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Abstract. Predicting the link state of a network at a future time given
a collection of link states at earlier time is an important task with many
real-life applications. In existing literature this task is known as link pre-
diction in dynamic networks. Solving this task is more difficult than its
counterpart in static networks because an effective feature representation
of node-pair instances for the case of dynamic network is hard to obtain.
In this work we solve this problem by designing a novel graphlet transi-
tion based feature representation of the node-pair instances of a dynamic
network. We propose a method GraTFEL which uses unsupervised
feature learning methodologies on graphlet transition based features to
give a low-dimensional feature representation of the node-pair instances.
GraTFEL models the feature learning task as an optimal coding task
where the objective is to minimize the reconstruction error, and it solves
this optimization task by using a gradient descent method. We validate
the effectiveness of the learned feature representations by utilizing it for
link prediction in real-life dynamic networks. Specifically, we show that
GraTFEL, which use the extracted feature representation of graphlet
transition events, outperforms existing methods that use well-known link
prediction features. The data and software related to this paper are avail-
able at https://github.com/DMGroup-IUPUI/GraTFEL-Source.

1 Introduction

Understanding the dynamics of an evolving network is an important research
problem with numerous applications in various fields, including social network
analysis, information retrieval, recommendation systems, epidemiology, security,
and bioinformatics. A key task towards this understanding is to predict the
likelihood of a future association between a pair of nodes, given the existing state
of the network. This task is commonly known as the link prediction problem.
Since, its formal introduction to the data mining community by Liben-Nowell
et al. [9] about a decade ago, this problem has been studied extensively by
many researchers from a diverse set of disciplines. Comprehensive surveys on
link prediction methods are available for interested readers [7].

This research is supported by Mohammad Hasan’s NSF CAREER Award (IIS-
1149851).

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 394–409, 2016.
DOI: 10.1007/978-3-319-46128-1 25

https://github.com/DMGroup-IUPUI/GraTFEL-Source


Link Prediction in Dynamic Networks Using Graphlet 395

The majority of the existing works on link prediction consider a static snapshot
of the given network, which is the state of the network at a given time [6,9–11]. Nev-
ertheless, for many networks, additional temporal information, such as the time of
link creation and deletion, is available over a time interval. For example, in an on-
line social or a professional network, we may know the time when two persons have
become friends; for collaboration events, such as, a group performance or a collabo-
rative academic work, we can extract the time of the event from an event calendar.
The networks built from such data can be represented by a dynamic network, which
is a collectionof temporal snapshots of thenetwork.The linkprediction taskon such
a network is defined as follows: for a given pair of nodes, predict the link probability
between the pair at time t + 1 by training the model on the link information at times
1, 2, · · · , t. We will refer this task as dynamic link prediction1.

A key challenge of dynamic link prediction is finding a suitable feature rep-
resentation of the node-pair instances which are used for training the prediction
model. For the static setting, various topological metrics (common neighbors,
Adamic-Adar, Jaccard’s coefficient) are used as features, but they cannot be
extended easily for the dynamic setting having multiple snapshots of the net-
work. In fact, when multiple (say t) temporal snapshots of a network are pro-
vided, each of these scalar features becomes a t-sized sequence. Flattening the
sequence into a t-size vector distorts the inherent temporal order of the features.
Authors of [5] overcome this issue by modeling a collection of time series, each
for one of the topological features; but such a model fails to capture signals
from the neighborhood topology of the edges. There exist a few other works
on dynamic link prediction, which use probabilistic (nonparametric) and matrix
factorization based models. These works consider a feature representation of the
nodes and assume that having a link from one node to another is determined by
the combined effect of all pairwise node feature interactions [4,18,22]. While this
is a reasonable assumption, the accuracy of such models are highly dependent on
the quality of the node features, as well as the validity of the above assumption.

Graphlets, which are collection of small induced subgraphs, are increasingly
being used for large-scale graph analysis. For example, frequencies of various
graphlets are used for classifying networks from various domains [17]. They are
also used for designing effective graph kernels [19]. In biological domain, graphlet
frequencies are used for comparing structures of different biological networks [15].
In all these works, graphlets are used as a topological building block of a static
network. Nevertheless, as new edges are added or existing edges are removed from
the given dynamic network, the graphlets which are aligned with the affected
edge transition to different graphlets. For illustration, let us consider a dynamic
network with two temporal snapshots G1 and G2 (Fig. 1). In this example, G2

has one more edge (2, 3) than G1. We observe three different types of transition
events, where a type of graphlet is changed into another type in the subsequent
snapshot (see the table in Fig. 1). Here, all the events are triggered by the edge

1 Strictly speaking, this task should be called link forecasting as the learning model is
not trained on partial observation of link instances at time t+1; however, we refer it as
link prediction due to the popular usages of this phrase in the data mining literature.



396 M. Rahman and M.A. Hasan

(2, 3). In this work, we use the frequency of graphlet transition events associated
with a node-pair for predicting link between the node-pairs in a future snapshot
of the dynamic network.

Fig. 1. A Toy Dynamic Network. G1 and G2 are two
snapshots of the Network. Three different types of
graphlet events are observed.

A key challenge of
using graphlet transition
event for dynamic link
prediction is to obtain
a good feature repre-
sentation for this task.
This is necessary because
graphlet transition event
matrix is sparse, and on
such dataset, low dimen-
sional feature representation effectively captures the latent dependency among
different dimensions of the data. There exist a growing list of recent works which
use unsupervised methodologies for finding features from raw data representa-
tions of various complex objects, including images [13] and audio [8]. For graph
data, we are aware of only one such work, namely DeepWalk [14], which obtains
the feature representation of nodes for solving a node classification task. How-
ever, no such work exists for finding feature representation of node-pair instances
for the purpose of link prediction.

In this work, we propose a novel learning method GraTFEL (Graphlet
Transition and Feature Extraction for Link Prediction) for obtaining feature
representation of node-pair instances from graphlet transition events in the
observed snapshots of the given network. GraTFEL considers the feature learn-
ing task as an optimal coding problem such that the optimal code of a node-pair
is the desired feature representation. The learning can be considered as a two-
step process (compression and reconstruction), where the first step compresses
the input representation of a node-pair into a code by a non-linear transforma-
tion, and the second step reconstructs the input representation from the code by
a reverse process and the optimal code is the one which yields the least amount of
reconstruction error. The input representation of a node-pair is given as a vector
of graphlet transition events (GTEs) associated with the corresponding node-
pair. After obtaining an appropriate feature representation of the node-pairs, a
traditional supervised learning technique is used (we use SVM and AdaBoost)
for predicting link states at future times in the given dynamic network. Below
we summarize our contributions in this work:

– We use graphlet transition events (GTEs) for preforming link prediction in a
dynamic network. To the best of our knowledge we are the first to use GTEs
for solving a prediction task over a dynamic network.

– We propose a learning model (GraTFEL) for unsupervised feature extrac-
tion of node-pairs for the purpose of link prediction over a dynamic network.

– We compare the performance of GraTFEL with multiple state-of-the-art
methods on three real-life dynamic networks. This comparison results show
that our method is superior than each of the competing methods.
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2 Related Works

Graphlets have been used successfully in static network setup for a multitude
of applications. For a given network, Pržulj et al. [16] count the frequencies of
various graphlets in the network for designing a fingerprint of a biological graph.
In [12], the authors define signature similarity function to characterize the sim-
ilarity of two vertices of a network, thus allowing a user to cluster vertices based
on their structural similarity. Sampling based methods are used for computing
graphlet degree distribution efficiently [1,17]. While the above methods address
graphlet based analysis of static networks, works, exploring dynamic network
characterization using graphlet, are yet to come.

A multitude of methodologies have been developed for link prediction on
dynamic networks. The methods proposed by Güneş et al. [5] captures temporal
patterns in a dynamic network using a collection of time series on topological
features. But this approach fails to capture signals from neighborhood topology,
as each time series model is trained on a separate t-size feature sequence of a
node-pair. The method proposed by Bliss et al. [2] applies covariance matrix
adaptation evolution strategy (CMA-ES) to optimize weights which are used in
a linear combination of sixteen neighborhood and node similarity indices. Matrix
and tensor factorization based solutions are presented in [4], considering a tensor
representation of a dynamic network. The nonparametric link prediction method
presented in [18] uses features of the node-pairs, as well as the local neighbor-
hood of node-pairs. This method works by choosing a probabilistic model based
on features (common neighbor and last time of linkage) of node-pairs. Stochastic
block model based approaches divide nodes in a network into several groups and
generates edges with probabilities dependent on the group membership of partic-
ipant nodes [22]. While probabilistic model based link prediction performs well
on small graphs, they become computationally prohibitive for large networks.

3 Problem Definition

Assume G(V,E) is an undirected network, where V is the set of nodes and E
is the set of edges e(u, v) such that u, v ∈ V . A dynamic network is represented
as a sequence of snapshots G = {G1, G2, . . . , Gt}, where t is the number of time
stamps for which we have graph snapshots and Gi(Vi, Ei) is a graph snapshot
at time stamp i : 1 ≤ i ≤ t. In this work, we assume that the vertex set remains
the same across different snapshots, i.e., V1 = V2 = · · · = Vt = V . However, the
edges appear and disappear over different time stamps. We also assume that,
beside the link information, no other attribute data for the nodes or edges are
available. We use n to denote the number of nodes (|V |), and m to denote all
node-pairs

(|V |
2

)
in the network.

Problem Statement: Given a sequence of snapshots G = {G1, G2, . . . , Gt} of
a network, and a pair of nodes u and v, the link prediction task on a dynamic
network predicts whether u and v will have a link in Gt+1. Note that, we assume
that no link information regarding the snapshot Gt+1 is available, except the
fact that Gt+1 contains the identical set of vertices.
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4 Methods

A key challenge for dynamic link prediction is choosing an effective feature set
for this task. Earlier works choose features by adapting topological features for
static link prediction or by considering the feature values of different snapshots
as a time series. GraTFEL uses graphlet transition events (GTEs) as features
for link prediction. For a given node-pair, the value of a specific GTE feature
is a normalized count of the observed GTE involving those node-pairs over the
training data. The strength of GTEs as feature for dynamic link prediction comes
from the fact that for a given node-pair, GTEs involving those nodes capture
both the local topology and their transition over the temporal snapshots.

Fig. 2. Graphlets of size 4.

We consider GTEs involving graphlets up to size
five (total 30 graphlets), of which graphlets of size
four are shown in Fig. 22. The graphlet size upper
bound of five is inspired by the fact that more
than 95% new links in a dynamic network hap-
pen between vertices that are at most 3 distances
apart in all three real-life dynamic networks that
we use in this work. So, for a given node, GTE of
a five vertex graphlet in the neighborhood of that
node covers a prospective link formation event as a
graphlet transition event. Another reason for limit-
ing the graphlet size is the consideration of compu-
tation burden, which increases exponentially with the size of graphlets. There
are 30 different graphlets of size up to 5 and the number of possible transition
event (GTE) is O(302). Increasing the size of graphlets to 6 increases the number
of GTE to O(1422).

Feature representation for a node-pair in a dynamic network is constructed
by concatenating GTE features from a continuous set of graph snapshots. Con-
catenation, being the simplest form of feature aggregation across a set of graph
snapshots is not essentially the best feature representation to capture temporal
characteristics of a node-pair. So, GraTFEL uses unsupervised feature extrac-
tion (UFE) to get optimal feature representation from GTE features. UFE pro-
vides a better feature representation by discovering dependency among different
data dimensions, which cannot be achieved by simple aggregation. It also reduces
the data dimension and overcomes the sparsity issue in GTE features. Once the
optimal feature representation of a node-pair is known, GraTFEL uses that for
solving the link prediction task using a supervised classification model.

The discussion of the proposed method GraTFEL can be divided into three
steps: (1) graphlet transition event based feature extraction (Sect. 4.1), (2) unsu-
pervised (optimal) feature learning (Sect. 4.2), and (3) supervised learning for
obtaining the link prediction model (Sect. 4.3).

2 There are only one graphlet of size 2, two graphlets of size 3 and twenty-one graphlets
of size 5. These graphlets are not shown due to space constraint.
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4.1 Graphlet Transition Based Feature Extraction

Say, we are given a dynamic network G = {G1, G2, . . . , Gt}, and we are com-
puting the feature vector for a node-pair (u, v), which constitute a row in our
training data matrix. We use each of Gi : 1 ≤ i ≤ t−1 (time window [1, t−1]) for
computing the feature vector and Gt for computing the target value (1 if edge
exist between u and v, 0 otherwise). We use euv

[1,t−1] to represent this vector. It
has two components: graphlet transition event (GTE) and link history (LH).

The first component, Graphlet Transition Event (GTE), guv
[1,t−1] is con-

structed by concatenating GTE feature-set of (u, v) for each time stamp. i.e.,
guv
[1,t−1] = guv

1 || guv
2 || . . . || guv

t−1. Here, the symbol || represents concatenation
of two horizontal vectors (e.g., 0 1 0 || 0.5 0 1 = 0 1 0 0.5 0 1) and guv

i represents
(u, v)’s GTE feature-set for time stamp i, and it captures the impact of edge
(u, v) at its neighborhood structure at time stamp i. We construct guv

i by enu-
merating all graphlet based dynamic events, that are triggered when edge (u, v)
is added with Gi.

Fig. 3. A Toy Dynamic Network with t snap-
shots. First two and last snapshots are shown
in this figure.

For example, consider the toy
dynamic network in Fig. 3. We
want to construct the GTE fea-
ture vector g36

1 , which is the GTE
feature representation of node-pair
(3, 6) at G1. We illustrate the con-
struction process in Fig. 4. In this
figure, we show all the graphlet
transitions triggered by edge (3, 6)
when it is added in G1. These tran-
sition events are listed in center
table of Fig. 4. Column titled Nodes
lists the sets of nodes where the graphlet transitions are observed and Column
Current Graphlet shows the current graphlet structure induced by these nodes.
Column Transformed Graphlet shows the graphlet structure after (3, 6) is added.
The last column Graphlet Event is a visual representation of the transition
events, where the transition is reflected by the red edges. Once all the tran-
sition events are enumerated, we count the frequencies of these events (Table
on the right side of Fig. 4). Graphlet transition frequencies can be substantially
different for different edges, so the GTE vector is normalized by the largest value
of graphlet transition frequencies associated with this edge. Also note that, all
possible graphlet transition events are not observed for a given edge. So, among
all the possible types of GTE, those that are observed in at least one node-pair
in the training dataset are considered in GTE feature-set.

The second component of node-pair feature vector is Link History (LH)
of node-pair, which is not captured by GTE feature-set, guv

[1,t−1]. Link His-
tory, lhuv

[1,t−1] of a node-pair (u, v) is a vector of size t − 1, denoting the
edge occurrences between the participating nodes over the time window [1, t −
1]. It is defined as, lhuv

[1,t−1] = G1(u, v) || G2(u, v) || . . . || Gt−1(u, v).
Here, Gi(u, v) is 1 if edge (u, v) is present in snapshot Gi and 0 otherwise.
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Fig. 4. Construction of graphlet transition based feature representation g36
1 of node-

pair (3, 6) at 1st snapshot of the toy network. (Color figure online)

An appearance of an edge in recent time indicates a higher chance of the edge
to reappear in near future. So, we consider weighted link history, wlhuv

[1,t−1] =
w1 · G1(u, v) || w2 · G2(u, v) || . . . || wt−1 · Gt−1(u, v). here, wi = i/(t − 1)
(a time decay function) represents the weight of link history for time stamp i.
Finally, a frequent appearance of an edge over time indicates a strong tendency
of the edge to reincarnate in the future. This motivates us to reward such events
by considering cumulative sum. We define Weighted Cumulative Link History,
wclhuv

[1,t−1] = CumSum(wlhuv
[1,t−1]).

Finally, the feature vector of a node-pair (u, v), euv[1,t−1], is the concatenation
of GTE feature-set (guv

[1,t−1]) and LH feature-set (wclhuv
[1,t−1]); i.e., euv[1,t−1] =

guv
[1,t−1] || wclhuv

[1,t−1]. For predicting dynamic links in time stamp t+1, we right-
shift the time window by one. In other words, we construct graphlet feature
representation euv[2,t] by using snapshots from time window [2, t]. Final feature
representation for all node-pairs,

Ê = {euv[1,t−1]}u,v∈V

Ē = {euv[2,t]}u,v∈V

(1)

Here, Ê is the training dataset and Ē is the prediction dataset. Both Ê and
Ē can be represented as matrices of dimensions (m,k). The size of the feature
vector is k = |euv[1,t−1]| = c∗ (t−1)+ t−1, where c is the total number of distinct
GTEs that we consider.

GTE enumeration. We compute GTEs by using a local growth algorithm.
For computing guv

i , we first enumerate all graphlets of Gi having both u and v.
Starting from the edge graphlet gl = {u, v}, in each iteration of growth we add a
new vertex w from the immediate neighborhood of gl to obtain a larger graphlet
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gl = gl ∪ {w}. Growth is terminated when |gl| = 5. The enumeration process
is identical to our earlier work [17]. After enumeration, GTE is easily obtained
from graphlet embedding by marking the edge (u, v) as the transition trigger
(see Fig. 4). The computation of GTEs of different node-pairs are not dependent
on each other, this makes GTE enumeration task embarrassingly parallel.

4.2 Unsupervised Feature Extraction

GraTFEL performs the task of unsupervised feature extraction as learning an
optimal coding function h. Lets consider, e is a feature vector from either Ê
or Ē (e ∈ Ê ∪ Ē). Now, the coding function h compresses e to a code vector
α of dimension l, such that l < k. Here l is a user-defined parameter which
represents the code length and k is the size of feature vector. Many different
coding functions exist in the dimensionality reduction literature, but GraTFEL
chooses the coding function which incurs the minimum loss in the sense that
from the code α we can reconstruct e with the minimum error over all possible
e ∈ Ê ∪ Ē. We frame the learning of h as an optimization problem, which we
discuss below through two operations: Compression and Reconstruction.

Compression: It obtains α from e. This transformation can be expressed as a
nonlinear function of linear weighted sum of the graphlet transition features.

α = f(W (c)e + b(c)) (2)

W (c) is a (k, l) dimensional matrix. It represents the weight matrix for compres-
sion and b(c) represents biases. f(·) is the Sigmoid function, f(x) = 1

1+e−x .

Reconstruction: It performs the reverse operation of compression, i.e., it
obtains the graphlet transition features e from α which was constructed during
the compression operation.

β = f(W (r)α + b(r)) (3)

W (r) is a matrix of dimensions (l, k) representing the weight matrix for recon-
struction, and b(r) represents biases.

The optimal coding function h constituted by the compression and recon-
struction operations is defined by the parameters (W , b) = (W (c), b(c),
W (r), b(r)). The objective is to minimize the reconstruction error. Reconstruc-
tion error for a graphlet transition feature vector (e) is defined as, J(W, b, e) =
1
2 ‖ β − e ‖2. Over all possible feature vectors, the average reconstruction error
augmented with a regularization term yields the final objective function J(W , b)
which we want to minimize:

J(W , b) =
1

2m

∑

e∈Ê∪Ē

(
1
2

‖ β − e ‖2) +
λ

2
(‖ W (c) ‖2F + ‖ W (r) ‖2F ) (4)

Here, λ is a user assigned regularization parameter, responsible for preventing
over-fitting. ‖ · ‖F represents the Frobenius norm of a matrix.
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Training: The training of optimal coding defined by parameters (W, b) begins
with random initialization of the parameters. Since the cost function J(W , b)
defined in Eq. (4) is non-convex in nature, we obtain a local optimal solution
using the gradient descent approach. The parameter update of the gradient
descent is similar to the parameter update in Auto-encoder in machine learning.
Unsupervised feature representation of any node-pair (u, v) can be obtained by
taking the outputs of compression stage (Eq. (2)) of the trained optimal coding
(W, b).

αuv
[1,t−1] = f(W (c)euv

[1,t−1] + b(c)) = h(euv
[1,t−1])

αuv
[2,t] = f(W (c)euv

[2,t] + b(c)) = h(euv
[2,t])

Computational Cost: We use Matlab implementation of optimization algo-
rithm L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) for learn-
ing optimal coding. Non-convex nature of cost function allows us to converge
to local optima. We execute the algorithm for limited number of iterations to
obtain unsupervised features within a reasonable period of time. Each iteration
of L-BFGS executes two tasks for each edge: back-propagation to compute par-
tial differentiation of cost function, change the parameters (W, b). For each edge
the time complexity is O(kl); here, k is the length of basic feature representation,
l is length of unsupervised feature representation. Therefore, the time complexity
of one iteration is O(mkl), where m is the number of possible edges.

4.3 Supervised Link Prediction Model

Training dataset, Ê is feature representation for time snapshots [1, t − 1], The
ground truth (ŷ) is constructed from Gt. After training the supervised classifica-
tion model using α̂ = h(Ê) and ŷ, prediction dataset Ē is used to predict links
at Gt+1. For this supervised prediction task, we experiment with several classi-
fication algorithms. Among them SVM (support vector machine) and AdaBoost
perform the best.

4.4 Algorithm

The pseudo-code of GraTFEL is given in Algorithm 1. For training link predic-
tion model, we split the available network snapshots into two overlapping time
windows, [1, t − 1] and [2, t]. GTE features Ê and Ē are constructed in Lines 2
and 4, respectively. Then we learn optimal coding for node-pairs using graphlet
transition features (Ê ∪ Ē) in Line 5. Unsupervised feature representations are
constructed using learned optimal coding (Lines 6 and 7). Finally, a classification
model C is learned (Line 8), which is used for predicting link in Gt+1(Line 9).
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Algorithm 1. GraTFEL

1: procedure GraTFEL(G, t)
Input : G: Dynamic Graph, t: Time steps
1Output: ȳ: Forecasted links at time step t + 1

2: Ê=GraphletTransitionFeature(G,1,t − 1)
3: ŷ=Connectivity(Gt)
4: Ē=GraphletTransitionFeature(G,2,t)
5: h=LearningOptimalCoding(Ê ∪ Ē)
6: α̂=h(Ê)
7: ᾱ=h(Ē)
8: C=TrainClassifier(α̂, ŷ)
9: ȳ=LinkForecasting(C, ᾱ)

10: return ȳ
11: end procedure

5 Experimental Results

5.1 Dataset

We use three real world dynamic networks for evaluating the performance of
GraTFEL. These datasets are Enron, Collaboration and Facebook. The Enron
email corpus consists of email exchanges between 184 Enron employees; the
vertices of the network are employees, and the edges are email events between
a pair of employees. The dataset has 11 temporal snapshots which are prepared
identically as in [22]. The Collaboration dataset is constructed by using citation
data from ArnetMiner (arnetminer.org). Each vertex in this dataset is an author
and the edges represent co-authorship. We consider the data from years 2000-
2009—total 10 snapshots considering each year as a time stamp. Many authors
in the original dataset have published in only one or two years out of all ten
years, so we select only those who participate in a minimum of 2 collaboration
edges in at least 7 time stamps. The final dataset has 315 authors.

Table 1. Basic statistics of the datasets used.

Enron Collaboration Facebook

Time Snaps 11 10 9
Nodes 184 315 663
Avg. Edge 217 255 1299
Node−Pairs 16, 836 49, 455 219, 453
Avg. Density .013 .005 .006

Lastly, the dynamic social
network of Facebook wall
posts [20] has 9 time stamps.
We follow the same time-
stamp setting and node filter-
ing as [21], resulting in 9 time
stamps of data, and 663 nodes.
The dynamic link prediction
task of all three datasets is to
predict links on last snapshot,
given the link information of
all the previous snapshots. Statistics of the dynamic networks are given in
Table 1. Although the number of vertices in these networks are in hundreds,

https://arnetminer.org
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these are large datasets considering the possible node-pairs and multiple tempo-
ral snapshots.

5.2 Competing Methods

To compare the performance of GraTFEL, we choose link prediction methods
from two categories: (1) topological feature based methods and (2) feature time
series based methods [5].

For topological feature based method, we consider three leading topological
features: common Neighbors (CN), Adamic-Adar (AA), and Jaccard’s Coeffi-
cient (J). However, in existing works these features are defined for static network
only; so we adapt these features for the dynamic network setting by taking the
weighted average of the feature values at different time stamps, where the weight
of the t’th time stamp is 1 and the weight of the i’th time stamp is 1

t−i+1 . The
justification of such a weighting is due to the common belief that recent inter-
action is a good indicator of a repeat interaction. We also tried different feature
weighting, but the above weighting gives the best performance for the topological
feature based dynamic link prediction. We also combine the above three features
to construct a combined feature vector of length 3 (CNAAJ) and use it with a
classifier to build a supervised link prediction method, and include this model
in our comparison.

We also compare GraTFEL with time series based neighborhood similarity
scores proposed in [5]. In this work, the authors consider several neighborhood-
based node similarity scores combined with connectivity information (historical
edge information). Authors use time series of similarities to model the change of
node similarities over time. Among 16 proposed methods, we consider 4 which
are relevant to the link prediction task on unweighted networks, and also have
the best performance. TS-CN -Adj represents time series on normalized score of
Common Neighbors and connectivity values at time stamps [1, t]. Similarly, we
get time series based scores for Adamic-Adar (TS-AA-Adj), Jaccard’s Coefficient
(TS-J-Adj) and Preferential Attachment (TS-PA-Adj).

5.3 Implementation

For implementation of GraTFEL we use a combination of Python and Mat-
lab. Graphlet transition is enumerated using a python implementation. Feature
vector construction and unsupervised feature extraction are done using Matlab.
The unsupervised feature extraction method runs for a maximum of 50 iterations
or until it converges to a local optima. We use coding size l = 200 for all three
datasets3. For link prediction we used several Matlab provided classification
algorithms, namely AdaBoostM1, RobustBoost, and Support Vector Machine
(SVM). We use Matlab for computing the feature values (CN, AA, J) that we

3 We experiment with different coding sizes ranging from 100 to 800. The change in
link prediction performance is not very sensitive to the coding size. At most 2.9 %
change in PRAUC was observed for different coding sizes.



Link Prediction in Dynamic Networks Using Graphlet 405

use in other competing methods. Time series methods are implemented using
Python. We use the ARIMA (autoregressive integrated moving average) time
series model implemented in Python module statsmodels. Datasets and source
code are available at https://github.com/DMGroup-IUPUI/GraTFEL-Source.

5.4 Evaluation Metrics

For evaluating the proposed methods we use three metrics; namely, area under
Receiver Operator Characteristics curve (AUC), area under Precision-Recall
curve (PRAUC), and Normalized Discounted Cumulative Gain (NDCG). The
AUC value for a link prediction problem quantifies the probability that a ran-
domly chosen edge is ranked higher than a randomly chosen node pairs without
edge. However, real world datasets for link prediction are generally skewed; the
number of edges (|E|) is very small compared to the number of possible node-
pairs

(|V |
2

)
in the graph. In such scenarios, PRAUC gives a more informative

picture of the algorithm’s performance. The reason why PRAUC is more suit-
able for the skewed problem is that it does not factor in the effect of true nega-
tives. In skewed data where the number of negative examples is huge compared
to the number of positive examples, true negatives are not that meaningful.
The last metric, NDCG, is an information retrieval metric which is widely used
by the recommender systems community. NDCG measures the performance of
link prediction system based on the graded relevance of the recommended links.
NDCGp varies from 0.0 to 1.0, with 1.0 representing the ideal ranking of edges;
p is a user-defined parameter, which represents the number of links ranked by
the method. We use p = 50 (unless stated otherwise). NDCG is suitable when it
is important to return the ranked list of top p predicted links.

5.5 Performance Comparison with Competing Methods

In this section, we present performance comparison of GraTFEL with several
competing methods (see Fig. 5). The bar charts in the top, middle, and bot-
tom rows of Fig. 5 display the results for Enron, Collaboration, and Facebook
datasets, respectively. The bar charts in a row show comparison results using
AUC, PRAUC, and NDCG50 (from left to right). In total, there are 9 bars
in a chart, each representing a link prediction method, where the height of a
bar is indicative of the performance metric value of the corresponding method.
From left to right, the first four bars (blue) correspond to the topological feature
based methods, the next four (green) represent time series based methods, and
the final bar (brown) represents GraTFEL.

We observe that GraTFEL (the last bar) outperforms the remaining eight
methods in all the nine charts in this figure. The performance difference using
PRAUC (Fig. 5(b, e, f), the charts in the middle column) is more pronounced
than the performance difference using the other two metrics. Since, PRAUC is
the most informative metric for classification performance on a skewed dataset,
the performance difference on this metric is a strong endorsement of the supe-
riority of GraTFEL over other methods. We first analyze the performance

https://github.com/DMGroup-IUPUI/GraTFEL-Source
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Fig. 5. Comparison with competing link prediction methods. Each bar represents a
method and the height of the bar represents the value of the performance metrics.
Results for Enron are presented in charts(a)–(c), results of Collaboration are in charts
(d)–(f), and results of Facebook data are presented in charts (g)–(i). The group of bars
in a chart are distinguished by color, so the figure is best viewed on a computer screen
or color print. (Color figure online)

comparison between GraTFEL and topological feature based methods (first
four bars). The best of the topological feature based methods have a PRAUC
value of 0.41, 0.21, and 0.095 in Enron, Collaboration, and Facebook dataset,
whereas the respective PRAUC values for GraTFEL are 0.546, 0.36, and 0.26,
which translates to 33.2 %, 71.4 %, and 173.7 % improvement of PRAUC by
GraTFEL for these datasets. Superiority of GraTFEL over all the topological
feature based baseline methods can be attributed to the capability of graphlet
transition based feature representation to capture temporal characteristics of
local neighborhood. Finally, the performance of time series based method (four
green bars) is generally better than the topological feature based methods. The
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best of the time series based method has a PRAUC value of 0.503, 0.28, and
0.19 on these datasets, and GraTFEL’s PRAUC values are better than these
values by 8.5 %, 28.6 %, and 36.8 %, respectively. Time series based methods,
though model the temporal behavior well, probably fail to capture signals from
the neighborhood topology of the node-pairs.

Now we focus on the performance comparison using the information retrieval
metric NDCG50 (Fig. 5(c, f, i)). This metric puts higher weight on the top-
ranked predicted links than the lower ranked predicted links. GraTFEL shows
substantial improvement over the other methods using this metric also. The
performance improvement of GraTFEL in NDCG50 over the best among the
remaining 8 methods are 9.8 %, 24 %, and 46.8 % on the three datasets. An
interesting observation using this metric is that for all the datasets, the best
among the topological feature based methods is better than the best among the
time series based methods. It indicates that the top ranked predicted links are
explained better by the neighborhood topology than the time series of inter-
action history. Finally, we discuss the comparison results for the AUC metric
(Fig. 5(a, d, g)). GraTFEL is the best performer among all the methods for
all three datasets with a percentage improvement over the second best method
between 2 % to 17 %. Note that, the performance gap among all the methods are
relatively small using AUC. For instance, the AUC values for all the methods in
Enron dataset (Fig. 5(a)) are localized around 0.93. In general, AUC has a poor
discrimination ability among classifiers in a highly skewed datasets and due to
this reason PRAUC should be the preferred metric for such datasets [3].

When we compare the performance of all the algorithms across different
datasets, we observe varying performance. For example, across all the metrics,
the performance of dynamic link prediction on Facebook graph is lower than
the performance on Collaboration graph, which, subsequently, is lower than the
performance on Enron graph, indicating that link prediction in Facebook data
is a harder problem to solve. The performance improvement of GraTFEL over
the second best method for Facebook is the largest among the three datasets
across all three metrics.

5.6 Contribution of Unsupervised Feature Extraction

GraTFEL has two novel aspects: first, utilization of graphlet transition events
(GTEs) as features, and the second is unsupervised feature learning by optimal
coding. In this section, we compare the relative contribution of these two aspects
in the performance of GraTFEL. For this comparison, we build a version of
GraTFEL which we call GTLiP. GTLiP uses GTEs just like GraTFEL, but
it does not use optimal coding, rather it uses the GTEs directly as features. In
Fig. 6, we show the comparison between GraTFEL, and GTLiP using NDCGp

for different p values for all the datasets. The superiority of GraTFEL over
GTLiP for all the datasets over a range of p values is clearly evident from the
three charts. GTLiP also outperforms all the competing methods. Compari-
son of GTLiP and other competing methods is not shown in this figure, but
the NDCG50 from this figure can be compared with NDCG50 charts in Fig. 5
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Fig. 6. Performance comparison between link prediction methods with (GraTFEL)
and without (GTLiP) unsupervised feature extraction. Y-axis represents the NDCGp

score and X-axis represents the value of p.

for confirming this claim. This shows that GTE based features, irrespective of
unsupervised coding, improve the dynamic link prediction performance over the
existing state of-art dynamic link prediction methods.

6 Conclusion

In this paper, we present a dynamic link prediction method, which uses unsu-
pervised coding of graphlet transition events. We demonstrate that the proposed
method performs better than several topological feature based methods and sev-
eral time series based methods on three real-life dynamic graph datasets.
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