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Abstract. While the Matrix Generalized Inverse Gaussian (MGIG)
distribution arises naturally in some settings as a distribution over sym-
metric positive semi-definite matrices, certain key properties of the distri-
bution and effective ways of sampling from the distribution have not been
carefully studied. In this paper, we show that the MGIG is unimodal,
and the mode can be obtained by solving an Algebraic Riccati Equation
(ARE) equation [7]. Based on the property, we propose an importance
sampling method for the MGIG where the mode of the proposal dis-
tribution matches that of the target. The proposed sampling method is
more efficient than existing approaches [32,33], which use proposal dis-
tributions that may have the mode far from the MGIG’s mode. Further,
we illustrate that the the posterior distribution in latent factor models,
such as probabilistic matrix factorization (PMF) [24], when marginalized
over one latent factor has the MGIG distribution. The characterization
leads to a novel Collapsed Monte Carlo (CMC) inference algorithm for
such latent factor models. We illustrate that CMC has a lower log loss
or perplexity than MCMC, and needs fewer samples.

1 Introduction

Matrix Generalized Inverse Gaussian (MGIG) distributions [3,10] are a family
of distributions over the space of symmetric positive definite matrices and has
been recently applied as the prior for covariance matrix [20,32,33]. MGIG is
a flexible prior since it contains Wishart, and Inverse Wishart distributions as
special cases. We anticipate the usage of MGIG as prior for statistical machine
learning models to grow with potential applications in Bayesian dimensionality
reduction and Bayesian matrix completion (Sect. 4).

Some properties of the MGIG distribution and its connection with Wishart
distribution has been studied in [10,26,27]. However, to best of our knowledge,
it is not yet known if the distribution is unimodal and, if it is unimodal, how
to obtain the mode of MGIG. Besides, it is difficult to analytically calculate
mean of the distribution and sample from the MGIG distribution. Monte Carlo
methods like the importance sampling can in principle be applied to infer the
mean of MGIG but one needs to design a suitable proposal distribution [21,23].

There is only one important sampling procedure for estimating the mean of
MGIG [32,33]. In this approach, MGIG is viewed as a product of the Wishart
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and Inverse Wishart distributions and one of them is used as the proposal dis-
tribution. However, we illustrate that the mode of the proposal distribution in
[32,33] may be far away from the MGIG’s mode. As a result, the proposal
density is small in a region where the MGIG density is large yielding to an
ineffective sampler and drastically wrong estimate of the mean (Figs. 1 and 2).

In this paper, we first illustrate that the MGIG distribution is unimodal
where the mode can be obtained by solving an Algebraic Riccati Equation (ARE)
[7]. This characterization leads to an effective importance sampler for the MGIG
distribution. More specifically, for estimating the expectation EX∼MGIG [g(X)],
we select a proposal distribution over space of symmetric positive definite matri-
ces like Wishart or Inverse Wishart distribution such that the mode of the pro-
posal matches the mode of the MGIG. As a result, unlike the current sam-
pler [32,33], by aligning the shape of the proposal and the MGIG, the density
of the proposal gets higher values in the high density regions of the target,
yielding to a good approximation of EX∼MGIG [g(X)].

Further, we discuss a new application of the MGIG distribution in latent
factor models such as probabilistic matrix factorization (PMF) [24] or Bayesian
PCA (BPCA) [4]. In these settings, the given matrix X ∈ R

N×M is approxi-
mated by a low-rank matrix X̂ = UV T where U ∈ R

N×D and V ∈ R
M×D with

Gaussian priors over the latent matrices U and V . We show that after analyti-
cally marginalizing one of the latent matrices in PMF (or BPCA), the posterior
over the other matrix has the MGIG distribution. This illustration yields to a
novel Collapsed Monte Carlo (CMC) inference algorithm for PMF. In particular,
we marginalize one of the latent matrices, say V , and propose a direct Monte
Carlo sampling from the posterior of the other matrix, say U . Through exten-
sive experimental analysis on synthetic, SNP, gene expression, and MovieLens
datasets, we show that CMC has lower log loss or perplexity with fewer samples
than Markov Chain Monte Carlo (MCMC) inference approach for PMF [25].

The rest of the paper is organized as follows. In Sect. 2, we cover background
materials. In Sect. 3, we show that MGIG is unimodal and give a novel impor-
tance sampler for MGIG. We provide the connection of MGIG with PMF in
Sect. 4, present the results in Sect. 5, and conclude in Sect. 6.

2 Background and Preliminary

In this section, we provide some background on the relevant topics and tools
that will be used in our analysis. We start by an introduction to importance
sampling, MGIG distribution, followed by a brief overview of the ARE.

Notations: Let S
N
++ and S

N
+ denote the space of symmetric (N × N) posi-

tive definite and positive semi-definite matrix, respectively. Let |.| denote the
determinant of matrix, Tr(.) be the matrix trace. A matrix Λ ∈ S

N
++ has a

Wishart distribution denoted as WN (Λ|Φ, τ) where τ > N −1 and Φ ∈ S
N
++ [31].

A matrix Λ ∈ S
N
++ has an Inverse Wishart distribution denoted as IWN (Λ|Ψ, α)

where α > N − 1 and Ψ ∈ S
N
++ is the scale matrix. We denote x:m as the mth

column of matrix X ∈ R
N×M and xn as the nth row of X.
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Fig. 1. An illustration of bad proposal distribution in importance sampling. Let p(x) =
h∗(x)g∗(x)/Zp ∝ h(x)g(x). Neither h(x) = h∗(x)/Zh nor g(x) = g∗(x)/Zg are a good
candidate proposal distribution since their modes are far away from the one of p(x).

2.1 Importance Sampling

Consider distribution p(x) = 1
Zp

p∗(x) where Zp is the partition function which
plays the role of a normalizing constant. Importance sampling is a general tech-
nique for estimating Ex∼p(x)[g(x)] where sampling from p(x) (the target distrib-
ution) is difficult but we can evaluate the value of p∗(x) at any given x [21]. The
idea is to draw S samples {xi}S

i=1 from a similar but easier distribution denoted
by proposal distribution q(x) = 1

Zq
q∗(x). Define w(xi) = p∗(xi)

q∗(xi)
as the weight of

each sample i. Then, we calculate the expected value as follows

Ex∼p[g(x)] = Ex∼q

[
g(x)p(x)

q(x)

]
≈

∑S
i=1 g(xi)w(xi)∑S

i=1 w(xi)
,

The efficiency of importance sampling depends on how closely the proposal
approximates the target in the shape. One way for monitoring the efficiency of
importance sampling is the effective sample size ESS = (

∑S
i=1 w(xi))

2
∑S

i=1 w2(xi)
[15]. Very

small value of ESS indicates a big discrepancy between the proposal and target
(for example when the mode of the proposal distribution is far away from the
target’s mode) leading to a drastically wrong estimate of Ex∼p[g(x)] [21].

2.2 MGIG Distribution

MGIG distribution was first introduced in [3] as a distribution over the space
of symmetric (N × N) positive definite matrices defined as follows.

Definition 21. A matrix-variate random variable Λ ∈ S
N
++ is MGIG distrib-

uted [3,10] and is denoted as Λ ∼ MGIGN (Ψ,Φ, ν) if the density of Λ is

f(Λ) =
| Λ |ν−(N+1)/2

| Ψ
2 |ν Bν(Φ

2
Ψ
2 )

exp{Tr(−1
2
ΨΛ−1 − 1

2
ΦΛ)},

where Bν(.) is the matrix Bessel function [13] defined as

Bν(
Φ

2
Ψ

2
) = |Φ

2
|−ν

∫
SN
++

|S|−ν− N+1
2 exp{Tr(−1

2
ΨS−1 − 1

2
ΦS)}dS. (1)
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When N = 1, the MGIG is the generalized inverse Gaussian distribution
GIG [14] which is often used as the prior in several domains [6,12]. If Ψ = 0, the
MGIG distribution reduces to the Wishart, and if Φ = 0, it becomes the Inverse
Wishart distribution.

Proposition 1. [32, Proposition 2] If matrix Λ ∼ MGIGN (Ψ,Φ, ν), then
Λ−1 ∼ MGIGN (Φ, Ψ,−ν).

Sampling Mean of MGIG: The sufficient statistics of MGIG are log |Λ|,
Λ, and Λ−1. It is, however, difficult to analytically calculate the expecta-
tions EΛ∼MGIG [Λ] and EΛ∼MGIG [Λ−1]. Importance sampling can be applied
to approximate those quantities. Note that based on the result of Proposi-
tion 1, the importance sampling procedure for estimating mean of MGIG,
i.e., EΛ∼MGIG [Λ], can also be applied to infer the reciprocal mean i.e.
EΛ∼MGIG [Λ−1].

An importance sampling procedure proposed in [32,33], where the MGIG is
viewed as a product of Inverse Wishart and Wishart distributions and one of
the multiplicands is used as the natural choice of the proposal distribution. In
particular, in [32,33], the MGIG is viewed as

MGIGN (Λ|Ψ, Ψ, ν) ∝ eTr(− 1
2 ΦΛ)

︸ ︷︷ ︸

T1

IWN (Λ | Ψ, −2νu)
︸ ︷︷ ︸

T2

∝ eTr(− 1
2 ΨΛ−1)

︸ ︷︷ ︸

T3

WN (Λ | Φ, 2νu)
︸ ︷︷ ︸

T4

.

In [32,33], authors advocate using T2 (or T4) as the proposal distribution which
simplify the weight calculation to the evaluation of T1 (or T3). However, it is
not studied how close T2 (or T4) are to the MGIG distribution in shape. For
example, consider the 1−dimensional MGIG distribution

MGIG1(Λ | 35, 10, 10) ∝ eTr(− 35
2 Λ−1)︸ ︷︷ ︸

T3

W1(Λ | 10, 20)︸ ︷︷ ︸
T4

. (2)

In [32,33], T4 : W1(Λ | 10, 20) is considered as the proposal distribution, but the
mode of T4 is far away from the mode of MGIG1(Λ | 35, 10, 10) (Fig. 2(a)). As
a result, samples drawn from T4 will be on the tail of the MGIG1(Λ | 10, 20)
distribution, and will end up getting low weights from the MGIG1(Λ | 10, 20)
distribution. Such a sampling procedure will be wasteful, i.e., drawing samples
from the tails of the target MGIG1 distribution, leading to a very low ESS.
Similar behavior is observed with several different choices of parameters for the
MGIG, here we only show three of them in Fig. 2 due to the lack of space.

2.3 Algebraic Riccati Equation

An algebraic Riccati equation (ARE) is

AT X + XA + XRX + Q = 0, (3)
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Fig. 2. (a,b) Comparison of different proposal distribution (a) Wishart (W) and (b)
Inverse Wishart (IW) for sampling mean of MGIG1(Ψ, Φ, ν) where Λ∗ is the mode
of MGIG. The blue curves are the proposal distribution defined in [32,33] which can
not recover the mode of the MGIG distribution. (c) Density of MGIG2(Ψ, Φ, ν) for
1000 samples generated by each proposal distribution is calculated. More than 90% of
samples generated by the previous proposal distribution in [32,33] (IW(ψ, −2ν)) have
zero MGIG density leading to ESS = 40. Whereas, the new proposal distribution
IW (23Λ∗, 20) has the ESS = 550 which has a very similar shape to the target MGIG.
(Color figure online)

where A ∈ R
N×N , Q ∈ S

N
+ , and R ∈ S

N
+ . We associate a 2N × 2N matrix called

the Hamiltonian matrix H with the ARE (3) as H =
[

A R
−Q −AT

]
. The ARE (3)

has a unique positive definite solution if and only if the associated Hamiltonian
matrix H has no imaginary eigenvalues (Section 5.6.3 of [7]).

There have been offered various numerical methods to solve the ARE which
can be reviewed in [1]. The key of numerical technique to solve ARE (3) is to
convert the problem to a stable invariant subspace problem of the Hamiltonian
matrix i.e., finding the invariant subspace corresponding to the eigenvalues of
H with negative real parts. The usual ARE solvers such as the Schur vector
method [16], SR methods [9], the matrix sign function [2,11] require in general
O(n3) flops [19]. For special cases, faster algorithms such as [19] can be applied
which solves such an ARE with 20k dimensions in seconds. In this paper, we use
Matlab ARE solver (care) to find the solution of ARE.

3 MGIG Properties

Some properties of the MGIG and its connection with Wishart distribution has
been studied in [10,26,27]. However, to best of our knowledge, it is not yet known
if the distribution is unimodal and how to obtain the mode of MGIG. In the
following Lemma we show that the MGIG distribution is unimodal.

Lemma 1. Consider the MGIG distribution MGIGN (Λ|Ψ,Φ, ν). The mode of
MGIG is the solution of the following Algebraic Riccati Equation (ARE)

−2αΛ + ΛΦΛ − Ψ = 0, (4)

where α = (ν − N+1
2 ). ARE in (4) has a unique positive definite solution, thus

the MGIG distribution is a unimodal distribution.
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Proof. The log-density of MGIGN (Λ|Ψ,Φ, ν) is

log f(Λ) = α log |Λ| − 1
2

Tr(ΨΛ−1 + ΦΛ) + C, (5)

where α = (ν − N+1
2 ), and C is a constant which does not depend on Λ. The

mode of MGIGN is obtained by setting derivative of (5) to zero as follows

∇f(Λ) = −2αΛ + ΛΦΛ − Ψ = 0, (6)

which is a special case of ARE (3). The associated Hamiltonian matrix for (6)

is H =
[−αIN Φ

Ψ αIN

]
. Recall that ARE has a unique positive definite solution if

and only if the associated Hamiltonian matrix H has no imaginary eigenvalues
(Section 5.6.3 of [7]). Thus, to show the unimodality of MGIG, it is enough to
show that the corresponding characteristic polynomial |H − λI2N | = 0 has no
imaginary solution.

|H − λI2N | = |−(α + λ)IN | ∣∣(α − λ)IN + (α + λ)−1ΨΦ
∣∣

= |(α − λ)IN | ∣∣−(α + λ)IN − (α − λ)−1ΦΨ
∣∣ =

N∏
i=1

{−(α2 − λ2) − λ̃i} = 0,

which yields to λ2 = λ̃i + α2 where λ̃i is the ith eigenvalue of ΦΨ . Note λ̃i > 0
since Φ and Ψ are positive definite and product of two positive definite matrix
has positive eigenvalue. As a result, (7) has no imaginary solution and H does
not have any imaginary eigenvalue. As a result, ARE in (6) has a unique positive
definite solution. This completes the proof. ��
Importance Sampling for MGIG: Since MGIG is a unimodal distribu-
tion, we propose an efficient importance sampling procedure for MGIG by mode
matching. We select a proposal distribution over space of positive definite matri-
ces by matching the proposal’s mode to the mode of MGIG (mode matching)
which aligns the proposal and MGIG shapes. As a result, the proposal q(x) is
large in a region where the target distribution MGIG is large leading to a good
approximation of EΛ∼MGIG [g(Λ)]. An example of such proposal distribution is
Inverse Wishart or Wishart distribution.

Let Λ∗ be the mode of MGIGN (Λ|Ψ,Φ, ν) which can be found by solving
the ARE (6). The mode of WN (Λ|Σ, ρ) distribution is Σ∗ = (ρ − N − 1)Σ. To
match the mode of WN (Λ|Σ, ρ) with that of MGIGN (Λ|Ψ,Φ, ν), we choose the
scale parameter Σ of the Wishart distribution by setting Σ∗ = Λ∗. In particular,

Σ∗ = Λ∗ = (ρ − N − 1)Σ ⇒ Σ =
Λ∗

ρ − N − 1
. (7)

Thus, we suggest using WN ( Λ∗
ρ−N−1 , ρ) as the proposal distribution. At each

iteration, we draw a sample Λi ∼ WN ( Λ∗
ρ−N−1 , ρ), and calculate w(Λi). More

specifically, the density of Wishart distribution is
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Algorithm 1. Random Generator of WN (Λ|Σ, ρ, L) [28]
1: Note LT L = Σ is the Cholesky factorization of Σ
2: Pii ∼√χ2(ρ − (i − 1)) for all i = 1 · · · N .
3: Pij ∼ N (0, 1) for i < j. 	 P : upper triangular
4: R = PL.
5: Return Λ = RT R, Λ−1 = R−1R−1T

, and |Λ| = [
∏N

i=1 Rii]
2.

q(Λ) =
q∗(Λ)
Zq

, where q∗(Λ) = |Λ| ρ−N−1
2 exp{−1

2
Tr(Σ−1Λ)}. (8)

Then, the importance weight can be calculated as

w(Λi) =| Λi |ν− ρ
2 exp

{
−1

2
Tr

(
ΨΛ−1

i + [Φ − Σ−1]Λi

)}
. (9)

As a result, we approximate EΛ∼MGIG [g(Λ)] ≈
∑S

i=1 w(Λi)g(Λi)∑S
j=1 w(Λj)

. A similar argu-

ment holds when the proposal distribution is an Inverse Wishart distribution.
Note that the weight calculation requires to calculate the inverse and determi-

nant of sampled matrix Λi. However, as illustrated in Algorithm 1, the random
samples generator from W [28] returns the upper triangular matrix R where
Λ = RT R. Hence the inverse and determinant of Λ can be calculated efficiently
from the inverse and diagonal of the triangular matrix R, respectively. Therefore,
the cost of weight calculation is reduced to the cost of solving a linear system
and upper triangular matrix production at each iteration.

Figure 2 illustrates that the proposed importance sampling outperforms the
one in [32,33] for three examples of MGIG. In particular, more than 90% of
samples drawn from the proposal distribution T2 in [32,33] have zero weights
leading to ESS = 40 (Fig. 2 (c)). Whereas, our proposal distribution achieved
ESS = 550 leading to a better approximation of the mean of MGIG. Similar
behavior is observed with several different choices of parameters for the MGIG.

4 Connection of MGIG and Bayesian PCA

In this section, we illustrate that the mapping matrix V in Bayesian PCA can
be marginalized or ‘collapsed’ yielding a Matrix Generalized Inverse Gaussian
(MGIG) [3,10] posterior distribution over the latent matrix U denoting as the
marginalized posterior distribution. Then, we explain the derivation of the mar-
ginalized posterior for data with missing values, followed by a collapsed Monte
Carlo Inference for PMF.



The Matrix Generalized Inverse Gaussian Distribution 655

4.1 PMF, PPCA, and Bayesian PCA

First, we give a review of PMF [24], Probabilistic PCA (PPCA) [29], and
Bayesian PCA (BPCA) [4], to illustrate the similarity and differences between
the existing ideas and our approach. A related discussion appears in [18]. All
these models focus on an (partially) observed data matrix X ∈ R

N×M . Given
latent factors U ∈ R

N×D and V ∈ R
M×D, the rows of X are assumed to be gen-

erated according to x:m = UvT
m + ε, where ε ∈ R

N . The different models vary
depending on how they handle distributions or estimates of the latent factors
U, V . Without loss of generality, in this paper, we are considering a fat matrix
X where M > N .

PMF and BPMF: In PMF [24], one assumes independent Gaussian pri-
ors for all latent vectors un and vm, i.e., un ∼ N (0, σ2

uI), [n]N1 and vm ∼
N (0, σ2

vI), [m]M1 . Then, one obtains the following posterior over (U, V )

p (U, V |X, θ)=
∏
n,m

[N (xnm

∣∣〈un,vm〉, σ2)]δnm

∏
n

N (un

∣∣0, σ2
uI)

∏
m

N (v:m

∣∣0, σ2
vI) ,

where δnm = 0 if xnm is missing and δ = {σ2, σ2
u, σ2

v}. PMF obtains point esti-
mates (Û , V̂ ) by maximizing the posterior (MAP), based on alternating opti-
mization over U and V [24].

Bayesian PMF (BPMF) [25] considers independent Gaussian priors over
latent factors with full covariance matrices, i.e., un ∼ N (0,Σu), [n]N1 and vm ∼
N (0,Σv), [m]M1 . Inference is done using Gibbs sampling to approximate the pos-
terior P (U, V |X). At each iteration t, U (t) is sampled from the conditional prob-
ability of p(U |V (t−1),X), followed by sampling V from p(V |U (t),X).

Probabilistic PCA: In PPCA [29], one assumes independent Gaussian prior
over un, i.e., un ∼ N (0, σ2

uI), but V is treated as a parameter to be estimated.
In particular, V is chosen so as to maximize the marginalized likelihood of X

p (X |V ) =
∫

U

p(X|U, V )p(U)dU =
N∏

n=1

N (xn|0, σ2
uV V T + σ2

I). (10)

Interestingly, as shown in [29], the estimate V̂ can be obtained in closed form.
For such a fixed V̂ , the posterior distribution over U |X, V̂ can be obtained as

p(U |X, V̂ ) =
p(X|U, V̂ )p(U)

p(X|V̂ )
=

N∏
n=1

N
(
un|Γ−1V̂ T xn, σ−2Γ

)
, (11)

where Γ = V̂ T V̂ +σ−2
u σ−2

I. Note that the posterior of the latent factor U in (11)
depends on both X and V̂ . For applications of PPCA in visualization, embed-
ding, and data compression, any point xn in the data space can be summarized
by its posterior mean E[un|xn, V̂ ] and covariance Cov(un|V̂ ) in the latent space.

Bayesian PCA: In Bayesian PCA [4], one assumes independent Gaussian priors
for all un and vm, i.e., un ∼ N (0, σ2

uI) and vm ∼ N (0, σ2
vI), [m]M1 . Bayesian pos-

terior inference by Bayes rule considers p(U, V |X) = p(X|U, V )p(U)p(V )/p(X),
which includes the intractable partition function
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p(X) =
∫

U

∫
V

p(X|U, V )p(U)p(V )dUdV . (12)

The literature has considered approximate inference methods, such as varia-
tional inference [5], gradient descent optimization [18], MCMC [25], or Laplace
approximation [4,22].

While PPCA and Bayesian PCA were originally considered in the context
of embedding and dimensionality reduction, PMF and BPMF have been widely
used in the context of matrix completion where the observed matrix X has many
missing entries. Nevertheless, as seen from the above exposition, the structure
of the models are closely related (also see [17,18]).

4.2 Closed Form Posterior Distribution in Bayesian PCA

The key challenge in models such as Bayesian PCA or BPMF is that joint
marginalization over both latent factors U, V is intractable. PPCA gets around
the problem by considering one of the variables, say V , to be a constant. In
this section, we show that one can marginalize or ‘collapse’ one of the latent
factors, say V , and obtain the marginalized posterior P (U |X) over the other
variable denoted. In fact, we obtain the posterior with respect to the covariance
structure Λu = βuI + UUT , for a suitable constant βu, which is sufficient to do
Bayesian inference on new test points xtest. Note that

p(U |X) ∝ p(U)P (X|U) = p(U)
∫

V

P (X|U, V )p(V )dV , (13)

and, based on the posterior over U , one can obtain the probability on a new
point as p(xtest|X) =

∫
U

p(xtest|U)p(U |X)dU.
Next, we show that the posterior over U as in (13), rather the distribution

over Λu = βuI+UUT , can be derived analytically in closed form. The distribution
is the Matrix Generalized Inverse Gaussian (MGIG) distribution.

Similar to (10), marginalizing V gives

p (X |U) =
∫

V

p(X|U, V )p(V )dV =
M∏

m=1

N (
x:m | 0, σ2

vΛu

)
, (14)

where Λu = βvI + UUT and βv = σ2

σ2
v
. Then, the marginalized posterior of U is

p(U |X) ∝ p(X|U) p(U) = | Λu |−M/2 exp

⎧⎨
⎩

−Tr
(
Λ−1

u

∑M
m=1 x:mxT

:m

)
2σ2

v

⎫⎬
⎭

× exp
{−Tr(Λu)

2σ2
u

}
× exp

{
Tr(βuI)

2σ2
u

}
(15)

= | Λu |−M/2 exp
{

Tr(−1
2
Λ−1

u Ψu − 1
2
ΛuΦu)

}

∼ MGIG(Λu |Ψu, Φu, νu), (16)

where Ψu = 1
σ2

v
XXT , Φu = 1

σ2
u
I, and νu = N−M+1

2 .
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Therefore, by marginalizing or collapsing V , the posterior over Λu = βvI +
UUT corresponding to the latent matrix U can be characterized exactly with
a MGIG distribution with parameters depending only on X. Note that this is
in sharp contrast with (11) for PPCA, where the posterior covariance of un is
σ−2Γ which in turn depends on the point estimate for V̂ .

4.3 Posterior Distribution with Missing Data

In this section, we consider the matrix completion setting, when the observed
matrix X has missing values. In presence of missing values, the likelihood of the
observed sub-vector in any column of X is given as

p (xnm,m |U, V ) = N
(
xnm,m | ŨmvT

m, σ2
I

)
. (17)

where nm is a vector of size Ñm containing indices of non-missing entries in
column m of X, and Ũm is a sub-matrix of U with size of Ñm × D where each
row correspond to a non-missing entry in the mth column of X. The marginalized
likelihood (14) is p (X |U) =

∏M
m=1 N (

xnm,m | 0, σ2
vΛun

)
, where Λun = βvI +

ŨnŨT
n and βv = σ2

σ2
v
. The marginalized posterior is given by

p(U |X) ∝ exp
{

−Tr(UUT )
2σ2

u

} M∏
m=1

| Λun |−M/2 exp
{

−1
2
xT

nm,mΛ−1
unxnm,m

}
.

Thus, in presence of missing values, the posterior cannot be factorized as in (15)
because each column x:m contributes to different blocks Λun of Λ.

We propose to address the missing value issue by gap-filling. In particular,
if one can obtain a good estimate of the covariance structure in X, so that
Ψu = 1

σ2
v
XXT in (16) can be approximated well, one can use the MGIG posterior

to do approximate inference. We consider two simple approaches to approximate
the covariance structure of X: (i) by zero-padding the missing value matrix X
(assuming E[X] = 0 or centering the data in practice), and estimating the
covariance structure based on the zero-padded matrix [30], and (ii) by using
a suitable matrix completion method, such as PMF, to get point estimates of
the missing entries in X, and estimating the covariance structure based on the
completed matrix. We experiment with both approaches in Sect. 5, and the zero-
padded version seems to work quite well.

4.4 Collapsed Monte Carlo Inference for PMF

Given that Λu ∼ MGIGN , we predict the missing values as follows. Let x =
[xo,x∗] ∼ N (0, Λ), where xo ∈ R

p is the observed partition of x ∈ R
N and

x∗ ∈ R
N−p is missing. Accordingly, partition Λ as Λu =

p N − p( )
Λoo Λo∗ p
Λ∗o Λ∗∗ N − p

.
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Algorithm 2. CMC Inference for PMF

1: Let Ψu = ZZT

σ2
v

, Φu = I

σ2
u
, and νu = N−M+1

2
.

2: Solve (6) to find mode Λ∗ of MGIG(Ψu, Φu, νu).
3: Let LT L = Λ∗ be the Cholesky factorization of Λ∗. Let L̃ = L√

ρ−M−1
.

4: for t = 1 · · · T do

5: Let Λ(t) ∼ WN ( Λ∗
ρ−M−1

, ρ, L̃) 	 Algorithm 1

6: Let wt = MGIGN (Λ(t)|Ψu,Φu,νu)

WN (Λ(t)| Λ∗
ρ−M−1 ,ρ,L̃)

.

7: Let μt = Λ
(t)
∗o Λ

(t)
oo

−1
xo. Let Σt = Λ

(t)
∗∗ − Λ

(t)
∗o Λ

(t)
oo

−1
Λ

(t)
o∗ .

8: Let μ̄ = μ̄ + wtμt.
Let Σ̄ = Σ̄ + wtΣt.

9: Report the distribution of x∗ ∼ N (μ̃∗, Σ̃∗) where μ̃∗ = μ̄
∑T

t=1 wt and Σ̃∗ = Σ̄∑T
t=1 wt .

Then the conditional probability of x∗ given xo and Λ is

p(x∗ |xo, Λ) ∼ N (Λ∗oΛ
−1
oo xo︸ ︷︷ ︸

μ∗

, Λ∗∗ − Λ∗oΛ
−1
oo Λ∗o︸ ︷︷ ︸

Σ∗

) (18)

where y = Λ∗oΛ
−1
oo is the solution of the linear system Λooy = ΛT

∗o and can be
calculated efficiently. Since sampling from MGIG is difficult, we propose to use
importance sampling to infer the missing values as

p(x∗
n|xo

n) = EΛ∼MGIG [p(x∗
n|xo

n, Λ)] = EΛ∼q

[

p(x∗
n|xo

n, Λ)MGIGN (Λ|Ψu, Φu, νu)

q(Λ)

]

,

where q is the proposal distribution as discussed above and sampling Λ(t) from
q yields to the estimate of

μ̃∗ =
∑T

t=1 Λ
(t)
∗o Λ

(t)
oo

−1
xow(Λ(t))∑t

t=1 w(Λ(t))
, Σ̃∗ =

∑T
t=1[Λ

(t)
∗∗ − Λ

(t)
∗o Λ

(t)
oo

−1
Λ

(t)
∗o ]w(Λ(t))∑t

t=1 w(Λ(t))
.

Algorithm 2 illustrates the summary of the collapsed Monte Carlo (CMC) infer-
ence for predicting the missing values. A practical approximation to avoid the
calculations in Lines 7–8 of Algorithm 2 at each iteration is to simply estimate
the mean of the posterior Λ̄ =

∑T
t=1 Λ(t)wt

∑T
t=1 wt with samples drawn from the proposal

distribution (line 6), then do the inference based on Λ̄.

5 Experimental Results

We compared the performance of MCMC and CMC on both log loss and running
times. We evaluated the models on 4 datasets: (1) SNP: single nucleotide poly-
morphism (SNP) is important for identifying gene-disease associations where
the data usually has 5 to 20 % of genotypes missing [8]. We used phased SNP
dataset for chromosome 13 of the CEU population1. We randomly dropped 20 %
1 http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/.

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/
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(b) Synthetic with δ = 0.1
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(e) SNP
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Fig. 3. Log loss (LL) of CMC and MCMC for different log loss percentile on different
datasets presented in the log scale (δ denotes the missing proportion). CMC consistently
achieves lower LL compared to MCMC. LL of MCMC increases exponentially (linearly
in log scale) by adding data points with higher log loss. Proposal in [30,31] achieved
infinity LL for MovieLens. Empty bar represents infinity LL (e.g. 90% and 100 %
percentile in (d)

of the entries. (2) Gene Expression: DNA microarrays provides measurement
of thousands of genes under a certain experimental condition where suspicious
values are usually regarded as missing values. Here we used gene expression
dataset for Breast Cancer (BRCA)2. We randomly dropped 20 % of the entries.
(3) MovieLens: we used MovieLens3 dataset with 1M rating represented as a
fat matrix X ∈ R

N×M where M = 3900 movies and N = 6040 users. (4) Syn-
thetic: first the latent matrices U and V are generated by randomly choosing
each {un}N

n=1 and {vm}M
m=1 from N (0, σ2

uI) and N (0, σ2
vI), respectively. Then,

matrix X is built by sampling each xnm from N (〈un,vm〉, σ2). The parameters
are set to N = 100, M = 6000, σ2

u = σ2
v = 0.05, and σ2 = 0.01. We dropped

random entries using Bernoulli distributions with δ = 0.1, 0.2.

5.1 Methodology

We compared CMC with MCMC inference for PMF. Gibbs sampling with diag-
onal covariance prior over the latent matrices is used for MCMC. For the model
evaluation, average of log loss (LL) is reported over 5-fold cross-validation. LL
measures how well a probabilistic model q predicts the test sample defined as
LL = − 1

T

∑N
i=1

∑M
j=1 δij log q(xij) where q(xij) is the inferred probability and T

2 http://cancergenome.nih.gov/.
3 www.movielens.umn.edu.

http://cancergenome.nih.gov/
www.movielens.umn.edu
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is the total number of observed values. A better model q assign higher probability
q(xij) to observed test data, and have a smaller value of LL.

LL Percentile: For any posterior model q(x), a test data point xtest with low
q(xtest) has large log loss, and high q(xtest) has low log loss. To comparatively
evaluate the posteriors obtained from MCMC and CMC, we consider their log
loss percentile plots. For any posterior, we sort all the test data points in ascend-
ing order of their log loss, and plot the mean log loss in 10 percentile batches.
More specifically, the first batch corresponds to the top 10 % of data points with
the lowest log loss, the second batch corresponds to the top 20 % of data points
with the lowest log loss (including the first 10 % percentile), and so on.

5.2 Results

We summarize the results from different aspects:

Log loss: CMC has a small log loss across all percentile batches, whereas log loss
of MCMC increases exponentially (linear increase in the log scale) for percentile
batches with higher log loss i.e., smaller predicting probability, (Fig. 3). Thus,
MCMC assigned extremely low probability to several test points as compared
to CMC. Figure 4(a) illustrates that log loss of MCMC continues to decrease
with growing sample size up to 2000 samples, implying that MCMC has not yet
converged to the equilibrium distribution. Note that log loss of CMC with 200
samples (Fig. 4(b)) is 10 times less than log loss of MCMC with 2000 samples. We
also compared the results with the previous proposal [32,33], and observed that
for MovieLens the results are worse than our proposed result as they achieved
Inf LL on the last batch.

Effective number of samples: For the synthetic, SNP, and gene expression
datasets, we generated 10,000 samples using MCMC. The burn-in period is set
to 500 with a lag of 10 yielding to 1000 effective samples. For the MovieLens,
we generated 5,000 samples using MCMC with the burn-in period of 1000 and
a lag of 2 yielding to 2000 effective samples. We initialized the latent matrices
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Fig. 4. LL of CMC and MCMC for different sample size of MovieLens data in the
log scale. LL of both CMC and MCMC is decreasing by adding more samples. LL of
MCMC is in magnitude 10 times more than CMC.
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U and V with the factors estimated by PMF, to help the convergence of MCMC.
Sample size in CMC procedure is set to 1,000 for all datasets. Note that MCMC
alternately sample both latent matrices U and V from a Markov chain and
the quality of the posterior improves with increasing number of samples. For the
proposed CMC procedure, the bigger matrix V is marginalized and only samples
from the smaller U matrix is drawn directly from the true posterior distribution.
Hence, CMC has considerably improved sample utilization.

Initialization: As discussed in Sect. 4.3, in order to use the MGIG posterior
for inference, the covariance structure of matrix X should be estimated. Here
we evaluate two approaches to approximate the covariance structure of X: (i)
by zero-padding the missing value matrix X, and (ii) by computing the point
estimates of the missing entries in X with PMF. CMC with zero-padded initial-
ization has a similar log loss behavior as point estimate initialization with PMF
(Figs. 3 (d-f)).

Full sampler vs Mean sampler: Figure 3(f) shows the result of the full sam-
pler (Algorithm 2), and the mean sampler (approximating the inference by esti-
mating Λ̄ = EΛ∼MGIG [Λ] as discussed in Sect. 4.4) on gene expression data.
Since the log losses are similar with both samplers, and the behavior is typi-
cal, we presented log loss results on the other datasets only based on the mean
sampler, which is around 100 times faster.
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Fig. 5. Density of CMC and MCMC for several data input on MovieLens data with LL
of (a) CMC:-1.78, MCMC:-Inf, (b) CMC:-3, MCMC:-17, (c) CMC:-4.2, MCMC:-6.4,
(d) CMC:-1.4, MCMC:–2.04. CMC achieves lower LLs compared to MCMC. (Color
figure online)

Comparison of inferred posterior distributions: To emphasize the impor-
tance of choosing the right measure for comparison, e.g., log loss vs RMSE, we
illustrate the inferred posterior distributions over several missing entries/ratings
in MovieLens obtained from MCMC and CMC in Fig. 5. Note that the scales for
CMC (red) and MCMC (blue) are different. Overall, the posterior from CMC
tends to be more conservative (not highly peaked), and obtains lower log loss
across a range of test points. Interestingly, as shown in Fig. 5(a), MCMC can
make mistakes with high confidence, i.e., predicts 5 stars with a peaked poste-
rior whereas the true rating is 3 stars. Such troublesome behavior is correctly
assessed with log loss, but not by RMSE since it does not consider the confidence
in the prediction. As shown in Fig. 5(d), for some test points, both MCMC and
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Table 1. Time Comparison of CMC and MCMC on different datasets. At each step
of MCMC, rows of U and V can be sampled in parallel denoted by MCMC parallel.
The running time is reported over 1000 steps for both methods. Note that the effective
number of samples of MCMC is less than 1000 and more steps is required to obtain
enough samples. The number of iterations for convergence of CMC is less than 1000.

Dataset Size MCMC(200 samples) CMC(1000 samples)

Serial Parallel Serial Parallel

Synthetic 100 × 6,000 728s 404s 6s 4s

SNP 120 × 104,868 12,862s 5,859s 75s 22s

Gene Expression 591 × 17,814 3,478s 2,278s 140s 90s

MovieLens 3,233 × 6,040 2,350s 2,100s 5,387s 2,058s

CMC inferred similar posterior distributions with a bias difference where the
mean of CMC is closer to the true value.

Time Comparison: We have compared running time in both serial and in
parallel over 1000 steps yielding to 200 and 1000 samples for MCMC and CMC,
respectively. We implement the algorithms in Matlab. The computation time is
estimated on a PC with a 3.40 GHz Quad core CPU and 16.0 G memory. The
average run time results are reported in Table 1. For Synthetic, SNP, and gene
expression datasets, MCMC converges very slowly. For MovieLens dataset, the
running time of both are very close but note that MCMC requires more number
of samples for convergence than CMC (Fig. 4).

6 Conclusion

We studied the MGIG distribution and provided certain key properties with a
novel sampling technique from the distribution and its connection with the latent
factor models such as PMF or BPCA. With showing that the MGIG distribution
is unimodal and the mode can be obtained by solving an ARE, we proposed a new
importance sampling approach to infer the mean of MGIG. The new sampler,
unlike the existing sampler [32,33], chooses the proposal distribution to have
the same mode as the MGIG. This characterization leads to a far more effective
sampler than [32,33] since the new sampler align the shape of the proposal to the
target distribution. Although, the MGIG distribution has been recently applied
to Bayesian models as the prior for the covariance matrix, here, we introduced a
novel application of the MGIG in PMF or BPCA. We showed that the posterior
distribution in PMF or BPCA has the MGIG distribution. This illustration,
yields to a new CMC inference algorithm for PMF.
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