
Bettina Berendt · Björn Bringmann
Élisa Fromont · Gemma Garriga
Pauli Miettinen · Nikolaj Tatti
Volker Tresp (Eds.)

 123

LN
AI

 9
85

3

European Conference, ECML PKDD 2016
Riva del Garda, Italy, September 19–23, 2016
Proceedings, Part III

Machine Learning and
Knowledge Discovery
in Databases



Lecture Notes in Artificial Intelligence 9853

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Bettina Berendt • Björn Bringmann
Élisa Fromont • Gemma Garriga
Pauli Miettinen • Nikolaj Tatti
Volker Tresp (Eds.)

Machine Learning and
Knowledge Discovery
in Databases
European Conference, ECML PKDD 2016
Riva del Garda, Italy, September 19–23, 2016
Proceedings, Part III

123



Editors
Bettina Berendt
Department of Computer Science
KU Leuven
Leuven
Belgium

Björn Bringmann
Deloitte GmbH
Munich
Germany

Élisa Fromont
Laboratoire Hubert Curien
Jean Monnet University
Saint-Etienne
France

Gemma Garriga
Allianz SE
Munich
Germany

Pauli Miettinen
Max Planck Institute for Informatics
Saarbrücken
Germany

Nikolaj Tatti
Aalto University School of Science
Espoo
Finland

Volker Tresp
Siemens AG and Ludwig Maximilians
University of Munich

Munich
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-46130-4 ISBN 978-3-319-46131-1 (eBook)
DOI 10.1007/978-3-319-46131-1

Library of Congress Control Number: 2016950748

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Foreword to the ECML PKDD 2016 Demo Track

It is our great pleasure to introduce the Demo Track of ECML PKDD 2016. This year’s
track continues its tradition of providing a forum for researchers and practitioners to
demonstrate novel systems and research prototypes, using data mining and machine
learning techniques in a variety of application domains. Besides the live demonstrations
during the conference period, each selected demo is allocated a 4-page paper in the
proceedings. The Demo Track of ECML PKDD 2016 solicited working systems based
on state-of-the-art machine learning and data mining technology. Both innovative
prototype implementations and mature systems were welcome, provided that they used
machine learning techniques and knowledge discovery processes in a real setting. The
evaluation criteria encompassed innovation, interestingness for the target users, and
whether it would be of interest mainly for researchers, mainly for practitioners, or both.
Each submission was evaluated by at least three reviewers. This year we received 29
submissions. Sixteen demos were presented at the Demo Session during the conference
in Riva del Garda. The accepted demos cover a wide range of machine learning and
data mining techniques, as well as a very diverse set of real-world application domains.
The success of the Demo Track of ECML PKDD 2016 is due to the effort of several
people. First and foremost, we thank the authors for their submissions and their
engagement in turning data mining and machine learning methods to software that can
be presented and tried by others. We would like to thank all members of our Program
Committee for helping us in the difficult task of selecting the most interesting sub-
missions. Finally, we would like to thank the ECML PKDD General Chairs and the
Program Chairs for entrusting us with this track, and the whole Organizing Committee
for the practical support and the logistics for the Demo Track. We hope that the readers
will enjoy this set of short papers and the demonstrated systems, and that the Demo
Session will inspire further ECML PKDD participants to turn their research ideas into
working prototypes that can be used by other researchers and practitioners in machine
learning and data mining.

September 2016 Élisa Fromont
Nikolaj Tatti



Foreword to the ECML PKDD 2016 Industry Track

We are pleased to present the proceedings of the Industrial, Governmental, and NGO
Track of ECML PKDD 2016. This track aims at bringing together participants from
academia, industry, government, and NGOs (non-governmental organizations) in a
venue that promotes industrial experiences and real-world applications of machine
learning and data science.

The program included two invited talks given by Michael May (Siemens) and
Matthias Seeger (Amazon), and 10 high-quality papers featuring the technical talks.
Given a total of 50 submissions, this year’s industrial track was highly selective: only
10 papers could be accepted for publication and for presentation at the conference;
corresponding to an acceptance rate of 20 %. Each of the 50 submissions was thor-
oughly reviewed, and accepted papers were chosen both for their originality and for the
application they promoted.

The accepted papers focus on topics ranging from machine learning methods and
data science processes to dedicated applications. Topics covered include time series
mining and multi-target classification, visualization, software engineering, robotics,
bioinformatics, steel production, grammar-based text analysis for purposes such as
plagiarism or bible analysis, music recommendation, search task extraction, crowd-
sourcing and social networks, and discrimination discovery.

We thank all the authors who submitted the 50 papers for their work and effort to
bring machine learning and data science to industry. We also thank all the PC members
for their substantial efforts to guarantee the quality of these proceedings.

We hope that this program will inspire the growth of machine learning in all areas of
industry.

September 2016 Björn Bringmann
Gemma Garriga

Volker Tresp



Foreword to the ECML PKDD 2016 Nectar Track

The goal of the ECML PKDD Nectar Track, started in 2012, is to offer conference
attendees a compact overview of recent scientific advances at the frontier of machine
learning and data mining with other disciplines, as already published in related con-
ferences and journals. Submissions describing work that summarizes a line of work
comprising older and more recent papers were particularly encouraged. Authors were
invited to submit 4-page summaries of their published work.

We received 28 submissions, each of which was reviewed by two or three PC
members. Thirteen submissions were selected for inclusion in the proceedings and
presentation at the conference. The accepted papers range from interesting and
important applications to data mining and machine learning methods and processes.
Topics covered include methods and applications for time series mining and multi-
target classification, visualization, software engineering, robotics, bioinformatics, steel
production, grammar-based text analysis for purposes such as plagiarism or bible
analysis, music recommendation, search task extraction, crowdsourcing and social
networks, and discrimination discovery. The papers illustrate how the questions and
methods of these areas pose new challenges for data mining and machine learning,
thereby contributing also to the development of these core fields of ECML PKDD.

We thank all authors of submitted papers and all PC members for their excellent
work. We are also very grateful to the ECML PKDD General Chairs and the Program
Chairs for entrusting us with this track. We hope that the readers will enjoy this set of
short papers and their pointers to work at the intersection of machine learning/data
mining and their manifold application areas, and that the papers, presentations, and
discussions will inspire further work in the different disciplines and at their joint
boundaries.

September 2016 Bettina Berendt
Pauli Miettinen
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Invited Talks Abstracts
(Industrial Track)



Towards Industrial Machine Intelligence

Michael May

Siemens Corporate Technology, Munich, Germany

Abstract. The next decade will see a deep transformation of industrial appli-
cations by big data analytics, machine learning and the internet of things.
Industrial applications have a number of unique features, setting them apart from
other domains. Central for many industrial applications in the internet of things
is time series data generated by often hundreds or thousands of sensors at a high
rate, e.g. by a turbine or a smart grid. In a first wave of applications this data is
centrally collected and analyzed in Map-Reduce or streaming systems for
condition monitoring, root cause analysis, or predictive maintenance. The next
step is to shift from centralized analysis to distributed in-field or in situ analytics,
e.g in smart cities or smart grids. The final step will be a distributed, partially
autonomous decision making and learning in massively distributed environ-
ments.

In this talk I will give an overview on Siemens’ journey through this
transformation, highlight early successes, products and prototypes and point out
future challenges on the way towards machine intelligence. I will also discuss
architectural challenges for such systems from a Big Data point of view.

Bio.Michael May is Head of the Technology Field Business Analytics & Monitoring at
Siemens Corporate Technology, Munich, and responsible for eleven research groups in
Europe, US, and Asia. Michael is driving research at Siemens in data analytics,
machine learning and big data architectures. In the last two years he was responsible for
creating the Sinalytics platform for Big Data applications across Siemens’ business.

Before joining Siemens in 2013, Michael was Head of the Knowledge Discovery
Department at the Fraunhofer Institute for Intelligent Analysis and Information Sys-
tems in Bonn, Germany. In cooperation with industry he developed Big Data Analytics
applications in sectors ranging from telecommunication, automotive, and retail to
finance and advertising.

Between 2002 and 2009 Michael coordinated two Europe-wide Data Mining
Research Networks (KDNet, KDubiq). He was local chair of ICML 2005, ILP 2005
and program chair of the ECML PKDD Industrial Track 2015. Michael did his PhD on
machine discovery of causal relationships at the Graduate Programme for Cognitive
Science at the University of Hamburg.



Machine Learning Challenges at Amazon

Matthias Seeger

Amazon, Berlin, Germany

Abstract. At Amazon, some of the world’s largest and most diverse problems in
e-commerce, logistics, digital content management, and cloud computing ser-
vices are being addressed by machine learning on behalf of our customers. In
this talk, I will give an overview of a number of key areas and associated
machine learning challenges.

Bio. Matthias Seeger got his PhD from Edinburgh. He had academic appointments at
UC Berkeley, MPI Tuebingen, Saarbruecken, and EPF Lausanne. Currently, he is a
principal applied scientist at Amazon in Berlin. His interests are in Bayesian methods,
large scale probabilistic learning, active decision making and forecasting.
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Abstract. We present SIDE, a tool for Subjective and Interactive
Visual Data Exploration, which lets users explore high dimensional data
via subjectively informative 2D data visualizations. Many existing visual
analytics tools are either restricted to specific problems and domains or
they aim to find visualizations that align with user’s belief about the
data. In contrast, our generic tool computes data visualizations that
are surprising given a user’s current understanding of the data. The
user’s belief state is represented as a set of projection tiles. Hence, this
user-awareness offers users an efficient way to interactively explore yet-
unknown features of complex high dimensional datasets.

1 Introduction

Exploratory Data Mining is the process of using data mining methods to gain
novel insights into data without having a specific goal in mind. To convey large
amounts of complex information, it is a logical choice to present this information
visually, as the information bandwidth of the eye is much larger than the other
senses, and humans excel at spotting visual patterns [11]. Surprisingly, visual
interactive data mining tools are still rare.

The few tools that exist are either designed for specific problems and domains
(e.g., itemset and subgroup discovery [1,4,7], information retrieval [10], or analy-
sis of networks [2]) and/or aim to present information that align with the user’s
beliefs (e.g., semi-supervised PCA [7]). However, users are typically interested
in finding structures in the data that contrast with their current knowledge [5].

In this paper, we present a generic tool1 that enables users to efficiently
explore data via a sequence of 2D scatter plots, i.e., projections. It models the
user’s beliefs about data by iteratively incorporating their feedback, which in
turn is utilized for calculating an updated data projection. SIDE operates itera-
tively, with three steps in each iteration (see Fig. 1). In step 1, it presents a user
with a ‘surprising’ data projection. In step 2, the user provides feedback about
the projection. Finally, in step 3, the background model is updated to reflect

1 Our tool, SIDE, is freely accessible at http://www.interesting-patterns.net/forsied/
a-tool-for-subjective-and-interactive-visual-data-exploration.

c© Springer International Publishing AG 2016
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the user’s current belief state. It then repeats from step 1, and shows a data
projection that takes into account the updated background model.

2 Subjectively Interesting Projections

SIDE employs a generic method for interactive visual exploration of high dimen-
sional data, with awareness of a user’s belief sate about the data. Due to space
constraints we limit ourselves to describe only the intuition and overview of the
approach. For a full description, we refer the reader to our paper [9].

Fig. 1. This three-step cycle illustrates our tool’s flow of action.

In order to present the user with subjectively informative data projections,
there are two modeling problems [3]. First, we have to maintain a background
model throughout the exploration process. This model accumulates the user’s
feedback, which represents the knowledge they learned from the data projections.
Hence, this model represents a user’s current belief about the data.

The second obstacle is quantification of the informativeness, for which we
employ constrained randomization [6]. The idea is that we sample random data
from the user’s current belief state, where the beliefs are modeled as constraints
to the randomization procedure. Then, we search for projections that contrast
with the random data, and hence that contrast with the current beliefs. That
is, we assume that a data projection that (maximally) deviates from the beliefs
will reveal subjectively novel structures.

Then, an optimization problem arises to find a projection that makes the real
data maximally different from the randomized data. Currently the tool employs
the L1 distance, which can be optimized well using standard optimization tool-
boxes. We have not studied the choice of measure extensively yet.

3 User Interface

SIDE was designed according to three principles for visually controllable data
mining [8], which essentially says that the model and the interactions should be
transparent to users, and the analysis method should be fast enough such that
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the user does not lose their trail of thought. Figure 2 shows the user interface
of our tool. The main component of this interface is the interactive scatter plot
(Fig. 2a). The scatter plot visualizes the projected data (filled dots) and the
randomized data (gray circles) using the same projection. By drawing circles
(Fig. 2b), the user can highlight a projection tile pattern (i.e., a set of filled
dots). Once a set of points is marked, the user can press either feedback button
(Fig. 2c), indicating these points form a cluster. If the users believe the points
are clustered only in the shown projection, they click ‘2D Constraint’, while
‘Cluster Constraint’ indicates they are aware of the fact that these points will
be clustered in other dimensions as well. To identify the defined clusters, data
points associated with the same feedback (i.e., user’s belief) are filled by the
same color (Fig. 2d), and their statistics are shown in a table. The user can
define multiple clusters in a single projection, and they can also undo (Fig. 2e)
the feedback. Once a user finishes exploring the current projection, they can press
‘Update Background Model’ (Fig. 2f). Then, the background model is updated
with the provided feedback and a new scatter plot is computed and presented
to the user, etc.

Fig. 2. Visual layout of interactive dimensionality tool, which contains interact area
(a), projection meta information area (g), and snapshots area (h).

A few extra features are provided to assist the data exploration process: to
gain an intuitive understanding of a projection, the weight vectors associated
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with the projection axes are plotted as bar charts (Fig. 2g). At the bottom of
Fig. 2g, a table lists the mean vectors of each colored point set (i.e., cluster).
The exploration history is maintained by taking snapshots of the background
model when updated, together with the associated data projection (scatter plot)
and bar charts (weight vectors). This history in reverse chronological order is
illustrated in Fig. 2h. The tool also allows a user to click and revert (Fig. 2i) back
to a certain snapshot, to restart from that time point. This allows the user to
discover different aspects of a dataset more consistently. Finally, custom datasets
can be selected for analysis from the drop-down menu (Fig. 2j). Currently our
tool only works with CSV files and it also automatically sub-samples any data set
so that the interactive experience is not compromised. By default, two datasets
are preloaded so that users can get familiar with the tool.

4 Conclusions

We presented SIDE, an interactive exploratory data mining tool that allows
users to visually explore data. By modeling a user’s belief state, our tool is
able to present users with views of data that contrast with and add to their
current knowledge. In contrast to the existing visual analytics systems, our tool
is automatically tailored towards each specific user and able to cope with generic
mining tasks. Thus, users can easily obtain new knowledge about data on top
of their increasingly accurate understandings, providing a more efficient way of
navigating the complex information space hidden in high-dimensional data.

Acknowledgments. This work was supported by the European Union through the
ERC Consolidator Grant FORSIED (project reference 615517), Academy of Finland
(decision 288814), and Tekes (Revolution of Knowledge Work project).
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Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31.
Springer, Heidelberg (2013)

4. Dzyuba, V., van Leeuwen, M.: Interactive discovery of interesting subgroup sets.
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Abstract. We present GMMbuilder, a tool that allows domain scien-
tists to build Gaussian Mixture Models (GMM) that adhere to domain
specific constraints like spatial coherence. Domain experts use this tool
to generate different models, extract stable object communities across
these models, and use these communities to interactively design a final
clustering model that explains the data but also considers prior beliefs
and expectations of the domain experts.

Keywords: Bioarchaeology · Isotopic mapping · Gaussian mixture
models · Interactive clustering · Community detection · Demo

1 Introduction

Data mining has become an indispensable tool for social and the humanities. The
GMMbuilder tool was developed in the context of the interdisciplinary research
project FOR16701 that aims at building an isotopic fingerprint for bioarchaeo-
logical finds (human and animal remains) from excavation sites along the Inn-
Eisack-Adige passage spanning Italy, Austria, and Germany. The data consists
of spatial information on the location of the finds and the ratios of oxygen, stron-
tium, and lead isotopes in the finds. Data mining methods were employed for the
construction of a large scale isotopic map of the area to be used to differentiate
local from non-local finds and to define the place of origin of the latter.

To be useful for origin prediction, the derived model must be based solely on
isotopes, i.e. supplementary information like the spatial origin of the finds should
not be used for model building. Domain knowledge however suggests that the
derived models should also be spatially coherent. Intuitively, this means that
finds coming from the same location should have similar isotope values. How-
ever, the task of building a model of plausible origins of the measured values is
complicated by the noise introduced by the environment, range areas of animals,
import of food, and further confounding factors. Additionally, displacement of
live humans and animals and also animal trading in the past generates mixed

1 www.for1670-transalpine.uni-muenchen.de.
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measurements and spatial outliers. Over the course of many months various clus-
tering models were developed, discussed with the domain experts and refined
based on their feedback. This approach was characterized by very slow turn-
around. GMMbuilder was developed to allow model building and assessment in
an integrated fashion and allow for immediate feedback by domain experts. The
result is a model that fits the data well but it is also in accordance with domain
knowledge (for example, spatial coherence of the models).

2 GMMbuilder

The model is built by identifying strong object communities in the data and incor-
porating the models of these communities into the final clustering model. To derive
the strongly connected components in the data we rely on unsupervised learning.
In particular, we generate multiple clusterings from the data and we find object
formations that are stable across many clusterings. The intuition is that similar
objects should be clustered together across the different clusterings. The domain
expert has a very active role in the whole process: from the selection of the clus-
terings from which the communities will be extracted to the selection of the com-
munities that will form the basis for the final clustering model. Figure 1 depicts
theGMMbuilder architecture, consisting of several modules that will be presented
hereafter. As it is shown in this figure the role of the domain expert is vital.

Clusterer module. The Clusterer module derives a clustering over a given
dataset D. Domain knowledge suggests continuous values for the measurements,
which can be best modeled as a mixture model of continuous distributions, like a
GaussianMixtureModel (GMM).Therefore, theExpectation-Maximization (EM)

Clusterer

Cluster 
Selection

Community
Extractor

GMMbuilder
UI

Community 
Selection

Map

GMM

Data

Params

Input

Model

Fig. 1. An overview of GMMbuilder . Oval shapes depict user interaction.
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algorithm [1] was applied to extract a robust indication of the data’s structure in
an unsupervised way. EM fits k multi-variate normal distributions over the given
dataset, k is a user-defined input. The result is a soft-clustering; in our dataset
though the assignment is typically fairly hard [2].

Input and Cluster Selection modules. The selection of the input data D for the
GMM model is crucial as it affects the derived clustering model. Therefore, we rely
on the domain experts to decide which of the generated models are acceptable. The
decision is based on their expertise, however in order to facilitate their task, we pro-
vide a detailed clustering description, in terms of the spatial projection of the clus-
ter members and the distribution of the isotope values in each cluster. The result
of this step is a set of user-accepted clusterings C.

CommunityExtractormodule. Byexamining thedifferent clusterings,we can iden-
tify objects that are frequently assigned to the same cluster. We call such object
formations “stable” communities. More formally, a stable community c consists of
a set of points p ∈ D that are clustered into the same cluster across multiple clus-
terings C:

c(C1, C2, . . . , Cn) = {p | p ∈ C1,i ∧ p ∈ C2,j ∧ · · · ∧ p ∈ Cn,m}

where Ci,j is the set of points in the jth cluster in clustering Ci.
The idea is to use these strong components as building blocks for the final clus-

tering, because their members have shown a strong adhesion to each other over a
range of clusterings and therefore, they are more likely to represent a cluster in any
final model-based clustering.

GMM module. The stable communities extracted from the previous step which
indicate strong connections in their data objects might not agree with domain
experts’ prior beliefs and expectations. For example, a community might consist
of objects which are close in the isotopic space, but their spatial coordinates are far
apart. Since the domain experts are interested in an isotopic clustering model that
is also spatially coherent, the aforementioned community is not a good “seed” for
the GMMbuilder.

Therefore, we rely again on the domain expert to decide which of the detected
stable communities should inform the final model generation. When the expert
selects a community c to evaluate, a Gaussian model of its objects is extracted and
added to the GMM. This new GMM is used to re-evaluate the membership prob-
ability of each data point in our dataset D and a new clustering is created based
on c’s model. The user can directly inspect the results and decide whether it is a
good or bad model for final clustering. To support the user’s decision, the commu-
nity is presented to the user by depicting the spatial distribution of the community
members and their feature distribution. The former is shown in a map, the latter as
parallel coordinates (c.f. Fig. 2). The user can then select another community c′ to
evaluate. Again a Gaussian model of its objects will be extracted and added to the
GMM. The old component c and the new component c′ will be used to re-evaluate



GMMbuilder – User-Driven Discovery of Clustering Structure 11

the membership probability of all points inD. This is an iterative process, the user
can add or remove communities and directly inspect the effect on the final clus-
tering. The output of this step is a set of user-accepted communities from which
Gaussian models are extracted. All points in D will be assigned to these models,
deriving the final clustering.

3 Demo Scenario

In our example scenario we generate different clusterings by varying the number
of clusters for the EM algorithm. The users can inspect the individual clusterings,
with the help of the clustering statistics and visualization window, and select those
that should contribute to the final model. The stable communities, derived from
the selected clusterings, will be presented to the user. The user can interactively
choosewhichof these communities shouldbepart of thefinal clusteringmodel.User
decisions are reflected in the final model so the user can directly inspect the effect of
her decisions and proceed accordingly by removing or adding certain components.
GMMbuilder is a web-based tool. A screenshot of the interactive model building
step is shown in Fig. 2.

Fig. 2. GMMbuilder : Interactive GMM building - inspecting one of the communities
found in all three clusterings (orange, green and blue). (Color figure online)
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Abstract. Large amounts of multivariate time series data are being
generated every day. Understanding this data and finding patterns in it is
a contemporary task. To find prominent patterns present in multivariate
time series, one can use biclustering, that is looking for patterns both
in subsets of variables that show coherent behavior and in a number of
time periods. For this, an experimental tool is needed.

Here, we present Bipeline, a web-based visualization tool that provides
both experts and non-experts with a pipeline for experimenting with
multivariate time series biclustering. With Bipeline, it is straightforward
to save experiments and try different biclustering algorithms, enabling
users to intuitively go from pre-processing to visual analysis of biclusters.

1 Introduction

The development of sensor networks has resulted in an explosion of time series
data over the last years. These are large multivariate time series, where variables
are collected synchronously over time. Thus, pattern mining of multivariate time
series is becoming highly relevant, both in scientific research and industrial appli-
cations. Note that in the multivariate setting, not only patterns in one variable
over time are relevant, but also relationships between multiple variables could
provide useful insights. This task can be seen as clustering both time periods
and variables, also know as biclustering [8–10].

Given a multivariate time series, it could be useful to try different biclustering
algorithms. Also, one needs to optimize parameters across different steps, such as
pre-processing, segmentation and biclustering itself. For each of these steps, there
are many parameters to be optimized, leading to a large number of experiments.
Furthermore, at each step, visual inspection is highly important for researchers
to validate their findings. However, there is a lack of tools for this process.

We propose Bipeline, a web-based visualization tool that provides a pipeline
for applying biclustering to multivariate time series. This tool is readily acces-
sible to anyone via a web-based interface, allowing them to navigate through
multiple experimental settings. Parameters can be interactively tuned, with web
components such as checkboxes, sliders and drop-down menus. At each step of
the biclustering process, feedback is provided be means of visualizations, with
plots such as pre-processed time series, segmentation boundaries and biclusters.
One or more biclusters can be plotted with a simple selection procedure.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46131-1 3
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2 Related Work

Until now, biclustering software tools with a graphical user interface have been
developed to deal with biological gene expression data. BicOverlapper [1] is a tool
for visual inspection of gene expression biclusters, introducing a novel visualiza-
tion algorithm Overlapper to represent biclusters. Similarly, BiCluster Viewer [2]
is a visualization tool for efficient and interactive analysis of large gene expression
datasets. BicAT [3] implements multiple biclustering algorithms, for visualiza-
tion and analysis of biclusters for expression data. BiGGEsTS [4] provides an
environment for biclustering time series gene expression data.

All tools mentioned above integrate techniques for pre-processing and biclus-
tering analysis, specifically for gene expression data. Their main purpose is to
support biologists with the analysis and exploration of the gene expression data.
However, these tools do not support biclustering analysis for multivariate time
series. Also, most of them do not provide a pipeline experiment environment.
Bipeline provides such a pipeline, where intermediate results can be inspected
and saved. Using a friendly and interactive plotting environment, both non-
experts and experts can pre-process, segment and analyze biclusters for multi-
variate time series.

3 Tool Overview

Bipeline is a web-based application that provides a pipeline to pre-process, seg-
ment and bicluster multivariate time series. An online version is available [12],
which is compatible with all modern web browsers and across different client
platforms. Both the user interface in the web browser and the server are imple-
mented using R Shiny package [5]. In Fig. 1, the system architecture illustrates
the experimental pipeline and how each individual step relates to the other steps:

Fig. 1. A overview of Bipeline architecture.

Importing: Users can upload datasets and have a first view of the data table
and descriptive statistics (minimum, maximum, mean, . . . ). This first inspection,
although useful, is not enough to assess the quality of the data.
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Plotting: To gain further insight into the time series, it is crucial to have a visual
inspection of the time series. The plotting panel includes multiple interactive
plotting views, using a plotting R package dygraphs [6]. An example of these
plots is illustrated in Fig. 2(a). These interactive plots allow zoom in and out
functionality, which is a highly desirable functionality for visual inspection of
large time series.

Pre-processing: This panel allows preliminary handling of data such as:
excluding variables, normalization, conditional removal and replacement of data,
and outlier removal. Users can alternate between plotting (Fig. 2(a)), and pre-
processing (Fig. 2(b)) until satisfied, then export the pre-processed data by click-
ing the Save button.

Segmentation: This allows segmentation of the data, one of the steps neces-
sary for the biclustering as suggested by [10]. By default, all variables share
the same parameter settings: window size, overlap and threshold can be easily
tuned. For greater flexibility, the user can dynamically create new tabs to set
the parameters for individual variables. Additionally, a minimum segment size
is customizable, and the tool will merge short segments to its most similar con-
tiguous segment. Segmentation results can be visualized (Fig. 2(c)), saved and
(re-)loaded, allowing the results to be used during the next step, biclustering.

Biclustering: In Bipeline, we implement a number of biclustering algorithms,
group in three categories. The baseline algorithms allow users to try well-known

(a) Plotting (b) Pre-processing

(c) Segmentation (d) Biclustering

Fig. 2. Bipeline user interface. (Color figure online)
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biclustering algorithms (e.g., Cheng & Church) [8,9], that have been imple-
mented using R package biclust [7]. Segmentation + Baseline biclusters the
time series using an average representation of each segment, instead of using
individual rows. Segmentation + BiclusTS is a novel algorithm [10] introduced
to recognize similarities between segments, using probability density-difference
estimation [11]. All biclusters are plotted in colored blocks, as shown in Fig. 2(d).
Users can select the biclusters they want to see, and the plot will respond with
a real-time update.

Multiple features are shared by both Segmentation and Biclustering. Plots
and parameter tables from different experiments are kept in history, allowing
users to navigate back and forth to compare results and optimize parameters.
During computationally expensive tasks, the front-end displays a progress bar,
while the back-end server is busy carrying out the calculations. Furthermore,
interactive web components can be saved into images with a single click.

4 Conclusion

We propose Bipeline, a web-based visualization tool, which provides a pipeline
for applying biclustering to multivariate time series. Its main features include:
visual inspection at multiple stages, interactive zoom in and out plotting, easy
navigation, storage of results, and saving plots and experimental settings using
a single click. Bipeline’s intuitive web-based design, makes it accessible both to
experts and non-experts, and compatible across platforms.

References

1. Santamara, R., Thern, R., Quintales, L.: BicOverlapper: a tool for bicluster visu-
alization. J. Bioinform. 24(9), 1212–1213 (2008)

2. Heinrich, J., Seifert, R., Burch, M., Weiskopf, D.: BiCluster viewer: a visualization
tool for analyzing gene expression data. In: Bebis, G., et al. (eds.) ISVC 2011, Part
I. LNCS, vol. 6938, pp. 641–652. Springer, Heidelberg (2011)

3. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: BicAT: a biclus-
tering analysis toolbox. J. Bioinform. 22(10), 1282–1283 (2006)

4. Gonalves, J., Madeira, S., Oliveira, A.: BiGGEsTS: integrated environment for
biclustering analysis of time series gene expression data. J. BMC, 1–11 (2009)

5. Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J.: Shiny: Web Application
Framework for R. R package version 0.13.1 (2016)

6. Vanderkam, D., Allaire, J., Owen, J., Gromer, D., Shevtsov, P., Thieurmel, B.:
Dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R
package (2016)

7. Kaiser, S., Santamaria, R., Khamiakova, T., Sill, M., Theron, R., Quintales, L.,
Leisch, F., DeTroyer, E.: Biclust: BiCluster Algorithms. R package version 1.2.0
(2015)

8. Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology, pp.
93–103 (2000)



16 R. Cachucho et al.

9. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a
survey. J. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)

10. Cachucho, R., Nijssen, S., Liu, K., Knobbe, A.: Bipeline: a web-based visualization
tool for biclustering of multivariate time series. In: Berendt, B., Bringmann, B.,
Fromont, E. (eds.) ECML PKDD 2016, Part III. LNCS(LNAI), vol. 9853. pp.
12–16. Springer, Heidelberg (2016)

11. Sugiyama, M., Kanamori, T., Suzuki, T., Plessis, M., Liu, S., Takeuchi, I.: Density-
difference estimation. In: Proceedings of NIPS, pp. 683–691 (2012)

12. http://fr.liacs.nl:7000

http://fr.liacs.nl:7000


h(odor): Interactive Discovery of Hypotheses on
the Structure-Odor Relationship in Neuroscience

Guillaume Bosc1(B), Marc Plantevit1, Jean-François Boulicaut1,
Moustafa Bensafi2, and Mehdi Kaytoue1
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Abstract. From a molecule to the brain perception, olfaction is a com-
plex phenomenon that remains to be fully understood in neuroscience.
Latest studies reveal that the physico-chemical properties of volatile
molecules can partly explain the odor perception. Neuroscientists are
then looking for new hypotheses to guide their research: physico-chemical
descriptors distinguishing a subset of perceived odors. To answer this
problem, we present the platform h(odor) that implements descriptive
rule discovery algorithms suited for this task. Most importantly, the
olfaction experts can interact with the discovery algorithm to guide the
search in a huge description space w.r.t their non-formalized background
knowledge thanks to an ergonomic user interface.

1 Introduction

Olfaction, or the ability to perceive odors, was acknowledged as an object of sci-
ence (Nobel prize 2004 [2]). The olfactory percept encoded in odorant chemicals
contributes to our emotional balance and well-being. It is indeed agreed that
the physico-chemical characteristics of odorants affect the olfactory percept [6],
but no simple and/or universal rule governing this Structure Odor Relationship
(SOR) has yet been identified. Why does this odorant smell of roses and that one
of lemon? As only a part of the odorant message is encoded in the chemical struc-
ture, chemists and neuro-scientists are interested in eliciting hypotheses for the
SOR problem under the form of human-readable descriptive rules: for example,
〈MolecularWeight ≤ 151.28, 23 ≤ #atoms〉 → {Honey, V anillin}. The discov-
ery of such rules should bring new insights in the understanding of olfaction and
has applications for Healthcare and the perfume and flavor industries.

Subgroup Discovery algorithms are able to discover such rules [7]. As olfaction
datasets are composed of thousands of attributes, multi-labeled with a highly
skewed distribution, an interactive mining of rules is interesting for experts
that cannot formalize their domain knowledge, neither their mining preferences.
Existing interactive subgroup discovery tools [3–5] can thus not be directly used
due to the specificity of olfactory datasets. As such, we propose an original
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 17–21, 2016.
DOI: 10.1007/978-3-319-46131-1 4
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platform, h(odor), that enables to extract descriptive rules on physicochemical
properties that distinguish odors through an interactive process between the
algorithm and the neuroscientists.

2 System Overview

Input data and desired output. Our demo olfaction dataset is composed of
1,700 odorant molecules (objects) described by 1, 500 physicochemical descrip-
tors [1] and are associated to several olfactory qualities (odors) among 74 odors
given by scent experts. The data are represented in a tabular format (several CSV
files). The physicochemical properties are numeric attributes and each olfactory
quality is boolean. The goal is to extract subgroups s = (d, L), i.e., descriptive
rules, that covers a subset of molecules (supp(s)) where the description d over
the physicochemical descriptors distinguishes a subset of odors L.

Algorithm sketch. The search space of subgroups is a lattice based on both
the attribute space and the target space. The child s′ = (d′, L′) of a subgroup
s = (d, L) of the lattice is a specialization of s. This specialization consists of
(i) restricting the interval of a descriptor in d, or (ii) adding a new odor to L.
Since the search space growths exponentially with the number of descriptors and
labels, a naive exploration (DFS or BFS) is not suitable. For that, we use the
beam-search heuristic (BS). BS enables to proceed to a restricted BFS, i.e., for
each level of the search space only a part of the subgroups are kept and put
into the beam. Only the subgroups in the beam of the current level are explored
in the next one [4]. The quality of a subgroup is evaluated by a measure. It
adapts the F1-score by taking into account the label distribution for weighting
the precision and recall.

System architecture. A core module (server) is contacted by a client (Web
interface) to initiate the mining algorithm with the given parameters. This core
module allows the user to interact/guide the algorithm exploration based on the
likes/dislikes of the user (Fig. 1).

Dataset

SD Algorithm

Core Module

Interaction

Communication
socket

Reads

UI

Fig. 1. System architecture

Core Module. This is the back-end of the h(odor)
application. Based on NodeJS, the Core Module is
the gateway between the user and the algorithm:
it is in charge of the interaction. For that, JSON
data are sent to and received from the SD Algorithm
through sockets thanks to a dedicated communica-
tion process. Moreover, this module controls the UI
to display results extracted from the SD Algorithm
and collects the user preferences (like/dislike).

User Interface (UI). The front-end of the appli-
cation, based on Bootstrap and AngularJS, enables
the user to select the parameters of the SD Algo-
rithm and to run it. Once the subgroups of the first
level of the beam search are extracted (the algorithm
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is paused waiting the user preferences), the UI displays these subgroups and the
user can like/dislike some of them: the liked subgroups are forced to be within
the beam for the next step, and the disliked subgroups are removed from the
beam. When the algorithm finishes, the UI displays the results.

3 Use Case: Eliciting Hypotheses for the Musk Odor

We develop a use case of the application as an end user, typically a neuroscientist
or a odor-chemist that seeks to extract descriptive rules to study the Structure-
Odor Relationships. The application is available online with a video tutorial
supporting this use case http://liris.cnrs.fr/dm2l/hodor/. In this scenario, we
proceed in the following steps, knowing that the expert wishes to discover rules
involving at least the musk odor.

1- Algorithms, parameters and dataset selection. In the Algorithms section
of the left hand side menu, the user can choose the exploration method and
its parameters. In this use case, we consider the ELMMut algorithm. This
algorithm implements a beam search strategy to extract subgroups based on a
quality measure. We plan to add new/existing algorithms and subgroup quality
measures. Once the exploration method is chosen, we have to select the olfactory
dataset as introduced in the previous section, and choose to focus on the musk
odor. Considering our use case, we decided to set the size of the beam to 50
(the exploration is quite large enough) and the minimum support threshold to
15 (since |supp(Musk)| = 52, at least the subgroups have to cover 30% of the
musk odorants). Other parameters are fixed to their default value.

2- Interactive running steps. When the datasets and the parameters have been
fixed, the user can launch the mining task clicking on the Start mining button.
When the first step of the beam search is finished, the SD Algorithm is paused
and the subgroups obtained at this step are displayed to the user. The interac-
tion view in the front-end presents the olfactory qualities involved at this level of
the exploration (see Fig. 2). Each subgroup is displayed in a white box with the
current descriptive rule on the physicochemical descriptors and some quantita-
tive measures. For each subgroup box, the user can select in the top right corner
if he likes/dislikes this subgroup. For example, at the first step, the application
displays the subgroups extracted at the first level for the Musk odor. As it is a
known fact in chemistry that the musk odor involves large molecules, we like the
subgroup which description is d = [238.46 ≤ MW ≤ 270.41]. After that, we keep
on exploring by clicking the Next button. Another interactive step begins, but the
expert has no particular opinion so he can jump to the next level. Once the algo-
rithm finished (the quality measures cannot improve), we can study the table of
results. For example, the description of one of the best extracted subgroups s is:
[238.46 ≤ MW ≤ 270.41][−0.931 ≤ Hy ≤ −0.621][2.714 ≤ MLOGP ≤ 4.817][384.96 ≤ SAtot ≤
447.506][0 ≤ nR07 ≤ 0][0 ≤ ARR ≤ 0.316][1 ≤ nCsp2 ≤ 7] that involves large odorants.
Moreover, according to the experts, this latter topological descriptor is consis-
tent with the presence of double bonds (or so-called sp2 carbon atoms) within
most musky chemical structure, that provides them with a certain hydrophilic-
ity. The goal of the h(odor) application is to confirm knowledge and to elicit new

http://liris.cnrs.fr/dm2l/hodor/
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Fig. 2. The interaction view of the application. For each step of the beam search, the
algorithm waits for the user’s preferences (like/dislike). The subgroups are displayed
into white boxes. On the right part, complementary information is displayed: part of
value domain of a chosen restriction on a descriptor, and parameters of the run.

hypotheses for the SOR problem. In the case of s, the neuroscientists are inter-
ested in understanding why these descriptors (excepted the Molecular Weight)
are involved in the Musk odor.

Learning user preferences. Besides, the h(odor) application enables to save
all the choices taken by the different users. Indeed, the application archived all
the actions the users did into log files. The goal here is to use these log files to
learn user preferences, not only for a single run of the algorithm [3] but for all
experiments performed by the users. This kind data (choices made by experts)
is hard to collect by simply asking experts and will be explored in future work.

Acknowledgments. The authors thank Florian Paturaux, Sylvio Menubarbe and
Pierre Houdyer for helping developing the prototype. This research is partially sup-
ported by the Institut rhônalpin des systémes complexes (IXXI) and by the Centre
National de Recheche Scientifique (Préfute PEPS FASCIDO, CNRS).
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Abstract. In this demo we present INSIGHT, a system that provides
traffic event detection in Dublin by exploiting Big Data and Crowd-
sourcing techniques. Our system is able to process and analyze input
from multiple heterogeneous urban data sources.

1 Introduction

In this demo we present a traffic monitoring system that is currently deployed
in Dublin and utilized for city event detection. The purpose of this demo is to
show, that, using novel data mining techniques we are able to monitor diverse
data coming from city-wide infrastructures and extract useful information to
present to the city operators. We collaborated with Dublin City Council (DCC)
and designed a system that is able to process real-time data from diverse input
sources such as sensors mounted on top of buses, traffic sensors embedded in
street intersections or even citizen’s tweets. INSIGHT identifies events of interest
such as traffic congestion, construction works and accidents [1].

Although sensor data are available to smart city authorities, it is very difficult
for human operators to monitor the vast amount of information. Figure 1 shows
the DCC control center, where one of the screens displays INSIGHT1. Our system
identifies events and aids operators to react in a timely manner by providing tools
1 http://www.insight-ict.eu/ - INSIGHT was funded by an FP7 EU grant.
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that: (1) Automatically identify the locations where abnormal sensor behaviour
occurs, (2) Analyze historical data and build models that capture the sensors’
normal behaviour, and (3) Exploit ubiquitous human sensors to complement the
existing data sources.

2 System Description

Our system, as described in Fig. 3 consists of multiple components; each is
responsible for monitoring an individual data source. Data are generated from a
set of heterogeneous traffic sensor networks in Dublin. Each stream is processed
by an Intelligent Sensor Agent (ISA) that identifies anomalies. The detected
anomalies are fused to infer events (see Round Table) and are presented to the
traffic operators. In case of uncertainty, Crowdsourcing tasks are initiated.

Data Sources. Our system analyzes heterogeneous streaming data from the fol-
lowing input sources: (i) Buses that transmit their GPS location and information
regarding their route. (ii) SCATS sensors that are deployed at intersections and
transmit traffic flow measurements and the degree of saturation. (iii) Tweets that
are posted by users in the Dublin area. (iv) Crowdsourcing input from users that
provide feedback by reporting an event or answering to dynamic system queries
using the CrowdAlert app from their mobile devices (see Fig. 2).

Fig. 1. DCC’s traffic control center. INSIGHT system is running at the top monitor

Architecture. Our system receives raw data from the heterogeneous data
sources and channels processed information to the corresponding ISA2. The
SCATS ISA checks whether the SCATS sensor’s behaviour deviates significantly
from its neighbours behaviour, using a multivariate ARIMA model.

The Bus ISA is responsible to detect anomalies, monitoring the bus data.
This component exploits the Lambda architecture, using Storm3, to transmit
data to concurrently running Complex Event Processing (CEP) engines. These
engines monitor whether the streaming data trigger the set up rules. The Bus ISA
2 http://www.insight-ict.eu/sites/default/files/deliverables/D2-1.pdf.
3 http://storm.apache.org/.

http://www.insight-ict.eu/sites/default/files/deliverables/D2-1.pdf
http://storm.apache.org/
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(a) Events (b) Report (c) Queries

Fig. 2. CrowdAlert app
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Fig. 3. Overview of the INSIGHT system showing the inputs, the interface to the
operators and citizens, and the connectivity between the components.

enables the automatic adjustment of needed resources (elasticity), estimating the
system load in upcoming time windows, using Gaussian Processes [4].

The Twitter ISA analyzes tweets that are geo-located in the Dublin area and
identifies those that describe an event (traffic, flood, or fire), using a SVM text
classifier. The Twitter API sets a number of constraints in terms of how many
users, keywords or locations can be tracked at the same time. INSIGHT utilizes
a dynamic filtering approach that continuously evaluates candidate keywords,
users, and locations and selects an optimal subset.

The output of the ISAs is integrated in the Round Table component, which
aggregates information [3], infers about what is happening and forwards the
detected events either to the DCC operators through a web interface or to the
crowdsourcing users requesting clarification. The Crowdsourcing Server acts as
a middleware among the system and the users. Its main responsibilities are: (i)
to keep track of the active users that are able to participate in the crowdsourcing
tasks, (ii) to assign tasks to the Crowdsourcing users, in order to resolve possible
ambiguities [2], (iii) to receive reports asynchronously from the users when an
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event occurs, and (iv) to provide feedback to the users regarding ongoing events
near their location. The Crowdsourcing App is an Android application, called
CrowdAlert4 (illustrated in Fig. 2) that enables the human crowd to monitor the
ongoing traffic events and provide feedback to the authorities.

User Evaluation. INSIGHT has been evaluated by the Traffic Management
team at DCC. A set of employees with diverse responsibilities were selected,
evaluated the system and filled a questionnaire. The questions regarded the
usefulness and accuracy of the system and how it affected their workflow. The
team members were quite happy with the system that provided them accurate
events in real time and a set of tools that visualize real-time and historical data5.

3 Demo Description

We will demonstrate the web interface and the CrowdAlert app that visualize
the detected events, from the different ISAs. During the demonstration, both,
real-time, and historical data will be available, to highlight multiple aspects of
the system. An example of an identified fire event is shown in Fig. 4.

Port Tunnel, Dublin

Buses report 
high delays

SCATS report 
no flow

Fig. 4. Visualization of a fire event in Port Tunnel, Dublin

Equipment. We will be using a laptop in order to demonstrate the front-end
of INSIGHT, which is currently used by DCC. We will also be using Android
devices to demonstrate the CrowdAlert app.

Demo Plan. The users will be able to view and interact with the system that
is currently deployed and running at DCC. They will be able to overview infor-
mation about the anomalies and events identified by the analysis components
in real time. Moreover, the users will be able to select past time periods, rede-
fine the analysis thresholds and parameters and re-run the system. Users will
be able to generate plots that visualize data originating from the Buses and

4 http://crowdalert.aueb.gr/.
5 www.insight-ict.eu/sites/default/files/deliverables/D6-2.pdf.

http://crowdalert.aueb.gr/
www.insight-ict.eu/sites/default/files/deliverables/D6-2.pdf


26 N. Panagiotou et al.

the SCATS sensors. Finally, we will also demonstrate the CrowdAlert app using
smartphones and tablets. The users will be able to use CrowdAlert and interact
with our system. Thus, they will be able to observe events that take place in
Dublin in real-time as well as to report events and provide feedback through
crowdsourcing tasks.

Acknowledgments. This research has been financed by the European Union through
the FP7 ERC IDEAS 308019 NGHCS project, the Horizon2020 688380 VaVeL project
and a Yahoo Faculty award.
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Abstract. Current technologies allow movements of the players and the ball in
football matches to be tracked and recorded with high accuracy and temporal
frequency. We demonstrate an approach to analyzing football data with the aim
to find typical patterns of spatial arrangement of the field players. It involves
transformation of original coordinates to relative positions of the players and the
ball with respect to the center and attack vector of each team. From these relative
positions, we derive features for characterizing spatial configurations in different
time steps during a football game. We apply clustering to these features, which
groups the spatial configurations by similarity. By summarizing groups of similar
configurations, we obtain representation of spatial arrangement patterns practiced
by each team. The patterns are represented visually by density maps built in the
teams’ relative coordinate systems. Using additional displays, we can investigate
under what conditions each pattern was applied.

1 Introduction

Current tracking technologies enable measuring and recording of the spatial positions
and movements of the players and the ball in football (a.k.a. soccer) games with high
accuracy and temporal frequency. Analysis of the resulting trajectories can bring
valuable knowledge about the movement behaviors of the players and teams and inter‐
actions between the players and between the teams. A lot of research has been done on
analyzing various aspects of a football game, such as players’ performance (e.g. [4]),
passes (e.g. [3]) and pass opportunities (e.g. [5]), team formations (e.g. [2]), and others.
Analysis of formations mostly focuses on identifying long- and short-term roles of indi‐
vidual players [2] or typical geometric configurations of tactical groups [6].

We demonstrate a novel approach to analyzing collective movement behaviors of
football teams with the aim to find typical patterns of spatial arrangement of all field
players within their teams and in relation to the opponent teams. For this purpose, we
transform the positions of the players in the field into their relative positions with
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respect to the centers and attack vectors of the teams and analyze the distributions of
the players in these “team spaces” (similarly to [1]).

2 Characterization and Analysis of Spatial Configurations

We use the term spatial configuration for the relative arrangement of the field players
in one time moment. A spatial configuration can be characterized by the coordinates of
the players in “team spaces”. The team space of one team is defined in each moment by
the team centroid (i.e., the mean position of all field players of this team) and the direction
towards the opponents’ goal (attack direction). The team centroid is taken as the origin
of the coordinates. The vertical axis of the team space corresponds to the attack direction,
and the horizontal axis is perpendicular to it. Such coordinate system is created for each
team. For each moment of the game, the positions of the players of both teams and the
positions of the ball are transformed to the coordinate system of each team. The hori‐
zontal coordinate shows the relative position in the left or right side of the team, and the
vertical coordinate shows the relative position in the back or front side of the team.

The transformation is illustrated in Fig. 1 by example of trajectories of two
players from opposing teams (black and green). Figure 1A shows the original trajec‐
tories in the space of the pitch. The goal of the black team is on the left and the goal
of the green team is on the right. The attack directions of the teams are indicated by
colored arrows at the bottom of the image. In Fig. 1B, the trajectories are composed
from the relative positions of the players in their own teams. The image represents
simultaneously the spaces of both teams, i.e., their coordinate systems are aligned.
We see that, despite quite strong separation of the two trajectories in the field space
(Fig. 1A), they cover similar regions in their team spaces, i.e., they have similar roles
in their teams. Image 1C represents the space of the black team. The green trajec‐
tory shows how the green team player was positioned in relation to the opponent
team. Likewise, image 1D represents the space of the green team and the posi‐
tioning of the black team player with respect to the opponents.

Fig. 1. Transformation of coordinates is shown by example of trajectories of two players from
opposing teams. A: original trajectories in the space of the pitch; B, C, D: the trajectories
transformed to the spaces of the own teams (B), black team (C) and green team (D). (Color figure
online)

To find typical patterns of spatial arrangement, which is the goal of our analysis, we
need to group the spatial configurations that occurred throughout the game by similarity.
This can be achieved by means of clustering. To apply clustering, we need to represent
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the spatial configurations by appropriate features. We construct feature vectors of the
spatial configurations by putting the players’ relative positions in the team spaces in the
order of decreasing vertical coordinates, i.e., from front to back. To reduce the sensitivity
of the descriptions of the spatial configurations to substitutions of players and changes
of players’ roles, we apply ordering from left to right when the vertical difference is
below a threshold (e.g., 2 m).

The full feature vector of a spatial configuration consists of the coordinates of the
field players of each team in their own team space and in the team space of the opponents
plus the coordinates of the ball in the spaces of both teams. On demand, a subset of
features can be used for clustering, e.g., features of only one team.

By summarizing the clusters of spatial configurations produced by a clustering algo‐
rithm (e.g., k-means or EM), we obtain a representation of typical spatial arrangement
patterns. Since each spatial configuration is basically a set of points (which represent
players’ positions), we summarize a cluster of configurations by computing joint point
density fields in the team and field spaces using kernel density estimation.

In the demonstration, we show interactive clustering of spatial configurations and
visual exploration of spatial arrangement patterns supported by interactive tools.

3 Example

In this example, we use data collected during the German Bundesliga game of Borussia
Dortmund against VfL Wolfsburg on 10/12/2015. Our analysis focus is the arrangement
patterns of the field players of Dortmund in relation to the opponents. For clustering, we
use a subset of features consisting of the relative positions of the Dortmund’s players in
the space of Wolfsburg. Figure 2 shows the results for k-means clustering with k = 8.
The density maps represent the Dortmund’s configuration patterns in the Wolfsburg’s
team space. Here we use a color scale from light blue for low densities to red for high
densities. The movements of the ball during the times when the configurations took place
are represented by semi-transparent black lines.

Fig. 2. Density maps represent clustered arrangements of the players of Dortmund in relation to
the opponent team (i.e., in the team space of Wolfsburg). (Color figure online)
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To investigate in what conditions these different arrangement patterns were applied,
we use additional displays. Thus, Fig. 3 shows how the patterns are related to the ball
possession. The lengths of the green and red bars represent the numbers of time moments
when the ball was possessed by Wolfsburg (green) and Dortmund (black). The upper‐
most pair of bars correspond to the whole game, excluding the time when the ball was
out of play. The remaining rows correspond to the clusters of the spatial configurations.
We see that the pattern of cluster 1 was used almost exclusively under ball possession
by Dortmund, whereas the patterns of clusters 5 and 6 were mostly applied under ball
possession by Wolfsburg. The remaining patterns are not so clearly related to the ball
possession by either of the teams. In Fig. 4, we see how the patterns are related to the
positions of the Dortmund’s players and the ball in the field.

Fig. 3. Distribution of the time moments with ball possession by VfL Wolfsburg (green) and
Borussia Dortmund (black) across the clusters of the spatial configurations. (Color figure online)

Fig. 4. Relation of the configuration patterns to the players’ positions in the field.
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Abstract. By applying spatio-temporal aggregation to traffic data consisting of
vehicle trajectories, we generate a spatially abstracted transportation network,
which is a directed graph where nodes stand for territory compartments (areas in
geographic space) and links (edges) are abstractions of the possible paths between
neighboring areas. From time series of traffic characteristics obtained for the links,
we reconstruct mathematical models of the interdependencies between the traffic
intensity (a.k.a. traffic flow or flux) and mean velocity. Graphical representations
of these interdependencies have the same shape as the fundamental diagram of
traffic flow through a physical street segment, which is known in transportation
science. This key finding substantiates our approach to traffic analysis, fore‐
casting, and simulation leveraging spatial abstraction. We present the process of
data-driven generation of traffic forecasting and simulation models, in which each
step is supported by visual analytics techniques.

1 Introduction

The topic of this presentation, based on [4], is derivation of traffic forecasting and simu‐
lation models from traffic data. Traffic data in the form of trajectories of vehicles are
currently collected in great amounts, but their potential remains largely underexploited.
By means of visual analytics methods, we discovered fundamental patterns of traffic
flow dynamics that are common for different areas and spatial scales. On this basis, we
created interactive visual interfaces for representing these patterns by mathematical
models and devised a lightweight traffic forecasting and simulation algorithm that
exploits these models. We developed interactive visual embedding for defining initial
conditions, running simulations, and analyzing the outcomes. Since simulations could
be prepared and performed very fast, thus allowing interactive operation, our tools allow
the users to imitate various interventions altering network properties and/or traffic routes
and investigate their impacts on the traffic situation development, including comparative
analysis of various “what if” scenarios.

2 Approach Summary

Given a set of trajectories, we apply a method [2] that derives an abstracted network
consisting of territory compartments (further called cells) and links between them. In
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brief, the method organizes points sampled from the trajectories into groups fitting in
circles of a user-specified maximal radius. The medoids of the groups are taken as
generating seeds for Voronoi tessellation. Smaller or larger cells (Voronoi polygons)
can be generated by varying the maximal circle radius, thus allowing traffic analysis at
a chosen spatial scale. Moreover, it is possible to vary the spatial scale across the territory
depending on the data density [1]. Next, the trajectories are transformed into flows
(aggregate movements) between the cells by time intervals. For each pair of neighboring
cells (Ci, Cj) and each time interval Tk, the flow is an aggregate of all moves from Ci to
Cj that ended within the interval Tk and started within either Tk or Tk−1. The flow is
characterized by the number of moves and the mean speed (velocity) of the movement.
The number of moves (traffic volume) per time interval is called traffic intensity (a.k.a.
traffic flow or flux). Since available trajectories typically cover only a sample of vehicles
that move within a network and not the entire population, the computed traffic intensities
need to be appropriately scaled, to approximate real intensities. Appropriate scaling
parameters or functions can be derived by comparing the computed vehicle counts with
measured counts obtained from traffic sensors [7].

To study and quantify the relationships between the traffic intensities and mean
speeds, the data are further transformed in the following way. Let A and B be two time-
dependent attributes associated with the same link and defined for the same time steps.
The value range of attribute A, which is taken as an independent variable, is divided into
intervals. For each value interval, all time steps in which values from this interval occur
are found, and all values of attribute B occurring in the same time steps are collected.
From these values of B, summary statistics are computed: quartiles, 9th decile, and
maximum. For each statistical measure, a sequence of values of B corresponding to the
value intervals of A is constructed. These sequences are called dependency series. We
first take the traffic intensity as the independent variable and derive dependency series
of the mean speed. Then we take the mean speed as the independent variable and derive
dependency series of the traffic intensity. Dependency series may be derived using either
the absolute or relative traffic intensities, the latter being the ratios or percentages of the
absolute intensities to the maximal intensities attained on the same links.

In Fig. 1, two maps on the left represent abstracted transportation networks of Milan
with different levels of spatial abstraction. Curved lines in the upper map and half-arrow
symbols in the lower map represent the network links. On the right of each map, the upper
graph shows the dependencies of the mean speed on the relative traffic intensity. The hori‐
zontal axis corresponds to the traffic intensity and the vertical axis to the 9th decile of the
mean speed (this statistical measure is less sensitive to outliers as the maximum). The lower
graph shows the dependencies of the relative traffic intensity on the mean speed. The hori‐
zontal axis corresponds to the mean speed and the vertical axis to the maximal traffic inten‐
sity. The network links have been clustered by similarity of the speed-intensity dependen‐
cies. The coloring of the link symbols on the map and lines in the graphs represents the
cluster membership. The shapes of the dependency lines are very similar to the curves in the
fundamental diagram of traffic flow describing the relationship between the flow velocity
and traffic flux [5, 6] in a physical transportation network consisting of street segments. We
see that the same relationships exist also in a spatially abstracted network. Moreover, we
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have found that the relationships conforming to the fundamental traffic diagram exist on
different levels of spatial abstraction, as illustrated in Fig. 1.

We have developed interactive visual tools supporting derivation of formal models
from the time series of flow characteristics and from the dependency series [3]. Models
are built for clusters of links rather than individual links, to avoid over-fitting and reduce
the impacts of noise and local outliers. Predictions made for link clusters are individually
adjusted for each link based on the statistics of its original values [3]. We have also
developed a novel traffic simulation algorithm that can directly work with the derived
models. The main idea is following: for each link, the algorithm finds how many vehicles
need to move through it in the current minute, determines the mean speed that is possible
for this link load (using the dependency model from the traffic intensity to the mean
speed), then determines how many vehicles will actually be able to move through the
link in this minute (using the dependency model from the mean speed to the traffic
intensity), and then promotes this number of vehicles to the end place of the link and
suspends the remaining vehicles in the start place of the link (Fig. 2).

To perform a simulation, the analyst defines a scenario. A wizard guides the analyst
through the required steps and providing visual feedback at each step. We describe the

Fig. 1. The maps show spatially abstracted transportation networks of Milan with cell radii about
2 km (top) and 4 km (bottom). The graphs to the right of each map represent the dependencies
between the relative traffic intensities and the mean speeds on the network links.
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simulation of a scenario of mass evacuation from the coastal area in Tuscany (Italy).
The appendix to the paper (http://geoanalytics.net/and/is2015/) includes a video demon‐
stration of the process of model building, scenario definition, simulation, and exploration
of results supported by interactive visual interfaces.
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Fig. 2. For a scenario of mass evacuation from the coastal areas in Tuscany (Italy), simulated car
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Abstract. SPMF is an open-source data mining library, specialized in
pattern mining, offering implementations of more than 120 data mining
algorithms. It has been used in more than 310 research papers to solve
applied problems in a wide range of domains from authorship attribution
to restaurant recommendation. Its implementations are also commonly
used as benchmarks in research papers, and it has also been integrated
in several data analysis software programs. After three years of devel-
opment, this paper introduces the second major revision of the library,
named SPMF 2, which provides (1) more than 60 new algorithm imple-
mentations (including novel algorithms for sequence prediction), (2) an
improved user interface with pattern visualization (3) a novel plug-in
system, (4) improved performance, and (5) support for text mining.

Keywords: Open-source library ·Datamining ·Frequent patternmining

1 Introduction

Several open-source general purpose data mining libraries or programs have been
developed such as Knime [2], Mahout [8], and Weka [9]. Although these software
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programs provide algorithms for many data mining tasks, they provide very
few algorithms for mining frequent patterns in databases, while hundreds of
algorithms have been proposed in this field during the last twenty years [10].
Moreover, the majority of researchers in the field of frequent pattern mining do
not share their implementation or source code online. As a result, a user who
wants to apply specific algorithms from this field, providing some particular fea-
tures required by an application, often needs to implement the algorithms again,
which is time-consuming and requires programming knowledge. To address this
issue, the SPMF (Sequential Pattern Mining Framework) [5] open-source library
has been created in 2009. The goal is to provide a common library for sharing the
source code of efficient implementations of frequent pattern mining algorithms to
increase their use in real applications, and also to provide a set of reference imple-
mentations for researchers to compare algorithms. Initially, SPMF was designed
as a library for mining frequent patterns [1] in sequences (hence its name). But
over the years, it has evolved to include all kinds of pattern mining algorithms for
discovering patterns such as itemsets and association rules, sequential patterns
[1], periodic patterns [11], and high-utility patterns [10]. It also provides a simple
user-interface for quick testing and a command-line interface for easy integra-
tion with other systems. In the past five years, SPMF has been used in more
than 310 research papers to solve applied problems in a wide range of domains
ranging from authorship attribution, retail forecasting, chemistry, music analy-
sis to restaurant recommendation. The algorithm implementations of SPMF are
optimized and commonly used as benchmarks in research papers. SPMF has
also been integrated in several popular data analysis software programs such as
ScaVis and MOA [3]. Nowadays, SPMF offers by far the largest library of pat-
tern mining algorithms with over 120 algorithms. Moreover, it is open-source,
it can be used in commercial projects, and it is an active project, unlike simi-
lar smaller projects such as Coron [4] and LUCS-PKDD [7]. Moreover, SPMF
is lightweight as it has no dependencies to any other projects. The first major
release of SPMF is version 0.94, released in 2013 [5]. This paper introduces the
second major release of the library, named SPMF 2.

2 Novel Features

SPMF 2 introduces five major novelties. First, it offers about 60 novel algorithm
implementations. Thus, the number of algorithms has doubled since the previous
major release, offering a greater range of algorithms to users. In particular, a
novel module has been integrated in SPMF offering seven state-of-the-art algo-
rithms for sequence prediction named DG, LZ78, AKOM, TDAG, PPM, CPT
and CPT+. Sequence prediction (predicting the next symbol of a sequence of
symbols based on a set of training sequences) has wide-applications in many
domains such as web page prefetching and path recommendation [6]. Moreover,
SPMF now offers about 20 more algorithms for utility pattern mining [10], which
is probably the most active research area in frequent pattern mining. Utility
pattern mining consists of finding patterns that may not be frequent but have a
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high-utility, where utility can be defined for example as the products generating
the highest profit in a transaction database.

Second, the user interface has been improved. The main window is shown
in the left side of Fig. 1. It is designed as a minimalistic user interface that
let the user choose an algorithm, set its parameters and choose and input and
output file, to then launch the algorithm. But an important novelty in SPMF
2 is a new pattern visualization window that let the user explore the patterns
found by any algorithm in a table view (right side of Fig. 1). Using that window,
the user can browse patterns, search patterns, and apply complex filters with
boolean conditions, sorts, and export the result of these operations to various
formats such as text and CSV files. Thus, this window lets the user perform
post-processing of the patterns found by the algorithms using various criteria.

Third, another important novel feature is a plug-in system. In SPMF 2, a user
can implement new algorithms by sub-classing a class named DescriptionOfAlgo-
rithm. SPMF can automatically detect algorithms sub-classing this class (which
can be stored in another JAR file) and load the additional algorithms in its
user-interface and show them in the same list as its built-in algorithms. This
allow researchers to easily extend the software with new algorithms, and reuse
the same user interface.

Fourth, in this new version of SPMF, many performance optimizations have
been performed to increase the performance of the algorithms already offered in
SPMF. For example, the performance of the new implementation of PrefixSpan
introduced in SPMF 2 is up to 10 times faster and consumes up to twice less
memory than the previous version. Extensive performance comparison of various
versions of algorithms and optimizations in SPMF are not presented in this paper
due to length limitations but can be found on the SPMF website at: http://www.
philippe-fournier-viger.com/spmf/.

Fifth, support for additional input formats has been added to SPMF. In
SPMF 2, mining patterns in text documents is now natively supported. Thus,
algorithms for discovering patterns such as itemsets and sequential patterns can
now be applied to files containing texts. This is a very important feature as
SPMF has been used in many papers related to text mining but previous versions
of SPMF required that the user preprocesses input files to convert them to
the SPMF format, which was inconvenient. When the new version of SPMF is
applied to a text document, each word is seen as a symbol, and each sentence is
viewed as a transaction or sequence. The document is transformed to an internal
representation used by the algorithms and the result is then transformed again to
be displayed to the user.

3 Conclusion and Future Work

In this paper, we presented the second major release of the SPMF library (version
2), which offers many new algorithms, an improved user interface with pattern
visualization, a novel plug-in system, many performance optimizations, as well
as support for additional formats such as text files.

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
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Fig. 1. The SPMF user interface

The SPMF library is an active project. Many contributors have provided
algorithm implementations to the project from universities all around the world.
The current development of SPMF is focused on providing more algorithms
especially for discovering patterns in graphs and time-series, types of data that
have not yet been considered in SPMF. Besides, an enhanced user interface for
visually combining several algorithms in a workflow, and for interactive mining
are currently planned for the next release.
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Abstract. We propose a new generator for dynamic attributed net-
works with community structure which follow the known properties
of real-world networks such as preferential attachment, small world
and homophily. After the generation, the different graphs forming the
dynamic network as well as its evolution can be displayed in the interface.
Several measures are also computed to evaluate the properties verified
by each graph. Finally, the generated dynamic network, the parameters
and the measures can be saved as a collection of files.

Keywords: Social network mining · Attributed graph · Synthetic data
generator

1 Introduction

The proliferation of complex information networks in diverse fields of applica-
tion has led to the proposal of a panoply of methods to analyze and discover
relevant patterns in these networks. However, evaluating these methods and the
comparison of the different approaches are not very easy due to the lack of large
real networks with ground truth freely accessible to researchers. The alternative
consists in using synthetic data provided by generators. There is a large bibliog-
raphy regarding generation for static graphs, including the classic Erdős-Rényi
(ER) model which generates random graphs or the Barabási-Albert (BA) model
that generates random scale-free networks, but very few generators allow the
construction of evolving graphs, exhibiting or not a community structure and,
none of them takes into account the attribute values of the vertices. The interest
of community detection, link prediction and more generally pattern discovery in
dynamic networks where vertices are associated with attributes led us to develop
the generator DANCer for attributed dynamic graphs with embedded commu-
nity structure. This generator is an extended version of a previous generator,
ANC dedicated to static graphs [1].
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2 Model

An attributed dynamic network generated by DANCer is represented by (1) a
sequence of T attributed graphs Gi = (Vi, Ei), i ∈ {1, . . . , T}, where Vi is a
set of vertices, Ei a set of undirected edges and where for each vertex v ∈ Vi

and each real attribute A ∈ A, vA denotes the attribute value of A assigned to
vertex v and (2) a sequence of T partitions Pi of Vi, i ∈ {1, . . . , T} which gives a
community for each vertex in the corresponding graph Gi, i ∈ {1, . . . , T}. Each
partition allows to define a community structure on a graph (i.e., the network at
a single timestamp) in such a way that the nodes are grouped into sets densely
connected and relatively homogeneous with regard to the attributes, while they
are less connected to vertices belonging to other groups, and less similar with
regard to their attributes.

The generation of the network is carried out in two phases. In phase one,
an initial graph G1 = (V1, E1) is built while respecting the well-known network
properties such as preferential attachment, small world or homophily and, in the
second phase, this initial graph is modified through two kinds of operations. The
first set of operations, called micro operations, consist in removing or adding
vertices and edges or updating their attributes whereas the second kind of oper-
ations is applied on the communities, i.e., at a macro level. They consist in (1)
migrating members of a community to either a new community or an existing
one, (2) splitting a community into two new sub-communities and (3) merging
two existing communities into a single one.

3 Software Overview

The user interface has three panels as shown in Fig. 1. In the parameter panel, the
user selects the dynamic generator parameters presented in Table 11. Note that
a seed is used for the random number generator. It can be saved to reproduce
exactly the same network.

The visualization panel allows to display the generated network and its
dynamic evolution. Each graph in the sequence can be selected with a timestamp
scrollbar and viewed separately (Fig. 1). This panel can also display the size and
the evolution of the different communities in the sequence of graphs according
to the macro dynamic operations (split, merge and migrate) (see Fig. 2).

The sequence of attributed graphs is built while preserving properties of real
networks and several measures, like modularity, clustering coefficient, diameter,
expected and observed homophily or within inertia rate are computed on each
graph of the dynamic network to describe its properties2. The changes in these
different measures on the sequence of graphs are presented at the bottom of the
interface in the measure panel (Fig. 3).

The bottom of the user interface includes also a panel displaying the distri-
bution of vertex degrees on each graph of the sequence as shown in Fig. 4.
1 The reader is referred to [1] for the static network generator parameters http://

journals.plos.org/plosone/article?id=10.1371/journal.pone.0122777.
2 See [1] for a more detailed presentation of the properties and corresponding measures.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122777
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122777
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Parameters Panel

Visualization Panel

Measures / Degree Distribution Panel

Fig. 1. User interface of the generator DANCer.

Fig. 2. Community dynamics display in visualization panel.

Fig. 3. Measures panel of the generator.

The generated dynamic network can be saved as a collection of files. For each
graph of the sequence, a file indicates the composition of the graph (vertices and
edges) and a “parameters” file enumerates all the parameters used by the
generator. The graph measures and community dynamics can also be saved in
separated files.
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Table 1. Description of the dynamic network generator parameters

Parameter Domain Description

Micro operations

Proba Micro [0, 1] A threshold to select if the micro dynamic updates
are performed or not

Add V ertex [0, 1] Ratio defining the number of vertices inserted

Remove V ertex [0, 1] Ratio defining the number of vertices removed

Update Attr. [0, 1] Ratio defining the number of attributes updated

Add Btw. Edges [0, 1] Ratio defining the number of between edges inserted

Remove Btw. Edges [0, 1] Ratio defining the number of between edges removed

Add Wth. Edges [0, 1] Ratio defining the number of within edges inserted

Remove Wth. Edges [0, 1] Ratio defining the number of within edges removed

Macro operations

PremoveEdgeSplit [0, 1] Proba. to remove an edge between two vertices in the
previously same community when splitting a
community

Timestamps N
+ Number of graphs generated

Proba Merge [0, 1] Probability to perform the merge operation

Proba Split [0, 1] Probability to perform the split operation

Proba Migrate [0, 1] Probability to perform the migrate vertices operation

Fig. 4. Degree distribution panel.

4 Conclusion

The software DANCer and a detailed user manual3 are available under the
terms of the GNU Public Licence. Note that our generator can trivially be
extended to produce multiplex networks, where all nodes are omnipresent in all
levels and intra-level edges connect the representations of a node from one level
to the other. This conversion is possible by simply converting each timestamp
graph into a layer of the multiplex network and adding the necessary intra-level
edges.
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Abstract. The Topy system automates real-time story tracking by uti-
lizing crowd-sourced tagging on social media platforms. Topy employs a
state-of-the-art Twitter hashtag recommender to continuously annotate
news articles with hashtags, a rich meta-data source that allows con-
necting articles under drastically different timelines than typical keyword
based story tracking systems. Employing social tags for story tracking
has the following advantages: (1) social annotation of news enables the
detection of emerging concepts and topic drift in a story; (2) hashtags go
beyond topics by grouping articles based on connected themes (e.g., #rip,
#blacklivesmatter, #icantbreath); (3) hashtags link articles that focus
on subplots of the same story (e.g., #palmyra, #isis, #refugeecrisis).

Keywords: Story tracking · News · Social media · Social tags

1 Introduction

Although keyword and semantic-based matching of news have advanced con-
siderably [1,4], the problem of automatically tracking story timelines and their
evolution in real-time remains very challenging. A news story often discusses mul-
tiple related events, which take place in different time periods and may involve
different entities. Some stories are relatively short-lived, for example, the 2016
Champions League final, and some others span many years and discuss multiple
events, for example, the Ebola outbreak. For instance, the story of the Syrian
war has evolved in time, by shifting the discussion topic (Middle East, migra-
tion, human rights, politics), the discussed entities (Assad, ISIS, Putin, USA,
Turkey, Belgium) and the discussed events (rebel uprising, destruction of Syria’s
chemical weapons, Yazidi massacres, camerawoman kicks a migrant ). Figure 1
illustrates this drift in the news article space projected on the topic-event-entity
dimension. Stories may share articles, e.g., the article “Turkey carries out air
strikes” may appear in several stories: Syrian war, PKK in Syria, Turkey elec-
tions 2015.

Topy takes a different approach to story tracking by building on crowd-
sourced social tags and a hashtag recommender, to link news articles in complex
story timelines. The choice of Twitter hashtags as rich social annotations is moti-
vated by the following factors: (i) most stories have a lot of quality discussions
centered on focused hashtags on Twitter, (ii) creation, popularity and abandon-
ment of hashtags implicitly encode the concept drift in the story, (iii) hashtags
c© Springer International Publishing AG 2016
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Fig. 1. Stories’ drift in topic-event-entity-time space.

allow cross-platform multi-modal content linking (text, image, video). This app-
roach is also consistent with recent trends in news media: (a) The Guardian1,
Huffington Post2, AJ+, BBC, write articles about popular hashtags to inform
and engage the public on discussion trends, (b) The Sun published a newspaper
with a hashtag alongside an article to allow readers “to share their opinions and
continue the story online”3. Most automated story tracking solutions are either
limited in the number of events that can be tracked or are not real-time. Some
news organizations have story-pages on their websites, i.e., curated collections of
news articles that allow the reader to get an overview on particular events, e.g.,
referendums, elections, budgets. The Irish Times has dedicated story-pages for
issues of relevance to the Irish society, e.g., the inquiry into the banking collapse4

of 2008 (hashtag #bankinginquiry). Preparing these story-pages relies on prior
agreement among journalists to manually tag all articles relevant to a set of sto-
ries, with the same set of tags. Once a decision is taken to create a story-page,
those articles are continuously retrieved from the news archive via the manual
tags. The problem with this approach is that it relies on foresight over which
stories are worth covering and what is the right tag to use for those story-articles.
Additionally, the manual process does not scale well on many stories that require
in depth coverage, e.g., tools such as provided by www.newsdeeply.com although
useful, update slowly and lack behind the fast pace of the real-world.

To the best of our knowledge there is no similar system that makes use
of Twitter hashtags for story tracking. State-of-the-art systems rely on key-
word/semantic matching and require often slow-to-change offline snapshots of
knowledge bases [3] or need computationally expensive, complex clustering or
semantic models, where parameters, such as number of topics [2], timespan of
stories [1,4] and cluster sizes [5] significantly affect the system performance.

1
www.theguardian.com/technology/hashtags.

2
www.huffingtonpost.com/news/hashtags/.

3
www.huffingtonpost.com/2014/03/26/sun-hashtag-newspaper-murdoch-british n 5034639.html.

4
www.irishtimes.com/news/banking-inquiry.

www.newsdeeply.com
www.theguardian.com/technology/hashtags
www.huffingtonpost.com/news/hashtags/
www.huffingtonpost.com/2014/03/26/sun-hashtag-newspaper-murdoch-british_n_5034639.html
www.irishtimes.com/news/banking-inquiry
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2 Topy System Overview

Topy maps news articles to stories in real-time by grouping articles with con-
nected events, entities and topics that are discussed together on Twitter. Story
tracking is formulated as a retrieval task with queries that allow mixing of key-
words and hashtags. This allows tracking stories on-the-fly rather being restricted
to pre-determined stories.

Real-time annotation of news articles with Twitter hashtags. We build
on top of the Hashtagger infrastructure [6] for collecting, processing and storing
news articles and Twitter data. The system architecture is illustrated in Fig. 2.
An article is represented by its headline, subheadline, body, a set of summary
keywords and a set of hashtags recommended to the article over a period of 24 h
from the article publication time [6]. Hashtagger achieves Precision of more than
85 %. Around 70 % of processed news articles have at least one recommended
hashtag.

Query-based story tracking. The hashtags of each article are binned into
20 confidence bins with ranges from (0.975, 1.0] to (0.5, 0.525] and indexed as
child documents for the corresponding article documents. Parent-child relation-
ship and the chosen mapping enable an efficient search on article fields with
different weighing using the BM25 algorithm. A query is composed of (i) words
w1, ..., wn, which are matched on article keywords, headline, subheadline and
content with score boost of correspondingly ×4, ×3, ×2 and ×1, and (ii) hash-
tags #h1, ...,#hm, which are searched on k = 10 hashtag confidence bins with
score boosting of 6− (i+1)×2

20 for a match on bin 1 < i < k. To get the articles
covering a certain story, we do a two-step retrieval over a time period given
by the user. We first expand the query in the hashtag space using the recom-
mended hashtags of the top-10 articles from the initial search. This forms what
we call the story tracking query. The second retrieval with the expanded query
returns up to 1,000 articles ranked by their relevance, which are presented to the
user. Note that the method works even for cases where there are no hashtags
recommended to an article.

The Web user interface. Allows saving and curating stories over time. The
Topy page provides a search box for queries and a time period menu, from 3
days to a year in the past. Once a query is issued, the user gets a ranked list
of relevant articles for that story, together with a list of relevant hashtags as
shown in Fig. 3. The user can like or remove articles or hashtags from the story.
The MyStories page shows a dashboard for tracked stories. When loading a
saved story, the retrieval is triggered and the updated list of relevant articles is
returned. The user can issue the same query over different time periods, each
will be saved as a different story in the user dashboard. The system can be seen
in action at http://ada.ucd.ie/tutorial video/.

http://ada.ucd.ie/tutorial_video/
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Fig. 2. System architecture.

3 Topy Use Case

We collect 27 RSS news feeds from 8 news organizations, starting from August
2015. This allows us to track stories that have started capturing the public atten-
tion almost a year ago. One such case is the complex refugee crisis that has devel-
oped in connection to war conflicts worldwide, Syria in particular. We show here
relateduse caseswhere theuser is interested in the storyof “refugee crisis”.Theuser
issues the query “refugee crisis” with a time period of 1 year. This retrieves 19,881
ranked articles, grouped by news source. The retrieval also returns related hash-
tags: #eu, #crisis, #refugee, #refugees. For example, the article “Asylum seekers
may receive funding for college” may not match any of the query terms but with
Topy it is retrieved by matching the #refugees hashtag. The user is interested in
searching for subplots of the story, hence issues a new query “#refugeeswelcome”.
The system retrieves 3,944 ranked articles with related hashtags: #syria, #turkey,
#refugeeswelcome, #refugeecrisis, #aylan, #syrianrefugees. The user can observe
the emphasis on the tragic death of Aylan Kurdi that triggered empathic reactions
from EU citizens towards Syrian refugees. Similarly, the query “#pegida” focuses
on an opposite subplot of the refugee story, that emphasizes negative reactions
towards refugees, among the related hashtags #bachmann is discovered, who is the
founder of thismovement. Eachhashtag canbe clicked to get tweetswith that hash-
tag, e.g., “#German far-right #Pegida founder #Bachmann guilty of race charge
https://t.co/YFWYPlhLoP”. The system can discover hashtags that may cause a

Fig. 3. System screenshot.

https://t.co/YFWYPlhLoP
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topical drift. These can be manually removed to direct the story towards the user’s
preference5.
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Abstract. The academic world utterly relies on the concept of scientific
collaboration. As in every collaborative network, however, the produc-
tion of research articles follows hidden co-authoring principles as well
as temporal dynamics which generate latent and complex collaboration
patterns. In this paper, we present an online advanced tool for real-time
rankings of computer scientists under these perspectives.

Keywords: Bibliometrics · Collaboration patterns · Authors ranking

1 Introduction

Scientists are object of evaluation for funding allocation and career promotions.
The discovery of leading scientists is an important task that simple statistics over
long publication records may miss. In this demo, we present an online tool for
analyzing researchers under a collaborative perspective by studying and ranking
their capacity to maintain the same quality/quantity levels in different research
environments.

Bibliometric indicators are increasingly used to evaluate scientific careers
based on personal publication records. The simple number of papers published
by an author rather than the received citations are still common ways to capture
both the quantity and the impact of a scientist’s work. However, these measures
represent only an evaluation of what is knowable from simple database searches.
Still, these numbers actually make strong assumptions on the co-authorship of
the research works in terms of how proportional the collaboration was among
the co-authors. In a sense, scientists may look favorably good if working in a
dynamic and active research environment. On the contrary, they may result
unfairly below par due to modest research collaborators.

In literature, a number of related concepts have been presented, such as the
undeserved co-authorship [4] and the scientific relevance [1]. Instead, our pro-
posed application system is oriented to the study of what collaboration means.
A research collaboration can be defined as a two-way process where individuals
c© Springer International Publishing AG 2016
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and/or organizations share learning, ideas and experiences to produce joint sci-
entific outcomes. Collaborations are intrinsically necessary to the production of
complete and groundbreaking research. In the light of this, one of the key aspect
(and more demanded in recruitment scenarios) of a successful researcher is the
development of a large and active network of collaborators that helps researchers
bring new solutions within the research community.

The presented online tool is able to automatically compare scientists by
deeply analyzing their local co-authorship networks and how they have been
crucial in the production of research articles over time. Along the paper, we will
present both the theoretical and algorithmic parts of the tool as well as the set
of available features which can be freely tested on http://d-index.di.unito.it.

2 Background: Formalization of Scientific Collaborations

Based on the theoretical works proposed in [2,3], for this demo application, we
make use of a formalization of the co-authorship network that represents the
environment in which a researcher has produced his/her scientific outcomes.
Given two collaborating researchers (also called authors), ri, rj and their com-
mon scientific network N t

ri,rj , defined as the set of researchers who collaborated
with them, the autonomy of their collaboration atri,rj at time t is calculated as:

atri,rj =

⎧
⎪⎨

⎪⎩

0 if N t
ri,rj = ∅

1

∑
rk∈Nt

ri,rj

(
∑c(rk,Ot

ri,rj
)

x=1
1
x

) if N t
ri,rj �= ∅

where the function c(rk, Ot
ri,rj ) returns the number of times a researcher rk co-

authored a paper with both ri and rj at time t. The higher the autonomy the
more independent the work of ri and rj is from their research environment. We
then define the dependence value of ri on the collaboration with rj as dtri→rj as

dtri→rj =
ptri,rj
ptri

×
atri,rj ,Nt

ri

+ atrj ,¬ri,Nt
ri

atri,rj ,Nt
ri

+ atrj ,¬ri,Nt
ri

+ atri,¬rj ,Nt
ri

,

where p is a productivity score (number of published works) of a is the autonomy
score. The dependence value dtrj→ri ranges from 0 to 1 ; in particular, dtri→rj ≈ 0
indicates that the dependence of ri on rj , at the time t, is negligible, while a
dtri→rj ≈ 1 highlights the contrary.

Thus, given the complete set of dependence values, for each year and rela-
tive to each co-author, we calculate the researcher’s dependence trajectory, by
calculating the standard deviation, along the time, of each dependence value,
for each co-author, from the optimal attended value of 0 (which would mean a
dependence score of 0; i.e., the production of the considered researcher is inde-
pendent from the collaboration with the considered co-author). In a sense, we
aim at evaluating the overall independence of a researcher from the surrounding

http://d-index.di.unito.it


52 M. Cataldi et al.

community. More formally, given a researcher ri, we define his/her dependence
trajectory

−→
dri = {sdtri , sdt+1

ri , · · · , sdt+n
ri }, where sdtri is calculated as

sdtri =

√∑
rk∈Nri

(dtri→rk
)2

|Nri |
.

In words, the system detects anomalies in the collaboration patterns with
respect to the attended behavior. Researchers, in fact, are expected to increment
their collaboration network over time becoming independent from their single
collaborations.

Fig. 1. Profile of a researcher in the presented application demo.

We can use these values to properly compare, and rank researchers with
similar characteristics. More in detail, we provide a radar chart that can rank
the independence performance of a considered researcher with respect to those
who have (i) similar career length, (ii) similar number of publications, (iii)
similar number of co-authors. We also provide a comparison with the active
researchers and the whole community. Finally, we will integrate a feature to
compare researchers with respect to topics automatically extracted from publi-
cation titles.

3 Application and Demo Scenario

In this section, we present our application, available at http://d-index.di.
unito.it, for analyzing, comparing and ranking scientific collaboration patterns of
researchers. As data input, we considered the DBLP data set1, containing infor-
mation about 1,717,211 authors and 3,268,812 scientific papers2.
1 http://dblp.uni-trier.de/db.
2 Information updated at May 2016.

http://d-index.di.unito.it
http://d-index.di.unito.it
http://dblp.uni-trier.de/db
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Fig. 2. Another screen-shot, taken from http://d-index.di.unito.it, that compares col-
laboration patters of Sir Tim Berners-Lee and Dr. Christos Faloutsos.

As shown in Fig. 1, the proposed application initially allows to search for any
author indexed by DBLP and to analyze his/her scientific profile and her/his
collaboration history over time (through several features and visualizations).
Then, the online demo provides the following analyses:

– Collaborations over time. The user can analyze the evolution over time of
each scientific collaboration for a searched researcher.

– Collaboration Pattern Analysis. The system can visualize the above-
mentioned dependence patterns through a curve metaphor, mapping the evo-
lution of the dependence of a researcher on the support of each co-author along
the career. With this chart, it is also possible to select/deselect additional co-
authors to make further analyses and comparisons.

– Temporal Analysis. The demo provides a dynamic visualization chart
(“time-lapse”) which allows the user to focus on a specific time interval and/or
a subset of co-authors.

– Ranking. This tool also allows to compare and rank the overall independence
of an author, along his/her whole career, with the whole research community
(Fig. 2). This visualization permits to focus on how much the entire production
of a researcher can be considered dependent on the interactions with her/his
local community.

The presented demo can be used to analyze each researcher in the entire
DBLP community by also considering similar profiles (with parameters such as
number of papers, number of co-authors, and length of career).
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Abstract. In this demonstration, we present ReGLL, a system that is
able to learn language models taking into account the perceptual con-
text in which the sentences of the model are produced. Thus, ReGLL
learns from pairs (Context, Sentence) where: Context is given in the
form of an image whose objects have been identified, and Sentence gives
a (partial) description of the image. ReGLL uses Inductive Logic Pro-
gramming Techniques and learns some mappings between n-grams and
first order representations of their meanings. The demonstration shows
some applications of the language models learned, such as generating rel-
evant sentences describing new images given by the user and translating
some sentences from one language to another without the need of any
parallel corpus.

1 Introduction

Learning language models has been a very active domain of research for a long
time and Grammatical Inference, a subdomain of Machine Learning dedicated
to that task, has produced a huge number of results in the literature. That has
already led to the implementation of tools used in various applications (see [3]
for an overview of the domain).

This research has mainly focused on learning language models from a syntac-
tic point of view considering training sets only made up of strings of characters
or sequences of words. Nevertheless, it seems obvious that human beings do not
learn languages in that way. If we look at very young children starting to learn
their native language, we can note that they are exposed to many sentences
that refer to things in a perceptible scene. Thus, some work have been done to
integrate some semantic information in the language learning process. The work
from Chen et al. [2] is one example of this way of learning language models.
Nevertheless, in this approach the meaning of each sentence has to be provided
for each example of the training set. The ReGLL (Relational Grounded Lan-
guage Learning) prototype proposes a different approach in which the meaning

H.Blockeel—Work supported byKULeuven (sabbatical grant) andFWO-Vlaanderen
(WOG “Declarative Methods in Informatics”).
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of each sentence is automatically discovered by the system, thanks to the context
associated with it.

Some work has focused on learning to caption images using some deep learn-
ing approaches. The work from Karpathy et al. [4] is one example of such an
approach. The main idea behind these approaches is to learn a function that
ranks sequences of words given some images. It is different from the ReGLL
prototype that is able to build a general semantic representation of the mean-
ing of (part of) sentences. Doing in that way makes it possible later to use this
representation to reason about the universe that has been described by the set
of images and sentences of the training set.

2 The ReGLL prototype

Due to space limitations we cannot detail the theoretical and algorithmic aspects
behind ReGLL, for that purpose, the reader may refer to [1].

The input of the system is a dataset D1 made up of pairs (I,S) where I is an
image that has been built using a scene builder and S is a sentence that describes
(part of) the image. The scene builder provides a set of cliparts and the user
can drag and drop cliparts to design a new scene. A preprocessing step can then
transform D1 in a dataset D2 made up of Prolog facts that provide pairs (C,L)
where C is a set of grounded atoms that contains all the information about
the objects of the image I and L is the list of words of the sentence S. During
the learning step, the system takes the dataset D2 as an input and generates
a language model. In the demo we provide three families of datasets where the
sentences are written in English and Spanish. Thus the language models learned
are subsets of language models for English and Spanish.

ReGLL is based on Inductive Logic Programming (ILP) techniques where
each learning step uses the least general generalization (lgg) operator [5]. The
basic idea behind the ReGLL engine is to traverse the training set and, given
an n-gram NG (1 ≤ n ≤ 8) that appears in a sentence, generate a most specific
generalization of all the contexts of NG in the training set. The process is iterated
for each n-gram of the training set. During the learning process, the system learns
the meaning of 1-grams (words) and then learns the meaning of n-grams (n ≥ 2).

From an operational point of view, ReGLL is run through an interface that
allows the user to act in various ways. One may: (i) load or design some training
sets, (ii) learn some language models, (iii) load a language model to: (a) visualize
the meaning of words, (b) generate relevant sentences given an image, (c) trans-
late some sentences from a language L1 to a language L2 given the language
models of L1 and L2.

3 Overview of the Demonstration

The demonstration is mainly based on the Abstract Scene Dataset built by
Zitnick et al. [6] with a scene builder, nevertheless the attendees will be allowed
to build some new datasets if they want to explore this functionality. It shows:
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1. The way we can build a dataset from scratch using an abstract scene builder
and then learn a language model from this dataset.

2. What can be done using a language model that has been learned.

Figure 1 shows two screenshots of the ReGLL system generating sentences
describing images and showing the meaning of words it has discovered from a
given dataset.

Fig. 1. Screenshots of the ReGLL interface.

Three functionalities are thus mainly demonstrated:

– Visualizing the meaning of words. We can visualize what are the mean-
ings that have been learned by ReGLL from a training set. Each word that
has an associated meaning is displayed. The user may choose to delete some
incorrect associations in order to help the system to be more efficient on the
two other functionalities (see Fig. 1a).

– Describing images. Given an image that is built by the user using an
image builder, the system may generate all the relevant sentences (ordered
by decreasing relevance) that describe this image (see Fig. 1b).

– Translating sentences. We show that the language models learned by the
system can be used to translate sentences written in a language L1 to sen-
tences written in a language L2, while preserving the meaning. The languages
available at the moment for this demonstration are English and Spanish.
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Of course, the demonstration will allow attendees to look “inside the
machine”. Indeed, it may be interesting for people familiar with Prolog to observe
the code associated with the training sets, the main components of the learner
and the language models.

We think this demonstration may be useful for people from both the academic
and the industrial world working in the domain of natural language processing.
For the academic audience, it may be interesting for people specialized in gram-
matical inference and people from the computation linguistic area. That can
provide them some insights on how children learn from their environment. For
the industrial audience, the core ideas behind ReGLL may be useful to design
various tools. As the demonstration shows, such techniques can be used to design
some tools able to generate descriptions of images, which can be very useful for
blind people. In the domain of machine translation, our approach may be a new
way to go beyond statistical machine translation that has well-known limitations
that could be avoided by passing through a relational, more semantic represen-
tation. People from the domains of text summarization and Question-Answering
may also find an interest in the ideas implemented in ReGLL.

4 Conclusion

The main goal of this demonstration of the ReGLL system is to prove the interest
of learning language models not only from a syntactical point of view but also by
taking advantages of semantic information related to the context in which the
sentences of the language are produced. We expect attendees will actively use the
system by themselves to explore its capabilities and discuss possible extensions
that could integrate new functionalities they feel useful.
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Abstract. We propose a visual analytics tool to support analytic jour-
nalists in the exploration of large text corpora. Our tool combines graph
modularity-based diagonal biclustering to extract high-level topics with
overlapping bi-clustering to elicit fine-grained topic variants. A hybrid
topic treemap visualization gives the analyst an overview of all topics.
Coordinated sunburst and heatmap visualizations let the analyst inspect
and compare topic variants and access document content on demand.

1 Introduction

We present a visual analytics tool designed to help analytic journalists explore
large text corpora. Analytic journalists typically start by getting an overview of
the field under investigation, then focus on specific aspects to identify facts and
viewpoints that verify, refine or refute their hypothesis. Text corpora are often
modeled by Term × Document matrices, from which topics may be extracted
using graph modularity-based diagonal biclustering [1]. Word cloud views are
popular representations of individual topics and have been extended in many
ways. In the considered use case, the journalist needs to grasp dozens of topics
at a glance and appreciate topic importance. A good visualization may further
ease this task by displaying topic relationships. Once the journalist has identified
a topic of interest, his concern shifts to understanding topic variants and iden-
tifying distinctive documents and terms for each. The visualization of overlap-
ping biclusters has been approached in various ways e.g. transparent overlapping
hulls in node-link diagrams, matrix visualizations and parallel coordinates by
Santamaŕıa et al. [5]. BiSet [6] represents chained bipartite graphs enhanced
with semantic bundles to represent chained bicluster relationships. These repre-
sentations fail to convey an overview of a large number of overlapping biclusters
while identifying common and distinctive terms and documents.

2 Tool Overview

To support the topic mapping task, we apply diagonal biclustering based on
graph modularity [1] on the Term × Document matrix. The Weighted Topic Map
c© Springer International Publishing AG 2016
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visualization in Fig. 1 is a hybrid Treemap view where rectangular tiles represent
individual topics, tile area encodes topic importance, while topic details are
shown as a nested word cloud. Term size and color reflect its representativeness
of the topic and the number of documents where it appears. An MDS projection
computed from the similarity matrix of the diagonal biclusters generates 2D
positions which are fed to the Weighted Map visualization algorithm [2]. This
results in similar topics being placed in adjacent tiles. Jaccard similarity is used
to display links to the five most similar topics when the analyst hovers over a
topic, as shown in Fig. 1. Showing topic relationships aims to alleviate the hard
partitioning due to the diagonal biclustering. This overview enables the analyst
to discover the main topics and select one for further scrutiny.

Fig. 1. The US presidential election topic is selected from 3,992 online news articles
collected between Nov. 2nd and Nov. 16th, 2015. Five topic variants concerning Hillary
Clinton have been sent for comparison (https://youtu.be/xY6mgZyg3jA).

When the analyst selects a topic, Bimax [4], a pattern-based overlapping
biclustering, extracts the topic variants by identifying all maximal combinations
of terms shared by a maximal set of documents. While the exhaustiveness of
Bimax may serve the needs of the analyst, it produces a very large number

https://youtu.be/xY6mgZyg3jA
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of biclusters. To make sense of the numerous Bimax biclusters, we hierarchize
them based on term overlaps using the FPTree algorithm [3]. The resulting term
hierarchy is represented as a sunburst visualization (3.1 in Fig. 1). The most
common terms have a higher overlap degree and appear closer to the root, while
the most distinctive terms are placed further away. Each path, from root to leaf,
represents a unique association of terms grouped by one bicluster. As we move
away from the root along a given path, the word combination becomes more
specific and retains fewer documents. At the leaf level, only the documents of one
bicluster are retained. By exploring this view and the coordinated comparator
view (4), the journalist can focus on a specific aspect of a topic and depict all
document relationships to identify facts or viewpoints related to his hypotheses.

The text of the documents can be read in the Document Detail View. In
addition, we provide multiple interaction modes illustrated in Fig. 2. Hovering
over a term in the hierarchy colors all its occurrences in red (3.3 in Fig. 1) and
shows the corresponding term sequence on the right (3.2). The comparator view
allows to analyze the common and distinctive terms as well as the distribution
of documents across the selected topic variants. Multiple sorting strategies are
proposed to facilitate the identification of the most informative terms.

Fig. 2. Interaction Modes. (a) The orange biclusters contain any document selected by
the clicked node “Israel”. (b) The biclusters not matching the term “Israel” are filtered.
(c) The bicluster colored in blue are sent to the topic variant comparator. (Color figure
online)

3 Parameter Setting by the User

The number of Bimax biclusters increases with the size or the density of the
diagonal bicluster blocks up to more than ten thousand biclusters. To reduce
this number, we allow the user to modify the parameters of Bimax: the minimum
number of terms or documents per bicluster (MinT, MinD) and the maximum
number of biclusters (MaxB). As Bimax uses binary matrices, we also enable the
user to change the binarization threshold (Thr) applied on the TF-IDF weights.
Increasing the threshold selects, for each document, the most representative
terms and reduces the density and the dimensions of the matrix.

In Fig. 3, we visualize the effect of varying each parameter separately on
the term hierarchy built from the U.S. presidential elections topic. After each
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Fig. 3. Number of biclusters as the parameters of Bimax vary.

parameter variation, the root node “Obama” is clicked to highlight in orange the
distribution of the selected documents. With the default parameters (MinT = 3,
MinD = 4, Thr = 5), only the first levels of the 13,000 biclusters are visible in
the sunburst visualization. Increasing both Thr and MinT reduces the dispersion
of the documents concerning “Obama”, but the changes of Thr maintain the
variety regarding the number of terms. As MinD increases, the number of terms
tends to be reduced but the documents selected by the node “Obama” remain
largely dispersed in the biclusters until the node disappears.
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Abstract. This paper presents a mining system for extracting patterns
from Satellite Image Time Series. This system is a fully-fledged tool com-
prising four main modules for pre-processing, pattern extraction, pat-
tern ranking and pattern visualization. It is based on the extraction of
grouped frequent sequential patterns and on swap randomization.

1 Introduction

A Satellite Image Time Series (SITS) is a series of images covering a same area
acquired by satellites over time. SITS analysis is a still growing research field,
stimulated by the enhancement of the spatial resolution, the reduction of the time
intervals between acquisitions and the development of new acquisition modes.
Considering the large volume and the raw nature of such SITS, it is not possible
to process them manually, and unsupervised mining techniques demonstrate
their potential to describe and discover spatiotemporal phenomena in SITS.
These techniques rely either on global models such as clustering (e.g. [2]) or on
local patterns such as sequential patterns (e.g. [3]).

This paper presents SITS-P2miner (Pattern maP miner), a system that
implements the pattern mining method introduced in [4] and the swap ran-
domization ranking presented in [5], together with appropriated pre-processing
and visualization tools. The salient features of the resulting system, with respect
to other state-of-the-art methods, are: (1) its ability to process both optical and
radar satellite images; and (2) its robustness against frequent quality degradation
sources inherent to satellite images (atmospheric perturbations, missing values,
sensor defects, irregular time spacing).

In a SITS, the covered area is represented as a grid of pixels, and, for each
pixel, the SITS contains the sequence of values (integers or floating point num-
bers) acquired over time for that location. In SITS-P2miner, the input SITS is
quantized in a pre-processing step to replace pixel values by symbols denoting
discrete levels (1, 2, 3, . . .). This symbolic SITS is then mined to extract GFS-
patterns [4], where a GFS-pattern is a sequential pattern [1] satisfying the two
c© Springer International Publishing AG 2016
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following constraints. First, it must occur in a sufficient number of sequences
(being frequent, in the usual sense). Secondly, the occurrences of the pattern have
to be somehow coherent over space, i.e., if the pattern occurs in the sequence of
values of a pixel, then it must also tend to occur in the spatial neighborhood of
this pixel (but eventually with a shift in time).

2 System Description

The architecture of the system is presented in Fig. 1. As an input, it takes a
SITS expressed as a single synthetic band of interest such as the ground motion
magnitude in the line of sight of a radar satellite, or a vegetation index when
dealing with optical images. First, the SITS is quantized by the pre-processing
module, using one of the different available discretization strategies, to produce a
Symbolic SITS. This symbolic SITS is in turn processed by the pattern extraction
module to extract maximal GFS-patterns. These patterns are then assessed by
swap randomization of the symbolic SITS and ranked using a normalized mutual
information measure reflecting the impact of the randomization upon the pattern
occurrences. Finally, different maps depicting the location in space and time of
the occurrences of the top-ranked patterns are computed by the visualization
module. The reader is referred to [4,5] for the complete definition of the patterns,
the description of the extraction/ranking steps and the guidelines for parameter
settings.

The whole process is driven by a single human readable parameter file. The
output is stored in folders whose hierarchy is structured according to the process-
ing steps, the parameter values and the execution time stamps. This output
includes maps, patterns, intermediate ranking information as well as monitoring
logfiles that are organized for quick result browsing and easy iterative mining.

SITS Symbolic 
SITS

Maximal 
GFS-patterns

Ranked 
patterns Maps

Pre-processing

Pattern 
extraction

Visualization

Pattern 
ranking

Input/output Module

Fig. 1. System architecture.
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The most resource consuming steps are the GFS-pattern extraction and the
swap randomization. Therefore, the corresponding modules are implemented
in C. The other ones are implemented in Python. All modules are chained in
Python, which allows to add new modules simply. The system can be run on
Windows, Linux and Mac OS X operating systems using a standard computing
platform (e.g., single core on 2.7 GHz Intel Core i7, 8 GB memory).

3 Demonstration

During the demonstration, we will present the analysis of two real SITS. The first
one (provided by Marie-Pierre Doin, ISTerre lab., CNRS), is an ENVISAT-based
SITS covering Mount Etna (16 radar images 598× 553 from 2003 to 2010). In
this series, the effects of the stratified atmosphere have been corrected, but not
the ones due to the turbulent atmosphere. The pixel values give ground motion
magnitudes in the satellite line of sight. The other series is a Landsat 7 SITS (16
optical images 513× 513 from 2004 to 2011) covering the area of Yaté in New
Caledonia and containing values expressing the presence/absence of vegetation
(NDVI index). The limited size of these series allows for live computation of the
maps during the demonstration on a standard laptop. Four images of the second
series are shown in Fig. 2, illustrating typical problems of satellite data such as
missing values, artifacts, sensor defects, presence of clouds, etc.

Two examples of maps of occurrences of GFS-patterns, selected among the
best ranked maps found in these series, are shown in Fig. 3. The colored pixels
denote the locations of the occurrences in space while the colors correspond to the
ending dates of the occurrences (middle of the SITS in blue and end of the SITS
in pink). The map of Fig. 3a corresponds to GFS-pattern 1-2-2-2-2-2-2-3-3 over
the Mount Etna motion series. It sketches a trend from low magnitude motion
(symbol 1) to high magnitude motion (symbol 3). The upper part of the map
exhibits a moving part of the volcano flank and the lower part unveils a fault sys-
tem. Figure 3b shows the map of GFS-pattern 2-2-3-2-2-2-3 over the New Caledo-
nia vegetation series. It denotes a cycling variation from normal vegetation index
(symbol 2) to high vegetation index (symbol 3) and corresponds to the presence
of maquis (evergreen vegetation). The best ranked maps over the New Caledonia
vegetation series highlight various phenomena related not only to the vegetation

2004 2007 2009 2011

Fig. 2. Landsat 7 images (RGB color space). (Color figure online)
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(a) Mount Etna (b) New Caledonia

Fig. 3. Examples of top-ranked maps of GFS-patterns. (Color figure online)

but also to anthropic activities, and have been integrated as data layers in the
Qëhnelö environmental management platform (http://www.yate.nc/).

The system used in this demonstration is available at: https://www.polytech.
univ-savoie.fr/fileadmin/polytech autres sites/sites/listic/projets/sitsmining/
SITSP2MINER.zip
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Abstract. An information retrieval framework is proposed which
searches for incident-related social media messages in an automated
fashion. Using P2000 messages as an input for this framework and by
extracting location information from text, using simple natural lan-
guage processing techniques, a search for incident-related messages is
conducted. A machine learned ranker is trained to create an ordering of
the retrieved messages, based on their relevance. This provides an easy
accessible interface for emergency response managers to aid them in their
decision making process.

Keyword: Incident related social media monitoring

1 Introduction

With the ever growing social media networks, and the information shared on
those networks, the opportunity for automated data analysis is increased with
it. A large part of this data is generated by private users, posting about their
everyday life and their surroundings. By combining the data generated by the
users of these social media platforms new insights can be gathered concerning
the geographic hotspots about which people talk. This information can help in
the decision making process of emergency response units and their managers,
who need to make decisions about sending aid to incident locations.

In the work of MacEachern et al. [3] a survey was conducted among emer-
gency managers from International Association of Emergency Managers (IAEM)
and FirstResponder.gov about their current and envisioned use of geovisual tools
that support social media analysis. This survey shows that only 39.1 % of the
participants use social media to gather information from the public. The most
important feature (94.7 %) requested by the emergency managers is the inclu-
sion of maps showing geographical information of an incident. The second most
requested feature (71.1 %) is the option to search through photo and video col-
lections relating to the incident, since these graphics allow a domain expert to
assess a situation.
c© Springer International Publishing AG 2016
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Fig. 1. Overview of the developed framework

These survey results show a relatively low use of social media data to gather
information, due to the large quantity of social media messages and the time
consuming process to analyse this data. As such, there is a demand for a more
structured and more accessible representation of social media data. The frame-
work described below is integrated within the Coosto solution and enables emer-
gency response units to easily access these social media messages to aid them in
their decision making process.

2 Framework

Figure 1 shows an overview of the developed framework. Only one input is
required from the user: a selection of an incident for which to retrieve related
social media messages. The other components of the framework operate fully
automated.

An overview of active incidents is created from a set of P2000 messages.
These messages are created by emergency response managers and are publicly
broadcasted over the P2000 paging network to alert and dispatch emergency
response units towards a reported incident. Due to the nature of these messages
they are always highly reliable and contain exact location information of the
reported incidents, thus creating a solid basis from which to start searching for
other, non-P2000, messages.

Using the extracted location an initial search is conducted to retrieve social
media messages mentioning the incident location. Even if these messages are
not directly related to the incident they can be used to a create context, and
also to get in contact with people at, or traveling towards, the incident location.
To retrieve harder to find messages, not explicitly mentioning the incident loca-
tion, a query expansion step is applied. This query expansion extracts relevant
terms from the intermediate result set and uses these terms to construct a more
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Fig. 2. Media objects related to the Chemelot fire. They inform about the location
and scale of the incident, wind direction, shape and color of the smoke plume. (Color
figure online)

complex query. This query expansion is tuned towards a high recall, to ensure
that we retrieve as many relevant messages as possible.

Finally, to reduce the noise in the final result set, a machine learned rank-
ing is applied to the results. To accomplish this we considered multiple ranking
algorithms. Train and test sets were created by manually labeling messages in
the result sets as either being very relevant, somewhat relevant or irrelevant
and the performance of the rankers was measured using the Normalized Dis-
counted Cumulative Gain [2]. From these experiments the RankBoost [1] algo-
rithm yielded the best results and was adopted into the framework. The rank
assigned by the machine learned ranker is also boosted, based on the occurence
of terms retrieved from the query expansion step. This boosting is applied to
compensate for the out-of-vocabulary words in the ranking model and to cover
incident types that were not present in the training set of the machine learned
ranker.

Combining all these steps yields the result set of social media messages,
automatically retrieved and ranked, ready to be presented to the user.

3 Usecase - Chemelot

In the morning of November 9th 2015 a large fire developed at a chemical complex
called Chemelot, located near Geleen, the Netherlands. Using the developed
framework the media objects shown in Fig. 2, related to this fire, were obtained.
As the idiom states: “A picture is worth a thousand words”, these photos provide
a lot of information for an emergency response manager, located in a response
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Fig. 3. Concerned tweet asking about ammonia hazard.

center far away from the incident location. A fireman can use these photos to
estimate how the fire is developing based on the smoke trail, color and direction.
These initial pictures can help in the decision making process of what units to
dispatch to the incident location.

As shown in Fig. 3, people are asking questions about toxicity of the fumes.
These messages can be important for press officers and the related information
management. Given that the fire was located at a chemical complex, and by
analysing the color of the smoke, an alert can be given to the people living in
the areas effected by the smoke, with the advice to stay indoors.

The overview created by the framework can easily give insights for the emer-
gency response units and support in their decision making process. It allows
for easy interaction with concerned people and informing the public, without it
being a time consuming process.

4 Conclusion

The developed framework provides easy access to incident-related social media
messages and helps providing emergency awareness. This application can be
used by anyone. It is no longer a time consuming process to construct complex
queries, and it does not require domain specific knowledge to operate. It enables
emergency response managers in their decision making process, making social
media more accessable.
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Abstract. We present TwitterCracy, an exploratory search system that
allows users to search and monitor across the Twitter streams of political
entities. Its exploratory capabilities stem from the application of light-
weight time-series based clustering together with biased PageRank to
extract facets from tweets and presenting them in a manner that facili-
tates exploration.

1 Introduction

Twitter has established itself as an important medium for online political dis-
course, as evidenced during events such as the Arab Spring, Barack Obama’s
2012 presidential campaign, and India’s General Elections in 2014. This has
subsequently led to the increased usage of the platform by politicians as a part
of their campaign activities [4,6]. Following this trend, Fortune Magazine has
termed the 2016 U.S Presidential Election as the “social media election” [1].
The research community has experienced a surge of interest in the analysis of
political chatter over Twitter [5]. Much of the current focus lies in the prediction
of election outcomes, with relatively few state-of-the-art studies [3,8] conducted
on the analysis of political discussion by general users [5]. Despite the attention
given to election predictions in the literature [9], such methods fail to empower
the general public in the spirit of “democracy” and “voter empowerment”.

The rising prominence of social media as a platform for political discourse has
fundamentally altered the way in which candidates conduct election campaign
[6]. It is therefore necessary for voters, analysts, and journalists to keep a close
eye on the online activity of politicians. We believe such monitoring can help to
increase political awareness among the general public, thereby enabling them to
make informed choices in electing their representatives. This, in turn, dictates a
clear need for analytical tools that can delve into the communication behaviors
of politicians on social media.

Towards this end, we have created TwitterCracy, a system which aims to
facilitate voters and analysts, by keeping them aware of the key agenda issues
that are of interest to politicians, as reflected by their ongoing activity on
Twitter. The core functionality of the system enables the exploration of various
facets of these issues, via the extraction of keywords from politicians’ tweets. Our
c© Springer International Publishing AG 2016
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technique for exploratory analysis is based on the application of biased PageRank
[2] to a graph of terms, mentions, and hashtags appearing in tweets. In line with
the TweetMotif tool [7], our system allows a user to navigate via the extracted
keywords and drill down into the data in more depth. However, unlike TweetMo-
tif, which only operates on a static corpus, TwitterCracy indexes a live stream
of tweets and extracts query-specific facets in real-time, while incorporating a
light-weight time-series clustering mechanism for the efficient application of the
PageRank model. Another novel aspect of TwitterCracy is the incorporation of
valuable metrics based on theoretical constructs within relational sociology [3] to
provide deeper insights into the communication patterns of politicians. To illus-
trate the use of TwitterCracy, we consider the 2016 U.S. Presidential Election
as a case study, analyzing the activity of 635 relevant politicians and political
organizations on Twitter during the campaign. click

2 TwitterCracy Architecture

In this section, we present an overview of the architecture of TwitterCracy, as
illustrated in Fig. 1. The user, who is central to the system, issues a “query”1,
which is processed by the query module to produce a ranked list of relevant
tweets. This ranked list then passes through various components of our process-
ing pipeline: (1) clustering and compression module, (2) facet extraction module,
(3) social extraction module and finally, (4) rendering module. We now explain
the first three modules in the following sub-sections, as these represent the key
system components, while the rendering module simply produces the HTML out-
put. Separately, the crawler module is responsible for back-end data acquisition,
continuously collecting from the live stream of politicians’ tweets and match-
ing them with the user metadata. This data stream is immediately indexed to
provide the user with real-time updates.

2.1 Key Components

Clustering and compression module: This module is responsible for reduc-
ing the large, dense graph of terms, mentions, and hashtags into a relatively
small, sparse graph for efficient computation of PageRank. First, we apply cost-
effective, time-series based clustering to the ranked list of tweets. Based on the
assumption that bursts of tweets are likely to indicate significant events [10], we
apply k-means clustering over the timestamps of the retrieved tweets to cluster
bursts of tweets together. From these clusters, we then pick the top retrieved
tweets, in proportion to the size of each cluster. This reduces the full stream to
a representative sub-sample of tweets prior to the application of PageRank in
the next stage of the processing pipeline.

1 Note a query can be a phrase entered by the user or the live stream depicting last
15min.
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Fig. 1. Architecture of the TwitterCracy system.

Facet extraction module: This module extracts various facets2 from the
retrieved tweets by applying biased PageRank. In the graph, the nodes are
terms extracted from retrieved tweets, and edges connect pairs of terms that
occur together in a tweet. The weight on an edge is the relevance score of the
tweet relative to the original query. The biasing of PageRank vector is explained
as follows:

– The terms in retrieved tweets are biased in proportion to the amount of their
significance calculated by chi-square test of independence.

– The named entities in retrieved tweets are biased in proportion to their cor-
relation with an event where the correlation is calculated by means of their
document frequencies in retrieved tweets.

Finally, we merge single terms identified by biased PageRank to extract longer
keywords as facets3. To achieve this, we add the individual PageRank scores
of the co-occurring terms according to their probability of co-occurrence. This
means that sets of terms with high PageRank scores and that co-occur frequently
are extracted as facets, and appear in the exploratory search interface (see Fig. 2)
Social extraction module: This module applies theoretical measures from
relational sociology to quantify various aspects of online conversational practices
of politicians. More specifically, we make use of three measures introduced by
Lietz et al. [3]: cultural similarity, cultural focus, and cultural reproduction.
The level of similarity between the stances of political parties (e.g. Democrats
and Republicans) in relation to various issues is measured by means of cultural
similarity. The stability of a political party’s ideology can be quantified by both
cultural focus and cultural reproduction.

3 Case Study: 2016 U.S. Presidential Election

To illustrate the use of TwitterCracy, we consider the 2016 U.S. Presidential
Election as a case study, analyzing the activity of 635 relevant politicians and
2 Facets here are keywords, mentions and hashtags.
3 Note that we restrict this extraction to bigrams as tweets are short.
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Fig. 2. TwitterCracy user interface showing results for a sample query “guns”. Identi-
fied facets include “gun violence” and “gun legislation”, which can be explored in more
detail.

political organizations on Twitter during the campaign. The dataset contains
1,473,514 number of tweets (from 3 June 2008 to 11 May 2016) and it is still grow-
ing. A video demonstrating the system can be accessed at http://mlg.ucd.ie/
twittercracy. A query such as “guns” can reveal significant insights (see Fig. 2):
we observe the low level of cultural similarity between parties, while aspects like
“gun sales”, “gun violence”, and “gun legislation” highlight various facets within
this topic which the user can navigate for further exploration. Together with the
various insights from theoretical measures, these facets help uncover various
issues of U.S. politics that may concern the voter. Three further examples are:
(1) the different facets evident between the parties for the query “abortion”, (2)
the high level of cultural similarity between parties on matters of foreign policy,
such as “Israel” and “Syria”, (3) the low level of cultural similarity between
parties on matters of domestic policy such as “drugs”.
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Abstract. STEM (Science, Technology, Engineering, and Mathemat-
ics) fields have become increasingly central to U.S. economic competi-
tiveness and growth. The shortage in the STEM workforce has brought
promoting STEM education upfront. The rapid growth of social media
usage provides a unique opportunity to predict users’ real-life identities
and interests from online texts and photos. In this paper, we propose
an innovative approach by leveraging social media to promote STEM
education: matching Twitter college student users with diverse LinkedIn
STEM professionals using a ranking algorithm based on the similarities
of their demographics and interests. We share the belief that increasing
STEM presence in the form of introducing career role models who share
similar interests and demographics will inspire students to develop inter-
ests in STEM related fields and emulate their models. Our evaluation
on 2,000 real college students demonstrated the accuracy of our rank-
ing algorithm. We also design a novel implementation that recommends
matched role models to the students.

Keywords: STEM · Recommendation systems · Social media · Text
mining

1 Introduction

The importance of the STEM industry to the development of our nation cannot
be understated. As the world becomes more technology-oriented, there is a neces-
sity for a continued increase in the STEM workforce. However, the U.S. has been
experiencing the opposite. In the United States, 200,000 engineering positions
go unfilled every year, largely due to the fact that only about 60,000 students
are graduating with STEM degrees in the United States annually [17]. Another
obvious indication is the relatively fast growth in wages in most STEM-oriented
occupations: for computer workers alone, there are around 40,000 computer sci-
ence bachelors degree earners each year, but roughly 4 million job vacancies [29].
Therefore, our motivation is to solve this problem of STEM workforce shortage
by promoting STEM education and careers to college students so as so to increase
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 79–95, 2016.
DOI: 10.1007/978-3-319-46131-1 17
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the number of people who are interested in pursuing STEM majors in college or
STEM careers after graduation.

In this paper, we present an innovative approach to promote STEM education
and careers using social media in the form of introducing STEM role models to
college students. We chose college students as our target population since they
are at a life stage where role models are important and may influence their
career decision-making [15]. Social media is useful for our study in the following
two ways: (1) the massive amount of personal data on social media enables
us to predict users real life identities and interests so we can identify college
students and role models from mainstream social networking websites such as
the microblogging website Twitter and professional networking website LinkedIn;
(2) social media itself also can serve as a natural and effective platform by which
we can connect students with people already in STEM industries (Fig. 1).

Fig. 1. The framework for promoting STEM education and careers using social media
to match college students with STEM role models.

Our approach is effective in the following three ways. First, increasing STEM
presence will inspire students to develop interests in STEM fields [18]. Second,
the exposure of career STEM role models that students can identify with will
have positive influence on students, as strongly supported by previous studies
[12]. Finally, as a form of altruism, accomplished people are likely to help young
people [6,11] and people who resemble them when they were young [21]. More
importantly, social learning theory [1,2], psychological studies, and empirical
research have suggested that students prefer to have role models whose race
and gender are the same as their own [12,15,30] as well as who share similar
demographics [7] and interests [16]. Motivated and supported by the findings of
these related studies, we select gender, race, geographic location, and interests as
the four attributes that we will use for matching the students with STEM role
models. In addition, similar interests and close location will further facilitate the
potential personal connection between the students and role models.

In particular, we first use social media as a tool to identify college students
and STEM role models using the data mined from Twitter and LinkedIn. As
a popular online network, on the average, Twitter has over 350,000 tweets sent
per minute [27]. Moreover, in 2014, 37 % social media users within the age range
of 18–29 use Twitter [5]. This suggests a large population of college users on
Twitter. In contrast, as worlds largest professional network, LinkedIn only has
roughly 10 % college users out of more than 400 million members [25], but has a
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rich population of professional users. Part of its mission is to connect the world’s
professionals and provide a platform to get access to people and insights that
help its users [14]. Our goal, to connect college students with role models, is
organically consistent with LinkedIn’s mission and business model.

Specifically, we train a reliable classifier to identify college student users on
Twitter, and we build a program that finds STEM role models on LinkedIn.
We employ various methods to extract gender, race, geographic location and
interests from college students and STEM role models based on their respective
social media public profiles and feeds. We then develop a ranking algorithm
that ranks the top-5 STEM role models for each college student based on the
similarities of their attributes. We evaluated our ranking algorithm on 2,000
college students from the 297 most populated cities in the United States, and our
results have shown that around half of the students are correctly matched with
at least one STEM role model from the same city. If we expand our geographic
location standard to the state-level, this percentage increases by 13 %; if we look
at the college students who are from the top 10 cities that our STEM role models
come from separately, this percentage increases by 33 %.

Our objective is to do social good, and we expect to promote STEM education
and careers to real and diverse student population. In order to make a real life
impact on the college students after we obtain the matches from the ranking
algorithm, we design an implementation to help establish connections between
the students and STEM role models using social media as the platform. For each
student, we generate a personalized webpage with his top-5 ranked STEM role
models’ LinkedIn public profile links as well as a feedback survey, and recommend
the webpage to the student via Twitter. Ultimately, it is entirely up to the
student and the role models if they would like to get connected via LinkedIn
or other ways, and we believe these connections are beneficial for increasing
interest in STEM fields. It is noteworthy that LinkedIn has already implemented
a suite of mechanisms to make connection recommendations, even though none
of which is intended to promote STEM career specifically. Figure 2 illustrates
how our implementation naturally fits into the work flow and business model of
LinkedIn.

Our study has many advantages. Leveraging existing social media ensures
that we are able to retrieve a large scale of sampling users and thus our implemen-
tation is able to influence a large scale of students. Also, due to available APIs

Fig. 2. The framework of our implementation to help establish the connections between
the college students and the STEM role models.
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and existing social media infrastructures, our data collection and our implemen-
tation are low cost or virtually free. More importantly, unlike some traditional
intervention methods, we recommend STEM role models to college students in a
non-intrusive way. We tweet at a student with the link of his personalized web-
page, and it depends on himself if he wants to take actions afterwards. Finally,
our approach is failure-safe in delivery. If there are some Twitter users that are
classified incorrectly as college students, it has no harmful impact on them even
if we promote STEM education to them.

The major contributions made in this study are fourfold. First, we take
advantage of social media to do social good in solving a problem of paramount
national interest. Second, we take advantage of human psychology, motivation,
and altruism. That people are more likely to be inspired by models who are like
them, and people who are accomplished are likely to help young people who share
similarities with them. Third, we have developed a simple yet effective ranking
algorithm to achieve our goal and verified its effectiveness using real students.
Lastly, we design an implementation that seamlessly mashes up with the natural
work flow and business model of LinkedIn to establish the connections between
students and role models.

2 Related Work

STEM workforce is significant to our nation, and the shortage in such fields
makes promoting STEM education and careers indispensable. We review the
existing methods of promoting STEM education and build on previous research
in both computer science and human psychology.

Previous effort has been made to promote STEM education. Most existing
intervention methods focus on promoting through school educators [19], external
STEM workshops [26], and public events such as conferences [22]. However, very
little evidence has shown that these strategies were effective. On the other hand,
while none of the methods has utilized the rich database and powerful networking
ability of social media, social media-driven approaches have succeeded in many
applications, such as health promotion and behavior change [33].

The abundance of social media data has attracted researchers from various
fields. We benefit the most from studies that related to age prediction and user
interest discovery. Nguyan et al. [20] studied various features for age prediction
from tweets, and guided our feature selection for identifying college students.
Michelson and Macskassy [31] proposed a concept-based user interest discovery
approach by leveraging Wikipedia as a knowledge base while Xu, Lu, and Yang
[32], Ramage, Dumais, and Liebling [23] both discovered user interest using
methods that built on LDA (Latent Dirichlet Allocation) [3] or TF-IDF [24].

Our study also adopts knowledge from psychological studies that demon-
strate the importance of having a role model with similar demographics and
interests. Karunanayake [12] discussed the positive effect of having role models
with the same race, and it holds across different races; Weber and Lockwood
[30] discovered that female students are more likely to be inspired by female role
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models; Ensher and Murphy [7] indicated that liking, satisfaction, and contact
with role models are higher when students perceive themselves to be more sim-
ilar to them in demographics; and Lydon et al. [16] suggested that people are
attracted to people who share similar interests. These studies help determine the
attributes that we selected to match the students with role models.

3 Data

We used the REST API to retrieve Twitter data. Instead of directly searching
for college Twitter users among all the general users, we focused on the followers
of 112 U.S. college Twitter accounts since there is higher percentage of college
students among these users. In total, we successfully retrieved more than 90,000
followers. For each user, we extracted the entities of his most recent 200 tweets
(if a user has fewer than 200 tweets, all his tweets were extracted) and his user
profile information, which includes geographic location, profile photo URL, and
bio. After we filtered out API failures, duplicates, and users with zero tweet or
empty profile, we are left with 8,688,638 tweets from 62,445 distinct users.

Due to the limited information that LinkedIn API allows us to retrieve, we
employed web crawling techniques to obtain the desired information directly
from the webpage. We built a program that does automated LinkedIn public
people search and used it to search users based on the most common 1,000 sur-
names for Asians, Blacks, and Hispanic, and more than 5,000 common American
given names1. Despite some overlapping surnames, the large number of names
we searched is still able to ensure the diversity of the potential role models,
and our results confirmed that. For each search, the maximum number of users
returned is 25, and we collected the public profile URLs of all the returned users.
After we deleted the duplicates, we retained 182,016 distinct LinkedIn users.

4 Identifying Twitter College Student Users

We employed machine learning techniques to identify Twitter college student
users (i.e. from incoming freshmen to seniors). First, we labeled our training
set. We used regular expression techniques to label college student users and
non-college student users. Specifically, we studied patterns in users’ tweets and
bio, and constructed 45 different regular expressions for string matching. For
example, expressions such as “I’m going to college”, “#finalsweek”, or “univer-
sity’19” are used to label college students; and expressions such as “professor
of”, “manager of”, or “father” are used to label non-college students. If a user’s
tweets and bio do not contain any of the 45 expressions, the user is unlabeled.
We then manually checked and only counted the correctly labeled users. In the
end, we are left with 2,413 labeled users, where 1,103 are college students and
1,310 are non-college students, as well as 60,032 unlabeled users.

1 All the names were retrieved from http://names.mongabay.com.

http://names.mongabay.com
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Second, we trained our labeled data set to develop a reliable classifier using
the LIBSVM Library [4] in WEKA [8]. We chose SVM for our binary classifica-
tion because it is efficient for the size of our data set. We learned from Nguyan
et al.’s study of language and age in tweets [20] that the usage of emoji, hashtag,
and capitalized expressions such as “HAHA” and “LOL” are good age indicators.
We built on their study and took a step further to use these three features for
differentiating college students (i.e. specific age group) from general users. We
were also curious about whether re-tweet would be another good age indicator,
so we also extracted this feature. For each user, each feature is represented by
its relative frequency among the user’s tweets:

# of tweets that contain this feature
total # of tweets

(1)

Since relative frequencies are continuous, we discretized them into 10 bins with an
equal width of 0.1 and assigned them with ordinal integer values for classification.
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Fig. 3. Average usages of the four features for college and non-college student users
among labeled Twitter users.

Figure 3 demonstrates our analysis of the four features. On average, college
student users use emojis and HAHA/LOL more frequently while non-college
student users use hashtags more frequently. We note that these results are con-
sistent with the conclusions of a previous study [20]. However, there is not much
difference in re-tweet between these two groups. We experimented training the
classifier with and without re-tweet, our 10-folds cross-validation results showed
that including re-tweet actually slightly lowers the accuracy of the classifier.
Thus, we confirmed that re-tweet is a noise and does not help us to differentiate
college student users. Our final classifier trained from the other three features
achieves a high accuracy of 84 %. We then used this trained classifier to infer col-
lege student users among the unlabeled users. We further labeled 18,351 users as
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college students, and with our manually labeled college student users, together
we have labeled 19,454 college student users in total.

5 Finding LinkedIn STEM Role Models

Our goal is to find diverse STEM role models from LinkedIn in terms of geo-
graphic locations and industries. While the definition of a role model is subjective
to an individual student, we take an objective view and consider people who have
received STEM education and work in STEM-related industries or have a career
in STEM industries as role models.

We first filtered out users who are outside of the United States and then built
a Role Model Identification program to find STEM role models. The program
takes in a user’s profile URL, crawls the contents in “industry” and “education”
fields on the user’s profile and only outputs the URL if the user is a STEM role
model. Specifically, we divided all 147 LinkedIn industries into three groups,
“non-STEM”, “STEM”, and “STEM-related”. For example, “Biotechnology”
and “Computer Software” are “STEM”, “Music” and “Restaurants” are “Non-
STEM”, and “Financial services” and “Management consulting” are “STEM-
related”. We only consider those users who are under “STEM” or under “STEM-
related” with a degree in STEM majors as role models. We used the 38 STEM
majors offered at our University as our standard.

Fig. 4. The geographic location distribution of STEM role models. Darker color indi-
cates higher density.

After we obtained the profile URLs of STEM role models, we crawled their
entire profiles using the URLs. We successfully found 25,637 STEM role models
from 2,022 distinct locations in the United States, including some places in
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Hawaii and Alaska. Figure 4 shows a rough visualization of the diverse geographic
locations the STEM role models come from. The top-10 cities that role models
come from are, not surprisingly, San Francisco, New York City, Atlanta, Los
Angeles, Dallas, Chicago, Washington D.C., Boston, Seattle and Houston.

6 Matching College Students with Role Models

This section presents the methods we employed to extract the gender, race,
geographic location and interests from college students and STEM role models as
well as our ranking algorithm that matches them based on the similarities of these
attributes. We reiterate that our selection of attributes are supported by a variety
of previous related studies. These factors can make the most influential pairing
because they ensure that a student gets a mentor with a similar background for
affinity. Moreover, close geographic location and similar interests are valuable
for potential real life interaction between the students and role models.

6.1 Gender and Race Extraction

We extracted race and gender from both textual and visual features, namely the
users’ names and profile photos. We recognize that there are people who identify
themselves with genders other than male and female; we also recognize that
there are a variety of ways for categorizing races. To build a prototype system,
we will use male, female for gender categorization, and use White, Black, Asian,
Asian Pacific Islander (i.e. Api) and Hispanic for race categorization.

Fig. 5. Distribution of gender and race. Top row: college students; Bottom row: STEM
role models.
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In particular, we used Genderize.io2, Face++3, and Demographics4 to extract
these two attributes. Genderize.io and Demographics predict gender or both
gender and race based on the users given name or full name while Face++
predicts both using the user’s profile photo. In total, we obtained three gender
predictions and two race predictions for each user. Each prediction is returned
with an accuracy, and in the case the tool fails to predict, the prediction will be
null. We picked the gender and race predictions with the highest accuracy.

As a result, we extracted the gender of 80 % college students and 97 % role
models, and the race of 46 % college students and 92 % role models. Almost all
role models have both attributes since we used their LinkedIn profiles, where the
profile photos are usually high quality and the names are usually real. In contrast,
Twitter profiles sometimes can contain profile photos with random objects and
invented names. Figure 5 shows the make-up of those college students and STEM
role models whose gender and race were successfully extracted.

6.2 Location and Interests Extraction

We directly extracted geographic locations from the “location” field in Twitter
and LinkedIn profiles. The interests extraction is less straightforward and we
used other features as proxies for this attribute.

We were able to extract the locations of all STEM role models since LinkedIn
requires users to have a valid geographic location on their profiles. These loca-
tions usually contain the city and the state that role models work in. However,
Twitter does not have this requirement, and we noticed that not every college
student has filled the location field on his profile and some of the filled loca-
tions are not valid. In fact, 34 % Twitter users either did not fill the “location”
field or provided fake geographic locations; among those valid locations, roughly
65 % are at city-level [11]. In addition, we observed that many students use the
name of their educational institutions as locations, and some locations are not
correctly spelled or formatted. For example, a student’s location is “mcallentx”,
which refers to the city McAllen in Texas, but not a place called “mcallentx”.

Due to the difference in the nature of LinkedIn and Twitter, we selected
different proxies as interests for role models and college students. For role mod-
els, we directly extracted the contents in “interests” and “skills” fields as their
interests because skills such as “Web Development” can also be an interest, and
people usually are good at things that they are interested in. For college stu-
dents, we extracted hashtags (excluding prefix “#”) as interests. A hashtag is a
user-defined, specially designated word in a tweet, prefixed with a “#” [31]. Orig-
inally, we experimented LDA topic modeling to discover topics of interests from
all college students’ tweets and intended to use these to define each student’s
interests. However, due to the noise and non-interest related terms in tweets

2 A database that contains 216,286 distinct names across 79 countries.
3 A face detection service that detects 83 points of the face and analyze features such

as age, gender, and race.
4 A database that contains U.S. census for demographics.
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(excluding stop words and non-English words), most of the terms generated are
too generic to be defined as topics of interests. Therefore, we extracted one’s
unique hashtags as proxy for interests. Hashtags have been used in characteriz-
ing topics in tweets [23] and have shown to be interest-related to a decent extent
[32]. Although high-frequency hashtags are intuitively better representations of
one’s interests, including all unique hashtags allows us to extract a wilder range
of interests. After we extracted interests from both students and role models, we
stored everyone’s interests as a set which we call interest set. The size of the set
varies from user to user depending on the number of interests of that user.

6.3 Ranking Algorithm

We rank all STEM role models for each student based on the similarities of their
attributes. Specifically, for each comparison of a student and a role model, we
calculate the similarity of each attribute, and rank the role model based on the
arithmetic average across similarities of all attributes. We will now explain our
methods used for each comparison.

For gender and race, we simply compared if the two people have the same
string for gender or race. In our case, there are two strings for gender, “female”
and “male”, and five strings for race, “White”, “Black”, “Asian”, “Api”, and
“Hispanic”. Therefore, the gender similarity is either 1 or 0 because two people
either have the same gender or not, and the same went for race similarity.

For geographic locations, we used string comparison method to measure the
similarity of two locations. Originally, we experimented two ways to calculate
it: the actual distance between two locations based on their latitudes and longi-
tudes, and the Levenshtein distance between the two strings that represent the
two locations. Due the variety of possible expressions of the same location, tradi-
tional tool such as geocoder5 can only correctly convert well-formatted locations
that do not contain non-letter characters. For example, a real college student
has location “buffalo state’18 psych majorr” and it cannot be successfully con-
verted into coordinates using geocoder, but clearly that the student studies in
buffalo. Since our objective is to be able to compare as many locations as pos-
sible, we decided to use string comparison, which allows the flexibility of using
various location representations for the same place. Specifically, we employed
Levenshtein distance6 [13] to calculate the distance between two strings, and
the Levenshtein-based similarity (a ratio between 0 and 1) is defined as:

length(S1) + length(S2) − Levenshtein distance(S1, S2)
length(S1) + length(S2)

(2)

where in the case of location, S1(S2) is the string of the student’s (role model’s)
location, and we then have our location similarity. A minor problem of this simi-
larity measure is that two geographically different locations might contain similar
5 https://github.com/geopy/geopy.
6 Levenshtein distance is the minimum number of single-character edits required to

change one string into the other, and it is applicable to strings with different lengths.
https://github.com/miohtama/python-Levenshtein.

https://github.com/geopy/geopy
https://github.com/miohtama/python-Levenshtein
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words and have a high similarity, such as “Washington D.C.” and “Washington
State”. But this happens relatively rare only if there are enough people from one
of the location or both.

We used Jaccard coefficient [10] combined with Levenshtein-based similar-
ity to compute the similarity of two interest sets. Hashtags are often not real
words but a combination of words without spaces. While a real student’s hashtag
“computersciencelife” and a real role model’s interest “computer science” clearly
refer to the same interest in the field of computer science, the two strings are
different and have a Levenshtein-based similarity of 0.86. Therefore, in order to
capture the overlapping interests between two interest sets, we need a thresh-
old for Levenshtein-based similarity that decides whether two strings refer to
the same interest. After extensive experimenting with real data, we chose our
threshold to be 0.8. Our interest similarity is then defined as:

|I1
⋂
I2|

|I1
⋃
I2| =

# of overlapping interests
|I1| + |I2| − # of overlapping interests

(3)

where I1(I2) is the student’s (role model’s) interest set. A potential problem is
that since our measurement is string-based but not concept-based, it might not
capture the synonymous of interests as overlapping interests.

After we calculated the similarities of all four attributes, we combined them
by taking the arithmetic average and used that to rank the role models. In the
cases of missing values, any unlabeled attributes is not taken into account. For
instance, if a student does not have gender information, the arithmetic average
will entirely depend on the similarities of his other three attributes.

6.4 Evaluation

In this section, we verified our ranking algorithm on 2,000 college students from
the 297 most populated cities7 in the United States [28]. All these students are
randomly selected from our database. We manually evaluated their top-5 ranked
role models, and we also recommended these role models to them via Twitter.

Although it is desirable to evaluate the ultimate impact of our study, we
recognize that this would require tracking the subjects of the study over their
career of substantial length (e.g., over 10 years). Therefore, it is beyond the scope
of this study, and we decided to use matching accuracy as the performance
measure, which is defined as:

# of students that were correctly matched with n role models(s)
# of total students

(4)

where n is the second metric, the specific number of role models out of the top-5
that are correctly matched with the student. It represents the granularity level
of matching. We consider a student is correctly matched with a role model if
the LinkedIn user is indeed a STEM role model and has the same gender, race

7 With a population of at least 100,000.
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and geographic location as the student. We did not evaluate interests since they
are often not explicitly stated in social media and it would be too difficult to
discover every student’s real interests by reading his tweets.

We took a careful effort to manually evaluate the matching results of these
2,000 college students by checking their Twitter profile pages and the LinkedIn
profile pages of their top-5 ranked STEM role models. We utilized all the infor-
mation on their respective social media profiles to determine their gender, race,
and geographic location. In order to determine if someone is indeed a STEM
role model, we make our best judgment, as a career counselor would, based
on the entire LinkedIn profile, which usually includes demographic background,
personal summary, industry, education, working experience and skills.

If we failed to determine any of the three attributes of a student, we will have
to consider that he is not correctly matched with any role model because we are
unable to conduct the evaluation. Consequently, for Twitter public accounts and
students with unlabeled gender, race, or invalid location, they all receive zero
correctly matched role models. Location should not have been a problem since
we selected these students by their locations, but we found that a handful of
students have removed or changed their locations after we collected the data.

Table 1. Top: top-5 role models for a White, male student from “Atlanta, Georgia”;
Bottom: top-5 role models for an Asian, female student from “Round Rock, TX”

Table 1 shows two randomly selected representative examples of the matching
results for two students. We consider that the student in the top table was
correctly matched with all five role models and the student in the bottom table
was only correctly matched with #3 and #4 role models at state-level because
#1 role model is not in STEM-related occupation and #2 and #5 are not Asian.
None of the role models was correctly matched at city-level.

Taking into consideration that our limited database of STEM role models
may have an impact on the performance of the ranking algorithm, we conducted
evaluation in four levels: city-level for 297 cities, state-level for top 297 cities,
city-level for top-10 cities, and state-level for top-10 cities. Among the 2,000
selected students, about a quarter of the selected students are from the top 10
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cities. Intuitively, we expect more students to be correctly matched with role
models at the state-level than city-level. Also, we expect students from the top-
10 cities to be correctly matched with more STEM role models because there
should be more diverse role models in these cities.
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Fig. 6. The results of matching accuracy of 2,000 students from 297 cities in four
different levels.

In Fig. 6 we show the overall matching accuracy in the four levels. We first
look at our baseline, the city-level for 297 cities. 42 % of the college students
were correctly matched with at least one role model. We noticed that around
half of them was not matched with any role model and this is partly due to those
college students with unlabeled gender and race information.

We then noticed that our ranking algorithm performs better in the 10 cities
than in the 297 cities for both city and state levels. Numerically, the difference
increases as the minimum number of correctly matched role models decreases. If
we look at students who were correctly matched with at least one role model, for
both city and state levels, the top-10 cities outperforms the 297 cities by 33 % and
21 %, respectively; the ranking algorithm achieves a decent accuracy of 57 % in
both city and state levels for the 10 cities. Also, our ranking algorithm performs
better in the state-level than in city-level for the 297 cities. With students who
were at least correctly matched with one role model, the difference is 13 %, which
is smaller but still very significant. However, there is almost no difference in state
and city levels for the top-10 cities. A possible explanation is that because there
are more STEM role models of various types in the top-10 cities, the student
can usually get matched with STEM role models who are from the exact same
city.

During our evaluation, we are encouraged to see that there is a good variety
of STEM role models in different industries even for students with the same
demographic background. We think this is a positive indicator that the attribute,
interests, in fact contributes to our ranking algorithm.
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Fig. 7. An example of the personalized webpage for a real college student user on
Twitter.

In order to make a real-life impact, for each student, we generated a person-
alized webpage and delivered the link of the webpage via tweeting at him from
the official Twitter account of our study. Figure 7 shows an example of such web-
page. It contains the LinkedIn public profile links of his top-5 role models and a
survey regarding the accuracy of our recommendations. We only received a very
small number of responses and conducted preliminary analysis. All responses
indicated that they are indeed currently college students, a third agree that the
recommendations are good and a third indicated that they would be more inter-
ested in STEM majors/careers if they had role models in STEM fields. We would
need more responses to validate our implementation, and a potential way to do
so is to cooperate with our university, apply the ranking algorithms on students
who are Twitter users and ask for responses.

7 Conclusion and Future Work

In this paper, we present an innovative social media-based approach to promote
STEM education by matching college students on Twitter with STEM role mod-
els from LinkedIn. Our ranking algorithm achieves a decent accuracy of 57 % in
the city-level for the top-10 cities that the STEM role models come from. We
also design a novel implementation that recommends the matched role models
to the students. To achieve this, we identified college students from Twitter and
STEM role models from LinkedIn, extracted race, gender, geographic location
and interests from their social media profiles, and developed a ranking algorithm
to rank the top-5 ranked STEM role models for each student. We then created
a personalized webpage with the student’ role models and recommended the
webpage to the student via Twitter.

Our recommendation is not imposed on either side. It is the students’ choice if
they want to initiate the connection with the role models via LinkedIn or other
methods; and it is for the role models to decide if they want to accept their
LinkedIn invitations or other forms of communication. In the case of LinkedIn,
note that if a student decides to approaches a potential role model, he can express
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why he would like to get connected (e.g., interest in STEM fields), and the role
model can make his own judgment. One may worry that our implementation of
recommendations may be considered a form of spamming on students, however,
our intention is clearly to help their careers, and not to profit from them.

There are several possible extensions of our study in the future. Our app-
roach might have a reduced effect for college seniors since it is more difficult for
them to switch majors. However, it is not uncommon that students change their
career paths after graduation, and in the future we could recommend role models
with similar experiences specifically to seniors. We could also expand our tar-
get population to high school students or focus on promoting STEM education
specifically to minority college students. In addition, we could classify STEM
role models into specific groups such as current STEM major college students
and experienced STEM role models since students might feel more comfortable
reaching out to their peers. Finally, we could design an application based on our
implementation to achieve real-time matching, where a college student could log
into our application using their Twitter account, and we could collect their data,
extract their attributes, and give them STEM role model recommendations in
real-time. This application could also be generalized to other social media since
many methods we used are compatible with other platforms.

We hope this study can serve as a starting point to make use of the rich
data and powerful networking ability of social media “by the people” in order
to promote STEM education and build positive influence “for the people”.
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Abstract. Learning from data streams is a challenge faced by data
science professionals from multiple industries. Most of them struggle
hardly on applying traditional Machine Learning algorithms to solve
these problems. It happens so due to their high availability on ready-
to-use software libraries on big data technologies (e.g. SparkML). Nev-
ertheless, most of them cannot cope with the key characteristics of this
type of data such as high arrival rate and/or non-stationary distribu-
tions. In this paper, we introduce a generic and yet simplistic framework
to fill this gap denominated Concept Neurons. It leverages on a com-
bination of continuous inspection schemas and residual-based updates
over the model parameters and/or the model output. Such framework
can empower the resistance of most of induction learning algorithms to
concept drifts. Two distinct and hence closely related flavors are intro-
duced to handle different drift types. Experimental results on successful
distinct applications on different domains along transportation industry
are presented to uncover the hidden potential of this methodology.

Keywords: Supervised learning · Online learning · Concept drift ·
Perceptron · Stochastic gradient descent · Regression · Residuals ·
Transportation

1 Introduction

Today’s hype around big data technologies floods the market of professionals
with distinct backgrounds and yet a common job role: data scientist. Typically,
they are actually very experienced on one of data science related fields (e.g. soft-
ware engineering). However, they also commonly lack on the theoretical back-
ground required to adequately use more than off the shelf Machine Learning
techniques and/or methodologies on their daily tasks.

The requirements for a more advanced framework varies naturally from task
to task. Hitherto, this issue is more evident when a data mining (DM) task
requires real-time learning. There are two key issues that empower such fact
c© Springer International Publishing AG 2016
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on these problems: (i) the high sample arrival rate and the constant and/or (ii)
bursty drifts on the underlying probability distributions. These characteristics
typically disallow the application of most of the traditional Machine Learning
techniques (which assume finite training sets and/or stationary distributions) [1].

Recently, some simple approaches to handle this phenomenon have been scat-
terly introduced on different industries. Two of the most common ones are (i)
windowing [2] and (ii) weight-based model selection [3]. The first approach con-
sists into updating our model constantly based on every single arrived sample
(i.e. incremental learning) or bunch of the most recent ones. The second one con-
sists on combining multiple models through an weighted average of their outputs
based on their recent performance. Although there is a growing interest for this
type of methods followed by successful examples of their inclusion on modern
large-scale Machine Learning libraries such as Mahout and SparkML (e.g. alter-
nating least squares using stochastic gradient descent) – this movement is not
certainly keeping up with the explosively increasing speed of industries needs
to answer this particular problem. The most well-known exception is from the
recommender systems area and, namely, the winning approach of NetFlix com-
petition: Koren [4] pointed the temporal dynamics and concept drift as one key
core ideas of their solution.

This paper intends to fill this gap by promoting a simplistic and yet effec-
tive framework that can handle drift on regression problems. Hereby, it is named
Concept Neurons. The intuition behind its name comes from the need of a learn-
ing schema that can resist to concept drift and/or, in extremis, to a total absence
of concept (i.e. bursty changes). In the context of predictive modeling in data
streams, we have a two-stage (i.e. predict and correct) context-aware model [5]:
firstly, a predition is made using a given offline/online learner. Secondly, the
residuals distribution is monitored with a continuous inspection schema of inter-
est. If a drift alarm is triggered, the prediction’s residual is used to update the
model whenever possible. Alternatively, we can also update directly the model
output for a more bursty reaction to drift.

This schema can cope with most of traditional Machine Learning and/or time
series forecasting methods. It was purposely designed on a simple fashion, target-
ing professionals who have not a strong background on fundamental statistical
learning and/or optimization theory. By doing so, we aim to enlarge the pool of
practitioners, increase the level of the results of their work as well as the quality
of industrial DM pratices in general. Although not bringing a fundamental theo-
retical contribution, this paper proposes a fully functional idea, simple to under-
stand, to use and with a tremendous applicational potential across industries.
Besides the formal description of the present framework, this paper includes two
concrete successful examples of their application on the transportation industry
a field where the drift issues are classical problems – including operational control
of taxis [6,7] and of highway networks [8]. Consequently, our contributions are
two-fold: (1) to uncover applications of Supervised Learning with drift-handling
mechanisms with real-world impact while (2) generalizing a framework that can
be adopted by any practitioner on similar problems (from a fundamental point
of view), regardless of his/her level of expertise or applicational domain.
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The remaining of the manuscript is structured as follows: Sect. 2 depicts a
problem illustration, as well as a brief overview on the related work. The third
section formally describes our approach while Sect. 4 describe the two approach
real-world case studies with distinct concept drift natures. Fifth Section describes
our experimental test-bed and the obtained results on the abovementioned prob-
lems. Finally, conclusions are drawn.

2 Issues on Learning from Non-Stationary Distributions

Real-time DM involves to learn with one (or more) data sources providing sam-
ples in a sequential fashion. Typically, this type of data possesses unique and
complex characteristics to deal with on carrying out Supervised Learning tasks.
Some classical examples are high arrival rate, high labeling cost (e.g. [9]) and
particularly, non-stationary distributions.

The non-stationarity phenomena can be translated in multiple ways. A com-
mon scenario is on dealing with datasets containing samples generated from
multiple single/joint distributions. Although it is an issue for a vast majority
of real-world DM problems (and datasets), it can also be neglected on most of
the times to simplify potential paths to their solutions. On the top of the tra-
ditional stationarity assumption, many learning algorithms go one step further
by assuming a functional form of the dependences and/or a particular residual’s
distribution (e.g. Gaussian Mixture Models with Expectation-Maximization for
clustering; Ordinary Least Squares for regression). Albeit these facts, industrial
practitioners rarely test the validity of these assumptions before applying these
off-the-shelf Supervised Learning methods. It happens so because this approx-
imation is fairly good for most of the traditional DM problems. Moreover, the
trade-off between the time invested on getting alternative solutions and the per-
formance gains often does not pay the effort back. Consequently, a question
arises: why should we care about non-stationarity on real-time DM problems?

The main reason to focus on this issue lies on its timewise definition.
Gama et al. [1] characterizes concept drift into four categories: (i) abrupt, (ii)
incremental, (iii) gradual and (iv) recurrent. Fig. 1 illustrates a clear example
of the latter one using time series data of integers (i.e. highway flow counts).
In this particular example, it is somehow safe to assume that the underlying
distribution, i.e. p(y|x) is gaussian but for particular days/timespans (e.g. peak
hours). This phenomenon is triggered by some sort of exogenous event (e.g. (iv)
excessive demand load, (ii) car breakdown or (i) fast weather change) which
is unexpected, absent of our data or somehow difficult to model and/or detect
beforehand. In many applications, these time periods are actually the critical
ones from a business perspective (e.g. peak-hours on transportation, prime time
on media, happy hour/discounts on sales/retail).

Three of the most traditional techniques to deal with drift on DM tasks
can be enumerated as follows: (1) dynamic model selection (i.e. meta-learning),
(2) windowing and (3) re-training. In (1) model selection, we basically have a
bucket of models which are combined dynamically along the time. Two com-
mon approaches of this type are weighting models [3] or categorizing samples
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using a meta-classifier [5]. The first one is simple to understand and to imple-
ment as well, being a good answer to (ii) incremental drifts. However, it can
arguably deal with (i) abrupt drifts because, typically, the models in the bucket
are only periodically updated. A meta-classifer one can handle either (i) abrupt
or (iv) recurrent drifts by modeling samples into categories (which have asso-
ciated labels). Nevertheless, an high level of expertise is required to put such
learner in place. On the other hand, (2) windowing can help on dealing either
with (ii) incremental and/or (iii) gradual drifts. It consists on considering one
or just a bunch of the most recent samples to learn the models [2]. Although
being quite simple, this approach is pointed by Gama et al. [1] to be slow on
detecting (i) abrupt drifts. Model re-training (3) is the most simplistic approach
to this problem and one of the most used among industry (e.g. wind power
forecasting [10]). Often, it is combined with windowing for engineering-related
purposes (e.g., see [11]). Although being pratical and require almost no tuning
effort besides the window size, its blind reaction to drift – as the model update
occurs independently on the samples content – represents a major drawback,
thus resulting in a considerable probability of under/overfitting issues.

Our learning schema aims to combine the best of the abovementioned prat-
ices on a simple fashion. The intuition behind it is to provide a very practical
mechanism that can be build upon existing and somehow reliable Knowledge
Discovery pipelines with proven results to improve their performance even fur-
ther. The first big advantage on doing so is to re-use the existing DM frame-
works (proprietary or not), avoiding costly re-engeneering tasks. By leveraging
on the existing infrastructure (both physical and intellectual), this framework
is easily adoptable by any industrial practitioners facing problems with similar
drift-related issues.

3 Concept Neurons

From a high-level perspective, our algorithm operates in two stages: firstly, the
residuals distribution produced by a given predictor is monitored by a continu-
ous inspection schema of interest for drift detection purposes. This step aims to
assess if the assumptions (here denominated as Concept) used to learn it (e.g.
stationarity) are being violated. Secondly, a residual-based version of the para-
meter’s inverse gradient is used to update the model whenever possible and/or
directly its output. The second stage is only performed whenever an alarm is trig-
gered on the first one, thus activating these updates (here conceptually denoted
as Neuron).

The present methodology comes in two flavors: (I) asynchronous and (II)
synchronous. The first aims on (I-2) (re-)training offline a near-optimal explana-
tory model at regular time intervals and (I-2) keep updating it incrementally in
a stochastic fashion using the produced residuals. By extending the offline learn-
ing process through an incremental one, we purposely skip the monitoring stage
by blindly assuming that the drift is constantly happening. It aims to handle
(ii) incremental and (iii) gradual drifts. The second one consists on assuming
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(II-1) an explanatory learning model (learned either offline or online) to be in
place. Then, (II-2) a continuous inspection schema is used to monitor the recent
residual’s distribution (i.e. windowing) and trigger alarms. Whenever an alarm
is triggered, a corrective neuron is activated to start adding up small percentages
(i.e. learning rate) of the prediction’s residuals to our model’s output. This rate
can be increased as novel alarms are triggered or deactivated instead in absence
of an alarm for a long period (i.e. here denoted activation period). This mecha-
nism aims to handle (iv) recurrent drifts which are limited in time or even bursty
ones (when coping with an online learning model). This section describes this
methodology fundamentally, departing from its roots in optimization theory till
its practical application to Supervised Learning problems.

Entire Dataset
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Fig. 1. Timewise drift illustration on a highway flow count data using kernel density
estimation (KDE). Globally, the samples approximate a theoretical gaussian density
curve. However, this is not true for some day periods due to drifts.

3.1 Stochastic Learning from Gradients

Let y1, ..., yt : yi ∈ R,∀i ∈ {1..t} denote the values of target variable of interest
Y observed till current time t, e.g. train passenger load, and x1, ..., xt : xi ∈
R

n,∀i ∈ {1..t} be the values of an n-dimensional feature matrix X ∈ R
n×t.

Regression problems aim to infer the following function:

f̂ : xi, θ → R such that f̂(x, θ) = f(xi) = yi,∀xi ∈ X, yi ∈ Y (1)

where f(xi) denotes the true unknown function which is generating the samples’
target variable and f̂(xi, θ) = ŷi be an approximation dependent on the feature
vector xi and an unknown parameter vector θ ∈ R

n (given by some induction
model M). Typically, M determines the functional form of f̂(xi, θ) as well as
the values of θ by formulating a data-driven optimization problem as

f̂(xi, θ) = arg min
f̂ ,θ

∑t

i=1
J(θ, f̂ , xi, yi) (2)

where J denotes a cost function of interest and t the number of samples in the
dataset. Standard gradient descent is a classical solver. Lets assume that we
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depart from a given (e.g. random) initialization of our parameter set, i.e. θ0.
The method updates θ iteratively until a certain stopping convergence criteria
is met (e.g. ε where �θ > ε) as follows

θ = θ − η �θ E[J(θ, f̂ ,X, Y )] (3)

where the above expectation is computed with respect to the abovementioned
cost and η denotes our constant learning rate (i.e. an user-defined parameter).

By doing so, we expect to converge to a local minima close enough to our
global optimum. Obviously, this does not cope well with an infinite stream of
data as our own (i.e. t is being constantly increased → t = +∞). A common way
to handle this issue is with a stochastic learning (as known as SGD - Stochastic
Gradient Descent) of θ. Instead of computing the expectation iteratively, we
compute the inverse gradient, i.e. �θ with respect to the most recent labeled
sample (xt−1, yt−1), thus redefining recursively the Eq. 3 as follows

θi = θi−1 − η �θi−1 J(θi−1, f̂ , xi−1, yi−1) (4)

The cost function most commonly used for regression problems is the well-known
l2 loss. If it is assumed to be in place and for a linear1 f̂ , we obtain:

J(θi, f̂ , xi, yi) = L2(θi, f̂ , xi, yi) = L2(ŷi, yi) =
1
2
(yi − ŷi)2 (5)

θi = θi−1 − η(yi−1 − ŷi−1)xT θi−1 = θi−1 · (
1 − η(ri−1) · xT

)
(6)

where ri denotes the prediction’s residual for sample (xi, yi) at time i.

3.2 Asynchronous Concept Neurons

In a real-time context, the simple computation of the �θi
can be problematic

(e.g.: missing feature values, noise, n >> 0). Therefore, we propose a more naive
approach by putting in place the following assumption:

Assumption 1. Convergence is still possible at a smaller rate when done inde-
pendently of X for a sufficiently small value of η and an adequate M .

By doing so, we assume that most of the error is somehow proportional to the
values of the parameter set. Formally, we transform Eq. 6 as follows:

θi = θi−1(1 − η(ri−1)) (7)

One of the assumptions of SGD is that samples are drawn independently and are
identically distributed (i.i.d.). From a theoretical point of view, drift is a violation
of it. One way of circunventing this issue is to not keep a static learning rate
but rather a time-variant one (i.e., η(t);, e.g. [12]). The main intuition behind

1 Despite the linear assumption (introduced for demonstrative purposes), SGD can
also work on non-linear problems departing from a convex loss.
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this idea is that the distribution is stationary through a limited period of time.
Therefore, we can speed up/slow down convergence momentum according to our
present learning context.

Departing from this intuition, we introduce a very simple idea in the
Algorithm 1 based on three simple stages: (1) firstly, learn offline (using M)
a model f̂(θ,X) based on the samples obtained on recent window of time T ;
(2) Update θ incrementally using the model residuals; (3) re-compute f̂(θ,X)
after Tu periods. T , Tu and η are user-defined parameters and must be tuned
for each particular application. Naturally, this approach is expected to handle
poorly recurrent and/or bursty drifts as there is no drift detection mechanism
embedded.

3.3 Synchronous Concept Neurons

To handle recurrent and/or abrupt drifts, we propose a slight change of the pre-
sented learning schema. Intuitively, the idea is that if the concept is dramatically
different, we do not have time to learn it yet (and consequently, our current model
approximation to the target function is quite poor). Let A(R,φ,�δ, t) ∈ {0, 1} be
a drift detection algorithm of interest where R = r1, ..., rt denotes the set of
residuals, φ denotes a sliding window size, �δ stands for generic user parameter
set of interest specific for each possible type of A and t the current timestamp.
Whenever A = 1, the model’s output is corrected by re-engineering Eq. 7 as

ŷi = f̂(xi, θi) − ηi(ri−1) (8)

where η is time-dependent from now on, i.e. ηi. If ai = 1, then the learning rate
is initialized as ηi = η0 where η0 is an initial learning rate set by the user. At
this point, we are not fully trusting on what f̂ is producing as outputs. For most
of applications, it is recommended a conservative approach on the definition of
ηi, i.e. ηi << 0.

Input: M - offline induction method, T - training window size, Tu - statonarity
cyclic period; η - learning rate, X, Y - dataset;

Output: f̂ - approximation function, θi - parameter vector
W ← ∅; //Initialization
foreach i ← 1..t do

W ← W ∪ (xi, yi); // builds offline training set
if (Tu mod i == 0) then

f̂ , θi ← M(W ); // learns f̂ and the parameter set θi from data
end
if (Tu >= t ∧ Tu mod i > 0) then

θi = θi−1 − η(ri−1)θi−1; //update parameter set
drop an element from the tail of W ; //forgets outdated samples

end

end

Algorithm 1. Pseudocode for Asynchronous Concept Neurons (ACN).
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Whenever a novel drift occurs, ηi is updated exponentially as ηi = ηi−1(1+γ)
where γ ∈ [0, 1] denotes a reactivability rate defined by the user. This methodol-
ogy is not designed to update our models with respect to the observed drift - but
rather to handle it instead. Intuitevely, in real-time DM problems, if we are facing
a recurrent drift, M will be likely to still be useful in the future (as the validity
of our current underlying distribution is limited in time). If facing an abrupt
drift, this schema will slow down the performance deterioration of the model
produced by M but it will not avoid standalone a further (re-)training stage.
Consequently, we assume these drifts as time-limited phenomenons. Therefore,
the decrease of ηi is operated abruptly as:

∑t

i=t−β
A(R,φ,�δ, i) = 0 (9)

In the present context, M can either be an offline or an online induction model.
Algorithm (2) depicts the entire schema.

4 Case Studies

Hereby, we approach two different case studies in transportation industry: (A)
demand prediction for taxi networks and (B) road traffic congestion prediction
in highway networks. The target clients of the (A) are taxi dispatcher’s and/or
self-organized operators in the sector while (B) targets transit authorities and
their road traffic management centers.

Case Study A is focused on predicting taxi-passenger demand for short-term
horizons of P−minutes in a real-time setting [6,7]. The key idea is to improve
the taxi driver’s mobility intelligence through a live decision support system
advising on best passenger-finding strategy to adopt in each moment (e.g. which
is the stand/street/city area that he/she should head to in order to pick up the
next passenger).

Case Study B is focused on predicting road Traffic congestion (i.e. incidents).
It is possible to divide congestion in two types [8]: (i) recurrent, which happens
on a regular basis within a given periodicity, e.g. peak hours on every Friday’s
evening, and a (ii) stochastic one, which is provoked by an external event, e.g.:
car accidents. The problem is to predict the flow count (number of vehicles that
traversed a sensor per unit of time) and occupancy rate (percentage of the time
period that a car is over a sensor) on a short-term horizon of P−minutes. Then,
a scenario-based threshold is considered to transform those discrete signals into
binary ones (i.e. congestion/no congestion).

Brief summaries of the datasets are provided below. Additional details about
preprocessing tasks conducted over these datasets can be found in Sects. 3.2 and
4 of [6,8] for case studies A and B, respectively.

4.1 (A) Taxi-Passenger Demand Prediction

Our data samples are a stream of timespamped location of events (e.g. pick-up,
drop-off) obtained from taxi company (which runs 441 vehicles) operating in
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Input: f̂ - approximation function, θ - parameter set, φ - monitoring window
size, η0 - initial learning rate, γ - constant reactivability rate, β -
activation period, A - drift detection algorithm; X, Y -dataset

Output: ŷ - corrected predicted outputs
W ← ∅ and η1 ← 0;
foreach i ← 1..t do

ηi ← ηi−1;
if (A(R, T, δ, i) == 1) then

if (ηi > 0) then
ηi ← ηi−1(1 + γ); //increase the learning rate

else
ηi ← η0; // activate the prediction corrections

end

end

ŷi ← f̂(xi, θi) − ηi(ri−1); // correct our prediction output
W ← W ∪ (ri−1); // add elements to the head of W
if (|W | == T ) then

drop an element from the tail of W ;
end

if (
∑i

j=i−β A(R, φ, δ, j) == 0) then
ηi ← 0; // deactivate the prediction corrections

end

end

Algorithm 2. Pseudocode for Synchronous Concept Neurons (SCN).

Porto, Portugal between August 2011 and April 2012. This city is the center of
a medium size urban area with 1.3 million habitants (see Fig. 2).

The drivers operate in 8 h shifts: midnight to 8am, 8am–4pm and 4pm to
midnight. Each sample arrives has six attributes: (1) TYPE relative to the type
of event reported and has four possible values: busy - the driver picked-up a
passenger; assign the dispatch central assigned a service previously demanded;
free the driver dropped-off a passenger and park - the driver parked at a taxi
stand. The (2) STOP attribute is an integer with the ID of the related taxi
stand. The (3) TIMESTAMP attribute is the date/time in seconds of the event
and the (4) TAXI attribute is the driver code; attributes (5) and (6) refer to the
LATITUDE and LONGITUDE corresponding to the acquired GPS position.

Table 1 details the number of taxi services demanded per daily shift and day
type. Additionally, we can state that the central service assignment is 24 % of
the total service (versus the 76 % of the one demanded directly in the street),
while 77 % of the service demanded directly is dispatched in a stand (and 23 % is
assigned in cruising time). The average driver waiting time in a stand is 42 min
while the average cruising time for a service is only ∼ 12 min.

4.2 (B) Highway Congestion Prediction

This dataset was collected through a traffic monitoring system of a major free-
way deployed in an Asian country. The studied system broadcasts a stream of
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Fig. 2. The spatial distribution of the 63 taxi stands used by this fleet in Porto.

Table 1. Taxi services volume (Per Daytype/Daily Shift)

Daytype Group Total Services Emerged Averaged Service Demand per Daily Shift

0am to 8am 8am to 4pm 4pm to 0am

Workdays 957265 935 2055 1422

Weekends 226504 947 2411 1909

All Daytypes 1380153 1029 2023 1503

traffic-based measurements in real-time with distinct temporal granularities
(depending on the type of sensor’s installed on each lane). Each sensor mea-
sures traffic flow, lane occupancy rate and instantaneous vehicle’s speed. The
largest time granularity (p = 5 min) was used to normalize all the collected time
series into a standard granularity level.

This network is composed by 106 sensors including both freeway’s traffic
directions. The covered segment’s length is ∼ 20 km while the sensor’s sections
are deployed each 500 m. Data was collected through 3 non-consecutive weeks.

Figure 3 depicts an illustration of the dataset. The (B)-figure contains one
day of data from a particular section. Conversely, the other chart displays five
sample-based p.d.f. obtained using a (gaussian) kernel density estimator over all
the flow measurements available – one global and four specific for each of the
considered timespans (divided by Periods I–IV, identified by the same display
order as Fig. 3 legend). Table 2 details descriptive statistics. The top 10 sensors
regarding the number of observed incidents are highlighted. As it is observable,
the occupancy rate is higher in these sensors. Not surprisingly. the most critical
period is the morning peak (P. II), comprised between 6:40 and 13:20.
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Fig. 3. Illustration of the dataset. The B-figure illustrates data from one-section on
one particular day, while the other one depicts a flow-based p.d.f. estimation using all
available data.

Table 2. Descriptive Statistics on all sensors vs. top-10 incindent ones.

Quantity Flow Occupancy

Mean SD Min. Max. Mean SD Min. Max.

All day 9.9486 3.6514 0.1811 24.4104 2.1409 1.3276 0.0726 13.9967

Top 10, all day 8.2397 3.7001 0.1600 36.7667 3.4303 4.0282 0.0700 23.5567

5 Experiments

On both case studies, we assumed statistical independence among different taxi
stands and road sections, respectively. Problem A consists into forecasting one
term ahead (i.e. passenger demand count on a specific stand during the next
P -minutes). To do it so, we chose a classical method M : Auto Regressive Inte-
grated Moving Averages (ARIMA). For each stand, the ARIMA model was firstly
set (and updated each 24 h) by detecting the underlying model in place from the
time series of each stand during the recent T = 15 days (i.e. namely, the cor-
responding 15 × 2 × 24 = 1440 periods). For that purpose, an automatic time
series function was employed, i.e. auto-arima [13].

The parameters for each model are generally fit for each period/prediction
using a generalized least squares (GLS) solver. Even considering that ARIMA
use just a few bunch of recent samples T and low-dimensionality models (i.e.
small n), the optimal fitting of its parameters can represent an unnecessary
time-consuming process, i.e. O(N2). In problem A, we can be handling with
hundreds of requests on a short amount of time (e.g. 4 different drivers dropping-
off a passenger in an interval of two minutes will generate requests to process a
total of 252 predictions/GLS – which is equivalent of doing roughly 2,1 model
fittings per second on a single CPU) – which will raise undesired scalalibility
issues. On the top of such computation issues, as the time series are bounded
to the granularity of our forecasting horizon, we have to adapt them in order to
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obtain the right aggregation level for each on-demand prediction. One way to
do it so is to maintain a newly calculated discrete time series each τ -minutes
where τ << P . By doing so, we can leverage on the additive properties of the
series bins (similar to the ones exhibitted by histograms, e.g. [14]) to roll our
time series into the desired bin positions (e.g. switch from 9:00, 9:30, 10:00, ...
to 9:10, 9:40, 10:10, ...)–, e.g. as proposed by Moreira-Matias et al. [6].

To reduce the pratical computational time, we propose to replace GLS by
Asynchronous Concept Neurons (ACN). The optimal parameter set θ is fit
together with the model estimation stage (i.e. each Tu = 96 periods). Then,
it is updated as depicted in Algorithm 1. The η value was tuned throughout a
grid search procedure in

{
0.01k,∀k ∈ {1..20}} using a validation set with data

collected on a previous time period.
To approach problem B, we departed from an online learning model which

was composed of three main components: (a) an ARIMA-based model, (b) an
Exponential Smoothing (ETS) model and (c) an online weighting model to com-
bine both (i.e. ensemble). Similarly to the previous case study, the ARIMA pre-
diction is also performed using a auto-arima+GLS+ACN procedure using T = 2
days. However, we are assuming here this schema as a fully incremental method
for sake of simplicity. In this case, we decided to test the application of SCN to
face the bursty nature of the non-recurrent traffic incidents (e.g. car accidents).

The parameter set θ is composed by both the ARIMA and the ETS model
weights, as well as the two ensemble weights of each model. The online weighting
ensemble is monitoring their performance over a sliding window of H-periods.
The drift detection algorithm used was the Page-Hinkley (PH) test, an incre-
mental inspection schema to detect drift [1] (consequently, φ = ∞). The PH test
depends on two parameters (i.e. |δ| = 2). In our case, as we are monitoring two
series of values (flow and occupancy), we have 4. Their values were set following
traffic expert’s suggestions. The remaining parameters of this framework η0, β, γ
and also H were tuned using another grid search procedure conducted over six
of the 106 sensors of this case study. The full parameter setting employed in our
experiments is summarized in Table 3.

5.1 Evaluation

In case study A, we compared traditional ARIMA trained with GLS (ARIGLS)
with our ACN using the first as offline baseline (i.e. M). As test set, we considered
the last 4 weeks of our data set. Experiments aimed to compare the model’s error
on it as well the computational time. As evaluation metric, we used an laplacian
version of the Symmetric Mean Percentage Error averaged by all the taxi stands.
The resulting metric (ASMAPE) is obtained as follows:

ASMAPE =
1
Υ

S∑

j=1

t∑

i=1

ψj
|yj,i − ŷj,i|

Rj,i + Xj,i + 1
: ψj =

t∑

i=1

yj,i; Υ =
S∑

j=1

ψj (10)

where S denotes the total number of taxi stands.
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In problem B, we compared three distinct online predictive methods: ARIMA
(ARI), ETS and the hereby proposed SCN over an online weighted ensemble
of both. On the top of the abovementioned sensor selection, we also assumed
statistical independence between the data of each one of the three weeks (as they
are non-consecutive). Consequently, it resulted on a total of 300 experiments (i.e.
100 sensors x 3 weeks by excluding the 6 sensors used in hyperparameter tuning).

The evaluation of these experiments were performed on two distinct dimen-
sions: (1) numerical prediction and (2) event detection. In (1), we used Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as evaluation
metrics. On (2), we picked Precision (PRE) and Recall (REC). Similarly to A,
the results were aggregated using an weighted average of these metrics, where
each sensor’s weight is given by the total number of incidents occurred.

5.2 Results

The evaluation of two models in case study A are displayed in Table 5. It is
possible to observe than, despite their fundamental differences, their performance
does not differ significantly. In terms of computational time, ARIGLS took 1.58 s
to process each individual prediction while ACN took solely 0.60s (in average).

The results for experiments in case B are presented in three distinct folds:
Table 4 presents the aggregated results. Left-hand side of Fig. 4 introduces an
time-evolving evaluation in terms of RMSE produced by the three flow predic-
tion methods hereby presented. The drift detection (i.e. neuron activation) and
incident’s boolean states are also exhibited on this chart. It is possible to observe
that the SCN error is always lower than the one obtained from other methods.
On the other hand, we can also conclude than the drift detection is not always
necessarily correlated with an incident. The right-hand side of same Fig. 4 llus-
trates the prediction behavior along sensor with an increasing incident rate (on
x-axis). The recall values are averaged using a sliding window considering just
the recall values for the latest ten sensors with respect of the current one. By
doing so, it is possible to conclude that the our method performance increases
along with the number of incidents observed in each sensor.

5.3 Discussion

At a first glance, the high number of hyperparameters may appear a major
drawback of our methodology. However, as we could demonstrate, they can be
relatively easely tuned with the a validation set. From our experiments, we can
sustain that the parameters related with the learning rate (e.g. η in ACN; η0, β, γ
in SCN) are the ones which provoke more variance on the target output. However,
it is difficult to assess the framework’s sensitivity to the parameter set without
a careful evaluation procedure.

In case study A, the results illustrate the computational savings obtained by
doing incremental approximations of the optimal model to deal with soft drift
pheonomenas. In B, the high recall rates are illustrative of the potential of this
framework on dealing with either bursty or recurrent drifts.
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A work closely related to this one are the Kalman Filters. They are focused on
signal processing problems, where our samples are simply a bunch of continuous
measurements over time. Conceptually, it also relies on some sort of uncertain
estimate/prediction of the series expected value and co-variance to then update
it using the residuals co-variance. Formally, we can say that f(x) = f̂(x, θ) + v.
Commonly, Kalman Filters assume stationarity on the residuals as v ∼ N (0, σ2).
Conversely, our approach is fully non-parametric as it makes no assumption
on the residual’s distribution.

In this work, we end up using only linear induction methods as baseline
learners for either ACN and SCN. However, the authors want to highlight
that this framework can be built upon non-linear learners as well - see,
for instance, the usage of SCN with decision trees for short-term bus travel time
prediction [15]. By being generic and simple to understand as well as to put in
pratice, this framework represents a pratical and yet inexpensive alternative to
deal with drift on real-world Supervised Learning problems.

Table 3. Parameter Setting used in the experiments.

Value Description

A P 30 forecasting horizon (in minutes)

T 1440 training data size (i.e. 15 days)

Tu 96 size of stationarity cycle period (i.e. 24 h)

τ 5 minimum aggregation level (i.e. minutes)

η 0.01 learning rate

M auto-arima + GLS induction learner

θ arima model weights model’s parameter set

H 4 sliding window size to compute our ensemble

B A Page-Hinkley test drift inspection schema

P 15 forecasting horizon (in minutes)

φ ∞ drift monitoring window size

δf
1 1.0 max. admissible flow prediction’s residual for PH

δo
2 0.1 max. admissible occupancy prediction’s residual for PH

δf
3 20 cumulative flow-based threshold to trigger PH alarm

δo
4 4 cumulative occupancy-based threshold to trigger PH alarm

η0 0.3 initial learning rate

β 6 activation period

γ 0.2 reactivitability rate

ϕf 10 flow-based min. threshold to trigger an incident

ϕo 5 occupancy-based max. threshold to trigger an incident

6 Final Remarks

Today, experience on Data Science is one of most requested disciplines on job
postings across different industries. The lack of qualified professionals on this
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Table 4. Results on comparing SCN with ARIMA and ETS in case B.

Method Week Flow Prediction Occ. Prediction Event Detection

RMSE MAE RMSE MAE PREC REC

ARI ALL 1.6875 1.0743 2.1088 1.2939 0.8002 0.2823

ETS ALL 1.7280 1.0765 2.3111 1.3057 0.8116 0.3000

SCN ALL 1.6389 1.0379 1.8151 1.0730 0.8199 0.3719

Table 5. Error Comparison on the two Learning Models in A using ASMAPE.

Method Periods

00 h–08 h 08 h–16 h 16 h–00 h 24 h

ACN 28.47 % 24.80 % 25.60 % 26.21 %

ARIGLS 28.23 % 24.70 % 24.93 % 25.80 %

Fig. 4. Illustration of SCN Results: on left-hand side, we have a time-evolving flow-
based evaluation on the top-event sensor using RMSE. The right-hand side depicts the
average recall for all sensors (on x-axis) ordered by their number of incidents. Note
SCN behavior.

area with respect to the number of vacancies is biasing companies towards hiring
experienced programmers. Then, they are incited to use off-the-shelf libraries
to do magic with little developping effort. Hitherto, the availability of drift-
aware tools for real-time DM tasks on modern Big Data platforms is scarse.
This scenario leads to the misusage of the available tools, poor performance
and, ultimately, to reduced business value propositions.

This paper proposes a simple method for handling drift on real-time regres-
sion learning problems. It is designed generically, to run on the top of the
Supervised Learning schemas popularly employed on modern industrial knowl-
edge discovery pipelines. This two stage framework operates continuousily by
inspecting the residual’s distributions without any predefined assumption on
their functional form. Results conducted on real-world trials from the trans-
portation domain demonstrated the potential of this method on reducing com-
putational effort as well as to increase the regressor’s generalization error.
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As future work, we propose to conduct a sensitivity analysis on the parameter
setting, as well as to generalize it even more this by introducing an inspection
schema able not only to detect drift, but also to categorize its nature.
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Abstract. The fast pace of urbanization has given rise to complex
transportation networks, such as subway systems, that deploy smart
card readers generating detailed transactions of mobility. Predictions of
human movement based on these transaction streams represents tremen-
dous new opportunities from optimizing fleet allocation of on-demand
transportation such as UBER and LYFT to dynamic pricing of ser-
vices. However, transportation research thus far has primarily focused on
tackling other challenges from traffic congestion to network capacity. To
take on this new opportunity, we propose a real-time framework, called
PULSE (Prediction Framework For Usage Load on Subway SystEms),
that offers accurate multi-granular arrival crowd flow prediction at sub-
way stations. PULSE extracts and employs two types of features such
as streaming features and station profile features. Streaming features
are time-variant features including time, weather, and historical traffic
at subway stations (as time-series of arrival/departure streams), where
station profile features capture the time-invariant unique characteristics
of stations, including each station’s peak hour crowd flow, remoteness
from the downtown area, and mean flow. Then, given a future prediction
interval, we design novel stream feature selection and model selection
algorithms to select the most appropriate machine learning models for
each target station and tune that model by choosing an optimal subset
of stream traffic features from other stations. We evaluate our PULSE
framework using real transaction data of 11 million passengers from a
subway system in Shenzhen, China. The results demonstrate that PULSE
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greatly improves the accuracy of predictions at all subway stations by
up to 49% over baseline algorithms.

1 Introduction

Background. Subway systems provide unobstructed transit throughout an urban
area. Starting in the early 90s, in order to streamline fare collection, subway
authorities have implemented smart card enabled entry and exit systems [21].
These widely adopted systems generate a large amount of fine-grained data about
passengers’ mobility throughout the transportation network. Offering new oppor-
tunities in gaining in-depth insights into the performance and effectiveness of the
system as well as the passenger mobility patterns.

Motivation. However a recent survey of smart card transaction usage [21]
found that current research is limited to simple post-hoc analysis of general-
ized mobility patterns, thus risks missing potentially valuable opportunities for
new mobility-related services. Predictions of crowd flow arriving at subway sta-
tions based on fine-grained smart card transaction streams open tremendous new
opportunities for novel services, including optimizing fleet allocation and intro-
ducing dynamic fares in on-demand systems [20,22]. In addition, traditional
transportation modes such as buses would also benefit from mobility predic-
tion capabilities that would allow them to dynamically adjust stop frequency
and routes [10,12]. These new classes of services increase quality of service and
reduce emissions.

Limitations of the State of Art. In the literature, traffic prediction on road
networks has been studied extensively, and many prediction models have been
applied and developed [8,13,15,25,26,28,31]. However, when applying these
methods directly on solving the arrival crowd flow prediction at subway stations,
they fail to achieve high prediction accuracy, because these (general) methods do
not explicitly take into account the unique features and characteristics of sub-
ways systems, such as the pairwise crowd flow between stations, attrition rate of
subway stations, etc. Such arrival crowd flow prediction problem is challenging
in practice. Figure 1(a) shows that the arrival crowd flows at different stations
exhibit completely different time-series patterns, while Fig. 1(b) shows that for
the same station, the arrival crowd flow changes its pattern over different days.

Our Proposed Approach. Given these challenges, in this paper, we make the
first attempt to study the crowd flow prediction problem at subway stations. We
propose a novel real-time framework, called PULSE (Prediction Framework For
Usage Load on Subway SystEms), that offers accurate multi-granular arrival
crowd flow prediction at subway stations. Below we summarize our main contri-
butions in this paper.

• PULSE extracts two types of features for the arrival crowd flow prediction,
i.e., streaming features and station profile features. Streaming features are
time-variant features including time, weather, and historical traffic at subway
stations (as time-series of arrival/departure streams), where station profile
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(a) (b)

Fig. 1. (a) Time series of passenger arrivals at 3 stations during a Monday. (b) System
wide traffic during three consecutive days.

features capture the time-invariant unique characteristics of stations, includ-
ing each station’s peak hour crowd flow, remoteness from the downtown area,
and mean flow. (See Sect. 4)

• PULSE employs a novel stream feature selection algorithm and a model selec-
tion algorithm to select the most appropriate machine learning model for each
target station and tune that model by choosing an optimal subset of stream
traffic features from other stations. (See Sects. 5 and 6)

• We evaluate our PULSE framework using real transaction data of 11 million
passengers from a subway system in Shenzhen, China. The results demon-
strate that PULSE greatly improves the accuracy of predictions at all subway
stations by up to 49 % over baseline algorithms. (See Sect. 7)

2 Related Work

In this section, we briefly discuss two research areas that are closely related to
this work, namely, urban computing and traffic prediction.

Urban computing studies the impact and application of technology in urban
areas, including the collection and usage of smart card transactions. Analyzing
smart card records is an effective way of understanding human mobility patterns
in urban areas [18,21]. Various studies [6,7,16,18] show that city wide mobility
follows a common pattern that is consistent across cities and modes of trans-
portation. These studies describe mobility patterns, but fall short of developing
a framework for fine-grained predictions of human mobility. To our knowledge
this study is the first to directly address the prediction of arrival crowd flow in
a subway network.

Traffic prediction in road networks has been studied extensively [8,13,15,25,
26,28,31]. In this study, we compare and contrast the most commonly used
machine learning models as baseline methods. One of these baselines (Multiple
Linear Regression–MLR) is described in [26], where it is used to capture short
term traffic trends. In another study [8] non-parametric models similar to K-
Nearest Neighbours (KNN) are used for road traffic flow predictions. The concept
of using ensembles of models is used in [25], where a state machine switches
among different Auto-regressive Moving Average Models (ARIMA) [15].
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In [13], Random Forest models are used for short term context aware predic-
tions. All these traffic prediction methods are addressing vehicle traffic prediction
problem and utilize a fixed (sometimes ensemble) model to conduct the traffic
prediction. Thus, when applied to our crowd flow prediction problem at sub-
way stations, these methods would fail to capture unique features and choose
appropriate models for a subway system.

In summary, PULSE is the first framework that enables fine-grained arrival
crowd flow predictions at subway stations, using smart card transaction data,
weather data, and calendar data.

3 Overview

In this section, we define the subway traffic prediction problem and outline the
framework of our methodology.

3.1 Preliminary and Problem Definition

We worked on transaction data generated from the subway system in Shenzhen,
China. Similar to many other subway systems in different cities, such as Beijing
Subway1, and London Subway2, a passenger needs to swipe his smart card at
both the entering and leaving stations. Such paired transaction records capture
the trip information of passengers. Below, we explicitly highlight the key terms
used in the paper, and define the subway station traffic prediction problem.

Definition 1 (Trip). tr = (pid, sd, td, sa, ta) represents a trip made by a pas-
senger with ID pid, who departs from station sd at time td and arrives at the
station sa at time ta. TR represent the set of all trips, i.e., tr ∈ TR.

Definition 2 (Subway Trajectory). A subway trajectory is a sequence of sub-
way stations that a passenger enters and leaves in the subway system as a func-
tion of time. Each record thus consists of a passenger ID pid, subway station ID
s, and a time stamp t.

Definition 3 (Subway Network). A subway network consists of a set of sub-
way stations connected by subway lines. We represent a subway network as a
undirected graph G = (V,E), where V represents the subway station set and E
contains the edges between neighboring subway stations via subway lines.

Problem Definition. Given a set of historical trips TR, the subway network
G, and the current time t, we aim to predict the number of passengers arriving
at a subway station s ∈ V (from other stations) during the consecutive time
intervals [t + T ∗ (k − 1), t + T ∗ k], with 1 ≤ k ≤ K. T is a time aggregation
interval, which is usually 15 min. K denotes the number of future intervals to be
predicted, and we use K = 6 in this paper.
1 http://www.bmac.com.cn.
2 https://oyster.tfl.gov.uk/oyster/entry.do.

http://www.bmac.com.cn
https://oyster.tfl.gov.uk/oyster/entry.do
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3.2 The PULSE Framework

To tackle the above subway station traffic prediction problem, we intro-
duce PULSE framework (Prediction Framework For Usage Load on Subway
SystEms) as shown in Fig. 2. PULSE takes the historical trip data, calendar
information, and weather data as input, to predict future traffic flows at each
subway station at fine-grained periodic intervals e.g., every 15 min. This task is
achieved in three core steps, namely, feature extraction, traffic prediction, and
model update, as outlined next.

Fig. 2. The PULSE framework.

Feature extraction module aggre-
gates the time-varying data sources,
such as the transaction data,
weather data, calendar data, at cer-
tain time granularity, e.g., 15 min.
Then, we extract and model
both streaming and profile fea-
tures. Streaming features are direct
aggregates of the time-varying
datasets, including aggregated traf-
fic volumes entering and leaving a
subway station and weather statis-
tics. Profile features describe rela-
tively stable characteristics of each
station, including remoteness of a
station, peak-hour traffic, average
inflow at a station. See more details
in Sect. 4.2.

Traffic prediction. When predicting the entering and leaving traffic at a sub-
way station si, the traffic prediction module employs an automatic feature and
model selection algorithm that achieves high prediction accuracy. A prediction
model is chosen and a subset of subway stations are selected to include their
streaming features as training data. The model and features selected are used
to perform predictions on the future entering and leaving traffic at each subway
station. Section 5 describes this process in more detail.

Model update module keeps track of the performance of the PULSE system
over time. It automatically re-selects features and rebuilds the models.

4 Feature Extraction for PULSE

The feature extraction module explores two sets of key features, namely stream-
ing features and station profile features. The former capture the dynamics of
departing/arriving traffic at different stations and the meteorological features
over time; while the latter characterizes the time-invariant profiles of different
subway stations, including remoteness from the city center, the mean flow, peak-
hour traffic, etc.
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4.1 Streaming Features

4.1.1 Time Features F t

Fig. 3. Temperature and number of arrivals
during a Saturday.

As discussed earlier, the depart-
ing and arriving transaction data
are aggregated at a certain time
granularity, e.g., T = 15 min. We
observe that the daily operation
time of a subway system, denoted
as T0, is usually less than 24 h.
For example, in Shenzhen, the
subway system operates between
7 am and 11 pm every day, that is,
a total of T0 = 16 h of operation time. Hence, given the time aggregation interval
T , the daily operation time T0 is divided into a fixed number of time slots with
equal length of T minutes. For example, a total of 64 such intervals are obtained
given T = 15 min and T0 = 16 h. We then use the interval id Fint ∈ [1, 64] to
represent the time of day as a feature. As observed in [6,16,18], this feature
is significant in urban human mobility predictions. Similarly, we introduce the
feature day of the week, that distinguishes between weekdays from Monday
to Sunday, which can be represented using the weekday id, namely, Fday ∈ [1, 7].
As shown in Fig. 1b, The traffic patterns vary significantly during the different
days of the week as it is also observed in [16,18].

4.1.2 Traffic Stream Features F s

Given an aggregation interval T , we can obtain the arrival and departure traffic
at each subway station during each time interval T . For one station si, we denote
the vector F arr

i = [a1, a2, . . . , aN ] as the arrival stream feature of a station
si, where N is the total number of time intervals in the data. Given a starting
time t0, each a� represents the number of passengers who arrived at the station
si, during the �-th time interval, namely, T� = [t0 +T ∗ (�−1), t0 +T ∗ �]. Hence,
each a� can be obtained from the trip data as follows.

a� =
∑

tr∈TR

I(tr.sa = si, tr.ta ∈ T�), (1)

where I(·) is the indicator function, which is 1 if the condition holds, and
0 otherwise. Similarly, we define the departure stream feature of a sta-
tion si as a vector F dep

i = [d1, d2, . . . , dN ]. Each d� can be represented as
d� =

∑
tr∈TR I(tr.sd = si, tr.td ∈ T�). When considering pair-wise flows between

station pairs, F pair
i,j = [p1, p2, . . . , pN ] is the pairwise flow feature. p� repre-

senting the number of trips from station si to station sj during the time inter-
val T�, namely, p� =

∑
tr∈TR I(tr.sd = si, tr.sa = sj , tr.td ∈ T�, tr.ta ∈ T�).

We also take into account F dur
i,j = [π1, π2, . . . , πN ] as the vector average trip

duration feature from station si to sj during the time interval T�. Each
π� = 1

p�

∑
tr∈TR(tr.sa − tr.sd)I(tr.sd = si, tr.sa = sj , tr.td ∈ T�, tr.ta ∈ T�).
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4.1.3 Weather Features Fw

The traffic at subway stations is affected by meteorology. Hence, we identify two
features that are correlated with the subway stations traffic, namely temperature
and humidity. Figure 3 shows the correlation between the subway station traffic
and the temperature feature, using the data we collected during 03/20/2014–
03/31/2014 in Shenzhen. We can see that the temperature is positively corre-
lated with subway station traffic, similarly our data indicates that humidity is
correlated negatively with station traffic.

4.2 Station Profile Features

Fig. 4. Equivalent traffic
volumes, but different
peak patterns for sta-
tions with (green) and
without (orange) an
Evening Departure Peak
(EDP). (Color figure
online)

In this section, we present the time-invariant profile
features extracted from each subway station. These fea-
tures capture the unique profile of each subway station
from different aspects, such as peak-hour traffic, mean
flow, and remoteness from the city center.

4.2.1 Peak Traffic FP

Crowd movement during commute hours shows unique
and characteristic peak patterns that vary between sta-
tions, but are relatively stable over time. In our study,
we choose the peak hours as 7–11 am and 5–11 pm. A
naive way of characterizing the peak-hour behavior is
to use total traffic volume. This approach may miss
important information of the underlying traffic dynam-
ics. For example, as shown in Fig. 4, two stations have

the same peak-hour traffic volume, namely, the total area between the traffic
curve and the x-axis. However, we observe that station 1 shows a flat traffic
pattern during the peak-hour, while station 2 has one significant spike. To cap-
ture such spike, we employ the Tukey [27] outlier detection method to identify
the outliers in the peak-hour, and count the number of outliers as the peak-
hour traffic feature. In Fig. 5, we use the morning arrival peak-hour traffic as
an example. Similarly, we can obtain the peak-hour traffic for evening arrival,
evening departure, and morning departure, respectively.

4.2.2 Flow Related Features F F

Fig. 5. Arrival streams with
different morning peaks

We introduce two types of flow related features,
including attrition rate and mean flow of a station.
Attrition Rate. For a station si, we define the
attrition rate Atti as the relative difference between
departures and arrivals at si. As is observed in [18],
most departure trips from a station si have a
matching arrival trip. However, attrition rates in
Shenzhen subway data vary considerably as illus-
trated in Fig. 6. Atti = (|F dep

i | − |F arr
i |)/|F arr

i |.
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Fig. 6. Distribution of attrition
rate.

Mean Flow of a station si (denoted by F flow
i )

is the average number of arrivals per interval,
which can be calculated as F flow

i = |F arr
i |/N .

Figure 7b illustrates the flow at each subway sta-
tion. As expected, downtown areas and commer-
cial centers show high concentrations of passen-
ger arrivals.

4.2.3 Remoteness FR

From the subway transaction data, we observe that in general stations located
farther away from the downtown area tend to have similar traffic patterns and
overall fewer traffic. This motivates us to extract the remoteness of station si as
a feature, i.e., FR

i . FR
i is the average duration of the historical trips arriving at

si, namely, FR
i =

∑
tr∈TR(tr.ta − tr.td).I(tr.sa = si). Figure 7a illustrates the

geographic distribution of remoteness.

(a) (b)

Fig. 7. Geographic distribution of (a) remoteness and (b) mean station flow.

5 Station Stream Selection

Our focus in this work is arrival traffic prediction at subway stations. Given
a target station si, its historical traffic data as a time-series can be used to
predict its future arrival traffic, e.g., [15]. In general, subway stations are inter-
connected, and the arrival traffic at one particular subway station si is affected
and generated by the traffic from all other stations (in V/si). However, given si,
it is computationally efficient in practice to include a subset of stations (instead
of all stations), which contribute significantly to the arrival traffic at si, i.e., they
are geographically close by, or they originate a significant amount of traffic flow
to the target station. In this section, we present our stream selection algorithm,
that can identify the subset of stations, whose departure traffic (as a key fea-
ture) contributes the most to the traffic at the target station. Our selection algo-
rithm combines three criteria, including Time Based Stream Selection (TBSS),
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(a) (b)

Fig. 8. Selecting streams based on (a) pairwise flow and (b) temporal distance.

Flow Based Stream Selection (FBSS), and Profile Based Stream Selection
(PBSS). Below, we elaborate on each selection criterion and the overall stream
selection algorithm.

Time Based Stream Selection (TBSS). Given the current time t, a time
interval T = 15 min, and a target station si, we aim to predict the arrival traffic
at si during the future time interval φ = [t+T ∗ (k −1), t+T ∗k] with a positive
integer k > 0. For example, when k = 1, the prediction yields the arrival traffic
for the immediate time interval T from the current time t. Hence, we choose
those stations that have average arrival time during the prediction interval φ.
We use the following criterion (in Eq. 2) to select θL such stations. Recall that
the average trip time feature F dur

j,i = [π1, · · · , πN ] includes the pairwise trip time
from a station si to sj over time.

Li,φ(θL) = argmin
BθL⊂V/si

∑

sj∈BθL

⎛

⎜
⎝

∑

π∈F dur
j,i

∣
∣T

(

k − 1
2

)

− π
∣
∣

⎞

⎟
⎠. (2)

Li,φ(θL) is the set of θL selected stations. The value of θL is selected by the
model selection module (See Sect. 6) to achieve high prediction accuracy.

Figure 8b illustrates the set of stations selected by TBSS for with θL = 20,
T = 15 min, and two values of k (orange, k = 1 and green, k = 4).

Flow Based Stream Selection (FBSS). FBSS is based on the intuition that
future traffic at station si will come from (departures of) stations with most
historical trips to si. Recall that the pairwise flow feature F pair

j,i = [p1, · · · , pN ]
includes the numbers of pairwise trips from a station si to sj over time. Mi,φ(θM )
is the set containing θM stations with the highest number of trips to si, as
illustrated in Eq. 3 where |F pair

j,i | indicates the total number of trips from station
sj to si and θM is again chosen by the model selection module. An example of
stations selected by FBSS is given in Fig. 8a.
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Mi,φ(θM ) = argmax
BθM ⊂V/si

∑

sj∈BθM

|F pair
j,i |. (3)

Profile Based Stream Selection (PBSS). Profile features characterize the
overall traffic patterns of subway stations. Stations with similar profile features
tend to have similar traffic patterns over time. Given a target station si, its profile
feature vector is PFi = [FP

i , FF
i , FR

i ], where FP , FF and FR represent the peak
traffic features, flow related features, and remoteness features, respectively. PFi

is compared to PFj for each sj ∈ V and a set Ki,φ(θK) of the θK nearest (in
terms of profile features) stations is selected as illustrated in Eq. 4. The optimal
value for θK is determined during model selection.

Ki,φ(θK) = argmin
BθK ⊂V/si

∑

sj∈BθK

⎛

⎜
⎝

√
√
√
√

|PF |∑

n=1

(
PFn

i − PFn
j

)2

⎞

⎟
⎠ . (4)

Stream selection. The final set of stations is simply the union set of the results
from three criteria, i.e., Li,φ(θL) ∪ Mi,φ(θM ) ∪ Ki,φ(θK).

The pseudocode for the stream selection is given in Algorithm 1. In Lines 2–6,
the procedure iterates through all stations sj ∈ V/si and calculates the time dis-
tances, pairwise flows, and profile feature Euclidean distances between stations si

and sj . In lines 7–12, thesedistances are sorted, and thefirstθL,θM , andθK , streams
are selected. Line 13 returns the union of the three stream sets.

Algorithm 1. Stream selection for station si

1 function StreamSelection (si; φ; F dur
i,j ; F pair

i,j ; PF ; θL; θM ; θK);

Input : Station si. Prediction interval φ. Sets F dur
i,j ,F pair

i,j , and PF. Number of
streams to be selected defined by θL, θM , and θK .

Output: Lθ
i,φ ∪ Mθ

i,φ ∪ Kθ
i,φ

2 for sj ∈ V/si do

3 timedistance[j] = |average(F dur
i,j ) − T ∗ (k − 1/2)|;

4 flow[j] = |F pair
i,j |;

5 pfdistances[j] = euclidiandistance(PFi, PFj);

6 end
7 timedistances = sort(timedistances);
8 flow = sort(flow);
9 pfdistances = sort(pfdistances);

10 Lθ
i,φ = getKeys(timedistances[1..θL]);

11 Mθ
i,φ = getKeys(flow[1..θM ]);

12 Kθ
i,φ = getKeys(pfdistances[1..θK ]);

13 return Lθ
i,φ ∪ Mθ

i,φ ∪ Kθ
i,φ;
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6 Model Selection

To accurately predict the arrival traffic for a prediction interval φ at a target
station si, we need to choose the right prediction model and the right set of
stream features from other stations, namely, θL, θM , θK . We consider five can-
didate prediction models used in the literature for time-series data prediction,
including Autoregressive integrated moving average (ARIMA) [15,25], Artificial
Neural Networks (ANN) [19,28,30,31], K-Nearest Neighbours (KNN) [8,9,11],
Random Forest (RF) [13,14,17], and Multiple Linear Regression (MLR) [26].
The system also needs to choose the optimal number of streams to be included
using the methods described in Sect. 5. In our study, the Shenzhen subway sys-
tem has five subway lines with 118 subway stations. Thus each parameter θL,
θM , and θK can vary from 1 to 118, leading to a search space of 1183. Each
model configuration setup requires training and testing using historical data.

To find the optimal configuration of model and stream set for a station si and
prediction interval φ requires examining all configurations with different model
and stream combinations. A naive method is to brute force all such configura-
tions, and choose the one with the highest prediction accuracy. However, this is
too costly to be implemented in practice. To be precise, we have five prediction
models and 1183 possibilities of stream set sizes. Let’s consider 6 future predic-
tion intervals and different temporal partitions, which in this set of experiments
is two (weekdays and weekends). In total, there are about 79 million different
models. We ran our experiments in a server with 30 Intel(R) Xeon(R) CPU E5-
4627 v2 @ 3.30 GHz Cores. Each model training and testing would take about
1 to 15 s, which leads to a total of 14 years to compare all configurations using
our 30 core system. Thus, we are motivated to employ the profile features to
conduct Gradient-based optimization of hyper-parameters [4,5] to opti-
mize this process. Initially this method uses a pure gradient search approach to
discover parameters. As more station profiles are matched to models, PULSE
can initiate subsequent searches with model parameters from stations with sim-
ilar profiles as described by Eq. 5. Henceforth, we refer to this method as Model
Select (MSELECT). After a large number of stations have been assigned with
prediction models, the process only takes a few seconds. Therefore this method
is suitable as an online process for model updates based on changes in the profile
features. Our gradient based model search takes approximately 2 h to find the
optimal prediction configuration for all 118 stations in this study.

Modeli = argmin
Modelj∈Models

⎡

⎢
⎣

√
√
√
√

|PF |∑

n=1

(
PFn

i − PFn
j

)2

⎤

⎥
⎦ . (5)

Model update. PULSE monitors the prediction performance over time. It auto-
matically re-selects features and rebuilds the models when the average prediction
accuracy goes below a certain threshold value.
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7 Evaluation of PULSE Model

To evaluate the performance of our PULSE framework on arrival traffic predic-
tion, we conducted comprehensive experiments using a real subway transaction
dataset collected from Shenzhen subway system for 21 days in March 2014. By
comparing with baseline algorithms, the experimental results demonstrate that
PULSE can achieve a 26 %–94 % relative prediction accuracy, which is on average
20 % higher than baseline algorithms. Below, we present the datasets, baseline
algorithms, experiment settings and results.

7.1 Dataset Description

Fig. 9. Distribution of the
best performing models over
the prediction horizon.

For this work, we used 60 million smart card trans-
actions from the subway system in the city of Shen-
zhen, China between March 10th and March 31st,
2014. The dataset contains 11 million unique pas-
sengers (identified by their smart card ids). Each
transaction contains a timestamp, location coordi-
nates, and whether the transaction is a departure
from or an arrival at a station. During data pre-
processing we matched entry and exit transactions
for each passenger in order to generate a trip record
tr = (pid, sd, td, sa, ta) containing a passenger iden-
tifier pid, a starting station sd, a destination sa and
respective departure and arrival times td and ta.

7.2 Evaluation Settings

PULSE predicts the number of arrivals at a station si at future time intervals
in [t + T ∗ (k − 1), t + T ∗ k] with 1 ≤ k ≤ K. In our evaluation of PULSE, we
used a variable k ∈ [1, · · · , 6].

Prediction models for both PULSE and the baseline methods are trained
using a sliding window containing a week of historical data to predict the arrival
traffic of a future interval specified by k. The accuracy of the predictions is
defined as accuracy = 1 −

∑ |ŷi−yi|∑
yi

. Again, we consider five prediction mod-
els used in the literature for time-series data prediction, including Autoregres-
sive integrated moving average (ARIMA) [15,25], Artificial Neural Networks
(ANN) [19,28,30,31], K-Nearest Neighbours (KNN) [8,9,11], Random Forest
(RF) [13,14,17], and Multiple Linear Regression (MLR) [26]. All these methods
can be setup as both single stream (only using the features of the target station)
or multi-stream models (using features from both the target station and other
selected stations)3. In our experiments, we evaluate the PULSE framework in
two stages.

3 Note that ARIMA can only be setup as a single stream model by its design in nature.
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In the first stage, we run all prediction models in a single-stream fashion
using the arrival stream feature F arr

i of the target station si, with vs without
other streaming features, such as time feature FT and weather features FW .

In the second stage, we evaluate the stream feature selection and model selec-
tion algorithms introduced in Sects. 5 and 6 in a multi-stream scenario. We com-
pare our PULSE framework with each individual model under the single-stream
mode. The evaluation results are summarized in the next subsection.

7.3 Evaluation Results

Stage 1: Single-stream models. In Table 1, the column BaseL No SF lists the
baseline results of single stream models, that only use the arrival stream feature
of the target station. The column BaseL SF lists the results of single stream mod-
els, that include both the arrival stream feature of the target station, and also
other streaming features introduced in Sect. 4.1, such as the weather and time
features. The results show that by introducing time and weather features, the
prediction accuracy for the single-stream models is improved on average 13.4%
and up to 21.7%, namely, from 60%–75.8% to 76.9%–81.7%, respectively.

When we look at the different prediction horizons from 15 min to 60 min
ahead of time, the accuracy of all models (except ARIMA) decreases as the
prediction horizon increases. This is reasonable since it is in general harder to
predict the arrival traffic in a long term future interval than an immediate future
interval.

Table 1. Overall performance evaluation at 118 stations.

BaseL No SF BaseL SF

H. KNN MLR RF ANN ARIMA KNN MLR RF ANN MSEL

W 15 0.738 0.735 0.735 0.750 0.746 0.872 0.848 0.860 0.836 0.884
D 30 0.658 0.647 0.657 0.672 0.745 0.872 0.846 0.855 0.840 0.883
a 45 0.575 0.560 0.574 0.595 0.745 0.870 0.837 0.850 0.840 0.882
y 60 0.526 0.509 0.525 0.548 0.745 0.868 0.831 0.848 0.834 0.881

75 0.498 0.477 0.498 0.524 0.745 0.865 0.824 0.845 0.832 0.880
90 0.488 0.462 0.489 0.516 0.744 0.862 0.818 0.842 0.825 0.879

W 15 0.752 0.784 0.749 0.780 0.772 0.770 0.726 0.801 0.724 0.845
E 30 0.712 0.760 0.707 0.755 0.772 0.768 0.667 0.791 0.718 0.841
n 45 0.639 0.702 0.631 0.698 0.771 0.761 0.603 0.763 0.705 0.833
d 60 0.585 0.662 0.578 0.649 0.771 0.760 0.573 0.745 0.693 0.827

75 0.540 0.623 0.535 0.610 0.769 0.762 0.572 0.731 0.687 0.820
90 0.518 0.601 0.516 0.590 0.771 0.770 0.590 0.728 0.699 0.813

Av. 0.602 0.627 0.600 0.641 0.758 0.817 0.728 0.805 0.769 0.856

Stage 2: Multi-stream models. In Table 1, the last column MSEL lists the
results of multi-stream models, when stream feature selection and model selec-
tion algorithms are applied to include departure stream features from other
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Table 2. Stations with top improvement in prediction accuracy.

Rank Station ID ML H TBSS FBSS PBSS KNN M.Select Diff

Week days 1 260011 LM 90 0 0 0 0.709 0.769 0.060

2 260024 RF 30 30 10 20 0.465 0.523 0.058

3 260024 RF 45 30 40 0 0.465 0.521 0.056

4 268028 RF 15 40 40 20 0.469 0.522 0.053

5 268023 KNN 90 40 40 40 0.871 0.921 0.050

Week ends 1 261006 RF 45 0 0 10 0.264 0.755 0.491

2 268023 KNN 60 30 0 40 0.334 0.814 0.481

3 268012 KNN 60 20 20 30 0.618 0.854 0.236

4 261006 KNN 90 0 20 10 0.481 0.716 0.234

5 263013 KNN 15 30 0 10 0.512 0.739 0.228

stations than the target station. We observed that the average prediction accu-
racy is further improved to 85.6% over single-stream models, with an average of
7.6% improvement over BaseL SF and 21% improvement over BaseL No SF.

Table 2 lists the evaluation results of the stations with the top five improve-
ment on the prediction accuracy for weekdays and weekends, respectively. During
weekends, the first ranked station (in terms of model improvement) has a predic-
tion accuracy as low as 26.4 % at 45 min prediction horizon when using KNN (the
best performing single-stream baseline) with all streaming features. By applying
stream feature selection and model selection algorithms, PULSE increases the
prediction accuracy of this model to 75.5% with a total of 49.1% improvement.
This was achieved by using a Random Forest model with 10 streams that were
selected using profile based stream selection (PBSS). Overall, the stream fea-
ture selection and model selection algorithms improve the prediction accuracy
more during the weekends (up to 49.1% improvement) than the weekdays (up to
6%). This happens primarily because the arrival traffic in weekends is less stable
than during weekdays, and single-stream models have low prediction accuracy,
providing more room to improve the performance when stream feature selection
and model selection algorithm are used.

Summary and Observations. The above results with single-stream models
demonstrate that by introducing time and weather features, the prediction accu-
racy is improved on average 13.4%. For multi-stream models, our PULSE frame-
work further improves the prediction accuracy by an average of 7.6%. To better
understand the evaluation results, Fig. 10(a, b) presents the prediction accuracy
distribution at all stations as a function of their mean arrival flow for single
stream model (KNN) in Fig. 10(a) vs multi-stream models in Fig. 10(b). We
observed that stations with lower mean arrival traffic had the most improve-
ment. When we looked at the best models being selected by our model selection
algorithm over different prediction horizons, we noticed that there is a clear shift
in the machine learning models with increasing prediction horizons (Fig. 9). For
example, linear model (LM) and Random forest (RF) are used more for smaller
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(a) (b)

Fig. 10. (a) KNN vs (b) MSELECT weekend prediction accuracy at 60min horizon,
for stations with different mean passenger flow.

prediction horizons (i.e., predicting the near future), while k-nearest neighbors
(KNN) in general performs better for larger prediction horizons (i.e., predicting
the long term future intervals). These observations shed light on the perfor-
mances of different models in subway station traffic predictions.

8 Conclusion

In this study we present PULSE, a real-time system to predict arrival crowd
flow at metropolitan subway stations. The system extracts streaming features
and station profile features from heterogeneous urban data, including subway
transaction data, weather data, and calendar data. PULSE employs novel stream
feature selection and model selection algorithms to improve the prediction accu-
racy and running time. Experimental results on real subway transaction data
from 11 million passengers in Shenzhen, China demonstrated that PULSE can
increase the prediction accuracy by up to 49 % over baseline algorithms.
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Abstract. Co-evolving patterns exist in many Spatial-temporal time
series Data, which shows invaluable information about evolving pat-
terns of the data. However, due to the sensor readings’ spatial and
temporal heterogeneity, how to find the stable and dynamic co-evolving
zones remains an unsolved issue. In this paper, we proposed a novel
divide-and-conquer strategy to find the dynamic co-evolving zones that
systematically leverages the heterogeneity challenges. The precision of
spatial inference and temporal prediction improved by 7% and 8 %
respectively by using the found patterns, which shows the effectiveness of
the found patterns. The system has also been deployed with the Haidian
Ministry of Environmental Protection, Beijing, China, providing accu-
rate spatial-temporal predictions and help the government make more
scientific strategies for environment treatment.

Keywords: Air quality · Time series clustering · Co-evolving

1 Introduction

Spatio-temporal time series data has become ubiquitous thanks to affordable sen-
sors and storage. Those invaluable data shows a potential to extract and under-
stand complex spatio-temporal phenomena and their dynamics. Additionally,
the ubiquitous sensor stations continuously measure several geophysical fields
over large zones and long (potentially unbounded) periods of time, which high-
lights the importance of unsupervised methods in monitoring spatio-temporal
dynamics with little or no human supervision.

Time series clustering are rapidly becoming popular data mining techniques.
Lots of methods have been proposed to solve the problem [18]. Different dissim-
ilarity measures for time series have been tested for various purposes. Yet, the
ubiquitous sensor monitoring data is always spatio-temporal heterogenous, which
means that different clustering structure may exist during the whole period.
Furthermore, in the geo-sensory applications wherein a bundle of sensors are
deployed at different locations to cooperatively monitor the target condition,
groups of sensors are spatially correlated and co-evolve frequently in their read-
ings and how to find those spatial co-evolving patterns is of great importance
to various real-world applications [21]. When dealing with dense and continuous
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 129–144, 2016.
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spatio-temporal data, the co-evolving sensors (zones) may change their sizes,
shape and statistical properties over time (see Fig. 1). The goal is to find those
dynamic co-evolving zones and try to establish linkages between those found
zones and give reasonable explanations.

Fig. 1. The spatio-temporal air quality monitoring data (10 spatially adjacent sensor
readings during one month).

In this paper, we propose a novel dynamic co-evolving zones discovery para-
digm to identify co-evolving zones in continuous spatio-temporal field and estab-
lish linkages where the co-evolving zones may change their size, shape from
time to time. Our paradigm first detects the overall breakout and divides the
time series into uptrend and downtrend intervals. Then, we cluster the spatio-
temporal time series data in each interval by using the specific dissimilarity mea-
sures. A hierarchical clustering method is used to deal with the found dynamic
co-evolving zones in the previous step to give the final co-evolving structure.
We evaluate our paradigm on a real world application of monitoring air qual-
ity which uses ubiquitous sensor stations on a regional scale (see our previous
work [4] for details). The paradigm produced more stable and meaningful co-
evolving zones and automatically found the segmentation intervals which helped
better understand the evolving patterns of the pollution. We then use the found
patterns to make spatial-temporal predictions and find an obvious improvement
on the performance, which shows a potential usage area of the found dynamic
co-evolving zones. Overall, our contribution has three parts:

– We proposed a novel paradigm to find the dynamic co-evolving zones and
structures in the spatio-temporal time series data. The model uses three gen-
eral key steps to deal with the spatio and temporal heterogenous to find co-
evolving structures and patterns for future use.

– We use the patterns found in the co-evolving structures to increase the
accuracy of spatial-temporal predictions and find a significant improvement
compared with the original method.

– We use the proposed approach and result in a real world application, which has
been used in the daily work of a environmental protection agency to help them
make accurate predictions, do pollution causal analysis and make decisions or
strategies.
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2 Related Work

2.1 Problem Formulation

The goal of this work is to autonomously extract dynamic co-evolving zones
from a continuous spatio-temporal field and give reasonable explanations. The
dense deployment air quality monitoring data is an example of continuous spatio-
temporal field, where each location has unique spatial coordinates and has
co-evolving patterns with other sensors, which is changing over time. In the
following subsection, we will first describe the existing approaches on the related
topics, then gives our challenges.

2.2 Existing Approaches

Generally, our work is related to the following topics.

Time series change point detection. Sliding window, top-down, and bottom-
up approaches [10] are popular methods to partition a time series into line seg-
ments. Wang et al. [17] proposed the pattern-based hidden Markov model that
can segment a time series as well as learn the relationships between segments.
Methods have also been proposed [9] to obtain piecewise polynomial approxima-
tions and/or perform on-line segmentation.

Change detection aims to find the time points where the statistical property
of the time series changes significantly. It is closely related to time series segmen-
tation as such points can be considered as the boundaries of different segments.
Yamanishi et al. [20] unified the problems of change detection and outlier detec-
tion based on the on-line learning of an autoregressive model. Sharifzadeh et al.
[15] used wavelet footprints to find the points where the polynomial curve fitting
coefficients show discontinuities. Kawahara et al. [8] judged whether a point is
a change by computing the probability density ratio of the reference and test
intervals.

Our work uses the bottom-up segmentation approach due to its simplicity and
practical effectiveness, it can be easily adapted to other segmentation algorithms.
It is also worth mentioning that, the segmentation of this work is performed on
short evolving intervals instead of the original long time series, which renders
the segmentation process really fast.

Time series clustering. A crucial question in time series cluster analysis is
establishing what we mean by similar data objects, i.e., determining a suitable
similarity/dissimilarity measure between two time series objects. There exist a
broad range of measures to compare time series and the choice of the proper
dissimilarity measure depends largely on the nature of the clustering, i.e., on
determining what the purpose of the grouping is. Current dissimilarity measures
are grouped into four categories: model-free measures, model-based measures,
complexity-based measures and prediction-based measures [13]. Considering the
unsupervised feature of the problem and temporal heterogenous properties, we
choose the model-free approaches.
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The Minkowski distance is typically used to measure the proximity of two
time series. This metric is very sensitive to signal transformations as shifting
or time scaling. Frechet distance was introduced by Frechet [7] to measure the
proximity between continuous curves, but it has been extensively used on the
discrete case (see [6]) and in the time series framework. The dynamic time warp-
ing (DTW) distance was studied in depth by [14] and proposed to find patterns
in time series by [2]. [5] introduce a dissimilarity measure addressed to cover
both conventional measures for the proximity on observations and temporal cor-
relation for the behavior proximity estimation, which includes both behavior and
values proximity estimation.

In our scenario, we need to cluster the time series with both behavior and
values similarity, we use an extension of the adaptive dissimilarity index covering
both proximity on values and on behavior.

Co-evolving Zones. [16] studied the problem of finding regions that show sim-
ilar deviations in population density using mobile phone data. They assume that
the condition has periodicity, i.e., the daily population densities in a region are
similar in different days. While this assumption is reasonable for population den-
sity, it does not hold in many geo-sensory applications like air quality monitoring.
Moreover, they extract vertical changes in population density by comparing the
same hour of different days. In contrast, we extract the horizontal changes, i.e.,
comparing the condition in current time interval with the previous time interval.

[21] studied problem of mining spatial co-evolving patterns from geo-sensory
data, due to the sparse data they used, the paper only mines the spatial coevolv-
ing patterns (SCPs), i.e., groups of sensors that are spatially correlated and co-
evolve frequently in their readings. In our situation, we first find the co-evolving
zones, then give the causal explanations of the phenomenon, which can be used
to further improve the accuracy of spatial inference and temporal prediction.

2.3 Challenges

In addition to the technical limitations, finding the co-evolving zones faces sig-
nificant challenges in many real world applications. One significant challenge is
the heterogeneity in space and time (see Fig. 1). Space heterogeneity refers to
the case where data belonging to different clusters may have the same feature
values. While heterogeneity in time refers to the instance where the sensor clus-
ter membership may change over time, which all lead to one much debated
question [12]: How long should the time series be? If too short, the clusters
found can be spurious; if too long, dynamics can be smoothed out. Those het-
erogeneity challenges caused us to propose a novel paradigm to eliminate the
limitations.

Another challenge is how to find the physical meaning of the found co-
evolving zones, i.e., how to give the causal explanation, and find associate rela-
tionship between those zones to improve the performance of other application
domains, e.g., space inference and temporal prediction.
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3 Overview

To address the above-mentioned challenges, we propose a novel dynamic co-
evolving zones data mining paradigm that systematically leverages the very
challenges. Our paradigm consists of two main steps: finding the co-evolving
zones under the spatial and temporal heterogeneity constraint; mining the asso-
ciation between the found co-evolving zones and give reasonable explanations.
Figure 2-A outlines three key steps. The first step is to do the changepoint detec-
tion, which acts on the average value of the monitoring region and gets the
uptrend or downtrend change intervals for the use of next step. The second
step is to cluster the time series data in every change interval, the key here is
to choose an appropriate dissimilarity measure under the space constraint. The
final step is to mine the relationship between the previous found zones, which in
the best case will give us the inner relationship between those co-evolving zones
and causal explanations of the phenomenon, which also gives us the appropriate
time series segementation length for clustering analysis.

Fig. 2. A: dynamic co-evolving structure mining paradigm. B: web user interface of
the deployed system.

The first step is essential. If we cluster the time series using the whole period,
we will get bad and meaningless result for the space and temporal heterogeneity,
which will be illustrated in the following experiment section. We cluster the
segmented time series using an extension version of the adaptive dissimilarity
index covering both proximity on values and on behavior in the second step. In
the final step, we define a dynamic co-evolving zones’ dissimilarity measure index
and use the hierarchical clustering method to get the final co-evolving structure
and give the dynamic segementation length used in clustering analysis.

Figure 2-B shows the real deployed web user interface in Haidian Ministry
of Environmental Protection, where we can see the real time monitoring station
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readings and accurate spatial-temporal prediction results. The above proposed
paradigm helps us improve the prediction precision significantly and makes the
scientific environment treatment possible.

4 Proposed Model

The proposed model takes an divide-and-conquer strategy to find the dynamic
co-evolving structures and give final causal explanations. It first breaks down
the problem into multiple sub-problems of the same (or related) type (divide),
until these become simple enough (uptrend/downtrend intervals) to be solved
directly (conquer). The solutions to the sub-problems are then combined to give
a solution or explanation to the original problem. The approach eliminates the
effect of space and temporal heterogeneity on the original problem and help
produce more reliable and reasonable result for future use in related domains.

In this section, we will first describe our change point detection algorithm,
which is simple and efficient, then follows the co-evolving time series clustering
algorithm under the space constraint. Lastly, the co-evolving structure learning
framework is proposed to build the relationship between the found co-evolving
zones. The above steps belong to the divide-and-conquer approach, which divide
the whole time series clustering problem into sub-problems and then cluster
segmented co-evolving zones respectively to produce more stable and meaningful
co-evolving zones.

4.1 Change Point Detection

Definition 1. Uptrend/Downtrend Interval. Given a sensor reading s, an
uptrend (downtrend) interval is a consecutive subsequence of measurement I =
〈s[ti], s[ti+1], . . . , s[ti+m−1]〉 and ∀j ∈ {i, i + 1, . . . , i + m − 2}, s[tj+1] − s[tj ] >
0(< 0, for downtrend interval), where m denotes the length of the subsequence
and ti, ti+1, . . . , ti+m−1 are the timestamps of every measurement in I.

Fig. 3. The figure is the mean value of one monitoring region with almost 200 sensors;
Blue lines is the segemented uptrend/downtrend intervals. (Color figure online)
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Since the geo-sensory data is typically overwhelmed by various trivial fluc-
tuations, we apply the wavelet transform to capture the multi-resolution evolv-
ing intervals by following the previous work [21]. Recall that we aim to dis-
cover the co-evolving sensor reading patterns, especially during the pollutant
propagation period, which correspond to the uptrend or downtrend intervals
of the geo-sensory data. Consequently, we adopt their method as well as the
break and segment strategy [10] to extract the uptrend and downtrend intervals.
Note that the uptrend and downtrend intervals we extract do not exactly follow
Definition 1. Instead, we allow small fluctuations. Figure 3 shows the extracted
uptrend and downtrend intervals in blue lines.

4.2 Time Series Clustering

From the previous step, we can get mounts of time series uptrend/downtrend
intervals. For each uptrend (downtrend) interval, we adopt the selected time
series clustering method to get the co-evolving zones. We will first describe the
dissimilarity measures used for time series clustering, then follows the description
of the clustering method.

Dissimilarity Measures. The key in the dissimilarity measures, namely, how
to define the similarity of two time series object. In our scenario, the spatial
constraint also need to be considered to define the spatio-temporal distance
function. Two time series objects are similar if they are spatially adjacent and
have similar temporal characteristic. It is a function as below.

dst(x, y) =

{
dt(x, y) if x and y are spatial neighbors

0 otherwise
(1)

where, dt(x, y), is a time-series distance function.
The choice of time series distance function is related to the application. Com-

monly used time-series distance functions include proximity on value, proximity
on behavior or both in the view of what the purpose of the grouping is. The con-
ventional measures ignore the interdependence relationship between measure-
ments, characterizing the time series behavior. The proximity is only based on
the closeness of the values, while the proximity on behavior measure the growth
behavior of the time series without considering the closeness of the values.

Previous work [5] introduced an adaptive dissimilarity index covering both
proximity on values and on behavior, which is able to cover both conventional
measures for the proximity on observations and temporal correlation for the
behavior proximity estimation. These characteristics make it an ideal dissimilar-
ity measures in our scenario.

First of all, temporal correlation for the behavior proximity estimation has
been given. The proximity between the dynamic behaviors of the series is eval-
uated by means of the first order temporal correlation coefficient, which is
defined by
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CORT (XT ,YT )=
∑T−1

t=1 (Xt+1−Xt)(Yt+1−Yt)
√

∑T−1
t=1 (Xt+1−Xt)2

√
∑T−1

t=1 (Yt+1−Yt)2
(2)

In the above equation, CORT (XT ,YT ) belongs to the interval [−1, 1], The
value CORT (XT ,YT ) = 1 means that both series show a similar dynamic
behavior, i.e., their growths (positive or negative) at any instant of time are
similar in direction and rate, while CORT (XT ,YT ) = −1 implies a sim-
ilar growth in rate but opposite in direction (opposite behavior). Finally,
CORT (XT ,YT ) = 0 expresses that there is no monotonicity between XT and
YT , and the growth rates are stochastically linearly independent (different behav-
iors). In all, CORT (XT ,YT ) gives the similarity measures of time series.

The dissimilarity index proposed by [5] modulates the proximity between the
raw-values of two time-series XT and YT using the coefficient CORT (XT , YT ).
Specifically, it is defined as follows.

dCORT (XT ,YT ) = φk[CORT (XT ,YT )] · d(XT ,YT ) (3)

where φk(·) is an adaptive tuning function to automatically modulate a con-
ventional raw-data distance d(XT , YT ) according to the temporal correlation.
The modulating function should work increasing (decreasing) the weight of the
dissimilarity between observations as the temporal correlation decrease from 0
to −1 (increase from 0 to +1). In addition, dCORT (XT ,YT ) should approach
the raw-data discrepancy as the temporal correlation is zero. In our scenario, we
choose an exponential adaptive function given by

φk(u) =
2

1 + exp(ku)
, k � 0. (4)

The above exponential tuning function will cover both proximity on values
and behavior, which is an appropriate choice in our situation.

Hierarchical Clustering Groups. Partitioning clustering methods meet the
basic clustering requirement of organizing a set of objects into a number of
exclusive groups [19], while in our situations we want to partition our data into
groups at different levels such as in a hierarchy, which works by grouping data
objects into a hierarchy or tree of clusters.

We use the agglomerative hierarchical clustering method based on the
bottom-up strategy. It typically starts by letting each object form its own clus-
ter and iteratively merges clusters into larger and larger clusters, until all the
objects are in a single cluster or certain termination conditions are satisfied. The
single cluster becomes the hierarchys root. For the merging step, it finds the two
clusters that are closest to each other (according to some similarity measure),
and combines the two to form one cluster. Because two clusters are merged
per iteration, where each cluster contains at least one object, an agglomerative
method requires at most n iterations.

In our scenario, using the method in [11], we can divide the sensor readings,
which have similar proximity on values and behavior, in each change interval
into k different co-evolving groups.
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4.3 Co-evolving Structures

From the previous step, we get k co-evolving zones in each evolving interval, as
shown in the left of Fig. 4. Our problem is to find the relationship between the
found co-evolving zones and build the tree structure to show the inner causal
associations among the co-evolving zones of different time period. In our situ-
ation, we also use hierarchical clustering method to build the co-evolving tree,
which is illustrated in the right of Fig. 4.

Fig. 4. The left figure is the co-evolving zones found in each co-evolving intervals, while
the right figure shows how we restruct the relationship between those zones.

The key here is to define the similarity measures of the co-evolving zones in
different time period. Suppose A = {A1, ..., Ak} and B = {B1, ..., Bk} are two
co-evolving zones at two time interval of k clusters, the similarity measures of
the two co-evolving zones is defined as follows:

Definition 2. Cluster Similarity Measures. The Cluster Similarity Measures
Sim(A,B) of two co-evolving zones, A = {A1, ..., Ak} and B = {B1, ..., Bk}, is
defined by:

Sim(A,B) =
1
k

k∑

i=1

max
1�j�k

Sim(Ai, Bj) (5)

where

Sim(Ai, Bj) =
|Ai ∩ Bj |

|Ai| + |Bj | (6)

in which |·| denoting the cardinality of the elements in the set.
In the merging step of the Hierarchical Clustering, we use the above similarity

measure as the closeness index of two clusters (in our situation, we use single
similarity linkage of two clusters) to combine the two to form one cluster.

The Hierarchical Clustering method works by grouping data objects (in our
case, the co-evolving zones of different time intervals) into a hierarchy or tree
of clusters, which reflects the relationship and inner association between those
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co-evolving zones. The groups at different levels of the hierarchy can give us
more valuable information about the co-evolving zones, such as the relationship,
causal association etc. This would help us have a better understanding of the
evolving of the co-evolving patterns and casual association, which can help us
make better spatial inference and temporal predictions.

5 Experiment

In this section, we will give the experiment and evaluation of our proposed
approach. At first, we give the data and features used in the evaluation Sect. 5.1,
which contains all the feature description, then follows the evaluation using real
world data Sect. 5.2, we compare the found co-evolving zones with the clustering
result using the whole data to test and verify the effectiveness of our method.
The found co-evolving structure provides a clear picture of the pollution evolving
patterns and has the potential to improve the accuracy of spatial inference and
temporal prediction result, even give the recommendation of new air quality
stations’ locations, which is illustrated in Sect. 5.3.

5.1 Data and Features

We utilize real air quality monitoring datasets collected from Haidian district of
Beijing, China. The datasets consist of three parts, as elaborated in the following.

– Air Quality Records. The data contains the real-valued AQI of two kinds of
pollutions, PM2.5 and PM10, measured by almost 200 air quality monitoring
stations every 30 min. This dataset is collected over 11 months (from March 1,
2015 to February 1, 2016).

– Meteorological Data. Previous study has shown that the concentration
of air pollutants is influenced by meteorology. Especially, wind speed, wind
power, humidity and barometer pressure all have a big influence on the con-
centration of the air quality. We choose the four aspects and the weather
condition as the five features to evaluate the co-evolving structure result. The
fine-grained meteorological data is collected hourly from a public website [1].

– Point-Of-Interests (POIs). In the urban area, the land use and the function
of the region is well reflected by the category and density of POIs in the area,
which is valuable in making accurate spatial inference. In our setting, we
extract 8 POI features by using a POI database of Baidu Maps of Beijing (see
Table 1).

5.2 Evaluation Using Real World Data

To illustrate the effectiveness of the proposed approprach, we use almost 11
months PM2.5 sensor data to evaluate the algoritm. Figure 5 shows the result of
almost 2 months data. Figure 5-A shows the mean value of the time series data,
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Table 1. Category of POIs

C1: Culture & education C5: Shopping malls and Supermarkets

C2: Parks C6: Entertainment

C3: Sports C7: Decoration and furniture markets

C4: Hotels C8: Vehicle Services (gas station, repair)

the blue line is the segment result of the uptrend/downtrend detection algorithm,
the algorithm get 89 intervals in total. For each change interval, we use the dis-
similarity measures defined above to cluster all the sensor readings and divide
them into 10 different classes. Then, using the Cluster Similarity Measures, we
get the final co-evolving structures, as shown in Fig. 5-B. The co-evolving struc-
ture has four obvious sub-clusters: 1, 2, 3, 4. When mapping the sub-clusters
into the time dimension, we found a clear temporal correlation, which can be
seen in Fig. 5-A. This result shows the heterogeneity of the dynamic co-evolving
zones and may provide a novel way to get the appropriate segementation length
for future clustering analysis.

Using the above found co-evolving structure and the new segment interval:
1, 2, 3, 4. We get the co-evolving zones for each of the time interval, which
is shown in Fig. 5-D, E, F, G. Compared with the clustering result using the
whole two months data, as shown in Fig. 5-C, Fig. 5-D, E, F, G show more
meaningful and stable results. In this scenario, two month data is too long for
the clustering algorithm and the dynamics is smoothed out. While in Fig. 5-D,
E, F, G, we can see clear co-evolving zones (the sensors in the same zone show
similar patterns in both behavior and value) and the zones are dynamic between
two different time intervals, which shows the necessity and effectiveness of the
proposed paradigm. In the following section, we will use the found patterns to
help improve the accuracy of spatial inference and temporal prediction result
and show the effectiveness of the found patterns.

In our experiment settings, we set significant delta, significant length in
change point algorithm is 35 and 3, and get 508 uptrend/downtrend time inter-
vals. For each time interval, the distance between x, y is below 2 km if they are
spatial neighbours, and k is set to 10, which means that there are 10 different
sub-clusters for each co-evolving time interval. Using the co-evolving structure
clustering algorithm, we get 28 different co-evolving intervals, which all shows
an obvious co-evolving zones structure, in the following section, we will use the
above found results to evaluate the effect on spatial-temporal prediction result.

5.3 Effect on Prediction and Inference

Spatial Inference. In the previous work [3], we compared the spatial infer-
ence accuracy using linear, cubic spline and gaussian process regression method,
which shows the effectiveness of Gaussian Process regression in spatial PM2.5 con-
centration inference. However, one big disadvantage of the GP method is the
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Fig. 5. Evaluation using the real world data (2 months). A: mean value of almost 200
sensors and segementation result; B: final co-evolving structure; C: co-evolving zones
clustering result using whole data; D, E, F, G: co-evolving zones clustering result using
segmentation intervals 1, 2, 3, 4. (Color figure online)

time complexity. Since an exact inference in Gaussian Process involves computing
K−1, the computation cost is O(n3) (n is the number of the training cases), when
the deployment is large (in our situation, almost 200 devices), the compution cost
is a big challenge in real time online systems. In this section, we try to decrease the
number of devices (n) used for Gaussian Process algorithm with the help of the
found co-evolving zones (C-zones).

In experiment, the real deployment dataset of more than 11 month was used
to evaluate the performances of the algorithm. There are totally 200 monitor
stations deployed in an area with the size of 30 km × 30 km and each sta-
tion reports its measurements every 30 min, the deployment map is shown in
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Fig. 6. (A) The deployment map of the monitor stations; (B) The distribution of the
deviation between station S1 and S2 over one month

Fig. 6-(A). We deliberately remove one station as ground truth and infer its
value using the remaining stations’ reading at each timestamp. The Fig. 6-(B)
also shows the distribution of deviation between our two monitor stations, S1

and S2. The geospatial distance of the two stations is about 6 km shown in Fig. 6-
(A), over 21% cases have a deviation greater than 100, which also shows the
need for an efficient and accurate spatial inference algorithm.

Table 2. Inference errors

Method
Measure ‖x‖1

1
n
‖x‖1 ‖x‖2 RMSE ‖x‖∞

Gaussian Process 593429.56 25.12 4322.19 26.74 161.23

Gaussian Process + C-zones 569328.64 17.44 4011.73 20.14 145.08

Table 2 lists the inference errors of the two methods measured via different
rules (assume that x is the absolute error vector). Gaussian Process uses all of the
devices for training, while Gaussian Process + C-zones only uses the devices in
the same co-evolving zones for training process, which only use almost 38 devices
in average. From the comparison result, we can see that the inference accuracy
has a significant increase by using the co-evolving zones, specially the Chebyshev
norm ‖x‖∞ achieved by Gaussian Process is 161.23 while the Gaussian Process +
C-zones obtains a smaller value 145.08, which proves that the Gaussian Process
+ C-zones is more stable in the inference of PM2.5 concentrations. The result
also shows the efficiency of the found dynamic co-evolving zones.

Temporal Prediction. Over the past decades, some statistic models, like
linear regression, regression tree and neural networks, have been employed in
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atmospheric science to do a real-time prediction of air quality. However, these
methods simply feed a variety of features about a location into a single model to
predict the future air quality of the location [22]. In work [22], they use a Tem-
poral Predictor to predict the air quality of a station in terms of the data about
the station. Instead, the Spatial Predictor considers spatial neighbor data, such
as the AQIs and the wind speed at other stations, to predict a station’s future
air quality, The two predictors generate their own predictions independently for
a station, which are combined by the Prediction Aggregator dynamically accord-
ing to the current weather conditions of the station. In this way, they improve
the prediction accuracy significantly. However, the meteorological data is almost
same for devices in dense deployment scenario, using the spatial partition method
in work [22] equals to feed all the data from a station’s neighbors into a machine
learning model. In this way, there are too many inputs for an ANN, leading to
too many parameters in the model. Consequently, we cannot learn a set of accu-
rate parameters for the ANN based on the limited training data, which may lead
to some problems and can not be used directly in practice (see details in [22]).

In this experiment, we use the devices in the same co-evolving zones as the
selected “spatial partition devices” to evaluate the accuracy of the algorithm.
Long period prediction may need more data in large scale, so we only evaluate
the next 6 h PM2.5 concentrations in this experiment, which can be extend to
next 48 h prediction in the similar method.

For the next 1–6 h, we measure the prediction of each hour ŷl against its
ground truth yi, calculating the accuracy according to Eq. 7, We also calculate
the absolute error of each time interval according to Eq. 8, where n is the number
of instances measured for a time interval. We random select 30 devices for this
evaluation for almost 5 months.

p = 1 −
∑

i |ŷl − yi|
∑

i yi
(7)

e =
∑

i |ŷl − yi|
n

(8)

Table 3 shows the prediction result using different methods, LR and ANN
only use the local monitor station readings as the data source and make predic-
tions. In general, LR has a similar performance in predicting normal instances
but less effective than ANN in dealing with sudden drops. Also, the results
presented in Table 3 justify the advantages of the ANN + C-zones which use
local and devices in same co-evolving zones for prediction which acquires a big
improvement in the performance of overall accuracy, especially in the sudden
drops scenario.

6 Conclusion

In this paper, we propose a novel divide-and-conquer strategy to find the
dynamic co-evolving zones that systematically leverages the sensor readings’
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Table 3. Prediction Result of different methods.

Methods All instances Sudden drops

p e p e

LR (Linear Regression) 0.684 27.5 0.298 103.2

ANN (Artifical Neural Network) 0.646 29.9 0.221 73.7

ANN + C-zones 0.725 20.1 0.302 51.4

spatial and temporal heterogeneity challenges. The paradigm produced more sta-
ble and meaningful co-evolving zones and automatically found the segmentation
intervals which shows the inner pollution change paterns. We use the found result
to evaluate the performance on spatial-temporal prediction result and found a
significant improvement, which proves the effectiveness of the found patterns.
What’s more, the found zones and dynamic patterns may provide recommenda-
tion for new planned public monitoring stations and future city planning. The
system has also been deployed with the Haidian Ministry of Environmental Pro-
tection (in Haidian district of Beijing, China) to make accurate spatial-temporal
predictions and help the government better understand the pollution evolving
patterns to make more scientific strategies for environment treatment. The cur-
rent implementation still needs manual parameter tuning and has some limita-
tions, for future work, we plan to eliminate those disadvantageous and make the
algorithm more scaleable to use in the real production environment.
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Abstract. Because of usermovements andactivities, heartbeats recorded
from wearable devices typically feature a large degree of variability in
their morphology. Learning problems, which in ECG monitoring often
involve learning a user-specific model to describe the heartbeat morphol-
ogy, become more challenging.

Our study, conducted on ECG tracings acquired from the Pulse Sensor
– a wearable device from our industrial partner – shows that dictionaries
yielding sparse representations can successfully model heartbeats acquired
in typical wearable-device settings. In particular, we show that sparse rep-
resentations allow to effectively detect heartbeats having an anomalous
morphology. Remarkably, the whole ECG monitoring can be executed
online on the device, and the dictionary can be conveniently reconfigured
at each device positioning, possibly relying on an external host.

1 Introduction

In this paper we deal with the problem of monitoring electrocardiogram (ECG)
tracings through wearable devices like the Pulse Sensor [1], which is shown in
Fig. 1 and developed in a joint collaboration between MR&D and STMictroelec-
tronics. Wearable devices have a huge potential in health and fitness scenarios,
and in particular in the transitioning from hospital to home/mobile health mon-
itoring. However, to make these devices operational in real-world applications,
it is necessary to address relevant machine-learning and data-science challenges.
In particular, to provide prompt interaction with the user and prevent mas-
sive data-transfer which can spoil their battery life, wearable devices have to
autonomously process the sensed data.

In the case of ECG tracings, this processing typically consists in classifying or
detecting anomalies in the heartbeats. These tasks are traditionally performed
by computing expert-based features like those in [2–6], which tend to mimic
the criteria clinicians use to interpret ECG tracings. Examples of these features
are the ECG values in specific locations of the heartbeat, interval features (e.g.,
the duration of the QRS, ST-T or QT complex, or the distance between two
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 145–160, 2016.
DOI: 10.1007/978-3-319-46131-1 21
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consecutive peaks, namely the RR distance), and the average ECG energy over
these intervals.

Often, expert-based features are combined with data-driven ones, that do not
tend to reproduce some clinical evidence but they are directly learned from data
[7,8], possibly by clustering heartbeats [9,10]. In practice, learning data-driven
features boils down to learning a model to represent heartbeats. Since heartbeats
of each user are characterized by their own morphology [11] (see the examples
of Fig. 2), global models are not able to properly describe heartbeats of different
users, and lead to poor classification [12] or anomaly detection performance even
when trained on large datasets. Therefore, it is convenient to make these models
user-specific or at least user-adaptable [2,13].

Fig. 1. Pulse Sensor. The two external electrodes inject the current, while those in the
middle read the difference in electric potential. The Pulse Sensor can either analyze
onboard, store or transmit the ECG tracings.

Here we focus on data-driven models for learning the morphology that charac-
terize each user heartbeats, and to this purpose, we consider dictionaries yielding
sparse representations of heartbeats. Sparse representations are nowadays one
of the leading models in image and signal processing [14,15], and dictionary
learning has been successfully used for modeling ECG tracings for anomaly-
detection [16,17] and person-identification [18] purposes. Intuitively, learning a
dictionary yielding sparse representations corresponds to learning a union of
low-dimensional subspaces where user heartbeats live.

ECG tracings acquired by wearable devices are different from those typi-
cally considered in the literature, like the MIT-BIH Arrhythmia Database [19],
which contains relatively short segments of good-quality Holter recordings. In
the Pulse Sensor, for instance, the electrodes are closer than in an Holter device
and these could be mispositioned since they are typically placed by users them-
selves rather than by clinicians. Moreover, during long-term monitoring, user
movements might also cause device displacements. These issues might affect the
morphology of heartbeats [11,20] and have implications on the model used to
describe the heartbeats of each user, which are better discussed in Sect. 2.2.

We here show that dictionaries yielding sparse representations are the right
choice for modeling ECG recordings in wearable devices, and that they allow
to detect anomalies directly on the device. To this purpose, we consider an
anomaly-detection algorithm similar to [21], and study its applicability on the
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Fig. 2. Examples of heartbeats morphology. The top row (a, b and c) contains heart-
beats acquired from user 1 with the Pulse Sensor placed in position 1. In all these
heartbeats we depict also the P-waves, the QRS-complexes and the T-waves. The small
variations in the morphology of these heartbeats are also due to different heart rates
(72 bpm in a, 93 bpm in b and 77 bpm in c). Note also that the morphology remains
unaltered over time, since c was acquired more than 100 min after a and b. The bottom
row (d, e and f) contains heartbeats featuring a different morphology. In particular,
d reports an heartbeat from the user 1 acquired in position 2 (heart rate of 81 bpm),
e reports an heartbeat of user 2 (84 bpm) and c reports an example of artifact due
to movements of user 1. We also report heartbeats reconstructed by the sparse coding
with respect to the dictionary learned from user 1 position 1 (dotted lines). Heartbeats
in the top row are properly reconstructed (reconstruction errors ra = 0.07, rb = 0.15
and rc = 0.10) since these are from the same user and position. In contrast, the heart-
beats in the bottom row show a poor reconstruction quality (rd = 0.18, re = 0.50 and
rf = 0.63). The reconstruction error can be thus used to detect anomalous heartbeats,
namely heartbeats that do not feature the morphology characterizing a specific user
and electrodes placement.

Pulse Sensor. This algorithm is tested over a large dataset of ECG tracings from
healthy users, where every heartbeat featuring morphology different from the
training ones is considered anomalous. Our experiments show that:

(1) Dictionaries yielding sparse representations can successfully describe the
overall variability in the morphology of heartbeats acquired by wearable
devices like the Pulse Sensor. These models do not seem likewise necessary
in more controlled situations, as for example in the MIT-BIH Arrhythmia
Database, where there is less variability in the normal heartbeats and anom-
alies are easier to detect (Sect. 5).

(2) It is possible to detect heartbeats that do not conform the user morphology
(i.e., anomalous heartbeats) directly on the device. Indeed, we analyze in
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detail the computational complexity of a very efficient implementation of
the considered anomaly-detection algorithm, and we perform some tests to
conclude that this can be reasonably executed in real-time on the Pulse
Sensor (Sect. 6).

(3) Dictionaries embedded on the Pulse Sensor can provide a user-adaptable and
position-adaptable monitoring solution. In fact, the dictionary learning can
be conveniently performed on an external host (e.g., the user’s smartphone),
requiring only few minutes of ECG tracings as training set. Our experiments
also show that this learning phase can tolerate small percentages of heart-
beats corrupted by user movements, thus that dictionary learning can be
autonomously performed at each device placement (Sect. 6).

The paper is structured as follows. Section 2 presents the Pulse Sensor and
discusses the main challenges of ECG monitoring on wearable devices. The
anomaly-detection problem is formulated in Sect. 3, while we present the con-
sidered algorithm in Sect. 4. Experiments in Sect. 5, performed on both ECG
tracings acquired from the Pulse Sensor and the MIT-BIH Arrhythmia Data-
base, show the that dictionaries yielding sparse representation can effectively
model heartbeats and detect those having a different morphology. In Sect. 6 we
study the overall feasibility of this monitoring solution on the Pulse Sensor, while
in Sect. 7 we draw conclusions along with future works.

2 The Pulse Sensor

2.1 Device Description

The Pulse Sensor [1] is a wearable device developed by MR&D in collaboration
with STMicroelectronics. It is a battery-powered device, designed for monitoring
ECG tracings correlated to other physiological information. In particular, this
device continuously acquires, stores and periodically transmits: ECG tracings,
measurements of heart rate and breathing rate.

The sensor suite of the Pulse Sensor is made up of one microelectromechanical
systems (MEMS) accelerometer, dedicated to estimate both the physical activity
and the body position, and four electrodes embedded in a patch (see Fig. 1). The
outer ones inject AC current with intensity 100 μA and frequency 50 kHz, while
the central ones – placed at a distance of 8 cm – read a single-lead ECG (thus a
single univariate signal) and a bioimpedance signal.

The main block of electronic components comprises a signal amplifier, three
light-emitting diodes (LEDs), a Bluetooth module and a battery. The Bluetooth
module connects the Pulse Sensor with a host device (e.g. a smartphone, tablet or
a computer) in order to periodically transmit all the acquired signals. The internal
battery is a rechargeable Lithium-ion one (3.7 VDC with 350 mAh capacity). The
LEDs provide information on the battery charge-status, on the current operational
mode of the device (engage, streaming andmonitoring) andwarnings on the incom-
ing signals. The adopted microcontroller is the STM32F103which incorporates the
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ARM R© CortexTM-M3 32-bit RISC core operating at a 72 MHz and embeds up to
32 Kbytes of flash memory and up to 10 Kbytes of SRAM.

A peculiarity of this device is modularity, which allows to tailor the sensor
suite around specific application requirements. In fact, it is very easy to add new
types of electrodes, scaling the software or replacing the microcontroller with a
more powerful one as far as this is compatible with the firmware and pinout.

2.2 Issues of ECG Monitoring on Wearable Devices

We here discuss the main issues that makes real-time monitoring of physiological
signals particularly challenging in wearable devices like the Pulse Sensor.

Variety of ECG morphology. First of all, during long-time monitoring, the heart-
beat morphology might be subject to variations due to changes in the heart rate.
This makes ECG tracings acquired by the Pulse Sensor more heterogeneous than
ECG tracings acquired in more controlled situations, as for example those of
MIT-BIH Arrhythmia Database, which refer to relatively short time intervals.
Moreover, the sensing capabilities of the Pulse Sensor are lower than those of
devices typically used in clinical trials, since a single ECG tracing is acquired
from two electrodes placed at a relatively close distance. The overall variability
in the morphology of heartbeats acquired by wearable devices is thus quite large,
and difficult to describe.

Computational Constraints. In wearable devices meant for real-time monitoring
of physiological signals, sensors continuously acquire data, producing a massive
amount of information to be analyzed and possibly stored or transmitted. Need-
less to say, if the device were periodically transmitting the whole ECG tracings
to an host, its battery would be spoiled soon. Data transmission between the
wearable and the host can be reduced by enabling the device to autonomously
process the sensed data, thus transmitting only the most relevant information,
like heartbeats having an anomalous morphology. As such, algorithms used to
analyze heartbeats should be compliant with the device computing-capabilities.

Changes in user and device position. ECG tracings do not only depend on the
specific user, but also on the specific placement of the ECG electrodes [11,20].
While this is not an issue when electrodes are placed by clinicians (that at the
meantime analyze the ECG tracings) this represents a serious problem in the
typical application scenario of wearable devices. In fact, the Pulse Sensor is
meant to be positioned by users themselves and, as such, electrodes could be
mispositioned, making the model used for automatic analysis unreliable since
the heartbeats morphology has changed (see Fig. 2.d). The same problem hap-
pens during long-term monitoring, when user movements might cause device
displacements. Therefore, the model learned on the device has to be easily re-
trainable every time the device is positioned, without requiring any supervision
by an expert clinician. Also, the device configuration should tolerate at least a
small fraction of heartbeats affected by user movements.
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3 Problem Formulation

We denote by s : N → R the ECG tracing which has been uniformly sampled in
time, and we assume that the heartbeats have been already segmented e.g., by
[22]. We define the i-th heartbeat si ∈ R

p as

si = {s(ti + u) : u ∈ U}, (1)

where U is a neighborhood of the origin containing p samples, and ti denotes
the sample in the ECG tracing corresponding to the i-th R peak of the ECG
tracing. We assume that the normal heartbeats of each wearable-device user are
generated by a stochastic process PN , which characterizes the heartbeats’ mor-
phology. Our goal is to learn a model representing the heartbeats morphology;
to quantitatively assess the effectiveness of the learned model, we consider the
anomaly-detection problem, which is itself of primary concern in ECG monitor-
ing. More precisely, anomalous heartbeats are generated by a process PA �= PN

and exhibits different morphology than heartbeats generated by PN . Anomalies
might be due, for instance, to arrhythmias (as those in the MIT-BIH Arrhyth-
mia Database), movements (as it typically happens in long-term monitoring,
e.g. see Fig. 2), acquisition errors (which might occur in consumer devices), or
simply because these have been acquired from a different user or by chang-
ing the electrodes placement (see Fig. 2). Anomalies are detected by analyzing
each heartbeat si and determining whether it conforms or not the morphology
characterizing PN . When this is not the case, we consider the beat si as anom-
alous. Since we analyze each beat independently we ignore anomalies that affect,
for instance, the heart-rate or that require inspecting multiple heartbeats. We
assume only that a training set TR of normal heartbeats is provided, as this
allows us to learn a model approximating PN . We do not require any example of
anomalous heartbeats, thus PA remains completely unknown. This is a reason-
able assumption since normal heartbeats are quite easy to collect and, at least in
healthy users, it is enough to record few minutes after having placed the device;
in contrast, anomalies are rare and difficult to gather thus the wide range of
signals covered by PA cannot be properly characterized.

4 The Considered Anomaly-Detection Algorithm

We consider a simple, yet effective, anomaly-detection algorithm that leverages a
dictionary yielding sparse representations of the normal heartbeats. In practice,
this follows the approach in [21], where a change-detection algorithm was used to
monitor rock faces and detect structural changes in fixed-length signals acquired
by triaxial MEMS accelerometer. While we use the same model for describing
normal data and we analyze the reconstruction error as in [21], we adopt an
outlier-detection technique rather than a sequential change-point method for
monitoring ECG. This choice better conforms the considered scenario, since the
ECG tracings are typically affected by sporadic anomalies rather than perma-
nent changes. In what follows we describe the two main steps of the considered
algorithm.
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4.1 Modeling Normal Heartbeats

Our modeling assumption is that the normal heartbeats si ∈ R
p of a user are

generated from the process PN and can be well approximated by the following
linear model

si ≈ Dxi , (2)

where D ∈ R
p×n is a matrix called dictionary and the coefficient vector xi ∈ R

n

is sparse [23]. Sparsity means that xi ∈ R
n has few of nonzero components, thus

in practice that the �0 “norm” of xi is bounded, i.e., ‖xi‖0 ≤ κ, where κ > 0 is
the maximum number of nonzero coefficients allowed in these representations.

Fig. 3. Atoms of the dictionary learned from the user yielding normal heartbeats in
Fig. 2. The parameters adopted for the training are n = 3, κ = 8 and m = 500.

The dictionary D is learned from a training set containing normal heartbeats
of a single user. We stack the m heartbeats provided for training in the columns
of a matrix S ∈ R

p×m. Dictionary learning consists in solving:

[D,X] = arg min
D̃∈Rp×n, X̃∈Rn×m

‖D̃X̃ − S‖2, such that ‖x̃i‖0 ≤ κ, i = 1, . . . , n (3)

where the sparsity constraint applies to each column of the matrix X ∈ R
n×m,

which stacks the coefficient vectors of all the heartbeats in S. In practice, (3)
can be solved by the KSVD algorithm [24], which alternates the calculation of
the dictionary D and the sparse representations of the training heartbeats X.

Thus, the dictionary D is user-specific: its columns, which are referred to
as dictionary atoms, depict the most relevant morphologies characterizing user
heartbeats, as shown in Fig. 3. Equation (2) implies that each heartbeat si is
approximated by a linear combination of at most κ dictionary atoms.

4.2 Detecting Anomalous Heartbeats

Learning D such that (2) holds for normal heartbeats corresponds to learning
a union of low-dimensional subspaces of R

p where normal heartbeats live. In
particular, since the κ atoms can be arbitrarily chosen among the n columns
of D, these subspaces can be at most κ-dimensional. The sparse representation
xi of an heartbeat si can be computed by projecting si on the closest of such
subspaces. This problem is referred to as sparse coding and it is formulated as

xi = arg min
x̃∈Rn

‖Dx̃ − si‖2 such that ‖x̃‖0 ≤ κ. (4)
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The problem (4) is NP-Hard, and it is typically addressed by greedy algorithms.
In particular we here adopt the Orthogonal Matching Pursuit [25], an iterative
algorithm which selects the best column of D at each iteration. The OMP can
be well implemented in the Pulse Sensor, as discussed in Sect. 6.

We detect anomalies by assessing whether each heartbeat si to be tested falls
in the union of low-dimensional subspaces that characterizes normal heartbeats
for a specific user. In particular, we solve (4) and obtain xi, the coefficients of
the closest projection over subspaces of D. Then, we measure the reconstruction
error as

ri = ‖Dxi − si‖2, (5)

where Dxi denotes the linear combination of dictionary atoms that best recon-
struct si (the reconstruction of the examples in Fig. 2 is reported with dashed
lines). The reconstruction error ri is used to discriminate if si is generated by PN
or PA. In fact, large values of ri indicate heartbeats that are far from subspaces
spanned by columns of D and that as such have a different morphology. There-
fore, anomalous heartbeats are detected by determining whether ri exceeds a
suitable threshold γ > 0, which has to be defined experimentally.

We remark that ri is a data-driven and user-specific feature, as it is entirely
defined from the dictionary D that is learned from the training set without any
a-priori information about the heartbeat morphology. Finally, other dictionary-
learning and sparse-coding algorithms have been proposed in the literature, and
in particular, some of them replace the constrained problems (3) and (4) with
their convex relaxation where sparsity is measured by the �1 norm of the coef-
ficient vectors. These lead to basis pursuit denoising (BPDN) formulation [26].
In the considered settings (see Sect. 5) these are however more computationally
demanding than the OMP, which can be reliably embedded on the Pulse Sen-
sor. It is also worth commenting that, when changing the problems (3) and (4),
monitoring the reconstruction error might not be the best option [27].

5 Experiments

In this section we consider two different datasets of ECG tracings: the former was
acquired using the Pulse Sensor, the latter is the MIT-BIH Arrhythmia Database
[19] that is commonly used in the literature. We consider the algorithm described
in Sect. 4 in a few anomaly-detection scenarios, as a way to quantitatively assess
the effectiveness of sparse representations in modeling heartbeats.

5.1 Datasets Description

The Pulse dataset contains 20 ECG tracings recorded from 10 healthy users1

(two tracings per user). The two acquisitions from each user have been performed
in different times, repositioning the Pulse Sensor such that the morphology of
heartbeats changes. Each ECG tracing lasts from 40 min up to 2 h and is acquired

1 The dataset can be made available upon request.
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during normal-life activities, thus the heart rate can significantly vary along
the same tracing. Due to motion artifacts or temporary device detachments,
these tracings sometimes contain low-quality segments (depicting heartbeats as
in Fig. 2.e), which have been discarded by an experienced cardiologist with the
aid of a commercial software. While these heartbeats are not anomalous from a
clinical point-of-view, we exclude them as they do not show the same morphology
of others. Possibly, these heartbeats could be removed directly on the Pulse
Sensor by monitoring the MEMS recordings. Each ECG tracing is preprocessed
as in [3] in order to remove the baseline wander and unwanted power-line and
to attenuate high-frequency noise.

The MIT-BIH Arrhythmia Database [19] contains 48 ECG tracings lasting
around 30 min each, that have been extracted from long-term Holter recordings.
These segments have been selected by expert cardiologists which discarded the
low-quality parts of these traces. Each ECG tracing contains a few arrhythmias,
and every heartbeat is provided with annotations by the cardiologists. Both
the heart rate and the morphology of normal heartbeats in this dataset are
characterized by less variability than in the Pulse dataset.

In all our experiments, we extract heartbeats using a temporal window U =
[−0.3, 0.3] centered in each R-peak, which yield heartbeats having p = 155 and
p = 216 samples in the Pulse Sensor and MIT-BIH dataset, respectively2.

5.2 Figures of Merit

We consider figures of merit traditionally used to assess the anomaly-detection
performance: (i) False Positive Rate (FPR), namely the percentage of normal
heartbeats identified as anomalous and (ii) True Positive Rate (TPR), namely
the percentage of heartbeats correctly identified as anomalous. Since both FPR
and TPR depend on the threshold γ > 0 (see Sect. 4.2), we consider the Receiving
Operating Characteristic (ROC) curve, which are obtained by varying γ and
plotting the corresponding TPR against the FPR. An example of ROC curve is
provided in Fig. 5: the closer the curve to the point (0,1), the better. To get a
quantitative assessment of the anomaly-detection performance, we measure the
area under the curve (AUC), which for the ideal detector (namely the one having
no false positives and no false negatives) is 1.

5.3 Experiments on the Pulse Dataset

Even though ECG recordings from the Pulse dataset were acquired from healthy
users and contain no clinical anomalies, we design two anomaly-detection exper-
iments to show that the considered algorithm can effectively detect heartbeats
having a different morphology. In particular, we consider as normal (i.e., gen-
erated from PN ) heartbeats acquired form a specific user with a specific posi-
tioning of the Pulse Sensor. Anomalous heartbeats (i.e., generated from PA) are

2 Pulse Sensor has a sampling frequency of 256Hz, while the sampling frequency in
the MIT-BIH Arrhythmia Database is 360 Hz.
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Fig. 4. Performance of several configurations of the considered algorithm in the inter-
user anomaly detection. The three figures report the first quartile, the median and the
third quartile of the AUC values computed on the Pulse dataset. The best configuration
corresponds to n = 8, and κ = 3, as the performance degrades when considering simpler
models (small n, κ) and more flexible ones (large n, κ). The intensity ranges in the
three images are different for visualization sake.

acquired from a different user or from a different device position. We use the
KSVD algorithm [24] to learn a dictionary D from each of these 20 ECG trac-
ing, using 500 randomly selected heartbeats3. Thus, for each dictionary D we
consider normal those heartbeats belonging to the same tracing used to learn D
(namely the same pair user-position), and anomalous those heartbeats from any
different tracing.

We test the following number of atoms n ∈ {1, 2, 4, 8, 16, 32, 64} in D and
levels of sparsity κ ∈ {1, 2, 3, . . . , �n1/2	}. These settings are quite different from
those traditionally used in image and signal processing, where n > p, yielding
redundant dictionaries. However, we experienced heartbeats can be properly
described by fewer atoms.

Figure 4 shows the performance on inter-user anomalies, where the anom-
alous heartbeats come from different users. More precisely, we report the three
quartiles of the AUC values computed over the 20 · 18 = 360 combinations of
ECG tracings from different users. Overall, the AUC values are quite large and
this indicates that the considered algorithm can effectively discriminate between
users. The best performance are achieved when n = 8 and κ = 3. Observe that
the single-atom configuration (n = 1 and κ = 1) which reconstructs heartbeat by
scaling a single atom to match at best the heartbeats, achieves significantly lower
performance, as confirmed by a Wilcoxon signed-rank test (p-value ≈ 10−16).

Figure 5(a) shows the ROC curves on intra-user anomalies, where we con-
sider as anomalous heartbeats acquired from the same user but with the device
in a different position. These curves are averaged over all the possible 20 com-
binations of the ECG tracings, and we report only the best and single-atom

3 We have observed that larger training sets do not lead to an improvement in the
anomaly-detection performance.
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Fig. 5. ROC curves computed on Pulse dataset (a), (b), and on MIT-BIH Arrhythmia
Database (c). In (a) two different configurations of parameters n and κ are considered
in the intra-user anomaly detection. The best configuration clearly outperforms the
single-atom one, confirming that a too simple model can not properly represent the
structure of normal heartbeats. In (b) we consider the inter-user anomaly detection
problem when the training set is corrupted by different percentages of outliers. This
algorithm can tolerate small percentages of outliers, as its performance clearly degrades
when the outliers reach 8% of training data. In (c) we compare the best and single-
atom configuration in the arrhythmia detection problem. The Wilcoxon signed-rank
test reveals no statistical evidence between the performance of the two configurations
(p-value = 0.13), and both achieve very high performance.

configurations. Still, changes in the device positioning can be better detected
when using multiple atoms than a single one. The AUC values are typically
lower than in the inter-user case (the median AUC here 0.81 and 0.77 in the best
and single-atom settings, respectively), and this indicates that in this dataset,
intra-user differences are more subtle than inter-user differences.

These experiments confirm that it is necessary to use a quite flexible model
to properly characterize the variety of normal heartbeats acquired by the Pulse
Sensor and that dictionaries yielding sparse representations can successfully learn
the heartbeat morphology of each user.

Finally, we remark that in ECG tracings acquired from wearable devices,
user’s movements can introduce low quality heartbeats, i.e., outliers, that might
impair dictionary learning. Thus, we repeat the inter-user anomaly-detection
experiment to assess whether the considered algorithm can tolerate small per-
centage of outliers in the training data. In particular, we consider the best config-
uration and introduce in the training sets of 500 heartbeats, 1%, 2%, 4%, 8% of
outliers, which are selected among those heartbeats that were initially discarded.
This experiment is repeated 15 times, and the average ROC curves are reported
in Fig. 5(b). It can be seen that the performance of the anomaly detection are
stable when including only 1% and 2% of outliers, but dramatically decreases
when outliers are 8%. This suggests that it is necessary to reduce the number of
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outliers from the training set, e.g., by some prescreening method that analyzes
MEMS recordings that are embedded on the Pulse Sensor.

5.4 Experiments on MIT-BIH Arrhythmia Database

We design two experiments also on the MIT-BIH Arrhythmia Database. In the
first one, we show that our method can successfully detect inter-users changes
also in this dataset, and that the performance are higher than in the Pulse
dataset. As in the previous experiment we learn a dictionary D from 500 normal
heartbeats of each tracing, considering the same range of parameters as in the
Pulse dataset. AUC values are reported in Fig. 6 and indicate that the best
settings are the same (κ = 3 and n = 8). The Wilcoxon signed-rank test confirms
that these parameters yield significantly superior performance than the single-
atom settings (p-value ≈ 10−16). However, in all these settings, the median AUC
is very close to 1, indicating very good detection performance independently
of the parameters adopted. This suggests that the ECG tracings in the Pulse
dataset are more difficult to model than in the MIT-BIH Arrhythmia Database,
and we speculate that this is due to the fact that the heartbeats from MIT-BIH
Arrhythmia Database present a low variability than in the Pulse dataset.

Finally, we assess the performance of the considered algorithm in an
arrhythmia-detection task, using the annotations provided in the MIT-BIH
Arrhythmia Database. In particular, we consider as anomalous the arrhythmias
from the same patient used for dictionary learning. The ROC curves averaged
over the entire dataset, for the best and single-atom configuration are very sim-
ilar, and are reported in Fig. 5(c). The Wilcoxon signed-rank test on the cor-
responding AUC values confirms that there is not a clear statistical evidence
to claim that one configuration is better than the other (p-value = 0.13). This

Fig. 6. Performance of several configurations of the considered algorithm for inter-user
anomaly detection. The three figures reports the first quartile, the median and the
third quartile of the AUC values computed on the MIT-BIH Arrhythmia Database.
The best configuration corresponds to n = 8, κ = 3, as for the experiment in Fig. 4.
The intensity ranges in the three images are different for visualization sake.
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results can be explained by the fact that the arrhythmias show a very different
morphology with respect to normal heartbeats, which allows these two methods
to perform equally good.

6 Feasibility on the Pulse Sensor

We now investigate the overall feasibility of the considered anomaly-detection
solution on the Pulse Sensor. In particular, we study both the requirements of
dictionary learning, which is conveniently performed at each device positioning
on an external host, and the computational complexity of the sparse coding,
which has to executed in real time on the Pulse Sensor.

6.1 Dictoinary Learning and Device Configuration

Figures 4 and 5 confirm the need of learning the dictionary D every time the
device is positioned, and at the same time indicate that 500 heartbeats are
enough for this purpose. At an average heart rate, 500 heartbeats correspond
to 7 min of ECG tracings, which can be conveniently transmitted via Bluetooth
to an external host, e.g., the user smartphone, where the KSVD algorithm [24]
can be executed4 to learn the dictionary D, which is then sent back to the Pulse
Sensor.

In the Pulse dataset these 7 min for training were acquired from users that
were typically working in their office, thus performing normal actions and move-
ments, while not in a rest state. In particular, experiments with outliers in the
training set indicate that the dictionary learning in our specific settings (i.e.,
n = 8, κ = 3), can well tolerate a small percentage of heartbeats affected by user
movements. Whenever higher robustness is requested, it is possible to leverage
robust dictionary-learning algorithms that adopt an �1 norm for the data-fidelity
term in (3), as in [28]. Alternatively, some form of pre-screening of the training
set could be performed analyzing the MEMS recordings.

Let us finally remark that even if the device would provide sufficient com-
puting power and memory for running the KSVD algorithm, it is nevertheless
convenient to keep track of the training sets and learned dictionaries on an exter-
nal host. It is in fact desirable to assess the quality of the recent acquisitions,
for instance, by testing them with dictionaries previously learned.

6.2 Anomaly Detection on the Pulse Sensor

The ECG preprocessing we performed is the same as in [3], which consists in two
median and a low-pass, convolutional, filter. Heartbeats are then segmented by
locating the R-peaks using the Pan-Tompkins algorithm [22] and extracting a suit-
able temporal window centered in the R-peaks as in Sect. 5.1. All these operations
are definitively compliant with computational capabilities of the Pulse Sensor.
4 In the considered settings, the KSVD algorithm takes only few seconds on an ordi-

nary laptop.
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Anomalous heartbeats are then detected by solving the sparse coding problem
(4), which represents the most time-demanding operation to be executed on
the device. For this task, we adopt the OMP algorithm [25]: other anomaly-
detection solutions based on sparse representations, like those in [16,27], are
way more computationally demanding and cannot be implemented on the Pulse
Sensor. The OMP is a greedy algorithm that solves (4) iteratively. In what follows
we briefly illustrate the main steps of the OMP in its efficient implementation
described in [29] (the same we used in our experiments), and we describe its
computational complexity in terms of floating point operations (flop). At the
very beginning z = DT s is computed at the cost of ≤ 2pn flop and the residual
vector is defined as r(0) = s. Then, the OMP iterates at most κ times the
following steps, where l is used as an iteration index:

Correlation compute the inner product of the residual with each atom, i.e.,
dT
k r

(l−1), k = 1, . . . , n with an overall cost of 2pn flop.
Maximum select the atoms that is most correlated with r(l−1), thus maximiz-

ing |dT
k r

(l−1)|, k = 1, . . . , n which costs ≤ 2n flop.
Projection compute the coefficients x(l) by orthogonal projection of s on the

subspace spanned by the l atoms selected so far. This involves solving the
linear system z = DT

l Dlx, where Dl denotes the matrix containing all the
selected atoms. Exploiting Cholesky factorization of DT

l Dl, x(l) can be com-
puted at a cost ≤ 2pl + 3l2 flop.

Update update the residual r(l) = s − Dx(l) at a cost of ≤ 2lp + p flop.

Considering the best parameters identified in our experiments (i.e., p =
155, n = 8, and κ = 3), a full execution of the OMP algorithm requires
approximately 16 K flop, which seems to be compliant with real-time opera-
tions on the Pulse Sensor. However, to make sure that the overall Pulse Sensor
computing capabilities can guarantee real-time operation, we have performed
some tests (with the same parameter values) directly on the device. In partic-
ular, thanks to the sensor suite modularity, we measured the execution times
on the STM32F401 processor embedding a CortexTM-M4F CPU with floating
point unit (FPU). Tests were conducted using two versions of the CMSIS DSP
library5: disabling/enabling the FPU optimization. The execution times when
disabling the FPU optimization are a good estimate of the execution times on
the STM32F103 processor that is actually used on the Pulse Sensor (which
embeds a CortexTM-M3 CPU without FPU). In this case, the OMP algorithm
took 58.13 ms allowing 17 executions per second at the maximum frequency of
72MHz, confirming the concrete possibility of executing the algorithm on this
device within the period of an heartbeat. When enabling the optimization for
FPU the OMP algorithm took only 6.58 ms allowing 152 executions per sec-
ond. These results are particularly encouraging since, realistically, a STM32F401
processor with FPU is going to be adopted in future embodiments of the Pulse
Sensor.

5 CMSIS DSP Software Library, https://www.keil.com/pack/doc/CMSIS/DSP/html/
index.html.

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html


ECG Monitoring in Wearable Devices by Sparse Models 159

7 Conclusions

In this paper we investigate the problem of learning models to represent heart-
beat morphology, in particular for monitoring ECG tracings acquired from wear-
able devices. Our study, conducted on ECG tracings form the Pulse Sensor,
shows that dictionaries yielding sparse representations can effectively model the
heterogeneous morphology of these heartbeats. In particular, we show that dic-
tionaries can be successfully used to detect heartbeats having a morphology that
is different from the training ones, and that this model can be effectively used
in online monitoring schemes, implemented directly on the Pulse Sensor. Dic-
tionary learning instead can be conveniently performed on an external host as
it requires a limited amount of data to be transferred. Ongoing work concerns
techniques to make the device configuration robust to user movements during the
acquisition of the training set, which can be reasonably performed by pre-screen
outliers in the MEMS recordings.
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Abstract. Local businesses and retail stores are a crucial part of local
economy. Local governments design policies for facilitating the growth
of these businesses that can consequently have positive externalities on
the local community. However, many times these policies have completely
opposite from the expected results (e.g., free curb parking instead of help-
ing businesses has been illustrated to actually hurt them due to the small
turnover per spot). Hence, it is important to evaluate the outcome of such
policies in order to provide educated decisions for the future. In the era of
social and ubiquitous computing, mobile social media, such as Foursquare,
form a platform that can help towards this goal. Data from these platforms
capture semantic information of human mobility from which we can distill
the potential economic activities taking place. In this paper we focus on
street fairs (e.g., arts festivals) and evaluate their ability to boost eco-
nomic activities in their vicinity. In particular, we collected data from
Foursquare for the three month period between June 2015 and August
2015 from the city of Pittsburgh. During this period several street fairs
took place. Using these events as our case study we analyzed the data
utilizing propensity score matching and a quasi-experimental technique
inspired by the difference-in-differences method. Our results indicate that
street fairs provide positive externalities to nearby businesses. We fur-
ther analyzed the spatial reach of this impact and we find that it can
extend up to 0.6 miles from the epicenter of the event.

Keywords: Quasi-experimental design · Difference-in-Differences ·
Social media · Urban informatics · Local businesses

1 Introduction

A healthy local business sector is important for the prosperity of the surrounding
community. City governments design policies and community organizations take
actions that aim in boosting the growth of such businesses. This growth can have
rippling positive externalities, such as, reducing local unemployment rates, keep-
ing the local economy alive1 and facilitating regional resilience to name just a few.
1 As per the New Economics Foundation “local purchases are twice as efficient in terms

of keeping the local economy alive”.
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These are even more important during periods of economic crises and recession,
similar to the recent one in 2008 that US is just getting itself out of.

However, these efforts might not have the results expected. For example, many
local governments during the “Small Business Saturday” (last Saturday of Novem-
ber) offer free curb parking. The rationale behind this policy is to give incentives
to city dwellers (i.e., reduced trip cost to the business) to shop locally. However,
the outcome is in many cases radically different. The underpricing of curb parking
creates latent incentives for drivers to keep their cars parked for longer than normal
periods of times. This leads to low turnover per parking spot and hence, ultimately
to fewer number of customers in the local stores [22]. Therefore it is crucial to evalu-
ate the efficiency of similar interventions. Knowing what boosts the local economy
and what not, can allow the involved parties to make educated decisions for their
future actions and ultimately lead to urban intelligence through data-driven deci-
sions and policy making. In this study we are interested in a specific question and
in particular, we are studying a research hypothesis related with the impact of
street fairs on neighboring local businesses.

The golden standard for evaluating public policies is randomized experiments.
However, in many cases designing and running the experiment is impossible from
a practical point of view. Hence, quasi-experimental techniques [21] have been
developed to analyze observational data in such a way that resembles a field
experiment. To complicate things more with respect to our specific research
hypothesis, evaluating the economic impact of street fairs requires access to
the appropriate revenue data. While a city government office can obtain access
to information such as sales tax revenue, local business advocates and citizens
organizations will certainly face obstacles in obtaining such kind of data. This
type of information is not part of the Open Data released by local governments
and are accessible (if at all) in a very limited form through pay-per-request APIs
(e.g., http://zip-tax.com/pricing). This lack of transparency can be compensated
to a certain extend by utilizing information from social networks and social
media. While similar types of data can potentially suffer from well-documented
biases (e.g., demographic biases), they form an open platform that can be easily
accessed and analyzed by citizens themselves to facilitate further investigation
of issues, leading to a grassroots approach to urban governance.

In our case, given that we do not have actual revenue data for the businesses
in the area of Pittsburgh as aforementioned, we collect Foursquare check-ins from
the city of Pittsburgh over a three-month period (June-August 2015) and evalu-
ate the effect of summer street fairs on local economy. The check-in information
can serve as a proxy - even though not perfect - for the revenue ρ generated
[24]. We would like to emphasize here that, our study aims in evaluating the
impact of street fairs on the brick-and-mortar stores that are adjacent to the
event location and not that on the participating entities – which is expected to
be positive in order for them to participate.

In order to analyze our data we rely on two quasi-experimental techniques.
First, an increase in the check-ins for the venues near the street fair does not
necessarily mean that this was due to the event. One or more control areas

http://zip-tax.com/pricing
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need to be used for comparison. However, our data are not generated through
a randomized experiment but they are purely observational. For our analysis,
this essentially means that we cannot assume that the area hosting a street
fair event is chosen at random. Consequently, we cannot assume that the areas
that do not host street fairs exhibit the same characteristics with respect to
unobserved confounding features and hence, we cannot compare the revenue in
the treated area with any untreated area. For overcoming this problem, we rely
on quasi-experimental design techniques that identify appropriate control areas.
In particular, we rely on propensity score matching [20], adopted in our setting
by utilizing expert domain knowledge, in order to pick a set of matched areas Am

with the treated area α that will serve as our control subjects. Second, once the
matched areas for comparison are chosen, we adopt the difference-in-differences
method [3] in our setting in order to quantify the impact of the street fairs on
local businesses. In a nutshell, the difference-in-differences is a regression model
that examines the average change of the treatment group once the treatment has
been applied and compares it with the control group. The implicit assumption
is that this difference would be zero if the treatment had not been applied. We
elaborate further on these two methods in the following section.

The main contributions of our work can be summarized as follows:

– We provide quantifiable evidence that support the positive impact of street
fairs on local businesses.

– We show how social media data - despite their potential biases - can be useful
to public policy makers and local governments since they are transparent,
accessible and are able to provide good evidence when analyzed properly.

Scope of our work: While in the current study we are focusing on the effect
of street fairs on local businesses the method can be applied in a variety of
scenarios that include an external event/stimulant. For example, one can use our
framework to quantify the effect of short-term road closures and/or constructions
on the local economy. This is especially important during the bidding phase of
a construction project since these effects should be included in the calculation
of liquidated damages [9]. However, they are not currently included since there
is not a framework to estimate this effect.

Roadmap: In the following section we present our method. We then describe
our experimental setup and results, while we further discuss the limitations of
our study. Finally, we discuss relevant to our work studies and conclude our
study.

2 Analytical Methods

Let us denote the total volume of revenue within area α at day t with ρt,α.
Furthermore, Tα is the set of days that a street fair took place within area α.
The trending of ρt,α by itself cannot reveal anything with respect to the contri-
bution of the street fair at the revenue generated in area α. Hence, in order to
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account for various confounding factors and other externalities we will need to
get a “baseline” for comparison. When experimental design and implementation
is possible this happens with random assignment of the treatment (in our case
the street fair) to the experimental subjects. However, in our case this is not
possible and hence, we rely on matching techniques and more specifically we use
propensity score matching. Matching techniques provide us with the ability to
analyze observational data in a way that mimics some of the particular char-
acteristics of a randomized trial. In particular, we choose a matched, with area
α, neighborhood, say, αm, to analyze and compare the corresponding revenues
generated.

Our analysis is inspired by the difference-in-differences method [3]. In brief,
we compare the daily revenue differences between the area with the street fair
and the corresponding matched area(s) both during the period of the street
fairs as well as during the period without any street fair. The comparison with
the matched area(s) - that are exposed to the same externalities - accounts for
various confounding factors that can affect revenues, and hence, any observed
difference can be attributed to the treatment, i.e., the street fairs in our case.
In what follows, we describe in detail the building blocks of our analysis, i.e.,
propensity score matching and difference-in-differences.

2.1 Propensity Score Matching

Propensity score matching can be used to reduce (or even eliminate) the effect of
confounding variables on the analysis of observational data. To reiterate propen-
sity score matching allows an analysis in a way that mimics a randomized trial.
In our own context, the treatment of interest is whether or not there is a
street fair in neighborhood i. The propensity score of each (untreated) instance
(i.e., every untreated neighborhood) represents the probability of this instance
to be treated, conditional on a set of confounding variables. In a real randomized
experiment, the instances are randomly assigned to the treatment and control
groups. This ensures (given sufficiently large number of instances) that on aver-
age the two groups will only differ with respect to the reception of the treatment.
In the case of observational data, the treatment is not randomly assigned but
usually the “treated” instances are chosen due to some specific characteristics
(i.e., the confounding factors). Therefore, in order to identify an appropriate
control group we need to calculate the probability of the untreated instances
obtaining the treatment.

In order to calculate the propensity scores, i.e., the conditional probabilities
of the instances receiving the treatment, we employ a logistic regression model
similar to [1]. In particular, given a feature vector Z that is formed by a set
of neighborhood characteristics (i.e., the confounding factors) we estimate the
following conditional probability:

Pr(bi = 1|Zi) =
exp(wT

i · Zi)
1 + exp(wT

i · Zi)
(1)
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where bi is a binary indicator variable, which takes the value 1 if area i is treated
and 0 otherwise. In our case, Zi includes three types of features for every type
of establishment T that exists in neighborhood i that captures (a) the fraction
of type T venues in i, as well as, (b) the fraction of the revenue (check-ins in
our case) within α that was generated by venues of type T . Finally, for every
business venue type, we use (c) the “stickiness” of the users in this type as
an additional feature. The “stickiness” is defined as the ratio between the total
number of check-ins in the corresponding category over the number of unique
users that generated these check-ins.

After training the aforementioned logistic regression model, we estimate the
probability from Eq. (1) for all neighborhood instances i ∈ N (both treated
and untreated), where N is the set of areas/neighborhoods. Then we match the
treated neighborhood α, with:

αm = min
i∈N\{α}

|Pr(bi = 1|Zi) − Pr(bα = 1|Zα)| (2)

Essentially, this means that area αm is the one that has the closest proba-
bility of hosting a street fair to that of area α, under the assumption that the
only features that affect the decision are the ones captured by the observable
confounding variable vector Z.

In many scenarios (such as in our case study) we might only have one treated
area α, i.e., only one area has hosted a street fair. In this case, evaluating Eq. (2)
is trivial, since, the minimum is observed for the area i for which the vector dis-
tance d(Zi,Zα) is minimized. Simply put, the matched area αm is the one whose
feature vector Zαm

is closer to that of the treated area Zα. We would like to
emphasize here that, there might be other, unobserved, factors that lead to the
choice of an area for a street fair. This is a limitation of the quasi-experimental
techniques in general and propensity score matching can only account for observ-
able confounders Z.

One way we propose to use in order to alleviate some of the potential prob-
lems associated with the aforementioned limitation is to initialize the matching
process with expert knowledge. In particular, the matched area αm can be cho-
sen using expert knowledge (e.g., urban planners in our case). The benefit of
this approach is that the domain expert is - implicitly or explicitly - considering
various (potentially unobserved) confounders simultaneously. We can then use
the expert matching as a “seed” for matching more than one neighborhoods to
α using the propensity scores.

In particular, with πm,e being the propensity score of the (domain expert)
matched area αm,e, we can pick the following set of matched areas:

Am = {αmj
: |πmj

− πα| < |πm,e − πα| + ε} (3)

Essentially, as per Eq. (3), the set Am includes neighborhoods that have
propensity scores that are closer to the score of the treated area (within a toler-
ance factor ε) as compared to the expert matched area. Once set Am is obtained
we can analyze the corresponding revenues generated using the difference-in-
differences method described in what follows.
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2.2 Difference-in-Differences

The difference in differences (DD) method [3] is a quasi-experimental technique
that aims in identifying the effect of an intervention using observational data.
DD requires observations obtained in different points in time, e.g., t1 and t2
(t1 < t2), for both the control (e.g., ym,1 and ym,2) and the treatment (e.g.,
yτ,1 and yτ,2) groups. The treatment group is exposed to the intervention only
during t2. The difference between yτ,2 and ym,2 does not only include the effect
of the intervention but it also includes other “intrinsic” differences between the
two groups. The latter can be captured by their difference during time t1, i.e.,
yτ,1−ym,1, where the treatment group has not been exposed to the intervention.
The DD estimate is then:

δτ,m = (yτ,2 − ym,2) − (yτ,1 − ym,1) (4)

If δτ,m > 0 (δτ,m < 0), then the treatment has a positive (negative) impact on
y, while if δτ,m = 0 there is not any impact from the intervention. Eq. (4) captures
the impact of the intervention assuming that both the treatment and control
follow a parallel trend. In particular, in order for the conclusions drawn from
a difference-in-differences analysis to be reliable, the parallel trend assumption
needs to hold. This assumption essentially states that the average change in the
control group represents the counterfactual change expected in the treatment
group if there was no treatment. Simply put, if there was not any treatment
applied, we would have: (yτ,2 − ym,2) = (yτ,1 − ym,1), that is, the two groups
would have a stable difference. This assumption is crucial for the conclusions
from a difference-in-differences analysis to hold and is many times overlooked
when the method is applied.

The exactly same estimate for the DD can be formally derived through a
linear regression that models the dependent variable y. In particular, we have
the following model:

yilt = γ0 + γ1 · αl + γ2 · βt + δ · Dlt + εilt (5)

ttt2t2

intervention

t1t1

yy

yτ,2yτ,2

yτ,1yτ,1

yc,2yc,2

yc,1yc,1

Control

Treatment

Counterfactual
δ2δ2

δ1δ1

DD = δ2 − δ1DD = δ2 − δ1

Fig. 1. The difference in differences
method.

Fig. 2. Treated and domain expert
matched neighborhood. (Color figure
online)
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where yilt is the dependent variable for instance i (at time t and location l), αl

and βt are binary variables that capture the fixed effects of location and time
respectively, Dlt is a dummy variable that represents the treatment status (i.e.,
Dlt = αl ·βt) and εilt is the associated error term. The coefficient δ captures the
effect of the intervention on the dependent variable y. It is then straightforward
to show that the DD estimate δ̂ is exactly Eq. (4). In particular, if ylt is the
sample mean of yilt and εlt is the sample mean of εilt, and using Eq. (5) we have:

(y11 − y01) − (y10 − y00) =δ(D11 − D01) − δ(D10 − D00) + ε11 − ε01 + ε00 − ε10

Taking expectations and considering the i.i.d. assumptions for the errors for
the ordinary least squares we further get:

E[(y11 − y01) − (y10 − y00)] = δ(D11 − D01) − δ(D10 − D00) (6)

Given that the dummy variable D is equal to 1 only when l = 1 and t = 1
(i.e., for the treatment group after the intervention), we finally get for the DD
estimator:

δ̂ = (y11 − y01) − (y10 − y00) (7)

which is essentially the same as Eq. (4). Therefore, one can estimate the DD using
either of the Eq. (4) or (5). Figure 1 further visualizes the estimation process. The
control and treatment subjects in our setting are urban neighborhoods. Treated
subjects includes neighborhoods that host street fairs.

2.3 Hypothesis Development

Having introduced our basic methodology we are ready to formally state the
research hypotheses that are the focus of our study. In particular, we will examine
the following two hypotheses.

Hypothesis 1 [Street fairs impact on local businesses]: Street fair
events lead to an increase in customer visitations for nearby business venues.

Hypothesis 2 [Spatial impact of street fairs]: The impact of street
fairs on the customer visitations is geographically contained in a very small area.

In order to support or reject Hypotheses 1 and 2 we will rely on data we
collected from Foursquare described in the next section, utilizing the difference-
in-differences method described in Sect. 2.2. We will further examine contextual
dependencies, i.e., whether specific types of business venues benefit more than
others.

3 Experimental Setup and Results

In this section we will present the dataset we collected, as well as, the setup for
our analysis. We will then present our results and finally, we will discuss the
implications and the limitations of our analysis.
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3.1 Dataset

For the purposes of our study we collected time-series data using Foursquare’s
venue public API. We queried daily all Foursquare venues in Pittsburgh for the
three-month period between 06/01/2015 - 08/30/2015. This period includes
six street fairs/events2 that took place at a specific neighborhood in the city of
Pittsburgh (see the street marked with red in Fig. 2).

Our time-series data include information with respect to the number of check-
ins cv[t] that have been generated in venue v during day t. To reiterate, given
the fact that we do not have actual revenue data for the businesses in Pittsburgh
we rely on the check-in information as a proxy for the corresponding revenue of
venue v, ρv[t]. This information will allow us to build the aggregate volume daily
check-ins cα within area α, i.e., cα[t] =

∑
v∈α cv[t]. Every area is defined as a

circle of radius r centered at the centroid of the neighborhood under consider-
ation. In our experiments, we examine various values for r in order to explore
the spatial distribution of the impact.

We have also collected meta-data information. In particular, Foursquare asso-
ciates each venue v with a type/category T (e.g., restaurant, school etc.). This
classification is hierarchical and at the top level of the hierarchy there were 9
categories at the time of data collection. In order to obtain the feature vector Z,
we use the top-level categories and hence Z includes 21 features (2 for each cat-
egory and 3 for the stickiness of each type of business venue). Our final dataset
includes 27,263 venues in the city of Pittsburgh, where 21.53 % (5,869) are busi-
ness venues (i.e., Nightlife Spots, Food and Shops & Services). There are in total
32,501 check-ins in our dataset, among which 44.46 % were generated in business
venues.

3.2 Experimental Setup

In our study we consider a single area α that has hosted street fairs during our
data collection period. This area is a small business center, with a number of
restaurants, cafes, retail stores (e.g., clothing stores, galleries etc.) and services
(e.g., bank branches). The treated area is also accessible through public trans-
portation, Pittsburgh’s shared bike system as well as through private vehicle
with parking facilities nearby. We (initially) perform the matching process based
on the expertise3 of local urban planners. Based on their recommendations we
choose another small business area, with a similar urban form and accessibility
patterns not very far from the treated area (approximately 2 miles away - green
area in Fig. 2). We have further used Eq. (3) to build a set of matched areas.
More specifically, we first pick 2,000 random points in the city of Pittsburgh and
create a neighborhood of radius 0.3 miles around this point. We further eliminate
areas with less than 60 venues. We consequently obtain the matched area set Am

using Eq. (3) with ε = 0 and we filter out overlapping matched neighborhoods,

2 http://thinkshadyside.com/events/.
3 We have consulted with urban planners familiar with the city of Pittsburgh.

http://thinkshadyside.com/events/
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in order to remove possible dependencies in our datasets originating from the
overlapping regions. In particular, when k matched areas overlap we only keep
the final matched set the area with a propensity score matching closest to the
treated area. We would like to emphasize here that we have examined different
values for the radius of the control neighborhood area selection and the tolerance
factor ε and the results obtained were very similar.

3.3 Results

The metric of interest for our analysis is the mean number of daily check-ins in
area α, denoted with yα. For every area α we compute the average number of
daily check-ins during the treatment period, yα,Tα

, as well as, during the days
with no street fair, yα,T c

α
, where T c

α , represents the complement of Tα, i.e., the set
of days in our dataset where no street fair took place in α. With this setting the
difference-in-differences coefficient is equal to 4.95 (p-value < 0.001). Simply
put, there are 5 more check-ins every day with a fair in area α on average. This
corresponds to an almost 100 % increase in the check-ins in the area, since the
average daily check-ins for the days with no event is 5.3.

As mentioned in Sect. 2.2 one of the crucial assumptions for the difference-in-
differences to provide robust results is the parallel trend assumption. Typically
the way that has been followed in the literature for verifying this assumption
is to calculate the difference-in-differences coefficient for periods that the treat-
ment has not been applied [16,17]. Hence, for the days that in reality no street
fair occurred we randomly assign pseudo-treatments in order to calculate a null
coefficient δ. Figure 3 depicts the distribution of the corresponding coefficients
obtained from 100 randomizations. As we can see the mass of the distribution
is concentrated around δ = 0, while the 95 % confidence interval is [−0.42, 0.37].
Hence, we cannot reject the hypothesis that the null coefficient δ is actually
0, hence, verifying the parallel trend assumption needed for the difference-in-
differences method.
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Fig. 3. The null difference-in-differences coefficient is practically equal to 0, hence,
allowing us to apply the model with high confidence.
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We also want to examine the spatial extent of this impact, i.e., how the impact
decays with space. For this, we compute the difference-in-differences coefficient
for zones of different radius around the treated area making sure that there is
not any overlap with control areas. In particular, we examine zones of [0, 0.1],
[0.1, 0.3], [0.3, 0.6] miles. Our results are depicted in Fig. 4 where as we can see
there is a clear decreasing trend of the impact. In fact, the coefficient for the
range [0.1, 0.3] miles is much smaller, and equal to 0.89 (p-value < 0.1), while
going further away from the area of the event (i.e., [0.3, 0.6] miles) the effect is
practically eliminated (δ[0.3,0.6] = 0.33, p-value = 0.61). These results indicate
- as one might have expected - that the impact of a street fair event is highly
localized within a very small area around the epicenter of the event.

Park

4.0

3.0

2.0

1.0

δ

r0.1 0.3 0.6
(miles)

Fig. 4. The impact of street fairs on local businesses rapidly decays with the spatial
distance from the event.

We further examine the impact of each event individually, i.e., we consider
a single day treatment. Table 1 presents our results. As we can see every event
contributes to the overall local business sector a positive increase to the check-
ins, which can further be translated to increase foot traffic and revenue. The
only exception is the Vintage GP Car show. Compared to the other events, this
attracts a very specific part of the population - i.e., car-lovers - and this might
have affected its overall impact.

Our analysis until now has considered all of the business venues together
regardless of their type. This essentially captures the aggregate impact of the
street fair in the neighborhood. However, we would like to decompose this effect
in order to understand better what type of establishments benefit from the fairs.
In particular, we compute the difference-in-differences regression coefficient for
the three different types of business venues our dataset contains. Figure 5 depicts
our results, where the 95 % confidence interval of the estimated coefficients is
also presented. As we can see shopping venues are the ones that benefit the
most from the street fairs, while nightlife and food establishment exhibit a much
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Table 1. All events - except the Vintage GP Car Show - exhibit a statistically sig-
nificant and positive coefficient δ. The reason why the car show does not impact the
nearby businesses could potentially be attributed to the fact that compared to other
events, it attracts a specific part of the population only. Significance codes: 0 ’∗∗∗’ 0.01
’∗∗’ 0.05 ’∗’ 0.1 ’.’ 1 ’ ’.

Event Difference-in-differences coefficient δ

Jam On Walnut 1 9.7∗∗∗

Vintage GP Car Show -2.01∗∗∗

Jam on Walnut 2 5.45∗∗∗

Jam on Walnut 3 6.64∗∗∗

Arts Festival on Walnut 1 4.45∗∗∗

Arts Festival on Walnut 2 5.53∗∗∗

(but significant and positive) lower coefficient δ. However, one crucial point here
is that the coefficient provides the cumulative - additional to the counterfactual -
check-ins recorded in all venues of the specific type. Hence, if a specific venue type
is overrepresented in the area the estimated DD coefficient might be inflated4.
In order to avoid similar issues, we can normalize the obtained coefficients from
the regression model by the number of venues for every establishment type. In
particular, the number of shop, nightlife and food venues in the treated area are
60, 13 and 25 respectively. Therefore, the normalized coefficients for the shop
and nightlife are practically equal (0.066 and 0.061 respectively). However, the
food venues still have a much smaller normalized coefficient, that is, 0.014.

Overall, we can say that our results support the two research hypotheses put
forth in Sect. 2.3. In particular, street fairs have a positive impact on nearby
businesses as captured by the check-ins on Foursquare and the difference-in-
differences method. Furthermore, this impact is highly concentrated in the areas
around the street fair (i.e., 0.1, 0.2 miles) and drops extremely fast as we move
further away.

3.4 Discussion and Limitations

One of the main critics that studies relying on social media get is that of the
potential demographic biases that the data include. This is certainly true and is
one of our study’s limitation as well. Nevertheless, location-based social media is
a very good, and accessible, proxy for the economic activities in urban areas. Cer-
tainly there will be noise in the obtained signal, but this information is valuable
for providing supporting (or not) evidence in a variety of research hypotheses

4 Note here that, this is not an issue when we applied the difference-in-differences at
the level of a neighborhood. In that case, we were interested in the total additional
check-ins in the neighborhood as compared to the counterfactual. Hence, if a control
area had a different number of venues this would not impact the results.
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Fig. 5. The shopping businesses appear to have the largest benefit from the street fairs
among the local establishments around the area.

similar to ours. For example, similar datasets have been used to study urban
gentrification, deprivation, emotions in a city [7,11,23] etc.

In our difference-in-differences regression model we included fixed time and
location effects. One might argue that we should also control for the day of the
week. However, this is not necessary since the null regression model essentially
shows us that the different days of the week will exhibit the same “trending”
on average (of course the absolute values of the check-ins will be different). To
verify this we run the regression model by adding an independent variable that
captures the day of the week. Our results for the various zones around the treated
neighborhood are presented in Table 2.

Table 2. Even when controlling for the day of the week, the impact of the street fair
remains. The 95 % confidence intervals of the difference-in-differences coefficient for
the ranges [0.1, 0.3] and [0.3, 0.6] overlap; hence, we cannot support with confidence
the presence of a larger impact in the further zone. Significance codes: 0 ’∗∗∗’ 0.01 ’∗∗’
0.05 ’∗’ 0.1 ’.’ 1 ’ ’.

Radius r Difference-in-differences coefficient δ

[0, 0.1] [3.71, 4.1]

[0.1, 0.3] [0.17, 0.85]

[0.3, 0.6] [0.51, 1.61]

As we can see even when controlling for the day of the week the impact
is strong and significant. In fact, when controlling for the day of the week
the impact appears to be significant even for distances beyond the 0.1 miles.
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Nevertheless, the impact itself is weak (i.e., the coefficient is small). Further-
more, even though it appears that the further zone has a stronger effect, the
95 % confidence intervals for the two coefficients overlap, and hence, we cannot
confidently support the presence of a trend.

4 Related Work

In this section we briefly discuss related methodological literature as well as
literature relevant to the specific application domain.

Quasi-experimental methodologies: The gold standard for evaluating the
impact of a policy is a field experiment. However, when it comes to public policy
many times this is not possible for a variety of reasons. In this case we need to rely
on quasi-experimental techniques [21] in order to quantify the potential impact.
Quasi-experimental designs allows to control the assignment to the treatment
condition, but using some criterion different than random assignment as in field
experiments.

There are various techniques that can be used depending on the type of
observational data one has. For example, the difference-in-differences method [3]
compares the average change over time in the outcome variable for the treatment
group to the average change over time for the control group. One of the major
problems when applying this method is the parallel trend assumption, that is,
that the two groups exhibit the same temporal trend on their averages without
the treatment. Regression discontinuity [12] is another technique that can be
used to quantify the effects of treatments that are assigned by a threshold. The
key idea is that observations lying very closely on either side of the threshold
while differing in the reception of the treatment, they are equal for all practical
purposes. Hence, their treatment assignment mimics that of a randomized control
trial. It should be clear that not all quasi-experimental designs are applicable
in all scenarios (for example regression discontinuity cannot be applied in our
setting), while there can be settings were no method is applicable. A nice survey
of various quasi-experimental techniques can be found in [10].

Local businesses and urban economy: Small shops and businesses are the
backbone of local economy and quantifying the effect of external events and
policies on their prosperity is of utmost importance. Given the absence of large
scale data, most of the existing studies have been based on survey data. For
instance, a survey research conducted by Lee et al. [14] during the 2002 World
Cup identified that the event-related tourists yielded much higher expenditure
as compared to regular tourists, indicating that such mega-events could have
a positive economic impact for local businesses. As another example, a report
from a Toronto-based think tank has identified the positive impact that bike
lanes have on the revenue of local businesses despite the fact that business own-
ers systematically underestimate it [2]. In a similar direction, based on mer-
chant and pedestrian surveys in Toronto’s Annex Neighborhood, the “Clean Air
Partnership” [5] recommended reallocating a curb parking lane to bike lanes,
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since this is likely to increase commercial activity. A recent study further showed
that the installation of shared bike system can lead to an increase of the hous-
ing property values [17]. Moreover, in a briefing paper DeShazo et al. [6] using
a survey conducted over a small sample of businesses quantified the effect of
CicLAvia on local businesses. CicLAvia5 is a car-free event that happens once
every year in various areas in Los Angeles. Furthermore, anecdotal hard evidence
from Seattle [18] show that increasing the price of curb parking can be beneficial
to restaurants and local businesses mainly due to the increased turnover of each
parking spot [22].

During the last years, and driven by the proliferation and availability of
geo-tagged social media data, there has been a surge of studies on business
analytics. For instance, Qu and Zhang [19] proposed a framework that extends
traditional trade area analysis and incorporates location data of mobile users.
Their framework can answer crucial questions in retail management such as
“where are the customers of a business coming from?”. As another example,
Karamshuk et al. [13] proposed a machine learning framework to predict the
optimal placement for retail stores, where they extracted two types of features
from a Foursquare check-in dataset. Furthermore, these platforms can serve as
mobile “yellow pages” with business reviews that can influence customer choices
and business revenue. For example, Luca [15] has identified a causal impact of
Yelp ratings on restaurant demand using the regression discontinuity framework.
Closer to our study, Georgiev et al. [8] using data collected from Foursquare
study the impact of the 2012 Olympic Games on the businesses in London,
while Zhang et al. [24] quantify the effectiveness of special deals offered through
location-based services as an affordable advertisement for local businesses.

To the best of our knowledge no one has examined the impact of street fairs on
the adjacent businesses, even though local authorities expect this policy to have
a positive outcome for businesses6. Studies that examine the economic effects
of special events/festivals exist (e.g., [4]) but their focus is slightly different,
focusing on the participating entities/kiosks themselves. On the contrary, our
study is focused on the “network” effects a street fair can have for the nearby
businesses.

5 Conclusions and Future Work

In this study we have used social media data and quasi-experimental techniques
to evaluate the effect of street fairs on the local business sector. In particular, we
have adopted quasi-experimental techniques, i.e., difference-in-differences, and
synthesized them with domain expert knowledge. We consequently applied our
method on street fairs and outdoors arts festivals that took place on a specific
neighborhood in the city of Pittsburgh as a case study. Our results indicate that
similar street fairs can boost local businesses and stimulate and contribute to a
healthy local economy. Similar approaches can be used to evaluate the impact of
5 http://www.ciclavia.org.
6 E.g., http://tinyurl.com/zdved39.

http://www.ciclavia.org
http://tinyurl.com/zdved39
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different interventions (e.g., installation of new transportation modes, alterations
on the street network etc.).

Of course, our specific case study exhibits limitations with respect to the
available data as we elaborated earlier. In particular, while check-in information
is intuitively a good proxy for the underlying revenues, demographic biases can
provide us with a skewed view of the exact magnitude of the impact. Neverthe-
less, similar analysis can provide advocate citizens’ organizations with a case for
further scrutiny of any public policy in place. Social media data are “readily”
available and accessible (at least most of the times) and can provide the basis for
grassroots innovation in the space of policy evaluation. In the future we plan in
examining other potential sources (e.g., sales tax data) and analyze information
from other cities as well, in order to obtain a cross-city comparison with respect
to street fairs and their impact on local economy. Furthermore, even though we
have verified the parallel trend assumption, the increase in the check-ins (rev-
enues) in the treated area might be partly attributed to a decrease in the rest of
the areas. This interaction between neighborhoods is extremely interesting and
can potentially be captured and analyzed through a network between the urban
areas. Finally, the long-term effect of these events is also important. In particu-
lar, even though the street fair can potentially increase the revenues during its
lifetime, does it have the ability to create new clientele for the area? We will
further explore these points in our future work.

Acknowledgments. We would like to thank Bob Gradeck from the University Center
of Urban & Social Sciences, for his suggestions on matching the treated area in our
case study.

References

1. Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based conta-
gion from homophily-driven diffusion in dynamic networks. Proc. Nat. Acad. Sci.
106(51), 21544–21549 (2009)

2. Arancibia, D.: Cycling economies: economic impact of bike lanes. Report. Toronto
Cycling, Think and Do Tank (2012)

3. Ashenfelter, O., Card, D.: Using the longitudinal structure of earnings to estimate
the effect of training programs. Rev. Econ. Stat. 67(4), 648–660 (1985)

4. Carter, R.D., Zieren, J.W.: Festivals that say cha-ching! measuring the economic
impact of festivalst. In: Main Street Now (2012)

5. CleanAir-Partnership: Bike lanes, on-street parking and business. Report (2009)
6. DeShazo, J., Callahan, C., Brozen, M., Heimsath, B.: Economic impacts of ciclavia:

study finds gains to local businesses. In: Briefing Paper - UCLA Luscin School of
Public Fairs (2013)

7. Gallegos, L., Lerman, K., Huang, A., Garcia, D.: Geography of emotion: where in
a city are people happier? In: WWW (2016)

8. Georgiev, P., Noulas, A., Mascolo, C.: Where businesses thrive: predicting the
impact of the olympic games on local retailers through location-based services
data. In: AAAI ICWSM (2014)



176 K. Zhang and K. Pelechrinis

9. Goetz, C.J., Scott, R.E.: Liquidated damages, penalties and the just compensation
principle: some notes on an enforcement model and a theory of efficient breach.
Columbia Law Rev. 77(4), 554–594 (1977)

10. Harris, A.D., McGregor, J.C., Perencevich, E.N., Furuno, J.P., Zhu, J., Peterson,
D.E., Finkelstein, J.: The use and interpretation of quasi-experimental studies in
medical informatics. J. Am. Med. Inform. Assoc. 13(1), 16–23 (2006)

11. Hristova, D., Williams, M., Musolesi, M., Panzarasa, P., Mascolo, C.: Measuring
urban social diversity using interconnected geo-social networks. In: ACM WWW
(2016)

12. Imbens, G., Lemieux, T.: Regression discontinuity designs: a guide to practice.
Working Paper 13039, National Bureau of Economic Research, April 2007

13. Karamshuk, D., Noulas, A., Scellato, S., Nicosia, V., Mascolo, C.: Geo-spotting:
mining online location-based services for optimal retail store placement. In: ACM
SIGKDD (2013)

14. Lee, C.K., Taylor, T.: Critical reflections on the economic impact assessment of
a mega-event: the case of 2002 FIFA world cup. Tourism Manag. 26(4), 595–603
(2005)

15. Luca, M.: Reviews, reputation, and revenue: The case of yelp. com. Technical
report, Harvard Business School (2011)

16. Mora, R., Reggio, I.: Treatment effect identification using alternative parallel
assumptions (2012)

17. Pelechrinis, K., Kokkodis, M., Lappas, T.: On the value of shared bike systems
in urban environments: evidence from the real estate market. Available at SSRN
(2015)

18. de Place, E.: Are parking meters boosting business? http://daily.sightline.org/
2012/03/28/is-metered-parking-boosting-business/

19. Qu, Y., Zhang, J.: Trade area analysis using user generated mobile location data.
In: ACM WWW (2013)

20. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in obser-
vational studies for causal effects. Biometrika 70(1), 41–55 (1983)

21. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Cengage Learning,
Belmont (2001)

22. Shoup, D.: The High Cost of Free Parking. American Planning Association,
Chicago (2011)

23. Venerandi, A., Quattrone, G., Capra, L., Quercia, D., Saez-Trumper, D.: Measuring
urban deprivation from user generated content. In: ACM CSCW. pp. 254–264
(2015)

24. Zhang, K., Pelechrinis, K., Lappas, T.: Analyzing and modeling special offer cam-
paigns in location-based social networks. In: AAAI ICWSM (2015)

http://daily.sightline.org/2012/03/28/is-metered-parking-boosting-business/
http://daily.sightline.org/2012/03/28/is-metered-parking-boosting-business/


Intelligent Urban Data Monitoring
for Smart Cities

Nikolaos Panagiotou1, Nikolas Zygouras1(B), Ioannis Katakis1,
Dimitrios Gunopulos1, Nikos Zacheilas2, Ioannis Boutsis2,
Vana Kalogeraki2, Stephen Lynch3, and Brendan O’Brien3

1 National and Kapodistrian University of Athens, Athens, Greece
nzygouras@di.uoa.gr

2 Athens University of Economics and Business, Athens, Greece
3 Dublin City Council, Dublin, Ireland

Abstract. Urban data management is already an essential element of
modern cities. The authorities can build on the variety of automatically
generated information and develop intelligent services that improve citi-
zens daily life, save environmental resources or aid in coping with emer-
gencies. From a data mining perspective, urban data introduce a lot of
challenges. Data volume, velocity and veracity are some obvious obsta-
cles. However, there are even more issues of equal importance like data
quality, resilience, privacy and security. In this paper we describe the
development of a set of techniques and frameworks that aim at effective
and efficient urban data management in real settings. To do this, we
collaborated with the city of Dublin and worked on real problems and
data. Our solutions were integrated in a system that was evaluated and
is currently utilized by the city.

1 Introduction

Technological advancement led to the generation of massive amounts of data
originating from a variety of urban sources. Smart cities equipped with the
appropriate infrastructure are producing many gigabytes of information on a
daily basis and data sources range from static to dynamic sensors. Examples
include GPS trajectory traces, aggregated logs of mobile phone activity as well
as user generated content from social media. Such data variety offers the poten-
tial for novel applications that support decision making in multiple situations.

Interestingly enough, the nature of smart city data brings a lot of challenges
to data mining researchers and practitioners. Data volume and velocity impose
great challenges in performing any type of analysis in real time. On top of that,
data veracity hinders many sophisticated learning algorithms. Data quality issues
demand extra attention in the case of smart cities and the challenges extend even
further to resilience issues, data privacy and security. More specifically, tools
established in smart cities need to address the following challenges:

(i) Identify events in real-time: Exploring and detecting events of interest from
complex and voluminous urban data streams is extremely challenging [41].

c© Springer International Publishing AG 2016
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Fig. 1. DCC’s traffic control center, INSIGHT system shown at middle top screen.

Urban sensors are transmitting ambiguous and contradictory information.
In such occasions exploiting the wisdom of the crowd through crowdsourcing
is necessary. Furthermore the incoming stream may be massive requiring
efficient online solutions. For example, in Twitter, thousands of tweets per
second need to be processed in order to identify a few that are relevant to
the task.

(ii) Handle varying loads: In the city setting, data loads deviate significantly
over time. During rush hours many vehicles send out position information,
while during the night the load is significantly lower. Twitter follows similar
‘normality’ patterns and significant events are correlated with large number
of tweets.

(iii) Noisy data and erroneous measurements: Very often sensors report faulty
measurements due to miss-calibration or hardware problems. For exam-
ple we observed that bus data from Dublin had many inaccuracies:
buses reported erroneous locations, extreme vehicle speed, irrationally high
delays, and more. All these issues hamper data exploration and analysis.
Moreover, Twitter due to informal and short text hinders language process-
ing algorithms.

In this work we discuss the above challenges inherent in urban data. We then
describe the provided solutions in the context of the city of Dublin, where we
have collaborated on real problems and data. The application we targeted is the
intelligent urban data management for event detection and emergency response.
Dublin City Council operates a Traffic Management Center analyzing informa-
tion from multiple sources like buses moving around the city or measurements of
traffic flow in junctions. However, their work-flow is hindered by the data volume
and the raw data that it are difficult to interpret.

We provide with a number of novel modules specifically designed to detect
multiple types of incidents. These components use state of the art event detec-
tion techniques and are built with the focus on scalability and efficiency. They
are generic and can be utilized in multiple settings analyzing in real-time GPS
trajectories, data coming from sensors installed in junctions, or social media
textual information. Specifically, we present:

(a) a dynamically scalable pipeline for streaming data (Sect. 3.1),



Intelligent Urban Data Monitoring for Smart Cities 179

(b) an adaptive monitoring framework for social media such as twitter, which
optimises recall of traffic related information (Sect. 3.2),

(c) an efficient crowdsourcing system for collecting urban data and for minimiz-
ing uncertainty (Sect. 3.3).

Through multiple feedback loops of the development process, expert knowl-
edge was integrated in order to improve functionality, tuning appropriately the
parameters. We report on the integration of the above techniques into a system
that addresses information comprehensibility and it is useful for the end user.
The components were evaluated within the work flow of Dublin City’s Traffic
Management team where the system INSIGHT [18] is established (see Fig. 1).

2 Related Work

The first architectures and technological innovations on the area of smart cities
were built in the early 90s. Early framework examples include the AOL cities, a
virtual simulation environment, and the first digital cities Kyoto and Amsterdam
[33]. Years later many projects that aim at urban data analysis and solutions
were developed by utilizing distributed sensors. The Ubiquitous Sensor Net-
work proposed in [16] is an architecture where decentralized and geographically
diverse sensors across the city are aggregated in a central database (IoT). Simi-
larly the SOFIA architecture [13] was built with the purpose of an ecosystem of
heterogeneous sensors, devices and appliances.

Nowadays, many cities use real-time analysis mechanisms to measure city
functionality. IBM in partnership with the government of Brazil built a system
for the city of Rio De Janeiro that aggregates multiple streams and combines
them in a control center where algorithms analyze the data in real time, describe
the state of the city and inform operators about disastrous events such as floods.
The authors in [3] suggest a similar real-time architecture for managing city-wide
critical equipment detecting faults. For example a fault could be an electricity
distribution failure. According to [39] urban management can be also used for
a greener environment. Their proposed system aims to ensure that the environ-
mental policies, set up by the city, are satisfied (e.g. levels of CO2). The system
is used in many cities including Barcelona and Edinburgh.

In recent years many algorithms have been proposed that aim to analyze
and extract information from urban data. The authors in [29] proposed an algo-
rithm that detects anomalous traffic behaviour analyzing GPS data from taxis
in Beijing. A traffic event detection approach using k-means algorithm was pre-
sented in [26]. The authors in [9] used time varying scalar functions in order
to detect events from urban data. The detection of users’ transportation mode,
using their GPS trajectories along with information regarding the road network
was presented in [34]. In [22] the authors describe a holistic technique that uses
a hierarchical Markov model with multiple abstraction levels is able to infer the
user’s destination or their mode of transportation. [27] discovers traffic conges-
tion on the road network examining co-occurring congestion locations.
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Distributed systems have been widely used for traffic monitoring in smart
cities environments [4,19]. In [4], the authors exploit IBM-Streams, [17] a scal-
able stream processing platform, to perform traffic monitoring in the city of
Stockholm. Their system is able to continuously derive current traffic statistics
from vehicle reports and also can provide useful information such shortest-time
routes from real-time and estimated traffic conditions. While in [19] the authors
combine Apache’s Hadoop [1] and Apache’s Spark [2] to detect traffic conges-
tion in the Greater Toronto Area. Due to the varying volume of data that needs
to be processed in such traffic monitoring applications (e.g. during peak hours
more input data will be received), it is common practice to exploit elasticity
techniques [15,25], for automatically adjusting the amount of processing nodes
used for the data processing.

Crowdsourcing in smart cities is the process of soliciting contributions from
citizens that actively participate by contributing real-time information from their
mobile devices about city events. Crowdsourcing has been widely used recently
both from applications driven by city authorities, such as the JRA Find and Fix
app [14] where users report road defects for the Johannesburg’s road network and
from applications driven from organizations such as in Waze, [36] where users
are asked to report traffic events from their current location. Crowdsourcing in
smart cities introduces a number of challenges like unpredictable user response
delays [5], human characteristics that are difficult to be estimated such as reli-
ability [7], expertise [24] and availability [30], as well as dealing with privacy
issues [6].

3 Methods and Techniques

To meet the requirements of Smart Cities applications we aid users to identify
events in (near) real-time or flag emergencies and anomaly events so that author-
ities can quickly allocate assets to address these problems. For example, in a real
setting we may have data coming from different streaming sources including sta-
tic or mobile sensors, social media, citizen reports, etc. Each of these sources
requires a comprehensive set of techniques to analyze them. We identify generic
problems that come up in these settings. In this section we describe how each
problem is addressed in a real context in the city of Dublin. The streams that
are used are presented in Table 1.

Table 1. Real time data sources from the city of Dublin

Source Attributes

BUS Timestamp, GPS location and route information (delay, closest bus stop,
is bus stopped at a bus stop)

SCATS Traffic flow and degree of saturation measurements based on vehicles that
cross a specific road segment

Twitter Timestamp, text, location information, user information
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3.1 Flexible and Dynamic Pipeline for Complex Event Processing

One challenge was to process and analyze massive data streams and detect events
in near-real time, using scalable techniques. To deal with the above issue we
used a data pipeline that consists of distributed stream and batch processing
components. This pipeline is able to perform Complex Event Processing (CEP)
in the streaming data. Finally we instantiated the pipeline using the Dublin data.

3.1.1 Distributed Stream and Batch Processing Pipeline
In order to identify complex events in a scalable way, we adapted the architecture
that is illustrated in Fig. 2 and presented in [41]. This module, exploits the
Lambda architecture [20] combining a well-known stream processing framework,
Apache Storm, with a highly expressive CEP system, Esper [12]. Our approach
is modular as different stream processing frameworks could be used instead of
Storm, for example Spark [38]. We decided to use Apache Storm as it supports
very low per tuple latency by processing each tuple separately and not in the
form of mini-batches as Spark [38]. This feature is extremely useful in our case
as we want to identify events as soon as possible. Initially Storm preprocesses
the raw incoming tuples and extracts meaningful information. Then the tuples
are forwarded to multiple concurrently running Esper engines. Each engine runs
at different cluster nodes to exploit the cluster’s parallelism. These engines are
responsible to invoke several rules on the incoming data and trigger events when
they are satisfied. Additionally a batch processing framework is used, Apache’s
Hadoop, to compute several statistics regarding the rules. These map-reduce jobs
run periodically and their output is used in order to update the rules’ thresholds
or models.
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We selected to enable the dynamic adjustment of the number of running
Esper engines (elasticity) to exploit fully the parallelism offered by Storm dur-
ing peak hours and avoid wasting resources when the input load is reduced. To
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achieve this we used the technique presented in [37], where the expected input
load for the upcoming time windows is estimated using Gaussian Processes
(Fig. 3) and exploit it to automatically adjust the number of CEP engines in
order to avoid information loss and without over-utilizing the system’s resources.
In Fig. 4, we illustrate the benefits of the Elastic CEP approach, compared to
another commonly applied technique (QT-Algorithm [25]) which models the
problem using queueing theory and assumes that the input rate follows Poisson
distribution. The experiments run in our local 8-VMs cluster. As you can see
in Fig. 4 our proposed technique, Elastic CEP, is able to minimize a cost func-
tion that considers both the information loss and the amount of resources (i.e.
engines) that we bind. Finally, the scalability of our approach is presented in
Fig. 5, where the amount of tuples that failed to be processed within a spec-
ified time window is illustrated over time. Our approach is able to process
a similar number of data as the static configuration, that uses the maximum
number of resources (8 machines). Our approach varies the number of engines
used over time, selecting the following sequence of concurrently running engines
[1, 3, 7, 4, 5, 6, 7] and outperforms the performance of the comparing technique
that misses a much larger number of tuples.

3.1.2 Instantiation of the Pipeline Using the Dublin Data
The previously described pipeline has been applied to the processing of bus
and SCATS data streams. The elastic and scalable features of our approach fit
appropriately to the DCC data streams due to their periodicity (e.g. more buses
operate during the peak hours of the day and much less during the night hours).
Using the pipeline to the real data had two main problems that we needed
to overcome in order to identify meaningful events. The main issues were: (1)
the noisy measurements for both bus and SCATS sensors that need specialized
solutions and (2) the end user requirements that needed to be discussed with
DCC traffic operators in order to set up the CEP rules appropriately.

(1) Noisy measurements: The first problem that we had to deal with was to
clean the data and extract meaningful information from them. In our initial
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analysis we identified that the reported raw data were noisy. More specifi-
cally, in some occasions buses reported as closest bus stop a stop that was
many miles away from the actual closest bus stop. Also, some buses due to
faulty sensors reported that they were stopped at a particular bus stop while
they were actually moving. We clean the data solving the issues described
above using the list of bus stops for each route, checking the spatial distance
between the bus and the stops of the route. Also for the moving buses we
set the at stop field to be False. In order to extract information from the
raw data we calculated the time needed for a bus to go from one bus stop to
the next. Finally, we calculated the approximate speed of each bus, using its
previously reported coordinates. For the SCATS Data we identified that
several sensors were faulty reporting extreme or unreasonably high mea-
surements. To solve the above issue we used the technique presented in [40]
that checks using a multivariate ARIMA model, whether the sensor’s reports
deviate significantly and unexpectedly from the measurements reported by
neighbouring sensors.

(2) End user requirements: After discussing the problem with DCC traffic oper-
ators we set up several rules that when they are triggered a potential traffic
anomaly may occur in the city. The rules that we used for the Bus Data
are described bellow:

– Report a traffic anomaly when the time needed to travel from one stop to the
next exceeds the expected time by some orders of magnitude.

– Report a noisy sensor when the bus moves while it is at stop.
– Report a noisy sensor when the bus seems to move with extreme speed.

The rules that we used for the SCATS Data are simple, but as described
later in Sect. 4 are able to identify accurately traffic congestion. More specifically,
we defined the following rules:

– Raise a traffic alarm when the moving average of the streaming values of the
degree of saturation exceeds a predefined threshold.

– Report a faulty sensor if one is identified to variate significantly from its
neighbors.

3.2 Building a Pipeline for Twitter Monitoring

Twitter was successfully used to detect meaningful events exploiting users as
human sensors. Examples include the detection of earthquakes [31], floods [32],
or even crimes [21]. We build a monitoring pipeline that utilizes Twitter to detect
events of interest.

Usually when researchers perform topic-specific event detection on Twitter
stream they query tweets containing particular keywords, generated by a specific
user or located at a particular area, respecting at the same time the Twitter API
constraints [35]. A great challenge that arises is how to use the Twitter’s query
filters efficiently in order to acquire more topic related tweets. Thus, we develop
a Twitter Fetcher that is responsible to gather tweets relevant to a given topic by
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Fig. 6. The Twitter analysis component architecture.

tracking a dynamic set of keywords, users and locations and then forward them
to the pipeline. The set of keywords and users is dynamically updated aiming
to maximize the topic coverage. Another challenge is the fact that many mes-
sages do not contain location information. That said, a Geotagger able to assign
exact GPS coordinates exploiting a tweet’s text is the next pipeline component.
Following the approach described in [8] and using the OpenStreetMap API [28]
and Lucene, [23] the Geotagger assigns GPS coordinates according to road and
POI references in tweets. The resulting set of geotagged tweets should be filtered
and only the relevant tweets should be kept. In order to accomplish that a Text
Classifier is used as the last unit of our pipeline. We used SVM to classify the
incoming tweets, using as features the tweet’s TF-IDF weighted vector, and the
existence or absence of roads or POIs references. We tuned the classifier using an
annotated dataset and under 10-fold cross validation we achieved an F-Measure
of 88.3%, a Precision of 93% and a Recall of 84.2%. The output of this pipeline
is stored to a MongoDB instance for further usage and post-processing (Fig. 6).

The above framework is modular enough to be applied in any city given
that citizens are active Twitter users. It was instantiated for the Dublin city.
The Twitter Fetcher was set to return a Twitter stream from the Dublin city
relevant to the topics of traffic and flood. The Geotagger was loaded with infor-
mation about the Dublin road network from Open Street Maps. Finally, the Text
Classifier was able to identify Traffic and Flood related messages. The training
of the classifier was done using traffic and flood tweets originating from Dublin
services such as ‘AARoadwatch’ and ‘Livedrive’.

Dublin citizens proved to be very active Twitter users reporting on daily basis
many events observed in the city. This fact was reflected in the evaluation where
the Twitter monitoring pipeline was found very useful. A useful suggestion by the
traffic operators during the feedback loops was to use a set of blacklisted words
in order to avoid receiving tweets from towns nearby Dublin. Some example
tweets detected from the Twitter monitoring pipeline are presented in Table 2.

3.3 Crowdsourcing Component

Crowdsourcing is a key part of our system as it allows us to extract information
from the ubiquitous citizens, complementing the information extracted from the
rest of the sensors and solving disagreements. Our experience from employing



Intelligent Urban Data Monitoring for Smart Cities 185

Table 2. Traffic tweets coming from Dublin identified by our approach.

� M50 North: Jammed from J12 Firhouse due to drivers rubbernecking a collision
in the south bound lanes

� @LiveDrive the M50 collision has the N4 inbound backed up to hermitage golf
club . . .

� Stuck in traffic on the M50 and my plc interview is at half six ... I’m gonna cry

� My bus has taken 40 min to get from Harolds Cross Road to Aungier Street

crowdsourcing in Smart City environments has shown that there are several
challenges that need to be addressed to use crowdsourcing effectively: (i) users
have different characteristics when processing crowdsourcing tasks in terms of
response delays, user reliability and biases in their responses, (ii) user privacy is
an important aspect that needs to be considered so that users will not be averted
to send feedback, and (iii) scalability issues need to be taken into account when
deploying crowdsourcing in such large scale environments. Our implementation
addresses these challenges as explained in the remainder of the section.

3.3.1 How Crowdsourcing Is Invoked
The crowdsourcing is invoked whenever the different modules report contradic-
tory types of anomalies. In order to identify such disagreements we developed an
engine responsible to identify joint spatiotemporal anomalies. This component
combines information from different components by grouping close (in space and
time) reported anomalies together. When there is a disagreement in the type of
anomalies reported from different modules, and hence uncertainty, it issues a
query to the Crowdsourcing component to obtain direct information about this
anomaly. It receives anomalies that contain the spatial area, where an event
occurred, the timestamp of the event and the type of the event. In addition, in
order to identify events it uses a R-tree and a queue data structure to store both
the received anomalies and the candidate events.

The R-Tree data structure is used in order to efficiently detect spatial inter-
sections. If a spatial intersection between two reported anomalies is found an
event candidate is created and stored to the R-Tree. If a new anomaly intersects
with an existing event candidate, the latter is updated. The event candidate
affected area is set to the spatial intersection with the new anomaly. An event
candidate may update to an event when a set of empirical rules is satisfied. For
example, if multiple sensors (e.g. Twitter and SCATS) contribute to an event
candidate then this candidate will evolve to an event.

In order to have guarantees that memory and time requirements will not
grow unbounded over time the received anomalies and the candidate events are
stored in a FIFO queue. These data are removed from both the queue and the
R-Tree when they temporally differ from the latest data received more than a
time threshold. The dataflow of the described engine is depicted on Fig. 7.
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Fig. 7. The data structures used by the
crowdsoucing invoker engine
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3.3.2 Making Crowdsourcing Efficient in a City-Wide Environment
Our crowdsourcing component comprises two main entities: (i) The Crowdsourc-
ing server, that is responsible to act as a middleware between the streaming
spatiotemporal event identification engine and the human users, by extracting
information from the citizens and propagating this information to the event iden-
tification engine, and (ii) The CrowdAlert app, that was implemented aiming
to allow users interact with our system and provide real-time information and
observe ongoing events.

The Crowdsourcing server exploits the Misco framework [10], which is based
on the MapReduce paradigm and tailored for mobile devices (Fig. 10) to assign
crowdsourcing tasks to the citizens dynamically and aggregate the extracted
information in a scalable manner. Assigning task to the human crowd is per-
formed using techniques developed from our group [5,7] that consider the indi-
vidual characteristics of the users. We have investigated the benefit of using dif-
ferent task assignment approaches by presenting the amount of tasks that have
been accomplished correctly and within a predefined time interval, as shown in
Fig. 8. Our approaches REACT [5], that considers the real-time constraints of
the individual users, and CRITICAl [7], that considers both reliability and real-
time constraints for groups of users, improve significantly the number of tasks
processed successfully compared to traditional approaches that assign tasks ran-
domly. Moreover CRITICAl performs better than REACT although there is a
trade-off with the execution time needed to execute the algorithm, since REACT
is faster. Hence, we use different task assignment strategies depending on the
requirements (e.g., critical tasks require fast responses even if the responses are
unreliable). After we retrieve responses, we try to eliminate user bias to further
improve the accuracy of our results. Finally, we note, that, the Crowdsourcing
server is also responsible to receive user reports regarding ongoing events and
propagate them to the spatiotemporal event identification engine as well as to
inform the citizens for traffic and unusual events in their area.
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(a) Events (b) Report (c) Queries (d) Settings

Fig. 9. CrowdAlert App

The CrowdAlert app allows both citizens and DCC operators to observe the
ongoing events, identified from the system, in real-time, as shown in Fig. 9a and
to provide valuable feedback. Thus, the users can participate at the central part
of CrowdAlert which is to report events that take place near their location,
including Accidents, Hazards, Constructions, etc., as shown in Fig. 9b. Addi-
tionally the users can also classify the traffic events that appear on the map to
provide more accurate information regarding the events. All these reports are
forwarded to the spatiotemporal event identification engine through the Crowd-
sourcing server to be processed along with data arriving from different compo-
nents. We also note that the users of the CrowdAlert app report periodically
their approximate location. Such information is used by the system to be able
to ask user feedback dynamically when the users are near an ongoing event. An
example of such a query is shown in Fig. 9c where the users need to respond in
the question: “Can you observe an incident/traffic in the reported location?”.
The approximate location is provided by the Android API that exploits the cell
network and WiFi. We chose to use the approximate location instead of the
accurate GPS location for energy efficiency and privacy reasons. In addition, we
integrated our privacy preserving approach [6] to prevent privacy exposure of
the user mobility when participating in CrowdAlert. Finally, the users can tune
the CrowdAlert settings (Fig. 9d), such as the amount of Crowdsourcing tasks
that they wish to receive per day, or the maximum distance from their current
location for which they wish to answer to tasks.

4 User Evaluation and Lessons Learned

The Dublin City Council personnel evaluated our system in terms of effective-
ness and usability. The evaluation of the previously described techniques was
performed in the context of INSIGHT system presented in Fig. 10 and was per-
formed using the INSIGHT Web Interface that allows the quick visualization
and exploration of the real-time analysis output, as shown in Fig. 11. This inter-
face offers a layered visualization of the identified events in order to help the
operator to filter out the unnecessary information.
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Fig. 10. Overview of system’s layers: (i) the first layer receives the streaming data
(ii) the second layer preprocess the raw data and detects anomalies, using scalable
techniques (iii) the third layer groups the anomalies to identify events of interest or to
send tasks to crowdsourcing users to resolve uncertainty

4.1 Evaluation Protocol

Relevant DCC personnel were invited to participate in the evaluation of the
system. Using the Traffic Management Centre (TMC) and the adjoining Local
Incident Room as a central hub allowed staff to evaluate the system all together,
seeking clarification by asking questions and attending to concerns that may
have arisen.

The evaluation was operated in two hour time windows and in two different
days. The time windows were: (a) Day 1; 08.00–10.00, 16.00–18.00 and (b) Day2;
09.00–11.00, 15.00–17.00. These are typically periods of high volume of traffic
in Dublin. In those time windows people involved in the evaluation were invited
to utilize the system and complete a number of tasks. In each time window,
participants were organized in groups based on their role in the department and
completed only a part of the evaluation. For example people from the Traffic
Management Centre Team worked on congestion related events. Participants
from the Bus Priority Team evaluated the events identified from the Bus analy-
sis component and Live-Bus layer of the system while the radio station team
monitored social media. The following personnel were invited to participate in
the evaluation of the system in the TMC: Traffic Management Personnel (12
people), LiveDrive Radio Station (5 people), Traffic ITS Officers (10 people).
The personell confirmed or rejected the reported events based on manual CCTV
cameras investigation. The cameras are able to capture a large portion of the
city.
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Fig. 11. (a) The Web interface with different icons representing the locations of buses,
locations with congestion and events from Twitter. The user can select which icons to
display using the layers menu. (b) Details about a detected event.

4.2 Results

The evaluation team compiled an overall report for the whole system and more
detailed reports for each component itself.

Bus Analysis Component. The bus priority team mentioned that the Bus
anomaly detection mechanism proved useful in giving users information related
to bus congestion events. They state that it proved more difficult to confirm
these events using CCTV as by the time they tried to confirm the congestion
event, the time may have lapsed in some cases, so verifying these anomalies was
more difficult that the other events. They noted that the information given with
each bus event was very useful in trying to isolate the location of the event. In
particular they liked the ‘view the bus stops’ link, as this allows the user to know
the direction of the bus and the current and next stop due.

SCATSAnalysisComponent.The SCATS anomaly detection proved very use-
ful in allowingusers to detect singular anomalies related to a junction.The anomaly
detection triggers alerts about lanes with high degree of saturation, something that
would not be possible using the existing SCATS system. Being able to use the map
along with SCATS and CCTV proved useful to diagnose and confirm anomalies.

Twitter Analysis Component. According to the Livedrive radio station [11]
team, Twitter event detection has been an excellent feature to the INSIGHT
system. One issue they mentioned was the fact that tweets that refer to nearby
regions of Dublin were mistakenly geolocated at Dublin. They suggested that
with some additional negative keyword lists, such as counties outside of the
Greater Dublin Area (e.g. Cork, Limerick, Galway), the location relevancy of the
alerts will be more accurate. However, part of the issue is the fact that nearby
countries share road names with Dublin confusing the system’s geotagger.
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The DCC team examined independently a complete list of Tweets that the
Twitter analysis component identified as event tweets (Traffic related or Flood
related) during the two day evaluation period. According to their manual anno-
tation they found that:

– 179 Tweets identified as Relevant from the system
– 91 % (163 tweets) were confirmed as true positives
– 63 % (113 tweets) were confirmed as true positives in the city of Dublin. The

rest relevant tweets were from nearby towns mistakenly identified at Dublin.

Crowdalert. The users found the crowdsourcing application very easy to use.
According to them, the buttons make it very easy to report an event and view
it immediately on the map display. With relation to users replying to alerts,
it was felt that more clarity was needed over exact location of events or more
clarity on the questions being asked of users. Due to the way the INSIGHT
system is designed, it aggregates several events in adjacent geographic locations
to issue crowdsourcing tasks and as a result CrowdAlert receives the approximate
location of the area where the events take place rather than their exact location.

4.3 Lessons Learned

Component specific lessons learned could be summarized in the following points:

(i) The scalable and elastic framework enhanced with CEP engines helped to
easily create or update the event detection rules. Finding the appropriate
parameters for these rules is not an easy process, however, if the right rules
are available, the processing can be simple and efficient.

(ii) Social media such as Twitter provide a valuable source of real time infor-
mation about incidents in a city.

(iii) During the development of CrowdAlert we interacted with alpha and beta
testers from DCC to improve it. Our conclusion is that such applications
should provide a simple and easy to use interface, so that the user can inter-
act immediately (e.g., Yes/No answers), rather than providing too many
options to the users. That way we modified the app so that the citizens will
be willing to provide feedback and use the app.

5 Conclusions

In this work we describe three techniques able to cope with the challenges that
arise in urban data analysis: the dynamic nature, the requirement for handling
complex high velocity data streams, and information uncertainty. The proposed
solutions address these challenges providing accurate, scalable real-time event
detection. User oriented evaluation provided with evidence not only of the effi-
ciency of the provided tools but also of their usability and positive impact in the
user’s work-flow.
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Abstract. Cardiac computed tomography is a non-invasive technique to
image the beating heart. One of the main concerns during the procedure
is the total radiation dose imposed on the patient. Prospective electro-
cardiographic (ECG) gating methods may notably reduce the radiation
exposure. However, very few investigations address accompanying prob-
lems encountered in practice. Several types of unique non-biological fac-
tors, such as the dynamic electrical field induced by rotating components
in the scanner, influence the ECG and can result in artifacts that can
ultimately cause prospective ECG gating algorithms to fail. In this paper,
we present an approach to automatically detect non-biological artifacts
within ECG signals, acquired in this context. Our solution adapts dis-
cord discovery, robust PCA, and signal processing methods for detecting
such disturbances. It achieved an average area under the precision-recall
curve (AUPRC) and receiver operating characteristics curve (AUROC)
of 0.996 and 0.997 in our cross-validation experiments based on 2,581
ECGs. External validation on a separate hold-out dataset of 150 ECGs,
annotated by two domain experts (88 % inter-expert agreement), yielded
average AUPRC and AUROC scores of 0.890 and 0.920. Our solution is
deployed to automatically detect non-biological anomalies within a con-
tinuously updated database, currently holding over 120,000 ECGs.

Keywords: Anomaly detection · Cardiac computed tomography ·
Electrocardiography · Prospective ECG gating

1 Introduction

Computed tomography (CT) is a non-invasive imaging technique, where a num-
ber of X-ray projections, taken from different angles, form a volumetric image of
an area inside the body. Here, we focus on images of the heart, i.e., cardiac CT,
which is often used to detect coronary artery disease or to evaluate the heart’s
c© Springer International Publishing AG 2016
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function and morphology [9]. Due to constant beating of the heart, cardiac CT
is particularly challenging: to ensure sharp motion-free images, multiple X-ray
projections need to be taken at the same cardiac phase. In addition, the imag-
ing protocol needs to be optimized to reduce the total radiation dose a patient
is exposed to, thereby lowering the risk of radiation-induced cancer [9]. Hence,
keeping a proper balance between low radiation exposure and image quality is
one of the major trade-offs in a cardiac CT [9].

One of the most effective imaging techniques in this field is based on prospec-
tive ECG gating [10], the central idea of which is to activate the X-ray source
only at the “right” time windows, namely during the cardiac phases of interest.
Such gating algorithms reduce radiation by over 70 %, while maintaining high
image quality [9]. On the other hand, relying on ECG makes the whole cardiac
CT workflow highly dependent on the quality of the ECG signal, which is influ-
enced by various factors specific to a patient, hospital, and physician. If the ECG
signal is corrupted by noise or artifacts, prospective ECG gating is prone to fail
and the resulting image of the heart will be of poor quality. In some cases, the
scan has to be repeated, which offsets the advantage of prospective ECG gating
in reducing radiation dose. We describe typical non-biological artifacts that may
disrupt the imaging workflow in Sect. 2.

While the field of ECG analysis is well-established, it addresses problems
distinct from ours. Common use case are clinical decision support and patient
monitoring, both of which use ECG to assess a patient’s health status. Conse-
quently, anomalies of biological origin are the primary focus. In contrast, this
work aims to accurately identify ECG signals that are corrupted by various non-
biological artifacts, disregarding any medical conditions a patient might have. In
addition, the characteristics of ECG signals and artifacts encountered in cardiac
CT differ from those encountered in clinical diagnosis (see Sects. 2 and 3). To
the best of our knowledge, this is the first scientific work that thoroughly inves-
tigates methods to automatically identify anomalies occurring in the context of
cardiac CT.

We developed a system that can process large pools of data from multiple
medical centers across the world and automatically identify CT scanners expe-
riencing anomalous behavior. Our approach has several advantages. First, it
dramatically reduces the time and effort of identifying problems compared to a
human analyst, which leaves more time to fix a particular problem. Second, our
customers benefit by reduced response times to an incident. Third, we expect
that our system helps to increase the rate of high quality cardiac CT images,
while maintaining a low radiation exposure. Our solution utilizes existing tech-
niques used in ECG analysis and incorporates two feature extraction methods,
which are based on robust PCA [3] and a discord discovery algorithm [13]. We
retrospectively analyzed 2,581 cardiac CT scans from 60 medical centers from
18 countries. We evaluated our solution by cross-validation and by comparing its
predictions to annotations of two domain experts on a hold-out set of 150 scans.
The results demonstrate that our system is highly discriminatory and allows
processing thousands of ECGs with minimal human interaction.
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The paper is structured as follows. In Sect. 2 and 3 we will describe the
most prevalent noise patterns encountered in the context of cardiac CT and our
dataset. Section 4 describes our system. Next, we present our evaluation results
in Sect. 5 and end with concluding remarks in Sect. 6.

2 Noise Patterns in Cardiac CT

Fig. 1. Typical ECG wave-
form describing the heart-
beart of a healthy patient.

In this section, we will describe the most preva-
lent noise patterns encountered in cardiac CT. But
first, let us provide a brief insight into the ECG
signal’s morphology. The letters P, Q, R, S, and
T name the key features of an ECG waveform. A
typical heartbeat starts with a so-called P wave,
continues with a QRS complex – characterized by
a narrow spike called R peak – and ends with a
T wave (see Fig. 1). Each feature corresponds to a
particular phase in the cardiac cycle.

Prospective ECG gating relies on detection of
R peaks to predict the time of future R peaks. Since the R peak occurs at a
distinct phase during the cardiac cycle, its detection enables imaging the heart
in a predefined cardiac phase [9]. However, the presence of noise or non-biological
artifacts in the ECG signal may result in false positive R peaks, which, in turn,
may cause desynchronization of the whole workflow, resulting in a low quality
image and the need for a repeat scan.

Typical non-biological artifacts observed in an ECG during cardiac CT can
be classified into the following 6 categories:

– Powerline noise is caused by the interference of an ECG signal with an
external power supply (Fig. 2a), for instance, if a power cord is placed across
the patient or close to an ECG electrode.

– Baseline wandering is typically caused by breathing and movement of the
patient, and becomes particularly strong when cardiograph’s electrodes are
unreliably connected to the body (Fig. 2b).

– Rotational noise is caused by an electrostatic charge near to or within the
scanning area, which results in a rapid change of the electric field formed by
the local static charge and rotating high-voltage generators of the CT scanner
(Fig. 2c). Note that the noise is eliminated once the scanning process begins,
because the X-ray leads to a discharge.

– X-ray artifacts are usually due to an X-ray beam hitting a piece of metal.
This may happen when an electrode moves in the scanning area or the patient
has one or more implants (Fig. 2e,f).

– Table motion artifacts are characterized by a noticeable fall of the ECG
signal quality while the examination table is moving. Localized baseline and
high frequency disturbances are sometimes observed after the table starts
moving due to movements of the patient, improper wiring of the electrodes,
or other reasons (Fig. 2g).
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Fig. 2. Noise patterns observed during a cardiac CT scan. (a) powerline interference,
(b) baseline wandering, (c) rotational noise, (d) other ubiquitous noise, (e-f) X-ray
artifacts, (g) table motion artifact, and (h) localized disturbance. The purple lines
indicate time intervals, during which the X-ray scanner was active.

– A wide range of other noise types due to a variety of reasons that are either
unknown or do not fall into the abovelisted categories (Fig. 2d, h).

Although noise can be minimized by calibrating the CT equipment, not all med-
ical centers may follow the best practices. By proactively identifying potentially
unsuccessful scans, we mitigate the aforementioned health concerns and improve
customer experience.

3 Dataset

Our dataset comprised 2,581 ECG signals from 60 medical centers from 18 coun-
tries annotated by a human expert as either “good” or contaminated with one
or more of the noise patterns described above. Each ECG signal was sampled
at a frequency of 100 Hz and on average ranged between 30 and 40 seconds in
duration. In addition, each trace contained information about the time intervals,
where the X-ray source was activated and the positions of QRS complexes, esti-
mated by a proprietary R peak detection algorithm during image acquisition.
Analyzing the dataset was challenging due to the following properties:

– ECG signals were highly heterogeneous due to different equipment used, dif-
ferent physicians performing the scan, and different technical and professional
standards among countries.

– The ECG signal consisted only of the recording from a single lead, in contrast
the conventional 12 lead ECG for clinical diagnosis.

– In cardiac CT, electrodes are placed outside of the patient’s chest to not inter-
fere with the X-ray scanner, which often results in atypical ECG waveforms,
where only the R peak can be identified reliably.
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– Relatively short ECG recordings, with the average length of 23 cardiac cycles
and the minimal length of only 5 cycles.

4 Methods

In this section, we present our system to automatically quantify non-biological
artifacts and noise in ECG signals. First, we present a high-level overview of our
system. Subsequently, we explain our feature extraction technique for describing
anomalous ECG signals. Finally, we illustrate how these features were incorpo-
rated into an ensemble of classification models.

4.1 High-Level Overview

Our general strategy is to first split the overall problem into multiple subprob-
lems and address each individually, before combining our separate solutions into
a unified system, which yields probabilistic scores representing the magnitude
of noise in a given ECG trace. We can formulate two subproblems based on
characteristics of the noise patterns depicted in Fig. 2:

1. Global noise patterns comprise disturbances that, once present, tend to con-
taminate the whole signal. This category includes baseline wandering, power-
line interference, rotational noise caused by electromagnetic interference, and
a subset of other noise types (Fig. 2a-d).

2. Localized noise patterns comprise non-biological artifacts that affect the ECG
signal only within certain, relatively short, time intervals. It includes X-ray
artifacts, disturbances related to movement of the examination table, and
other miscellaneous localized disturbances (Fig. 2e-h).

For each category, we develop a feature extraction method tailored to that
particular subproblem and train an ensemble of classification models on top of
the extracted features to distinguish anomalous ECGs from normal ECGs and
to quantify the extent of noise in a trace (see Fig. 3). Our approach can be
summarized as follows.

Fig. 3. High-level overview of our system.
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1. A filter bank extracts features describing global noise patterns.
2. Each ECG trace is decomposed into a set of non-overlapping intervals con-

stituting a full cardiac cycle – referred to as beat – based on the provided
locations of QRS complexes.

3. Each beat is analyzed by a modified discord discovery algorithm [13], which
identifies the most unusual beat based on the dynamic time warping distance
[17] and a test for outliers [16].

4. At the same time, beats are combined into an inter-beat matrix, which is
supplied to robust PCA [3] to detect anomalous patterns within this matrix.

5. Next, we compute features describing localized noise patterns based on the
output of the previous two steps, i.e., discord discovery and robust PCA.

6. Finally, we use the features describing global and localized noise patterns to
train three different ensembles of various classification models, each yielding
an anomaly score in the interval [0; 1]:
– The 1st model is trained to exclusively recognize global noise patterns. Its

score represents the extent of global noise in a trace.
– The 2nd model quantifies the extent of localized noise patterns in a trace.
– The 3rd model, called unified model, is trained on the union of features

describing global and localized noise patterns. It ought to quantify the
overall amount of noise, disregarding the category of noise.

Let us now present individual steps in more detail.

4.2 Global Noise Patterns: Filter Bank Approach

Global noise patterns (Fig. 2a-d), by definition, should be detectable by looking
at general properties of the signal. A straightforward approach would consider
the signal-to-noise ratio of an ECG signal. Typically, it is estimated as the ratio
of the signal’s power (Psignal) to the power of the noise (Pnoise):

SNR = 20 · log10 (Psignal/Pnoise) .

Obviously, we are unable to estimate the SNR in such a straightforward manner,
as we do not know the noise component or the reference signal in advance.
Instead, we develop a set of filters that separate the noise component from the
observed signal. The extracted noise signal can subsequently be used to compute
the SNR and to extract other features describing the signal. Next, we compose
a set of features that describe the characteristics of global noise patterns.

To filter out powerline interference and baseline wandering (Fig. 2a,b), we
utilize that both noise patterns are characterized by certain frequency bands,
which would be either absent or much less explicit in unaffected signals. We
employ a two-pass median filter [5] to extract noise stemming from baseline
wandering, and a notch filter [18] to capture noise due to powerline interference.
For clean signals, the extracted noise signal would be negligible and the denoised
signal would largely correspond to the original signal.

Separating the remaining noise types is more challenging due to a large over-
lap between frequencies of the true (biological) signal and the noise. Standard
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band-pass filters affect both the noise and the actual signal, thereby distorting
the ECG waveform, in particular the QRS complexes. We observed that many
artifacts in the rotational noise and “other global noise” category (Fig. 2c,d)
resembled white Gaussian noise, which can be filtered efficiently by utilizing the
wavelet shrinkage technique [6], which works as follows. First, using the discrete
wavelet transform [15], we represent the signal as a weighted sum of basis func-
tions with different time and frequency resolutions. The weights or coefficients
of basis functions corresponding to high frequency signals tend to capture the
white Gaussian noise, which can be eliminated by applying the soft thresholding
operator to the wavelet coefficients and reconstructing the signal via the inverse
transform [6]. The result is a denoised version of the input signal with well pre-
served morphological features of the ECG waveform, in particular R peaks. In
addition, we compute the median absolute deviation of wavelet coefficients at the
highest resolution level, which quantifies noise based on the wavelet coefficients
itself [6]. The features derived from wavelet coefficients and the denoised signal
ought to differentiate clean signals from signals affected by rotational noise and
various global noise patterns (Fig. 2c,d).

Up to this point, we addressed baseline wandering, powerline interference,
rotational noise, and other types of ubiquitous noise independently. We combine
these individual approaches into a filter bank: the separated noise and signal
components are used to estimate the SNR and the original signal and its fre-
quency domain representation to compute a number of statistics (normalized
max. and min. amplitudes, mean, variance, skewness, kurtosis, and entropy). In
total, we compute 65 features describing global noise patterns.

4.3 Localized Noise Patterns: Considerations

In contrast to global noise patterns, localized noise patterns (Fig. 2e-h) are char-
acterized by pointwise, temporal changes in the signal, which requires methods
operating at a high temporal resolution. Most existing work on ECG analysis is
related to clinical diagnosis [11] and human identification [1]. For clinical diagno-
sis, feature extraction should focus on aspects that characterize a disease and at
the same time account for the natural variability of ECG waveforms and heart
rhythms across patients. For human identification, features need to differentiate
individuals, while mitigating factors that vary across multiple measurements for
the same individual, such as heart rate and signal quality. In both applications,
the key morphological features of the ECG waveform, such as P wave, T wave,
QRS complex, and so forth, often convey sufficient information about diseases
and individuals. In our case, we require features that are robust to variations
across CT scanners, imaging protocols, and individuals and their diseases. Most
importantly, the source of noise patterns considered here is almost always inde-
pendent from the individual and her heartbeat characteristics. Consequently,
standard features of an ECG waveform may not be reliable in our context.

The notion of a localized noise pattern implies that there is a part of the
signal, which notably deviates from the rest of the ECG. This suggests to first
identify the most anomalous subsequences within the signal and then to assess
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Fig. 4. ECG of a patient with a preliminary ventricular contraction (PVC).

type and degree of these anomalies. One of the key challenges is that such anom-
alies can be caused by technological as well as biological factors. A biological
anomaly in the ECG signal is due to a physiological condition of the heart, such
as preliminary ventricular contraction (PVC) depicted in Fig. 4. Therefore, arti-
facts of biological origin usually occur during specific cardiac phases and repeat
themselves over time. In contrast, a technological anomaly, such as a sudden
discharge caused by an X-ray, is not associated with a specific cardiac phase,
instead, it can occur during any phase. Furthermore, the unique waveform of a
technological artifact rarely occurs more than once in the same ECG trace, i.e.,
it is an outlier. Only in severe cases, when the noise results in a falsely detected
R peak, we observe not one, but two beats with an unusual morphology.

Next, we present two feature extraction methods that detect anomalous
structures within a signal, while mitigating the natural variability across diseases,
patients, and medical centers. The first approach is based on a discord discov-
ery algorithm, which finds the most unusual subsequence within a time series.
The second approach utilizes robust PCA for identifying anomalous structures
within a signal. These methods operate at the beat level, i.e., the time between
two R peaks. We argue that this is the most reasonable level of detail for three
reasons: (1) it provides necessary and sufficient information to identify repetitive
and anomalous subsequences; (2) as mentioned in Sect. 3, only R peaks are well
preserved across all signals; and (3) those traces, where an R peak was misde-
tected, are usually contaminated with non-biological artifacts and we have ways
to recognize them, which we will describe next.

4.4 Localized Noise Patterns: Discord Beat Discovery

Discord beat discovery (DBD) performs a series of comparisons of ECG beats
to identify the most anomalous beats. First, the ECG signal is decomposed
into multiple beats based on the detected QRS complexes. Next, the beats are
normalized to uniform length and compared with each other using a suitable
distance measure. The result is an inter-beat dissimilarity matrix (see Fig. 5).

One of the key aspects of this approach is the choice of an appropriate dis-
tance measure. The two primary criteria for choosing a distance metric are the
ability to handle ECGs with variable waveform morphology and its runtime per-
formance. The latter criteria is crucial, because we require O(B2) comparisons
for each ECG signal, where B is the number of beats in the signal, and we want
to analyze thousands of ECG traces in a short amount of time. The Euclidean
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(a) Dynamic Time Warping (b) Euclidean distance (c) SAX

Fig. 5. Inter-beat dissimilarity matrices based on different distance measures. The
yellow bands correspond to ECG beats contaminated with an X-ray artifact. SAX:
symbolic aggregate approximation [14].

distance is fast to compute, but by definition is not tolerant to temporal incon-
sistencies within time series [17]. The dynamic time warping (DTW) algorithm
[17] accounts for such differences and thereby mitigates natural morphological
variabilities within the ECG waveform. The symbolic aggregate approximation
(SAX) metric performs dimensionality reduction prior to distance comparison
and is robust to changes in waveform morphology too [14]. Empirically, we have
found that DTW provides the most optimal trade-off between accuracy and
computational complexity for our purposes.

Our DBD approach can be considered as a modification of the brute force dis-
cord discovery (BFDD) algorithm [13]. The BFDD algorithm often performs well
in finding the most unusual part of a time series, but has a runtime complexity
of O(L2), where L denotes the length of the time series. Moreover, it requires us
to specify the length of the anomaly, which is rarely known in advance. Instead,
we adapt the BFDD algorithm with the following change: instead of compar-
ing all possible subtraces of a fixed length with all others, we split the signal
into non-overlapping beats first, and only compare beats with each other. This
modification has the following consequences:

1. Focusing on the comparison between beats eliminates the need to specify a
fixed window length and better suits the ECG analysis context.

2. Significantly faster runtime of O(B2) – the number of beats B is about two
orders of magnitude smaller than the number of samples L in a signal.

3. It allows for an integration of domain knowledge in the form of predefined
patterns (discussed below).

Identifying localized noise patterns can be challenging when the ECG signal
contains both technological and biological anomalies, such as PVC beats (Fig. 4).
Our DBD approach accounts for the presence of biological anomalies by utilizing
that they tend to reappear over time. Therefore, for each beat – regular or
biologically abnormal – we can find another beat within the trace whose similar
(its distance is small). In contrast, a beat corrupted by a technological artifact
possesses a unique waveform – it will have a large distance to all other beats
in the trace. The DBD approach is suitable, given the following two conditions:
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Fig. 6. Example of the discord beat discovery approach. Time intervals, where the
X-ray source is active, are marked with red bars. Bottom: distance to the closest beat.

(1) there are at least two biologically abnormal beats, and (2) at least one of
them occurs outside of time intervals where the X-ray source was active. These
preconditions are met in most scenarios. In a few rare cases, it may happen that
there is only one biological anomaly and it appears exactly under an X-ray region,
in which case we might assume the presence of a non-biological X-ray artifact.
Our solution for such cases is to maintain a set of patterns of typical biological
anomalies. Each discord with a statistically significant deviation [16] from its
closest beat should be additionally aligned with these patterns. In case a close
match is found, the anomaly is likely of biological origin; otherwise, the observed
discord is either a technological anomaly or a novelty, i.e., an unexpected form of
a biological artifact. In either case, the trace would be of interest for the analyst.
Considering the computational overhead of this approach and the rarity of these
cases, we decided not to include predefined patterns in our deployed system, but
this remains as a potential future improvement.

Figure 6 illustrates the DBD algorithm on an ECG contaminated with several
X-ray artifacts. The main disadvantage of the algorithm is that it can only
determine the presence of an anomalous beat, but not the exact location and
structure of the anomaly. In the next section, we describe a technique that
overcomes these limitations.

4.5 Localized Noise: Robust PCA

In this section, we present a technique based on robust PCA [3] that allows for a
very precise localization of an anomaly at the sub-beat level, which is particularly
useful for capturing X-ray artifacts (Fig. 2e,f). Moreover, this approach allows
extracting anomalous structures and reconstructing the true, noise-free signal.

Robust PCA [3] is a modification of classical PCA designed to handle strong
outliers. It seeks a decomposition of a matrix X into two components, X = L+S,
such that L is a low-rank matrix that comprises regular patterns within the data,
and S is a sparse matrix, which captures irregular structures. There are no strong
assumptions about the irregularities – the only requirement is that they appear
unusual with respect to the rest of the data, such that the sparsity condition
of the S matrix holds. This enables us capturing a wide range of anomalies.
The objective function of robust PCA consists of two terms: the nuclear norm
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‖X‖∗ =
∑

i σi(X), with σi(X) denoting the i-th singular value of X; and the
L1 norm ‖X‖1 =

∑
ij |Xij |. The resulting optimization problem has the form:

minL,S ‖L‖∗ + λ‖S‖1, subject to L + S = X,λ > 0.

In many applications, the data can be modeled as a sum of such low-rank and
sparse components [3]. In the context of cardiac CT, we want L to capture the
biological signal and S arbitrary localized non-biological anomalies.

Here, the rows of matrix X correspond to the beats in a single ECG trace:
first, we segment the ECG into beats and scale individual beats to uniform
length; next, the beats are stacked to form the inter-beat matrix X. Applying
the robust PCA procedure to X yields the decomposition into the matrices L
and S (see Fig. 7 a and b). An ECG waveform that is severely corrupted by a
localized noise pattern, such as an X-ray artifact, can have its true waveform
captured by the L matrix and the non-biological anomaly by the S matrix. As a
result, the information we are interested in tends to accumulate in the S matrix.

We use S to answer two questions: (1) whether the ECG contains a significant
anomaly and (2) whether this anomaly only occurs when the X-ray source is
active. First, we apply a test for outliers [16] to the values of S and compute
noise quantification measures such as the median absolute deviation. Next, we
build a binary X-ray matrix M by splitting the vector of X-ray flags according
to R peaks (Fig. 7), and compute the correlation between values in S and the
positive flags in M . Finally, we divide S into groups corresponding to different
values of the binary X-ray matrix M and perform t-tests to determine whether
their mean significantly differs from each other.

We identified three requirements for this approach to yield good results:

1. There are enough beats within the trace to infer repetitive structures (15
beats are usually sufficient).

2. There is either a single beat corrupted by a non-biological artifact or multiple
corrupted beats, each with its own unique waveform.

3. Artifacts of biological origin, if present, do repeat over time.

(a) Low-rank matrix L. (b) Sparse matrix S. (c) X-ray matrix M .

Fig. 7. The low rank (a) and the sparse (b) components produced by the robust PCA
procedure applied to the ECG signal in Fig. 6, as well as the binary matrix of X-ray
flags (c). Two anomalies are captured by the S matrix (marked by arrows). Overlaying
(b) and (c) reveals that both anomalies are X-ray artifacts.
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Our empirical findings and cross-validation results, which will be presented
below, suggest that these three conditions hold for most of the noise patterns.
Considering the third condition, in some cases an ECG signal contains few bio-
logically abnormal beats (<15 %) such that the robust PCA mistakes them for
outliers, i.e., they are captured by the S matrix. To address this ambiguity, we
use our discord beat discovery approach described above, which can handle cases
with two to three ectopic beats. By combining features extracted during discord
beat discovery and robust PCA, we end up with over 100 features describing
localized noise patterns.

4.6 ECG Trace Classification

After developing features describing global and localized noise patterns, respec-
tively, we obtained two sets of features. These sets adequately describe the noise
patterns in Fig. 2, but are applicable to their respective domain only and only
some of them, such as SNR, directly provide information about the magnitude
of noise in a given ECG trace. Therefore, we employ a classification model that
utilizes all 181 extracted features to yield a probabilistic score representing the
magnitude of noise, global or local. We refer to this model as the unified model.

Moreover, we noticed a considerable redundancy in the feature set and that
some features contribute little to the overall model. Thus, prior to training, we
rank features by importance – using the improvement in out-of-bag error esti-
mated from a random forest (RF) model [2] – and retain all features in the top
half. Subsequently, multiple classification models are trained on the selected fea-
tures to distinguish good from anomalous ECGs. We use RF [2], linear SVM,
SVM with RBF kernel [4], k nearest neighbors classification [8], and logistic
regression. Although a single model trained on the selected feature set can pro-
vide satisfactory results (see Table 1), each model has its own biases determined
by its learning principle and its hyper-parameter configuration. Thus, to further
raise the reliability of our system, we construct an ensemble of the above men-
tioned models using the model stacking technique [19], where an SVM with RBF
kernel is used as meta-model. This increases the complexity of training, but we
believe this is acceptable, because the model is rarely re-trained once deployed
(the additional costs during prediction are negligible).

Analogous, we train two additional ensembles to recognize global and local-
ized patterns exclusively. Three anomaly scores in the range [0; 1] form the out-
put. The main score is produced by the unified model and represents the final
conclusion about the quality of the ECG, because it is equally sensitive to the
presence of global and localized noise patterns. The remaining two scores exclu-
sively quantify the amount of global and localized noise, respectively.

5 Evaluation

We evaluated our solution using cross-validation and a hold-out set consisting of
annotations from two domain experts. The system’s performance was measured
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by the area under the precision-recall curve (AUPRC) and the area under the
receiver operating characteristics curve (AUROC). It is important to mention that
our deployed system allows choosing a user-defined threshold on the predicted
probabilities, because users have different requirements regarding precision and
recall (see Sect. 5.2). Hence, we did not optimize the choice of a threshold, but
provide accuracy, precision, and recall for a threshold of 0.6 for illustration.

5.1 Cross-Validation

Cross-validation was based on the dataset consisting of 2,581 cardiac CT scans
presented in Sect. 3. It contained 1,733 “good” ECGs, 501 corrupted with global
noise, and 391 with localized noise. Note that many traces were contaminated
with multiple noise patterns of both categories. Experimental results with respect
to the global, localized, and unified model are summarized in Table 1.

The results demonstrate that even individual models achieve high perfor-
mance scores, with a negligible difference in AUPRC and AUROC between RF
and SVM, but a slight advantage for RF with respect to precision. We achieved
an additional improvement in precision and recall when combining several mod-
els into an ensemble. Although the improvement may seem minor, it becomes
relevant when considering >10,000 traces. In production, the cost of not iden-
tifying a problem, i.e., a false negative, is generally higher than the cost of a
false positive. Moreover, our primary objective is to assist technicians in iden-
tifying anomalous cardiac CT scanners and not individual ECGs, which results
in Table 1 show. Therefore, multiple corrupted ECGs obtained from the same
device need to be identified before action is taken, which justifies trading a higher
recall for a lower precision – a corrupted ECG should not be missed. We allow the
user to individually adjust the threshold, because the trade-off between precision
and recall is often situational.

5.2 External Validation

We deployed our system at Siemens Healthcare, where it is used to automatically
analyze previously unobserved ECG traces in a real world setting. Our ensemble

Table 1. Cross-validation results for global noise patterns, localized noise patterns,
and both types of noise patterns (All) as defined in Sect. 4.1. Accuracy, precision, and
recall were computed at a threshold of 0.6.

Metric Global(RF) Localized(RF) All(SVM) All(RF) All(Ensemble)

mean AUROC 0.998 0.996 0.996 0.997 0.997

mean AUPRC 0.997 0.989 0.993 0.994 0.996

mean accuracy 0.990 0.981 0.973 0.978 0.983

mean precision 0.990 0.963 0.964 0.979 0.985

mean recall 0.970 0.934 0.952 0.954 0.964
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of binary classification models was trained on all 2,581 ECG traces before deploy-
ment and processed 150 ECG traces during our evaluation period. Two domain
experts independently analyzed these traces manually and assigned each trace to
one of 5 categories: (1) perfect (no artifact), (2) good (only very minor artifacts),
(3) corrupted (considerable amount of artifacts), (4) strongly corrupted, and (5)
extremely corrupted. Overall, the inter-expert agreement was high, as indicated
by Kendall’s coefficient of concordance (W = 0.938, P < 0.001, corrected for ties)
[12]. Most disagreements (24 of 53; 45.3 %) were due to traces of the 3rd category
being assigned to the 2nd (15) or 4th category (9) instead, which indicates that
it is difficult, even for experts, to draw a sharp line between clean and corrupted
ECGs (see Table 2). We evaluated our system based on AUPRC, AUROC, and
Kendall’s coefficient of concordance [12], which measures the degree of agreement
between our system and the experts on the five-level Likert-scale.

First, we treated categories 3, 4 and 5 as positive class and the remainder as
negative class to allow comparison to our cross-validation results. We obtained
an AUPRC and AUROC score of 0.875 and 0.898 with respect to expert 1 and
0.905 and 0.942 with respect to expert 2. Although performance scores dropped
compared to our cross-validation experiment, it is noteworthy that the expert,
who annotated the training set, did not participate in annotating the hold-out
set. Thus, corner cases between “good” and corrupted signals are likely biased.
The AUROC score still indicates a highly discriminatory model (� 0.9) and the
drop in AURPC can be attributed to a decrease in precision. Note that expert 1
assigned more ECGs to the positive class (cat. 3-5) than expert 2, thus only 80 %
(56/70) of positive annotations of expert 1 match that of expert 2. In contrast,
93 % (56/60) of positive annotations of expert 2 match that of expert 1 (cf.
Table 2). Consequently, we would expect that the AUPRC, or average precision,
of our system would be around 0.9 at best. We obtained AUPRC scores of 0.875
and 0.905, indicating a highly discriminatory model.

When considering in which range our predicted probabilities fell, we noticed
that predicted probabilities of ECGs belonging to categories 2 and 3 were incon-
sistent. Table 3 shows confusion matrices obtained after dividing predicted prob-
abilities into 5 equally spaced bins ([0; 0.2[, [0.2; 0.4[, . . . ). The table reveals that
ECGs of categories 2 and 3 have been assigned probabilities in the whole interval
[0; 1], which results in a low precision. The recall remains high when disregarding

Table 2. Confusion matrix illustrat-
ing inter-expert agreement.

Expert 1
1 2 3 4 5

E
xp

er
t
2

1 32 21
2 23 11 3
3 4 23 6
4 3 12
5 5 7

Table 3. Confusion matrices demonstrat-
ing results of external validation.

Expert 1 Expert 2
1 2 3 4 5 1 2 3 4 5

P
re
di
ct
ed

1 27 32 6 1 45 19 2
2 3 5 7 5 5 5
3 5 4 6 3
4 2 3 5 5 3 1 1
5 2 4 17 20 7 3 2 20 14 11



Automatic Detection of Non-Biological Artifacts in ECGs 207

category 3: the system recognizes 59 out of 60 ECGs of categories 4 and 5 by
predicting a probability above 0.6, whereas the recall drops to 0.838 (109/130)
when including category 3. At the same time the precision increases from merely
0.492 for categories 4 and 5, to 0.790 for categories 3-5 due to less false positives.
We concluded that predicted probabilities are not well calibrated, because very
high and very low probabilities are over-represented. In fact, this is a problem for
many machine learning methods, which can perform well by means of standard
metrics for classification, but yield poorly calibrated probabilistic scores, or vice
versa [7]. Alternate learning regimes, such as ordinal regression and learning-to-
rank, could remedy this problem. However, in contrast to classification, richer
annotations are required, which places more burden on human annotators and
makes obtaining labels prohibitively costly in our case.

Next, we compared the model’s predictions to the five-level Likert scale,
which resulted in Kendall’s coefficient of concordance of 0.863 (P < 0.001) based
on the two expert annotations and the predicted probabilities (corrected for
ties). The results demonstrate that most predictions were concordant with the
experts’ annotations (87.5 % and 82.8 %, excluding ties), thus the agreement
between predicted probabilities and expert annotations is substantial.

Although results of the external validation suggest a less discriminatory sys-
tem, compared to our cross-validation results, the overall performance of the sys-
tem is still high. Moreover, we allow the user to individually adjust the threshold
to identify only severe cases (categories 4 and 5) with very high recall but mod-
erate precision, or all cases (categories 3–5), which increases precision. Overall,
the external validation confirmed the practical applicability of our system. Most
importantly, the automated analysis operates at a speed that allows processing
over thousand ECGs per hour (single-threaded), compared to a few hundred per
day of a human analyst.

6 Conclusion

The main goal of this work was to develop a system to automatically detect var-
ious non-biological artifacts and noise patterns in ECG signals acquired during
cardiac CT. We adapted a discord discovery technique for detecting the most
abnormal heartbeats and applied robust PCA for a more precise localization
of non-biological anomalies. As a result, we produced a feature set that cap-
tures differentiating properties of various global and local noise patterns and
used it to train an ensemble of classification models. We validated our system
internally via cross-validation and externally in a real world setting. The results
demonstrate that our system is highly discriminatory and allows processing thou-
sands of ECGs with minimal human interaction. In the future, we would like to
improve our model with regard to calibration, such that predicted scores accu-
rately reflect the true severity of an artifact. Our system is currently deployed at
Siemens Healthcare, where it continuously analyzes cardiac CT scans collected
from various medical centers. The ultimate benefit of our work can be deter-
mined retrospectively as time passes, based on the overall reduction of reported
problems and the time needed to resolve them.
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Abstract. A major focus of the commercial aviation community is
discovery of unknown safety events in flight operations data. Data-
driven unsupervised anomaly detection methods are better at captur-
ing unknown safety events compared to rule-based methods which only
look for known violations. However, not all statistical anomalies that are
discovered by these unsupervised anomaly detection methods are oper-
ationally significant (e.g., represent a safety concern). Subject Matter
Experts (SMEs) have to spend significant time reviewing these statisti-
cal anomalies individually to identify a few operationally significant ones.
In this paper we propose an active learning algorithm that incorporates
SME feedback in the form of rationales to build a classifier that can dis-
tinguish between uninteresting and operationally significant anomalies.
Experimental evaluation on real aviation data shows that our approach
improves detection of operationally significant events by as much as 75 %
compared to the state-of-the-art. The learnt classifier also generalizes well
to additional validation data sets.

1 Introduction

As new technologies are developed to handle complexities of the Next Generation
Air Transportation System (NextGen), it is increasingly important to address
both current and future safety concerns along with the operational, environmen-
tal, and efficiency issues within the National Airspace System (NAS). NASA,
in partnership with the Federal Aviation Administration (FAA) and industry
is continuing to develop new technologies to identify previously undiscovered
safety events through data mining of large heterogeneous aviation data sets that
are collected on a regular basis. These techniques have the potential to discover
new safety risks in the existing system or risks that did not exist previously but
c© Springer International Publishing AG 2016
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are a result of the implementation of the NextGen concepts. Combined with
more traditional monitoring of safety, the Aviation Safety program at NASA
has invested significant resources for development and use of data mining meth-
ods for identification of unknown safety and other events in Flight Operations
Quality Assurance (FOQA) data [6].

Several unsupervised anomaly detection methods have been developed to
identify anomalies in commercial flight-recorded data. In the absence of knowl-
edge regarding the types of safety events that are present in the data, and absence
of labels, unsupervised techniques are the only ones that have the unique ability
to find previously unknown anomalies; however, they do so only in the statis-
tical sense—the anomalies found are not always operationally significant (e.g.,
represent a safety concern). After an algorithm produces a list of statistical
anomalies, a Subject Matter Expert (SME) must go through that list to iden-
tify those that are operationally relevant for further investigation. A very small
fraction of statistical anomalies (less than 1 %) turns out to be operationally rel-
evant, so substantial time and effort is spent by SMEs in examining anomalies
that are not of interest.

The goal of this work is to semi-automate the process of distinguishing
between operationally significant anomalies and uninteresting statistical anom-
alies through use of supervised learning approaches, which require labeled
instances. We propose to use active learning for training a classifier, so that
SME time and effort is spent on only the most informative and critical anomaly
instances. In this process, first an unsupervised anomaly detection algorithm is
run on all the flight data to generate a ranked list of statistically significant
anomalies. A very small percentage of these are presented to SMEs to bootstrap
the active learning process. The SME provides labels for each of these instances
along with an explanation about the label. A positive label indicates an oper-
ationally significant safety event whereas a negative label indicates otherwise.
Based on these few labels we build an active learning system that (i) utilizes
the SME’s time in the most effective manner by iteratively asking for labels for
few informative instances, (ii) elicits rationales/explanations from the SME for
why s/he assigns a certain label to an instance, and (iii) constructs new features,
based on rationales, that are incorporated in future iterations of active learning
and classifier training.

Active learning for anomaly detection has been studied in the past with the
goal of finding useful anomalies as opposed to statistical anomalies [7] where a
priori knowledge of the number of rare event classes is assumed. In our appli-
cation the number of types of anomalies encountered is unknown and therefore,
the assumption does not hold true. Recent work in active learning has focused
on eliciting richer feedback from the experts in addition to labels, to speed up
the annotation process. For example, experts are asked to annotate features as
relevant/irrelevant for a specific task [1,15]. Similarly, several researchers have
investigated eliciting rationales, which often correspond to highlighting a piece
of text in text classification or highlighting feature values in feature-valued rep-
resentations, and incorporated them into the training of classifier [14,18]. In this
work, we build on the rationale framework by allowing the domain experts to
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provide rationales for their classification. The main difference between our work
and existing work is that in this paper we enrich the representation by creat-
ing additional features that are combinations of existing features rather than
focusing on feature value distribution.

The advantages of this method are twofold: (i) it dramatically minimizes the
time an SME needs to spend to find operationally significant anomalies from the
long list of statistical anomalies output by any unsupervised anomaly detection
method, and (ii) at the end of training, we have a classifier that can be run on the
original flight operations data set to uncover many more operationally significant
safety events that might have been missed in the original anomaly detection
process due to the presence of overwhelming number of statistically significant,
but uninteresting, anomalies. Our experiments with real aviation data show that
using active learning with rationales improves precision@5 (defined as number of
positive instances in top 5 instances ranked according to their distance from the
decision boundary) results by as much as 75 % compared to the state-of-the-art.

The rest of the paper is organized as follows. Section 2 discusses the data
setup and the existing unsupervised anomaly detection framework. Section 3
discusses our proposed active learning algorithm and its performance is analyzed
in Sect. 4. Section 5 discusses deployment plans. Section 6 concludes the paper.

2 Background

In this section we describe the state-of-the-art unsupervised anomaly detection
method used for identifying statistical anomalies in flight operations data, fol-
lowed by description of the data used in this study.

2.1 Multiple Kernel Anomaly Detection

The unsupervised anomaly detection algorithm that is currently used in the avi-
ation safety community most frequently is Multiple Kernel Anomaly Detection
(MKAD)1 [5]. The MKAD algorithm is designed to run on heterogeneous data
sets consisting of multiple attribute types including discrete and continuous.
MKAD is a “multiple kernel” [2] based approach where the major advantage is
the method’s ability to combine information from multiple heterogeneous data
sources. The heart of MKAD is a one-class SVM model that constructs an opti-
mal hyperplane in the high dimensional feature space to separate the abnormal
(or unseen) patterns from the normal (or frequently seen) ones. This is done by
solving the following optimization problem [10]:

min Q =
1
2

∑

i,j

αiαjK (xi,xj) (1)

subject to 0 ≤ αi ≤ 1
�ν

,
∑

i

αi = 1, ρ ≥ 0, ν ∈ [0, 1]

1 http://ti.arc.nasa.gov/opensource/projects/mkad/.

http://ti.arc.nasa.gov/opensource/projects/mkad/
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where αi’s are Lagrange multipliers, � is the number of data tuples in the train-
ing set, ν is a user-specified parameter that defines the upper bound on the
training error, and also the lower bound on the fraction of training points that
are support vectors, ρ is a bias term, and K is the kernel matrix. Once this opti-
mization problem is solved, at least ν� training points with non-zero Lagrangian
multipliers (α) are obtained and the points for which {xi : i ∈ [�] , αi > 0} are
called the support vectors. The decision function is:

f(z) = sign

(
∑

i

αi

∑

p

ηpKp(xi, z) − ρ

)

which predicts positive or negative label for a given test vector z. Instances with
negative labels are categorized as outliers.

The classifier that we learn using active learning for differentiating between
operationally significant and uninteresting anomalies is a two-class support vec-
tor machine using multiple kernels. Therefore, it differs from MKAD in the fact
that it is not based on a one-class SVM like MKAD, but has the same kernel
structure as MKAD. The dual objective function for the two-class problem is:

max
α

�∑

i=1

αi − 1
2

∑

i,j

αiαjyiyjK(xi,xj)

where (xi, yi)’s are the data tuples for i = 1, . . . , �. Here xi and yi are the
input data points and class labels respectively. In the supervised classification
case, the xi’s correspond to the anomalies found by the MKAD algorithm as
discussed above and yi’s correspond to the labels provided by the SMEs. For
identifying operationally significant anomalies, this classifier is used to rank the
test instances based on their distance from the hyperplane.

2.2 Data Preparation

The surveillance data used in this study comes from combining two Air Traffic
Control (ATC) facilities — Denver Terminal Radar Approach Control (D01) and
the Denver Air Route Traffic Control Center (ZDV). The objective of this work is
to develop a process that automatically discovers previously unmonitored, oper-
ationally significant, flight trajectories representing a safety risk to the airspace.
The end goal is to produce a tool that can rank these anomalous flights for
controllers to review and help make mitigating decisions about the safety of
the airspace. The types of anomalies that are being targeted in this study are
unusual trajectories from 30 nautical miles (NM) on approach to landing. These
can include strange vectoring that do not conform to standard operating pro-
cedures, significant overshooting of the final approach fix, or high altitude and
speed profiles that can lead to unstable approaches. Figure 1 illustrates the data
processing flow from data collection through merging, filtering, unsupervised
anomaly detection, and SME feedback incorporation for classification of anom-
alies into operationally significant and uninteresting categories. Data collection
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refers to the process of recording the relevant data that is used in this study (done
by the PDARS program responsible for collection, processing, and reporting of
aviation data from multiple sources). NASA was given access to PDARS data
for the 2014 and 2015 calendar years. Approximately 25,000 flights are available
to us from 2014, of which approximately 2400 flights for a particular month
are being analyzed as part of our safety study for Denver for 2014. The 2015
flights are only used for validation of results. For each trajectory, from 30 NM
out from the destination airport, the minimum separation is found and used to
create four-dimensional trajectories: latitude, longitude, altitude and distance to
nearest flight. These four features are then averaged over half NM intervals from
30 NM to the runway threshold based on distance traveled and are partitioned
by runway and destination airport sets on each day. This results in trajectories
with fixed vector lengths because of the half-mile binning and the fixed 30 NM
distance traveled, which are then used to create similarity kernels. We also use
the PDARS turn-to-final (TTF) reports that provide specific characteristics of
how the aircraft performed the turn on to the final approach within 20 NM of
a runway. All deviations are calculated with respect to the intercept, which is
the point at which the flight trajectory crosses the extended runway centerline
before making its final approach. These deviations include intercept distance,
angle of intercept, altitude deviation, distance deviation, and speed. Maximum
overshoot and aircraft size (categorical feature indicating one of four weight cat-
egories) are two additional features from this source. In addition, three binary
parameters are derived based on the characteristics of the flight identified as
the nearest neighbor for each time step. These features are designed to provide
domain context since flights on parallel runways or flights in the same flow are
allowed to encroach within the standard separation threshold, whereas flights on
the same runway should not fall below the separation threshold. These parame-
ters indicate whether two nearest neighboring flights are on the same runway,
parallel runway, or are part of the same flow. An additional derived feature called
separation is constructed as the 3-d separation between two flights based on the
l2 norm of the horizontal and vertical separation. It should be noted here that
all of these (raw and derived) features together constitute the original feature
set for our study. The data is heterogeneous in the sense that some of these
features are time-series data while others are a single-point feature and some are
continuous whereas others are discrete, nominal, or binary.

The data mining block in Fig. 1 consists of the next steps of unsupervised
anomaly detection followed by SME review and labeling, and finally, classifier
learning for distinguishing between operationally significant anomalies and unin-
teresting anomalies. Depending on the size of the input data set, MKAD algo-
rithm may discover hundreds to thousands of ranked anomalies, making it diffi-
cult for domain experts to validate all of them. Therefore, we use active learning
to learn a classifier using very few labeled instances for this purpose. Each time
an SME is provided an instance to be classified, the SME provides the label, along
with an explanation/rationale for his/her decision. This rationale, whenever pos-
sible, is converted into a new additional feature, which is then incorporated into
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Fig. 1. System setup: Data collection, processing, and mining.

the classifier training through the creation of a new kernel. The details of this
process and approach are described in the next section.

3 Active Learning with Rationales

Active learning algorithms iteratively select informative instances for labeling to
save annotation time, cost, and effort [11]. For skewed data sets with minority
class distribution much less than the majority class, a common and simple app-
roach for selecting informative instances is to maximize the chances of retrieving
positive instances [4]. Most-likely positive (MLP) strategy aims to add more
positive instances into the labeled training set. The objective is:

x∗ = arg max
x∈U

Pθ(ŷ
+|x)

where ŷ+ represents the predicted positive label. Intuitively, MLP is a way of
over-sampling the minority class to address the imbalanced class distributions.
Examples of other strategies include query-by-committee [12], uncertainty sam-
pling [16], expected error reduction [9], evidence-based uncertainty sampling [13],
and more. Ramirez-Loaiza et al. [8] provide an empirical evaluation of common
active learning strategies. Recent active learning work has looked at eliciting
domain knowledge in form of rationales [14] and feature annotations [1] from
the SMEs instead of just the labels of instances. In learning with rationales
approach, SMEs provide rationales in the form of features that they think are
responsible for classifying an instance into a particular class. In this paper, we
elicit the rationales from SMEs and incorporate them into the learning process.
The main difference between previous work on incorporating rationales and our
work is that we create new features based on the rationales provided by the
SMEs.

For training our classifier using active learning, we work with the list of
anomalies produced by running the unsupervised anomaly detection algorithm,
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MKAD, on the data described in Sect. 2.2. For each flight, MKAD returns an
anomaly score, which is the flight’s distance from the hyperplane of a one-class
SVM model. Flights with a negative score are considered as anomalous and
flights with a positive score are considered as not anomalous. The SMEs are asked
to provide labels for top 5 % anomalous flights based on whether they think the
anomaly is operationally significant (OS/positive labels) or not (NOS/negative
labels). They are also asked to provide a rationale for the chosen label. Since
labels and rationales are subjective opinions of each SME, we consolidate the
labels and rationales from two SMEs by resolving conflicts (by reviewing each
others’ labels and rationales) whenever there is one, to get gold standard labels
and rationales for our study.

3.1 Creating Rationales

When the SMEs identify a flight as an OS flight, they provide rationales in the
form of either domain knowledge or using existing features and thresholds. How-
ever, when the SMEs identify a flight as NOS, they only provide acknowledgment
of certain characteristics of the flight (e.g., a little overshoot, speed not a factor,
small deviations on final). In anomaly detection tasks, it is easy to provide a
rationale for why a particular instance is anomalous, but it is often difficult,
if not impossible, to provide a rationale for why an instance is not anomalous.
Therefore, we use the rationales for only the OS flights to create new features
and use them to extend the feature representation. Note that the rationales
provided by SMEs are often in terms of the original features that are already
captured by PDARS. Some rationales talk about two or more features whereas
some highlight only one feature.

In our training set, most OS anomalies could be explained by one or more of
three different rationales. The first rationale provided for operational significance
is loss-of-separation, which the domain experts define as ‘horizontal separation
is less than 3 miles and vertical separation is less than a 1000 feet, and the
nearest neighboring flight is not on parallel runways and not part of the same
flow’. When a loss-of-separation rationale is provided, we create a new feature
that checks whether the criteria ‘horizontal separation less than 3 miles and
vertical separation less than 1000 feet’ and ‘the nearest neighboring flight is not
on parallel runway and not in the same flow’ hold and incorporate it as a new
binary feature in our training set.

The second rationale provided by the SMEs is for large overshoots where
an overshoot is defined as going past a certain point in the landing trajectory
against standard operational procedures. For rationales such as ‘maximum over-
shoot is too large’, we create a new feature that checks whether the overshoot is
greater than a threshold. The threshold can be either chosen manually based on
domain knowledge or based on the values of the overshoot feature for the labeled
OS flights with overshoot rationale observed until that point, and updated iter-
atively.

The third rationale provided by the SMEs is for unusual flight path. Since this
rationale is more qualitative than quantitative, and none of the original features
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Fig. 2. Expected flight path and deviation from it for 4 flights. The first three flights
are NOS. The last flight is an OS flight. (Color figure online)

represent an ‘unusual flight path’, we compute a new feature as follows. For
each runway, using latitude and longitude features, we compute expected flight
trajectory as the average trajectory of all flights that land on a runway. Then
we create a new feature that captures the overall deviation of each flight from
its expected flight trajectory over the last 10 points in the trajectory. Figure 2
shows the plots for a few trajectories. It can be seen that for the first three flights
in Fig. 2, the red dots align well with the expected trajectory (highlighted using
the red box), whereas for the last flight there is significant deviation from the
expected trajectory. This can have severe safety implications and is therefore
considered an operationally significant safety event.

3.2 Active Learning with Rationales Algorithm

Algorithm 1 describes our approach for incorporating rationales into active learn-
ing. Active learning algorithm starts with a small set of labeled flights, L, and
finds the most informative flight, x�, from the unlabeled set, U . The most infor-
mative flight is the one that provides the classifier maximum information in
terms of the decision boundary, or, in other words, one that has the maximum
utility. The flight x� is then presented to the SME, who provides its label y�.
For every flight we present to the SME, in addition to a label, we also request
for a rationale R(x�) describing why s/he labeled the flight as OS or NOS. If
the label is OS, we create a new feature, f�

r , if possible, for the rationale R(x�)
and add it into our existing feature representation: f = 〈f1, f2, · · · fn〉⋃〈fr〉. We
assign weight wo for the original feature kernels and weight wr for the rationale
feature kernels, where wr ≥ wo, since intuitively the rationale features are the
ones that have the highest power to separate the OS flights from the NOS ones.
However, to satisfy Mercer’s condition, we need to ensure that it is a convex
combination of the kernels. Therefore, we normalize each weight by the sum of
the weights w = wo × n + wr × p, where n and p denote the number of original
and rationale features respectively. Let η denote the normalized kernel weights
for the enhanced feature set. Note that the kernel weights for original features
〈η1, η2, · · · ηn〉 are uniform and hence the kernel weight for each original feature
will be ηo, which is computed in Step 10 of Algorithm 1. Similarly, the kernel
weight for the rationale feature set 〈ηn+1, ηn+2, · · · ηn+p〉 is ηr and is computed
in Step 11 of Algorithm 1. The final kernel is computed using the updated set of
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Algorithm 1. Active Learning with Rationales for Identifying Operationally
Significant Anomalies in Aviation
1: Input: U - unlabeled flights, L - labeled flights, T - test flights, f = 〈f1, f2, · · · fn〉 -

current set of features, η = 〈η1, η2, · · · ηn, ηn+1, ηn+2, · · · ηn+p〉 - normalized kernel
weights for enhanced feature set, θ - underlying classification model, B - budget

2: repeat
3: x� = arg max

xi∈U
utility(xi|θ)

4: request label y� for the flight x�

5: if y� == OS then
6: request SME to provide a rationale R(x�) for why the flight is operationally

significant
7: if rationale �= φ then
8: create feature f�

r for R(x�)
9: add f�

r to U , L, and T
10: ηo = wo∑n

i=1 ηo+
∑p

j=1 ηr

11: ηr = wr∑n
i=1 ηo+

∑p
j=1 ηr

12: η = 〈η1, η2, · · · ηn〉⋃〈ηr〉
13: f = 〈f1, f2, · · · fn〉⋃〈fr〉
14: end if
15: end if
16: L ← L ∪ {〈x�,y�, R(x�)〉}
17: U ← U \ {〈x�〉}
18: Train θ on L
19: until Budget B is exhausted; e.g., |L| = B

kernel weights η containing normalized weights ηo for the original feature kernels
and the normalized weights ηr for the rationale feature kernels for the enhanced
feature set f .

Possible enhancements: Based on the training data and the rationales pro-
vided by the SMEs, in this paper, we created three features that encompass a
significant number of OS safety scenarios. However, this set is far from com-
plete as there can be a huge variety of other explanations that can come from
SMEs. So the set of rationale features is always expanding. As the set of fea-
tures grows based on rationales, there might be a need to consolidate features
into conjunctions and disjunctions depending on redundancy. For example, two
common rationales in our study are loss-of-separation and large overshoot. How-
ever, not all OS flights have both reasons for being labeled OS. Some flights are
OS because of loss-of-separation, but they might have perfectly acceptable over-
shoot values, whereas other OS flights might not have a loss-of-separation but
might have large overshoot values. Current framework creates one feature per
rationale. An alternative approach is to create one indicator feature and keep
revising it by adding the new rationales as disjunctions. Also, once a classifier is
trained using this framework, our goal is to find operationally significant events
in the original flight data. However, since the classifier is trained on only the



218 M. Sharma et al.

anomalies, the feature distribution does not necessarily match that of the over-
all data set. This unaccounted bias can be handled by sub-sampling some of the
flights that are not signaled by MKAD and adding them to the training with
NOS (negative) labels. Selecting flights that are ranked lowest by MKAD, for
this purpose, can ensure with a high probability that the flights which are most
certainly nominal are being used as NOS samples.

4 Empirical Evaluation

Experimental Setup: The data set used for training the classifier using active
learning corresponds to PDARS data from the Denver Airport for August 2014,
containing approximately 2400 flights out of which 153 flights are marked anom-
alous by MKAD. These 153 flights are reviewed by two SMEs independently
(with conflict resolutions as needed) to provide labels and explanations. In these
153 flights, 26 are marked OS (positive) and the remaining 127 are marked NOS.
The original data set contains 16 features as described in Sect. 2.2. Additionally,
we construct 3 rationale features supporting the explanations for the OS flights
during the active learning iterations, when OS flights with one or more rationales
provided in Sect. 3.1 are encountered.

Our proposed active learning strategy, MLP w/Rationales, selects most-likely
positive (MLP) instances for labeling at each iteration of training and creates
(or updates) rationale features whenever an appropriate new instance is encoun-
tered. We compare our algorithm’s performance with three baselines: (i) random
strategy (RND) where random instances are picked from the unlabeled pool and
given to the SME for labeling, (ii) most-likely positive strategy (MLP) that
selects more of the positive instances for labeling at each iteration, but does
not add new features (or rationales), and (iii) MKAD-Sampling strategy where
flights are given to the SME for labeling in the order of their MKAD anomaly
ranking (higher the anomaly rank, the more informative it is for labeling).

We evaluate all strategies using precision@k measure which can be defined
as the number of positive instances in top k instances ranked by the classifier.
This measure is most suitable for our application because the SMEs go through
a list of anomalies to identify those that are operationally significant for further
investigation, and improving precision@k means that the SMEs would analyze
more of the OS flights compared to the NOS flights. We chose precision@5
and precision@10 for evaluation since they are the most frequently used in the
literature measures to use (e.g., [3,17]). We bootstrap the classifier using an
initially labeled set containing one OS flight and one NOS flight, and at each
round of active learning the learner picks a new flight for labeling. We evaluate
all strategies using 2-fold cross validation and repeat each experiment 10 times
per fold starting with a different bootstrap, and present average results over 20
different runs. We set the budget (B) in our experiments to 45 flights, as most
learning curves flatten out after about 35 flights. Since each learning curve is an
average over 20 runs, for each learning curve, we report error bars for standard
error of the mean (SEM), which is computed as standard deviation divided by
the square root of sample size (SEM = s√

n
).
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4.1 Results

Figure 3 presents the learning curves comparing RND, MKAD-Sampling, and
MLP strategies for precision@5 and precision@10. MKAD-Sampling performs
worse than RND for precision@5 and it outperforms RND for precision@10.
However, MLP outperforms both RND and MKAD-Sampling for precision@5
and precision@10. We performed pairwise one-tailed t-tests under significance
level of 0.05, where pairs are area under the learning curves for 20 runs of each
method. If a method has higher average performance than a baseline with a
significance level of 0.05 or better, it is a win, if it has significantly lower perfor-
mance, it is a loss, and if the difference is not statistically significant, the result
is a tie. The t-test results show that MKAD-Sampling statistically significantly
loses to RND for precision@5 and significantly wins over RND for precision@10.
MKAD-Sampling performs better than MLP at the very beginning of the learn-
ing curves, but t-test results show that overall, MLP statistically significantly
wins over MKAD-Sampling for both precision@5 and precision@10. This jus-
tifies our choice of using MLP as the active learning strategy for training our
classifier for a highly skewed distribution of class labels.

Table 1 presents a comparison of the number of labeled flights required by
these methods to achieve a target value of precision@5 and precision@10.

Fig. 3. MLP vs. RND and MKAD-Sampling. MLP significantly outperforms RND and
MKAD-Sampling for both (a) precision@5 and (b) precision@10.

Table 1. Comparison of number of labeled flights required by various strategies to
achieve a target performance measure. ‘n/a’ represents that the target performance
cannot be achieved by a method even with 45 labeled flights.

Target precision@5 Target precision@10

Method 0.5 0.6 0.7 0.8 0.9 1.0 0.50 0.55 0.60 0.65 0.70 0.75

RND 6 25 n/a n/a n/a n/a 12 18 33 n/a n/a n/a

MKAD-Sampling 4 6 n/a n/a n/a n/a 4 6 13 n/a n/a n/a

MLP 5 10 16 32 n/a n/a 8 12 15 16 23 34

MLP w/Rationales 2 2 2 8 10 29 2 5 7 11 19 29
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Fig. 4. MLP w/Rationales vs. MLP. Incorporating rationales further improves perfor-
mance over MLP for both (a) precision@5 and (b) precision@10.

The maximum target for each metric is chosen based on the best performance
observed in the learning curves for each of the strategies. The results show
that MLP often requires fewer labeled flights compared to RND and MKAD-
Sampling. Moreover, MLP achieves a precision@5 of 0.7 and precision@10 of
0.65 with just 16 labeled flights, whereas RND and MKAD-Sampling could not
achieve these targets even with 45 labeled flights.

Next, we present the results that demonstrate the effect of incorporating
rationales into active learning. Figure 4 presents the learning curves comparing
MLP strategy for active learning without rationales (MLP) and MLP with ratio-
nales strategy (MLP w/Rationales) that utilizes MLP to select instances and
incorporates rationales iteratively during active learning (refer to Algorithm 1).
We set the rationale feature weight wr = 100 and the original feature weight,
wo = 1. The results show that MLP w/Rationales statistically significantly wins
over MLP for both precision@5 and precision@10 performance measures. More-
over, MLP w/Rationales requires even fewer labeled flights compared to MLP
to achieve the same target performance measure, as shown in Table 1. For exam-
ple, MLP achieves a target precision@5 of 0.8 with 32 labeled flights, whereas
MLP w/Rationales achieves this target with only 8 labeled flights, which is 75 %
savings in the labeling effort over MLP.

Figure 4 also compares MLP w/Rationales to RND w/Rationales and
MKAD-Sampling w/Rationales. MKAD-Sampling w/Rationales performs bet-
ter than MLP w/Rationales at the beginning for both precision@5
and precision@10, but after seeing approximately 10 labeled instances,
MLP w/Rationales outperforms MKAD-Sampling w/Rationales. T-tests show
that MLP w/Rationales statistically significantly outperforms both MKAD-
Sampling w/Rationales and RND w/Rationales for both precision@5 and
precision@10.

Choice of rationale weights: We ran experiments to study the effect of
weights wr and wo on the performance of our algorithm. We chose uniform
weighting for the original feature kernels since all 16 of those were suggested by
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Fig. 5. Comparison of rationale features weights wr for MLP w/Rationales using (a)
precision@5 and (b) precision@10

domain experts and were supposed to be important for this safety study. We
fixed wo=1 and experimented with four weight settings for wr (1, 10, 100, or
1000). Figure 5 presents the learning curves for these four weight settings for
MLP w/Rationales. The results confirm our intuition that weighting rationale
features higher than original features provides benefit to the active learner. The
precision@5 results are significantly better with wr=100 than other weights for
wr. For precision@10, setting higher weights for rationale features improves per-
formance at the beginning of active learning, however, t-test results show that
weights wr=1, 10, and 100 statistically significantly tie with each other. In gen-
eral, weighting rationale features higher than original features improves learning.
The kernel weights for optimal performance can be obtained through multiple
kernel learning.

Ideally, one would want to search for the best weights setting using cross
validation, but given the limited number of anomalous instances that domain
experts could review, it was not possible for us to perform cross validation over
the training set. Based on the performance observed for these four weight set-
tings, we chose wo=1 and wr=100 for all our experiments.

Scalability: Active learning methods are typically computationally expensive,
since they need to build a classifier at each iteration of learning and evaluate the
utility score for every instance in the unlabeled pool. However, in our setting,
when active learning is used on the output of an unsupervised anomaly detection
algorithm, the unlabeled pool is much smaller in size compared to the entire set
of raw instances. Therefore, utilizing this framework in a practical setting is
easily viable, without the iterative nature of active learning being a performance
bottleneck.

4.2 Performance Benefits

In the absence of active learning framework, our SMEs took approximately 33
hours to review the entire set of 153 anomalies produced by MKAD. These 33
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hours were spread over multiple weeks due to limited availability of SME time
for such tasks, which is a standard problem in the industry. As Fig. 4 shows, most
of the learning curves flatten out after labeling 35 flights. This would reduce the
SME review time to less than one-third of the original time. This has implications
on both man-hours and monetary savings. Moreover, active learning with state-
of-the-art (MKAD-Sampling) achieves precision@5 of 0.57 and precision@10 of
0.61. Active learning with rationales (MLP w/Rationales) achieves precision@5
of 1 (75.4% improvement over MKAD-Sampling) and precision@10 of 0.76
(24.6% improvement over MKAD-Sampling).

Validation set results: Currently, MKAD is being used as an unsupervised
anomaly detection method to find statistically significant anomalies in the data.
We compare performance benefits that active learning with rationales framework
(MLP w/Rationales) provides over the MKAD based classifier for finding OS
anomalies in two external validation data sets, July 2014 and July 2015 data
sets for the Denver airport. The July 2014 data set has 149 labeled flights with
24 OS anomalies and July 2015 data set has 257 labeled flights with 84 OS
anomalies, as determined by the SMEs. Both precision@5 and precision@10
values for MKAD are 0.4 for the July 2014 data set, and 0.2 for the July 2015
data set. Using our (MLP w/Rationales) framework, precision@5 improves by
15 % for July 2014 data set and by 50 % for July 2015 data set. On the other
hand, precision@10 improves by 25 % and 110 % for the July 2014 and July 2015
data sets, respectively.

It should be noted that MKAD performs very poorly for the July 2015
data set. This is because the data set is expected to evolve significantly over
the years (due to change in landing procedures and other regulation changes)
and the MKAD classifier does not capture the signatures of the OS flights,
but rather focuses on finding statistically different data points which can vary
over time due to a change in the underlying distribution. However, the nature
of the operationally significant anomalies still remains consistent and there-
fore MLP w/Rationales can identify those types of anomalies much better than
MKAD. These results show how active learning with rationales framework can
help in building a classifier that is robust to changing distribution of statisti-
cally significant anomalies and can, therefore, be used on new data sets without
further labeling needs.

5 Towards Deployment

The active learning framework improves over traditional learning, and incor-
porating rationales further improves learning, utilizing the SME’s time much
more efficiently. The classifier that is trained through this framework is focused
on finding operationally significant anomalies, rather than simply statistically
significant anomalies, and hence the flights that are signaled by the two-class
classifier approach are of higher relevance to FAA.

This active learning framework has been developed as an extension to the
anomaly detection framework that is currently used for detecting safety events.
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We expect this framework to easily fit into the existing anomaly detection frame-
work because the classifier training is part of the same data flow pipeline that
can take the output of MKAD as input and can seamlessly plug-in new data
sources as needed. Given that the new classifier reduces SME review time signif-
icantly while improving coverage and reducing false alarm rate, it seems to be the
perfect addition to bolster the existing anomaly detection framework, especially
since these safety studies are conducted on a regular basis on data that gets
collected every month. We expect that this enhanced data processing pipeline
with the active learning framework incorporated into it will make the review and
detection system significantly more efficient. In our current setup, we provide our
SMEs an excel sheet containing the list of anomalies returned by MKAD and
the SMEs note down the annotations and rationales textually. This process is
repeated iteratively for each round of labeling. The textual information is then
converted into features in batches. The next step towards the deployment of our
active learning with rationales framework is to fully automate this process where
the SMEs can select appropriate rationales using a drop-down list of features by
choosing the criteria that were satisfied or violated by the flight in question.
The SMEs can choose multiple features for each flight and, therefore, create
complex rationale conditions that can be used to create new complex discrimi-
native features on the fly and those features can be immediately utilized for the
next iteration of active learning. Figure 6 shows a diagrammatic representation
of the software that we are currently developing for deploying as part of the
existing framework. It shows the SME initial bootstrap instances for labeling by
randomly selecting from the list of anomalies found by MKAD, along with the
feature contributions and asks for labels and rationales using drop-down menus.
As soon as the classifier has enough number of bootstrap samples, training begins
for the classifier. After every iteration the most informative instance is populated
in the table for the SME to label and rationalize and classifier training begins
again. This iterative process is repeated until the budget B is exhausted or there
is no further improvement in the classifier performance on a held-out set.

Fig. 6. Diagrammatic representation of the GUI for deployment of active learning as
part of the anomaly detection framework
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6 Conclusion

We present an active learning framework to build a classifier that can distin-
guish between operationally significant anomalies and uninteresting ones. Our
proposed framework is novel in the sense that it incorporates SME feedback
into the learning process in the form of new features constructed to support
the labels. Experimental evaluation on real aviation data shows that our app-
roach improves detection of operationally significant events by as much as 75 %
compared to the state-of-the-art. The learnt classifier also generalizes well when
tested on additional validation data sets. We also observe that our approach
provides significant reduction in SME review time and labeling effort in order to
achieve the same target performance using other baselines.

We are working toward deploying our framework as a daily reporting sys-
tem that can reveal operationally significant anomalies to safety analysts with
the goal of developing mitigation opportunities by changing standard operat-
ing procedures. The reduced false alarm rate of our framework compared to the
unsupervised anomaly detection method is critical for domain experts to accept
our reporting system and not just ignore the alarms, as has happened with
other warning systems. Future work also includes developing richer rationales
and ability to integrate multiple data sources for supporting those rationales for
increased coverage of a wider range of operationally significant anomalies.
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Abstract. We address the problem of detecting whether an engine is
misfiring by using machine learning techniques on transformed audio
data collected from a smartphone. We recorded audio samples in an
uncontrolled environment and extracted Fourier, Wavelet and Mel-
frequency Cepstrum features from normal and abnormal engines. We
then implemented Fisher Score and Relief Score based variable rank-
ing to obtain an informative reduced feature set for training and testing
classification algorithms. Using this feature set, we were able to obtain
a model accuracy of over 99 % using a linear SVM applied to outsample
data. This application of machine learning to vehicle subsystem monitor-
ing simplifies traditional engine diagnostics, aiding vehicle owners in the
maintenance process and opening up new avenues for pervasive mobile
sensing and automotive diagnostics.

Keywords: Pervasive sensing · Mobile phones · Sound classification ·
Audio processing · Fault detection · Machine learning

1 Introduction

People spend more time in their cars than ever before, and with growing miles
traveled [25], hours spent in traffic [18], and an aging vehicle fleet in the United
States and around the world [7], vehicle maintenance has become an increas-
ingly critical part of vehicle ownership. Proactive or rapid-response maintenance
saves significant cost over the life of a vehicle and reduces the likelihood of an
unplanned breakdown. Anticipatory maintenance can further alleviate reliabil-
ity concerns and increase the overall satisfaction of vehicle owners and operators
through reduced fuel consumption, emissions, and improved comfort. For these
reasons, the consumer-facing diagnostic market for vehicles has grown to include
products intended to help vehicle owners maintain and supervise the operation
of their vehicles without the assistance of a mechanic.

At the core of any vehicle’s maintenance requirement is the engine, responsi-
ble for efficient and reliable propulsion. Automotive internal combustion engines
require only three “ingredients” to run: a supply of fuel, intake air, and igni-
tion sparks. Delivery of one or more of these elements can fail, as is the case
when an air filter or fuel injector clogs or when an ignition coil is damaged. One
common engine fault results from a weak or non-existent spark, causing the fuel
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 226–241, 2016.
DOI: 10.1007/978-3-319-46131-1 26
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in a cylinder to fail to combust. With one or more cylinders failing to explode
and generate motive force, fuel efficiency and power output drop, with the engine
operation increasing in noise, vibration, and harshness. This fault, called a “mis-
fire,” results in engine wear and leads to hesitation upon acceleration. A weak
spark may be the result of neglected maintenance, such as fouled spark plugs, or
component failure, such as an intermittently connected plug wire or an ignition
coil pack stressed from powering improperly gapped spark plugs.

Per a 2011 CarMD “Vehicle Health Index” [2], misfires are severe faults and
the most commonly occurring vehicle failure, representing 13.8 % of reported
problems. Beyond the cost of damage resulting from inaction, misfires have the
potential to incur significant additional fuel costs resulting from inefficient or
incomplete combustion.

In modern vehicles, computer systems monitor combustion, misfires, and
other emission-related functions through a system called “On Board Diagnostics”
(OBD) [17]. While OBD systems are capable of detecting a misfire, they are slow
to react, rely on proprietary and non-standard algorithms, and necessitate the
use of a specialized interface device to provide human-readable information. In
a survey we conducted of 15 drivers who had recent, active check-engine lights,
we determined that owners left problems unaddressed an average of 3,500 miles
[20]. Though OBD tools are available, we determined that they are underutilized
by the average vehicle owner.

To better enable preventative maintenance, it is desirable to instead detect
these faults passively, more reliably, and without specialized equipment, apply-
ing sensing from devices such as mobile phones and allowing location- and
orientation-independent analysis. This would remove the barrier to entry posed
by requiring a dedicated code-reading device and enable pervasive sensing to
allow drivers to monitor the health of their vehicles with increasing frequency
at no additional cost. Through improved early detection, the source of the mis-
fire can be addressed easily and inexpensively with the replacement of a spark
plug, wire, or ignition coil, before the failure takes a more costly toll on other
components like the catalytic converter due to long-term rich fuel trim.

A concurrent proliferation in mobile devices, along with recent advances in
sensing and computation, has made pervasive sensing a valuable field for explo-
ration. The use of mobile phones as “automotive tricorders” capable of non-
invasively detecting vehicle condition will encourage drivers to take an active
role in vehicle maintenance through improved ease-of-use and widespread adopt-
ability relative to current diagnostic offerings. Passive sensing will allow a shift
from today’s paradigm of reactive repair to one of proactive maintenance, with
this technique having been used successfully for passive monitoring of wheels
and tires [21,22].

In this paper, we show that pervasive sensing may be used to differentiate
normally operating engines from those operating with misfires. Because we lack
a robust physical model describing misfire phenomena, we apply machine learn-
ing techniques to uncontrolled data collection and demonstrate an approach to
misfire detection making use of extensive feature generation and set reduction to
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improve classification without a physically-derived hypothesis. We demonstrate
that a mobile device may be used to generate data, create a set of features,
reduce the size of that set, and apply machine learning to classify accurately
and efficiently based on the reduced set.

This paper covers topics ranging from data collection to feature generation
to classification. In Sect. 2, we consider prior art and how our method differs
from the in-situ and externally sensed solutions before it, illustrating the oppor-
tunity space and motivating our work. Section 3 describes our approach to data
generation, and how we minimize experimental setup in favor of more natural-
istic and representative data collection capable of more easily translating to a
consumer-friendly application. Section 4 explores the algorithms we use to gen-
erate a comprehensive feature vector. Our approach applies exhaustive feature
generation because we have no prior art to distinguish what might be important
to classify misfires from normally operating engines. We further discuss our app-
roach to reducing feature set size using feature ranking techniques to facilitate
lower computational and other resource overheads. In Subsect. 4.3, we briefly
discuss the various classification algorithms we implemented and their relative
merits, drawbacks, and efficacy. We conclude in Sect. 5 and show 99 % classifi-
cation accuracy with 50 % outsample data, before Sect. 6 which discusses plans
for future work in this area.

2 Prior Art

Engine misfires have been detected in a variety of ways. Under normal oper-
ating conditions, the crankshaft rotates through a fixed angular displacement
between every cylinder firing attempt. A misfire detectably alters the precession
of the crankshaft which is sensed by a crankshaft position sensor. Measuring
a series of unexpected angular measurements within a time window prompts
the illumination of a check engine light indicating that the engine is operating
outside of specifications and malfunctioning. The use of an OBD scan tool may
reveal which cylinder or cylinders are misfiring, but this information is of uncer-
tain provenance and dubious value due to the use of proprietary classification
schemes [14,19]. Some direct-sensing alternatives to crankshaft position-based
detection include sampling of the instantaneous exhaust gas pressure, measur-
ing ionization current in the combustion chamber, or installing other sensors
within [5,27] or outside the combustion chamber [15,26].

Other diagnostics have demonstrated the capacity to identify misfires through
audio signal processing. Aside from less obviously discernible symptoms like
increased fuel consumption or visual indications like an oily or white residue on
the tip of the spark plug, misfires have a characteristic audible “pop” and cause
the engine to vibrate as though it is unbalanced or otherwise “missing a beat”.
The sound emanating from an abnormally-firing engine can be captured at a
distance by a microphone and analyzed in both the time and frequency domains
for patterns indicative of cylinder misfires. Auto mechanics have long employed
a form of auditory diagnosis, listening to engines and easily determining the
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presence of a misfire. The fact that physical models of the sound and vibration
profiles produced by an engine misfire are complex, yet experienced mechanics
can classify a firing abnormality by ear, lends credence to the idea that a machine
learning approach to detection may be tenable.

Researchers have applied this sort of classification technique successfully. To
acquire the audio signals, Dandare [4] and Sujono [23] made use of dedicated
recording equipment to analyze the sound from automotive internal combus-
tion engines in a laboratory environment. Engines were recorded during normal
operation, as well as in the presence of different faults including cylinder misfire.
In Dandare, an Artificial Neural Network classified faults with accuracies rang-
ing from 85–95% overall. Kabiri and Ghaderi [8,9] introduced noise into their
misfire measurements of over 300 single cylinder engines by moving outside the
laboratory and into a garage. Principal Component Analysis and correlation-
based feature selection in the time and frequency domains achieved an accuracy
between 70 % and 85 % for these vehicles. Anami made similar recordings of
motorcycles [1] to aid mechanics in the rapid classification of healthy versus
faulty. Several hundred motorcycle engines were recorded from a distance of half
a meter, with wavelet-based machine learning techniques distinguishing not only
between healthy and faulty motorcycles, but also the category of fault present.
This included, for example, whether the fault was in the engine or exhaust
system. Experienced mechanics provided ground truth, with the classification
system reporting > 85% accuracy relative to these uncertain reference values.

With the proliferation of smartphones among the car owning public,
researchers have considered how these devices can be used to aid in vehicle diag-
nostics and more specifically engine misfire detection. Using the smartphone at
the center of a remote maintenance system, Tse [24] installed sensors including
accelerometers and laser encoders within a test vehicle. When a misfire or other
engine events were detected, a message was sent via smartphone to inform the
user. In Navea [16], the smart phone itself was used as the data collection and
processing device, and was held 30 cm above the engine cover to record sounds
of the engine and drive belt during startup, while idling, and at 1000 RPM.
Thirty-five Honda Civics were used and recordings were taken at various loca-
tions and ambient conditions as input data for Fast-Fourier Transformed data
based classification. Startup issues relating to the car battery, fuel supply and
timing were recognized 100 % of the time, while a normal engine at idle or 1000
RPM was identified with a 33 % false positive rate. Pulley bearing defects or belt
slips were properly diagnosed less than 50 % of the time, while valve clearance
issues were more reliably detected.

Previous work has laid a strong foundation and shown great potential for
using audio signals as a vehicle diagnostic technique, with the capacity for smart-
phones to serve as capable diagnostic tools within the reach of the general public.
Indeed, in past studies we have utilized internal smartphone sensors for a variety
of automotive applications, from wheel imbalance detection [22] to tire pressure
monitoring [21]. Thanks to mobile computing and pervasive sensing, there is
an opportunity to help vehicle owners passively supervise the operation and
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maintenance of their cars without environmental control or specialized equip-
ment, yielding accuracy meeting or exceeding that of a trained and certified
mechanic.

3 Data Collection

3.1 Experimental Design

The goal of the experiment was to collect audio in a manner that could reason-
ably be duplicated by typical vehicle owners with access to a smartphone. To
that end, the procedure did not rely on fixed position or orientation of the vehi-
cle or mobile phone, and the background environment was not controlled, which
allowed ambient sources such as wind and other vehicles to add noise to both
the training and testing data. In effect, we applied non-invasive and uncontrolled
data collection.

To record the audio samples, each vehicle was warmed up for at least five
minutes to ensure the engine was no longer running a “fast idle,” which could pro-
vide unwanted audio artifacts. Then, the vehicle’s hood was opened and propped
up. Opening the hood allowed clearer audio signal capture during the proof-
of-concept phase, and is something most drivers can easily complete without
guidance or the use of tools.

For between two minutes and thirty seconds and six minutes, we used a
mobile phone to record the engine idle sound as an uncompressed stereo. WAV
file at 48000 Hz. During this time, mobile device was swept over the engine to
provide a robust training set that incorporated noise from the engine intake,
exhaust, belts, and other periodic signals present in the engine compartment.
This relative motion is shown in Fig. 1.

With baseline testing completed, the procedure was repeated for anomalous
engine operation and misfires. To simulate a misfire, the engine coil pack was

Fig. 1. The phone recorded as it was moved over the engine to provide background
noise to test algorithm robustness. Engine covers were left on to minimize prep work
and provide a better representative use case for in-situ monitoring.
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Fig. 2. The supply to the ignition coil pack was disconnected in order to induce a
complete misfire on individual cylinders.

disconnected with the engine turned off, removing the 12 V supply. This connec-
tor is shown for two vehicles in Fig. 2. Misfires induced in this manner manifest
identically to misfires caused by coil failure, broken spark plug wires, fouled
spark plugs, and improper grounding.

The engine was allowed to run for two minutes in this configuration prior to
recording in order to allow the engine time to adapt to a cycle with periodic non-
ignition. We selected two minutes as a lower limit because many engine control
parameters, such as “long term fuel trim,” reference only 30 seconds of driving
history. In all cars, at least one cylinder was “deactivated” via induced misfire; in
some cars, data were collected for multiple cylinders misfiring individually and in
aggregate. After testing, the engine was shut off and the coil pack reconnected.
If a check engine light had illuminated during testing, it was cleared using a
standard ELM327-based automotive diagnostic tool.

Audio data were collected from multiple vehicles with different engine con-
figurations over several days and in different parking locations (outdoor parking
lots, a garage, and indoor parking structures). This allowed for the creation of
a rich training set capable of providing in-data and out-data for testing. In the
case of this experiment, the two engine configurations tested were a normally
aspirated inline-four cylinder layout in a Kia Optima and a Ford Focus, as well as
a normally aspirated V6 configuration in a Chevrolet Traverse and Nissan Fron-
tier SUV. In cases where the engine cover had been removed to disconnect the
coil pack, the cover was replaced prior to recording to better replicate a typical
misfire condition wherein the engine’s exterior features remain unperturbed.

4 Audio Analysis and Engine State Classification

Armed with audio samples from vehicle engines, we employed several data min-
ing techniques in an attempt to detect and classify misfire occurrences. The
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detection task was formulated as a supervised learning problem, and to simplify
initial algorithm development, the audio samples were classified over only two
operational states (normal and anomalous) as opposed to three or more (normal
and different cylinder misfire configurations).

4.1 Feature Construction

The 48 kHz audio samples were first assigned labels based on whether the engine
was operating normally or abnormally (an engine operating with a single mis-
firing cylinder) during recording. These samples were merged from stereo into a
single, mono channel via averaging and the averaged samples were then subdi-
vided into 2.5s segments. The first 1s and the last 2s of each audio sample were
discarded to reduce noisy edge effects and clips with poor signal strength caused
as a result of manipulating the mobile device.

2.5s samples recorded at 48 kHz correspond to 120, 000 discrete signal ele-
ments. The total number of samples in our data set was 992, out of which 373
corresponded to a normal engine. Figure 3 shows a segment of a normal engine
audio signal along with that of a misfiring engine.
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Fig. 3. Comparison of a segment of a normal audio sample with a misfiring audio
sample.
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To generate features for use in classification, each 120, 000 discrete signal ele-
ment was then converted into a feature vector. We sought to generate a range of
features to allow classification without the need for targeted, hypothesis-driven
feature creation. Three classes of feature construction were employed and con-
catenated to form a long feature vector. The three classes include binned Fourier
Transform coefficients, Wavelet Transform coefficients, and Mel Frequency Cep-
stral coefficients.

Though dense feature generation is an intensive process, this approach was
adopted to remove any preconceived bias on what features have good discrim-
inative power and rather allow machine learning techniques to drive the solu-
tion towards a reduced size feature set. A reasonable feature set size will allow
rapid computation using the programmable Digital Signal Processors (DSPs) on
mobile devices. Use of such processors has been shown to minimize a classifi-
cation algorithm’s impact on battery life significantly, even allowing Cloud-free
operation [11], though further studies are required to optimize DSP computation
and data transmission to the cloud in order to minimize overall power consump-
tion and enable pervasive sensing with minimal annoyance to drivers.

Binned Fourier Transform (FT) Coefficients. The discrete samples were
first normalized based on power and detrended to remove bias and linear drift.
The Fast Fourier Transform (FFT) was then applied to convert the detrended
time-domain signals into the frequency domain. Frequencies < 10 kHz were
divided into bins 10 Hz wide. Higher frequencies were discarded as not providing
additional differentiation because on average they comprised < 25% of the total
energy and typically represented harmonics of lower frequencies. The average
FT magnitude in each bin provided one feature. This process resulted in the
creation of a feature vector of size 1000.
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Fig. 4. Comparison of the spectral density of a normal audio sample with a misfiring
audio sample.
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Figure 4 shows an example comparison of the magnitude of the FT of a
normal engine audio signal with a misfiring engine audio sample. We observe that
several frequencies (in this particular example segment, around 2 kHz and 8 kHz)
have a distinct pattern in the normal vs. abnormal cases. These frequencies that
are statistically more powerful classifiers will be identified and used to classify a
normal engine from a misfiring engine.

Discrete Wavelet Transform (DWT) Coefficients. In addition to the
binned FT, we conducted a wavelet decomposition at level 10 on the power
normalized, detrended discrete signal using Daubechies 4 wavelet. At each level
of signal decomposition, mean, standard deviation and skewness was computed
resulting in a 33-dimensional feature vector.

Mel Frequency Cepstral Coefficient (MFCC). The MFCC creates a spec-
tral signature of short-term frames of the original signal that has been success-
fully applied to speech recognition [13]. We used a frame size of 1024 samples,
with each frame incrementally shifted by 512 samples leading to a total number
of 233 frames. For each frame 12 MFCC coefficients were extracted to form a
feature vector of size 2796. We made use of the GNU-licensed Voicebox toolbox
for MATLAB to conduct MFCC feature extraction.1

Concatenating the three sets of feature vectors from the FT, DWT, and
MFCC resulted in a 3829-dimensional feature representation of the audio signal
and a data matrix of size 992 × 3829. The data set was randomly divided into
a 50% training set and a 50% test set. In most cases, samples of each state
were drawn from different recording events. Rarely, segments of the same file
may have been used in both training and testing. In such cases, the movement
of the mobile device minimized the likelihood that samples were taken from sim-
ilar locations and orientations, reducing sample dependence. After splitting the
segments, subsequent work continued to develop appropriate feature reduction
and classification techniques.

4.2 Feature Selection

To simplify computation, reduce redundancy and training time, and minimize
overfitting, it was necessary to reduce the higher-dimensional feature vector using
feature selection techniques [6,10,12]. Two filter-based methods were used for
feature ranking: Fisher Score (FS) and Relief Score (RS) [10]. The use of feature
ranking methods provides novelty over the state-of-the-art in audio classification
for automotive faults, and will become instrumental in enabling low-power and
resource-constrained devices to run this type of classification by eliminating the
need to generate certain features.

1 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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The Fisher score [10] of a feature for binary classification is calculated using:
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where nj is the number of samples belonging to class j, n = n1 + n2, μi is the
mean of the feature f i, μi

j and σi
j are the mean and the standard deviation of fi

in class j. A larger value corresponds to a variable having higher discriminating
power.

The Relief score [12] of a feature is computed by first randomly sampling m
instances from the data and then using:
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where f i
k denotes the value of the feature fi on the sample xk, f i

NH(xk)
and

f i
NM(xk)

denote the values of the nearest points to xk on the feature fi with the
same and different class label respectively, and d(.) is a distance measure which
was chosen to be the �2 norm. Here again, a larger score indicates a higher
discriminating power of the variable.

Figure 5 shows the normalized score (scaled to ∈ [0, 1]) computed by the
two methods noted above for each of the generated features. Though there is a
significant correlation between the weights of FS and RS (a linear correlation
coefficient of 0.49), combining the information from the two methods may reduce
the likelihood of overfitting. To achieve this, we take a simple average of the
scores from the two methods, calculated by:

AS(fi) =
1

2

(
FS(fi)−min(FS(fi))

max(FS(fi))−min(FS(fi))
+

RS(fi)−min(RS(fi))

max(RS(fi))−min(RS(fi))

)
. (3)

With the features scored, we performed a systematic feature reduction study
in order to identify a suitable subset of features. These feature subsets were
parametrized by a variable p, with all features whose scores were in the top
(100 − p)th percentile for discrimination were included in the subset. Figure 6
demonstrates how feature weighting varied with the FS, RS, and AS methods.

Figure 7 shows the variation in the 10−fold Misclassification Error Rate
(MCR) on the training set using a linear Support Vector Machine (SVM), as
well as the feature set size (#F) for different scoring schemes and the percentile
cutoff p. We performed a grid search to find the optimal box constraint hyper-
parameter (C) for each of the feature subsets in the figure. From inspection, we
identified a minimum MCR at p = 90 for each of the three feature scoring meth-
ods. Selection of a lower p results in a higher number of less informative features
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Fig. 6. Feature selection illustrated by method and type. For the AS method, p = 90
selection cutoff threshold is indicated as dotted black line at w = 0.2784.

in the subset, leading to overfitting and poorer cross-validation performance. Use
of a higher p removes important features from the subset leading to a weaker
model with decreased accuracy. We additionally observe that with the AS fea-
ture ranking the MCR increases less sharply after p = 90 when compared to FS
or RS, likely due to variance reduction by model averaging. For these reasons,
we selected AS with p = 90 as the optimal feature subset selection criterion.
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The binned FT features alone result in a 10−fold misclassification rate of
0.8%, while with the DWT the error is 36% and the MFCC based features pro-
vide a 29% error. Concatenating all the above features results in a misclassifica-
tion rate of 2.6% which is higher than FT alone. The minimum misclassification
rate with FS, RS and AS scoring is 1.8%, 0.4% and 1.0% respectively (Fig. 7).

The FT features have a higher discriminating power when compared to the
other two classes of features. Simply combining the features from all three does
not provide more discrimination than using the FT features. The ability to
perform feature ranking and selecting the optimal subset improves the ratio of
the discriminating power to the feature set size (i.e. (1-MCR)/#F) and therefore
helps determine a small feature set with high discriminative power. It is also
noted that the feature subset with AS and p = 90 has 358 FT features out of a
total of 383 features, 5 DWT features and 20 MFCC features. Among the FT
features selected from aggregate data, several were found to group around the
2.5 kHz and 7.5 kHz frequency bands.

4.3 Classification Algorithms

Using the chosen reduced feature set (AS feature weighting with p = 90 and
100 − p = the top 10th percentile of features selected), several classification
algorithms were studied. The hyperparameters of the classification algorithms
were optimized by conducting a grid search to minimize 10−fold cross-validation
on the training data. The algorithms tested were k-Nearest Neighbor, Adaboost
and SVM with linear, quadratic and RBF kernels. We found that for the SVM
with the quadratic kernel all choices of the hyper parameter box-constraint cost
(C) led to the same 10-fold misclassification error while for the RBF kernel the
error sharply dropped from 38% to 0% around the optimal grid points (for
finding C and γ). We therefore decided to remove the quadratic and RBF SVM
from the final list of classifiers because we were unable to find a robust set of
optimal hyperparameters.
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5 Results and Conclusions

Table 1 summarizes the performance of the different classification algorithms on
the 50% outsample data. We observe that the linear SVM significantly out-
performs the knn and Adabosst classification algorithms. With linear SVM, we
obtained a misclassification rate of 1.0% and the confusion matrix shown in
Table 2. The 99 % accuracy of our approach well exceeds the prior art, indicat-
ing that our feature selection and reduction techniques are effective at not only
improving algorithm efficiency, but increasing accuracy as well.

Considering that the reduced feature set is primarily comprised of the FT
features, we trained a linear SVM (with C = 0.01) using only the FT features
contained in the final reduced set from the previous section. The outsample
misclassification rate with the top FT features was a slightly higher 1.2% when
compared to the results with using the top features of all types (see Table 1).
This indicates that most of the discriminative information is contained in the
FT features, with the DWT and MFCC features helping primarily differentiate
edge cases. This presents an interesting trade off between computing cost and
accuracy which will be relevant for designing a mobile application employing this
technique. Current efficient implementations of FFT on smartphones [3] can be
directly implemented for constructing the FT features in our reduced feature
set, while there exist fewer algorithms to efficiently generate DWT and MFCC
features.

Table 1. This table compares the classification accuracy (misclassification rate,
reported-normal-when-abnormal false positive rate) for different tested algorithms.

Classifier Type Optimal
Hyperparameters

Misclassification
Rate

False Positive Rate
(Abnormal as Normal)

kNN (l2 distance
based)

Number of neighbors
(n) = 11

25% 27%

Adaboost (learning
rate = 0.3)

Tree depth = 7,
Number of trees
= 70

15% 11%

Linear SVM Box-constraint cost
(C) = 0.01

1.0% 1.6%

Table 2. The confusion matrix shows promising results for misfire detection, with 1.6 %
false positives (reported normal when actually abnormal). We achieve similarly strong
performance for false negatives (reporting abnormal when actually normal), potentially
saving drivers money on unnecessary repairs.

Predicted
Normal Abnormal

Actual
Normal 100.0% 0.0%

Abnormal 1.6% 98.4%
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Finally, we note that in only one of the four vehicles did a “check engine”
light come on at any point during testing, indicating that audio detection such
as the one presented here with high accuracy and sensitivity may lend itself
to the identification of a misfire prior to detection by an On-Board Diagnostic
system. Early detection facilitates proactive response, and can help to lower
vehicle maintenance and operating costs relative to drivers relying on the reactive
diagnostic systems found in cars today.

6 Future Work

As a component of future work, we intend to explore the resource savings (com-
putational and power) afforded by working with a reduced feature set. We have
shown that feature ranking techniques facilitate the discarding of features with
minimal loss in accuracy. These unused features need not be computed, enabling
more efficient implementations of our feature generation algorithms suited to the
limited resources found on mobile devices. Additionally, improving the off-line
efficiency of these algorithms will allow us to develop an improved on-line app-
roach, by minimizing bandwidth used for unnecessary data transmission and
decreasing reference database size.

While this paper demonstrates promising results for the use of a mobile phone
as a pervasive automotive diagnostic tool, the classification can be enriched and
robustness improved to yield a more beneficial application, namely identification
of the misfiring cylinder itself. That was difficult to discern in this study, as we
suspect that information to be embedded within phase-based audio features,
which are difficult to discern without a reliable indexing feature in the audio
relative to engine component rotations. Other, non-combustion sounds are as
of yet ill-defined (considering amplitude/frequency spread) and not available
as a phase reference. Similarly, with the collected data it was not immediately
feasible to distinguish among various anomalous misfire configurations, but we
aim to study other techniques which may be used to improve differentiation
among failed states. Such approaches may also improve classification of faults
with lesser-defined signals, such as partial misfires due to lean conditions, and
non-misfire faults such as clogged air filters or exhaust leaks.

To account for background noise, we intend to build a model to determine
dependency of the audio waveform on the engine configuration (idle speed, cylin-
der count, aspiration, displacement, and firing order). Additionally, audio sam-
ples will be recorded from within the car to test whether the application can
function from inside the vehicle.

Providing further data to enrich classification, the authors intend to develop
algorithms for differential diagnosis: for example, measuring the sound near the
air intake and exhaust to monitor airflow issues, identifying where in the airflow
process an issue might be occurring. Finally, integrating audio data with infor-
mation from the On-Board Diagnostic system may be possible, yielding richer
fault information than is possible with either system alone.
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Abstract. The amount of textual data available from digitalized sources
such as free online libraries or social media posts has increased drasti-
cally in the last decade. In this paper, the main idea to analyze authors
by their grammatical writing style is presented. In particular, tasks like
authorship attribution, plagiarism detection or author profiling are tack-
led using the presented algorithm, revealing promising results. Thereby
all of the presented approaches are ultimately solved by machine learning
algorithms.

1 Introduction

One of the consequences of todays possibilities and ease to share information over
the world wide web is the high availability of textual data, which is either created
by social media users or made publicly available through large literary databases
like Project Gutenberg1. Such data provides a huge source for scientific research
in many different areas including text mining problems like web content mining
or sentiment analysis [11], but also for social media text based recommender
systems (e.g., [12]). A still very important field, which is discussed since the
19th century and which attempts to solve the problem to automatically detect
(information about) the writer of a text is authorship attribution [6]. Typical
metrics to build stylistic fingerprints include lexical features like character n-
grams (e.g., [4]), word frequencies (e.g., [2]) or average word/sentence lengths
(e.g., [13]), syntactic features like Part-of-Speech (POS) tag frequencies (e.g., [4])
or structural features like average paragraph lengths or indentation usages (e.g.,
[13]). A related problem emerges from the fact that the vast amount of available
text collections makes it easier for a potential plagiarist to find fragments that
can be copied. On the contrary it becomes steadily harder for detection systems
to find misuses by just comparing text, and thus advanced algorithms have to be
developed. This paper gives an overview of our recent grammar-based research
in the broad field of author analysis, including authorship attribution, profiling,
plagiarism detection and Bible analysis. All of those applications are based on
a pure analysis of the grammar syntax of authors and processed by commonly
used machine learning algorithms.
1 https://www.gutenberg.org, visited April 2016.
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2 Grammar-Based Text Analysis

While constructing sentences, an author has to adhere to the syntactic rules
defined by a specific language. Nevertheless, the number of choices is large, which
leads to the assumption that writers intuitively reuse preferred patterns to build
their sentences. As a consequence, those patterns can be identified and utilized
as a style marker. All applications presented in this paper rely on the analysis
of sentences without considering the vocabulary used. Thereby, a parse tree (or
syntax tree) for each sentence is calculated, which consists of structured POS
tags and serves as the main processing unit to investigate the style of an author.
Figure 1 shows the parse trees of the Einstein quote “Insanity: doing the same
thing over and over again and expecting different results” (S1) and a slightly
modified version (S2). It can be seen that the trees differ significantly, although
the semantic meaning is the same. To quantify such differences of grammar trees,
the concept of pq-grams is used [1]. In a brief simplification pq-grams can be seen
as “n-grams for trees”, as they represent structural parts of the tree. A pq-gram
consists of a stem p and a base q, whereby p defines how much nodes are included
vertically, and q defines the number of nodes to be considered horizontally. For
example, a valid pq-gram with p = 2 and q = 3 starting at the FRAG tag of the tree
for S1 would be [FRAG-S-VP-CC-VP]. In order to obtain all possible pq-grams,
the base is shifted left and right additionally while marking non existing nodes
with *. Consequently, also the pq-grams [FRAG-S-*-*-VP], [FRAG-S-*-VP-CC],
[FRAG-S-CC-VP-*] and [FRAG-S-VP-*-*] are valid. Finally, the pq-gram index
contains all possible pq-grams of a grammar tree, starting at each node. Because
the presented approaches solely analyze the grammar, the leafs of the trees (i.e.,
the words) have been omitted. The main procedure is as follows:

1. Clean the document, split it into single sentences, calculate a parse tree for
every sentence2 and compute the corresponding pq-gram index.

(S1) (S2)

S

FRAG

NP

NNP
(Insanity)

S

VP

VP

:
(:)

CC
(and)

VP

VBG
(doing)

NP ADVP ADVP

DT
(the)

JJ
(same)

NN
(thing)

RP
(over)

CC
(and)

RP
(over)

RB
(again)

VBG
(expecting)

NP

JJ
(different)

NNS
(results)

S

NP VP

PRP
(It)

VBZ
(is)

ADJP

JJ
(insane)

S

VP

TO
(to)

VP

VB
(expect)

NP

JJ
(different)

NNS
(results)

SBAR

WHADVP S

WRB
(when)

VP

VBG
(doing)

NP ADVP ADVP

DT
(the)

JJ
(same)

NN
(thing)

RP
(over)

CC
(and)

RP
(over)

RB
(again)

Fig. 1. Parse trees of sentences S1 and S2.

2 Using the Stanford Parser [3].
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2. Create a profile consisting of all3 occurring pq-grams and transform the profile
into a set of features.

3. Use the generated features as input for classifiers in order to, for example,
assign authorships or predict the age of a writer.

Table 1. Example of a pq-gram Profile.

pq-gram Occurrence [%] Rank

NP-NN-*-* 4.07 1
NP-DT-*-* 2.94 2
NP-NNS-*-* 2.90 3

A profile is calculated by normaliz-
ing the number of each occurring pq-
gram and assigning it a rank by per-
forming a sort in descending order.
Table 1 shows an example using p = q =
2. Each profile is then transformed into
a set of features which serve as input for
machine learning algorithms, whereby each pq-gram results in two features: (a)
the pq-gram with the occurrence rate, and (b) the pq-gram with its rank. As
an example, the first line of Table 1 would be transformed into the two features:
{’NP-NN-*-*’: 4.07} and {’NP-NN-*-*--RANK’: 1}. Depending on the document
size, the number of distinct features utilized in the following applications ranges
between 1,000 and 15,000, which have been processed by common classifiers like
Naive Bayes or Support Vector Machines (LibSVM), included in the WEKA
framework [5].

3 Approaches

The presented analysis has been applied to several problem types. At first it
was used with authorship attribution [8], i.e., it was evaluated if the author of
a document can be predicted by analyzing only the grammar syntax. Experi-
ments on different datasets reveal promising accuracies between 75–100 %, which
can be compared to other state-of-the-art approaches. Related to that, sev-
eral approaches have been developed to reveal potential plagiarism [7]. Using
machine-learned classifications of sliding windows, an accuracy (F-score) of up to
40 % (for “short” documents with less than 100 sentences even 54 %) could be
gained, which is a very good value for so-called intrinsic plagiarism detectors.
In addition it could be shown, that grammar-based machine learning algorithms
can also be successfully used to predict meta-information like the gender or age
of an author (accuracy∼70 %, [9]), but also to attribute authors of Old Hebrew
Bible passages [10] with a conformance rate of 80–100% compared to current lit-
erary criticism knowledge. Summarizing, grammar analysis in combination with
machine learners provide a solid base for tackling the mentioned problems as
well as general text analysis problems, as the pq-gram extraction is universally
applicable to any written text.

3 Depending on the approach, the total maximum number of pq-grams in a profile has
been restricted, e.g., to the 200 most frequent pq-grams.
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4 Conclusion

This paper gives an overview of the main idea to analyze authors by investigating
the grammar style used to formulate sentences. The basic principle is to segment
a text into sentences, calculate parse trees and to extract pq-grams, which rep-
resent the structure of the trees. Several approaches in different domains like
authorship attribution or profiling reveal promising results by utilizing pq-gram
features as input for common classifiers. Future work may focus on a fine-tuning
of the configurations for the latter, as currently only the standard settings are
used. Although it was shown that the grammar style is significant, it can addi-
tionally be assumed that the existing approaches can be enhanced by incorpo-
rating other commonly used features - in particular by features which include
information about words and the vocabulary usage.
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Abstract. The acceptance of analytical methods for discrimination dis-
covery by practitioners and legal scholars can be only achieved if the data
mining and machine learning communities will be able to provide case
studies, methodological refinements, and the consolidation of a KDD
process. We summarize here an approach along these directions.

1 The Way Ahead

Data mining and machine learning approaches to social discrimination discov-
ery from historical decision records have recently gained momentum – see the
surveys [1,6,8]. Most of the proposals are restricted to investigations of novel
algorithms and models. In our opinion, the field still need major advancements
towards: first, experimentation with real data; second, methodological refine-
ments in compliance with legal rules and ethical principles; and third, the con-
solidation of a KDD process of discrimination discovery. Solving these issues is
essential for the acceptance of discrimination discovery methods based on data
mining and machine learning by practitioners and legal scholars. In the paper
[7] we contributed in all those aspects by presenting: a case study on a real
dataset about gender discrimination in scientific research proposals; an instan-
tiation of the methodological approach of [4] based on the legal methodology of
situation testing; a generalization of the case study to a KDD process in support
of discrimination discovery. This is a summary of the last contribution.

2 Not only an Algorithm: An Analytical Process

Since personal data in decision records are highly dimensional, i.e., characterized
by many multi-valued variables, a huge number of possible contexts may, or may
not, be the theater for discrimination. In order to extract, select, and rank those
that represent actual discriminatory behaviors, an anti-discrimination analyst
should apply appropriate tools for pre-processing data, extracting prospective
discrimination contexts, exploring in details the data related to the context, and
validating them both statistically and from a legal perspective. Discrimination
discovery consists then of an iterative and interactive process. Iterative because,
at certain stages, the user should have the possibility of choosing different
algorithms, parameters, and evaluation measures or to iteratively repeat some
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 249–253, 2016.
DOI: 10.1007/978-3-319-46131-1 28



250 S. Ruggieri and F. Turini

Fig. 1. The KDD process of situation testing for discrimination discovery.

steps to unveil meaningful discrimination patterns. Interactive because several
stages need the support of a domain expert in making decisions or in analysing
the results of a previous step. We propose in [7] to adopt the process reported
in Fig. 1, which is specialized in the use of the situation testing for extracting
contexts of possible discrimination. The process has been abstracted from the
case study presented in the paper regarding gender discrimination in a dataset
of scientific research proposals, and it consists of four major steps.

Data Understanding and Preparation. We assume a collection of data sources
storing historical decisions records in any format, including relational, XML,
text, spreadsheets or any combination of them. Standard data pre-processing
techniques (selection, cleansing, transformation, outlier detection) can be
adopted to reach a pre-processed dataset consisting of an input relation as the
basis for the discrimination analysis. The grain of tuples in the relation is that of
an individual (an applicant to a loan, to a position, to a benefit). Three groups
of attributes are assumed to be part of the relation:

protected group attributes: one or more attributes that identify the membership
of an individual to a protected group. Attributes such as sex, age, marital
status, language, disability, and membership to political parties or unions
are typically recorded in application forms, curricula, or registry databases.
Attributes such as race, skin color, and religion may be not available, and
must be collected, e.g., by surveying the involved people;

decision attribute: an attribute storing the decision for each individual. Decision
values can be nominal, e.g., granting or denying a benefit, or continuous,
e.g., the interest rate of a loan or the wage of a worker;

control attributes: one or more attributes on control factors that may be (legally)
plausible reasons that may affect the actual decision. Examples include the
financial capability to repay a loan, or the productivity of an applicant worker.
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Risk Difference Analysis. Randomized experiments are the gold-standard for
inferring causal influences in a process. However, randomized experiments are
not possible or not cost-effective in discrimination analysis. An example of quasi-
experimental approaches is situation testing [2], which uses pairs of testers who
have been matched to be similar on all characteristics that may influence the
outcome except race, gender, or other grounds of possible discrimination. In a
legal setting, the tester pairs are then sent into one or more situations in which
discrimination is suspected. In observational studies, [4] proposes to simulate the
approach by contrasting the decisions of the tuple neighbors. For each tuple of
the input relation denoting an individual of the protected group, the additional
attribute diff is calculated as the risk difference between the decisions of its
k nearest-neighbors of the protected group and the decisions for its k nearest-
neighbors of the unprotected group (see Fig. 2). Risk difference is a measure of
the degree of discrimination suffered by an individual. We call the output of
the algorithm the risk difference relation. The value k is a parameter of the
algorithm. A study of the distribution of diff for a few values of k is required.
This means iterating the calculation of the diff attribute. Exploratory analysis
of diff distributions may also be conducted to evaluate risk differences at the
variation of: the protected group under consideration, e.g., discrimination against
women or against youngsters; the compound effects of multiple discrimination
grounds, e.g., discrimination against young women vs discrimination against
women or youngsters in isolation; the presence of favoritism towards individuals
of a dominant group, e.g., nepotism.

Fig. 2. Example of risk difference diff (r)
for k = 4. Women are the protected group,
knnsetwomen(r) (resp., knnsetmen(r)) is the
set of female (resp., male) k-nearest neigh-
bors of r. Red labels denote benefit denied,
green labels denote benefit granted. (Color
figure online)

Discrimination Model Extraction. By
fixing a threshold value t, an individ-
ual r of the protected group is then
labeled as discriminated or not on the
basis of the condition diff (r) ≥ t. We
introduce a new boolean attribute disc
and set it to true for a tuple r meet-
ing the condition above, and to false
otherwise. A global description of who
has been discriminated can now be
extracted by resorting to a standard
classification problem on the dataset
of individuals of the protected group,
where the class attribute is the newly
introduced disc attribute. Accuracy of
the classifier is evaluated with objective interestingness measures, e.g., precision
and recall over the disc = true class value. The choice of the value t should
then be supported by laws or regulators. For instance, the four-fifths rule by
the US states that a job selection rate lower than 80% represents aprima facie
evidence of adverse impact. Since the intended use of the extracted classifier is
descriptive, classification models that are easily interpretable by (legal) experts
and whose size is small should be preferred. In other words, one should trade
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accuracy for simplicity. Classification rules and decision trees are natural choices
in this sense, since rules and tree paths can easily be interpreted and ranked.
The extracted classification models provide a global description of the disc class
values. They are stored in a knowledge base, for comparison purposes and for
the filtering of specific contexts of discrimination – as described next.

Rule Reasoning and Validation. The actual discovery of discriminatory situa-
tions and practices may reveal itself as an extremely difficult task. Due to time
and cost constraints, an anti-discrimination analyst needs to put under inves-
tigation a limited number of contexts of possible discrimination. In this sense,
only a small portion of the classification models can be analysed in detail, say
the top rules or the top paths of a decision tree [5]. We concentrate on rules
of the form: (cond 1) and ... and (cond n) => disc=yes [prec] [rec] [diff],
where (cond 1) and ... and (cond n) is obtained from a classification model.
Rules are ranked on the basis of one or more interestingness measures, including:
precision [prec], recall [rec], average value of diff [diff]. Statistical validation
is accounted for by relying on logistic regression, which is a well-known tool
in the legal and economic research communities. Earlier studies on discrimina-
tion discovery, instead, relied upon simple association or correlation measures.
Recently, the discrimination-aware data mining community has recognized the
importance of causal analysis [3,9].

3 Conclusion

The lesson learned by developing the case study in [7] is above all that discrim-
ination discovery needs a structured process around an algorithmic approach,
and a solid compliance with legal rules and ethical principles. Not only this will
provide guidance to data scientists and decision makers, but it is the only way we
may hope to get acceptance of data mining and machine learning methods by the
users of such methods: legal communities, civil rights and digital rights societies,
regulation authorities, (inter)national agencies, and professional associations.
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Abstract. Applications are getting increasingly interconnected.
Al-though the interconnectedness provide new ways to gather informa-
tion about the user, not all user information is ready to be directly
implemented in order to provide a personalized experience to the user.
Therefore, a general model is needed to which users’ behavior, prefer-
ences, and needs can be connected to. In this paper we present our
works on a personality-based music recommender system in which we use
users’ personality traits as a general model. We identified relationships
between users’ personality and their behavior, preferences, and needs,
and also investigated different ways to infer users’ personality traits from
user-generated data of social networking sites (i.e., Facebook, Twitter,
and Instagram). Our work contributes to new ways to mine and infer
personality-based user models, and show how these models can be imple-
mented in a music recommender system to positively contribute to the
user experience.

Keywords: Personalization · Music recommender systems

1 Introduction

An abundance of information about users is getting available with the increased
interconnectedness of applications, which provide new ways to tackle problems
that systems, such as recommender systems are facing (e.g., lacking behavioral
data to infer preferences, such as with the “cold-start problem”).1 For example,
the implementation of single sign-on (SSO) mechanisms2 allow users to easily
login and register to the application, but also let applications import user infor-
mation from the connected application, which could be used for personalization.

Although with the interconnectedness of applications new information
sources become available, not all the new information is directly applicable to
1 The cold-start problem is most prevalent in recommender systems and occurs with

new users of the application. It refers to that (almost) no information exists yet
about the user to make inferences from.

2 Buttons that allow users to register or login with accounts of other applications. For
example, social networking services: “Login with your Facebook account.”
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create personalized experiences with. Therefore, a general user model is needed
to which users’ behavior, preferences, and needs can be connected to in order
to create personalized experiences for users. This allows the creation of only one
user model that can be used across applications without the need of information
that is directly related to a specific behavior, preference, or need of the user [1].

We model users based on their personality to make inferences about their
behavior, preferences, and needs. Personality has shown to be a stable and
enduring factor, which influences an individual’s behavior, interest, and taste. As
personality plays such a prominent role in shaping human preferences, one can
expect similar patterns (i.e., behavior, interest, and taste) to emerge for people
with similar personality traits, which makes it suitable for user modeling. In our
works, we rely on the widely used five-factor model (FFM), which categorizes
personality into five traits: openness to experience (O), conscientiousness (C),
extraversion (E), agreeableness (A), and neuroticism (N) [10].

In the next sections we provide an overview of our works on user modeling,
which comes in twofold: (1) understanding the relationship between personal-
ity traits of users and their behavior, preferences, and needs, and (2): implicit
acquisition of users’ personality traits from social media.

2 Understanding the User

In order to create personality-based recommender systems, the relationship with
their behavior, preferences, and needs need to be identified first. We conducted
several user studies on different aspects of the user experience in music recom-
mender systems in order to identify relationships with users’ personality.

Listening needs. In [4] we aimed to understand the music listening needs of
users in order to provide better personalized recommendations. We investigated
the relationship between personality traits and the preference for different kinds
of music, and how these preferences change depending on users’ emotional state.
Our findings show that, in general, users like to listen to music in line with
their emotional state. However, individual differences based on personality occur;
especially in a negative emotional state (e.g., sadness). We found that when in
a negative emotional state, those who scored high on openness to experience,
extraversion, and agreeableness tend to cheer themselves up with happy music,
while those who scored high on neuroticism tend to prefer to dwell a bit longer
in this negative state by listening to sad music. This has important implications
for playlist generation. By inferring users’ emotional state (e.g., mining user-
generated content), the next song can be better targeted toward their needs.

Meta information. In [14] we investigated the amount of meta information a
user would want about the music pieces that is listened to. The results showed
that the following personality traits tend to have a higher preference for more
meta information: openness to experience, agreeableness, conscientiousness, and
extraversion. This provides implications about the amount of meta information
a system should present to the user without them experiencing information over-
load, which in turn, negatively affects the user experience of the user.
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User interface. In [8] we simulated an online music streaming service to iden-
tify the relationship between personality traits and the way users browse for
music. By exploring the most frequently used taxonomies to categorize music
(i.e., by genre, activity, mood), we were able to identify distinct music browsing
behavior based on users’ personality, which could be used to create adaptive
user interfaces. For example, findings indicate that those scoring high on open-
ness to experience show a high preference for browsing for music by mood, while
conscientious users show a preference for browsing by activity.

3 Acquisition of Users’ Personality Traits

Besides identifying relationships between personality traits and users’ behavior,
preferences, and needs, we also looked into the implicit personality acquisition of
users. We specifically focused on personality acquisition from social networking
sites (SNSs: e.g., Facebook, Twitter, Instagram), as they are getting increasingly
interconnected through SSO buttons. Besides accessing users’ basic profile infor-
mation, applications often ask for additional permissions to access other parts
of the users profile [2]. By granting access, applications are able to unobtru-
sively infer users’ personality traits. We report the RMSE on personality trait
prediction (i.e., O, C, E, A, N) for each of our work below (r ε [1,5]).

Several works exist that show that it is possible to infer personality traits from
user-generated data of SNSs (e.g., Facebook [11], and Twitter [9,12]). In [5,7]
we add to the work on SNS analyses by inferring personality traits from users’
Instagram picture features. We showed that personality traits are related to the
way Instagram users modify their pictures with filters, and a reliable personality
predictor can be created based on that (RMSE: O = .68, C = .66, E = .90,
A = .69, N = .95). For example, open users tend to apply filters to their pictures
in order to make them look more greenish. In [13] we tried to increase the
prediction accuracy by fusing information from different SNSs (i.e., Instagram
and Twitter). We show a significant improvement of the prediction accuracy
when combining different sources (RMSE: O = .51, C = .67, E = .71, A = .50,
N = .73).

One problem with the implicit acquisition of personality is that when users
are not sharing information, the acquisition fails. We investigated this problem
from two different directions: (1) understanding the underlying mechanisms of
sharing information, (2) personality acquisition with limited user information.

In [3] we found that the lack of sharing and posting comes from the uncer-
tainty of approval of the users viewing the posts. We were able to increasing
sharing and posting by analyzing the user’s social network and create proxy
measures about how the shared or posted content would be received.

In [6] we looked at whether or not disclosing Facebook profile information
reveals personality as well. By solely analyzing whether profile sections were
disclosed or not (e.g., occupation, education), disregarding their actual content,
we were able to create a personality predictor that is able to approximate the
prediction accuracy of methods extensively analyzing content (RMSE: O = .73,
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C = .73, E = .99, A = .73, N = .83). This provide opportunities to still being
able to infer users’ personality even when they are not disclosing information.

4 Conclusion

This paper gave an overview of our work on creating personalized experiences
in music recommender systems. We revealed relationships between personality
traits and different user behavior, needs, and preferences to improve the user
experience, and showed how personality can be mined and inferred using the
increased connectedness between applications and SNSs.
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Abstract. Recurrence quantification analysis (RQA) was developed in
order to quantify differently appearing recurrence plots (RPs) based on
their small-scale structures, which generally indicate the number and
duration of recurrences in a dynamical system. Although RQA measures
are traditionally employed in analyzing complex systems and identifying
transitions, recent work has shown that they can also be used for pairwise
dissimilarity comparisons of time series. We explain why RQA is not only
a modern method for nonlinear data analysis but also is a very promising
technique for various time series mining tasks.

Keywords: Time series mining · Recurrence quantification analysis

1 Introduction and Background

A recurrence plot (RP) is an advanced technique of nonlinear data analysis
[3]. Technically speaking, a recurrence plot R visualizes those times when the
trajectory x of a dynamical system visits roughly the same phase space [3]:
Ri,j = Θ(ε − ‖xi − xj‖), where ε is the similarity threshold, ‖ · ‖ a norm, Θ(·)
the unit step function, and i, j = 1 . . . N is the number of states. In addition,
a cross recurrence plot (CRP) shows all those times at which a state xi ∈ R

m

in one dynamical system co-occurs yj ∈ R
m in a second dynamical system [3]:

Ri,j = Θ(ε − ‖xi − yj‖), where the dimension m of both systems must be the
same, but the number of states can be different.

The recurrence quantification analysis (RQA) is a method of nonlinear data
analysis which quantifies the number and duration of recurrences of a dynamical
system presented by its state space trajectory [3]. RQA measures are derived
from RP structures and can be employed to study the dynamics, transitions, or
synchronization of complex systems [3,4]. The determinism measure (DETµ),
which is the fraction of recurrence points that form diagonal lines of minimum
length μ, has e.g. been successfully applied to detect dynamical transitions [4].

2 Recent Trends and Advances

In time series mining, many algorithms are based on analogical reasoning or
pairwise dissimilarity comparisons of (sub)sequences [13]. In general, the distance
c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 258–262, 2016.
DOI: 10.1007/978-3-319-46131-1 30
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between time series needs to be carefully defined in order to reflect the underlying
dissimilarity of the data, where the choice of distance measure usually depends
on the invariance required by the domain [1].

Recent work [9–12] has introduced novel time series distance measures that
use recurrence quantification analysis (RQA) techniques. The main idea [9] is to
pairwise compare time series by (i) computing a cross recurrence plot (CRP) that
reveals all times at which roughly the same states co-occur and, subsequently, (ii)
quantifying the number and length of all diagonal line structures that indicate
similar subsequences. Figure 1(a-b) shows a toy example, where a labeled time
series is compared to two unlabeled data stream segments using CRPs as well
as corresponding RQA measures.

It has been shown [9,11] that traditional RQA measures, such as the average
diagonal line length and the determinism, can be used to compare time series that
exhibit similar segments or subsequences at arbitrary positions. Time series with
such an order invariance [9] can, for instance, be found in automotive engineering
[11], where vehicular sensors observe driving behavior patterns in their natural
occurring order and the recorded car drives are compared according to the co-
occurrence of these patterns. Although the recurrence plot-based distance [11]
was originally developed to determine characteristic driving profiles [12], this
approach can be used to find representatives in arbitrary sets of single- or multi-
dimensional time series of variable length [10].

In addition, it has been proposed to employ video compression algorithms for
measuring the dissimilarity between un-thresholded recurrence plots and accord-
ingly the time series that generated them [8]. This approach relies on the under-
lying assumption that video compression algorithms are able to detect similar
structures in images or recurrence plots, which correspond to time series pat-
terns. The result [8] show that the compression distance of recurrence plots
works especially well for time series that represent shapes. A follow-up study
[5] compared the performance of various MPEG video compression algorithms
and furthermore introduced a compression distance for cross recurrence plots.
Figure 1(c) contrasts two un-thresholded recurrence plots, which reveal struc-
tural dissimilarities between the examined time series.

Although recurrence plots have been adopted by the data mining community
[2,5,8–12], their computation and quantification generally involve operations
with quadratic time and space complexity. Hence, recent work [7,14] has intro-
duced approximate RQA measures, which exhibit significantly lower complexity
while maintaining high accuracy. Most important, these novel approximations
[7,14] enable us to efficiently use recurrence quantification analysis for relatively
long time series and fast time series streams. Figure 1(d) illustrates the fast
computation of the approximate determinism (aDET ) [7], which allows us, for
example, to filter or identify time series segments with a certain behavior in an
online fashion. The approximation of various RQA measures, such as laminarity
and determinism, is explained at full length in a recent publication [14]
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Fig. 1. Recurrence plot-based distances: (a) illustrates a time series mining scenario
that assumes a labeled sequence x and a data stream with unlabeled segments y and z.
In case (b) we compare time series x with segment y and z to assign labels. (b) shows
two cross recurrence plots that indicate similar states (ε = 0.1) for time series pairs
(x, y) and (x, z), where recurrence points are represented by ‘1’ entries and diagonal
line structures are highlighted in bold font. According to the determinism, DET 2

x,y =
4/9 > 4/12 = DET 2

x,z, the pair (x, y) is more similar than (x, z) [11], meaning x
and y might be from the same class. (c) shows another way to determine the pairwise
dissimilarity of time series. In this case (c) we create un-thresholded recurrence plots
(ε = 0), which facilitate pairwise comparisons by means of image processing and video
compression algorithms [5,8]. The images in (c) resemble each other in structure since
time series x and y have a similar shape. In case (d) we compute the approximate
determinism to assess the ‘complexity’ of our sample data stream at time interval z
and to filter/identify ‘ir-/relevant’ segments with a certain (nonlinear) behavior. (d)
illustrates the recurrence plot of segment z and it’s discretized version ζ = � z

2ε
�. In

our example (d) we achieve a fairly reasonable approximation of the determinism,
DET 2

z,z = 14/20 ≈ 10/18 = aDET 2
ζ,ζ . Although the discretization step introduces

some rounding errors, it allows us to approximate all traditional RQA measures in an
efficient way without even creating and quantifying the RP [7,14].
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3 Conclusion and Open Problems

Recurrence quantification analysis (RQA) is a method of nonlinear data analysis
for the investigation of dynamical systems, which has its origin in theoretical
physics [3,4]. Recently, RQA was adopted by the data mining community in
order to: (i) define novel time series distance measures [5,8,11] and (ii) process
massive data streams by means of approximate measures [7,14].

Although RQA has been successfully applied to data mining problems from
engineering [12] and climatology [6,14], there exist open problems which prevent
its widespread acceptance by the time series fraternity. The main problem with
traditional RQA is that it excludes curved structures, which prevents us from
comparing time series with local scaling or warping invariance [1]. This issue
might be addressed by feeding un-thresholded RPs [5,8] into convolutional neural
networks. In the case of the recently introduced approximate RQA [7,14], it is
necessary to investigate time series representations and discretization techniques
that enable us to bound the approximation error.
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Abstract. Today’s steel industry is characterized by overcapacity and
increasing competitive pressure. There is a need for continuously improv-
ing processes, with a focus on consistent enhancement of efficiency,
improvement of quality and thereby better competitiveness. About 70 %
of steel is produced using the BF-BOF (Blast Furnace - Blow Oxygen
Furnace) route worldwide. The BOF is the first step of controlling the
composition of the steel and has an impact on all further processing steps
and the overall quality of the end product. Multiple sources of process-
related variance and overall harsh conditions for sensors and automation
systems in general lead to a process complexity that is not easy to model
with thermodynamic or metallurgical approaches. In this paper we want
to give an insight how to improve the output quality with machine learn-
ing based modeling and which constraints and requirements are necessary
for an online application in real-time.

Keywords: Real time regression · Model predictive control · Prescrip-
tive data analytics

1 Introduction

There are several ways to produce steel. A complete overview can be found in [6].
About 70 % of steel1 is produced using the BF-BOF (Blast Furnace - Blow Oxy-
gen Furnace) route [5]. The first step is to smelt ores to raw iron in a blast furnace.
Coke is used as the primary energy source and as a reduction agent. The carbon
will bind the oxygen of the iron oxides. At the end of the process liquid raw iron is
produced and transported to the BOF. The produced liquid raw iron has a temper-
ature of 1,200 ℃ and has a very high concentration of carbon and other unwanted
substances. In the given use case [9], the BOF is charged with 150 tons of liquid
raw iron and around 30 tons of scrap metal. The amount of unwanted contents
(except carbon) will be bound in the slag by blowing pure oxygen on the mixture
of liquid raw iron and scrap metal. The whole mixture is stirred by a bottom gas
injection. During the process, the raw iron will be heated up to 1600℃. The needed
energy will be produced by the combustion of the contained carbon in the raw iron.
After 20 to 30 min, the process will be stopped based on an analysis of the off-gas
1 https://www.worldsteel.org.
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composition. The high temperature makes it very expensive and technically chal-
lenging [2] to measure the state of the BOF content during the process directly.
Usually, there will only be a single measurement at the end of the process. In the
given use-case, the quality of the output of the BOF process is described by the
temperature, the carbon and phosphorus content of the raw steel and the iron con-
tent of the slag at the end of the process. Depending on the difference between the
measured and the predefined target value, the process will be repeated until all
quality indicators are within the specifications. With only a single measurement
at the end of the process, only predictions of the quality indicators can be used
to control the process. The prediction of a single quality indicator can be coined
as a learning task. After one or multiple refinement steps, casting and rolling, the
steel is delivered as coil, plate, sections or bars. The BOF process is the first step of
controlling the composition of the steel. The quality of the output has an impact
on all further processing steps and the overall quality of the end products. Thus,
the quality requirements for the output are usually quite strict. It may happen that
up to 20 % of the processes [2] have to be restarted at least once due to quality issues
of the output. Hence, the improvement of the prediction is decisive to increase the
efficiency and saving resources [7,10].

2 Process Control

There are multiple possibilities to control the outcome of the process directly.
Corrective actions have the largest impact if they are executed as early as possi-
ble in the process. The most common approach is to precalculate the amount of
blown oxygen and heating, cooling and slagging agents based on thermodynamic
and metallurgical calculations [4]. The major challenges are presented by mul-
tiple sources of variance in the process. Wear and tear, weather, shift work, the
unknown state and composition of the used input materials and the high volume
of the BOF lead to conditions, that are hard to model with classical metallur-
gical approaches. Either these models are provided with numerous parameters
and are therefore complex to handle or a too small number of parameters lim-
its the reliability of the models. Nevertheless, the resulting predictions and the
corrective actions of the operators deliver usually good results already. But even
if the optimal metallurgical model would be used, the overall harsh conditions
will lead to wear or failure of sensors and other automation equipment. If not
handled properly, the reduced data quality and sensor reliability will reduce the
quality of every prediction significantly.

3 The BOF Process from a Data Point of View

The data of the BOF process comprise of continuous and event-based data.
These data streams are generated by two different data sources (Level 2 and 3
systems [3]). The data streams can be merged and partitioned in an sequence
of BOF processes. The event-based data stream contains the results of the com-
position analysis and the results of the other external measurements, events like
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the addition of cooling or heating agent and meta-data about the state of the
BOF itself. The continuous data stream contains all in-process measurements,
like the off-gas composition, the oxygen and cooling water flow and multiple
temperatures. A considerable proportion of the 100 raw features are not usable
due to not sufficient positioning of the sensors. Until today data analysis only
aimed at a better process understanding of the metallurgical experts. Even if
learning algorithms were used to model the process no automatic extraction of
features and application of learned models have been performed [11].

4 Offline Analysis and Online Application

The major improvement of successful predictions is tuning the features. For
the first time, we have constructed multiple new features to describe the BOF
process better and monitor the state more directly [7]. The promising results
lead to an implementation and application of a prototype at the steel factory
itself [9]. The online application of learned models should move beyond merely
hand coding the model into a control program. In some factories there are up to
6 BOFs installed. Every BOF will be in a different physical state and the given
input materials will be different for every factory. Consequently, every BOF
requires a different set of models and different update policies. The manual
management and update of the models would require great efforts. The wear
and failure of equipment and sensors will lead to concept drifts [1] or a complete
loss of raw data and all extracted features. Therefore, multiple models for the
multiple sensor settings and an online monitoring and management of these
models are needed. To the best of our knowledge, we are the first who developed
an online model management module. We implemented a modular and scalable
architecture, that is able to connect to multiple legacy systems, store all data
efficiently and dynamically extract new features from these raw data, learn new
models and apply these models in real-time [8].

5 From Predictions to Control Assistance

The predictions can be used by the operator to evaluate the potential outcome
of multiple corrective actions directly. Moving beyond this manual operation
on the basis of predictions, we improved the control assistance further. The
improvement can be formulated as an multi-objective optimization problem [9].
The predictions are used as a surrogate function for the real value of the quality
indicators. Similar to the metallurgical approach, the optimization algorithm
uses the amount of oxygen and additions as variables. The costs of the used input
materials can be used to calculate the costs of every potential corrective action
and can be included into the optimization problem. The optimization problem is
solved continuously (1 Hz) and the results can be used by the operator to adapt
the amount of oxygen and additions as early as possible in the process.
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6 Results and Conclusion

The prediction of the conditions at the BOF end-point have been improved
over all development steps and have been constantly better than the classical
approach. Nevertheless, the improvement of the prediction quality is only the
first step for a successful control and monitoring of BOF processes. The different
implementations have been executed successfully and reliable over multiple years.
Only with a modular and scalable architecture and implementation it is possible
to cope with the given harsh conditions and individual characteristics of every
BOF in real-time.
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Abstract. In software project planning project managers have to keep
track of several things simultaneously including the estimation of the
consequences of decisions about, e.g., the team constellation. The appli-
cation of machine learning techniques to predict possible outcomes is
a widespread research topic in software engineering. In this paper, we
summarize our work in the field of learning from project history.

1 Introduction

The use of software repository data to investigate software evolution and for pre-
dictive studies is a wide-spread research topic, that spawned whole conferences
like the MSR1 in the software engineering community. The general approach
depicted in Fig. 1 is similar for all application scenarios. First, the different data
sources, i.e., repositories, are selected and the required data for the purpose of the
investigation are combined. Researchers make use of the version control systems,
issue tracking systems, mailing lists and similar systems as repositories. Second,
a mental model of the software system is build which is filled with informa-
tion from the repositories. These two steps can be summarized as data retrieval
and modeling. Then, the usage of applicable tools for analysis accomplishes the
mining process.

For almost a decade, our research group is interested in the application of
theoretical methods to address problems from software repository mining.

– We applied a generalization of Probably Approximately Correct (PAC) learn-
ing to optimize metric sets [5].

– We worked on defect prediction in a cross-project context which leads to trans-
fer learning problems [3,4].

– We developed an agent-based simulation model for software processes with
automated parameter estimation [7,8].

– We created a model of the developer contribution behavior based on Hidden
Markov Models (HMMs) [6].

– We implemented a smart data platform which can combine data collection
and analysis through machine learning [9].

1 http://msrconf.org/.

c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 267–270, 2016.
DOI: 10.1007/978-3-319-46131-1 32

http://msrconf.org/


268 V. Honsel et al.

Fig. 1. Mining software repositories (adopted from D’Ambros et al. [2]).

2 Optimization of Metric Sets with Thresholds

Our first contribution is an approach to optimize metric sets for classification
using a threshold-based approach. Threshold-based classifications are an impor-
tant tool for software engineering as they are easy to interpret by both developers
and project managers and can be used to, e.g., define coding guidelines. In our
work [5], we demonstrate that very few metrics are sufficient to apply threshold
based approaches, if the metrics are selected carefully and the thresholds are
optimized for the smaller metric set. To achieve this, we use a combination of a
brute force search of the potential metric sets combined with a generalized PAC
learning approach [1] to determine optimal thresholds.

3 Cross-Project Defect Prediction

Accurate defect prediction can be used to focus the effort of quality assurance
and, thereby, ultimately reduce the costs of a project while still ensuring a high
quality product. Cross-project defect prediction deals with the problem of using
data from outside of the project scope where the prediction is applied to, i.e.,
across project context. Hence, cross-project defect prediction is a transfer learn-
ing challenge. Within our work, we proposed an approach for improving predic-
tion models based on selecting a subset of the training data through relevancy
filtering [3]. Using the filtered training data, standard classification models, e.g.,
Support Vector Machine (SVM), Näıve Bayes, and Logistic Regression were used
to predict defects. Moreover, we provided the research community with a tool
to benchmark prediction results [4].

4 Software Process Simulation

For the simulation of software processes we consider several facets of software
processes over time and their impact on software quality. The general idea for
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building software process simulation models is to investigate repositories with
the aim to find patterns which can describe evolutionary phenomena. For this,
we applied statistical learning and machine learning, e.g., for the regression of
growth trends. Our approach is agent-based, with the developers as active agents
working on the software artifacts as passive agents. With our model, we simu-
lated system growth, bugs lifespan, developer collaboration [7], and software
dependencies [8].

5 Developer Contribution Behavior

Developers act in different roles in development projects, e.g., as core developer,
maintainer, major developer or minor developer. We use of HMMs to describe
involvement dynamics and the workload for the different developer types switch-
ing between different states (low, medium, and high) [6]. We take several actions
of developers into account to model their workload: the monthly number of
commits, bugfixes, bug comments, and mailing list posts. Figure 2 illustrates
the learning process. We start with a sequence of monthly activity vectors as
observations. We use the threshold learner described in Sect. 2 to classify the
observations into low, medium, and high for each metric and with a majority
vote for each observation. With the Baum-Welch and the Viterbi algorithm we
calculate the transitions between the involvement states (e.g., low involvement
to medium involvement) and the emissions for all states (i.e., the workloads).
We build a HMMs for each developer of a project, as well as one general model
for all developers. This way, we can describe the activity and workload of devel-
opers dynamically, which we will use to extend our simulation model to allow
for changes in the project team during the simulation.

Fig. 2. Learning of developer’s involvement state sequence.

6 Mining and Analysis Platform

A current problem in the state of practice of mining software repositories is
the replicability and comparability of studies, which is a threat to the external



270 V. Honsel et al.

validity of results. To address this, we created the prototype SmartSHARK [9].
SmartSHARK mines data from repositories automatically and provides users
with the ability to analyze the data with Apache Spark, a big data framework.
Through the MLlib of Apache Spark, we enable users to perform machine learn-
ing tasks on the collected data. Current examples on how to use the platform
are, e.g., different models for defect prediction as well as a simple approach for
effort prediction. SmartSHARK is available as a scalable Cloud platform that
will provide a constantly growing amount of project data and, thereby, enable
large scale experiments. By sharing Apache Spark jobs, the research become
replicable and comparable.

7 Conclusion

Within our research, we show the manifold possibilities to apply machine learning
techniques to problems from software engineering, ranging from PAC learning
to determine thresholds over the transfer learning challenge cross-project defect
prediction to simulation parameter estimation and modeling developers through
HMMs, culminating in a smart data platform for software mining. We invite
machine learning researchers to use their expertise to advance the state of the
art of software engineering.
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Abstract. Inverse reinforcement learning (irl) provides a concise
framework for learning behaviors from human demonstrations; and is
highly desired in practical and difficult to specify tasks such as norma-
tive robot navigation. However, most existing irl algorithms are often
ladened with practical challenges such as representation mismatch and
poor scalability when deployed in real world tasks. Moreover, standard
reinforcement learning (rl) representations often do not allow for incor-
poration of task constraints common for example in robot navigation.
In this paper, we present an approach that tackles these challenges
in a unified manner and delivers a learning setup that is both prac-
tical and scalable. We develop a graph-based spare representation for
rl and a scalable irl algorithm based on sampled trajectories. Exper-
imental evaluation in simulation and from a real deployment in a busy
airport demonstrate the strengths of the learning setup over existing
approaches.

Keywords: Inverse reinforcement learning · Robot navigation · Repre-
sentation

1 Introduction

The ability to learn behavior models from demonstrations is a powerful and
much soxught after technique in many applications such as robot navigation,
autonomous driving, robot manipulation among others. Concretely, a robot’s
decision making in such tasks is modeled using a Markov decision process (mdp).
The reward function of the mdp is assumed to be the “representation of behav-
ior”. However, it is often difficult to manually design reward functions that
encode desired behaviors; hence irl formally introduced in [4] is commonly used
to recover the reward function using human demonstrations of the task, as done
in these examples [1,5,8]. This is because it is often much easier to demonstrate
a task than rigorously specify all factors leading to desired behavior. Bayesian
inverse reinforcement learning (birl) introduced in [7] is in particular suited
for such task where a single reward function may not be sufficient, and expert
demonstrations are often sub-optimal.

c© Springer International Publishing AG 2016
B. Berendt et al. (Eds.): ECML PKDD 2016, Part III, LNAI 9853, pp. 271–274, 2016.
DOI: 10.1007/978-3-319-46131-1 33



272 B. Okal and K.O. Arras

However, when using birl in practical tasks, we are faced with many chal-
lenges such as; very large, continuous and constrained state and action spaces,
which make standard birl inference algorithms impractical. Constraints com-
mon in these tasks include the fact that often not all actions are executable on a
robot. For example conventional cars cannot drive sideways, and not all robots
can turn on the spot. Thus, näıve representation of such mdp using basic func-
tion approximation techniques such as grid discretization easily blow up in space
and computational demands. Additionally, such discretization may also discard
possible good policies by limiting possible actions available at a state, while still
not accounting for the task constraints. We therefore develop a new graph based
representation that significantly reduces the size of the state space and encodes
task specific constraints directly into the action set of the mdp. Furthermore,
standard birl inference algorithms such as policy walk (pw) of [7] based on
Markov chain Monte Carlo (mcmc) or maximum a posteriori(map) approaches,
often require iterating over all possible states and actions. This quickly becomes
impractical when these spaces get very large as in our case. We thus develop
a novel extension of the birl algorithm by defining a new likelihood function
which does not require iterative over all states and actions, but instead uses
samples of trajectories over possibly infinite state and action spaces.

2 Method

Our behavior learning setup consists of two stages; firstly, a flexible data-driven
mdp representation called Controller graph (cg) detailed in Sect. 2.1, and sec-
ondly, reward learning step using sampled trajectory based birl.

s

g
1

2

3

4

5

Fig. 1. Conceptual illustration of cg of a stochastic shortest path mdp with 7 states,
s and g indicating start and goal states respectively. Policy is shown with double red
line. Reverse edges are shown with dotted blue lines.

2.1 Flexible MDP Representation

We use cgs for efficiently representing very large, possibly continuous mdps
with action set already constrained to the target domain, by building upon [3,6].
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A cg conceptually illustrated in Fig. 1, is a weighted labeled graph G = 〈V, E ,W〉
with a vertex set V = {vi}, an edge set E = {(vi, vj)a} and a transition matrix
W, such that V ⊂ S and E = {(vi, vj)a | wi,j > 0, ∀vi, vj ∈ V, a ∈ A}, where S
and A are state and action spaces respectively of the underlying mdp.

Therefore, vertices are state samples summarised by a vector xi and edges are
short trajectories or “macro actions” xi:j between vertices i and j, which we call
local controllers. These local controllers can be any deterministic controller such
as motion primitives [2]; hence directly encode task constraints.The transition
weights wi,j can be estimated by simulating such local controllers a number of
times and setting the weight as the log ratio of success in reaching the target
vertex. The local controllers can also be interpreted as Markov options, in that
once selected, a local controller completely defines the policy up to the next
vertex. In practice, most robot control tasks already have fine tuned controllers
that are almost deterministic.

To build a cg, an empty graph is initialized using samples from the expert
demonstrations or alternatively random uniform samples from the state space.
Additional vertex samples are then added iteratively by sampling around existing
nodes; heuristically trading off exploration and exploitation. This trade off is
guided by examining the variance of value of vertices around a local region, and
whether or not a vertex is part of the iteration’s best policy. In practice, this
leads to very few states are shown in [5], where a 10m2 2D area can be effectively
represented using under 150 vertices. A grid discretization on the same area with
10cm resolution would already generate 104 states.

2.2 BIRL Using Sampled Trajectories

Building upon Ng and Russell [4] we develop an iterative birl algorithm that
use trajectories randomly sampled from cgs to recover reward functions in very
large (possibly infinite) spaces.We define a new likelihood function for birl that
uses these sampled trajectories as shown in (1).

Pr(Ξ | R) =
∏

ξe∈Ξ

(
exp (βζ(ξe, R))

exp (βζ(ξe, R)) +
∑k

i=1 exp (βζ(ξg
i , R))

)

(1)

where Ξ is the set of expert demonstrations, each being trajectory of state-action
pairs. ζ(ξ,R) =

∑
(s,a)∈ξ Qπ(s, a), with policy π obtained using reward R. ξg

i

is a trajectory sampled using a candidate policy at iteration i, while k is the
current iteration. β is our confidence on the expert taking optimal actions when
performing the demonstrations. Therefore, as the reward function improves, we
are able to generate sample trajectories of increasing similarity to the expert.
This new likelihood function is related to the original one of [7] when each
trajectory is interpreted as a single action. The prior remains unchanged as given
in [7]. The posterior is given by Bayes rule as Pr(R | Ξ) = 1/η Pr(Ξ | R) Pr(R),
with η =

∫
Pr(Ξ | R) Pr(R) dR. To infer the reward posterior distribution, the

same pw algorithm of [7] can be employed, or alternatively, map estimates also
yield good results as we found out experimentally. Once the reward function
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is found, it can be used to generate costmaps for motion planning or directly
embedded in planning algorithm objective functions. In our case, we additionally
assume inline with [1,8] that the reward function is a linear combination of
features of the state and action spaces; then infer the feature weights.

3 Experiments and Results

We conducted extensive experiments in simulation and on a real robot to demon-
strate that the setup can indeed learn many complex navigation behaviors with
practical constraints. We were able to learn five navigation behaviors useful for
robot navigation in a busy airport scenario. These are: polite, sociable and rude
navigation behaviors; and additionally, merging with flows and slipstream navi-
gation. The behaviors were evaluated using objective and subjective metrics to
assess potential trade offs in normativeness vs functionality. As shown in [5], we
found that it is possible to have normative behavior with sacrificing functionality.

4 Conclusions

We have presented an approach that takes irl algorithms developed in machine
learning literature and develops compatible but practical extensions for appli-
cation in real world robotics. This endeavor highlights the key challenges that
need to be addressed to achieve more generalizable approaches. For the future,
we are working on formal performance bounds for the new algorithm.
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Abstract. Recent technological advances in the fields of biology and
medicine allow measuring single cells into unprecedented depth. This
results in new types of high-throughput datasets that shed new lights on
cell development, both in healthy as well as diseased tissues. However,
studying these biological processes into greater detail crucially depends
on novel computational techniques that efficiently mine single cell data
sets. In this paper, we introduce machine learning techniques for single
cell data analysis: we summarize the main developments in the field, and
highlight a number of interesting new avenues that will likely stimulate
the design of new types of machine learning algorithms.

Keywords: Bioinformatics · Single cell analysis · Machine learning

1 Introduction

Single-cell technologies have recently been shown to announce another level
of complexity in genomics and medicine. Their high-throughput nature allows
investigating millions of cells, allowing to better capture the dynamics of both
single cells as well as cell populations. The most established method for high-
throughput single cell data analysis is flow cytometry. Flow cytometry measures
multiple parameters of cells that flow in a stream through a system of photonic
detectors at a rate of 25,000 cells per second. This results in data sets contain-
ing millions of cells, and current instruments are able to measure up to 30 cell
characteristics simultaneously. These characteristics are indicative of each cell’s
identity, for example allowing to quantify different types of immune cells in the
blood. Recent advances in the field increase the number of characteristics, e.g.
mass cytometry (up to 50 characteristics) and imaging flow cytometry (several
hundreds of characteristics per cell). In parallel, recent developments from the
field of genomics now allow performing transcriptomics experiments at the single
cell level. This results in datasets where each cell is described by thousands of
parameters, each of which corresponds to a certain gene’s activity level.
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2 Novel Challenges for Machine Learning

From a machine learning perspective, single cell data analysis offers a number of
challenges that require adaptation of existing or development of novel algorithms
for efficient analysis. These fall broadly in two categories: algorithms for data
exploration and algorithms for hypothesis generation. In the next sections, we
briefly introduce data visualization and clustering for data exploration, predic-
tive modeling and feature selection for hypothesis generation, and an example
of a novel learning problem for single cell data: trajectory inference.

2.1 Structuring and Visualizing Millions of Cells

Each sample in a flow cytometry experiment consists of several thousands up to
millions of cells, and to structure and visualize these data two main approaches
can be used. Clustering based approaches first group the cells into cell types
(clusters of similar cells) and subsequently visualize these grouped cells. This
requires scalable and robust algorithms that can deal with millions of data points.
An example is FlowSOM [1], shown in Fig. 1A, which clusters cells using a self-
organizing map and visualizes the clusters in a minimal spanning tree structure
to display information about the cell parameters (features). A second approach is
to use dimensionality reduction techniques, which plot all the cells in a reduced
(often two-dimensional) space. To keep running times acceptable, these tech-
niques are often combined with subsampling schemes. As an example, Fig. 1B
shows a visualization of t-stochastic neighbour embedding (tSNE [2]), which has
been shown to perform well on single cell data, combined with color saturation
plots to highlight the distribution of the cell characteristics.

To retrieve cell population structure from single cell data, a large range of
both existing as well as novel clustering algorithms has been developed, bench-
marked in [3]. Remaining challenges include the detection of very rare cell popu-
lations (less than 0.1 % of the total number of cells), dealing with heterogeneity
(some cell type clusters are very compact while others may be very diffuse),
mapping of clusters between different biological samples, and designing robust
methods that can deal well with technical and biological variability between
samples and noise.

2.2 Predictive Models and Feature Selection

A challenging aspect of single cell data is that every sample (e.g. a patient) is
represented by a “bag” of cells, each with its own properties. This can be viewed
as a particular type of multi-instance learning, requiring appropriate ways to
aggregate the information in the bag of cells. This calls for novel combinations of
unsupervised and supervised learning to first extract higher-level characteristics
from the bag of cells and subsequently combine these with a predictive model.
Benchmarks to compare predictive models have been set up in the FlowCAP
challenges [3,4]. Combinations of unsupervised approaches with subsequent fea-
ture selection and model building, such as the FloReMi approach [5] have been
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shown to obtain superior performance in such contexts. Other techniques use
the multi-instance data as-is as input for predictive models, e.g. using complex
aggregates [6]. In the future, larger datasets for thousands of patients can be
envisaged to become available, and each patient sample can contain millions of
cells. This again will create a need for scalable and robust methods.

2.3 Unsupervised Trajectory Inference

Classical clustering algorithms that assign each cell to a single cell cluster are
not ideal to model gradual processes, such as cellular development. Starting from
a mixture of cells in different stages of a developmental process, unsupervised
trajectory inference algorithms aim to automatically reconstruct the underly-
ing developmental trajectory that cells are following (Fig. 1C-F). As an example

MHCII
CD19

CD64
CD11c CD3

Autofluorescence

CD11b
Ly-6G

NK1.1

MHCII CD19 CD64

CD11c CD3 Autofluorescence

CD11b Ly-6G NK1.1

A: Cluster based visualization (FlowSOM) B: Dimensionality reduction based visualization 
                                                                                                        (tSNE)

C:F Trajectory inference

C D E F

Fig. 1. A: FlowSOM visualization using star charts to denote cell characteristics in
each cell type (circle). Background colors corresponds to a meta-level clustering that
groups similar clusters. B: tSNE visualization with color saturation mapping to denote
the presence of cell characteristics. Cells are clustered based on their characteristics. C-
F: trajectory inference to model a branching path from a snapshot single cell data that
contains cells in various phases of a developmental continuum. (Color figure online)
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consider cells that start in an immature state 1 and subsequently go through
an intermediate state 2 where they diverge into two distinct cell types (state
3 and 4, Fig. 1C). Subfigures D and E respectively denote how cell characteris-
tics (marker 1 and 2) change when cells follow this developmental path. Finally,
subfigure F shows a scatterplot of the data, showing the two trajectories, with
a common path between state 1 and 2, after which they diverge to state 3 and
4. Automatically inferring these trajectories from a single data snapshot, and
thus the underlying developmental structure, presents a new type of unsuper-
vised learning with many challenges, as real single cell data may be described by
thousands of parameters. Early approaches, such as the Wanderlust algorithm
[7], use a K-nearest neighbor graph to model local similarities between cells,
and already show promising results for linear (i.e. non-branching) trajectories.
However, most realistic scenario’s include branching, and sometimes even cyclic-
ity, which still challenges the current state of the art. Furthermore, there is a
great need to setup objective benchmarking studies over various data sets with
different characteristics for this novel type of problem, which could be a great
opportunity for researchers in machine learning and data mining.

3 Conclusions and Future Research Directions

The analysis of single cell data consists of many different tasks, and a whole
range of machine learning techniques can be adapted to advance biological and
medical research. While each task has its own specific challenges, scalability is
often an issue, both when dealing with large datasets (containing millions of
cells) as well as with very high-dimensional datasets (such as gene expression
on single cell level). Another returning challenge is obtaining sufficient data
quality and understanding how technical and biological variations will impact
the algorithms. While this field is quickly developing, we believe there is still
room for many novel types of learning from this data. In particular, we envisage
that many novel types of unsupervised learning will emerge, trajectory inference
presenting only the tip of the iceberg.
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Abstract. Most classification algorithms are aimed at predicting the value or
values of a single target (class) attribute. However, some real-world classification
tasks involve several targets that need to be predicted simultaneously. The Multi-
objective Info-Fuzzy Network (M-IFN) algorithm builds an ordered (oblivious)
decision-tree model for a multi-target classification task. After summarizing the
principles and the properties of the M-IFN algorithm, this paper reviews three
case studies of applying M-IFN to practical problems in industry and science.
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1 Introduction

As indicated in [1, 2], the assumption that a learning task has only one objective is very
restrictive. Data instances in many real-world datasets may be simultaneously assigned
multiple class labels related to multiple tasks, which may be strongly related, completely
unrelated, or just weakly related to each other. Examples include a student’s grades in
several courses, multiple diagnoses of a given patient, multiple outputs of a software
system, multi-trait prediction from genomic data [3], etc. More examples of concurrent
learning tasks are discussed in [4].

In [5], we have presented a unified framework for single-objective and multi-objec‐
tive classification, called an extended classification task, which includes the following
components:

• R = (A1,…, An) - a non-empty set of n candidate input features (n ≥ 1), where Ai is
an attribute i. The values of these attributes (features) can be used to predict the values
of class dimensions (see below).

• O = (C1,…, Cm) - a non-empty set of m class dimensions (m ≥ 1). This is a set of tasks
(targets) to predict. The extended classification task is to build an accurate model (or
models) for predicting the values of all class dimensions, based on the corresponding
dependency subset (or subsets) I ⊆ R of selected input features. A special case of this
task is multi-label classification, which allows multiple labels of the same dimension
to be assigned to a given instance.
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Section 2 of this paper outlines the methodology for inducing a multi-target model
called Multi-objective Info-Fuzzy Network (M-IFN) and discusses its main character‐
istics. Section 3 reviews several case studies of applying M-IFN to practical problems
in diverse branches of industry and science. Finally, in Sect. 4, we briefly discuss open
challenges in multi-target classification.

2 Multi-objective Info-Fuzzy Networks

As indicated in [5], a multi-objective info-fuzzy network (M-IFN) is a multi-target
extension of a single-objective info-fuzzy network (IFN). Similar to IFN, M-IFN has a
single root node and an “oblivious read-once decision graph” structure, where all nodes
of a given layer are labeled by the same feature and each feature is tested at most once
along any path. It also has a target layer with a target node for each class label of every
target. Every internal M-IFN node is shared among all targets, which makes it an extreme
case of a Shared Binary Decision Diagram [6]. This implies that each terminal (leaf)
node is connected to at least one target node associated with a value of every target.

Unlike CART [7], C4.5 [8], and EODG [9], the M-IFN construction algorithm has
only the growing (top-down) phase, which iteratively chooses predictive features maxi‐
mizing the decrease in the total conditional entropy of all targets. The top-down
construction is pre-pruned by the Likelihood-Ratio Test. The details of M-IFN construc‐
tion procedure are presented in [5].

In [10], we show the M-IFN algorithm to have the following important properties:

• The average conditional entropy of m targets in an n-input m-dimensional M-IFN
model is not greater than the average conditional entropy over m single-target models
Si (i = 1,…, m) based on the same n input features. This inequality is strengthened if
the multi-target M-IFN model is built upon more features than the single-target
models. Consequently, we may expect that the average accuracy of a multi-target
M-IFN model in predicting the values of m targets will not be lower, or even will be
higher, than the average accuracy of m single-target models using the same set of
predictive features.

• If all class dimensions (targets) are either mutually independent or totally dependent
on each other, the input features selected by the M-IFN algorithm will minimize the
joint conditional entropy of all targets, i.e. will provide the most accurate classifica‐
tion model for all target classes. The case of mutual independence extends the scope
of multitask (transfer) learning [1], where all “extra” tasks (targets) are assumed to
be related to the main classification target.

3 Case Studies

Our first case study [11] refers to prediction of grape and wine quality in a multi-year
dataset provided by Yarden - Golan Heights Winery in Israel. For each grape field in every
season, the Winery keeps record of 27 quality parameters (target variables) along with 135
candidate input features. Thus predicting grape and wine quality is clearly a multi-target

Multi-target Classification: Methodology and Practical Case Studies 281



classification task. We have used M-IFN to identify the most significant predictive factors
of grape and wine quality parameters. We have also shown that on average, single-target
IFN models are significantly more accurate on this data than C4.5 decision-tree models
whereas the M-IFN models are even more accurate than the single-target IFN models. This
result agrees with the previously mentioned observation that the average accuracy of a
single multi-target M-IFN model is not expected to be worse than the average accuracy of
multiple single-target models using the same set of predictive features.

The second case study [12], partially supported by General Motors, deals with
predicting the probability and the timing of vehicle failures based on an integrated data‐
base of sensor measurements and warranty claims. We have applied the IFN and M-IFN
induction algorithms to a dataset of 46,418 records representing periodical battery
sensory readings for 21,814 distinct vehicles of a high-end model. The prediction models
have been evaluated by the area under ROC (Receiver Operating Characteristics) curves,
also known as the Area under Curve, or AUC. Though the IFN and the M-IFN ROC
curves for the target attribute Battery Failure are nearly identical, the multi-target
approach has shown a clear advantage in terms of model comprehensibility as it reduced
the total number of prediction rules by 33 %.

The third, more recent case study [13] is aimed at predicting the number and the
maximum magnitude of seismic events in the next year based on the seismic events
recorded in the same region during the previous years. The predictive features include
six seismic indicators commonly used in earthquake prediction literature as well as 20
new features based on the moving annual averages of the number of earthquakes. We
have evaluated eight classification algorithms on a catalog of 9,042 earthquake events,
which took place between 01/01/1983 and 31/12/2010 in 33 seismic regions of Israel
and its neighboring countries. The M-IFN algorithm has clearly shown the best result
in terms of the Area under Curve (AUC) criterion, explained by its unique capability to
take into account the relationship between two target variables: the total number of
earthquakes and the maximum earthquake magnitude during the same year.

4 Conclusions

In this paper, we have presented the M-IFN (Multi-objective Info-Fuzzy Network)
algorithm for inducing multi-target classification models. The algorithm’s effectiveness
and broad applicability have been demonstrated via case studies in three diverse fields:
winemaking, predictive maintenance, and seismology. The multi-target classification
domain is facing a number of exciting challenges such as semi-supervised learning from
a subset of targets, handling delayed target values, and adapting deep learning algorithms
for the multi-target classification task.
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Abstract. Search behavior, and information seeking behavior more gen-
erally, is often motivated by tasks that prompt search processes that
are often lengthy, iterative, and intermittent, and are characterized by
distinct stages, shifting goals and multitasking. Current search systems
do not provide adequate support for users tackling complex tasks due
to which the cognitive burden of keeping track of such tasks is placed
on the searcher. In this note, we summarize our recent efforts towards
extracting search tasks from search logs. Based on recent advancements
in Bayesian Nonparametrics and distributional semantics, we propose
novel algorithms to extract task and subtasks from a query collection.
The models discussed can inform the design of the next generation of
task-based search systems that leverage user’s task behavior for better
support and personalization.

1 Introduction

Search behavior, and more generally, information-seeking behavior is often moti-
vated by tasks that prompt search processes that are often lengthy, iterative,
intermittent, and characterized by distinct stages, shifting goals and multitask-
ing. Current search engines do not provide adequate support for tackling complex
tasks (e.g. planning a trip, surveying a topic), due to which the cognitive burden
of keeping track of such tasks and completing them is placed on the searcher.
Ideally, a search engine should be able to decipher the underlying reason that
led the user to submit a query (i.e., the actual task that caused the query to be
issued), and be able to guide the user to achieve their task by incorporating this
knowledge about the actual information need.

In this research, we hypothesize that developing a comprehensive understand-
ing of user’s tasks would help in providing better support and recommenda-
tions to users based on their contextual information and as a result, help users
accomplish the task. As part of the proposed research, we consider the chal-
lenge of extracting tasks from a given collection of search log data and present
task extraction techniques which rely on recent advancements in bayesian non
parametrics and word embeddings. We evaluate the performance of such tech-
niques using a number of techniques based on crowdsourced judgments as well
as labelled ground truth data.
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2 Task Based Information Retrieval

Our efforts at developing task based retrieval systems have focussed around three
major themes, (i) understanding searcher’s behaviors, (ii) developing task extrac-
tion techniques and (iii) showing the benefits of task information via improved
personalization. We next describe each of them in detail.

2.1 Understanding Searcher’s Task Behavior

While a major share of prior work have considered search sessions as the focal
unit of analysis for seeking behavioral insights [7–9], search tasks are emerg-
ing as a competing perspective in this space. In a recent work [1], we quantify
multi-tasking behavior of web search users and show that over 50 % of search
sessions have more than 2 tasks. Further, we provide a method to categorize
users into focused, multi-taskers or supertaskers depending on their level of task-
multiplicity and show that the search effort expended by these users varies across
the groups. Additionally, in a follow up work [3] we relate user’s multitasking
propensities to tasks and topics. Specifically, we analyze user-disposition, topic
and user-interest level heterogeneities that are prevalent in search task behavior.
We find that not only do users have varying propensities to multi-task, they also
search for distinct topics across single-task and multi-task sessions. The findings
from our analysis provide useful insights about task-multiplicity in an online
search environment and hold potential value for search engines that wish to per-
sonalize and support search experiences of users based on their task behavior.

2.2 Extracting Hierarchies

An important first step in developing task based systems is task extraction. In a
recently published work [4], we considered the challenge of extracting hierarchies
of search tasks and their associated subtasks from a given search log given just
the log data without the need of any manual annotation of any sort. We present
an efficient Bayesian nonparametric model for discovering task hierarchies and
propose a tree based bayesian hierarchical task construction algorithm to dis-
cover this rich hierarchical structure embedded within search logs. Our model
organises the queries into a nested hierarchy T of tasks/subtasks, with all queries
in one node at the root and singleton queries at the leaves. We interpret a tree
(T ) as a mixture of partitions over those group of queries (Q). We define the
probability of a group of such queries as:

p(Q|T ) =
∑

φ

p(φ(t))p(Q|φ(t)) (1)

where p(φ(T )) is the mixing proportion of partition φ(T ), and p(Q|φ(t)) is the
probability of the group of queries Q given a partitioning by φ(T ). In general the
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number of partitions consistent with T can be exponentially large. To make com-
putations tractable, we define the mixture model in such a way that p(Q|φ(t))
can be computed using dynamic programming over T:

p(Q|T ) = πT f(Q) + (1 − πt)
∏

Ti∈ch(T )

p(leaves(Ti)|Ti) (2)

In the beginning, each query is regarded as a tree on its own. For each step, the
algorithm selects two trees Ti and Tj and merges them into a new tree Tm. Unlike
binary hierarchical clustering, we allow three possible merging operations: (i)
Join: Tm = {Ti, Tj}, such that the tree Tm has two children now; (ii) Absorb:
Tm = {children(Ti) ∪ Tj}, i.e., the children of one tree gets absorbed into the
other tree forming an absorbed tree with >2 children; and (iii) Collapse: Tm =
{children(Ti)∪children(Tj)}, all the children of both the sub-tree get combined
together at the same level. Such a setting allows each task to be composed of an
arbitrary number of sub-tasks without restricting tasks to contain only binary
subtasks.

The tree is built in a bottom-up greedy agglomerative fashion, and the algo-
rithm finishes when just one tree remains. At each iteration a pair of trees in the
forest F is chosen to be merged by considering the pair and type of merger that
yields the largest Bayes factor improvement over the current model. Further
details of the work are available in our research paper [4].

2.3 Decomposing Complex Search Tasks

Quite often, search tasks (e.g. planing a trip) are complex and conceptually
decompose into a set of sub-tasks (e.g. booking flights, finding places of interest
etc.), each of which warrants the user to further issue multiple queries to solve.
Given a collection of on-task queries (extracted using standard task extraction
algorithm), we proposed a distance dependent Chinese Restaurant process model
to extract these sub-tasks from a given collection of on-task queries.

In our sub-task extraction problem, each task is associated with a dd-CRP
and its tables are embellished with IID draws from a base distribution over mix-
ture component parameters. Let zi denote the ith query assignment, the index
of the query with whom the ith query is linked. Let dij denote the distance mea-
surement between queries i and j, let D denote the set of all distance measure-
ments between queries, and let f be a decay function. The distance dependent
CRP independently draws the query assignments to sub-tasks conditioned on
the distance measurements,

p(zi = j|D,α) ∝
{

f(dij) if j �= i

α if j = i

Here, dij is an externally specified distance between queries i and j, and α deter-
mines the probability that a customer links to themselves rather than another
customer. Given a decay function f , distances between queries D, scaling para-
meter α, and an exchangeable Dirichlet distribution with parameter λ, N M-word
queries are drawn as follows,
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1. For i ∈ [1, N ], draw zi ∼ dist − CRP (α, f,D).
2. For i ∈ [1, N ],

(a) If zi /∈ R∗
q1:N , set the parameter for the ith query to θi = θqi . Otherwise

draw the parameter from the base distribution, θi ∼ Dirichlet(λ).
(b) Draw the ith query terms, wi ∼ Mult(M, θi).

Further details of the work are available in our research paper [2].

2.4 Task Based Personalization

In order to demonstrate the usefulness of a task based system, in recent work
[5,6] we presented a novel approach to couple user’s topical interest informa-
tion with their search task information & their term usage behavior to learn a
joint user representation technique. We demonstrated that coupling user’s task
information with their topical interests indeed helps us build better user mod-
els. We show through extensive experimentation that our task based method
outperforms existing query term based and topical interest based user represen-
tation methods. By evaluating the quality of our approach on a variety of tasks
for personalisation including collaborative query recommendation, cluster based
recommendation and user cohort analysis, we demonstrate that the proposed
methods result in better user profiles.

3 Conclusion

In this note, we offered insights about the shift in focus from sessions to tasks
and presented a brief summary of our recent work aimed at extracting tasks from
search logs. We believe that the task-based personalization and recommendation
has the potential to shape the future of user interaction systems for the upcoming
era of intelligent Web, and there is much to be done on this emerging topic. Some
of the key problems to investigate in the future include using task based systems
for improved recommendations and better predicting contextual needs of users
for proactive recommendations.

References

1. Mehrotra, R., Bhattacharya, P., Yilmaz, E.: Characterizing users’ multi-tasking
behavior in web search. In: Proceedings of the ACM on Conference on Human
Information Interaction and Retrieval (2016)

2. Mehrotra, R., Bhattacharya, P., Yilmaz, E.: Deconstructing complex search tasks:
a bayesian nonparametric approach for extracting sub-tasks. In: Proceedings of
NAACL-HLT, pp. 599–605 (2016)

3. Mehrotra, R., Bhattacharya, P., Yilmaz, E.: Sessions; tasks & topics - uncovering
behavioral heterogeneities in online search behavior. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM (2016)



288 R. Mehrotra and E. Yilmaz

4. Mehrotra, R., Yilmaz, E.: Towards hierarchies of search tasks & subtasks. In: WWW
(2015)

5. Mehrotra, R., Yilmaz, E.: Terms, topics & tasks: enhanced user modelling for better
personalization. In: Proceedings of the International Conference on the Theory of
Information Retrieval, pp. 131–140. ACM (2015)

6. Mehrotra, R., Yilmaz, E., Verma, M.: Task-based user modelling for personalization
via probabilistic matrix factorization. In: RecSys Posters (2014)

7. Odijk, D., White, R.W., Hassan Awadallah, A., Dumais, S.T.: Struggling and suc-
cess in web search. In: CIKM (2015)

8. White, R.W., Bennett, P.N., Dumais, S.T.: Predicting short-term interests using
activity-based search context. In: CIKM (2010)

9. Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware ranking in
web search. In: SIGIR (2010)



Data Mining Meets HCI: Data and Visual
Analytics of Frequent Patterns

Carson K. Leung1(B), Christopher L. Carmichael1, Yaroslav Hayduk1,2,
Fan Jiang1, Vadim V. Kononov1, and Adam G.M. Pazdor1

1 University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca
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Abstract. As a popular data mining tasks, frequent pattern mining dis-
covers implicit, previously unknown and potentially useful knowledge in
the form of sets of frequently co-occurring items or events. Many exist-
ing data mining algorithms return to users with long textual lists of
frequent patterns, which may not be easily comprehensible. As a picture
is worth a thousand words, having a visual means for humans to inter-
act with computers would be beneficial. This is when human-computer
interaction (HCI) research meets data mining research. In particular, the
popular HCI task of data and result visualization could help data miners
to visualize the original data and to analyze the mined results (in the
form of frequent patterns). In this paper, we present a few systems for
data and visual analytics of frequent patterns, which integrate (i) data
analytics and mining with (ii) data and result visualization.

1 Introduction and Related Works

Over the past two decades, many frequent pattern mining algorithms [1] have
been developed for data analytics [3]. These algorithms usually produce long
textual lists of frequent patterns, which may not be easily comprehensible. As
a picture is worth a thousand words, a visual representation (i) matches the
power of the human visual and cognitive system, and (ii) enables human to
interact with computers effectively. This is when human-computer interaction
(HCI) meets data mining. Specifically, HCI researches the design and usage
of computer technology, with a focus on the interfaces between humans and
computers. As a popular HCI tasks, data and result visualization could help
data miners or data analysts to (i) visualize the original data and (ii) analyze
the mined results (i.e., frequent patterns). This leads to visual analytics [2], which
is the science of analytical reasoning supported by interactive visual interfaces.

Over the past two decades, several visualizers have been developed. Many of
them (e.g., VisDB [6]) were designed for visualizing data only. Some were built
for visualizing results of data mining tasks such as cluster analysis or anomaly
detection. In the next section, we present and summarize some visualizers that
have been developed for visual analytics of frequent patterns, which integrate
(i) data analytics and mining with (ii) data and result visualization. Note that a
c© Springer International Publishing AG 2016
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challenge of visualizing frequent patterns is the ability to show the patterns and
their prefix-extension relationships (e.g., {a} and {a, b} are prefixes of {a, b, c},
whereas {a, b, c, d} and {a, b, c, e} are extensions of {a, b, c}). Another challenge
is the ability to show the frequency of each pattern.

2 Frequent Pattern Visualizers

FIsViz [8] visualizes frequent k-itemsets (i.e., patterns consisting of k items) as
polylines connecting k nodes in a two-dimensional space with (x, y)-coordinates,
in which domain items are listed on the x-axis and frequency values are indicated
by the y-axis. The x-locations of all nodes in the polyline indicate the domain
items contained in a frequent pattern Z, and the y-location of the rightmost
node of a polyline for Z indicates the frequency of Z. Hence, prefix-extension
relationships can be observed by traversing along the polylines. See Fig. 1(a). In
addition, to facilitate exploration of data and mining results, FIsViz also provides
users with interactive detail-on-demand features. When the mouse hooves on a
polyline connecting two nodes u and v, FIsViz shows a list of itemsets containing
both u and v. Similarly, when the mouse hovers over a node, FIsViz shows a list
of all patterns contained in all polylines starting or ending at this node.

As polylines in FIsViz can be bent and crossed over each other, it may not be
easy to distinguish one polyline from another. To solve this problem, WiFIsViz
[9] and FpVAT [7] were designed. As shown in Fig. 1(b), WiFIsViz uses two half-
screens to visualize frequent patterns. Both half-screens are wiring-type diagrams
(i.e., orthogonal graphs), which represent frequent patterns as horizontal lines
connecting k nodes in a two-dimensional space (where the x-axis lists all the
domain items). The left half-screen provides the frequency information by using
the y-location of the horizontal line to indicate the frequency of the frequent
pattern. The right half-screen lists all frequent patterns in the form of a trie.

FpVAT [7] also uses wiring-type diagrams to visualize frequent patterns.
However, FpVAT shows all the frequent patterns and their frequencies on the
same full-screen. See Fig. 1(c).

The above three visualizers show all frequent patterns. When handling very
large datasets, the number of frequent patterns to be displayed can be huge due
to pattern explosion. To improve this situation, CloseViz [5] extends WiFIsViz
and FpVAT by providing users with explicit and easily-visible information among
the closed patterns, which greatly reduces the number of displayed patterns with-
out losing any frequency information. Note that a frequent pattern Z is closed if
no superset of Z has the same frequency as Z. As shown in Fig. 1(d), CloseViz
represents closed patterns as horizontal lines in a two-dimensional graph.

The above four visualizers show frequent patterns from a single database
instance. However, there are situations in which users may be interested in dif-
ferences between the results returned from two database instances. For example,
a store manager may be interested in finding out the difference between popu-
lar sets of merchandise items sold in the summer and in the winter in order to
detect the (temporal) changes in frequencies of the mined frequent patterns as
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(a) FIsViz (b) WiFIsViz (c) FpVAT

(d) CloseViz (e) ContrastViz

(f) FpMapViz (g) RadialViz (h) PyramidViz

Fig. 1. Frequent pattern visualizers

well as their trends from one database instance to another. Similarly, a regional
manager may want to find out the (spatial) difference between the popular sets
of merchandise items sold in two different locations. To handle with these real-
life situations, ContrastViz [4] extends WiFIsViz and FpVAT by helping users
to visually contrast two collections of frequent patterns. As shown in Fig. 1(e),
ContrastViz visualizes and analyzes all the frequent patterns, their frequencies,
as well as changes in frequencies.

Instead of polylines or wiring-type diagrams (i.e., orthogonal graphs), Fp-
MapViz [11], RadialViz [10] and PyramidViz [12] use alternative design with
emphasis on showing the prefix-extension relationships among the frequent pat-
terns. For example, inspired by the tree map representation of hierarchical infor-
mation, FpMapViz represents frequent patterns as squares in a hierarchical
fashion so that extensions of a frequent pattern Z are embedded within squares
representing the prefixes of Z. The colour of the square representing Z indicates
the frequency range of Z. See Fig. 1(f).

As shown in Fig. 1(g), RadialViz [10] also visualizes frequent patterns but
in a radial layout, which leads to a benefit of being orientation-free. As such, the
legibility of the represented frequent patterns is not be impacted by the orienta-
tion. Hence, RadialViz is ideal for the collaborative environment (cf. traditional
two-dimensional rectangular space, which favors the viewer who visualizes data
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or mining results at the up-right position but not favors those on the opposite
side or the left/right sides). Moreover, RadialViz also represents frequent pat-
terns in a hierarchical fashion so that extensions of a frequent pattern Z are
embedded within sectors representing the prefixes of Z. The frequency of Z is
represented by the radius of the sector representing Z.

Recently, PyramidViz [12] visualizes frequent patterns in a tree or building
block layout. As shown in Fig. 1(h), the frequent 1-itemsets are located at the
bottom of the pyramid, whereas frequent patterns of higher cardinalities are
located near the top of the pyramid. Moreover, frequent patterns are represented
in a hierarchical fashion so that the building blocks representing the extensions
of a frequent pattern Z are put on top of the blocks representing the prefixes
of Z. The colour of the block representing Z indicates the frequency range of Z.

3 Conclusions

This paper presents instances when data mining meets HCI, with focus on data
and visual analytics of frequent patterns by describing eight frequent pattern
visualizers: FIsViz, WiFIsViz, FpVAT, CloseViz, ContrastViz, FpMapViz, Radi-
alViz, and PyramidViz. As ongoing work in the current era of big data, we are
extending existing visualizers to support big data visualization. We are also
broadening our study by including alternative frequent pattern visualizers.
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Abstract. Recent years have seen a significant increase in the num-
ber of applications requiring accurate and up-to-date spatial data. In
this context crowdsourced maps such as OpenStreetMap (OSM) have
the potential to provide a free and timely representation of our world.
However, one factor that negatively influences the proliferation of these
maps is the uncertainty about their data quality. This paper presents
structured and unstructured machine learning methods to automatically
assess and improve the semantic quality of streets in the OSM database.

Keywords: Probabilistic graphical modelling · Crowdsourced spatial
data · Street networks · Semantics

1 Introduction

We live in an age where the demand for accurate and up-to-date spatial data has
never been greater. However, obtaining and maintaining such spatial databases
is a challenging and expensive task. In this context, crowdsourced maps such as
OpenStreetMap (OSM)1 can be a viable solution for obtaining a free and up-
to-date representation of our world. While an extensive number of applications
have been developed around OSM, concerns exist regarding the quality of OSM
data. The predominant method for assessing OSM data quality is based on
comparing the OSM data with some form of authoritative maps such as the
Ordnance Survey UK [2], Google Maps, etc. However, we argue that this process
of comparing a crowdsourced (heterogenous) database with authoritative maps
is ineffective. Instead we propose the use of machine learning techniques for
assessing and possibly improving the data quality of crowdsourced maps without
referencing to external repositories.

Specifically, in this paper we focus on the semantic type quality of streets
in the OSM where semantic type refers to the class of a street such as motor-
way, pedestrian, etc. We hypothesize that the semantic types of streets are a

1 The OSM project was started in 2004 with a goal of creating a free and editable
map of the entire world. www.openstreetmap.org.
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function of their geometrical and topological features and develop structured
and unstructured machine learning models that can learn the semantic types of
streets given such features. Interestingly, the structured learning models can also
exploit the inherent spatial relationships within a street network.

2 Methodology

2.1 Data Representation

Appropriate data representation is a fundamental step toward useful knowledge
discovery. Therefore, as a first step a novel multi-granular graph-based street net-
work representation system is developed. All streets having same name and same
semantic type correspond to a single node in a multi-granular graph. Such a rep-
resentation makes the various features of a street explicit as opposed to implicit.
More details of the multi-granular representation system can be found in [3].

2.2 Feature Extraction

Several topological and geometrical features of streets were extracted using
the multi-granular street network representation obtained above. These include
length, linearity, number of dead-ends, number of intersections, semantic types of
adjacent streets (using a BoW model), node degree, and betweenness centrality.

2.3 Unstructured Learning

Next, we develop an unstructured (or classical) supervised machine learning
model to learn the various semantics types of streets in the OSM database. The
development of this model involves assessing the performance of the commonly
used machine learning classifiers such as naive bayes, SVM, neural networks, and
random forests in terms of their generalization performance on test data. More
details on the implementation of the unstructured learning of the problem can
be found in [4].

2.4 Structured Learning

A street network is a structured input as it consists of several streets, where not
only the streets themselves contain information such as geometry, but also the
way in which the streets are connected to each other is important. For such a
structured input, we obtain a structured output of semantic types of streets over
all the streets in the network. We exploit the Conditional Random Field (CRF)
framework for performing structured prediction. The CRF framework allows us
to leverage prior knowledge available to us in the form of crowdsourced semantics,
the geometrical and topological features of individual streets, and the contextual
(structural) relationships between various streets into a single unified model.
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Fig. 1. Street network represented as a graphical model. x are the observed variables
corresponding to the streets in the network and y are the labelling we want to infer.
The green lines correspond to the unary potentials in the model and the red line to
the pairwise potential.

Suppose we have a street network consisting of N streets x = {x1, x2, . . . ,
xN} ∈ X and our goal is to predict the semantic type labellings y =
{y1, y2, . . . , yN} ∈ Y for these streets. Figure 1 shows our representation of such
a street network as a graphical model where xip corresponds to the initial crowd
sourced labels or priors and xif corresponds to the geometric and topological
features. Toward the goal of jointly learning the semantic type labelling y, our
model maximizes the conditional probability of y given x [6]:

ŷ = arg max
y∈Y

P (y|x;w) (1)

We use a max-margin approach for determining the model parameters w and
a fusion moves approach for inferring the street labellings. More details on the
structured learning of the problem can be found in [1,5].

3 Results and Discussion

We trained and tested our models on two non-overalapping regions from OSM
London database. All 19 popular semantic types of streets used in OSM database
for classifying a street were considered. An overall classification accuracy of
55.95 % was obtained using the unstructured learning model (random forest).
This accuracy increased to 84.75 % when structured learning framework was
used. Clearly, and naturally the structured learning framework outperforms the
unstructured learning performance as it exploits the inherent structure in street
networks. To the best of our knowledge, this is the first time that a structured
learning framework has been used in the context of crowdsourced spatial data.

In this work, we considered all the 19 popular semantic types of streets used
for classifying a street network. However, such a classification of street network
is too fine-grained when compared with the commonly used and understood
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street network classifications where a street network is usually classified into
4–10 semantic types. In future we propose the development of a multi-layer
conditional random field based model for simultaneously learning both the fine-
grained (19) and coarse-grained (4–10) semantic types of streets. In addition,
the models developed in this paper will also be extended to other map objects
such as buildings, Points of Interests (PoIs), etc.

4 Dual Submissions

The work presented in this paper is a summary of the work already published
at the following venues:

1. 23rd ACM SIGSPATIAL Conference, USA, 2015
2. 22nd ACM SIGSPATIAL Conference, USA, 2014
3. Intelligent Systems, Technologies, and Applications, Springer, 2016
4. UL-NUIG Research Day, 2016.
5. Related version submitted to the Indian Workshop on Machine Learning,

2016.
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Abstract. Local exceptionality detection on social interaction networks
includes the analysis of resources created by humans (e. g., social media)
as well as those generated by sensor devices in the context of (complex)
interactions. This paper provides a structured overview on a line of work
comprising a set of papers that focus on data-driven exploration and
modeling in the context of social network analysis, community detection
and pattern mining.

Keywords: Local exceptionality detection · Exceptional models ·
Subgroup discovery · Community detection · Social network analysis ·
Social interaction networks · Social media

1 Introduction

In ubiquitous and social environments, a variety of heterogenous multi-relational
data is generated, e. g., by sensors and social media. Then, a set of complex net-
works can be derived, in the form of social interaction networks [2], capturing
distinct facets of the interaction space [19]. In that context, local exceptionality
detection – based on subgroup discovery and exceptional model mining – pro-
vides flexible approaches for data exploration, assessment, and the detection of
unexpected and interesting phenomena.

Subgroup discovery [3,15,23] is an approach for discovering interesting sub-
groups – as an instance of local pattern detection [20]. The interestingness is
usually defined by a certain property of interest formalized by a quality func-
tion. In the simplest case, a binary target variable is considered, where the share
in a subgroup can be compared to the share in the dataset in order to detect
(exceptional) deviations. More complex target concepts consider sets of target
variables. In particular, exceptional model mining [3,12] focuses on more complex
quality functions. In the context of ubiquitous data and social media, interesting
target concepts are given, e. g., by densely connected graph structures (commu-
nities) [5], unexpected spatio-semantic distributions [8], or exceptional matches
between online-offline relations [13] for behavioral characterization.

c© Springer International Publishing AG 2016
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This paper focuses on formalizations and applications of subgroup discov-
ery and exceptional model mining in the context of social interaction net-
works. We summarize recent work on community detection, behavior character-
ization and spatio-temporal analysis, and efficient implementation (comprising
the papers [1,2,4–8,10,13]). In that way, we provide a compact and structured
overview of recent scientific advances in this field, covering specific methods and
their applications for analyzing social interactions.

2 Methods

Social interaction networks [2,17,18] focus on user-related social networks in social
media capturing social relations inherent in social interactions, social activities
and other social phenomena which act as proxies for social user-relatedness. There-
fore, according to the categorization of Wassermann and Faust [22, p. 37 ff.]
social interaction networks focus on interaction relations between people as the
corresponding actors. This also includes interaction data from sensors and mobile
devices, as long as the data is created by real users [1,2].

In such contexts, exploratory data analysis is an important approach, e. g.,
for getting first insights into the data. In particular, descriptive data mining
aims to uncover certain patterns for characterization and description of the data
and the captured relations. Typically, the goal of the methods is not only an
actionable model, but also a human interpretable set of patterns [16].

Subgroup discovery and exceptional model mining are prominent methods
for local exceptionality detection that can be configured and adapted to various
analytical tasks. Local exceptionality detection especially supports the goal of
explanation-aware data mining [9], due to its more interpretable results, e. g., for
characterizing a set of data, for concept description, for providing regularities and
associations between elements in general, and for detecting and characterizing
unexpected situations, e. g., events or episodes. In the following, we summarize
approaches and methods for local exceptionality detection on attributed graphs,
for behavioral characterization, and spatio-temporal analysis. Furthermore, we
address issues of scalability and large-scale data processing.

2.1 Description-Oriented Community Detection

Communities can intuitively be defined as subsets of nodes of a graph with a
dense structure in the corresponding subgraph. However, for mining such com-
munities usually only structural aspects are taken into account. Typically, no
concise nor easily interpretable community description is provided.

In [5], we focus on description-oriented community detection using subgroup
discovery. For providing both structurally valid and interpretable communities
we utilize the graph structure as well as additional descriptive features of the
graph’s nodes. We aim at identifying communities according to standard com-
munity quality measures, while providing characteristic descriptions at the same
time. We propose several optimistic estimates of standard community quality
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functions to be used for efficient pruning of the search space in an exhaustive
branch-and-bound algorithm. We present examples of an evaluation using five
real-world data sets, obtained from three different social media applications,
showing runtime improvements of several orders of magnitude. The results also
indicate significant semantic structures compared to the baselines. A further
application of this method to the exploratory analysis of social media using geo-
references in demonstrated in [2,6]. A scalable implementation of the described
description-oriented community detection approach, i. e., the COMODO algo-
rithm [5], is described in [7], which is also suited for large-scale data processing
utilizing the Map/Reduce framework [11]. With that, we can apply the same
method for in-memory datasets as well as for large-scale datasets supporting
efficient processing.

2.2 Behavioral Characterization on Social Interaction Networks

Important structures that emerge in social interaction networks are given by sub-
groups. As outlined above, we can apply community detection in order to mine
both the graph structure and descriptive features in order to obtain description-
oriented communities. However, we can also analyze subgroups in a social inter-
action network from a compositional perspective, i. e., neglecting the graph struc-
ture. Then, we focus on the attributes of subsets of nodes or on derived parame-
ters of these, e. g., corresponding to roles, centrality scores, etc. In addition, we
can also consider sequential data, e. g., for characterization of exceptional link
trails, i. e., sequential transitions, as presented in [4].

In [1], we discuss a number of exemplary analysis results of social behavior in
mobile social networks, focusing on the characterization of links and roles. For
that, we describe the configuration, adaptation and extension of the subgroup
discovery methodology in that context. In addition, we can analyze multiplex
networks by considering the match between different networks, and deviations
between the networks, respectively. A description of characteristic (mis-)matches
in a multiplex network, for example, is presented in [13] regarding relations
between online and offline social interaction networks. Outlining these examples,
we demonstrate that local exceptionality detection is a flexible approach for
compositional analysis in social interaction networks.

2.3 Exceptional Model Mining for Spatio-Temporal Analysis

Exploratory analysis on ubiquitous data needs to handle different heterogenous
and complex data types. In [2,8], we present an adaptation of subgroup discovery
using exceptional model mining formalizations on ubiquitous social interaction
networks. Then, we can detect locally exceptional patterns, e. g., correspond-
ing to bursts or special events in a dynamic network. Furthermore, we propose
subgroup discovery and assessment approaches for obtaining interesting descrip-
tive patterns and provide a novel graph-based analysis approach for assessing
the relations between the obtained subgroup set. This exploratory visualization
approaches allows for the comparison of subgroups according to their relations
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to other subgroups and to include further parameters, e. g., geo-spatial distrib-
ution indicators. We present and discuss analysis results utilizing a real-world
ubiquitous social media dataset.

3 Conclusions and Outlook

Subgroup discovery and exceptional model mining provide powerful and com-
prehensive methods for knowledge discovery and exploratory analyis in the con-
text of local exceptionality detection. In this paper, we presented according
approaches and methods, specifically targeting social interaction networks, and
showed how to implement local exceptionality detection on both a methodolog-
ical and practical level.

Interesting future directions for adapting and extending local exceptionality
detection in social contexts include extended postprocessing and presentation
options, e. g., [3]. In addition, extensions to predictive modeling, e. g., link pre-
diction [2,21] are interesting options to explore. Furthermore, extending the
analysis of sequential data in online or offline social contexts, e. g., based on
Markov chains as exceptional models [4,10], or network dynamics [14] are fur-
ther interesting options for future work.
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