been identified, the crawler has to explore all transitions as it is
not possible to know a priori whether the execution of a transition will lead to an
already explored state or not [15]. This introduces new challenges to automate
the crawling of RIAs as they result in a large number of states derived from each
single URL. In RIA crawling, a Reset consists of returning to the original page
by loading the RIA URL, called SeedURL. Efficiency of crawling a RIA is to
find all RIA states as quickly as possible by minimizing the number of events
executed and Resets [15]. The greedy strategy has been suggested by Peng et al.
[16] for crawling RIAs due to its simplicity. The basic greedy strategy with a
single crawler consists of exploring an event from the crawler’s current state if
there is any unexplored event. Otherwise, the crawler executes an unexplored
event from another state by either performing a Reset, i.e. returning to the initial
state and retracing the steps that lead to this state [15], or by using a shortest
path algorithm [1] to find the closest state with a free event without performing
a Reset.

34 K.B. Hafaiedh et al.

A distributed decentralized scheme for crawling large-scale RIAs was recently
introduced by Ben Hafaiedh et al. [19]. It is based on the greedy strategy and
consists of partitioning the search space among several controllers over a chordal
ring [5]. In this system, RIA states are partitioned over several controllers in
which each controller is responsible for only a subset of states. Crawlers can find
locally the identifiers of a controller by searching for the controller responsible
for a given state by means of the state identifier, i.e. by mapping the hash
of each discovered state information using the Distributed Hash Table (DHT),
which allows for avoiding the single point of failure. In this system, the RIA
crawling performs as follows, as introduced in Fig. 1: The controller responsible
for storing the information about a state (Current Controller) is contacted when
a crawler reaches a new state by sending a search message, called StateInfo
message. The StateInfo message consists of the information about the newly
reached state along with all transitions on this state. Initially, the status of
each transition is free and the destination state of the transition is not known
by the controller. For each StateInfo message sent, the controller returns in
response a new event to be executed on this state by sending a message, called
ExecuteEvent message. However, if there is no event to be executed on the
current state of a visiting crawler, the controller associated with this state may
look for another state with a free event among all the states it is responsible
for. Upon sending an ExecuteEvent message, the controller updates the status
of the transition to assigned. The crawler then executes the assigned transition
and sends the result of the execution back to the visited controller by means of
an AckJob message. Upon receiving an AckJob message, the controller updates
the destination state of the transition and changes the status of the transition to
executed. The controller responsible for storing the information about the newly
reached state (Next Controller) is then contacted by the crawler.

However, this system is not fault tolerant, i.e. lost states and transitions are
not recovered when failures occur at the crawlers and controllers. In this paper,
we address the resilience problem when using the proposed P2P RIA crawling
system introduced by Ben Hafaiedh et al. [19] when controllers and crawlers are
vulnerable to node failures, and we show how to make the P2P crawling system
fault tolerant. Moreover, we introduce three recovery mechanisms for crawling
RIAs in a faulty environment: The Retry, the Redundancy and the Combined
mechanisms. Notice that the proposed RIA fault tolerance handling could be
applied to any structured overlay network. However, the network recovery may
depend on the structured overlay applied. The rest of this paper is organized as
follows: The related work is described in Sect. 2. Section 3 introduces the fault
tolerant P2P RIA crawling. Section 4 introduces the data recovery mechanisms.
Section 5 evaluates the performance of the data recovery mechanisms and their
impact on the crawling performance. A conclusion is provided in the end of the
paper with some future directions for improvements.

Fault Tolerant P2P RIA Crawling 35

Fig. 1. The P2P RIA crawling introduced by Ben Hafaiedh et al. [19] during the
exploration phase.

2 Related Work

In traditional web crawling, increasing the crawling throughput has been
achieved by using multiple crawlers in parallel and partitioning the URL space
such that each crawler is associated with a different subset of URLs. The coor-
dination may be achieved either through a central coordination process [9] that
is responsible for coordinating the crawling task, or through a structured peer-
to-peer network in order to assign different subsets of URLs to different crawlers
[11]. Various decentralized architectures using DHTs have been proposed over
different structured topologies in traditional web crawling such as Chord [5],
CAN [2], Tapestry [12] and Pastry [3], which are well known for their scalability
and low latency. However, their performance may degrade when nodes are join-
ing, leaving or failing, due to their tightly controlled topologies. This requires
some resilience mechanisms on top of each of these architectures.

In RIA crawling, a distributed centralized crawling scheme [17] with the
greedy strategy has been introduced, allowing each crawler to explore only a
subset of a RIA simultaneously. In this system, all states are maintained by
a single entity, called a controller, which is responsible for storing information
about the new discovered states including the available events on each state.
The crawler retrieves the required graph information by communicating with
the single controller, and executes a single available event from its current state

36 K.B. Hafaiedh et al.

if such an event exists, or moves to another state with some available events based
on the information available in the single database. The crawling is completed
when all transitions have been explored. Maintaining the RIA states within a
single unit in a faulty environment may be problematic since a failure occurring
within the single controller will result in the loss of the entire graph under
exploration.

A P2P RIA crawling system [18] has been proposed where crawlers share
information about the RIA crawling among other crawlers directly, without
relying on the single controller. In this system, each crawler is responsible for
exploring transitions on a subset of states from the entire RIA graph model by
associating each state to a different crawler. Crawlers are required to broadcast
every newly executed transition to all other crawlers to find the shortest path
from their current state to the next transition to be explored. Although this
approach is appealing due to its simplicity, it is not fault tolerant. Moreover, it
may introduce a high message overhead due to the sharing of transitions in case
the number of crawlers is high.

A scalable P2P crawling system [19] using Chord [5] has been recently intro-
duced to avoid the single point of failure. In this system, the P2P structure
is composed of multiple controllers which are dispersed over a P2P network as
shown in Fig. 2. In this system, each state is associated with a single controller.
Moreover, a set of crawlers is associated with each controller, where crawlers
are not part of the P2P network. Notice that both crawlers and controllers are
independent processes running on different computers.

Fig. 2. Distribution of states and crawlers among controllers: each state is associated
with one controller, and each crawler gets access to all controllers through a single
controller it is associated with.

Fault Tolerant P2P RIA Crawling 37

In this system, controllers maintain the topology of the P2P RIA crawling
system and are responsible for storing information about the RIA crawling. If
a controller fails, the connectivity of the overlay network is affected and some
controllers become unreachable from other controllers. Since a P2P network is
a continuously evolving system, it is required to continuously repair the overlay
to ensure that the P2P structure remains connected and supports efficient look-
ups. The maintenance of the P2P network consists of maintaining its topology
as controllers join and leave the network and repairing the overlay network when
failures occur among controllers independently of the RIA crawling.

There are mainly two different approaches for maintaining a structured P2P
network when failures occur: The active and the passive approaches. In the active
approach, a node may choose to detect failures only when it actually needs to con-
tact a neighbor. A node nx may perform actively the repair operation upon detect-
ing the disappearance of another node ny in the network, i.e. the node nx trying
to reach ny becomes aware that ny is not responsive. Node nx then runs a failure
recovery protocol immediately to recover from the failure of ny using ID(ny). One
drawback of the active approach is that only the routing table of some neighbor-
ing nodes are updated when a node ny fails. The passive approach solves theses
inaccuracies by running periodically a repair protocol by all nodes to maintain
their routing tables up-to-date, called the idealization protocol [8]. The idealiza-
tion protocol runs periodically by every single controller in the network where each
controller attempts to update its routing information. Liben-Nowell et al. [8] sug-
gests to use the passive approach for detecting failures to avoid the risk that all
of a node neighbors fail before it notices any of the failures. In this paper, we use
the passive approach for maintaining the structured overlay network.

The structured P2P overlay network allows for partial resilience only, i.e.
avoiding the single point of failure allows the non-faulty crawlers and controllers
to resume the crawling task in case of a node failure, after the reestablishment
of the overlay network, rather than failing completely. However, this system is
not fully resilient since lost states and transitions are not recovered after the
network recovery.

3 Fault Tolerant RIA Crawling

In the fault tolerant P2P RIA crawling system we propose, crawlers and con-
trollers must achieve two goals in parallel: Maintaining the P2P network and
performing the Fault Tolerant RIA crawling using a data recovery mechanism.

3.1 Assumptions

– The unreliable P2P network is composed of a set of controllers, and a set of
crawlers is associated with each of these controllers where both crawlers and
controllers are vulnerable to Fail-stop failures, i.e. they may fail but with-
out causing harm to the system. We also assume a perfect failure detection
and reliable message delivery which allows nodes to correctly decide whether
another node has crashed or not.

38 K.B. Hafaiedh et al.

– Crawlers can be unreliable as they are only responsible for executing an
assigned job, i.e. they do not store any relevant information about the state
of the RIA. Therefore, a failed crawler may simply disappear or leave the sys-
tem without being detected, assuming that some other non-faulty crawlers
will remain crawling the RIA. However, for the RIA crawling to progress,
there must be at least one non-faulty crawler that is able to achieve the RIA
crawling in a finite amount of time.

3.2 Protocol Description

A major problem we address in this section is to make the proposed P2P RIA
crawling system introduced by Ben Hafaiedh et al. [19] resilient to node fail-
ures, i.e. to allow the system to achieve the RIA crawling when controllers and
crawlers may fail. The fault-tolerant crawling system is required to discover all
states of a RIA despite failures, so that the entire RIA graph is explored. In the
P2P crawling system, controllers are responsible for storing part of the discov-
ered states. If a controller fails, the set of states maintained by the controller
is lost. For the P2P crawling system to be resilient, controllers are required to
apply a data recovery mechanism so that lost states and their transitions can be
eventually recovered after the reestablishment of the overlay network. For the
data recovery to be consistent, i.e. all lost states can be recovered when fail-
ures occur, each newly reached state by a crawler must be always stored by the
controller the new state is associated with before the transition leading to the
state is assumed to be executed. If a new state is not stored by the controller it
is associated with, the controller performing a data recovery will not be aware
of the state and the data recovery becomes inconsistent if the state is lost. As
a consequence, the state becomes unreachable by crawlers and the RIA graph
cannot be fully explored.

In Fig. 1, an acknowledgment for an assigned transition was sent by a crawler
informing the controller responsible for the transition about the destination state
that follows from the transition execution. However, in a faulty environment, a
crawler may fail after having sent the result of a transition execution to the pre-
vious controller and before contacting the next controller. As a consequence, the
destination state of the executed transition may never be known by the next con-
troller and data recovery of the state cannot be performed. For the P2P crawling
system to be resilient, every newly discovered state must be stored by the next con-
troller before the executed transition is acknowledged to the previous controller.
Therefore, we introduce a change to the P2P crawling described in Fig. 1 to make
it fault tolerant, as shown in Fig. 3: When the next controller responsible for a
newly reached state by a crawler is contacted, the controller stores the newly dis-
covered state and forwards the result of the transition execution, i.e. an AckJob
message, to the previous controller. As a consequence, the controller responsible
for the transition can only update the destination state of the transition after the
newly reached state is stored by the next controller. Moreover, the fault-tolerant
P2P system requires each assigned transition by a controller to be acknowledged

Fault Tolerant P2P RIA Crawling 39

Fig. 3. The fault tolerant P2P RIA crawling during the exploration phase.

before a given time-out. When the time-out expires due to a failure, the transition
is reassigned by the controller to another crawler at a later time.

4 Data Recovery Mechanisms

The data recovery mechanisms allow for either recovering lost states a failed
controller was responsible for, reassigning all transitions on the recovered states
to other crawlers and rebuilding the RIA graph model, or for making back-up
copies of the RIA information on neighboring controllers when a newly reached
state or an executed transition is known by a controller so that crawlers can
resume crawling from where a failed controller has stopped. We introduce three
data recovery mechanisms to achieve the RIA crawling task properly despite
node failures, as follows:

4.1 Retry Strategy

The Retry strategy [10] consists of replaying any erroneous task execution, hop-
ing that the same failure will not occur in subsequent retries. The Retry strategy
may be applied to the P2P RIA crawling system by re-executing all lost jobs
a failed controller was responsible for. When a controller becomes responsible
for the set of states a faulty controller was responsible for, the controller allows

40 K.B. Hafaiedh et al.

crawlers to explore all transitions from these states again. However, since all
states held by the failed controller disappear, the new controller may not have
the knowledge about the states the failed controller was responsible for and
therefore can not reassign them. To overcome this issue, each controller that
inherits responsibility from a failed controller may collect lost states from other
controllers.

The state collection operation consists of forwarding a message, called
CollectStates message, which is sent by a controller replacing a failed one. The
message is sent to all other controllers and allows them to verify if the ID of
any destination state of executed transitions they maintain belongs to the set of
states the sending controller is responsible for; such state will be appended to the
message. This can be performed by including the starting and ending keys defin-
ing the set of state IDs the sending controller is responsible for as a parameter
within the CollectStates message. A controller receiving its own CollectStates
message considers the transitions on the collected states as un-explored. A sit-
uation may arise during the state collection operation where a lost state that
follows from a transition execution is not found by other controllers. In this case,
a controller responsible for a transition leading to the lost state must have also
failed. The transition will be re-executed and the controller responsible for the
destination state of the transition will be eventually contacted by the executing
crawler and therefore becomes aware about the lost state. For the special case
where the initial state can be lost, a transition leading to the initial state may
not exists in a RIA. As a consequence, the CollectStates message may not be
able to recover the initial state. To overcome this issue, a controller that inherits
responsibility from a failed controller always assumes that the initial state is
lost and asks a visiting crawler to load the SeedURL again in order to reach the
initial state. The controller responsible for the initial state is then contacted by
the crawler and becomes aware about the initial state.

4.2 Redundancy Strategy

The Redundancy strategy is a strategy based on Redundant Storage [10] and
consists of maintaining back-up copies of the set of states that are associated with
each controller, along with the set of transitions on each of these states and their
status, on the successors of each controller. The main feature of this strategy is
that states that were associated with a failed controller and their transitions can
be recovered from neighboring controllers, which allows for reestablishing the
situation that was before the failure i.e. the new controller can start from where
the failed controller has stopped. This strategy consists of immediately propa-
gating an update from each controller to its r back-up controllers in the overlay
network when a new relevant information is received, where r is the number of
back-up controllers that are associated with each controller, i.e. a newly discov-
ered state or a newly executed transition becomes available to the controller.
When a newly reached state is stored by a controller, the controller updates its
back-up controllers with the new state before sending an acknowledgment to

Fault Tolerant P2P RIA Crawling 41

the previous controller. This ensures that every discovered state becomes avail-
able to the back-up controllers before the transition is acknowledged. Note that
the controller responsible for the new state must receive an acknowledgment of
reception from all back-up controllers before sending the acknowledgment. On
the other hand, each executed transition that becomes available to the previous
controller is also updated among back-up controllers before the result of the
transition is locally acknowledged to the previous controller.

4.3 Combined Strategy

One drawback of the Redundancy strategy is that an update is required for each
newly executed transition received by a controller. This may be problematic in
RIA crawling since controllers may become overloaded. The Combined strategy
overcomes this issue by periodically copying the executed transitions a controller
maintains so that if the controller fails, a portion of the executed transitions
remains available to the back-up controller, and the lost transitions that have not
been copied have to be re-executed again. The advantage of using the Combined
strategy is that all executed transitions maintained by a controller are copied
one time at the end of each update period rather than copying every newly
executed transition, as introduced by the Redundancy strategy. Note that the
state collection operation used by the Retry strategy is required by the Combined
strategy since not all states are recovered when a failure occurs.

5 Evaluation

We compare the efficiency of the Retry, the Redundancy and the Combined
strategies in terms of the overhead they introduce during the exploration phase as
controllers fail. We use the following notation: tt is the average time required for
executing a new transition, T is the total crawling time with normal operation,
c is the average communication delay of a direct message between two nodes,
n is the number of controllers and λf is the average failure rate of a node in
the P2P overlay network, which is of the order of 1 failure per hour per node.
Moreover, since the recovery of the overlay network is performed in parallel and
is independent of the RIA crawling, we ignore the delay introduced by running
the idealization protocol and we assume that queries are resolved with the ideal
number of messages after a short period of time after the failure of a controller.
We also assume that there are no simultaneous failures of successive controllers,
which means that only one back-up copy is maintained by each controller, i.e.
r is equal to 1. Notice that this simplified model may be extended to allow
simultaneous failures among controllers, with the condition that r back-up copies
must be maintained by each controller to allow r simultaneous correlated failures,
where r < n.

We performed a simulation study on experimental data-sets in a real exe-
cution environment, and measurements from the simulation results are used as

42 K.B. Hafaiedh et al.

parameters in the following analytical evaluation. One of the tested real large-
scale applications we consider in this study is the Bebop1 RIA. It consists of 5,082
states and 468,971 transitions with a reset cost that is equivalent to 3 transition
executions. The average communication delay c is 1 ms. For a crawling system
composed of 100 controllers and 1000 crawlers, the average transition execution
delay tt is 0.3 ms. The delay introduced by each data recovery mechanism, when
a controller fails, is described in the following.

5.1 Retry Strategy

When a controller fails, all states associated with the controller are lost and all
transitions from these states have to be re-executed. Since states are randomly
distributed among controllers, the fraction of transitions to be re-executed when
a controller fails is of the order of 1/n. Assuming that a controller fails in the
middle of the total crawling period T , the delay introduced by the failure of a
controller is equivalent to λf .T/(2.n). Additionally, the state collection operation
results in a delay of c.(n−1) units of time before the message is received back by
the neighbor responsible for the recovered states, which is very small compared
to the first delay and could be neglected. Therefore, the overhead of the Retry
strategy is equivalent to (λf .T)/(2.n).

5.2 Redundancy Strategy

In the Redundancy strategy, the update operations are performed concurrently.
When a controller fails, all states associated with the controller along with the
executed transitions on these states are recovered by the Redundancy strategy.
To do so, each result of a newly executed transition that becomes available to
a controller is updated on its successor before the transition is locally updated.
However, since the next controller responsible for sending the result of the exe-
cuted transition is not required to wait for the transition to be acknowledged
before finding a job for the visiting crawler, the delay introduced by the transi-
tion update operation is very short and therefore can be ignored.

Finally, a controller noticing a change on its list of successors due to a failed
neighbor updates its new successor with all states and transitions the controller
maintains and waits for an acknowledgment of reception from the back-up con-
troller before proceeding, resulting in one additional update operation per failure
to be performed with a delay of 2c units of time, assuming that the size of the
message is relatively small. Notice that the update operation delay increases
as the size of the data included in the message increases. The overhead of the
Redundancy strategy is given by (2.c)/(tt).

1 http://www.alari.ch/people/derino/apps/bebop/index.php/ (Local version: http://
ssrg.eecs.uottawa.ca/bebop/).

http://www.alari.ch/people/derino/apps/bebop/index.php/
http://ssrg.eecs.uottawa.ca/bebop/
http://ssrg.eecs.uottawa.ca/bebop/

Fault Tolerant P2P RIA Crawling 43

5.3 Comparison of the Retry and the Redundancy Strategies When
Controllers Are Not Overloaded

Preliminary analysis of experimental results [17] have shown that a controller
can support up to 20 crawlers before becoming a bottleneck. In this section,
we assume that each controller is associated with at most 20 crawlers so that
controllers are not overloaded.

Figure 4 compares the the overhead of the Retry and the Redundancy Strate-
gies with respect to the P2P node failure failure λf when controllers are not over-
loaded. Figure 4 shows that the Redundancy strategy significantly outperforms
the Retry strategy as the number of failures increases. However, the Redun-
dancy strategy may not remain efficient compared to the Retry strategy when
controllers are overloaded, due to the repetitive back-up update of every executed
transition required for redundancy.

Fig. 4. Comparing the overhead of the Retry and the Redundancy Strategies with
respect to the failure rate, assuming that controllers are not overloaded.

5.4 Combined Strategy

The Combined data recovery strategy consists of periodically copying the exe-
cuted transitions a controller maintains so that, if the controller fails, a portion
of the executed transitions remains available in the back-up controller, and the
number of lost transitions that have not been copied have to be re-executed
again. Let Nt be the number of executed transitions maintained by a given con-
troller per update period. The update period, i.e. the time required for executing
Nt transitions, called Tp, is given by:

Tp = Nt.tt units of time (1)

The overhead introduced for fault handling using the combined data recov-
ery strategy includes two parts: The redundancy management and the retry
processing operations. We aim to minimize the sum of the two operations which
depends on two parameters: The update period Tp and the failure rate λf .

44 K.B. Hafaiedh et al.

Fig. 5. Measurements of the processing delay p for updating the database for an
increasing number of copied transitions.

Redundancy Management Delay: We measure by simulation the processing
time required for updating the database with back-up transitions and we plot
the average delay required for processing the back-up updates with an increasing
number of transitions with a crawling system composed of 100 controllers and
1000 crawlers.

Based on the processing time measurements of Fig. 5, we obtain the linear
equation OverheadRedundancy as a function of the number of copied transitions
per update period Nt, as follows:

OverheadRedundancy = 0.0001094.Nt + 0.00030433 (2)

The curve of OverheadRedundancy corresponds to the delay required for
processing the update of backup transitions called p. The delay required for
processing one back-up copy is Tp.p/tt units of time, where p is shown in Fig. 5.
Moreover, there is an additional communication delay required for sending the
backup copy and receiving the acknowledgment back from the back-up controller
of 2.c time units. Therefore, the total delay introduced by the redundancy man-
agement operation at the end of each period, called Tbp, is given by:

Tbp =
Tp.p

tt
+ 2.c (3)

Retry Processing Delay: The Retry Processing operation consists of re-
executing, after a failure, the lost transitions that were executed after the last
redundancy update operation. Assuming that failures occur on average in the
middle of an update period, the retry processing delay is given by:

Trp =
λf .T 2

p

2
(4)

Fault Tolerant P2P RIA Crawling 45

Total Overhead Introduced by the Combined Strategy: The overhead
introduced by the Combined strategy is given by:

OverheadCombinedStrategy =
Tbp + Trp

Tp
=

λf .Tp

2
+

2.c

Tp
+

p

tt
(5)

The minimum overhead is obtained when d(Overhead)/d(Tp) = 0. We have:

Tp = 2
√

c

λf
(6)

The value of Tp with the minimum Combined strategy overhead is shown in
Fig. 6. If λf is low, Tp is high, i.e. many transitions are executed before the next
update operation, allowing for prioritizing the Retry strategy over the Redun-
dancy strategy, hoping that failures are unlikely to occur in the future. In con-
trast, if λf is high, Tp becomes low and a few transitions are executed before the
next update operation, allowing for prioritizing the Redundancy strategy over
the Retry strategy since failures are likely to occur in the future.

Fig. 6. Minimum overhead of the combined strategy.

Comparison of the Data Recovery Mechanisms: Analytical results show
a high delay related to the Retry strategy compared to the Redundancy strategy
when controllers are underloaded. Moreover, the Combined strategy outperforms
the Redundancy strategy when controllers are overloaded by periodically copy-
ing the executed transitions a controller maintains so that if the controller fails,
a portion of the executed transitions remains available in the back-up controller,
which allows for significantly reducing the number of updates performed com-
pared to the Redundancy strategy.

46 K.B. Hafaiedh et al.

6 Conclusion

We have presented a resilient P2P RIA crawling system for crawling large-scale
RIAs by partitioning the search space among several controllers that share the
information about the explored RIA, which allows for fault tolerance, when both
crawlers and controllers are vulnerable to crash failures. We defined three differ-
ent data recovery mechanisms for crawling RIAs in a faulty environment: The
Retry, the Redundancy and the Combined strategies. The Redundancy strat-
egy outperformed the Retry strategy when controllers are not overloaded since
it allows for reestablishing the situation that was before the failure, while the
Retry strategy results in a high delay due to the repetitive execution of lost tran-
sitions. However, the Combined strategy outperforms the Redundancy strategy
when controllers are overloaded by reducing the number of updates among back-
up controllers. This makes the Combined strategy the best choice for crawling
RIAs in a faulty environment when controllers are overloaded. However, there
is still some room for improvement: We plan to evaluate the impact of the data
recovery strategies on the crawling performance when controllers are overloaded
through simulation studies.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

2. Ratnasamy, S., et al.: A scalable content-addressable network. In: Proceedings of
ACM SIGCOMM (2001)

3. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

4. Schollmeier, R.: A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proceedings of IEEE International
Conference on Peer-to-Peer Computing, Linkping, Sweden (2001)

5. Stoica, I., et al.: Chord: a scalable peer-to-peer look-up service for internet appli-
cations. In: Proceedings of ACM SIGCOMM, San Diego, California, USA (2001)

6. Cho, J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the 11th Interna-
tional Conference on World Wide Web, WWW, vol. 2 (2002)

7. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable net-
works. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, Philadelphia, Pennsylvania, USA, pp. 94–103 (2002)

8. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing, pp. 233–242 (2002)

9. Shkapenyuk, V., Suel, T.: Design and implementation of a high performance dis-
tributed Web crawler. In: Proceedings of the 18th International Conference on
Data Engineering (2002)

10. Hwang, S., Kesselman, C.: A flexible framework for fault tolerance in the grid. J.
Grid Comput. 1, 251–272 (2003)

11. Boldi, P., et al.: UbiCrawler: a scalable fully distributed Web crawler. Softw. Pract.
Exp. 34, 711–726 (2004)

Fault Tolerant P2P RIA Crawling 47

12. Zhao, Y., et al.: Tapestry: a resilient global-scale overlay for service deployment.
In: IEEE J. Sel. Areas Commun. (2004)

13. Paulson, L.D.: Building rich web applications with Ajax. Computer 38, 14–17.
IEEE Computer Society (2005)

14. Li, X., Misra, J., Plaxton, C.G.: Concurrent maintenance of rings. In: proceedings
of the 23rd ACM Symposium on Principles of Distributed Computing, pp. 126–148
(2006)

15. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., Von Bochmann, G.,
Jourdan, G.V., Onut, I.V.: Crawling rich internet applications: the state of the
art. In: Conference of the Center for Advanced Studies on Collaborative Research,
Markham, Ontario, Canada, pp. 146–160 (2012)

16. Peng, Z., et al.: Graph-based AJAX crawl: mining data from rich internet appli-
cations. In: Proceedings of the International Conference on Computer Science and
Electronic Engineering, pp. 590–594 (2012)

17. Mirtaheri, S.M., Von Bochmann, G., Jourdan, G.V., Onut, I.V.: GDist-RIA
crawler: a greedy distributed crawler for rich internet applications. In: Noubir,
G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 200–214. Springer,
Heidelberg (2014)

18. Mirtaheri, S.M., Bochmann, G.V., Jourdan, G.-V., Onut, I.V.: PDist-RIA crawler:
a peer-to-peer distributed crawler for rich internet applications. In: Benatallah, B.,
Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part II.
LNCS, vol. 8787, pp. 365–380. Springer, Heidelberg (2014)

19. Ben Hafaiedh, K., Von Bochmann, G., Jourdan, G.V., Onut, I.V.: A scalable peer-
to-peer RIA crawling system with partial knowledge. In: Noubir, G., Raynal, M.
(eds.) NETYS 2014. LNCS, vol. 8593, pp. 185–199. Springer, Heidelberg (2014)

Nearest Neighbors Graph Construction:
Peer Sampling to the Rescue

Yahya Benkaouz1(B), Mohammed Erradi1, and Anne-Marie Kermarrec2

1 Networking and Distributed Systems Research Group,
ENSIAS, Mohammed V University in Rabat, Rabat, Morocco

y.benkaouz@um5s.net.ma, mohamed.erradi@gmail.com
2 INRIA Rennes, Rennes, France
anne-marie.kermarrec@inria.fr

Abstract. In this paper, we propose an efficient KNN service, called
KPS (KNN-Peer-Sampling). The KPS service can be used in various
contexts e.g. recommendation systems, information retrieval and data
mining. KPS borrows concepts from P2P gossip-based clustering proto-
cols to provide a localized and efficient KNN computation in large-scale
systems. KPS is a sampling-based iterative approach, combining ran-
domness, to provide serendipity and avoid local minimum, and cluster-
ing, to ensure fast convergence. We compare KPS against the state of
the art KNN centralized computation algorithm NNDescent, on multiple
datasets. The experiments confirm the efficiency of KPS over NNDescent:
KPS improves significantly on the computational cost while converging
quickly to a close to optimal KNN graph. For instance, the cost, expressed
in number of pairwise similarity computations, is reduced by ≈23 % and
≈49 % to construct high quality KNN graphs for Jester and MovieLens
datasets, respectively. In addition, the randomized nature of KPS ensures
eventual convergence, not always achieved with NNDescent.

Keywords: K-Nearest Neighbors · Clustering · Sampling · Randomness

1 Introduction

Methods based on nearest neighbors are acknowledged as a basic building block
for a wide variety of applications [12]. In an n object system, a K-nearest-
neighbors (KNN) service provides each object with its k most similar objects,
according to a given similarity metric. This builds a KNN graph where there is
an edge between each object and its k most similar objects. Such a graph can
be leveraged in the context of many applications such as similarity search [5],
machine learning [15], data mining [22] and image processing [8]. For instance,
KNN computation is crucial in collaborative filtering based systems, providing
users with items matching their interests (e.g. Amazon or Netflix). For instance,
in a user-based collaborative filtering approach, the KNN provides each user
with her closest ones, i.e. the users which have the most interests in common.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 48–62, 2016.
DOI: 10.1007/978-3-319-46140-3 4

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 49

This neighborhood is leveraged by the recommendation system to provide users
with items of interest, e.g. the most popular items among the KNN users.

The most straightforward way to construct the KNN graph is to rely on
a brute-force solution computing the similarity between each pair of nodes (in
the rest of this paper, we call a node an element of the system and the KNN
graph. A node can refer to an object or a user for instance). Obviously the high
complexity of such an approach, O(n2) in a n node system, makes this solution
usable only for small datasets. This is clearly incompatible with the current
Big Data nature of most applications [4]. For instance, social networks generate
a massive amount of data (e.g. on Facebook, 510,000 comments, 293,000 status
updates and 136,000 photo uploads are generated every minute). Processing such
a huge amount of data to extract meaningful information is simply impossible
if an approach were to exhaustively compute the similarity between every pair
of nodes in the system. While traditional clustering approaches make use of
offline generated KNN graphs [15,20], they are not applicable in highly dynamic
settings where the clusters may evolve rapidly over time and the applications
relying on the KNN graph expect low latencies. Hence, a periodic recomputation
of the KNN graph is mandatory. The main challenge when applying KNN to very
large datasets is to drastically reduce the computational cost.

In this paper, we address this challenge by proposing a novel KNN com-
putation algorithm, inspired from fully decentralized (peer-to-peer) clustering
systems. More specifically, peer-to-peer systems are characterized by the fact
that no peer has the global knowledge of the entire system. Instead, each peer
relies on local knowledge of the system, and performs computations using this
restricted sample of the system. Yet the aggregated operations of all peers make
the system converge towards a global objective. In this paper, we present KPS
(KNN-Peer-Sampling), a novel sampling-based service for KNN graph construc-
tion that combines randomness to provide serendipity and avoid local minimum,
and clustering to speed up the convergence therefore reducing the overall cost
of the approach. Instead of computing the similarity between a node and all
other nodes, our approach relies on narrowing down the number of candidates
with which each node should be compared. While a sampling approach has also
been proposed in NNDescent [13], acknowledged as one of the most efficient
solutions to the KNN problem currently, we show in our experiments that KPS
achieves similar results with respect to the quality of the KNN graph while dras-
tically reducing the cost. In addition, KPS avoids the local minimum situation
of NNDescent and ensures that the system eventually converges.

To summarize, the contributions of this paper are: (i) the design of a novel,
scalable KNN graph construction service that relies on sampling, randomness
and localized information to quickly achieve, at low cost, a topology close to the
ideal one and eventually ensures convergence. Although we focus on a centralized
implementation of KPS, it can also be implemented on a decentralized or hybrid
architecture, precisely due to its local nature; and (ii) an extensive evaluation
of KPS and a comparison with the state of the art KNN graph construction

50 Y. Benkaouz et al.

algorithm NNDescent, on five real datasets. The results show that KPS provides
a low-cost alternative to NNDescent.

The remainder of this paper is structured as follows: Sect. 2 presents the
suggested KPS. Section 3 describes the experimental setup. Section 4 discusses
the results. Section 5 presents related works. Finally, Sect. 6 presents conclusions
and expected future work.

2 The KNN Peer Sampling Service

KPS is a novel service that starting from a random graph topology, iteratively
converges to a topology where each node is connected to its k nearest neighbors
in the system. The scalability of KPS relies on the fact that instead of computing
the similarity of a node with every other node in the system, only local informa-
tion is considered at each iteration. This sample, referred as the candidate set, is
based only on the neighborhood information available in the KNN graph. This
significantly reduces the number of similarity computations needed to achieve
the KNN topology.

We consider a set D of n nodes (|D| = n). Each node p is associated with
a profile. A profile is a structured representation of a node p, containing multi-
ple features that characterize a node. For instance, in user-based collaborative
filtering recommendation systems, a node represents a user u. The user profile
in this context is typically a vector of preferences gathering the ratings assigned
by the user u to different items (movies, books). In an item-based system, the
item profile is generally the feature vector that represents the item, or a vector
containing a list of users who liked that item for instance.

We also consider a sampling function sample(D, k), that, given a set of nodes
in D, and k ∈ N, returns a subset of k nodes selected uniformly at random from
D. We assume a function similarity(pi, pj) that computes the similarity between
two nodes, i.e. the similarity between two profiles pi and pj . The similarity can
be computed using several metrics (e.g. Jaccard, cosine, etc.). KPS is generic
and can be applied with any similarity metric.

Let αp be the number of updates in a given iteration for a node p. In other
words, αp reflects the number of changes that happen in the neighborhood of p
over the last iteration. Somehow αp captures the number of potential new oppor-
tunities provided to p to discover new neighbors. KPS constructs the candidate
set such that: The candidate set of p contains the neighbors of p, the neighbors
of αp neighbors and k − αp random nodes. Those αp neighbors are randomly
selected including new and old neighbors. This operation limits the size of the
candidate set. KPS does not explore all the nodes two hops away since that can
represent a large fraction of the network. This is particularly true for high degree
nodes. Instead, KPS limits the exploration to a subset of neighbors. The reason
why KPS considers the direct neighbors to be added to the candidate set is to
account for potential dynamics. This makes KPS able to dynamically update
the KNN graph as nodes profiles change over time.

Algorithm 1 represents the pseudocode of the algorithm used in the KPS
service. Initially, each node p starts with a random set of neighbors. This forms

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 51

Algorithm 1. The KPS Service Algorithm
01. For each p ∈ D do
02. KNNp = sample(D, k)
03. αp = k
04. End for
05. Do
06. For each p ∈ D do
07. oldNNp = KNNp

08. candidateSetp.add(KNNp)
09. selectedNeighborsp = sample(KNNp, αp)
10. For each q ∈ selectedNeighborsp do
11. candidateSetp.add(KNNq)
12. End for
13. candidateSetp.add(sample(D, k − αp))
14. For each n ∈ candidateSetp do
15. score[n] = similarity(Profilen, P rofilep)
16. End for
17. KNNp = subList(k, sort(score))
18. αp = k − sizeOf(OldNNp ∩ KNNp)
19. End for
20. While

∑
p αp > 0

the initial KNN graph (line 02). Therefore, the initial value of αp is k (line 03). At
each iteration, the candidate set of each node includes its current neighbors (line
08), the neighbors of αp neighbors (lines 09–12) and k − αp random neighbors
(line 13). The k − αp nodes are randomly selected from the whole set of the
system nodes. So, they might contain already-candidate nodes. Finally, the KNN
of each node is updated, by selecting the k closest neighbors out of its candidate
set (lines 14–17). At each iteration, the value of αp is re-computed, for each
node, based on the number of changes in the node’s neighborhood (line 18).

We illustrate several scenarios of KPS operations in Fig. 1. Based on the
value of the parameter αp (number of updates in the KNN list of the node
x), the composition of the candidate set of this node can take several forms.
In this scenario, we run the KPS protocol for k = 3. Therefore, αp takes values
between 0 and 3. In the first iteration (Fig. 1a), the neighbors of x are (KNNx =
{A,B,C}). As the links in the first KNN graph are randomly built, nodes in
the set KNNx are considered as newly discovered nodes, thus αp = k = 3. The
current neighbors present an opportunity to discover relevant new neighbors and
considering random nodes is unnecessary. Therefore, the candidate set of x will
contain all neighbors and their neighbors. Assuming that, in the second iteration,
only the node A2 was added to the KNNx. Thus, αp = 1 (Fig. 1b). In this case,
the candidate set contains, the list of neighbors, the neighbors of αp neighbors
and (k − αp) random nodes. Assuming that, in the third iteration (Fig. 1c), the
KNN list of x remains unchanged KNNx = {A,B,A2}. This means that αp = 0.
In this case, only random nodes are considered in the candidate set. This might

52 Y. Benkaouz et al.

Fig. 1. Example scenarios of the KPS service algorithm for k = 3. (The black arrows
represent old links and the blue dashed ones are new links) (Color figure online)

result in the appearance of nodes with higher similarities such as the random
nodes R5 and R6 (Fig. 1d).

3 Experimental Setup

In this section, we describe the experimental setup that we rely on to evaluate the
efficiency of KPS. More specifically, we describe the competitor, NNDescent [13],
that we compare KPS against. We also describe the datasets that we used in the
evaluation as well as the evaluation metrics.

3.1 NNDescent Algorithm

NNDescent [13] is a recent KNN algorithm which is acknowledged as one of the
best generic KNN centralized approach. Similarly to KPS and previous gossip-
based protocols [6,7,18,24], NNDescent relies on two principles: (i) the assump-
tion that “The neighbor of a neighbor is also likely to be a neighbor” and (ii)
a reduced candidate set to limit the number of similarity computations at each
iteration.

The basic algorithm of NNDescent starts by picking a random approximation
of KNN for each object, generating a random graph. Then, iteratively, NNDe-
scent iterates to improve the KNN topology by comparing each node against
its current neighbors’ neighbors, including both KNN and reverse KNN (i.e. in
and out degree in the graph). KNN terminates when the number of updates
in the graph reaches a given threshold, assuming that no further improvement
can be made. Thus, in NNDescent, the candidate set of each node contains the
neighbors of neighbors and the reverse neighbors’ neighbors, called RNN. The
RNNs are defined in such a way that: Given two nodes p and q, if p ∈ KNNq

then q ∈ RNNp. Multiple strategies are then proposed to improve the efficiency
of the algorithm:

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 53

1. A local join operation takes place on a node. It consists of computing the
similarity between each pair p, q ∈ KNN ∪ RNN , and updating both the
KNN lists of p and q based on the computed similarity.

2. A boolean flag is attached to each object in the KNN lists, to avoid computing
similarities that have been already computed.

3. A sampling method is used in order to limit the size of the reverse KNN. In
order to prepare the list of nodes that will participate to the local join oper-
ation, NNDescent differentiate old nodes (with a false flag) from new nodes
(with a true flag). The sampling method works as follows: Firstly, NNDes-
cent samples ρk out of the KNN, where ρ ∈ (0, 1] is a system parameter.
Then, based on the flag of the sampled nodes, it creates two RNN lists: new’
and old’. After that, two sets s1 and s2 are created in such a way that:
s1 = old ∪ sample(old′, ρk) and s2 = new ∪ sample(new′, ρk). Finally, the
local join is conducted on elements of s1, and between s1 and s2 elements.

4. An early termination criterion is used to stop the algorithm when further
iterations can no longer bring meaningful improvements to the KNN graph.

Therefore, the main differences between KPS and NNDescent are the fol-
lowing: (i) NNDescent starts from a uniform topology and therefore depending
on the initial configuration and the input (dataset), the algorithm might never
converge to the ideal KNN graph; (ii) the fact that the candidate set in NNDe-
scent contains nodes from RNN and KNN; (iii) the sampling approach used to
define the candidate set is different in both approaches; and (iv) KPS adds some
random nodes that turn out to be very useful to explore the graph and later to
reduce the risk of being stuck in local minimum.

3.2 Datasets Description

We conducted the evaluation of KPS against five real datasets. Figures are sum-
marized in Table 1: Shape and Audio also used in [13] as well as MovieLens [3],
Jester [2] and Flickr. In the following, we detail how node profiles are built for
these datasets:

– The Audio dataset contains features extracted from the DARPA TIMIT col-
lection, which contains recordings of 6, 300 English sentences. Each sentence
is broken into smaller segments from which the features were extracted. Each
segment feature is treated as an individual node.

– The Flickr dataset is constructed based on [17]. This dataset contains 22, 872
image profiles. A Flickr image profile consists of a set of tags associated to the
image.

– The MovieLens raw data consists of 1, 000, 209 anonymous ratings of approx-
imately 3, 900 movies made by 6, 040 MovieLens users [3]. Based on the col-
lected data we extracted the users’ profiles, such that items in a given user
profile contains list of movies that received a rating in the range [3, 5].

54 Y. Benkaouz et al.

Table 1. Datasets characteristics

Dataset Object Profile content Nb. Profiles Profile size

Audio Records Audio features 54387 192

Flickr Image Images tags 22872 9 in avg.

Jester User Jokes ratings 14116 100

MovieLens User Movies 6040 165 in avg.

Shape 3D shape model Model features 28775 544

– The Jester dataset [1] contains data collected from the Jester Joke Recom-
mender System [2]. We selected only profiles of users that rated all jokes.
Therefore, the dataset contains 14, 116 user profiles. Each user profile con-
tains ratings of a set of 100 jokes.

– The Shape dataset contains about 29, 000 3D shape models. It consists of a
mixture of 3D polygonal models gathered from commercial viewpoint models,
De Espona Models, Cacheforce models and from the Web. Each model is
represented by a feature vector.

3.3 Similarity Metrics

Depending on the nature of nodes profiles, we rely on different similarity metrics:
Jaccard similarity and the cosine similarity. Given two sets of attributes, the
Jaccard similarity is defined as the cardinality of the intersection divided by the
size of the union of the two sets: Jaccard(s1, s2) = | s1∩s2

s1∪s2
|. The cosine similarity

measure is represented using the dot product and the magnitude of two vectors:
Cosine(v1, v2) = v1.v2

||v1||.||v2|| .
When the node profiles of a given dataset are of different sizes, we use Jaccard

similarity, where a node profile is considered as a set. We used the Jaccard
similarity metric for MovieLens and Flickr datasets. Otherwise, when the profiles
of a dataset are of the same size and when the order of profiles’ attributes is
important, we use the cosine similarity. Thus, we used the cosine similarity metric
for Jester, Shape and Audio datasets.

3.4 Evaluation Metrics

To measure the accuracy of KPS, we consider the recall of the KNN lists. This
metric tells us to what extent the KNN lists match the ideal ones. The recall
for a given node is computed using the following formula: R = TP/(TP + FN),
such that: TP (True Positive) is the number of nodes belonging to the nearest
neighbors that truly belong to the node’s KNN; FN (False Negative) is the
number of nodes that belong to the KNN where they should not.

We conducted the following experiments: (i) we evaluate the evolution of
the recall against the cost; (ii) we measure the quality of the KNN graph by

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 55

Fig. 2. Recall versus cost in KPS and NNDescent

measuring the average similarity between a node and its k nearest neighbors
against the cost; (iii) we compute the utility of the algorithm at each cycle; and
(iv) as KPS and NNDescent operate in such a way that the size of the samples
varies significantly, we artificially increase the size of the sample in KPS so that
the same number of similarity computations is achieved for each node at each
iteration in the two algorithms. Hence, we provide the recall figures for the two
algorithms with similar cost.

4 Experimental Results

We now report on our experimental evaluation comparing KPS and NNDescent.
Note that the experiments were run with k set to 20. We start with comparing the
cost/recall tradeoff achieved by the two algorithms. We then study the quality of
the KNN graph and the utility of each iteration. Finally, for the sake of fairness,
we compare the convergence of the algorithms at equal cost.

4.1 Recall Versus Cost

Figure 2 plots the recall as a function of the cost for both KPS and NNDescent.
The cost here is measured as the total number of similarity computations. From
Fig. 2, we observe that KPS exhibits a lower cost than NNDescent in several
datasets i.e. in Audio, MovieLens and Shape, while both approaches provide
similar recall. We also observe that NNDescent does not always converge to the
maximum recall. This is due to the fact that depending on the initial configura-
tion and the operation of NNDescent, the algorithm may reach a local minimum
as shown on the Flickr and Jester datasets. On those two datasets, although

56 Y. Benkaouz et al.

Fig. 3. Quality (Similarity) versus Cost in KPS and NNDescent

slower, KPS converges. This is mainly due to the presence of random nodes in
the candidate sets. In NNDescent instead, for some datasets, separated clusters
are created during the algorithm operations. For Jester and Flickr, NNDescent
does not exceed 90% of the recall.

In Audio, MovieLens and Shape, we observe that KPS reaches a similar recall
than NNDescent at a much lower cost. For instance, for more than 0.8 recall,
i.e. 80% of the KNN lists are similar to the ideal ones with a cost for KPS that
is 42%, resp. 50%, resp. 51% lower in Audio, resp. MovieLens, resp. Shape. We
also observe that in the datasets where NNDescent converges at a lower cost to
a high recall, it never converges to the highest (Flickr and Jester). On the other
hand, KPS might take too long to converge to an ideal KNN graph (Audio), as
it might require comparisons with the whole system nodes.

These results suggest that KPS is an attractive alternative to NNDescent
for reaching a high recall at low cost. Although this is out of the scope of this
paper, it has been shown in many applications, e.g. collaborative filtering, that an
ideal KNN graph is not necessarily required to achieve good performance in the
recommendations. For instance, good recommendation quality can be achieved
with a close to ideal KNN graph but not necessarily ideal.

4.2 Quality Versus Cost

Regardless of the recall, another important metric is the quality of the KNN
graph. For instance, consider a node provided with a non ideal KNN list, if the
similarity between that node and its neighbors is high, the KNN data might turn
out to be as useful as the exact KNN.

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 57

We measure the quality of the KNN graph as the average similarity between
a node and its neighbors in the KNN graph for both KPS and NNDescent.
Figure 3 displays the quality against the cost for all datasets. We observe that
KPS provides almost uniformly across all datasets a better quality at a much
lower cost. Based on these results, we can also argue that the differences in
recall observed in Fig. 2 are not significant. Effectively in Audio for instance,
while NNDescent shows a better recall, the quality is similar in both KPS and
NNDescent. This actually suggests that the discrepancy in recall is negligible:
KPS provides k nearest neighbors of similar quality (although they are not the
ideal neighbors). For instance, to achieve a Jester KNN graph with an average
similarity equal to 0.59 (highest similarity), the cost needed in KPS is 2116
while it equals to 2748 for NNDescent. Moreover, KPS requires an average of 956
comparisons to achieve a MovieLens graph with 0.21 similarity, while NNDescent
makes an average of 1919 comparisons to construct a graph with the same quality.
Therefore, KPS exhibits a cost about ≈23 %, resp. ≈49 % lower for Jester, resp.
MovieLens, than NNDescent.

The reason why NNDescent finds the ideal neighbors is due to the very large
size of the candidate sets. KPS takes longer to converge because once the almost
ideal neighbors are discovered, the graph hardly changes and the ideal neighbors
are eventually reached through the presence of random nodes in the candidate
set. Other factors related to the characteristics of the dataset, typically sparsity,
can also impact the recall and the similarity achieved. We will come back to
this issue in Sect. 4.5. This set of experiments shows that KPS achieves almost
perfect KNN graph construction at a much lower cost than NNDescent.

Fig. 4. Utility per cycle

58 Y. Benkaouz et al.

4.3 Utility Study

To understand the impact of the candidate selection strategies used in KPS
and NNDescent, we study the impact (utility) of each iteration on the KNN
graph. Figure 4 plots the utility per cycle for all datasets. The utility tells us
how useful similarity comparisons are at each cycle by measuring how many
updates were generated (i.e. the number of discovered neighbors that achieves
a better similarity). Utility is expressed as the ratio between the number of
updates and the number of similarity comparisons. Results depicted in Fig. 4
are consistent over all datasets. Results clearly show that each iteration in KPS
is much more useful than a NNDescent iteration. This is partly explained by
the fact that NNDescent considers large candidate sets, especially for the first
iterations, where its size is twice the size of the KPS candidate set. This also
clearly shows that if the candidate set is carefully chosen, there is no need to
consider large candidate sets.

After a few iterations, the evaluated utility of both protocols converges to 0.
This is due to the usage of the boolean flag in NNDescent, and the selection rule in
KPS (i.e. the usage of the number of updates to select neighbors of neighbors and
random nodes). This also shows that the last steps to converge towards an ideal
KNN graph take a very long time. This confirms the results depicted in Figs. 2
and 3: While KPS converges quickly to high quality neighborhoods, reaching
the ideal neighborhoods takes much longer. This is a well-known problem in
gossip-based sorting protocols [14].

4.4 Recall at Equal Cost

In the previous experiments, we compared KPS and NNDescent, in their orig-
inal settings and as we mentioned before, KPS and NNDescent do not rely on
candidate sets of similar sizes. NNDescent uses the nearest neighbors and the
reverse nearest neighbors, whereas KPS is based only on the nearest neighbors
and a few random nodes. In order to have a fair comparison between KPS and
NNDescent, we now compare their recall under the same cost. Since, it is difficult
to reduce the candidate set of NNDescent without altering the algorithm design,
we increase the size of the candidate set of KPS by considering the 2k nearest
neighbors for the candidate set.1

KPS, in its default setting, already presents best results in term of the quality,
the cost and the utility metrics. Thus, we focus our comparison on the achieved
recall. Figure 5 shows the recall of NNDescent and the modified version of KPS
for all datasets. We then observe very similar results except for Jester and Flickr
where KPS exceeds the NNDescent recall after few comparisons. This is due
to the fact that NNDescent still suffers from the local minimum issue. This
suggests that KPS naturally provides a reduced but relevant candidate set that
is sufficient to achieve a high recall, an almost perfect quality at a low cost.

1 Note that the strength of KPS is to achieve good results with less information so
this way of comparing is not in our favor.

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 59

Fig. 5. Recall at equal cost (modified version of KPS with 40 nodes considered in the
candidate set)

4.5 Discussion

To understand, in more details, the behavior of KPS, we run the brute force
KNN graph construction algorithm for each dataset and study the similarity on
the obtained KNN graph. Table 2 shows the similarity characteristics of the ideal
KNN graph of the considered datasets.

As shown in Table 2, the best KNN graphs of Shape and Audio have an
average similarity respectively equals to 0.88 and 0.82, which represents a higher
similarity compared to the average similarity of the other datasets. This means
that the profiles in Audio and Shape tend to be very close to each other. Thus,
exploring only neighbors of neighbors and the reverse neighbors of neighbors
may lead to the comparison of a given node profile with all similar nodes in
the system, which is quickly achieved by NNDescent since it relies on both the
KNN and RNN lists. This explains the high recall achieved by NNDescent in
these datasets. Whereas for datasets with a low average similarity, such as Flickr,
the maximum recall achieved by NNDescent does not exceed 90%. In sparser
datasets, more exploration of the graph is required to discover the closest nodes
since similarity values between nodes have a lower value. KPS precisely provides
better exploration capacities due to the use of random nodes. Therefore, KPS
eventually ensures the highest possible recall for all datasets.

KPS provides a better quality/cost tradeoff than NNDescent since KPS
achieves KNN graphs with higher similarities at a lower cost. Especially, in Audio
and Shape (Fig. 3), where the KPS’s KNN graph has the same quality as the
one generated by NNDescent. For low average similarity datasets (e.g. Flickr),
KPS converges rapidly to an approximate high quality KNN graph. Hence, one

60 Y. Benkaouz et al.

Table 2. Brute force KNN statistics

Dataset Similarity Mean (Similarity) Std. dev. Coeff. of variation

Audio Cosine 0.825 0.097 0.118

Flickr Jaccard 0.145 0.077 0.528

Jester Cosine 0.604 0.141 0.234

MovieLens Jaccard 0.221 0.068 0.308

Shape Cosine 0.881 0.079 0.0906

of the most important characteristic of KPS is to ensure convergence even for
sparse datasets.

5 Related Work

Centralized KNN Approaches. Several works have been proposed to present effi-
cient KNN graph construction algorithms. In [10], Chen et al. suggest divide and
conquer methods for computing an approximate KNN graph. They make use of
a Lanczos procedure to perform recursive spectral bisection during the divide
phase. After each conquer step, an additional refinement step is performed to
improve the accuracy of the graph. Moreover, a hash table is used to store the
distance calculations during the divide and conquer process. Based on the same
strategy (divide and conquer), authors of [16] propose an algorithm that engages
the locality sensitive hashing technique to divide items into small subsets with
equal size, and then the KNN graph is computed on each subset using the brute
force method. The divide and conquer principle was used in many other works
such as [25]. On the other hand, several KNN graph construction approaches
were based on a research index. In this direction, Zhong et al. [26] make use of
a balanced search tree index to address the KNN search problem for a specific
context in which the objects are locations in a road network. Paredes et al. [23]
proposed a KNN graph construction algorithm for general metric space. The
suggested algorithm is based on a recursive partition that builds a pre-index by
performing a recursive partitioning of the space and on a pivot-based algorithm.
Then, the index is used to solve a KNN query for each object. Most of these
methods are either based on an additional index, or specific to a given similarity
measure [11]. Moreover, they are designed for offline KNN graph construction,
while KPS could be also used for online computation.

Gossip-Based Clustering. KPS is inspired from peer-to-peer gossip-based proto-
cols. In such systems, each peer is connected to a subset of other peers in the
network and periodically exchanges some information with one of its neighbors.
While such protocols have been initially used to build uniform random topolo-
gies [19,21], they have also been applied in the context of several applications to
cluster peers according to some specific metric (interest, overlap, etc.) to build
networks of arbitrary structure [18,24] or to support various applications such

Nearest Neighbors Graph Construction: Peer Sampling to the Rescue 61

as query expansion [7], top-k queries [6] or news recommendation [9]. In such a
system, the use of random nodes ensures that connectivity is maintained, each
node is responsible to discover its KNN nodes by periodically exchanging neigh-
borhood information with other peers. As opposed to KPS, such algorithms tend
to limit the traffic on the network and therefore exchange information with one
neighbor at a time, providing different convergence properties.

6 Conclusion

KNN graph computation is a core building block for many applications ranging
from collaborative filtering to similarity search. Yet, in the Big Data era where
the amount of information to process is growing exponentially, traditional algo-
rithms hit the scalability wall. In this paper, we propose a novel KNN service,
called KPS, which can be seen as a centralization of a peer-to-peer clustering ser-
vice. KPS has been compared to NNDescent. The results show that KPS quickly
reaches a close to optimal KNN graph while drastically reducing the complexity
of the algorithm. Future works include applying KPS in dynamic settings where
the attribute of nodes vary dynamically, inducing some changes in the similarity
computation results. Clearly, providing a theoretical analysis of the convergence
speed is a natural follow up research avenue.

References

1. Jester dataset. http://grouplens.org/datasets/jester/
2. Jester joke recommender. http://shadow.ieor.berkeley.edu/humor/
3. Movielens dataset. http://grouplens.org/datasets/movielens/
4. Agrawal, D., Das, S., El Abbadi, A.: Big data, cloud computing: current state

and future opportunities. In: Proceedings of the 14th International Conference on
Extending Database Technology, EDBT/ICDT 2011, pp. 530–533. ACM (2011)

5. Amato, G., Falchi, F.: KNN based image classification relying on local feature
similarity. In: Proceedings of the Third International Conference on SImilarity
Search and APplications, SISAP 2010, pp. 101–108. ACM (2010)

6. Bai, X., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: Collaborative personalized
top-k processing. ACM Trans. Database Syst. 36(4), 26 (2011)

7. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple
anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)

8. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

9. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.-M.: WhatsUp: a
decentralized instant news recommender. In: Proceedings of the 27th IEEE Inter-
national Symposium on Parallel Distributed Processing, IPDPS 2013, pp. 741–752
(2013)

10. Chen, J., Fang, H.-R., Saad, Y.: Fast approximate KNN graph construction for
high dimensional data via recursive Lanczos bisection. J. Mach. Learn. Res. 10,
1989–2012 (2009)

http://grouplens.org/datasets/jester/
http://shadow.ieor.berkeley.edu/humor/
http://grouplens.org/datasets/movielens/

62 Y. Benkaouz et al.

11. Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point
clouds. IEEE Trans. Vis. Comput. Graph. 16(4), 599–608 (2010)

12. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based rec-
ommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 107–144. Springer, Heidelberg (2011)

13. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of the 20th International Conference
on World Wide Web, WWW 2011, pp. 577–586. ACM (2011)

14. Giakkoupis, G., Kermarrec, A.-M., Woelfel, P.: Gossip protocols for renaming and
sorting. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 194–208. Springer,
Heidelberg (2013)

15. Guo, G., Wang, H., Bell, D.J., Bi, Y., Greer, K.: KNN model-based approach in
classification. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003,
and ODBASE 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003)

16. Hajebi, K., Abbasi-Yadkori, Y., Shahbazi, H., Zhang, H.: Fast approximate nearest-
neighbor search with k-nearest neighbor graph. In: Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 1312–1317.
AAAI Press (2011)

17. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: Proceedings of
the 1st ACM International Conference on Multimedia Information Retrieval, MIR
2008, pp. 39–43. ACM (2008)

18. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: gossip-based fast overlay topol-
ogy construction. Comput. Netw.: Int. J. Comput. Telecommun. Netw. 53(13),
2321–2339 (2009)

19. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM Trans. Comput. Syst. 25(3) (2007)

20. Olman, V., Mao, F., Wu, H., Xu, Y.: Parallel clustering algorithm for large data
sets with applications in bioinformatics. The IEEE/ACM Trans. Comput. Biol.
Bioinform. 6(2), 344–352 (2009)

21. Ormándi, R., Hegedűs, I., Jelasity, M.: Overlay management for fully distributed
user-based collaborative filtering. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.)
Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 446–457. Springer, Heidelberg (2010)

22. Pan, R., Dolog, P., Xu, G.: KNN-based clustering for improving social rec-
ommender systems. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V.I.,
Yu, P.S., Singh, M.P. (eds.) ADMI. LNCS, vol. 7607, pp. 115–125. Springer,
Heidelberg (2013)

23. Paredes, R., Chávez, E., Figueroa, K., Navarro, G.: Practical construction of k -
nearest neighbor graphs in metric spaces. In: Àlvarez, C., Serna, M. (eds.) WEA
2006. LNCS, vol. 4007, pp. 85–97. Springer, Heidelberg (2006)

24. Voulgaris, S., van Steen, M.: VICINITY: a pinch of randomness brings out the
structure. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275, pp.
21–40. Springer, Heidelberg (2013)

25. Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., Li, S.: Scalable k-NN graph construc-
tion for visual descriptors. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2012, pp. 1106–1113 (2012)

26. Zhong, R., Li, G., Tan, K.-L., Zhou, L.: G-tree: an efficient index for knn search
on road networks. In: Proceedings of the 22nd ACM International Conference on
Information and Knowledge Management, CIKM 2013, pp. 39–48. ACM (2013)

Accurate Optimization Method
for Allocation of Heterogeneous Resources

in Embedded Systems

Aissam Berrahou(&)

Computer Department, Mohammadia School of Engineering,
Mohamed V University, Rabat, Morocco

aissamberrahou@research.emi.ac.ma

Abstract. In this paper we present a new accurate optimization method to find
an optimal solution for the heterogeneous resources offline allocation problem in
embedded systems. The proposed method is based on Mixed Binary Nonlinear
Programming (MBNLP) using piecewise linear relaxations and uses the fast
branch and bound algorithm for the minimization of a convex nonlinear
objective function over binary variables subject to convex nonlinear constraints.
The produced numerical results show the robustness of the proposed method
compared with conventional method in terms of performance.

Keywords: Offline allocation � Heterogeneous resources � Mixed Binary
Nonlinear Programming � Accurate method

1 Introduction

The mapping and scheduling of tasks to resources in a heterogeneous multi-core
embedded systems that maximizes the robustness of a system performance feature is an
important research problem in resource management [1]. This research focuses
essentially on finding the optimal solutions for the two types of heterogeneous resource
allocation problems: static or off-line allocation and dynamic or on-line allocation. The
problem of resource allocation in the field of heterogeneous multi-core systems is
NP-complete [2]. In this context, some heuristic algorithms are proposed to find a
near-optimal solution, relatively quickly [3], for this problem [2, 4–8]. However,
heuristics are inherently short-sighted and provide no guarantee of optimality. But
besides speed and optimality, another important metric is the extensibility of an
approach: a measure of how easy it is to accommodate practical implementation and
resource constraints. For instance, in a design space exploration framework, the result
of a certain allocation imposes new restrictions on the application and hardware plat-
form to guide exploration. Unfortunately, most heuristic methods are not easily
extensible [9]. They are utilized for a specific problem and will have to be reformulated
each time when new assumptions or constraints are imposed. Constraint optimization
formulations, such as Mixed Integer Linear Programming and Constraint Program-
ming, are accurate method and naturally extensible. In the literature, Thiele [9] is the
only one who used this method to solve an allocation and scheduling problem with

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 63–70, 2016.
DOI: 10.1007/978-3-319-46140-3_5

complex resource constraints on memory size, communication bandwidth and access
conflicts to memories and buses. However, this work does not take into account some
very important constraints, such as: The heterogeneity of resources, the parallel tasks,
and the novel type of interconnection network (e.g. network on chip).

In this paper, we present a new algebraic formulation for static allocation of
heterogeneous resource that will find an optimal solution to the problem. The proposed
algebraic formulation tries to minimize the multi-core execution cost and inter core
communication. The approach will minimize the system cost more than random search
algorithm. The remainder of the paper is organized as follows. In Sect. 2, we introduce
the preliminary concepts that we will use to model the optimization problem of allo-
cation and scheduling. Section 3 presents the proposed algebraic formulation of allo-
cation problem, by using Mixed Binary Nonlinear Programming (MBNLP) for the
minimization of the total execution cost. Section 4 presents experiment results obtained
by using the F4MS simulator (Framework for Mixed Systems) [10] which are based on
a multi-objective solver named Gurobi [11].

2 Model of Embedded System

This section introduces the notations, hardware platform and application models used
throughout the paper.

2.1 Hardware Platform Model

The hardware platform model consists of a set of processing elements. These can be
programmable processors of any kind (general purpose, controllers, DSPs, ASIPs, etc.),
reconfigurable (FPGA) or specific processors. The hardware platform model is mod-
eled by the graph GP ¼ R; Lð Þ;with : R is the nodes of GP, where R ¼ fr1; . . .; rkg
represent the resources of the platform: switches, routers, memories, processing units or
even host. These latter are fitted with the cores (specific or programmable) having its
own resources, including a memory of limited size; L: The edges of GP, where L ¼
fl1; . . .; lmg represent the communication links of an interconnection network that
physically connects the different hosts of the hardware platform model. In addition,
each communication link lkðra; rbÞ has a bandwidth Bwðra; rbÞ that is the size of data
that can be transferred through a communication link per unit of time.

2.2 Application Model

The application model is modeled by the oriented graph GA ¼ ðT ;EÞ; where, T ¼
t1; . . .; tnf g is a set of n non periodic tasks and E � T � T represent the precedence

constraints between the tasks. If a dependence constraint ðti; tjÞ at the level of the
application exists between the task ti and the task tj it is translated by a sending of a
data ek 2 E of the task ti to the task tj for that the latter can run.

64 A. Berrahou

3 Proposed Formulation

3.1 Notation

For the algebraic formulation of the allocation problem we need the following matrices:
Matrix X: Adjacency matrix of size t � r, such as X ¼ xij

� �
;where 1� i� t;

1� j� r and xij a binary decision variable that expresses the assignment of the task i
to resource j.

Matrix Y: Adjacency matrix of size c� e, such as Y ¼ yij
� �

;where 1� i� c;

1� j� e and yij a binary decision variable that expresses the assignment the data j,
provided by a task, to the shortest path i.

Matrix A: Adjacency matrix of size t � r indicating the task execution costs on

resources, such as A ¼ aij
� �

;where 1� i� t; 1� j� r and aij ¼ NIi
fj ; with NIi the

instructions number of the task i and fj The clock frequency of the resource j.
Matrix B: Adjacency matrix of size t � t indicating the parallel tasks, such as

B ¼ bij
� �

;where 1� i� t; 1� j� t and

bij ¼ 1; if tasks i and j are parallel:
0; else

�
ð1Þ

Matrix D: Adjacency matrix of size c� l indicating the relation between the
shortest paths and links, such as D ¼ dij

� �
; where 1� i� c; 1� j� l and

dij ¼ 1; if the link lj belongs to the shortest pathci:
0; else

�
ð2Þ

Matrix F: Adjacency matrix of size t � r qui indicating incompatibility
tasks/resources, such as F ¼ fij

� �
;where 1� i� t; 1� j� r and

f ij ¼ 1; if the resource j is fully compatible with the task i:
0; else

�
ð3Þ

Matrix G: Precedence matrix tasks/data of size t � e, such as G ¼ gij
� �

;where

1� i� t; 1� j� e and

gij ¼
1; if the task i returns the data j:

�1; if the task i returns the data j:
0; else:

8<
: ð4Þ

Matrix H: Precedence matrix resources/shortest paths of size r � c, such as H ¼
hij
� �

; where 1� i� r; 1� j� c and

Accurate Optimization Method 65

hij ¼
1; if the resource i is the source of the path j:

�1; if the resource i is the destination of the path j:
0; else:

8<
: ð5Þ

3.2 Quadratic Formulation

The minimization of total execution cost is represented by the following objective
function:

min : C X;Yð Þ ð6Þ

where, X and Y are tow binary decision variables, such as C X;Yð Þ ¼ CExðXÞþ
CcomðYÞ, with CEx(X) the execution cost of the application tasks on the hardware
platform resources.

CEx Xð Þ ¼ CS Xð ÞþCP Xð Þ ð7Þ

with CS Xð Þ is the execution cost of sequential tasks, where

Cs Xð Þ¼
Xt

i¼1

Xr

j¼1

aij�xij; if there is no task k parallel to task i: ð8Þ

and CP Xð Þ represents the execution cost of parallel tasks, where

CP Xð Þ¼
Xt

i¼1

Xt

k¼iþ 1

Xr

h¼1

Xr

¼1

Cost i; k; h; lð Þ�xihxkl; ð9Þ

with, Cost i; k; h; lð Þ ¼ aih þ akl; if h ¼ 1:

max aih; aklð Þ; else:

(

CComðYÞ is the communication cost, where

CComðYÞ ¼
Xc

i¼1

Xe

j¼1

minCostCom ej; ci
� �� yij ð10Þ

with, minCostCom ej; cið Þ the function that computes the smallest communication cost
engendered by transfer of the data ej on the shortest path ci.

The objective function C X;Yð Þ is subject to the following constraints:

Uniqueness constraint of allocation: A task must be assigned to one and only one
resource. This constraint is expressed algebraically as follows:

66 A. Berrahou

Xr

j¼1

xij ¼ 1; for any task i 2 1; � � � ; tf g: ð11Þ

Constraint of incompatibility Tasks/Resources: a task should not be assigned to
a resource that is not compatible. For any task i 2 1; � � � ; tf g and any resource
j 2 1; � � � ; rf g, we have

xij ¼ 0 if bij ¼ 0: ð12Þ

Constraint of task scheduling: it is preferably to assign parallel tasks to different
resources instead of assigning them to the same resource, and then only if the overall
execution time engendered by latter case is more important than the first case and vice
versa. For any task i 2 1; . . .; tf g parallel to the task j 2 1; . . .; tf g, and all resources
k et l in 1; � � � ; rf g; such i 6¼ j and k 6¼ l;we have

max aik; ajl
� �

xikxjl\min aik þ ajk; ail þ ajl
� � ð13Þ

Constraint of incompatibility Data/Paths: a data should not be assigned to a path.
For shortest path i 2 1; � � � ; cf g and any data j 2 1; � � � ; ef g; we have

yij ¼ 0 ð14Þ

Allocation constraint of the data to the shortest paths: a data can be assigned at
most one path. For any data j 2 1; � � � ; ef g, we have

Xc

i¼1

yij � 1 ð15Þ

Constraint of coincidence between the allocation of tasks and the allocation of
data: the task allocation should be converged (harmony) with the data allocation. For
any resource i 2 1; � � � ; rf g and any data k 2 1; � � � ; ef g,we have

Xt

j¼1

gjk � xji ¼
Xc

h¼1

hih � yhk ð16Þ

4 Case Study

In this section, the theoretical formulation presented in the previous sections is vali-
dated by experiment results. The case study that we propose in this paper is offline
mapping of a task graph. The Table 3 shows the resources characteristics of hardware
platform model. The Tables 1 and 2 show respectively the tasks characteristics of an
application model and the data flow exchanged between these tasks. The application

Accurate Optimization Method 67

model is composed by 11 heterogeneous tasks, which are to be allocated on 6
heterogeneous resources of the hardware platform model. In order to assist the designer
for the decision making in allocation phase, we developed the framework simulator
(F4MS: Framework for Mixed Systems) [10] which takes as input the application and
hardware platform models to give in output an optimal solution of allocation problem.
This framework allows to automatically generate the objective function and the dif-
ferent constraints. After, it uses the Gurobi solver [11] to generate an optimal solution
to the problem in question. Table 4, Figs. 1 and 2 illustrate the experiment simulation
of this study case, we can observed that the total execution time is 389,984 s compared
with 611 s for random search algorithm [12].

Table 1. Characteristics of application model.

Tasks Type complexity (109 s) Size (MB)

t0 Generic 504 2.5
t1 Reconfigurable 3808 4
t2 Generic 400 1
t3 Generic 280 1
t4 Generic 330 0.5
t5 Generic 440 1.2
t6 Generic 730 1.5
t7 Signal processing 2330 3.2
t8 Signal processing 1250 3
t9 Generic 630 1.3
t10 Physical 7330 4.5
t11 Physical 277 2.5

Table 2. Data flow exchanged between tasks.

Data Type Size

e1 t0 → t1 1
e2 t1 → t2 34
e3 t1 → t6 28
e4 t2 → t3 58
e5 t2 → t4 28
e6 t3 → t5 18
e7 t4 → t6 65
e8 t5 → t10 34
e9 t10 → t11 28
e10 t6 → t7 38
e11 t6 → t8 98
e12 t7 → t9 8
e13 t8 → t9 65
e14 t9 → t10 15

68 A. Berrahou

5 Conclusion

In this paper we presented an accurate method of offline mapping an application to an
execution platform for heterogeneous cores by minimizing the communication and
execution time. After having reviewed the various solutions proposed, we sought to
take a new orientation for solving this problem. For that, and according to the research
carried, we used no linear programming with Boolean variables as a method of opti-
mizing search for an optimal solution. As perspective, our method must take into
account the mapping of composite tasks and non-deterministic tasks.

Table 3. Characteristics of hardware platform model.

Cores Frequency Memory size

CPU1 2.1 30
CPU2 2.3 40
DSP1 3 100
DSP2 3.3 100
ASIC 4 50
FPGA 6 300

Table 4. Total execution cost

Communication cost Runtime cost Total

7,171 s 382,813 s 389,984 s

Fig. 1. Mapping diagram

Fig. 2. Gantt diagram

Accurate Optimization Method 69

References

1. Kritikakou, A., Catthoor, F., Goutis, C.: Scalable and Near-Optimal Design Space
Exploration for Embedded Systems. Springer International Publishing, Basel (2014)

2. Jiayin, L., Zhong, M., Meikang, Q., Gang, Q., Xiao, Q., Tianzhou, C.: Resource allocation
robustness in multi-core embedded systems with inaccurate information. J. Syst. Archit. 57,
840–849 (2011)

3. Kyle, M.T., Ryan, F., Anthony, A.M., Howard, J.S.: Scalable linear programming based
resource allocation for makespan minimization in heterogeneous computing systems.
J. Parallel Distrib. Comput. 8, 76–86 (2015)

4. Braun, T., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A.: A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)

5. Tompkins, M.F.: Optimization techniques for task allocation and scheduling in distributed
multi-agent operations, Master’s thesis, Massachusetts Institute of Technology, Cambridge
(2003)

6. Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program scheduling.
IEEE Trans. Parallel Distrib. Syst. 9, 872–892 (1998)

7. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous environment.
IEEE Trans. Parallel Distrib. Syst. 15, 107–118 (2004)

8. Somai R., Mahjoub, Z.: Heuristics for scheduling independent tasks on heterogeneous
processors under Limited Makespan Constraint. In: Proceedings of the International
Conference on Automation, Control, Engineering and Computer Science, Tunisia,
pp. 102–115 (2014)

9. Thiele, L.: Resource constrained scheduling of uniform algorithms. VLSI Signal Process.
10, 295–310 (1995)

10. Berrahou, A., Raji, Y., Rafi, M., Eleuldj, M.: Framework for mixed systems. In: Proceedings
of the 21th International Conference on Microelectronics, Morocco, pp. 330–333 (2009)

11. Gurobi Solver. http://www.gurobi.com
12. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Architecture-based reliability evaluation

under uncertainty. In: Proceedings of the 7th International Conference on the Quality of
Software Architectures, QoSA 2011 and 2nd International Symposium on Architecting
Critical Systems, USA, pp. 85–94 (2011)

70 A. Berrahou

http://www.gurobi.com

Understanding the Memory Consumption
of the MiBench Embedded Benchmark

Antoine Blin1,2(B), Cédric Courtaud1, Julien Sopena1, Julia Lawall1,
and Gilles Muller1

1 Sorbonne Universités, Inria, UPMC, LIP6, Paris, France
{antoine.blin,cedric.courtaud,julien.sopena,

julia.lawall,gilles.muller}@lip6.fr
2 Renault S.A.S, Paris, France

Abstract. Complex embedded systems today commonly involve a mix
of real-time and best-effort applications. The recent emergence of small
low-cost commodity multi-core processors raises the possibility of run-
ning both kinds of applications on a single machine, with virtualization
ensuring that the best-effort applications cannot steal CPU cycles from
the real-time applications. Nevertheless, memory contention can intro-
duce other sources of delay, that can lead to missed deadlines. In this
paper, we analyze the sources of memory consumption for the real-time
applications found in the MiBench embedded benchmark suite.

1 Introduction

In modern automobiles, computing is characterized by a mixture of real-time
applications, such as management of the dashboard, the engine control, and
best-effort applications, such as multimedia entertainment. Historically, multi-
ple applications are integrated in a vehicle using a federated architecture: Every
major function is implemented in a dedicated Electronic Control Unit (ECU)
[23] that ensures fault isolation and error containment. This solution, however,
doesn’t scale in terms of costs, power consumption and network congestion when
the number of functions increases. Recently, the AUTOSAR [16] consortium has
been created to develop an integrated architecture, in which multiple functions
share a single ECU. The AUTOSAR standard targets applications that control
vehicle electrical systems and that are scheduled on a real-time operating sys-
tem. Infotainment applications, however, typically target a Unix-like operating
system, and thus still require the use of a federated architecture.

Recent experimental small uniform memory access commodity multicore sys-
tems provide a potential path towards a complete low-cost integrated architec-
ture. Systems such as the Freescale SABRE Lite [1] offer sufficient CPU power
to run multiple applications on a single low-cost ECU. Using virtualized architec-
tures [12], multiple operating systems can be used without modification. Recent
hypervisors targeting embedded systems, such as SeL4 [2] and PikeOS [5], make
it possible in the context of the automotive domain to dedicate one or several
cores to a class of applications, and thus provide CPU isolation.
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 71–86, 2016.
DOI: 10.1007/978-3-319-46140-3 6

72 A. Blin et al.

CPU isolation, however, is not sufficient to ensure that real-time applications
can meet their performance constraints. Indeed, some resources such as mem-
ory buses, memory controllers, and some caches remain shared across all cores.
Therefore, it has been observed that the memory usage of applications running
on one core may impact the execution time of applications running on the other
cores [19,21]. In recent work [13], we have shown that sharing these resources
implies that the operations initiated on a best-effort core can affect the duration
of real-time tasks running on other cores. In that work, we have developed an
approach to address the memory induced slowdown that uses run-time monitor-
ing to detect when the interference risks causing the real-time task to exceed its
deadline beyond a threshold that is considered to be tolerable.

Assessing the benefit of this approach, and others like it that relate to
the memory behavior of embedded systems [15,19,24,26], requires appropriate
benchmarks. We have used the MiBench benchmark suite [18], that has the goal
of representing the spectrum of embedded applications used in industry. This
benchmark suite is one of the few that targets the embedded computing domain,
and is highly cited. Understanding the memory access behavior of the MiBench
applications requires periodic profiling of the application execution. This pro-
filing must be precise without excessively perturbing the application execution.
Furthermore, for our experiments with MiBench to be meaningful, it must be
the case that the memory access pattern of the MiBench applications is typical
of that of embedded applications.

In this paper, we make the following contributions towards better under-
standing the memory behavior of the MiBench applications and making these
applications better represent the memory behavior of embedded applications:

– We present the design of a memory access profiler that has little impact on
the behavior of the profiled application, and we assess the various tradeoffs in
this design.

– We use the profiler to detect spikes in the memory bandwidth usage of the 13
MiBench applications that we have previously found to be strongly affected
by the memory usage of applications running on other cores.

– We use various techniques, including rewriting the application, overloading
the C standard library, and changing the size of the file system buffers to
isolate the reasons for the observed memory spikes. Based on the results, we
classify the memory spikes into those that are derived from the behavior of
the C standard library, of the operating system, and of the application.

The rest of this paper is organized as follows. In Sect. 2, we briefly present an
overview of our hardware and of our software configuration. In Sect. 3, we present
our profiler, evaluate its design decisions, and show the results of profiling the
MiBench applications. In Sect. 4, we identify and classify the root causes of the
spikes in memory usage observed in the MiBench applications. Finally, in Sect. 5,
we present related work, and Sect. 6 concludes.

Understanding the Memory Consumption of the MiBench 73

2 Platform

In this section, we first describe our hardware platform, and then we present
MiBench and the software configuration used in our tests.

2.1 Hardware

We focus on embedded systems, as used in the automotive domain, which has
strong hardware cost requirements. Therefore, for our tests we use the SABRE
Lite board [22], a low-cost development platform designed for multimedia appli-
cations on the Android and Linux operating systems. A variant of this platform
that has been adapted for the automotive domain is used by a large number
of automotive manufacturers and suppliers. The processor of the SABRE Lite
is an i.MX 6, which is based on a 1.2 GHz quad-core Cortex A9 MPCore [10].
Each core has a separate Level 1 (L1) 32-KB 4-way set-associative cache for
instructions and data [8]. All CPUs are connected to a single 1-MB 16-way set-
associative L2 cache [9] that can be partitioned into multiples of the way size.
Finally, the Multi Mode DRAM Controller (MMDC) manages access to one
gigabyte of DDR3 RAM that can be used by all the cores [22].

The SABRE Lite board provides various hardware performance counters.
Each core provides six configurable counters to gather statistics about the oper-
ation of the processor (number of cycles) and the memory system (L1 cache
hits/misses) [7,8]. The MMDC has a profiling mechanism that gathers statistics
(read/write bytes/access) about the global memory traffic on the platform.

2.2 Software Stack

We use the applications of the MiBench [18] benchmark suite as real-time appli-
cations because this benchmark suite has been designed to be representative of
embedded applications used in industry. This benchmark suite has been refer-
enced almost 2700 times,1 and thus is a reference benchmark in the academic
domain. MiBench is composed of 35 embedded applications, mostly written in
C, categorized into six subclasses: industrial control consumer devices, office
automation, networking, security and telecommunications. Among these appli-
cations we omit 19 that contain x86 assembly code or that represent long-running
or office applications. From the remaining applications, we select the 13 that are
sensitive to the memory contention, as demonstrated by our previous work [13].

We run the MiBench applications on a Linux 3.0.35 kernel that has been
ported by Freescale to the i.MX 6 architecture. All of the MiBench applications
are compiled using GCC 4.9.1 with the option -O2. We use the 2.20 GNU C
Library as the C standard library. On embedded platforms, the kinds of data
inputs used by the Mibench applications are usually provided by external devices
such as an on-board camera, network controller, or microphone that interact
directly with the CPU, via DMA. To approximate this behavior without modi-
fying the applications, we store the data inputs in an in-memory file system.
1 Google Scholar, January 20, 2016.

74 A. Blin et al.

3 Memory Profiler

In this section, we present our memory profiler and show the memory profiles of
the MiBench applications. We then study the benefits and costs of high resolution
profiling.

3.1 Profiler Overview

We have developed a memory profiling module for the Linux kernel that uses
counters of the MMDC controller to measure global memory traffic. At the
beginning of the profiling process we enable the cycle counter that counts the
processor clock cycles. Our profiler then periodically samples several hardware
performance counters to obtain information about the memory access behavior.
Each sample contains the number of bytes read, the number bytes written and
the value of the cycle counter. Samples are stored in memory during profiling
and then are written to disk at the end of the application.

A challenge in designing a memory profiler is in how to enforce the sampling
interval. One solution would be to use a timer interrupt. Peter et al. [25], however,
have shown that timeouts set to a short intervals are frequently delivered a
significant fraction of their duration after their expiry time. To allow profiling
with intervals down to 1 us, we implement the sampling interval using a busy
wait on a dedicated core. This approach allows calibrating the interval fairly
precisely, but requires one core to be completely dedicated to profiling.

To prevent the profiler from interfering with the performance of the appli-
cation, we pin the application to profile on one core (core 0), using the POSIX
sched setaffinity function, and pin the profiler to another (core 1). We dis-
able the remaining cores. To avoid any preemption, we schedule the application
to profile and the profiling thread using the SCHED FIFO policy with highest
priority, and we disable the Real Time throttling mechanism that gives control
back to the operating system if a task has been scheduled for a time exceeding a
specified delay. We further reduce interference between the application to profile
and the profiler by partitioning the L2 cache between their different cores.

After the application execution has completed, the memory bandwidth is
computed from the number of bytes read and written in each sample and the
corresponding sample duration. The busy-wait delay approach induces small
temporal variations between samples. We use the value of the cycle counter to
make a temporal readjustment.

Figure 1 shows the resulting memory profiles of the 13 MiBench applications
with a sampling interval of 50 us. We observe that the profiling has no impact
on the application running time. Based on the memory profiles, we classify
the applications into two groups. The applications ADPCM small encode, ADPCM
small decode, Patricia small, Rijndael small decode, Rijndael small en-
code, Sha small and Susan large c have regularly recurring spikes, while the
remaining applications have a smoother memory profile.

Understanding the Memory Consumption of the MiBench 75

Fig. 1. Memory profiles of selected MiBench applications (sampling interval: 50 us)

76 A. Blin et al.

3.2 Profiler Design Choices

The profiler can be tuned with respect to the duration of the sampling inter-
val. Indeed, the choice of sampling interval can have a significant impact on
the precision of profiling. A long interval smoothes the memory usage, because
the profiled value represents an average over the sampled period, thus reduc-
ing the magnitude of spikes that have a duration shorter than the sampling
interval. A short interval provides more accurate information about spikes, but
may distort the resulting profile, because memory usage is measured globally,
for the entire machine, and the profiler also uses memory, to record the profile
information for each sample. Thus, the profiler can potentially introduce spikes
or increase the size of existing ones. Furthermore, this added memory usage
can potentially delay the memory accesses of the profiled application, and thus
increase its running time. In this section, we explore these tradeoffs.

We first consider the bandwidth values observed with various sampling inter-
vals. Figure 2 shows the memory profiles of selected MiBench applications with
different sampling intervals. Of our original 13 applications, we have omitted Fft
small -i, qsort small and Rijndael small decode, which have essentially
the same profiles as Fft small, qsort large and Rijndael small encode,
respectively. For the applications with memory usage spikes, decreasing the sam-
pling interval from 10 us to 1 us or from 50 us to 10 us increases the height of
the spikes by 2 or more times. For such applications we thus do not know the
maximum bandwidth, as further decreasing the sampling interval may cause the
observed spikes to increase even higher. For the applications without spikes,
changing the sampling interval has little impact on the memory bandwidth
pattern.

We next study the impact of the sampling interval on the overall memory
usage of the system. For this, we develop and profile a very low memory footprint
application, with the expectation that any observed memory usage in this case
comes from the profiler itself. Our application simply increments a counter from
zero to an upper bound. By varying the upper bound, we can control the appli-
cation execution time. Figure 3 shows the overall memory bandwidth observed
when profiling our low memory footprint application, with various execution
times from 10 ms to 50 ms for the application and various sampling intervals
from 50 us down to 1 us for the profiler. With a 50 us sampling interval, the
bandwidth is always close to zero. With a 10 us sampling interval, the band-
width is greater for short execution times than for long execution times, while
with a 1 us sampling interval, the bandwidth generated by the profiler is more
variable, with a bandwidth of up to 11 MB/s for a long running application.
Nevertheless, even a memory bandwidth of 11 MB/s is negligible as compared
to the memory bandwidths observed for most of the MiBench applications, and
thus we consider that the memory bandwidth generated by the profiler is not
an issue.

Finally, we did not observe significant differences in the application execution
time with the various sampling intervals.

Understanding the Memory Consumption of the MiBench 77

Fig. 2. Memory profiles of MiBench applications

78 A. Blin et al.

Fig. 2. (continued)

Fig. 3. Approximate memory bandwidth induced by the profiler

Understanding the Memory Consumption of the MiBench 79

4 Origins of the Memory Spikes

For understanding memory behavior, spikes are problematic, because it is diffi-
cult to capture their real bandwidth due to their short duration. We now inves-
tigate the origins of these spikes. We first present a methodology to localize
their origins. We then use various techniques, including rewriting the applica-
tion, overloading the C standard library, kernel modification, and changing the
size of the file system buffers to identify the root causes of the memory spikes.

4.1 Methodology

To identify the origins of the memory spikes, we have developed a tagging mecha-
nism. A tag is basically a set of instructions added in the application source code
to obtain and record the value of the cycle counter. Using tags, we can relate a
line of source code to the corresponding offset in the application memory pro-
file. Using a large number of tags would substantially increase the application
execution time. Therefore, we use tagging only for spike identification.

Our use of tags shows that the main causes of the spikes can be catego-
rized into three groups: I/O functions, the operating system, and the application
source code. In the rest of this section, we study each of these sources.

4.2 I/O Functions

For each application that has spikes, Table 1 lists the I/O functions that are the
sources of memory spikes. ADPCM uses the low level I/O functions open, read,
and close, while the other applications use the buffered I/O functions fopen,
fread, fwrite, fgets and fclose, which operate on streams.

Table 1. I/O function call sources of memory spikes

Open Read Close fopen fclose fread fwrite fgetc fgets

ADPCM small encode x x x

ADPCM small decode x x x

Patricia small x x x

Rijndael decode x x x x

Rijndael encode x x x x

Sha small x x x

Susan small e x x x x

Susan small c x x x x

Susan large c x x x x

80 A. Blin et al.

Buffered I/O. To understand the impact of the buffered I/O functions we
focus on Rijndael small encode, which performs both reads and writes. This
application performs a computation on 16 byte blocks acquired using fread.
Each computed block is then written to an output file using fwrite. We study
the memory behavior of the reads and writes separately.

To study the memory traffic generated by fread, we simply comment out the
fwrite calls, as the application’s computation does not depend on them. The
resulting memory profile (Fig. 4b) shows a very low memory traffic mixed with
regular spikes. Analysis of the tags shows that most of the spikes come from calls
to fread. On average, there are 79 spikes greater than 600 MB/s per run, out
of a total of 19489 calls to fread. Thus, on average, we have a memory spike
every 246.7 fread calls. The size of the input file is 311,824 bytes. Thus, there
is a memory spike every time a block of 3947 bytes has been read.

We hypothesize that the memory spikes come from the management of the
internal input stream buffer. Using the fbufsize function, we find that the
default size of the input stream buffer is 4096 bytes. When fread is called,
if the requested data are not present in the input stream buffer, fread refills
the buffer by reading a new block of 4096 bytes from the file. Because the file
is stored in a Temporary File System (TMPFS) mounted in memory, refilling
the stream buffer involves a copy from the TMPFS to the input stream buffer,
which generates a burst of memory traffic. All calls to fread also make a copy
from the input stream buffer to the application buffer. This copy, however, does
not generate any memory traffic, as both buffers are loaded in caches. These
observations thus suggest that the memory spikes come from the refilling of the
input stream buffer.

To test the hypothesis that the spikes are derived from filling the input
stream buffer, we modified the size of this buffer using the setvbuff function.
Figure 4 shows the memory profiles of Rijndael small encode with various
input stream buffer sizes. Our hypothesis suggests that increasing the size of
the stream buffer should reduce the number of times the buffer needs to be
filled and should increase the height and duration of spikes, as filling a bigger
buffer generates more memory traffic. Indeed, we see that increasing the size of
the stream buffer reduces the number of memory spikes, slightly increases their
height when moving from a 2 KB buffer to a 4 KB buffer, and increases their
duration, according to the increase in the buffer size.

We next turn to writes. To analyse the memory traffic generated by fwrite
we first override fread by a non-buffered read function, leaving the calls to
fwrite commented. The resulting memory profile is shown in Fig. 5, in which
almost all of the large spikes have disappeared. The remaining spikes are due to
operating system effects (Sect. 4.3). Then, we uncomment the call to fwrite. As
shown in Fig. 6b, the resulting memory profile contains, on average, 83 regular
memory spikes per run that are greater than 300 MB/s. The output file size is
311,856 bytes. We thus have a memory spike every time a block of 3757 bytes has
been written. We believe that the memory spikes issued from fread and fwrite

Understanding the Memory Consumption of the MiBench 81

Fig. 4. Rijndael small encode without writes and with various input stream buffer
sizes

Fig. 5. Rijndael small encode without writes and with unbuffered reads

Fig. 6. Rijndael small encode with unbuffered reads and with various output stream
buffer sizes

functions have the same cause. We modified the size of the output stream buffer
and again observe that the number of spikes decreases (Fig. 6).

We performed the same experiments on all of the other applications that use
buffered I/O functions and we observed the same behaviour.

Low-Level I/O Functions. ADPCM is a signal encoder/decoder application
that performs computation on blocks acquired using read. The block size for
ADPCM small encode is 2 KB and the block size for ADPCM small decode is 500
bytes. For both applications, we observe that the number of spikes is exactly the
same as the number of calls to read, which suggests that the spikes are due
to the copy from TMPFS to the application buffer. To see the impact of the

82 A. Blin et al.

Fig. 7. ADPCM small with a small read buffer

read calls, we reduce the application buffer size from 2 KB bytes to 100 bytes.
This change substantially increases the execution time of the application, but
eliminates most of the memory spikes (Fig. 7).

In our view, the low-level I/O functions are representative of the memory
accesses that could be done by an embedded application that would access data
coming from an external device. The I/O operation itself can be done either by a
CPU copy loop or by DMA. On the other hand, buffered I/O functions generate
additional spikes that are not suitable in an embedded context. We consider that
this is a problem in the design of MiBench.

4.3 Operating System

Figures 5 and 7 show the memory profiles of applications that we have modified to
eliminate the I/O induced memory spikes. These profiles, however, still contain a
few spikes that occur at regular 10 ms intervals. We hypothesize that these spikes
are due to the system timer of the operating system. The Linux timer frequency
is defined at kernel compilation time by the configuration option CONFIG HZ,
which by default is set to 100 Hz, resulting in a timer interrupt every 10 ms. We
generated the memory profile of our low memory footprint application (Sect. 3.2)
with the timer frequency at 100 Hz and 50 Hz, and observed that the delays
between spikes were around 10 us and 20 us, respectively, thus validating our
hypothesis.

4.4 Applications

Most of the applications exhibiting spikes have a continuous behavior across
the entire duration of the application. These applications follow the model of
Rijndael and ADPCM, where the spikes are due to I/O functions and operating
system effects. Susan large c, an image recognition package, on the other hand,
has spikes, but has a more complex overall behavior. Specifically, the graphs for
Susan large c in Figs. 2d–f show that the heights of the spikes are very variable,
and for different spikes, the heights decrease at different rates as the sampling
interval increases. To explore the reason for this behavior, we used the tagging
mechanism, which revealed three different phases in the execution (Fig. 8a).

Understanding the Memory Consumption of the MiBench 83

Fig. 8. susan large-c

In the first phase, lasting 0.1 ms, the memory spikes are generated by buffered
I/O functions that load the image into a byte array.

In the second phase, lasting around 20 ms, we observe a very low read memory
traffic mixed with regularly occurring write spikes of varying magnitudes. We
used the tagging mechanism to identify the source code that generates the spikes.
Susan uses a for-loop to iterate over the byte array. The loop body contains a
complex condition which, when it succeeds, stores values in three integer arrays
each having the same size as the image. These array stores are not sequential.
Indeed, the average distance between two neighbouring stores is 287.5 bytes,
with a standard deviation of 565.8, implying a huge variation. We hypothesize
that the read traffic is derived from iterations over the byte array and the write
spikes are derived from the stores into the integer arrays.

To test our hypothesis about the origin of the write spikes, we comment
out the array writes. The written array values are not read during this phase,
and thus removing the writes does not affect this phase’s overall computation.
Figure 8b shows the resulting memory profile of the second phase. Most of the
write spikes disappear, thus validating our hypothesis.

In the third phase, we observe a high memory traffic of around 550 MB/s.
Susan uses two nested loops to iterate over an integer array. These read accesses
are not sequential. Every 384 iterations the application makes a jump of 288
iterations in the array. The inner loop body contains a complex condition which,
when it succeeds, stores values in a structure array. We comment out these writes.
Figure 8c shows the resulting memory profile of the third phase, in which the
memory traffic is reduced to 500 MB/s. We further modified the code to remove
the non-contiguous accesses and observed that the memory traffic decreased
dramatically. We conclude that most of the memory traffic comes from the non-
contiguous accesses.

5 Related Work

The main focus of our work is on memory profiling and on the behavior of bench-
marks for embedded systems. Besides the original paper presenting MiBench [18],
which primarily describes the benchmark programs and some aspects of their
execution, but does not consider memory bandwidth, we are not aware of other

84 A. Blin et al.

works studying the properties of benchmarks for embedded systems. We thus
focus on strategies for memory profiling in the rest of this section. Specifically,
we consider three approaches to profiling the memory consumption of applica-
tions: hardware counters, simulations, and static analysis.

Hardware Counters. Hardware counters are available on most modern archi-
tectures. They require specialized CPU hardware and their implementation is not
standardized. Hardware counters achieve high performance and their measures
are representative of hardware behaviour. Several projects used hardware coun-
ters for profiling multicore systems. Lachaise et al. [20] have developed MemProf,
a profiler that allows programmers to choose and implement efficient application-
level optimizations for NUMA systems. They rely on an architecture-specific
instruction called “ISB” introduced by AMD to perform memory profiling. Tra-
ditional profilers, such as Oprofile [3] and Perf [4] are available on ARM archi-
tectures, however, they currently do not support our memory controller.

Simulation. Simulators emulate the system architecture in software, allowing
performance data to be gathered on any emulated components. To be effective,
simulation needs an accurate description of the simulated resources. Another
drawback of simulation is the overhead. It is common for a simulator to be 10 to
100 times slower than the native hardware. Valgrind [6] is a widely used instru-
mentation framework for building dynamic analysis tools. Cachegrind, one of the
tools provided by Valgrind, is a cache profiler that provides cache access statis-
tics such as L1/L2 caches misses/hits. The Cachegrind L2 cache implementation
uses virtual addresses whereas the SABRE Lite board uses physical addresses.

Static Analysis. Static data-cache analysis techniques rely on the source code
and an architecture description. Ghosh et al.’s Cache Miss Equations [17] frame-
work computes tight estimates, but is only applicable to programs that contain
regular accesses with predictable patterns. Pellizzoni et al. [24] propose a time-
sliced architecture in which applications must be re-structured into phases that
have particular memory-access properties. Boniol et al. [14] propose an algorithm
relying on a static analyser [11] for restructuring applications automatically to
fit the requirements of the time-sliced architecture.

6 Conclusion

In this paper, we have developed a memory access profiler that relies on hard-
ware counters to measure the global memory traffic issued from applications. We
have shown that this profiler has little impact on the behaviour of the profiled
applications. Using our profiler, we have traced the memory profiles of the 13
MiBench applications that we have previously found to be strongly affected by
the memory usage of applications running on other cores. The resulting memory
profiles show that the executions of more than half of these applications involve

Understanding the Memory Consumption of the MiBench 85

frequent high memory spikes. To identify the origins of these spikes, we have
used a methodology that links the application source code to the memory pro-
file. Based on the results, we have classified the memory spikes into those that are
derived from the behaviour of the C standard library, the operating system, and
the application. We have used various techniques, including rewriting the appli-
cation, overloading the C standard library, changing the size of the file system
buffers, and recompiling the operating system kernel to isolate the reasons for
the observed memory spikes. We have established that C standard Library spikes
come from buffered I/O functions and from low level I/O functions. Buffered I/O
functions generate memory spikes when they refill their internal buffer, while low
level I/O functions produce memory spikes on each access to a memory mapped
file. We have shown that operating system spikes are due to the system timer.
Finally, we explore some reasons for application spikes with a detailed study of
Susan large c.

In future work, we plan to develop strategies for recoding the MiBench appli-
cations to eliminate the sources of memory bandwidth that derive from the C
standard library or the operating system, so that the MiBench applications bet-
ter mirror the behaviour of embedded applications.

References

1. NXP boards. http://www.nxp.com/
2. OKL4 Microvisor. http://www.ok-labs.com/products/okl4-microvisor
3. OProfile - a system profiler for Linux. http://oprofile.sourceforge.net
4. perf: Linux profiling with performance counters. https://perf.wiki.kernel.org
5. PikeOS. http://www.sysgo.com
6. Valgrind. http://valgrind.org
7. ARM. ARM Architecture Reference Manual ARMv7-A—R, rev C.b, November

2012
8. ARM. Cortex-A9 Technical Reference Manual, rev r4p1, June 2012
9. ARM. Level 2 Cache Controller L2C–310 TRM, rev r3p3, June 2012

10. ARM. Cortex-A9 MPCore Technical Reference Manual, June rev r4p1 (2012)
11. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: an open toolbox for

adaptive WCET analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T. (eds.)
SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010)

12. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP (2003)

13. Blin, A., Courtaud, C., Sopena, J., Lawall, J., Muller, G.: Maximizing parallelism
without exploding deadlines in a mixed criticality embedded system. Technical
report RR-8838, INRIA, January 2016

14. Boniol, F., Cassé, H., Noulard, E., Pagetti, C.: Deterministic execution model on
COTS hardware. In: Herkersdorf, A., Römer, K., Brinkschulte, U. (eds.) ARCS
2012. LNCS, vol. 7179, pp. 98–110. Springer, Heidelberg (2012)

15. Fisher, S.: Certifying applications in a multi-core environment: the world’s first
multi-core certification to SIL 4. In: SYSGO AG (2014)

16. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: Autosar-a worldwide standard is on the
road. In: 14th International VDI Congress Electronic Systems for Vehicles (2009)

http://www.nxp.com/
http://www.ok-labs.com/products/okl4-microvisor
http://oprofile.sourceforge.net
https://perf.wiki.kernel.org
http://www.sysgo.com
http://valgrind.org

86 A. Blin et al.

17. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: a compiler framework
for analyzing and tuning memory behavior. TOPLAS 21(4), 703–746 (1999)

18. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: a free, commercially representative embedded benchmark suite.
In: EEE International Workshop on Workload Characterization, pp. 3–14 (2001)

19. Jean, X., Gatti, M., Faura, D., Pautet, L., Robert, T.: A software approach for
managing shared resources in multicore IMA systems. In: DASC, October 2013

20. Lachaize, R., Lepers, B., Quéma, V., et al.: MemProf: a memory profiler for NUMA
multicore systems. In: USENIX Annual Technical Conference, pp. 53–64 (2012)

21. Nowotsch, J., Paulitsch, M.: Leveraging multi-core computing architectures in
avionics. In: EDCC, pp. 132–143, May

22. S. NXP. i.MX 6Dual/6Quad Processor Reference Manual, rev 1, April 2013
23. Obermaisser, R., El Salloum, C., Huber, B., Kopetz, H.: From a federated to an

integrated automotive architecture. IEEE Trans. Comput.-Aided Design Integr.
Circ. Syst. 28(7), 956 (2009)

24. Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., Kegley, R.: A
predictable execution model for COTS-based embedded systems. In: RTAS (2011)

25. Peter, S., Baumann, A., Roscoe, T., Barham, P., Isaacs, R.: 30 seconds is not
enough!: a study of operating system timer usage. In: EuroSys (2008)

26. Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L.: MemGuard: memory band-
width reservation system for efficient performance isolation in multi-core platforms.
In: IEEE 19th RTAS, pp. 55–64. IEEE (2013)

Benchmarking Energy-Centric Broadcast
Protocols in Wireless Sensor Networks

Quentin Bramas(B) and Sébastien Tixeuil

CNRS, LIP6 UMR 7606, Sorbonne Universités,
UPMC Univ Paris 06, 4 place Jussieu, 75005 Paris, France

quentin.bramas@lip6.fr

Abstract. We consider the problem of broadcasting messages in wireless
sensor networks (WSN) in an energy-efficient manner. The problem is cen-
tral for many application, as WSNs often consist in autonomous battery
powered devices that use broadcast for many purposes (e.g. synchroniza-
tion, data collection, etc.). A number of algorithms have been proposed to
solve this problem, focusing in particular on node that are able to reduce
their communication range, enabling to lower energy consumption.

One of the best known such centralized algorithm is the Broadcast
Incremental Power (BIP). Then, several distributed algorithms have
been proposed, such as Localized BIP, Dynamic Localized BIP, and
Broadcast Oriented Protocols (RBOP and LBOP). Those distributed
approaches aim to reach the performance of BIP without assuming that
the nodes have the knowledge of the whole graph.

In this paper we answer the open question left by those previous
work: how do they perform (energy-wise) with realistic devices placed
in a realistic environment? Unlike previous works that consider an ideal
MAC layer (with no collisions) and a simple energy consumption model
(that assumes that only transmitting messages consumes energy), we use
simulated MAC layers (ContikiMac and 802.15.4 MAC layers) that take
into account signal propagation and the possibility of collisions, and real-
istic battery and energy consumption models, that consider all relevant
energy aspects of sensor node hardware. It turns out that our findings
are significantly different from the aforementioned theoretical studies.
Among our findings, we show that the hierarchy of the routing proto-
cols (based on their performance) is not preserved (compared with the
theoretical studies), which means that wireless interference impact them
in different ways. Also, we found that the MAC layer plays an impor-
tant role on the performance of the upper layer protocols, and does not
impact all routing protocols in the same way.

This work was performed within the Labex SMART supported by French state
funds managed by the ANR within the Investissements d’Avenir programme under
reference ANR-11-IDEX-0004-02.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 87–101, 2016.
DOI: 10.1007/978-3-319-46140-3 7

88 Q. Bramas and S. Tixeuil

1 Introduction

Wireless Sensor Networks (WSNs) consists of sensor devices deployed in some
area that use wireless communication to exchange messages with each other.
In the ad hoc context, sensor nodes are independent from any architecture,
and must cooperate to perform various tasks, such as retrieving sensed data to
a sink node, or broadcasting important information (software updates, alerts,
etc.) to the whole network. In most WSN applications (e.g., temperature sen-
sors deployed to monitor a forest, heterogeneous sensors deployed in and on
the human body, etc.) sensor nodes are battery-powered. In those applications,
guaranteeing an extended lifetime for the network is of paramount importance.

In this paper, we focus on the problem of broadcasting a message from a
source (that is, a particular sensor node), to the entire network. The source may
be unique, or be different for each message. This problem has been extensively
studied in the literature (see Sect. 2), and resulted in energy-centric algorithms,
that target to improving the network lifetime assuming battery-powered sensor
nodes. The evaluation of the energy-efficiency may depend on the application:
the goal can be to minimize the global energy consumption, to maximize the
lifetime of every node, to maximize the lifetime of some given percentage of the
nodes, etc.

A significant proportion of the energy consumed by the sensor nodes is related
to wireless communications. There exists a number of techniques to reduce the
amount of energy consumed for communicating. For instance, a directed antenna
uses less power to reach the same distance compared to an omnidirectional
antenna, but their ad hoc deployment is problematic as precise adjustments
have to hold for two nodes to be able to communicate. A less stringent solution
is to consider devices equipped with omnidirectional antennas, but with a radio
transceiver that is able to adjust its transmission power (and thus the amount
of energy spent on transmissions). In this paper, we consider the latter case.

Existing energy-centric broadcast algorithms for WSNs (see Sect. 2) were all
evaluated using a specific simplified energy consumption model. Their model
defines a function that maps a communication range to the amount of energy
needed to transmit a message within this range. Given this energy consumption
model, those solutions were evaluated using simulations to compare their relative
efficiency. Those simulations all use an ideal MAC layer, where no collisions ever
occurs. This leaves the open question of how those algorithms perform in a more
realistic setting.

Our Contribution. In this paper, we consider previously proposed energy-centric
broadcasting protocols for WSNs and evaluate them in realistic scenarios. We
benchmark them using a simulator that includes a complete communication
protocol stack, a realistic physical communication layer, and an accurate energy
consumption model. We choose to perform our simulation with ContikiMAC
and 802.15.4 MAC, that were both designed for small and energy constrained
devices. In particular, in our settings, the MAC layer has to deal with possible

Benchmarking Energy-Centric Broadcast Protocols in WSN 89

collisions, and the energy consumption takes into account all components of the
sensor device (including a non-linear battery behavior).

The results of our evaluation is as follows. First, we demonstrate that wireless
interference significantly impact the performance of broadcasting protocols in
various ways. Indeed, the hierarchy of the broadcasting protocols (based on
their performance in an ideal setting) is not preserved in the more realistic
setting. Also, we show that the MAC layer, also does not impact all broadcast
protocols in the same way (some protocols perform better with ContikiMAC
than with 802.15.4 MAC, while other do not). Quite surprisingly, it turns out
that the very simple flooding protocol (used as a theoretical lower bound in
previous work), is actually one the best distributed broadcasting protocols in our
realistic environment. Our results show that considering only idealized settings
in theoretical work does not give accurate performance hierarchies (including
relative ones) in practical settings.

Outline. In Sect. 2, we present the broadcasting protocols that we evaluate,
and the new interference and energy consumption we consider are delegated to
Sect. 3. Section 4 details our experimental protocol. The results of our simulations
are presented and discussed in Sect. 5. Concluding remarks are presented in
Sect. 6.

2 Related Work

A Wireless Sensor Network (WSN) is modeled as a unit-disk graph G(V,E),
where V denotes the set of nodes, and E the set of possible communication links.
Two nodes u and v are connected if the Euclidean distance d(u, v) between them
is smaller than the transmission range R:

E = {(u, v) ∈ V 2 | u �= v ∧ d(u, v) ≤ R}
We restrict the study to the case where sensor nodes are equipped with

omnidirectional antennas: If a node u transmits a message with full power, all
its neighbors can receive it. To reduce energy consumption, a node may decrease
its transmission power to have a transmission radius r ≤ R. In this case, only the
nodes that are at distance at most r may receive the message. When a given node
u wants to broadcast a message to the entire network, the goal of a broadcasting
protocol is to assign transmission powers to each node so that the message is
received by all the other nodes. The efficiency of a broadcast protocol is based
on several criteria we describe hereafter.

Energy-centric broadcasting protocols have received much interest in WSNs
for the past ten years [11]. We can distinguish two families of protocols that aim
to be energy efficient by adjusting transmitting powers: topology control oriented
protocols, and broadcast oriented protocols.

90 Q. Bramas and S. Tixeuil

Topology Control Oriented Protocols. A topology control oriented protocol
assigns the transmission power for each node, independently of the source of
the broadcast. The goal is to obtain a connected network with minimum total
transmission power according to an energy consumption model. Once the radii
are assigned, they are used for every broadcast from an arbitrary source. The
problem of minimizing the total transmission power that keeps the network con-
nected is known as min assignment problem and was considered by Kiroustis
et al. [14]. Clementi et al. [8] demonstrated that this problem is NP-hard. Most
of these protocols require global knowledge of the entire graph to compute a
Minimum Spanning Tree (MST). Recently, localized protocols based on the Rel-
ative Neighborhood Graph (RNG) [19], and a Local Minimum Spanning Tree
(LMST) construction [15] have been proposed (see [11] for a survey).

Broadcast Oriented Protocols. A broadcast oriented protocol has the same overall
goal, but considers that the broadcast starts at a given node. Hence, the induced
broadcast network does not have to be strongly connected, leading to possibly
more efficient solutions. For instance, the last nodes that receive the message do
not need to retransmit it i.e., the algorithm may assign them a null transmission
power. However, the source must be able to reach every node of the network. The
problem remains difficult, as it has been proved [8] that the minimum-energy
broadcast tree construction problem is NP-complete.

In this paper, we consider six broadcast oriented protocol:

Flooding. Flooding is the simplest distributed protocol: when a node has a
message to transmit, it transmits it with maximum power. Flooding is typi-
cally used for comparison with more elaborate energy-centric protocols, as it
tries to maximize reachability without considering energy consumption.

BIP (Broadcast Incremental Power). [20] BIP is the only centralized algo-
rithm we consider in the paper. Although mostly Greedy-based, it is one of
the most efficient algorithms, and is commonly used as a reference in the
literature. It constructs a tree as follow: Initially, the broadcast tree contains
only the source node; then, while there exists a node that is not in the tree,
it computes the incremental minimum power needed to add a node to the
tree, either by increasing the power transmission of a transmitting node in
the tree, or by choosing a non-transmitting node in the tree to transmit.

LBIP (Localized BIP). [12] LBIP is the distributed version of BIP. Since
acquiring the knowledge of the full network topology to apply BIP at every
node would be to expensive (at least, energy-wise), the goal of the protocol
is to discover only the 2-hop neighborhood and use the BIP algorithm on it.
Each time a node receives a packet, in addition to the original message, it can
contain a list of forwarder nodes. If the node is in this list, it compute the
BIP tree on its 2-hop neighbors to choose the right transmission power and
transmit the message with a list of nodes that must forward it, according to
the BIP tree.

DLBIP (Dynamic Localized BIP). [6] DLBIP is the energy-aware version of
LBIP. It is dynamic in the sense that for the same source, two broadcast trees

Benchmarking Energy-Centric Broadcast Protocols in WSN 91

may be different. The broadcast is done in the same way as LBIP, but the
BIP tree construct with the 2-hop neighbors take into account the remaining
energy of the nodes to promote nodes with higher residual energy.

RBOP (RNG Broadcast Oriented Protocol). [5] RBOP is based on the
RNG topology control protocol. A node that has a message sends it with a
transmission power such that all its neighbors in the RNG graph receive it.
The protocol also contains some optimization to avoid transmission when a
node knows that some of its neighbors in the RNG graph already received
the message.

LBOP (LMST Broadcast Oriented Protocol). [5] LBOP apply the same
scheme as RBOP but the RNG graph is replaced by the LMST one.

There exists other broadcast oriented algorithms that we do not consider
in this paper. For instance the INOP (INside-Out Power adaptive approach)
defined in [7], is very close to the LBIP algorithm but takes into account only
the 1-hop neighborhood. In the same paper, the authors evaluate their algorithm
with a realistic network stack but used the 802.11 DCF MAC layer (which does
not correspond to sensor network MAC layers), and an ideal per-packet energy
consumption model.

Previous Models. All aforementioned works (besides INOP [7]) consider an ideal
MAC layer where no interference occurs when two neighboring nodes transmit
data within the same timeframe. Such an assumption is unrealistic as further
discussed in Sect. 3. INOP [7] does consider a realistic network stack, but the
stack is related to full-fledged computer networks, which is not energy-aware.
Sensible network stacks for sensor nodes include ContikiMAC and 802.15.4, that
we consider in the sequel.

Another oversimplification made by all previous works is even more prob-
lematic: the energy consumed by a node is supposed to be equal to the energy
consumed by the radio during transmissions. In more details, the energy E(u)
consumed by a node u for one transmission is given as a function depending on
the radius r(u) of the transmission (1) (which depend on the power transmission
of the radio). The energy consumed by the protocol is then the sum E of the
energies consumed by all nodes (3). In order to compare several algorithm, we
can consider the ratio EER between the energy consumed by a protocol and
the energy consumed by the flooding protocol (2–4), which always choose the
maximum transmission power.

E(u) =
{

r(u)α + c if r(u) �= 0
0 otherwise (1)

Eflooding = n × (Rα + c) (2)

E =
∑
u∈V

E(u) (3)

EER =
E

Eflooding
× 100 (4)

92 Q. Bramas and S. Tixeuil

where α, c ∈ R
+. Of course, real sensor nodes also consume energy when doing

other tasks (reading sensor values, computing, receiving data). Also, low power
batteries typically have non-linear behavior (their capacity may vary depending
on the intensity of the drained current at a given time).

3 Our Model

In this section, we present the interference, battery, and energy consumption
models we use in our evaluation campaign.

Interference Model. The study and development of interference models is an
active domain of research in WSNs [2,4,13]. Indeed, in a real environment, any
wireless signal is subject to several phenomena, such as attenuation over the
distance, and the superposition with other wireless signals, before being received
by a receiver. To be properly received, the signal corresponding to the message
must be decoded considering the sum of all other incoming signals as noise.

To study an algorithm that is executed by devices communicating through
wireless signals, it is necessary to consider an interference model. The survey by
Cardieri [4] gives a number of interference models with different levels of detail
and their impact on various network layers. Iyer et al. [13] show that the inter-
ference model has an huge impact on both scheduled transmission networks and
random access networks. Their conclusion is that all models used for quantitative
evaluation purposes should at least include SINR (signal-to-interference-plus-
noise-ratio) considerations. The vast amount of research in this topic highlights
the fact that it is not only necessary to have an interference model when analyz-
ing WSN, but it is essential to have a good one. For our study, we use the SINR
model incorporated in the WSNet Simulator [2] with a log-distance pathloss
propagation model.

Battery and Energy Consumption Models. Independently from the networking
context, battery models are an active research domain [3,17,18]. It is known that
batteries exhibit non-linear behavior, e.g. rate-capacity effect, recovery effect,
and non constant voltage. The rate-capacity effect means that the ratio between
the load and the capacity may not remain constant. For instance, with the same
battery, we can obtain a 100mAh capacity with a 10mA current draw (10 hours
before depletion), and a 80mAh capacity with a 20mA current draw (4 hours
before depletion). The recovery effect denotes the increase of battery capacity
that may occur after a period when the battery is at rest. This effect is not
visible with WSN devices since the battery is never at rest (even in deep sleep
mode, the CPU and the transceiver have a non-zero current draw). The non
constant voltage is an important factor that shortens the lifetime of a device.
In more details, the residual capacity of a battery, the internal resistance and
the current draw at a given instant impact the output voltage of the battery.
Also, any device embedded on a sensor node has a cutoff voltage (that is, the
minimum voltage that enables it to work correctly). Therefore, the first time the
voltage is below the cutoff, the device stops working and cannot be waken up.

Benchmarking Energy-Centric Broadcast Protocols in WSN 93

When considering a device composed by multiple piece of hardware, such as
a CPU, a transceiver, several sensors, etc., it is important to model their energy
consumption. A rough approximation is to consider only the biggest consumer
and ignore the other components. Alternatively, we can have a more refined
approach and define several states for each component (such as transmitting, or
receiving for the transceiver, sensing for the sensor, etc.) and consider that each
time a change of state occurs, a predefined amount of energy is consumed by
the corresponding component. A recent study [3] shows that the most accurate
model is to consider every device component, and to track the current drawn by
the whole device at each instant. Then, the battery model can use this informa-
tion to accurately compute the voltage, and its residual capacity. In more details,
using only the number of wireless transmissions by a device to evaluate its life-
time can give estimates that are 27 times greater than the lifetime obtained
by measurements on real hardware [3]. Taking into account a proper battery
model and a detailed energy consumption tracking permits to obtain between
85% (in the worst case) and 95 % accuracy on the evaluation of the lifetime of
a device, when compared to real device measurements [3]. WiseBat [3] can be
configured with the actual data-sheet of the battery and the list of components
of the device. It has a low simulation overhead, which allows us to perform sim-
ulations campaigns with a reasonable number of nodes. For our study, we use
the WiseBat [3] model to evaluate the lifetime of each node.

4 Experimental Setup

We use WSNet simulator [10] to perform our experimental evaluation campaign.
We deploy 50 sensor nodes that are located uniformly at random in a square-
shaped area. The size of the area varies from 300×300 m to 800×800 m to create
various network densities. The protocol stack consists of a broadcast applica-
tion, a broadcast protocol (whose performance is to be evaluated), a MAC layer
(we consider both the 2400 MHz OQPSK 802.15.4 CSMA/CA unslotted [1] and
ContikiMAC [9]), a radio transceiver, and an omnidirectional antenna. For the
environment, we use OQPSK modulation and the log-distance pathloss prop-
agation model. The log-distance pathloss propagation model is more realistic
than the range propagation and is simple enough to be easily predictable. This
allow the node to choose the transmission power according to the desired range
it wishes to attain.

A simulation setting consists in selecting a broadcasting protocol, a MAC
layer, and the size of the area. For each setting, we run 50 simulations with vari-
ous topologies. All measurements (remaining energy, number of receiving nodes
per broadcast, and delay) are averaged over those simulations. Each topology is
obtained by randomly deploying the nodes in the square area, and is used for
all the simulation settings, so that different protocols are evaluated on the same
topology. Table 1 summarizes the properties of the topologies we use (averaged
over the 50 topologies we constructed for each size).

For the energy model we used the WiseBat [3] module with a real TMote
Sky configuration (see Table 2). The current drawn by the CPU under a voltage

94 Q. Bramas and S. Tixeuil

Table 1. Average density, diam-
eter, and connectivity of the
topologies, depending on the
area size.

Size Density Diameter Connectivity

300 0.60 2.9 13.3

400 0.40 3.8 6.8

500 0.27 4.7 3.9

600 0.20 5.8 2.2

700 0.15 7.7 1.4

800 0.12 9.5 1.1

Table 2. Voltage specification of the TMote
Sky Hardware

Radio CPU
Chipcon CC2420 Texas Instruments
Tx 0dB 17.4 mA MSP430 F1611
Tx -1dB 16.5 mA Run 8MHz 3V 4mA
Tx -3dB 15.2 mA Sleep 2.6µA
Tx -5dB 13.9 mA voltate cut-off 2.7V
Tx -7dB 12.5 mA
Tx -10dB 11.2 mA
Tx -15dB 9.9 mA
Tx -25dB 8.5 mA

Rx 19.7mA
Idle 365µA
Sleep 1µA

Volt. Regulator 20µA

V CC is given by the formula I[V CC] = I[3V] + 210(V CC − 3). We chose to
power the device with a rechargeable Lithium Ion battery. Here, we used the
data-sheet of the GP Battery 1015L08 model, that is designed for small devices.

Two execution scenarios are considered. In the first scenario (single source
broadcast), Node 0 broadcasts a message to the other nodes every ten seconds,
until the voltage is not sufficient for the node to work correctly (its cut-off
voltage is 2.7 V, see Table 2). In the second scenario(multiple source broadcast),
a randomly selected node tries to broadcast its message, until there is no node
working correctly and no node can initiate a broadcast.

5 Experimental Results and Discussion

We first present experimental results related to single source broadcast in
Sect. 5.1, then multiple source broadcast in Sect. 5.2. Our findings are further
discussed in Sect. 5.3

5.1 Single Source Broadcast

When the source of the broadcast does not change, it becomes the first node that
stops working. This observation holds for every broadcasting protocol and every
MAC layer. The reason is that the CPU of the source consumes some energy to
initiate the broadcast, and our simulations shown that no broadcasting protocol
take this fact into account when implementing their strategy. However, broadcast
protocols exhibit various differences depending on the considered performance
metric.

Benchmarking Energy-Centric Broadcast Protocols in WSN 95

Fig. 1. Average number of broadcasts, depending on the size of the area, for each
broadcasting protocol.

Number of Broadcasts. The overall number of broadcasts, which directly depends
on the lifetime of the source node, varies depending on the network protocol stack
used. Figure 1 presents for each MAC layer the number of broadcasts that could
be achieved depending on the size of the area, for each considered broadcasting
protocol.

With 802.15.4 MAC, the number of broadcasts are roughly equivalent, and
on average, the number of achieved broadcasts lies between 6300 and 6600, and
does not depend on the size of the area. BIP has a small advantage, then FLOOD
lasts a little longer than the other distributed broadcasting protocols.

With ContikiMAC, the number of broadcasts varies significantly with the
considered broadcasting protocol and, to a lesser extent, with the size of the
area. For BIP and LBIP protocols, the number of broadcasts is around 110,000
for dense networks. This number decreases to around 100,000 for sparse net-
works. In contrary, for FLOOD and DLBIP protocols, the number of broadcasts
increases with the size of the area from around 80,000 to 95,000. RBOP and
LBOP protocols have lower performance with less than 70,000 broadcasts.

We see that LBIP appears to be the best distributed protocol. Surprisingly
(considering its energy unawareness) FLOOD exhibits very good performance,
similar to DLBIP, and outperforms both RBOP and LBOP.
Number of Receiving Nodes. Contrary to what we expected, all the nodes do not
necessarily receive every message. For some broadcasting protocols, the number
of receiving nodes can vary a lot. This is due to the fact that when broadcasting
a packet, the MAC layer does not request an acknowledgment, so the packet
(due to interference) may not be received by its intended destination, and this
loss is never notified to the broadcasting protocol. Again, the MAC layer impacts
significantly the results (see Fig. 2). In the sequel, the reachability metric denotes
the percentage of nodes that receive the message.

With ContikiMAC, BIP, DLBIP, and FLOOD protocols offer very good per-
formance regardless of the size of the area. LBIP and RBOP are below, but
LBIP performs better as the density of the graph decreases.

With 802.15.4, FLOOD, DLBIP exhibit results that are similar to the pre-
vious case. However, BIP has one of the worse performance, with RBOP and

96 Q. Bramas and S. Tixeuil

Fig. 2. Average number of receiving nodes, depending on the size of the area, for each
broadcasting protocol.

LBOP. Their performance increases with the size of the area but the performance
of BIP with 802.15.4 is far below its performance with ContikiMAC. Again, LBIP
reachability increases until 80 % as the density of the networks decreases.

In both cases, the improvement observed when density decreases can be
explained by the fewer number of message collisions that go unnoticed.

Amount of Remaining Energy. In previous work, the amount of energy in the
network upon simulation termination was analyzed. For our purpose, the energy
that remains in the rest of the network after that the battery of the source node
is depleted is not as relevant as the other metrics we considered. Indeed, for
ContikiMAC, the amount of energy remaining is correlated with the two other
metrics. In more details, the greater the number of broadcasts and the greater
the number of receiving nodes, the fewer the amount of energy remaining will be.
So, less remaining energy actually implies better performance of the protocol.

With 802.15.4, the amount of remaining energy is similar for all broadcasting
protocols, and cannot be used to differentiate their performance.

5.2 Multiple Source Broadcast (Gossip)

In this scenario, each broadcast is initiated by a randomly chosen source. Each
simulation uses the same random order to make sure the differences between
two simulations do not depend on this order. The simulation terminates when
no nodes are alive (hence, we are not interested either in the amount of energy
remaining in the network at the end of the simulation). In this setting, it is
interesting to investigate the number of receiving nodes, and the delay over
time.

Number of Receiving Nodes. Figure 3 (respectively, Fig. 4) shows the number of
nodes that receive the message using ContikiMAC as a MAC layer (respectively,
using 802.15.4 MAC), for each considered broadcasting protocol and for various
sizes. The x-axis represents the number of broadcasts, and it is proportional to
the time (because one broadcast occurs every 10 s). A point of the graph with

Benchmarking Energy-Centric Broadcast Protocols in WSN 97

Fig. 3. Number of receiving nodes over time with ContikiMAC.

x-coordinate i is the average number of receiving for the i-th broadcast to the
(i + 100)-th broadcast, for 50 simulations considering different topologies. Due
to the sliding window used to compute the average, the graph is smoother than
if we just took the average of the i-th broadcast over all the simulations. We
observe that the number of receiving nodes at the beginning is consistent with
the case of a unique source (See Sect. 5.1). Also, the number of broadcasts until
a decrease starts is slightly more than in the case of a unique source, as the load
is more evenly shared among sources.

With ContikiMAC, BIP is the protocol that keeps 100 % reachability for
the longest period of time. Then FLOOD and DLBIP are close runner-up. In
dense networks, DLBIP is better because the decrease in the number of receiving
nodes is slower. However, in sparse networks, FLOOD keeps 100% reachability
for around 10 % more broadcasts. It is interesting to see that LBIP has around
90 % reachability, but performs 50 % more broadcasts compared to BIP and has
a really slow decrease. Finally, RBOP and LBOP protocols are outperformed
by the other protocols. We can notice that for sparse networks, the perfor-
mance of BIP, LBIP, DLBIP, and FLOOD appear to converge to about 130,000
broadcasts.

98 Q. Bramas and S. Tixeuil

Fig. 4. Number of receiving nodes over time with 802.15.4 MAC.

With 802.15.4 MAC we observe that, for every protocol, the decrease of the
number of receiving nodes is faster than with ContikiMAC. Also, all broadcasts
are almost equivalent in the number of broadcasts performed. This is mainly
because 802.15.4 MAC consumes the majority of the available energy, so that
the other source of consumption become less significant. The FLOOD protocol
is the only protocol with almost 100% reachability until the end. DLBIP per-
forms really well with more than 90 % reachability. The other protocols have bad
performance. In particular, BIP is below LBIP and DLBIP in terms of number
of receiving nodes, which was already observed in the case of a single source.

End-to-End Delay. The end-to-end delay we consider is the duration between
the start of the broadcast and the time of the reception of the last message
for this broadcast (if not all nodes receives the broadcast message, the time of
reception of the last node that receives the message is used).

With ContikiMAC (see Fig. 5), we note that FLOOD, LBIP, and LBIP have
really good performance, with a delay from 500 ms for dense networks to 1 s for
sparse networks. Also, even if BIP has good performance in terms of number of
broadcasts and reachability, it has a high delay of 2.5 s, regardless of the density
of the network. LBOP and RBOP have even greater delay.

Fig. 5. End-to-end delay (in ms) over time with ContikiMAC.

Benchmarking Energy-Centric Broadcast Protocols in WSN 99

Fig. 6. End-to-end delay (in ms) over time with 802.15.4 MAC.

With 802.15.4 (see Fig. 6), the overall delay is better than with ContikiMAC
by two orders of magnitude. BIP, LBIP, DLBIP, and FLOOD have similar per-
formance with a delay around 10 ms. RBOP and LBOP exhibit a delay that is
five times greater. The results for the other size of area are not presented because
they are equivalent.

In both cases, we can see that the delay decreases when the number of receiv-
ing nodes decreases. However, we observe that for FLOOD and DLBIP protocols,
the beginning of the decrease is preceded by a small peak, probably because after
some nodes have stopped working, the network has a lower density, resulting in
a greater delay.

5.3 Discussion

Our results show that the impact of the transmission collisions due to wireless
interference is not uniform for each broadcasting protocol. For instance, we saw
that the number of receiving nodes with RBOP is low for dense networks and
increases as the density of the network decreases. This implies that interference
have a huge impact on RBOP. This impact could be: (i) direct i.e., the protocols
sends only few messages, so that each node often receives the message from only
one neighbor, and if this message is lost, a subset of the network does not receives
the message, or (ii) indirect i.e., the nodes selected for broadcasting the message
are chosen in such a way that their transmissions always collide at the receivers,
particularly due to the hidden terminal problem (two nodes that are out of range
from each other but that have a common destination neighbor). The first point
can explain why the FLOOD protocol exhibits such good performance. Indeed,
each nodes transmits the message, which causes more interference, but this also
increases the probability that a node receives the message and is later able to
retransmit it to the rest of the network.

In more details, there is a limit in the amount of interference in the network
because if the MAC layer detects that another node is transmitting, it waits until
the channel is clear. At some point, increasing the number of nodes that wants
to transmit does not increase the number of lost packets. So that the probability
that at least one node receives the message for the first time increases.

100 Q. Bramas and S. Tixeuil

The good overall performance of FLOOD confirms the practical relevance of
having redundancy when broadcasting a message, and that this redundancy does
not necessarily imply a higher overall energy cost. This is even more stringent
when the source of the broadcast remains the same. However, when the source
of the broadcast is randomly chosen, there are some cases when LBIP or DLBIP
may be more appropriate. For instance, with ContikiMAC, we see in Fig. 3 that
LBIP performs between two and three time more broadcasts in dense networks
compared to FLOOD, albeit with less reachability. Also, DLBIP performs better
than FLOOD in dense networks. So, in general, the overall best candidate is
FLOOD, but some specific settings command the use of LBIP or DLBIP.

6 Conclusion

We focused on the problem of broadcasting a message in an energy-efficient
manner, in a wireless sensor network where nodes are able to change their trans-
mission power. We studied six broadcasting protocols that are representative of
the current state of the art. We answered the question left open by the previous
work: how broadcasting protocols performs with realistic devices in a realistic
environment? We found that the energy consumption does not depend on the
protocols as one could expect from the previous studies. Indeed, it is not realis-
tic to consider only the energy consumed by the radio during the transmission.
Also, the collisions prevent many protocols to achieve acceptable coverage, espe-
cially when the density of the network is high. Our conclusion is that focusing on
power transmission to improve energy-efficiency of broadcast protocols for sensor
networks is not the right choice. Future protocols are bound to integrate more
realistic interference and energy consumption models to be relevant in practice.
A cross-layer approach with the MAC layer and the broadcast layer helping each
other is a possible path for future research.

Another interesting open question is the impact of mobility of sensor nodes
on the energy efficiency of broadcasts protocols. The six broadcast protocols we
considered assume a static topology. Several evaluations of broadcast protocols
in WSNs have been done when the nodes are mobile [16,21]. However, protocol
schemes and their evaluation are totally different. In the work of S.Medetov
et al. [16], the remaining energy is also considered, but with an ideal battery
model and full-sized computer network stack (a 802.11 MAC layer is assumed).
Energy benchmarking those mobility-aware broadcast protocols in a realistic
setting such as that of this paper is a short term research objective.

References

1. 802.15.4 Standard. https://standards.ieee.org/getieee802/download/802.15.
4-2011.pdf

2. Hamida, E.B., Chelius, G., Gorce, J.: Scalable versus accurate physical layer mod-
eling in wireless network simulations. In: IEEE Computer Society (ed.) 22nd
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simula-
tion (PADS 2008), Roma, Italy, pp. 127–134. ACM/IEEE/SCS, June 2008

https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

Benchmarking Energy-Centric Broadcast Protocols in WSN 101

3. Bramas, Q., Dron, W., Fadhl, M.B., Hachicha, K., Garda, P., Tixeuil, S.: WiSe-
Bat: accurate energy benchmarking of wireless sensor networks. In: Proceedings
of Forum on Specification and Design Languages (FDL 2015), Barcelona, Spain.
IEEE Press, September 2015

4. Cardieri, P.: Modeling interference in wireless ad hoc networks. IEEE Commun.
Surv. Tutor. 12(4), 551–572 (2010)

5. Cartigny, J., Ingelrest, F., Simplot-Ryl, D., Stojmenović, I.: Localized LMST and
RNG based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc
Netw. 3(1), 1–16 (2005)

6. Champ, J., Baert, A.-E., Boudet, V.: Dynamic localized broadcast incremental
power protocol and lifetime in wireless ad hoc and sensor networks. In: Wozniak,
J., Konorski, J., Katulski, R., Pach, A.R. (eds.) WMNC 2009. IFIP AICT, vol.
308, pp. 286–296. Springer, Heidelberg (2009)

7. Chiganmi, A., Baysan, M., Sarac, K., Prakash, R.: Variable power broadcast using
local information in ad hoc networks. Ad Hoc Netw. 6(5), 675–695 (2008)

8. Clementi, A.E.F., Penna, P., Silvestri, R.: The power range assignment problem in
radio networks on the plane. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS,
vol. 1770, pp. 651–660. Springer, Heidelberg (2000)

9. Dunkels, A.: The ContikiMAC radio duty cycling protocol (2011)
10. Fraboulet, A., Chelius, G., Fleury, E.: Worldsens: development and prototyping

tools for application specific wireless sensors networks. In: 6th International Sym-
posium on Information Processing in Sensor Networks, IPSN 2007, pp. 176–185.
IEEE (2007)

11. Guo, S., Yang, O.W.W.: Energy-aware multicasting in wireless ad hoc networks: a
survey and discussion. Comput. Commun. 30(9), 2129–2148 (2007)

12. Ingelrest, F., Simplot-Ryl, D., et al.: Localized broadcast incremental power pro-
tocol for wireless ad hoc networks. Wirel. Netw. 14(3), 309–319 (2008)

13. Iyer, A., Rosenberg, C., Karnik, A.: What is the right model for wireless channel
interference? IEEE Trans. Wirel. Commun. 8(5), 2662–2671 (2009)

14. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet
radio networks. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 363–374. Springer, Heidelberg (1997)

15. Li, N., Hou, J.C., Sha, L.: Design, analysis of an MST-based topology control
algorithm. IEEE Trans. Wirel. Commun. 4(3), 1195–1206 (2005)

16. Medetov, S., Bakhouya, M., Gaber, J., Wack, M.: Evaluation of an energy-efficient
broadcast protocol in mobile ad hoc networks. In: 20th International Conference
on Telecommunications (ICT), pp. 1–5. IEEE (2013)

17. Rakhmatov, D.: Battery voltage modeling for portable systems. ACM Trans. Des.
Autom. Electron. Syst. 14(2), 29:1–29:36 (2009)

18. Rao, R., Vrudhula, S., Rakhmatov, D.N.: Battery modeling for energy aware system
design. Computer 36(12), 77–87 (2003)

19. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recogn. 12(4), 261–268 (1980)

20. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: 19th Annual Joint
Conference of IEEE Computer and Communications Societies (INFOCOM 2000),
vol. 2, pp. 585–594. IEEE (2000)

21. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proceedings of 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pp. 194–205. ACM (2002)

Transactional Pointers: Experiences
with HTM-Based Reference Counting in C++

Maria Carpen-Amarie1(B), Dave Dice2, Gaël Thomas3, and Pascal Felber1

1 Université de Neuchâtel, Neuchâtel, Switzerland
{maria.carpen-amarie,pascal.felber}@unine.ch

2 Oracle Labs, Burlington, USA
dave.dice@oracle.com

3 Telecom SudParis, Évry, France
gael.thomas@telecom-sudparis.eu

Abstract. The most popular programming languages, such as C++
or Java, have libraries and data structures designed to automatically
address concurrency hazards in order to run on multiple threads. In
particular, this trend has also been adopted in the memory manage-
ment domain. However, automatic concurrent memory management also
comes at a price, leading sometimes to noticeable overhead. In this paper,
we experiment with C++ smart pointers and their automatic memory-
management technique based on reference counting. More precisely, we
study how we can use hardware transactional memory (HTM) to avoid
costly and sometimes unnecessary atomic operations. Our results sug-
gest that replacing the systematic counting strategy with HTM could
improve application performance in certain scenarios, such as concur-
rent linked-list traversal.

1 Introduction

With the increasing degree of concurrency in nowadays hardware, lock-free
implementation of applications or data structures gained extensive attention
in the last few years. In this context, using classical synchronization mechanisms
based on locks (such as mutexes, barriers, etc.) tends to become more and more
complex and error-prone. Transactional memory (TM) [8] offers an elegant solu-
tion for implementing lock-free synchronization. Until recently, TM algorithms
were mostly reserved to the research environment, since the considerable over-
head generated by software transactional memory (STM) implementations made
them unsuitable for real-life applications. However, the emergence of hardware
transactional memory (HTM) in mainstream processors overcame the perfor-
mance pitfall, while conserving the benefits in scalability and correctness.

Automatic memory management mechanisms often suffer from performance
drops due to their synchronization strategies. A notable example is represented
by the smart pointer implementation in the C++ standard library. This uses ref-
erence counting to protect a raw pointer from being illegally deallocated and to

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 102–116, 2016.
DOI: 10.1007/978-3-319-46140-3 8

Transactional Pointers: Experiences with HTM-Based Reference 103

avoid any other memory hazards. Smart pointers are thread-safe and the opera-
tions on the shared reference counter are atomic. This provides adequate and safe
memory management for multi-threaded programs. Nonetheless, the reference
counting strategy is costly and sometimes unnecessary, e.g., when manipulating
copies of a smart pointer with a reference count that never drops below 1 and
hence never needs to release memory.

In this paper, we explore possible scenarios where HTM could improve
the performance of applications that use C++ smart pointers. Specifically,
we replace the original reference counting logic based on atomic operations
with hardware transactions. The hardware transaction protects the raw pointer
against invalid accesses. In this manner, we avoid executing the unnecessary
atomic operations required by the reference counting strategy. On the one hand,
we expect HTM to improve the performance of smart pointers over the original
implementation. On the other hand, by adding this low abort-rate HTM fast-
path, we are also addressing some concurrency problems related to smart pointer
handling. Gottschlich et al. [7] show that template-based generic structures, such
as C++ smart pointers, are deadlock-prone, among other synchronization issues,
and they also propose the use of TM in their implementation.

Our contribution consists of an extensive study on the benefits of HTM
for C++ smart pointers. We added transactional support for smart pointers,
and tested their performance on: (1) micro-benchmarks, with mono- and multi-
threaded settings, with and without batching multiple pointers in a single trans-
action, on two different architectures (Intel Haswell and IBM POWER8); and a
(2) concurrent data structure, with and without batching. The results are gen-
erally encouraging and we observe performance improvements in most, but not
all scenarios: in some cases there are no or negligible gains (e.g., multi-threaded
micro-benchmark with batching enabled), whereas in others the execution time
is improved by 50 % (e.g., concurrent lookup operation over a linked-list, with
batching enabled).

2 Background and Related Work

Automatic memory management is split into two representative approaches: ref-
erence counting and tracing. Tracing algorithms are most often used in high
performance settings, while the reference counting strategy is usually avoided
due to its major drawbacks. A critical downside is represented by its consid-
erable overhead over tracing, estimated at 30 % in average [11]. The concept
of reference counting is simple: it keeps track of the number of references for
each object, updating a counter when references are removed or new ones are
added. The object is destroyed only when the count reaches zero. However, this
means that each pointer mutation has to be tracked and intercepted, making a
naive implementation of reference counting very expensive. Recently, reference
counting techniques were reconsidered and optimized, becoming comparable to
tracing in terms of performance [1,11,12]. A noteworthy memory management
mechanism that depends on reference counting is illustrated by C++ smart
pointers.

104 M. Carpen-Amarie et al.

Fig. 1. C++ smart pointer components and reference counting mechanism.

2.1 C++ Smart Pointers

A smart pointer is an abstract data type that encapsulates a pointer while pro-
viding additional features, such as automatic memory management or bounds
checking. These features were added to classical pointers in order to reduce pro-
gramming bugs (created by manually managing the memory), while keeping the
same efficiency. Smart pointers can prevent most memory leaks and dangling
pointers.

In C++, smart pointers are implemented on top of traditional (raw)
pointers, but provide additional memory management algorithms. We focus
on the std::shared ptr implementation located in the <memory> header. A
shared ptr represents a container for a raw pointer, for which it maintains ref-
erence counted ownership (Fig. 1). The object referenced by this pointer will be
destroyed when there are no more copies of the shared ptr.

The smart pointers are implemented as a C++ template that uses a reference
counting strategy for memory management. The increments and decrements of
the counts are synchronized and thread-safe. The default synchronization mecha-
nism for C++ smart pointers employs atomic operations (increment/decrement).

2.2 Hardware Transactional Memory

Transactional memory (TM) [8] is a synchronization mechanism that can provide
lock-freedom by encapsulating blocks of instructions in transactions and execut-
ing them atomically. In order to keep track of the changes, TM typically records
the write set and applies it to memory atomically if the transaction succeeds;
otherwise updates are discarded. There is no moment in time when an intermedi-
ate state can be observed. The most common cause for aborting a transaction is
upon memory conflict, that is when two threads try to access the same memory
areas. An abort can also be deliberately triggered by the application.

Transactional memory was first implemented in software (STM). Even
though the benefits of TM over classical synchronization methods are signif-
icant, notably in terms of ease of use, STM was the subject of long debates
whether it is only a research toy [3,6]. The most important issues are the signif-
icant overhead due to the instrumentation of the application, and the limitation
to “weak atomicity” (i.e., it identifies conflicts only between two transactional
accesses). Starting in 2013, Intel made available for public use its “Haswell”
processor with fully integrated hardware transactional memory (HTM) support.
HTM overcomes the aforementioned problems of STM. However, it has its own

Transactional Pointers: Experiences with HTM-Based Reference 105

disadvantages: first, the size of the transactions is limited. Careful planning for
the contents of the transaction is needed in order to both avoid overflows and
amortize the cost of starting and committing the transaction. Moreover, transac-
tions can be aborted at any time by interrupts, faults and other specific instruc-
tions, such as debug or I/O. HTM requires a non-transactional fallback path
in case of abort, to ensure progress for the transactions that cannot commit.
HTM is therefore a very powerful tool in a multi-core environment, although
not suitable for all types of applications because of the aforementioned limita-
tions. Nonetheless, it appears to be a suitable solution for tackling specialized
concurrency problems, such as concurrent memory management.

2.3 Related Work

Considering the ever increasing interest in transactional memory in the last few
years, a reasonable amount of effort has been focused on integrating TM with
mainstream programming languages, such as C++. Crowl et al. [4] present a
general design that would permit the insertion of transactional constructs into
C++. They identify the main issues that need to be addressed and propose
a new syntax that could be incrementally adopted in the existing code base.
Ni et al. [10] go even further and implement a fully working STM system that
adds language constructs for transactional programming in C++. The system
includes new C++ language extensions, a compiler and an STM runtime library.
They conduct an extensive evaluation on 20 parallel benchmarks ported to use
their C++ language extensions. The results show that the STM system performs
well on all workloads, especially in terms of scalability. A more focused work is
presented by Gottschlich and Boehm [7] regarding the need for transactional
memory in generic programming. They give as example C++ shared pointers
and similar constructs, and indicate that implementing them with transactions
would avoid deadlocks and other synchronization issues. In this case, the authors
do not explore the performance of a potential transactional implementation, but
the correctness of such a strategy.

In what concerns the synchronization of concurrent data structures with
HTM, opinion is divided on the performance benefits of transactions. For exam-
ple, David et al. [5] report an increase in throughput of at most 5 % when using
HTM for concurrent search data structures, considering the improvement as neg-
ligible. On the other hand, Bonnichsen et al. [2] present a concurrent ordered
map implementation with HTM that performs up to 3.9 times faster than the
state of the art.

In this paper, we apply the guidelines that recommend enhancing C++ smart
pointers with transactional support, thus avoiding specific concurrency issues,
and evaluate the potential performance improvement when using HTM on con-
current data structures.

106 M. Carpen-Amarie et al.

3 Transactional Pointers

We call transactional pointer a C++ smart pointer that protects an object with
a hardware transaction and does not modify its reference count. The goal is
to avoid the execution of undesired atomic operations on the shared reference
counter of an object. The transaction intercepts hazardous accesses to the object
(e.g., a non-transactional access trying to release a pointer still in use) and a
safe path is chosen.

3.1 Algorithm

The original algorithm for C++ smart pointers is straightforward: when the
pointer is created, it contains a raw pointer and a control block for this reference.
The reference count is initialized with 1. As seen in Fig. 1, when a new copy of the
same pointer is created, they will have in common the reference and the reference
count field, which is updated by atomic increment. Every time when a copy of
the pointer is destructed, the shared reference count is atomically decreased by
one, and the rest of the object destroyed. If there is only one reference left,
then the memory is automatically freed. This allows the application to function
without any risk of incorrect accesses, dangling pointers or memory leaks.

Our goal was to eliminate the atomic operations on the shared reference
count, while keeping the reference protected from memory hazards. In order to
do that, we defined a constructor that initializes the reference count with 0 and
tries to start a hardware transaction. Inside the transaction, we read a shared
field of the transactional pointer, called state. In this way, state is added
to the read-set of the transaction and automatically monitored in hardware.
Any other thread that tries to modify this field will cause an abort. If there
is no abort, the application will continue its execution, using the transactional
pointer protected by the transaction. If a conflict or another event causes the
currently running transaction to abort, the transactional pointer will follow a
fallback path corresponding to the original implementation of the smart pointers,
i.e., the reference count is initialized with the number of references of the smart
pointer that we are copying and atomically incremented, or with 1 if it is a new
smart pointer. When the transactional pointer is destroyed by the application, we
check if there is a transaction running: if yes, the transaction commits; otherwise,
the object is destroyed in the same way as a normal smart pointer.

Further on, we modified the algorithm to support batching. More specifically,
multiple transactional pointers can be added to an already started transaction,
without having their reference count modified and without starting a transac-
tion on their own. In order to achieve this, the constructor exploits an additional
parameter indicating whether the transactional pointer in question is the first
one in the batch (or a single pointer that needs to be protected) or it needs
to be added to an already existing transaction. In the former case, the algo-
rithm follows the steps described above. In the latter, we take advantage of the
fact that all initializations happen inside the transaction. Thus, we do not need
to specifically read the state field anymore. Finally, we add a supplementary

Transactional Pointers: Experiences with HTM-Based Reference 107

Algorithm 1. Transactional pointer implementation
1: function tx ptr::Init(boolean add to tx, smart ptr ptr)
2: this.ptr ← ptr
3: this.refcount ← 0
4: this.state ← ptr.state
5: this.add to tx ← add to tx
6: if this.add to tx ∧ is fallback then
7: Fallback(ptr)
8: end if
9: if ¬this.add to tx then
10: if Tx Start() then
11: Read(this.state)
12: is fallback ← false
13: else
14: is fallback ← true
15: Fallback(ptr)
16: end if
17: end if
18: end function

19: function tx ptr::Destroy()
20: Write(this.state)
21: if ¬this.add to tx ∧ Tx Test() then
22: Tx End()
23: end if
24: end function

check in the destructor of the transactional pointer: we only try to commit the
transaction when the pointer that started it is destroyed. This design assumes a
scenario in which:

– either all pointers die at once (e.g., at the end of a function in which they
have been created), in which case they are destroyed in the reverse order of
creation, thus making the first pointer to be destroyed last and keeping the
transaction that protects all pointers running until it is safe to commit; or,

– the pointers added to the transaction are explicitly destroyed before the
pointer that started the transaction.

This is particularly convenient for applications using well-delimited groups of
pointers, such as some operations on classical data structures.

The above steps are summarized in Algorithm 1. We call tx ptr the data type
that enhances C++ smart pointers with hardware transactions. The construc-
tor creates a transactional pointer from an already existing smart pointer, which
is passed as a parameter. We use this to designate the current transactional
pointer being created. We cover in this pseudo-code the extended algorithm
suitable both for batching pointers as well as for single transactional pointers.
Therefore, the constructor features a boolean parameter add to tx that indi-
cates whether the current pointer has to be added to a running transaction
or start a new one by itself. If it is the first pointer (Line 9), it tries to start a
transaction. All subsequent transactional pointers will be monitored by the same
transaction and will not attempt to start a new one. If the transaction starts, we
read the state field, as mentioned; otherwise, the algorithm takes the fallback
path. The call to a generic function READ() (Line 11) stresses the idea of reading
the field inside the transaction, without entering into implementation details.

108 M. Carpen-Amarie et al.

Fig. 2. Class structure of std::shared ptr, with the additional fields for tx ptr in
dashed lines.

The variable is fallback is a thread-local variable, set when the first pointer
takes the fallback path. When a transaction aborts, all changes are rolled back
and the execution is restarted. This means that all the added pointers will run
their constructor from the beginning, following the path in Line 6. In other words,
all transactional pointers will take a non-transactional path, similar to a classical
C++ smart pointer. While the transaction is running correctly, is fallback
remains false. We claim that the presented algorithm correctly implements
a smart pointer structure, while aiming to reduce the overhead of atomic
operations.

3.2 Implementation

We built our transactional pointers on top of the std::shared ptr structure
in C++. In particular, we extended the std::shared ptr class with a new
constructor and modified several internal methods in order to accommodate the
transactional logic. As such, a tx ptr can simulate the normal behaviour of a
classical smart pointer and tx ptrs can be created from std::shared ptrs.

The std::shared ptr class is implemented as a C++ template, with the
raw pointer (of generic type Tp) and a variable of type shared count (Fig. 2)
as the main fields. The latter is the class that implements the shared reference
count object. The reference count object contains a pointer to two counters:
use count and weak count. The role of the latter is out of the scope of this
work. The former contains the number of references a pointer has throughout
the execution. We added in the diagram with dashed lines the necessary fields
for implementing tx ptr:

– A boolean variable in the main class, with the aim of indicating which pointers
are to be added to the existing transactions or start a new one. This infor-
mation is critical in the destructor when using batching, since the transaction
must be committed only when all pointers in the group have been destroyed.

– The shared state field in the reference count class. This field is initialized
in the constructor and read inside the transaction, in order to be monitored
in hardware. It is further modified in the destructor. Thus, if any other copy
of the same pointer tries to destroy the pointer and deallocate the memory,
writing the state field forces the transaction to abort and the tx ptr to
restart as a normal smart pointer.

Transactional Pointers: Experiences with HTM-Based Reference 109

We implement the transactional memory operations on two different archi-
tectures: Intel Haswell and IBM POWER8. While there are several subtle differ-
ences in the APIs and the underlying HTM implementations, most of our code
is common to both architectures.

4 Evaluation with Micro-Benchmarks

In order to have a preliminary idea of the benefits of our transactional pointer
implementation over the original C++ smart pointers, we devised two micro-
benchmarks. This enabled us to test both implementations in mono-threaded
and multi-threaded scenarios, with or without batching, on two different archi-
tectures: Intel Haswell and IBM POWER8.

4.1 Mono-Threaded Scenario

We want to evaluate the possible gains of replacing atomic operations with hard-
ware transactions. We developed a mono-threaded micro-benchmark for studying
how many transactional pointers have to be packed in a transaction in order to
improve the performance over a pair of atomic operations, when the application
runs on a single thread. The micro-benchmark consists of the scenarios presented
in Algorithm 2. By tx shared pointer we refer to a tx ptr implementation. In the
first scenario, starting at Line 1, we measure the time it takes to repeatedly create
and destroy a normal C++ shared pointer, for a fixed number of iterations. As
previously mentioned, when the pointer is created, an atomic increment is per-
formed on the shared reference count; likewise, an atomic decrement is performed
when the pointer is destroyed. This strategy reflects the performance when using
a pair of increment/decrement atomic operations for num iter iterations. The
second scenario, starting at Line 7 replaces the pair of atomic operations in
each iteration with a hardware transaction. The third scenario (Line 15) groups
multiple create/destroy operations (i.e., multiple iterations) in a transaction. It
behaves identically to the second scenario when m = 1.

We implemented and tested the micro-benchmark on two different platforms:
a 4-core (2 threads per core) Intel Haswell@3.40 GHz machine with 12 GB RAM
and a 10-core (8 threads per core) IBM POWER8@3.42 GHz with 30 GB RAM,
both with fully integrated HTM support. For the third scenario at Line 15, we
varied m from 2 to 5, since for values greater than 5 the performance was visibly
better than the original implementation of shared pointers. We observed that
the measured time was varying during the first executions of the benchmark. In
order to have accurate results, we first ran the benchmark 50 times until the
results were stable (standard error deviation less than 1 %). Subsequently, we
considered the average value per iteration over another ten runs for each version
of the benchmark. We tested for 103, 106 and 109 iterations. The execution time
of one iteration is measured with the system’s high resolution clock. Figure 3
shows the performance in all scenarios for the mentioned values of m and number
of iterations, both on the Haswell machine and on POWER8. On the Y axis we
have the time in nanoseconds per iteration. We made the following observations:

110 M. Carpen-Amarie et al.

Fig. 3. Mono-threaded performance (time per iteration) for repeated create/destroy of:
original shared pointer (Algorithm 2, Line 1), transactional pointer with one transaction
per iteration (Algorithm 2, Line 7) and transactional pointer with one transaction per
m iterations (Algorithm 2, Line 15) with m = 2, 3, 4, 5.

Algorithm 2. Scenarios for the mono-threaded micro-benchmark

1: function Scenario1
2: for i ← 1, num iter do
3: p ← new shared pointer
4: delete p
5: end for
6: end function

7: function Scenario2
8: for i ← 1, num iter do
9: begin-tx
10: p ← new tx shared pointer
11: delete p
12: commit-tx
13: end for
14: end function

15: function Scenario3
16: for i ← 1, num iter/m do
17: begin-tx
18: for i ← 1,m do
19: p ← new tx shared pointer
20: delete p
21: end for
22: commit-tx
23: end for
24: end function

1. When running on a single thread, using a single hardware transaction per
iteration results in better performance than a pair of atomic operations. In
other words, the second scenario (Line 7) performed better than the first
(Line 1) for any number of iterations on both platforms.

2. The performance improves when m increases (up to a certain threshold when
the group of instructions becomes too large and the transaction overflows).

In conclusion, according to the presented mono-threaded benchmark, a hard-
ware transaction should be able to replace a single pair of atomic operations
without affecting the performance of the application. The application would
gain if multiple pairs of atomic operations were replaced by a single hardware
transaction.

Transactional Pointers: Experiences with HTM-Based Reference 111

4.2 Short-Lived Pointers

Consider now the following common scenario where a smart pointer is copied
to a local variable inside a function, i.e., the copy of the smart pointer has the
lifespan of that function. Generally, when creating such a copy, the reference
counter is atomically incremented, while at the end of the function, there is an
atomic decrement. If the pointer is not accessed concurrently in the meantime,
then the increment/decrement operations are unnecessary. We aim to replace
this pair of atomic operations with one transaction spanning the entire function.
In order to obtain this behaviour, we use the tx ptr pointer defined in Sect. 3.

We created a micro-benchmark that starts multiple threads which share an
array of smart pointers. Each thread picks a random element from the shared
array and calls a function. In the function, the thread creates a tx ptr copy of the
element. Then, it executes several constant-time operations. These operations
are meant to simulate a computational workload that accesses the pointer value.
If transactional pointers are used, these operations will be executed inside a
transaction. Finally, the thread exits the function (which calls the destructor of
the transactional pointer, thus committing the transaction). We measure how
many iterations of this function are done by each thread in a certain amount
of time (customizable by the user). We compare the total number of iterations
(i.e., the sum of iterations over all threads) of our tx ptr implementation with
the original implementation of smart pointers. We configured our experiments as
follows: shared array of 1,000 smart pointers, run time of 5 s, 100 constant-time
operations. The experiments consist of running the micro-benchmark 10 times
for an increasing number of threads on both platforms and taking the average
over the total number of iterations in each case.

Figure 4(a) shows our first results with this implementation on the Haswell
machine. On the X axis we show the number of threads, while on the Y axis we
have the number of iterations performed divided by 106 (higher values are bet-
ter). We tested on up to 16 threads. We observe that starting with 4 threads, our
implementation performs better than the original. However, the improvement is
less than 4 % (on 16 threads). Moreover, on the POWER8 server (Fig. 4(c))
there is almost no performance gain on more than 4 threads, indicating that the
transactional implementation on this architecture suffers more from contention
than the atomic operations. This result led us to the conclusion that, in a multi-
threaded environment where many operations are involved, the creation of a
single tx ptr does not bring an improvement over a pair of atomic operations.
As an optimization, we enabled batching in the micro-benchmark, i.e., the cre-
ation of multiple pointers in a single transaction. The idea was that, if a pair of
atomic operations has almost the same overhead as a transaction, then replacing
multiple pairs of atomic increment/decrement with a single transaction would
improve the performance.

We modified the benchmark as follows: instead of a single random element,
each thread now picks several random elements from the shared array (number
defined at runtime). It creates a new array with these elements and calls the
specific function having this array as a parameter. The function makes tx ptr

112 M. Carpen-Amarie et al.

Fig. 4. Number of iterations for one or multiple short-lived tx ptr pointer copies (TSX)
and smart pointer copies (Orginal) in a function.

copies of all pointers, using the additional boolean parameter in the constructor
in order to indicate which pointers will be added to the running transaction.

Figures 4(b) and (d) show the results of this strategy with a group of 5
pointers per transaction. In this scenario, however, contrary to our expectations,
the performance actually suffers. We tested on up to 8 threads, pinned to the
cores. We conclude that, by trying to optimize the previous results with batching,
we also increased the overhead of the transaction with extra operations. This
explains why in this setting we could not observe any improvement over the
version with one pointer. Given the negligible performance gain of the latter,
we deduce that in this scenario using transactional pointers does not have a
significant advantage over the original C++ smart pointers.

5 Evaluation with Shared Data Structures

We implemented a simple data structure to showcase the possible performance
improvement of tx ptrs over the original implementation of C++ smart point-
ers. We chose to build a simply-linked list because of the natural occurrence of
pointers with a reference count ≥1 (they will always be referenced by at least
one other pointer until they are removed or the list is destroyed). That allows
us to exploit the design of tx ptr and the benefits of transactions for repeated
concurrent traversals of the list.

Transactional Pointers: Experiences with HTM-Based Reference 113

5.1 Implementation

The shared list was implemented in two steps. First, we designed a concurrent
liked-list structure only based on shared pointers and compare and swap (CAS)
operations. For simplicity and reproducibility of our tests, we only inserted ele-
ments at the end of the list and we always removed the first element. Basically,
in this experiment the implementation behaved like a concurrent queue, with an
additional lookup function.

We implemented the data structure using a classical lock-free queue
algorithm [9]. The use of C++ smart pointers for the nodes guarantees the
correctness when accessing and manipulating elements. We use CAS oper-
ations specifically defined for shared pointers in the C++ standard library
libstdc++-v3, included in the GCC5 release.1 The result of a CAS operation
is repeatedly checked in a loop, until it confirms that the desired operation
took place. The insert and delete operations are easily implemented with shared
pointers and CAS, by changing atomically the first element with the new node,
respectively the last element with the next node in the queue. The lookup func-
tion iterates over the list sequentially until it finds the requested value or reaches
the end of the list. We considered that the list traversal could benefit the most
from our implementation of tx ptrs. The next step was to change the above
implementation to use transactional pointers. The only modification needed in
the code is replacing the constructor of the pointer that will iterate over the list
with the customized constructor defined in Sect. 3.

Our goal was to encapsulate each iteration of the loop in the lookup function
in a hardware transaction. In the original implementation, when the pointer
iterating over the list passes from a node to the next, it creates and destroys a
copy of a smart pointer. As previously mentioned, this is equivalent to a pair
of atomic operations. Thus, we replace a pair of atomic increment/decrement
with a hardware transaction. In order for the transactional pointers to work
transparently in this case, we also extended the overloaded ‘=’ (assignment)
operator of C++ smart pointers. More precisely, the first transaction is started
when the iterator is initialized in the tx ptr constructor. Then, each time the
iterator moves to the next node, the transaction commits and a new one is
started (which will last until the move to the next node and so on). If there is a
conflict, the transaction aborts and takes the fallback path described in Sect. 3.

Finally, we implemented support for batching multiple pointers in a single
transaction. In the case of list traversal, this means that a hardware transaction
will span the traversal of multiple nodes. The size of the group of nodes included
in a single transaction is customizable. In order to maintain the transparency
of the implementation, we could not reuse in this case the batching strategy
described in Sect. 4.2. Rather, we implemented an internal counter for tx ptr
and modified the ‘=’ operator to commit and start a new transaction when the
counter indicates the end of a batch. Whenever the transaction aborts due to a
1 In C++11 the operation atomic compare exchange weak(p, expected, desired)

checks if p has the same value as expected: if so, the value desired is atomically
assigned to p; otherwise, expected becomes equal to p.

114 M. Carpen-Amarie et al.

Fig. 5. Execution time per operation for a concurrent queue implemented with smart
pointers and transactional pointers, with (a) a transaction per iteration during lookup
and (b) multiple iterations grouped in a single transaction.

conflict, all the changes made to the group of pointers are rolled back and all
pointers are recreated as common C++ smart pointers with reference counting.

5.2 Evaluation

We developed a benchmark for comparing the performance of smart and transac-
tional pointer implementations of the concurrent queue. The benchmark works
as follows: we initialize the queue and populate it with elements. We start a
number of threads that share the queue. Each thread applies insert, delete and
lookup operations on the shared queue by a given ratio. We measure the time
it takes each thread to finish the associated operations. In order for all threads
to have comparable workloads, we generate the workloads before starting the
threads. Specifically, we generate a random succession of operations according
to the proportions given for each type of operation. Then, we generate a list of
elements that will be inserted in the queue, and a list of elements that will be
looked up, based on the elements that are inserted. Given the dynamic character
of the benchmark (a large number of concurrent insert and delete operations),
not all the elements in the lookup list will be found in the queue at the moment
when the operation is performed.

First, we experimented with the implementation based on the original C++
smart pointers and our simple transactional version (without batching). We
tested on a 4-core Intel Haswell server, on up to 8 threads pinned to the cores. We
set the list to be initially populated with 1,000 elements. Each thread had to exe-
cute 106 operations on the shared list, out of which 20 % insert, 20 % delete and
60 % lookup operations. We measured the time with the high resolution clock
C++ function. We ran each test 10 times, after first observing that the results
were stable, with negligible variations from a run to another. For each run we
took the maximum between the times reported by each thread, then computed
the average over the 10 runs. The results for this test are shown in Fig. 5(a).
We observe that our implementation does not perform notably better than the

Transactional Pointers: Experiences with HTM-Based Reference 115

original. However, this result indicates that even if we replace a single pair of
atomic operations with a hardware transaction, we already start gaining in per-
formance.

We then tested the transactional version with batching enabled. Since the
only difference between the two implementations of the concurrent queue (i.e.,
with shared ptr and with tx ptr) is in the way in which the lookup function
works, we focused on stressing and comparing strictly this operation. Thus, we
modified the previous configuration to run a workload of 100 % lookup opera-
tions, for 106 operations per thread, on a 104-element shared array. At least half
of the elements that will be looked up by the benchmark are found in the initial
shared array. Figure 5(b) shows the results in this scenario for the implementa-
tion with the original C++ smart pointers, as well as transactional pointers with
one transaction per pointer, one transaction for a group of 3 pointers, and one
transaction for a group of 5 pointers. We make the following observations: first,
when grouping 5 pointers in a transaction, i.e., replacing 10 atomic operations
with a hardware transaction, we see an improvement of up to 50 % in the execu-
tion time. Second, we observe that the performance increase is more spectacular
when passing from no batching to a group of 3 pointers than from a batch of 3 to
one of 5 pointers. While the batch size increases, the performance improvement
will reach a plateau and start degrading when the batch becomes too large for
being handled properly by a hardware transaction. Finally, we remark that the
improvement is less noticeable on 8 threads, because of contention.

6 Conclusion and Future Work

Concurrency and automatic memory management are two key components of
today’s complex multi-core systems. While the number of cores per CPU keeps
increasing, the attention of developers seems to turn more and more towards
lock-free algorithms and implementations. Transactional memory, and especially
its hardware implementation (HTM), represents a suitable non-blocking solution
for concurrency hazards. At the same time, reference counting is a useful form of
memory management with interesting properties and synchronization features,
where each object is protected from invalid accesses by keeping a shared reference
counter. Sometimes the atomic increment/decrement operations on the shared
counter prove to be unnecessary and expensive. We considered this to be a
promising opportunity for improvement with HTM.

We designed a transactional pointer structure on top of the C++ shared ptr,
which uses reference counting for correctly managing the memory. Our goal was
to replace the atomic operations needed for the creation/destruction of the smart
pointer with a hardware transaction. We experimented with micro-benchmarks,
in mono- and multi-threaded settings, on two different architectures and with the
possibility of batching multiple pointers in a transaction. We also compared the
performance of the original and transactional implementations on a concurrent
queue of smart pointers. We believe that the results provide valuable insights
into which scenarios would benefit most from using a transactional pointer.

116 M. Carpen-Amarie et al.

Given the promising results for the concurrent queue (up to 50 % improve-
ment on the execution time for lookup operations), we plan to further pursue
this idea and implement more complex data structures with transactional point-
ers. A future objective could be the implementation of a transactional pointer
specialized for concurrent data structure traversal.

References

1. Blackburn, S.M., McKinley, K.S.: Ulterior reference counting: fast garbage collec-
tion without a long wait. In: Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages, and Applica-
tions, pp. 344–358. ACM, USA (2003)

2. Bonnichsen, L.F., Probst, C.W., Karlsson, S.: Hardware transactional memory
optimization guidelines, applied to ordered maps. In: Trustcom/BigDataSE/ISPA,
2015 IEEE, vol. 3, pp. 124–131. IEEE (2015)

3. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee,
S.: Software transactional memory: why is it only a research toy? Queue 6(5),
40:46–40:58 (2008)

4. Crowl, L., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Integrating transac-
tional memory into C++. In: Workshop on Transactional Computing (2007)

5. David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: the secret to
scaling concurrent search data structures. In: Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 631–644. ACM (2015)

6. Dragojević, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more
than a research toy. Commun. ACM 54(4), 70–77 (2011)

7. Gottschlich, J.E., Boehm, H.J.: Generic programming needs transactional memory.
In: The 8th ACM SIGPLAN Workshop on Transactional Computing (2013)

8. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp. 289–300. ACM, USA (1993)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., Burlington (2008)

10. Ni, Y., Welc, A., Adl-Tabatabai, A.R., Bach, M., Berkowits, S., Cownie, J., Geva,
R., Kozhukow, S., Narayanaswamy, R., Olivier, J., Preis, S., Saha, B., Tal, A.,
Tian, X.: Design and implementation of transactional constructs for C/C++. In:
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems Languages and Applications, pp. 195–212. ACM, USA (2008)

11. Shahriyar, R., Blackburn, S.M., Frampton, D.: Down for the count? Getting refer-
ence counting back in the ring. In: Proceedings of the 2012 International Sympo-
sium on Memory Management, pp. 73–84. ACM, USA (2012)

12. Shahriyar, R., Blackburn, S.M., Yang, X., McKinley, K.S.: Taking off the gloves
with reference counting Immix. In: Proceedings of the 2013 ACM SIGPLAN Inter-
national Conference on Object Oriented Programming Systems Languages and
Applications, pp. 93–110. ACM, USA (2013)

A Multi-channel Energy Efficient
Cooperative MIMO Routing Protocol

for Clustered WSNs

Alami Chaibrassou(&) and Ahmed Mouhsen

Faculty of Science and Technology Science, Research Laboratory in Mechanical,
Industrial Management and Innovation, Settat, Morocco

alami70@yahoo.fr, mouhsen.ahmed@gmail.com

Abstract. Energy efficiency and quality of service are foremost concerns in
Wireless Sensor Networks (WSNs). Among the methods used to achieve these
requirements there is Virtual multiple input multiple output (MIMO) technique,
where sensors nodes cooperate with each other to form an antenna array. These
multiple antennas can be used to improve the performance of the system (life-
time, data rate, bit error rate …) through spatial diversity or spatial multiplexing
[1, 2]. In this paper, we propose a distributed multi-channel energy efficient
cooperative MIMO routing protocol for cluster based WSNs (MCMIMO) which
aims at reducing energy consumption in multi-hop WSNs. In MCMIMO, sensor
nodes are organized into clusters and each cluster head utilizes a weighted link
function to select some optimal cooperative nodes to forward or receive traffic
from other neighboring clusters by utilizing a cooperative MIMO technique,
furthermore different channels are assigned to adjacent clusters and cooperative
MIMO links in order to reduce collisions. Simulation results indicate that virtual
MIMO based routing scheme achieves a significant reduction in energy con-
sumption, compared to SISO one for larger distances.

Keywords: Wireless sensor networks (WSNs) � Cooperative multiple input
multiple output (MIMO) � Cooperative communication � Clustering algorithms

1 Introduction

The current progress in the field of wireless technology allows to develop small size
sensors called nodes, communicating with each other via a radio link and are char-
acterized by their limited resources (energy supply; processing, memory storage). Their
flexibility of use makes them more utilized to form a wireless sensor network
(WSN) without returning to a fixed infrastructure. Furthermore, these nodes typically
deployed in inaccessible areas to control a definite phenomenon, ensure the transfer of
data collected using a multi-hop routing to a base station (BS), which is far from the
monitored field. The BS is responsible for the analysis and processing of collected data
to be exploited by the end user.

Based on the above observations, for a WSN to accomplish its function without
failure of the connection between the nodes, because of a depleting battery of one or
more nodes, we need a data routing protocol which gives higher priority to the energy
factor compared to other limitations, in order to provide stability of the network. At this

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 117–130, 2016.
DOI: 10.1007/978-3-319-46140-3_9

point, many studies have been made; the most known ones are based on the MIMO
technologies. However, the node cannot carry multiple antennas at the same time due to
its limited physical size. Therefore, a new transmission technique called “Cooperative
MIMO” has been proposed [3]. This technique is based on the cooperation principle
where the existence of different nodes in the network is exploited to transmit the
information from the source to a specific destination by virtually using theMIMO system
[4]. The Cooperative MIMO allows to obtain the space-time diversity gain [5], the
reduction of energy consumption [6], and the enhancement of the system capacity [7].

In this paper, we would like to investigate cooperative virtual MIMO and multi-
channel for cluster based WSNs, with the objective of maximizing the network lifetime
and enhance the network throughput simultaneously. We first introduce a novel
approach to grouping sensors into clusters and electing cooperative MIMO links
among clusters on such that intra-cluster messages are transmitted over short-range
SISO links, while inter-cluster messages are transmitted over long range cooperative
MIMO links [8]. Each cluster head selects one or multiple cluster members using a
weighted link function to form a MIMO array together with itself. To transmit a
message to a neighboring cluster, the cluster head first broadcasts the message to other
members in the MIMO array. The MIMO array then negotiates the transmission
scheme with the MIMO array in the neighboring cluster, encodes and sends the
message over the cooperative MIMO link between them. Second, adjacent clusters and
cooperative MIMO links have different channels assignment to avoid collision, that’s
allows multiple simultaneous transmissions and hence an increase of the network
throughput. Theoretical analyses show that, we can achieve high energy efficiency by
adapting data rate and transmission made (SISO, SIMO, MISO, MIMO) [9]. Simula-
tion results have proved that the proposed scheme can prolong the sensor network
lifetime greatly, especially when the sink is far from the sensor area.

The remainder of the paper is organized as follows. Section 2 describes the related
work. Section 3 describes energy efficiency of MIMO Systems. Section 4 describes the
proposed network architecture and the total energy consumption of the proposed
architecture. Section 5 describes the simulation and results. Finally, Sect. 6 concludes
the paper and provides directions for future work.

2 Related Work

In the literature, several studies have been made in this research area; we just cite
certain remarkable examples:

In [1] Cui et al., proposed MIMO systems based on Alamouti diversity schemes.
They extend this energy-efficiency analysis of MIMO systems to individual
single-antenna nodes that cooperate to form multiple antenna transmitters or receivers.
By maintaining the proper constellation (bits per symbol) size, MIMO can outperform
SISO (Single Input Single Output) after a certain distance.

According to [7] Belmega et al., the Multi-Input Multi-Output (MIMO) systems are
more energy efficient than SISO systems if only consumed energy is taken into account.
However, when the circuitry energy consumption is also considered, this conclusion is
no longer true.

118 A. Chaibrassou and A. Mouhsen

In [2] Cui et al., have investigated the best modulation strategy to minimize the total
energy consumption required to send a given number of bits for uncoded systems, by
optimizing the transmission time and the modulation parameters they have proved that
up to 80 % energy saving is achievable over non-optimized systems. And for coded
systems, the benefit of coding varies with the transmission distance and the underlying
modulation schemes.

In [9] Sajid et al. have proposed a Virtual (MIMO) routing for WSNs. In which
they have investigated virtual MIMO for fixed and variable rates. Their simulation
results show that virtual MIMO based routing is more energy efficient as compared to
SISO for larger distances.

3 Energy Efficiency of MIMO Systems

3.1 System Model

In our protocol we use the system model proposed in [1], The resulting signal paths on
the transmitter and receiver sides are shown in Figs. 1 and 2, respectively, where Mt

and Mr are the numbers of transmitter and receiver antennas, respectively, and we
assume that the frequency synthesizer (LO) is shared among all the antenna paths.
Based on the number of transmitters and receivers, we may get the following combi-
nations: MIMO (multiple input multiple output), SIMO (single input multiple output),
MISO (multiple input single output), and in SISO case (single input single output)
Mt = 1 and Mr = 1.

Based on [1], the total average energy consumption of MIMO transmission in
WSNs includes two parts: the power consumption of all power amplifiers PPA and the
power consumption of other circuit blocks PC. The transmitted power is given by

Pout ¼ �EbRb:
ð4pÞ2dki;ji;j

GtGrk
2 MlNf ð1Þ

Fig. 1. Transmitter circuit blocks (Analog)

A Multi-channel Energy Efficient Cooperative 119

where Ēb is the required energy per bit at the receiver for a given BER requirement, Rb

is the bit rate, di,j is the distance between nodes i and j, ki,j is the path loss factor from
node i to j, Gt is the transmitter antenna gain, Gr is the receiver antenna gain, λ is the
carrier wavelength, Ml is the link margin and Nf is the receiver noise figure given by
Nf = Nr/N0 where N0 is the single-sided thermal noise power spectral density and Nr is
the power spectral density of the total effective noise at the receiver input.

The power consumption of the power amplifiers is dependent on The transmitted
power Pout and can be approximated as

PPA ¼ 1þ að ÞPout ð2Þ

where a ¼ n
g � 1

� �
with η the drain efficiency of the RF power amplifier and ξ the

peak-to-average ratio.
The power consumption of the circuit components is given by

Pc ¼ Mt PDAC þ PMix þ Pfilt þ Psyn
� �þMr PLNA þ Pmix þ PIFA þ Pfilr þ PADC þ Psyn

� �
ð3Þ

Pc ¼ MtPct þMrPcr ð4Þ

where PDAC, Pmix, PLNA, PIFA, Pfilt, Pfilr, PADC, and Psyn are the power consumption
values for the DAC, the mixer, the Low Noise Amplifier (LNA), the Intermediate
Frequency Amplifier (IFA), the active filters at the transmitter side, the active filters at
the receiver side, the ADC, and the frequency synthesizer, respectively. The total
energy consumption per bit according to [1] is given by

Ebt ¼ PPA þ PCð Þ
Rb

ð5Þ

Fig. 2. Receiver circuit blocks (Analog)

120 A. Chaibrassou and A. Mouhsen

3.2 Variable-Rate Systems

Using MQAM modulation scheme, the constellation size b can be defined as b =
log2M Further, we can define constellation size in terms of number of bits L, Band-
width B, and duration radio transceiver is on Ton, and data rate Rb (bits/second) [1].

b ¼ L
BTon

¼ Rb

B
ð6Þ

Rb ¼ L
Ton

ð7Þ

The total energy consumption for Variable-rate Systems per bit according to [1] is
given by Eq. (8), where �Pb is the average bit error rate.

Ebt ¼ 2
3

1þ að Þ
�Pb

4

� ��1
Mt2b � 1

b
1
Mt

þ 1
MtN0

ð4pÞ2dki;ji;j

GrGtk
2 MlNf þ PC

Bb
ð8Þ

Based the Eq. (8) the optimal constellation sizes for different transmission distances
are listed in Table 1.

4 The Proposed Protocol

4.1 Clustering Algorithm

The cluster formation and cooperative MIMO link selection state consists of five steps:

(1) 1-hop neighbor discovery step, in which each node broadcasts its residual energy
to 1-hop neighbors

(2) 1-hop weight discovery step, in which each node calculates and broadcasts its
weight to 1-hop neighbors

(3) cluster formation step, in which clusters are constructed based on the information
received in 1-hop weight discovery step

(4) cluster neighbor discovery step, during which each cluster member notifies its
cluster head about the cluster information of all its 1-hop neighbors such that the
cluster head knows all its neighboring clusters and which nodes are adjacent to
them

Table 1. Optimized constellation size

Distance(m) bSISO bMISO bMIMO

1 12 14 16
5 6 10 12
10 5 8 10
20 4 6 8
40 4 5 7
70 2 4 5
100 2 3 5

A Multi-channel Energy Efficient Cooperative 121

(5) cooperative MIMO link selection step, in which each pair of neighboring clusters
select the optimal cooperative MIMO links for inter-cluster communications;

The details of these steps are discussed in the following subsections.

1. 1-hop neighbor discovery step

In this step, each node broadcasts a message including its residual energy (RE) to its
1-hop neighbors once receiving a REmessage from a neighbor, a node adds an entry to its
1-hop neighbor list including the neighbor’s residual energy and the estimated distance.

2. 1-hop weight discovery step

In 1-hop weight discovery step, the weight of each node is calculated and broadcast to
1-hop neighbor. Also as part of optimizing the energy resources of a WSN, it will be
better to affect the CH role to a node with high residual energy and small average
intra-cluster distance. In this regard, the weight for cluster head selection at each node i
can be defined by

weight ið Þ ¼ EiPN ið Þ
j¼1

di;j

N ið Þ
ð9Þ

where, N(i) is the 1-hop neighbors number of node i, di,j denotes the distance between
nodes i and j, and Ei is the residual energy of node i.

3. cluster formation step

In this step, sensor nodes with the high weight in their 1-hop neighborhoods elect
themselves as cluster heads. The cluster head election procedure is executed on each
node as every node is aware of the weights of its 1-hop neighbors. A node broadcasts a
Cluster Head Announcement (CHA) message to announce itself to be a cluster head.
Once receiving a CHA message from 1-hop neighbors they send out a Cluster Join
(CJ) message to join a cluster. After receiving a CJ message, the cluster head replies
with an ACK message to confirm the cluster join operation. If a sensor node receives
only one CHA message from a neighbor with high weight, the node chooses it as the
cluster head and joins its cluster. If a node receives multiple CHA messages from
neighbors with high weight, the node joins the closest cluster head. Isolated nodes
declare itself as cluster heads. At the end of this step, each sensor node will be either a
cluster head or a cluster member [10, 11].

4. cluster neighbor discovery step

In this step, all cluster members send a Cluster Forward (CF) message to their cluster
heads, in which the updated 1-hop neighbor list is included. The cluster head
acknowledge each CF message with an ACKmessage. A cluster member retransmits the
CF message if it does not receive an ACK message timely. After receiving all the CF
messages from its cluster members, a cluster head knows all the neighboring clusters.

122 A. Chaibrassou and A. Mouhsen

5. cooperative MIMO link selection step

In this step, each cluster head negotiates with the cluster heads of neighboring clusters
to select the optimal cooperative MIMO links, as more than one such links may exist
between two neighboring clusters (see Fig. 3). In general, on one hand, the cooperative
MIMO link with high energy efficiency should be selected to save transmission energy;
on the other hand, a link with low residual energy should not be selected even if it has
high energy efficiency, to avoid exhausting the link. We define Ef (l) as the energy
efficiency of a cooperative MIMO link l, which is determined by Eq. (11). We use Ei(l)
to represent the residual energy of link l, which is set to the least residual energy of all
nodes involved. To balance the effect of both factors, an empirical influence factor β
ranging from 0 to 1 is introduced, which can be adjusted according to the type of
application. Thus the weight of a cooperative MIMO link is defined as

weight ið Þ ¼ bEf lð Þþ 1� bð ÞEi lð Þ ð10Þ

Ef lð Þ ¼ 1
Ebt

ð11Þ

The link with the highest weight should be selected as the cooperative MIMO link
for inter-cluster communications. The selection of cooperative MIMO links between
two clusters can be done at either end of the link, since each cluster head is aware of the
information of all neighboring clusters and their adjacent boundary nodes after the
cluster discovery step. However, to avoid inconsistency, the cluster with the smaller ID
among the two neighboring clusters is designated to select the cooperative link between
them. After selecting the cooperative MIMO link, the cluster head with the smaller ID
sends out a Cooperative MIMO Link Request (CMIMOLR) message, which is
acknowledged by a Cooperative MIMO nodes.

Fig. 3. Example of data collection WSN

A Multi-channel Energy Efficient Cooperative 123

4.2 Medium Access Control and Channel Assignment

In the proposed MCMIMO algorithm, there are four types of nodes: normal nodes,
transmitter nodes, receiver nodes, and cluster heads. The normal nodes sense and
collect data regarding the environment. The Cluster head (CHs) collect data from the
normal nodes and use transmitter nodes to transmit their data to the receiver nodes of
the neighboring cluster or send data directly to the base station. After, each CH creates
a schedule in which time is divided to intervals called slots are assigned for intra cluster
communication, data aggregation and communication inter cluster. This management
method allows the sensors to remain in sleep state as long time as possible. In order to
avoid collision and interference transmission between adjacent clusters and cooperative
MIMO nodes, it will be better to assign different channels to each one of them. During
the channel assignment and clustering algorithm stages, all communications are on the
default channel and all nodes access the channel using a CSMA/CA. As shown in
Figs. 3 and 4(a), (b), data forwarding from different nodes (node 1 and node 2) to BS
depict the impact of multi channel technique on the throughput. If we use one channel
frequency the traffic routing costs 6 timeslots, however when we use two channels
frequency, then we have two parallel transmissions the traffic routing cost can reduce to
3 timeslots.

4.3 Energy Efficiency Analysis

In this section, we analyze the energy efficiency of MCMIMO protocol. We assume
that both intra-cluster and inter-cluster communications are over Rayleigh fading
channels. We denote the total energy consumption per bit for SISO, SIMO, MISO and
MIMO as a function of transmission distance d by ESISO(d), ESIMO(d), EMISO(d) and
EMIMO(d), respectively stated from Eq. (8).

Assuming the same packet size (NB bits), to transmit T packets from T nodes to
CH, the traditional SISO transmissions are involved. The energy consumption is given
by Eq. (12)

ECM to CH ¼ NbT
boptB

Esiso �dchð Þ ð12Þ

Fig. 4. Data collection using (a) one channel frequency and (b) two channel frequency

124 A. Chaibrassou and A. Mouhsen

Cluster head will aggregate the packets and send the aggregated packet to all the
transmitter (NR) nodes, the SIMO transmissions are involved. The energy consumption
to transmit the packets from CH to transmitter nodes can be described by Eq. (13)

ECH to NT ¼
Nb

boptB
Esimo �dchð Þ ð13Þ

After, the NT transmitter nodes transmit their data packet to NR the receiver nodes
of the neighboring cluster or send data directly to the base station where the
inter-cluster cooperative MIMO transmission is involved. The energy consumption for
cluster to cluster communication is given by Eq. (14)

ENT to NR ¼ NbEmimo �dccð Þ ð14Þ

Where, Emimo �dccð Þ can be stated from Eq. (8) as follow:

Emimo �dccð Þ ¼ 2
3

1þ að Þ
�Pb
4

� ��1
Mt2bopt � 1

b
1
Mt

þ 1
opt

MtN0
ð4pÞ2
GrGtk

2 MlNf

XNT

i¼1
�dkcc þ

PC
Bb

ð15Þ

The energy consumption from the last hop’s transmitter nodes to base station is a
special condition of from Eq. (15) where NR = 1.

And then, From NR receivers cooperative MIMO nodes to their corresponding
cluster head is assured through MISO transmission and the energy consumption is
given by

ENR to CH ¼ NbNR

boptB
Emiso �dchð Þ ð16Þ

The total energy consumption multi-hop communication model can be described as
following:

Etotal ¼ ECM to CH þ hopsþ 1ð Þ:ECH to NT þ hopsþ 1ð Þ:ENT to NR þ hops:ENR to CH ð17Þ

where hops is the number of intermediate clusters, �dch denotes the expected distance
between a cluster head and its cluster members that refer to intra cluster communi-
cation, and �dcc denotes the expected distance between the cooperative MIMO trans-
mitters and receivers that refer to inter cluster communication.

5 Simulation Results

5.1 Simulation Environment

To illustrate the value added by our proposed MCMIMO algorithm on network
behavior, we evaluated the MCMIMO performances in terms of energy of consumption
per bit, stability, lifetime, amount of data sent to the BS and network throughput in

A Multi-channel Energy Efficient Cooperative 125

three different scenarios (SISO, MISO and MIMO). The stability period and the life-
time are defined respectively according to the following metrics: FND (first node dies)
and HND (half node dies). Simulation parameters used for these evaluations are listed
in Table 2, where 100 sensor nodes are distributed randomly in a square region of
100 × 100 m2, loss of the communication between each pair of nodes is distributed
randomly from 2 to 4, each node have random initial energy within the interval [0.5, 1]
Joule. The base station is located at the center of the network and in order to illustrate
the effect of distance on energy consumption the base station moves in the horizontal
direction. The development environment is NS 2.

5.2 Performance Evaluation Discussion

Firstly, we compare the energy consumption of MCMIMO using different multi-hop
transmission MIMO, MISO and SISO with variable data rate according to Table 1.
Figure 5 shows the graphs of energy consumption per bit with respect to the distance
from the base station. Initially, the base station is placed at the center of the network.
Then, the base station is moved away from the center in the horizontal direction. As
shown in Fig. 5, the energy consumption of SISO has more advantage in energy saving
when the transmission distance is less than 10 m, but the MIMO has more advantage in
energy-saving when the distance is more than 10 m, this is because, for small distances
circuit block power consumption dominates and for large distances power amplifiers
dominates. Further, SISO is still better than MISO until the traversed distance equal

Table 2. Simulation parameters.

Parameter Value

r2 N0/2 = −174 dBm/Hz
k 2*4
Nodes number (N) 100
Network area
Round Number

100 m × 100 m
3500

Packet length (NB) 4000 bit
GtGr 5 dBi
fc 2.5 GHz
B 10 kHz
Nf 10 dB
Ml 40 dB
η 0.35
�Pb 10−3

Pct 0.0844263 W
Pcr 0.112497827 W
N0 −171 dBm/Hz
λ 0.12 m
ξ

3:
ffiffiffiffiffi
M

p
�1ffiffiffiffiffi

M
p

þ 1
, M = 2b

126 A. Chaibrassou and A. Mouhsen

23 m, for distance exceeding this value, the standard deviation of SISO is also higher
as compared to the other techniques. MIMO performs better than MISO for all the
cases. Then the MCMIMO with MIMO technique and adapted bit rate is more energy
efficient routing for large communication distance.

Secondly, we consider a fixe base station initially placed at position (50, 50) and we
evaluate our proposed algorithm in terms of stability, lifetime and amount of data sent
to the BS. Figures 6 and 7 show the simulation results.

From Figs. 6 and 7, we can see that MIMO 2x2 technique exceeds the other
techniques in terms of stability, lifetime and amount of data sent to the BS. Further-
more, the MIMO 2x2 technique has a stability period (FND) considerably larger
compared to other algorithms which allows the network to operate without fault for a
very long time. Table 3 summarizes the simulation results of this scenario. From the
simulation results, 2x2 MIMO is considered as an energy efficient routing technique. In
fact the stability period is increased approximately by 82 %, 39 % and 7 % while the
network lifetime is increased nearly 25 %, 20 % and 8 % compared with those
obtained by SISO, MISO and MIMO 3x3 techniques respectively.

Thirdly, we study the impact of the number of available channels on the system
throughput. As shown in Fig. 8, in which the BS is located at the center of the network.
We can see that, the network throughput is higher if we assigned more channel
resources, which leads to reduce collision between nodes; However, the throughput
stops increasing if more than 9 channels are provisioned, as interference no longer
exists after that.

Fig. 5. Energy consumption per bit for MIMO, MISO, SISO networks according to distance

A Multi-channel Energy Efficient Cooperative 127

Fig. 7. Received packets by the BS using different transmission MIMO technique

Fig. 6. Distribution of alive nodes according to the number of rounds for each MIMO technique.

128 A. Chaibrassou and A. Mouhsen

6 Conclusion

In this paper, a multi-channel energy efficient cooperative MIMO routing protocol for
cluster based WSNs, called MCMIMO in which, sensor nodes are organized into
clusters such that intra-cluster messages are transmitted over short-range SISO links,
while inter cluster messages are transmitted over long-range energy-efficient cooper-
ative MIMO links. To reduce energy consumption and prolong the network lifetime, an
adaptive cooperative nodes selection strategy is also designed. After that we investigate
the use of multiple transmitters and multiple receivers in virtual MIMO. We consider
the case of variable data rate. Further, we investigate the impact of distance on the
choice of MIMO, MISO and SISO, We demonstrate that in large range applications, by
optimizing the constellation size MIMO systems may outperform MISO and SISO
systems. Also the MIMO 2X2 technique is more suitable for any application WSN
since it exceeds the other techniques tested in terms of stability, lifetime and the
number of packets sent to the BS. Finally, multiple channels is exploited to enhance
network throughput by avoiding collision between nodes. MCMIMO is designed for
stationary WSNs, in future works, our algorithm can be extended to handle the mobile
wireless sensor networks under the platform NS2.

Fig. 8. System throughput vs. number of available channels

Table 3. Simulation results

Protocol FND HND Paquets number

SISO 243 1422 5.4 × 107

MISO 2X1 824 1531 3.8 × 108

MIMO 3X3 1247 1764 4.4 × 108

MIMO 2X2 1350 1908 4.6 × 108

A Multi-channel Energy Efficient Cooperative 129

References

1. Cui, S., Goldsmith, A.J., Bahai, A.: Energy efficiency of MIMO and cooperative MIMO
techniques in sensor networks. IEEE J. Sel. Areas Commun. 22, 1089–1098 (2004)

2. Cui, S., Goldsmith, A.J., Bahai, A.: Energy-constrained modulation optimization. In: IEEE
Transactions on Wireless Communications, pp. 1–7 (2005)

3. Nguyen, T., Berder, O., Sentieys, O.: Cooperative MIMO schemes optimal selection for
wireless sensor networks. In: IEEE 65th Vehicular Technology Conference, pp. 85–89
(2007)

4. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity-part I: system
description. IEEE Trans. Commun. 51, 1927–1938 (2003)

5. Winters, J.: The diversity gain of transmit diversity in wireless systems with Rayleigh
fading. IEEE Trans. Veh. Technol. 47, 119–123 (1998)

6. Jayaweera, S.K.: Energy analysis of MIMO techniques in wireless sensor networks. In: 38th
Annual Conference on Information Sciences and Systems (2004)

7. Belmega, E.V., Lasaulce, S., Debbah, M.: A survey on energy-efficient communications. In:
International Symposium on Personal, Indoor and Mobile Radio Communications
Workshops, Turkey, pp. 289–294 (2010)

8. Dawei, G., Miao, Z., Yuanyuan, Y.: A multi-channel cooperative MIMO MAC protocol for
clustered wireless sensor networks. J. Parallel Distrib. Comput. 74, 3098–3114 (2014)

9. Sajid, H., Anwarul, A., Jong, H.P.: Energy efficient virtual MIMO communication for
wireless sensor networks. J. Telecommun. Syst. 42, 139–149 (2009)

10. Chaibrassou, A., Mouhsen, A.: MGI-LEACH: multi group LEACH improved an efficient
routing algorithm for wireless sensor networks. J. Emerg. Technol. Web Intell. 6, 40–44
(2014)

11. Chaibrassou, A., Mouhsen, A., Lagrat, I.: Efficient and distributed clustering scheme with
mobile sink for heterogeneous multi level wireless sensor networks. J. Theor. Appl. Inf.
Technol. 63, 597–604 (2014)

130 A. Chaibrassou and A. Mouhsen

Counting in Practical Anonymous Dynamic
Networks is Polynomial

Maitri Chakraborty1, Alessia Milani2, and Miguel A. Mosteiro3(B)

1 Kean University, Union, NJ, USA
chakrabm@kean.edu

2 LABRI, University of Bordeaux, INP, Talence, France
milani@labri.fr

3 Pace University, New York, NY, USA
mmosteiro@pace.edu

1 Introduction

Anonymous Dynamic Networks is a harsh computational environment due to
changing topology and lack of identifiers. Topology changes are well motivated
by mobility and unreliable communication environments of present networks.
With respect to node identifiers, in future massive networks it may be necessary
or at least convenient to avoid them to facilitate mass production.

Computing the size of the network, a problem known as Counting, is a fun-
damental problem in distributed computing because the network size is used
to decide termination of protocols. An algorithm is said to solve the Counting
problem if whenever it is executed in a Dynamic Network comprising n nodes,
all nodes eventually terminate and output n.

Previous works on Counting in Anonymous Dynamic Networks do not pro-
vide enough guarantees to be used in practice. Indeed, they either compute only
an upper bound on the network size that may be as bad as exponential [9],
or guarantee only double-exponential running time [3], or do not terminate, or
guarantee only eventual termination without running-time guarantees [4]. Faster
experimental protocols do not guarantee the correct count [5].

Recently, we presented in [10] the first Counting protocol that computes
the exact count with exponential running-time guarantees. The protocol, called
Incremental Counting, requires the presence of one leader node and knowl-
edge of any upper bound Δ on the maximum number of neighbors that any node
will ever have. Incremental Counting achieves a speedup over its predeces-
sors by trying candidate sizes incrementally.

In the present work, we complement the latter theoretical study evaluating
the performance of such protocol over a variety of network topologies that may
appear in practice, including extremal cases such as trees, paths, and contin-
uously changing topologies. We also tested networks that temporarily are not
connected. Our simulations showed that the protocol is polynomial for all the

Partially supported by the Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-
02), the ANR project DISPLEXITY (ANR-11-BS02-014), and Kean Univ. RTR2016.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 131–136, 2016.
DOI: 10.1007/978-3-319-46140-3 10

132 M. Chakraborty et al.

inputs tested, paving the way to use it in practical applications where topology
changes are predictable. To the best of our knowledge, this is the first experimen-
tal study that shows the possibility of computing the exact count in polynomial
time in a variety of Anonymous Dynamic Networks that are worse than expected
in practice.

2 The Anonymous Dynamic Network Model

We consider a network composed by a set of n nodes. Nodes have no identifiers
and are indistinguishable, except for one node � that is called the leader. If a
given pair of nodes is able to communicate directly, we say that there is a link
among them, and we say that they are neighbors. The communication proceeds
in synchronous rounds through broadcast in symmetric links. That is, at each
round, a node i broadcasts a message to its neighbors and simultaneously receives
the messages broadcast in the same round by all its neighbors. Then, each node
makes some local computation (if any). To evaluate performance, we count the
number of communication rounds to complete the computation.

We assume that there is a value Δ ≤ n− 1 that may be used by the protocol
such that, for any round r and any node i, i has at most Δ neighbors at round r.
The set of links may change from one round to another. In each round a new set
of links may be chosen adversarially, as long as the network is connected. Our
simulations showed that if a new set of links is chosen uniformly at random for
each round, the dissemination of information towards the leader is indeed faster
than if changes are less frequent. Hence, for our simulations we generalize the
connectivity model assumed in [3,9,10] as follows. We say that the network is
T -stable if, after a topology change, the set of links does not change for at least
T rounds. In contrast, in T -interval connected networks [8] it is assumed that
for any sequence of T rounds, there is a stable set of links spanning all nodes.

For connected networks both models are the same for T = 1, but for T > 1 on
tree topologies (most of our inputs), T -stable networks restrict less the adversary
than T -interval connectivity networks. In this work, we study T -stable networks
and we evaluate a range of values for T , from T = 1 up to a static network.

3 Incremental Counting Protocol Simulator

The Incremental Counting protocol includes algorithms for the leader and
non-leader nodes. Both algorithms are composed by a sequence of synchronous
iterations. In each iteration the candidate size is incremented and checked to
decide whether it is correct or not. Each of the iterations is divided in three
phases: collection, verification, and notification. Incremental Counting runs
for a fixed number of rounds for each phase. Given that the upper bound on
the number of rounds needed for each phase proved in [10] is exponential, a
simulation of Incremental Counting as in [10] would yield exponential time.
The purpose of our simulations in the present work is to evaluate whether such
upper bound is loose in practice. So, rather than running each phase for a fixed

Counting in Practical Anonymous Dynamic Networks is Polynomial 133

number of communication rounds, we do it until a condition suited for each
phase is violated, and we count the number of communication rounds to com-
plete the computation. Consequently, our simulator is necessarily centralized to
check such condition, but again, these changes are introduced to obtain exper-
imentally a tighter upper bound on practical inputs, rather than to provide a
practical implementation of Incremental Counting. A practical distributed
Incremental Counting protocol must be implemented as in [10], that is, exe-
cuting each phase for a fixed number of rounds, but our simulations provide a
polynomial bound on that number. In the following paragraphs, we provide fur-
ther details on the changes applied to each phase of Incremental Counting,
how each phase is implemented in our simulator, and the input networks used.
Refer to the full version of this paper in [2] for further details.

During the collection phase of Incremental Counting non-leader nodes
are initially assigned a unit of energy, which is later disseminated towards the
leader using a gossip-based approach [1,6,7]. That is, each non-leader node
repeatedly shares a fraction of its energy with each neighbor. Given that the
leader keeps all the energy received, it eventually collects most of the energy in
the system. In the original Incremental Counting protocol, for each candi-
date size k, the number of rounds for sharing energy is fixed to a function τ(k)
that has not be proven to be sub-exponential in the worst case. Thus, to evaluate
whether in practice a polynomial number of rounds is enough, in our simulations
we iterate the energy transfer until the conditions needed for the verification
phase are met. That is, until the leader has collected an amount of energy such
that, if its guess is correct, non-leader nodes have transferred almost all their
energy, i.e. all non-leader nodes have residual energy smaller than or equal to
1/k1.01. To simulate the exchange in the collection phase, the energy sharing
process is simulated by a multiplication of the vector of energies by a matrix of
fractions shared as customary in gossip-based protocols analysis [1,6,7].

During the verification phase of Incremental Counting non-leader nodes
disseminate towards the leader the value of the maximum energy held by any
non-leader node. If the residual energy of some node is greater than the above
threshold, the current candidate size is deemed incorrect by the leader. To guar-
antee that the leader receives from all nodes, all non-leader nodes iteratively
broadcast and update the maximum energy heard, starting from their own. If
the candidate size was found to be correct in the verification phase, a halting
message is broadcast throughout the network in the notification phase. To syn-
chronize the computation, the notification phase of Incremental Counting
runs for a fixed number of rounds, independently of whether the current candi-
date size is correct or not. The verification and notification phases do not tolerate
disconnection of the network, since then some nodes might not be heard or have
received by the end of the loop. To evaluate disconnected topologies, in our sim-
ulations we continue the iteration of these phases until the leader has received
from all nodes (verification) or all nodes receive from the leader (notification).

We have produced different topologies that may appear in practice for all val-
ues of n ∈ [3, 75], and T ∈ {1, 10, 20, 40, 80, 160, 320, 640, 1280,∞}, where T = ∞

134 M. Chakraborty et al.

corresponds to a static network. We evaluate random tree topologies rooted at
the leader node. To produce our random rooted unlabeled trees we used the algo-
rithm RANRUT [11], which guarantees uniform distribution on the equivalence
classes defined by isomorphisms. These trees may have maximum degree larger
than Δ. If that is the case we prune the tree moving subtrees downwards until all
nodes have at most Δ neighbors. This procedure may increase the longest path
to the leader, which may increase the running time of Incremental Count-
ing. Thus, with respect to a uniform distribution on rooted unlabeled trees of
maximum degree Δ, our input distribution is biased “against” Incremental
Counting providing stronger guarantees.

As extremal cases of a tree topology, we also evaluated a star rooted at the
leader node and a path where the leader is the end point. We also consider
Erdos-Renyi random graphs, for which we additionally parameterize the proba-
bility p that any given pair of nodes are neighbors. Although graphs have better
conductance than the trees underlying them, and consequently graphs achieve
convergence faster for gossip-based protocols [12], we evaluate the latter inputs
for consistency with previous works.

4 Discussion

All our results where computed as the average over 20 executions of the protocol.
For all the topologies and parameter combinations evaluated, Incremental

Fig. 1. Incremental Counting time performance compared with a polynomial
function.

Counting in Practical Anonymous Dynamic Networks is Polynomial 135

Counting has proved to be polynomial. Consider for instance Fig. 1, where we
plot the number of rounds to complete the computation (log scale) as a function
of the network size, for various values of degree upper bound Δ, interval of
stability T , and probability p of being connected in the random graph. We also
plot the function Δn4 to contrast the growth of such polynomial function with
the results obtained. It can be seen that all our results indicate a rate of growth
asymptotically smaller than Δn4. (The upper bound could be tightened but we
choose a loose one for clarity.) For small network sizes, random graphs introduce
additional delays due to disconnection, but as the network scales the dynamic
topology overcomes the effect of disconnections. As a byproduct, our simulations
also provided insight on the impact of network dynamics in the dissemination
of information by gossip-based protocols. Indeed, our results showed that on
average network changes speed-up convergence. That is, as long as the effect
is uniform throughout the network, highly dynamic topologies help rather than
being a challenge as in a worst-case theoretical analysis. Indeed, our simulations
showed the static path to have the worse time performance among all inputs
tested. Other observations, such as the impact of Δ or the impact of stability
(T) for each topology, are detailed in the full version of this paper in [2].

References

1. Almeida, P.S., Baquero, C., Farach-Colton, M., Jesus, P., Mosteiro, M.A.: Fault-
tolerant aggregation: flow-updating meets mass-distribution. In: Fernàndez Anta,
A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 513–527.
Springer, Heidelberg (2011)

2. Chakraborty, M., Milani, A., Mosteiro, M.A.: Counting in practical anonymous
dynamic networks is polynomial. CoRR abs/1603.05459 (2016). http://arxiv.org/
abs/1603.05459

3. Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Conscious and uncon-
scious counting on anonymous dynamic networks. In: Chatterjee, M., Cao, J.,
Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 257–271.
Springer, Heidelberg (2014)

4. Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Counting in anony-
mous dynamic networks under worst-case adversary. In: ICDCS 2014, pp. 338–347.
IEEE (2014)

5. Di Luna, G.A., Bonomi, S., Chatzigiannakis, I., Baldoni, R.: Counting in anony-
mous dynamic networks: an experimental perspective. In: Flocchini, P., Gao, J.,
Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp.
139–154. Springer, Heidelberg (2014)

6. Fernández Anta, A., Mosteiro, M.A., Thraves, C.: An early-stopping protocol for
computing aggregate functions in sensor networks. J. Parallel Distrib. Comput.
73(2), 111–121 (2013)

7. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: FOCS 2003, pp. 482–491. IEEE (2003)

8. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: STOC 2010, pp. 513–522. ACM (2010)

http://arxiv.org/abs/1603.05459
http://arxiv.org/abs/1603.05459

136 M. Chakraborty et al.

9. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Naming and counting in anony-
mous unknown dynamic networks. In: Higashino, T., Katayama, Y., Masuzawa,
T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp.
281–295. Springer, Heidelberg (2013)

10. Milani, A., Mosteiro, M.A.: A faster counting protocol for anonymous dynamic
networks. In: OPODIS 2015, LIPIcs (2015, to appear)

11. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calcula-
tors, 2nd edn. Academic Press, Cambridge (1978)

12. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly
mixing Markov chains. Inf. Comput. 82(1), 93–133 (1989)

Internet Computing: Using Reputation
to Select Workers from a Pool

Evgenia Christoforou1,2(B), Antonio Fernández Anta1, Chryssis Georgiou3,
and Miguel A. Mosteiro4

1 IMDEA Networks Institute, Madrid, Spain
evgenia.christoforou@imdea.org

2 Universidad Carlos III de Madrid, Madrid, Spain
3 University of Cyprus, Nicosia, Cyprus
4 Pace University, New York, NY, USA

mmosteiro@pace.edu

Abstract. The assignment and execution of tasks over the Internet
is an inexpensive solution in contrast with supercomputers. We con-
sider an Internet-based Master-Worker task computing approach, such
as SETI@home. A master process sends tasks, across the Internet, to
worker processors. Workers execute, and report back a result. Unfortu-
nately, the disadvantage of this approach is the unreliable nature of the
worker processes. Through different studies, workers have been catego-
rized as either malicious (always report an incorrect result), altruistic
(always report a correct result), or rational (report whatever result max-
imizes their benefit). We develop a reputation-based mechanism that
guarantees that, eventually, the master will always be receiving the cor-
rect task result. We model the behavior of the rational workers through
reinforcement learning, and we present three different reputation types
to choose, for each computational round, the most reputable from a pool
of workers. As workers are not always available, we enhance our repu-
tation scheme to select the most responsive workers. We prove sufficient
conditions for eventual correctness under the different reputation types.
Our analysis is complemented by simulations exploring various scenarios.
Our simulation results expose interesting trade-offs among the different
reputation types, workers availability, and cost.

Keywords: Volunteer computing · Reinforcement learning ·
Reputation · Worker reliability · Task computing · Worker
unresponsiveness · Pool of workers

1 Introduction

Internet-based computing has emerged as an inexpensive alternative for scien-
tific high-performance computations. The most popular form of Internet-based
computing is volunteer computing, where computing resources are volunteered
by the public to help solve (mainly) scientific problems. BOINC [4] is a popu-
lar platform where volunteer computing projects run, such as SETI@home [20].
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 137–153, 2016.
DOI: 10.1007/978-3-319-46140-3 11

138 E. Christoforou et al.

Profit-seeking computation platforms, such as Amazon’s Mechanical Turk [3],
have also become popular. One of the main challenges for further exploiting
the promise of such platforms is the untrustworthiness of the participating
entities [4,5,16,18].

In this work we focus on Internet-based master-worker task computing, where
a master process sends tasks, across the Internet, to worker processes to compute
and return the result. Workers, however, might report incorrect results. Follow-
ing [9,11], we consider three types of worker. Malicious1 workers that always
report an incorrect result, altruistic workers that always report a correct result,
and rational workers that report a result driven by their self-interest. In addition,
a worker (regardless of its type) might be unavailable (e.g., be disconnected, be
busy performing other tasks, etc.). Our main contribution is a computing sys-
tem where the master eventually obtains always the correct task result despite
the above shortcomings. Our mechanism is novel in two fronts: (i) it leverages
the possibility of changing workers over time, given that the number of workers
willing to participate is larger than the number of workers needed, and (ii) it is
resilient to some workers being unavailable from time to time.

Worker unreliability in master-worker computing has been studied from both
a classical Distributing Computing approach and a Game Theoretic one. The
first treats workers as malicious or altruistic. Tasks are redundantly allocated to
different workers, and voting protocols that tolerate malicious workers have been
designed (e.g., [13,19,21]). The Game Theoretic approach views the workers as
rational [1,15,22], who follow the strategy that would maximize their benefit.
In the latter approach, incentive-based mechanisms have been developed (e.g.,
[14,27]) that induce workers to act correctly.

Other works (e.g., [9,11]) have considered the co-existence of all three types
of worker. In [9], a “one-shot” interaction between master and workers was imple-
mented. In that work, the master assigns tasks to workers without using knowl-
edge of past interactions (e.g., on the behavior of the workers). In [11], a mecha-
nism was designed taking advantage of the repeated interaction (rounds) of the
master with the workers. The mechanism employs reinforcement learning [25]
both for the master and for the workers. In each round, the master assigns a
task to the same set of workers (which are assumed to be always available).
The master may audit (with a cost) the responses of the workers and a reward-
punishment scheme is employed. Depending on the answers, the master adjusts
its probability of auditing. Rational workers cheat (i.e., respond with an incor-
rect result to avoid the cost of computing) with some probability, which over
the rounds increases or decreases depending on the incentive received (reward
or punishment). Rational workers have an aspiration level [8] which determines
whether a received payoff was satisfactory or not. To cope with malicious workers
(whose behavior is not affected by the above mentioned learning scheme) a repu-
tation scheme [17] was additionally employed. The main objective is to “quickly”

1 We call these workers malicious for compliance with Volunteer Computing [4] litera-
ture. This must not be confused with Byzantine malice assumed in classical distrib-
uted computing.

Internet Computing: Using Reputation to Select Workers from a Pool 139

reach a round in the computation after which the master always receives the cor-
rect task result, with minimal auditing.

Unlike assumed in [11] (and most previous literature), in practice workers are
not always available. For instance, Heien et al. [16] have found that in BOINC [4]
only around 5 % of the workers are available more than 80 % of the time, and
that half of the workers are available less than 40 % of the time. In this work,
we extend the work in [11] to cope with worker unavailability.

A feature that has not been leveraged in [11] and previous works is the
scale of Internet-based master-worker task computing systems. For example, in
BOINC [7] active workers are around a few hundred thousand. In such a large
system, replicating the task and sending it to all workers is neither feasible nor
practical. On the other hand, randomly selecting a small number of workers
to send the task does not guarantee correctness with minimum auditing. For
instance, consider a pool of workers where the malicious outnumber those needed
for the computation. Then, there is a positive probability that only malicious
workers are selected and the master would have to audit always to obtain the
correct result. All previous works assume the existence of a fixed/predefined
set of workers that the master always contacts. In this work we consider the
existence of a pool of N workers out of which the master chooses n < N .

Our Contributions

– We present a mechanism (in Sect. 3) where the master chooses the most rep-
utable workers for each round of computation, allowing the system to even-
tually converge to a state where the correct result will be always obtained,
with minimal auditing. Our mechanism does not require workers to be avail-
able all the time. To cope with the unavailability of the workers, we introduce
a responsiveness reputation that conveys the percentage of task assignments
to which the worker replies with an answer. The responsiveness reputation
is combined with a truthfulness reputation that conveys the reliability of the
worker. We enrich our study considering three types of truthfulness reputation.
Namely, Boinc reputation (inspired in the “adaptive replication” of BOINC),
Exponential reputation (that we presented in [11]), and Linear reputation
(inspired on the work of Sonnek et al. [24]).

– We also show formally (in Sect. 4) negative and positive results regarding the
feasibility of achieving correctness in the long run in the absence of rational
workers. Specifically, we show configurations (worker types, availability, etc.)
of the pool of workers such that correctness cannot be achieved unless the
master always audits, and the existence of configurations such that eventually
correctness is achieved forever with minimal auditing.

– We evaluate experimentally (in Sect. 5) our mechanism with extensive sim-
ulations under various conditions. Our simulations complement the analysis
taking into account scenarios where rational workers exist. The different rep-
utation types are compared showing trade-offs between reliability and cost.

140 E. Christoforou et al.

2 Model

Master-Worker Framework. We consider a master and a pool (set) of work-
ers N , where |N | = N . The computation is broken into rounds r = 1, 2, In
each round r, the master selects a set W r of n < N workers, and sends them
a task. The workers in W r are supposed to compute the task and return the
result, but may not do so (e.g., unavailable computing other task). The mas-
ter, after waiting for a fixed time t, proceeds with the received replies. Based
on those replies, the master must decide which answer to take as the correct
result for this round. The master employs a reputation mechanism put in place
to choose the n most reputable workers in every round. We assume that tasks
have a unique solution; although such limitation reduces the scope of applica-
tion of the presented mechanism [26], there are plenty of computations where
the correct solution is unique: e.g., any mathematical function.

Worker Unavailability. In Internet-based master-worker computations, and
especially in volunteering computing, workers are not always available to partici-
pate in a computation [16] (e.g., they are off-line for a particular period of time).
We assume that each worker’s availability is stochastic and independent of other
workers. Formally, we let di > 0 be the probability that the master receives the
reply from worker i within time t (provided that the worker was chosen by the
master to participate in the computation for the given round r, i.e., i ∈ W r). In
other words, this is the probability that the worker is available to compute the
task assigned.

Worker Types. We consider three types of workers: rational, altruistic, and
malicious. Rational workers are selfish in a game-theoretic sense and their aim is
to maximize their utility (benefit). In the context of this paper, a worker is honest
in a round, when it truthfully computes and returns the correct result, and it
cheats when it returns some incorrect value. Altruistic and malicious workers
have a predefined behavior: to always be honest and cheat respectively. Instead,
a rational worker decides to be honest or cheat depending on which strategy
maximizes its utility. We denote by pCi(r) the probability of a rational worker i
cheating in round r, provided that i ∈ W r. The worker adjusts this probability
over the course of the multiround computation using a reinforcement learning
approach. The master is not aware of each worker type, neither of the distribution
over types. That is, our mechanism does not rely on any statistical information.

While workers make their decision individually and with no coordination,
following [13,21], we assume that all the workers that cheat in a round return
the same incorrect value. This yields a worst case scenario for the master to
obtain the correct result using a voting mechanism. This assumption subsumes
models where cheaters do not necessarily return the same answer, and it can be
seen as a weak form of collusion.

Auditing, Payoffs, Rewards and Aspiration. When necessary, the master
employs auditing and reward/punish schemes to induce the rational workers
to be honest. In each round, the master may decide to audit the response of
the workers, at a cost. In this work, auditing means that the master computes

Internet Computing: Using Reputation to Select Workers from a Pool 141

the task by itself, and checks which workers have been honest. We denote by
pA(r) the probability of the master auditing the responses of the workers in
round r. The master can change this auditing probability over the course of the
computation, but restricted to a minimum value pmin

A > 0. When the master
audits, it can accurately reward and punish workers. When the master does not
audit, it rewards only those in the weighted majority (see below) of the replies
received and punishes no one.

We consider three worker payoff parameters: (a) WPC : worker’s punishment
for being caught cheating, (b) WCT : worker’s cost for computing a task, and (c)
WBY : worker’s benefit (typically payment) from the master’s reward. As in [8],
we also assume that a worker i has an aspiration ai, which is the minimum benefit
that worker i expects to obtain in a round. We assume that the master has the free-
dom of choosing WBY and WPC with the goal of satisfying eventual correctness,
defined next. E.g., in order to motivate the worker to participate in the computa-
tion, the master ensures that WBY − WCT ≥ ai; in other words, the worker has
the potential of its aspiration to be covered even if it computes the task.

Eventual Correctness. The goal of the master is to eventually obtain a reliable
computational platform: After some finite number of rounds, the system must
guarantee that the master obtains the correct task results in every round with
probability 1 and audits with probability pmin

A . We call such property eventual
correctness. Observe that eventual correctness implies that eventually the master
receives at least one (correct) reply in every round.

Reputation. The reputation of each worker is measured and maintained by the
master. Reputation is used by the master to cope with the uncertainty about
the workers’ truthfulness and availability. In fact, the workers are unaware that
a reputation scheme is in place, and their interaction with the master does
not reveal any information about reputation; i.e., the payoffs do not depend
on a worker’s reputation. The master wants to assign tasks to workers that
are reliable, that is, workers that are both responsive and truthful. Hence, we
consider the worker’s reputation as the product of two factors: responsiveness
reputation and truthfulness reputation. Thus, the malicious workers will obtain
a low reputation fast due to their low truthfulness reputation, and also the
workers that are generally unavailable will get a low reputation due to their low
responsiveness reputation. Consequently, these workers will stop being chosen
by the master.

More formally, we define the reputation of a worker i as ρi = ρrsi
· ρtri

,
where ρrsi

represents the responsiveness reputation and ρtri
the truthfulness

reputation of worker i. We also define the reputation of a set of workers Y ⊆ W
as the aggregated reputation of all workers in Y . That is, ρY (r) =

∑
i∈Y ρi(r).

In this work, we consider three truthfulness reputation types: Linear, Expo-
nential, and Boinc. In the Linear reputation type (introduced in [24]) the rep-
utation changes at a linear rate. The Exponential reputation type (introduced
in [11]) is “unforgiving”, in the sense that the reputation of a worker caught
cheating will never increase. The reputation of a worker in this type changes at
an exponential rate. The Boinc reputation type is inspired by BOINC [6]. In the

142 E. Christoforou et al.

BOINC system this reputation method is used to avoid redundancy if a worker
is considered honest2. For the responsiveness reputation we use the Linear rep-
utation, adjusted for responses. For the worker’s availability it is natural to use
a “forgiving” reputation, especially when considering volunteer computing. For
the detailed description of the reputation types we introduce some necessary
notation as follows.

selecti(r): the number of rounds the master selected worker i up to round r.
reply selecti(r): the number of rounds up to round r in which worker i was
selected and the master received a reply from i.
audit reply selecti(r): the number of rounds up to round r where the master
selected worker i, received its reply and audited.
correct auditi(r): the number of rounds up to round r where the master selected
worker i, received its reply, audited and i was truthful.
streaki(r): the number of rounds ≤ r in which worker i was selected, audited,
and replied correctly after the latest round in which it was selected, audited,
and caught cheating.

Then, the reputation types we consider are as follows.

Responsiveness reputation: ρrsi(r) = reply selecti(r)+1
selecti(r)+1

.
Truthfulness reputation:

Linear: ρtri(r) =
correct auditi(r) + 1

audit reply selecti(r) + 1
.

Exponential: ρtri(r) = εaudit reply selecti(r)−correct auditi(r), where ε ∈ (0, 1).

Boinc: ρtr(r) =

{
0, if streak(r) < 10.

1 − 1
streak(r)

, otherwise.

All workers are assumed to have the same initial reputation before the master
interacts with them. The goal of the above definitions is for workers who are
responsive and truthful to eventually have high reputation, whereas workers
who are not responsive or not truthful, to eventually have low reputation.

3 Reputation-Based Mechanism

We now present our reputation-based mechanism. The mechanism is composed
by an algorithm run by the master and an algorithm run by each worker.

Master’s Algorithm. The algorithm followed by the master, Algorithm1,
begins by choosing the initial probability of auditing and the initial reputation
(same for all workers). The initial probability of auditing will be set according to

2 In BOINC, honesty means that the worker’s task result agrees with the majority,
while in our work this decision is well-founded, since the master audits.

Internet Computing: Using Reputation to Select Workers from a Pool 143

the information the master has about the environment (e.g., workers’ initial pC).
For example, if it has no information about the environment, a natural approach
would be to initially set pA = 0.5 or pA = 1 (as a more conservative approach).
The master also chooses the truthfulness reputation type to use.

At the beginning of each round, the master chooses the n most reputable
workers out of the total N workers (breaking ties uniformly at random) and
sends them a task T . In the first round, since workers have the same reputation,
the choice is uniformly at random. Then, after waiting t time to receive the
replies from the selected workers, the master proceeds with the mechanism.
The master updates the responsiveness reputation and audits the answers with
probability pA. In the case the answers are not audited, the master accepts the
value returned by the weighed majority. In Algorithm1, m is the value returned
by the weighted majority and Rm is the subset of workers that returned m. If the
master audits, it updates the truthfulness reputation and the audit probability
for the next round. Then, the master rewards/penalizes the workers as follows. If
the master audits and a worker i is a cheater (i.e., i ∈ F), then Πi = −WPC ; if i
is honest, then Πi = WBY . If the master does not audit, and i returns the value
of the weighted majority (i.e., i ∈ Rm), then Πi = WBY , otherwise Πi = 0.

In the update of the audit probability pA, we include a threshold, denoted by
τ , that represents the master’s tolerance to cheating (typically, we will assume
τ = 1/2 in our simulations). If the ratio of the aggregated reputation of cheaters
with respect to the total is larger than τ , pA is increased, and decreased other-
wise. The amount by which pA changes depends on the difference between these
values, modulated by a learning rate αm [25]. This latter value determines to
what extent the newly acquired information will override the old information.
For example, if αm = 0 the master will never adjust pA.

Workers’ Algorithm. Altruistic and malicious workers have predefined behav-
iors. When they are selected and receive a task T from the master, if they are
available, they compute the task (altruistic) or fabricate an arbitrary solution
(malicious), replying accordingly. If they are not available, they do not reply.
Rational workers run the algorithm described in Algorithm2. The execution of
the algorithm begins with a rational worker i deciding an initial probability of
cheating pCi. Then, the worker waits to be selected and receive a task T from
the master. When so, and if it is available at the time, then with probability
1 − pCi, worker i computes the task and replies to the master with the correct
answer. Otherwise, it fabricates an answer, and sends the incorrect response to
the master. After receiving its payoff, worker i changes its pCi according to pay-
off Πi, the chosen strategy (cheat or not cheat), and its aspiration ai. Similarly
to the master, the workers have a learning rate αw. We assume that all workers
have the same learning rate, that is, they learn in the same manner (in [25],
the learning rate is called step-size). In a real platform the workers learning rate
can slightly vary (since workers in these platforms have similar profiles), making
some worker more or less susceptible to reward and punishment. Using the same
learning rate for all workers is representative of what happens in a population
of different values with small variations around some mean.

144 E. Christoforou et al.

Algorithm 1. Master’s Algorithm
1 pA ← x, where x ∈ [pmin

A , 1]

2 for i ← 0 to N do

3 selecti ← 0; reply selecti← 0; audit reply selecti← 0; correct auditi ← 0; streaki ← 0

4 ρrsi
← 1; initialize ρtri

// initially all workers have the same reputation

5 for r ← 1 to ∞ do

6 W r ← {i ∈ N : i is chosen as one of the n workers with the highest ρi = ρrsi
· ρtri

}
7 ∀i ∈ W r : selecti ← selecti + 1

8 send a task T to all workers in W r

9 collect replies from workers in W r for t time

10 wait for t time collecting replies as received from workers in W r

11 R ← {i ∈ W r : a reply from i was received by time t}
12 ∀i ∈ R : reply selecti ← reply selecti + 1

13 update responsiveness reputation ρrsi
of each worker i ∈ W r

14 audit the received answers with probability pA
15 if the answers were not audited then

16 accept the value m returned by workers Rm ⊆ R,

17 where ∀m′, ρtrRm
≥ ρtrR

m′
// weighted majority of workers in R

18 else // the master audits

19 foreach i ∈ R do

20 audit reply selecti ← audit reply selecti + 1

21 if i ∈ F then streaki← 0 // F ⊆ R is the set of responsive workers caught cheating

22 else correct auditi ← correct auditi + 1, streaki← streaki + 1

// honest responsive workers

23 update truthfulness reputation ρtri
// depending on the type used

24 if ρtrR
= 0 then pA← min{1, pA + αm}

25 else

26 p′
A ← pA + αm(ρtrF

/ρtrR
− τ)

27 pA ← min{1,max{pmin
A , p′

A}}
28 ∀i ∈ W r : return Πi to worker i // the payoff of workers in W r \ R is zero

Algorithm 2. Algorithm for Rational Worker i

1 pCi ← y, where y ∈ [0, 1]

2 repeat forever

3 wait for a task T from the master

4 if available then

5 decide whether to cheat or not independently with distribution P (cheat) = pCi

6 if the decision was to cheat then

7 send arbitrary solution to the master

8 get payoff Πi

9 pCi ← max{0,min{1, pCi + αw(Πi − ai)}}
10 else

11 send compute(T) to the master

12 get payoff Πi

13 pCi ← max{0,min{1, pCi − αw(Πi − WCT − ai)}}

4 Analysis

In this section, we prove some properties of the system. We start by observing
that, in order to achieve eventual correctness, it is necessary to change workers
over time.3

3 The omitted proofs can be found at http://arxiv.org/abs/1603.04394.

http://arxiv.org/abs/1603.04394

Internet Computing: Using Reputation to Select Workers from a Pool 145

Observation 1. If the number of malicious workers is at least n and the master
assigns the task to the same workers in all rounds, eventual correctness cannot
be guaranteed.

The intuition behind this observation is that there is always a positive probability
that the master will select n malicious workers at the first round and will have
to remain with the same workers. This observation justifies that the master has
to change its choice of workers if eventual correctness has to be guaranteed. We
apply the natural approach of choosing the n workers with the largest reputation
among the N workers in the pool (breaking ties randomly). In order to guarantee
eventual correctness we need to add one more condition regarding the availability
of the workers.

Observation 2. To guarantee eventual correctness at least one non-malicious
worker i must exist with di = 1. To satisfy eventual correctness at least one
worker i that is not malicious must have di = 1.

To complement the above observations, we show now that there are sets of work-
ers with which eventual correctness is achievable using the different reputation
types (Linear and Exponential as truthfulness reputations) defined and the
master reputation-based mechanism in Algorithm 1.

Theorem 3. Consider a system in which workers are either altruistic or mali-
cious there are no rational workers and there is at least one altruistic worker
i with di = 1 in the pool. Eventual correctness is satisfied if the mechanism of
Algorithm 1 is used with the responsiveness reputation and any of the truthfulness
reputations Linear or Exponential.

The intuition behind the proof is that thanks to the decremental way in which
the reputation of a malicious worker is calculated at some point the altruistic
worker i with full responsiveness (di = 1) will be selected and have a greater
reputation than the aggregated reputation of the selected malicious workers. A
similar result does not hold if truthfulness reputation of type Boinc is used. In
this case, we have found that it is not enough that one altruistic worker with
full availability exists, but also the number of altruistic workers with partial
availability have to be considered.

Theorem 4. Consider a system in which workers are either altruistic or mali-
cious there are no rational workers and there is at least one altruistic worker i
with di = 1 in the pool. In this system, the mechanism of Algorithm 1 is used
with the responsiveness reputation and the truthfulness reputation Boinc. Then,
eventual correctness is satisfied if and only if the number of altruistic workers
with dj < 1 is smaller than n.

Proof. In this system, it holds that every malicious worker k has truthfulness
reputation ρtrk

= 0 forever, since the replies that the master receives from it (if
any) are always incorrect. Initially, altruistic workers also have zero truthfulness
reputation. An altruistic worker j has positive truthfulness reputation after it is

146 E. Christoforou et al.

selected, and its reply is received and audited by the master 10 times. Observe
that, once that happens, the truthfulness reputation of worker j never becomes
0 again. Also note that the reponsiveness reputation never becomes 0. Hence,
the first altruistic workers that succeed in raising their truthfulness reputation
above zero are always chosen in future rounds. While there are less than n
workers with positive reputation, the master selects at random from the zero-
reputation workers in every round. Then, eventually (in round r0) there are
n altruistic workers with positive reputation, or there are less than n but all
altruistic workers are in that set. After then, no new altruistic worker increase
its reputation (in fact, is ever selected), and the set of altruistic selected workers
is always the same.

If the number of altruistic workers with dj < 1 is smaller than n, since worker
i has di = 1, after round r0 among the selected workers there are altruistic
workers with dj = 1 and positive reputation. Then, in every round there is
going to be a weighted majority of correct replies, and eventual correctness is
guaranteed.

If, on the other hand, the number of altruistic workers with dj < 1 is at least
n, there is a positive probability that all the n workers with positive reputation
are from this set. Since there is a positive probability that n altruistic workers
with dj < 1 are selected in round r0 with probability one the worker i with
di = 1 will never be selected. If this is the case, eventual correctness is not
satisfied (since there is a positive probability that the master will not receive a
reply in a round). Assume otherwise and consider that after round r′

0 it holds
that pA = pmin

A . Then, in every round after r′
0 there is a positive probability

that the master receives no reply from the selected workers and it does not
audit, which implies that it does not obtain the correct result. ��
This result is rather paradoxical, since it implies that a system in which all
workers are altruistic (one with di = 1 and the rest with dj < 1) does not
guarantee eventual correctness, while a similar system in which the partially
available workers are instead malicious does. This paradox comes to stress the
importance of selecting the right truthfulness reputation. Theorem4 shows a
positive correlation among a truthfulness reputation with the availability factor
of a worker in the case a large number of altruistic workers.

5 Simulations

Theoretical analysis is complemented with illustrative simulations on a number
of different scenarios for the case of full and partial availability. The simulated
cases give indications on the values of some parameters (controlled by the master,
namely the type of reputation and the initial pA) under which the mechanism
performs better. The rest of the parameters of the mechanism and the scenarios
presented are essentially based on the observations extracted from [2,12], and
are rather similar to our earlier work [11]. We have developed our own simulation
setup by implementing our mechanism (Algorithms 1 and 2, and the reputation

Internet Computing: Using Reputation to Select Workers from a Pool 147

types discussed above) using C++. The simulations were executed on a dual-core
AMD Opteron 2.5 GHz processor, with 2 GB RAM, running CentOS version 5.3.

For simplicity, we consider that all workers have the same aspiration level
ai = 0.1, although we have checked that with random values the results are
similar to those presented here, provided their variance is not very large (ai±0.1).
We consider the same learning rate for the master and the workers, i.e., α =
αm = αw = 0.1. Note that the learning rate, as discussed for example in [25]
(called step-size there), is generally set to a small constant value for practical
reasons. We set τ = 0.5 (c.f., Sect. 3; also see [10]), pmin

A = 0.01, and ε = 0.5
in reputation Exponential. We assume that the master does not punish the
workers WPC = 0, since depending on the platform used this might not be
feasible, and hence more generic results are considered. Also we consider that
the cost of computing a task is WCT = 0.1 for all workers and, analogously, the
master is rewarding the workers with WBY = 1 when it accepts their result (for
simplicity no further correlation among these two values is assumed). The initial
cheating probability used by rational workers is pCi = 0.5 and the number of
selected workers is set to n = 5.

The first batch of simulations consider the case when the workers are fully
available (i.e., all workers have d = 1), and the behavior of the mechanism under
different pool sizes is studied. The second batch considers the case where the
workers are partially available.

Full Availability. Assuming full worker availability we attempt to identify the
impact of the pool size on different metrics: (1) the number of rounds, (2) number
of auditing rounds, and (3) number of incorrect results accepted by the master,
all of them measured until the system reaches convergence (the first round in
which pA = pmin

A)4. Additionally, we are able to compare the behavior of the
three truthfulness reputation types, showing different trade-off among reliability
and cost.

We have tested the mechanism proposed in this paper with different initial
pA values. We present here two interesting cases of initial audit probability,
pA = 0.5 and pA = 1. The first row of Fig. 1 (plots (a1) to (c1)) presents
the results obtained in the simulations with initial pA = 0.5 and the second
row (plots (a2) to (c2)) the case pA = 1. The simulations in this section have
been done for systems with only rational and malicious workers, with 3 different
ratios between these worker types (ratios 5/4, 4/5, and 1/8), with different pool
sizes (N = {5, 9, 99}), and for the 3 truthfulness reputation types. These ratios
consider the three most “critical” cases in which malicious workers can influence
the results.

A general conclusion we can extract from the first row of Fig. 1 (plots (a1) to
(c1)) is that, independently of the ratio between malicious and rational workers,
the trend that each reputation type follows for each of the different pool size
scenarios is the same. (When the ratio of rational/malicious is 1/8 this trend

4 As we have seen experimentally, first the system reaches a reliable state and then
pA = pmin

A .

148 E. Christoforou et al.

Fig. 1. Simulation results with full availability. First row plots are for initial pA =
0.5. Second row plots are for initial pA = 1. The bottom (red) errorbars present the
number of incorrect results accepted until convergence (pA = pmin

A), the middle (green)
errorbars present the number of audits until convergence; and finally the upper (blue)
errorbars present the number of rounds until convergence, in 100 instantiations. In
plots (a1) and (a2) the ratio of rational/malicious is 5/4. In plots (b1) and (b2) the
ratio of rational/malicious is 4/5. In plots (c1) and (c2) the ratio of rational/malicious
is 1/8. The x-axes symbols are as follows, L: Linear, E: Exponential and B: Boinc
reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99. (Color figure online)

is more noticeable.) Reputation Linear does not show a correlation between
the pool size and the evaluation metrics. This is somewhat surprising given that
other two reputation types are impacted by the pool size.

For reputation Exponential and Boinc we can observe that, as the pool
size increases, the number of rounds until convergence also increases. It seems
like, for these reputation types, many workers from the pool have to be selected
and audited before convergence. Hence, with a larger pool it takes more rounds
for the mechanism to select and audit these workers, and hence to establish valid
reputation for the workers and to reinforce the rational ones to be honest. For
both reputation types (Exponential and Boinc) this is a costly procedure also
in terms of auditing for all rational/malicious ratios. (The effect on the number
of audits is more acute for reputation Boinc as the pool size increases.) As
for the number of incorrect results accepted until convergence, with reputation
Exponential they still increase with the pool size. However, reputation Boinc
is much more robust with respect to this metric, essentially guaranteeing that
no incorrect result is accepted.

Internet Computing: Using Reputation to Select Workers from a Pool 149

Comparing now the performance of the different reputation types based on
our evaluation metrics, it seems that reputation Linear performs better when
the size of the pool is big compared to the other two reputation types. On the
other hand reputation types Exponential and Boinc perform slightly better
when the pool size is small. Comparing reputation types Exponential and
Boinc, while reputation Boinc shows that has slightly faster convergence, this
is traded for at least double auditing than reputation Exponential. On the
other hand, reputation Exponential is accepting a greater number of incor-
rect results until convergence. This is a clear example of the trade-off between
convergence time, number of audits, and number of incorrect results accepted.

Similar conclusions can be drawn when the master decides to audit with
pA = 1 initially, see Fig. 1(a2)–(c2). The only difference is that the variance,
of the different instantiations on the three metrics is smaller. Hence, choosing
pA = 1 initially is a “safer” strategy for the master.

Partial Availability. Assuming now partial worker availability (i.e., workers
may have d < 1), we attempt to identify the impact of the unavailability of a
worker on four different metrics: (1) the number of rounds, (2) number of auditing
rounds, and (3) number of incorrect results accepted by the master, all until the
system reaches convergence. In addition, we obtain (4) the number of incorrect
results accepted by the master after the system reaches convergence (which was
zero in the previous section). Moreover, we are able to identify how suitable each
reputation is, under different workers’ ratio and unavailability probabilities.

We keep the pool size fixed to N = 9, and the number of selected workers
fixed to n = 5; and we analyze the behavior of the system in a number of different
scenarios where the workers types and availabilities vary. The depicted scenarios
present the cases of initial audit probability: pA = {0.5, 1}.

Figure 2 (a1)–(b1) compares a base case where all workers are altruistic with
d = 1 (scenario S1) with scenarios where 1 altruistic worker exists with d = 1 and
the rest of the workers are either altruistic (scenario S2) or malicious (scenario
S3) with a partial availability d = 0.5. Our base case S1 is the optimal scenario,
and the mechanism should have the best performance with respect to metrics
(1)–(3); this is confirmed by the simulations as we can observe. For scenario S2,
where the 8 altruistic workers have d = 0.5, reputations Linear and Expo-
nential are performing as good as the base case. While Boinc is performing
slightly worse than the base case. Comparing the different reputation types for
scenarios S1 and S2, it is clear that, for all metrics, Linear and Exponential
are performing better than Boinc. Moving on to scenario S3, where 8 malicious
workers with d = 0.5 exist, as expected, the mechanism is performing worse
according to our reputation metrics. What is interesting to observe, though, is
that reputation Boinc is performing much better than the other two reputation
types. It is surprising to observe, for reputation Boinc, how close are the results
for scenario S2 and especially scenario S3 to the base case S1. We believe that this
is due to the nature of reputation Boinc, which keeps reputation to zero until a
reliability threshold is achieved. From the observation of Fig. 2(a1)–(b1), we can
conclude that, if there is information on the existence of malicious workers in

150 E. Christoforou et al.

Fig. 2. Simulation results with partial availability: (a1)–(a2) initial pA = 0.5, (b1)–
(b2) initial pA = 1. For (a1)–(b1) The bottom (red) errorbars present the number of
incorrect results accepted until convergence (pA = pmin

A). For (a2)–(b2) the bottom
(red) errorbars present the number of incorrect results accepted after convergence. For
all plots, the middle (green) errorbars present the number of audits until convergence;
and finally the upper (blue) errorbars present the number of rounds until convergence,
in 100 instantiations. The x-axes symbols are as follows, L: reputation Linear, E:
reputation Exponential, B: reputation Boinc, S1: 9 altruistic workers with d = 1,
S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1
rational with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and
8 malicious workers with d = 0.5. (Color figure online)

the computation, a “safer” approach would be the use of reputation Boinc. The
impact of pA on the performance of the mechanism, in the particular scenarios,
as it is shown on Fig. 2(a1)–(b1), in all cases setting pA = 0.5 initially improves
the performance of the mechanism.

The results of Fig. 2(a1)–(b1) are confirmed by Theorem 3. Through the sim-
ulation results, we have observed that eventual correctness happens (i.e., no
more erroneous results are further accepted) when the system converges, for

Internet Computing: Using Reputation to Select Workers from a Pool 151

the depicted scenarios. As for Theorem 4 we have observed that, although the
condition of having 5 altruistic with d = 1 is not the case for scenarios S2 and
S3, in the particular scenarios simulated the system was able to reach eventual
correctness. Although from the depicted scenarios reputation Boinc seems like
is a good approach, theory tells us that it can only be used when we have info
on the workers types.

Figure 2(a2)–(b2), depicts more scenarios with different workers types ratios,
in the presence of rational and malicious workers. Following the same methodol-
ogy as before, we compare a base case (scenario S4) where all workers are rational
with d = 1, with a scenarios where one rational with d = 1 exists and the rest are
rational (scenario S5) or malicious (scenario S6) with d = 0.5. We can observe
that in the base scenario S4, the mechanism is performing better than in the
other two scenarios, for reputation metrics (1),(2) and (4), independently of the
reputation type. What we observe is that the most difficult scenario for the mech-
anism to handle is scenario S5, independently of the reputation type, because,
although the system converges, eventual correctness has not been reached and
the master is accepting incorrect replies for a few more rounds before reaching
eventual correctness. This is due to the ratio of the workers’ type, and some
rational workers that have not been fully reinforced to a correct behavior may
have a greater reputation than the rational worker with d = 1, while the master
has already dropped pA = pmin

A . That would mean that the master would accept
the result of the majority that might consist of rational workers that cheat. As
we can see, Exponential is performing worse than the other two types, based
on metric (4). As for reputation Linear we can see that, for scenarios S4 and
S5, although the variation on the convergence round is greater than reputa-
tion Boinc, this is traded for half the auditing that reputation Boinc requires.
As for scenario S6 (with malicious workers), reputation Linear converges much
slower, while the number of audits is roughly the same, compared to reputa-
tion Boinc. This observation gives a slight advantage to reputation Boinc for
scenario S6, while reputation Linear has an advantage on S5.

Discussion. One conclusion that is derived by our simulations is that, in the
case of full availability, reputation Boinc is not a desirable reputation type if
the pool of workers is large. As simulations showed us, convergence is slow, and
expensive in terms of auditing. One could select one of the other two reputation
types (according to the available information on the ratio of workers’ type), since
accepting a few more incorrect results is traded for fast eventual correctness and
low auditing cost. Additionally, in the scenario with full availability we have
noticed that, selecting initially pA = 1 is a “safer” option to have small number
of incorrect results accepted, if no information on the system is known and the
master is willing to invest a bit more on auditing.

For the case of partial availability, the simulations with only altruistic or
with altruistic and malicious converged in all cases. This was expected due to
the analysis in all cases except in S2 with reputation Boinc, when we expected
to see some rounds after convergence with no replies. The fact is that the altru-
istic worker with full availability was able to be selected forever in al cases.

152 E. Christoforou et al.

Simulations have also shown that, in the presence of malicious and altruistic
workers, reputation Boinc has an advantage compared to the other two types.
Finally, it is interesting to observe that, in the partial availability case with only
rational workers, our mechanism has not reached eventual correctness when the
system has converged, but a few rounds later. This means that, although the
rational workers are partially available, the mechanism is able to reinforce them
to an honest behavior eventually.

Acknowledgments. Supported in part by MINECO grant TEC2014- 55713-R,
Regional Government of Madrid (CM) grant Cloud4BigData (S2013/ICE-2894, co-
funded by FSE & FEDER), NSF of China grant 61520106005, EC H2020 grants ReCred
and NOTRE, U. of Cyprus (ED-CG2015), the MECD grant FPU2013-03792 and
Kean University RTR2016.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of ACM PODC 2006, pp. 53–62 (2006)

2. Allen, B.: The Einstein@home Project (2014). http://einstein.phys.uwm.edu
3. Amazon’s Mechanical Turk (2014). https://www.mturk.com
4. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:

Proceedings of 5th IEEE/ACM International Workshop on Grid Computing, pp.
4–10 (2004)

5. Anderson, D.P.: Volunteer computing: the ultimate cloud. ACM Crossroads 16(3),
7–10 (2010)

6. Anderson, D.P.: BOINC reputation (2014). http://boinc.berkeley.edu/trac/wiki/
AdaptiveReplication

7. Anderson, D.P.: BOINC (2016). http://boinc.berkeley.edu/
8. Bush, R.R., Mosteller, F.: Stochastic Models for Learning (1955)
9. Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorith-

mic mechanisms for reliable master-worker internet-based computing. IEEE Trans.
Comput. 63(1), 179–195 (2014)

10. Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A., Sánchez, A.:
Applying the dynamics of evolution to achieve reliability in master-worker com-
puting. Concurr. Comput.: Pract. Exp. 25(17), 2363–2380 (2013)

11. Christoforou, E., Anta, A.F., Georgiou, C., Mosteiro, M.A., Sánchez, A.A.:
Reputation-based mechanisms for evolutionary master-worker computing. In:
Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304,
pp. 98–113. Springer, Heidelberg (2013)

12. Estrada, T., Taufer, M., Anderson, D.P.: Performance prediction and analysis of
BOINC projects: an empirical study with EMBOINC. J. Grid Comput. 7(4), 537–
554 (2009)

13. Fernández Anta, A., Georgiou, C., López, L., Santos, A.: Reliable internet-based
master-worker computing in the presence of malicious workers. Parallel Process.
Lett. 22(1) (2012)

14. Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Designing mechanisms for reli-
able Internet-based computing. In: Proceedings of IEEE NCA 2008, pp. 315–324
(2008)

http://einstein.phys.uwm.edu
https://www.mturk.com
http://boinc.berkeley.edu/trac/wiki/AdaptiveReplication
http://boinc.berkeley.edu/trac/wiki/AdaptiveReplication
http://boinc.berkeley.edu/

Internet Computing: Using Reputation to Select Workers from a Pool 153

15. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001)

16. Heien, E.M., Anderson, D.P., Hagihara, K.: Computing low latency batches with
unreliable workers in volunteer computing environments. J. Grid Comput. 7(4),
501–518 (2009)

17. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

18. Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak, G.,
Cappello, F.: Characterizing result errors in internet desktop grids. In: Kermarrec,
A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 361–371.
Springer, Heidelberg (2007)

19. Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust network super-
computing with malicious processes. In: Dolev, S. (ed.) DISC 2006. LNCS, vol.
4167, pp. 474–488. Springer, Heidelberg (2006)

20. Korpela, E., Werthimer, D., Anderson, D.P., Cobb, J., Lebofsky, M.: SETI@home:
massively distributed computing for SETI. Comput. Sci. Eng. 3(1), 78–83 (2001)

21. Sarmenta, L.F.: Sabotage-tolerance mechanisms for volunteer computing systems.
Future Gener. Comput. Syst. 18(4), 561–572 (2002)

22. Shneidman, J., Parkes, D.C.: Rationality and self-interest in peer to peer networks.
In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148.
Springer, Heidelberg (2003)

23. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press,
Cambridge (1982)

24. Sonnek, J., Chandra, A., Weissman, J.B.: Adaptive reputation-based scheduling
on unreliable distributed infrastructures. IEEE PDS 18(11), 1551–1564 (2007)

25. Szepesvári, C.: Algorithms for reinforcement learning. Synth. Lect. Artif. Intell.
Mach. Learn. 4(1), 1–103 (2010)

26. Taufer, M., Anderson, D.P., Cicotti, P., Brooks III, C.L.: Homogeneous redun-
dancy: a technique to ensure integrity of molecular simulation results using public
computing. In: Proceedings of IEEE IPDPS 2005 (2005)

27. Yurkewych, M., Levine, B.N., Rosenberg, A.L.: On the cost-ineffectiveness of
redundancy in commercial P2P computing. In: Proceedings of ACM CCS 2005,
pp. 280–288 (2005)

Asynchronous Consensus with Bounded Memory

Carole Delporte-Gallet(B) and Hugues Fauconnier

IRIF-Université Paris-Diderot, Paris, France
{cd,hf}@liafa.univ-paris-diderot.fr

Abstract. We present here a bounded memory size Obstruction-Free
consensus algorithm for the asynchronous shared memory model. More
precisely for a set of n processes, this algorithm uses n + 2 multi-writer
multi-reader registers, each of these registers being of size O(log(n)) bits.
From this, we get a bounded memory size space complexity consensus
algorithm with single-writer multi-reader registers and a bounded mem-
ory size space complexity consensus algorithm in the asynchronous mes-
sage passing model with a majority of correct processes. As it is easy
to ensure the Obstruction-Free assumption with randomization (or with
leader election failure detector Ω) we obtain a bounded memory size
randomized consensus algorithm and a bounded memory size consensus
algorithm with failure detector.

Keywords: Shared memory · Space complexity · Consensus

1 Introduction

Because of its practical impact and for theoretical reasons, the consensus prob-
lems are one of the most interesting problem in fault-tolerant computing. Recall
that in the consensus problem each process begins with an initial value and
has to decide one value (termination), this decided value has to be an initial
value of some process (validity) and all processes have to decide the same value
(agreement).

But in message passing or shared memory asynchronous systems there is no
deterministic solution for the consensus if at least one process may crash [18]. To
circumvent this negative result, several ways have been proposed. One of them
is to consider randomized consensus: with randomization, it is possible to ensure
the safety of the consensus (agreement and validity) and the liveness property
(termination) with a probability equal to 1 [2,6]. Another way is to add failure
detectors [10] to the system. Failure detectors are distributed oracles that give
processes information about failures. In this way it has been proved [9] that
Ω, a failure detector that ensures that eventually all correct processes agree on
the id of the same correct process (a leader), is a weakest failure detector to
solve the consensus problem (i.e. it solves the consensus and if another failure

Supported by ANR DISPLEXITY.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 154–168, 2016.
DOI: 10.1007/978-3-319-46140-3 12

Asynchronous Consensus with Bounded Memory 155

detector enables to solve the consensus, then Ω may be implemented from the
information given by that failure detector).

In shared memory models, if we limit the concurrency in such a way that each
correct process is running alone for an arbitrary long time consensus becomes
solvable. An Obstruction-Free algorithm [17,23] is an algorithm ensuring safety
in all cases and termination under that concurrency property. More precisely
it is a deterministic1 algorithm that guarantees that any process will decide if
it performs enough steps alone (i.e. without interference with other processes).
Randomization [21] or failure detector Ω enable (with bounded memory size)
to ensure that all correct processes are running alone for an arbitrary long time
and then an Obstruction-Free algorithm gives directly a randomized algorithm
or a deterministic algorithm with failure detector Ω. Hence in the following we
consider Obstruction-Free consensus algorithms.

The main result of the paper is to present an Obstruction-Free consensus
algorithm tolerating any number of process crashes in the shared memory model
using a bounded size of memory and to combine this algorithm with previous
results to deduct a comprehensive collection of results on space complexity for
consensus algorithms in many classical models in which it can be solved.

For a system of n processes, the Obstruction-Free consensus algorithm uses
only n + 2 registers that may be written or read by all processes (multi-writer
multi-reader (MWMR) registers). Moreover, each of these registers contains at
most O(log(n)) bits. In fact our algorithm uses atomic snapshot [1] to access
a memory of n + 1 registers. In [21], it has been proved that atomic snapshot
of registers can be Obstruction-Free implemented with one additional atomic
register of size O(log n)-bits. Hence with MWMR registers (and only read-write
operations) the space complexity of our algorithm is O(n log(n)) − bits.

Following classical results (e.g. [29,31,34]) one MWMR register shared by n
processes may be implemented with O(n2) single-writer multi-reader (SWMR)
registers and bounded timestamps [15,27]. Hence we get a bounded memory
size Obstruction-Free consensus algorithm with SWMR registers. In this way,
with any number of crashes we obtain a randomized consensus algorithm with
bounded memory size and a consensus algorithm with bounded memory size and
failure detector Ω.

SWMR registers may be implemented in the message passing model with a
majority of correct processes using bounded timestamps [3]. Then if each register
to be implemented has a bounded size, the size of the exchanged messages as
well as the size of the local memory is bounded. Note that if the size of the local
memory is bounded, the size of the messages is bounded too. Our results in the
message passing remains written in term of memory. Hence in asynchronous mes-
sage passing model and a majority of correct processes we obtain a randomized
consensus algorithm with bounded memory size and a consensus algorithm with
bounded memory size using failure detector Ω. From [14], in message passing
system with any number of failure, Σ is the weakest failure detector to implement
a SWMR register and Σ × Ω is the weakest failure detector to solve consensus.

1 Except explicitly specified, our algorithms are deterministic.

156 C. Delporte-Gallet and H. Fauconnier

Moreover, without a majority of correct processes, registers can be implemented
with bounded memory size using failure detector Σ then we obtain also a con-
sensus algorithm with bounded memory size using failure detector Σ × Ω that
tolerates any number of crashes.

In term of number of registers, a lower bound of Ω(
√

(n)) by Fich et al. [16]
appeared a long time ago. Recently a tight lower bound of Ω(n) appeared in
[20,35]. Moreover, these papers showed that any consensus algorithm requires
n−1 registers. With unbounded value written in registers, it is possible to achieve
any algorithm in shared memory with n SWMR registers and in particular, to
achieve consensus algorithm with n registers. It is conjectured that the tight
bound is in fact n.

There is no known bound in term of number of bits. In the various models
in which consensus can be solved (randomization, failure detector, Obstruction-
Free in message passing or in shared memory...) consensus algorithms work with
rounds or counters that are unbounded integers (e.g. [8,10,26,28,33], with the
exception of [13]) and sometime use high level abstraction that may use counters
too. To the best of our knowledge our results are the first one demonstrating that
these unbounded integers are not needed. A starting point could have been the
algorithm of [13] that does not use explicit counter and use snapshots of MWMR
registers. But we prefer to present a new algorithm that we think interesting by
itself. It uses n + 2 MWMR registers instead of the 2(n − 1) registers needed by
[13]. In term of number of registers it is closer to the lower bound. We conjecture
that if we require that the size of registers is bounded, we need more than n
registers.

We also present similar results concerning the k-set agreement. In this prob-
lem processes have to decide on at most k values. Consensus corresponds to 1-set
agreement. To get bounded memory size for k-set agreement, we can start from
the Obstruction-Free consensus algorithm. In fact, we present a k-set agreement
algorithm that use less MWMR registers than the consensus algorithm and we
think the algorithm is interesting by itself.

2 Model

The model we consider is the standard asynchronous shared-memory model of
computation with n ≥ 2 processes2 communicating by reading and writing to a
fixed set of shared registers [5,25]. The processes have unique ids in {1, . . . , n}.
Processes may take a finite (in this case the process is faulty) or an infinite
number of steps (in this case the process is correct) and we assume that at least
one process is correct.

Shared Memory. The shared memory consists of a set of atomic multi-writer
multi-reader (MWMR) registers. All processes can read and write any MWMR
register and these operations are atomic or linearizable [22]. For short, we usually
omit the term atomic. A process executes its code by taking three types of atomic
2 The number n of processes is given and is then considered as a constant.

Asynchronous Consensus with Bounded Memory 157

steps: the read of a register, the write of a register, and the modification of its
local state.

Atomic snapshots [1] is another way to access memory. Atomic snapshot is
defined by two more powerful operations: update and scan [1] on an array of
m MWMR registers. An update operation takes a register and a data value as
arguments and does not return a value. It writes the data value in the register.
The scan operation has no argument and returns an array of m elements. The
returned array is a snapshot of the memory, that is an instantaneous view of the
registers.

Space Complexity. We consider here the space complexity of algorithms. By
space complexity we mean the maximum over all the runs of the algorithm of
the sum of all the sizes in bits of all shared registers. A bounded memory size
algorithm is an algorithm such that there exists a constant B, such that in any
run of the algorithm the sum over all shared MWMR registers of the size of
registers is number of bits is less than B.

Obstruction Freedom. The Obstruction-Free [23] progress condition states that
eventually one process takes steps alone. In the following we consider determin-
istic Obstruction-Free implementations.

Giakkoupis et al. give in [21] an Obstruction-Free linearizable implementation
of atomic snapshot that uses, in addition to the array of m MWMR registers,
say R, one MWMR registers of size O(log(n)), say S. Note that in this imple-
mentation, an update operation writes in the register the id of the writer, so
if the value written in R does not yet contain the id of the writer, the space
complexity is augmented by a multiplicative factor log(n). In [1], it is observed
that if every write leaves a unique indelible mark whenever it is executed in
R, then if two consecutive reads of R return identical values then the values
returned constitute a snapshot. Using this idea, [21] designed an Obstruction-
Free linearizable implementation of scan and update. To perform its j-th update
of some value x in register R[i], p first writes its id in S and then it writes the
triple (x, p, j mod 2) in R[i]. To execute a scan(), process p first writes its id
in S. Then it performs two consecutive reads of all the registers of R: r and r′.
Finally, the process reads S. If S does not contain p’s id or if the two consecutive
views r and r′ are not equal then p starts its scan() over; otherwise it returns
view r.

Proposition 1 [21]. Assuming that each written value contains the id of the
writer and that the size of the written value is at most w, there is an Obstruction-
Free linearizable implementation of scan/update of m MWMR registers with one
MWMR register of size O(log(n)) bits and m MWMR registers of size (w + 1)
bits.

We consider the classical consensus decision task [11] in which each process
proposes its input value and has to irrevocably decide on one of the proposed
inputs, such that there is at most one decided value. We assume that the input
values come from a finite set of values Values.

158 C. Delporte-Gallet and H. Fauconnier

Consensus is defined by three requirements:

– agreement: at most one value is decided,
– validity: if a process decides value v, v is the input value of some process,
– termination: if a process takes an infinite number of steps then it decides.

The wait-free [22] progress condition states that each process terminates its
operations in finite number of its own steps or equivalently with any number
of failures. It is well known that consensus is not Wait-Free solvable. Moreover
consensus is not solvable as soon as at least one process is faulty [18]. It is also
well known that there exits Obstruction-Free consensus implementations (see for
example [4,12,13]). So we study the Obstruction-Free solvability of consensus.
We are interested here in the space complexity of the implementations and we
are going to prove the existence of bounded memory consensus implementations.

3 Algorithm

Algorithm of Fig. 1 solves Obstruction-Free consensus with n + 2 MWMR
registers.

Fig. 1. Consensus with MWMR registers.

Asynchronous Consensus with Bounded Memory 159

In this algorithm the processes share n+1 registers and use these registers by
snapshots. The implementation of scan/update is the Obstruction-Free imple-
mentation described in [21]. As previously mentioned, this implementation uses
one additional MWMR register.

Each process p maintains a variable prop, its proposal. Initially this variable
contains its input value vp. Each process repeatedly takes a scan of the registers,
sets its variable prop to v if it finds two registers with the same content (v, q)
for some q, and updates some register with a pair formed by prop and its id. It
decides when it finds in each register this pair. To avoid that a process alternates
between two proposals, a process keeps its proposal prop if the pair composed
with its proposal prop and some id appears twice.

Then, in an Obstruction-Free run, the process that takes enough steps alone
updates all registers with its proposal and decides.

The agreement property is more intricate. If a process p decides a value
d, then (d, p) is written in n + 1 registers. We argue that forever at least two
registers contain the pair (d, q) for some q and for any (d′, q′) with d �= d′,(d′, q′) is
contained in at most one register. Intuitively, consider the first scan made after
the decision and q the process that made this scan. As processes repeatedly
perform a scan and then an update, at most n− 1 processes may have written a
proposal different from the decided value d. And so at least two registers remain
with (d, p) and the other registers contains either (d, p) or the value written by
processes since the decision. So after this scan, the value d is adopted by q.

Here we use a trick, when a process changes its proposal it updates the
same register. So if q writes in register R[i] and q has changed its proposal, the
next update of q will be on the same register R[i]. After this second update, q
performs a scan and this time, it does not modify its proposal. It will update
some other register with (d, q). Perhaps it updates one of the two registers that
contains (d, p) but in this case we have two registers with the value (d, q). It
is also possible that we have (d, p) in at least two registers and (d, q) in two
registers. But the main point is that we keep the property that for any (d′, x)
with d′ �= d, the pair (d′, x) is contained in at most one register and (d, x) for
some x is in two registers. The agreement works in the same way if q does not
change its proposal after its first scan (q has already adopted d as proposal).

Now we proceed with the correctness proof of the algorithm Fig. 1.
By definition, scan and update are linearizable and when we say that some

scan or update operation op occurs at some time τ , the time τ is the linearization
time of this operation.

We first prove the termination property of the algorithm:

Proposition 2. In Obstruction-Free run, if some process p takes steps alone
for an arbitrary long time, then p decides.

Proof. With obstruction freedom, assume that a process, say p, is eventually the
only process taking steps. Then there is a time τ after which no other process
takes steps. Let prop the proposal of p at this time. Notice that in particular,
after time τ , only p may modify registers in R.

160 C. Delporte-Gallet and H. Fauconnier

If p has not already decided, p scans and updates the registers.
If there exists some time τ ′ ≥ τ such that (A) after τ ′, p always finds condition

Line 7 false then p never changes its proposal after τ ′. Let prop′ be this proposal.
Each time p updates a register, it writes (prop′, p) in it, then in the next loop it
writes in another register. After at most n + 1 updates every register contains
this pair and p decides prop′.

We now show that there exists some τ ′ that satisfies (A). If τ satisfies (A)
then we have done else let τ1 be the first time after τ at which the condition
Line 7 is true.

p has found i1 and j1 such that r[i1] = r[j1] ∧ r[i1] �= (⊥,⊥) ∧ r[i1].value �=
prop. Let prop1 be r[i1].value. p changes its proposal Line 8 by prop1 and p
writes (prop1, p) in R[pos] Line 14. If pos = i1 or pos = j1 then in its next scan
it is possible that the condition Line 7 is still true, There are i2 and j2 such that
r[i2] = r[j2] ∧ r[i2] �= (⊥,⊥) ∧ r[i2].value �= prop1. Let prop1 be now r[i2].value.
But as p updates the same index pos this time pos �= i2 and pos �= j2. So in both
case we arrive in a situation such that there exist three different indexes i, j and
pos such that r[i] = r[j] ∧ r[i] �= (⊥,⊥) ∧ r[i].value = prop1 ∧ r[pos] = (prop1, p)
and the proposal of p is prop1.

In its next scan, the second part of the condition Line 7 is now false. p keeps
its proposal and updates a register R[pos′] for some pos′ such that R[pos′] �=
(prop1, p). In particular we have pos′ �= pos.

There are now two registers with (prop1, p) in R and the current proposal of
p is prop1.

We show that this property remains true each time p executes the loop Line 4.
Assume it is true at the beginning of the loop, then in the scan as there are
two registers with (prop1, p) in R, the second part of the condition Line 7 is
false. Then p keeps its proposal and updates a register with (prop1, p). And the
condition remains true at the end of the loop.

Let τ2 > τ1 be the time at which p has two registers with (prop1, p) in R
and the current proposal of p is prop1. After this time we have just shown that
p always finds condition Line 7 false. So τ2 satisfies the condition (A).

We now proceed to prove the validity and the agreement properties:

Proposition 3. If a process decides, it decides on the input value of some
process.

Proof. The decided value is the first argument of a pair that is written in all
registers. From the algorithm, the proposal of some process, and consequently the
value written in registers, is either an input value or an update made in Line 10
i.e. some r[i].value such that ∃j : r[i] = r[j]∧ (r[i] �= (⊥,⊥))∧ r[i].value �= prop.
Then, by induction, the decided value is the input of some process.

Proposition 4. If two processes decide, they decide the same value.

Proof. Consider the first process, say p, that is ready to decide d and the time
τ at which it has executed Line 5 and found (d, p) written in the n+ 1 registers.

Asynchronous Consensus with Bounded Memory 161

After time τ , p never writes in the shared memory and so at most n−1 processes
writes in n + 1 registers.

We argue that each time after τ a process scans the memory it finds (1) at
least two registers with a pair (d, q) for some q, and (2) any pair (d′, x) with
d′ �= d and some x in at most one register.

At any time t > τ , let Xt let the set of processes that have made at least
one write between τ and t. We have n − 1 ≥ |Xt|. Let Y t be the set of registers
that contains (d′, x) with d′ �= d and x in Xt.

To decide a process q has to find (a, q) for some a in all registers, so q has to
write at least n + 1 times after τ . So if a process q doesn’t write at least third
time after τ it can’t decide.

Let τ ′ > τ such that some process, say q, makes for the first time a second
write since τ . At any time t between τ and τ ′, we have |Xt| ≥ |Y t|.

Until τ ′, there are at most n − 1 values in Xt and in Y t and properties (1)
and (2) are satisfied.

If q makes its second write at τ ′, it has made its scan between τ and τ ′. As
(1) and (2) are satisfied, the proposal of q after this scan will be d. There are
two cases:

1. After this scan, q has modified its proposal. Then q writes (d, q) in the same
position. If |Y τ ′ | < |Y τ ′−1| then |Xτ ′ | ≥ |Y τ ′ | + 1 and properties (1) and (2)
are satisfied. If |Y τ ′ | = |Y τ ′−1|, this means that another process has already
written in the same place then again |Xτ ′ | ≥ |Y τ ′ |+1 and properties (1) and
(2) are satisfied.

2. After this scan, q has not modified its proposal. Then its proposal was already
d, q has written (d, q) for its first write in some index i, consequently i is not
in Y τ ′

. Then again |Xτ ′ | ≥ |Y τ ′ | + 1. As n − 1 ≥ |Xτ ′ |, it remains 3 registers
with either (d, p) or (d, q) then one of these pairs is in two registers and (1)
is ensured. As q writes (d, q), (2) remains true.

We consider the time τ ′′ of a next write of a process such that it is its second
write or its third write after τ . Between τ ′ and τ ′′ it may happen that some
process has made its first write but in this case X increases as least as Y and
we keep that at any time t, |Xt| ≥ |Y t| + 1 before this write.

If it is the second write of some process, we have the same argument as
previously. (1) and (2) holds and |Xτ ′′ | ≥ |Y τ ′′ | + 2.

If it is the third write of some process, this process is q. Then before this
write, there remains at least 3 registers with either (d, p) or (d, q). If this write
is in one of these registers the property (1) is always ensured. If it is in another
register then the property (1) trivially holds. As q writes (d, q), (2) remains true.

The proof is made iteratively up to time σ at which all processes that take
steps in the run have already made at least two writes. At this time Y σ = ∅ and
every process that takes steps has d as proposal. Note that if a process decides
v then at any time: v is the proposal of some process or there is a process z
such that (v, z) is the value of some register. Then as at σ d is the proposal of
all processes and each register contains a pair (d, z) for some process z then if a
process decides it can only decide d.

162 C. Delporte-Gallet and H. Fauconnier

Theorem 1. With the Obstruction-Free implementation of snapshot in [21], the
algorithm of Fig. 1 solves Obstruction-Free consensus in O(n log n)-bits space
complexity. More precisely, it uses n + 2 MWMR registers of size O(log n) bits.

4 Applications

4.1 Randomized Algorithm

A randomized implementation of consensus that tolerates any number of crashes
ensures the agreement and the validity in all runs and the termination (each
correct process decides) with probability one.

[21] shows that if there is a deterministic Obstruction-Free algorithm which
guarantees that any process finishes after it has executed at most b steps, for
some constant b, without interference from other processes then the algorithm
can be transformed into a randomized one that has the same space complexity.
Observe that in our Obstruction-Free implementation, if a process p takes steps
alone, it terminates after (n+2) scan and update operations. It may happen that
when it begins to take steps alone it is in a middle of its scan/update. It needs
(n+1) complete scan/update alone to terminate. For each scan(), p reads twice
the array R and the additional register then if p takes steps alone it decides in
at most c(n + 2)(n + 1) atomic steps for some constant c. Then from [21] and
Theorem 1:

Corollary 1. There is a randomized consensus algorithm that tolerates any
number of crashes with MWMR in O(n log(n))-bits space complexity. More pre-
cisely, it uses n + 2 MWMR registers of size O(log(n)) bits.

4.2 SWMR Registers

As Single-Writer Multi-Reader registers are considered as more primitive than
Multi-Writer Multi-Reader registers, we consider the space complexity with
SWMR registers. Here, space complexity is again defined as the maximum over
all the runs of the algorithms of the sum of the sizes in number of bits of all
shared SWMR registers.

Following classical results (e.g. [29,31,34]) one MWMR registers may be
implemented with O(n2) SWMR registers and bounded timestamps [15,27].
Hence with these implementations we get again a bounded memory size
Obstruction-Free deterministic consensus algorithm and a randomized consensus
algorithm that tolerates any number of crashes with SWMR registers. Therefore:

Corollary 2. There is an Obstruction-Free deterministic consensus algorithm
and a randomized consensus algorithm that tolerates any number of crashes with
SWMR registers in bounded memory size.

Asynchronous Consensus with Bounded Memory 163

4.3 Failure Detector

A failure detector [10] outputs at each process some hints about the failure pat-
tern of the processes. Failure detectors enable to solve consensus. In particular,
failure detector Ω [9] that eventually outputs to each process the same cor-
rect process id, the eventual leader, is the weakest failure detector to achieve
consensus in shared memory. That means that if we augment our model (shared
memory asynchronous system with any number) with Ω it is possible to get con-
sensus and from the output of any failure detector enabling to solve consensus
it is possible to implement Ω.

In asynchronous shared memory model augmented with the leader election
failure detector Ω, we also get a bounded memory implementation of consensus.

Indeed assuming a failure detector Ω, if a process takes steps only when
it considers itself as the leader, the Ω properties imply that eventually only
one process, the eventual correct leader, will take steps. In this way, we get an
emulation of the Obstruction-Free property.

Running an Obstruction-Free consensus algorithm in this way with Ω, gives
an algorithm with failure detector Ω in which the leader eventually decides. This
algorithm is given in Fig. 2. To ensure that the other correct processes decide,
when the leader decides it writes the decided value in the register DEC, and the
other processes read DEC and adopt this value as their decision value.

If we use the previous consensus algorithm (Fig. 1), we use n + 3 MWMR
registers of size O(log n) bits.

Hence contrary to classical consensus algorithms with failure detector Ω that
use variables like counters of “rounds” (e.g. [12,30]) that take unbounded values,
we obtain a bounded memory size consensus algorithm with failure detector Ω.

Thus, with Theorem 1:

Fig. 2. Consensus with Ω.

164 C. Delporte-Gallet and H. Fauconnier

Corollary 3. There is a deterministic consensus algorithm in shared memory
model MWMR registers augmented with failure detector Ω with O(n log(n))-bits
space complexity. There is a deterministic consensus algorithm in shared memory
model SWMR registers augmented with failure detector Ω with bounded memory
size.

4.4 Message Passing

Consider now the message passing asynchronous model. In this model processes
communicate by messages. We assume here that the communication is reliable
(no loss, no corruption, no duplication). SWMR registers may be implemented
in message passing system with a majority of correct processes [3] using bounded
timestamp and hence with bounded memory size.

Without a majority of correct processes, SWMR registers can be imple-
mented using the failure detector Σ [14]. Moreover in way similar to [3], this
implementation can be made with bounded memory size. Failure detector Σ
outputs at each process a list of processes that eventually contains only correct
processes, such that each output has a non empty intersection with any other
output. Note that Σ is the weakest failure detector to implement atomic regis-
ters and Σ × Ω is the weakest failure detector to solve the consensus with any
number of crashes [14]. Failure detector Σ × Ω outputs at each process a couple
formed by a list of processes and a process. If we consider only the first member
of the couples, it satisfies the properties of Σ and the second member those of
Ω.

Thus, with Corollary 3:

Corollary 4. Assuming a majority of correct processes, there is a consensus
algorithm in asynchronous message passing systems with failure detector Ω with
bounded memory size.

Corollary 5. Assuming any number of crashes, there is a consensus algorithm
in asynchronous message passing systems with failure detector Σ × Ω with
bounded memory size.

And with Corollary 1:

Corollary 6. Assuming a majority of correct processes, there is a randomized
algorithm in asynchronous message passing with bounded memory size.

5 Extensions

We consider the classical k-set agreement decision task [11] in which each process
proposes its input value and has to decide on one of the input values, such that
there are at most k decided values. We assume that the input values come from
a finite set of values Values. There are three requirements: at most k values are
decided (k-agreement), if a process decides v, this value is the input of some

Asynchronous Consensus with Bounded Memory 165

process (validity), and if a process takes an infinite number of steps then it
decides (termination). When k = n − 1, k-set agreement is also known as set
agreement. Consensus is nothing else than 1-set agreement.

It is well known that k-set agreement is not wait-free solvable and even, it
is not solvable with k faulty processes [7,24,32] in shared memory, so we study
the Obstruction-Free solvability of k-set agreement. It is also known that there
exits an Obstruction-Free k-set agreement implementation (for example [4,13]),
we are interested here on the space complexity of an implementation.

From our algorithm Fig. 1, we can derive an Obstruction-Free implementation
of k-set agreement in bounded memory size. More precisely, using scan/update
the algorithm uses n−k+2 MWMR registers of size O(log(n)) bits and we need
one additional register of size O(log(n)) bits to implement Obstruction-Free the
scan/update operations.

The principles of the algorithm is the same as those of the consensus algo-
rithm Fig. 1, but instead of n + 1 registers we have only n − k + 2 registers. We
observe that if we consider the last n−k +1 processes ready to decide, it is pos-
sible that the other k − 1 processes have decided some value, but these n− k +1
processes share now a set of (n−k+1)+1 registers and are, roughly speaking, in
the condition in which they can achieve consensus as in the consensus algorithm
Fig. 1. So there is at most k decided value.

The algorithm is given Fig. 3 and its proof is similar to the proof of the
consensus algorithm.

If we combined again the known results we get:

Theorem 2. There is an Obstruction-Free k-set agreement algorithm and a
randomized k-set agreement algorithm that tolerates any number of faults with
MWMR registers in O((n − k) log(n))-bits space complexity. More precisely, it
uses n − k + 3 MWMR registers of size O(log(n)).

Theorem 3. There is an Obstruction-Free k-set agreement algorithm and a
randomized k-set agreement algorithm that tolerates any number of faults with
SWMR registers in bounded memory size.

vectorΩk [19] is the weakest failure detector to achieve k-set agreement in
shared memory. This failure detector outputs at each process a vector of size k,
such that there exists some index i, such that eventually at each process the i-th
index of the output is the same correct process. One of the index is eventually
the same correct process. A traditional implementation of k-set agreement with
this failure detector is the following: Each process runs in parallel k instances of
a consensus algorithm with a failure detector such that this algorithm achieves
termination with Ω and agreement and validity with any failure detector. Note
that our algorithm Fig. 2 satisfies these properties. When a process decides in
one of its instances of consensus, it decides for k-set agreement. As one index is
an Ω at least one instance decides for all processes. As all instances of consensus
algorithm achieve agreement and validity there are at most k decisions and each
decision is the initial value of some process.

166 C. Delporte-Gallet and H. Fauconnier

Fig. 3. k-set agreement with n − k + 2 MWMR registers.

Theorem 4. There is a k-set agreement algorithm in shared memory model
MWMR registers augmented with failure detector vectorΩ in space complex-
ity O((n − k) log(n)). There is a deterministic k-set agreement algorithm in
shared memory model SWMR registers augmented with failure detector vectorΩ
in bounded memory.

Finally with the result of [21], we get:

Theorem 5. There is a randomized k-set agreement algorithm in shared mem-
ory model MWMR registers in O(k n log(n))-bits space complexity. There is a
k-set agreement algorithm in shared memory model SWMR registers in bounded
memory size.

6 Conclusion

We have shown that it is possible to achieve consensus and more generally k-
set agreement in various setting with bounded memory. These settings include
randomized algorithm, Obstruction-Free deterministic algorithm, deterministic
algorithms with failure detectors (we use in each case the weakest failure detector
that allows to solve the problem) in shared memory with any number of faults.
We get the same kind of results in message passing system.

Asynchronous Consensus with Bounded Memory 167

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Aspnes, J.: Randomized protocols for asynchronous consensus. Distrib. Comput.
16(2–3), 165–175 (2003)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing
systems. J. ACM 42(2), 124–142 (1995)

4. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of
obstruction-free implementations. J. ACM 56(4), 24:1–24:33 (2009)

5. Attiya, H., Welch, J.: Distributed Computing. Fundamentals, Simulations, and
Advanced Topics. Wiley, Hoboken (2004)

6. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement
protocols (extended abstract). In: PODC 1983: Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, pp. 27–30 (1983)

7. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100. ACM Press (1993)

8. Bouzid, Z., Raynal, M., Sutra, P.: Anonymous obstruction-free (n, k)-set agreement
with n-k+1 atomic read/write registers. In: Proceedings of 19th International Con-
ference on Principles of Distributed Systems, OPODIS 2015, Rennes, France, 14–17
December 2015. LNCS. Springer, Heidelberg (2015, to appear)

9. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detectorfor solving
consensus. J. ACM 43(4), 685–722 (1996)

10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

11. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

12. Delporte-Gallet, C., Fauconnier, H.: Two consensus algorithms with atomic regis-
ters and failure detector Ω. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.)
ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008)

13. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Black art:
obstruction-free k-set agreement with |MWMR registers| < |proccesses|. In:
Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 28–41.
Springer, Heidelberg (2013)

14. Delporte-Gallet, D., Fauconnier, H., Guerraoui, R.: Tight failure detection bounds
on atomic object implementations. J. ACM 57(4), 22:1–22:32 (2010)

15. Dolev, D., Shavit, N.: Bounded concurrent time-stamping. SIAM J. Comput. 26(2),
418–455 (1997)

16. Fich, F.E., Herlihy, M., Shavit, N.: On the space complexity of randomized syn-
chronization. J. ACM 45(5), 843–862 (1998)

17. Fich, F.E., Luchangco, V., Moir, M., Shavit, N.N.: Obstruction-free algorithms can
be practically wait-free. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp.
78–92. Springer, Heidelberg (2005)

18. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

19. Gafni, E., Kuznetsov, P.: On set consensus numbers. Distrib. Comput. 24(3–4),
149–163 (2011)

20. Gelashvili, R.: On the optimal space complexity of consensus for anonymous
processes. In: Moses, Y., et al. (eds.) DISC 2015. LNCS, vol. 9363, pp. 452–466.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5 30

http://dx.doi.org/10.1007/978-3-662-48653-5_30

168 C. Delporte-Gallet and H. Fauconnier

21. Giakkoupis, G., Helmi, M., Higham, L., Woelfel, P.: An O(
√

n) space bound for
obstruction-free leader election. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205,
pp. 46–60. Springer, Heidelberg (2013)

22. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
123–149 (1991)

23. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: ICDCS, pp. 522–529. IEEE Computer Society
(2003)

24. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(2), 858–923 (1999)

25. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Burlington (2008)

26. Hurfin, M., Raynal, M.: A simple and fast asynchronous consensus based on a weak
failure detector. Distrib. Comput. 12(4), 209–223 (1999)

27. Israeli, A., Li, M.: Bounded time-stamps. Distrib. Comput. 6(4), 205–209 (1993)
28. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
29. Li, M., Tromp, J., Vitányi, P.M.B.: How to share concurrent wait-free variables.

J. ACM 43(4), 723–746 (1996)
30. Mostéfaoui, A., Raynal, M.: Leader-based consensus. Parallel Process. Lett. 11(1),

95–107 (2001)
31. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations.

Springer, Heidelberg (2013)
32. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of

public knowledge. SIAM J. Comput. 29, 1449–1483 (2000)
33. Schiper, A.: Early consensus in an asynchronous system with a weak failure detec-

tor. Distrib. Comput. 10(3), 149–157 (1997)
34. Singh, A.K., Anderson, J.H., Gouda, M.G.: The elusive atomic register. J. ACM

41(2), 311–339 (1994)
35. Zhu, L.: A tight space bound for consensus. Technical report, Toronto (2016).

http://www.cs.toronto.edu/lezhu/tight-space-bound-for-consensus.pdf

http://www.cs.toronto.edu/lezhu/tight-space-bound-for-consensus.pdf

A Fuzzy AHP Approach to Network Selection
Improvement in Heterogeneous Wireless

Networks

Maroua Drissi1(B), Mohammed Oumsis1,2, and Driss Aboutajdine1

1 LRIT, Associated Unit to CNRST URAC’29, Faculty of Sciences,
Mohammed V University in Rabat, Rabat, Morocco

drissimaroua@gmail.com, oumsis@yahoo.com, aboutaj@fsr.ac.ma
2 High School of Technology, Mohammed V University in Rabat, Sale, Morocco

Abstract. One of the most arduous topics for next-generation wireless
networks - 4G and beyond - is the operation of vertical handover consid-
ering the fact that many wireless communication technologies have been
deployed in order to handle mobile users any time, anywhere and anyhow.
Furthermore, users are more and more captivated by multimedia applica-
tions such as audio, video and voice, which need strict Quality of Service
(QoS) support. Thus, keeping the user Always Best Connected (ABC)
with such constraints is a challenging task. In this paper, we propose
an approach for network selection based on Fuzzy Analytic Hierarchy
Process (FAHP), applied to determine the relative weights of the evalu-
ation criteria. Afterwards Simple Additive Weighting (SAW) is used to
rank the available networks. Implementation and simulation experiments
with Network Simulator NS3 are presented in order to validate our pro-
posed approach. The empirical results show that FAHP, compared with
classic AHP, achieves a significant improvement up to 10% in term of
delay and 25 % in term of packet loss.

Keywords: Heterogeneous networks · Vertical handover · Network
selection · Always best connected · Fuzzy analytic hierarchy process ·
Multiple attribute decision making

1 Introduction and Motivation

The next-generation wireless networks involve various wireless technologies. Due
to radio resources restraint, coverage problems and user’s growing needs, one
network may not be able to provide continuous service and required QoS for
serving subscriber during an entire session. However, with the coexistence of
different network access technologies, moving between different wireless networks
seams to be the convenient solutions in today’s heterogeneous networks.

The Always Best Connected concept (ABC) was introduced by [1]. The
authors assert that a terminal that supports the ABC feature aims to be
connected via the best available network and access technology at all times.
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 169–182, 2016.
DOI: 10.1007/978-3-319-46140-3 13

170 M. Drissi et al.

ABC considers user’s and operator’s benefits. It includes basically all types of
access technologies. Meanwhile, the heterogeneous wireless networks require an
intelligent network selection algorithm to establish seamless communication in
order to provide high QoS for different multimedia applications. To afford perva-
sive wireless access for users, it is important to choose the best network among
the available ones, dynamic network selection algorithms plan is to provide users
with the appropriate QoS in terms of metrics and user’s preferences since both
are acknowledged during the process of network selection. Hence, this technology
is a hot research topic in the field of wireless communication.

In this paper, we focus on the real-time selection of always best connected
network in heterogeneous environment, while maintaining QoS for multimedia
services. We adopt, thereby, a Fuzzy approach to enhance vertical handover deci-
sion; it enables a reasonable and intelligent real-time handover decision according
to the network parameters. Implementation and simulation with Network Sim-
ulator NS3 are presented in order to validate our proposed goals. The results
show that our enhancement achieves a significant improvement of the QoS Delay
and Packets Loss metrics.

The remainder of this paper is structured as follows. Related works about
Network Selection using MADM are summarized in Sect. 2. In Sect. 3, the per-
formance evaluation model is presented and the classic approach to Network
Selection problem using AHP and SAW is described. Section 4 addresses the
Fuzzy improvement made to AHP and its application in our approach. Section 4
describes simulation parameters and results to illustrate the proposed scheme.
Finally, Sect. 5 concludes the work.

2 Related Works

Network Selection is an critical tread to accomplish a smooth vertical handover
and reach the best QoS in an heterogeneous environment. It is about gathering
the performances of each candidate network, and ranking them in purpose to
select the best network. It is a utmost revolution in the internet, by delivering
an improved Quality of Experience (QoE) for users of wireless services.

[2] presented an overview of vertical handover techniques, along with the main
algorithms, protocols and tools proposed in the literature. In addition, authors
suggested the most appropriate vertical handover techniques to efficiently com-
municate in a such environments considering the particular characteristics of this
type of networks. In the same context, [3] proposed an algorithm for network
selection based on averaged received signal strength, outage probability and dis-
tance. Furthermore, authors enhanced their work in [4], where they proposed
a novel network selection algorithm utilizing signal strength, available bit rate,
signal to noise ratio, achievable throughput, bit error rate and outage probability
metrics as criteria for network selection. They combined selection metrics with
Particle Swarm Optimization (PSO) for relative dynamic weight optimization.
In the same backdrop, [5] proposed a novel handover scheme that features two
operating processes: attributes rating and network ranking. Authors compared

A Fuzzy AHP Approach to Network Selection Improvement 171

their method with the traditional signal based handover model and they demon-
strated a lowest packet drop ratio and Higher average throughput. Moreover, [6]
have proposed vertical handover decision which depends on coverage area of the
network and the velocity of the mobile user.

Hence, MADM presents many advantages, notably, its implementation sim-
plicity is one of them. But increasing users number make it inefficient since
decisional time will be important especially for real-time application. Another
loophole of such system is the intervention of humans at the moment of initi-
ation of the performance indicators. Indeed, AHP as an example, needs more
objectivity for judgement. In [7], authors explain that a determined collection of
weights produces certain quality or merit for each network; these merit values
change if we consider another collection of weights. The purpose is to obtain
the best merit value, which will correspond to the selected network for the ver-
tical handover decision phase. Accordingly, the more combinations of weights,
the more possibilities to get better merit values we will have. In [8], authors
investigated in the weights of AHP and proposed a set of weights suitable to
Network Selection problem, the outcomes demonstrated a lowest delay but still
needs more objectivity.

Fuzzy logic seams to be the best solution to fix the prejudiced indicators.
Indeed, [9] explored the use of AHP, Fuzzy AHP in solving a Multi-Criteria
Decision Making (MCDM) problem by searching an improved solution to related
problems. When the criteria weights and performance ratings are vague and
inaccurate, Fuzzy AHP is the effective solution. Such improvements can rather
enhance QoS, making it more convenient for all traffic applications.

These constraints have moved us to use fuzzy logic in a performance model
for Network Selection presented in section below.

3 AHP-SAW Network Selection

3.1 System Model

For Network Selection, MADM approach consist in choosing the best network
from available networks. So as reported in the algorithm block diagram shown
in Fig. 1, simulation provides the system with the metrics (Bit Error Rate (Ber),
Jitter (J), Delay (D) and Throughput (T)) in real-time and a pairwise compar-
ison is applied according to each QoS class: Conversational (Conv), Streaming
(Strea), Interactive (Inter) and Background (Back).

Weight factors are assigned conveniently to each criterion to report its impor-
tance which is determined by AHP or Fuzzy AHP. Afterwards, SAW is applied
to the weighted matrices to have the ranking of the available networks. The
handover decision can be made in real-time and repeatedly, the interval of 5 s.

The vertical handover decision problem can be formulated as a matrix form
QN,M , where each row i corresponds to the candidate network and each column
j corresponds to an attribute.

172 M. Drissi et al.

Fig. 1. Algorithm block.

The matrices of alternative networks are established conforming to the
attributes.

QN,M =

⎛
⎜⎜⎜⎝

Attribute1 Attribute2 . . . AttributeM

Network1 q11 q12 . . . q1M
Network2 q21 q22 . . . q2M
...

...
...

. . .
...

NetworkN qN1 qN2 . . . qNM

⎞
⎟⎟⎟⎠

Since SAW grants the evaluated criteria to be expressed in different measure-
ment units, it is necessary to normalize the values.

nij =
qij√√√√i=N∑
i=1

q2ij

, j = 1, ...,M (1)

3.2 Analytic Hierarchy Process: AHP

The concept of weight associated by SAW, is solved by the use of AHP method.
[10] proposed this process for decision-making in multi-criteria problems. They
introduced AHP as a method of measurement with ratio scales. AHP allows com-
parison and a choice of pre-set options. It is based on the comparison of pairs

A Fuzzy AHP Approach to Network Selection Improvement 173

of options and criteria. The AHP decision problem is structured in a hierarchic
form with different levels, each level include a fixed number of decision elements.
The relative importance of the decision elements (weights of criteria and scores
of alternatives) is estimated indirectly through a series of comparative judge-
ments during the decision process. Correspondingly, the decision-makers have
to provide their preferences by comparing all criteria, sub-criteria and alterna-
tives with respect to upper level decision elements. However, most of the real
users would not have the required technical background to understand parame-
ters such as throughput, delay, jitter or bit error rate. Thus, we suppose that a
third-party application translates the preferences of users.

Weight computing needs answering to a sets of comparisons between a pair
metrics. The trivial form to ask a question is to consider two element and find
out which one satisfies the criterion more. These answers are given by using the
fundamental 1–9 AHP scale [10,11] presented in Table 1 below.

Table 1. AHP scale of importance [10].

Importance Definition Explanation

1 Equal importance Two parameters contribute
equally

3 Moderate importance of
one over another

Experience favoured 3 times
one than another

5 Strong importance Experience favoured 5 times
one than another

7 Very strong importance A parameters is favoured and
dominant in practice

9 Extreme importance The evidence favouring one
activity over another is of
the highest possible order
of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed

AHP calculates the weight vector w which represents the importance of each
metric with respect to different QoS classes. It provides as results wj > 0 the
weight or importance of the jth attribute. Given that

∑j=M
j=1 wj = 1.

Table 2 presents the relative importance between each pair, for example, in
streaming class, the comparison of Jitter and Delay is an answer to the question:
How much more is Jitter favoured over Delay in streaming class? Indeed, Jitter is
3 times more important than Delay, so the value in matrix is 1/3, and accordingly
3 is put in the opposite side (symmetrical to the diagonal). The other values can
be obtained from Table 1.

In [12] the authors demonstrate that if U is defined as an AHP compari-
son matrices as in Table 3, then by solving the system: U.w = nmax.w where

174 M. Drissi et al.

Table 2. AHP matrices for each traffic class.

Conv Ber J D T

Ber 1
1

7

1

7
3

J 7 1 3 7

D 7
1

3
1 7

T
1

3

1

7

1

7
1

Strea Ber J D T

Ber 1
1

3

1

7

1

7

J 3 1
1

3

1

3

D 7 3 1
1

3

T 7 3 3 1

Inter Ber J D T

Ber 1 3 7 3

J
1

3
1 5 3

D
1

7

1

5
1

1

7

T
1

3

1

3
7 1

Back Ber J D T

Ber 1 7 7 9

J
1

7
1 3 5

D
1

7

1

3
1 5

T
1

9

1

5

1

5
1

nmax is the largest eigenvalue of U, the importance vector w can be obtained.
Thus, the weights depend on the QoS prerequisite of the traffic classes. We use
the eigenvector method used by the AHP to interpret the weights presented in
Table 3.

Table 3. AHP importance weights per class.

Traffic class Ber Jitter Delay Throughput

Conversational 0.07968 0.55464 0.31956 0.04610

Streaming 0.05104 0.13444 0.29493 0.51957

Interactive 0.50385 0.27509 0.04608 0.17496

Background 0.68037 0.17644 0.10390 0.03926

3.3 Simple Additive Weighting: SAW

SAW, also known as the weighted sum method, is the most generally used
MADM method [13]. The basic principle of SAW is to obtain a weighted sum of
the performance ratings of each alternative under all attributes. Thus, the overall
score of a candidate network is determined by the weighted sum of all attribute

A Fuzzy AHP Approach to Network Selection Improvement 175

values. The score SSAW of each candidate network Ci is obtained by summing
the contributions of each nij normalized metric multiplied by the weight of the
importance wj metric Qj . The selected network is:

SSAW =
M∑
j=1

wj · nij (2)

Such that:
wj is the weight vector. nij is the value of normalized attribute j of network i.
N and M are respectively the number of candidates network and the number of
network attributes treated.

The section beneath details the improvement made to this model using fuzzy
logic.

4 Fuzzy Approach to Network Selection Improvement

In this paper, in order to solve Multi-Criteria Vertical Handover, we use a fuzzy
optimization model of [14] based on a fuzzy enhancement of analytic hierar-
chy process (FAHP). To deal with the imprecise judgements of decision makers
involved by classical AHP, a fuzzy AHP decision-making model aim is to deter-
mine the weights of certain Quality of Service indicators that act as the criteria
impacting the decision process.

4.1 Fuzzy Logic and Fuzzy Set Theory

The highlight of fuzzy sets theory, introduced by [15] is its capability of repre-
senting lax or inconclusive data in a natural form. It has been used as a modelling
tool for complex systems that can be managed by humans but are hard to define
objectively just as the case for AHP. A fuzzy set is one that assigns grades of
membership between 0 and 1 to objects using a particular membership func-
tion µA(x). This capability is the reason for its success in many applications.
Linguistic terms are represented by membership functions, valued in the real
unit interval, which translate the vagueness and imprecision of human thought
related to the proposed problem.

Triangular Fuzzy Number: In the literature, triangular and trapezoidal fuzzy
numbers are commonly used to express the vagueness of the parameters. In
this study, the triangular fuzzy numbers (TFN) are used to represent the fuzzy
relative importance. The choice of TFN is related to the number of classifications
or tunings (Low, Medium, High in case of TFN). A TFN is a special type of
fuzzy number whose membership is defined by three real numbers, expressed as
(l,m, u) such as: (l ≤ m ≤ u), where l is the lower limit value, m is the most
promising value and u is the upper limit value (see Fig. 2). Particularly, when
l = m = u, fuzzy numbers become crisp numbers. A TFN can be described as:

176 M. Drissi et al.

µA(x) =

⎧⎨
⎩

x−l
m−l , l < x < m
u−l
u−m , m < x < u

0, Otherwise

(3)

Fig. 2. Triangular Fuzzy Number.

4.2 Fuzzy Analytic Hierarchy Process: FAHP

Fuzzy AHP uses fuzzy set theory to clear-cut the uncertain comparison judge-
ments as a fuzzy numbers. The main step of fuzzy AHP is to generate the
relative fuzzy importance of each pair of factors in the same hierarchy. Using
TFN and via pairwise comparison, the fuzzy evaluation matrix Q = (qi,j)n∗m is
constructed, as: qi,j = (li,j ,mi,j , ui,j) and q−1

i,j = (1/ui,j , 1/mi,j , 1/li,j).
To compare the FAHP with AHP, we translated the weights generated in

the previous section (Table 2) regarding the Triangular Fuzzy Conversion Scale
of [16], shown in Table 4. Hence, the fuzzy relative importance for each class
of traffic namely: Conversational (Conv), Streaming (Strea), Interactive (Inter)
and Background (Back) and for each metric Bit Error Rate (Ber), Jitter (J),
Delay (D) and Throughput (T) are presented in Table 5.

Table 4. Triangular fuzzy conversion scale [16]

Linguistic scale for importance degrees Triangular
fuzzy scale

Triangular fuzzy
reciprocal scale

Just equal (JE) (1, 1, 1) (1, 1, 1)

Equally important (EI) (1/2, 1, 3/2) (2/3, 1, 2)

Weakly more important (WMI) (1, 3/2, 2) (1/2, 2/3, 1)

Strongly more important (SMI) (3/2, 2, 5/2) (2/5, 1/2, 2/3)

Very strongly more important (VSMI) (2, 5/2, 3) (1/3, 2/5, 1/2)

Absolutely more important (AMI) (5/2, 3, 7/2) (2/7, 1/3, 2/5)

Fuzzy AHP of Chang [14]: We reviewed the mathematical logic of fuzzy AHP
of Chang [14] since it has a wide influence on the theories and applications of
fuzzy AHP used in many recent researches as [17–19]. Accordingly, we calculated
the fuzzy weighted importance of each class of traffic by translating the values
qij of FAHP matrices presented in Table 5 using the Extent Analysis Method,
the value of fuzzy synthetic extent with respect to the ith object is defined in
Eq. 4:

Si =
m∑
j=1

qij �
⎡
⎣ n∑

i=1

m∑
j=1

qij

⎤
⎦

−1

(4)

A Fuzzy AHP Approach to Network Selection Improvement 177

The possibility of Si ≥ Sj is defined as:

V (Si ≥ Sj) = SUPx≥y [min(Si(x), Sj(y))] (5)

Where x and y are the values on the axis of the membership function of each
criterion as shown in Fig. 3.

Table 5. Fuzzy AHP matrices for each traffic class

Conv Ber J D T

Ber (1, 1, 1) (
1

3
,
2

5
,
1

2
) (

1

3
,
2

5
,
1

2
) (1,

3

2
, 2)

J (2,
5

2
, 3) (1, 1, 1) (1,

3

2
, 2) (2,

5

2
, 3)

D (2,
5

2
, 3) (

1

2
,
2

3
, 1) (1, 1, 1) (2,

5

2
, 3)

T (
1

2
,
2

3
, 1) (

1

5
,
2

5
,
1

2
) (

1

5
,
2

5
,
1

2
) (1, 1, 1)

Strea Ber J D T

Ber (1, 1, 1) (
1

2
,
2

3
, 1) (

1

3
,
2

5
,
1

2

1

2
) (

1

3
,
2

5
,)

J (1,
3

2
, 2) (1, 1, 1) (

1

2
,
2

3
, 1) (

1

2
,
2

3
, 1)

D (2,
5

2
, 3) (1,

3

2
, 2) (1, 1, 1) (

1

2
,
2

3
, 1)

T (2,
5

2
, 3) (1,

3

2
, 2) (1,

3

2
, 2) (1, 1, 1)

Inter Ber J D T

Ber (1, 1, 1) (1,
3

2
, 2) (2,

5

2
, 3) (1,

3

2
, 2)

J (
1

2
,
2

3
, 1) (1, 1, 1) (

2

5
,
1

2
,
2

3
) (1,

3

2
, 2)

D (
1

3
,
2

5
,
1

2
) (

3

2
, 2,

5

2
) (1, 1, 1) (

1

3
,
2

5
,
1

2
)

T (
1

2
,
2

3
, 1) (

1

2
,
2

3
, 1) (2,

5

2
, 3) (1, 1, 1)

Back Ber J D T

Ber (1, 1, 1) (2,
5

2
, 3) (2,

5

2
, 3) (

5

2
, 3,

7

2
)

J (
1

3
,
2

5
,
1

2
) (1, 1, 1) (1,

3

2
, 2) (

3

2
, 2,

5

2
)

D (
1

3
,
2

5
,
1

2
) (

1

2
,
2

3
, 1) (1, 1, 1) (

3

2
, 2,

5

2
)

T (
2

7
,
1

3
,
2

5
) (

2

5
,
1

2
,
2

3
) (

2

5
,
1

2
,
2

3
) (1, 1, 1)

This expression can be written as:

V (Si ≥ Sj) =

⎧⎨
⎩

1, mi ≥ mj

0, lj ≥ ui
lj−ui

(mi−ui)(mj−lj)
, Otherwise

(6)

The degree possibility for a convex fuzzy number to be greater than k convex
fuzzy numbers Si(i = 1, 2.....k) defined in [14] by:

178 M. Drissi et al.

Fig. 3. Membership function of criterion x and y.

V (S � S1, S2.....Sk) = V [(S � S1,) ∩ (S � S2) ∩ .. ∩ (S � Sk)]
= min(V (S � Si)), i = 1, 2, ..., k. (7)

In this case the weight vector is given by: W ′ = (w′
1, w

′
2...w

′
m) where Ai(i =

1, 2, ...,m) are m attributes. Via normalization, we get the normalized weight
vectors, where W is a non-fuzzy number.

W = (w1, w2...wm)T (8)

Finally, the Fuzzy AHP method is applied for the four classes of QoS and
the weights are correspondingly generated given in Table 6.

Table 6. FAHP importance weights per class.

Traffic class Ber Jitter Delay Throughput

Conversational 0.00006 0.45702 0.54286 0.00006

Streaming 0.00005 0.41146 0.17703 0.41146

Interactive 0.41277 0.15101 0.15846 0.27776

Background 0.83725 0.00010 0.16257 0.00008

5 Simulation Model

5.1 Simulation Parameters

To evaluate the fuzzy enhancement proposed, we conducted simulation experi-
ments for both original AHP used in Sect. 3.2 and the enhanced variant FAHP
from Sect. 4.2, the obtained results are also compared. As mentioned before,
the traffic considered in the evaluation covers all types of application, namely
Conversational, Streaming, Interactive and Background. The four traffic classes

A Fuzzy AHP Approach to Network Selection Improvement 179

have different QoS requirements. Thus, they are combined with four QoS para-
meters: Throughput, end-to-end Delay, Jitter, and Ber. Although the simulation
is maintained for 10 min, 100000 packets are supposed to be sent and the decision
is made every 5 s in real-time. In all simulations, we use a network consisting
of 10 mobile nodes. These nodes follow the same mobility model while roaming
between WIFI and WIMAX. The simulations were performed with the Network
Simulator NS3.

5.2 Evaluation Criteria

To compare the effectiveness of Fuzzy AHP with classical AHP, we handle the
experiments with the network simulator NS3 in order to validate our proposed
enhancement, by analysing the impact of the weights given by AHP and those
given by FAHP on QoS. To this end, we analyse the Delay and Packet Loss
considering that those parameters change within the performance of SAW. They
depend on the time taken by each algorithm to be executed which affects the
time elapsing from the sending of a packet by the source until it is received by the
destination, and rely also on the packets dropped during the vertical handover
execution which affects the Packet Loss.

The following section details the development of the network throughout the
simulation.

5.3 Simulation Results and Discussion

Figure 4 illustrates the behaviour of delay over time, it compares the performance
of AHP and FAHP, both combined with the ranking method SAW. Fuzzy AHP

Fig. 4. Behaviour of delay over time.

180 M. Drissi et al.

Fig. 5. Behaviour of packet loss over time.

provides weights that enable a fast and intelligent vertical handover considering
the time taken by the terminal to calculate the score of each decision, in terms
of delay, the proposed approach improve the delay in all types of traffic (see
Table 7 below). This is due to the fact that FAHP is tuned better.

As for the delay, Fig. 5 exposes the behaviour of packet loss over time, it
contrasts the performance of AHP and FAHP, both combined with the ranking
method SAW. Packet loss is analysed in order to evaluate the network reliability,
and it is defined as the total number of lost data packets divided by the total
number of transmitted data packets. The swiftness of the decisions made by the
mobile terminal influences also on the number of packets dropped all along the
simulation (see Table 7).

Table 7. Improvement of DELAY and PACKET LOSS by FAHP for all traffics

Traffic class DELAY LOSS PACKET

Conversational 8% ↓ 24 % ↓
Streaming 9% ↓ 23 % ↓
Interactive 10% ↓ 25 % ↓
Background 7% ↓ 20 % ↓

A Fuzzy AHP Approach to Network Selection Improvement 181

6 Conclusion

In this paper, we proposed a system model to enhance network selection by using
an improved variant of AHP method called FAHP. The aim is to reach acceptable
QoS for all types of traffic. To this end, we used FAHP to generate the weights
given afterwards to SAW in order to rank the available networks. The fuzzy
logic improvement allows AHP to be tuned better by choosing extra parameters
l and u. Thus, FAHP improves QoS in better way against the classical AHP.

Simulation experiments with Network Simulator NS3 show that FAHP
achieves a significant improvement of the Quality of Service. The process does
not degrade the user quality of experience even with the switching among dif-
ferent networks in view of the fact that FAHP can decrease packet loss and
end-to-end delay respectively, up to 25 % and 10 %.

The future work in this direction can be carried out by verifying the effec-
tiveness of FAHP if combined with other MADM method such as TOPSIS or
MEW.

References

1. Gustafsson, E., Jonsson, A.: Always best connected. Wirel. Commun. IEEE 10(1),
49–55 (2003)

2. Mrquez-Barja, J., Calafate, C.T., Cano, J.-C., Manzoni, P.: An overview of vertical
handover techniques: algorithms, protocols and tools. Comput. Commun. 34(8),
985–997 (2011)

3. Ahuja, K., Singh, B., Khanna, R.: Network selection algorithm based on link qual-
ity parameters for heterogeneous wireless networks. Optik - Int. J. Light Electron
Opt. 125(14), 3657–3662 (2014)

4. Ahuja, K., Singh, B., Khanna, R.: Particle swarm optimization based network
selection in heterogeneous wireless environment. Optik - Int. J. Light Electron
Opt. 125(1), 214–219 (2014)

5. Yang, S.-J., Tseng, W.-C.: Design novel weighted rating of multiple attributes
scheme to enhance handoff efficiency in heterogeneous wireless networks. Comput.
Commun. 36(14), 1498–1514 (2013)

6. Jain, A., Tokekar, S.: Application based vertical handoff decision in heterogeneous
network. Procedia Comput. Sci. 57, 782–788 (2015). 3rd International Conference
on Recent Trends in Computing (ICRTC-2015)

7. Jaraiz-Simon, M.D., Gomez-Pulido, J.A., Vega-Rodriguez, M.A.: Embedded intelli-
gence for fast QoS-based vertical handoff in heterogeneous wireless access networks.
Pervasive Mobile Comput. 19, 141–155 (2015)

8. Drissi, M., Oumsis, M.: Multi-criteria vertical handover comparison between wimax
and wifi. Information 6(3), 399 (2015)

9. Torfi, F., Farahani, R.Z., Rezapour, S.: Fuzzy AHP to determine the relative
weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives. Appl.
Soft Comput. 10(2), 520–528 (2010)

10. Saaty, R.W.: The analytic hierarchy process-what it is and how it is used. Math.
Model. 9(3), 161–176 (1987)

11. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resources
Allocation. McGraw, New York (1980)

182 M. Drissi et al.

12. Stevens-Navarro, E., Wong, V.W.: Comparison between vertical handoff decision
algorithms for heterogeneous wireless networks. In: IEEE 63rd Vehicular Technol-
ogy Conference, VTC 2006-Spring, vol. 2, pp. 947–951. IEEE (2006)

13. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Appli-
cations: A State-of-the-Art Survey, vol. 13. Springer, New York (1981)

14. Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J.
Oper. Res. 95(3), 649–655 (1996)

15. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
16. Bykzkan, G., Feyziolu, O., Nebol, E.: Selection of the strategic alliance partner in

logistics value chain. Int. J. Prod. Econ. 113(1), 148–158 (2008)
17. Mosadeghi, R., Warnken, J., Tomlinson, R., Mirfenderesk, H.: Comparison of fuzzy-

AHP and AHP in a spatial multi-criteria decision making model for urban land-use
planning. Comput. Environ. Urban Syst. 49, 54–65 (2015)

18. Zh, K.: Fuzzy analytic hierarchy process: fallacy of the popular methods. Eur. J.
Oper. Res. 236(1), 209–217 (2014)

19. Junior, F.R.L., Osiro, L., Carpinetti, L.C.R.: A comparison between fuzzy AHP
and fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 21, 194–209
(2014)

A Fault-Tolerant Sequentially Consistent DSM
with a Compositional Correctness Proof

Niklas Ekström(B) and Seif Haridi

KTH Royal Institute of Technology, Stockholm, Sweden
{neks,haridi}@kth.se

Abstract. We present the SC-ABD algorithm that implements sequen-
tially consistent distributed shared memory (DSM). The algorithm
tolerates that less than half of the processes are faulty (crash-stop).
Compared to the multi-writer ABD algorithm, SC-ABD requires one
instead of two round-trips of communication to perform a write opera-
tion, and an equal number of round-trips (two) to perform a read opera-
tion. Although sequential consistency is not a compositional consistency
condition, the provided correctness proof is compositional.

1 Introduction

Using fault-tolerant distributed shared memory (DSM) as a building block in
the design of a distributed system can simplify the design, as individual process
failures are masked through replication. To characterize an implementation of
distributed shared memory, we consider the following criteria:

– Consistency: a stronger consistency condition may be easier to program
against, but may provide worse performance, and vice versa.

– Multiple writers: an implementation may allow a single process, or multiple
processes, to update registers.

– Latency: the number of round-trips of communication required to execute an
operation.

– Resilience: the number of processes that can be tolerated to be faulty in an
execution, f , in relation to the total number of processes in the system, n.

In this paper, we consider the problem of implementing distributed shared
memory that is sequentially consistent, allow multiple writers, can complete a
write operation after one round of communication and a read operation after
two rounds of communication, and that tolerates f < n/2 faulty processes.
We present the SC-ABD algorithm as a solution to this problem. In Table 1 in
the conclusion section, we present a comparison of SC-ABD to two other DSM
algorithms along the mentioned criteria.

This work was supported by the Swedish Foundation for Strategic Research (SSF).

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 183–192, 2016.
DOI: 10.1007/978-3-319-46140-3 14

184 N. Ekström and S. Haridi

Proving that a distributed shared memory implementation satisfies sequential
consistency can be a difficult task. Unlike some other consistency conditions,
sequential consistency is not a compositional consistency condition. Never the
less, the proof given for the correctness of SC-ABD is compositional, and we
therefore present this proof technique as a contribution in itself.

2 Model and Definitions

We consider an asynchronous distributed system composed of n processes,
denoted p1, . . . , pn, and a communication network with reliable links. We denote
by Π = {1, . . . , n} the set of process identifiers. In any given system execution, a
process is said to be correct if the process never crashes, and otherwise it is said
to be faulty. A process that crashes stops taking steps and can never recover. We
assume that at most f processes are faulty in any given execution, where f < n/2.

2.1 Shared Memory

A distributed shared memory is a distributed implementation of shared memory.
We consider a shared memory consisting of read/write registers. Each register
holds an integer value, initially zero. The shared memory defines a set of primitive
operations, that provide the only means to manipulate the registers. In our case,
the operations provided are read and write. A process invokes an operation and
receives a response when the execution of the operation is complete. We will
refer to an operation execution as an operation, if the distinction is clear from
the context. Each process is allowed to have at most one outstanding operation,
meaning that a process may not invoke another operation before the process
has received the response for the previously invoked operation. Let o refer to
a particular operation execution, invoked by process pi. We denote by inv(o)
the invocation event that occurs when pi invokes o, and denote by res(o) the
response event that occurs when the execution of o completes.

We model an execution using a history, which is a sequence of invocation and
response events, ordered by the real times when the events occurred. History H
is sequential if the first event is an invocation event, and every invocation event
(except possibly the last) is immediately followed by the matching response
event. By H|pi we denote the subsequence of H where every event occurs in
process pi; we refer to H|pi as a process subhistory. Similarly, by H|x we denote
the subsequence of H containing only events related to operations that target
register x, and refer to H|x as a register subhistory. A history is well-formed
if each process subhistory is a sequential history, and in the following we only
consider well-formed histories. Two histories H and H ′ are equivalent, denoted
H � H ′, if and only if, for each process pi, H|pi = H ′|pi. For events e1 and e2
in history H we write e1 <H e2 to denote that e1 precedes e2 in H. We say that
“operation o is in history H” if inv(o) is in H. For operations o1 and o2 in H
we write o1 <H o2 to denote that res(o1) <H inv(o2).

Operation o is pending in history H if the invocation event for o is in H but
not the response event. History H is complete if H does not contain any pending

A Fault-Tolerant Sequentially Consistent DSM 185

operations. For presentational simplicity, we consider only complete histories in
the rest of this paper.

The shared memory has a sequential specification, which is a set containing
all sequential histories such that each read operation of some register returns
the value written by the last write to that register (the write closest preceding
the read in the sequential history), or the default value if no such write exists. A
sequential history is legal if it is in the shared memory’s sequential specification.

Sequential consistency is a consistency condition that was described by
Lamport [7]. We define what it means for a history to be sequentially consistent:

Definition 1. History H is sequentially consistent, denoted SC(H), if and only
if there exists a legal sequential history S such that S � H.

The correctness conditions that we require of an algorithm implementing
sequentially consistent distributed shared memory are:

– Termination: If a correct process invokes an operation, then the operation
eventually completes.

– Sequential Consistency: Each history corresponding to an execution of the
algorithm must be sequentially consistent.

2.2 Causality and Logical Clocks

Causality and logical clocks were described in a paper by Lamport [6]. Event
e1 is said to causally precede event e2, denoted e1 → e2, if at least one of the
following conditions hold: (1) e1 and e2 both occur in the same process and e1
occurs before e2, (2) e1 is the sending of message m and e2 is the receipt of m,
(3) there exists an event e′ such that e1 → e′ and e′ → e2.

A logical clock is a device that assigns integers to events in a manner consis-
tent with the causally precedes relation. More precisely, by letting lt(e) denote
the logical time assigned to event e, we require that: e1 → e2 ⇒ lt(e1) < lt(e2).

3 Algorithm

In this section we present the SC-ABD algorithm, whose pseudo-code is con-
tained in Algorithm 1. The algorithm is given as a set of reactive handlers. Each
handler has an associated condition that describes when that handler is eligible
for execution, e.g., when an operation is invoked, or a message is received.

For each process, the algorithm contains a variable lt that implements a
logical clock. Whenever a handler is executed in response to a local condition
(i.e., an operation is invoked) the logical clock is incremented by one. When
a message is sent from process pi to process pj , the current logical time of pi
is included in the message, and when the message is received by pj and the
corresponding handler is executed, pj ’s logical clock is updated to a logical time
that is one greater than the maximum of pj ’s previous logical time and the logical
time included in the message.

186 N. Ekström and S. Haridi

Each process stores the values that have been written to the registers. In order
to determine which value is more recent, a timestamp is associated with each
value. A value and its associated timestamp are stored together as a timestamp-
value pair. The algorithm has a local variable, tvps, that maps register identifiers
to timestamp-value pairs.

Communication in the algorithm proceeds in phases. A phase consists of a
round of communication, where the process executing the phase, pi, sends a
request to all processes and waits for responses from a majority of the processes
before the phase ends.

A write operation has one phase: the update phase. The process executing the
write operation, pi, creates a timestamp as the pair with pi’s current logical time
and pi’s process identifier, i. It then pairs this timestamp together with the value
to be written into a timestamp-value pair. pi sends an update request containing
the register identifier and the timestamp-value pair to all processes (lines 16–
20 in Algorithm 1). When process pj receives the update request it updates its
tvps with the supplied timestamp-value pair if the timestamp is greater than
the timestamp of the timestamp-value pair that was previously stored, and then
sends an ack response (lines 21–23). After pi receives acks from a majority of
processes, pi returns OK (lines 24–30).

A read operation has two phases: the query phase and the update phase. The
process executing the read operation, pi, sends a query request to all processes
containing the register identifier for the register that is being read (lines 1–5).
When process pj receives the query request, pj retrieves the timestamp-value
pair stored in tvps for the register identifier, and sends this timestamp-value
pair in a response message to pi. This timestamp-value pair is the maximal
timestamp-value pair that pj has received so far in an update request, or the
initial timestamp-value pair, ((0, 0), 0), if no update request had been received
previously (lines 6–7). When pi has received response messages from a majority
of processes, pi chooses the timestamp-value pair, (ts, v), with the maximum
timestamp out of the timestamp-value pairs received. Before returning value v,
pi performs an update phase using the (ts, v) timestamp-value pair, in order to
guarantee that a majority of the processes have stored the timestamp-value pair
before the read completes (lines 8–15 and 21–30).

4 Correctness Proof

We first prove that SC-ABD satisfies the termination property.

Lemma 1. Algorithm SC-ABD satisfies the termination property.

Proof. As links are reliable and a majority of processes are correct according to
the assumptions in our model, each communication phase executed by a correct
process is guaranteed to eventually complete, and every operation executed by
a correct process is therefore guaranteed to complete. ��

In the rest of this section we prove that the algorithm satisfies sequential
consistency.

A Fault-Tolerant Sequentially Consistent DSM 187

4.1 Linearizability

Linearizability is a consistency condition described by Herlihy and Wing [5].

Algorithm 1. SC-ABD – code for pi.
Local variables:
lt – logical time; initially 0
rid – current request identifier; initially 0
tvps – map from register ids to timestamp-value pairs; initially maps to ((0, 0), 0)
responses – tracking responses/acks; initially {}
reading – indicating whether currently reading (true) or writing (false)
rreg , rval – temporary storage for register identifier and return value during reads

Note: bcast 〈m〉 is an abbreviation for: for j ∈ Π do send 〈m〉 to pj

When READ(r) is invoked:
1: lt ← lt + 1
2: reading ← true
3: rreg ← r
4: rid ← rid + 1
5: bcast 〈“query”, lt , rid , r〉

When 〈“query”, lt ′, rid ′, r〉 is
received from pj:

6: lt ← max(lt , lt ′) + 1
7: send 〈“response”, lt , rid ′, tvps[r]〉 to pj

When 〈“response”, lt ′, rid ′, tsv ′〉 is
received from pj with rid = rid ′:

8: lt ← max(lt , lt ′) + 1
9: responses ← responses ∪ {(tsv ′, j)}
10: if |responses| = �|Π|/2� + 1 then
11: (tsv ,) ← max(responses)
12: (ts, rval) ← tsv
13: responses ← {}
14: rid ← rid + 1
15: bcast 〈“update”, lt , rid , rreg , tsv〉

When WRITE(r , v) is invoked:
16: lt ← lt + 1
17: reading ← false
18: tsv ← ((lt, i), v)
19: rid ← rid + 1
20: bcast 〈“update”, lt , rid , r , tsv〉

When 〈“update”, lt ′, rid ′, r , tsv ′〉 is
received from pj:

21: lt ← max(lt , lt ′) + 1
22: tvps[r] ← max(tvps[r], tsv ′)
23: send 〈“ack”, lt , rid ′〉 to pj

When 〈“ack”, lt ′, rid ′〉 is
received from pj with rid = rid ′:

24: lt ← max(lt , lt ′) + 1
25: responses ← responses ∪ {j}
26: if |responses| = �|Π|/2� + 1 then
27: responses ← {}
28: rid ← rid + 1
29: if reading then RETURN rval
30: else RETURN OK

Definition 2. History H is linearizable, denoted LIN(H), iff there exists a legal
sequential history S such that S � H, and ∀o1, o2 ∈ H : o1 <H o2 ⇒ o1 <S o2.

Linearizability is compositional, in the sense that history H is linearizable if
and only if each register subhistory H|x is linearizable:

LIN(H) ⇔ ∀x : LIN(H|x) (1)

188 N. Ekström and S. Haridi

From the definition of sequential consistency and the definition of lineariz-
ability, it follows that linearizability is stronger than sequential consistency:

LIN(H) ⇒ SC(H) (2)

4.2 Logical-Time History

We define the logical-time history corresponding to history H, denoted H lt, to
be the sequence containing the same events as H, but reordered according to
the logical times when the events occurred, using the process identifiers of the
processes where the events occurred to break ties.

For each process pi, the relative ordering of events in H|pi is preserved in
H lt|pi, as the logical times of events in H|pi are monotonically increasing. It
follows that the (real-time) history H and its corresponding logical-time his-
tory H lt are equivalent, H � H lt. Together with the definition of sequentially
consistent histories it follows that:

SC(H) ⇔ SC(H lt) (3)

4.3 Compositional Reasoning

Combining (1), (2), and (3), we have:
(∀x : LIN(H lt|x)

) ⇒ LIN(H lt) ⇒ SC(H lt) ⇒ SC(H) (4)

Equation (4) allows us to reason compositionally, i.e., to reason about, for each
register x, the register subhistory H lt|x in isolation.

4.4 Reasoning About the Algorithm

We state a couple of definitions regarding the algorithm:

– The logical time of a handler execution is the value assigned to the lt variable
on the handler’s first line in the algorithm text.

– The timestamp of operation o, denoted ts(o), is the timestamp used in the
operation’s update phase.

From the definition of logical-time history H lt, it follows that:

o1 <Hlt o2 ⇒ lt(res(o1)) ≤ lt(inv(o2)) (5)

We state and prove the following proposition:

Proposition 1. Let o1 and o2 be operations in H lt|x such that o1 contains an
update phase and o2 contains a query phase. If o1 <Hlt|x o2 then ts(o1) ≤ ts(o2).

A Fault-Tolerant Sequentially Consistent DSM 189

Proof. Let pi be the process that executes the update phase in o1, and pj be
the process that executes the query phase in o2. At the time when pi’s update
phase completes, pi will have received response messages from a majority of
processes. Let Mu refer to this majority set of processes. Similarly, let Mq refer
to the majority set of processes from which pj received responses before the
query phase in operation o2 completed. As any two majority sets intersect, there
must be one process, pk, that is both in Mu and in Mq.

Let e1 be the event when pk processes o1’s update request, and e2 the event
when pk processes o2’s query request. By causality we have lt(e1) < lt(res(o1))
and lt(inv(o2)) < lt(e2), and together with (5) we get lt(e1) < lt(e2). Since e1
and e2 are in the same process, this implies that e1 occurs before e2.

Since pk returns the timestamp-value pair with the maximal timestamp that
it has received in all previous update requests, the timestamp in the response to
o2’s query request is guaranteed to be greater than or equal to the timestamp
in o1’s update request. As pj picks the timestamp-value pair with the maximal
timestamp on line 11 of the algorithm, and uses it in its update phase, it follows
that ts(o1) ≤ ts(o2). ��
Lemma 2. Algorithm SC-ABD satisfies the sequential consistency property.

Proof. By using Eq. (4), we prove that the algorithm satisfies sequential consis-
tency, by showing, for each execution, and for each register x, that LIN(H lt|x)
holds. From the definition of linearizability, we see that in order to prove that
LIN(H lt|x) holds we are required to show that there exists a legal sequential
history S such that S � H lt|x, and, for all operations o1 and o2 in H lt|x, if o1
precedes o2 in H lt|x then o1 also precedes o2 in S. We proceed by creating a
total order on the operations in H lt|x as follows:

1. Order write operations according to their timestamps. Any two write opera-
tions have unique timestamps by construction, so this is a total order.

2. Then order each read operation immediately after the write operation that
wrote the value that the read operation returned. If there are more than one
read operations with the same timestamp then they are internally ordered
based on the logical times when they were invoked (breaking ties using process
identifiers).

Let S be the sequential history obtained from this total order. As each read
operation in S returns the value written by the closest preceding write operation,
it follows that S is legal.

We show that o1 <Hlt|x o2 ⇒ o1 <S o2 using the following case analysis:

– o1 is a write, o2 is a write: By causality we have lt(inv(o1)) < lt(res(o1)),
which together with (5) gives us lt(inv(o1)) < lt(inv(o2)). Because of how the
algorithm constructs timestamps (line 18), this implies that ts(o1) < ts(o2),
from which o1 <S o2 follows.

190 N. Ekström and S. Haridi

– o1 is a read, o2 is a write: There exists a write w0 such that ts(w0) = ts(o1).
Since the invocation event of w0 causally precedes the response event of o1,
we have lt(inv(w0)) < lt(res(o1)), and, using (5), we have lt(inv(w0)) <
lt(inv(o2)). From the analysis of the previous case we have ts(o1) = ts(w0) <
ts(o2), from which o1 <S o2 follows.

– o1 is a write, o2 is a read: By the assumption and Proposition 1 it follows that
ts(o1) ≤ ts(o2), from which o1 <S o2 immediately follows.

– o1 is a read, o2 is a read: Again, by the assumption and Proposition 1 it
follows that ts(o1) ≤ ts(o2). If ts(o1) < ts(o2) we directly have o1 <S o2.
Otherwise, we have ts(o1) = ts(o2). By causality and (5) we have lt(inv(o1)) <
lt(inv(o2)), and o1 <S o2 follows from the definition of S.

Finally we must show that S � H lt|x. For any process pi, consider the history
(H lt|x)|pi, which is sequential. For any pair of operations o1 and o2 in (H lt|x)|pi,
either o1 <(Hlt|x)|pi

o2 or o2 <(Hlt|x)|pi
o1. The same ordering will be preserved

in S|pi, according to the case analysis above. As S and H lt|x contain the same
events, we have S � H lt|x. ��
Theorem 1. Algorithm SC-ABD is a correct implementation of sequentially
consistent distributed shared memory.

Proof. Follows directly from Lemmas 1 and 2. ��

5 Related Work

Research about shared memory has a long history in distributed computing.

5.1 Consistency Conditions

Lamport described sequential consistency [6]. In multiprocessor systems, sequen-
tial consistency is widely regarded as the “gold standard”, but most multiproces-
sor systems provide weaker consistency by default, and require that programs
use memory fences to achieve sequentially consistent behavior.

Proving that a shared memory implementation satisfies sequential consis-
tency is a well-researched problem. Alur, McMillan, and Peled proved that, in
general, the sequential consistency verification problem is undecidable [1].

Bingham, Condon, and Hu suggested that the original formulation of sequen-
tial consistency, which is not prefix-closed, may be a reason why the verification
problem is hard, and suggested two alternative variants to sequential consistency,
Decisive Sequential Consistency (DSC) and Past-Time Sequential Consistency
(PTSC) that are prefix-closed [4].

Plakal, Sorin, Condon, and Hill use logical (Lamport) clocks as a tool to
reason about correctness of their distributed shared memory protocol [9].

Linearizability was described by Herlihy and Wing [5]. Linearizability has
the pleasant property that it is a compositional consistency condition.

The cost of sequential consistency vs. linearizability was analyzed by Attiya
and Welch [3]. They proved that the cost of sequential consistency is lower than
the cost of linearizability under reasonable assumptions.

A Fault-Tolerant Sequentially Consistent DSM 191

5.2 Fault-Tolerant Shared Memory

The ABD algorithm was described by Attiya et al. [2]. ABD was the first algo-
rithm that showed it to be possible to implement fault-tolerant linearizable
shared memory in a message passing system, but allowed only a single process
to write to the memory. Write operations complete after a single round of com-
munication and read operations complete after two rounds.

The multi-writer ABD (MW-ABD) algorithm was described by Lynch and
Shvartsman [8]. MW-ABD extended the ABD algorithm by allowing multiple
processes to write to the memory, and in order to do so added a second round
of communication to write operations.

6 Conclusion

We presented the SC-ABD algorithm that implements fault-tolerant, sequen-
tially consistent, distributed shared memory, and proved it to be correct using
a compositional proof structure.

Table 1 contains a comparison between SC-ABD, ABD, and MW-ABD along
the criteria mentioned in the introduction: consistency condition (linearizabil-
ity (LIN) or sequential consistency (SC)); multiple writers allowed; number of
rounds of communication required to complete a write (W)/read (R) operation;
and how many faulty processes, f , that the algorithm tolerates.

Table 1. Comparison between three fault-tolerant DSM algorithms.

ABD MW-ABD SC-ABD

Consistency LIN LIN SC

Multiple writers No Yes Yes

Latency W:1, R:2 W:2, R:2 W:1, R:2

Resilience f < n/2 f < n/2 f < n/2

In a situation where an application, running on top of distributed shared
memory, would satisfy its correctness conditions if the distributed shared mem-
ory provides sequential consistency, and the application would benefit from hav-
ing a lower latency for write operations, we think that SC-ABD is a good choice.

Finally, we showed that, although sequential consistency is not a composi-
tional consistency condition, it was still possible to reason compositionally about
the correctness of the algorithm.

Acknowledgements. We would like to thank the Swedish Foundation for Strategic
Research for funding this work, and Jingna Zeng for helpful discussions.

192 N. Ekström and S. Haridi

References

1. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. In: Proceedings of the 11th Annual IEEE Symposium on Logic
in Computer Science, LICS 1996, p. 219. IEEE Computer Society, Washington, DC
(1996)

2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

3. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans.
Comput. Syst. 12(2), 91–122 (1994)

4. Bingham, J.D., Condon, A., Hu, A.J.: Toward a decidable notion of sequential
consistency. In: Proceedings of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA 2003, pp. 304–313. ACM, New York (2003)

5. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

7. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

8. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In: Proceedings of the 27th International Sympo-
sium on Fault-Tolerant Computing (FTCS 1997), p. 272. IEEE Computer Society,
Washington, DC (1997)

9. Plakal, M., Sorin, D.J., Condon, A.E., Hill, M.D.: Lamport clocks: verifying a direc-
tory cache-coherence protocol. In: Proceedings of the Tenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, SPAA 1998, pp. 67–76. ACM,
New York (1998)

Exploiting Crowd Sourced Reviews to Explain
Movie Recommendation

Sara El Aouad1,2(B), Christophe Dupuy1,2, Renata Teixeira2, Francis Bach2,
and Christophe Diot3

1 Technicolor, Issy-les-Moulineaux, France
sara.elaouad@technicolor.com

2 Inria, Paris, France
3 Safran, Paris, France

Abstract. Streaming services such as Netflix, M-Go, and Hulu use
advanced recommender systems to help their customers identify relevant
content quickly and easily. These recommenders display the list of recom-
mended movies organized in sublists labeled with the genre or some more
specific labels. Unfortunately, existing methods to extract these labeled
sublists require human annotators to manually label movies, which is
time-consuming and biased by the views of annotators. In this paper, we
design a method that relies on crowd sourced reviews to automatically
identify groups of similar movies and label these groups. Our method
takes the content of movie reviews available online as input for an algo-
rithm based on Latent Dirichlet Allocation (LDA) that identifies groups
of similar movies. We separate the set of similar movies that share the
same combination of genre in sublists and personalize the movies to show
in each sublist using matrix factorization. The results of a side-by-side
comparison of our method against Technicolor’s M-Go VoD service are
encouraging.

1 Introduction

According to a recent study [10], over 40 % of households in the United States
have access to VoD services. With the overwhelming number of videos offered per
service, a key challenge is to help users decide which movie to watch. Sophis-
ticated VoD services use recommender systems based on matrix factorization
applied to movie ratings [8]. VoD services then display the long list of recom-
mended movies ranked based on the predicted rating per movie. This list is often
organized into labeled sublists that help users browse the recommendations. For
example, Netflix presents movies in rows according to genres (which go from
more traditional, coarse-grained labels such as “Action” or “Comedy” to more
specific labels such as “Visually-striking Goofy Action & Adventure”) [8]. Exist-
ing methods to group movies into sublists and to label sublists require people to
manually label each movie [11]. This manual method has two main drawbacks.
First, the labels of each sublist are subjective and biased toward the opinion and
cultural background of annotators. Second, manual annotation is expensive and
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 193–201, 2016.
DOI: 10.1007/978-3-319-46140-3 15

194 S. El Aouad et al.

requires an extensive human effort especially because labels are often specific to
a region and movie databases keep growing with new movie releases.

In this paper, we argue that instead of relying on a few people to tag movies,
we can use crowd sourced reviews to automatically identify groups of similar
movies and label these groups. Many moviegoers enter detailed reviews of movies
they have watched on sites such as IMDb and Rotten Tomatoes. The corpus of
online reviews represents a source of rich meta-data for each movie. We use a
database of 2000 movies and 100 users extracted from IMDb by Diao et al. [7]
as a proof of concept in this paper.

The challenge we face is to mine the noisy free-text reviews from a hetero-
geneous set of people to extract meaningful and personalized sublists of movies.
We are tackling this challenge in three steps. First, we design an algorithm based
on LDA (Latent Dirichlet Allocation) to estimate the similarity between movies
based on the content of reviews (Sect. 2.1). The outcome of this step is a list
of the most similar movies to the movie the user selected. Second, we split the
list of similar movies into sublists of movies that share common characteristics
(Sect. 2.2). Our initial version uses a combination of genres to generate these
sublists. For each sublist, we provide a list of words that characterizes this sub-
list, extracted from the crowd sourced reviews. To give more insight about the
recommended movies, users can click on these words to see in which movies of
the sublist the word corresponds to. Finally, we personalize each sublist by fil-
tering and ordering the movies using matrix factorization (Sect. 2.3). We only
display to the user movies with a predicted rating of at least six (out of ten).

We implement a web service using our method with the same look as Tech-
nicolor’s VoD service in the United States, M-Go (Sect. 3). This implementation
allowed us to perform side-by-side comparisons of M-Go’s existing system (which
uses manual tagging of movies to extract sublists of similar movies and labels
for each sublist) and our sublists. Our initial results are encouraging (Sect. 4).

We do not claim that our method gives better recommendation, but instead
that the movies we recommend come with more insight about why they are
recommended. Note that this is early results and that we believe that the method
can be greatly improved, and extended to many other domains.

2 Method

We envision a scenario where a user will click on a movie, say m, and the rec-
ommender will display a list of movies similar to m recommended for the user
organized in labeled sublists. We use a database of 2,000 movies and 100 users
extracted from IMDb (a subset of the data described in [7]) for our method.
Our method works in three steps. First, we identify the list of similar movies.
This step uses the content of the IMDb reviews to identify similarities among
movies with no personalization. Second, we split the list of similar movies into
sub-groups. Finally, we apply matrix factorization to personalize the sublists.

Exploiting Crowd Sourced Reviews to Explain Movie Recommendation 195

2.1 Movie Similarity

We base our method to identify the list of most similar movies to a given movie
on Latent Dirichlet allocation (LDA) [3]. LDA is a probabilistic topic model that
extracts K latent topics from a corpus of documents. Each topic is a discrete
distribution over the words of the vocabulary. Ideally, in our case, we would
like each topic to be consistent around movie features such as genres, actors
or directors. To apply LDA, we must define what constitutes a document, an
appropriate vocabulary, and a value of K.

We create a corpus where each document is the concatenation of the reviews
written for a single movie in the IMDb dataset. This concatenation has the effect
of increasing the consistency of each document as users tend to employ the same
vocabulary to describe the same movie.

We build the vocabulary by extracting relevant words from the reviews in our
dataset. Some words (for example stop words or words such as movie, film, and
plot) appear in many reviews, but are not significant. We eliminate such words
using a dictionary that we create manually from our dataset. For the remaining
words, we apply term frequency-Inverse document frequency (TF-IDF) score as
a filter. TF-IDF gives a high score for words that are frequent in a document
but rare in other documents. We compute TF-IDF for each word of each review
in the corpus and select the 10,000 words with the highest score.1

We select K empirically. After multiple experiments with values of K between
8 and 260, we observe that for K ≤ 30, the topics mix several features as there are
not enough topics to separate the different aspects expressed in the reviews. For
K ≥ 150, individual features get split over multiple topics. We chose K = 128
as a good compromise for movies.

Then we assign a weight to each word in the documents as follows:

f̂d
w =

fd
w√
Nd

(1)

where fd
w is the number of occurrences of the word w in the document d, and Nd

the number of reviews in the same document. The goal of this normalization is
to reduce the imbalance between the most popular movies and the least popular
ones.

We apply LDA to this new corpus. The assumption behind the LDA model
is that each document d is generated from a mixture of topics denoted θd. With
LDA, we infer the topic distribution θd of each document d and the topics φ. To
compute similarity between movies, we use their topic distribution θd and the
Kullback Leibler divergence similarity metric (KL). For two topic distributions
θ1 and θ2 we have:

KL(θ1 ‖ θ2) =
k∑

i=1

θ1i log
θ1i
θ2i

(2)

1 After empirical verification, this number of words seems to give the best results for
the data bases that we are using.

196 S. El Aouad et al.

2.2 Genre-Based Sub-grouping

This section presents the method to split the list of the most similar movies to
a movie m (extracted using the method presented in the previous section) into
sublists. We also describe our method for extracting a title and a subtitle for
each sublist.

We inspire our design on M-Go’s interface, which presents four sublists: the
first with the most similar movies and the other three grouped around more
specific labels. Similarly, we generate four sublists. The first contains the N
most similar movies to m. The three remaining sublists groups movies based on
a pair of genres. We use the movie genres because they are familiar to users and
because genres help create consistent sublists.

First, we generate the list of all the possible pairs of movie genres that appear
in our dataset. We repeat the following steps to extract our sublists: for each
pair (g1, g2) in our dataset, we will extract the N most similar movies that have
at least g1 and g2 as genres. We then compute the average distance between m
and the extracted movies. We select the pair of genres and the corresponding
sublist that have the smallest average distance to m. For the next sublist, we
eliminate the already selected pairs and movies in the previous sublists, in order
to avoid redundancy among sublists.

Each sublist has a title and a subtitle. The title corresponds to the pair of
movie genres (e.g., Action and Thriller). The subtitle is the set of words that
best describes the movies of the sublist. We generate these words with LDA
parameters. We define the score of a word as follows:

s(w) =
K∑
i=1

φi[w]θ̄[i] (3)

where K is the number of topics, and φi[w] is the weight of the word w in topic
i. We also set:

θ̄ =
1
N

∑
j∈currentsublist

θj . (4)

where N is the number of movies in each sublist and θj is the topic distribution
of movie j. We compute the score of each word of the vocabulary. We keep the
first twenty words with the highest scores. Figure 1 illustrates our method to
generate the subtitle for a sublist with two similar movies.

2.3 Rating Prediction

This section explains how we personalize the movies displayed in each sublist.
We order the movies in each sublist according to the predicted ratings of the user
on each movie. We predict ratings for movies users have not rated using matrix
factorization [2]. We map both the users and the movies to the same space of
dimension p. Each user u has a feature vector Uu and each movie i has feature
vector Vi. The rating prediction model can be written as follows:

ru,i ∼ N (V T
i Uu, 1) (5)

Exploiting Crowd Sourced Reviews to Explain Movie Recommendation 197

Fig. 1. Example of our technique to extract subtitles for a sublist of recommended
movies. The words in red are the selected words (Action, Murder, Cop) as they have
the highest scores.

We learn the feature vectors (Vi and Uu) by solving the following regularized
minimization problem:

min
U,V

∑
(u,i)∈observations

(ru,i − V T
i Uu)2 + λ(‖V ‖2 + ‖U‖2) (6)

The goal of the regularization is to avoid over-fitting the observed data. The
regularization parameter λ is chosen with cross-validation. We train our algo-
rithm using gradient descent where we loop over all the ratings in our dataset.

3 Prototype

We create a web-based prototype, built using the IMDb dataset to demonstrate
our approach. The user interface comes from Technicolor’s VoD system, M-Go2,
to easy side-by-side comparisons. We apply the methods described in the pre-
vious section to identify groups of similar movies and subgroups. For each user
in the IMDb dataset, we compute the predicted ratings using the matrix fac-
torization model. We select pairs of genres to display to each user based on the
preferred genres for the user. In our prototype we identify the preferred genres
per user based on the most frequent movie genre pairs that the user has already
seen. We then organize the recommended movies with a high rating prediction
in sublists, according to the user most preferred genre pairs. When a user selects
a movie from the sublists of recommended movies, our application suggests the
similar movies presented under four sublists with the added list of words as

2 http://www.mgo.com.

http://www.mgo.com

198 S. El Aouad et al.

described in Sect. 2.2. The sublists are personalized for each user by reorder-
ing the movies according to the users predicted ratings. Our implementation is
available at: http://muse.inria.fr/tagit.

4 Results

In this section, we first show an example of our subgrouping technique for a pop-
ular movie. Then, we discuss the feedback we got from comparing our prototype
to Technicolor’s M-Go service.

Example of Subgrouping Technique. Table 1 shows the sublists of similar
movies we generate for the movie Casino Royale to illustrate the results of our
method. We pick Casino Royal as the James Bond series is very popular, so we
hope most readers will relate to it. The second row of the table presents the
genre combination of two sublists; the third row presents the subtitle of each
sublist (i.e., the words that describe the movies in each sublist); and the bottom
part of the table presents the set of movies in each sublist.

Table 1. Sublists of movies similar to “Casino Royale”.

Casino Royale (2006)

Action and Thriller Action and Adventure

shoot, blow, rambo, bullet, enemy,
bruce, flick, hard, weak, gun, air,
machine, pace, bad, kill, escape,
impossible, hole, team, pack

cgi, superhero, hero, matrix, rescue,
knight, cgus, trilogy, destroy, visual,
terminator, batman, battle, earth,
comic, blockbuster, super, original,
special, superman

Taken 2 Indiana Jones and the Kingdom of
the Crystal Skull

From Paris With Love Captain America: The Winter Sol-
dier

Lethal Weapon Batman Begins

Mission Impossible III X-Men Origins: Wolverine

Goldfinger Transformers: Revenge of the Fallen

Live Free or Die Hard Pacific Rim

The Dark Knight Rises Captain America: The First
Avenger

Rambo The Scorpion King

The One Pirates of the Caribbean: At
World’s End

We see that using our sub grouping method the movies in each sublist are
consistent, which mean that they share common features. For example, in the

http://muse.inria.fr/tagit

Exploiting Crowd Sourced Reviews to Explain Movie Recommendation 199

first sublist, all the movies are action-packed movies. In the second list, almost
all movies are sequel adventurous movies.

The words in the subtitle describe the movies in each sublist. These words
contain descriptive words such as (visual and battle), and qualitative words for
example (super and original), as users tend to use both qualitative and descrip-
tive words while expressing their opinion about a movie. The subtitles help us
make a distinction between sublists. For example, the first sublist is about action
packed movies: gun, shoot, kill, blow, escape, whereas the second is about movies
with visual effects (cgi, visual) and sequel movies (the fact that it contains tril-
ogy movies such as: Indiana Jones, Captain America, Batman, Transformers
and The Pirates of the Caribbean).

User Feedback. During an internal event at Technicolor we demonstrated
our prototype service side-by-side with the M-Go website. M-Go groups sim-
ilar movies using manual labels provided by a third party service. We compare
with M-Go because it is the existing service of Technicolor and most of the
people attending the event were Technicolor employees. We had feedback from
about 50 users who visited our stand; mainly Technicolor’s employees expert in
the movie domain.

We summarize the lessons learned from their feedback as follows. Almost
all users agreed that it is hard to decide quickly on which movie to watch with
existing systems. After seeing our sublists users said that they appreciated having
the genre pair and the list of words per movies as this information gives them an
extra description of the movies in this list; especially when they clicked on a word
to see the most related movies to this word. Many users, however, considered
the single-word tags hard to interpret because it required extra cognitive effort
to combine single words into a meaningful concept; for example to go from chase
and car, to car chase. Users also complained because of the presence of some
generic words such as person or etc. These comments indicate that we must
improve the method to filter words and that instead of presenting single words
we should present short sentences that better capture comments in the reviews.
Users also made a number of comments about how they interact with movie
recommendation systems. They said that they usually look at the first or second
sublist without scrolling down further, also they usually look just at the first
displayed movies in each single sublist without looking at the rest of the sublist.
This observation implies that we should aim at reducing the number of sublists
and the number of movies displayed in each sublist.

5 Related Work

Our work organizes the list of recommended movies into labeled sublists. Prior
studies have also focused on organizing items in labeled lists, for example to
group query results into labeled categories [12,13]. We can see the title and
subtitle of the sublists that our method outputs, as an explanation to movie
recommendations. A number of studies have shown that adding explanation to

200 S. El Aouad et al.

the recommended movies improves the user satisfaction and loyalty to the sys-
tem [1,4–6]. Herlocker et al. [1] compared between multiple explanation inter-
faces and showed that using a simple interface outperformed complex explana-
tion interfaces. The types of recommendation explanation include item-based,
feature-based, and tag-based explanation. For example item-based explanation
has the format: We Recommend the movie X because you reviewed the movie Y.
Feature-based explanation has the format: We Recommend the movie X because
it contains the features Y and Z. Finally, in tag-based explanation, the explana-
tory tags are the tags that characterize both the user profile and the movie pro-
file. Chen et al. [5] showed that using tag-based and feature-based explanation
performed better than item-based explanation. Therefore in our study we will
combine feature-based and tag-based explanation. Chen et al. [5] also presented
a method to explain recommendation using tags. The main difference with our
approach is that we extract single-word tags automatically from user reviews
rather than using the tags explicitly entered by users. We believe that the full
reviews contain rich meta-data that is essential to group and label movies.

6 Conclusion and Future Work

Movie recommenders generally give little insight on why a given movie is rec-
ommended. We propose to leverage crowd sourced reviews written by internet
users to provide additional information about recommended movies. We use LDA
applied to words found in reviews as a novel approach to content similarity that
we combine to matrix factorization for personalization of recommendations. We
attach to recommended movies a set of single-word tags that best describe these
movies using reviewers’ own vocabulary. This approach eliminates the manual
tagging of movies used in most recommenders. Results are encouraging. We have
shown the results of our method to around 50 people (experts in media creation
and delivery). Most users found that the insight given by the title and subti-
tle was helpful as it helped them understand the common characteristics that
describe the movies in each sublist. There are several interesting directions to
improve this work. First, we plan to use meaningful expressions (e.g. Complex
story or Funny action) rather than single-word tags in labeling the movie sub-
lists. Our next objective is to personalize such vocabulary and use the most likely
words a user would use to comment a movie. Last, we intend to evaluate our
system with a large panel of real users, using an A/B testing for our system and
M-Go in order to understand (1) if users prefer our automatic clustering and
explanation over the manual one and (2) if they think our recommendation is
more acute.

Acknowledgment. This project is supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) no. 611001 (User-Centric Networking).

Exploiting Crowd Sourced Reviews to Explain Movie Recommendation 201

References

1. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering rec-
ommendations. In: Proceedings of the ACM Conference on Computer Supported
Cooperative Work. ACM (2000)

2. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

4. Tintarev, N., Masthoff, J.: Effective explanations of recommendations: user-
centered design. In: Proceedings of the ACM Conference on Recommender Sys-
tems. ACM (2007)

5. Chen, W., Hsu, W., Lee, M.L.: Tagcloud-based explanation with feedback for rec-
ommender systems. In: Proceedings of the 36th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. ACM (2013)

6. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: MoviExplain: a recommender
system with explanations. In: Proceedings of the Third ACM Conference on Rec-
ommender Systems. ACM (2009)

7. Diao, Q., et al.: Jointly modeling aspects, ratings and sentiments for movie rec-
ommendation (JMARS). In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM (2014)

8. Amatriain, X.: Beyond data: from user information to business value through per-
sonalized recommendations and consumer science. In: Proceedings of the 22nd
ACM International Conference on Information and Knowledge Management. ACM
(2013)

9. Bell, R.M., Koren, Y.: Lessons from the Netflix prize challenge. ACM SIGKDD
Explor. Newsl. 9(2), 75–79 (2007)

10. The Total Audience Report: Q4 2014. http://www.nielsen.com/us/en/insights/
reports/2015/the-total-audience-report-q4-2014.html

11. Tom Vanderbilt. The science behind the netflix algorithms that decide what you’ll
watch next. http://www.wired.com/2013/08/qq netflix-algorithm

12. Zeng, H.-J., et al.: Learning to cluster web search results. In: Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM (2004)

13. Zhao, J., He, J.: Learning to generate labels for organizing search results from a
domain-specified corpus. In: IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2006. IEEE (2006)

http://www.nielsen.com/us/en/insights/reports/2015/the-total-audience-report-q4-2014.html
http://www.nielsen.com/us/en/insights/reports/2015/the-total-audience-report-q4-2014.html
http://www.wired.com/2013/08/qq_netflix-algorithm

A Formal Model for WebRTC
Signaling Using SDL

Asma El Hamzaoui1(&), Hicham Bensaid1,2,
and Abdeslam En-Nouaary1

1 Institut National des Postes et Télécommunications, Rabat, Morocco
{elhamzaoui,bensaid,abdeslam}@inpt.ac.ma

2 Labmia, Faculté des Sciences, Mohammed V University in Rabat, Rabat,
Morocco

Abstract. We present a formal approach to modeling Jingle protocol and the
related IETF protocols STUN, TURN and ICE using Specification and
Description Language (SDL). The aim is to perform a complete unambiguous
model for signaling exchange between two WebRTC communicating entities,
and study their behavior in real network conditions like the presence of NAT
(Network Address Translation) and firewalls. The main objective is to demon-
strate the feasibility of using a formal language, such as SDL to model a system as
complex as IETF RTCWeb architecture using Jingle as a signaling mechanism.

1 Introduction

Nowadays, Real Time Communication (RTC) is used daily in our modern society with
different forms of rich mobile and desktop applications. This led to the development of
new web technologies such as HTML5. Furthermore, innovations on hardware and
infrastructure fields increase the available bandwidth. Thus, WebRTC, as an ongoing
standardization effort, appears to enhance user experience in RTC via theWeb, which is a
Peer to Peer (P2P) communication between browsers without any additional installation.

In order to establish a WebRTC session, there is a need for a signaling protocol to
allow communicating parties to agree on parameters such as codecs, types of media,
transport addresses, etc. Signaling in WebRTC will remain completely abstract, which
means that there is no specification that defines how it will be performed. However, it is
specified that the session descriptions will be exchanged using Session Description
Protocol (SDP); the application is allowed to control the signaling plane of the mul-
timedia session through the interface specified in Javascript Session Establishment
Protocol (JSEP) API [1]. In this paper, we focus on Jingle protocol to setup, manage
and the teardown multimedia sessions between two peers.

Besides signaling, there are other factors that may cause a session establishment to
be denied between peers: NAT traversal and firewall issues. Some technical concepts
have been introduced and used in WebRTC to enable connection without having to
reveal the IP addresses and to overcome the firewall blocking issues. This is ICE
(Interactive Connectivity Establishment) [2], which makes use of two other protocols:
Session Traversal Utilities for NAT (STUN) [3] and Traversal Using Relays around
NAT (TURN) [4].

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 202–208, 2016.
DOI: 10.1007/978-3-319-46140-3_16

In fact, tests and simulations of implementations are not enough to reach a high level
of confidence. It is important to have a formal model in order to asset formal evidence of
specifications respect and propose well-founded improvements to this technology. To
the best of our knowledge this aspect is not tackled for protocols involved in WebRTC,
except the SDL model of SIP protocol that was carried in the context of VoIP [5]. Our
contribution to study the signaling part of WebRTC starts by working on Jingle com-
bined with STUN, TURN and ICE for NAT and firewall traversals.

The remainder of this paper is structured as follows: In Sect. 2, we give some
clarification about Jingle protocol. Section 3 explains the main features of our Jingle
formal model using SDL. Section 4 concludes the paper and presents our future work.

2 Jingle

Jingle is a signaling protocol used for initiating and managing P2P media sessions in a
way that is interoperable with existing Internet standards. It was in fact designed to be
an open technology that takes into account requirements to inter-operate with
SIP-based technologies [6].

In fact, Jingle has many strong points that could be summarized as follows:
A conception based on XML; An ability to negotiate each result individually [8];
A good collaboration with NAT traversal mechanisms [10], and a strong authentica-
tion, channel encryption, and trusted identities [7].

These considerations have led many software developers to incorporate Jingle into
their applications such as Google hangout or iChat for Apple.

Jingle clearly separates the signaling channel from the data channel, and the
application formats (e.g., audio) from the transport methods (e.g., RTP). The basic flow
to establish a session includes the exchange of Jingle messages such as: “Session-
initiate”, “ACK” and “Session-Accept”. After the exchange of media, one of the peers
can close the communication by “Session-terminate” message. Moreover, it is possible
to add, modify, and remove both application types and transport methods in an existing
session by messages such as: “Transport-Info”, “Content-Add” etc.

3 Jingle Signaling Model

In this section, we present our SDL formal model of Jingle protocol collaborating with
NAT traversal protocols, such as STUN TURN and ICE, in the context of WebRTC.
This work is done by analyzing the protocols (informal) specifications, [2–4], [8–11]
and [6]. We describe the various levels of abstraction of our model in terms of
architecture, behavior and data. The complete SDL model is available in1, thus by
conciseness only selected diagrams will be presented in this paper.

1 https://sites.google.com/site/jinglesdlmodel/.

A Formal Model for WebRTC Signaling Using SDL 203

https://sites.google.com/site/jinglesdlmodel/

3.1 Architectural Design for Jingle Using SDL

SDL is a formal language standardized by ITU, [12], for modeling and developing
communication protocols. The SDL architecture represents the division of large sys-
tems into more comprehensible structures. Thus, the design of our model starts first by
partitioning the system into SDL blocks. Dependencies between blocks are defined by
connecting them with channels. A SDL system represents static interactions between
WebRTC entities. The channels connected between various block instances specify the
signals or Control messages that are sent between Jingle peers and/or ICE servers.

The system level of our SDL model is presented in Fig. 1. The main blocks are the
Initiator Browser, the Terminator Browser, which represent the two WebRTC peers
and the ICE servers block. The ICE servers block is further divided into two sub-
blocks: STUN Server Type, and TURN Server Type. Figure 2 depicts the ICE Servers
block.

The Initiator and the Terminator are composed of two sides that represent the
bidirectional communication: Sending Browser Type and Responding Browser Type,
as shown in Fig. 3. One of the goals of formal modeling is to optimize the structure.
From analyzing of the ICE Servers sub-blocks, we notice that there aren’t any relations
between the two blocks STUN and TURN servers, and that they have mainly the same
interfaces with the other blocks with differences in the internal behavior. Thus, in order
to optimize the structure, we propose to add to our specification one block named “ICE
Proxy” that allows to aggregate all NAT traversal transaction and forward the requests

Fig. 1. System view of Jingle signaling protocol.

204 A. El Hamzaoui et al.

to STUN or TURN server according to the context (the existence of the TURN server
or not, the availability of several STUN servers or not in the network…). This addition
permits a great flexibility and scalability of the model. However, this proposal can
introduce unnecessary latency in the server response. This issue will be investigated in
more detail in future work. The next subsection of this paper introduces the behavioral
model of Jingle.

Fig. 2. Block ICE view.

Fig. 3. Block initiator view.

A Formal Model for WebRTC Signaling Using SDL 205

3.2 Behavioural Design for Jingle Using SDL

Before writing the behavioral diagrams in the SDL language, we first wrote Extended
Finite State Machines (EFSM) that illustrate states and triggering transitions. This
behavior was specified in means of active objects (processes and procedures) and
passive objects (data types). Processes describe how signals and data exchanged
between blocks are handled. As an example, one diagram of the inside behavior of the
Sending Process Type is presented in Fig. 4.

In this diagram, the first transition from idle state is triggered by the Input signal
“CreatOffer” which is a JSEP function. This function has a parameter “Trans” that has
2 possible values “RAWUDP” or “ICEUDP” depending on the transport option
allowed in the context. This decision permits to follow one of two paths. If the protocol
ICE is not used, the initiator calls the procedure “DetermineSenderCandidates”. So that
depending on the type of NAT, if there is none, a permissive or a symmetric NAT type,
the default candidate will be respectively the host transport address, the server reflexive
address or the relay address. Subsequently, it sends the offer to the recipient by using
Jingle “session-initiate” action. If the variable “trans” value is ‘ICEUDP’, this means
that the protocol ICE is enabled and we need to call the procedure “GatherSen-
derHostCandidate” and to gather other candidates either by asking a STUN server or a
TURN server, if it exists. This is done by sending out messages “STUNReq” or
“AllocateReq”. Finally, the process progresses to the next state: “S5” or “S12”.
Besides, two timers are set to model response timer expiration, which is an error that
can occur if no response from TURN or STUN servers is sent back to answer the
allocate or STUN request in a specific time.

Fig. 4. Jingle behavioral model extracts.

206 A. El Hamzaoui et al.

3.3 Data Representation in the Model

Jingle and ICE messages are defined as SDL signals in the “JingleMessages” package.
For example, the key header fields in a Jingle message are represented by the corre-
sponding signal parameters. The header fields that we have included in our SDL model
are: “From”, “To”, “Type”, “Initiator”, “sessionid”, “Mediatype”, “transporttype”,
“PayloadTypeList” and “CandidateList”. There are many header fields available in
Jingle, but we believe these fields are the most important ones. In fact, they convey the
state of all the participants in the session. One new data type is named “Jid” (i.e., Jingle
id), which is a structure with three Charstring fields: User id, Domain and Resource.
This new type describes an address like “ahmed@inpt.ac/office”. Overall, we should
note that this model can be extensible.

4 Conclusion and Future Work

This paper presents a formal SDL model of a signaling mechanism and NAT traversal
utilities used in the context of WebRTC. Those asynchronous communication protocols
in the context of a distributed system and manipulating complex data structures are of
great interest to be analyzed by formal verification techniques and by performance
testing. The first contribution was this unambiguous representation of the WebRTC
signaling system that increases the understanding of the behavior by developers, and
allows performing a conceptual validation as well as a correct implementation.

In future work, we will proceed to the verification and validation of the model by
model checking. Subsequently, a general framework of signaling protocol verification
for Web communication will be elaborated. Furthermore, some other WebRTC aspects,
such as multiparty communication will be included in the model.

References

1. Javascript Session Establishment Protocol Specification, IETF Internet Draft. V.06 (2015)
2. Interactive Connectivity Establishment: A Protocol for NAT Traversal for Offer/Answer

Protocols Specification, IETF Internet Standard track. RFC 5245 (2010)
3. Session Traversal Utilities for NAT (STUN), IETF Internet Standard track. RFC 5389

(2008)
4. Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal

Utilities for NAT (STUN). IETF Internet Standard track. RFC 5766 (2010)
5. Chan, K.Y., v. Bochmann, G.: Methods for designing SIP services in SDL with fewer

feature interactions. University of Ottawa (2003)
6. Jingle Specification, XMPP Standard Foundation, Standard Track. XEP-0166 (2008)
7. Saint-Andre, P., Smith, K., Tronçon, R.: XMPP: The Definitive Guide, Building Real-Time

Applications with Jabber, 1st edn., Treseler, M.E. (ed.) O’Reilly Books, New York (2009)
8. Jingle RTP Session Specification. Standard Track. XEP-0167 (2008)

A Formal Model for WebRTC Signaling Using SDL 207

9. Jingle RAWUDP Transport Specification. Standard Track. XEP-0177, (2009)
10. Jingle ICEUDP Transport Specification. Standard Track. XEP-0176 (2009)
11. RTCWeb JSEP XMPP/Jingle Mapping Specification, IETF Internet Draft. V.02 (2013)
12. ITU-TS Recommendation Z.100: Specification and Description Language (SDL),

International Telecommunication Union, ITU-TS, Geneva, Switzerland (1999)

208 A. El Hamzaoui et al.

An Incremental Proof-Based Process
of the NetBill Electronic Commerce Protocol

Sanae El Mimouni(B) and Mohamed Bouhdadi

LMPHE Laboratory, Faculty of Sciences, Mohammed V University, Rabat, Morocco
sanae.elm@gmail.com, bouhdadi@fsr.ac.ma

Abstract. This paper presents an incremental formal modeling of the
NetBill protocol using Event-B method. The NetBill protocol is an elec-
tronic commerce protocol designed for micropayment systems for selling
and delivery of information and goods through the internet. We model
the protocol step by step using refinement, which is the key mechanism
of the Event-B method. Event-B modeling starts with an abstraction of
a system and adds details during refinement levels in order to gain a final
model close to the implementation. Moreover mathematical proofs are
incorporated into Event-B to verify the correctness of refinement steps.
The outcome of this incremental approach was that we achieved a very
high degree of automatic proof. In the developed Event-B model of the
NetBill protocol described in this paper, all proofs are generated and
discharged by the Rodin tool.

Keywords: NetBill protocol · Event-B · Refinement · Formal method ·
Rodin

1 Introduction

With the growth of the internet community and the endless possibilities the
internet offers to the person, it didn’t take long before someone realized that
the web is a really good place for the commercial business. So, very quickly
electronic commerce was born, offering almost all kinds of goods to be purchased
and delivered, simply over the internet.

Electronic commerce protocols are security protocols that allow customers
and merchants to conduct their business electronically through the internet. In
this article we choose to model the NetBill protocol [5,7].

NetBill is an electronic commerce protocol, which allows customers to pur-
chase information goods from merchants over the internet.

Despite this being a well-known protocol, it is surprisingly difficult to verify
the correctness of a design based on this protocol by hand. So it makes very
desirable the application of formal methods and techniques to the modeling and
design of electronic commerce protocols to gain high assurance about their cor-
rectness. Hence, formal methods are needed in order to ensure their correctness
and structure their development from specification to implementation. In this
paper we presented our approach to modeling NetBill protocol in Event-B [1].
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 209–213, 2016.
DOI: 10.1007/978-3-319-46140-3 17

210 S. El Mimouni and M. Bouhdadi

Event-B [1] is a formal method that uses the concept of refinement [3,6] in
modeling. Event-B modeling starts with an abstraction of a system and adds
details during refinement levels in order to gain a final model close to the imple-
mentation. Moreover mathematical proofs are incorporated into Event-B to ver-
ify the correctness of refinement steps. In this approach we liberally used refine-
ments, both of machines and of contexts. We give a great deal of attention to
proofs. Consequently, we now have a specification of NetBill protocol where all
proof-obligations have been discharged.

The remaining parts are organized as follows. In Sect. 2 we briefly introduce
Netbill protocol and Event-B. The main part of this paper, Sect. 3 describes
our strategy of refinement, moreover we will specify our protocol using Event-B.
Sections 4 and 5 summarize the results and draw a conclusion.

2 Background

Netbill protocol. The NetBill protocol is an electronic commerce protocol
optimized for the selling and delivery of low-priced information goods, such as
software or journal articles, across the internet. It was developed by Carnegie
Mellon University in conjunction with Visa and Mellon Bank to deal with micro-
payments of the online order. The NetBill transaction model includes three par-
ticipants: the consumer (C), the merchant (M) and the NetBill server (S). The
protocol begins with a customer requesting a quote for some desired goods, fol-
lowed by the merchant sending the quote. If the customer accepts the quote,
then the merchant delivers the goods and waits for an electronic payment order
(EPO). The goods delivered at this point are encrypted, that is, not usable.
After receiving the EPO, the merchant forwards the EPO and the key to the
server, which handles the funds transfer. When the funds transfer completes, the
server sends a receipt back to the merchant. The receipt contains the decryp-
tion key for the sold goods. As the last step, the merchant forwards the receipt
to the customer. After the customer gets the receipt, he can decrypt and use
the goods. The server acts as a trusted party between the consumer and the
merchant. It ensures that the funds are transferred between the consumers and
the merchants banks and holds a copy of the receipt. Hence, if the EPO of the
consumer does not clear or if the consumer does not receive a receipt, the server
can be contacted.

Event-B Method. Event-B Method models the states and events of a sys-
tem. Variables present the states. Events transform the system from a state
to another state by changing the value of variables. The modeling notation is
based on set theory and logic. Event-B uses mathematical proof to ensure con-
sistency of a model. An Event-B model consists of contexts and machines. The
contexts describe the static elements(types and constants) of the model, whereas
the machines specify the dynamic behavior(variables and events) of the model.
Event-B is provided with tool support in the form of a platform for writing
and proving specifications called Rodin [2]. A detailed account of the Event-B
language can be found in [1].

An Incremental Proof-Based Process of NetBill Protocol 211

3 Specifying NetBill Protocol Using Event-B

As we said above, we use the refinement approach to gradually model the
protocol. We start with a very abstract model and then we add details, to
obtain a correct and concrete model. For our model we consider the trans-
actions from the point of view of the customer and the merchant [4], which
is shown in Fig. 1. The development of the Netbill protocol will be done by
means of an initial model followed by two refinements: due to a space limit
we do not present the complete specifications produced at each refinement.
Instead we describe the more interesting aspects of each particular step.

Fig. 1. Customer and merchant view
of a transaction

(1) The initial model is a high level
of abstraction showing that the customer
orders a product and that the transaction
terminated. In this initial model, we just
formalize what the customer can eventu-
ally do which is order a product. First,
we define a carrier set Goods: it describes
the goods information (PRD, PRICE and
KEY). Then we define another carrier
set named Transaction. It is made of
six distinct elements: idle, ordered, con-
firmed, delivered, cashing and ended which
present the transaction status. We define
the dynamics of the system by means of
three events: The INIT event makes vari-
able goods empty, agree to false and the
status of the transaction to idle, the Order event and the Terminate event which
correspond to terminate a transaction.

INIT =̂
BEGIN
act1 : goods := ∅
act2 : trans := ∅
act3 : status := ∅ ×

{idle}
act4 : agreed :=

FALSE
END

Order =̂
ANY
g
WHERE
grd1 : g ∈ goods
grd2 : goods = ∅
THEN
act1 : goods := {g}
END

Terminate =̂
ANY
t
WHERE
grd1 : t ∈ trans
grd2 : agreed =

TRUE
THEN
act1 : status(t) :=

ended
END

(2) The first refinement introduce delivery goods operation along with accept-
ing the encrypted goods by the customer. We are going to refine our abstract
model to a more concrete one, by adding more events and more variables to

212 S. El Mimouni and M. Bouhdadi

our model. In this step, event Order from the previous machine will be refined,
the (...) indicate the guards and actions of the previous refinement. In addi-
tion to refine this latter, we add new events to this refinement which are: Start:
corresponding to the start of a transaction where initially all transactions are
idle.

Goods delivery: correspond to
sending the encrypted goods to the
customer and change the status of the
transaction from idle to delivered and
event Pay: correspond to accepting the
encrypted goods, generating an EPO
and changing the status of the trans-
action from ordered to confirmed.

Start =̂
ANY t
WHERE

grd1 : t ∈ Transaction \ trans
grd2 : t ∈ dom(status)

THEN
act1 : trans := trans ∪ {t}
act2 : status(t) :=idle END

Order =̂
REFINES Order
ANY g, m, t, p
WHERE
...

grd3 : m /∈ Merchant
grd4 : t ∈ trans
grd5 : p ∈ PRICE

THEN
...

act2 : status(t):=ordered
act3 : Merchant := Merchant

∪ {m}
act4 : value(g) := p
act5 : t Id := t Id +1

END

(3) The second refinement contains the decryption goods along with the oper-
ations made in the customer and merchant accounts. Terminate event from pre-
vious machine will be refined in form that the NetBill server credits the account
of merchant and sends a receipt to the merchant. Then we add new events which
are: Endored EPO: correspond to checking the EPO sent by the customer, then,
the status of the transaction will change from delivered to cashing, event accept:
getting the decryption key, then, the status of the transaction will change from
confirmed to ended and last, event terminate1: NetBill server debits the account
of customer.

4 Results and Discussion

In this present paper, NetBill protocol is developed and proved to be correct
over a refinement step. The proof of correctness is done concurrently with the
development. The stepwise refinement approach allows us to introduce and prove
each property at the most appropriate phase in the development, which greatly
simplified the task of proving its correctness. The consequence of this incremental
approach was that we achieved a very high degree of automatic proof.

Proofs Statistics: The proof statistics for the development of the NetBill
protocol is in Table 1. For this specification, most of the proof obligations are
automatically discharged by Rodin. The complete development of the NetBill

An Incremental Proof-Based Process of NetBill Protocol 213

Table 1. Proof statistics for the NetBill protocol development

Model Total POs Automatic proof Interactive proof

Abstract model 10 10 0

First refinement 48 36 12

Second refinement 37 28 9

Total 95 74 21

protocol results in 95 POs, within which 74 are proved automatically by the
Rodin tool, the remaining 21 POs are proved interactively using the Rodin tool.

5 Conclusion

In this paper we have presented formal modeling of the NetBill protocol using
Event-B. In our approach we have used Event-B as proof-based development
method which integrate formal proof techniques for writing specifications and
building the model systematically using formal refinement, the main idea is to
start with a very abstract model of the system under development. Details are
gradually added to this first model by building a sequence of more concrete ones.
This strategy eases the proof of the correctness of requirements, because only
a small number of proof obligations are generated at each step. An Event-B
model is considered as correct, when each machine, as well as the process of
refinement, are proved by adequate theorems named proof obligations (PO) and
that each event is feasible. The management of proof obligations is a technical
task supported by RODIN, which provides an environment for developing correct
by construction models for software-based systems.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fundam. Inform. 77(1–2), 1–28 (2007)

4. Breitling, M., Philipps, J.: Transitions into black box views -the NetBill protocol
revisited-. Technical report, Institut fur Informatik Technische Universitat Munchen
(2000)

5. Cox, B.: NetBill security and transaction protocol. In: USENIX Workshop on Elec-
tronic Commerce. USENIX Association (1995)

6. De Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Theories
and their Comparison, Cambridge Tracts in Theoretical Computer Science, vol. 46.
Cambridge University Press, Cambridge (1998)

7. Sirbu, M.A., Tygar, J.D.: NetBill: an internet commerce system optimized for
network-delivered services. IEEE Pers. Commun. 2(4), 34–39 (1995)

Securing NFC Credit Card Payments Against
Malicious Retailers

Oliver Jensen(B), Tyler O’Meara, and Mohamed Gouda

University of Texas at Austin, Austin, USA
ojensen@cs.utexas.edu

Abstract. The protocol by which “contactless” (NFC) credit cards
operate is insecure. Previous work has done much to protect this protocol
from malicious third parties, e.g. eavesdroppers, credit card skimmers,
etc. However, most of these defenses rely on the retailers being honest,
and on their Points of Sale following the credit card protocol faithfully.
In this paper, we extend the threat model to include malicious retailers,
and remove any restrictions on the operation of their Points of Sale. In
particular, we identify two classes of attacks which may be executed by a
malicious retailer: Over-charge attacks exploiting victim customers, and
Transparent Bridge attacks exploiting victim retailers. We then extend
the protocol from previous work in order to defend against these attacks,
protecting cardholders and honest retailers from malicious retailers.

1 Introduction

In any credit card purchase, there are two primary parties: the customer and the
retailer. Each party controls a device: the customer controls a credit card, and
the retailer controls a Point of Sale. It is these devices which communicate on
behalf of their controlling parties to coordinate a transaction. The Point of Sale
subsequently communicates with the credit card’s issuing bank to coordinate the
transfer of funds.

Traditional magnetic-stripe credit card readers have been in operation for
many years, but they face several important drawbacks: it is easy to accidentally
de-magnetize your credit card, and dirty or corroded contacts can make even a
well-magnetized card difficult to read. As a result, it is not at all uncommon
for a retailer to need to swipe a credit card multiple times before a successful
read occurs. Contactless credit card systems solve these problems, using a short-
range wireless channel called NFC to communicate with a chip residing within
the credit card. This results in more robust credit cards, and less maintenance
on credit card readers.

Unfortunately, the protocol used by current NFC credit card payment sys-
tems for communication between the Point of Sale and the credit card is insecure.
The communications are not encrypted, and the only protection afforded to the
customer is the inclusion of a single-use card verification value (called an iCVV).
This iCVV, freshly generated by the credit card for each transaction, is unpre-
dictable to third parties and thus (in theory) a charge accompanied by a valid
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 214–228, 2016.
DOI: 10.1007/978-3-319-46140-3 18

Securing NFC Credit Card Payments Against Malicious Retailers 215

iCVV must have come from the credit card. However, the only thing a valid
iCVV assures is that the credit card was, somehow, involved in the process.

Previous work [8] has focused on securing this protocol against malicious
third parties (other than the customer and the retailer). It examines four classes
of attackers: eavesdroppers, skimmers, relay attackers, and compromised Points
of Sale. In all of these attacks, the attacker gains sensitive cardholder information
(i.e. the credit card number and expiration date), since the NFC credit card
protocol does nothing to conceal it. Skimmers and relay attackers can easily
make fraudulent use of credit card data, since by skimming a credit card they also
acquire an unused iCVV (rendering this defence nearly useless). The previous
work proposes a modification to the NFC credit card protocol, which prevents
the abovementioned attacks, with very little additional computation.

In this paper, we extend this protocol to defend against a new class of
attacker: the malicious retailer. Traditionally, systems involving an authenti-
cation card (e.g. credit cards, building entry, etc.) focus on protecting a system
from unauthorized users, but do little to protect users from a malicious system.
This assumption is typically justified when the system is a unified entity such as
an office building or communal garage. Credit cards break this mould, wherein
every retailer is in control of their own device, and it is to these devices that a
credit card holder must authenticate. That is, the credit card model implicitly
trusts retailers, and the Point of Sale devices under their control.

We make the case that retailers should not be implicitly trusted. We enumer-
ate two attacks which a malicious retailer may perpetrate: a simple over-charge
attack, and a more complex “transparent bridge” attack. These attacks both
stem from the lack of involvement of the customer in the protocol, and the abil-
ity of the retailer’s Point of Sale to display one price to the customer, and then
charge a different price to that customer’s credit card. We build off of the ideas
in the Secure CC Protocol [8] and extend it, preventing these attacks.

2 NFC Credit Card Payments

A credit card payment system has five fundamental principals:

1. A Customer who wants to make a purchase.
2. A Bank at which the Customer has an account.
3. A Credit Card issued by the Bank to the Customer.
4. A Retailer from whom the Customer wishes to make the purchase.
5. A Point of Sale controlled and initialized by the Retailer. It displays the

purchase price to the Customer, and communicates with both the Credit Card
and its issuing Bank to coordinate the transaction.

It is increasingly popular for retailers to support credit card payments over
NFC. NFC is a very attractive channel for use in payment systems, because it
provides the benefits of wireless communication, while simultaneously mitigating
many of the drawbacks commonly associated with wireless channels:

216 O. Jensen et al.

– NFC is a wireless channel, and thus is unaffected by card demagnetization or
read errors due to dirty or corroded contacts.

– NFC has a very short range, mitigating many privacy concerns associated with
wireless channels.

– NFC supports communication with unpowered (termed “passive”) devices,
meaning that a payment device (e.g. a credit card) need not have its own
power source.

In an NFC credit card payment system, the Customer indicates an intention
to pay by enabling communication between the Point of Sale and his NFC Credit
Card. This is done by bringing the Credit Card within range of the Point of Sale
(no more than 4 cm away). Once within range of each other, the Point of Sale
may send messages to the Credit Card and receive any resulting responses.

We will refer to the protocol currently used by NFC credit card payment sys-
tems to coordinate a transactions as the “Original CC Protocol”. The messages
involved in this protocol, illustrated in Fig. 1, are as follows:

1. The Point of Sale displays the price of the purchase on its screen, while
simultaneously attempting to establish communication over NFC.

2. If the Customer agrees with the displayed price, he brings his Credit Card
within 4 cm of the Point of Sale and communication between the Point of Sale
and the Credit Card is established.

3. The Point of Sale sends a solicitation message to the Credit Card.
4. The Credit Card responds to the solicitation message with a card information

message, supplying the Point of Sale with the necessary information to issue
a charge, and identifying the Credit Card’s issuing bank.

5. Then the Point of Sale sends a charge request message to the Bank. This
message is sent securely over the Internet.

6. The Bank verifies the details of the charge request, and responds to the Point
of Sale with a acceptance message, indicating whether the charge has been
accepted.

The message contents in the Original CC Protocol are as follows:

Solicitation: In practice, the solicitation message actually consists of a number
of messages sent in both directions. Its purpose is to exchange information
about the Credit Card type (e.g. Visa Credit) and the Point of Sale model
(e.g. 2PAY.SYS.DDF01), which defines the format of subsequent messages.
It is a choreographed dance with a specific (and constant) set of messages
for a given model of Point of Sale and Credit Card, so we abstract this
conversation to a single solicitation message.

Card Information: This message contains all information necessary to coor-
dinate an arbitrary charge request to a credit card’s issuing bank. It consists
of four components:
– The Credit Card number, identical to the number printed on the front of

the card.

Securing NFC Credit Card Payments Against Malicious Retailers 217

Bank Point of Sale Customer
price display ($)

Card
enable device

solicitation

card information
(CC#, exp, iCVV)

charge request
(CC#, exp, iCVV, $)

approve?
(Y / N)

Fig. 1. The original CC protocol

– The Credit Card’s expiration date.
– An iCVV (“integrated Card Verification Value”). This iCVV is a security

code, similar to the 3-digit number printed on the back of a credit card,
but is newly generated for each transaction. It is an element in a pseudo-
random sequence generated by a secret seed known only to the Credit
Card and its issuing Bank, making it unpredictable to third parties.

– The issuing Bank name. This is used for routing purposes, and is not a
component of the subsequent charge request. As such, it is not pictured
in Fig. 1.

Charge Request: This message is sent to the Bank identified in the card
information message, and consists of four components:
– The Credit Card number, identifying the account to be charged.
– The Credit Card’s expiration date.
– The Credit Card’s iCVV.
– The dollar amount to be charged.

Approval: This message consists of a response code determined by the Bank,
indicating its decision relating to the charge request. The bank makes this
decision after verifying the information supplied in the charge request, and
performing additional checks such as matching the purchase to a known
location of the Customer. The most common response codes are the result
of a simple approval decision (i.e. “Approved” or “Declined”), although a
number of different codes (e.g. “Pick up card” if the card was reported lost
or stolen, “Waiting for line” to indicate that the issuer’s lines are currently
busy) are supported. We abstract this message as a single bit: whether or
not the Customer’s account has been charged.

3 Defending Against Malicious Third Parties

While the iCVV in the Original CC Protocol does offer some protection from
fake credit card charges by ensuring that the credit card was involved in some

218 O. Jensen et al.

way, there is much that it cannot defend against. As discussed in [8], the Original
CC Protocol is vulnerable to four types of attacks that can be launched by a
malicious third party (an entity separate from the Customer or Retailer). These
four types of attacks are:

Eavesdropping: wherein a malicious third party listens in on a transaction to
learn the Credit Card’s number and expiration date.

Skimming: wherein a malicious third party harvests payment information from
a Credit Card, and then uses it to perform a fraudulent purchase.

Relay attacks: wherein two malicious accomplices use skimming-like behavior
and out-of-band communication to connect a Credit Card to a Point of Sale
well beyond NFC range.

Attacks facilitated by a compromised point of sale: wherein a malicious
third party has actually compromised the Retailer’s systems, harvesting credit
card information.

To illustrate these attacks, we will discuss the skimming attack, launched
by a malicious third party, called the Skimmer. The Skimmer controls an NFC-
capable smart phone, and approaches an unsuspecting Credit Card to be within
NFC range. He then uses his phone to impersonate a Point of Sale to the Credit
Card, soliciting the card for its payment information. This impersonation is not
difficult as there is no authorization taking place – indeed, an Android applica-
tion called NFC Proxy [1] exists to make this attack trivial to execute.

This attack is illustrated in Fig. 2.

Skimmer Card
Victim

Customer
enable device

(implicit)
solicitation

card information

Fig. 2. A skimming attack

Skimming a credit card does not require explicit authorization from the card’s
owner: an attacker needs only to bring their phone within range of the victim’s
pocket to communicate with an NFC credit card, as a Credit Card assumes
that being able to receive a solicitation message is tantamount to the Customer
intending to make a purchase. A fleeting proximity between the Skimmer’s device
and the Credit Card, perhaps standing in line at a coffee shop or on a crowded
subway, is all that is needed. A fraction of a second suffices.

The Original CC Protocol also implicitly trusts the ability of a Retailer
to keep its data secure. By allowing persistent sensitive information (e.g. the
credit card number and expiration date) to be transmitted to a device under the

Securing NFC Credit Card Payments Against Malicious Retailers 219

Retailer’s control, this protocol invites attacks on the Retailer’s own systems.
This is a very real threat, as evidenced by recent events: over the last three
years, a number of high-profile attacks against chains such as Target, Home
Depot, Nieman Marcus and P.F. Chang’s have delivered hundreds of millions
of credit card records into the hands of attackers [4,9,11,14,15]. These records
consist of credit card numbers with expiration dates, and in many cases also the
cardholder names, billing addresses, and any other information the retailer may
have access to.

Previous work in [8] has described simple and inexpensive ways to thwart
these attacks and others, proposing a replacement protocol termed the “Secure
CC Protocol”. When a credit card is solicited under the Secure CC Protocol,
the Point of Sale includes a randomly generated challenge value ch. Instead of
responding with the card’s private information (i.e. the credit card number and
expiration date), the Credit Card transmits its card ID (a unique identifier, not
considered private) accompanied with a token T, valid for a single purchase. An
outline of this protocol is shown in Fig. 3. Its messages consist of the following:

1. The Point of Sale displays a price on its screen as before, prompting the
customer to bring his credit card within NFC range of the Point of Sale.

2. The Point of Sale sends a solicitation message to the credit card, including a
random challenge ch.

3. The credit card responds with an (ID, T) pair accompanied with the issuing
bank’s name for routing. ID is a universally unique identifier (also known as a
UUID or GUID) to identify the card. While this value can be used to “track”
the card, it is not considered sensitive as it serves no other purpose. T is a
token which authorizes a single purchase for a given challenge. The function
by which it is generated can be thought of as a function which concatenates
the challenge ch, a card specific secret value known only to the card and the
bank, and the iCVV, and then hashing the result.

4. The Point of Sale sends a charge request to the bank consisting of the (ch,
ID, T) tuple, accompanied with the dollar amount that the retailer wishes
to charge.

5. The bank looks up the account associated with ID in order to ascertain the
card-specific secret value and the next expected iCVV. It then calculates
Tbank = Hash(ch, secret, iCV V), verifying that Tbank = T to authenticate
the charge. The token T being dependent on the challenge ch renders skim-
ming and similar attacks impotent, since the attacker cannot predict the
challenge which it will be issued when attempting to use skimmed data.

4 Malicious Retailers

Previous work (including the Secure CC Protocol [8]) has focused primarily on
defending the Retailer and Customer from malicious third parties, such as eaves-
droppers and credit card skimmers. By contrast, we examine the problems posed

220 O. Jensen et al.

Bank Point of Sale Customer
price display ($)

Card
enable device

solicitation
(ch)

charge token
(ID, T)

charge request
(ch, ID, T, $)

approve?
(Y / N)

Fig. 3. The secure CC protocol

by malicious retailers, and focus on how to secure NFC credit card payment sys-
tems against them. As will be described shortly, attacks by malicious Retailers
are particularly pernicious, as they can be less easily identified as fraud. Even
when these attacks are detected, the resolutions are not always simple.

Recall that when making a payment, the Customer first views the price
about to be charged on the screen of the Retailer’s Point of Sale. Using this
information, he makes his one and only decision: to allow the payment protocol
to occur, or not. The underlying assumption that the customer makes is that
the price displayed on the screen is equal to the price which will be charged
to his Credit Card. This need not be the case: the information displayed on a
screen is merely an assurance in the informal sense: the numbers displayed to
the customer should reflect the dollar amount which will subsequently be sent
with the charge request, but there is no mechanism in place to require this. As
a result, two attacks emerge.

4.1 The Over-Charge Attack

An Over-charge attack is characterized by the malicious Point of Sale displaying
one price to the customer (in the price display message of the CC Protocols
shown in Figs. 1 and 3) and then sending a higher price to the Bank (in the
charge request message of the CC Protocols). As a result, the Customer believes
himself to have been charged one amount, but is instead charged an arbitrarily
higher amount. Since the Customer is uninvolved in the protocol besides the
initial step of allowing it to occur, there is no mechanism ensuring that the price
displayed to the Customer matches the price that the (malicious) Point of Sale
sends to the Bank.

Should a Customer become aware of an over-charge when reviewing his
monthly statement, he may file a charge-back request with his Bank, nullify-
ing the payment as fraudulent. As a result, while the amount by which the
Customer may be overcharged is unconstrained by the protocol, it should be

Securing NFC Credit Card Payments Against Malicious Retailers 221

Bank
Malicious

Point of Sale
Victim

Customer
price display

($10)

Victim Card
enable device

solicitation

card information

charge request
($1000)

approve?
(Y / N)

Fig. 4. Over-charge attack

relatively small for the attack to ultimately be successful. For example, it is easy
to notice a gas station charge for $500.00 instead of $21.87 on a monthly state-
ment, and the resulting investigation would be uncomplicated. However, should
the struggling business choose to increase charges by 5 %, the resulting gas sta-
tion charge of $22.96 could very easily be overlooked. Even were it to be noticed,
the victim Customer may have difficulty proving the discrepancy (Fig. 4).

4.2 The Transparent Bridge Attack

A more interesting attack is described by Drimer and Murdoch [3]. It considers a
man-in-the-middle attack, perpetrated by a malicious Retailer and an accomplice
with specialized equipment. This attack involves four parties: a victim Customer,
a malicious Retailer, a malicious Customer, and a victim Retailer. The malicious
retailer and the malicious customer collude to perform this attack.

The malicious Customer is issued with a special card, capable of relaying
all messages it receives from a Point of Sale to the malicious Retailer in real
time. Similarly, it can relay any responses it receives from the malicious Retailer
back to this Point of Sale. As a result, the malicious Customer and malicious
Retailer can together form a bridge between the victim Credit Card and the
victim Retailer’s Point of Sale. The attack is illustrated in Fig. 5 and runs as
follows:

1. First, the victim Customer attempts to make a relatively inexpensive purchase
from the malicious Retailer. Simultaneously, the malicious Customer prepares
to make a relatively expensive purchase from a victim Retailer.

2. The victim Retailer’s Point of Sale issues a solicitation message to the mali-
cious Customer, who relays it to the malicious Retailer.

3. The malicious Retailer then forwards this solicitation to the victim Credit
Card.

222 O. Jensen et al.

4. The victim Credit Card responds with a card information message to the
malicious Point of Sale, who relays it to the malicious Customer.

5. The malicious Customer forwards this card information message to the victim
Retailer’s Point of Sale.

6. The victim Retailer issues a charge request message to the victim Credit
Card’s bank, charging the victim Customer for the expensive purchase.

Bank
Victim

Point of Sale
Malicious
Customer

Malicious
Point of Sale

Victim
Customer

price display
($1000)

price display
($10)

Malicious Device Victim Card
enable device enable device

solicitation

solicitation
(out of band replay)

solicitation
(replay)
card info

card info
(out of band replay)

card info
(replay)

charge request
($1000)

approve?
(Y / N)

Fig. 5. Transparent bridge attack

In this attack, all messages are transparently relayed between the victim
Retailer’s Point of Sale and the victim Customer’s Credit Card. As a result,
the victim Customer believes himself to be making an inexpensive purchase at
the malicious Retailer, while he is actually making an expensive purchase at the
victim Retailer. The malicious Retailer loses the inexpensive sale, but acquires
the merchandise from an expensive purchase in exchange.

The Transparent Bridge attack is particularly interesting, because the mali-
cious parties leave no trace with either of the victims: to the victim Customer
there is only a record of an expensive purchase at the victim Retailer, and to
the victim Retailer there is only the customer record of the victim Customer.
The amount which can be successfully stolen by the malicious Retailer is uncon-
strained, and needs not evade notice: if the discrepancy is noticed and the victim
Customer files a charge-back request, it will be against the victim Retailer (and
not the malicious Retailer). As such, detected or not, it is one of the two victims
that will be left facing the bill, making the Transparent Bridge attack signifi-
cantly more dangerous than the Over-charge attack described earlier.

Securing NFC Credit Card Payments Against Malicious Retailers 223

Drimer et al. propose a defense against this attack in the context of EMV
credit cards (colloquially known as “chip and pin”). However, this solution is not
applicable to contactless credit cards, and as such the problem remains open.

5 Defending Against Malicious Retailers

Passive “smart cards” (such as NFC credit cards) are designed primarily to
authenticate the cardholder to the system, and not to provide any assurance to
the cardholder about the system. As a result, they offer little by way of possibility
to defend against malicious retailers. However, it has become increasingly com-
mon for the devices engaging in NFC credit card payments to break this mould
by not being credit cards at all: smart phones with NFC capabilities have given
customers the ability (through applications like Android Pay or Apple Pay) to
use their phones to emulate a credit card.

This is particularly attractive to many customers, since it allows for the
convenience of carrying a potentially unlimited number of credit cards without
a bulky wallet, while also affording additional security against theft (by way
of passwords or PINs). In addition, such “virtual credit cards” present a rich
interface, allowing for finer-grained control and, as a result, stronger defenses
against malicious retailers.

Since the aforementioned attacks allowing a malicious Retailer to exploit
a Customer are tied to the Retailer’s ability to display one price and charge
another, our proposed defense against these attacks is built around removing
this ability when possible. When using a virtual Credit Card as implemented
on a smart phone, the phone’s interface provides an additional communication
channel between the Customer and the (virtual) Credit Card. This communi-
cation channel can be harnessed to allow the Customer to participate in the
payment protocol, beyond simply allowing it to occur.

Previous work in the Secure CC Protocol defines a function H, proves several
of its properties and uses it to defend against third party attacks like skimmers
and eavesdroppers [8]. We note that each property required of this function H
is a property enjoyed by common cryptographic hash functions, such as those in
the SHA family. As such, using a hash function instead of the derived function
H does not reduce the security of the Secure CC Protocol.

We propose an extension to the Secure CC Protocol, while altering it to use
a cryptographic hash function for simplicity.

5.1 The Extended Secure CC Protocol

In our description of the Extended Secure CC Protocol, we will use the following
notation:

ch: a fresh, randomly generated challenge value, chosen by the Point of Sale.
INFO: the Credit Card’s payment information, consisting of the Credit Card

number and expiration date.

224 O. Jensen et al.

ID: a UUID, uniquely identifying an individual Credit Card without revealing
any information about INFO.

iCVV: an unpredictable value freshly generated by the Credit Card for each
transaction (the issuing bank can generate the same sequence of values).

B: the name of the issuing Bank, used for the purpose of routing transactions
as before.

The Extended Secure CC Protocol, operating between a Point of Sale and a
virtual Credit Card, is illustrated in Fig. 6 and proceeds as follows:

1. The Point of Sale displays a price $d on its screen, inviting the Customer to
bring his Credit Card within NFC range.

2. The Point of Sale sends a solicitation to the Credit Card, including a fresh
random challenge ch and the price to be charged $c. (Recall that if the Point
of Sale is honest, $c = $d)

3. The virtual Credit Card displays the price $c to the Customer, who can
choose to accept or reject it. Rejecting the price aborts the protocol here.

4. If granted authorization by the Customer, the Card calculates

T = H(INFO, ch, $c, iCVV)

and responds to the Point of Sale with a card information message consisting
of [ID, T, B].

5. The Point of Sale sends a charge request message to the issuing Bank (identi-
fied by B) consisting of [ID, T, ch, $r]. (Again, if the Point of Sale is honest,
$r = $d)

6. The bank uses ID to look up INFObank and then calculates iCVVbank. It
then uses the ch and $r supplied in the charge request message to determine

Tbank = H(INFObank, ch, $r, iCVVbank)

If T �= Tbank, the bank will decline the charge, otherwise it approves the
charge for $r.

When using a physical Credit Card instead of a virtual one, no communication
channel exists between the Card and the Customer. As a result, the steps above in
which the Card displays the charge price ($c) to the Customer and awaits autho-
rization from the Customer cannot occur. Instead, a physical Credit Card must
implicitly assume successful authorization from the Customer, effectively skipping
step 3. As a result, while not providing protections from malicious Retailers to
physical Credit Cards, the protocol maintains backwards compatibility with no
loss of functionality or security against malicious third parties.

We note that a naive implementation of the protocol above might require
excessively long timeouts between the Point of Sale sending its solicitation mes-
sage and receiving the response. Should long timeouts not be desired, a sim-
ple solution would be for the Point of Sale to send periodic solicitations (with
new challenges). The virtual Credit Card, upon receiving permission from the

Securing NFC Credit Card Payments Against Malicious Retailers 225

Bank Point of Sale Customer
price display ($d)

Card
enable device

solicitation
(ch, $c)

price display ($c)

allow?
(Y / N)

card information
(ID, T, B)

charge request
(ID, T, ch, $r)

approve?
(Y / N)

Fig. 6. Extended secure CC protocol

Customer, could then cache this approval and respond immediately to the subse-
quent solicitation. Besides noting this particular case, we emphasize that issues
such as these are implementation details, the decisions for which are best left to
those implementing the protocol.

5.2 Defending Against the Over-Charge Attack

The extended protocol prevents the Over-charge attack against Customers using
a virtual Credit Card. In step 3, the Customer verifies that $d = $c through visual
comparison. Due to theinclusion of $c in the hash when generating token T, we
gain the assurance that for any charge accepted by the Bank, $c = $r.

Thus, through a transitive argument, the Customer can be assured that for
any successful charge, $d = $r. Should the malicious retailer attempt to issue
a charge request with some $r �= $d, then Tbank �= T and the charge will be
declined by the Bank.

5.3 Defending Against the Transparent Bridge Attack

The extended protocol makes no attempt to prevent this attack from occurring.
Instead, it removes the economic incentive of performing such an attack against
Customers using virtual Credit Cards.

In the Transparent Bridge attack, the malicious Retailer loses the sale paid by
the victim Customer, in return for acquiring the purchase made by the malicious
Customer. In order for the Transparent Bridge attack to be viable, the malicious
actors must have something to gain: the value of the malicious Customer’s pur-
chase must be greater than the value of the victim Customer’s purchase. When
the extended protocol is used, one of two scenarios occurs:

226 O. Jensen et al.

1. The price associated with the malicious Customer’s purchase differs from
(i.e. is greater than) the price of the victim Customer’s purchase. The victim
Customer compares the price displayed by the Point of Sale and the price
displayed by his virtual Credit Card. The would-be victim Customer imme-
diately detects the attack and aborts the transaction.

2. The price associated with the malicious Customer’s purchase is equal to the
price of the victim Customer’s purchase. The victim Customer does not detect
this attack, and allows the transaction to occur. The end result: the victim
Customer paid for the price of what he received, and the victim Retailer
received the price of what it sold.

As a result, there is no longer any incentive to carrying out this attack, as
the only successful instance results in all parties getting paid exactly as much as
they would had they been honest.

6 Related Work

Our work builds primarily upon the Secure Credit Card Protocol over NFC
[8], extending the protocol to defend against malicious retailers in addition to
malicious third parties.

Kortvedt explores the problem of eavesdropping on NFC communications
[10], and suggests a symmetric encryption solution with a strong mutual authen-
tication. Madlmayr et al. analyze the state of NFC communication privacy [13],
proposing several technical defenses to threats. Both works [10,13] focus on pro-
tecting the NFC channel itself, and do not take protocols or applications into
account. As a result, while they are effective in defending against channel attacks
such eavesdropping, they cannot not affect skimmers, relay attackers, compro-
mised points of sale, or malicious retailers. As such, they fall short of protecting
NFC credit card payments.

Haselsteine and Breitfuß provide a broad survey in [7] of several classes of
attacks and defenses applicable to the NFC channel. Similarly to [10,13], they
focus on securing the channel itself from attackers, suggesting that NFC partici-
pants perform a key-exchange protocol such as Diffie-Helmann [2], then use this
derived secret key to establish a secure channel. As a result, this approach also
falls short of protecting NFC credit card payments, for the same reason.

Drimer and Murdoch [3] present an attack on credit card payment systems,
which we described in Sect. 4 as the Transparent Bridge attack. This attack relies
on the ability to perform out-of-band real-time proxying and relaying of messages
between two parties. Drimer et al. implement this attack against EMV (“chip and
pin”) credit cards, demonstrating its practicality. They recommend defending
against such attacks via distance bounding, essentially measuring round-trip
communication timing to detect any delays introduced through the relaying of
messages. Such a defense is reasonable when reading responses directly from
chip I/O (as in EMV credit card transactions), but does not lend itself well to
responses generated by a multitasking computational device such as a smart
phone, where delays can be variable depending on unrelated software.

Securing NFC Credit Card Payments Against Malicious Retailers 227

In [6], Francis et al. find that out-of-band real-time proxying and relaying of
messages is possible over NFC, constructing a transparent bridge between two
NFC devices over Bluetooth. While Drimer et al. only demonstrated the Trans-
parent Bridge attack with EMV credit cards, this result indicates that the attack
applies to contactless credit cards as well. Francis et al. propose to use location
information such as GPS coordinates in order to detect and defend against this
relaying of messages, which in turn would render the Transparent Bridge attack
infeasible. However, location information can be unreliable or unavailable in some
areas, and as such, one cannot rely on its availability and correctness.

By contrast to [3,6], our approach does not seek to detect or prevent attacks
relying on the proxying or relaying of information, choosing instead to render
them impotent.

In [12], Lee provides some analysis of relay and skimming attacks on NFC
credit card transactions, and presents the Android application NFCProxy [1]
which implements these attacks. This work focuses on demonstrating how easy
it is for any would-be fraudster to perform skimming and relay attacks, but does
not discuss or propose any countermeasures.

In [5], Eun et al. explore the issue of privacy in the face of NFC eavesdrop-
pers, considering mobile payments as a case study. Not constraining themselves
to supporting physical credit cards, they suggest the creation of an “NFC-SEC”
protocol complete with key-exchange and public key cryptography. Their app-
roach includes the concept of “unlinkability” (explicitly excluded by the Secure
Credit Card Protocol) wherein a merchant cannot correlate multiple purchases
from the same credit card.

7 Concluding Remarks

In this paper, we discussed how to extend the Secure Credit Card Protocol over
NFC to defend against Over-charge and Transparent Bridge attacks, protecting
honest card-holders using virtual credit cards (such as a smart phone running
Android Pay) from malicious retailers. The proposed extension, although effec-
tive, is simple and computationally inexpensive. It consists of three components:

1. The Point of Sale includes the price of the transaction in its solicitation
message.

2. The virtual Credit Card requests confirmation of the price from its card holder
before continuing.

3. The Charge Token generated by the card is bound to the confirmed transac-
tion price.

Note that this defense against malicious retailers is only effective when the
customer is using a virtual credit card, since physical cards cannot confirm the
transaction price with their card-holders. Customers using physical credit cards
can still participate in this extended protocol, and will still enjoy the protections

228 O. Jensen et al.

against malicious third parties afforded by the Secure Credit Card Protocol.
However, defending against the Over-charge and Transparent Bridge attacks
remains an open problem with customers who use physical credit cards rather
than smart-devices.

Acknowledgments. Research of Mohamed Gouda is supported in part by the NSF
award #1440035.

References

1. BlackwingHQ: Nfcproxy (2012). http://sourceforge.net/projects/nfcproxy/
2. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory

22(6), 644–654 (1976)
3. Drimer, S., Murdoch, S.J.: Keep your enemies close: distance bounding against

smartcard relay attacks. In: Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, SS 2007, pp. 7:1–7:16. USENIX Association,
Berkeley (2007). http://dl.acm.org/citation.cfm?id=1362903.1362910

4. Harris, E., Perlroth, N., Popper, N.: Neiman marcus data breach worse than
first said. http://www.nytimes.com/2014/01/24/business/neiman-marcus-breach-
affected-1-1-million-cards.html. Accessed 10 Nov 2014

5. Eun, H., Lee, H., Oh, H.: Conditional privacy preserving security protocol for NFC
applications. IEEE Trans. Consum. Electron. 59(1), 153–160 (2013)

6. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-peer
relay attack using mobile phones. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS,
vol. 6370, pp. 35–49. Springer, Heidelberg (2010)

7. Haselsteiner, E., Breitfuß, K.: Security in near field communication (NFC). In:
Workshop on RFID Security, pp. 12–14 (2006)

8. Jensen, O., Gouda, M., Qiu, L.: A secure credit card protocol over NFC. In: Chan,
M.C., Pandurangan, G. (eds.) International Conference on Distributed Computing
and Networking. ACM, January 2016

9. Kennedy, C.: Millions of card numbers likely stolen during supervalu data
breach, security expert says. http://www.bizjournals.com/twincities/news/2014/
08/18/supervalu-millions-card-numbers-likely-stolen.html?page=all. Accessed 10
Nov 2014

10. Kortvedt, H.S.: Securing near field communication. Master’s thesis, Norwegian
University of Science and Technology, Norway (2009)

11. Krebs, B.: P.F. Changs breach likely began in Sept. 2013. http://krebsonsecurity.
com/2014/06/p-f-changs-breach-likely-began-in-sept-2013/. Accessed 10 Nov
2014

12. Lee, E.: NFC hacking: the easy way. In: Defcon Hacking Conference, vol. 20 (2012)
13. Madlmayr, G., Langer, J., Kantner, C., Scharinger, J.: NFC devices: security and

privacy. In: Third International Conference on Availability, Reliability and Secu-
rity, 2008. ARES 2008, pp. 642–647. IEEE (2008)

14. Sidel, R., Yadron, D., Germano, S.: Target hit by credit-card breach. http://online.
wsj.com/articles/SB10001424052702304773104579266743230242538. Accessed 10
Nov 2014

15. Sidel, R.: Home depot’s 56 million card breach bigger than target’s. http://online.
wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571. Accessed
10 Nov 2014

http://sourceforge.net/projects/nfcproxy/
http://dl.acm.org/citation.cfm?id=1362903.1362910
http://www.nytimes.com/2014/01/24/business/neiman-marcus-breach-affected-1-1-million-cards.html
http://www.nytimes.com/2014/01/24/business/neiman-marcus-breach-affected-1-1-million-cards.html
http://www.bizjournals.com/twincities/news/2014/08/18/supervalu-millions-card-numbers-likely-stolen.html?page=all
http://www.bizjournals.com/twincities/news/2014/08/18/supervalu-millions-card-numbers-likely-stolen.html?page=all
http://krebsonsecurity.com/2014/06/p-f-changs-breach-likely-began-in-sept-2013/
http://krebsonsecurity.com/2014/06/p-f-changs-breach-likely-began-in-sept-2013/
http://online.wsj.com/articles/SB10001424052702304773104579266743230242538
http://online.wsj.com/articles/SB10001424052702304773104579266743230242538
http://online.wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571
http://online.wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571

An Approach to Resolve NP-Hard Problems
of Firewalls

Ahmed Khoumsi1(B), Mohamed Erradi2, Meryeme Ayache2,
and Wadie Krombi2

1 Department of Electrical and Computer Engineering, University of Sherbrooke,
Sherbrooke, Canada

Ahmed.Khoumsi@USherbrooke.ca
2 ENSIAS, Mohammed V University, Rabat, Morocco

Abstract. Firewalls are a common solution to protect information sys-
tems from intrusions. In this paper, we apply an automata-based method-
ology to resolve several NP-Hard problems which have been shown in the
literature to be fundamental for the study of firewall security policies.
We also compute space and time complexities of our resolution methods.

1 Introduction

An essential component of a firewall is its security policy that consists of a table
of filtering rules specifying which packets are accepted and which ones are dis-
carded from the network [1]. Designing and analyzing a firewall are not easy
tasks when we have thousands of filtering rules as is usually the case. To per-
form such tasks properly, one requires to solve thousands of instances of known
fundamental NP-Hard problems identified in [2]. Recognizing the importance of
these problems, their solutions can significantly enhance the ability to design and
analyze firewalls. Henceforth, the terms policy and rule denote “firewall security
policy” and “filtering rule”, respectively.

In this work, we apply the automata-based methodology of [3] to resolve
the 13 NP-Hard problems of [2]. The basic principle of the approach is to
describe policies as automata and then to develop analysis methods applicable
to automata. We also evaluate time and space complexities of the 13 resolutions.

The paper is organized as follows. Section 2 presents related work on ana-
lyzing policies. Section 3 contains preliminaries on policies. Section 4 introduces
the methodology of [3]. In Sects. 5 and 6, we resolve the 13 NP-Hard problems
of [2] by using the methodology of [3]. Section 7 evaluates the space and time
complexities of the 13 resolutions. We conclude in Sect. 8.

2 Related Work

Previous work on firewalls, such as [4–6], provide practical analysis algorithms,
while [7–11] provide fundamental analysis algorithms with estimations of their
time complexities. [2] proves that many firewall analysis problems are NP-Hard.
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 229–243, 2016.
DOI: 10.1007/978-3-319-46140-3 19

230 A. Khoumsi et al.

[12,13] present techniques to detect anomalies in a policy. An anomaly is
defined in [14] as the existence of several rules that match the same packet.
A policy is described by a Policy tree in [12] and a Decision tree in [13].

[15,16] provide solutions to analyze and handle stateful firewall anomalies.
[11] proposes a method to detect discrepancies between implementations of a

policy. The policy is modeled by a Firewall Decision Diagram (FDD) [17] which
maps each packet to the decision taken by the firewall for such a packet.

[18] introduces Fireman, which is a toolkit that permits to detect errors such
as violation of a policy and inconsistency in a policy. Fireman is implemented
using Binary Decision Diagrams (BDD) [19].

[20] generates test sequences to validate the conformance of a policy, where
the system’s behavior is specified by an extended finite state machine [21] and
the policy is specified with the model OrBAC [22].

[23] verifies equivalence between two policies by extracting and comparing
equivalent policies whose filtering rules are disjoint.

[24] presents a visualization tool to analyze firewall configurations, where the
policy is modeled in a specific hierarchical way.

In each of the above works, a specific formalism is used to solve a specific
problem. A policy is modeled: by a policy tree to study anomalies, by a FDD
to study discrepancies, by a BDD to study policy violation and inconsistency,
etc. This observation motivated the work of [3,25], where automata are used to
study several aspects of policies. The main contribution of the present article is
the resolution of the 13 NP-Hard problems of [2] by using the methodology of
[3]. Space and time complexities of the 13 resolutions are provided.

3 Preliminaries

The behavior of a firewall is controlled by its policy which consists of a list of
rules defining the actions to take each time a packet tries to cross the firewall.
The packets are specified by an n-tuple of headers that are taken into account
by the policy. A rule is in the form: if some conditions are satisfied, then a given
action must be taken to authorize or refuse the access. Therefore, a rule can be
specified as (Condition, Action), where:

– Condition is a set of filtering fields F 0, · · · , Fm−1 corresponding to respective
headers H0, · · · ,Hm−1 of a packet arriving at the firewall. Each F i defines
the set of values that are authorized to Hi. Condition is satisfied for a packet
P , if for every i = 0 · · · m − 1 the value of Hi of P belongs to F i. We say that
P matches a rule R (or R matches P) when the condition of R is satisfied for
P . Otherwise, P does not match R (or R does not match P).

– Action is Accept or Deny, to authorize or forbid a packet to go through the
firewall, respectively.

The rules are denoted R1,R2, · · · , and their actions are denoted a1, a2, · · ·
respectively. The rules are in decreasing priority order, that is, when a packet P
arrives at the firewall, matching of P and R1 is verified: if P matches R1, then

An Approach to Resolve NP-Hard Problems of Firewalls 231

action a1 is executed; if P does not match R1, then matching of P and R2 is
verified. And so on, the process is repeated until a rule Ri matching P is found
or all the rules are examined.

An accept-rule (resp. deny-rule) is a rule whose action is Accept (resp. Deny).
An all-rule is a rule whose condition is TRUE, i.e. it matches all packets. We
also combine the definitions to obtain all-accept-rule and all-deny-rule. A policy
is said complete if every packet matches at least one of its rules.

Table 1 contains an example of policy. The condition of each rule Ri is defined
by four fields: IPsrc, IPdst, Port and Protocol, and its action is in the last column.
The term Any in the column of a field F j means any value in the domain of
F j . The term a.b.c.0/x denotes an interval of IP addresses obtained from the
32-bit address a.b.c.0 by keeping constant the first x bits and varying the other
bits. A packet P arriving at the firewall matches a rule Ri if: P comes from
an address belonging to IPsrc, P is destined to an address belonging to IPdst,
P is transmitted through a port belonging to Port, and P is transmitted by a
protocol belonging to Protocol.

Table 1. Example of rules

Rule IPsrc IPdst Port Protocol Action

R1 Any 212.217.65.201 80 TCP Accept

R2 192.168.10.0/24 81.10.10.0/24 Any Any Deny

R3 194.204.201.0/28 212.217.65.202 21 Any Accept

R4 192.168.10.0/24 Any Any Any Accept

4 Synthesis Procedure

The basis of the methodology of [3] is a procedure that synthesizes an automa-
ton from a policy. The input of the procedure is a policy F specified by n rules
R1, · · · ,Rn ordered in decreasing priority. The result is an automaton ΓF imple-
menting F .

The synthesis procedure is presented in detail in [3]. In this section, we illus-
trate it by the example of policy F of Table 1, for which the synthesis procedure
generates the automaton ΓF of Fig. 1. The states are organized by levels, where
the states of level j are reached after j transitions from the initial state (rep-
resented with a small incoming arrow). A transition is said of level j if it links
a state of level j to a state of level j + 1. Transitions of level j are labeled by
sets of values of the field F j . There are two types of final states (represented in
bold):

– A match state is associated to the action Accept or Deny (noted A or D in the
figure). There may be one or several match states in a synthesized automaton.
The automaton of Fig. 1 has 5 match states.

232 A. Khoumsi et al.

– A no-match state is indicated by a star ∗. There may be at most one no-match
state in a synthesized automaton. The automaton of Fig. 1 has 1 no-match
state.

In Fig. 1 and subsequent figures, some transitions are labeled in the form Any
or not(X), where X is one or more sets of values. A label Any in a transition of
level j denotes the whole domain of values of the field F j . A label not(X) in a
transition of level j denotes the complementary of X in the domain of F j .

The fundamental characteristics of ΓF is that it implements F as stated by
the following theorem taken from [3]:

Theorem 1. Consider a packet P arriving at the firewall, and let
H0, · · · ,Hm−1 be its headers. From the initial state of ΓF , we execute the m con-
secutive transitions labeled by the sets σ0, · · · , σm−1 that contain H0, · · · ,Hm−1,
respectively. Let r be the (final) reached state of ΓF :

– r is a match state iff1 P matches at least one rule of F .
– If r is a match state, then the action (Accept or Deny) associated to r is the

action of the most priority rule matching P .

Let us illustrate the fact that ΓF of Fig. 1 implements F of Table 1. Consider
a packet P which arrives at the firewall and assume that its four headers H0

to H3 are (192.168.10.12), (212.217.65.201), (25), (TCP), respectively. We start
in the initial state 〈0〉. The transition labeled 192.168.10.0/24 (comprising H0)
is executed and leads to state 〈1〉. Then, the transition labeled 212.217.65.201
(comprising H1) is executed and leads to state 〈4〉. Then, the transition labeled
not(80) (comprising H2) is executed and leads to state 〈10〉. Finally, the transi-
tion labeled Any (comprising H3) is executed and leads to the second match
state. Since the reached match state is associated to Accept, the packet is
accepted.

Consider now a packet whose four headers H0 to H3 are (194.204.201.20),
(212.217.65.201), (25), (TCP), respectively. We start in the initial state 〈0〉. The
transition labeled 194.204.201.0/28 (comprising H0) is executed and leads to
state 〈2〉. Then, the transition labeled 212.217.65.201 (comprising H1) is exe-
cuted and leads to state 〈8〉. Then, the transition labeled not(80) (comprising
H2) is executed and leads to the no-match state 〈∗〉. Therefore, no rule of the
policy matches such a packet.

5 Resolution of FC, FA and SP

Let us demonstrate the applicability of our synthesis procedure for the resolution
of 5 of the 13 problems of [2]: FC, FA-d, FA-a, SP-d and SP-a.

1 iff means: if and only if.

An Approach to Resolve NP-Hard Problems of Firewalls 233

2

4

1
not

212.217.65.201
81.10.10.0/24 5

7

8

9

10

0

12

13

116

3
192.168.10.0/24
194.204.201.0/28

not
not

212.217.65.201
212.217.65.202

81.10.10.0/24

212.217.65.201

212.217.65.201

Any

212.217.65.202
21

80

not(80) not(21)

80

not(80)
TCP

UDP

Any

Any

TCP

UDP

192.168.10.0/24

194.204.201.0/28

212.217.65.201

Any

Any

level 3level 2level 1level 0 level 4

not(212.217.65.201)

A

A

D

A

A

*

Fig. 1. Automaton synthesized from the policy of Table 1.

5.1 Resolution of Firewall Completeness (FC) Problem

Firewall Completeness (FC) problem is to design an algorithm that takes as
input a policy F and determines whether every packet arriving at the firewall
matches at least one of the filtering rules of F . From Theorem 1, we obtain:

Proposition 1 (FC). A policy F is complete iff its automaton ΓF has no
no-match state.

Therefore, FC problem of F is solved by constructing the automaton ΓF and
verifying if it contains the no-match state. For example, the policy F of Table 1
is incomplete, because ΓF of Fig. 1 contains the no-match state.

5.2 Resolution of Firewall Adequacy Problems: FA-d, FA-a

There are two Firewall Adequacy (FA) problems:

FA-d: to design an algorithm that takes as input a policy F and determines
whether there exists at least one packet which is denied by F .

FA-a: to design an algorithm that takes as input a policy F and determines
whether there exists at least one packet which is accepted by F .

From Theorem 1, we obtain:

Proposition 2 (FA-d). A policy F denies one or more packets iff its automa-
ton ΓF has one or more match states associated to the action Deny.

Proposition 3 (FA-a). A policy F accepts one or more packets iff its automa-
ton ΓF has one or more match states associated to the action Accept.

234 A. Khoumsi et al.

Therefore, FA-d (resp. FA-a) problem of F is solved by constructing the
automaton ΓF and verifying if it contains match state(s) associated to the action
Deny (resp. Accept). For example, the policy F of Table 1 denies and accepts
packets, because ΓF of Fig. 1 contains 1 match state with action Deny and 4
match states with action Accept.

5.3 Resolution of Slice Probing Problems: SP-d, SP-a

We first define the following two types of policies:
Discard slice: it is a policy consisting of zero or more accept rules followed

by a last all-deny-rule.
Accept slice: it is a policy consisting of zero or more deny rules followed by

a last all-accept-rule.
There are two Slice Probing (SP) problems:
SP-d: to design an algorithm that takes as input a discard slice F and

determines whether there exists at least one packet which is denied by F .
SP-a: to design an algorithm that takes as input an accept slice F and

determines whether there exists at least one packet which is accepted by F .
We have two ways to solve SP: by using FC or FA.

Solving SP-d and SP-a by using FC: Consider a discard slice F consisting
of n rules R1, · · · ,Rn, i.e. R1, · · · ,Rn−1 are accept rules and Rn is an all-deny-
rule. Therefore, F denies a packet P iff P matches none of the accept-rules of
F , and hence matches only the last all-deny-rule of F . Clearly, this situation
occurs iff the policy F\Rn is incomplete, where F\Rn denotes F from which Rn

is removed. In the same way, we obtain that an accept slice F accepts at least
one packet iff the policy F\Rn is incomplete. From Proposition 1:

Proposition 4 (SP-d). A discard slice F consisting of rules R1, · · · ,Rn denies
one or more packets iff the automaton ΓF\Rn

has the no-match state.

Proposition 5 (SP-a). An accept slice F consisting of rules R1, · · · ,Rn

accepts one or more packets iff the automaton ΓF\Rn
has the no-match state.

Therefore, SP-d and SP-a problems of F are solved by constructing the
automaton ΓF\Rn

and verifying if it contains the no-match state.

Solving SP-d (resp. SP-a) by using FA-d (resp. FA-a): SP-d is a par-
ticular case of FA-d which considers only discard slices, instead of any policy.
Similarly, SP-a is a particular case of FA-a which considers only accept slices.
Therefore, SP-d and SP-a can be solved by solving FA-d and FA-a, respec-
tively. Hence, from Propositions 2 and 3, we obtain:

Proposition 6 (SP-d). A discard slice F denies one or more packets iff the
automaton ΓF has one or more match states associated to the action Deny.

Proposition 7 (SP-a). An accept slice F accepts one or more packets iff the
automaton ΓF has one or more match states associated to the action Accept.

An Approach to Resolve NP-Hard Problems of Firewalls 235

Example of Accept Slice: Due to the symmetry between SP-d and SP-a,
we will illustrate only the resolution of SP-a by the example of the accept slice
of Table 2. The symbol # means “same as the field of the preceding rule”.

Table 2. Example of accept slice.

Rule IPsrc IPdst Port Protocol Action

R1 192.168.10.0/24 81.10.10.0/24 Any Any Deny

R2 194.204.201.0/28 212.217.65.202 not(21) Any

R3 # 212.217.65.201 not(80) Any

R4 # # 80 UDP

R5 # not(212.217.65.201,
212.217.65.202)

Any Any

R6 not(192.168.10.0/24,
194.204.201.0/28)

212.217.65.201 not(80) Any

R7 # # 80 UDP

R8 # not(212.217.65.201) Any Any

R9 Any Any Any Any Accept

Illustration of SP-a Resolution by Using FC: Figure 2 represents the
automaton ΓF\R9 synthesized from the accept slice of Table 2 without R9. From
Proposition 5 and the fact that ΓF\R9 contains the no-match state, we deduce
that this accept slice accepts packets.

not
212.217.65.201
212.217.65.202

192.168.10.0/24
194.204.201.0/28

not

*

D

D
194.204.201.0/28

not(212.217.65.201)

1 3

21

212.217.65.201

212.217.65.201

192.168.10.0/24 not(81.10.10.0/24)

not(21)
212.217.65.202

5

6

7

9

10

11

4

2

80

not(80)

81.10.10.0/24

8

Any

Any

Any

Any

UDP

TCP

Fig. 2. Automaton ΓF\R9 of the accept slice of Table 2 without R9.

Illustration of SP-a resolution by using FA-a: Fig. 3 represents the automa-
ton ΓF synthesized from the accept slice F of Table 2. From Proposition 7 and
the fact that ΓF has 4 match states associated to the action Accept, we deduce
that this accept slice accepts packets.

236 A. Khoumsi et al.

not 212.217.65.201
81.10.10.0/24

A

A

D

A

D

not 212.217.65.201
212.217.65.202

192.168.10.0/24
194.204.201.0/28

not
A

192.168.10.0/24 2

5

6

7

8

11

12

13

14

15

not(80)
212.217.65.201

212.217.65.202

UDP

not(212.217.65.201)

1 3

4

9

10

16
not(80)

212.217.65.201

212.217.65.201 UDP

TCP

21

81.10.10.0/24

80 TCP

80

Any

Any

not(21)

194.204.201.0/28

Any
Any

Any

Any

Any

Fig. 3. Automaton ΓF obtained from the accept slice F of Table 2.

6 Resolution of FI, FV, FE and FR

Let us demonstrate the applicability of our synthesis procedure for the resolution
of 8 problems of [2]: FI-d, FI-a, FV-d, FV-a, FE-d, FE-a, FR-d and FR-a.

6.1 Resolution of Firewall Implication Problems: FI-d, FI-a

There are two Firewall Implication (FI) problems:
FI-d: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F2 denies all the packets denied by F1.
FI-a: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F2 accepts all the packets accepted by F1.
We solve FI-d and FI-a by the 3-step procedure below.

Step 1: We apply the synthesis procedure of Sect. 4 to generate the automata
ΓF1 and ΓF2 from F1 and F2.

Step 2: ΓF1 and ΓF1 are combined into a single automaton denoted ΩF1,F2 , by
applying to them the product operator (this operator is also used in the synthesis
procedure of Sect. 4, as shown in [3]). Each state of ΩF1,F2 is defined in the form
〈φ1, φ2〉, where each φi is a state of ΓFi

. Intuitively, for every packet P , a state
〈φ1, φ2〉 of ΩF1,F2 is reached, iff the states φ1 and φ2 are reached in ΓF1 and
ΓF1 , respectively. A state 〈φ1, φ2〉 of ΩF1,F2 is said final if φ1 and φ2 are final
states in Γ1 and Γ2, respectively. Hence, a final state of ΩF1,F2 is in one of the
following forms, where qi is a match state of Fi and Ei is the no-match state of
Fi: 〈q1, q2〉 associated to two actions a1 and a2, 〈q1, E2〉 associated to a single
action a1, 〈E1, q2〉 associated to a single action a2, and 〈E1, E2〉 associated to
no action.

An Approach to Resolve NP-Hard Problems of Firewalls 237

Step 3: From Theorem 1, when a final state r of ΩF1,F2 is reached for a packet
P , the actions a1 and a2 associated to r, if any, are dictated by F1 and F2,
respectively. We obtain:

Proposition 8 (FI-d). F2 denies all the packets denied by F1 iff, for every
final state r of ΩF1,F2 associated to actions (a1, a2): a1=Deny implies a2=Deny.

Proposition 9 (FI-a). F2 accepts all the packets accepted by F1 iff, for every
final state r of ΩF1,F2 associated to (a1, a2): a1=Accept implies a2=Accept.

Therefore, FI-d (resp. FI-a) problem of (F1,F2) is solved by constructing
the automaton ΩF1,F2 and verifying if all its final states satisfy the condition of
Proposition 8 (resp. Proposition 9).

Due to the symmetry between FI-d and FI-a, we illustrate only the resolu-
tion of FI-d. We consider the previous policies F1 of Table 1 and F2 of Table 2.
The automata ΓF1 and ΓF2 have been previously given in Figs. 1 and 3, respec-
tively. The product automaton ΩF1,F2 of ΓF1 and ΓF2 , is represented in Fig. 4.
The notation X-Y associated to the final states means that the actions dictated
by F1 and F2 are X and Y, respectively. * means the absence of action. For
example, *-D means that a2 is Deny and there is no a1. Since we have no state
with D-A or D-*, we deduce from Proposition 8 that the accept slice of Table 2
denies every packet which is denied by the policy of Table 1.

not 212.217.65.201
212.217.65.202

not 212.217.65.201
81.10.10.0/24

192.168.10.0/24
194.204.201.0/28

not

not(21)

192.168.10.0/24

194.204.201.0/28

not(212.217.65.201)

1

2

3

4

5

6

8

9

10

11

12

14

15

16
80

212.217.65.201

21

212.217.65.201

212.217.65.201

212.217.65.202

UDP

UDP
not(80)

A − A

A − A

A − A

* − D

A − A

80

81.10.10.0/24 7 13 D − D

Any

Any

TCP

TCP

not(80)

Any Any

Any

Any

Any

Fig. 4. Product ΩF1,F2 of ΓF1 and ΓF2 of Figs. 1 and 3.

6.2 Resolution of Firewall Verification Problems: FV-d, FV-a

We first define the following two particular properties:
Discard property: it has exactly the same form and semantics as a filtering

rule with the action Deny.

238 A. Khoumsi et al.

Accept property: it has exactly the same form and semantics as a filtering
rule with the action Accept.

There are two Firewall Verification problems (FV):
FV-d: to design an algorithm that takes as input a policy F and a discard

property P, and determines whether F denies all the packets denied by P.
FV-a: to design an algorithm that takes as input a policy F and an accept

property P, and determines whether F accepts all the packets accepted by P.
FV-d and FV-a are particular cases of FI-d and FI-a, respectively, because

a discard property and an accept property are particular policies consisting of a
single rule. We can therefore solve FV-d and FV-a by using exactly the same
3-step method used for solving FI-d and FI-a. We obtain:

Proposition 10. F denies all the packets denied by a discard property P iff, for
every final state r of ΩP,F associated to (a1, a2): a1 = Deny implies a2 = Deny

Proposition 11. F accepts all the packets accepted by an accept property P
iff, for every final state r of ΩP,F associated to (a1, a2): a1 = Accept implies
a2 = Accept

Therefore, FV-d (resp. FV-a) problem of (P,F) is solved by constructing
the automaton ΩP,F and verifying if all its final states satisfy the condition of
Proposition 10 (resp. Proposition 11).

Due to the symmetry between FV-d and FV-a, we illustrate only the res-
olution of FV-a. We consider the policy F of Table 1 (Sect. 3) and the accept
property P of Table 3. In Step 1, we construct automata ΓF and ΓP . ΓF has
been seen in Fig. 1 and ΓP is represented in Fig. 5. In Step 2, we construct the
product ΩP,F of ΓP and ΓF , which is represented in Fig. 6. Since ΩP,F has no
state with A-D or A-*, we deduce from Proposition 11 that F of Table 1 accepts
every packet which is accepted by P of Table 3.

Table 3. Example of accept property

Rule IPsrc IPdst Port Protocol Action

R1 192.168.10.0/24 212.217.65.201 Any Any Accept

1 2 3 4
192.168.10.0/24 212.217.65.201

not(212.217.65.202)

Any

not(192.168.10.0/24)

Any

*

A

Fig. 5. Automaton ΓP obtained from the accept property P of Table 3.

An Approach to Resolve NP-Hard Problems of Firewalls 239

1 3

5

6

7

8

9

not
212.217.65.201
81.10.10.0/24

10

11

12

13

14

15

4
192.168.10.0/24
194.204.201.0/28

not

not
212.217.65.201
212.217.65.202

2
192.168.10.0/24

212.217.65.201

81.10.10.0/24

80

not(80)

212.217.65.202
21

not(21)

not(80)
80

TCP
212.217.65.201

212.217.65.201

not(212.217.65.201)

194.204.201.0/28

A − A

A − A

* − A

* − D

* − A

* − A

* − *

TCP

UDP

UDP

Any

Any

Any

Any

Any

Any

Fig. 6. Product ΩP,F of ΓP and ΓF of Figs. 5 and 3.

6.3 Resolution of Firewall Equivalence Problems: FE-d, FE-a

There are two Firewall Equivalence (FE) problems:
FE-d: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F1 and F2 deny the same set of packets.
FE-a: to design an algorithm that takes as input two policies F1 and F2 and

determines whether F1 and F2 accept the same set of packets.
FE-d and FE-a can be obviously solved by solving FI-d and FI-a. Indeed,

F1 and F2 deny the same set of packets is equivalent to: F1 denies at least all
the packets denied by F2 AND F2 denies at least all the packets denied by F1.
Similarly, F1 and F2 accept the same set of packets is equivalent to: F1 accepts
at least all the packets accepted by F2 AND F2 accepts at least all the packets
accepted by F1. We obtain:

Proposition 12. F1 and F2 deny the same set of packets iff, for every final
state r of ΩF1,F2 associated to (a1, a2): a1 = Deny iff a2 = Deny.

Proposition 13. F1 and F2 accept the same set of packets iff, for every final
state r of ΩF1,F2 associated to (a1, a2): a1 = Accept iff a2 = Accept.

Therefore, FE-d (resp. FE-a) problem of (F1,F2) is solved by constructing
the automaton ΩF1,F2 and verifying if all its final states satisfy the condition of
Proposition 12 (resp. Proposition 13).

Due to the symmetry between FE-d and FE-a, we illustrate only the resolu-
tion of FE-a. We use the same example used to illustrate the resolution of FI-d.
We consider therefore the previous policies F1 of Table 1 and F2 of Table 2. The
automata ΓF1 , ΓF2 and ΩF1,F2 have been represented in Figs. 1, 3 and 4, respec-
tively. Since every final state in Fig. 4 has either two actions Accept or no action
Accept, we deduce from Proposition 13 that the accept slice of Table 2 and the
policy of Table 1 accept the same set of packets.

240 A. Khoumsi et al.

6.4 Resolution of Firewall Redundancy Problems: FR-d, FR-a

Let F\R denote a policy F from which a filtering rule R is removed. There are
two Firewall Redundancy (FR) problems:

FR-d: to design an algorithm that takes as input a policy F and one of
its discard rules R, and determines whether F and F \R deny the same set of
packets.

FR-a: to design an algorithm that takes as input a policy F and one of its
accept rules R, and determines whether F and F \R accept the same set of
packets.

FR-d and FR-a are obviously particular cases of FE-d and FE-a, respec-
tively. We can therefore solve FR-d and FR-a as we have solved FE-d and
FE-a. We obtain: (R is one of the rules of a policy F)

Proposition 14. F and F \R deny the same set of packets iff, for every final
state r of ΩF,F\R associated to actions (a1, a2): a1 = Deny iff a2 = Deny.

Proposition 15. F and F\R accept the same set of packets iff, for every final
state r of ΩF,F\R associated to actions (a1, a2): a1 = Accept iff a2 = Accept.

Therefore, FR-d (resp. FR-a) problem of (F ,R) is solved by constructing
the automaton ΩF,F\R and verifying if all its final states satisfy the condition of
Proposition 14 (resp. Proposition 15).

Due to the symmetry between FR-d and FR-a, we illustrate only the reso-
lution of FR-d. We consider the policy F of Table 4 which is obtained by adding
the rule R5 to the policy of Table 1. Let us verify that F and F \R5 deny the
same packets. The automaton ΓF\R5 has been seen in Fig. 1. The automaton ΓF
is identical to ΓF\R5 , because R5 is “shadowed” by R4 and hence never takes
effect. The product ΩF,F\R is represented in Fig. 7. Since every final state in
Fig. 7 has either two actions Deny or no action Deny, we deduce from Proposi-
tion 14 that F of Table 4 and F\R5 deny the same set of packets.

Table 4. Policy to illustrate FR-d resolution

Rule IPsrc IPdst Port Protocol Action

R1 Any 212.217.65.201 80 TCP Accept

R2 192.168.10.0/24 81.10.10.0/24 Any Any Deny

R3 194.204.201.0/28 212.217.65.202 21 Any Accept

R4 192.168.10.0/24 Any Any Any Accept

R5 192.168.10.0/24 Any 80 UDP Deny

An Approach to Resolve NP-Hard Problems of Firewalls 241

1 3

2

8

9

not
212.217.65.201
81.10.10.0/24

4

192.168.10.0/24
194.204.201.0/28

not

not
212.217.65.201
212.217.65.202

14

13

11

7 12

105

6

212.217.65.201

21

not(21)

TCP
212.217.65.201

212.217.65.201

not(212.217.65.201)

194.204.201.0/28

not(80)

A − A

A − A

A − A

A − A

* − *

D − D

80

not(80)
80

UDP

Any

TCP
UDP

81.10.10.0/24

192.168.10.0/24

212.217.65.202

Any Any

Any

Any

Fig. 7. Product ΩF,F\R5 obtained for the policy of Table 4.

7 Evaluation of Space and Time Complexities

We call great field a field whose domain contains more than n values, and small
field a field whose domain contains at most n values. Consider for example the
four fields IPsrc, IPdst, Port and Protocol and assume n = 1000. IPsrc, IPdst
and Port are great fields, because their domains contain 232, 232 and 216 values,
respectively, hence more than 1000 values. Protocol is a small field, because its
domain contains much less than 1000 values (the number of considered protocols
is negligible to 1000). In addition to n and m, we define:

di = number of bits necessary to code the values of field F i, for i = 0, · · · ,m−1.
Hence, 2di is the number of possible values of F i.

D = sum of the number of bits to code all the fields, i.e. D = d0 + · · · + dm−1

μ = number of great fields.
δ = sum of the number of bits to code the small fields.

In our computation of complexities, we assume that di ≥ 1 (i.e. several
possible values for each field), n > D (hence n > m) and 2n > nm which is
realistic when we have hundreds or thousands of filtering rules.

For example, for the m = 4 fields IPsrc, IPdst, Port and Protocol, we have
used d0 = d1 = 32 (each IPsrc and IPdst is coded in 32 bits), d2 = 16 (Port
is coded in 16 bits), d3 = 1 (Protocol is coded in 1 bit since we consider only
TCP and UDP), and D = 32 + 32 + 16 + 1 = 81. For 81 < n < 216, the above
assumptions (all di ≥ 1, n > 81 and 2n > n4) are obviously satisfied. Since
IPsrc, IPdst and Port are great fields and Protocol is a small field, we obtain
μ = 3 (number of great fields) and δ = d3 = 1 (1 bit is used to code the unique
small field protocol).

We have the following result:

Theorem 2. The space and time complexities for solving each of the 13 prob-
lems are in O(nμ+1 × 2δ), which is bounded by both O(nm+1) and O(n × 2D).

242 A. Khoumsi et al.

For space limit, we do not present the proof of Theorem2.
By using results in [26], the authors of [2] prove that the 13 problems studied

in this article are NP-Hard. In our context, their result is that the time com-
plexity is in O(n × 2D). On the other hand, the authors of [7–11] solve some
of the 13 problems with algorithms whose time complexity is in O(nm+1). Our
contribution here is that the two expressions O(nm+1) and O(n× 2D) are upper
bounds of our more precise expression O(nμ+1 × 2δ) which shows explicitly the
influence of the size of fields (through μ and δ) on the complexity.

8 Conclusion

We have applied the automata-based methodology of [3] to resolve the 13 NP-
hard problems of firewalls of [2]. We have also evaluated space and time com-
plexities of the 13 resolutions.

As near future work, we plan to apply our synthesis procedure for the design
of efficient security policies that adapt dynamically to the filtered traffic. We
also plan to adapt our approach in other areas, such as policies in intelligent
health-care (e-health).

References

1. Information Technology Security Evaluation Criteria (ITSEC), v1.2. Office for Offi-
cial Publications of the European Communities, Luxembourg, June 1991

2. Elmallah, E., Gouda, M.G.: Hardness of firewall analysis. In: International Con-
ference on NETworked sYStems (NETYS), Marrakesh, Morocco, May 2014

3. Khoumsi, A., Krombi, W., Erradi, M.: A formal approach to verify completeness
and detect anomalies in firewall security policies. In: Cuppens, F., Garcia-Alfaro,
J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 221–
236. Springer, Heidelberg (2015)

4. Hoffman, D., Yoo, K.: Blowtorch: a framework for firewall test automation. In:
20th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Long Beach, California, USA, pp. 96–103, November 2005

5. Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.: Analysis of
vulnerabilities in internet firewalls. Comput. Secur. 22(3), 214–232 (2003)

6. Wool, A.: A quantitative study of firewall configuration errors. Computer 37(6),
62–67 (2004)

7. Acharya, H.B., Gouda, M.G.: Firewall verification and redundancy checking are
equivalent. In: 30th IEEE International Conference on Computer Communication
(INFOCOM), Shanghai, China, pp. 2123–2128, April 2011

8. Liu, A.X., Gouda, M.G.: Complete redundancy removal for packet classifiers in
TCAMs. IEEE Trans. Parallel Distrib. Syst. 21(4), 424–437 (2010)

9. Acharya, H.B., Gouda, M.G.: Projection, division: linear space verification of
firewalls. In: 30th International Conference on Distributed Computing Systems
(ICDCS), Genova, Italy, pp. 736–743, June 2010

10. Al-Shaer, E., Marrero, W., El-Atawy, A., Elbadawi, K.: Network configuration
in a box: towards end-to-end verification of networks reachability and security. In:
17th IEEE International Conference on Network Protocols (ICNP), Princeton, NJ,
USA, pp. 736–743, October 2009

An Approach to Resolve NP-Hard Problems of Firewalls 243

11. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Trans. Parallel Distrib.
Syst. 19(9), 1237–1251 (2008)

12. Al-Shaer, E., Hamed, H.: Modeling and management of firewall policies. IEEE
Trans. Netw. Serv. Manag. 1(1), 2–10 (2004)

13. Karoui, K., Ben Ftima, F., Ben Ghezala, H.: Formal specification, verification,
correction of security policies based on the decision tree approach. Int. J. Data
Netw. Secur. 3(3), 92–111 (2013)

14. Madhuri, M., Rajesh, K.: Systematic detection and resolution of firewall policy
anomalies. Int. J. Res. Comput. Commun. Technol. (IJRCCT) 2(12), 1387–1392
(2013)

15. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Martinez Perez, S., Cabot,
J.: Management of stateful firewall misconfiguration. Comput. Secur. 39, 64–85
(2013)

16. Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Moataz, T., Rimasson, X.:
Handling stateful firewall anomalies. In: Gritzalis, D., Furnell, S., Theoharidou, M.
(eds.) SEC 2012. IFIP AICT, vol. 376, pp. 174–186. Springer, Heidelberg (2012)

17. Liu, A.X., Gouda, M.G.: Structured firewall design. Comput. Netw.: Int. J. Com-
put. Telecommun. Netw. 51(4), 1106–1120 (2007)

18. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.-N., Mohapatra, P.: FIREMAN: a
toolkit for FIREwall modeling and analysis. In: IEEE Symposium on Security and
Privacy (S&P), Berkeley/Oakland, CA, USA, May 2006

19. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

20. Mallouli, W., Orset, J., Cavalli, A., Cuppens, N., Cuppens, F.: A formal approach
for testing security rules. In: 12th ACM Symposium on Access Control Models and
Technologies (SACMAT), Sophia Antipolis, France, June 2007

21. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84, 1090–1126 (1996)

22. El Kalam, A.A., El Baida, R, Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miège, A., Saurel, C., Trouessin, G.: Organization based access control. In:
IEEE 4th International Workshop on Policies for Distributed Systems and Net-
works (POLICY), Lake Come, Italy, June 2003

23. Lu, L., Safavi-Naini, R., Horton, J., Susilo, W.: Comparing and debugging firewall
rule tables. IET Inf. Secur. 1(4), 143–151 (2007)

24. Mansmann, F., Göbel, T., Cheswick, W.: Visual analysis of complex firewall con-
figurations. In: 9th International Symposium on Visualization for Cyber Security
(VizSec), Seattle, WA, USA, pp. 1–8, October 2012

25. Krombi, W., Erradi, M., Khoumsi, A.: Automata-based approach to design and
analyze security policies. In: Internernational Conference on Privacy, Security and
Trust (PST), Toronto, Canada (2014)

26. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. AW.H. Freeman, San Francisco (1979)

Hybrid Encryption Approach Using Dynamic
Key Generation and Symmetric Key Algorithm

for RFID Systems

Zouheir Labbi(&), Ahmed Maarof, Mohamed Senhadji,
and Mostafa Belkasmi

TSE Laboratory, ENSIAS, Mohammed V University, Rabat, Morocco
Zouhir.labbi@gmail.com, ahmed.maarof@gmail.com,

{m.senhadji,m.belkasmi}@um5s.net.ma

Abstract. The security of RFID systems become an important subject especially
for low cost RFID tags. A lot of Cryptographic algorithms were proposed to
insure the security and in the same time meet the resource limitations. In this
paper, we proposed a hybrid cryptographic approach as symmetric key encryp-
tion technique which generate the key dynamically, together with integrity check
parameters. The generation of key stream follows the chained approach, begin-
ning from the initial key pre-shared. As a result, the computational complexity
will be reduced as well as increase performance.

Keywords: RFID � Encryption � Integrity � Dynamic key generation

1 Introduction and Literature Review

RFID (Radio Frequency Identification) systems are very useful and convenient to
identify objects automatically through wireless communication channel. However,
since this channel is not secure from the various security attacks, a security mechanism
is needed which necessitating the use of data encryption algorithms [1]. However, the
less computational power and storage capabilities of RFID systems restrict and limit to
perform sophisticated cryptographic operations [2] like RSA, AES and DES. As a
result, a several lightweight encryption algorithms were proposed to the challenging
problem of providing security to devices with limited resources (such as Hummingbird
[3], RBS (Redundant Bit Security algorithm) [4], etc.).

Engels et al. [3] proposed a symmetric key Encryption (SKE) algorithm called
Hummingbird as hybrid encryption approach of the block cipher and key stream.
Hummingbird uses the same traditional encryption process of block ciphers as sub-
stitution and looping, whereas, the key is derived via the stream cipher principle which
remains this encryption process computationally expensive. However, our approach
will be compared with Hummingbird without inherit any feature from it.

In our proposed hybrid algorithm, the key stream is generated dynamically as it is
derived from previous key block and an Intermediate Cipher Text (ICT) block, which is
encrypted block-by-block with a message using the XOR operation. The integrity
check is applied using a fixed size final key in each round which is used as the message

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 244–249, 2016.
DOI: 10.1007/978-3-319-46140-3_20

digest (MD) after encryption process. As our algorithm use only the XOR operation
during the encryption process and provides an integrity check without using any
external hashing algorithm, we can consider that our approach will increase perfor-
mance as well as reduce the computational complexity.

This paper is organized as follows. In Sect. 2, we explain our proposed algorithm.
In Sect. 3, we provide a security analysis of our approach and compare our approach
with existing algorithms. Section 4 concludes the paper.

2 Proposed Approach

2.1 Overview

Using cipher text as part of the encryption can lead to some information about the
original message being uncovered to an attacker. To avoid this issue, our approach uses
an ICT to generate a dynamic key which used on each block of the message encryption,
to generate at the end a cipher text bits completely random.

Our hybrid encryption algorithm consists of two parts: key generation part (based
on stream ciphers) and two rounds of encryption (or decryption) using a basic XOR
operation. The message is encrypted block-by-block with different (block) keys on each
message block. The size of the message block is 128-bits in sixteen 8-bit chunks.

Figure 1 illustrates the encryption process. The algorithm needs two initial keys
that encrypt the first block in each round. Except the initial keys, every successive key
is derived from the bits in the current key block and an ICT block.

2.2 Key Generation

We consider that the initial key used to encrypt the first block of the message in each
round is generated by the sender and securely transmitted to the receiver.

The successive keys are generated from the previous keys with the help of an
intermediate cipher text (ICT). ICT represents the encrypted message after Round 1,
whereas the final cipher text is generated after Round 2. The key generation process
uses a different initial key (Ka0 and Kb0) in each round to encrypt the first block in the
message. To encrypt each successive block in the message, we introduce a combination
of prediction and derivation techniques to generate successive keys (Ka1...n for Round 1
and Kb1...n for Round 2) from previous key block and ICT block.

Fig. 1. Overview of the encryption process

Hybrid Encryption Approach 245

In prediction, three bits in every chunk (8 bits) per block are used to choose the ithx
bit within the respective chunk. The value of ix is based on the three binary bits chosen
in the chunk. The value of ix is a decimal representation of the 3-bit binary. In a chunk,
3-bits are selected in a clock wise direction starting from MSB in the chunk to the LSB
to choose one out of eight possible values for ix, which is repeated 8 times starting from
the MSB to the LSB. The value of i represents the position of the binary bit in the
chunk. Each value of ix predicts a new bit that is used to generate chunks per block in
every successive key. As shown in Fig. 2, three bits are rotated in a clock wise
direction to yield one out of eight possible values for ix.

In derivation, the successive key is generated by XORing the ðix � 1Þth position of
the binary bit with the ðix þ 1Þth position of the binary bit to form a new bit. The same
process is repeated in every chunk per block to generate a whole key for encrypting the
successive block in the message. The whole process of key generation offers ran-
domness in the key stream without forming a cycle.

The prediction and derivation process applied in combination to generate a key is as
follows. In Round 1, the key is derived from key Ka series based on the ICT block’s
prediction. In contrast, Round 2’s successive keys are derived from the ICT block
based on the key block’s prediction. To generate a key, the combination process is
applied alternatively on an ICT block and a key block over two rounds.

2.3 Encryption or (Decryption)

Initially, in Round 1, four out of eight bits (say 0, 2, 3, 5) in every chunk in a key Ka0

are inverted. The first chunk in the initial key Ka0 is XORed with the first chunk in the
first block of the message, which produces the first chunk in ICT0 (which represents the
ICT first block). Again, four out of eight bits (say 2, 4, 5, 7) in every chunk in ICT0 are
inverted (this process is common throughout the ICT blocks), which is followed by
successive key generation operations. The output of the Key generation operation will
be the first chunk in the key Ka1 to encrypt the first chunk of the next message block.
The first chunk of key Ka1 is XORed with the second chunk of key Ka0 that will be
used to encrypt the second chunk in the first block of the message. In conclusion, every
first chunk in each block of the message is directly XORed with the first chunk of the

Fig. 2. Key generation process

246 Z. Labbi et al.

respective key, whereas the successive chunks in each block in the message are
encrypted with the XORed output of the successive chunk in the present key and the
currently derived chunk for the next key. For example, the 4th chunk in message CM2;4

will be encrypted with the XORed output of the 4th chunk in the current key CKa2;4 and
the 3th chunk in the next key CKa3;3.

Round 2 follows the same procedure as Round 1, Except that the message and
initial key Ka0 will be replaced by the ICT and key Kb0 respectively. In addition, the
inversion operation is applied on bits 1, 4, 6, 7 and 0, 1, 3, 6 for the key and the ICT
respectively. The output of Round 2 is the final cipher text. Every block in a message is
XORed with the key block to generate a cipher text. Figure 3 illustrates the encryption
process. A decryption process is symmetric with encryption in reverse manner.

Fig. 3. Encryption process

Hybrid Encryption Approach 247

2.4 Integrity Check

The final keys (say Kaðnþ 1Þ and Kbðnþ 1Þ) in each round of encryption will act as
integrity check parameter. In this approach, the 128-bit key Kaðnþ 1Þ will be concate-
nated with the 128-bit key Kbðnþ 1Þ to form a 256-bit MD, which is used for integrity
check.

3 Analysis and Discussion

The successive keys that are generated using both message and key based on prediction
or derivation function are completely dynamic. In fact, there is no regular cycle in key
bits stream. Our approach is a very simple algorithm which generates keys and encrypts
the message based on XOR operations. It can be unaffected by variety of attacks [5, 6].

3.1 Cryptanalysis

This section presents the specific cryptanalysis (chosen-plain text attack, chosen cipher
text attack and differential attack) for using this approach on RFID systems [7]. An
attacker assumes that a message is in plain text that is encrypted to obtain a corre-
sponding cipher text, which will be compared with captured cipher text. Since the keys
are changed dynamically for each block encrypted, it’s hard to lunch chosen plaintext
and chosen cipher text attacks in our approach.

A differential attack compares the difference in an input value with the output to
obtain a possible key. Since our approach depends on both a key and an ICT, differ-
ential attack is difficult to implement. In addition, switch key generation process
between prediction and derivation function, lead to remove the linearity in the key
cycle.

A dynamically generated key ensures that there will be no relation between the
current and previous key, so launching a distinguishing attack is difficult.

3.2 Performance Evaluation

The performance analysis of this approach is expected to be computationally efficient.
Initially, the computation is required only for the encryption part, but the integrity
check does not require any additional computation process. The number of operations
required per bit is only fourteen, which includes encryption (or decryption), an integrity
check and key generation operations. However, future work on the key generation part
is expecting to reduce the hardware requirement, increase the computational efficiency
of the proposed approach.

248 Z. Labbi et al.

4 Conclusions and Future Work

This paper proposes a novel hybrid symmetric key encryption algorithm that is
designed to offer confidentiality, integrity and dynamic key generation. In conclusion,
the uniqueness of the algorithms is to achieve more than one security goal without
using additional algorithms and this is accomplished with limited resources.

Finally, proposed approaches are not available in real-time environment. For this
reason, improved security analysis, study of hardware implementation for our
approach, and real-time algorithm deployment will be conducted in the future.

References

1. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices, and archi-
tectures. In: Proceedings of the 11th ACM Conference on Computer and Communications
Security, pp. 210–219. ACM (2004)

2. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: Public-key
cryptography for RFID-tags. In: Fifth Annual IEEE International Conference on Pervasive
Computing and Communications Workshops. PerCom Workshops 2007, pp. 217–222. IEEE
(2007)

3. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Hummingbird: ultra-lightweight cryp-
tography for resource-constrained devices. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias,
A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054,
pp. 3–18. Springer, Heidelberg (2010)

4. Jeddi, Z., Amini, E., Bayoumi, M.: RBS: redundant bit security algorithm for RFID systems.
In: 21st International Conference on Computer Communications and Networks (ICCCN),
pp. 1–5. IEEE (2012)

5. Hell, M., Johansson, T., Brynielsson, L.: An over view of distinguishing attacks on stream
ciphers. Crypt. Commun. 1, 71–94 (2009)

6. Zulkifli, M.Z.W.M.: Attack on cryptography (2008)
7. Francois, X., Gilles, P., Jean-Jacques, Q.: Cryptanalysis of block ciphers: a survey. Technical

report CG-2003-2 (2003)

Hybrid Encryption Approach 249

Time-Efficient Read/Write Register
in Crash-Prone Asynchronous

Message-Passing Systems

Achour Mostéfaoui1 and Michel Raynal2,3(B)

1 LINA, Université de Nantes, 44322 Nantes, France
2 Institut Universitaire de France, Paris, France

3 IRISA, Université de Rennes, 35042 Rennes, France
raynal@irisa.fr

Abstract. The atomic register is certainly the most basic object of com-
puting science. Its implementation on top of an n-process asynchronous
message-passing system has received a lot of attention. It has been shown
that t < n/2 (where t is the maximal number of processes that may crash)
is a necessary and sufficient requirement to build an atomic register on
top of a crash-prone asynchronous message-passing system. Considering
such a context, this paper visits the notion of a fast implementation of an
atomic register, and presents a new time-efficient asynchronous algorithm.
Its time-efficiency is measured according to two different underlying syn-
chrony assumptions. Whatever this assumption, a write operation always
costs a round-trip delay, while a read operation costs always a round-trip
delay in favorable circumstances (intuitively, when it is not concurrent
with a write). When designing this algorithm, the design spirit was to be
as close as possible to the one of the famous ABD algorithm (proposed by
Attiya, Bar-Noy, and Dolev).

Keywords: Asynchronous message-passing system · Atomic read/write
register · Concurrency · Fast operation · Process crash failure · Synchro-
nous behavior · Time-efficient operation

1 Introduction

Since Sumer time [7], and –much later– Turing’s machine tape [13], read/write
objects are certainly the most basic memory-based communication objects. Such
an object, usually called a register, provides its users (processes) with a write
operation which defines the new value of the register, and a read operation
which returns the value of the register. When considering sequential computing,
registers are universal in the sense that they allow to solve any problem that can
be solved [13].

Register in Message-Passing Systems. In a message-passing system, the comput-
ing entities communicate only by sending and receiving messages transmitted
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 250–265, 2016.
DOI: 10.1007/978-3-319-46140-3 21

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 251

through a communication network. Hence, in such a system, a register is not a
communication object given for free, but constitutes a communication abstrac-
tion which must be built with the help of the communication network and the
local memories of the processes.

Several types of registers can be defined according to which processes are
allowed to read or write it, and the quality (semantics) of the value returned by
each read operation. We consider here registers which are single-writer multi-
reader (SWMR), and atomic. Atomicity means that (a) each read or write oper-
ation appears as if it had been executed instantaneously at a single point of
the time line, between is start event and its end event, (b) no two operations
appear at the same point of the time line, and (c) a read returns the value
written by the closest preceding write operation (or the initial value of the reg-
ister if there is no preceding write) [8]. Algorithms building multi-writer multi-
reader (MWMR) atomic registers from single-writer single-reader (SWSR) reg-
isters with a weaker semantics (safe or regular registers) are described in several
textbooks (e.g., [3,9,12]).

Many distributed algorithms have been proposed, which build a register on
top of a message-passing system, be it failure-free or failure-prone. In the failure-
prone case, the addressed failure models are the process crash failure model, or
the Byzantine process failure model (see, the textbooks [3,9–11]). The most
famous of these algorithms was proposed by Attiya et al. in [2]. This algorithm,
which is usually called ABD according to the names its authors, considers an
n-process asynchronous system in which up to t < n/2 processes may crash (it
is also shown in [2] that t < n/2 is an upper bound of the number of process
crashes which can be tolerated). This simple and elegant algorithm, relies on (a)
quorums [14], and (b) a simple broadcast/reply communication pattern. ABD
uses this pattern once in a write operation, and twice in a read operation imple-
menting an SWMR register.

Fast Operation. To our knowledge, the notion of a fast implementation of an
atomic register operation, in failure-prone asynchronous message-passing sys-
tems, was introduced in [5] for process crash failures, and in [6] for Byzantine
process failures. These papers consider a three-component model, namely there
are three different types of processes: a set of writers W , a set of readers R, and
a set of servers S which implements the register. Moreover, a client (a writer
or a reader) can communicate only with the servers, and the servers do not
communicate among themselves.

In these papers, fast means that a read or write operation must entail exactly
one communication round-trip delay between a client (the writer or a reader)
and the servers. When considering the process crash failure model (the one we
are interested in this paper), it is shown in [5] that, when (|W | = 1) ∧ (t ≥
1) ∧ (|R| ≥ 2), the condition (|R| < |S|

t − 2) is necessary and sufficient to have
fast read and write operations (as defined above), which implement an atomic
register. It is also shown in [5] that there is no fast implementation of an MWMR
atomic register if

(
(|W | ≥ 2) ∧ (|R| ≥ 2) ∧ (t ≥ 1)

)
.

252 A. Mostéfaoui and M. Raynal

Content of the Paper. The work described in [5,6] is mainly on the limits of
the three-component model (writers, readers, and servers constitute three inde-
pendent sets of processes) in the presence of process crash failures, or Byzantine
process failures. These limits are captured by predicates involving the set of writ-
ers (W), the set of readers (R), the set of servers (S), and the maximal number
of servers that can be faulty (t). Both the underlying model used in this paper
and its aim are different from this previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is
to design a time-efficient implementation of an atomic register in the classical
model used in many articles and textbooks (see, e.g., [2,3,9,12]). This model,
where any process can communicate with any process, can be seen as a peer-to-
peer model in which each process is both a client (it can invoke operations) and
a server (it manages a local copy of the register that is built).1

Adopting the usual distributed computing assumption that (a) local process-
ing times are negligible and assumed consequently to have zero duration, and (b)
only communication takes time, this paper focuses on the communication time
needed to complete a read or write operation. For this reason the term time-
efficiency is defined here in terms on message transfer delays, namely, the cost
of a read or write operation is measured by the number of “consecutive” mes-
sage transfer delays they require to terminate. Let us notice that this includes
transfer delays due to causally related messages (for example round trip delays
generated by request/acknowledgment messages), but also (as we will see in the
proposed algorithm) message transfer delays which occur sequentially without
being necessarily causally related. Let us notice that this notion of a time-efficient
operation does not involve the model parameter t.

In order to give a precise meaning to the notion of a “time-efficient implemen-
tation” of a register operation, this paper considers two distinct ways to measure
the duration of read and write operations, each based on a specific additional
synchrony assumption. One is the “bounded delay” assumption, the other one
the “round-based synchrony” assumption. More precisely, these assumptions and
the associated time-efficiency of the proposed algorithm are the following.

– Bounded delay assumption. Let us assume that every message takes at most Δ
time units to be transmitted from its sender to any of its receivers. In such a
context, the algorithm presented in the paper has the following time-efficiency
properties.

• A write operation takes at most 2Δ time units.
• A read operation which is write-latency-free takes at most 2Δ time units.

(The notion of write-latency-freedom is defined in Sect. 3. Intuitively, it
captures the fact that the behavior of the read does not depend on a con-
current or faulty write operation, which is the usual case in read-dominated

1 Considering the three-component model where each reader is also a server (i.e., R =
S), we obtain a two-component model with one writer and reader-server processes.

In this model, the necessary and sufficient condition (|R| < |S|
t

− 2) can never be
satisfied, which means that, it is impossible to design a fast implementation of a
SWMR atomic register in such a two-component model.

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 253

applications.) Otherwise, it takes at most 3Δ time units, except in the
case where the read operation is concurrent with a write operation and
the writer crashes during this write, where it can take up to 4Δ time units.
(Let us remark that a process can experience at most once the 4Δ read
operation scenario.)

– Round-based synchrony assumption. Here, the underlying communication sys-
tem is assumed to be round-based synchronous [3,8,11]. In such a system,
the processes progress by executing consecutive synchronous rounds. In every
round, according to its code, a process possibly sends a message to a subset of
processes, then receives all the messages sent to it during the current round,
and finally executes local computation. At the end of a round, all processes are
directed to simultaneously progress to the next round. In such a synchronous
system, everything appears as if all messages take the very same time to go
from their sender to theirs receivers, namely the duration δ associated with
a round. When executed in such a context, the proposed algorithm has the
following time-efficiency properties.

• The duration of a write operation is 2δ time units.
• The duration of a read operation is 2δ time units, except possibly in the

specific scenario where the writer crashes while executing the write operation
concurrently with the read, in which case the duration of the read can be 3δ
time units (as previously, let us remark that a process can experience at most
once the 3δ read operation scenario.)

Hence, while it remains correct in the presence of any asynchronous message
pattern (e.g., when each message takes one more time unit than any previous
message), the proposed algorithm is particularly time-efficient when “good” sce-
narios occur. Those are the ones defined by the previous synchrony patterns
where the duration of a read or a write operation corresponds to a single round-
trip delay. Moreover, in the other synchronous scenarios, where a read operation
is concurrent with a write, the maximal duration of the read operation is pre-
cisely quantified. A concurrent write adds uncertainty whose resolution by a read
operation requires one more message transfer delay (two in the case of the Δ
synchrony assumption, if the concurrent write crashes).

Roadmap. The paper consists of 6 sections. Section 2 presents the system model.
Section 3 defines the atomic register abstraction, and the notion of a time-efficient
implementation. Then, Sect. 4 presents an asynchronous algorithm providing an
implementation of an atomic register with time-efficient operations, as previously
defined. Section 5 proves its properties. Finally, Sect. 6 concludes the paper.

2 System Model

Processes. The computing model is composed of a set of n sequential processes
denoted p1, ..., pn. Each process is asynchronous which means that it proceeds

254 A. Mostéfaoui and M. Raynal

at its own speed, which can be arbitrary and remains always unknown to the
other processes.

A process may halt prematurely (crash failure), but executes correctly its
local algorithm until it possibly crashes. The model parameter t denotes the
maximal number of processes that may crash in a run. A process that crashes
in a run is said to be faulty. Otherwise, it is correct or non-faulty.

Communication. The processes cooperate by sending and receiving messages
through bi-directional channels. The communication network is a complete net-
work, which means that any process pi can directly send a message to any process
pj (including itself). Each channel is reliable (no loss, corruption, nor creation of
messages), not necessarily first-in/first-out, and asynchronous (while the transit
time of each message is finite, there is no upper bound on message transit times).

A process pi invokes the operation “send tag(m) to pj” to send pj the
message tagged tag and carrying the value m. It receives a message tagged
tag by invoking the operation “receive tag()”. The macro-operation “broadcast
tag(m)” is a shortcut for “for each j ∈ {1, . . . , n} send tag(m) to pj end for”.
(The sending order is arbitrary, which means that, if the sender crashes while
executing this statement, an arbitrary – possibly empty– subset of processes will
receive the message.)

Let us notice that, due to process and message asynchrony, no process can
know if an other process crashed or is only very slow.

Notation. In the following, the previous computation model, restricted to the
case where t < n/2, is denoted CAMPn,t[t < n/2] (Crash Asynchronous
Message-Passing).

It is important to notice that, in this model, all processes are a priori “equal”.
As we will see, this allows each process to be at the same time a “client” and a
“server”. In this sense, and as noticed in the Introduction, this model is the “fully
connected peer-to-peer” model (whose structure is different from other comput-
ing models such as the client/server model, where processes are partitioned into
clients and servers, playing different roles).

3 Atomic Register and Time-Efficient Implementation

3.1 Atomic Register

A concurrent object is an object that can be accessed by several processes (pos-
sibly simultaneously). An SWMR atomic register (say REG) is a concurrent
object which provides exactly one process (called the writer) with an operation
denoted REG .write(), and all processes with an operation denoted REG .read().
When the writer invokes REG .write(v) it defines v as being the new value of
REG . An SWMR atomic register (we also say the register is linearizable [4]) is
defined by the following set of properties [8].

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 255

– Liveness. An invocation of an operation by a correct process terminates.
– Consistency (safety). All the operations invoked by the processes, except pos-

sibly –for each faulty process– the last operation it invoked, appear as if they
have been executed sequentially and this sequence of operations is such that:

• each read returns the value written by the closest write that precedes it
(or the initial value of REG if there is no preceding write),

• if an operation op1 terminated before an operation op2 started, then op1
appears before op2 in the sequence.

This set of properties states that, from an external observer point of view, the
object appears as if it was accessed sequentially by the processes, this sequence
(a) respecting the real time access order, and (ii) belonging to the sequential
specification of a read/write register.

3.2 Notion of a Time-Efficient Operation

The notion of a time-efficient operation is not related to its correctness, but is a
property of its implementation. It is sometimes called non-functional property.
In the present case, it captures the time efficiency of operations.2

As indicated in the introduction, we consider here two synchrony assumptions
to define what we mean by time-efficient operation implementation. As we have
seen, both are based on the duration of read and write operations, in terms of
message transfer delays. Let us remember that, in both cases, it is assumed that
the local processing times needed to implement these high level read and write
operations are negligible.

Bounded delay-based definition of a time-efficient implementation.
Let us assume an underlying communication system where message transfer
delays are upper bounded by Δ.

Write-Latency-Free Read Operation and Interfering Write. Intuitively, a read
operation is write-latency-free if its execution does “not interleave” with the
execution of a write operation. More precisely, let τr be the starting time of a
read operation. This read operation is write-latency-free if (a) it is not concurrent
with a write operation, and (b) the closest preceding write did not crash and
started at a time τw < τr − Δ.

Let opr be a read operation, which started at time τr. Let opw be the closest
write preceding opr. If opw started at time τw ≥ τr−Δ, it is said to be interfering
with opr.
Bounded delay-based definition. An implementation of a read/write register is
time-efficient (from a bounded delay point of view) if it satisfies the following
properties.
2 Another example of a non-functional property is quiescence. This property is on

algorithms implementing reliable communication on top of unreliable networks [1].
It states that the number of underlying implementation messages generated by an
application message must be finite. Hence, if there is a time after which no application
process sends messages, there is a time after which the system is quiescent.

256 A. Mostéfaoui and M. Raynal

– A write operation takes at most 2Δ time units.
– A read operation which is write-latency-free takes at most 2Δ time units.
– A read operation which is not write-latency-free takes at most

• 3Δ time units if the writer does not crash while executing the interfering
write,

• 4Δ time units if the writer crashes while executing the interfering write
(this scenario can appear at most once for each process).

Round synchrony-based definition of a time-efficient implementation.
Let us assume that the underlying communication system is round-based syn-
chronous, where each message transfer delay is equal to δ. When considering
this underlying synchrony assumption, it is assumed that a process sends or
broadcasts at most one message per round, and this is done at the beginning of
a round.

An implementation of a read/write register is time-efficient (from the round-
based synchrony point of view) if it satisfies the following properties.

– The duration of a write operation is 2δ time units.
– The duration of a read operation is 2δ time units, except possibly in the

“at most once” scenario where the writer crashes while executing the write
operation concurrently with the read, in which case the duration of the read
can be 3δ time units.

What Does the Proposed Algorithm. As we will see, the proposed algorithm,
designed for the asynchronous system model CAMPn,t[t < n/2], provides
an SWMR atomic register implementation which is time-efficient for both its
“bounded delay”-based definition, and its “round synchrony”-based definition.

4 An Algorithm with Time-Efficient Operations

The design of the algorithm, described in Fig. 1, is voluntarily formulated to be
as close as possible to ABD. For the reader aware of ABD, this will help its
understanding.

Local Variables. Each process pi manages the following local variables.

– regi contains the value of the constructed register REG , as currently known
by pi. It is initialized to the initial value of REG (e.g., the default value ⊥).

– wsni is the sequence number associated with the value in regi.
– rsni is the sequence number of the last read operation invoked by pi.
– swsni is a synchronization local variable. It contains the sequence number of

the most recent value of REG that, to pi’s knowledge, is known by at least
(n−t) processes. This variable (which is new with respect to other algorithms)
is at the heart of the time-efficient implementation of the read operation.

– resi is the value of REG whose sequence number is swsni.

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 257

Fig. 1. Time-efficient SWMR atomic register in AMPn,t[t < n/2]

Client Side: Operation write() invoked by the writer. Let pi be the writer. When
it invokes REG .write(v), it increases wsni, updates regi, and broadcasts the
message write(wsni, v) (line 1). Then, it waits until it has received an acknowl-
edgment message from (n−t) processes (line 2). When this occurs, the operation
terminates (line 3). Let us notice that the acknowledgment message is a copy of
the very same message as the one it broadcast.

Server Side: Reception of a Message write(wsn, v). when a process pi receives
such a message, and this message carries a more recent value than the one
currently stored in regi, pi updates accordingly wsni and regi (line 7). Moreover,
if this message is the first message carrying the sequence number wsn, pi forwards
to all the processes the message write(wsn, v) it has received (line 8). This
broadcast has two aims: to be an acknowledgment for the writer, and to inform
the other processes that pi “knows” this value.3

Moreover, when pi has received the message write(wsn, v) from (n − t)
different processes, and swsni is smaller than wsn, it updates its local synchro-
nization variable swsni and accordingly assigns v to resi (lines 9–11).
3 Let us observe that, due to asynchrony, it is possible that wsni > wsn when pi

receives a message write(wsn, v) for the first time.

258 A. Mostéfaoui and M. Raynal

Server Side: Reception of a Message read(rsn). When a process pi receives
such a message from a process pj , it sends by return to pj the message
state(rsn,wsni), thereby informing it on the freshness of the last value of REG
it knows (line 12). The parameter rsn allows the sender pj to associate the mes-
sages state(rsn,−) it will receive with the corresponding request identified by
rsn.

Client Side: Operation read(). When a process pi invokes REG .read(), it first
broadcasts the message read(rsni) with a new sequence number. Then, it waits
until “some” predicate is satisfied (line 5), and finally returns the current value of
resi. Let us notice that the value resi that is returned is the one whose sequence
number is swsni.

The waiting predicate is the heart of the algorithm. Its first part states that pi
must have received a message state(rsn,−) from (n − t) processes. Its second
part, namely (swsni ≥ maxwsn), states that the value in pi’s local variable
resi is as recent or more recent than the value associated with the greatest write
sequence number wsn received by pi in a message state(rsn,−). Combined with
the broadcast of messages write(wsn,−) issued by each process at line 8, this
waiting predicate ensures both the correctness of the returned value (atomicity),
and the fact that the read implementation is time-efficient.

5 Proof of the Algorithm

5.1 Termination and Atomicity

The properties proved in this section are independent of the message transfer
delays (provided they are finite).

Lemma 1. If the writer is correct, all its write invocations terminate. If a reader
is correct, all its read invocations terminate.

Proof. Let us first consider the writer process. As by assumption it is correct, it
broadcasts the message write(sn,−) (line 1). Each correct process broadcasts
write(sn,−) when it receives it for the first time (line 8). As there are at least
(n− t) correct processes, the writer eventually receives write(sn,−) from these
processes, and stops waiting at line 2.

Let us now consider a correct reader process pi. It follows from the same
reasoning as before that the reader receives the message state(rsn,−) from
at least (n − t) processes (lines 5 and 12). Hence, it remains to prove that the
second part of the waiting predicate, namely swsni ≥ maxwsn (line 5) becomes
eventually true, where maxwsn is the greatest write sequence number received
by pi in a message state(rsn,−). Let pj be the sender of this message. The
following list of items is such that item x =⇒ item (x + 1), from which follows
that swsni ≥ maxwsn (line 5) is eventually satisfied.

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 259

1. pj updated wsnj to maxwsn (line 7) before sending state(rsn,maxwsn)
(line 12).

2. Hence, pj received previously the message write(maxwsn,−), and broadcast
it the first time it received it (line 8).

3. It follows that any correct process receives the message write(maxwsn,−)
(at least from pj), and broadcasts it the first time it receives it (line 8).

4. Consequently, pi eventually receives the message write(maxwsn,−) from
(n − t) processes. When this occurs, it updates swsni (line 10), which is
then ≥ maxwsn, which concludes the proof of the termination of a read
operation. �� Lemma 1

Lemma 2. The register REG is atomic.

Proof. Let read[i, x] be a read operation issued by a process pi which returns the
value with sequence number x, and write[y] be the write operation which writes
the value with sequence number y. The proof of the lemma is the consequence
of the three following claims.

– Claim 1. If read[i, x] terminates before write[y] starts, then x < y.
– Claim 2. If write[x] terminates before read[i, y] starts, then x ≤ y.
– Claim 3. If read[i, x] terminates before read[j, y] starts, then x ≤ y.

Claim 1 states that no process can read from the future. Claim 2 states that
no process can read overwritten values. Claim 3 states that there is no new/old
read inversions [3,11].

Proof of Claim 1.
This claim follows from the following simple observation. When the writer exe-
cutes write[y], it first increases its local variable wsn which becomes greater
than any sequence number associated with its previous write operations (line 1).
Hence if read[i, x] terminates before write[y] starts, we necessarily have x < y.

Proof of Claim 2.
It follows from line 2 and lines 7–8 that, when write[x] terminates, there is a set
Qw of at least (n − t) processes pk such that wsnk ≥ x. On another side, due to
lines 4–5 and line 12, read[i, y] obtains a message state() from a set Qr of at
least (n − t) processes.

As |Qw| ≥ n − t, |Qr| ≥ n − t, and n > 2t, it follows that Qw ∩ Qr is not
empty. There is consequently a process pk ∈ Qw ∩ Qr, such that wsnk ≥ x.
Hence, pk sent to pi the message state(−, z), where z ≥ x.

Due to (a) the definition of maxwsn ≥ z, (b) the predicate swsni ≥
maxwsn ≥ z (line 5), and (c) the value of swsni = y, it follows that
y = swsni ≥ z when read[i, y] stops waiting at line 5. As, z ≥ x, it follows
y ≥ x, which proves the claim.

Proof of Claim 3.
When read[i, x] stops waiting at line 5, it returns the value resi associated with
the sequence number swsni = x. Process pi previously received the message

260 A. Mostéfaoui and M. Raynal

write(x,−) from a set Qr1 of at least (n − t) processes. The same occurs for
pj , which, before returning, received the message write(y,−) from a set Qr2 of
at least (n − t) processes.

As |Qr1| ≥ n − t, |Qr2| ≥ n − t, and n > 2t, it follows that Qr1 ∩ Qr2 is
not empty. Hence, there is a process pk which sent state(, x) to pi, and later
sent state(−, y) to pj . As swsnk never decreases, it follows that x ≤ y, which
completes the proof of the lemma. �� Lemma 2

Theorem 1. Algorithm1 implements an SWMR atomic register in
CAMPn,t[t < n/2].

Proof. The proof follows from Lemma 1 (termination) and Lemma 2
(atomicity). �� Theorem 1

5.2 Time-Efficiency: The Bounded Delay assumption

As already indicated, this underlying synchrony assumption considers that every
message takes at most Δ time units. Moreover, let us remind that a read (which
started at time τr) is write-latency-free if it is not concurrent with a write, and
the last preceding write did not crash and started at time τw < τr − Δ.

Lemma 3. A write operation takes at most 2Δ time units.

Proof. The case of the writer is trivial. The message write() broadcast by the
writer takes at most Δ time units, as do the acknowledgment messages write()
sent by each process to the writer. In this case 2Δ correspond to a causality-
related maximal round-trip delay (the reception of a message triggers the sending
of an associated acknowledgment). �� Lemma 3

When the Writer Does Not Crash While Executing a Write Operation. The cases
where the writer does not crash while executing a write operation are captured
by the next two lemmas.

Lemma 4. A write-latency-free read operation takes at most 2Δ time units.

Proof. Let pi be a process that issues a write-latency-free read operation, and
τr be its starting time. Moreover, Let τw the starting time of the last preceding
write. As the read is write latency-free, we have τw + Δ < τr. Moreover, as
messages take at most Δ time units, and the writer did not crash when executing
the write, each non-crashed process pk received the message write(x,−) (sent
by the preceding write at time τw + Δ < τr), broadcast it (line 8), and updated
its local variables such that we have wsnk = x (lines 7–11) at time τw + Δ <
τr. Hence, all the messages state() received by the reader pi carry the write
sequence number x. Moreover, due to the broadcast of line 8 executed by each
correct process, we have swsni = x at some time τw + 2Δ < τr + Δ. It follows
that the predicate of line 5 is satisfied at pi within 2Δ time units after it invoked
the read operation. �� Lemma 4

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 261

Lemma 5. A read operation which is not write-latency-free, and during which
the writer does not crash during the interfering write operation, takes at most 3Δ.

Proof. Let us consider a read operation that starts at time τr, concurrent with
a write operation that starts at time τw and during which the writer does not
crash. From the read operation point of view, the worst case occurs when the read
operation is invoked just after time τw − Δ, let us say at time τr = τw − Δ + ε.
As a message state(rsn,−) is sent by return when a message read(rsn) is
received, the messages state(rsn,−) received by pi by time τr + 2Δ can be
such that some carry the sequence number x (due to last previous write) while
others carry the sequence number x + 1 (due to the concurrent write)4. Hence,
maxwsn = x or maxwsn = x + 1 (predicate of line 5). If maxwsn = x, we also
have swsni = x and pi terminates its read. If maxwsn = x+1, pi must wait until
swsni = x + 1, which occurs at the latest at τw + 2Δ (when pi receives the last
message of the (n − t) messages write(y,−) which makes true the predicates
of lines 9–10, thereby allowing the predicate of line 5 to be satisfied). When this
occurs, pi terminates its read operation. As τw = τr + Δ − ε, pi returns at the
latest τr + 3Δ − ε time units after it invoked the read operation. �� Lemma 4

When the Writer Crashes While Executing a Write Operation. The problem
raised by the crash of the writer while executing the write operation is when
it crashes while broadcasting the message write(x,−) (line 1): some processes
receive this message by Δ time units, while other processes do not. This issue
is solved by the propagation of the message write(x,−) by the non-crashed
processes that receive it (line 8). This means that, in the worst case (as in
synchronous systems), the message write(x,−) must be forwarded by (t + 1)
processes before being received by all correct processes. This worst scenario may
entail a cost of (t + 1)Δ time units.

Fig. 2. Modified algorithm for time-efficient read in case of concurrent writer crash

4 Messages state(rsn, x) are sent by the processes that received read(rsn) before
τw, while the messages state(rsn, x + 1) are sent by the processes that received
read(rsn) between τw and τr + Δ = τw + ε.

262 A. Mostéfaoui and M. Raynal

Figure 2 presents a simple modification of Algorithm 1, which allows a fast
implementation of read operations whose executions are concurrent with a write
operation during which the writer crashes. The modifications are underlined.

When a process pi receives a message read(), it now returns a message
state() containing an additional field, namely the current value of regi, its
local copy of REG (line 12).

When a process pi receives from a process pj a message state(−, wsn, v),
it uses it in the waiting predicate of line 5, but executes before the lines 7–11,
as if this message was write(wsn, v). According to the values of the predicates
of lines 7, 9, and 10, this allows pi to expedite the update of its local variables
wsni, regi, swsni, and resi, thereby favoring fast termination.

The reader can check that these modifications do not alter the proofs of
Lemma 1 (termination) and Lemma 2 (atomicity). Hence, the proof of Theorem 1
is still correct.

Lemma 6. A read operation which is not write-latency-free, and during which
the writer crashes during the interfering write operation, takes at most 4Δ time
units.

Proof. Let τr be the time at which the read operation starts. As in the proof
of Lemma 4, the messages state(rsn,−,−) received pi by time τr + 2Δ can
be such that some carry the sequence number wsn = x (due to last previous
write) while some others carry the sequence number wsn = x + 1 (due to the
concurrent write during which the writer crashes). If all these messages carry
wsn = x, the read terminates by time τr+2Δ. If at least one of these messages is
state(rsn, x + 1,−), we have maxwsn = x + 1, and pi waits until the predicate
swsni ≥ maxwsn (= x + 1) becomes true (line 5).

When it received state(rsn, x + 1,−), if not yet done, pi broadcast the
message write(rsn, x + 1,−), (line 8 of Fig. 2), which is received by the other
processes within Δ time units. If not yet done, this entails the broadcast by each
correct process of the same message write(rsn, x+1,−). Hence, at most Δ time
units later, pi has received the message write(rsn, x+1) from (n− t) processes,
which entails the update of swsni to (x+1). Consequently the predicate of line 5
becomes satisfied, and pi terminates its read operation.

When counting the number of consecutive communication steps, we have: The
message read(rsn) by pi, followed by a message state(rsn, x+1,−) sent by some
process and received by pi, followed by the message write(rsn, x + 1) broadcast
by pi, followed by the message write(rsn, x + 1) broadcast by each non-crashed
process (if not yet done). Hence, when the writer crashes during a concurrent read,
the read returns within at most τr + 4Δ time units. �� Lemma 6

Theorem 2. Algorithm 1 modified as indicated in Figure 2 implements in
CAMPn,t[t < n/2] an SWMR atomic register with time-efficient operations
(where the time-efficiency notion is based on the bounded delay assumption).

Proof. The proof follows from Theorem 1 (termination and atomicity),
Lemmas 3, 4, 5, and 6 (time-efficiency). �� Theorem 2

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 263

5.3 Time-Efficient Implementation: The Round-Based Synchrony
assumption

As already indicated, this notion of a time-efficient implementation assumes an
underlying round-based synchronous communication system, where the duration
of a round (duration of all message transfer delays) is δ.

Lemma 7. The duration of write operation is 2δ.

Proof. The proof follows directly from the observation that the write operation
terminates after a round-trip delay, whose duration is 2δ. �� Lemma 7

Lemma 8. The duration of a read operation is 2δ time units if the writer does
not crash while executing a write operation concurrent with the read. Otherwise,
it can be 3δ.

Proof. Considering a read operation that starts at time τr, let us assume that
the writer does not crash while concurrently executing a write operation. At time
τr+δ all processes receives the message read(rsn) sent by the reader (line 4), and
answer with a message state(rsn,−) (line 12). Due the round-based synchrony
assumption, all these messages carry the same sequence number x, which is equal
to both their local variable wsni and swsni. It follows that at time τr + 2δ, the
predicate of line 5 is satisfied at the reader, which consequently returns from the
read operation.

If the writer crashes while concurrently executing a write operation, it is
possible that during some time (a round duration), some processes know the
sequence number x, while other processes know only x − 1. But this synchrony
break in the knowledge of the last sequence number is mended during the next
round thanks to the message write(x, v) sent by the processes which are aware
of x (See Fig. 2). After this additional round, the read terminates (as previously)
in two rounds. Hence, the read returns at the latest at time τr +3δ. �� Lemma 8

Theorem 3. Algorithm 1 modified as indicated in Figure 2 implements in
CAMPn,t[t < n/2] an SWMR atomic register with time-efficient opera-
tions (where the time-efficiency notion is based on the round-based synchrony
assumption).

Proof. The proof follows from Theorem 1 (termination and atomicity),
Lemmas 7 and 8 (time-efficiency). �� Theorem 3

6 Conclusion

This work has presented a new distributed algorithm implementing an atomic
read/write register on top of an asynchronous n-process message-passing system
in which up to t < n/2 processes may crash. When designing it, the constraints
we imposed on this algorithm were (a) from an efficiency point of view: provide
time-efficient implementations for read and write operations, (b) and from a

264 A. Mostéfaoui and M. Raynal

design principle point of view: remain “as close as possible” to the flagship ABD
algorithm introduced by Attiya et al. [2].

The “time-efficiency” property of the proposed algorithm has been analyzed
according to two synchrony assumptions on the underlying system.

– The first assumption considers an upper bound Δ on message transfer delays.
Under such an assumption, any write operation takes then at most 2Δ time
units, and a read operation takes at most 2Δ time units when executed in
good circumstances (i.e., when there is no write operation concurrent with
the read operation). Hence, the inherent cost of an operation is a round-trip
delay, always for a write and in favorable circumstances for a read. A read
operation concurrent with a write operation during which the writer does not
crash, may require an additional cost of Δ, which means that it takes at most
3Δ time units. Finally, if the writer crashes during a write concurrent with
a read, the read may take at most 4Δ time units. This shows clearly the
incremental cost imposed by the adversaries (concurrency of write operations,
and failure of the writer).

– The second assumption investigated for a “time-efficient implementation” is
the one provided by a round-based synchronous system, where message trans-
fer delays (denoted δ) are assumed to be the same for all messages. It has
been shown that, under this assumption, the duration of a write is 2δ, and
the duration of a read is 2δ, or exceptionally 3δ when the writer crashes while
concurrently executing a write operation.

It is important to remind that the proposed algorithm remains correct in the
presence of any asynchrony pattern. Its time-efficiency features are particularly
interesting when the system has long synchrony periods.

Differently from the proposed algorithm, the ABD algorithm does not display
different behaviors in different concurrency and failure patterns. In ABD, the
duration of all write operations is upper bounded by 2Δ time units (or equal to
2δ), and the duration of all read operations is upper bounded by 4Δ time units
(or equal to 4δ). The trade-off between ABD and our algorithm lies the message
complexity, which is O(n) in ABD for both read and write operations, while it
is O(n2) for a write operation and O(n) for a read operation in the proposed
algorithm. Hence our algorithm is particularly interesting for registers used in
read-dominated applications. Moreover, it helps us better understand the impact
of the adversary pair “writer concurrency+writer failure” on the efficiency of the
read operations.

Acknowledgments. This work has been partially supported by the Franco-German
DFG-ANR Project DISCMAT (40300781) devoted to connections between mathemat-
ics and distributed computing, and the French ANR project DISPLEXITY devoted to
the study of computability and complexity in distributed computing.

Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message 265

References

1. Aguilera, M.K., Chen, W., Toueg, S.: On quiescent reliable communication. SIAM
J. Comput. 29(6), 2040–2073 (2000)

2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing
systems. J. ACM 42(1), 121–132 (1995)

3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. Wiley, Hoboken (2004). 414 p

4. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Programm. Lang. Syst. 12(3), 463–492 (1990)

5. Dutta P., Guerraoui R., Levy R., Chakraborty A.: How fast can a distributed
atomic read be? In: Proceedings of 23rd ACM Symposium on Principles of Dis-
tributed Computing (PODC 2004), pp. 236–245. ACM Press (2004)

6. Dutta, P., Guerraoui, R., Levy, R., Vukolic, M.: Fast access to distributed atomic
memory. SIAM J. Comput. 39(8), 3752–3783 (2010)

7. Kramer, S.N., Begins, H.: History Begins at Sumer: Thirty-Nine Firsts in Man’s
Recorded History. University of Pennsylvania Press, Philadelphia (1956). 416 p.,
ISBN 978-0-8122-1276-1

8. Lamport, L.: On interprocess communication part I: basic formalism. Distrib. Com-
put. 1(2), 77–85 (1986)

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Pub., San Francisco
(1996). 872 p., ISBN 1-55860-384-4

10. Raynal, M.: Communication and Agreement Abstractions for Fault-tolerant Asyn-
chronous Distributed Systems. Morgan & Claypool Publishers, San Rafael (2010).
251 p., ISBN 978-1-60845-293-4

11. Raynal, M.: Distributed Algorithms for Message-passing Systems. Springer,
Heidelberg (2013). 510 p., ISBN 978-3-642-38122-5

12. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations.
Springer, Heidelberg (2013). 515 p., ISBN 978-3-642-32026-2

13. Turing, A.M.: On computable numbers with an application to the Entscheidung-
sproblem. Proc. London Math. Soc. 42, 230–265 (1936)

14. Vukolic, M.: Quorum Systems, with Applications To Storage and Consensus.
Morgan & Claypool Publishers, San Rafael (2012). 132 p., ISBN 978-1-60845-683-3

Traffic Lights Optimization with Distributed
Ant Colony Optimization

Based on Multi-agent System

Mouhcine Elgarej(&), Mansouri Khalifa, and Mohamed Youssfi

Laboratory SSDIA, ENSET University Hassan II Mohammedia,
Mohammedia, Morocco

mouhcine.elgarej@gmail.com, khamansouri@hotmail.com,

med@youssfi.net

Abstract. Traffic congestion in road networks increase the rate of vehicles at
each road and decrease the average of circulation in intersections, this problem
can be controlled and managed with some strategies and measures that reduce
the number of demand on the road network. Today Traffic signal timing control
is a useful technique to control traffic movement to avoid and reduce traffic jam.
In industrial cities, the increase of population led to the problem of traffic
congestion, where this kind of problem needs intelligence systems to control
traffic flow based on artificial intelligence. In this paper, we try to implement a
distributed ACO algorithm for optimizing traffic signal timing based on the main
objective of self-organization, collective of the ACO algorithm to simulate the
traffic road network. The proposed method aim to manage intersections in real
time using a decentralized algorithm of ant colony optimization to decrease the
traffic flow based on the signal timing and a set of inputs data from the runtime
environment.

Keywords: Ant colony system � Ant colony optimization � Swarm
intelligence � Multi-agent system � Traffic road � Traffic congestion � Traffic
lights system

1 Introduction

In recent years, traffic congestion led us to search for some new methods to control the
traffic flow that decrease the wasting time at each intersection in the road. Traffic flow
has become a grave problem with the increasing of traffic request in several cities in the
world. Today all researchers tried to design an intelligent system to control the traffic
flow using intelligent transportation technologies. The main idea is to reduce traffic by
avoiding the traffic jam on the intersection in the map of road and optimizing time
waiting for each vehicle on this point. Traffic signal operates in different modes,
(i) using a loop which the inputs of the control are static, stable and the configuration of
the system is done on offline. (ii) Update the traffic signal based on real-time parameters
retrieved from the traffic flow environment.

Several systems are deployed to control traffic signal, but each system is based on
different parameters that can be a static or dynamic data. To control the traffic signal we

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 266–279, 2016.
DOI: 10.1007/978-3-319-46140-3_22

need to use an intelligent system that can be adaptive with any move occurs on the
environment and can show us the state of the road for the following hours.

Traffic signal problems are situated in several researches based on different search
methods and algorithms. Some of these systems are based on intelligent system. In this
domain, we have systems that are based on the current state of traffic on the road to
optimize timing signal, SCOOT (split, cycle and offset optimization technique) [1] and
SCATS (Sydney coordinated adaptive traffic system) [2], TRANSYT (traffic network
study tool) [3]. Artificial intelligence system are used to control traffic signal, we have
fuzzy logic [4] and neural networks [5].

The Ant Colony Optimization methods is one of the meta-heuristic algorithm used
to solve combinatorial problems [7, 8, 9]. The Ant colony algorithm can be viewed as a
multi-agent system, each ant on the colony can be simulated as an intelligent ant. It is
one of the swarm intelligent algorithms and used to find optimal solutions for several
problems (Traveling salesman problem, path planning, and vehicle routing problem).

In real world, real ants have the ability to find the shortest paths from their nest to
the source of food. Ant deposits some chemical substance called pheromone on their
trail toward the nest, this pheromone is used to be a link of communication between
ants. A path with a higher amount of pheromone it will be more used by the majority of
ants, so it will be more attractive based on the concentration of pheromone on this path.

In this paper, we implement a distributed ant colony optimization to find the
shortest green period to decrease the time wasted in a given intersection. With this
approach, we propose a new method to optimize traffic signal timing based on a
distributed ACO algorithm.

The paper is organized as follows: Sect. 2 presents related approaches. Section 3,
describes traffic flow terminology. In Sect. 4, we presents the traffic signal concepts. In
Sect. 5, the Ant Colony Optimization behavior is introduced. Section 6 explains the
distributed ACO based on multi-agent system for traffic signals control. Section 7
summarizes the simulation results. The conclusion appear in the last section of this
work.

2 Related Work

Paper [13] introduces an intelligent system to control traffic lights based on fuzzy logic
methods which have the ability to simulate the behavior of human for controlling traffic
lights. In the fuzzy logic, we can create an intelligent technology that has the same
behavior to the way humans would think. If a junction occurs in a certain direction, the
system has the ability to control the traffic lights at this intersection by increasing the
duration of the green light until the queue size is reduced.

In this work [14], authors proposed a new hierarchical architecture based on the
multi-agent system to design a network urban traffic signal control system. Traffic
control strategies can be viewed as traffic control agents using mobile agent technol-
ogy. The mobile agent has the ability to move between devices in a network of traffic to
collect useful data about the state of the traffic flow.

Authors in [10] explain an improved multi-colony algorithm applied to solve the
TSP, which all colonies are run on separate machines, the proposed solutions are

Traffic Lights Optimization with Distributed ACO 267

centrally collected and a local search is performed on the best optimal solution pro-
posed by each intelligent colonies. This solution is not a fully decentralized approach,
as it requires a centralized search for the best solutions and all communication are
based on a sequential synchronization.

3 Traffic Flow Terminology

Traffic intersection can be view as a set of four streets that are bidirectional and each
line has a fixed width (maximum two cars). In the presented Fig. 1, we have eight
phases to simulate the different moves inside a direction. For a better vision, we
consider only two movement at each intersection (from north to south or from the east
to west) and we have two traffic lights green and red light, so, one direction is allowed
to move (if direction N/S have the green light so the other direction E/W should have
the red light).

Each movement I (in our case each direction can be viewed as a movement) has a
queue size that can be indicated as Ni and i denotes the index of a direction. In addition,
to get the number of vehicles at each movement we use a set of sensors that count the
number of vehicles at each intersection. Moreover, we need to count the number of
waiting vehicle on direction i at a given time t and it will be indicated by NiðtÞ. The
length of the street N tð Þ is equal to the total of cars at each direction. So, the size of the
queue at this intersection can be formulated by:

N tð Þ ¼ ½N1 tð ÞþN2 tð ÞþN3 tð ÞþN4 tð Þ�

In period of time (t1, t2), the parameter Ni
out t2; t1ð Þ represents the rate of cars leaving

the direction i (two by two) and can be represented by the following function:

Ni
out t2; t1ð Þ ¼ Ni

out t1ð Þ� 2;

When the intersection receives the green light, it should decrease the length of the
queue, where at each departure two cars are allowed to leave the street, because the
width of a street is two vehicles and all vehicles are traveling with a static speed.

Fig. 1. Traffic intersection

268 M. Elgarej et al.

In the other hand, when the system sends the red signal to a street, the queue size
will increase according to the number of new vehicles (ac) at this period (t1,t2), this
scenario can be denoted as Ni

in t2; t1ð Þ :

Ni
in t2; t1ð Þ ¼ Ni

in t1ð Þ þ ac;

From Ni
out and Ni

in, the function of traffic at a given intersection can be represented by
the following equation:

Ni tð Þ ¼ Ni t � 1ð ÞþNi
in tð Þ � Ni

outðtÞ

Where Ni t � 1ð Þ is the number of vehicles in the current element, Ni
in tð Þ represents the

upstream flow in the given time t and Ni
out tð Þ indicates the total of downstream flow.

The Fig. 2 illustrate the network traffic flow in intersection i.

4 Traffic Signal Concepts

When a direction receives the green light, the queue (a set of waiting cars) will be
decreased. A set of cars will leave the queue with a static movement until the expiration
of the green duration. In the case when the queue is empty and the green period is still
available then the new upstream cars are allowed to pass without waiting.

4.1 Vehicle Waiting Time

We use the Ant Colony Optimization to optimize the waiting time at each intersection.
A set of candidate solution (signal time) is used to evaluate the convergence of the
algorithm toward the control of the car delay at a given point. To calculate the waiting
time for a vehicle, we start with the delay of cars in the initial queue and we add the
waiting time for the new arrivals (we are based on a probabilistic rule to get this waiting
time because the arrival time for these new cars is unknown).

4.2 Waiting Time of Vehicles Initially in Queue

In the green light, a set of cars will be released. The jth car in the Ni
out will have a

waiting time equal to t1� atj where j is the index of the car on the queue and atj
indicates the hour when the vehicle j arrives. At the end of the green light, a set of

Fig. 2. A traffic network intersection

Traffic Lights Optimization with Distributed ACO 269

seconds are added to each vehicle j� 1ð Þhw where the hw (headway) represent the
distance between two successive cars in seconds. In the Eq. 1 we have the total waiting
timing of all cars in the queue.

XNi
out

j¼1

WT of vehicle jð Þ ¼
XNi

out

j¼1

j� 1ð Þhwþðt1 � atjÞ ð1Þ

4.3 Waiting Time of Vehicles not Released on the Current Phase

When a vehicle arrive in a long phase (green phase) it will be directly released, in the
other case, it will wait until the green phase will occur. In a red cycle or when we meet
a congested green cycle, a set of vehicles will be added to the queue and the length of
this cycle can be denoted with Dt. The arrival number of new cars is assumed and
denoted by kDt; k is the average of upstream per hour, the waiting time for each car is
denoted by Dt

2 . The sum of waiting time for the new upstream cars in period Dt ¼
t2� t1 is formulated with Eq. 2.

wait time for new cars ¼ kDt � Dt
2

ð2Þ

4.4 Total Waiting Time for a Vehicle in a Signal Cycle

The total waiting time for a vehicle in intersection is calculated based on (i) the waiting
time of vehicles in the current queue and (ii) new waiting time for cars that are not
released on the current signal, (iii) the time used by each vehicle to go out of the queue
and finally (iv) the expected duration to release all vehicles in the queue. We consider
N be the number of cars on direction i at time t1 [so N can be denoted with N ¼ Ni tð Þ].

To estimate the waiting time for cars under the green signal (green signal with a
duration from t1 to t2) several scenarios are studied.

Scenario 1: All Cars are released at the end of the green signal.
If the duration of the green signal (t1, t2) is upper than the time necessary to release

all cars in the queue. In this case, all vehicles are able to cross the road without waiting.
The required wait time on a green signal can be described by this equation:

W1 green t1; t2ð Þ ¼ N N � 1ð Þ
2

hwþ hw N � 1ð Þ
2

N � 1ð Þhw
1� khw

ð3Þ

The first term is the wait time for cars in the initial waiting list. The second parameter is
the wait time for the new cars and the third term is the time required to release all cars
in the queue.

Scenario 2: Only a few cars are released from the initial queue.
In this case, the time required to clear the initial queue is lower than the given

period. So, the new expected time in this period will be described as follow:

270 M. Elgarej et al.

W2 green t1; t2ð Þ ¼ Ni
out N

i
out � 1

� �
2

hwþ N � Ni
out

� �
t2� t1ð Þþ k t2� t1ð Þ2

2
ð4Þ

The first term is the time used for initial cars to leave the waiting list, the second one is
the waiting time of the initial cars and the third term is the wait time estimated for the
new upstream.

Scenario 3: Red signal, all cars is waiting.
In this signal, more vehicles are added to the waiting list and no car can leave the

queue. The waiting time in this phase is denoted as follow:

W3 red t1; t2ð Þ ¼ N t2� t1ð Þþ k t2� t1ð Þ2
2

ð5Þ

The first parameter is the wait time for initial cars in the queue and the second
parameter is the waiting time for the new upstream cars.

5 The Ant Colony Optimization Behavior

Ant Colony Optimization is a section of swarm intelligence (also known as collective
intelligence) which is inspired from the behavior of real ants living in colonies for
finding the shortest path between the food source and nest. ACO tries to simulate real
ant actions to solve combinatorial optimization problems. When ants took any random
path, a kind of chemical substance, known as pheromone is laid on the path, which is
detectable and used by other ants. When multiples ants use a path, the pheromone
accumulates and evaporates by the time, and the shortest paths are selected when ants
tend to choose the path with a higher amount of pheromone.

The first application of ACS (Ant Colony System) algorithm [6] was used to solve
the Traveling Salesman Problem (TSP). The main idea of this problem is to find the
shortest path between a set of cities, the salesperson should visit all cities and build a
tour.

The real ants use pheromone on their edges to mark their paths, other ants try to
follow edges with a high amount of pheromone. In the first step, ants build their
solution based on a probabilistic decision, the second step, each edge used by an ant
should apply a local pheromone update with evaporation, the local pheromone update
rule is used to add more amount of pheromone on this edge. The last step is the global
pheromone update, in this step only the best ants are allowed to add more pheromone
on their tour. For more details, in Fig. 3 we show the algorithm of Ant Colony System.

In the ACOMAS (Ant Colony Optimization based on Multi-Agent System) we
propose a distributed architecture based on a multi-agent system to create a distributed
ACO algorithm [11], the new approach is based on Ant Colony System. In this version,
each ant tries to get the best tour based on a sequential procedure for searching the best
solution. For our approach, we design an (i) new distributed system to control the
process of communication between agents and (ii) we use a decentralized system to
manage the convergence of the system toward the best solution and (iii) implementing
a distributed ACO algorithm for finding the optimal solution.

Traffic Lights Optimization with Distributed ACO 271

In Ant Colony System, ant k tries to move toward node j from node i based on
probabilistic transition. In rule (Eq. 6) ant uses heuristic values (the amount of the
pheromone and the visibility of the next node) to decide which node will be visited
next.

pij ¼ argmaxj2Xðsaij; gbijÞ; if q� q0
p�ij; otherwise

(
ð6Þ

The q is a random heuristic variable between [0,1]. q0 is a parameter that defines which
rule is used to move to the next node. Using this parameter, we can choose between a
random node or take the amount of pheromone and the visibility of the edge for
selecting the next visited node.

An ant at node i will choose to move to next neighbor node j based on the
probability p�ij showing in Eq. (7):

p�ij ¼
sij½ �a gij½ �bP
h2X sih½ �a gih½ �b ; if j 2 X;

0 otherwise

8<
: ð7Þ

Parameter gij is the heuristic visibility of edge (i, j), generally it is a value of 1/dij,
where dij is the cost between city i and city j. The collection Ω is a set of cities which
remain to be visited when the ant is at city i. sij is the amount of pheromone between i

Fig. 3. ACS algorithm

272 M. Elgarej et al.

and j. The parameters α and β are two adjustable positive parameters used for con-
trolling the relative weights of the heuristic visibility and the pheromone trail.

When ant k visit all nodes on the graph, it will be able to increase the amount of
pheromone on each edge visited by this ant. The new amount of pheromone is based on
the cost of the proposed solution, the (Eq. 8) explains the evaporation and the local
update rule.

snewij ¼ 1� qð Þsoldij þDsij ð8Þ

In this equation,

Dsij ¼[
Xm
k¼1

Dskij ¼
Q
Lk
; if ant k use the edge i; j

0; else

�

(1−p) is the pheromone reduction parameter 0\p\1ð Þ where it represents the trail
evaporation or the rate of evaporation. The parameter m is the number of ants, Lk is the
length of the tour performed by ant k and Q is an arbitrary constant.

The evaporation process is useful for controlling the amount of pheromone on each
edge, more edges will have a chance to be visited by other ants. The heuristics values
used for the ACS are based on the initial amount of pheromone, the best value for τ0 is
to set them to a value equal of τ0 = 1/(nC), C is the cost of a nearest neighbor tour and
n is the number of nodes.

Global updating rule is included after all ants have completed their tours. Only the
best ants are able to update their solutions and add more pheromone on their trails to be
more attractive for the future exploration. The pheromone amount is updated by
applying the process of global updating rule of Eq. (9).

snewij ¼ 1� qð Þsoldij þDsij þDsbestij ð9Þ

whereDsbestij ¼ [
Xm
k¼1

Dskij ¼
Q

Lbestk
; if edge ij used in the best path

0; else

�

6 Distributed ACO Algorithm Applied to Traffic Signal
Optimization

The traffic model contains two directions (N/S, W/E), so in each direction, there is a set
of vehicles that should wait until receiving the green signal. The main idea, is found the
best signals timing for each intersection. In this presentation, we try to implement a
distributed system to control the traffic flow on each intersection, we are based on a set
of intelligent agents to create a distributed system, which each one of them is able to
share and collaborate in real time with the other agents in the system to provide the best
solutions according to the information available on the environment. In Fig. 4, we
present a distributed architecture designed for the traffic lights control system, which

Traffic Lights Optimization with Distributed ACO 273

contain three main agents: Road Supervisor Agent (RSA), Intersection agent (IA),
Traffic Cycle Agent (TCA).

Road Supervisor Agent (RSA). The main goal of our solution is to control the state
of traffic on each intersection and display the real-time information related to each
direction that gives an idea about the estimated waiting time at each intersection and the
waiting time of the queue in each point. At each moment, the RSA is able to retrieve a
set of information from the IA to be used in the operating process, also these pieces of
information are used to help the drivers when they try to select the next intersection to
be visited.

Intersection Agent. The main obstacle of traffic road control is the absence of a unit
of control able to store all kinds of information about each intersection (number of
input and output vehicles, the average of cars per hour, the rate of traffic during a
period, etc.). The main objective of the AI is collecting a set of information from
sensors, they are able to count the size of upstream and downstream of vehicles in each
direction. This information are useful for the RSA to be browsing the condition of
intersection for drivers. In addition, IA sends this inputs information to the TCA to
calculate the new period of the traffic signal timing according to these parameters.

Traffic Cycle Agent. In our system we have eight traffic signal phase, the possible
phases in our case are in two directions (E/W or N/S) are shown in Fig. 5. The possible
transitions allowed in our case can be modeled as a graph with a set of nodes (each
node represent a period of time that can be an admissible solution) and arcs are
represented by time duration between two nodes. At the beginning, ants start in parallel
and move toward the next node until creates a signal period (this cycle contains two
periods: the green light duration and the red light duration).

Fig. 4. Distributed traffic lights architecture

Fig. 5. Traffic signal cycle

274 M. Elgarej et al.

The main objective of the TCA is looking for the optimal signal period based on the
information which represent the current state of the intersection (number of vehicles at
the initial waiting list and the rate of incoming vehicles) using the direct communi-
cation with the AI. This information are useful to select the best transitions between the
signal phases shown in the Fig. 6. In other words, the TCA will create a set of
intelligent workers agents to find the best path between these transitions by using the
ACS algorithm rules, those agents are working together in parallel to create the best
optimal signal period. Each agent will start his tour through the different movements
possible and try to produce a path planning (timeline), which represents the signal cycle
movements and the duration of each movement.

Using thismodel,wehave a set of phase sequencesbasedon the eightmovements (four
movements at each direction) allowed in our system. To better understand the allowed
movements on each direction, we take the example of (East/West) direction, if the
beginning signal is [2–5], we have only two possible directions which are
[2–5] → [1 + 5] → [1 + 6], or [2 + 5] → [2 + 6] → [1 + 6]. Ifwe start from [2–6]we
have only three possible sequences, which are [2 + 6] → [2 + 5] → [1 + 5], or
[2 + 6] → [1 + 6] → [1 + 5], or [2 + 6] → [1 + 5]. The same behavior is applied on
the other direction (Nord/Sud).

To control the green time on each phase, we need to set the ðmingreen; maxgreenÞ
value. The goal of this paper is determined the optimal duration that minimize the
waiting time on each intersection, two types of waiting time are considered (i) waiting
time for the initial queue that contain a set of vehicles and (ii) the waiting time for the
cars that just come in this waiting period. A set of workers ants are distributed in each
direction, the behavior of each ant is to move toward the next phase depending on the
transition rule used in ACS algorithm. Ants need some input data (the number of
vehicles that come from several sensors and the size of the upstream flow) to be able to
get the optimal green time that is denoted by the amount of pheromone deposit on this
street.

In this new approach, a set of distributed ants are used to move toward the best
solution depending on the Ant Colony System rules. Each worker agent calculates the
waiting time for each signal according to a set of constraints, the amount of pheromone
deposit on each direction represents the signal period. The length of the proposed
solution or the cost of the solution can be computed by using the new parameters and
will be formulated with the new Eq. 10.

Fig. 6. The traffic lights cycle

Traffic Lights Optimization with Distributed ACO 275

Ck ¼ wkðt1; t2Þ
4k t2� t1ð Þþ P4

i¼1 N
iðt1Þ ð10Þ

The first term is the sum of waiting time of all vehicle in the intersection (represents the
waiting time needed to release all vehicles on this intersection). The second parameter
is the number of the road in the intersection multiplied by the average of upstream
vehicles plus the number of cars in each waiting list.

The heuristic value that represent the visibility of t2 to t1 (or the weight of the
visibility t1 and t2) can be denoted by the following Eq. 11:

gt1t2 ¼ Exp � Ng t1ð Þ � 1Þhw� ðt2� t1Þj j
c

� �
ð11Þ

Ng t1ð Þ represents the length of the longest queue in the traffic green signal at time t1.
The parameter c is a static parameter.

In Fig. 7, we present our algorithm used to find the optimal duration of each phase.
At the beginning, we start by calculating the number of vehicles on the current
intersection, the rate of incoming vehicles, this information are used by the TCA to find
the best transition based on the proposed solutions by all workers agents. TCA is able
to select and evaluate the best solutions to generate the best signal cycle. This process is
repeated until reaching the final condition (when the maximum number of iterations is
met). The IA applies the proposed solution for controlling the traffic light signal at this
intersection. In the other hand, the RSA is able to consult the state of the traffic signal
cycle on each intersection and share this information with all drivers.

7 Simulation Results

We created our algorithm using Java-Agent-Development-Environment (JADE) as a
distributed and parallel platform [12]. In this architecture, we can run a set of agent
situated on a set of computers (we create a network of computers). The main reason of
this preparatory setup is to simulate our approach on a real environment. So, the

Fig. 7. Distributed ACS for traffic lights control

276 M. Elgarej et al.

proposed scenario is based on a set of intersections and agents controlled by a set of
container agents each group of container are managed by the main container. In Fig. 8,
we design our platform based on a distributed ACO.

To run our solution, we need to set some parameters to control the convergence of
our algorithm toward the best solution. At the beginning, we need to fix the number of
iterations. The configuration of the distributed architecture for the traffic signal is based
on three steps: (i) Creation and initialization of agents and (ii) execution step,
(iii) analysis stage.

• In the initialization step, we create a set of containers that contain our agents, the
heuristic parameters are initialized according to the traffic information and all agents
are ready for computing the next traffic signal cycle. The TCA is able to create and
manage a set of workers agents, the life cycle of each worker agent depends on the
time elapsed for finding an optimal solution.

• When the TCA receives the information needed to start the search process, a set of
workers agents are created to find the best duration for the next phase. These agents
work in parallel to generate a set of candidate solutions and the communication
process between these agents is based on a set of messages (Agent Communication
Language messages).

• At each moment, the RSA is able to ask for the signal cycle duration of each
intersection, those states are shared with the drivers to help them in their path
traveling toward their destinations.

The new approach is tested to see the convergence of the system and the effectiveness
of the proposed solutions, the results of the algorithm are compared with a sequential
ACS algorithm to see the difference between the two systems.

In the start of the simulation, the intersection is empty (the length of the queue is
zero). The number of cars is known (a set of sensors are able to count the number of
cars at each time). The other input parameters are situated in the following Table 1.

The parameter k (the rate of cars per hours per direction) is set between two values
200 and 800 to see the convergence of the distributed algorithm. In Fig. 9, we show our
results proposed by the two algorithms. The x-axis present the average of upstream

Fig. 8. Multi-agent architecture for traffic signal

Traffic Lights Optimization with Distributed ACO 277

flow (number of cars per hour and per direction) and y-axis shows the waiting time.
The squares line represent the distributed ACO and the circle line represent the
sequential ACO. The sequential ACO algorithm works great when the size of the
problem is low (when the traffic flow is low). In the distributed ACO, the algorithm
returns useful results when the traffic flow is massive.

8 Conclusion and Perspectives

In this paper, we introduce a distributed ACO algorithm based on multi-agent system to
control the traffic signal time by reducing the cars waiting time at each intersection
based on a set of parameters.

In our approach, we are based on the ACS algorithm. There are some modifications
made on the ACS: (i) with the new architecture, we avoid the standard iterations used
in ACS. The proposed system is based on parallel and asynchronous iterations (we
don’t need to wait until each ant constructs a tour); (ii) In the classic ACS, after each
iteration we need to compare the best tours, so we can allow only the best ants to add
more pheromone on their edges. We avoid this (centralized and synchronized behavior)
by allowing ant to compare their solutions with the last best tour received from the last
visited node. (iii) In the ACS all ants move sequentially, while in our architecture all
ants move in parallel.

Table 1. Traffic signal parameters

Parameters Value (s)

mintimegreen 5
maxtimegreen 30
Length of red signal time 2
Distance between vehicles 2

Fig. 9. The average rate of convergence of the distributed and the sequential ACS algorithm

278 M. Elgarej et al.

In the parallel method, we see the convergence of our problem toward a set of
useful solutions in a short time period, based on this system, we can reduce the waiting
time and the traffic flow at each intersection.

There are few directions that we would like to follow as future works: (a) support
the generality of our approach by considering other forms of ACO; (b) investigate new
forms of distributed ACO.

References

1. Zhaomeng, C.: Intelligent traffic control central system of Beijing-SCOOT. In: International
Conference on Mechanic Automation and Control Engineering (MACE), pp. 5067–5069
(2010)

2. Aydos, J.C., O’Brien, A.: SCATS ramp metering: strategies, arterial integration and results.
In: IEEE 17th International Conference on Intelligent Transportation Systems, pp. 2194–
2201 (2014)

3. Ceylan, H., Ceylan, H.: A hybrid harmony search and TRANSYT hill climbing algorithm
for signalized stochastic equilibrium transportation networks. Transp. Res. Part C Emerg.
Technol. 25, 152–167 (2012)

4. Alam, J., Pandey, M.K.: Development of traffic light control system for emergency vehicle
using fuzzy logic. In: International Conference on Artificial Intelligence and Soft
Computing, IIT- BHU Varanasi, India, 7–9 December 2012

5. Kumar, K., Parida, M., Katiyar, V.K.: Artificial neural network modeling for road traffic
noise prediction. In: Third International Conference on Computing Communication &
Networking Technologies (ICCCNT), pp. 1–5 (2012)

6. Wang, P., Lin, H.-T., Wang, T.-S.: An improved ant colony system algorithm for solving the
IP traceback problem. Inf. Sci. 326, 172–187 (2015)

7. Raval, C., Hegde, S.: Ant-CAMP: ant based congestion adaptive multipath routing protocol
for wireless networks. In: International Conference on Emerging Trends in Networks and
Computer Communications (ETNCC), pp. 463–468 (2011)

8. Wang, X., Liu, C., Wang, Y., Huang, C.: Application of ant colony optimized routing
algorithm based on evolving graph model in VANETs. In: International Symposium on
Wireless Personal Multimedia Communications (WPMC), pp. 265–270 (2014)

9. Triay, J., Cervello-Pastor, C.: An ant-based algorithm for distributed routing and wavelength
assignment in dynamic optical networks. IEEE J. Sel. Areas Commun. 28(4), 542–552
(2010)

10. Dorigo, M., Manfrin, M., Twomey, C., Birattari, M., Stutzle, T.: An analysis of
communication policies for homogeneous multi-colony ACO algorithms. Inf. Sci. 180
(12), 2390–2404 (2010)

11. Hingrajiya, H.K., Gupta, R.K., Chandel, G.S.: An ant colony optimization algorithm for
solving travelling salesman problem. Int. J. Sci. Res. Publ. 2(8), 1–6 (2012)

12. Marzougui, B., Hassine, K., Barkaoui, K.: A new formalism for modeling a multi agent
systems: agent petri nets. J. Softw. Eng. Appl. 3(12), 1118–1124 (2010)

13. Askerzade Askerbeyli, N., Mahmood, M.: Control the extension time of traffic light in single
junction by using fuzzy logic. Int. J. Electr. Comput. Sci. IJECS-IJENS 10(02), 48–55
(2010)

14. Chen, C., Li, Z.: A hierarchical networked urban traffic signal control system based on
multi-agent. in accepted, 9th IEEE International Conference on Networking, Sensing and
Control, April 2012

Traffic Lights Optimization with Distributed ACO 279

A Mechanized Refinement Proof
of the Chase-Lev Deque Using a Proof System

Suha Orhun Mutluergil(B) and Serdar Tasiran

Koc University, Istanbul, Turkey
smutluergil@ku.edu.tr

Abstract. We present a linearizability proof for the Chase-Lev work-
stealing queue (WSQ) on sequentially consistent (SC) memory. We used
the CIVL proof system for verifying refinement of concurrent programs.
The lowest-level description of the WSQ is the data structure code
described in terms of fine-grained actions whose atomicity is guaranteed
by hardware. Higher level descriptions consist of increasingly coarser
action blocks obtained using a combination of Owicki-Gries (OG) anno-
tations and reduction and abstraction. We believe that the OG annota-
tions (location invariants) we provided to carry out the refinement proofs
at each level provide insight into the correctness of the algorithm. The
top-level description for the WSQ consists of a single atomic action for
each data structure operation, where the specification of the action is
tight enough to show that the WSQ data structure is linearizable.

Keywords: Chase-Lev deque · Owicki-Gries method · Reduction ·
Abstraction · Refinement · Linearizability · Static verification

1 Introduction

Work stealing is a widely accepted and applied method for scheduling tasks
used by many programming languages, run-time systems and frameworks that
support distribution of computation into tasks in shared-memory parallel pro-
grams. Work stealing queue data structures constitute the core of this method.
The queue keeps a pool of tasks to be executed and provides methods to threads
for putting and taking tasks from the pool. The WSQ algorithm must provide
certain guarantees such as the same task cannot be scheduled twice or given
sufficient number of requests, all the tasks in the pool are scheduled. These
guarantees are vital for the correct functioning of the system.

In this study, we verify the Chase-Lev WSQ algorithm [2], a widely-used
non-blocking algorithm, by providing a linearizability proof for its sequentially
consistent (SC) executions. Starting with fine-grained concurrent method bodies,
we obtain atomic method abstractions. Those abstractions are tight enough to
show that the WSQ algorithm satisfies the desired properties.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 280–294, 2016.
DOI: 10.1007/978-3-319-46140-3 23

A Linearizability Proof of the WSQ Algorithm 281

The proof is performed using the CIVL proof system [5] and it has four
layers1. At the bottom layer, method bodies consist of fine-grained atomic state-
ments supported by most hardware and programming languages. In the following
layers, atomic blocks inside the method bodies grow using abstraction, reduction
and location annotations until we obtain the desired abstract atomic bodies of
the methods at the fourth layer (depicted in the top rows of Figs. 2 and 3).

This study has the following contributions and results:

– We present the first mechanized linearizability proof of the Lev-Chase work
stealing queue algorithm for its SC executions using a proof system.

– Obtaining correct location and mover annotations for the fine-grained method
bodies require reasoning about all possible interleavings of the program. We
believe that the proof annotations at lower layers provide insight about the
behavior of SC executions of this program.

– Our proof is based on two important techniques: Owicki-Gries [11] and Lip-
ton’s reduction/abstraction [8] method. We show that the combined use of
these two techniques is powerful, and each is best suited to carry out certain
parts of the reasoning.

Section 2 gives an overview of the Chase-Lev work stealing queue algorithm.
In Sect. 3, we give a brief information about the proof techniques we utilized.
Details of the mechanized proof are presented in Sect. 4. We compare our work
with related studies in Sect. 5 and finish with closing remarks and future work
in Sect. 6. Some observations on the WSQ algorithm that will be useful for
our proofs are put on AppendixA. Initial abstractions/simplifications on the
algorithm applied before the mechanized proof are explained in AppendixB.

2 The Chase-Lev Work Stealing Queue Algorithm

Operations effecting one of the worker thread’s queue in the Chase-Lev WSQ
algorithm is presented in Fig. 1 using the programming language CIVL.

Shared variables H, T and items represent the current head (top), tail (bot-
tom) and the task pool, respectively. Tasks are assumed to be of type int. The
items has an infinite domain. Hence, it is never required to resize it due to an
overflow and we do not need to think of it as a circular array.

The put and take methods are executed exclusively by the worker thread
(called ptTid in short from now on). The put method adds one more element
to the tail of the queue.

The take method first reserves the last element by decrementing T by one
(Line 2). If it observes an empty queue, then it increments T back and returns
an EMPTY task (if block at Line 4). If it observes more than one elements in the
queue, it returns the element at index T (if block at Line 9). If there is a single
element in the queue, the ptTid tries to take it by a CAS operation (Line 11).

1 CIVL proof files can be obtained from: http://msrc.ku.edu.tr/projects/
chase-lev-wsq/.

http://msrc.ku.edu.tr/projects/chase-lev-wsq/
http://msrc.ku.edu.tr/projects/chase-lev-wsq/

282 S.O. Mutluergil and S. Tasiran

H: in t ;
T: i n t ;
items : [i n t] i n t ;

put (task : i n t)
{
var t : i n t ;

1 t := T;
2 items [t] := task ;
3 T := t+1;
4 return ;

}

take () : (task : i n t)
{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 h := H;
4 i f (t<h)

{
5 T := h ;
6 task := EMPTY;
7 return ;

}
8 task := items [t] ;
9 i f (h<t)

{
10 return ;

}
11 [i f (h==H)

{
H := h+1;
chk := true ;

}
e l s e
{
chk := f a l s e ;

}]
12 i f (! chk)

{
13 task := EMPTY;

}
14 T := t+1;
15 return ;

}

s t e a l () : (task : i n t)
{
var h , t : i n t ;
var chk : bool ;

1 whi le (t rue)
{

2 h := H;
3 t := T;
4 i f (h>=t)

{
5 task := EMPTY;
6 return ;

}
7 task := items [h] ;
8 [i f (h==H)

{
H := h+1;
chk := true ;

}
e l s e
{
chk := f a l s e ;

}]
9 i f (chk)

{
10 return ;

}
}

11 return ;
}

Fig. 1. Chase-Lev work stealing queue algorithm

The steal method is executed by a stealer thread. If it sees the queue empty,
it returns EMPTY task (if block at Line 4). Otherwise, it iteratively tries to steal
an element by incrementing H by one via a CAS statement. If CAS is successful,
then steal returns successfully with the element at index H (If block at Line 9).
If CAS is not successful, then the current element at index h is stolen or taken.
Hence, steal tries to steal another element in a new iteration.

The behavior of the methods explained above is easily provable if they execute
sequentially. However, we assume SC setting such that execution of methods
could be interleaved with operations of other threads but operations of the same
thread appear in the sequence of program order to itself and other threads. SC
is one of the strongest guarantees that can be given for a concurrent program.
Yet it is still more difficult to reason about program correctness in SC then in
sequential setting since one needs to consider all possible thread interleavings.
We present more detailed observations about the SC executions of the WSQ
algorithm in AppendixA.

Our linearizability proof begins with a slightly modified version of the
WSQ algorithm presented in Fig. 1 based on valid abstractions/simplifications
explained in AppendixB.

3 Overview of Proof Methodology

In this section, we provide some important techniques we utilize in our proof
and supported by the proof system CIVL. We only give high-level definitions
and explain how we utilized them. Formal definitions of the concepts described
here can be found in [3,5].

A Linearizability Proof of the WSQ Algorithm 283

The language CIVL is specially developed for verification purposes. It allows
usual constructs existing in many imperative programming languages and some
additional constructs for verification purposes. A CIVL program consists of
method bodies and atomic actions. Method bodies contain usual imperative
constructs like assignments, sequencing, conditional statements, loops, method
calls, thread creation and atomic action calls. Atomic actions consist of single-
state location annotations and two-state transition relations.

The method bodies are partitioned into steps. CIVL allows programmers
to decide on the granularity of a step in a method body. Hence, a step may
contain multiple statements. Atomic actions are single step. We denote steps
inside brackets in this paper. A program executes by picking a thread non-
deterministically and executing a non-deterministic number of next steps of this
thread. An execution is obtained using the SC memory model by interleaving
steps from different threads. If the location annotation of an atomic action does
not hold in a state of an execution just before executing this action, the program
fails. The program is safe if no execution fails the location annotation of an
atomic action.

To check safety of a program, CIVL utilizes Owicki-Gries (OG) reasoning [11].
The OG checks two things: (i) a location annotation holds after a thread takes
a step (sequential correctness) and (ii) the location annotation is preserved by
concurrent threads (non-interference). In addition to the location annotations,
CIVL allows programmers to write method pre- and post-conditions. They are
also checked via OG reasoning. Moreover, programmers can write conditions to
be satisfied inside the atomic blocks as assert statements. Correctness of these
statements are checked again by OG reasoning without the non-interference part.

CIVL enables programmers to grow atomic steps inside the procedure bodies
using a technique called reduction. To achieve this, each atomic action is anno-
tated with R, L, N or B tags standing for right-, left-, non- and both-movers.
A sequence of steps that begins with a sub-sequence of right- or both-movers,
followed by an optional non-mover, followed by a sub-sequence of left-movers
or both-movers could form a single atomic step. CIVL also performs a check to
validate that the atomic action conforms to its mover type. An action A is a
right-mover if executing A first and then an action B from another thread in
all executions can be simulated by first executing B and then A. A dual defini-
tion applies for left-movers. An action is a both-mover (non-mover) if it is both
(neither) right-mover and (nor) left-mover.

A layer in CIVL is a program and CIVL performs refinement proofs in a
sequence of layers. While moving from one layer to the next layer, CIVL allows
programmers to abstract atomic actions so that they have more behavior in the
next layer. Hence, they have more relaxed location annotations and they can
make actions from other threads mover and grow the steps of method bodies
in the next layer. For instance, havoc is a keyword in CIVL, used for assigning
non-deterministic values to variables. havoc x action abstracts x := t action
since the former statement allows variable x to have a range of values including
the latter value t.

284 S.O. Mutluergil and S. Tasiran

Another option that a programmer can benefit from between layers is the
method abstraction. It allows programmers to replace a method body with a
single atomic action. This method enables programmers to increase granularity
of the program by replacing fine-grained method bodies with a single coarser
action block. CIVL also performs a check between layers to validate method
abstraction. An atomic action A abstracts a method body B if and only if A
abstracts a single step of B in all possible execution paths of B and all the other
steps of B in this execution path refines skip. Moreover, the return variable must
not be modified after the step that refines A. From now on, we call the step that
refines A as the action block.

CIVL validates that the program at the bottom layer refines the program at
the top-layer if the OG and mover checks pass for all layers and action abstraction
and method abstraction checks pass between all layers.

CIVL allows the programmers to use primitive types like boolean or integer
and allow users to define their own types. Moreover, it supports linear variables.
Difference of a linear variable from a regular variable is that value inside a
linear variable cannot be duplicated. Since thread identifiers are unique, we use
linear thread identifiers. We modify methods such that each thread gets a linear
variable tid as input. For take and put methods, we know that tid must have
the value ptTid and for steal method, tid must be different than ptTid. This
additional information makes CIVL know that put and take methods cannot
be concurrent whereas steal can be concurrent with other methods and itself.

We heavily utilize the techniques above in our proof. In all layers, we provide
location annotations that show the relation between the global variables H and
T . Those annotations play a crucial role during the method abstractions between
layers and mover checks inside the layers. We start with a relatively complicated
relation between those global variables in fine-grained method bodies of lower
layers. As the methods get coarser at later layers, we establish H ≤ T as a global
location annotation.

At the end of Layer 0, we abstract some of the atomic actions so that steps
inside the method bodies of put and sub-methods of take could grow bigger
via reduction. Consequently, method bodies of put and sub-methods of take
contain single steps at the end of Layer 1. Then, we can turn them into atomic
actions in Layer 2 by applying method abstraction. Since all of the sub-methods
of take turn into atomic actions at Layer 2, we can use method abstraction
at the end of Layer 2 to obtain the desired atomic action of take at Layer 3.
Moreover, H ≤ T becomes a global location invariant at Layer 2 and it enables
us to use method abstraction at the end of Layer 2 on the steal method to
obtain desired atomic action of steal at Layer 3.

4 Mechanized Proof Steps

In this section, we present the mechanized proof of the WSQ algorithm. A
schematic of the proof is given in Figs. 2 and 3. Before diving into details of
the proof, we provide a brief explanation about the programs in these figures.

A Linearizability Proof of the WSQ Algorithm 285

Layer s t e a l (l i n e a r t i d : Tid) : (task : i n t) put (l i n e a r t i d : t id , task : i n t)

3

〈stTid ∧ H ≤ T ∧ !tics〉
[goto 1A, 1B;
1A: assume H<T;

task := items [H] ;
H :=H+1;
return ;

1B: assume H<=T;
task :=EMPTY;
return ;]

〈ptInv()〉
[i tems [T] := task ;
T := T+1;]

2

pre : 〈stTid(tid) ∧ ticsCond() ∧ !tics〉
post : 〈stTid(tid) ∧ ticsCond() ∧ !tics〉
{

1 〈... ∧ !tics〉
h := H;

2 〈... ∧ !tics〉
[i f (h<T)

assume h==H ==> H<T;
e l s e
assume h>=y ;]

3 i f (h >= t)
{

4 task := EMPTY;

5 〈... ∧ !tics〉 return ;
}

6 〈... ∧ !tics〉
[a s s e r t ! t i c s && h==H ==> H<T;
i f (h==H)
task := items [h] ;

e l s e
havoc (task) ;]

7 〈... ∧ !tics ∧
(H=h → task = items[h])〉
[assume H == h ; H := h+1;]

8 〈... ∧ !tics〉 return ;
}

〈ptInv()〉
[i tems [T] := task ;
T := T+1;]

1

pre : 〈stTid(tid) ∧ ticsCond()〉
post : 〈stTid(tid) ∧ ticsCond()〉
{

1 〈...〉 [N] h := H;

2 〈...〉 [N]
[i f (h<T)

assume h==H ==> H<T;
e l s e
assume h>=y ;]

3 i f (h >= t)
{

4 [B] task := EMPTY;

5 〈...〉 return ;
}

6 〈...〉 [N]
[a s s e r t ! t i c s && h==H ==> H<T;
i f (h==H)
task := items [h] ;

e l s e
havoc task ;]

7 〈...〉 [N]
[assume H == h ; H := h+1;]

8 〈...〉 return ;
}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

〈ptInv()〉
1 [R] t := T;
2 [R] [a s s e r t t==T && ! t i c s ;

items [t] := task ;]
3 [N] T := t+1;

4 〈ptInv()〉 return ;
}

0

pre : 〈stTid(tid) ∧ ticsCond()〉
post : 〈stTid(tid) ∧ ticsCond()〉
{

1 〈ticsCond()〉 h := H;

2 〈H≥h ∧ ticsCond()〉 t := T;

3 i f (h >= t)
{

4 〈ticsCond()〉 task := EMPTY;

5 return ;
}

6 〈 H≥h ∧ ticsCond()∧ ticsCond2(h)〉
task := items [h] ;

7 〈H≥h ∧ ticsCond() ∧ ticsCond2(h)〉
[assume H == h ; H := h+1;]

8 〈ticsCond()〉 return
}

ticsCond():
(tics ⇒ H ≤ T+1) ∧ (!tics ⇒ H ≤ T)

ticsCond2(h:int):
(tics ∧ h=H ⇒ H ≤ T) ∧
(!tics ∧ h=H ⇒ H < T)

stTid(tid:Tid):
tid 	= NULL ∧ tid 	= ptTid

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T;

2 〈ptInv()〉
i tems [t] := task ;

3 〈ptInv()〉
T := t+1;

4 〈ptInv()〉 return ;
}

ptInv():
tid = ptTid ∧ !tics ∧ H ≤ T

Fig. 2. Proof layers for the mechanized proof of steal and put methods

286 S.O. Mutluergil and S. Tasiran

Layer take(linear tid:Tid):(task:int)

3

〈ptInv()〉
[goto 1A, 1B, 1C;

1A: assume H==T; task := EMPTY; return ;
1B: assume H==T−1; task := items [T−1]; H := H+1; return ;
1C: assume H<T−1; T := T−1; task := items [T] ; re turn ;]

take1 (l n r t i d : Tid) :
(task : i n t)

take2 (l n r t i d : Tid) :
(task : i n t)

take3 (l n r t i d : Tid) :
(task : i n t)

2 〈ptInv()〉
[assume H==T;
task := EMPTY;]

〈ptInv()〉
[assume H < T−1;
T := T−1;
task := items [T] ;]

〈ptInv()〉
[goto 1A,1B;
1A: assume H==T;

task := EMPTY;
return ;

1B: assume H==T−1;
task := items [T−1];
H := H+1;
return ;]

1

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

〈ptInv()〉
1 [R] t := T−1;
2 [R] [T := t ;

t i c s := true ;]
3 [R] assume h <= H && t<h ;
4 i f (t<h)

{
5 [L] [T :=h ;

t i c s := f a l s e ;]
6 [B] task := EMPTY;

7 〈ptInv()〉 return ;
}
. . .

}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

〈ptInv()〉
1 [R] t := T−1;
2 [R] [T := t ;

t i c s := true ;]
3 [N] [h := H;

assume h<t ;
t i c s := f a l s e ;]

4 i f (t<h)
. . .

8 [B] task := items [t] ;
9 i f (h<t)

{
10 〈ptInv()〉 return ;

}
. . .

}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

〈ptInv()〉
1 [R] t := T−1;

2 [R] [T := t ;
t i c s := true ;]

3 [R] assume h==t && h<=H;
4 i f (t<h)

. . .
8 [B] task := items [t] ;
9 i f (h<t)

. . .
11 [N] [i f (h==H)

H :=h+1;
chk := true ;

e l s e
chk := f a l s e ;]

12 i f (! chk)
{

13 [B] task := EMPTY;
}

14 [L] [T := t+1;
t i c s := f a l s e ;]

15 〈ptInv()〉 return ;
}

0

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T−1;

2 〈ptInv() ∧ t=T-1 〉
[T := t ;
t i c s := true ;]

3 〈t=T ∧ H≤T+1 ∧ tics〉
[h := H;
assume t<h ;]

4 i f (t<h)
{

5 〈t=T ∧ h≤H ∧ H=T+1 ∧ tics〉
[T :=h ;
t i c s := f a l s e ;]

6 〈 H≤T ∧ !tics〉
task := EMPTY;

7 〈 H≤T ∧ !tics〉
return ;

}
. . .

}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T−1;

2 〈ptInv()∧ t=T-1〉
[T := t ;
t i c s := true ;]

3 〈t=T ∧ H≤T+1 ∧ tics〉
[h := H;
assume h<t ;

t i c s := f a l s e ;]

4 i f (t<h)
. . .

8 〈t=T ∧ H≤T ∧ h<t ∧ !tics〉
task := items [t] ;

9 i f (h<t)
{

10 〈 H≤T ∧ !tics〉
return ;

}
. . .

}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T−1;

2 〈ptInv()∧ t=T-1〉
[T := t ;
t i c s := true ;]

3 〈t=T ∧ H≤T+1 ∧ tics〉
[h := H;
assume h==t ;]

4 i f (t<h)
. . .

8 〈t=T ∧ h≤H ∧ H≤T+1 ∧ h=t ∧ tics〉
task := items [t] ;

9 i f (h<t)
. . .

11 〈t=T ∧ h≤H ∧ H≤T+1 ∧ h=t ∧ tics〉
[i f (h==H)

H :=h+1;
chk := true ;

e l s e
chk := f a l s e ;]

12 i f (! chk)
{

13 〈t=T ∧ H=T+1 ∧ tics〉
task := EMPTY;

}

14 〈t=T ∧ H=T+1 ∧ tics〉
[T := t+1;
t i c s := f a l s e ;]

15 〈ptInv()〉
return ;

}

Fig. 3. Proof layers for the mechanized proof of take methods

A Linearizability Proof of the WSQ Algorithm 287

Numbers inside the method bodies correspond to steps or control points of those
methods. Atomic actions are written inside the brackets. We may omit the brack-
ets if the atomic action consists of a single statement. Location annotations of
atomic actions are given between 〈 and 〉 symbols. If a location annotation has
not changed since the previous layer, we denote this as 〈. . .〉 or if it is tightened
by adding a new constraint φ, we denote this as 〈. . . ∧ φ〉.

Mover annotations of the atomic actions are also present in brackets before
atomic actions. R, L, B and N denote right-, left-, both- and none-mover, respec-
tively. We may omit the mover tag if the atomic action is labeled as non-mover.
Note that we may have labeled an action non-mover although it is a mover, if it
is not necessary for our proof.

Atomic actions or statements may contain constructs like assume, assert
and havoc which are special for verification. Semantics of havoc is explained via
an example in Sect. 3. The statements assume e or assert e cause an execution
to block (all threads’ next statement to execute becomes not enabled) or fail,
respectively, if the boolean expression e evaluates to false in the state just
before executing this statement. Otherwise, they are equivalent to skip.

For the take1, take2 and take3 methods some paths are unreachable due to
assume statements at Line 3. We omit the program text for the if blocks leading
to those paths in Fig. 3 by representing them with three dots as in Line 4 of
take2 at Layer 0.

The programs contain a new boolean ghost variable named tics. A ghost
variable is similar to a regular variable with only difference that it does not
modify the program state i.e., its value is never assigned to a real program
variable. Its sole purpose is to guide CIVL during mover and OG checks.

The name tics is short for “take in critical section”. We know from Obser-
vations 3–7 in AppendixA that H ≤ T can be temporarily violated inside the
take method. We say that take is in critical section if execution of take is in the
area that H ≤ T invariant can be violated. The tics is used to write location
annotations considering the current instruction of ptTid.

The proof consists of 4 layers. At the bottom layer (Layer 0), we start with
the method bodies that we obtained at the end of AppendixB. We decorate
the method bodies with location annotations to establish relation between H
and T global variables. While going from Layer 0 to Layer 1, we abstract some
of the actions of Layer 0 and we use reduction at Layer 1 to make bodies of
the put, take1, take2 and take3 methods single step. Between Layer 1 and
Layer 2, we use method abstraction on put, take1, take2 and take3 methods
and abstract them to single step atomic actions. In Layer 2, H ≤ T begins
to hold as a global location annotation since take1, take2 and take3 methods
become coarse enough. Finally, we apply method abstraction on take and steal
methods between Layer 2 and Layer 3 to obtain desired atomic actions for these
methods. In Layer 3, all the methods of the WSQ algorithm are in the form of
atomic actions.

Layer 0. We start with the program obtained after loop-peeling and path-
splitting explained in AppendixB. Only difference is the addition of the boolean

288 S.O. Mutluergil and S. Tasiran

tics ghost variable. Taking Observations 3–7 into account, we set tics to true
temporarily inside the bodies of take methods and set it back to false at the
point where we think the H ≤ T condition is restored.

We provide location annotations conforming the value of tics. In the meth-
ods, we annotate the locations so that when tics is true, H ≤ T + 1 holds and
when tics is false, H ≤ T holds. This condition is expressed in the sub-formulae
called ticsCond provided after steal method. The condition when the tics is
true, is adjusted in precision. It is tight enough to continue proof in later layers
and relaxed enough to be satisfied after non-interference checks. For instance,
replacing it with H == T + 1 would be too tight and make it unsatisfiable.

H ≤ T is not a global invariant at Layer 0, but a relaxed version of it that we
call ticsCond is a global invariant. All the location annotations in the method
bodies and method pre- post-conditions imply ticsCond.

However, location annotations explained so far does not pass the OG check
directly. We need to make location annotations stronger.

First, if H = T ∧ !tics or H = T+1∧tics holds at some state during execution
of a ptTid method, a successful CAS operation of a steal could interfere and
violate location annotation by incrementing H. We observe that this corner case
is not possible in real executions. H < T must hold if !tics or H < T + 1 must
hold if tics just before the execution of CAS action of steal. For this reason,
we introduce ticsCond2 function that reflects our condition and add it to the
annotations of Lines 6 and 7 of steal.

Adding ticsCond2 to location annotations of Lines 6 and 7 is still insufficient
because two concurrent steals may violate the ticsCond2. If h = H−1∧H = T −
1∧!tics holds just before a stealer thread t1 executes Line 6 and another stealer
thread t2 interferes at this point and performs a successful CAS and increments
H, we come up with a state satisfying h = H ∧H = T∧!tics for t2 which violates
the ticsCond2. But we know that two successful steals cannot be concurrent by
Observation 2. This observation helps us to infer that H ≥ h holds during Lines
6 and 7 of the steal method (by Observation 1) which prevents the previous
erroneous execution sample. By adding H ≥ h on Lines 6 and 7 of steal, we
make sure that OG checks for location annotations of steal pass.

Second, methods of the WSQ modify global variables H and T by assigning
them local values of h and t. To show that these assignments do not violate the
conditions relating H and T , we need to relate local value t to value of T in
ptTid methods and h to H in steal, take1, take2 and take3 methods. Since
T is only modified by ptTid, adding t = T to location annotations of ptTid
methods is correct. By Observation 1, H is always non-decreasing. Hence H ≥ h
holds for all methods. Adding these two conditions to the location annotations
of certain lines is sufficient to show that modifications on global variables does
not violate the required conditions.

We omit the mover tags for this layer, since no reduction is performed at
Layer 0.

Layer 0 → Layer 1. Our aim for Layer 1 is to grow steps of take1, take2, take3
and put method bodies using reduction. For this reason, we abstract some of the

A Linearizability Proof of the WSQ Algorithm 289

atomic actions between Layer 0 and Layer 1. Lines 2 and 6 of steal method and
Line 3 of take1 and take3 methods are abstracted for this purpose. Rationale
behind these abstractions are explained in Layer 1 while explaining how the
actions satisfy their mover annotations.

Layer 1. We assign mover tags to atomic actions of put, take1, take2 and take3
methods so that we can grow the steps of the action blocks of these methods as
large as the ones we need.

First, let us explain how we grow the step of put method. Line 1 becomes
right-mover without any abstraction since it reads the global variable T which
is not modified by other threads. However, Line 2 of put method is not a right-
mover without abstraction since it may be modifying an index of items that is
read by Line 6 of steal. If h value of steal at Line 6 is equal to t value of put
at Line 3, they may be accessing the same index. Since action of put method
modifies this index, mover check fails. But, we observe that the actual value of
items[h] is not needed if h �= H holds just before execution of Line 7 of steal
method. Moreover, we need to read the actual value of items[h] if H = h at Line
7 in order to know that steal returns the correct element. Hence, we abstracted
Line 6 of steal such that it assigns items[h] to task if h = H at Line 6 and
assigns a non-deterministic value to task otherwise.

Next, we enlarge the step of take1 method. Line 1 is a right-mover since
it is same as Line 1 of put method and Line 5 is a both-mover since it is a
local assignment. However, lines 2 and 6 are not movers in Layer 0. They do
not commute with Line 2 of steal method since Line 2 of steal reads the
global variable T which is modified by Line 2 (or Line 6) of take1 method. To
overcome this problem, let us explore what expect from Line 2 of steal method
in our proof. If steal observes h < t after execution of Line 2 and the value
of H has not changed yet, then ticsCond2 must hold if it continues execution
through Line 6. We may satisfy this condition by assuming only H < T holds
after Line 2 if h = H ∧ h < T holds just before Line 2. steal may continue
through the if block at Line 3 if it observes h < t before Line 2, since our top-
level implementation of steal allows it to return EMPTY even if H < T . But, if
steal observes h ≥ T before Line 2, it must enter the if block at Line 3 since the
WSQ is empty. Obtaining only this information after Line 2 would be sufficient
for abstracting steal on later layers.

Line 3 of take1 is not a right-mover at Layer 0 since it does not commute
with Line 7 of steal method. Instead of reading actual value of H at Line 3
of take1, we abstract to read a non-deterministic value less than or equal to
H. This abstract read can commute right of Line 7 of steal since after moving
right of Line 7 of steal local value h of take1 can have more distinct values
and it is tight enough to infer that h >= t. Consequently, we obtain a step for
take1 that spans lines through 1 to 6.

Lines 1 and 2 of take2 are right-movers due to reasons explained above.
Line 8 becomes a right-mover since steal does not modify the items array.
Consequently, lines from 1 to 8 of take2 form a step in Layer 1.

290 S.O. Mutluergil and S. Tasiran

Mover annotations for take3 method also hold and lines from 1 to 14 become
a step. Reason for their correctness can be explained with the same arguments
above.

Note that location annotations of Layer 1 are same as Layer 0. Abstractions
do not violate the conditions established at Layer 0.

Layer 1 → Layer 2. We apply method abstraction on put, take1, take2 and
take3 methods between Layer 1 and Layer 2 since action blocks of those methods
grow large enough at the end of Layer 1. We obtain the desired atomic action
for put method.

Layer 2. In this layer, we tighten the location annotations in steal method such
that they become the old condition and !tics. The OG checks pass for these new
tighter annotations because no step of the program leaves the tics true after
its execution at Layer 2.

In addition, we add a condition to location annotation of Line 7 of steal
stating that if the value of H had not changed since steal read it, the return
variable task contains items[H]. OG check for this condition passes since Line
6 of steal is tight enough to assign correct value to task if H = h. This extra
condition on the location invariant is crucial when we apply method abstraction
on steal.

Layer 2 → Layer 3. Between Layers 2 and 3, we apply method abstraction on
steal and take methods. These methods become atomic actions.

The reason we can not apply method abstraction on steal so far is that
location annotations of the action blocks of steal were not tight enough to
obtain the desired atomic action for steal. It was possible to perform a successful
CAS when H = T .

Applying method abstraction on take also becomes possible after Layer 2
since we obtained the atomic actions for its sub-methods at Layer 2.

Layer 3. All of the take, put and steal methods are atomic actions.
With these single atomic action bodies of the methods, it is easier to reason

about the WSQ algorithm. For instance, one can show that a task pushed into
deque cannot be taken or stolen more than once since take and steal methods’
top-level actions atomically increment H or decrement T after taking the first
or the last item from the queue.

5 Related Work

Due to its key importance in parallel systems, there are various WSQ algorithms.
A notable one is presented in Cilk multi-threaded language [4]. This algorithm
is blocking and method bodies are protected by a global lock. Reasoning about
correctness of Cilk WSQ algorithm is simpler but it is not efficient due to its
blocking nature.

Another WSQ algorithm introduced by Arora et al. [1] is non-blocking, but it
requires fixed size queues. This algorithm has been verified in [6] using a model

A Linearizability Proof of the WSQ Algorithm 291

checking approach. Model checking approach validates that the algorithm satis-
fies desired properties but it does not provide any insight about the behavior of
the algorithm. Hence, it is difficult to reason about some side-properties and pos-
sible optimizations of the algorithm using this approach. The Chase-Lev WSQ
[2] we have studied is an improvement over [1] such that size of the queue can
grow without memory leaks.

Since work stealing queues are used in low-level task schedulers, the environ-
ment may provide weaker guarantees. It is known that executions of Chase-Lev
WSQ under TSO semantics show more behaviour than SC executions [9]. If
memory fences are inserted after Line 3 of put and Line 2 of take, non-SC
behaviors are prevented [9]. In [7], a pen and pencil proof has been presented
that the Chase-Lev WSQ algorithm with previously mentioned memory fences
satisfy some desired specifications. A modified version of the Chase-Lev WSQ is
presented in [10] such that it is correct under TSO memory-model if we know
the size of store buffers.

6 Conclusions and Future Work

In this study, we have performed a linearizability proof of the Chase-Lev WSQ
algorithm under SC semantics using proof tool CIVL. Lower layers of the proof
provide insight for the behavior of the SC executions and the top layer single
atomic block summaries of the methods are simple but tight enough to show the
desired properties.

We plan to extend this work to investigate behavior of the WSQ algorithm
under weak memory models like TSO by modeling the weak memory seman-
tics explicitly in CIVL. We are particularly interested in the behavior of the
executions and the properties satisfied in the absence of memory fences.

A Observations on the SC Executions of the Program

In this section, we first present some observations on (full or partial) executions
of the WSQ algorithm with the finest-grained actions (the algorithm in Fig. 1).
They will be helpful for obtaining location annotations and enlarging atomic
blocks in upper layers.

Our initial observations are simple and they hold for full executions.

Observation 1: H is non-decreasing throughout an execution.
Observation 2: Let us call a steal operation successful if it returns a value other
than EMPTY. Then, last iterations of two successful steals cannot be concurrent.

Next, we want to understand the relation between global variables H and T .
For a sequential execution, one expects that H ≤ T invariant holds throughout
the execution. This is not true for the fine-grained SC execution. We observe
that H could exceed T in some special cases. However, this violations occur
temporarily if take method follows some paths and they begin to hold again
after take method finishes.

292 S.O. Mutluergil and S. Tasiran

We examine execution portions (sub-sequences of executions) in a systematic
way to obtain observations showing relation between H and T variables.

Observation 3: If an execution portion consists of only concurrent steal opera-
tions, we observe that H ≤ T is preserved throughout the execution portion.
Observation 4: If an execution portion consists of a single put method concurrent
with steal methods, then H ≤ T holds throughout this execution portion.

Next, we consider execution portions that has take method concurrent with
steal operations. The take method could follow three different paths by either
entering the if block in Line 4 (path 1), by entering the if block in Line 9 (path 2)
or by not entering those if blocks and returning by Line 15 (path 3).

Observation 5: If an execution portion consists of path 1 of take method con-
current with steals, then H ≤ T holds throughout this execution portion.
Observation 6: If an execution portion consists of path 2 of take method concur-
rent with steals, then H ≤ T holds before Line 2 and after Line 14 of the take
method and H = T ∨ H = T + 1 holds between Lines 2 and 14 of take method.
Observation 7: If an execution portion consists of path 3 of take method concur-
rent with steals, then H ≤ T holds before Line 2 and after Line 5 of the take
method and H = T + 1 holds between Lines 2 and 5 of take method.

B Path Splitting and Loop Peeling

In this section we present our initial abstractions on steal and take methods.
These abstractions are not performed by CIVL. Rather, they are obtained by
applying some proof rules that are not currently supported by CIVL. We explain
the rules and their applications in this section. Methods we obtained after initial
abstractions constitute the bottom layer of our mechanized proof.

Our first abstraction is performed on steal method. If we consider the itera-
tions of the loop at Line 1 of steal before the last iteration, they do not modify
any global variable and value assigned to return variable is reset by the last iter-
ation. Moreover, value assigned to local variables by reading global variables are
also reread by the last iteration before using them. Hence, those iterations has
no important effect on OG annotations of other methods and they will not be
useful for the refinement proof of steal. Our aim is to abstract steal method
so that we do not need to deal with unsuccessful previous iterations of steal.

On the left-side of Fig. 4, we have steal method obtained by peeling out the
last iteration of the while loop. All the unsuccessful iterations are captured by
the loop at Line 1. They are guaranteed to be unsuccessful by assume statements
at lines 4 and 6. The last successful iteration is modeled from Line 7 on.

Lines 2, 3, 5 and 6 could be abstracted by havoc h, t, task, chk and line 4
can be abstracted by skip. With these abstractions, we obtain the method body
in the middle column of Fig. 4. Since h, t, chk and task variables have non-
deterministic values at the beginning of steal, the whole loop at Line 1 could
be removed and we obtain the method at the right-side of Fig. 4 as our basis of
steal for the mechanized proof.

A Linearizability Proof of the WSQ Algorithm 293

s t e a l (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 whi le (∗)
{

2 h := H;
3 t := T;
4 assume h<t ;
5 task := items [h] ;
6 [assume h != H;

chk := f a l s e ;]
}

7 h := H;
8 t := T;
9 i f (h>=t)

{
10 task := EMPTY;
11 return ;

}
12 task := items [H] ;
13 [assume h==H;

H == h ;]
14 return ;

}

s t e a l (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 whi le (∗)
{

2 havoc h , t , chk , task ;
}

3 h := H;
4 t := T;
5 i f (h>=t)

{
6 task := EMPTY;
7 return ;

}
8 task := items [H] ;
9 [assume h==H;

H == h ;]
10 return ;

}

s t e a l (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 h := H;
2 t := T;
3 i f (h>=t)

{
4 task := EMPTY;
5 return ;

}
6 task := items [H] ;
7 [assume h==H;

H == h ;]
8 return ;

}

Fig. 4. Initial abstractions on steal method

For the take method, we want to separate take in such a way that we can
reason about each possible path separately. We use the following rule for this
purpose:

Rule 1: Let procedure foo has the following body:

{ s0; s1; s2;}

take (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 i f (∗)
{

2 task := take1 (t i d) ;
}
e l s e
{

3 i f (∗)
{

4 task := take2 (t i d) ;
}
e l s e
{

5 task := take3 (t i d) ;
}

}
6 return ;

}

take1 (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 [h := H;

assume t<h ;]
4 i f (t<h)

{
5 T := h ;
6 task := EMPTY;
7 return ;

}
8 task := items [t] ;
9 i f (h<t)

{
10 return ;

}
11 [i f (h==H)

{
H := h+1;
chk := true ;

}
e l s e
{
chk := f a l s e ;

}]
12 i f (! chk)

{
13 task := EMPTY;

}
14 T := t+1;
15 return ;

}

take (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 [h := H;

assume t>=h ;
assume t != h ;]

4 i f (t<h)
{

5 T := h ;
6 task := EMPTY;
7 return ;

}
8 task := items [t] ;
9 i f (h<t)

{
10 return ;

}
11 [i f (h==H)

{
H := h+1;
chk := true ;

}
e l s e
{
chk := f a l s e ;

}]
12 i f (! chk)

{
13 task := EMPTY;

}
14 T := t+1;
15 return ;

}

take (l n r t i d : Tid) :
(task : i n t)

{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 [h := H;

assume t>=h ;
assume t==h ;]

4 i f (t<h)
{

5 T := h ;
6 task := EMPTY;
7 return ;

}
8 task := items [t] ;
9 i f (h<t)

{
10 return ;

}
11 [i f (h==H)

{
H := h+1;
chk := true ;

}
e l s e
{
chk := f a l s e ;

}]
12 i f (! chk)

{
13 task := EMPTY;

}
14 T := t+1;
15 return ;

}

Fig. 5. Initial abstractions on take method

294 S.O. Mutluergil and S. Tasiran

where s0 and s2 are sequence of statements and s1 is an atomic block. Then,
replacing this body with the following one is a valid abstraction of foo:

{ if(*){ s0; [s1;assume p;] s2; }
else { s0;[s1;assume !p;] s2;} }

where p is a boolean expression on local variables. The ∗ denotes a non-
deterministic value of true or false To obtain the desired method body in
Fig. 5, we apply the following steps:

1. Apply Rule 1 to take in Fig. 1 with taking s0, s1, s2 as lines 1, 2; 3 and 4–15
respectively. We also pick p as h > t.

2. Collect statements inside the if block in the method take1 and statements in
the else part in the method take23.

3. Apply Rule 1 to take23 with the same line choices in step 1 but taking p as
h = t.

4. Collect the statements inside the if block of take23 in take2 method and
statements in the else part in take3 method.

5. Inline call of take23 inside the else block of take with its body.

References

1. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. Theor. Comput. Syst. 34(2), 115–144 (2001)

2. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, pp. 21–28. ACM (2005)

3. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: ACM Sympo-
sium on Principles of Programming Languages, p. 14. Association for Computing
Machinery Inc., January 2009

4. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. ACM SIGPLAN Not. 33, 212–223 (1998). ACM

5. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-
ment reasoning for concurrent programs. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 449–465. Springer, Heidelberg (2015)

6. Aghai, M.K.: Verification of work-stealing deque implementation (2012)
7. Lê, N.M., Pop, A., Cohen, A., Zappa Nardelli, F.: Correct and efficient work-

stealing for weak memory models. ACM SIGPLAN Not. 48, 69–80 (2013). ACM
8. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-

mun. ACM 18(12), 717–721 (1975)
9. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., Yahav, E.: Dynamic synthesis for

relaxed memory models. ACM SIGPLAN Not. 47, 429–440 (2012). ACM
10. Morrison, A., Afek, Y.: Fence-free work stealing on bounded tso processors. ACM

SIGPLAN Not. 49(4), 413–426 (2014)
11. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta

Inf. 6(4), 319–340 (1976)

The Out-of-core KNN Awakens:

The Light Side of Computation Force on Large Datasets

Nitin Chiluka, Anne-Marie Kermarrec, and Javier Olivares(B)

Inria, Rennes, France
nitin.chiluka@gmail.com,

{anne-marie.kermarrec,javier.olivares}@inria.fr

Abstract. K-Nearest Neighbors (KNN) is a crucial tool for many appli-
cations, e.g. recommender systems, image classification and web-related
applications. However, KNN is a resource greedy operation particularly
for large datasets. We focus on the challenge of KNN computation over
large datasets on a single commodity PC with limited memory. We pro-
pose a novel approach to compute KNN on large datasets by leverag-
ing both disk and main memory efficiently. The main rationale of our
approach is to minimize random accesses to disk, maximize sequential
accesses to data and efficient usage of only the available memory.

We evaluate our approach on large datasets, in terms of performance
and memory consumption. The evaluation shows that our approach
requires only 7 % of the time needed by an in-memory baseline to com-
pute a KNN graph.

Keywords: K-nearest neighbors · Out-of-core computation · Graph
processing

1 Introduction

K-Nearest Neighbors (KNN) is a widely-used algorithm for many applications
such as recommender systems [3–5]; information retrieval [8,13,21] in support-
ing similarity and proximity on stored data; and image classification [2,17,20]:
finding similar images among a set of them. Generally, KNN is used for finding
similar entities in a large set of candidates, by computing similarity between
entities’ profiles.

Although the algorithm has been well studied, the computation of KNN
on large datasets remains a challenge. Large-scale KNN processing is computa-
tionally expensive, requiring a large amount of memory for efficient in-memory
computation. The memory requirements of the current datasets (spanning even
trillions of edges) is enormous, beyond terabytes. Such memory requirements are
often unaffordable. In such scenario, one can think of an out-of-core computation
as an option. Recent works [11,14,16,19,22] have shown that such approaches
perform well on data that cannot be completely stored in memory.

Our first motivation for this work is derived from the fact that process-
ing KNN efficiently on large datasets calls for in-memory solutions, this sort of
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 295–310, 2016.
DOI: 10.1007/978-3-319-46140-3 24

296 N. Chiluka et al.

approach intends to store all data into memory for performing better in compar-
ison to disk-based approaches. To do so, current datasets demand large memory,
whose cost is not always affordable. Access to powerful machines is often limited,
either by lack of resources for all users’ needs, or by their complete absence.

The second motivation is that KNN computation has to be often per-
formed offline, because it consumes significant resources. KNN algorithms usu-
ally cohabit on a given machine with other applications. Consequently, it is very
seldom that it can enjoy the usage of the entire set of machine’s resources, be
it memory or CPU. For instance, HyRec [5], a hybrid recommender system,
implements a KNN strategy to search similar users. HyRec devotes only a small
fraction of its runtime and system resources for KNN computation. The rest is
dedicated to recommendation tasks or system maintenance.

Finally, our last motivation comes from the fact that current graph frame-
works [11,14,19] can efficiently compute well-known graph algorithms, process-
ing large datasets in a short time. Those systems rely on the static nature of the
data, i.e., data remaining the same for the entire period of computation. Unfor-
tunately, to the best of our knowledge, they do not efficiently support some
KNN fundamental operations such as neighborhood modification or neighbors’
neighbors accesses. Typically they do not support any operation that modifies
the graph itself [14,19]. KNN’s goal is precisely to change the graph topology.

Summarizing, our work is motivated by the fact that: (i) KNN is computa-
tionally expensive, (ii) KNN has to be mainly performed offline, and (iii) Current
graph processing frameworks do not support efficiently operations required for
KNN computation.

We present Pons, an out-of-core algorithm for computing KNN on large
datasets that do not completely fit in memory, leveraging efficiently both disk
and the available memory. The main rationale of our approach is to minimize
random accesses to disk, and to favor, as much as possible, sequential reading
of large blocks of data from disk. Our main contributions of the paper are as
follows:

– We propose Pons, an out-of-core approach for computing KNN on large
datasets, using at most the available memory, and not the total amount
required for a fully in-memory approach.

– Pons is designed to solve the non-trivial challenge of finding neighbors’ neigh-
bors of each entity during the KNN computation.

– Our experiments performed on large-scale datasets show that Pons computes
KNN in only around 7 % of the time required by an in-memory computation.

– Pons shows to be also capable of computing online, using only a limited frac-
tion of the system’s memory, freeing up resources for other tasks if needed.

2 Preliminaries

Given N entities with their profiles in a D-dimensional space, the K-Nearest
Neighbors (KNN) algorithm aims to find the K-closest neighbors for each entity.
The distance between any two entities is computed based on a given metric

The Out-of-core KNN Awakens: The Light Side of Computation Force 297

(as cosine similarity or Jaccard coefficient) that compares their profiles. A classic
application of KNN includes finding the K-most similar users for any given user
in a system such as IMDb, where a user’s profile comprises of her preferences of
various movies.

For computing the exact KNN it can be employed a brute-force approach,
which has a time complexity of O(N2) profile comparisons being very inefficient
for a large N . To address this concern, approximate KNN algorithms (KNN now
onwards) adopt an iterative approach. At the first iteration (t = 0), each entity v
chooses uniformly at random a set of K entities as its neighbors. Each subsequent
iteration t proceeds as follows: each entity v selects K-closest neighbors among its
candidate set, comprising its K current neighbors, its K2 neighbors’ neighbors,
and K random entities [5]. At the end of iteration t, each entity’s new K-closest
neighbors are used in the computation for the next iteration t+1. The algorithm
ends when the average distance between each entity and its neighbors does not
change considerably over several iterations.

The KNN state at each iteration t can be modeled by a directed graph
G(t) = (V,E(t)), where V is a set of N(= |V |) entities and E(t) represents edges
between each entity and its neighbors. A directed edge (u, v) ∈ E(t) denotes
(i) v is u’s out-neighbor and (ii) u is v’s in-neighbor. Let Bv denote the set of
out-neighbors of the entity v. Furthermore, each entity v has exactly K(= |Bv|)
out-neighbors, while having any number (including 0 to N − 1) of in-neighbors.
Also, we note that the total number of out-edges and in-edges in G(t) is NK.

Let F represent the set of profiles of all entities, and Fv denote the profile of
entity v. In many scenarios in the fields of recommender systems and information
retrieval, the profiles of entities are typically sparse. For instance, in IMDb, the
number of movies an average user rates is significantly less than the total number
of movies, D, present in its database. In such a scenario, a user v’s profile can
be represented by a sparse vector Fv in a D-dimensional space (|Fv| << D). For
the sake of simplicity, we consider each entity v’s profile length to be utmost P
(≥ |Fv|). In image classification and clustering systems, however, each entity v’s
profile (e.g., feature vector) is typically of high dimension in the sense that v’s
profile length is approximately |Fv| ≈ D. With the above notation, we formally
define the average distance (AD) for all entities and their respective neighbors
at iteration t as:

AD(t) =

∑
u∈V

∑
v∈Bu

Dist(Fu, Fv)
NK

(1)

Dist(Fu, Fv) measures the distance between the profiles of u and v. The KNN
computation is considered converged when the difference between the average
distances across iterations is minimal: |AD(t+1) − AD(t)| < ε, for a small ε.

2.1 In-memory Approach

A simple, yet efficient, way to implement KNN is using an in-memory approach,
where all the data structures required during the entire period of computation are
stored inmemory.Algorithm 1 shows the pseudo-code for an in-memory implemen-
tation. Initially, the graph G

(0)
(mem) and profiles F are loaded into memory from disk

298 N. Chiluka et al.

(lines2-3).Ateach iteration t, eachvertexv selectsK-closestneighbors fromits can-
didate set Cv comprising its neighbors (Bv), its neighbors’ neighbors (

⋃
u∈Bv

Bu),
and a set of K random vertices (Rnd(K)). Closest neighbors of all vertices put
together results in the graph G

(t+1)
(mem), i.e., KNN graph of the next iteration.

In each iteration, every vertex performs upto O(2K+K2) profile comparisons.
If a distance metric such as cosine similarity or Euclidean distance is used for
profile comparisons, the overall time complexity for each iteration is O(NP (2K+
K2)). We note that the impact of heap updates (line 14) on overall time is little,
since we are often interested in small values of K(≈ 10 − 20) [5]. In terms of
space complexity, this approach requires O(N(2K + P)) memory. Each of the
KNN graphs of the current and the next iterations (G(t)

(mem), G
(t+1)
(mem)) consume

O(NK) memory, while the profiles consume O(NP) memory. Although highly
efficient, such an approach is feasible only when all data structures consume less
than the memory limit of the machine.

Algorithm 1. In-memory KNN
Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v ∈ G finds its KNN.

1 begin

2 G
(0)

(mem) ← Read initial graph from File(G)

3 F(mem) ← Read all profiles from File(F)
4 foreach Iteration t until convergence do

5 G
(t+1)

(mem) ← φ

6 foreach Vertex v ∈ G
(t)

(mem) do

7 Read Bv from G
(t)

(mem)

8 Cv ← Bv ∪ (
⋃

u∈Bv
Bu) ∪ Rnd(K)

9 Initialize heap TopK
10 Read Fv from F(mem)

11 foreach Candidate w ∈ Cv do
12 Read Fw from F(mem)

13 distV alue ← Dist(Fv, Fw)
14 UpdateHeap(TopK, w, distV alue)

15 Insert(G
(t+1)

(mem), v, TopK)

3 Pons

The challenge of KNN computation can be essentially viewed as a trade-off
between computational efficiency and memory consumption. Although efficient,
an in-memory approach (Sect. 2.1) consumes a significant amount of memory.
In this section, we propose Pons1, an out-of-core approach which aims to address
this trade-off.
1 The term ‘pons’ is Latin for ‘bridge’.

The Out-of-core KNN Awakens: The Light Side of Computation Force 299

3.1 Overview

Pons is primarily designed to efficiently compute the KNN algorithm on a large
set of vertices’ profiles in a stand-alone memory-constrained machine. More
specifically, given a large set of vertices’ profiles and an upper bound of main-
memory Xlimit, that can be allocated for the KNN computation, Pons leverages
this limited main memory as well as the machine’s disk to perform KNN com-
putation in an efficient manner.

The performance of Pons relies on its ability to divide all the data –KNN
graph and vertices’ profiles– into smaller segments such that the subsequent
access to these data segments during the computation is highly efficient, while
adhering to the limited memory constraint. Pons is designed following two fun-
damental principles: (i) write once, read multiple times, since KNN computa-
tion requires multiple lookups of various vertices’ neighbors and profiles, and
(ii) make maximum usage of the data loaded into memory, since disk operations
are very expensive in terms of efficiency.

Fig. 1. Pons executes 5 phases: (1) Partitioning, (2) In-Edge Partition Files, (3) Out-
Edge Partition Files, (4) Profile Partition Files, and (5) Distance Computation

We now present a brief overview of our approach, as illustrated in
Algorithm 2, and Fig. 1. Pons takes two input files containing vertices, their
random out-neighbors, and their profiles. It performs the KNN computation iter-
atively as follows. The goal of each iteration I is to compute K-closest neighbors
for each vertex. To do so, iteration I executes 5 phases (Algorithm 2, lines 2–8).
First phase divides the vertices into M partitions such that a single partition is
assigned up to �N/M� vertices. This phase parses the global out-edge file con-
taining vertices and their out-neighbors and generates a K-out-neighborhood file
for each partition.

300 N. Chiluka et al.

Algorithm 2. Pons
Data: Graph file: File(G), Profiles file: File(F)
Result: Each vertex v ∈ G finds its KNN.

1 begin
2 foreach Iteration I do
3 1. Partioning(GlobalOutEdges)
4 2. Create In-edge Partition Files
5 3. Create Out-edge Partition Files
6 4. Write Profile Partition Files
7 5. Compute Distances
8 Update(GlobalOutEdges)

We note here that the choice of the number of partitions (M) depends on
factors such as the memory limit (Xlimit), the number of nodes (N), the num-
ber of neighbors K, the vertices’ profile length (P), and other auxiliary data
structures that are instantiated. Pons is designed such that utmost (i) a heap
of O(�N/M�K) size with respect to a partition i, (ii) profiles of two partitions
i and j consuming O(�N/M�P) memory, (iii) other auxiliary data structures
can be accommodated into memory all at the same time, while adhering to the
memory limit (Xlimit).

Based on the partitions created, phases 2, 3, and 4 generate various files
corresponding to each partition. In the phase 5, these files enable efficient
(i) finding of neighbors’ neighbors of each vertex, and (ii) distance computa-
tion of the profiles of neighbors’ neighbors with that of the vertex. The second
phase uses each partition i’s K-out-neighborhood file to generate i’s in-edge par-
tition files. Each partition i’s in-edge files represent a set of vertices (which could
belong to any partition) and their in-neighbors which belong to partition i. The
third phase parses the global out-edge file to generate each partition j’s out-edge
partition files. Each partition j’s out-edge files represent a set of vertices (which
could belong to any partition) and their out-neighbors which belong to parti-
tion j. The fourth phase parses the global profile file to generate each partition’s
profile file.

The fifth phase aims to generate an output of a set of new K-closest neighbors
for each vertex for the next iteration I+1. We recall that the next iteration’s new
K-closest neighbors is selected from a candidate set of vertices which includes
neighbors, neighbors’ neighbors, and a set of random vertices. While accessing
each vertex’s neighbors in the global out-edge file or generating a set of random
vertices is straightforward, finding each vertex’s neighbors’ neighbors efficiently
is non-trivial.

We now describe the main intuition behind Pons’ mechanism for finding a
vertex’s neighbors’ neighbors. By comparing i’s in-edge partition file with j’s
out-edge partition file, Pons identifies the common ‘bridge’ vertices between
these partitions i and j. A bridge vertex b indicates that there exists a source
vertex s belonging to partition i having an out-edge (s, b) to the bridge vertex b,

The Out-of-core KNN Awakens: The Light Side of Computation Force 301

and there exists a destination vertex d belonging to partition j having an in-edge
(b, d) from the bridge vertex b. Here b is in essence a bridge between s and d,
thus enabling s to find its neighbor b’s neighbor d. Using this approach for each
pair of partitions i and j, the distance of a vertex and each of its neighbors’
neighbors can be computed.

As Pons is designed to accommodate the profiles of only two partitions at a
time in memory, Pons adopts the following approach for each partition i. First,
it loads into memory i’s profile as well as the bridge vertices of i’s in-edge par-
tition file. Next, an empty heap is allocated for each vertex which is assigned to
partition i. A vertex s’ heap is used to accommodate utmost K-closest neigh-
bors. For each partition j, the common bridge vertices with i are identified and
subsequently all the relevant pairs (s, d) are generated with s and d belonging
to i and j respectively, as discussed above. For each generated pair (s, d), the
distance between the source vertex s and the destination vertex d are computed,
and then the heap corresponding to the source vertex s is updated with the
distance score and the destination vertex d. Once all the partitions j = [1,M]
are processed, the heaps of each vertex s belonging to partition i would effec-
tively have the new K-closest neighbors, which are written to the next iteration’s
global out-edge file. Once all the partitions i = [1,M] are processed, Pons moves
on to the next iteration I + 1.

An illustrative example. Figure 2(a) shows an example graph containing
N = 6 nodes and M = 3 partitions. Let vertices A and T be assigned to
partition 1 (red), U and C to partition 2 (blue), and W and I to partition
3 (green). Figure 2(b) shows various in-edge and out-edge partition files corre-
sponding to their respective partitions. For instance, in the 1.in.nbrs file, U
and W (denoted by dotted circles) can be considered as bridge vertices with A
(bold red), which belongs to partition 1, as the in-neighbor for both of them.

To generate A’s neighbors’ neighbors, 1.in.nbrs is compared with each par-
tition j’s out-edge file j.out.nbrs. For instance, if 1.in.nbrs is compared with
3.out.nbrs, 2 common bridge vertices U and W are found. This implies that U
and W can facilitate in finding A’s neighbors’ neighbors which belong to parti-
tion 3. As shown in Fig. 2(c), vertex A finds its neighbors’ neighbor I, via bridge
vertices U and W .

4 KNN Iteration

At iteration t, Pons takes two input files: global out-edge file containing the KNN
graph G(t), and global profile file containing the set of vertices’ profiles. Global
out-edge file stores contiguously each vertex id v along with its K initial out-
neighbors’ ids. Vertex ids range from 0 to N − 1. The global profile file stores
contiguously each vertex id and all the P items of its profile. These files are in
binary format which helps in better I/O performance (particularly for random
lookups) as well as saves storage space.

302 N. Chiluka et al.

Fig. 2. [Best viewed in color.] (a) A’s out-neighbors and A’s neighbors’ neighbors. (b)
In-edge partition files and out-edge partition files. (c) A’s neighbors’ neighbors found
using bridge vertices

4.1 Phase 1: Partitioning

The memory constraint of the system limits the loading of the whole graph as
well as the profiles into memory. To address this issue, we divide these data
structures into M partitions, each corresponding to roughly �N/M� distinct
vertices, such that the profiles of utmost two partitions (O(�N/M�P)) and a K-
neighborhood heap of one partition (O(�N/M�K)) can be accommodated into
memory at any instance.

When a vertex v is assigned to a partition j, the vertex v and its out-neighbors
Bv are written to j’s K-out-neighborhood file j.knn that contains all vertices
assigned to the partition j and their respective out-neighbors.

4.2 Phase 2: In-Edge Partition Files

This phase takes each partition i’s K-out-neighborhood file i.knn as input and
generates two output files representing bridge vertices and their in-neighbors. For
a vertex v assigned to partition i, each of its out-neighbors w ∈ Bv is regarded
as a ‘bridge vertex’ to its in-neighbor v in this phase. We note here that a bridge
vertex w ∈ Bv could belong to any partition.

The first file i.in.deg stores a list of (i) all bridge vertices b, which could
belong to any partition, and (ii) the number of b’s in-neighbors that belong to
partition i. This list is sorted by the id of each bridge vertex b. The second
file i.in.nbrs stores the ids of the in-neighbors of each bridge vertex b stored
contiguously according to the bridge vertices’ sorted ids in the i.in.deg file.

4.3 Phase 3: Out-Edge Partition Files

This phase takes the global out-edge file as input and generates two output files
per partition representing bridge vertices and their out-neighbors, similar to the

The Out-of-core KNN Awakens: The Light Side of Computation Force 303

previous phase. For each partition j, the first file j.out.deg stores a list of (i)
all bridge vertices b, which could belong to any partition, and (ii) the number of
b’s out-neighbors that belong to partition j. This list is sorted by the id of each
bridge vertex b. The second file j.out.nbrs stores the ids of the out-neighbors of
each bridge vertex b stored contiguously according to the bridge vertices’ sorted
ids in the j.out.deg file. These files are used in the Phase 5 (in Sect. 4.5) for
the KNN computation.

4.4 Phase 4: Profile Partition Files

This phase takes the global profile file and generates M profile partition files
as output. Each vertex v’s profile is read from the global profile file, and then
written to the profile partition file corresponding to the partition that it was
assigned. Each profile partition file j.prof consumes upto O(�N/M�P) memory
or disk space. Each profile partition file subsequently allows the fast loading of
the profiles in the Phase 5, as it facilitates sequential reading of the entire file
without any random disk operations.

4.5 Phase 5: Distance Computation

This phase uses each partition’s in-edge, out-edge, and partition profile files to
compute the distances between each vertex and a collection of its neighbors,
neighbors’ neighbors, and random vertices, generating the set of new K-closest
neighbors for the next iteration.

Algorithm 3 shows the pseudo-code for this phase. Distance computation is
performed at the granularity of a partition, processing sequentially each one
from 1 to M (line 2–25). Once a partition i is completely processed, each vertex
v ∈ Wi assigned to i has a set of new K-closest neighbors.

The processing of partition i primarily employs four in-memory data struc-
tures: InProf , InBrid, HeapTopK, and tuple T . InProf stores the profiles
of vertices (Wi) in partition i read from the i.prof file (line 3). InBrid stores
the bridge vertices and their corresponding number of in-neighbors in partition
i read from the i.in.deg file (line 4). HeapTopK is a heap, which is initially
empty (line 5), stores the scores and ids of the K-closest neighbors for each
vertex v ∈ Wi, and tuple T stores neighbors, neighbors’ neighbors, and random
neighbors’ tuples for distance computation.

For computing the new KNN for each vertex s ∈ Wi, partitions are parsed
one at a time (lines 6–25) as follows. For a partition j, its profile file j.prof
and its out-edge bridge file j.out.deg are read into two in-memory data struc-
tures OutProf and OutBrid, respectively (lines 7–8). Similar to i’s in-memory
data structures, OutProf stores the profiles of vertices (Wj) in partition j,
and OutBrid stores the bridge vertices and their corresponding number of out-
neighbors in partition j. By identifying a set of common bridge vertices between
InBrid and OutBrid, we generate in parallel, all ordered tuples of neighbors’
neighbors as follows:

(s, d)| s ∈ Wi, d ∈ Wj , (s, b) ∈ E(t), (b, d) ∈ E(t), b ∈ (InBrid ∩ OutBrid) (2)

304 N. Chiluka et al.

Each ordered tuple (s, d) represents a source vertex s ∈ Wi and a destination
vertex d ∈ Wj , with an out-edge (s, b) from s and an-inedge (b, d) to a bridge
vertex b that is common to both InBrid and OutBrid. We also generate in
parallel, all ordered tuples of each vertex s ∈ Wi and its immediate neighbors
(w|w ∈ Bv ∩ Wj) which belong to the partition j. A distance metric such as
cosine similarity or euclidean distance is then used to compute the distance
score (Dist(Fs, Fd)) between each ordered tuple’s source vertex s and destination
vertex d. The top-K heap (HeapTopK[s]) of the source vertex s is updated with
d’s id and the computed distance score (Dist(Fs, Fd)).

Algorithm 3. NNComputation(): Neighbors’ neighbors computation
Data: In-edge partition files, Out-edge partition files, Profiles
Result: New K-nearest neighbors for each vertex

1 begin
2 foreach (In-edge) Partition i do
3 Read InProf from File(i.prof)
4 Read InBrid from File(i.in.deg)
5 HeapTopK[Wi] ← φ
6 foreach (Out-edge) Partition j do
7 Read OutProf from File(j.prof)
8 Read OutBrid ← from File(j.out.deg)
9 Initialize tuple T ← φ

10 CndBrid ← (InBrid ∩ OutBrid) ∪ (Wi ∩ OutBrid)
11 foreach Bridge b ∈ CndBrid do
12 in parallel
13 Src ← ReadInNeig(i.in.nbrs, b)
14 Dst ← ReadOutNeig(j.out.nbrs, b)
15 AddTuples(T ,Src × Dst)

16 foreach (s, d) ∈ T do
17 in parallel
18 dist ← Dist(Fs, Fd)
19 UpdateHeap(HeapTopK[s], d, dist)

20 foreach s ∈ Wi do
21 in parallel
22 Dst ← Rnd(K) ∈ Wj

23 Compute tuples s × Dst
24 Update HeapTopK[s] as above

25 File(G(t+1)).Write(HeapTopK)

5 Experimental Setup

We perform our experiments on a Apple MacBook Pro laptop, Intel Core i7
processor (Cache 2: 256 KB, Cache 3: 6 MB) of 4 cores, 16 GB of RAM (DDR3,
1600 MHz) and a 500 GB (6 Gb/s) SSD.

The Out-of-core KNN Awakens: The Light Side of Computation Force 305

Datasets. We evaluate Pons on both sparse- and dense- dimensional datasets.
For sparse datasets, we use Friendster [15] and Twitter data2. Both in Friendster
and Twitter, vertices represent users, and profiles are their lists of friends in the
social network. For dense datasets, we use a large computer vision dataset (ANN-
SIFT-100M) [12] which has vectors of 128 dimensions each. Vertices represent
high-dimensional vectors and their profiles represent SIFT descriptors. The SIFT
descriptors are typically high dimensional feature vectors used in identifying
objects in computer vision (Table 1).

Table 1. Datasets

Dataset Vertices P K VI[Gb]

ANN-SIFT 30M (30M) 30M 128 10 19.35

ANN-SIFT 50M (50M) 50M 128 10 30.88

Friendster (FRI) 38M 124 10 23.26

Twitter (TWI) 44M 80 10 19.43

Performance. We measure the performance of Pons in terms of execution time
and memory consumption. Execution time is the (wall clock) time required for
completing a defined number of KNN iterations. Memory consumption is mea-
sured by the maximum memory footprint observed during the execution of the
algorithm. Thus, we use maximum resident set size (RSS) and virtual memory
size (VI).

6 Evaluation

We evaluate the performance of Pons on large datasets that do not fit in memory.
We compare our results with a fully in-memory implementation of the KNN
algorithm (INM). We show that our solution is able to compute KNN on large
datasets using only the available memory, regardless of the size of the data.

6.1 Performance

We evaluate Pons on both sparse and dense datasets. We ran one iteration of
KNN both on Pons and on INM. We divide the vertex set on M partitions
(detailed in Table 2), respecting the maximum available memory of the machine.
For this experiment both approaches run on 8 threads.

Execution Time. In Table 2 we present the percentage of execution time
consumed by Pons compared to INM’s execution time for various datasets.
Pons performs the computation in only a small percentage of the time required
by INM for the same computation. For instance, Pons computes KNN on the
2 Twitter dataset: http://konect.uni-koblenz.de/networks/twitter mpi.

http://konect.uni-koblenz.de/networks/twitter_mpi

306 N. Chiluka et al.

Twitter dataset in 8.27% of the time used by INM. Similar values are observed
on other datasets. These results are explained by the capacity of Pons to use
only the available memory of the machine, regardless of the size of the dataset.
On the other hand, an in-memory implementation of KNN needs to store the
whole dataset in memory for achieving good performance. As the data does not
fit in memory, the process often incurs swapping, performing poorly compared
to Pons.

Table 2. Relative performance comparing Pons and INM, and memory footprint

Exec. Time RSS[GB] Virtual[GB]

Dataset M Pons/INM % Pons INM Pons INM

FRI 5 6.95 11.23 12.79 16.86 23.26

TWI 4 8.27 13.04 13.78 15.55 19.43

50M 9 4.34 12.77 13.16 15.48 30.88

Memory Consumption. As we show in Table 2, our approach allocates at
most the available memory of the machine. However, INM runs out of memory,
requiring more than 23 GB in the case of Friendster. As a result, an in-memory
KNN computation might not be able to efficiently accomplish the task.

6.2 Multithreading Performance

We evaluate the performance of Pons and INM, in terms of execution time, on
different number of threads. The memory consumption is not presented because
the memory footprint is almost not impacted by the number of threads, only
few small data structures are created for supporting the parallel processing.

Figure 3 shows the execution time of one KNN iteration on both approaches.
The results confirm the capability of Pons to leverage multithreading to obtain
better performance. Although the values do not show perfect scalability, results
clearly show that Pons ’s performance increases with the number of threads.
The fact that is not a linear increase is due to that some phases do not run in
parallel, mainly due to the nature of the computation, requiring multiple areas
of coordination that would affect the overall performance.

6.3 Performance for different memory availability

One of the motivation of this work is to find an efficient way of computing KNN
online, specifically considering contexts where not all resources are available for
this task. KNN computation is often just one of the layers of a larger system,
therefore online computation might only afford a fraction of the resources. In
this regard, we evaluate Pons’ capacity of performing well when only a fraction
of the memory is available for the computation. Figure 4 shows the percentage of

The Out-of-core KNN Awakens: The Light Side of Computation Force 307

Fig. 3. Impact of multithreading Fig. 4. Impact of the available memory

execution time taken by Pons compared to INM, for computing KNN running
on a memory-constrained machine.

If only 20 % of the memory is allocated to KNN, Pons requires only 12 %
of the execution time taken by INM on a dense dataset. In the case of a sparse
dataset, Pons computes KNN in only 20 % of the time taken by INM, when the
memory is constrained to 20 % of the total. On the other hand, when 80 % of
the memory is available for KNN, Pons requires only 4 %, and 8 % of the INM
execution time, on dense and sparse data set, respectively. These results show
the ability of Pons of leveraging only a fraction of the memory for computing
KNN, regardless of the size of data. Therefore, Pons lends itself to perform
online KNN computation using only available resources, leaving the rest free for
other processes.

6.4 Evaluating the Number of Partitions

Pons ’ capability to compute KNN efficiently only using the available memory
relies on the appropriate choice of the number of partitions M . Larger values
of M decrease the memory footprint, diminishing likewise algorithm’s perfor-
mance, this is due to the increase in the number of IO operations. On the other
hand, smaller values of M increase the memory footprint, but also decrease per-
formance caused by the usage of virtual memory and consequently expensive
swapping operations. An appropriate value of M allows Pons to achieve better
performance.

Execution Time. We evaluate the performance of Pons for different number
of partitions. Figures 5 and 6 show the runtime for the optimal value, and two
suboptimal values of M . The smaller suboptimal value of M causes larger run-
times due to the fact that the machine runs out of memory, allocating virtual
memory for completing the task. Although runtime increases, it remains lower
than INM runtime (roughly 7 % of INM runtime). Larger suboptimal value of
M affects performance as well, by allocating less memory than it is available,
thus misspending resources in cases of full availability.

308 N. Chiluka et al.

Fig. 5. Runtime: The impact of M Fig. 6. Runtime: The impact of M

Memory Consumption. Figures 7 and 8 show the memory footprint for the
optimal value of M , and two suboptimal values. In both cases, smaller values of
M increase RSS, reaching the maximum available, unfortunately, virtual mem-
ory footprint increase as well, affecting the performance. The optimal value of
M increases RSS to almost 16 GB, but virtual memory consumption remains
low, allowing much of the task being performed in memory. On the other hand,
a larger value of M decreases both RSS and the virtual memory footprint, per-
forming suboptimally. Although, larger values of M affect performance, this fact
allows our algorithm to perform KNN computation on machines that do not
have all resources available for this task, regardless the size of the data.

Fig. 7. The impact of M Fig. 8. The impact of M

7 Related Work

The problem of finding K-nearest neighbors has been well studied over last years.
Multiple techniques have been proposed to perform this computation efficiently:
branch and bound algorithms [10]; trees [1,18]; divide and conquer methods [6];
graph-based algorithms [9]. However, only a few have performed KNN compu-
tation in memory-constrained environments [7].

Recently, many studies [11,14,19] have explored ‘out-of-core’ mechanisms to
process large graphs on a single commodity PC. Kyrola et al. in [14] propose
GraphChi, a disk-based system to compute graph algorithms on large datasets.
They present a sliding window computation method for processing a large graph
from disk. This system is highly efficient on graphs that remain static during

The Out-of-core KNN Awakens: The Light Side of Computation Force 309

the entire computation. Unfortunately, it does not show same efficiency when
the graph changes over time, as the case of KNN computation. X-Stream [19]
proposes a edge-centric graph processing system on a single shared-memory
machine. Graph algorithms are performed leveraging streaming partitions, and
processing sequentially edges and vertices from disk. TurboGraph [11] consists of
a pin-and-slide, a parallel execution model for computing on large-scale graphs
using a single machine. Pin-and-slide model divides the set of vertices in a list
of pages, where each vertex could have several pages.

8 Conclusion

We proposed Pons, an out-of-core algorithm for computing KNN on large
datasets, leveraging efficiently both disk and the available memory. Pons’ per-
formance relies on its ability to partition a KNN graph and profiles into smaller
chunks such that the subsequent accesses to these data segments during the com-
putation is highly efficient, while adhering to the limited memory constraint.

We demonstrated that Pons is able to compute KNN on large datasets, using
only the memory available. Pons outperforms an in-memory baseline, computing
KNN on roughly 7 % of the in-memory’s time, using efficiently the available mem-
ory. Our evaluation showed Pons’ capability for computing KNN on machines
with memory constraints, being also a good solution for computing KNN online,
devoting few resources to this specific task.

Acknowledgments. This work was partially funded by Conicyt/Beca Doctorado en
el Extranjero Folio 72140173 and Google Focused Award Web Alter-Ego.

References

1. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML (2006)

2. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: CVPR (2008)

3. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.M.: WHATSUP: a
decentralized instant news recommender. In: IPDPS (2013)

4. Boutet, A., Frey, D., Guerraoui, R., Jegou, A., Kermarrec, A.M.: Privacy-
preserving distributed collaborative filtering. In: Noubir, G., Raynal, M. (eds.)
Networked Systems. LNCS, vol. 8593, pp. 169–184. Springer, Heidelberg (2014)

5. Boutet, A., Frey, D., Guerraoui, R., Kermarrec, A.M., Patra, R.: HyRec: Leverag-
ing browsers for scalable recommenders. In: Middleware (2014)

6. Chen, J., Fang, H.R., Saad, Y.: Fast approximate KNN graph construction for
high dimensional data via recursive Lanczos bisection. J. Mach. Learn. Res. 10,
1989–2012 (2009)

7. Chiluka, N., Kermarrec, A.M., Olivares, J.: Scaling KNN computation over large
graphs on a PC. In: Middleware (2014)

8. Debatty, T., Michiardi, P., Thonnard, O., Mees, W.: Building k-nn graphs from
large text data. In: Big Data (2014)

310 N. Chiluka et al.

9. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: WWW (2011)

10. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Trans. Comput. C–24(7), 750–753 (1975)

11. Han, W.S., Lee, S., Park, K., Lee, J.H., Kim, M.S., Kim, J., Yu, H.: TurboGraph: a
fast parallel graph engine handling billion-scale graphs in a single PC. In: SIGKDD
(2013)

12. Jégou, H., Tavenard, R., Douze, M., Amsaleg, L.: Searching in one billion vectors:
re-rank with source coding. In: ICASSP (2011)

13. Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional
nearest neighbor queries. In: SIGMOD, vol. 26, pp. 369–380. ACM (1997)

14. Kyrola, A., Blelloch, G.E., Guestrin, C.: GraphChi: Large-scale graph computation
on just a PC. In: OSDI (2012)

15. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection
(2014). http://snap.stanford.edu/data

16. Lin, Z., Kahng, M., Sabrin, K., Chau, D., Lee, H., Kang, U.: MMAP: fast billion-
scale graph computation on a PC via memory mapping. In: Big Data (2014)

17. McRoberts, R.E., Nelson, M.D., Wendt, D.G.: Stratified estimation of forest area
using satellite imagery, inventory data, and the k-nearest neighbors technique.
Remote Sens. Environ. 82(2), 457–468 (2002)

18. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD
(1995)

19. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing
using streaming partitions. In: SOSP (2013)

20. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: CVPR (2010)

21. Wong, W.K., Cheung, D.W.l., Kao, B., Mamoulis, N.: Secure KNN computation
on encrypted databases. In: SIGMOD (2009)

22. Zhu, X., Han, W., Chen, W.: GridGraph: Large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In: USENIX ATC (2015)

http://snap.stanford.edu/data

The 4-Octahedron Abstract Domain

Rachid Oucheikh1(B), Ismail Berrada1, and Outman El Hichami2

1 Laboratoire Informatique, Modélisation et Systèmes (LIMS),
Université Sidi Mohamed Ben Abdellah - Faculté des Sciences Dhar El Mahraz,

Fes, Morocco
cheikh.rachid09@gmail.com, iberrada@univ-lr.fr

2 National School of Applied Sciences, Tetouan, Morocco
el.hichami.outman@taalim.ma

Abstract. In static analysis, the choice of an adequate abstract domain
is an interesting issue. In this paper, we provide a new numerical abstract
domain: 4-Octahedron. It is an Octahedra subclass that infers relations
of the form: { x ∼ α, x − y ∼ β, (x − y) − (z − t) ∼ λ}, such that: x, y, z
and t are real variables, α, β and λ are real constants and ∼ ∈ {≤, ≥}.
Its precision lies between the octagons and octahedra. We construct a
suitable structure for its representation, we provide normalization algo-
rithms for computing its canonical form and we give methods to compute
its transfer functions (Union, Intersection, Assignment, Projection, ...).
Complexity of the implementation algorithms is proved to be polynomial.

Keywords: 4-Octahedron abstract domain · Static analysis · Real-time
systems verification · Canonical form · Galois connection

1 Introduction

Code bugs might provoke a dramatic damages and even human victims. Hence
the importance of building correct software using formal methods. The code
analysis allows to automatically verify safety of dynamic properties on programs,
such as the absence of runtime errors. It aims to compute the set of reachable
program states X in order to be sure that are safe, basing on a program seman-
tic function F , such that F (X) = X. But unfortunately this is often not com-
putable. So, we define a new abstract semantic function F ∗, in order to compute
an abstract program invariant X∗, which includes the concrete one X. This tech-
nique, so-called abstract interpretation [1], represents an over-approximation of
the solution and should include less extra-solutions (false alarms).

Table 1 depicts the commonly used numerical abstract domains in the lit-
erature. Analysis using interval domains requires just a linear time and space
for its implementation, but it lacks precision of the expressed invariants. On the
other side, convex polyhedron is the most rich representation, but its complexity
is exponential in the number of program variables. The challenge is to make a
trade-off between precision and low-cost. Hence the importance of the weakly
relational abstract domains, namely the Difference Bound Matrices [3] and the
Octagons [5].
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 311–317, 2016.
DOI: 10.1007/978-3-319-46140-3 25

312 R. Oucheikh et al.

Table 1. Summary of numerical abstract domains based on inequalities

Abstract domain Invariants Example Reference

Intervals k1 ≤ xi ≤ k2 , k1, k2 ∈ R 1 ≤ x ≤ 4 [1]

Difference Bound

Matrices (DBMs)

k1 ≤ xi ≤ k2 , k1, k2 ∈ R

xi − xj ≤ k , k ∈ R

x ≤ 2 ∧ x − y ≤ 3 [4]

Octagons ±xi ± xj ≤ k , k ∈ R x + y ≤ 6 ∧ x − y ≤ 2 [5]

4-Octahedra xi ∼ k, xi − xj ∼
k, (xi − xj) − (xp − xq) ∼ k,

∼ ∈ {≤, ≥}, k ∈ R

x ≤ 5 ∧ z ≤
6 ∧ x − y + z ≤ t + 3

Our paper

Octahedra
∑

xi −∑ xj ≥ k , k ∈ R x + y − z ≤ 7 [7]

Convex polyhedra
∑

cixi ≥ k ci, k ∈ R 2x + y − 4z ≥ 3 [8]

In this paper, we introduce a new abstract domain encompassing the invari-
ants of the form: {x ∼ α, x−y ∼ β, (x−y)−(z−t) ∼ λ}, such that: (x, y, z, t) ∈ R,
α, β and λ are real constants and ∼ ∈ {≤,≥}. The precision of our domain lies
between the octagon domains which encode the relations of the form: ±x±y ≤ k,
for k ∈ R, and the octahedra domains.

The paper is organized as follows: Sect. 2 highlights some basic definitions.
In Sect. 3, we introduce the 4-Octahedron abstract domain and we prove its
consistence with the original concrete domain. Then, in Sect. 4, we define its
adequate data-structure representation, we elaborate the canonical form compu-
tation algorithms and we define the abstract operators. Finally, Sect. 5 concludes
and draws some perspectives.

2 4-Octahedron Representation

2.1 Linearly Dependent Vectors

In the rest of this paper, T≥0 denotes the set {x |x ≥ 0, x ∈ T} and T the set
T∪{+∞,−∞}. X = {x1, x2,, xn} denotes a set of valued variables over T, x0

is a special variable that is always equal to zero and X0 = X ∪{x0}. A valuation
function ν associates to each variable xi of X a value νi in T. V(X) denotes the
set of valuations over X. The set {e1,e2, · · · ,en} refers to the canonical basis
of the n-dimensional vector space (Tn,+,×) and e0 is the zero vector of Tn. A
family f = (Vi) of distinct nonzero vectors of Tn is linearly independent if the
only scalars (αi) ∈ N that satisfied the equation

∑
αiVi = e0 are null. A linearly

dependent family f is said to be simple, if every sub-family f ′ ⊂ f is linearly
independent.

Theorem 1. Let f = (Vi)i∈[1,r] be a simple dependent family of Tn. Then, for
all p < r, the only scalars (αi)i∈[1,p] ∈ Z that satisfied the equation

∑
αiVi = e0,

are αi = 0 for i ∈ [1, p]. �

The corollaries and detailed proofs are available in the link [13].

The 4-Octahedron Abstract Domain 313

2.2 4-Octahedra Definition

Let X ∈ T
n. An atomic 4-constraint over X is an inequality of the form:

(εixi − εjxj) − (εpxp − εqxq) ∼ mijpq where mijpq ∈ T, ∼ ∈ {≤,≥}, and for all
k ∈ {i, j, p, q}, εk ∈ {0, 1}. An atomic 4-constraint is said to be in its canonical
form iff for all k ∈ {i, j, p, q}, εk 	= 0 and ’∼’ is ’≤’. It is easy to see that, by
introducing a special variable x0, which is always equal to zero, every atomic
4-constraint can be rewritten in its canonical form.

The set of atomic (resp. canonical) 4-constraints over X will be denoted by
Φ(X) (resp. 4-Φ(X0)). For a canonical 4-constraint cijpq = (xi − xj) − (xp −
xq) ≤ mijpq, we put: cijpq = cjiqp and we get the normal vector of the hyperplane
induced by cijpq by the function Fv that associate to each constraint cijpq the
vector: ei − ej − ep + eq.

A 4-octahedron O over X, written O =
∧

((xi − xj) − (xp − xq) ≤ mijpq),
is the solution of m canonical 4-constraints over X0. Let C(O) be the set of
canonical 4-constraints of O. For a valuation ν ∈ V(X0), ν ∈ O iff ν satisfies all
constraints of C(O). O is an empty set iff ν 	∈ O, for all ν ∈ V(X0).

Next, we define the weight function Fb to be the mapping that associates to
a given 4-constraint cijpq its upper bound mijpq if c ∈ C(O) and +∞ otherwise.

2.3 Hyper-paths and Hyper-cycles

Graph-based algorithms has been widely used for checking the satisfiability (or
emptiness) of Potential Constraints conjunctions [4]

∧
(xi − xj ≤ mij) and

Octagons [5]
∧

(±xi ± xj ≤ mij). Difference Bound Matrices are used to rep-
resent the potential constraints. A well known result [6] states that a DBM is
empty if and only if there exists, in its associated potential graph, a cycle with a
strictly negative total weight. The concept of cycles (simple cycle or closed walk)
used in graph theory can catch plan constraints but fails to catch hyperplane
constraints of the form (xi − xj) − (xp − xq) ≤ mijpq.

In this paper, we extend the notion of cycles to hyper cycles and we use nor-
mal vectors to catch hyperplane constraints. Let C = {c1, c2, · · · , ck} be a set of
distinct constraints of 4-Φ(X0), then C generates ahyper-cycle orh-cycle (resp.
simple hyper-cycle) if the normal vectors family f = (Fv(ci)) is linearly (resp.
simple linearly) dependent. The set of hyper-cycles over 4-Φ(X0) is expressed
by:HCycle(X0) = {(C, (λi)) |C = {c1, c2, · · · , ck} and

∑
λiFv(ci) = e0}.

The notion of graph paths can be extended to hyper-paths as follows: for
a set P = {c1, c2, · · · , ck} ⊆ 4-Φ(X0), and c ∈ 4-Φ(X0), then P generates a
hyper-path or h-path (resp. simple hyper-path) of c, if P ∪ {c} generates
a hyper-cycle (resp. simple hyper-cycle). The set of hyper-paths is: HPath(c) =
{(P, (λi)) |P = {c1, c2, · · · , ck} and Fv(c) +

∑
λiFv(ci) = e0}.

Finally, the weight function F o
b can be extended to hyper-cycles and hyper-

paths in this way:

– For (P, (λi)) ∈ HPath(c) such that P = {c1, c2, · · · }, F o
b ((P, (λi))) =∑

λiF
o
b (ci).

314 R. Oucheikh et al.

– For (C, (λi)) ∈ HCycle(X0) such that C = {c1, c2, · · · }, F o
b ((C, (λi))) =∑

λiF
o
b (ci).

Lemma 1. Let O be a 4-octahedron. If all hyper-cycles of O are positives
with the minimal function F o

b , then for each h-path P = (p1, p2, · · · , pk) of c,
there exists a simple h-path Q = (q1, q2, · · · , ql) of c such that F o

b ((P, (λi))) ≤
F o
b ((Q, (βi))). And there exists a unique minimal solution (λi) such that

F o
b ((P, (λi))) ≤ F o

b ((P, (βi))) for all (P, (βi)) ∈ HPath(c). �

3 4-Octahedron Abstract Domain

3.1 The Need for 4-Octahedron Abstract Domain

Since its introduction by Cousot and Cousot [1], abstract interpretation has
been widely applied to approximate undecidable or very complex problems in
computer science. The choice of a suitable abstract domain has then a great
impact on the precision of the specification to be proved. We have at least
two application fields where the problems can be efficiently approximated by
the 4-Octahedra domain: Static code analysis, in order to correct program-
ming errors without running the program, and the Verification of real-time
systems modeled with Parametric Timed Automata (PTA) [9,10], since the
4-Octahedra catches the parametrized clocks of PTA. Furthermore, our abstract
domain is very suitable for implementing verification operations (emptiness test,
inclusion, post,· · ·) for models based on lower/upper bound (L/U) automata,
for instance, the Four Phase Handshake Protocol [12] given in [11].

3.2 Emptiness Testing

To check the emptiness of a 4-octahedron, we define the minimum weight func-
tion F o

bm that computes the tight upper bound of a constraint c: F o
bm(c) =

min({F o
b ((P, (λi))) | (P, (λi)) ∈ HPath(c)}).

Theorem 2. Let O =
∧

cijpq be a 4-octahedron. Then, the next two assertions
are equivalents:

1. For all hyper-cycles C = (ci, c2, · · ·) such that
∑

λiFv(ci) = e0 then∑
λiF

o
b (cj) ≥ 0.

2. For all hyper-cycles C = (ci, c2, · · ·) such that
∑

λiFv(ci) = e0 then∑
λiF

o
bm(cj) ≥ 0. �

This theorem states that the minimal weight function preserves positive hyper-
cycles of O.

Theorem 3. A 4-octahedron O =
∧

cijpq is not empty iff all simple hyper-cycles
of O are positives.

The 4-Octahedron Abstract Domain 315

3.3 Approximation of the Canonical Form

Finding an efficient algorithm that can compute the minimal weight function,
in general case, is an open problem at the time of writing this paper. Note that,
computing the minimal weight by finding all HPath, is a hard problem since
there is an exponential number of HPath. Keeping this fact in mind, next, we
will introduce some fundamental results that allow us either to compute the
canonical form or its upper approximations.

Theorem 4. Let (xi, xj , xp, xq, xk, xl) ∈ (X0)6. If Mijpq denotes the minimal
bound of a constraint cijpq, then the following three equalities are always satisfied:
Mijpq = Mqpji = Mipjq, Mijkk = Mij00 and Mijji = 2Mij00 �

Theorem 5. Let (xi, xj , xp, xq, xk, xl) ∈ (X0)6 and Mijpq denotes the minimal
bound F o

bm(cijpq) of a constraint cijpq. Then Mijpq ≤ Mijkl+Mklpq and Mijpq ≤
Miklq + Mkjpl �

4 4-Octahedra Abstract Domains Implementation

4.1 2D-DBM Data-Structure

For the purpose of implementation and manipulation of the 4-Octahedra abstract
domains, we need to create a suitable data structure. So, we extend the Differ-
ence Bound Matrices (DBM) in two dimensions, and we obtain what we call
“2D-DBM”. A DBM is a square matrix M where each coordinate mkl repre-
sents the upper bound of the difference xl − xk. We define the 2-Dimensions
Difference Bound Matrix (2D-DBM) to be the square matrix M where mkl is
the upper bound Mijpq of the constraints cijpq, for 1 ≤ k, l ≤ (n + 1)2, lines and
columns become difference of variables instead of variables.

We note M c the canonical form of the matrix M . After defining the structure
of the 4-Octahedron domain, it is easy to prove its fidelity to the original concrete
domain using the Galois Connections.

4.2 Galois Connections

The abstraction allows to easily verify properties satisfaction which was complex
or even impossible in the concrete domain. So, it is necessary to prove the Galois
Connection between the two domains.

Let C = (DC ,�C) and A = (DA,�A) two partially ordered sets. A Galois
connection from C to A is a couple < α, γ > of functions, where: ∀c ∈ C,∀a ∈
A,α(c) �A a ⇔ c �C γ(a).

To show these connections, we define firstly the set of concrete valuations:

D = {(x0, x1, ..., xn) ∈ R
n+1 | ∀i, j, p, q(xi − xj) − (xp − xq) ≤ Mijpq}

316 R. Oucheikh et al.

Afterwards, we define the two functions that allow switching from concrete
domain to the abstract one. The concretization function returns the set of con-
crete values framed by a canonical 2D-DBM:

γ2D−DBM (Mc) = {(x0, x1, ..., xn) ∈ R
n+1|(xi − xj) − (xp − xq) ≤ Mijpq} = D(Mc)

And the abstraction function α returns the abstract domain: α(A) =
⋂{m ∈

M⊥|D ⊆ γ(m)}.

4.3 Computation Canonical Form Algorithm

Here we present the skeleton of the algorithm, its implementation is detailed
in [13].

Input: non canonical 2D-DBM

Output: Canonical 2D-DBM

Do { for all cell M_ijpq in 2D-DBM representing a 4-Octahedron constraint

M_ijpq := min(M_ijpq, M_ijkl + M_klpq, M_iklq + M_kjpl) }

While 2D-DBM not stationaire yet

4.4 Definition of the Abstract Operators

In order to express precisely the whole dynamic behavior of a program, we define
the abstract semantics of its primitive operators, namely the transfer functions
that model assignment and test statements of the code, the set-theoretic oper-
ators such as union (resp. intersection) that interprets the disjunction (resp.
conjunction) of many code invariants, and the extrapolation operators, such as
widening that computes over-approximations of the variables set in the loops
and recursive functions. These abstract operators are defined as manipulations
of the associated 2D-DBM.

Intersection: The intersection of two 4-Octahedra represented by their
canonical 2D-DBM M c

1 and M c
2 is obtained as follows: (M c

1 ∧ M c
2)ij =

min((M c
1)ij , (M c

1)ij), 0 ≤ i, j ≤ (n + 1)2. The resulting matrix is usually not
closed, so we accomplish closure algorithm to obtain its canonical form.

Union: The union of two 4-Octahedra domains described by two 2D-DBM M c
1

and M c
2 is not defined in an exact way, so we get its over-approximation as

follows: (M c
1 ∨ M c

2)ij = max((M c
1)ij , (M c

1)ij), for all 0 ≤ i, j ≤ (n + 1)2. The
resulting matrix is surely closed.

Linear assignment: We assign to the variable xk a linear expression over other
variables: xk ←− L(x1, x2, ..., xn). We perform the assignment in the canonical
2D-DBM (M c), then we close it applying the previous algorithm. The resulting
matrix is canonical.

Projection: A projection of a 4-Octahedron that removes a dimension xk

is accomplished by removing from its canonical associated 2D-DBM (M c)
all columns and lines which concern the variable xk. Then we perform our
algorithm.

The 4-Octahedron Abstract Domain 317

5 Conclusion

In this paper, we provided a new abstract domain: the 4-Octahedra, which has
an important practical interest in static analysis. It is an Octahedra subclass
that infers relations of the form: { x ∼ α, x − y ∼ β, (x − y) − (z − t) ∼ λ}. We
proved its consistence with the original concrete domain. In order to represent
and manipulate this domain and accomplish the program operators as well,
we defined a suitable structure 2D-DBM. Then, we elaborated the algorithm
able to obtain the canonical form of this structure. To sum up, in terms of
invariants precision, the 4-Octahedron is more rich than Octagons, and regarding
the implementation cost, it is less complex than polyhedra.

As perspective of this work, we are using the 4-Octahedron Abstract
Domain to formally verify the real-time systems modeled by Parametric Timed
Automata. We are elaborating an on-the-fly verification algorithm to analyze
the reachability and check the emptiness of PTA parameters set.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: SPPL, pp.
238–252. ACM Press (1977)

2. Goubault, É., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

3. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

4. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) Timed Specifications: Automatic Verification Methods for Finite
State Systems. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1989)

5. Miné, A.: The octagon abstract domain. In: Proceedings of Analysis, Slicing and
Tranformation, pp. 310–319. IEEE CS Press (2001)

6. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
7. Clarisò, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput. Pro-

gram. 64, 115–139 (2007)
8. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using

linear relation analysis. Form. Methods Syst. Des. 11, 157–185 (1997)
9. Benes, N., Bezdek, P., Larsen, K.G., Srba, J. Language Emptiness of Continuous-

Time Parametric Timed Automata (2015). arXiv preprint arXiv:1504.07838
10. André, É., Markey, N.: Language preservation problems in parametric timed

automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Heidelberg (2015)

11. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other
Models of Concurrency V. LNCS, vol. 6900, pp. 141–159. Springer, Heidelberg
(2012)

12. Blunno, I., Cortadella, J., Kondratyev, A., Lavagno, L., Lwin, K., Sotiriou, C.:
Handshake protocols for de-synchronization. In: The 10th International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems, pp. 149–158
(2004)

13. The detailed proofs and explanations website: http://www.fsdmfes.ac.ma/
Octahedron

http://arxiv.org/abs/1504.07838
http://www.fsdmfes.ac.ma/Octahedron
http://www.fsdmfes.ac.ma/Octahedron

Reversible Phase Transitions in a Structured
Overlay Network with Churn

Ruma R. Paul1,2(B), Peter Van Roy1, and Vladimir Vlassov2

1 Université catholique de Louvain, Louvain-la-neuve, Belgium
{ruma.paul,peter.vanroy}@uclouvain.be

2 KTH Royal Institute of Technology, Stockholm, Sweden
{rrpaul,vladv}@kth.se

Abstract. Distributed applications break down when the underlying
system has too many node or communication failures. In this paper,
we propose a general approach to building distributed applications that
lets them survive hostile conditions such as these failures. We extend an
existing Structured Overlay Network (SON) that hosts a transactional
replicated key/value store to be Reversible, i.e., it is able to regain its
original functionality as the environment hostility recedes. For this paper
we consider the environment hostility to be measured by the Churn para-
meter, i.e., the rate of node turnover (nodes failing and being replaced
by new correct nodes). In order to describe the qualitative behavior of
the SON at high churn, we introduce the concept of Phase of the SON.
All nodes in a phase exhibit the same qualitative properties, which are
different for the nodes in different phases. We demonstrate the existence
of Phase Transitions (i.e., a significant fraction of nodes changes phase)
as churn varies and show that our concept of phase is analogous to the
macroscopic phase of physical systems. We empirically identify the Crit-
ical Points (i.e., when there exists more than one phase simultaneously
in significant fractions of the system) observed in our experiments. We
propose an API to allow the application layer to be informed about the
current phase of a node. We analyze how the application layer can use this
knowledge for self-adaptation, self-optimization and achieve reversibility
in the application-level semantics.

Keywords: Phase transition · Maintenance strategies · Churn

1 Introduction

A distributed application breaks down when there are too many node or commu-
nication failures, in which case the application can revert to an “offline mode”

This research is partially funded by the SyncFree project in the European Union
Seventh Framework Programme under Grant Agreement No. 609551 and by the
Erasmus Mundus Doctorate Programme under Grant Agreement No. 2012-0030.
Authors would like to thank Manuel Bravo and Zhongmiao Li for their participation
to refine the concept of Reversibility.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 318–333, 2016.
DOI: 10.1007/978-3-319-46140-3 26

Reversible Phase Transitions in a Structured Overlay Network with Churn 319

with reduced functionality. This can be acceptable for client-server applications,
such as mobile applications that depend on a data center that remains a sin-
gle point of failure. However, this is now changing as the Internet is becoming
more and more decentralized: data centers are increasing in number and come
in various sizes. Applications running on such an infrastructure need to have
a decentralized architecture that is resilient to failure. Ideally, the application
should survive with partial functionality during arbitrary system failures and
recover its full functionality when the underlying system is restored. This is
not just a fringe case: mobile and ad hoc networks, for example, have this kind
of failure. Even supposedly stable parts of the Internet have peaks of unstable
behavior.

We propose an approach to build applications able to survive arbitrary fail-
ures, providing reduced but predictable functionality in that case; and when the
failures go away the application recovers its full functionality. We build on the
concept of Structured Overlay Network (SON), a known approach to building
decentralized systems. We extend a SON to make it Reversible, which implies
the system is able to regain its original functionality as the stress, e.g., churn
or network partitioning, recedes. This paper focuses on one property of the net-
work, namely Churn, i.e., nodes failing and being replaced by new correct nodes.
We assume that churn varies over time and that the average number of correct
nodes at any instant is constant. A SON that provides significant functionality
at low churn, e.g., transactions over a key/value store, will no longer be able to
do so at high churn. Applications that rely on transactions will no longer be able
to use them. We want these applications to continue running nevertheless, with
predictable behavior even with reduced functionality. Therefore the SON should
inform the application of the provided functionality changes. Ideally, this should
be done in a manner that works even for high churn. The SON can therefore not
be relied on to do additional computation to determine its level of functionality.
Under this constraint, is it possible for the SON to give useful information?

In order to describe the behavior of a SON, we introduce the concept of
Phase of the system. Phases are well understood in physical systems [25]. We
make an analogy for computing systems. A Phase is a subset of a system for
which the qualitative properties are essentially the same. We consider a system
as an aggregate entity composed of a large number of interacting parts, where
parts are peers in our case. The phase is not a global property, but is observed
separately at each node, and can be different for different nodes. No global
synchronization and no extra computation is required to compute the phase;
it is a direct consequence of the observed SON structure at each node. The
phase of each node has a direct relationship with the available functionalities of
the system. In contrast to stress, which is a global condition that cannot easily
be measured by individual nodes, the phase is a local property that is directly
known at each node. Thus, based on the current phase of a node, the application
running on that node can manage its behavior in a stressful environment. As
with the constituents of a physical matter, when external conditions change, each
node of a SON changes phase independently. If that happens to many nodes,

320 R.R. Paul et al.

we have a Phase Transition at system level. A Critical Point occurs when more
than one phase exists simultaneously in significant fractions of a system.

Contributions: We define Reversibility and design our SON using the princi-
ples necessary to make it reversible. To our knowledge, no previous SON pro-
vides reversibility for the high values of churn we investigate. We demonstrate
reversibility through simulation using realistic network conditions and churn
varying over a large range. We present formal definitions of Phase, Phase Tran-
sitions and Critical Points in our context. We describe semantics of all the iden-
tified phases and sub-phases in our representative system. As a result of having
a reversible system, we experimentally demonstrate reversible phase transitions:
the nodes of the system change phase as the churn is varied. We present an API
so that the application can access the current phase of a node and be notified
when a phase transition occurs. Finally, we analyze the applications of these
concepts towards the design of Reversible and Predictable systems. The overall
contributions are as follows:

– Definition of Reversibility ; First demonstration of a reversible SON and con-
ditions to achieve the reversibility, under a wide range of churn values;

– Introduction of the concepts of Phase, Phase Transition and Critical Point in
the context of a peer-to-peer network;

– Identification of different phases in a SON; Description of the semantics of all
observable phases and sub-phases in the context of that SON;

– First demonstration of reversible phase transitions in a SON;
– An API to expose the current phase of a node, which gives local information

about the stress, to the application;
– Analysis of how the application can use the phase concept to manage its

behavior in a stressful environment.

The remainder of the paper is as follows. In Sect. 2 we describe a representa-
tive class of overlays. Section 3 presents the maintenance strategies of overlays.
Section 4 defines and assesses reversibility of the maintenance strategies against
churn. In Sect. 5, we study phase transitions in a SON, present an API to expose
the current phase of a node to the application, and discuss the use of this knowl-
edge. Section 6 discusses related work, and we conclude in Sect. 7.

2 Representative Overlays

We have chosen ring-based overlays, such as Chord [24], DKS [4], Beernet [20],
as our representative systems, because the ring is competitive with other SON
structures in terms of routing efficiency and failure resiliency [12]. In this section,
we briefly discuss a model of ring overlays as per the reference architecture of [1].

A ring overlay has a virtual identifier space, I, which is a subset of N of size
N . Each peer is associated with a unique id, p ∈ I, mostly using a uniform hash
function or some random function. A peer with virtual identifier p is responsible
for the interval (predecessor(p), p], i.e., p is responsible for storing data items

Reversible Phase Transitions in a Structured Overlay Network with Churn 321

with keys k ∈ (predecessor(p), p]. Each peer p perceives I to be partitioned
into log(N) partitions, where each partition is k times bigger than the previous
one. The routing table of p contains logk(N) connections/fingers to some nodes
from each partition. The neighborhood of a peer p, N(p), is the set of peers
with which p maintains a connection. For a target identifier i, peer p selects the
closest preceding link, d ∈ N(p) to forward the message. Since there are always
k intervals, routing converges in O(logk(N)) hops.

Fig. 1. Branches on a
relaxed ring. Peers p and
s consider u as successor,
but u only considers s as
predecessor. Peer q has not
established a connection
with its predecessor p yet.
(Color figure online)

Chord and Beernet: Chord [24] is the canonical
ring-based SON. However, studies, e.g. [11], show
that churn in Chord can introduce inconsistency.
The reason is that the join/leave handling in Chord
requires coordination of three peers that is not guar-
anteed due to non-transitive connectivity (i.e., A
can talk to B and B can talk to C � A can talk
to C) on the Internet. In contrast to Chord, Beer-
net [20] does not assume transitive connectivity.
This makes Beernet more resilient on Internet-like
scenarios. Each step of join/leave handling in Beer-
net requires the agreement of only two peers, which
is guaranteed with a point-to-point communication.
Beernet has a correct lock-free three-step join oper-
ation, each step involving two peers. Lookup con-
sistency is guaranteed after every step. As a result
of such multi-step relaxed join operation, branches
are formed: when a peer is not yet connected to its predecessor it forms a branch
from the core ring. Figure 1 shows a Beernet network, where red (dark in B/W)
nodes are organized into a ring and green (light in B/W) nodes are on branches.
Due to branches, the guarantees about proximity offered by Beernet routing cor-
respond to O(logk(n) + b), where b is the distance to the farthest peer on the
branch. We have used Beernet for experiments in this work.

3 Overlay Maintenance Strategies

As we consider “Reversible Phase Transitions” due to Churn, self-healing is cru-
cial in order to be Reversible. This can be achieved by the maintenance strategy
of an overlay. A Maintenance Strategy maintains the structural integrity of a
SON while peers go offline or network connections fail. Several strategies are
proposed in existing literature to achieve self-healing; Chord uses Periodic Sta-
bilization, whereas DKS and Beernet rely on Correction-on-Change. Then there
are gossip-based strategies, e.g., T-Man [13], which can construct and maintain
a SON. So, why not just use gossip? Correction-on-change is much more efficient
than gossip; whereas gossip is much more resilient. Therefore, we organize the
maintenance strategies of overlays using Efficiency ↔ Resiliency spectrum, as
shown in Fig. 2, where maintenance strategies at the top are efficient, but not
resilient as churn increases, whereas the strategies at the bottom are resilient,

322 R.R. Paul et al.

Fig. 2. Efficiency ↔ Resiliency Spectrum of Overlay Maintenance Strategies with their
properties

however lack efficiency. Our goal is to get both efficiency and resiliency, so that
a SON can achieve reversibility against extremely high churn. The philosophy
behind our work is similar to that used by Plumtree [18].

As already mentioned, correction-on-change and correction-on-use (together
referred to as Correction-on-*), are efficient in terms of bandwidth consump-
tion and rapid response against an event, however they fall short when the
stress of the operating environment increases beyond a threshold (due to lack
of liveness; without any event no maintenance is done). Correction-on-change
handles join/leave/failure of nodes. Whenever a peer detects such events, it
updates its neighborhood. Correction-on-use mainly corrects the fingers. Every
time messages are routed, information is piggybacked to correct fingers. Thus,
correction-on-use provides self-optimization and self-configuration, whereas par-
tial self-healing is achieved through correction-on-change.

Gossip-based strategies are highly resilient against inhospitable environ-
ments, but costly in terms of bandwidth consumption and also, react slowly
against an event. Using such strategies, each peer maintains a state (local knowl-
edge of the overall system) and uses this knowledge to conduct maintenance. In
our work, we have used a simple form of such strategies, Knowledge Base (KB)
[21], where each peer maintains a best-effort view of the global membership of
the system through listening only. The KB at each node can be accessed through
an API.

Apart from these extremes, we organize the remaining strategies as per the
spectrum: Periodic Stabilization (PS) can be seen as a weak form of gossip,
where each node exchanges periodic messages with its successor to maintain its
immediate vicinity. Such local corrections are able to achieve self-healing; how-
ever, might become a slow response while facing an inhospitable environment.
As discussed in [10,11], lookup inconsistencies and uncorrected false suspicions
can be introduced in real implementations. Also, as per [15], for a low ratio of

Reversible Phase Transitions in a Structured Overlay Network with Churn 323

stabilization frequency to churn, while doing a lookup the longest finger of any
peer is always found to be dead, which degrades routing efficiency. To avoid this,
it is required to trigger PS often, making an inefficient use of bandwidth. Thus,
presenting a trade-off, which is tuned by the period used for this strategy.

A similar bandwidth consumption-convergence time trade-off is added by
ReCircle [23], in the form of a partition-merger. ReCircle has two parts: a PS
algorithm and a Merger. The merger is triggered using a Passive List (PL), where
each node maintains a list of suspected nodes and whenever a false-suspicion
is detected, merger is triggered, thus restricting the gossip messages. The PL
approach to trigger the merger is reactive to the operating environment. We
have extended this in a proactive manner [21]: instead of PL, the merger is
triggered periodically using KB; thus a resilient gossip-based maintenance.

Apart from this spectrum, these strategies can also be classified along two
dimensions: local/global and reactive/proactive. Following [2], we classify PS as a
proactive and correction-on-* as a reactive mechanism. Using KB, as introduced
in [21], the set of strategies covers all points in this two-dimensional space.

4 Reversibility and Its Evaluation

Reversibility. A Reversible system is able to regain its original functionality
as the external stress recedes. Given a function, S(t), which returns the system
stress as a function of time, in some arbitrary but well-defined units. A system
is Reversible if there exists a function Ffunc(id, S(t)) such that the set of avail-
able operations of the system, Opset = Ffunc(id, S(t)), and when S(t) = 0, the
system provides full functionality at all nodes. Here, id is a node identifier and
an operation is available for a given stress if the operation will eventually suc-
ceed. Reversibility is a related, but different property than Self-Stabilization [7].
A self-stabilizing system can repair itself from any arbitrary state. Reversibility
does not assume anything about the system state. A self-stabilizing system is
reversible, but a reversible system is not necessarily self-stabilizing.

Achieving Reversibility Requires Knowledge Base. Reversibility is a non-
trivial property. To our knowledge, no existing work demonstrates reversibility
for a SON under continuous high churn. Our experimental results, presented in
Fig. 3, verify that the knowledge base is essential to ensure reversibility under
continuous high churn. We assess reversibility in stepwise fashion, by integrat-
ing a new maintenance principle at each step and evaluating the behavior of the
resulting system. We achieve reversibility only in the final step, shown in Fig. 3d,
which adds the knowledge base. We now explain these experiments in detail.

For our experiments, we have used a SON of 1024 peers. The underlying
network is simulated by following the empirical distribution of minimum RTT
provided in [3]. We have defined churn as percentage (%) of nodes turnover
(nodes failing and being replaced by new correct nodes) per time unit (sec-
ond in this work). During the steady state of the SON we inject 10%, 50%
and 100% churn for 1 min. The churn events are modeled as a Homogeneous
Poisson Process (HPP) with λ events/sec, where λ = 2∗C∗1024

100 for C% churn.

324 R.R. Paul et al.

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140

Pe
rc

en
ta

ge
 o

f
N

od
es

 o
n

C
or

e
R

in
g

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

(a) Using Correction-on-*

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140

Pe
rc

en
ta

ge
 o

f
N

od
es

 o
n

C
or

e
R

in
g

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

(b) Using Correction-on-* and PS

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140

Pe
rc

en
ta

ge
 o

f
N

od
es

 o
n

C
or

e
R

in
g

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

(c) Using Correction-on-*, PS and Merger
with Passive List

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140

Pe
rc

en
ta

ge
 o

f
N

od
es

 o
n

C
or

e
R

in
g

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

(d) Using Correction-on-*, PS and Merger
with KB

Fig. 3. % of nodes on the core ring as a function of time (in sec) after withdrawing
churn to assess reversibility. Figure 3a, b and c are not reversible (nodes on the core
ring never converges to 100 %). Figure 3d using KB is reversible.

After withdrawing churn, we observe the SON’s self-healing with time. To quan-
tify self-healing, we have used the metric: % of nodes on the core ring. We find
out the maximal ring in the system and report % of nodes on it. The ultimate
goal is to have the metric converge to 100%. A fixed workload is used by injecting
transactions, modeled as a HPP with λ = 1 transaction/s. A transaction reads
one key and updates another one. Starting from the withdrawal of churn, for
each second we present % of nodes on core ring and an average of 20 indepen-
dent runs are taken for each second. We remark that the apparent termination
time of an experiment in Fig. 3d is the maximum among the samples used.

As Fig. 3a shows correction-on-* fails to achieve reversibility even for the
lowest intensity (10%) of churn used in our experiments. After withdrawing
churn, the structure of the system remains almost the same. This is due to the
lack of liveness of these principles, thus exhibits very limited reversibility.

In Fig. 3b we can see improvements after integration of PS; however the
system is still unable to achieve reversibility. The period used is 3 s.

As Fig. 3c shows, the integration of merger with PL does not show much
improvement over the combined local healing. The reason is the existence of

Reversible Phase Transitions in a Structured Overlay Network with Churn 325

isolated nodes in the system (explained below). The nodes on the overlay have no
reference to these nodes. So, adding reactive merge does not achieve reversibility.

Why not Reversible Yet? As we can see in Fig. 3c the system is still not
reversible. As our investigation shows, there are peers whose joining fails under
churn. The first step of joining is to do a lookup for successor and after receiving a
response a new peer becomes part of the SON. For a join to fail either the lookup
request is lost while routing or the successor has failed after receiving the lookup
request. If we ignore the processing time at successor, then P (join failure) ∝
P (lookup failure). Figure 4 shows % of incomplete lookups and joins for varying
churn. We have used the same experimental setup with lookup requests as a
HPP with λ=100 requests/s. We also present the accumulation of pending join
requests with time in Fig. 5, especially for high churn. As is evident, high churn
makes the overlay unstable, which does not allow new peers to join.

As shown in Fig. 3d, after the integration of KB the system achieves reversibil-
ity. In order to ensure successful joining of new nodes, we have extended nodes
with repeated join attempts (until a response is received) with new join refer-
ences, which are provided by KB. In our experiments, if a node is unable to
join with its current join reference within 90 s (a tunable parameter that will be
referred to as Join Timeout), it requests a new join reference from the applica-
tion layer. The application layer provides a new join reference by accessing and
accumulating the distributed KB, or using a previously cached one. The isolated
peer then triggers a new join request with that. We have chosen a conservative
value of 90 s for Join Timeout to avoid triggering of unnecessary repeated join
requests. This parameter can be adapted based on the operating environment
and RTT distribution of the underlying network, which is left as future work.
Along with this, we have used the proactive merger using KB. In some runs we
have observed partition of the system after the isolated nodes complete their
join procedures. For these scenarios, the PL approach used in [23] fails to trigger
the merging. In order to merge such partitions proactive merger using KB is
required. As we can see in Fig. 3d, the system achieves reversibility.

To summarize the outcome of our experiments: Efficient maintenance strate-
gies fail to achieve reversibility as churn increases; a Resilient maintenance strat-
egy is required to make the system reversible in case of extremely high churn.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pe
rc

en
ta

ge

Churn

Incomplete Lookup
Error Bar

Incomplete Join
Error Bar

Fig. 4. % of incomplete lookups and
joins after 1 min churn injection

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Pe
rc

en
ta

ge

Time (in sec)

For Churn = 10%
For Churn=50%

For Churn=100%

Fig. 5. % of incomplete joins with time
during injection of churn for 1 min.

326 R.R. Paul et al.

5 Phase, Phase Transitions, API and Application

In this section we formally define Phase, Phase Transition and Critical Point in
our context. We describe the semantics of all identified phases and sub-phases
in our representative system. We relate our phase concept to Reversibility. We
empirically demonstrate reversible phase transitions in a reversible system. We
present an API to give useful phase information to the application layer and
discuss various applications of this knowledge.

5.1 Definition of Phase, Phase Transition and Critical Point

We present formal definitions of our concepts by drawing an analogy with
these terms in physical systems [25]. This analogy is introduced to make it
easier to understand intuitively what phase means. We consider a system,
S = {S1, . . . , Sn}, where each Si : 1 ≤ i ≤ n, is an interacting part of S. In
our case S is a SON and Si is a node of the SON. The system is partitioned
into k subsets, such that: (1) P1 � P2 � . . . � Pk = S, (2) For any Pi : 1 ≤ i ≤ k,
qualitative properties are the same ∀Sx ∈ Pi, (3) For Pi, Pj : i �= j, quali-
tative properties are different, i.e., if F is a function of qualitative property,
then ∀i,j:i�=j =⇒ ∀Sx ∈ Pi,∀Sy ∈ Pj : F (Sx) �= F (Sy). We can say each
Pi : 1 ≤ i ≤ k is an observed phase in S. A Phase Transition at system level
occurs when a significant fraction of a system’s parts change phase. This can
happen if the local environment changes at many parts. A Critical Point occurs
when: (1) k > 1, (2) at least two, i1 and i2, such that | Pi |
 1. This paper
investigates phases and phase transitions in a SON with varying churn.

Reversibility and Phase: We introduce the concept of phase so that applica-
tions can manage their behavior in stressful environments. We have defined the
phase Pi at each node i to be a well-defined local property of the node. We define
the phase configuration of the system to be the vector Pc = (P1, P2, P3, ..., Pn).
Both phases and phase configurations are functions of time. We can define Opset
(See Sect. 4) in terms of them: Opset = Fdet(id, Pc(t)).

In the case of Beernet, we can determine a property that satisfies the formal
definition of phase given above. The phase of a node is clearly determinable at
that node: there are three mutually exclusive situations depending on neighbor
behavior (neighbors on core ring, neighbors on branch, no neighbors). There is
an analogy between these three phases and the solid, liquid, and gaseous phases
in physical matter (e.g., water). Also, when a node is on a branch (i.e., liquid
phase), we can identify three sub-phases in terms of available functionalities and
probability of facing an immediate phase transition. We define semantics of each
phase and sub-phase, in analogy with the solid, liquid, and gaseous phases in
physical matter and translate them in terms of available functionalities.

– Solid (PS): The solid state of a matter is characterized by structural rigidity,
where atoms or molecules are bound to each other in a fixed structure. In
case of SONs, if a peer has stable predecessor and successor pointers (i.e., the

Reversible Phase Transitions in a Structured Overlay Network with Churn 327

peer is on core ring), along with a stable finger table, then it can be termed
to be in solid phase. It can be safely assumed that such a peer can support
efficient routing, thus accommodate up-to-date replica sets, thus leading to all
the upper layer functionalities, e.g., transactional DHT.

– Liquid: A thermodynamic system is in the liquid state where molecules are
bound tightly but not rigidly (neighbors can change). In case of SON, if the
peer is on a branch, it is less strongly connected than those in PS ; thus in
liquid phase. However a peer can be on a branch temporarily, e.g., as part of
the join protocol or due to a false suspicion as a result of sudden slow-down
of the underlying physical link. We identify three liquid sub-phases.

• PL1: If the peer is on a branch, but the depth of the peer (distance from
the core ring) is ≤ 2. Also, the peer still holds a stable finger table. The
justification of depth of 2 for this sub-phase is based on the evaluation of
average branch sizes in [20], where it is shown that the average branch
size of Beernet is ≤ 2, corresponding to the connectivity among peers
on the Internet. So, if a peer’s depth on a branch is ≤ 2, the operating
environment from a peer’s perspective is still the usual one, it might
temporarily be pushed on a branch. From an application’s perspective,
the peer is still able to provide all the higher layer functionalities.

• PL2: If the peer is on a branch with a depth > 2, but it is not the tail
of the branch. Also, the finger table at the peer still holds > 50% valid
fingers. So, the peer is still able to support at least all DHT operations,
however successful transactions are not guaranteed anymore.

• PL3: If the peer is on a branch with a depth > 2 and it is the tail of a
branch (farthest node from the core ring). The tail of a branch has higher
probability to get isolated during churn, thus introducing unavailability
in the key range [20]. Also, most of the fingers in the peer’s finger table
are invalid or crashed. From a application’s perspective, the peer in this
sub-phase provides very limited functionality, mostly basic connectivity.

– Gaseous (PG): The gaseous state of matter is made up of individual molecules
that are separated from each other. When Beernet experiences high churn, at
some point the system is completely dissolved, resulting in isolation, thus
gaseous phase, of all nodes. In this work, we have considered only extreme
case of partitioning of the system. However, in practice, if there are > 1 nodes
per physical machine and the network breaks down, then small ringlets will
be formed by the nodes on the same physical machine. For such scenario, the
nodes are not completely isolated, however in another form of gaseous phase.
The investigation about such gaseous sub-phases is left as future work.

5.2 Observation of Phase Transitions

We show experimentally the existence of phase transitions in our representative
reversible system as the churn intensity varies. For this we have used similar
experimental setup as described in Sect. 4 with a network of 1024 peers. We
have measured the percentages (%) of nodes in different phases and sub-phases.

328 R.R. Paul et al.

 0

 20

 40

 60

 80

 100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Pe
rc

en
ta

ge

Time (in sec)

(a) Under increasing churn

 0

 20

 40

 60

 80

 100

0 5 10 15 20 25

Pe
rc

en
ta

ge

Time (in sec)

PS

PL1

PL2

PL3

PG

(b) Under low churn (0% to 5%)

 0

 20

 40

 60

 80

 100

32
0

34
0

36
0

38
0

40
0

42
0

Pe
rc

en
ta

ge

Time (in sec)

(c) After withdrawing churn

 0

 20

 40

 60

 80

 100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Pe
rc

en
ta

ge

Time (in sec)

(d) Under increasing and decreasing churn

Fig. 6. Phase Transitions in Beernet: red, green (different shades corresponds to 3
liquid sub-phases) and blue (dark, gray and light-gray in B/W) areas correspond to %
of nodes in solid, liquid and gaseous phases respectively (Color figure online)

Increasing Churn with Time. We study phase transitions under increasing
churn and reverse transitions when churn is removed. We start with 5% churn
and increase the intensity by 5% every 5-second for 5 mins. After that churn is
withdrawn; we let the system run until the completion of self-healing (i.e., perfect
ring). Every 5-second we take a snapshot of the system, i.e., the percentages of
nodes at each phase and sub-phase throughout a run. We have used mean value
for 20 independent runs. Figure 6a and c show the states of the system during
increasing churn followed by zero churn respectively.

In Fig. 6a (error bars for PG only) the red area of each bar corresponds to %
of nodes which are in phase PS . At time 0, i.e., starting of the experiment, all
nodes are organized into a perfect ring. As churn is increased nodes start moving
on branches, the green area of each bar, these are the nodes which are in liquid
phase. We have also identified nodes on branches which have different liquid sub-
phases, as per the semantics described before. We can figure out some trends
apparent in Fig. 6a. For example, 30% of churn is a critical value, observed at
30 s, as a significant fraction of nodes change from liquid to gaseous phase.

Reversible Phase Transitions in a Structured Overlay Network with Churn 329

 0

 20

 40

 60

 80

 100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Pe
rc

en
ta

ge

Time (in sec)

(a) Under continuous churn of 30%

 0

 20

 40

 60

 80

 100

32
0

34
0

36
0

38
0

40
0

Pe
rc

en
ta

ge

Time (in sec)

(b) After withdrawal of 30% churn

Fig. 7. Phase Transitions in Beernet: red, green (different shades corresponds to 3
liquid sub-phases) and blue (dark, gray and light-gray in B/W) areas correspond to %
of nodes in solid, liquid and gaseous phases respectively (Color figure online)

The solid to liquid transition happens between 0% and 5% churn. In Fig. 6a,
we can see a sharp fall of % of nodes on core ring from 0 to 5 s. In order to analyze
this transition we have zoomed into this area. For this experiment, during steady
state of SON, we start with 1% of churn and every 5-second we increase churn
intensity by 1% till we reach 5% of churn. Also a snapshot is taken every 5 s
as before. Figure 6b shows the result. We have used mean values of 20 samples
and only error bars for the PS are shown. As we can see, as the churn intensity
is increased from 1% to 2%, during 5 to 10 s, a large fraction of nodes changes
phase from solid to liquid.

Figure 6c (error bars for PS only) shows the recovery of the SON after churn
is withdrawn (i.e., 6–9 mins of our experiment). Here starting with all isolated
nodes, a small fraction of nodes changes to transient liquid phase. We can see a
period of about 90 s, during which the % of isolated nodes remains same. The
reason is the Join Timeout parameter (see Sect. 4), which is set as 90 s. The
transition from gaseous state is controlled by this tunable parameter. Finally all
nodes are self-organized into a perfect ring, solid state of SON, within 400 s.

Continuous Moderate Churn. We seek answer to the question: whether
a phase transition happens in a SON at continuous moderate churn. For this
experiment we have chosen churn equal to 30%, as we have observed that 30%
of churn is a critical value. During steady state of SON, we start injecting 30%
churn for 5 mins. Then churn is withdrawn and we let the SON do self-healing
until all nodes are on the core ring. During our experiment, we take measure-
ments every 5-second and present mean value of 20 independent runs in Fig. 7a
(error bars for only PG) and Fig. 7b (error bars for only PS). As we can see in
Fig. 7a, a significant fraction of nodes change phase during first 10 s, thus justi-
fying our deduction that churn intensity of 30% to be a critical point. Also, we
notice that, as in a thermodynamic system (e.g., water), it takes longer time for
the system to reach a gaseous state, in fact there is no clear transition where all

330 R.R. Paul et al.

nodes are in gaseous phase. During injection of 30% churn for 5 mins, a small
fraction of nodes remains in solid or liquid phase surrounded by the remaining
large fraction be in gaseous phase. The reverse transition shown in Fig. 7b follows
the same pattern as in Fig. 6c.

Gradual Increase and Decrease of Churn. Till now, we have withdrawn
churn completely; what behavior does the system exhibit if the intensity of churn
is gradually decreased? During steady state of SON, we start injecting 5% of
churn and increase the intensity of churn every 5-second until churn is of 100%.
Then we gradually decrease churn by 5% every 5 s until it reaches 0. We take
measurements every 5 s throughout the experiment and present mean values of
20 independent runs in Fig. 6d (error bars for only PS). The behavior follows
our previous deductions. Around 30% of churn a significant fraction of nodes
change phase. Between 40 and 100–105 s we see a gaseous system. During grad-
ual decrease of churn intensity, there is increasing connectivity among nodes,
followed by organization into ring structure, evidential of reversible phase tran-
sitions in our system due to increasing and decreasing churn.

5.3 API for Phases and Phase Transitions

Since phase is a node-specific property, an API exists on each node to expose its
phase to the application layer. Next, we describe the use of this knowledge in real
application scenarios. In our future work, we intend to empirically demonstrate
them. Our API supports push and pull methods to communicate the current
phase of a node. A node can be in one of the phases described in Sect. 5.1.

– getPhase(?Pcur) Binds Pcur to the current phase of the peer.
– setPhaseNotify(f) Sets a user-defined function, f(?Pnew) to be executed

when the phase changes. Pnew is bound to the next phase of the peer and f
is executed. Executions of f are serialized in the same thread over a stream
of successive phases.

The application running on top of a SON can use the phase information to
make the system reversible and predictable. We illustrate the usefulness of the
phase concept using a real application scenario. Consider a Distributed Version
Control System running on top of SON, which is notified that the underlying
node changes its phase. The application notifies the user via an indicator, Bconn,
that changes its color to indicate the phase of the node. Bconn can be green
or yellow or red, denoting respectively solid/liquid/gaseous phase of the node.
Suppose the user uses this system on a network having intermittent connectivity
(e.g., Wi-Fi on a fast train). As long as Bconn is green, the user can continue
her work without being concerned. However, as Bconn changes to yellow, the
user can initiate a pull to retrieve the most recent version and push her own
changes. These allow the user to work productively offline on the up-to-date
version and prevent any potential data-loss. Thus, the application itself can
achieve reversibility as the connectivity of the underlying network is restored,

Reversible Phase Transitions in a Structured Overlay Network with Churn 331

and the user is able to predict the behavior of the system. For example, the
application (e.g., real-time collaborative editing) can adapt the philosophy of
exponential back-off as TCP congestion algorithm, which is now brought up to
the user level in terms of phase. Further, the underlying node can adapt its
maintenance to the current phase. For example, when a node is in PS phase, an
efficient strategy like correction-on-* is sufficient. As the node faces a transition
to PL1, it can turn on a more resilient strategy, like PS.

6 Related Work

We briefly summarize the relevant work on self management in SONs and phase
transitions. Krishnamurthy et al. in [16] use fluid model approach to analyze the
probability of network disconnection and the fraction of incorrect pointers (suc-
cessor and fingers) in Chord under churn. In their follow-up work [17], they use
master-equation of physics to do comparative analysis of periodic stabilization
and correction-on-change under churn. Another analytical work [19] establishes
a lower bound on the maintenance rate of a SON under churn in order to remain
connected. In [8,9], a physics-inspired approach is used to analyze performance
of Chord and also investigate about intensive variables (i.e., variables indepen-
dent of system size) related to self-organization and self-repair. Design decisions
such as self-tuning mechanisms are described in [5] for self-organization/self-
adaptation of overlay networks. The analytical framework in [14] can be used to
characterize the routing performance of SON under churn. Our empirical study
can be seen as complementary to these analytical works.

Diligent search has failed to uncover any empirical work on phase transitions
in SONs. However, we have found one analytical work [15] carried out for Chord
that shows a critical point in the parameter space at which the system with
high probability breaks down, i.e., efficient routing becomes impossible. Such
phase transitions happen due to high churn and large link delays, resulting in a
finite fraction of the connections to be always incorrect. In [6] phase transitions
in unstructured P2P network are studied to identify resource-efficient operating
points for various global properties. For power-law networks, [22] presents a
decentralized monitoring algorithm where each node estimates global statistical
parameters and influences them to optimize relevant network characteristics.

7 Conclusion

As Structured Overlay Networks (SONs) are a popular choice to implement large-
scale distributed software systems, it is important to ensure their reversibility
against harsh environments. We have defined Reversibility and experimentally
demonstrated a reversible system. We have identified the necessary maintenance
principles to achieve reversibility against Churn. We have proposed the concepts
and semantics of Phase, Phase Transition and Critical Point in our context.
Also, we show that a reversible system does reversible phase transitions, i.e., it
“boils” to the gaseous state (becomes disconnected) when churn increases and

332 R.R. Paul et al.

“condenses” from gaseous back to solid phase as churn intensity goes down. We
also identify the apparent “critical points” from the experiments while doing
such transitions. Finally, we have presented an API to make the phase of a node
explicit to the application layer and analyze the applications of our concepts of
phase and phase transitions toward designing predictable and reversible systems.

This paper is only the first step; we intend to investigate further the analogy
between phase in SONs and in physical systems. We will design an application
that take advantage of our API to survive in extremely hostile environments.
We also intend to gain more insights about the maintenance strategies.

References

1. Aberer, K., Alima, L.O., Ghodsi, A., Girdzijauskas, S., Hauswirth, M., Haridi, S.:
The essence of P2P: a reference architecture for overlay networks. In: Proceedings
of P2P (2005)

2. Aberer, K., Datta, A., Hauswirth, M.: Route maintenance overheads in DHT over-
lays. In: Proceedings of WDAS (2004)

3. Aikat, J., Kaur, J., Smith, F.D., Jeffay, K.: Variability in TCP round-trip times.
In: Proceedings of ACM SIGCOMM IMC (2003)

4. Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: DKS (n, k, f): a family of low
communication, scalable and fault-tolerant infrastructures for p2p applications. In:
Proceedings of CCGrid (2003)

5. Apel, S., Böhm, K.: Self-organization in overlay networks. In: CAiSE Workshop on
Adaptive and Self-Managing Enterprise Applications (ASMEA) (2005)

6. Banaei-Kashani, F., Shahabi, C.: Criticality-based analysis and design of unstruc-
tured peer-to-peer networks as “complex systems”. In: Proceedings of CCGrid
(2003)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

8. El-Ansary, S., Aurell, E., Brand, P., Haridi, S.: Experience with a physics-style
approach for the study of self properties in structured overlay networks. In: SELF-
STAR: International Workshop on Self-* Properties in Complex Information Sys-
tems (2004)

9. El-Ansary, S., Aurell, E., Haridi, S.: A physics-inspired performance evaluation of
a structured peer-to-peer overlay network. In: Proceedings of PDCN (2005)

10. Freedman, M.J., Lakshminarayanan, K., Rhea, S., Stoica, I.: Non-transitive con-
nectivity and DHTs. In: Proceedings of WORLDS (2005)

11. Ghodsi, A.: Distributed k-ary system: algorithms for distributed hash tables. Ph.D.
thesis, KTH, Sweden (2006)

12. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.:
The impact of DHT routing geometry on resilience and proximity. In: Proceedings
of ACM SIGCOMM (2003)

13. Jelasity, M., Babaoglu, O.: T-Man: gossip-based overlay topology management. In:
Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA
2005. LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

14. Kong, J.S., Bridgewater, J.S.A., Roychowdhury, V.P.: Resilience of structured P2P
systems under churn: the reachable component method. Comput. Commun. 31,
2109–2123 (2008)

Reversible Phase Transitions in a Structured Overlay Network with Churn 333

15. Krishnamurthy, S., Ardelius, J.: An analytical framework for the performance eval-
uation of proximity-aware structured overlays. Technical report, SICS, Sweden
(2008)

16. Krishnamurthy, S., El-Ansary, S., Aurell, E., Haridi, S.: An analytical study of
a structured overlay in the presence of dynamic membership. IEEE/ACM TON
16(4), 814–825 (2008)

17. Krishnamurthy, S., El-Ansary, S., Aurell, E., Haridi, S.: Comparing maintenance
strategies for overlays. In: Proceedings of PDP (2008)

18. Leitao, J., Pereira, J., Rodrigues, L.: Epidemic broadcast trees. In: SRDS 2007
(2007)

19. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of PODC (2002)

20. Mej́ıas, B.: Beernet: A relaxed approach to the design of scalable systems with self-
managing behaviour and transactional robust storage. Ph.D. thesis, UCL, Belgium
(2010)

21. Paul, R.R., Van Roy, P., Vlassov, V.: Interaction between network partitioning
and churn in a self-healing structured overlay network. In: Proceedings of ICPADS
(2015)

22. Scholtes, I., Botev, J., Höhfeld, A., Schloss, H., Esch, M.: Awareness-driven phase
transitions in very large scale distributed systems. In: Proceedings of SASO (2008)

23. Shafaat, T.M.: Partition tolerance and data consistency in structured overlay net-
works. Ph.D. thesis, KTH, Sweden (2013)

24. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proceedings of ACM
SIGCOMM (2001)

25. Wikipedia. Phase (matter) (2016). https://en.wikipedia.org/wiki/Phase (matter)

https://en.wikipedia.org/wiki/Phase_(matter)

Verification of Common Business Rules
in BPMN Process Models

Anass Rachdi(B), Abdeslam En-Nouaary, and Mohamed Dahchour

Institut National des Postes et Télécommunications (INPT), Rabat, Morocco
anass.rach@gmail.com

Abstract. BPMN is an adopted standard used in industry for modeling
business processes. However it is not provided with a formal semantics,
limiting the possibility of analysis to informal approaches such as obser-
vation. In this paper, we present a formal approach that detects business
rules violations using the Business Rule Language (BRL) which helps us
express many common types of business rules that could be verified by
a Depth-First Search algorithm adapted for the BPMN standard.

Keywords: Business process modeling · BPMN · Business rule lan-
guage · Verification and validation · Depth-first search

1 Introduction

Nowadays Information Systems have become a vital component that contributes
to organizations success since they assure automatic execution of several activ-
ities that are included in organizations business processes. These processes
describe business rules that are intended to constrain some aspect of business and
always resolve to either true or false. However, most of the processes that imple-
ment these rules are modeled using informal graphical notations such as BPMN
(Business Process Management and Notation) which limits business rules veri-
fication to informal methods such as inspection. Formal methods help us avoid
flow control anomalies, data flow errors as well as Business rules violations. Since
many proposals have addressed the control and/or data flow problems [4–7], we
will focus in this paper on formal methods that deal with business rules veri-
fication issue. In order to formally detect some violations in BPMN diagrams,
we have to extract a formal model that respects the specifications on which the
initial model was based. The approach we have taken is different from existing
ones [3] for it gathers the most important dimensions that have to be found in a
functional analysis which are: Resources, Tasks, Agents and Time. Our approach
consists of two main steps. Firstly, we extract a formal process schema from the
BPMN model, Secondly, we verify that the given Business rules are all respected
based on the obtained process schema.

This rest of the paper is organized as follows: In Sect. 2 we provide defin-
itions and notations of BPMN, Common business rules, BRL (Business Rule
Language), while Sect. 3 presents our contribution for the analysis of BPMN
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 334–339, 2016.
DOI: 10.1007/978-3-319-46140-3 27

Verification of Common Business Rules in BPMN Process Models 335

models by proposing an algorithm that detects different violations of common
business rules [1]. Finally, Sect. 4 concludes the paper and presents future work.

2 Background

2.1 Business Process Management Notation (BPMN)

In this subsection, we give BPMN a formal definition [2] that takes into consid-
eration most of its components (see Fig. 1).

Fig. 1. BPMN elements

Definition 1 (Core BPMN Process): A core BPMN process is a tuple
P = (OP , SFP , DataP , SwiP , InputSpeP , DataStatesP) where:

– OP is a set of flow objects which can be partitioned into disjoint sets of
activities AP , events EP , and gateways GP , [4]

– DataP is a set of Data types which can be partitioned into disjoint sets of
Data objects DOP , Messages MessP and Flow objects properties PRP .

– SwiP is a set of swimlanes which includes Pools PooP and lanes within pools
LanP . Pools PooP can be divided into single pools PoosP (without lanes) and
pools with lanes PoowP .

– SFP ⊆ OP × OP is a set of sequence flows.
– InputSpeP ⊆ ((TP ∪ EP) × DataP) is the relation between a task and its

required data that is defined in the task InputOutputspecification [2] or in the
events properties.

– DataStatesP is a set of data states which are related to DataP .
– StatP : InputSpeP → DataStatesP is the relation between a pair (task/data)

and the data state related to DataP .
– TimP : AP → Q≥0 is a function assigning a positive rational number which

represents the activity's duration. [8].

A core BPMN process P is a directed graph with nodes (objects) OP and
arcs (sequence flows) SFP . Output nodes of x are given by out(x) = {y ∈ OP |
xSFPy} [4].

336 A. Rachdi et al.

2.2 Common Business Rules and Business Rule Language (BRL)

Common Business Rules. Most of the common business rules that we
encounter in organizations and enterprises are of the following nature [1]:

– Task-Order Rules: Rules that prohibit or urge a certain Task Order.
– Resources State-Task rules: Rules that urge resources to be in a certain state

in order to guarantee a correct execution of tasks.
– Rules that prescribe or prohibit certain task assignments to agents.

Business Rule Language (BRL). In this paragraph, we define the BRL
which is used to formally define Business rules. Recall that Business processes
description is based on process schema, events and traces of tasks, which are
defined in the following:

A process schema is defined as PSch = (Ta, Re, β, A, Q, S) where [1]:

– Ta is a finite non-empty set of tasks;
– Re describes the set of resources;
– β ⊆ (Ta × Re) the relationship between resources and tasks. It indicates the

resources that are involved in a certain task execution;
– A is finite non-empty set of agents;
– Q is the set of rational numbers, it is used to indicate the time the event starts;
– S is a set of all states of resources.

We define EVSch over a process schema PSch as a part of the Cartesian product
of Ta, A and Q. Event properties are defined as PS = {task, agent, starttime} ∪
Re. Properties values can be defined as VS = Ta ∪ A ∪ Q ∪ S [1]. For task order
rules, Duration is used to determine the endtime of events (end time = start
time + duration). A trace δ over a process schema PSch is a finite set of events
over PSch.

The syntax of the BRL, the business rule language we present here, is defined
by the following abstract grammar

E ::= ¬E | (E ∧ E) | X.P | (E = E) | (E < E) | (X = X) |
Q | A | Ta | S | (E + E) | (E.E).

Where E represent expressions that return a property value (An expression is
called a formula if it returns boolean) and X is a countably finite set of variables
that will be used to refer to events. A variable binding is defined as a partial
function Γ : X → EVSch. For expressions e ∈ E the semantics are defined by
the proposition δ, Γ � e ⇒ v which states that the value of e is v ∈ VS for the
trace δ and the variable binding Γ . Let us not that the proposition can involve
several events from the trace δ.

Verification of Common Business Rules in BPMN Process Models 337

3 Our Approach for BPMN Model Analysis

As mentioned so far, BPMN is an adopted standard used for modeling business
processes. However, BPMN is informal and leaves room for inconsistencies [9]
about the execution of business processes being modeled. Hence, we need to
define semantics for BPMN in order to analyze business processes properly. Our
analysis will be focused on the common business rules mentioned above. These
rules will be expressed using The BRL. Our approach for the analysis of BPMN
models basically consists of two main steps which are explained in the following
subsections:

3.1 Extracting a Process Schema from BPMN Model

In order to express formally the business rules that are related to the BPMN
model, we have to extract a Process schema based on BPMN definition we have
given in the previous section. We present, in the following, the process schema
extracted from BPMN elements (Table 1):

Table 1. Process Schema extracted from BPMN elements

BPMN Process schema

AP ∪ EP Ta: Tasks

DataP Re: Resources

InputSpeP ⊆ ((AP ∪ EP) × DataP) β ⊆ (Ta × Re)

PoosP ∪ LanP A: Agents

DataStatesP S: Resource states

3.2 Runing Business Rules Analysis Algorithm

The algorithm used to verify business rules violations is shown below. Once
we extract a process schema from the BPMN model. We start executing the
algorithm by adding the start event (with its properties) to the trace. Then, the
algo goes through all the paths by checking for each new event encountered in a
path if businessrules are respected. To avoid loops and guarantee the algorithm’s
termination, a tracehistory variable is created to record all the traces that have
taken place during the execution. Therefore the sametrace can not repeated
twice. If for some δ and some event ev ∈ EVSch,

∃ ev ∈ EVSch such that ∃ φ ∈ Φ :¬(δ ∪ {ev}) � φ)

338 A. Rachdi et al.

Then we know that the event ev present a violation of one or many business
rules. Consequently, its properties should be reviewed in the model

Algorithm 1. Algorithm for the Business rules Analysis of BPMNmodels
1: procedure Business Rules Analysis((P,Φ))

� P is composed of (AP ∪ EP ∪ GP), (DataP), (PoosP ∪ LanP),
(DataStatesP) (SFP) while Φ = {BRi} i ∈ 1,....n with n is the number of
business rules to be verified.
� Constitute the schema process PSch = (Ta, Re, β, A, Q, S) corresponding to
the BPMN Process and according to the Table 1

2: Tracehistory ← ∅ � keeps track of all traces,it is used to avoid loops.
3: Violations ← ∅ � Violation=(event ev ,trace δ, business rule φ)
4: Event ← es, � Initialize the Variable Event with start event es
5: Add es to δ and δ to Tracehistory
6: BrowseBPMNModel(es, δ) � Main function

7: function BrowseBPMNModel(flow object FO , trace δ)
� a recursive function That verifies through all paths that common business
rules are verified

8: for (i ∈ Out(FO)) do
9: δ’ = Gettrace (FO, δ),
10: if (i ∈ AP ∪ EP) then
11: b = contains (Gettrace(i, δ’∪ i), Tracehistory)
12: if (b) then
13: go to the next iteration in for loop
14: Event ← i, Enricheventproperties (Event)
15: add Event to δ’
16: VerifyBusinessRules (Φ , δ’)
17: BrowseBPMNModel(i, δ’)

18: function Out(flow object FO) � returns all output nodes of FO

19: function Gettrace(flow object FO , trace δ) � returns a new trace δ=́ δ − all
events (BPMN tasks and events) that came after FO if the latter exists in the
trace, otherwise it returns δ

20: function contains(trace , Tracehistory listr) � verifies if the trace has taken
place in the BPMN model

21: function Enricheventproperties(event ev) � enriches the event properties
namely starttime, agent,task and duration.

22: function VerifyBusinessRules(List of business rules Φ , trace δ) � verifies
that business rules contained in a list Φ are satisfied for the trace δ, note that
last(δ) returns the last event of δ

23: for (BRi ∈ Φ) do
24: if (¬(δ � BRi)) then
25: add (Last(δ), δ, BRi) to Violations.

Verification of Common Business Rules in BPMN Process Models 339

4 Conclusion and Future Work

In this paper, we proposed a formal analysis of BPMN models based on Process
schema/BRL. The suggested approach allows us to have a more complete analy-
sis that verifies functional aspects of the designed process. In our future work,
we intend to include other dimensions such as Task Type, Agent role which can
extend the area of covered business rules.

References

1. van Hee, K., Hidders, J., Houben, G.J., Paredaens, J.: Abstracting common business
rules to Petri nets. In: Enterprise Information (2010)

2. Object Management Group: Business Process Modeling Notation (BPMN) Specifi-
cation. Final adopted specification (2011)

3. Sun, W.: Design and implementation of a BPMN to PROMELA translator. M.Sc.
dissertation project (2012)

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri nets. Technical report, Queensland University of Tech-
nology (2007)

5. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in
process models. In: The 5th International Workshop on Business Process Design
(2010)

6. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008)

7. von Stackelberg, S., et al.: Detecting data-flow errors in BPMN 2.0. Open J. Inf.
Syst. 1, 1–19 (2014)

8. Rachdi, A., Ennouaary, A., Dahchour, M.: Analysis of BPMN process models using
time Petri nets. In: Proceedings of the 2014 INTIS Conference (2014)

9. Aagesen, G., Krogstie, J.: BPMN 2.0 for modeling business processes. In:
vom Brocke, J., Rosemann, M., et al. (eds.) Handbook on Business Process Manage-
ment 1. International Handbooks on Information Systems, pp. 219–250. Springer,
Heidelberg (2015)

Is Youtube Popularity Prediction a Good Way
to Improve Caching Efficiency?

Nada Sbihi(B) and Mounir Ghogho

Université Internationale de Rabat -
TICLab Technopolis Rabat-Shore Rocade Rabat-Salé, Rabat, Morocco

{nada.sbihi,mounir.ghogho}@uir.ac.ma

Abstract. The use of IP networks is nowadays the de-facto way to
telecommunicate information. As IP networks become more and more
content-centric, in order to preserve the quality of traffic, operators need
not only to continue to invest in infrastructure and bandwidth but also
to develop intelligent networking techniques to reduce bandwidth con-
sumption. Caching popular content at the edge of the network is one of
such techniques. In this paper, we use YouTube to evaluate the perfor-
mance of a number of popularity prediction techniques in terms of hit
success rate.

1 Introduction

The number of objects in the IP networks continues to increase exponentially1.
Hence, to reduce bandwidth consumption, it is of paramount importance to
invest in caches, especially since the cost of memory is lower than that of band-
width [5]. With the expanding predictive techniques and machine learning, a
new replacement policy emerged: Predicted Least Frequently Used (P-LFU). As
the prediction task requires a learning period, it is not clear whether P-LFU can
offer better performance than purely reactive caching strategies.

2 Popularity Prediction

The approach to adopt for the prediction of popularity depends on the purpose
of the prediction task. If the prediction is intended to measure the suitability
of broadcasting an advertisement in a video, next-day popularity prediction is
appropriate. If the goal is to develop strategies for caching, hourly popularity
prediction may be required, especially for highly popular and dynamic content
providers such as Youtube. In November 2014, more than 300 h of video were
uploaded on Youtube every minute2.

1 Cisco Visual Networking Index: Forecast and Methodology, 2014–2019 White Paper.
2 http://www.webrankinfo.com/dossiers/youtube.

c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 340–344, 2016.
DOI: 10.1007/978-3-319-46140-3 28

http://www.webrankinfo.com/dossiers/youtube

Is Youtube Popularity Prediction a Good Way to Improve Caching Eciency? 341

2.1 The Dataset

Using google Youtube API we collected the viewing statistics for more than
3000 videos. We first retrieved the videos IDs, and then we launched a script
that automatically returns the number of views for each video every hour.

2.2 Prediction Methodology

We denote by N(v, t) the number of views for video v at time t. Szabo and
Huberman [3] found a linear relationship between the number of views at time
t1 and the number of views at time t2 (t1 < t2). Richier et al. [1] assumed that
the popularity curves to be functions of time that can be categorized into a small
number of classes represented by relatively simple mathematical expressions. The
use of P-LFU policy seems more appropriate than P-LRU (Least Recently Used)
since it is easier to predict the number of views than the queries order. We aim
to predict of the number of views for each video at time t1 based on the number
of corresponding views at time t1 − w. If a window of one day is selected for
prediction, the linear regression seems accurate (see Fig. 1). However, as our aim
from the popularity prediction task is caching, smaller prediction windows are
required. The fitted linear regression model seems less convincing four hourly
predictions (i.e. w = 1 h)). It is therefore essential to explore other prediction
models.

1e+00 1e+02 1e+04 1e+06

1e
+0

1
1e

+0
5

mardi

m
er
cr
ed

i

(a) Linear regression between succes-
sive days

1 100 10000

1
10

10
00

12h30−13h30

13
h3

0−
14

h3
0

(b) Linear regression between succes-
sive hours

Fig. 1. Linear regression with different windows

2.3 Mathematical Models for Prediction

To characterize the number of video views, we used five models:

– Logarithmic model: N̂(v, t) = a ∗ log(t) + b, this model is the result of our
observations of several videos viewcounts.

– Linear model: N̂(v, t) = a ∗ t + b, it has been proposed in [2], and corresponds
to some observations.

– Power law model: N̂(v, t) = a ∗ tα, this model has been proposed in [6].

342 N. Sbihi and M. Ghogho

– Exponential model: N̂(v, t) = α ∗ (1 − exp(−λ ∗ t)), this model has been
proposed by Famaey et al. [2] and Richier et al. [1].

– Gompertz model: N̂(v, t) = a ∗ exp(−b ∗ exp(−c ∗ t)), this model has been
proposed by Richier et al. [1]. It is used as a model for some cancerous tumors
growth and also as products diffusion model in the market.

For each video, we fit the five models by minimizing the mean squared error
(MSE). Figure 2 displays the best fitted regression model for two videos. The
best model for the video viewcount may differ from one video to another. It is
worth pointing out that the fitted parameters for each model have been obtained
using the Levenberg-Marquard algorithm [4].

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0 10 20 30 40 50 60 70

N
u
m

b
er

o
f
v
ie

w
s

time

Log model
Number of views of a Youtube Video

(a) Fitting a log model

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70

N
u
m

b
er

o
f
v
ie

w
s

time

Gompertz model
Number of views of a Youtube video

(b) Fitting Gompertz model

Fig. 2. Best regression model for the viewcounts of two videos

3 Replacement Policies for Caching

3.1 LFU vs P-LFU

We compare the following predictions methods:

– The predicted number of views at time ti+1 is equal to the number of views
at the current time, ti, i.e. N̂(v, ti+1) = N(v, ti).

– The number of views is predicted using the best mathematical model out of
the five models described above, i.e. the model corresponding to the minimum
value of the MSE.

Figure 3 shows the MSEs of the two prediction schemes. We notice that the
mathematical prediction models do not provide better results than the prediction
method which merely assumes N̂(v, ti+1) = N(v, ti), at least for the first 40 h.
These results call into question the relevance of using prediction to implement
caching mechanisms. The number of videos arriving every hour is so important
that a pending maturity of the video to use the models seems doubtful.

Is Youtube Popularity Prediction a Good Way to Improve Caching Eciency? 343

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

M
S
E

time

prediction based on recent history
prediction based on modeling

Fig. 3. Mean Squared Error vs time

3.2 Virtual LRU

We use a virtual cache in addition to the actual cache. The virtual cache only
stores the IDs of videos whereas the actual cache stores the objects physically.
We choose the size of the virtual cache to be equal to the size of the real cache.
We describe this new policy next. We first present the algorithm lrucache used
in LRU cache. Now we use the function lrucache to define the VLRU policy.

if i ∈ C then
place i at the head of C;

else
delete the object least recently used and copy object i at the head of C;

end

Algorithm 1: Lrucache(i,C)

if i ∈ C OR i ∈ V C then
lrucache(i,C)

end
lrucache(i,V C)

Algorithm 2: VLRU algorithm

3.3 Results and Discussion

We simulate three replacement policies using the real dataset that we have col-
lected. Figure 4 depicts the hit rate of different policies versus the cache size.
The VLRU policy produces a better hit rate than LFU.

344 N. Sbihi and M. Ghogho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

h
it

ra
te

cache size

lru
vlru
lfu

Fig. 4. Hit rate for different replacement policies (LRU, LFU, VLRU) vs cache size

4 Conclusion

The prediction of popularity does not seem to provide an improvement of the
performance of caching strategies. This observation was made using Youtube.
However, we do not view these results as conclusive, because there may well be
better prediction/learning techniques that we have considered in our work.

References

1. Richier, C., Altman, E., Elazouzi, R., Jimenez, T., Linares, G., Portilla, Y.: Bio-
inspired models for characterizing YouTube viewcout. In: 2014 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM),
pp. 297–305. IEEE, August 2014

2. Famaey, J., Wauters, T., De Turck, F.: On the merits of popularity prediction
in multimedia content caching. In: 2011 IFIP/IEEE International Symposium on
Integrated Network Management (IM), pp. 17–24. IEEE, May 2011

3. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun.
ACM 53(8), 80–88 (2010)

4. Levenberg, K.: A method for the solution of certain non linear problems in least
squares. Q. Appl. Math. 2, 164–168 (1944)

5. Roberts, J., Sbihi, N.: Exploring the memory-bandwidth tradeoff in an information-
centric network. In: 2013 25th International on Teletraffic Congress (ITC), pp. 1–9.
IEEE, September 2013

6. Avramova, Z., Wittevrongel, S., Bruneel, H., De Vleeschauwer, D.: Analysis, model-
ing of video popularity evolution in various online video content systems: power-law
versus exponential decay. In: First International Conference on Evolving Internet,
INTERNET 2009, pp. 95–100. IEEE, August 2009

Waiting in Concurrent Algorithms

Gadi Taubenfeld(B)

The Interdisciplinary Center, P.O. Box 167, 46150 Herzliya, Israel
tgadi@idc.ac.il

Abstract. Between the two extremes, lock-based algorithms, which
involve “a lot of waiting”, and wait-free algorithms, which are “free of
locking and waiting”, there is an interesting spectrum of different levels of
waiting. This unexplored spectrum is formally defined and its properties
are investigated. New progress conditions, called k-waiting, for k ≥ 0,
which are intended to capture the “amount of waiting” of processes in
asynchronous concurrent algorithms, are introduced. To illustrate the
utility of the new conditions, they are used to derive new lower and upper
bounds, and impossibility results for well-known basic problems such as
consensus, election, renaming and mutual exclusion. Furthermore, the
relation between waiting and fairness is explored.

Keywords: Synchronization · Wait-freedom · Locks · Enabled process ·
Enabling step · k-waiting · Consensus · Election · Renaming · Mutual
exclusion

1 Introduction

Concurrent access to a data structure shared among several processes must
be synchronized in order to avoid interference between conflicting operations.
Mutual exclusion locks are the de facto mechanism for concurrency control on
concurrent data structures: a process accesses the data structure only inside a
critical section code, within which the process is guaranteed exclusive access.
However, using locks may degrade the performance of synchronized concurrent
applications, as it enforces processes to wait for a lock to be released.

A promising approach, which overcomes some of these difficulties, is the
design of concurrent data structures and algorithms which avoid locking. The
advantages of such algorithms are that they are not subject to priority inversion,
are resilient to failures, and do not suffer significant performance degradation
from scheduling preemption, page faults or cache misses. Although desirable,
such implementations are often complex, difficult to design, inefficient, memory
consuming and require the use of strong synchronization primitives.

Implementations which use locks are usually easier to program than imple-
mentations which avoid locking and waiting. Such lock-based implementations
usually require “a lot of waiting”, compared to implementations which avoid
waiting, and may force operations that do not conflict to wait for one another,
precluding disjoint-access parallelism.
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 345–360, 2016.
DOI: 10.1007/978-3-319-46140-3 29

346 G. Taubenfeld

In this paper, we show that between these two extremes: “a lot of waiting”
(i.e., locks) and “free of locking and waiting”, there is an interesting spectrum of
different levels of waiting. We identify and formally define this unexplored spec-
trum, by introducing new progress conditions, called k-waiting, for k ≥ 0, which
are intended to capture the “amount of waiting” of processes in asynchronous
concurrent algorithms.

Intuitively, these new progress conditions can be described as follows. A
process is enabled, if it does not need to wait for an action by any other process
in order to complete its operation. A step is an enabling step, if after executing
that step at least one process which was disabled becomes enabled. For a given
k ≥ 0, the k-waiting progress condition guarantees that every process that has
a pending operation, will always become enabled once at most k enabling steps
have been executed.

To illustrate the utility of the new progress conditions, we use them to derive
new lower and upper bounds, and impossibility results for well-known basic prob-
lems such as consensus, election, renaming and mutual exclusion. Furthermore,
the relation between waiting and fairness is explored.

2 The k-waiting Progress Conditions

In this section, we discuss and formally define the new notion of k-waiting.
An implementation of an operation may involve several basic steps. A basic
step, like reading, updating or testing, may involve accessing a shared memory
location. An implementation of each operation of a concurrent data structure
is divided into two continuous sections of code: the doorway code and the body
code. When a process invokes an operation it first executes the doorway code and
then executes the body code. The doorway, by definition, must be wait-free: its
execution requires only bounded number of steps and hence always terminates.

A process executes a sequence of steps as defined by its algorithm. A begin-
ning process is a process that is about to start executing the first step of some
operation. An active process, is a process that has already executed the first
step of some operation, but has not completed that operation yet. A process has
passed the doorway of a given operation, if it has finished the doorway code and
reached the body code of that operation. The following definitions refer to both
beginning and active processes.

A strongly enabled process: A process is strongly enabled at the end
of a given execution r, if, at the end of any possible extension of r, it does
not need to wait for an action by any other process in order to complete
its operation, nor can an action by any other process prevent it from doing
so. Thus, by executing sufficiently many steps, it will be able to complete
its operation, independently of the actions of the other processes.1

1 In the case of a beginning process, “its operation” means the operation that the
process is about to start executing.

Waiting in Concurrent Algorithms 347

Being strongly enabled is a stable property, if a process is strongly enabled at
some point then, by definition, it must also be strongly enabled at any later
point during the operation.

A weakly enabled process: A process is weakly enabled at the end of
a given execution r, if, at the end of any possible extension of r, it does
not need to wait for an action by any other process in order to complete
its operation, however, actions by other processes (while they occur) may
prevent it from doing so. Thus, at the end of any extension of r, by exe-
cuting sufficiently many steps, the process will be able to complete its
operation, provided it is not interfered (from some point on) by actions of
other processes.

Put another way, process p is weakly enabled at the end of a given execution r,
if at the end of any possible extension of r, when p runs alone it eventually ter-
minates. We notice that once a process becomes weakly enabled, it cannot later
become disabled. If a process is weakly enabled at some point then, by definition,
it must be weakly or strongly enabled at any later point during the operation.
Thus being weakly enabled is also a stable property. A strongly enabled process
is, by definition, also weakly enabled. For an execution (run) r and a step s, we
denote by r; s the execution obtained by extending r with the step s.

An enabling step: A step is a strong enabling (resp. weak enabling) step,
at the end of a given execution, if after executing that step at least one
process which was not strongly (resp. weakly) enabled becomes strongly
(resp. weakly) enabled. More formally, s is a strong (resp. weak) enabling
step at the end of execution r, if there exists at least one process, say p,
such that p is not strongly (resp. weakly) enabled at the end of r and p is
strongly (resp. weakly) enabled at the end of r; s.

We notice that a strong enabling step is not necessarily also a weak enabling
step, and vice versa. A single strong (resp. weak) enabling step may cause several
processes, not necessarily just one, to become strongly (resp. weakly) enabled.
If s is a strong (resp. weak) enabling step at the end of r, and r′ is an extension
of r; s, then we say that s is a strongly (resp. weakly) enabling step in r′. For
two executions r and r′, we use the notation r ≤ r′ to denote the fact that r′ is
an extension of r. When r ≤ r′, we denote by (r′ − r) the suffix of r′ obtained
by removing r from r′. The following definition of a new progress condition is
central to our investigation.

k-waiting: For k ≥ 0, the strong (resp. weak) k-waiting progress condition
guarantees that every process, that has passed its doorway, will always
become strongly (resp. weakly) enabled once at most k strong (resp. weak)
enabling steps have been executed. More formally, the strong (resp. weak)
k-waiting progress condition guarantees that, for every two executions r
and r′ and for every process p, if (1) p has passed its doorway at the end
of r, (2) r ≤ r′, (3) p has not completed its operation during (r′ − r), and
(4) at (r′ − r) there are (at least) k steps which are strong (resp. weak)
enabling steps, then p is strongly (resp. weakly) enabled at the end of r′.

348 G. Taubenfeld

We notice that an algorithm that satisfies strong k-waiting, does not necessarily
also satisfies weak k-waiting, and vice versa. To simplify the presentation, in the
sequel, we will omit the type of a k-waiting progress condition (i.e., strong or
weak), the type of an enabling step or the type of an enabling process, when
it can be understood from the context or when the statement applies in both
cases.

The k-waiting progress conditions capture the time a process may have to
wait before it becomes enabled. Consider an implementation of a data structure
which is protected by a single lock and assume that n processes access it simulta-
neously. In such a scenario, each strong enabling step enables exactly one process
to acquire the lock, complete its operation and release the lock. The last process
captures the lock, after at least, strong n− 1 enabling steps have been executed.
Thus, such a lock-based data structure at best, satisfies strong (n − 1)-waiting.

We point out that k-waiting does not guarantee that every process that
has passed through its doorway becomes enabled no later than when k other
processes have become enabled. The reason for that is that a single enabling step
may cause several processes to become enabled. For a given k-waiting algorithm,
the lower k is, the higher is the potential that the algorithm, when executed,
will exhibit a high concurrency behaviour. However, as in the case of using locks,
algorithms which satisfy k-waiting for k > 0, may require processes to wait for
one another, and thus, in some scenarios slow or stopped processes may prevent
other processes from ever completing their operations.

In some scenarios wait-free algorithms (i.e., algorithms in which all the
processes are always strongly enabled), preform better than lock-based algo-
rithms and visa versa. For example, in scenarios when a process needs to hold
a lock only for very short time, when there are no failures, no scheduling pre-
emption and almost no page faults or cache misses, fine-grained lock-based algo-
rithms might perform better. The decision whether to use a wait-free or a lock-
based implementation depends on the assumption regarding the environment
(i.e., the expectations regarding, failures, page faults, etc.). Similarly, one should
not expect that for k < k′, a k-waiting algorithm would always (in all possible
scenarios) preform better than the corresponding a k′-waiting algorithm.

As in the case of wait-free or lock-based algorithms, when evaluating a k-
waiting algorithm, it is not enough just to identify what progress condition it
satisfies, it is also necessary to find out its time (step) complexity. The number
of steps before and after enabling events can be arbitrary large, the k-waiting
progress condition only gives an indication of how much time a process will
have to wait without making progress and does not give any indication of its
execution time while not waiting. Put another way, k-waiting is not intended to
capture the overall time required for executing an operation, only the waiting
time interval during the execution of an operation.

3 Computational Model and Basic Observations

Our model of computation consists of an asynchronous collection of n determin-
istic processes that communicate via shared objects. Asynchrony means that

Waiting in Concurrent Algorithms 349

there is no assumption on the relative speeds of the processes. In most of the
cases we considered, the shared objects are registers which supports read and
write operations. A register can be atomic or non-atomic. With an atomic reg-
ister, it is assumed that operations on the register occur in some definite order.
That is, reading or writing an atomic register is an indivisible action. When read-
ing or writing a non-atomic register, a process may be reading a register while
another is writing into it, and in that event, the value returned to the reader is
arbitrary. We will consider only atomic registers. In the sequel, by registers we
mean atomic registers.

An event corresponds to an atomic step performed by a process. For example,
the events which correspond to accessing registers are classified into two types:
read events which may not change the state of the register, and write events
which update the state of a register but do not return a value. A (global) state of
an algorithm is completely described by the values of the registers and the values
of the location counters of all the processes. A run is a sequence of alternating
states and events.

A process executes correctly its algorithm until it (possibly) crashes. After
it has crashed it executes no more steps. Given a run, a process that crashes is
said to be faulty in that run, otherwise it is correct. In an asynchronous system
there is no way to distinguish between a faulty and a very slow process. We will
consider both the case where processes never fail and the case where processes
may fail by crashing.

Several progress conditions have been proposed for data structures which
avoid locking, and in which processes may fail by crashing. Wait-freedom guar-
antees that every active process will always be able to complete its pending
operations in a finite number of its own steps [12]. Non-blocking (which is some-
times called lock-freedom) guarantees that some active process will always be
able to complete its pending operations in a finite number of its own steps [15].
Obstruction-freedom guarantees that an active process will be able to complete
its pending operations in a finite number of its own steps, if all the other processes
“hold still” long enough [13].

Observation 1

(1) An algorithm satisfies strong 0-waiting if and only if it satisfies wait-freedom.
(2) An algorithm satisfies weak 0-waiting if and only if it satisfies obstruction-

freedom.

Proof. (1) In a wait-free algorithm, by definition, every beginning process is
strongly enabled. Thus, a wait-free algorithm satisfies strong 0-waiting. In a
strong 0-waiting algorithm, by definition, every process that has passed its door-
way is strongly enabled. Since the doorway is wait free, it follows that also every
beginning process is strongly enabled. Thus, a strong 0-waiting algorithm sat-
isfies wait-freedom. (2) In an obstruction-free algorithm, by definition, every
beginning process is weakly enabled. Thus, an obstruction-free algorithm satis-
fies weak 0-waiting. In a weak 0-waiting algorithm, by definition, every process
that has passed its doorway is weakly enabled. Since the doorway is wait free,

350 G. Taubenfeld

it follows that also every beginning process is weakly enabled. Thus, a weak
0-waiting algorithm satisfies obstruction-freedom. ��

Several progress conditions have been proposed for data structures, which
may involve waiting in the context where processes never fail. Livelock-freedom
guarantees that, in the absence of process failures, if a process is active, then
some process must eventually complete its operation. A stronger property is
starvation-freedom which guarantees that, in the absence of process failures,
every active process must eventually complete its operation.

In a model where participation is required, every process must eventually
become active and execute its code. A more interesting and practical situation
is one in which participation is not required, as is usually assumed when solving
resource allocation problems or when designing concurrent data structures. We
always assume that participation is not required.

In general, wait-freedom is a strictly stronger progress condition than 0-
waiting and starvation-freedom combined. However, this is not the case for n = 2.

Observation 2. Any weak 0-waiting starvation-free algorithm for two processes
is wait-free.

Proof. Assume to the contrary that, there is a 0-waiting starvation-free algo-
rithm for two processes which is not wait-free. Let the names of the two processes
be p and q. Since the algorithm is 0-waiting and starvation-free, it follows that,

– By 0-waiting, if only p (resp. q) participates and p (resp. q) does not fail then
p (resp. q) will eventually properly terminate.

– By 0-waiting, if both p and q participate and p does not fail but q fails then
from some point on p will run alone and will eventually properly terminate.

– By 0-waiting, if both p and q participate and q does not fail but p fails then
from some point on q will run alone and will eventually properly terminate.

– By starvation-freedom, if both p and q participate and non of them fails then
both will eventually properly terminate.

The fact that in all the above runs, a correct participating process always properly
terminates, implies that the implementation also satisfies wait-freedom for two
processes. That is, the above runs are exactly the runs in which correct processes
are required to terminate when wait-freedom is assumed. A contradiction. ��

4 Consensus and Election

The consensus problem is to find a solution for n processes, where each process
starts with an input value from some domain, and must choose some partici-
pating process’ input as its output. All n processes together must choose the
same output value. In the election problem each participating process should
eventually output either 0 or 1 and terminate. At most one process may output
1, and in the absence of faults exactly one of the participating processes should
output 1. The process which outputs 1 is the elected leader.

Waiting in Concurrent Algorithms 351

In [21], an election algorithm is presented, using �log n� + 1 registers, which
is correct under the following assumptions: (1) processes never fail, and (2) only
the elected leader is required to terminate. A modified version of the election
algorithm from [21], is used below for proving the following theorem,

Theorem 1. There are strong and weak 2-waiting starvation-free consensus
algorithms and strong and weak 2-waiting starvation-free election algorithms for
n ≥ 2 processes, using �log n� + 2 registers.

Proof. The consensus algorithm presented below uses the shared registers turn
and decision and the array of registers V [1..�log n�]. All these registers are ini-
tially 0, except for the decision register which is initially ⊥. Also, for each process,
the local variables level and j are used. The processes have unique identifiers. We
will use the statement await condition as an abbreviation for while ¬condition
do skip.

A 2-waiting starvation-free consensus:
process p’s program with input value inputp.

function consensus;
1 turn := p;
2 for level := 1 to �log n� do
3 repeat
4 if decision 	= ⊥ then return(decision) fi;
5 if turn 	= p then
6 for j := 1 to level − 1 do if V [j] = p then V [j] := 0 fi od;
7 await(decision 	= ⊥); return(decision) fi
8 until V [level] = 0;
9 V [level] := p;
10 if turn 	= p then
11 for j := 1 to level do if V [j] = p then V [j] := 0 fi od;
12 await(decision 	= ⊥); return(decision) fi
13 od;
14 decision := inputp; return(decision)
end function

The process that is last to write to turn (line 1) attempts to become the leader
and to force all the other processes to decide on its input value. It does so, by
waiting for each of the registers V [j] to be 0 (lines 3–8) and then sets the register
to its id (line 9). A process becomes the leader if it manages to write its id into all
the registers during the period that turn equals its id. Any process that notices
that turn is no longer equals its id, gives up on becoming the leader, and erase
any write it has made (lines 6 and 11). The leader writes its input value into
decision, and all the processes decide on that value.

There are runs of the algorithm in which every process manages to set �log n�
registers before discovering that another process has modified turn, and as a result
has to set back to 0 some of the registers before terminating. Proving the correct-
ness of the algorithm is rather challenging, due to the existence of such runs.

352 G. Taubenfeld

It is straightforward to use the above consensus algorithm for solving election.
Each process uses its identifer as its input. The value that all the processes decide
on in the consensus algorithm, identifies the leader.

A Detailed Correctness Proof of the 2-waiting Consensus Algorithm.
The proof is an adaptation of the proof for the election algorithm from [21]. The
fact that the algorithm uses �log n� + 2 registers is obvious from inspecting the
algorithm. In the following, the leader is the process that writes its input value
in to the decision register (line 14). A process is at level k, when the value of its
private level register is k.

Lemma 1 (Liveness). In the absence of faults, at least one leader is elected.

Proof Assume to the contrary that no leader is elected. Let r be an infinite run
with no faults where no leader is elected, and let p be the last processes to write
to turn in run r. Let q be the process with the highest value of level when p
writes to turn. At some point q will notice that turn 	= q, and set back to 0,
all the entries of the array V which equal to q. Repeat this argument with the
new highest process. Thus, any entry of the array V which process p may wait
on, will eventually be set back to 0, enabling p to proceed until it is elected. A
contradiction. ��
Lemma 2. For any k ∈ {1, . . . , �log n�}, out of all the processes that are in level
k during a time interval where V [k] continuously holds the value 0, at most one
process can: (1) continue level k + 1 or (2) change any register other than V [k].

Proof. Assume that a set of processes p1, . . . , p� are at level k, and during the
time interval where V [k] continuously holds the value 0, they all notice that
V [level] = 0 when executing the until statement in line 8. One of these processes,
say p1, must be the last to update turn. If k = 1, each process in {p2, . . . , p�} will
notice that turn is different from its id (line 10), possibly write 0 into V [1], wait
until a decision is made and return the decision value. Assume k > 1. Before
p1 has set turn to its id, each of the other processes at level k must have seen
in level k − 1 that turn is equal to its id. This means that before any of the
processes p2, . . . , p� could execute the assignment at line 9, p1 has already set
V [1], . . . , V [k − 1] to its id. Thus, when each process at level k, other than p1,
executes the if statement in line 10, it finds out that turn is different from its id,
possibly write 0 into V [k], wait until a decision is made and return the decision
value, without a need to write 0 to any of the registers V [1], . . . , V [k−1] (because
it is assumed above that p1 has already set V [1], . . . , V [k − 1] to its id). Process
p1, may continue to level k + 1 or it notices that turn 	= p1 and sets some or
all of the registers V [1], . . . , V [k − 1] to 0, but it is the only process, among the
processes p1, . . . , p�, that may set any register other than V [k]. ��
Lemma 3 (Safety). At most one leader is elected.

Proof. For proving the lemma, an accounting system of credits is used. Initially,
the number of credits is 2n − 1. New credits can not be created during the

Waiting in Concurrent Algorithms 353

execution of the algorithm. The credit system ensures that a process acquires
exactly 2k−1 credits before it can reach level k. Being elected is equivalent to
reaching level log n + 1. Thus, the credit system ensures that a process must
acquire 2log n+1−1 = n credits before it can be elected. Once a process is elected,
it may not release any of its credits. Thus, it is not possible for two processes to
get elected.

W.l.o.g. it is assumed that n, the number of processes, is a power of 2.
Initially, each process holds 1 credit, and each register V [k] where 1 ≤ k ≤ log n
holds 2k−1 credits. Thus, the total number of credits is n+

∑log n
k=1 2k−1 = 2n−1.

As a results of an operation taken by a process credits may be transferred from
a register to a process and vice versa. We list below all possible operations by
processes and their effect:

– No credits are transferred when a process (1) checks the value of a register,
(2) writes into turn, or (3) executes a return statement.

– When a process writes its id into register V [k], changing V [k]’s value from 0 to
its id, 2k−1 credits are transferred from V [k] to that process. When a process
writes 0 into register V [k] which does not already holding 0, 2k−1 credits are
transferred to V [k] from that process.

– Let one or more processes notice that V [k] = 0. By Lemma 2, at most one of
them can continue level k+1. Assume one of them continues to level k+1. By
Lemma 2, the processes that do not continue to the next level can only execute
V [k] := 0, transferring to V [k] the 2k−1 credits they have by getting this far.
Then 2k−1 credits are taken from V [k], and are assigned to the process that
continues to the next level, giving it the 2k credits it needs for level k + 1.

– Let one or more processes notice that V [k] = 0, and assume no one of them
continues to level k + 1. By Lemma 2, at most one of these processes, say
process p, changes any register other than V [k]. As before, the remaining
processes can transfer their credits by setting V [k] to 0. Then, if p is the last
to set V [k], 2k−1 credits are taken from V [k], and are assigned to p. Thus, p
has 2k credits available, 2k−1 credits from reaching level k, plus 2k−1 credits
from V [k]. Setting to 0 every variable from V [1] to V [k] accounts for 2k − 1
credits (i.e.,

∑k
i=1 2i−1 = 2k − 1), so p has enough credits and no new credits

should be created by p when it sets to 0 multiple registers.

As already mentioned, initially, the number of credits is 2n − 1. No new credits
are created, and a process must acquire n credits before it can be elected. Once
a process is elected, it may not release any of its credits. Thus, it is not possible
for two processes to get elected. ��
Theorem 2 (Agreement and Validity). All the participating processes
decide on the same value, and this decision value is the input of a participating
process.

Proof. It follows from Lemmas 1 and 3, that exactly one leader is elected. The
leader will eventually write its input value into the decision register, and all the
participating will decide on that value. ��

354 G. Taubenfeld

Theorem 3 (Starvation-Freedom). In the absence of faults, every partici-
pating process eventually terminates.

Proof. Once a leader is elected and sets the decision register to its input value,
all correct participating processes will eventually find out that decision 	= ⊥
and properly terminate. In the absence of faults, by Lemma1, at least one
leader is eventually elected, and thus all the participating processes eventually
terminate. ��
Theorem 4 (2-waiting). The consensus algorithm satisfies strong and weak
2-waiting.

Proof. In every run there are at most two (strong or weak) enabling events. The
first is the event after which the leader becomes enabled. (This can happen at
most once since being enabled is a stable property.) The second event is when
the leader sets the decision register to its input value (line 14), after which
all the other processes immediately become enabled. In fact, in this particular
algorithm in every run in which some process terminates, there are exactly two
enabling events. Consider for example a run where process p runs alone until it
is elected and terminates. The first enabling event is when the local variable level
of p equals �log n� and p reads in Line 10 that turn = p. Before that read event
all the processes are disabled, and after that read event p becomes (strongly)
enabled (and all the other processes are still disabled). Once process p executes
line 14, all the processes become enabled even though they haven’t started yet.
Hence, the consensus algorithm satisfies 2-waiting.

To prevent confusion, we point out that a process does not necessarily become
weakly enabled after taking its first step. To see that, recall that being weakly
enabled is a stable property. Assume that process p wakes up, runs alone, is
elected but is suspended before setting decision to its input (in Line 14). At
that point all the other processes, regardless of the number of steps they have
taken so far, are disabled. Once process p executes line 14 all the other processes
become enabled (also those that haven’t taken any steps yet). ��

This completes the proof of Theorem 1. In [21], it has been proven that,
even in the absence of faults, any election algorithm for n processes must use
at least �log n� + 1 registers. This lower bound holds also for consensus. Thus,
Theorem 1 provides an almost tight space upper bound. It is known that there are
no wait-free consensus or election algorithms, using registers [9,12,18,19]. Below
we slightly generalize these known impossibility results for wait-free consensus
and election.

Observation 3. There are no weak 0-waiting starvation-free consensus or elec-
tion algorithms for n ≥ 2 processes, using registers.

Proof. The result follows from Observation 2 and the known impossibility results
that there are no wait-free consensus and election algorithms for two (or more)
processes, using registers [9,12,18,19]. ��

Waiting in Concurrent Algorithms 355

5 Adaptive Renaming

The renaming problem allows processes, with distinct initial names from a large
name space, to get distinct new names from a small output name space. In the
non-adaptive version of the problem, the size of the new name space is a function
of n, the total number of processes. Adaptive renaming is more demanding: the
size of the new name space must be a function of the actual number of the
participating processes.

An adaptive f(m)-renaming algorithm allows m participating processes with
initially distinct names from a large name space to acquire distinct new names
from the set {1, . . . , f(m)}. A one-shot renaming algorithm allows each process
to acquire a distinct new name just once. A long-lived renaming algorithm
allows processes to repeatedly acquire distinct names. We focus below on solv-
ing one-shot adaptive renaming. It is known that there is a wait-free adaptive
(2m − 1)-renaming algorithm using registers, where m is the number of partici-
pating processes [6]. Below we extend this result to cover cases where waiting is
possible.

Theorem 5. For any 1 ≤ k < n, there is a strong (k + 1)-waiting starvation-
free adaptive (max {m, 2m − k − 1})-renaming algorithm, where 1 ≤ m ≤ n is
the number of participating processes, using registers.

Proof. For 1 ≤ i ≤ k, let Ei be the implementation of a strong 2-waiting election
object from registers, from the proof of Theorem1. Each process, say p, scans
the k election objects, E1, . . . , Ek, in order, starting with E1. At each step,
process p tries to get elected, and either moves to the next election object if
the returned value is 0 (i.e., not elected), or stops when the returned value is
1 (i.e., elected). If process p stops on one of the k election objects, then it is
assigned the name that equals to the index of the election object on which it
is elected. (I.e., if it stopped on Ei then it is assigned name is i.). Otherwise, if
all its operations on the election objects have returned 1 (which means that k
other processes already got the names 1 through k), process p participates in a
wait-free adaptive (2m− 1)-renaming algorithm which uses registers only. Let v
be the value assigned to p by the optimal renaming algorithm, then process p is
assigned the final new name k+ v. Clearly, only m− k processes will participate
in the adaptive wait-free renaming, and thus v ∈ {1, . . . , 2(m − k) − 1}. This
proves that the name name space is as stated in the Lemma. Next we prove that
the algorithm satisfies k + 1-waiting. There are two possible cases:

1. A process, say p, acquires a new name i ≤ k. This means that p got elected
in Ek. So, at some point there was a strong enabling step which made p
strongly enabled after which it got elected at Ek. Before that strong enabling
step, there where at most k − 1 other strong enabling steps which strongly
enabled k − 1 other processes to get elected in objects E1, . . . , Ek−1, a total
of k strongly enabling events.

2. A process, say p, acquires a new name i > k. This means that p acquired a
name while participating in a wait-free adaptive (2m−1)-renaming algorithm.

356 G. Taubenfeld

So, at some point there was a strong enabling step which made p strongly
enabled after which it acquired a name. Before that strongly enabling step,
there where at most k other strong enabling steps which strongly enabled k
other processes to get elected in objects E1, . . . , Ek, a total of k + 1 strongly
enabling events.

We notice that after the k’th enabling step, the step which made the process
that got elected in Ek enabled, the next enabling step simultaneously made all
the remaining processes enabled. ��

The result stated in Theorem 5 holds, with almost the same proof, if we
replace the word strong with weak in the statement of the theorem. A wait-free
adaptive (2m−1)-renaming algorithm using registers, where m is the number of
participating processes is called an optimal adaptive renaming algorithm w.r.t.
registers, because it matches the known lower bound on the name space. This
known lower bound can be easily derived from the known impossibility result
for set-consensus [4,14,20]. Below we slightly generalize this lower bound result.

Observation 4. There is no weak 0-waiting starvation-free adaptive
max{1, 2m − 2}-renaming algorithm, where m is the number of participating
processes, using registers.

Proof. The result follows from Observation 2 and the known impossibility result
that there is no wait-free adaptive m-renaming algorithm for two processes, using
registers [4,14,20]. ��

6 Mutual Exclusion

The mutual exclusion problem is to design an algorithm (i.e., a lock) that guaran-
tees mutually exclusive access to a critical section among n competing processes
[7]. It is assumed that each process is executing a sequence of instructions in
an infinite loop. The instructions are divided into four continuous sections: the
remainder, entry, critical and exit. The entry section consists of two parts: the
doorway which is wait-free, and the waiting part which includes one or more
loops. A waiting process is a process that has finished its doorway code and
reached the waiting part, and a beginning process is a process that is about to
start executing its entry section. Like in the case of the doorway, the exit section
is also required to be wait-free. It is assumed that processes do not fail, and that
a process always leaves its critical section.

The mutual exclusion problem is to write the code for the entry and the exit
sections in such a way that the following two basic requirements are satisfied.

Livelock-Freedom: If a process is trying to enter its critical section, then some
process, not necessarily the same one, eventually enters its critical section.

Mutual Exclusion: No two processes are in their critical sections at the same
time.

Waiting in Concurrent Algorithms 357

Satisfaction of the above two properties is the minimum required for a mutual
exclusion algorithm. For an algorithm to be fair, satisfaction of an additional
condition is required.

First-in-First-Out (FIFO): A beginning process cannot execute its critical
section before a waiting process completes executing its critical section.

Theorem 6. (1) There is no strong (n − 2)-waiting livelock-free mutual exclu-
sion algorithm; (2) There are strong (n−1)-waiting FIFO mutual exclusion algo-
rithms using strong synchronization primitives; (3) There are strong n-waiting
FIFO mutual exclusion algorithms using registers.

Proof. (1) Let A be an arbitrary mutual exclusion algorithm. Assume that n
processes are trying to enter their critical sections of A simultaneously, and they
have all passed their doorways. In such a scenario, each strong enabling step
enables exactly one process to enter its critical section, complete its operation
and release the lock. The last process enters its critical section, after at least
strong n− 1 enabling steps have been executed. Thus, at best, A satisfies strong
(n − 1)-waiting, but it does not satisfy (n − 2)-waiting. (2) Anderson’s queue-
based algorithm [1], which uses registers and fetch-and-increment object, is an
example of a strong (n − 1)-waiting FIFO mutual exclusion algorithm. (3) The
FIFO mutual exclusion algorithm from [17] use only registers and satisfies strong
n-waiting. ��
In the context of mutual exclusion, it is easy to show that a process is weakly
enabled if and only if it is strongly enabled. Thus, the result stated in Theorem6
holds, if we replace the word strong with weak in the statement of the theorem.

7 Fairness

Fairness requirements guarantee that a process will not bypass another process
“too many times”. The problem of implementing a k-fair data structure is to
write the code of each operation in such a way that the following requirement is
satisfied,

k-fairness: No beginning process can complete k+1 operations while some
other process which has already passed the doorway of some operation has
not completed the operation yet.

The term first-in-first-out (FIFO) is used for 0-fairness. For every k ≥ 1,
k-fairness does not imply livelock-freedom. We address the following question:
When is it possible to transform a non-blocking data structure into the corre-
sponding fair data structure? We show that, when only registers are used, such
a transformation must involve waiting.

Theorem 7. For any k ≥ 0, it is not possible to automatically transform every
data structure, which has a non-blocking implementation using registers, into the
corresponding k-fair non-blocking data structure, using registers.

358 G. Taubenfeld

Proof. For any k ≥ 0, a data structure that satisfies both k-fairness and non-
blocking must also satisfy wait-freedom. In [10], it is shown that there exists an
object which has a non-blocking implementation using registers, but does not
have a wait-free implementation using registers. The existence of such an object
implies that it is not possible to automatically transform every non-blocking data
structure into the corresponding wait-free data structure using only registers.
The result follows. ��
Theorem 8. It is possible to automatically transform every non-blocking data
structure, using only registers, into the corresponding strong 1-waiting data struc-
ture which (1) satisfies 1-fairness and starvation-freedom, and (2) guarantees
that the execution of the doorway of each operation requires a constant number
of steps.

Proof. It was recently proved in [24] that, using registers, it is possible to auto-
matically transform any non-blocking data structure into the corresponding
starvation-free data structure which satisfies the following three properties: (1)
no beginning process may complete two operations before another process that
has passed its doorway completes its operation; (2) All the processes that have
passed their doorways and are not strongly enabled, eventually become strong
enabled at the same time; (3) the execution of the doorway requires only three
steps, in which only registers are accessed. Property (1) above means that the
transformed data structure satisfies 1-fairness; property (2) implies that it sat-
isfies strong 1-waiting. The result follows. ��

8 Related Work

In [8], it is suggested to model contention at a shared object with the help of stall
operations. In the case of simultaneous accesses to a single memory location, only
one operation succeeds, and other pending operations must stall. The measure of
contention is the worst-case number of stalls that can be induced by an adversary
scheduler. There is a tradeoff between the strength of the progress condition
that an algorithm is required to satisfy and its time complexity. Our study of
the new progress conditions complements the study of the complexity measure
of [8] which takes contention into account.

As already mentioned, the following important progress conditions have
been proposed for data structures which avoid waiting: wait-freedom [12], non-
blocking [15], and obstruction-freedom [13]. Symmetric and asymmetric progress
conditions are studied in [16,23]. In [11], the authors identify an interesting rela-
tionship that unifies six progress conditions ranging from the deadlock-free and
starvation-free conditions common to lock-based systems, to the obstruction-
free, non-blocking and wait-free conditions common to lock-free systems.

The impossibility result that there is no consensus algorithm that can tolerate
even a single crash failure was first proved for the asynchronous message-passing
model in [9], and later has been extended for the shared memory model with
atomic registers, in [18]. A comprehensive discussion of wait-free synchronization
is given in [12].

Waiting in Concurrent Algorithms 359

In [21] it is proved that, in the absence of failures, �log n� + 1 registers are
necessary and sufficient for election, assuming that only the elected leader is
required to ever terminate. We use the key ideas from [21], in our implemen-
tations of the 2-waiting starvation-free consensus and election algorithms. The
one-shot renaming problem was first solved for message-passing systems [2], and
later for shared memory systems [3]. In [5] a long-lived wait-free renaming algo-
rithm was presented. Many of the results on renaming are discussed in [6].

The mutual exclusion problem was first stated and solved for n processes by
Dijkstra in [7]. Numerous solutions for the problem have been proposed since
it was first introduced in 1965 [22]. In [24], it is shown that it is possible to
automatically transfer any non-blocking or wait-free data structure into a similar
data structure which satisfies a strong fairness requirement, without using locks
and with limited waiting.

9 Discussion and Open Problems

We have introduced a new set of progress conditions, called k-waiting, for k ≥
0. The new conditions are intended to quantitatively capture the “amount of
waiting” of processes in asynchronous concurrent algorithms. To illustrate the
utility of the new conditions, we have derived lower and upper bounds, and
impossibility results for well-known basic problems such as consensus, election,
renaming and mutual exclusion. We also presented some results regarding the
relation between waiting and fairness. Much, however, remains to be done.

The new progress conditions together with our technical results, indicate
that there is an interesting area of concurrent algorithms that deserve further
investigation. A few specific interesting open problems are: Are there 1-waiting
starvation-free consensus and election algorithms for n ≥ 2 processes, using
registers? Is the upper bound of Theorem5, on the name space for k-waiting
starvation-free adaptive renaming, tight? It would also be interesting to look at
various variants of k-waiting.

To conclude, we have focused on identifying some intermediate notion of
waiting, and the basic definition of k-waiting appears to make sense as a candi-
date definition. The various results presented, provide some evidence that this
is a good definition. We hope that our conceptual contributions will lead to
interesting conversations and further results regarding this unexplored area.

References

1. Anderson, T.E.: The performance of spin lock alternatives for shared-memory mul-
tiprocessor. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

2. Attiya, H., Bar-Noy, A., Dolev, D., Koller, D., Peleg, D., Reischuk, R.: Renaming
in an asynchronous environment. J. Assoc. Comput. Mach. 37(3), 524–548 (1990)

3. Bar-Noy, A., Dolev, D.: Shared memory versus message-passing in an asynchronous
distributed environment. In: Proceedings of 8th ACM Symposium on Principles of
Distributed Computing, pp. 307–318 (1989)

360 G. Taubenfeld

4. Borowsky, E., Gafni, E.: Generalizecl FLP impossibility result for t-resilient asyn-
chronous computations. In: Proceedings of 25th ACM Symposium on Theory of
Computing, pp. 91–100 (1993)

5. Burns, J.E., Peterson, G.L.: The ambiguity of choosing. In: Proceedings of 8th
ACM Symposium on Principles of Distributed Computing, pp. 145–158 (1989)

6. Castaneda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: an introduction. Comput. Sci. Rev. 5(3), 229–251 (2011)

7. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

8. Dwork, C., Herlihy, M.P., Waarts, O.: Contention in shared memory algorithms.
J. ACM 44(6), 779–805 (1997)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

10. Herlihy, M.: Impossibility results for asynchronous PRAM. In: Proceedings of 3rd
Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 327–336
(1991)

11. Herlihy, M., Shavit, N.: On the nature of progress. In: Fernàndez Anta, A.,
Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 313–328. Springer,
Heidelberg (2011)

12. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

13. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: Proceedings of 23rd International Conference on
Distributed Computing Systems, p. 522 (2003)

14. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

16. Imbs, D., Raynal, M., Taubenfeld, G.: On asymmetric progress conditions. In:
Proceedings of 29th ACM Symposium on Principles of Distributed Computing,
pp. 55–64 (2010)

17. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

18. Loui, M.C., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)

19. Moran, S., Wolfstahl, Y.: Extended impossibility results for asynchronous complete
networks. Inf. Process. Lett. 26(3), 145–151 (1987)

20. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29, 1449–1483 (2000)

21. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual
exclusion problems. In: Proceedings of 8th ACM Symposium on Principles of Dis-
tributed Computing, pp. 177–191, August 1989

22. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming, pp.
1–423. Pearson/Prentice-Hall, Upper Saddle River (2006). ISBN 0-131-97259-6

23. Taubenfeld, G.: The computational structure of progress conditions. In: Lynch,
N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 221–235. Springer,
Heidelberg (2010)

24. Taubenfeld, G.: Fair synchronization. In: Afek, Y. (ed.) DISC 2013. LNCS, vol.
8205, pp. 179–193. Springer, Heidelberg (2013)

Corona Product Complexity of Planar Graph
and S -chain Graph

Fouad Yakoubi(B) and Mohamed El Marraki

LRIT Associated Unit the CNRST (URAC29), Faculty of Sciences,
University of Mohammed V, P.O. Box 1014, Rabat, Morocco

fouad.yakoubii@gmail.com, marraki@fsr.ac.ma

Abstract. Since its appearance, the number of spanning trees of a graph
has been among the most important problems in graph theory. We aimed
to get explicit formula counting this number in the corona product graph
of two planar graphs. In this paper, we study the corona product of a pla-
nar graph with a linear chain and cycle chain, for which we calculate their
number of spanning trees. Our research findings highlight the potential
of combinatorial method, which allowed us to count this number for a
large graph as corona product graph.

Keywords: Complexity of graph · Spanning tree · Corona product
graph · Linear chain · Cycle chain

1 Introduction

The number of spanning trees is a topological invariant in a given graph G, since
it appeared, the problem of counting this number is one of the most important
studied problems in graph theory. The complexity or the number of spanning
trees of the graph G is very useful in many areas of new technologies, namely
designing electrical circuits, estimating the reliability of a network [7–9], design-
ing algorithms in cryptography and network security [6], etc. The first way
to solve this problem is the matrix tree theorem [1] in which the number of
spanning trees that is denoted by τ(G), can be expressed as the value of the
determinant of any co-factor matrix of the Laplacian matrix of the graph G.
Although this algebraic method can be used to compute the number of span-
ning trees for small graphs, it could not be practical for large graphs. For this
reason, Many researchers focused on studying this NP-hard problem to provide
practical approaches counting the number of spanning trees in some families of
undirected graphs [4,5,7].

In this paper, we propose an efficient method to count the number of spanning
trees in corona product. Let Gn1 be a planar graph and Gn2 be an outerplanar
graph. We denote by n1 and n2 the orders of Gn1 and Gn2 respectively. The
corona product graph of Gn1 and Gn2 is denoted by Gn1 � Gn2 , defined as the
graph obtained by taking one copy of Gn1 and n1 copies of Gn2 , then we join
each vertex in the ith copy of Gn2 by an edge with the ith vertex of Gn1 [2].
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 361–366, 2016.
DOI: 10.1007/978-3-319-46140-3 30

362 F. Yakoubi and M. El Marraki

Our study is focused on undirected graphs in which we look to investigate the
number of spanning trees in the corona product of a planar graph G with s-linear
chain and s-cycle chain (See Figs. 1(c) and 2(a)).

2 Preliminary Notes

In this part we give all theorems that we use in our work.
Let Gn1 be a planar graph and Gn2 an outerplanar graph. Then [3]:

τ(Gn1 � Gn2) = τ(G1) × (τ(G2 � P1))n1 (1)

If G is a graph composed of of two subgrpahs Gn1 and Gn1 as illustrated in
Fig. 1(b). Then [5]:

τ(G) = τ(Gn1) × τ(Gn2 .uv) + τ(Gn1 .uv) × τ(Gn2) (2)

We denote by Gn1 .uv and Gn2 .uv the graphs obtained from Gn1 and Gn2 respec-
tively, when we paste the vertex intersection u with v of Gn1 and Gn2 .

Let Gn is a graph composed of two sub-graphs Gn1 and Gn2 which have a
common edge e as illustrated in Fig. 1(a). Then [5]:

τ(G) = τ (Gn1) × τ(Gn2) − τ(Gn1 − e) × τ(Gn2 − e) (3)

Gn1−e and Gn2 −e are the graphs obtained from Gn1 and Gn2 respectively after
removing the edge e.

Gn1 |Gn2 Gn1 : Gn2 Cm,s

Fig. 1. Planar graphs type of Gn1 |Gn2 , Gn1 : Gn2 and S -cycle chain Cm,s

3 Results and Discussion

To calculate the corona product complexity τ(Gn � Cm,s) of a planar graph Gn

and a chain map Cm,s (S -linear chain or S -cycle chain), which contains m vertex
and s edges between each adjacent vertex {ui, ui+1} (See Figs. 1(c) and 2(a)),
at the first we must calculate τ(Cm,s � P1).

Corona Product Complexity of Planar Graph and S -chain Graph 363

3.1 Corona Product Complexity of Gn and S-linear Chain Cm,s

Lemma 1. Let Cm,s be a S-linear chain. The number of spanning trees in Cm,s �
P1 is given by:

τ(Cm,s � P1) =
1√

4s + 1

((
2s + 1 +

√
4s + 1

2

)m

−
(
2s + 1 − √

4s + 1

2

)m)
, m ≥ 2, s ≥ 1

(4)

Cm,s P1 Cm,s � P1 Wn � Cm,s

Fig. 2. S-linear chain Cm,s, P1 and Cm,s � P1

Proof. Now to simplify notation, τ(Cm,s � P1) is denoted by fm,s. By choosing
the edge e as illustrated in Fig. 2(b) and using Eq. (3), we get the sequence
of recurrence fm,s = (2s + 1)fm−1,s − s2fm−2,s. By solving its characteristic
equation r2 − (2s + 1)r + s2 = 0, we found the roots r1 = 2s+1+

√
4s+1

2 and
r2 = 2s+1−√

4s+1
2 , then we use initial values (f1,s = 1, f2,s = 2s + 1) we get

fm,s. ��
Remarks. We treat here some specific cases.
If s = 1 then, Cm,1 is a path Pm which contains m vertex. So, Pm � P1 is a Fan
graph Fm+1, substituting s by 1 in Eq. (4), we get
τ(Pm � P1) = τ(Fm+1) = 1√

5

((
3+

√
5

2

)m − (
3−√

5
2

)m)
[4]

If s = 2 then, using Eq. (4), we get τ(Cm,2 � P1) = 1
3

(
4m − 1

)
Now, In order to calculate the complexity of corona product of a planar graph
Gn and S-linear chain Cm,s, we made use of Lemma 1, then applying Eq. (1).

Theorem 1. The number of spanning tree in Gn � Cm,s is given as follow:

τ(Gn � Cm,s) = τ(G) ×
(

1
√
4s + 1

((
2s + 1 +

√
4s + 1

2

)m

−
(

2s + 1 − √
4s + 1

2

)

)
m

))n

, m ≥ 2, s ≥ 1

(5)

364 F. Yakoubi and M. El Marraki

Corollary 1. Let Wn be a Wheel graph which contains n vertex. The number
of spanning trees in Wn � Cm,s is given as follow:

τ(Wn � Cm,s) =

((
3 +

√
5

2

)n−1

−
(

3 − √
5

2

)n−1

− 2

)

×
(

1√
4s + 1

((
2s + 1 +

√
4s + 1

2

)m

−
(

2s + 1 − √
4s + 1

2

)m))n

, n � 4, m � 2

(6)

τ(Wn) was given by Sedlacek [4].

3.2 Corona Product Complexity of Gn and S-cycle Chain Cm,s

Lemma 2. Let Cm,s be a S-cycle chain. The number of spanning trees in
Cm,s � P1 is given as follows:

τ(Cm,s � P1) =
1√

4s + 1

((2s + 1 +
√

4s + 1

2

)m+1

−
(2s + 1 − √

4s + 1

2

)m+1

+

(2s + 1 − √
4s + 1

2

)m−1

−
(2s + 1 +

√
4s + 1

2

)m−1)
− 2sm, m � 3, s � 1

(7)

Proof. we denoted Cm,s � P1 by Nm+1,1 . In Nm+1,1 We choose the pair of vertex
{u1, u2} as illustrated in Fig. 1(c). Then, we use Eq. (2), we get: τ(Nm+1,1) =

τ(Fm+1,1) + s × τ(Nm,2), where Nm,2 is the graph obtained if we paste the
vertex u1 and u2, then N

m,2 has two edges between the central vertex a
and u1, Fm+1,1 denotes the graph obtained from N

m+1,1 when we separate
the vertex u1 and u2, which has one edge between the vertex a and u1 (See
Fig. 3(c)). Now, in the second iteration, we choose the vertex {u2, u3} in Nm,2,
then repeating the same thing, by using Eq. (2), then we get: τ(Nm,2) =

τ(Fm,2) + s × τ(Nm−1,3). So τ(Nm+1,1) = τ(Fm+1,1) + s(τ(Fm,1) + s × τ(Nm−1,3))

We continued doing the same thing until the kth iteration, by choosing the
pair of vertex {uk, uk+1} in Nm−k+1,k+1 (See Fig. 3(b)), we find: τ(Nm+1,1) =

τ(Fm+1,1)+s(τ(Fm,2)+s(τ(Fm−1,3)+s(τ(Fm−2,4)+ · · · s(τ(Fm−k+1,k+1)))+sk+1τ(Nm−k,k+2).

Therefore τ(Nm+1,1) =
∑n−3

k=0 Skτ(Fm−k+1,k+1) + sm−2τ(N3,n−1). To calculate the
complexity τ(Fm−k+1,k+1), which has k + 1 edges between the vertex a and
u1, we selected the edge e in Fm−k+1,k+1 as illustrated in Fig. 3(c), then we
use Eq. (3), we obtain: τ(Fm−k+1,k+1) = (k + 1)τ(Fm−k+1,1) − sk × τ(Fm−k,1).

as Fm−k+1,1 is a corona product of P1 and s-linear chain which has m-k ver-
tex, then τ(Fm−k+1,1) = 1√

4s+1

((
2s+1+

√
4s+1

2

)m−k − (2s+1−√
4s+1

2

)m−k)
. We put

r1 = 2s+1+
√

4s+1
2

, r2 = 2s+1−√
4s+1

2
. Therefore

τ(Fm−k+1,k+1) = 1√
4s+1

(
(k + 1)(rm−k

1 − rm−k
2) − sk(rm−k−1

1 − rm−k−1
2)

)
. Then

τ(Nm+1,1) = 1√
4s+1

∑n−3
k=0 sk

(
(k + 1)(rm−k

1 − rm−k
2) − sk(rm−k−1

1 − rm−k−1
2)

)
+

sm−2τ(N3,n−1) = 1√
4s+1

(rm
1

∑n−3
k=0(k + 1)(s

r1
)k − rm

2

∑n−3
k=0(k + 1)(s

r2
)k) −

rm
1

∑n−3
k=0 k(s

r1
)k+1+ rm

2

∑n−3
k=0 k(s

r2
)k+1

)
+ sm−2(n(2s − 1) − 1). By calculating

these series we obtain the result. ��

Corona Product Complexity of Planar Graph and S -chain Graph 365

Cm,s � P1 Nm−k+1,k+1 Fm−k+1,k+1

Fig. 3. Cm,s � P1, Nm−k+1,k+1 and Fm−k+1,k+1

Theorem 2. Let Gn be a planar graph and Cm,s a s-cycle chain. The number
of spanning tree in Gn � Cm,s is given as follow:

τ(Gn � Cm,s) = τ(Gn) ×
(

1√
4s + 1

((
2s + 1 +

√
4s + 1

2

)m+1

−
(
2s + 1 − √

4s + 1

2

)m+1

+

(
2s + 1 − √

4s + 1

2

)m−1

−
(
2s + 1 +

√
4s + 1

2

)m−1)
− 2sm

)n

, m � 3, s � 3

(8)

4 Conclusion

In graph theory, the number of spanning trees in a small graph, can be given by
algebraic methods, such as matrix tree theorem. But these methods practically
are not efficient for huge graphs. For that reason we have proposed recursive
method providing the explicit formulas to calculate the number of spanning
trees in Corona product graph of a planar graph and a chain map.

References

1. Kirchhoff, G.G.: Über die Auflösung der Gleichungen, auf welche man bei der
Untersuchung der linearen Verteilung galvanischer Strme gefhrt wird. Ann. Phys.
Chem. 72, 497–508 (1847)

2. West, D.B.: Introduction to Graph Theory, 2nd edn. University of Illinois, Urbana
(2002)

3. Yakoubi, F., El Marraki, M.: Enumeration of spanning trees in certain vertex corona
product graph. Appl. Math. Sci. 8(109), 5427–5438 (2014)

4. Sedlacek, J.: On the skeletons of a graph or digraph. In: Proceedings of Cal-
gary International Conference of Combinatorial Structures and Their Applications,
Gordon and Breach, pp. 387–391 (1970)

5. Modabish, A., El Marraki, M.: The number of spanning trees of certain families of
planar maps. Appl. Math. Sci. 5(18), 883–898 (2011)

6. Al Etaiwi, clar:ekeW.M.: Encryption algorithm using graph theory. J. Sci. Res. Rep.
3(19), 2519–2527 (2014). Article No: JSRR.2014.19.004

366 F. Yakoubi and M. El Marraki

7. Lotfi, D., El Marraki, M., Aboutajdine, D.: The contraction method for counting the
complexity of planar graphs with cut vertices. Appl. Math. Sci. 7(70), 3479–3488
(2013)

8. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press,
New York (1980)

9. Myrvold, W., Cheung, K.H., Page, L.B., Perry, J.E.: Uniformly-most reliable net-
works do not always exist. Networks 21, 417–419 (1991)

Vehicular Ad-Hoc Network: Evaluation of QoS
and QoE for Multimedia Application

Imane Zaimi1(B), Zineb Squalli Houssaini2, Abdelali Boushaba3,
Mohammed Oumsis4, and Driss Aboutajdine1

1 LRIT, Associated Unit to CNRST (URAC 29), Faculty of Sciences,
Mohammed-V University in Rabat, Rabat, Morocco

imanzaimi@gmail.com, aboutaj@fsr.ac.ma
2 IT Laboratory and Modelling (LIM), Dhar El Mahraz Faculty of Sciences (FSDM),

Sidi Mohammed Ben Abdellah University (USMBA) in Fez, Fez, Morocco
zinebsqualli@gmail.com

3 Intelligent Systems and Applications Laboratory (LSIA),
Faculty of Sciences and Technology, Sidi Mohamed Ben Abdelah University,

Fez, Morocco
abdelali.boushaba@usmba.ac.ma

4 LRIT, Associated Unit to CNRST (URAC 29) and Superior school of Technology,
Mohammed-V University, Rabat, Morocco

oumsis@yahoo.com

Abstract. In Vehicular Ad-hoc Networks (VANETs), the most tempt-
ing features are usability, availability and service integrity required by
the users especially in case of the video streaming. Thus, the concept of
quality of experience (QoE) occurred with non-technical aspects which
directly influence user’s perception. This paper provides a complete per-
formance evaluation of seven ad-hoc routing protocols, for the applica-
tion of video streaming, considering different number of connections in
an urban scenario. Afterwards, since position-based protocols present
a major issue of networking for VANETs, we focused our compara-
tive study on the Greedy Perimeter Stateless Routing (GPSR) pro-
tocol. The tool-set for this evaluation integrates Evalvid, NS-2 and
VanetMobiSim. Besides considering Packet Delivery Ratio (PDR),
Throughput and Delay as QoS metrics, we evaluate Peak Signal to Noise
Ratio (PSNR), Video Quality Metric (VQM) and Structural Similarity
Index (SSIM) as QoE measures. The simulation shows that GPSR offers
acceptable results for all metrics except delay, it enables a good improve-
ment of the later though. Therefore, it still needs enhancement for its
metrics performances.

Keywords: VANETs · Routing protocols · IEEE 802.11p · QoS · QoE ·
VanetMobiSim · Evalvid · NS-2

1 Introduction and Motivation

In wireless networks, the most tempting feature is the ability of the user to receive
data smoothly over the network regardless of his position. Being a type of wireless
c© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, pp. 367–371, 2016.
DOI: 10.1007/978-3-319-46140-3 31

368 I. Zaimi et al.

networks and an application of mobile ad-hoc networks (MANETs), VANETs
have emerged as a new powerful technology where many challenges occur [1].
VANET also experiences a critical point that is the supporting inter-vehicle
video streaming [2]. In fact, with the growing needs of the users to access various
resources during mobility, efficient techniques are required to support their needs
from user satisfaction perspectives.

For this purpose, before starting work on VANET, it must be ensured that
the selected protocol should have best data delivery, integrity and time deliv-
ery, to achieve a safe guard of drivers [3]. Hence, the aim of this paper is to
analyse the quality criteria among popular routing protocols, namely, Ad-hoc
On Demand Distance Vector (AODV) [4], Destination Sequence Distance Vec-
tor(DSDV) [5], Dynamic source routing (DSR) [6], Dynamic Manet On Demand
(DYMOUM) [7], Fisheye State Routing (FSR) [8], Greedy Perimeter Stateless
Routing (GPSR) [9] and Zone Routing Protocol (ZRP) [10]. The literature has
shown that the position-based protocols perform better than traditional proto-
cols of MANETs [11], which led us to give an interest to GPSR during analysis.

The remainder of this paper is organized as follows: The Sect. 2 describes the
performance evaluation of our work. Section 3 discusses the experimental results,
while Sect. 4 summarizes the main concluding remarks.

2 Performance Evaluation

The main simulation parameters are listed in Table 1.

Table 1. Characteristics of scenario

Parameters used for physical and link layer

Propagation model Two ray ground

Bandwidth 100Mbps

Transmission range 250m

Parameters used for traffic model

Type of multimedia MPEG-4

Real video file Foreman.yuv (300 frames in YUV CIF

(352 x 288) format)

Traffic rate 30 frames/s

Number of background CBR traffic connection 5-10-15-20

Background traffic packets size 512 bytes

Background traffic packets rate 10 packets/second

Simulation time 300s

Parameters used for mobility model

Ad-hoc network area 670m * 670m

Number of vehicles 50

Mobility Model IDM-LC

Parameters used for IDM-LC model

Traffic light interval 10

Number of lines 2

Velocity of vehicles 18 to 50 (Km/h)

Vehicular Ad-Hoc Network: Evaluation of QoS and QoE 369

3 Results and Analysis

3.1 QoS Metrics as Function of Data Traffic Load

We note from Table 3 that GPSR decreases delay up to 75 % compared to DSR,
which is significant. However, PDR and throughput are decreased by GPSR.
Indeed, Fig. 1 illustrates the two metrics in different traffic scenario and shows
that, whatever is the number of communication, they still weak. Thus, as shown
in Table 3, GPSR decreases PDR up to 67 %, and throughput up to 33 %. In
summary, even if GPSR increases the quality level of multimedia transmissions
in terms of delay, it remains insufficient since the PDR and throughput are also
the keys metrics that influence multimedia quality.

5 10 15 20

50

60

70

80

(a)

P
D

R

Packet Delivery Ratio
AODV DSR DYMOUM DSDV

FSR ZRP GPSR

5 10 15 20

0

2

4

6

(b)

D
el

ay
(s

)

Delay
AODV DSR DYMOUM DSDV

FSR ZRP GPSR

5 10 15 20

100

200

300

400

(c)

T
h
ro

u
g
h
p
u
t

Throughput
AODV DSR DYMOUM DSDV

FSR ZRP GPSR

Fig. 1. QoS metrics: (a) Packets delivery ratio (b) End to end delay and
(c) Throughput

3.2 QoE Metrics as Function of Data Traffic Load

The Fig. 2 shows the objective metrics (PSNR, VQM and SSIM [12]) considering
the aforementioned protocols. It can be seen that the reactive protocols have
the best performances. Furthermore, by observing Table 3, GPSR has the lower
results even if they are acceptable. It decreases PSNR and SSIM, respectively,

5 10 15 20

10

12

14

16

Number of connections

P
S
N

R
(d

B
)

Packet Delivery Ratio
AODV DSR DYMOUM DSDV

FSR ZRP GPSR

5 10 15 20

8

10

12

14

16

Number of connections

V
Q

M

Delay
AODV DSR DYMOUM DSDV

FSR ZRP GPSR

5 10 15 20

0.4

0.5

0.6

0.7

0.8

Number of connections

S
S
IM

Throughput
AODV DSR DYMOUM DSDV

FSR ZRP GPSR

Fig. 2. QoE: PSNR, VQM and SSIM as function of data traffic load

370 I. Zaimi et al.

up to 63.36 % and 50.1 %. VQM is also raised up to 87 %. As a subjective metric,
the most traditional one is MOS (Mean Opinion Score). The quality level is rated
on a scale of 1 to 5 as described in Table 2 (Fig. 3).

Table 2. PSNR, VQM and SSIM mapping to MOS

PSNR (dB) VQM SSIM MOS

> 20 < 3 1 5 (Excellent)

14–20 3–6 0.7–0.9 4 (Good)

12–14 6–10 0.5–0.7 3 (Fair)

10–12 10–14 0.3–0.5 2 (Poor)

< 10 > 14 < 0.3 1 (Bad)

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

 PSNR

 M
O

S

AODV
DSR
DYMOUM
DSDV
FSR
ZRP
GPSR

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

 VQM

 M
O

S

AODV
DSR
DYMOUM
DSDV
FSR
ZRP
GPSR

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

 SSIM

 M
O

S

AODV
DSR
DYMOUM
DSDV
FSR
ZRP
GPSR

Fig. 3. QoE: PSNR, VQM and SSIM mapping to MOS

Table 3. Performance metrics of GPSR compared with DSR for video traffic

Nbr of Connections PDR Delay Throughput PSNR VQM SSIM

5 ↓67% ↓75.02 % ↓15% ↓53.20 % ↑87 % ↓47.3 %

10 ↓67% ↓56,12 % ↓28% ↓62.82 % ↑86.58 % ↓50.1 %

15 ↓64% ↓48,47 % ↓37% ↓63.36 % ↑80.23 % ↓48.57 %

20 ↓56% ↓71,85 % ↓33% ↓52.17 % ↑83.64 % ↓46.47 %

4 Conclusion and Perspective

Even if VANET continues to receive significant attention [2,13–15], there is still
a lack of research papers on multimedia application. To this end, this work is
devoted to a complete comparative study of routing protocols in urban areas that
particularly confront more complication. The reactive protocols demonstrated
good perceived quality with an MOS of 4. While position-based protocol, due
to the location accuracy that represents an essential factor to get a good result,

Vehicular Ad-Hoc Network: Evaluation of QoS and QoE 371

shows some degradation with an average MOS score of 2. The percentages men-
tioned in section III are calculated by comparing GPSR with DSR since this
latter shows the greater performances. In future, we are intended to improve the
quality of transmission of video streams through an improved GPSR version.

References

1. Zeadally, S., Hunt, R., Chen, Y.-S., Irwin, A., Hassan, A.: Vehicular ad hoc net-
works (VANETs): status, results, and challenges. Telecommun. Syst. 50(4), 217–
241 (2012)

2. Xu, S., Guo, P., Xu, B., Zhou, H.: Study on QoS of video communication over
VANET. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp.
730–738. Springer, Heidelberg (2012)

3. Mohapatra, S., Kanungo, P.: Performance analysis of AODV, DSR, OLSR and
DSDV routing protocols using NS2 simulator. Procedia Eng. 30, 69–76 (2012)

4. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Pro-
ceedings of the Second IEEE Workshop on Mobile Computer Systems and Appli-
cations, p. 90. IEEE Computer Society (1999)

5. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. In: ACM SIGCOMM Computer Commu-
nication Review, vol. 24, pp. 234–244. ACM (1994)

6. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. The Kluwer International
Series in Engineering and Computer Science, vol. 353, pp. 153–181. Springer, New
York (1996)

7. Billington, J., Yuan, C.: On modelling and analysing the dynamic MANET on-
demand (DYMO) routing protocol. In: Jensen, K., Billington, J., Koutny, M. (eds.)
Transactions on Petri Nets and Other Models of Concurrency III. LNCS, vol. 5800,
pp. 98–126. Springer, Heidelberg (2009)

8. Pei, G., Gerla, M., Chen, T.-W.: Fisheye state routing: a routing scheme for ad
hoc wireless networks. In: IEEE International Conference on Communications,
ICC, vol. 1, pp. 70–74. IEEE (2000)

9. Karp, B., Kung, H.-T.: GPSR: Greedy perimeter stateless routing for wireless
networks. In: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pp. 243–254. ACM (2000)

10. Haas, Z.J., Pearlman, M.R.: ZRP: a hybrid framework for routing in ad hoc net-
works. In: Ad hoc networking, pp. 221–253. Addison-Wesley Longman Publishing
Co. Inc., Boston (2001)

11. Kumar, S., Kumar Verma, A.: Position based routing protocols in VANET: a
survey. Wirel. Pers. Commun. 83(4), 2747–2772 (2015)

12. MSU Graphics: Media lab. MSU video quality measurement tool (2009)
13. Spaho, E., Ikeda, M., Barolli, L., Xhafa, F.: Performance comparison of OLSR and

AODV protocols in a VANET crossroad scenario. In: Park, J.J., Barolli, L., Xhafa,
F., Jeong, H.-Y. (eds.) Information Technology Convergence. LNEE, vol. 253, pp.
37–45. Springer, Heidelberg (2013)

14. Husain, A., Sharma, S.C.: Simulated analysis of location and distance based routing
in VANET with IEEE802. 11p. Procedia Comput. Sci. 57, 323–331 (2015)

15. Sharef, B.T., Alsaqour, R.A., Ismail, M.: Comparative study of variant position-
based vanet routing protocols. Procedia Technol. 11, 532–539 (2013)

Abstracts of Posters

An Implementation of the Keccak
Hash Function

Soufiane El Moumni1(&), Mohamed Fettach1,
and Abderrahim Tragha2

1 Information Processing Laboratory, Hassan II University,
Casablanca, Morocco

{soufianeelmoumni,fettachmohamed}@gmail.com
2 Information Technology and Modeling Laboratory, Hassan II University,

Casablanca, Morocco
atragha@yahoo.fr

Abstract. Cryptographic hash function is one of the most important elements
in cryptographic systems. It plays several sensitive roles like generating random
numbers, storing passwords, checking data integrity and computing digital
signatures. Therefore, it has to be upgraded regularly in order to ensure resis-
tance against recent attacks. For this reason, the National Institute of Standards
and Technology (NIST) announced in 2007 a public competition to select a new
cryptographic hash function, which is resistant to recent attacks and more effi-
cient in term of hardware implementation. In 2012, NIST announced that the
Keccak hash function is the winner in this contest and it will be considered as
the SHA-3. In this poster, we are interested to the hardware implementation side
of the Keccak hash function, where we applied the unrolling technique to
Keccak-512 using Xilinx Virtex-5 FPGA device and we noticed that the
throughput increases to 24.72 Gbps. However, It implies an increase on area
resources consumption. Our results have been compared to existing FPGA
implementations.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 375, 2016.
DOI: 10.1007/978-3-319-46140-3

A Secure Processor
Using Homomorphic Encryption

Bouchra Echandouri1(&), Youssef Gahi2, Mouhcine Guennoun2,
and Fouzia Omary1

1 Laboratoire de Recherches Informatique, FSR,
Mohammed V University, Rabat, Morocco

Bouchra.Echandouri@gmail.com, Omary@fsr.ac.ma
2 School of Electrical Engineering and Computer Science, University of Ottawa,

Ottawa, Canada
Youssef.Gahi@gmail.com, Mguennou@uottawa.ca

Abstract. Outsourcing concepts has interested a number of malicious users.
Thus, many strong securing data techniques had been proposed to ensure pri-
vacy. Fully homomorphic encryption scheme has been one of the most efficient
ways to secure both data storage and computations, whereby it enables per-
forming multiple arithmetic operations over encrypted data, without decryption.
Unfortunately, each homomorphic cipher is associated to a small random noise
that increases after many operations. In order to refresh the resulting noise and to
ensure a successful decryption, a time consuming bootstrapping technique was
used. Star gate is a novel homomorphic circuit that helped improving multiple
secure applications, namely database systems, location-based services, trust-
based routing protocol, video on-demand services etc. To avoid bootstrapping
and not reaching the noise threshold, we propose to predict the maximum circuit
depth that could be supported by this scheme and make it a leveled-fully
homomorphic circuit. In this way, an efficient homomorphic evaluation and a
good decryption of Star Gate is guaranteed.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 376, 2016.
DOI: 10.1007/978-3-319-46140-3

An Ontology Based Social Search System

Anas El-ansari1(&), Abderrahim Beni-hssane1, and Mostafa Saadi2

1 LAROSERI Lab, Computer Science Department Sciences Faculty,
Chouab Doukkali University, El Jadida, Morocco

anas.elansari@gmail.com, abenihssane@yahoo.fr
2 ENSA Khouribga, University Hassan 1rst – Settat, Settat, Morocco

saadi_mo@yahoo.fr

Abstract. With the tremendous growth of information available on the Web,
there is a pressing need for efficient information retrieval systems such as search
engines. Nowadays, those systems are based on content matching rather than the
meaning and they still suffer from the lack of accuracy. To solve this problem,
Ontology and semantic web are becoming centric methodologies to promote the
semantic capability of an information retrieval system. The next generation of
those systems focus on the meaning of the user query and search data. Our main
objective in this poster is to develop ontology based social search system
offering the users the possibility to find people, friends and relatives based on
multiple search criteria. The system uses a local knowledge base from a social
ontology that describes people and social relations. The users do ontology
population when they create their profiles and then can search for other users.
The initial evaluation result shows the feasibility and benefits of building a
semantic social search system based on Ontology.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 377, 2016.
DOI: 10.1007/978-3-319-46140-3

An Adaptive Routing Scheme
in Scale-Free Networks

Nora Ben Haddou(&), Hamid Ez-zahraouy(&),
and Abdelilah Benyoussef(&)

Laboratory of Magnetism and Physics of High Energy Faculty of Sciences,
University Mohammed V, Rabat, Morocco

Nor.Benhaddou@gmail.com, {ezahamid,benyous}@fsr.ac.ma

Abstract. We propose a routing scheme called OTAP (Optimal Traffic
Awareness Protocol), which exploits both structural and local dynamic infor-
mation about the network to determine the path followed by the packets. It is an
optimal form of traffic awareness protocol already introduced (TAP). In the
present model, the shortest path is replaced with the “efficient path” and a new
parameter α is introduced to control the degree of the contribution of queue
lengths in the routing process. We find that using the optimal parameters of our
model, the capacity of the network reaches more than the double compared to
the original model. Moreover, the average travelling time between sources and
destinations is minimized.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 378, 2016.
DOI: 10.1007/978-3-319-46140-3

Communication Interface for Distributed SDN

Fouad Benamrane(&), Mouad Ben Mamoun, and Redouane Benaini

LRI, Faculty of Sciences at Rabat, Mohammed V University,
Rabat, Morocco

benamranefouade@gmail.com,

{ben_mamoun,benaini}@fsr.ac.ma

Abstract. Software Defined Networks (SDN) is a new concept for networking
field that allows programmability, automation, agility of services, and innova-
tion using physically or logically centralized controllers. However, there is a
lack of scalability and performances in largely distributed SDN domains, where
each domain has its own Controller. In this poster, we aim to contribute to the
development of logically distributed SDN control planes, by providing an
east-west interface that we call Communication Interface for Distributed Control
plane (CIDC). Our CIDC provides (i) communication modes such as Notifi-
cation, Service, or Full to exchange messages between controllers and customize
the desired behavior of each controller in the network, and proposes (ii) new
mechanism based on policy sharing to support distributed services such as
Firewall (FW), and Load Balancer (LB) and secure the communication between
controllers using Secure Socket Layer (SSL). Our proposal was evaluated in real
wide-area network topologies, and the results show the feasibility of our
interface in term of performance and distributed services compared to the pre-
vious models based on the cluster.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 379, 2016.
DOI: 10.1007/978-3-319-46140-3

Hybrid Homomorphic Encryption
for Cloud Privacy

Yasmina Bensitel(&) and Romadi Rahal

RIITM Lab, ENSIAS, Mohammed V University, Rabat, Morocco
yasmina_bensitel@um5.ac.ma, romadi@ensias.ma

Abstract. In the age of cloud computing, companies delegate their data pro-
cessing to third parties. This can be dangerous especially if cloud administrators
are malicious. One way to alleviate this problem is to encrypt data before
sending them to the cloud and execute calculations on it using the homomorphic
encryption. In this poster we propose a hybrid homomorphic encryption
(Hy-HE), which consists of the combination of existing partial homomorphic
encryption schemes. This hybrid solution secures and preserves data privacy by
performing calculations on it in an encrypted form. The goal of our scheme is to
analyse the program to be executed in the server and determines for each
operation the correspondent homomorphic encryption scheme. This means that
each primitive operation f will be evaluated and replaced by the appropriate
homomorphic cryptosystem. The program will be executed in the cloud on
encrypted data. After the execution, the encrypted result is sent back to the client
side, where it is decrypted safely.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 380, 2016.
DOI: 10.1007/978-3-319-46140-3

Static Hand Gesture Recognition
Using RGB-D Data

Abdessamad Elboushaki(&), Rachida Hannane,
Karim Afdel, and Lahcen Koutti

Laboratory of Computer Systems and Vision, Faculty of Science,
Ibn Zohr University, Agadir, Morocco

{abdessamad.elboushaki,rachida.hanane08}@gmail.com,

k.afdel@uiz.ac.ma, lkoutti@yahoo.fr

Abstract. Hand gesture recognition is one of the potential fields of today’s
research that enables human-computer interaction (HCI) without any physical
contact. Despite of many research efforts that have been proposed during the last
few years in order to improve the gesture acquisition, processing and classifi-
cation, static hand gesture recognition is still a challenging problem due to many
factors such as: complexity of some gestures, tangled hand articulations, and
limited resolution of the sensing devices. In this poster, we propose a novel
approach to recognize different static hand gestures. In particular, depth and
color information followed by skin filtering is used to segment the hand from
image background. In the subsequent step, SIFT-Point Distribution Histogram
(SIFT-PDH) is extracted from the segmented hand as a new combination of
local and global features. Then, SIFT-PDH feature vector is fed into K-Nearest
Neighbors classifier (K-NN) in order to recognize the performed gesture.
Finally, Earth Mover’s Distance (EMD) is used to compute the dissimilarity
between gestures. The extensive experiments on two public datasets show that
our method is not only accurate in recognition of the hand gestures, but also
robust to scale, illumination and rotation variance, and suitable for real-time
applications.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 381, 2016.
DOI: 10.1007/978-3-319-46140-3

Deep Neural Networks for Medical Images

Issam Elaalyani(&) and Mohammed Erradi

ENSIAS, University Mohammed V, Rabat, Morocco
issam.elaalyani@um5s.net.ma, erradi@ensias.ma

Abstract. Artificial Neural Networks (ANN) are computing systems made up
of a number of interconnected units, which process information by their
dynamic states in response to their external inputs. In a sense, ANNs use
learning by example technique, as do their biological counterparts. We focuses
on leveraging deep learning techniques to retrieve visual data from multimedia
contents, especially medical scans. Various deep learning architectures such as
convolutional neural network have been applied to fields like computer vision
and bioinformatics. In this poster, we explore the existing techniques and the
state of the art related to convolutional neural networks and their application to
medical images. The objective of this poster is to suggest an adaptable technique
and algorithm for efficient objects retrieval.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 382, 2016.
DOI: 10.1007/978-3-319-46140-3

IoT for Livestock Monitoring in the Desert

Younes Driouch1(&), Abdellah Boulouz1, Mohamed Ben Salah1,
and Congduc Pham2

1 LabSIV, Faculty of Science, Ibn ZOHR University, Agadir, Morocco
driouch.younes@gmail.com

2 LIUPPA, UFR Sciences et Techniques, Pau, France

Abstract. The Internet of things is the combination of multiple technologies
such as WSN and RFID in order to create smart networks in charge of data
collection and decision-making. Wireless Sensor Network (WSN) is a network
made of autonomous nodes (sensors) that collects information about its envi-
ronment and send it back to a central point (base station, or a sink), WSN has so
much potentials and possibilities in automation especially data collection. RFID
is a technology that allows a variety of items to be automatically identified
through small microchips attached to them. The desert presents some very
challenging constraints such as long distances, extreme weather conditions and
other man made artificial obstacles. This poster tries to present the main chal-
lenges facing the process of creation of IoT driven protocol stacks specific to
such environment.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 383, 2016.
DOI: 10.1007/978-3-319-46140-3

Dynamic Clustering Algorithm
for Targets Tracking

Mohamed Toumi(&), Abderrahim Maizate, Mohammed Ouzzif,
and Med said Salah

RITM-ESTC/CED-ENSEM, University Hassan II, Casablanca, Morocco
m_toumy@yahoo.fr, maizate@hotmail.com,

{ouzzif,salahmedsaid}@gmail.com

Abstract. Target tracking with the wireless sensors networks aims to detect
and to locate a target on its entire path within a region of interest. This appli-
cation arouses interest in multiple research fields. Wireless sensor networks,
thanks to their versatility, can be used in many hostile and inaccessible envi-
ronments. However, with a limited energy, they cannot remain permanently
active, which can significantly reduce their lifetime. Forming a clustered net-
work seems an effective mechanism to increase the network’s lifetime. We
propose to build optimal dynamic clusters on the target trajectory. In order to
increase energy efficiency, our algorithm integrates for the first time, to our
knowledge, strategies to avoid overlapping clusters and a model to re-activate
the sensors, in the context of targets with high and variable speed.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 384, 2016.
DOI: 10.1007/978-3-319-46140-3

ABAC Model for Collaborative Cloud Services

Mohamed Amine Madani(&) and Mohammed Erradi

Networking and Distributed Systems Research Group, SIME Lab, ENSIAS,
University Mohammed V, Rabat, Morocco

amine.madani@um5s.net.ma, mohammed.erradi@gmail.com

Abstract. Nowadays, tenants in cloud are more open and collaborative by
using collaborative applications. They enable collaboration among users from
the same or different tenants of a given cloud provider by using a collaborative
session. During such collaboration, the users from one tenant need to access and
use resources held by other collaborating tenants. In this context, access control
is an important issue that should be addressed and well enforced. This poster
proposes a Collaborative Session Attribute-Based Access Control CS-ABAC
model to ensure access control to the shared resources in a collaborative session
with cross-tenant trust. The suggested CS-ABAC model is an extended version
of ABAC, in which the collaborative session is added in order to support the
collaboration in multi tenant environments. This model is more flexible and
more powerful to describe complex, fine-grained access control rules, which is
especially suitable for the multi-tenants environments. Finally, we validate this
approach by an implementation in the open source cloud-computing platform
OpenStack.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 385, 2016.
DOI: 10.1007/978-3-319-46140-3

A Review on Big Data and Hadoop Security

Hayat Khaloufi1(&), Abderrahim Beni-Hssane1,
Karim Abouelmehdi1, and Mostafa Saadi2

1 LAROSERI laboratory, Computer Science Department, Sciences Faculty,
Chouaïb Doukkali University, El Jadida, Morocco

{hayat.khaloufi,karim.abouelmehdi1}@gmail.com,

abenihssane@yahoo.fr
2 Département Informatique & Télécoms, ENSA, Université Hassan 1er – Settat,

Khouribga, Morocco
saadi_mo@yahoo.fr

Abstract. Various studies have confirmed that concerns on data security and
privacy issues remains the main obstacle for adopting big data technologies by
companies. The general public is also increasingly aware and sensitive to these
issues. In this poster, we discuss the big data and the Hadoop ecosystem and the
difficulty to maintain the Big Data privacy and security. Then, we present the big
data privacy and security approaches suggested in the literature in terms of data
and Hadoop Architecture. For these reasons, this poster briefs about Hadoop
project and presents its security level and threats, and presents the proposed
methods to make a Hadoop cluster more secure. Finally, we suggest an approach
to increase Hadoop security and privacy.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 386, 2016.
DOI: 10.1007/978-3-319-46140-3

Performance Analysis of Black Hole
Attack in VANET

Badreddine Cherkaoui1(&), Abderrahim Beni-hssane1,
and Mohammed Erritali2

1 LAROSERI laboratory, Computer Science Department, Sciences Faculty,
Chouaïb Doukkali University, El Jadida, Morocco

b.cherkaoui@ucd.ac.ma, abenihssane@yahoo.fr
2 TIAD Laboratory, Computer Sciences Department, Sciences and Technics

Faculty, Sultan Moulay Slimane University, Béni Mellal, Morocco
m.erritali@usms.ma

Abstract. A vehicular ad-hoc network (VANET) basically consists of a group
of vehicles that communicate with each other through a wireless transmission,
and requires no pre-existing management infrastructure. This communication
has as main objective, streamlining and safe traffic for drivers. This exchange of
information is not always reliable because of several constraints such as the
existence of malicious users who aim to falsify the information for self-interests.
These constraints are due to the permanent changing of the topology and the
high-speed of vehicles. In our poster, we design a mobility model to simulate
continuous road traffic with SUMO and MOVE Tool under NS2 simulator to
generate a real world simulation. Then, we implemented a Black Hole attack
inside this model to give a real aspect to the attack. Besides, we will analyze
simulation results to assess the impact of this attack on the network commu-
nications in terms of End-to-End Delay and Packet delivery Ratio Metrics. After
this analysis, we find that the quality of service (QOS) decreases at a Black Hole
attack on a routed environment by AODV.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 387, 2016.
DOI: 10.1007/978-3-319-46140-3

SNA: Detecting Influencers
over Social Networks

Ali Aghmadi1(&), Mohammed Erradi2, and Abdellatif Kobbane1

1 Mobile Intelligent System Research Group, Rabat, Morocco
ali.aghmadi@um5s.net.ma, kobbane@gmail.com

2 Networking and Distributed Systems Research Group ENSIAS,
University Mohammed V, Rabat, Morocco

mohamed.erradi@gmail.com

Abstract. This poster describes our ongoing research on Social Network
Analysis (SNA) and a presentation about influencers’ detection and how it is
very useful to detect influencers’ communities. Yet, massive amounts of net-
worked data challenge many end users who progressively need to access net-
work datasets, to store them, to apply basic network analysis, and then share
findings with others. The important feature of SNA is its concentration on the
structure of user relationships. Detecting influencers can be useful in tasks such
as planning successful advertising strategies and/or political campaigns. This
poster shows is a first attempt to present existing approaches and to suggest a
model for influencers’ detection in social networks such as twitter. We consider
as a basic characteristics: Opinion, claims, argumentation, persuasion, agree-
ment, demographics, dialogue, and patterns over a given period of time from
tweets or forums.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 388, 2016.
DOI: 10.1007/978-3-319-46140-3

Performance Evaluation of Smart
Grid Infrastructures

Zahid Soufiane1(&), En-Nouaary Abdeslam1, and Bah Slimane2

1 Institut National des Postes et Télécommunications (INPT), Rabat, Morocco
zahidsoufiane@gmail.com, abdeslam@inpt.ac.ma

2 Ecole Mohammadia d’Ingénieurs (EMI), Rabat, Morocco
slimane.bah@emi.ac.ma

Abstract. Smart Grid is the next-generation power grid infrastructure for better
efficiency, reliability, with possible integration of renewable and alternate
energy sources. It takes advantages of two-way communications and the tech-
nologies in sensing, computing, and control to achieve real-time monitoring and
self-healing. A scalable and pervasive communication infrastructure is crucial in
both construction and operation of a Smart Grid. In this poster, we simulate a
radial multi-hop topology using Network Simulator 2. We identify the limita-
tions of this chain in terms of data rate, length and packet size. This showed us
the necessity of the optimization of Smart Grid networks. We suggest an
architecture based on the conceptual models proposed by international organi-
zations, such as, NIST, IEEE and ITU. These models are insufficient to grab the
relation between the network components. Our architecture takes into account
all the six functionalities that a Smart Grid network must achieve. For each
network, we describe the main and the mandatory components, and finally we
synthesize the communication technologies that can be used for interconnecting
the components and standards.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 389, 2016.
DOI: 10.1007/978-3-319-46140-3

Communities Detection in Social Networks

Imane Tamimi(&) and Mohamed El Kamili

LIMS, FSDM, Sidi Mohammed Ben Abdellah University, Fez, Morocco
{imane.tamimi1,mohamed.elkamili}@usmba.ac.ma

Abstract. The research on communities in social networks takes many paths in
the literature, among which: the problematic of accurately detecting communi-
ties; modelling the evolution of those communities within the evolving network;
and finding the patterns that characterize this evolution over time. In our poster,
we focuse on the problematic of detecting communities in social networks based
on the information disseminated among users of the social network and the type
of content shared by these users. The poster presents a brief introduction to the
subject and the problem definition, then we move to state the main contribution
which consists of a multi-layer model to detect communities of users based on
the content shared by users, the lowest layer would detect topics of interest of
each user while the upper layer would form communities from generated topics.
We conclude the poster stating our perspectives and future works.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 390, 2016.
DOI: 10.1007/978-3-319-46140-3

Keyframe Extraction Using Entropy
Singular Values

Rachida Hannane(&), Abdessamad Elboushaki, and Karim Afdel

Laboratory of Computer Systems and Vision, Faculty of Science,
Ibn Zohr University, Agadir, Morocco

{rachida.hanane08,abdessamad.elboushaki}@gmail.com,

k.afdel@uiz.ac.ma

Abstract. The long-duration videos resulted from movies, sports and surveil-
lance cameras have made a huge amount of video data available. Owing to the
complexity in manipulating this large data, limited memory size, higher trans-
mission rate and long processing time, an abstract of the salient keyframes that
could cover the overall content of the video is really required. In this poster, we
propose a novel approach for keyframe extraction based on the entropy mea-
surement, computed only for the singular values of each frame within the same
shot instead of using the entire information of the frame. The frame holding
maximum entropy value is extracted as a keyframe of the shot. To make sure
that the extracted keyframe deserves to present the entire shot, an entropy-based
verification approach is proposed. Specifically, the amount of added information
is extracted by computing the difference of the entropy for each two consecutive
frames within the same shot. This total amount of added information should be
very tenuous compared to the computed entropy of the selected keyframe. The
resulted keyframes show a sufficient representation of the video and summarize
it in a concise manner with minimum size and less computationally complexity.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 391, 2016.
DOI: 10.1007/978-3-319-46140-3

Autonomous Vehicular Systems Based
on Multi Agents

Najoua Ayache(&), Ali Yahyaouy, and Sabri My Abdelouahed

Sidi Mohamed Ben Abdellah University, Fes, Morocco
{najouaayache92,abdelouahed.sabri}@gmail.com,

ayahyaouy@yahoo.fr

Abstract. Since the 21st century, vehicles have attracted a great interest due to
their potential usage for transportation of people and goods. The initial concerns
of industrials and researchers were that radio-equipped vehicles are able to keep
the drivers informed about risks and road conditions. However, recent resear-
ches focus more on providing the drivers with more comfort and less effort. For
instance, air-conditioning, automatic features, GPS, etc., ensure the quality of
service for the users. In this poster, we present an overview of existing
self-driving vehicles and we propose an autonomous vehicular system based on
multi-agents to reduce the complexity of the system. In fact, we aim to delegate
each function (communication, specification of goals and execution of actions)
to agents that communicate with each other to perform the tasks listed in a
pre-defined order.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 392, 2016.
DOI: 10.1007/978-3-319-46140-3

The Integration of Multi-homing
in 5G Networks

Salma Ibnalfakih(&), Essaid Sabir, and Mohammed Sadik

NEST Research Group, ENSEM, Hassan II University of Casablanca,
Casablanca, Morocco

ibnalfakih.salma@gmail.com,

{e.sabir,m.sadik}@ensem.ac.ma

Abstract. The idea of using multiple access links, called multi-homing, to
improve the aggregate bandwidth and the availability of Internet connectivity is
a key paradigm for the 5G wireless networks. Using multi-homing to spread a
user’s Internet traffic simultaneously among multiple access links, even via
multiple ISPs, can increase the aggregate throughput, and diverts traffic away
from non-functional links in a HetNet system. This makes the multi-homing
pattern convenient for the 5G standardization since it is expected to undertake
the HetNet environment. The 5G paradigm aims to: reach 10 Gbps peak data
rate; allow a variety of M2M services and adopt D2D communications. In this
poster, we study the multi-homing integration in D2D communications to allow
many devices to communicate directly and simultaneously over a D2D instead
of the network infrastructure. This situation is valuable from a network and
spectral efficiency perspective. In order to integrate this kind of communication
in the overall 5G-system design, we focus on the question of how the mode
selection between D2D and the device-infrastructure-device communication
should ideally be conducted.

© Springer International Publishing AG 2016
P.A. Abdulla and C. Delporte-Gallet (Eds.): NETYS 2016, LNCS 9944, p. 393, 2016.
DOI: 10.1007/978-3-319-46140-3

Author Index

Abdeslam, En-Nouaary 389
Abouelmehdi, Karim 386
Aboutajdine, Driss 169, 367
Afdel, Karim 381, 391
Aghmadi, Ali 388
Ali, Muqeet 1
Ayache, Meryeme 229
Ayache, Najoua 392

Bach, Francis 193
Barazzutti, Raphaël P. 16
Belkasmi, Mostafa 244
Ben Mamoun, Mouad 379
Ben Salah, Mohamed 383
Ben Haddou, Nora 378
Ben Hafaiedh, Khaled 32
Beni-hssane, Abderrahim 377, 386, 387
Benaini, Redouane 379
Benamrane, Fouad 379
Bensitel, Yasmina 380
Benkaouz, Yahya 48
Bensaid, Hicham 202
Benyoussef, Abdelilah 378
Berrada, Ismail 311
Berrahou, Aissam 63
Blin, Antoine 71
Bouhdadi, Mohamed 209
Boulouz, Abdellah 383
Boushaba, Abdelali 367
Bramas, Quentin 87

Carpen-Amarie, Maria 102
Cherkaoui, Badreddine 387
Chaibrassou, Alami 117
Chakraborty, Maitri 131
Chiluka, Nitin 295
Christoforou, Evgenia 137
Courtaud, Cédric 71

Dahchour, Mohamed 334
Delporte-Gallet, Carole 154
Dice, Dave 102
Diot, Christophe 193

Driouch, Younes 383
Drissi, Maroua 169
Dupuy, Christophe 193

Echandouri, Bouchra 376
Ekström, Niklas 183
El-ansari, Anas 377
El Aouad, Sara 193
El Hamzaoui, Asma 202
El Hichami, Outman 311
El Kamili, Mohamed 390
El Marraki, Mohamed 361
El Mimouni, Sanae 209
El Moumni, Soufiane 375
Elaalyani, Issam 382
Elboushaki, Abdessamad 381, 391
Elgarej, Mouhcine 266
En-Nouaary, Abdeslam 202, 334
Erritali, Mohammed 387
Erradi, Mohamed 229
Erradi, Mohammed 48, 382, 385, 388
Ez-zahraouy, Hamid 378

Fauconnier, Hugues 154
Felber, Pascal 16, 102
Fernández Anta, Antonio 137
Fettach, Mohamed 375

Gahi, Youssef 376
Georgiou, Chryssis 137
Ghogho, Mounir 340
Gouda, Mohamed G. 1, 214
Guennoun, Mouhcine 376

Hannane, Rachida 381, 391
Haridi, Seif 183
Hayduk, Yaroslav 16

Ibnalfakih, Salma 393

Jensen, Oliver 214
Jourdan, Guy-Vincent 32

Kermarrec, Anne-Marie 48, 295
Khalifa, Mansouri 266
Khaloufi, Hayat 386
Khoumsi, Ahmed 229
Kobbane, Abdellatif 388
Koutti, Lahcen 381
Krombi, Wadie 229

Labbi, Zouheir 244
Lawall, Julia 71

Maarof, Ahmed 244
Madani, Mohamed Amine 385
Maizate, Abderrahim 384
Milani, Alessia 131
Mostéfaoui, Achour 250
Mosteiro, Miguel A. 131, 137
Mouhsen, Ahmed 117
Muller, Gilles 71
Mutluergil, Suha Orhun 280
My Abdelouahed, Sabri 392

O’Meara, Tyler 214
Olivares, Javier 295
Omary, Fouzia 376
Onut, Iosif Viorel 32
Oucheikh, Rachid 311
Oumsis, Mohammed 169, 367
Ouzzif, Mohammed 384

Paul, Ruma R. 318
Pham, Congduc 383

Rachdi, Anass 334
Rahal, Romadi 380

Raynal, Michel 250
Reaz, Rezwana 1
Rivière, Etienne 16

Sabir, Essaid 393
Sadik, Mohammed 393
said Salah, Med 384
Saadi, Mostafa 377, 386
Sbihi, Nada 340
Senhadji, Mohamed 244
Slimane, Bah 389
Soufiane, Zahid 389
Sopena, Julien 71
Squalli Houssaini, Zineb 367

Tamimi, Imane 390
Tasiran, Serdar 280
Taubenfeld, Gadi 345
Teixeira, Renata 193
Thomas, Gaël 102
Tixeuil, Sébastien 87
Toumi, Mohamed 384
Tragha, Abderrahim 375

Van Roy, Peter 318
Vlassov, Vladimir 318
von Bochmann, Gregor 32

Yahyaouy, Ali 392
Yakoubi, Fouad 361
Youssfi, Mohamed 266

Zaimi, Imane 367

396 Author Index

	Preface
	Organization
	Contents
	Nonrepudiation Protocols Without a Trusted Party
	1 Introduction
	2 Related Work
	3 Nonrepudiation Protocols
	4 Necessary and Sufficient Conditions for Nonrepudiation Protocols
	5 Nonrepudiation Protocols with Message Loss
	6 Necessary and Sufficient Conditions for Nonrepudiation Protocols with Message Loss
	7 An -Nonrepudiation Protocol
	8 Concluding Remarks
	References

	Exploiting Concurrency in Domain-Specific Data Structures: A Concurrent Order Book and Workload Generator for Online Trading
	1 Introduction
	2 Online Trading and the Order Book
	3 A Concurrent Order Book
	3.1 Coarse-Grained Locking
	3.2 Two-Level Fine-Grained Locking
	3.3 Toward Lock-Free Algorithms

	4 Generating Workloads
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Fault Tolerant P2P RIA Crawling
	1 Introduction
	2 Related Work
	3 Fault Tolerant RIA Crawling
	3.1 Assumptions
	3.2 Protocol Description

	4 Data Recovery Mechanisms
	4.1 Retry Strategy
	4.2 Redundancy Strategy
	4.3 Combined Strategy

	5 Evaluation
	5.1 Retry Strategy
	5.2 Redundancy Strategy
	5.3 Comparison of the Retry and the Redundancy Strategies When Controllers Are Not Overloaded
	5.4 Combined Strategy

	6 Conclusion
	References

	Nearest Neighbors Graph Construction: Peer Sampling to the Rescue
	1 Introduction
	2 The KNN Peer Sampling Service
	3 Experimental Setup
	3.1 NNDescent Algorithm
	3.2 Datasets Description
	3.3 Similarity Metrics
	3.4 Evaluation Metrics

	4 Experimental Results
	4.1 Recall Versus Cost
	4.2 Quality Versus Cost
	4.3 Utility Study
	4.4 Recall at Equal Cost
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

	Accurate Optimization Method for Allocation of Heterogeneous Resources in Embedded Systems
	Abstract
	1 Introduction
	2 Model of Embedded System
	2.1 Hardware Platform Model
	2.2 Application Model

	3 Proposed Formulation
	3.1 Notation
	3.2 Quadratic Formulation

	4 Case Study
	5 Conclusion
	References

	Understanding the Memory Consumption of the MiBench Embedded Benchmark
	1 Introduction
	2 Platform
	2.1 Hardware
	2.2 Software Stack

	3 Memory Profiler
	3.1 Profiler Overview
	3.2 Profiler Design Choices

	4 Origins of the Memory Spikes
	4.1 Methodology
	4.2 I/O Functions
	4.3 Operating System
	4.4 Applications

	5 Related Work
	6 Conclusion
	References

	Benchmarking Energy-Centric Broadcast Protocols in Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Our Model
	4 Experimental Setup
	5 Experimental Results and Discussion
	5.1 Single Source Broadcast
	5.2 Multiple Source Broadcast (Gossip)
	5.3 Discussion

	6 Conclusion
	References

	Transactional Pointers: Experiences with HTM-Based Reference Counting in C++
	1 Introduction
	2 Background and Related Work
	2.1 C++ Smart Pointers
	2.2 Hardware Transactional Memory
	2.3 Related Work

	3 Transactional Pointers
	3.1 Algorithm
	3.2 Implementation

	4 Evaluation with Micro-Benchmarks
	4.1 Mono-Threaded Scenario
	4.2 Short-Lived Pointers

	5 Evaluation with Shared Data Structures
	5.1 Implementation
	5.2 Evaluation

	6 Conclusion and Future Work
	References

	A Multi-channel Energy Efficient Cooperative MIMO Routing Protocol for Clustered WSNs
	Abstract
	1 Introduction
	2 Related Work
	3 Energy Efficiency of MIMO Systems
	3.1 System Model
	3.2 Variable-Rate Systems

	4 The Proposed Protocol
	4.1 Clustering Algorithm
	4.2 Medium Access Control and Channel Assignment
	4.3 Energy Efficiency Analysis

	5 Simulation Results
	5.1 Simulation Environment
	5.2 Performance Evaluation Discussion

	6 Conclusion
	References

	Counting in Practical Anonymous Dynamic Networks is Polynomial
	1 Introduction
	2 The Anonymous Dynamic Network Model
	3 Incremental Counting Protocol Simulator
	4 Discussion
	References

	Internet Computing: Using Reputation to Select Workers from a Pool
	1 Introduction
	2 Model
	3 Reputation-Based Mechanism
	4 Analysis
	5 Simulations
	References

	Asynchronous Consensus with Bounded Memory
	1 Introduction
	2 Model
	3 Algorithm
	4 Applications
	4.1 Randomized Algorithm
	4.2 SWMR Registers
	4.3 Failure Detector
	4.4 Message Passing

	5 Extensions
	6 Conclusion
	References

	A Fuzzy AHP Approach to Network Selection Improvement in Heterogeneous Wireless Networks
	1 Introduction and Motivation
	2 Related Works
	3 AHP-SAW Network Selection
	3.1 System Model
	3.2 Analytic Hierarchy Process: AHP
	3.3 Simple Additive Weighting: SAW

	4 Fuzzy Approach to Network Selection Improvement
	4.1 Fuzzy Logic and Fuzzy Set Theory
	4.2 Fuzzy Analytic Hierarchy Process: FAHP

	5 Simulation Model
	5.1 Simulation Parameters
	5.2 Evaluation Criteria
	5.3 Simulation Results and Discussion

	6 Conclusion
	References

	A Fault-Tolerant Sequentially Consistent DSM with a Compositional Correctness Proof
	1 Introduction
	2 Model and Definitions
	2.1 Shared Memory
	2.2 Causality and Logical Clocks

	3 Algorithm
	4 Correctness Proof
	4.1 Linearizability
	4.2 Logical-Time History
	4.3 Compositional Reasoning
	4.4 Reasoning About the Algorithm

	5 Related Work
	5.1 Consistency Conditions
	5.2 Fault-Tolerant Shared Memory

	6 Conclusion
	References

	Exploiting Crowd Sourced Reviews to Explain Movie Recommendation
	1 Introduction
	2 Method
	2.1 Movie Similarity
	2.2 Genre-Based Sub-grouping
	2.3 Rating Prediction

	3 Prototype
	4 Results
	5 Related Work
	6 Conclusion and Future Work
	References

	A Formal Model for WebRTC Signaling Using SDL
	Abstract
	1 Introduction
	2 Jingle
	3 Jingle Signaling Model
	3.1 Architectural Design for Jingle Using SDL
	3.2 Behavioural Design for Jingle Using SDL
	3.3 Data Representation in the Model

	4 Conclusion and Future Work
	References

	An Incremental Proof-Based Process of the NetBill Electronic Commerce Protocol
	1 Introduction
	2 Background
	3 Specifying NetBill Protocol Using Event-B
	4 Results and Discussion
	5 Conclusion
	References

	Securing NFC Credit Card Payments Against Malicious Retailers
	1 Introduction
	2 NFC Credit Card Payments
	3 Defending Against Malicious Third Parties
	4 Malicious Retailers
	4.1 The Over-Charge Attack
	4.2 The Transparent Bridge Attack

	5 Defending Against Malicious Retailers
	5.1 The Extended Secure CC Protocol
	5.2 Defending Against the Over-Charge Attack
	5.3 Defending Against the Transparent Bridge Attack

	6 Related Work
	7 Concluding Remarks
	References

	An Approach to Resolve NP-Hard Problems of Firewalls
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Synthesis Procedure
	5 Resolution of FC, FA and SP
	5.1 Resolution of Firewall Completeness (FC) Problem
	5.2 Resolution of Firewall Adequacy Problems: FA-d, FA-a
	5.3 Resolution of Slice Probing Problems: SP-d, SP-a

	6 Resolution of FI, FV, FE and FR
	6.1 Resolution of Firewall Implication Problems: FI-d, FI-a
	6.2 Resolution of Firewall Verification Problems: FV-d, FV-a
	6.3 Resolution of Firewall Equivalence Problems: FE-d, FE-a
	6.4 Resolution of Firewall Redundancy Problems: FR-d, FR-a

	7 Evaluation of Space and Time Complexities
	8 Conclusion
	References

	Hybrid Encryption Approach Using Dynamic Key Generation and Symmetric Key Algorithm for RFID Systems
	Abstract
	1 Introduction and Literature Review
	2 Proposed Approach
	2.1 Overview
	2.2 Key Generation
	2.3 Encryption or (Decryption)
	2.4 Integrity Check

	3 Analysis and Discussion
	3.1 Cryptanalysis
	3.2 Performance Evaluation

	4 Conclusions and Future Work
	References

	Time-Efficient Read/Write Register in Crash-Prone Asynchronous Message-Passing Systems
	1 Introduction
	2 System Model
	3 Atomic Register and Time-Efficient Implementation
	3.1 Atomic Register
	3.2 Notion of a Time-Efficient Operation

	4 An Algorithm with Time-Efficient Operations
	5 Proof of the Algorithm
	5.1 Termination and Atomicity
	5.2 Time-Efficiency: The Bounded Delay assumption
	5.3 Time-Efficient Implementation: The Round-Based Synchrony assumption

	6 Conclusion
	References

	Traffic Lights Optimization with Distributed Ant Colony Optimization	Based on Multi-agent System
	Abstract
	1 Introduction
	2 Related Work
	3 Traffic Flow Terminology
	4 Traffic Signal Concepts
	4.1 Vehicle Waiting Time
	4.2 Waiting Time of Vehicles Initially in Queue
	4.3 Waiting Time of Vehicles not Released on the Current Phase
	4.4 Total Waiting Time for a Vehicle in a Signal Cycle

	5 The Ant Colony Optimization Behavior
	6 Distributed ACO Algorithm Applied to Traffic Signal Optimization
	7 Simulation Results
	8 Conclusion and Perspectives
	References

	A Mechanized Refinement Proof of the Chase-Lev Deque Using a Proof System
	1 Introduction
	2 The Chase-Lev Work Stealing Queue Algorithm
	3 Overview of Proof Methodology
	4 Mechanized Proof Steps
	5 Related Work
	6 Conclusions and Future Work
	A Observations on the SC Executions of the Program
	B Path Splitting and Loop Peeling
	References

	The Out-of-core KNN Awakens:
	1 Introduction
	2 Preliminaries
	2.1 In-memory Approach

	3 Pons
	3.1 Overview

	4 KNN Iteration
	4.1 Phase 1: Partitioning
	4.2 Phase 2: In-Edge Partition Files
	4.3 Phase 3: Out-Edge Partition Files
	4.4 Phase 4: Profile Partition Files
	4.5 Phase 5: Distance Computation

	5 Experimental Setup
	6 Evaluation
	6.1 Performance
	6.2 Multithreading Performance
	6.3 Performance for different memory availability
	6.4 Evaluating the Number of Partitions

	7 Related Work
	8 Conclusion
	References

	 The 4-Octahedron Abstract Domain
	1 Introduction
	2 4-Octahedron Representation
	2.1 Linearly Dependent Vectors
	2.2 4-Octahedra Definition
	2.3 Hyper-paths and Hyper-cycles

	3 4-Octahedron Abstract Domain
	3.1 The Need for 4-Octahedron Abstract Domain
	3.2 Emptiness Testing
	3.3 Approximation of the Canonical Form

	4 4-Octahedra Abstract Domains Implementation
	4.1 2D-DBM Data-Structure
	4.2 Galois Connections
	4.3 Computation Canonical Form Algorithm
	4.4 Definition of the Abstract Operators

	5 Conclusion
	References

	Reversible Phase Transitions in a Structured Overlay Network with Churn
	1 Introduction
	2 Representative Overlays
	3 Overlay Maintenance Strategies
	4 Reversibility and Its Evaluation
	5 Phase, Phase Transitions, API and Application
	5.1 Definition of Phase, Phase Transition and Critical Point
	5.2 Observation of Phase Transitions
	5.3 API for Phases and Phase Transitions

	6 Related Work
	7 Conclusion
	References

	Verification of Common Business Rules in BPMN Process Models
	1 Introduction
	2 Background
	2.1 Business Process Management Notation (BPMN)
	2.2 Common Business Rules and Business Rule Language (BRL)

	3 Our Approach for BPMN Model Analysis
	3.1 Extracting a Process Schema from BPMN Model
	3.2 Runing Business Rules Analysis Algorithm

	4 Conclusion and Future Work
	References

	Is Youtube Popularity Prediction a Good Way to Improve Caching Efficiency?
	1 Introduction
	2 Popularity Prediction
	2.1 The Dataset
	2.2 Prediction Methodology
	2.3 Mathematical Models for Prediction

	3 Replacement Policies for Caching
	3.1 LFU vs P-LFU
	3.2 Virtual LRU
	3.3 Results and Discussion

	4 Conclusion
	References

	Waiting in Concurrent Algorithms
	1 Introduction
	2 The k-waiting Progress Conditions
	3 Computational Model and Basic Observations
	4 Consensus and Election
	5 Adaptive Renaming
	6 Mutual Exclusion
	7 Fairness
	8 Related Work
	9 Discussion and Open Problems
	References

	Corona Product Complexity of Planar Graph and S-chain Graph
	1 Introduction
	2 Preliminary Notes
	3 Results and Discussion
	3.1 Corona Product Complexity of Gn and S -linear Chain Cm,s
	3.2 Corona Product Complexity of G n and S -cycle Chain Cm,s

	4 Conclusion
	References

	Vehicular Ad-Hoc Network: Evaluation of QoS and QoE for Multimedia Application
	1 Introduction and Motivation
	2 Performance Evaluation
	3 Results and Analysis
	3.1 QoS Metrics as Function of Data Traffic Load
	3.2 QoE Metrics as Function of Data Traffic Load

	4 Conclusion and Perspective
	References

	Abstracts of Posters
	An Implementation of the Keccak Hash Function
	A Secure Processor Using Homomorphic Encryption
	An Ontology Based Social Search System
	An Adaptive Routing Scheme in Scale-Free Networks
	Communication Interface for Distributed SDN
	Hybrid Homomorphic Encryption for Cloud Privacy
	Static Hand Gesture Recognition Using RGB-D Data
	Deep Neural Networks for Medical Images
	IoT for Livestock Monitoring in the Desert
	Dynamic Clustering Algorithm for Targets Tracking
	ABAC Model for Collaborative Cloud Services
	A Review on Big Data and Hadoop Security
	Performance Analysis of Black Hole Attack in VANET
	SNA: Detecting Influencers over Social Networks
	Performance Evaluation of Smart Grid Infrastructures
	Communities Detection in Social Networks
	Keyframe Extraction Using Entropy Singular Values
	Autonomous Vehicular Systems Based on Multi Agents
	The Integration of Multi-homing in 5G Networks

	Author Index

