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Abstract. We discuss a method to improve the exact F-measure max-
imization algorithm called GFM, proposed in [2] for multi-label clas-
sification, assuming the label set can be partitioned into conditionally
independent subsets given the input features. If the labels were all inde-
pendent, the estimation of only m parameters (m denoting the number
of labels) would suffice to derive Bayes-optimal predictions in O(m2)
operations [10]. In the general case, m2 + 1 parameters are required by
GFM, to solve the problem in O(m3) operations. In this work, we show
that the number of parameters can be reduced further to m2/n, in the
best case, assuming the label set can be partitioned into n conditionally
independent subsets. As this label partition needs to be estimated from
the data beforehand, we use first the procedure proposed in [4] that finds
such partition and then infer the required parameters locally in each label
subset. The latter are aggregated and serve as input to GFM to form the
Bayes-optimal prediction. We show on a synthetic experiment that the
reduction in the number of parameters brings about significant benefits
in terms of performance. The data and software related to this paper are
available at https://github.com/gasse/fgfm-toy.

Keywords: Multi-label classification · F-measure · Bayes optimal
prediction · Label dependence

1 Introduction

Multi-label classification (MLC) has received increasing attention in the last
years from the machine learning community. Unlike in the case of multi-class
learning, in MLC each instance can be assigned simultaneously to multiple binary
labels. Formally, learning from multi-label examples amounts to finding a map-
ping from a space of features to a space of labels. Given a multi-label training set
D, the goal of multi-label learning is to find a function which is able to map any
unseen example to its proper set of labels. From a Bayesian point of view, this
problem amounts to modeling the conditional joint distribution p(y|x), where
x is a random vector in R

d associated with the input space, y a random vector
in {0, 1}m associated with the labels, and p the probability distribution defined
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 619–631, 2016.
DOI: 10.1007/978-3-319-46128-1 39

https://github.com/gasse/fgfm-toy


620 M. Gasse and A. Aussem

over (x,y). Knowing the label conditional distribution p(y|x) still leaves us with
the question of deciding what prediction y should be made given x in order
to minimize the loss. Dembczynski et al. [3] show that the expected benefit of
exploiting label dependence depends on the type of loss to be minimized and,
most importantly, one cannot expect the same MLC method to be optimal for
different types of losses at the same time. In particular, optimizing the subset
0/1 loss, the F-measure loss or the Jaccard index requires some knowledge of
the dependence structure among the labels that cannot be inferred from the
marginals p(yi|x) alone.

The F-measure is a standard performance metric in information retrieval
that was used in a variety of prediction problems including binary classification,
multi-label classification and structured output prediction. Let y = (y1, . . . , ym)
denote the label vector associated with a single instance x in MLC, and h =
(h1, . . . , hm) ∈ {0, 1}m denote the prediction for x, the F-measure is defined as
follows:

F (y,h) =
2(y · h)

y · y + h · h , (1)

where · denotes the dot product operator1 and 0/0 = 1 by definition. Optimizing
the F-measure is a statistically and computationally challenging problem, since
no closed-form solution exists and few theoretical studies of the F-measure were
carried out. Very recently, Waegeman et al. [9] presented a new Bayes-optimal
algorithm regardless of the underlying distribution that is statistically consis-
tent. Assuming the underlying probability distribution p is known, the optimal
prediction h∗ that maximizes the expected F-measure is given by

h∗ = arg max
h∈{0,1}m

Ey[F (y,h)] = arg max
h∈{0,1}m

∑

y∈{0,1}m

p(y)F (y,h). (2)

The corresponding optimization problem is non-trivial and cannot be solved
in closed form. Moreover, a brute-force search is intractable, as it would require
checking all 2m combinations of prediction vector h and summing over an expo-
nential number of terms in each combination. As a result, many works reporting
the F-measure in experimental studies rely on optimizing a surrogate loss like
the Hamming loss and the subset zero-one loss as an approximation of (2). How-
ever, Waegeman et al. [9] have shown that these surrogate loss functions yield a
high worst-case regret.

Apart from optimizing surrogates, a few other approaches for finding the F-
measure maximizer have been presented but they explicitly rely on the restrictive
assumption of independence of the Yi [5,10]. This assumption is not tenable in
domains like MLC and structured output prediction. Algorithms based on inde-
pendence assumptions or marginal probabilities are not statistically consistent
when arbitrary probability distributions p are considered.

1 In a binary setting the dot product h · y offers a convenient notation to count the
number of positives values common to both h and y.
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In [4], we established several results to characterize and compute disjoint
label subsets called irreducible label factors (ILFs) that appear in the factoriza-
tion of p(y|x) (i.e., minimal subsets YLF ⊆ Y such that YLF ⊥⊥ Y \ YLF | X)
under various assumption underlying the probability distribution. In that paper,
the emphasis was placed on the subset zero-one loss minimization. In the present
work, we show that ILF decomposition can also benefit to the F-measure maxi-
mization problem in the MLC context.

Section 2 introduces the General F-measure Maximizer method (GFM)
from [2]. Section 3 discusses some key concepts about irreducible label factors, and
addresses the problem of exploiting a label factor decomposition within GFM, with
an exact procedure called Factorized GFM (F-GFM). Section 4 presents a practi-
cal calibrated parametrization method for GFM and F-GFM, and finally Sect. 5
presents a synthetic experiment to corroborate our theoretical findings.

2 The General F-Measure Maximizer Method

We start by reviewing the General F-measure Maximizer method presented in
Dembczynski et al. [2]. Jansche [5] noticed that (2) can be solved via outer and
inner maximization. The inner maximization step is

h(k) = arg max
h∈Hk

Ey[F (y,h)], (3)

where Hk = {h ∈ {0, 1}m|h · h = k}, followed by an outer maximization

h∗ = arg max
h∈{h(0),...,h(m)}

Ey[F (y,h)]. (4)

The outer maximization (4) can be done in linear time by simply checking
all m + 1 possibilities. The main effort is then devoted to solving the inner
maximization (3). For convenience, Waegeman et al. [9] introduce the following
quantities:

sy = y · y, Δik =
∑

y∈Yi

2p(y)
sy + k

,

with Yi = {y ∈ {0, 1}m|yi = 1}. The first quantity is the number of ones in the
label vector y, while Δik is a specific marginal value for the i-th label. Using
these quantities, the maximizer in (3) becomes

h(k) = arg max
h∈Hk

m∑

i=1

hiΔik,

which boils down to selecting the k labels with the highest Δik value. In the
special case of k = 0, we have h(0) = 0 and Ey[F (y,h(0))] = p(y = 0). As a
result, it is not required to estimate the 2m parameters of the whole distribution
p(y) to find the F-measure maximizer h∗, but only m2+1 parameters: the values
of Δik which take the form of an m × m matrix Δ, plus the value of p(y = 0).
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The resulting algorithm is referred to as General F-measure Maximizer
(GFM), and yields the optimal F-measure prediction in O(m2) (see [9] for
details). In order to combine GFM with a training algorithm, the authors decom-
pose the Δ matrix as follows. Consider the probabilities

pis = p(yi = 1, sy = s), i, s ∈ {1, . . . , m}
that constitute an m × m matrix P, along an m × m matrix W with elements

wsk =
2

s + k
,

then it can be easily shown that

Δ = PW. (5)

If the matrix P is taken as an input by the algorithm, then its complexity is
dominated by the matrix multiplication (5), which is solved naively in O(m3).

In view of this result, Dembczynski et al. [2] establish that modeling pairwise
or higher degree dependences between labels is not necessary to obtain an opti-
mal solution, only a proper estimation of marginal quantities pis is required to
take the number of co-occurring labels into account. In this work, we will show
that modeling high degree dependences between labels can help to obtain a bet-
ter estimation of pis, and thereby better predictions within the GFM framework.

3 Factorized GFM

In the following we will show that, assuming a factorization of the conditional
distribution of the labels, the pis parameters can be reconstructed from a smaller
number of parameters that are estimated locally in each label factor, at a com-
putational cost of O(m3).

3.1 Label Factor Decomposition

We now introduce the concept of label factor that will play a pivotal role in the
factorization of p(y|x) [4].

Definition 1. A label factor is a label subset YF ⊆ Y such that YF ⊥⊥ Y\YF |
X. Additionally, a label factor is said irreducible when it is non-empty and has
no other non-empty label factor as proper subset.

The key idea behind irreducible label factors (ILFs as a shorthand) is the
decomposition of the conditional distribution of the labels into a product of
factors,

p(y | x) =
n∏

k=1

p(yFk
| x),

where {YFk
}nk=1 is a partition of Y = {Y1, Y2, . . . , Ym}. From the above defin-

ition, we have that YFi
⊥⊥ YFj

| X, ∀i �= j. To illustrate the concept of label
factor decomposition, consider the following example.
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Example 1. Suppose p is faithful to one of the DAGs displayed in Fig. 1. In
DAG 1a, it is easily shown using the d-separation criterion that {Y1} ⊥⊥
{Y2, Y3} | X, so both {Y1} and {Y2, Y3} are label factors. However, we have
{Y2} �⊥⊥ {Y1, Y3} | X and {Y3} �⊥⊥ {Y1, Y2} | X, so {Y2} and {Y3} are not label fac-
tors. Therefore {Y1} and {Y2, Y3} are the only irreducible label factors. Likewise,
in DAG 1b the only irreducible label factor is {Y1, Y2, Y3}. Finally, in DAG 1c we
have that {Y1} �⊥⊥ {Y2, Y3} | X, {Y2} ⊥⊥ {Y1, Y3} | X and {Y3} �⊥⊥ {Y1, Y2} | X,
so {Y2} and {Y1, Y3} are the irreducible label factors.

X1 X2 X3

Y1 Y2 Y3

p(y|x) =

p(y1|x) × p(y2, y3|x)

(a)

X1 X2 X3

Y1 Y2 Y3

p(y|x) =

p(y1, y2, y3|x)

(b)

X1 X2 X3

Y1 Y2 Y3

p(y|x) =

p(y1, y3|x) × p(y2|x)

(c)

Fig. 1. Three Bayesian networks for illustration purposes, along with the induced fac-
torization of p(y|x).

For convenience, the conditioning on X will be made implicit in the remainder
of this work. Let mk denote the number of labels in a particular label factor, we
introduce for every label factor YFk

= {Y1, . . . , Ymk
} the following terms,

pkis = p(yi = 1, syFk
= s), i, s ∈ {1, . . . ,mk},

which constitute an mk × mk matrix Pk.
Given a factorization of the label set into label factors, our proposed method

called F-GFM requires to estimate, for each label factor, a local matrix Pk of
size mk

2, and then combine them to reconstruct the global matrix P of size m2.
The total number of parameters is therefore reduced from m2 to

∑n
k=1 mk

2. It
is easily shown that, in the best case, the total number of parameters is m2/n
when mk = m/n for every label factor, and the worst case is (n−1)+(m−n+1)2

when all the label factors, but one, are singletons. In both cases the number of
parameters is reduced, which results in a better estimation of these parameters
and a better robustness of the model. In the following, we describe a procedure
to recover P and p(y = 0) from the individual Pk matrices in O(m3).

3.2 Recovering dk

Consider, for every label factor YFk
, the following probabilities,

dks = p(syFk
= s), s ∈ {0, . . . , mk},
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which form a vector dk of size mk + 1. Instead of estimating these additional
terms, they are extracted directly from Pk in mk

2 operations. Extracting these
parameters is done prior to recovering P. We now describe how to recover a
particular dk vector from a Pk matrix. Note that the same method holds to
recover d from P, therefore in the following we will drop the superscript k to
keep our notations uncluttered. Consider the following expression for pis and ds,

pis =
∑

y∈{0,1}m

p(y) · I[sy = s] · I[yi = 1],

ds =
∑

y∈{0,1}m

p(y) · I[sy = s].

Notice that, for a particular y ∈ {0, 1}m, the following equality holds,

I[sy = s] ·
m∑

i=1

I[yi = 1] = s · I[sy = s].

Therefore, when s > 0, ds can be expressed as

ds =
∑

y∈{0,1}m

p(y) · I[sy = s] · 1
s

m∑

i=1

I[yi = 1].

This expression can be further simplified in order to express ds as a composition
of pis terms,

ds =
1
s

m∑

i=1

pis, ∀s ∈ {1, . . . , m}.

We may recover d0 from

d0 = 1 −
m∑

s=1

ds.

As a result, each vector dk can be obtained from Pk in mk
2 operations. Inter-

estingly, because p(y = 0) = d0, this additional parameter can actually be
inferred from P at the expense of m2 operations, thereby reducing the number
of parameters required by GFM to m2 instead of m2 + 1.

3.3 Recovering P

We will now show how the whole P matrix can be recovered from the Pk matrices
in O(m3).
When n =2. Let us first assume that there are only two label factors YF1 and
YF2 . Consider a label Yi that belongs to YF1 , from the marginalization rule pis
may be decomposed as follows,

pis =
∑

s′
p(yi = 1, sy = s, syF1

= s′). (6)
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The inner term of this sum factorizes because of the label factor assumption.
First, recall that sy = syF1

+ syF2
, which allows us to write

p(yi = 1, sy = s, syF1
= s′) = p(yi = 1, syF1

= s′, syF2
= s − s′).

Second, due to the label factor assumption, i.e. YF1 ⊥⊥ YF2 , we have

p(yi, sy, syF1
) = p(yi, syF1

) · p(syF2
). (7)

We may combine (7) and (6) to obtain

pis =
∑

s′
p(yi = 1, syF1

= s′) · p(syF2
= s − s′). (8)

Finally, we have necessarily s′ ≤ s and s′ ≤ m1, which implies s′ ≤ min(s,m1).
Also, s − s′ ≤ m2 and s′ ≥ 1 because yi = 1, which implies s′ ≥ max(1, s − m2).
So we can re-write (8) as follows,

pis =
min(s,m1)∑

s′=max(1,s−m2)

p1is′ · d2s−s′ . (9)

In the case where Yi ∈ YF2 , we obtain a similar result. In the end, given that
both Pk and dk are known for YF1 and YF2 , (9) allows us to recover all term in
P in (m2+1)m1

2+(m1+1)m2
2 operations. Assuming that only the Pk matrices

are known, we must add up the additional cost for recovering the dk vectors,
which brings the total computational burden to (m2 + 2)m1

2 + (m1 + 2)m2
2.

For any n. The same procedure can be used iteratively to merge P1 and P2

into a matrix P′ of size (m1 +m2)2, then combine this matrix with P3 to form a
new matrix of size (m1 +m2 +m3)2, and so on until every label factor is merged
into a matrix of size m2. In the end we obtain P in a total number of operations
equal to

n∑

i=2

(mi + 2)(
i−1∑

j=1

mj)2 + m2
i (2 +

i−1∑

j=1

mj).

To avoid tedious calculations, we can easily compute a tight upper bound of the
number of computations, i.e.

max
m1,...,mn

n∑

i=2

(mi + 2)

⎛

⎝
i−1∑

j=1

(mj + 2)

⎞

⎠

⎛

⎝
i∑

j=1

(mj + 2)

⎞

⎠ s.t.
n∑

i=1

mi = m.

Solving ∇L(m1, . . . ,mn, λ) = 0 yields

mi =
(
(m + 2n)2 − λ

)1/2
+ 2n, ∀i ∈ {1, . . . , n},

which implies that all the label factors have equal size. As a result, with mi =
m/n for every label factor we obtain an upper bound on the worst case number
of operations equal to (mn + 2)3(n2 − 1). Thus, the overall complexity to recover
P is bounded by O(m3).
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3.4 The F-GFM Algorithm

Given that the label factors are known and that every Pk matrix has been
estimated, the whole procedure for recovering P and then h∗ is presented in
Algorithm 1. As shown in the previous section, the overall complexity of F-GFM
is O(m3), just as GFM.

4 Parameter Estimation

Our proposed method F-GFM requires to estimate for each label factor YFk
the

mk × mk matrix Pk, instead of the whole m × m matrix P in GFM. Still, the

Algorithm 1. Factorized-GFM
Require: Y the label set, YF1 , . . . ,YFn the label factors, m1, . . . , mn their size and

P1, . . . ,Pn their matrix of pk
i,s parameters.

Ensure: h∗ the F-measure maximizing prediction.
1: Initialize m ← 0, P ← ∅, d ← {1}
2: for all k ∈ {1, . . . , n} do
3: m′ ← m, P′ ← P, d′ ← d, m ← m′ + mk

4: Initialize dk = {d0, . . . , dmk} a vector of size mk + 1
5: for all s ∈ {1, . . . , mk} do � 1) recover dk from Pk

6: dk
s ← s−1∑mk

i=1 pk
i,s

7: end for
8: dk

0 ← 1 −∑mk
s=1 dk

s

9: Initialize P a zero matrix of size m × m
10: for all i ∈ {1, . . . , mk} do � 2) merge Pk and d′ into P
11: for all s1 ∈ {1, . . . , mk} do
12: for all s2 ∈ {0, . . . , m′} do
13: pi,s1+s2 ← pi,s1+s2 + pk

i,s1 · d′
s2

14: end for
15: end for
16: end for
17: for all i ∈ {1, . . . , m′} do � 3) merge P′ and dk into P
18: for all s1 ∈ {1, . . . , m′} do
19: for all s2 ∈ {0, . . . , mk} do
20: pi+mk,s1+s2 ← pi+mk,s1+s2 + p′

i,s1 · dk
s2

21: end for
22: end for
23: end for
24: Initialize d a zero vector of size m + 1
25: for all s ∈ {1, . . . , m} do � 4) recover d from P
26: ds ← s−1∑m

i=1 pi,s

27: end for
28: d0 ← 1 −∑m

s=1 ds

29: end for
30: h∗ ← GFM(P, d0) � 5) obtain h∗ from P and d0

31: Rearrange h∗ to match the order of the labels in Y.
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problem of parameter estimation in GFM and F-GFM is essentially the same,
that is, estimating the matrix P (resp. Pk) for a particular input x, given a set
of training samples (x,y) (resp. (x,yFk

)).
Dembczynski et al. [1] propose a solution to estimate the pis terms directly,

by solving m multinomial logistic regression problems with m + 1 classes. For
each label Yi the scheme of the reduction is the following:

(x,y) → (x, y = yi · sy).

However, we observed that the parameters estimated with this approach are
inconsistent, that is, they often result in a negative probability for d0 when
trying to recover d from P. To overcome this numerical problem, we found
a straightforward and effective approach. Instead of estimating the pis terms
directly, we can proceed in two steps. From the chain rule of probabilities, we
have that

p(yi, sy|x) = p(sy|x) · p(yi|sy,x). (10)

The idea is to estimate each of these two terms independently. First, the p(sy =
s|x) terms are obtained by performing multinomial logistic regression with m+1
classes, using the following mapping:

(x,y) → (x, y = sy).

Second, for each label Yi we estimate the p(yi = 1|sy = s,x) terms with a binary
logistic regression model, using the following mapping:

(x,y) → ((x, sy), y = yi).

To summarize, for each label factor, one multinomial logistic regression model
with mk + 1 classes, and mk binary logistic regression models are trained. In
order to estimate the pkis terms, we combine the outputs of the multinomial and
the binary models according to (10). This approach has the desirable advantage
of producing calibrated Pk matrices and dk vectors, which appears to be crucial
for the success of F-GFM. Notice that in our experiments this approach was also
very beneficial to GFM in terms of MLC performance.

5 Experiments

In this section, we compare GFM and F-GFM on a synthetic toy problem to
assess the effective improvement in classification performance due to the label
factorization. The code to reproduce this experiment was made available online2.

2 https://github.com/gasse/fgfm-toy.

https://github.com/gasse/fgfm-toy
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5.1 Setup Details

Consider Y = {Y1, . . . , Y8} 8 labels and X = {X1, . . . , X6} 6 binary random
variables. The true joint distribution p(x,y) is encoded in a Bayesian network
(one example is displayed in Fig. 2) which imposes different label factor decom-
positions and serves as a data-generative model. In this BN structure (a directed
acyclic graph, DAG for short), each of the features X1,X2,X3,X4 is a parent
node to every label, to enable a relationship between X and Y. The remaining
features X5 and X6 are totally disconnected in the graph, and thus serve as
irrelevant features. Each label factor YFk

is made fully connected by placing
an edge Yi → Yj for every Yi, Yj ∈ YFk

, i < j. As a result each label factor is
conditionally independent of the other labels given X, yet it exhibits conditional
dependencies between its own labels. We consider 4 distinct structures encoding
the following label factor decompositions:

– DAG 1: {Y1, Y2}, {Y3, Y4}, {Y5, Y6}, {Y7, Y8};
– DAG 2: {Y1, Y2, Y3, Y4}, {Y5, Y6, Y7, Y8};
– DAG 3: {Y1, Y2, Y3, Y4, Y5, Y6}, {Y7, Y8};
– DAG 4: {Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8}.

X1,2,3,4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Fig. 2. BN structure of our toy problem with DAG 2, i.e. two label factors
{Y1, Y2, Y3, Y4} and {Y5, Y6, Y7, Y8}. Note that nodes X1, X2, X3 and X4 are grouped
up for readability.

Once these BN structures are fixed, the next step is to generate random
distributions p(x,y) to sample from. For each BN structure we generate a prob-
ability distribution by sampling uniformly the conditional probability table of
each node given its parents, p(x|pax), from a unit simplex as discussed in [7].
The process is repeated 100 times randomly, and each time we generate 7 data
sets with 50, 100, 200, 500, 1000, 2000 and 5000 training samples, and 5000 test
samples. We report the comparative performance of GFM and F-GFM on the
test samples with respect to each scenario (DAG structure) and each training
size, averaged over the 100 repetitions.
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Fig. 3. Mean F -measure of GFM and F-GFM on each DAG, with 7 different training
sizes (50, 100, 200, 500, 1000, 2000, 5000) displayed on a logarithmic scale, averaged over
100 repetitions with random distributions. F-GFM (true) uses the true decomposition,
while F-GFM (ILF) uses the decomposition learned with ILF-Compo from the training
data.

5.2 Implementation Details

To extract the irreducible label factors, we employ the ILF-Compo algorithm
proposed in [4], with α = 0.01. To estimate the parameters, we use the standard
multinomial logistic regression model from the nnet [8] R package, with weight
decay regularization and λ chosen over a 3-fold cross validation.

5.3 Results

The comparative performance results for GFM and F-GFM are displayed in
Fig. 3 in terms of mean F-measure on the test set averaged over 100 runs, each
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time using a new probability instantiation. In order to assess separately the
influence of the F-GFM procedure and the label factors discovery procedure
ILF-Compo, we present two instantiations of F-GFM: one which uses the true
decomposition that can be read from the DAG (true), and one obtained from
ILF-Compo based on the training data (ILF).

As expected, the more date available for training, the more accurate the
parameter estimates, and thus the better the mean F-measure on the test set.
F-GFM based on ILF-compo outperforms the original GFM method, sometimes
by a significant margin (see Fig. 3c and d with small sample sizes). Interestingly,
F-GFM based on ILF performs not only better than GFM, but also better than
F-GFM based on the true label factor decomposition, especially in the last case
with a single ILF of size 8 with small sample sizes. The reason is that the label
conditional independencies extracted by ILF-Compo are actually observed in
the small training sets while being false in the true distribution. As these false
label conditional independencies are found almost valid in these small samples
- at least from a numerical point of view - they are exploited by F-GFM to
reduce the number of parameters. This is not surprising as Binary Relevance is
sometimes shown to outperform other sophisticated MLC techniques exploiting
the label correlations while being based on wrong assumptions when training
data are insufficient [6]. The same remark holds for the Naive Bayes model
in standard multi-class learning tasks, which wrongly assumes the features to
be independent given the output. It is also worth noting that F-GFM with the
learned ILF decomposition behaves usually as good or better than F-GFM based
on the ground truth ILF decomposition.

6 Conclusion

We discussed a method to improve the exact F-measure maximization algorithm
(GFM), for multi-label classification, assuming the label set can be partitioned
into conditionally independent subsets given the input features. In the general
case, m2 + 1 parameters are required by GFM, to solve the problem in O(m3)
operations. In this work, we show that the number of parameters can be reduced
further to m2/n, in the best case, assuming the label set can be partitioned into
n conditionally independent subsets. As the label partition needs to be estimated
from the data beforehand, we use first the procedure proposed in [4] that finds
such partition and then infer the required parameters locally in each label subset.
The latter are aggregated and serve as input to GFM to form the Bayes-optimal
prediction. Our experimental results on a synthetic problem exhibiting various
forms of label inpedendencies demonstrate noticeable improvements in terms of
F-measure over the standard GFM approach. Interestingly, F-GFM was shown
to take advantage of purely fortuitous label independencies in small training
sets, despite being false in the underlying distribution, to reduce further the
number of parameters, while performing better than F-GFM based on the true
decomposition. This is not surprising as Binary Relevance is sometimes shown to
outperform other sophisticated MLC techniques exploiting the label correlations
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while being based on wrong assumptions when training data are insufficient [6].
Future work will be aimed at reducing further the number of parameters and the
overall complexity of the inference algorithm. Large real-world MLC problems
will also be considered in the future.
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