
Time Event Extraction to Boost an
Information Retrieval System

Pierpaolo Basile, Annalina Caputo, Giovanni Semeraro
and Lucia Siciliani

Abstract In this chapter we propose an innovative information retrieval system
able to manage temporal information. The system allows temporal constraints in a
classical keyword-based search. Information about temporal events is automatically
extracted from text at indexing time and stored in an ad-hoc data structure exploited
by the retrieval module for searching relevant documents. Our system can search
textual information that refers to specific period of times. We perform an exploratory
case study indexing all Italian Wikipedia articles.

1 Introduction

Identifying specific pieces of information related to a particular time period is a key
task for searching past events. Although this task seems to be marginal forWeb users
[17], many search domains, like enterprise search, or lately developed information
access tasks, such as Question Answering [19] and Entity Search, would benefit from
techniques able to handle temporal information.

The capability of extracting and representing temporal events mentioned in a
text can enable the retrieval of documents relevant for a given topic pertaining to a
specific time. Nonetheless, the notion of temporal in the retrieval context has often
being associated with the dynamic dimension of a piece of information, i.e. how it
changes over time, in order to promote freshness in results. Such kind of approaches
focus on when the document was published (timestamp) rather than the temporal
event mentioned in its content (focus time). While traditional search engines take

P. Basile (B) · A. Caputo · G. Semeraro · L. Siciliani
Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
e-mail: Pierpaolo.Basile@uniba.it

A. Caputo
e-mail: Annalina.Caputo@uniba.it

G. Semeraro
e-mail: Giovanni.Semeraro@uniba.it

L. Siciliani
e-mail: siciliani.lu@gmail.com

© Springer International Publishing AG 2017
C. Lai et al. (eds.), Information Filtering and Retrieval,
Studies in Computational Intelligence 668, DOI 10.1007/978-3-319-46135-9_1

1



2 P. Basile et al.

into account temporal information related to a document as a whole, our search
engine aims to extract and index single events occurring in the texts, and to enable
the retrieval of topics related to specific temporal events mentioned in the documents.
In particular, we are interested in retrieving documents that are relevant for the user
query, and also match some temporal constraints. For example, the user could be
interested in a particular topic—strumenti musicali (musical instrument)—related to
a specific time period—inventati tra il 1300 ed il 1500 (invented between 1300 and
1500).

However, looking for happenings in a specific time span requires further, andmore
advanced, techniques able to treat temporal information. Therefore, our goal is to
merge features of both information retrieval (IRS) and temporal extraction systems
(TES). While an IRS allows us to handle and access the information included in
texts, TES locate temporal expressions. We define this kind of system “Time-Aware
IR” (TAIR).

In the past, several attempts have been made to exploit temporal information in
IR systems [2], with an up-to-date literature review and categorization provided in
[7]. Most of these approaches exploit time information related to the document in
order to improve the ranking (recent documents are more relevant) [9], cluster docu-
ments using temporal attributes [1, 3], or exploit temporal information for effectively
present documents to the user [16]. However, just a handful of work have focused
on temporal queries, that is the capability of querying a collection with both free
text and temporal expression [4]. Alonso et al. pointed out as this kind of tasks
needs the combination of results from both the traditional keyword-based and the
temporal retrieval that can give rise to two different result sets. Vandenbussche and
Teissèdre [22] dealt with temporal search in the context of both the Web of Content
and the Web of Data, but differently from our system, they relied on an ontology of
time for temporal queries [11]. Kanhabua and Nørvåg [13] defined semantic- and
temporal-based features for a learning to rank approach by extracting named enti-
ties and temporal events from the text. Similarly to our approach, Arikan et al. [5]
considered the query as composed by a keyword and a temporal part. Then, the two
queries were addressed by computing two different language model-based weights.
Exploiting a similar model, Berberich et al. [6] developed a framework for dealing
with uncertainty in temporal queries. However, both approaches drawn the probabil-
ity of the temporal query out of thewhole document, thus neglecting the pertinence of
temporal events at a sentence level. In order to overcome such a limitation, Matthews
et al. [16] introduced two different types of indexes, at a document and a sentence
level, with the latter associated with content date.

Preliminary to indexing and retrieval, the information extraction phase aims to
extract temporal information, and its associated events, from text. In this area [15],
several approaches aim at building structured knowledge sources of temporal events.
In [12] the authors describe an extension of the YAGO knowledge base, in which
entities, facts, and events are anchored in both time and space. Other work exploit
Wikipedia to extract temporal events, such as those reported in [10, 14, 24]. Temporal
extraction systems can locate temporal expressions and normalize them making this
information available for further processing. Currently, there are different tools that



Time Event Extraction to Boost an Information Retrieval System 3

can make this kind of analysis on documents, like SUTime [8] or HeidelTime [20]
and other systems which took part in TempEval evaluation campaigns. Temporal
extraction is not the main focus of this chapter, then we remand the interested reader
to the TempEval description task papers [21, 23] for a wider overview of the latest
state-of-the-art temporal extraction systems.

The chapter is organized as follows: Sect. 2 provides details about the model
behind our TAIR system, while Sect. 3 describes the implementation of our model.
Section4 reports some use cases of the TAIR system which show the potential of our
approach, while Sect. 5 closes the chapter.

2 Time-Aware IR Model

A TAIR model should be able to tackle some problems that emerge from temporal
search [22], that is: (1) the extraction and normalization of temporal references, (2)
the representation of the temporal expressions associated to documents, and (3) the
ranking under the constraint of keyword- and temporal-queries.

Our TAIRmodel consists of threemain components responsible to deal with these
issues, as sketched in Fig. 1.

Text processing It automatically extracts timeexpressions from text. The extracted
expressions are normalized in a standard format and sent to the indexing compo-
nent;

Indexing This component is dedicated to index both textual and temporal infor-
mation. During the indexing, text fragments are linked to time expressions. The
idea behind this approach is that the context of a temporal expression is relevant;

Fig. 1 The IR time-aware
model



4 P. Basile et al.

Search It analyzes the user query composed by both keywords and temporal con-
straints, and performs the search over the index in order to retrieve relevant infor-
mation.

2.1 Text Processing Component

Given a document as input, the text processing component provides as output the
normalized temporal expressions extracted from the text, along with information
about positions in which the temporal expressions are found. For this purpose we
adopt a standard annotation language for temporal expressions called TimeML [18].
We are interested in expressions tagged with the TIMEX3 tag that is used to mark
up explicit temporal expressions, such as times, dates and durations. In TIMEX3 the
value of the temporal expression is normalized according to 2002 TIDES guideline,
an extension of the ISO-8601 standard, and is stored in an attribute called value.
An example of TIMEX3 annotation for the sentence “before the 23th May 1980” is
reported below:

<TimeML >
before the
<TIMEX3 tid="t3" type="DATE" value="1980 -05 -23">

23th May 1980
</TIMEX3 >

</TimeML >

Where tid is a unique identifier, type can assume one of the types between:
DATE, TIME, DURATION, and SET, while the value attribute contains the
temporal information that varies accordingly to the type.

ISO-8601 normalizes temporal expressions in several formats. For example, “May
1980” is normalized as “1980–2005”, while “23th May 1980” as “1980-05-23”. We
choose to normalize all dates using the pattern yyyy-mm-dd. All temporal expres-
sions not compliant to the pattern, such as “1980”, must be normalized retaining the
lexicographic order between dates. Our solution consists in normalizing all temporal
expressions in the form of yyyy or yyyy-mm to the last day of the previous year or
month, respectively. In our previous example, the expression “1980” is normalized
as 19791231. Similarly, the expression “1980–2005” is normalized as “1980-04-
30”. Moreover, the text processing component applies several normalization rules
to correctly identify seasons, for example the TimeML tag for Spring “yyyy-SP” is
normalized as “yyyy-03-20”.

Using the correct normalization, the order between periods is respected. In con-
clusion the text processing component extracts temporal information and correctly
normalized them to make different time periods comparable.



Time Event Extraction to Boost an Information Retrieval System 5

2.2 The Indexing Component

After the text processing step, we need to store and index data. In our model we
propose to store both documents and temporal expressions in three separated data
indexes, as reported in Fig. 1.

The first index (docrep) stores the text of each document (without processing)with
an id, a numeric value that unequivocally identifies the document. This index is used
to store the document content only for the presentation purpose. The second index
(doc) is a traditional inverted index in which the text of each document is indexed
and used for keyword-based search. Finally, the last index (time) stores temporal
expressions found in each document. For each temporal expression, we store the
following information:

• The document id.
• The normalized value of the time expression according to the normalization pro-
cedure described in Sect. 2.1.

• The start and end offset of the expression in the document, useful for highlighting.
• The context of the expression: the context is defined by taking all the words that
can be found within n characters before and after the time expression. The context
is indexed and used by the search component during the retrieval step. The idea
is to keep trace of the context where the time expression occurred. The context
is tokenized and indexed and exploited in conjunction with the keyword-based
search, as we explained in Sect. 2.3.

It is important to note that a document could have many temporal expressions, for
each of these an entry in the time index is created. For example, given the Wikipedia
page in Fig. 2, we store its whole content as reported in Table1a, while we tokenize

Fig. 2 Wikipedia page example



6 P. Basile et al.

Table 1 The three indices used by the system

Field Value Field Value

(a) docrep intex (b) doc index

ID 42 ID 42

Content Con il termine clavicembalo
(altrimenti detto
gravicembalo, arpicordo,
cimbalo, cembalo) si indica
una famiglia di strumenti
musicali a corde [. . .]

Content {‘Con’, ‘il’, ‘termine’,
‘clavicembalo’, ‘altrimenti’,
‘detto’, ‘gravicembalo’,
‘arpicordo’, ‘cimbalo’,
‘cembalo’, ‘si’, ‘indica’,
‘una’, ‘famiglia’, ‘di’,
‘strumenti’,‘musicali’, ‘a’,
‘corde’ [. . .] }

Field Value

(c) time index

ID 42

Time 13961231

Start Offset 350

End Offset 354

Context {‘Il’, ‘termine’, ‘stesso’, ‘che’, ‘compare’, ‘per’, ‘la’, ‘prima’, ‘volta’,
‘in’, ‘un’, ‘documento’, ‘del’, ‘deriva’, ‘dal’, ‘latino’, ‘clavis’, ‘chiave’
[. . .] }

and index the page as shown in Table1b. The most interesting part of the indexing
step is the storage of temporal expressions. As depicted in Table1c, for each temporal
expression we store the normalized time value, in this case “13961231”, and the start
and end offset of the expression in the text. Finally, we tokenize and index the context
inwhich the expression occurs. In Table1c, in italics is reported the left context, while
the right context is reported in bold. Examples are reported according to the Italian
version of Wikipedia, but the indexing step is language independent.

2.3 The Search Component

The search component retrieves relevant documents according to the user query q
containing temporal constraints. For this reason we need to make temporal expres-
sions in the query compliant with the expressions stored in the index. The query is
processed by the text component in order to extract and normalize the time expres-
sions.

The query q is represented by two parts: qk contains keywords, while qt only
the normalized time expressions. qk is used to retrieve from the doc index a first
results set RSdoc. Thus, both qk and qt are used to query the time index producing the
results set RStime. The search in time index is limited to those documents belonging
to RSdoc. In RStime, text fragments have to match the time constraints expressed in
qt , while the matching with the keyword-based query qk is optional. The optional
matching with qk has the effect of promoting those contexts that satisfy both the



Time Event Extraction to Boost an Information Retrieval System 7

temporal constraints and the query topics, while not completely removing poorly
matching results. The motivation behind this approach is twofold: through RSdoc we
retrieve those documents relevant for the query topic, while RStime contains the text
fragments that match the time query qt and are related to the query topic.

For example given the query q = “clavicembalo [1300 TO 1400]”, we identify the
two fields: qk = “clavicembalo” and qt = [12991231 TO 13991231]. It is important
to underline that in this example we adopted a particular syntax to identify range
queries, more details about the system implementation are reported in Sect. 3.

The retrieval step produces two results sets: RSdoc and RStime. Considering the
query q in the previous example: RSdoc contains the doc 42 with a relevance score
sdoc.While the results setRStime contains the temporal expression reported in Table1c
with a score stime. The last step is to combine the two results sets. The idea is to
promote text fragments in RStime that comes from documents that belong to RSdoc.
We simply boost the score of each result in RStime multiplying its score by the score
assigned to its origin document in RSdoc. In our example the temporal expression
occurring in RStime obtains a final score computed as: sdoc × stime. We have chosen
to boost score rather than linearly combine them, in this way we avoid the use of
combination parameters.

Finally, we sort the re-ranked RStime and provide it to the user as final result of
the search. It is important to underline that our system does not produce a list of
document as a classical search engine does, but we provide all the text passages that
are both relevant for the query and compliant to temporal constraints.

3 System Implementation

We implemented our TAIR model in a freely available system1 as an open-source
software under the GNU license V.3. The system is developed in JAVA and extends
the indexing and search open-source API Apache Lucene.2

The text processing component is based on the HeidelTime-1.8 tool3 [20] to
extract temporal information. We adopt this tool for two reasons: (1) it obtained
good performance in the TempEval-3 task, and (2) it is able to analyze text written in
several languages including the Italian. HeidelTime is a rule based system that can
be extended to support other languages or specific domains.

Our system provides all the expected functionalities: text analysis, indexing and
search. The query language supports all operators provided by the Lucene query syn-
tax.4 Moreover the temporal query qt can be formulated using natural time expres-
sions, for example “12 May 2014” or “yesterday”. The search component tries to

1https://github.com/pippokill/TAIR.
2http://lucene.apache.org/.
3https://code.google.com/p/heideltime/.
4http://lucene.apache.org/core/4_8_1/queryparser/org/apache/lucene/queryparser/classic/
package-summary.html.

https://github.com/pippokill/TAIR
http://lucene.apache.org/
https://code.google.com/p/heideltime/
http://lucene.apache.org/core/4_8_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://lucene.apache.org/core/4_8_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html


8 P. Basile et al.

Table 2 Example of time query operators

Query Description

20020101 Match exactly 1st January 2002

[20020101 TO 20030101] Match from 1st January 2002 to 1st January 2003

[∗ TO 20030101] Before 1st January 2003

[20020101 TO ∗] After 1st January 2002

01??2002 Any first day of the month in 2002, * should be used for
multiple character match, for example 01*2002

20020101 AND 20020131 The first and last day of January 2002, AND and OR operator
can be used to combine exact match and range query

automatically translate the user query in the proper time expressions. However, the
user can directly formulateqt using normalized time expressions and query operators.
Table2 shows some time operators.

Currently the system does not provide a GUI for searching and visualizing the
results, but it is designed as an API. As future works we plan to extend the API with
REST Web functionalities.

4 Use Case

We decided to set up a case study to show the potentialities of the proposed IR frame-
work. The case study involves the indexing of a large collection of documents and a
set of example queries exploiting specific scenarios in which temporal expressions
play a key role. Moreover, another goal is to provide performance information about
the system in terms of indexing and query time, and index space.

We propose an exploratory use case indexing all Italian Wikipedia articles. Our
choice is based on the fact that Wikipedia is freely available and contains millions of
documents with many temporal events. We need to set some parameters: we index
only documents with at least 4,000 characters, remove special pages (e.g. category
pages), we set the context size in temporal index to 256 characters.

We perform the experiment on a virtual machinewith four virtual cores and 32GB
of RAM. Table3 reports some statistics related to the indexing step. The indexing
time is very high due to the complexity of the temporal extraction algorithm and the

Table 3 Indexing
performance

Statistics Value

Number of documents 168,845

Number of temporal
expressions

6,615,430

Indexing time (h) 68

Indexing time (doc./min.) 41, 38



Time Event Extraction to Boost an Information Retrieval System 9

Table 4 Results for the query “19810429”

Result
rank

Wikipedia page Time context

1 Paul Breitner nel 1981, richiamato da Jupp Derwall, nel
frattempo divenuto nuovo commissario tecnico
della Germania Ovest, e con il quale aveva
comunque avuto accese discussioni a distanza. Il
“nuovo debutto” avviene ad Amburgo il 29 aprile
contro l’Austria

2 . . .E tu vivrai nel terrore!
L’aldilà

Warbeck e Catriona McColl, presente nei
contenuti speciali del DVD edito dalla NoShame.
Accoglienza. Il film uscì in Italia il 29 aprile 1981
e incassò in totale 747.615.662 lire. Distribuito per
i mercati esteri dalla VIP International, ottenne un
ottimo successo

3 RCS Media Group L’operazione venne perfezionata il 29 aprile 1981.
Quel giorno una società dell’Ambrosiano (quindi
di Calvi), la “Centrale Finanziaria S.p.A.” effettuò
l’acquisto del 40% di azioni Rizzoli

huge number of documents.We speed up the temporal event extraction implementing
a multi threads architecture, in particular in this evaluation we enable four threads
for the extraction.

One of the most appropriate scenarios consists in finding events that happened
in a specific date. For example, one query could be interested in listing all events
happened on 29 April 1981. In this case the time query is “19810429” while the
keyword query is empty. The first three results are shown in Table4.

We report in bold the temporal expressions that match the query. It is important
to note that in the first result the year “1981” appears distant from both the month
and the day, but the Text Processing component is able to correctly recognize and
normalize the date.

Another interesting scenario is to find events related to a specific topic in a
particular time period. For example, Table 5 reports the first three results for the
query: “terremoti tra il 1600 ed il 1700” (earthquakes between 1600 and 1700). This
query is split in its keyword qk =“terremoti” (earthquakes) and temporal component
qt = [15991231 TO 16991231].

Table6 shows the usage of time query operators, in particular of wild-cards. We
are interested in facts related to computers which happened in January 1984 using
the time query pattern “198401??”.

As reported in Table6, the first two results regard events whose time interval
encompasses the time expressed in the query, since they took place in 1984, while
the third result shows an event that completely fulfil the time requirements expressed
in the temporal query.



10 P. Basile et al.

Table 5 Results for the query “earthquakes between 1600 and 1700”

Result
rank

Wikipedia page Time context

1 Terremoto della Calabria dell’8
giugno 1638

Il terremoto dell’8 giugno 1638 fu un disastroso
terremoto che colpì la Calabria, in particolare il
Crotonese e parte del territorio già colpito nei
giorni 27 e 28 marzo del 1638

2 Eruzione dell’Etna del 1669 1669 10 marzo − M = 4.8 Nicolosi Terremoto
con effetti distruttivi nel catanese in particolare a
Nicolosi in seguito all’eruzione dell’Etna
conosciuta come Eruzione dell’Etna del 1669. Il
25 febbraio e l’8 e 10 marzo del 1669 una serie di
violenti terremoti

3 Terremoto del Val di Noto del
1693

l’evento catastrofico di maggiori dimensioni che
abbia colpito la Sicilia orientale in tempi storici.Il
terremoto del 9 Gennaio 1693

Table 6 Results for the query “computer” with the temporal pattern “198401??”

Result
rank

Wikipedia page Time context

1 Apple III L’Apple III, detto anche Apple ///, fu un personal
computer prodotto e commercializzato da Apple
Computer dal 1980 al 1984 come successore
dell’Apple II

2 Home computer Apple Macintosh (1984), il primo home/personal
computer basato su una interfaccia grafica, nonch
il primo a 16/32-bit

3 Apple Macintosh Apple Computer (oggi Apple Inc.).
Commercializzato dal 24 gennaio 1984 al 1
ottobre 1985, il Macintosh il capostipite
dell’omonima famiglia

Table 7 Results for the query “nato” (born) with the time constraint “[primavera 1980 TO autunno
1980]” ([spring 1980 TO autumn 1980])

Result
rank

Wikipedia page Time context

1 Binningen (Svizzera) Gianluca Bazzoli, (nato il 2 maggio 1980), attore

2 SunSet Swish conosciuti anche con l’acronimo SSS - sono un
gruppo musicale J-Pop giapponese. Membri -
Daisuke Saeki nato il 28 agosto 1980. Cantante. -
Yki Tomita nato il 13 luglio 1980. Chitarrista. -
Junz? Ishida nato il 28 febbraio 1981. Pianista

3 Foggia pugile Giuseppe Colucci (nato a Foggia il 24
agosto 1980)



Time Event Extraction to Boost an Information Retrieval System 11

Table7 reports results about time constraints expressed in written form, for exam-
ple “[primavera 1980 TO autunno 1980]” ([spring 1980 TO autumn 1980]). In this
case the keyword query is nato (born).

5 Conclusions and Future Work

We proposed a “Time-Aware” IR system able to extract, index, and retrieve temporal
information. The system expands a classical keyword-based search through tempo-
ral constraints. Temporal expressions, automatically extracted from documents, are
indexed through a structure that enables both keyword- and time-matching. As a
result, TAIR retrieves a list of text fragments that match the temporal constraints,
and are relevant for the query topic. We proposed a preliminary case study indexing
all the Italian Wikipedia and described some retrieval scenarios which would benefit
from the proposed IR model.

As future work we plan to improve both recognition and normalization of time
expressions, extending some particular TimeML specifications that in this prelimi-
nary work were not taken into account during the normalization process. Moreover,
we will perform a deep “in-vitro” evaluation on a standard document collection.

Acknowledgments The computational work has been executed on the IT resources made avail-
able by two projects financed by the MIUR (Italian Ministry for Education, University and
Research) in the “PONRicerca eCompetitività 2007–2013” Program:ReCaS (Azione I—Interventi
di rafforzamento strutturale, PONa3_00052, Avviso 254/Ric) and PRISMA (Asse II—Sostegno
all’innovazione, PON04a2_A).

References

1. Alonso, O., Gertz, M.: Clustering of search results using temporal attributes. In: Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 597–598. ACM (2006)

2. Alonso, O., Gertz, M., Baeza-Yates, R.: On the value of temporal information in information
retrieval. SIGIR Forum 41(2), 35–41 (2007)

3. Alonso, O., Gertz, M., Baeza-Yates, R.: Clustering and exploring search results using timeline
constructions. In: Proceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pp. 97–106. ACM (2009)

4. Alonso, O., Strötgen, J., Baeza-Yates, R.A., Gertz, M.: Temporal information retrieval: chal-
lenges and opportunities. In: Proceedings of the 1st International Temporal Web Analytics
Workshop (TWAW 2011), vol. 11, pp. 1–8 (2011)

5. Arikan, I., Bedathur, S.J., Berberich, K.: Time will tell: leveraging temporal expressions in
IR. In: Baeza-Yates, R.A., Boldi, P., Ribeiro-Neto, B.A., Cambazoglu, B.B. (eds.) Proceedings
of the 2ND International Conference on Web Search and Web Data Mining, WSDM 2009,
Barcelona, Spain, February 9–11, 2009. ACM (2009)

6. Berberich, K., Bedathur, S., Alonso, O., Weikum, G.: A language modeling approach for
temporal information needs. In: Proceedings of the 32nd European Conference on Advances
in Information Retrieval, ECIR’2010, pp. 13–25. Springer (2010)



12 P. Basile et al.

7. Campos, R., Dias, G., Jorge, A.M., Jatowt, A.: Survey of temporal information retrieval and
related applications. ACM Comput. Surv. 47(2), 15:1–15:41 (2014)

8. Chang, A.X., Manning, C.D.: SUTime: a library for recognizing and normalizing time expres-
sions. In: LREC, pp. 3735–3740 (2012)

9. Elsas, J.L., Dumais, S.T.: Leveraging temporal dynamics of document content in relevance
ranking. In: Proceedings of the 3rd ACM International Conference on Web Search and Data
Mining, WSDM ’10, pp. 1–10. ACM (2010)

10. Hienert, D., Luciano, F.: Extraction of historical events fromWikipedia. In: Proceedings of the
First International Workshop on Knowledge Discovery and Data Mining Meets Linked Open
Data, pp. 25–36 (2011)

11. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Trans. Asian Lang. Inf.
Process. (Special Issue on Temporal Information Processing) 3(1), 66–85 (2004)

12. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally
enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

13. Kanhabua, N., Nørvåg, K.: Learning to rank search results for time-sensitive queries. In: Pro-
ceedings of the 21st ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’12, pp. 2463–2466. ACM (2012)

14. Kuzey,E.,Weikum,G.: Extraction of temporal facts and events fromWikipedia. In: Proceedings
of the 2nd Temporal Web Analytics Workshop, pp. 25–32. ACM (2012)

15. Ling, X., Weld, D.S.: Temporal information extraction. In: Proceedings of the 24th Conference
on Artificial Intelligence (AAAI 2010). Atlanta, GA (2010)

16. Matthews,M., Tolchinsky, P., Blanco,R.,Atserias, J.,Mika, P., Zaragoza,H.: Searching through
time in the New York Times. In: Proceedings of the Fourth Workshop on Human-Computer
Interaction and Information Retrieval (HCIR 10), pp. 41–44 (2010)

17. Nunes, S., Ribeiro, C., David, G.: Use of temporal expressions inweb search. In: Proceedings of
the IR Research, 30th European Conference on Advances in Information Retrieval, ECIR’08,
pp. 580–584. Springer (2008)

18. Pustejovsky, J., Castano, J.M., Ingria, R., Sauri, R., Gaizauskas, R.J., Setzer, A., Katz, G.,
Radev, D.R.: TimeML: robust specification of event and temporal expressions in text. NewDir.
Quest. Answ. 3, 28–34 (2003)

19. Saurí, R., Knippen, R., Verhagen, M., Pustejovsky, J.: Evita: A robust event recognizer for QA
systems. In: Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pp. 700–707. ACL (2005)

20. Strötgen, J., Zell, J., Gertz, M.: HeidelTime: tuning english and developing Spanish resources
for TempEval-3. In: 2nd Joint Conference on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the 7th International Workshop on Semantic Evaluation, pp. 15–19.
ACL (2013)

21. UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., Pustejovsky, J.: Semeval-
2013 task 1: Tempeval-3: Evaluating time expressions, events, and temporal relations. In: 2nd
Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings
of the 7th International Workshop on Semantic Evaluation, pp. 1–9. ACL (2013)

22. Vandenbussche, P.Y., Teissèdre, C.: Events retrieval using enhanced semantic web knowledge.
In: Workshop DeRIVE 2011 (Detection, Representation, and Exploitation of Events in the
Semantic Web) in cunjunction with 10th International Semantic Web Conference 2011 (ISWC
2011) (2011)

23. Verhagen, M., Sauri, R., Caselli, T., Pustejovsky, J.: SemEval-2010 Task 13: TempEval-2. In:
Proceedings of the 5th InternationalWorkshop on Semantic Evaluation, pp. 57–62. ACL (2010)

24. Whiting, S., Jose, J., Alonso, O.: Wikipedia as a time machine. In: Proceedings of the Com-
panion Publication of the 23rd International Conference on World Wide Web Companion, pp.
857–862. International World Wide Web Conferences Steering Committee (2014)


	Time Event Extraction to Boost an Information Retrieval System
	1 Introduction
	2 Time-Aware IR Model
	2.1 Text Processing Component
	2.2 The Indexing Component
	2.3 The Search Component

	3 System Implementation
	4 Use Case
	5 Conclusions and Future Work
	References


