
Gaussian Process Pseudo-Likelihood Models
for Sequence Labeling

P.K. Srijith1(B), P. Balamurugan2, and Shirish Shevade3

1 Department of Computer Science, University of Sheffield, Sheffield, UK
pk.srijith@dcs.shef.ac.uk

2 SIERRA Project Team, INRIA-ENS, Paris, France
balamurugan.palaniappan@inria.fr

3 Computer Science and Automation, Indian Institute of Science, Bangalore, India
shirish@csa.iisc.ernet.in

Abstract. Several machine learning problems arising in natural lan-
guage processing can be modeled as a sequence labeling problem.
Gaussian processes (GPs) provide a Bayesian approach to learning such
problems in a kernel based framework. We develop Gaussian process
models based on pseudo-likelihood to solve sequence labeling problems.
The pseudo-likelihood model enables one to capture multiple dependen-
cies among the output components of the sequence without becoming
computationally intractable. We use an efficient variational Gaussian
approximation method to perform inference in the proposed model. We
also provide an iterative algorithm which can effectively make use of
the information from the neighboring labels to perform prediction. The
ability to capture multiple dependencies makes the proposed approach
useful for a wide range of sequence labeling problems. Numerical experi-
ments on some sequence labeling problems in natural language processing
demonstrate the usefulness of the proposed approach.

Keywords: Gaussian processes · Sequence labeling · Variational infer-
ence

1 Introduction

Sequence labeling is the task of classifying a sequence of inputs into a sequence
of outputs. It arises commonly in natural language processing (NLP) tasks such
as part-of-speech tagging, chunking, named entity recognition etc. For instance,
in part-of-speech (POS) tagging, the input is a sentence and the output is a
sequence of POS tags. The output consists of components whose labels depend
on the labels of other components in the output. Sequence labeling takes into
account these inter-dependencies among various components of the output [17].

In recent years, sequence labeling has received considerable attention from the
machine learning community and is often studied under the general framework of
structured prediction. Many algorithms have been proposed to tackle sequence
labeling problems. Hidden Markov model (HMM) [20], conditional random field
(CRF) [13] and structural support vector machine (SSVM) [25] are the popular
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 215–231, 2016.
DOI: 10.1007/978-3-319-46128-1 14

216 P.K. Srijith et al.

algorithms for sequence labeling. SSVM allows learning a SVM for predicting a
structured output including sequences. It is based on a large margin framework
and is not probabilistic in nature. HMM is a probabilistic directed graphical
model based on Markov assumption and has been widely used for problems in
speech and language processing. CRF is also a probabilistic model based on
Markov random field assumption. These parametric approaches can provide an
estimate of uncertainty in predictions due to their probabilistic nature. However,
they do not follow a Bayesian approach as they make a pointwise estimate of
their parameters. This makes them less robust and heavily dependent on cross-
validation for model selection. Bayesian CRF [19] overcomes this problem by
providing a Bayesian treatment to CRF. Approaches like SSVM and maximum
margin Markov network (M3N) make use of kernel functions which overcome the
limitations arising due to the parametric nature of models such as CRF. Kernel
CRF [14] is proposed to overcome this limitation of the CRF, but it is also not
a Bayesian approach.

Gaussian processes (GPs) [21] have emerged as a better alternative to offer
a non-parametric fully Bayesian approach to solve the sequence labeling prob-
lem. An initial work which studied Gaussian process for sequence labeling is [1],
where GPs were proposed as an alternative to overcome the limitations of CRF;
however they used a maximum a posteriori (MAP) approach instead of a fully
Bayesian approach. This caused problems of model selection and robustness
issues. A more recent work GPstruct [7] provides a Bayesian approach to gen-
eral structured prediction problem with GPs. It uses Markov Chain Monte Carlo
(MCMC) method to obtain the posterior distribution which slows down the infer-
ence. Their approach is based on Markov random field assumption which could
not capture long range dependencies among the labels. This difficulty is over-
come in [8] which uses an approximate likelihood to reduce the computational
complexity arising due to the consideration of larger dependencies. In [8], the
proposed model was used to solve grid structured problems in computer vision
and was found to be effective in these problems.

In this work, we develop a Gaussian process approach based on pseudo-
likelihood to solve sequence labeling problems (which we call GPSL). The GPSL
model helps to capture multiple dependencies among the output components in
a sequence without becoming computationally intractable. We develop a varia-
tional inference method to obtain the posterior which is faster than MCMC based
approaches and does not suffer from convergence problems. We also provide an
efficient algorithm to perform prediction in the GPSL model which effectively
takes into account the dependence on multiple output components. We con-
sider various GPSL models which consider different number of dependencies.
We study the usefulness of these models on various sequence labeling problems
arising in natural language processing (NLP). The GPSL models which capture
more dependencies are found to be useful for these sequence labeling problems.
They are also useful in sequence labeling data sets where the labels might be
missing for some output components, for example, when the labels are obtained
using crowd-sourcing. The main contributions of the paper are as follows:

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 217

1. A faster training algorithm based on variational inference.
2. An efficient prediction algorithm which considers multiple dependencies.
3. Application to sequence labeling problems in NLP.

The rest of the paper is organized as follows. Gaussian processes are intro-
duced in Sect. 2. Section 3 discusses the proposed approach, Gaussian process
sequence labeling (GPSL), in detail. We provide details of the variational infer-
ence and prediction algorithm for the GPSL model in Sects. 4 and 5 respectively.
In Sect. 6, we study the performance of various GPSL models on sequence label-
ing problems and draw several conclusions in Sect. 7.

Notations: We consider a sequence labeling problem over sequences of input-
output space pair (X ,Y). The input sequence space X is assumed to be made
up of L components X = X1 × X2 × . . . XL and the associated output sequence
space has L components Y = Y1×Y2× . . . YL. We assume a one-to-one mapping
between the input and output components. Each component of the output space
is assumed to take a discrete value from the set {1, 2, . . . , J}. Each component in
the input space is assumed to belong to a P dimensional space RP representing
features for that input component. Consider a collection of N training input-
output examples D = {(xn,yn)}Nn=1, where each example (xn,yn) is such that
xn ∈ X and yn ∈ Y. Thus, xn consists of L components (xn1,xn2, . . . ,xnL) and
yn consists of L components (yn1, yn2, . . . , ynL). The training data D contains
NL input-output components.

2 Background

A Gaussian process (GP) is a collection of random variables with the property
that the joint distribution of any finite subset of which is a Gaussian [21]. It
generalizes Gaussian distribution to infinitely many random variables and is
used as a prior over a latent function. The GP is completely specified by a mean
function and a covariance function. The covariance function is defined over latent
function values of a pair of inputs and is evaluated using the Mercer kernel
function over the pair of inputs. The covariance function expresses some general
properties of functions such as their smoothness, and length-scale. A commonly
used covariance function is the squared exponential (SE) or the Gaussian kernel

cov
(
f(xmi), f(xnl)

)
= K(xmi,xnl) = σ2

f exp(−κ

2
||xmi − xnl||2). (1)

Here f(xmi) and f(xnl) are latent function values associated with the input
components xmi and xnl respectively. θ = (σ2

f , κ) denotes the hyper parameters
associated with the covariance function K.

Multi-class classification approaches are useful when the output consists of a
single component taking values from a finite discrete set {1, 2, . . . , J}. Gaussian
process multi-class classification approaches [9,10,26] associate a latent function
f j with every label j ∈ {1, 2, . . . , J}. Let the vector of latent function values
associated with a particular label j over all the training examples be f j. The

218 P.K. Srijith et al.

latent function f j is assigned an independent GP prior with zero mean and
covariance function Kj with hyper parameters θj . Thus, f j ∼ N(0,Kj), where
Kj is a matrix obtained by evaluating the covariance function Kj over all the
pairs of training data input components.

In multi-class classification, the likelihood over a multi-class output ynl for
an input xnl given the latent functions is defined as [21]

p(ynl|f1(xnl), f2(xnl), . . . , fJ (xnl)) =
exp(fynl(xnl))
∑J

j=1 f j(xnl)
. (2)

The likelihood (2) is known as multinomial logistic or softmax function and is
used widely for the GP multi-class classification problems [9,26]. It is important
to note that the likelihood function (2) used for the multi-class classification
problems is not Gaussian. Hence, the posterior over the latent functions cannot
be obtained in a closed form. GP multi-class classification approaches work by
approximating the posterior as a Gaussian using approximate inference tech-
niques such as Laplace approximation [26] and variational inference [9,10]. The
Gaussian approximated posterior is then used to make predictions on the test
data points. These approximations also yield an approximate marginal likelihood
or a lower bound on marginal likelihood which can be used to perform model
selection [21].

A sequence labeling problem can be treated as a multi-class classification
problem. One can use multi-class classification to obtain a label for each compo-
nent of the output independently. But this fails to take into account the inter-
dependence among components. If one considers the entire output as a distinct
class, then there would be an exponential number of classes and the learning
problem becomes intractable. Hence, the sequence labeling problem has to be
studied separately from the multi-class classification problems.

3 Gaussian Process Sequence Labeling

Most of the previous approaches [7,13] to sequence labeling use likelihood based
on Markov random field assumption which captures only the interaction between
neighboring output components. Non-neighboring components also play a sig-
nificant role in problems such as sequence labeling. In these models, capturing
such interactions are computationally expensive due to large clique size. The
proposed approach, Gaussian process sequence labeling (GPSL), can take into
account interactions among various output components without becoming com-
putationally intractable by using a pseudo-likelihood (PL) model [4].

The PL model defines the likelihood of an output yn given the input xn as
p(yn|xn) ∝ ∏L

l=1 p(ynl|xnl,yn\ynl). where, yn\ynl represents all labels in yn

except ynl. PL models have been successfully used to address many sequence
labeling problems in natural language processing [23,24]. They can capture long
range dependencies without becoming computationally intractable as the nor-
malization is done for each output component separately. In models such as

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 219

CRF, normalization is done over the entire output. This renders them inca-
pable of capturing long range dependencies as the number of summations in
the normalization grows exponentially. The PL model is different from a locally
normalized model like maximum entropy Markov model (MEMM) as each out-
put component depends on several other output components. Therefore, they do
not suffer from the label bias problem [17] unlike MEMM. However, PL models
create cyclic dependencies among the output components [11] and this makes
prediction hard. We discuss an efficient approach to perform prediction in this
case in Sect. 5.

(a) Dependence among input and output
components. Dependence on various out-
put components are modelled separately.

(b) Dependence of local and dependent latent functions. The
local latent functions are defined over input-output pairs and de-
pendent latent functions are defined between output components.

Fig. 1. Dependence of latent functions and input-output components in Gaussian
process sequence labeling model.

The label of an output component need not depend on the labels of all the
other output components. The dependencies among these output components
are captured through the set S. Consider the directed graph in Fig. 1a for a
sequence labeling problem, where each output component is assumed to depend

220 P.K. Srijith et al.

only on the neighboring output components. Here, the dependency set S =
{1, 2}, where 1 denotes the dependence of an output component on the previous
output component and 2 denotes its dependence on the next output component.
One can also consider a model where an output component depends on the
previous two output components and the next two output components. Let R
denote the number of dependency relations in a set S (that is, R is the cardinality
of S) and we assume it to be the same for all the output components for the
sake of clarity in presentation. Taking into account those dependencies, we can
redefine the likelihood as

p(yn|xn) ∝
L∏

l=1

p(ynl|xnl,yS
nl). (3)

Here, yS
nl denotes the set of labels {yd

nl}Rd=1 of the output components referred
by the dependency set S and yd

nl denotes the label of the dth dependent output
component. In (3), instead of conditioning on the rest of the labels, we condition
ynl only on the labels defined by the dependency set S.

Now, the likelihood p(ynl|xnl,yS
nl) can be defined using a set of latent func-

tions. We use different latent functions to model different dependencies. The
dependency of the label ynl on xnl is defined as a local dependency and is
modeled as in GP multi-class classification. We associate a latent function with
each label in the set {1, 2, . . . J}. The latent function associated with a label j,
denoted as fUj , is called a local latent function. It is defined over all the training
input components xnl for every n and l and the latent function values associ-
ated with a particular label j over NL training examples are denoted by fUj.
The local latent functions associated with a particular input component xnl are
denoted as fUnl = {fU1

nl , . . . , fUJ
nl }. We also associate a latent function fSd with

each dependency relation d ∈ S and call them dependent latent functions. These
latent functions are defined over all the values of a pair of labels (ŷnl, ynl) where
ŷnl ∈ {1, 2, . . . J} and ynl ∈ {1, 2, . . . J}. The latent function values associated
with a particular dependency d over J2 label pair values are denoted by fSd. The
dependence of various latent functions on the input and output components for
the directed graph in Fig. 1a is depicted in Fig. 1b. Given these latent functions
we define the likelihood p(ynl|xnl,yS

nl) to be a member of an exponential family:

p(ynl|xnl,yS
nl, {fUj}Jj=1, {fSd}Rd=1) =

exp(fUynl(xnl) +
∑R

d=1 fSd(yd
nl, ynl))∑J

ynl=1 exp(fUynl(xnl) +
∑R

d=1 fSd(yd
nl, ynl))

. (4)

This differs from the softmax likelihood (2) used in multi-class classification
in that it captures the dependencies among output components. Given the
latent functions and the input X = {xn}Nn=1, the likelihood of the output
Y = {yn}Nn=1 is

p(Y|X, {fUj}Jj=1, {fSd}Rd=1) =
N∏

n=1

L∏

l=1

p(ynl|xnl,yn{Dnl}, {fUj}Jj=1, {fSd}Rd=1)(5)

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 221

We impose independent GP priors over the latent functions {fUj}Jj=1,
{fSd}Rd=1. The latent function fUj is given a zero mean GP prior with covariance
function KUj parameterized by θj . Thus, fUj is a Gaussian with mean 0 and
covariance KUj of size NL×NL, that is p(fUj) = N (fUj;0,KUj). KUj consists
of covariance function evaluations over all the pairs of training data input com-
ponents {{xnl}Ll=1}Nn=1. The latent function fSd is given zero mean GP prior
with an identity covariance which is defined to be 1 when inputs are the same
and 0 otherwise. Thus fSd is a Gaussian with mean 0 and covariance I of size J2,
that is p(fSd) = N (fSd;0, IJ2). Let fU = (fU1, fU2, . . . , fUJ) be the collection
of all local latent functions and fS = (fS1, fS2, . . . , fSR) be the collection of all
dependent latent functions. Then the prior over fU and fS is defined as

p(fU, fS|X) = N
([

fU

fS

]
;0,

[
KU 0
0 KS

])
, (6)

where KU = diag(KU1,KU2, . . . ,KUJ) is a block diagonal matrix and KS =
IJ2 ⊗ IR.

The posterior over the latent functions p(fU, fS|D) is

p(fU, fS|X,Y) =
1

p(Y|X)
p(Y|X, fU, fS)p(fU, fS|X)

where p(Y|X) =
∫

p(Y|X, fU, fS)p(fU, fS|X)dfUdfS is called evidence. Evi-
dence is a function of hyper-parameters θ = (θ1,θ2, . . . ,θJ) and is maximized
to estimate them. For notational simplicity, we suppress the dependence of evi-
dence, posterior and prior on the hyper-parameter θ. Due to the non-Gaussian
nature of the likelihood, evidence is intractable and the posterior cannot be deter-
mined exactly. We use a variational inference technique to obtain an approximate
posterior. Variational inference is faster than sampling based techniques used in
[7] and does not suffer from convergence problems [16]. It can easily handle
multi-class problems and is scalable to models with a large number of parame-
ters. Further, it provides an approximation to the evidence which is useful in
estimating the hyper-parameters of the model.

4 Variational Inference

A variational Inference technique [16] approximates the intractable posterior by
an approximate variational distribution. It approximates the posterior p(f |X,Y)
by a variational distribution q(f |γ), where f = (fU, fS) and γ represents the
variational parameters. In variational inference, this is done by minimizing the
Kullback-Leibler (KL) divergence between q(f |γ) and p(f |X,Y). This is often
intractable and the variational parameters are obtained by maximizing a varia-
tional lower bound L(θ,γ).

KL(q(f |γ)||p(f |X,Y)) = −L(θ,γ) + log p(Y|X) (7)

where L(θ,γ) = −KL(q(f |γ)||p(f |X)) +
∫

q(f |γ) log p(Y|X, f)df .

222 P.K. Srijith et al.

Maximizing the variational lower bound L(θ,γ) results in minimizing the KL
divergence KL(q(f |γ)||p(f |X,Y)), since the evidence p(Y|X) does not depend
on the variational parameters.

We use a variational Gaussian (VG) approximate inference approach [18]
where the variational distribution is assumed to be a Gaussian. Variational
Gaussian approaches can be slow because of the requirement to estimate the
covariance matrix. Fortunately, recent advances in VG inference approaches [18]
enable one to compute the covariance matrix using O(NL) variational parame-
ters. In fact, we use the VG approach for GPs [12] which requires computation
of only O(NL) variational parameters, but at the same time uses a concave
variational lower bound. We assume the variational distribution q(f |γ) takes
the form of a Gaussian distribution and factorizes as q(fU|γU)q(fS|γU) where
γ = {γU ,γS}. Let q(fU|γU) = N (fU;mU,VU) where γU = {mU,VU} and
q(fS) = N (fS;mS,VS) where γS = {mS,VS}. Then, the variational lower
bound L(θ,γ) can be written as

L(θ,γ) =
1
2
(log |VUΩU| + log |VSΩS| − tr(VUΩU) − tr(VSΩS) (8)

−mU�
ΩUmU − mS�

ΩSmS) +
N∑

n=1

L∑

l=1

Eq(fU|γU)q(fS|γS)[log p(ynl|xnl,yS
nl, f)]

where ΩU = KU−1, ΩS = KS−1 and Eq(x)[f(x)] =
∫

f(x)q(x)dx represents
the expectation of f(x) with respect to the density q(x). Since KU is block
diagonal, its inverse is block diagonal, and hence ΩU is block diagonal that is
ΩU = diag(ΩU1,ΩU2, . . . ,ΩUJ), where ΩUj = KUj−1. Similarly, ΩS is also a
block diagonal with each block being a diagonal matrix IJ2 . The marginal vari-
ational distribution of local latent function values fUj is a Gaussian with mean
mUj and covariance VUj, and that of dependent latent function values fSd is
a Gaussian with mean mSd and covariance VSd. The variational lower bound
L(θ,γ) requires computing an expectation of the log likelihood with respect to
the variational distribution. However, the integral is intractable since the likeli-
hood is a softmax function. So, we use Jensen’s inequality to obtain a tractable
lower bound to the expectation of log likelihood. The variational lower bound
L(θ,γ) can be written as

1

2

(J∑

j=1

(log |VUjΩUj| − tr(VUjΩUj) − mUj�ΩUjmUj)

+

R∑

d=1

(log |VSdΩSd| − tr(VSdΩSd) − mSd�
ΩSdmSd)

)

+
N∑

n=1

L∑

l=1

(
mUynl

nl +
R∑

d=1

mSd
(yd

nl
,ynl)

− log
(J∑

q=1

exp(mUj
nl +

1

2
V Uj
(nl,nl)

+
R∑

d=1

mSd
(yd

nl
,q) +

1

2
V Sd
((yd

nl
,q),(yd

nl
,q)))
))

. (9)

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 223

Algorithm 1. Model selection and learning in Gaussian process sequence label-
ing model
1: Input: Training data (X, Y), dependency set S
2: Initialize hyper-parameters θ, variational parameters γ
3: repeat
4: repeat
5: for j = 1 to J do
6: Update mUj by maximizing (9) w.r.t mUj

7: Update VUj by maximizing (9) w.r.t VUj

8: end for
9: for d = 1 to R do

10: Update mSd by maximizing (9) w.r.t mSd

11: Update VSd by maximizing (9) w.r.t VSd

12: end for
13: until relative increase in lower bound (9) is small
14: Update θ by maximizing (9) w.r.t θ
15: until relative increase in lower bound (9) is small
16: Return: θ, γ

The varia tional parameters γ = {{mUj}Jj=1, {VUj}Jj=1, {mSd}Rd=1,
{VSd}Rd=1} are estimated by maximizing the variational lower bound (9). The
lower bound is jointly concave with respect to all the variational parameters [6] and
the optimum can be easily found using gradient based optimization techniques.

The variational parameters are estimated using a co-ordinate ascent app-
roach. We repeatedly estimate each variational parameter while keeping the oth-
ers fixed. The variational mean parameters mUj and mSd are estimated using
gradient based approaches. The variational covariance matrices VUj and VSd

are estimated under the positive semi-definite (p.s.d.) constraint. This can be
done efficiently using the fixed point approach mentioned in [12]. It is reported
to converge faster than other VG approaches for GPs and is based on a concave
objective function similar to (9). The approach maintains the p.s.d. constraint
on the covariance matrix and computes VUj by estimating only O(NL) varia-
tional parameters. Estimation of VUj using the fixed point approach converges
since (9) is strictly concave with respect to VUj. The variational covariance
matrix VSd is diagonal since ΩSd is diagonal. Hence, for computing a p.s.d.
VSd we need to estimate only the diagonal elements of VSd under the element-
wise non-negativity constraint. This can be done easily using gradient based
methods. The variational parameters γ are estimated for a particular set of
hyper-parameters θ. The hyper-parameters θ are also estimated by maximizing
the lower bound (9). The variational parameters γ and the model parameters θ
are estimated alternately following a variational expectation maximization (EM)
approach [16]. Algorithm 1 summarizes various steps involved in our approach.

The variational lower bound (9) is strictly concave with respect to each of the
variational parameters. Hence, the estimation of variational parameters using co-
ordinate ascent algorithm (inner loop) converges [3]. Convergence of EM for expo-

224 P.K. Srijith et al.

nential family guarantees the convergence of Algorithm 1. The overall computa-
tional complexity of Algorithm 1 is dominated by the computation of VUj. It takes
O(JN3L3) time as it requires inversion of J covariance matrices of size NL×NL.
The computational complexity for estimating VSd is O(RNLJ) and is negligible
compared to the estimation of VUj. Note that the computational complexity of
the algorithm increases linearly with respect to the number of dependencies R.

5 Prediction

We propose an iterative prediction algorithm which can effectively take
into account the presence of multiple dependencies. The variational poste-
rior distributions estimated using VG approximation q(fU) =

∏J
j=1 q(fUj)

=
∏J

j=1 N (fUj;mUj,VUj) and q(fS) =
∏R

d=1 q(fSd) =
∏R

d=1 N (fSd;mSd,VSd)
can be used to predict a test output sequence y∗ given a test input sequence x∗.
The predictive probability of assigning a label y∗l to a component of the output
y∗, given x∗l and rest of the labels y∗\y∗l is

p(y∗l|x∗l,y∗\y∗l) =
∫

p(y∗l|x∗l,y∗\y∗l, f∗)p(f∗)df∗

=
∫

exp(fUy∗l

∗l +
∑R

d=1 fSd
∗ (yd

∗l, y∗l))
∑J

y∗l=1 exp(fUy∗l

∗l +
∑R

d=1 fSd∗ (yd
nl, ynl))

{p(fUj
∗l)}Jj=1{p(fSd

∗)}Rd=1{dfUj
∗l }Jj=1{dfSd

∗ }Rd=1 (10)

where p(f∗) denotes the predictive distribution of all the latent function values
for the test input x∗. In (10), p(fUj

∗l) represents the predictive distribution of
the local latent function j for a test input component x∗l. This is Gaussian with
mean mUj

∗l and variance vUj
∗l where,

mUj
∗l = KUj

∗l
�
ΩUjmUj and

vUj
∗l = KUj

∗l,∗l − KUj
∗l

�
(ΩUj − ΩUjVUjΩUj)KUj

∗l .

Here, KUj
∗l is an NL dimensional vector obtained from the kernel evaluations

for the label j between the test input data component x∗l and the training data
X and KUj

∗l,∗l represents the kernel evaluation of the test data input component
x∗l with itself. fSd is independent of the test data input and the predictive
distribution p(fSd∗) is the same as p(fSd). This is a Gaussian with mean mSd and
covariance VSd. The computation of the expected value of softmax with respect
to the latent functions (10) is intractable. Instead we compute softmax of the
expected value of the latent functions and compute a normalized probabilistic
score. We refine the normalized score to take into account the uncertainty in
true labels associated with the dependencies and compute the refined normalized
score (RNS) as

RNS(y∗l,x∗l) =
exp(mUy∗l

∗l + 1
2vUy∗l

∗l +
∑R

d=1 Eyd
∗l

[gd(yd
∗l, y∗l)])

∑J
q=1 exp(mUj

∗l + 1
2vUj

∗l +
∑R

d=1 Eyd
∗l

[gd(yd
∗l, q)])

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 225

Algorithm 2. Prediction in Gaussian process sequence labeling model
1: Input: Test data x∗ = (x∗1, . . . ,x∗L), posterior mean {mUj}J

j=1 and {mSd}R
d=1

and posterior covariance {VUj}J
j=1 and {VSd}R

d=1

2: Obtain predictive means {{mUj
∗l }J

j=1}L
l=1, and variances {{vUj

∗l }J
j=1}L

l=1

3: Initialize : RNS0(y∗l,x∗l) =
exp(m

Uy∗l
∗l

+ 1
2 v

Uy∗l
∗l

)
∑J

j=1 exp(m
Uj
∗l

+ 1
2 v

Uj
∗l

)
∀ y∗l = 1, . . . , J, ∀ l = 1 . . . , L

4: Initialize : t = 0
5: repeat
6: t = t + 1
7: for l = 1 to L do
8: for y∗l = 1 to J do

9: RNSt(y∗l,x∗l) =
exp(m

Uy∗l
∗l

+ 1
2 v

Uy∗l
∗l

+
∑R

d=1 E
yd

∗l
[gd(yd

∗l,y∗l)])

∑J
j=1 exp(m

Uj
∗l

+ 1
2 v

Uj
∗l

+
∑R

d=1 E
yd

∗l
[gd(yd

∗l
,q)])

10: where Eyd
∗l

[·] =
∑J

yd
∗l

=1 RNSt−1(yd
∗l, x

d
∗l)[·]

11: end for
12: end for
13: until change in RNSt w.r.t RNSt−1 is small
14: (ŷ∗1, . . . , ŷ∗L) = (argmaxy∗1

RNSt(y∗1,x∗1), . . . ,
argmaxy∗L

RNSt(y∗L,x∗L))
15: Return: (ŷ∗1, . . . , ŷ∗L)

Here, gd(yd, y) = mSd
(yd,y) + 1

2V
Sd
((yd,y),(yd,y)) determines the contribution of the

label yd of dependency d in predicting the output label y. RNS considers an
expected value over all the possible labelings associated with a dependency d.
The expectation is computed using the RNS value associated with the labels
yd

∗l for the input xd
∗l, that is, Eyd

∗l
[·] =

∑J
yd

∗l=1 RNS(yd
∗l, x

d
∗l)[·].

We provide an iterative approach to estimate the labels of a test output in
Algorithm 2. An initial RNS value is computed without considering the depen-
dencies. We iteratively refine the RNS value using the previously computed
RNS value by taking into account the dependencies. The process is contin-
ued until convergence. The final RNS value is used to make prediction sepa-
rately for each output component by assigning labels with the maximum RNS
value. The computational complexity of Algorithm2 is O(J2RL) and is same
as that of Viterbi algorithm [20] for a single dependency case. The convergence
of Algorithm 2 follows from the analysis presented in [15] for a similar fixed
point algorithm. The algorithm is found to converge in a few iterations in our
experiments.

6 Experimental Results

We conduct experiments to study the generalization performance of the pro-
posed Gaussian Process Sequence labeling (GPSL) model. We use the sequence
labeling problems in natural language processing to study the behavior of the
proposed approach. Although the proposed approach is general and can handle

226 P.K. Srijith et al.

dependencies of any length, we consider three different models of the proposed
approach in our experiments. The first model, GPSL1, assumes that the current
label depends only on the previous label. The second model, GPSL2, assumes
that the current label depends both on the previous and the next label in the
sequence. The third model, GPSL4, assumes that the current label depends on
the previous two labels and the next two labels.

We consider four sequence labeling problems in natural language processing
to study the performance of the proposed approach. The datasets for all these
problems are obtained from the CRF++1 toolbox. We provide a brief description
of the tasks in each of these data sets.

Base NP: We need to identify noun phrases in a sentence. The starting word
in the noun phrase is given a label B, while the words inside the noun phrase
are given a label I. All the other words are given a label O. The task here is to
assign each word with a label from the set {B, I,O}.

Chunking: Shallow parsing or chunking identifies constituents in a sentence
such as noun phrase, verb phrase etc. Here, each word in a sentence is labeled
as belonging to verb phrase, noun phrase etc. In the Chunking dataset, words
are assigned a label from a set of size 14.

Segmentation: Segmentation is the process of finding meaningful segments in
a text such as words, sentences etc. We consider a word segmentation problem
where the words are identified from a Chinese sentence. The Segmentation data
set assigns each unit in the sentence a label denoting whether it is beginning of
a word (B) or inside a word (I). The task is to assign either of these two labels
to each unit in a sentence.

Japanese NE: We need to perform Named Entity Recognition (NER) where
the task is to identify whether the words in a sentence denote a named entity
such as person, place, time etc. We use the JapaneseNE dataset where the
Japanese words are assigned one of 17 different named entities.

In all these data sets except Segmentation, a sentence is considered as an
input and words in the sentence as input components. In Segmentation, every
alphabet is considered as an input component. The features for each input com-
ponent are extracted using the template files provided in the CRF++ package.
The properties of all the data sets are summarized in Table 1. It mentions the
number of sentences (N) used for training and testing. The effective sample size
(NL) for the GPSL models is obtained by multiplying this quantity by average
sentence length which increases the data size by an order of magnitude.

We compare the performance of the proposed approach with popular
sequence labeling approaches, structural SVM (SSVM) [2]2, conditional random

1 Available at http://crfpp.googlecode.com/svn/trunk/doc/index.html.
2 Code available at http://drona.csa.iisc.ernet.in/∼shirish/structsvm sdm.html.

http://crfpp.googlecode.com/svn/trunk/doc/index.html
http://drona.csa.iisc.ernet.in/~shirish/structsvm_sdm.html

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 227

field (CRF) [5]3, and GPstruct [7]4. All the models used a linear kernel. GPstruct
experiments are run for 100000 elliptical slice sampling steps. The performance
is measured in terms of average Hamming loss over all the test data points. The
Hamming loss between the actual test output y∗ and the predicted test output
ŷ∗ is given by Loss(y∗, ŷ∗) =

∑L
l=1 I(y∗l �= ŷ∗l), where I(·) is the indicator func-

tion. Table 1 compares the performance (percentage of the average Hamming
loss) of various approaches on the four sequence labeling problems. The GPSL
models, SSVM, CRF and GPstruct are run over 10 independent partitions of
the data set5 and a mean of the Hamming loss over all the partitions along with
the standard deviation are reported in Table 1.

Table 1. Properties of the sequence labeling data sets and a comparison of the perfor-
mance of various models on these data sets. The approaches GPSL1, GPSL2, GPSL4,
SSVM, CRF and GPstruct are compared using average Hamming loss (in percent-
age). The numbers in bold face style indicate the best results among these approaches.
‘�’ and ‘†’ denote if the performance of a method is significantly different from the
best performing method and GPstruct repectively, according to paired t-test with 5 %
significance level.

Base NP Chunking Segmentation Japanese NE

#labels 3 14 2 17

#features 6438 29764 1386 102,799

training/ 150/150 50/50 20/16 50/50

test sentences

GPSL1 5.73±0.98� 13.02±1.87� 23.45 ± 2.96 8.26±2.63�

GPSL2 5.55±0.92� 12.69±1.69� 23.51±2.93 7.86±2.45 �

GPSL4 5.54±0.94� 12.70±1.79� 23.53±2.85 7.82±2.56 �

CRF 5.21±0.84† 11.76±1.73�† 24.10±3.49�† 7.76±2.80 �

SSVM 5.19 ± 0.91 † 10.71 ± 1.49 † 23.46±3.45 6.17 ± 2.60 †
GPstruct 5.66±0.93� 12.56±1.82� 23.55±2.90 7.79±2.92 �

The reported results show that the GPSL models with multiple dependencies
performed better than GPstruct on BaseNP and Segmentation. In the other
two data sets, GPSL models came close to GPstruct. We find that increasing the
number of dependencies helped to improve the performance in general except
for the Segmentation data set. This is due to the difference in nature of the
sequence labeling task involved in segmentation. For other data sets, the GPSL
model which considered both the previous and next label (GPSL2) gave a better
performance. The performance of the GPSL model which considered the previous
3 Code available at http://leon.bottou.org/projects/sgd#stochastic gradient descent

version 2.
4 Code available at https://github.com/sebastien-bratieres/pygpstruct.
5 The train and test set partitions are different from those used by [7].

http://leon.bottou.org/projects/sgd#stochastic_gradient_descent_version_2
http://leon.bottou.org/projects/sgd#stochastic_gradient_descent_version_2
https://github.com/sebastien-bratieres/pygpstruct

228 P.K. Srijith et al.

and the next 2 labels (GPSL4) improved only marginally or worsened compared
to GPSL2 on these data sets. We note that increasing the number of dependencies
beyond four did not bring any improvement in performance for the sequence
labeling data sets that we have considered. Overall, the performance of the SSVM
is found to be better than other approaches in these sequence labeling data sets.
However, GPSL models have the advantage of being Bayesian and can provide
a confidence over label predictions which is useful for many NLP tasks.

6.1 Runtime performance of the GPSL models

The proposed GPSL models are implemented in Matlab. The GPSL Matlab pro-
grams are run on a 3.2 GHz Intel processor with 4 GB of shared main memory
under Linux. The SSVM approach is implemented in C, the CRF approach is
coded in C++ and the GPStruct approach is in Python. Since the implemen-
tation languages differ, it is unfair to make a runtime comparison of various
approaches. Table 2 compares the average runtime (in seconds) for training vari-
ous GPSL models and GPstruct on the sequence labeling data sets. We find that
the GPSL models are an order of magnitude faster than GPStruct. We also find
that increasing the dependencies resulted in only a slight increase in runtime.

Table 2. Comparison of average running time (seconds) of various GPSL models and
GPstruct

Data GPSL1 GPSL2 GPSL4 GPstruct

Segmentation 17.13 19.64 22.83 3.82e+03

Chunking 1.09e+03 1.35e+03 1.71e+03 4.56e+04

Base NP 6.01e+03 6.69e+03 7.25e+03 7.54e+04

Japanese NE 1.24e+03 1.56e+03 1.93e+03 4.92e+04

6.2 Experiments with the Prediction algorithm

We conducted experiments to study the performance of Algorithm2 used to
make prediction. The algorithm is compared with the commonly used Viterbi
algorithm [20] for the sequence labeling task. Viterbi algorithm consists of a for-
ward phase which calculates the best value attained at the end of the sequence
and a backward phase which finds the sequence of labels that lead to it. It is
useful only for the setting where one considers a dependency with the previ-
ous label. Therefore, we study how the performance of the GPSL1 model differs
when Viterbi algorithm is used for prediction instead of the proposed algorithm.
We consider an implementation of the Viterbi algorithm provided by the UGM
toolkit [22]. Table 3 compares the predictive and runtime performance of the two
algorithms. We observe that Algorithm 2 gave a better predictive and runtime
performance than the Viterbi algorithm. The predictive performance of Algo-
rithm2 is significantly better than Viterbi on Segmentation, Chunking and

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 229

Table 3. Comparison of the prediction algorithms using GPSL1 model

average Hamming loss paired t-test average runtime (seconds) average iterations

Data Algorithm2 Viterbi t-value Algorithm2 Viterbi Algorithm2

Segmentation 23.45 24.26 3.8183 0.1227 0.0856 5

Chunking 13.02 13.69 3.6421 0.2491 0.2628 5

Base NP 5.73 5.75 0.3162 0.5207 0.5338 4

Japanese NE 8.26 8.84 2.475 0.3661 0.5653 3

JapaneseNE. The t-values calculated using paired t-test on these data sets are
found to be greater than the critical value of 2.262 for a level of significance 0.05
and 9 degrees of freedom. We also observed that Algorithm 2 converged in 3–5
iterations on an average.

6.3 Experiments with Missing Labels

In many sequence labeling tasks in NLP, the labels of some of the output
components might be missing in the training data set. This is common when

(a) Base NP (b) Chunking

(c) Segmentation (d) Japanese NE

Fig. 2. Variation in accuracy as the fraction of missing labels is varied from 0.05 to 0.5

230 P.K. Srijith et al.

crowd sourcing techniques are employed to obtain the labels. Sequence labeling
approaches such as SSVM and CRF are not readily applicable to data sets with
missing labels. GPSL models are useful to learn from the data sets with missing
labels due to their ability to capture larger dependencies. We learn the GPSL
models from the sequence labeling data sets with some fraction of the labels
missing. We vary the fraction of missing labels and study how the performance
of our model varies with respect to missing labels. Figure 2 provides the varia-
tion in performance of various GPSL models as we vary the fraction of missing
labels. The performance is measured in terms of accuracy which is obtained by
subtracting the average Hamming loss from 1. We find that the performance
of the GPSL models does not significantly degrade as the fraction of the miss-
ing labels increases. Figure 2 shows that GPSL4 which uses the previous and
the next 2 labels provides a better performance than the other GPSL models.
GPSL4 learns a better model by considering a larger neighborhood information
and is useful to handle data sets with missing labels.

7 Conclusion

We proposed a novel Gaussian Process approach to perform sequence labeling
based on pseudo-likelihood approximation. The use of pseudo-likelihood enabled
the model to capture multiple dependencies without becoming computationally
intractable. The approach used a faster inference scheme based on variational
inference. We also proposed an approach to perform prediction which makes
use of the information from the neighboring labels. The proposed approach is
useful for a wide range of sequence labeling problems arising in natural lan-
guage processing. Experimental results showed that GPSL models, which cap-
ture multiple dependencies, are useful in sequence labeling problems. The ability
to capture multiple dependencies makes them effective in handling data sets with
missing labels.

References

1. Altun, Y., Hofmann, T., Smola, A.J.: Gaussian process classification for segmenting
and annotating sequences. In: ICML (2004)

2. Balamurugan, P., Shevade, S., Sundararajan, S., Keerthi, S.: A Sequential dual
method for structural SVMs. In: SDM, pp. 223–234 (2011)

3. Bertsekas, D.P.: Nonlinear programming. Athena Sci. (1999)
4. Besag, J.: Statistical analysis of non-lattice data. Statistician 24, 179–195 (1975)
5. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:

COMPSTAT (2010)
6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,

New York (2004)
7. Bratieres, S., Quadrianto, N., Ghahramani, Z.: Bayesian structured prediction

using gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. (2014)
8. Bratieres, S., Quadrianto, N., Nowozin, S., Ghahramani, Z.: Scalable gaussian

process structured prediction for grid factor graph applications. In: ICML (2014)

Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 231

9. Chai, K.M.A.: Variational multinomial logit gaussian process. J. Mach. Learn. Res.
13, 1745–1808 (2012)

10. Girolami, M., Rogers, S.: Variational bayesian multinomial probit regression with
gaussian process priors. Neural Comput. 18(8), 1790–1817 (2006)

11. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Depen-
dency networks for inference, collaborative filtering, and data visualization. J.
Mach. Learn. Res. 1, 49–75 (2001)

12. Khan, M.E., Mohamed, S., Murphy, K.P.: Fast bayesian inference for non-conjugate
gaussian process regression. In: NIPS, pp. 3149–3157 (2012)

13. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289
(2001)

14. Lafferty, J.D., Zhu, X., Liu, Y.: Kernel conditional random fields: representation
and clique selection. In: ICML (2004)

15. Li, Q., Wang, J., Wipf, D.P., Tu, Z.: Fixed-point model for structured labeling. In:
ICML, pp. 214–221 (2013)

16. Murphy, K.P.: Machine learning: A Probabilistic Perspective. The MIT Press,
Cambridge (2012)

17. Noah, A.S.: Linguistic Structure Prediction. Morgan and Claypool (2011)
18. Opper, M., Archambeau, C.: The variational gaussian approximation revisited.

Neural Comput. 21, 786–792 (2009)
19. Qi, Y., Szummer, M., Minka, T.P.: Bayesian conditional random fields. In: Pro-

ceedings of the AISTATS (2005)
20. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in

speech recognition. Proc. IEEE 77(2), 257–286 (1989)
21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). MIT Press, Cambridge (2005)
22. Schmidt., M.: UGM: A Matlab toolbox for probabilistic undirected graphical mod-

els (2007). http://www.cs.ubc.ca/schmidtm/Software/UGM.html
23. Sutton, C., McCallum, A.: Piecewise pseudolikelihood for efficient training of con-

ditional random fields. In: ICML, pp. 863–870 (2007)
24. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech

tagging with a cyclic dependency network. In: HLT-NAACL, pp. 252–259 (2003)
25. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods

for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–
1484 (2005)

26. Williams, C.K.I., Barber, D.: Bayesian classification with gaussian processes. IEEE
Trans. Pattern Anal. Mach. Intell. 20(12), 1342–1351 (1998)

http://www.cs.ubc.ca/schmidtm/Software/UGM.html

	Gaussian Process Pseudo-Likelihood Models for Sequence Labeling
	1 Introduction
	2 Background
	3 Gaussian Process Sequence Labeling
	4 Variational Inference
	5 Prediction
	6 Experimental Results
	6.1 Runtime performance of the GPSL models
	6.2 Experiments with the Prediction algorithm
	6.3 Experiments with Missing Labels

	7 Conclusion
	References

