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Preface

These are the proceedings of the 15th European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2016),
held in Riva del Garda, Italy, during September 19–23, 2016. This event is the premier
European Machine Learning and Data Mining conference and builds upon a very
successful series of 26 ECML and 19 PKDD conferences, which have been jointly
organized for the past 15 years.

The response to our call for paper was very good. We received 353 papers for the
main conference track, of which 100 were accepted, yielding an acceptance rate of
about 28 %.

Traditionally, ECML PKDD provides an extensive technical program that consists
of several focused tracks:

– the conference track, featuring regular conference papers, published in these
proceedings;

– the journal track, featuring papers that satisfy the quality criteria of journal papers
and at the same time lend themselves to conference talks (these papers are published
separately in the journals Machine Learning and Knowledge Discovery and Data
Mining);

– the industrial track, aiming to bring together participants from academia, industry,
government, and NGOs (non-governmental organizations) in a venue that high-
lights practical and real-world studies of machine learning, knowledge discovery,
and data mining.

– the demo track, presenting innovative prototype implementations or mature systems
that use machine learning techniques and knowledge discovery processes in a real
setting;

– the nectar track, offering conference attendees a compact overview of recent sci-
entific advances at the frontier of machine learning and data mining with other
disciplines, as published in related conferences and journals.

Moreover, the conference program included 3 discovery challenges, 13 workshops,
and 10 tutorial presentations. The discovery challenges were organized by Elio Masciari
and Alessandro Moschitti. Fabrizio Costa, Matthijs van Leeuwen, and Albrecht
Zimmermann had the responsibility of selecting workshop and tutorial proposals. The
PhD Forum, where junior PhD students exchange ideas, experiences, and get advise
from senior researchers, was organized by Leman Akoglu and Tijl De Bie.

The program included six plenary keynotes by invited speakers Susan Athey
(Stanford Graduate School of Business), Zoubin Ghahramani (University of Cambridge
and Alan Turing Institute), Thore Graepel (Google DeepMind and University College
London), Ravi Kumar (Google), Rasmus Pagh (IT University of Copenhagen), and
Alex “Sandy” Pentland (MIT).



Putting together the program of this conference would have been impossible without
the help of a large and supportive team. Our thirty Area Chairs nominated reviewers,
moderated the discussion among them to find a consensus over each paper, and made a
final accept/reject decision. A total of 315 reviewers (listed in this book) helped to
select papers. Two best student papers were selected by Toon Calders and Hendrik
Blockeel. The associated awards were sponsored by Springer and the journals Machine
Learning and Data Mining and Knowledge Discovery.

For the fourth time, the conference used a double submission model: next to the
regular conference tracks, papers submitted to the Springer journals Machine Learning
(MACH) and Data Mining and Knowledge Discovery (DAMI) were considered for
presentation at the conference. These papers were submitted to the ECML PKDD 2016
special issue of the respective journals, and underwent the normal editorial process
of these journals. Those papers accepted for one of these journals were assigned a
presentation slot at the ECML PKDD 2016 conference. A total of 120 original
manuscripts were submitted to the journal track during this year. Some of these papers
are still being refereed. Of the fully refereed papers, 8 were accepted in DAMI and 10
in MACH, together with 10 papers from last year’s call, which were also scheduled for
presentation at this conference.

There were two major innovations at this year’s conference. First, we decided to
have a full day of plenary presentation on September 21st, while the usual four parallel
session tracks were run on September 20th and 22nd. These plenary oral presentations
were selected by the Program and Journal Track Co-chairs from the pool of all accepted
papers according to criteria such as: (1) novelty and significance of the results and their
expected impact; (2) breadth of interest for both machine learners and data miners. It is
our belief that this will strengthen the synergy between the ML and the DM
sub-communities, allowing papers of general interest for both to be presented to the
whole audience.

The second major difference is the adoption of the practices of Reproducible
Research (RR). Authors were encouraged to adhere to such practices by making
available data and software tools for reproducing the results reported in their papers. In
total, 29 papers with accompanying software and/or data are flagged as RR-papers on
the conference website http://ecmlpkdd2016.org/, which provides links to such addi-
tional material (links are also available within the paper bodies in these proceedings).

Part I and Part II of the proceedings of the ECML PKDD 2016 conference contain
the full papers of the contributions presented in the scientific track and the abstracts
of the scientific plenary talks. Part III of the proceedings of the ECML PKDD 2016
conference contains the full papers of the contributions presented in the industrial track,
short papers describing the demonstrations, the nectar papers, and the abstracts of the
industrial plenary talks. First of all, we would like to express our gratitude to the
general chairs of the conference, Fosca Giannotti and Andrea Passerini, as well as to all
members of the Organizing Committee, for managing this event in a very competent
and professional way. In particular, we thank the demo, workshop and tutorial,
industrial, and nectar track chairs. Special thanks go to the proceedings chairs, Marco
Lippi and Stefano Ferilli, for the hard work of putting these proceedings together. We
thank the PhD Forum organizers, the Discovery Challenge organizers, and all the
people involved in the conference, who worked hard for its success. We would like to
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thank Microsoft for allowing us to use their CMT software for conference management.
Last but not least, we would like to sincerely thank the authors for submitting their
work to the conference and the reviewers and area chairs for their tremendous effort in
guaranteeing the quality of the reviewing process, thereby improving the quality
of these proceedings.

September 2016 Paolo Frasconi
Niels Landwehr
Giuseppe Manco

Jilles Vreeken
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Causal Inference and Machine Learning:
Estimating and Evaluating Policies

Susan Athey

Stanford Graduate School of Business

Abstract. In many contexts, a decision-making can choose to assign one of a
number of “treatments” to individuals. The treatments may be drugs, offers,
advertisements, algorithms, or government programs. One setting for evaluating
such treatments involves randomized controlled trials, for example A/B testing
platforms or clinical trials. In such settings, we show how to optimize supervised
machine learning methods for the problem of estimating heterogeneous treat-
ment effects, while preserving a key desiderata of randomized trials, which is
providing valid confidence intervals for estimates. We also discuss approaches
for estimating optimal policies and online learning. In environments with
observational (non-experimental) data, different methods are required to separate
correlation from causality. We show how supervised machine learning methods
can be adapted to this problem.

Bio. Susan Athey is The Economics of Technology Professor at Stanford Graduate
School of Business. She received her bachelor’s degree from Duke University and her
Ph.D. from Stanford, and she holds an honorary doctorate from Duke University. She
previously taught at the economics departments at MIT, Stanford and Harvard. In 2007,
Professor Athey received the John Bates Clark Medal, awarded by the American
Economic Association to “that American economist under the age of forty who is
adjudged to have made the most significant contribution to economic thought and
knowledge.” She was elected to the National Academy of Science in 2012 and to the
American Academy of Arts and Sciences in 2008. Professor Athey’s research focuses
on the economics of the internet, online advertising, the news media, marketplace
design, virtual currencies and the intersection of computer science, machine learning
and economics. She advises governments and businesses on marketplace design and
platform economics, notably serving since 2007 as a long-term consultant to Microsoft
Corporation in a variety of roles, including consulting chief economist.



Automating Machine Learning

Zoubin Ghahramani

University of Cambridge and Alan Turing Institute

Abstract. I will describe the “Automatic Statistician”1, a project which aims to
automate the exploratory analysis and modelling of data. Our approach starts by
defining a large space of related probabilistic models via a grammar over
models, and then uses Bayesian marginal likelihood computations to search over
this space for one or a few good models of the data. The aim is to find models
which have both good predictive performance, and are somewhat interpretable.
The Automatic Statistician generates a natural language summary of the anal-
ysis, producing a 10–15 page report with plots and tables describing the anal-
ysis. I will also link this to recent work we have been doing in the area of
Probabilistic Programming (including an new system in Julia) to automate
inference, and on the rational allocation of computational resources (and our
entry in the AutoML conference).

Bio. Zoubin Ghahramani FRS is Professor of Information Engineering at the University
of Cambridge, where he leads the Machine Learning Group, and the Cambridge
Liaison Director of the Alan Turing Institute, the UK’s national institute for Data
Science. He studied computer science and cognitive science at the University of
Pennsylvania, obtained his PhD from MIT in 1995, and was a postdoctoral fellow at
the University of Toronto. His academic career includes concurrent appointments as
one of the founding members of the Gatsby Computational Neuroscience Unit in
London, and as a faculty member of CMU’s Machine Learning Department for over 10
years. His current research interests include statistical machine learning, Bayesian
nonparametrics, scalable inference, probabilistic programming, and building an auto-
matic statistician. He has published over 250 research papers, and has held a number of
leadership roles as programme and general chair of the leading international confer-
ences in machine learning including: AISTATS (2005), ICML (2007, 2011), and NIPS
(2013, 2014). In 2015 he was elected a Fellow of the Royal Society.

1 http://www.automaticstatistician.com/.

http://www.automaticstatistician.com/


AlphaGo - Mastering the Game of Go
with Deep Neural Networks and Tree Search

Thore Graepel

Google DeepMind and University College London

Abstract. The game of Go has long been viewed as the most challenging of
classic games for artificial intelligence owing to its enormous search space and
the difficulty of evaluating board positions and moves. Here we introduce a new
approach to computer Go that uses ‘value networks’ to evaluate board positions
and ‘policy networks’ to select moves. These deep neural networks are trained
by a novel combination of supervised learning from human expert games, and
reinforcement learning from games of self-play. Using this search algorithm, our
program AlphaGo achieved a 99.8 % winning rate against other Go programs
and beat the human European Go champion Fan Hui by 5 games to 0, a feat
thought to be at least a decade away by Go and AI experts alike. Finally, in a
dramatic and widely publicised match, AlphaGo defeated Lee Sedol, the top
player of the past decade, 4 games to 1. In this talk, I will explain how AlphaGo
works, describe our process of evaluation and improvement, and discuss what
we can learn about computational intuition and creativity from the way AlphaGo
plays.

Bio. Thore Graepel is a research group lead at Google DeepMind and holds a part-time
position as Chair of Machine Learning at University College London. He studied
physics at the University of Hamburg, Imperial College London, and Technical
University of Berlin, where he also obtained his PhD in machine learning in 2001. He
spent time as a postdoctoral researcher at ETH Zurich and Royal Holloway College,
University of London, before joining Microsoft Research in Cambridge in 2003, where
he co-founded the Online Services and Advertising group. Major applications of
Thore’s work include Xbox Live’s TrueSkill system for ranking and matchmaking, the
AdPredictor framework for click-through rate prediction in Bing, and the Matchbox
recommender system which inspired the recommendation engine of Xbox Live Mar-
ketplace. More recently, Thore’s work on the predictability of private attributes from
digital records of human behaviour has been the subject of intense discussion among
privacy experts and the general public. Thore’s current research interests include
probabilistic graphical models and inference, reinforcement learning, games, and
multi-agent systems. He has published over one hundred peer-reviewed papers, is a
named co-inventor on dozens of patents, serves on the editorial boards of JMLR and
MLJ, and is a founding editor of the book series Machine Learning & Pattern
Recognition at Chapman & Hall/CRC. At DeepMind, Thore has returned to his original
passion of understanding and creating intelligence, and recently contributed to creating
AlphaGo, the first computer program to defeat a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.



Sequences, Choices, and Their Dynamics

Ravi Kumar

Google

Abstract. Sequences arise in many online and offline settings: urls to visit,
songs to listen to, videos to watch, restaurants to dine at, and so on.
User-generated sequences are tightly related to mechanisms of choice, where a
user must select one from a finite set of alternatives. In this talk, we will discuss
a class of problems arising from studying such sequences and the role discrete
choice theory plays in these problems. We will present modeling and algo-
rithmic approaches to some of these problems and illustrate them in the context
of large-scale data analysis.

Bio. Ravi Kumar has been a senior staff research scientist at Google since 2012. Prior to
this, he was a research staff member at the IBM Almaden Research Center and a
principal research scientist at Yahoo! Research. His research interests include Web
search and data mining, algorithms for massive data, and the theory of computation.



Dimensionality Reduction with Certainty

Rasmus Pagh

IT University of Copenhagen

Abstract. Tool such as Johnson-Lindenstrauss dimensionality reduction and
1-bit minwise hashing have been successfully used to transform problems
involving very high-dimensional real vectors into lower-dimensional equiva-
lents, at the cost of introducing a random distortion of distances/similarities
among vectors. While this can alleviate the computational cost associated with
high dimensionality, the effect on the outcome of the computation (compared to
working on the original vectors) can be hard to analyze and interpret. For
example, the behavior of a basic kNN classifier is easy to describe and interpret,
but if the algorithm is run on dimension-reduced vectors with distorted distances
it is much less transparent what is happening. The talk starts with an introduction
to randomized (data-independent) dimensionality reduction methods and gives
some example applications in machine learning. Based on recent work in the
theoretical computer science community we describe tools for dimension
reduction that give stronger guarantees on approximation, replacing probabilistic
bounds on distance/similarity with bounds that hold with certainty. For example,
we describe a “distance sensitive Bloom filter”: a succinct representation of
high-dimensional boolean vectors that can identify vectors within distance r with
certainty, while far vectors are only thought to be close with a small “false
positive” probability. We also discuss work towards a deterministic alternative to
random feature maps (i.e., dimension-reduced vectors from a high-dimensional
feature space), and settings in which a pair of dimension-reducing mappings
outperform single-mapping methods. While there are limits to what performance
can be achieved with certainty, such techniques may be part of the toolbox for
designing transparent and scalable machine learning and knowledge discovery
methods.

Bio. Rasmus Pagh graduated from Aarhus University in 2002, and is now a full
professor at the IT University of Copenhagen. His work is centered around efficient
algorithms for big data, with an emphasis on randomized techniques. His publications
span theoretical computer science, databases, information retrieval, knowledge dis-
covery, and parallel computing. His most well-known work is the cuckoo hashing
algorithm (2001), which has led to new developments in several fields. In 2014 he
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Abstract. Recurrent Neural Networks, or RNNs, are powerful mod-
els that achieve exceptional performance on a plethora pattern recog-
nition problems. However, the training of RNNs is a computationally
difficult task owing to the well-known “vanishing/exploding” gradient
problem. Algorithms proposed for training RNNs either exploit no (or
limited) curvature information and have cheap per-iteration complex-
ity, or attempt to gain significant curvature information at the cost of
increased per-iteration cost. The former set includes diagonally-scaled
first-order methods such as Adagrad and Adam, while the latter con-
sists of second-order algorithms like Hessian-Free Newton and K-FAC.
In this paper, we present adaQN, a stochastic quasi-Newton algorithm
for training RNNs. Our approach retains a low per-iteration cost while
allowing for non-diagonal scaling through a stochastic L-BFGS updating
scheme. The method uses a novel L-BFGS scaling initialization scheme
and is judicious in storing and retaining L-BFGS curvature pairs. We
present numerical experiments on two language modeling tasks and show
that adaQN is competitive with popular RNN training algorithms.

1 Introduction

Recurrent Neural Networks (RNNs) have emerged as one of the most powerful
tools for modeling sequences [6]. They are extensively used in a wide variety
of applications including language modeling, speech recognition, machine trans-
lation and computer vision [7,8,18,25]. RNNs are similar to the popular Feed-
Forward Networks (FFNs), but unlike FFNs, allow for cyclical connectivity in the
nodes. This enables them to have exceptional expressive ability, permitting them
to model highly complex sequences. This expressiveness, however, comes at the
cost of training difficulty, especially in the presence of long-term dependencies
[1,24]. This difficulty, commonly termed as the “vanishing/exploding” gradient
problem, arises due to the recursive nature of the network. Depending on the
eigenvalues of the hidden-to-hidden node connection matrix during the Back
Propagation Through Time (BPTT) algorithm, the errors either get recursively

c© Springer International Publishing AG 2016
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amplified or diminished making the training problem highly ill-conditioned. Con-
sequently, this issue precludes the use of methods which are unaware of the cur-
vature of the problem, such as Stochastic Gradient Descent (SGD), for RNN
training tasks.

Many attempts have been made to address the problem of training RNNs.
Some propose the use of alternate architectures; for e.g. Gated Recurrent Units
(GRUs) [4] and Long Short-Term Memory (LSTM) [9] models. These network
architectures do not suffer as severely from gradient-related problems, and hence,
it is possible to use simple and well-studied methods like SGD for training, thus
obviating the need for more sophisticated methods. Other efforts for alleviating
the problem of training RNNs have been centered around designing training
algorithms which incorporate curvature information in some form; see for e.g.
Hessian-Free Newton [14,17] and Nesterov Accelerated Gradient [21].

First-order methods such as Adagrad [5] and Adam [12], employ diag-
onal scaling of the gradients and consequently achieve invariance to diagonal
re-scaling of the gradients. These methods have low per-iteration cost and have
demonstrated excellent performance on a large number of deep learning tasks.
Second-order methods like Hessian-Free Newton [14] and K-FAC [16], allow for
non-diagonal-scaling of the gradients using highly expressive Hessian informa-
tion, but tend to either have higher per-iteration costs or require non-trivial
information about the structure of the graph. We defer the discussion of these
algorithms to the following section.

In this paper, we present adaQN, a novel (stochastic) quasi-Newton
algorithm for training RNNs. The algorithm attempts to reap the merits of both
first- and second-order methods by judiciously incorporating curvature infor-
mation while retaining a low per-iteration cost. Our algorithmic framework is
inspired by that of Stochastic Quasi-Newton (SQN) [3], which is designed for sto-
chastic convex problems. The proposed algorithm is designed to ensure practical
viability for solving RNN training problems.

The paper is organized as follows. We end the introduction by establishing
notation that will be used throughout the paper. In Sect. 2, we discuss popular
algorithms for training RNNs and also discuss stochastic quasi-Newton meth-
ods. In Sect. 3, we describe our proposed algorithm in detail and emphasize
its distinguishing features. We present numerical results on language modeling
tasks in Sect. 4. Finally, we discuss possible extensions of this work and present
concluding remarks in Sects. 5 and 6 respectively.

1.1 Notation

The problem of training RNNs can be stated as the following optimization
problem,

min
w∈Rn

f(w) =
1
m

m∑

i=1

fi(w). (1)
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Here, fi is the RNN training error corresponding to a data point denoted by index i.
We assume there are m data points. During each iteration, the algorithm sam-
ples data points Bk ⊆ {1, 2, · · · ,m}. The iterate at the kth iteration is denoted
by wk and the (stochastic) gradient computed on this mini-batch is denoted by
∇̂Bk

f(wk). In particular, the notation ∇̂Bj
f(wk) can be verbally stated as the gra-

dient computed at wk using the mini-batch used for gradient computation during
iteration j. For ease of notation, we may eliminate the subscript Bk whenever the
batch and the point of gradient evaluation correspond to the iterate index; in other
words, we use ∇̂f(wk) to mean ∇̂Bk

f(wk). Unless otherwise specified, Hk denotes
any positive-definitematrix and the step-length is denoted byαk. Lastly, we denote
the ith component of a vector v ∈ R

n by [v]i and use v2 to represent element-wise
square.

2 Related Work

In this section, we discuss several methods that have been proposed for training
RNNs. In its most general form, the update equation for these methods can be
expressed as

wk+1 = wk − αkHk(∇̂f(wk) + vkpk) (2)

where ∇̂f(wk) is a stochastic gradient computed using batch Bk; Hk is a positive-
definite matrix representing an approximation to the inverse-Hessian matrix; pk
is a search direction (usually wk − wk−1) associated with a momentum term;
and vk ≥ 0 is the relative scaling of the direction pk.

2.1 Stochastic First-Order Methods

Inarguably, the simplest stochastic first-order method is SGD whose updates
can be represented in the form of (2) by setting Hk = I and vk, pk = 0.
Momentum-based variants of SGD (such as Nesterov Accelerated Gradient [21])
use pk = (wk − wk−1) with a tuned value of vk. While SGD has demonstrated
superior performance on a multitude of neural network training problems [2], in
the specific case of RNN training, SGD has failed to stay competitive owing to
the “vanishing/exploding” gradients problem [1,24].

There are diagonally-scaled first-order algorithms that perform well on
the RNN training task. These algorithms can be interpreted as attempts to
devise second-order methods via inexpensive diagonal Hessian approximations.
Adagrad [5] allows for the independent scaling of each variable, thus partly
addressing the issues arising from ill-conditioning. Adagrad can be written in
the general updating form by setting vk, pk = 0 and by updating Hk (which is a
diagonal matrix) as

[Hk]ii =
1√∑k

j=0[∇̂f(wj)]2i + ε
,
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where ε > 0 is used to prevent numerical instability arising from dividing by
small quantities.

Another first-order stochastic method that is known to perform well in RNN
training is Adam [12]. The update, which is a combination of RMSProp [28]
and momentum, can be represented as follows in the form of (2),

pk =
k−1∑

j=0

β
(k−j−1)
1 (1 − β1)∇̂f(wj) − ∇̂f(wk), vk = β1

rk =
k∑

j=0

β
(k−j)
2 (1 − β2)∇̂f(wj)2, [Hk]ii =

1√
[rk]i + ε

.

The diagonal scaling of the gradient elements in Adagrad and Adam allows
for infrequently occurring features (with low gradient components) to have larger
step-sizes in order to be effectively learned, at a rate comparable to that of
frequently occurring features. This causes the iterate updates to be more stable
by controlling the effect of large (in magnitude) gradient components, to some
extent reducing the problem of “vanishing/exploding” gradients. However, these
methods are not completely immune to curvature problems. This is especially
true when the eigenvectors of ∇2f(wk) do not align with the co-ordinate axes.
In this case, the zig-zagging (or bouncing) behavior commonly observed for SGD
may occur even for methods like Adagrad and Adam.

2.2 Stochastic Second-Order Methods

Let us first consider the Hessian-Free Newton methods (HF) proposed in [14,17].
These methods can be represented in the form of (2) by setting Hk to be an
approximation to the inverse of the Hessian matrix (∇2f(wk)), as described
below, with the circumstantial use of momentum to improve convergence. HF is
a second-order optimization method that has two major ingredients: (i) it implic-
itly creates and solves quadratic models using matrix-vector products with the
Gauss-Newton matrix obtained using the “Pearlmutter trick” and (ii) it uses
the Conjugate Gradient method (CG) for solving the sub-problems inexactly.
Recently, KFAC [16], a method that computes a second-order step by construct-
ing an invertible approximation of a neural networks’ Fisher information matrix
in an online fashion was proposed. The authors claim that the increased quality
of the step offsets the increase in the per-iteration cost of the algorithm.

Our algorithm adaQN belongs to the class of stochastic quasi-Newton meth-
ods which use a non-diagonal scaling of the gradient, while retaining low per-
iteration cost. We begin by briefly surveying past work in this class of methods.

2.3 Stochastic Quasi-Newton Methods

Recently, several stochastic quasi-Newton algorithms have been developed for
large-scale machine learning problems: oLBFGS [20,26], RES [19], SDBFGS [29]
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and SQN [3]. These methods can be represented in the form of (2) by setting
vk, pk = 0 and using a quasi-Newton approximation for the matrix Hk. The
methods enumerated above differ in three major aspects: (i) the update rule for
the curvature pairs used in the computation of the quasi-Newton matrix, (ii) the
frequency of updating, and (iii) the applicability to non-convex problems. With
the exception of SDBFGS, all aforementioned methods have been designed to
solve convex optimization problems. In all these methods, careful attention must
be taken to monitor the quality of the curvature information that is used.

The RES and SDBFGS algorithms control the quality of the steps by modi-
fying the BFGS update rule [22]. Specifically, the update equations take on the
following form,

sk = wk+1 − wk, (3)

yk = ∇̂Bk
f(wk+1) − ∇̂Bk

f(wk) − δsk, (4)

H−1
k+1 = Bk+1 = Bk +

yT
k yk

yT
k sk

− Bksks
T
k Bk

sTk Bksk
+ δI. (5)

This ensures that the Hessian approximations are uniformly bounded away from
singularity, thus preventing the steps from becoming arbitrarily large. Further, in
these methods, the line-search is replaced by a decaying step-size rule. Note that
at the kth iteration, the gradients used during updates (4) are both evaluated on
Bk. oLBFGS, is similar to the above methods except no δ-modification is used.
In the equations above, Bk and Hk denote approximations to the Hessian and
inverse-Hessian matrices respectively.

Finally, in [3], the authors propose a novel quasi-Newton framework, SQN, in
which they recommend the decoupling of the stochastic gradient calculation from
the curvature estimate. The BFGS matrix is updated once every L iterations as
opposed to every iteration, which is in contrast to other methods described
above. The authors prescribe the following curvature pair updates,

st = w̄t − w̄t−1, where w̄t =
1
L

tL∑

i=(t−1)L

wi, (6)

yt = ∇̂2
Ht

f(w̄t)st, (7)

where t is the curvature pair update counter, L is the update frequency (also
called the aggregation length) and Ht is a mini-batch used for computing the
sub-sampled Hessian matrix. The iterate difference, s, is based on the average
of the iterates over the last 2L iterations, intuitively allowing for more stable
approximations. On the other hand, the gradient differences, y, are not computed
using gradients at all, rather they are computed using a Hessian-vector product
representing the approximate curvature along the direction s.

The structure of the curvature pair updates proposed in SQN has several
appealing features. Firstly, updating curvature information, and thus the Hessian
approximation, every L iterations (where L is typically between 2 and 20) consid-
erably reduces the computational cost. Additionally, more computational effort



6 N.S. Keskar and A.S. Berahas

can be expended for the curvature computation since this cost is amortized over
L iterations. Further, as explained in [3], the use of the Hessian-vector product in
lieu of gradient differences allows for a more robust estimation of the curvature,
especially in cases when ‖s‖ is small and the gradients are noisy.

The SQN algorithm was designed specifically for convex optimization prob-
lems arising in machine learning, and its extension to RNN training is not trivial.
In the following section, we describe adaQN, our proposed algorithm, which uses
the algorithmic framework of SQN as a foundation. More specifically, it retains
the ability to decouple the iterate and update cycles along with the associated
benefit of investing more effort in gaining curvature information.

3 adaQN

In this section, we describe the proposed algorithm in detail. Specifically, we
address the key ingredients of the algorithm, including (i) the initial L-BFGS
scaling, (ii) step quality control, (iii) the choice of Hessian matrix for curva-
ture pair computation, and (iv) the suggested choice of hyper-parameters. The
pseudo-code for adaQN is given in Algorithm 1.

We emphasize that the storage of (∇̂f(wk)∇̂f(wk)T ) in Step 6 is for ease
of notation; in practice it is sufficient to store ∇̂f(wk) and compute y in
Step 18 without explicitly constructing the matrix. Also, the search direction
pk = −Hk∇̂fk is computed via the two-loop recursion using the available cur-
vature pairs (S, Y ), and thus the matrix Hk (the approximation to the inverse-
Hessian matrix) is never constructed. Further, in Algorithm 1, we specify a fixed
monitoring set M, a feature of the algorithm that was set for ease of exposition.
In practice, this set can be changed to allow for lower bias in the step acceptance
criterion.

3.1 Choice of H(0)
k for L-BFGS

Firstly, we discuss the most important ingredient of the proposed algorithm: the
initial scaling of the L-BFGS matrix. For L-BFGS, in both the deterministic and
stochastic settings, a matrix H

(0)
k must be provided, which is an estimate of the

scale of the problem. This choice is crucial since the relative scale of the step (in
each direction) is directly related to it. In deterministic optimization,

H
(0)
k =

sTk yk
yT
k yk

I (8)

is found to work well on a wide variety of applications, and is often prescribed
[22, Chapter 6]. Stochastic variants of L-BFGS, including oBFGS and SQN,
prescribe the use of this initialization (8). However, this is dissatisfying in the
context of RNN training for two reasons. Firstly, as mentioned in the previ-
ous sections, the issue of “vanishing/exploding” gradients makes the problems
highly ill-conditioned; using a scalar initialization of the L-BFGS matrix does not
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Algorithm 1. adaQN

Inputs: w0, L, α, sequence of batches Bk with |Bk| = b for all k, mL = 10, mF = 100,
ε = 10−4, γ = 1.01

1: Set t ← 0 and w̄o, ws = 0
2: Initialize accumulated Fisher Information matrix FIFO container F̃ of maximum

size mF and L-BFGS curvature pair containers S, Y of maximum size mL.
3: Randomly choose a mini-batch as monitoring set M
4: for k = 0, 1, 2, ... do
5: ws = ws + wk � Running sum of iterates for average computation
6: wk+1 = wk − αHk∇̂f(wk)� Compute adaQN updates using two-loop recursion
7: Store ∇̂f(wk)∇̂f(wk)T in F̃
8: if mod (k, L) = 0 then
9: w̄n = ws

L
� Compute average iterate

10: ws = 0 � Clear accumulated sum of iterates
11: if t > 0 then
12: if fM(w̄n) > γfM(w̄o) then � Check for step rejection
13: Clear L-BFGS memory and the accumulated Fisher Information

container F̃ .
14: wk = w̄o � Return to previous aggregated point
15: continue
16: end if
17: s = w̄n − w̄o � Compute curvature pair

18: y = 1

|F̃ | (
∑|F̃ |

i=1 F̃i · s) � Compute curvature pair

19: if sT y > ε · sT s then � Check for sufficient curvature
20: Store curvature pairs s and y in containers S and Y respectively
21: w̄o = w̄n

22: end if
23: else
24: w̄o = w̄n

25: end if
26: t ← t + 1
27: end if
28: end for

address this issue. Secondly, since s and y are noisy estimates of the true iterate
and gradient differences, the scaling suggested in (8) could introduce adversarial
scale to the problem, causing performance deterioration.

To counter these problems, we suggest an initialization of the inverse-Hessian
matrix based on accumulated gradient information. Specifically, we set

[H(0)
k ]ii =

1√∑k
j=0[∇̂f(wj)]2i + ε

,∀i = 1, ..., n. (9)

We direct the reader to [22, Chapter 7] for details on how the above initializa-
tion is used as part of the L-BFGS two-loop recursion. We emphasize that this
initialization is: (i) a diagonal matrix with non-constant diagonal entries, (ii)
has a cost comparable to (8), and (iii) is identical to the scaling matrix used by
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Adagrad at each iteration. This choice is motivated by our observation of Ada-
grad’s stable performance on many RNN learning tasks. By initializing L-BFGS
with an Adagrad-like scaling matrix, we impart a better scale in the L-BFGS
matrix, and also allow for implicit safeguarding of the proposed method. Indeed,
in iterations where no curvature pairs are stored, the adaQN and Adagrad
steps are identical in form.

3.2 Step Acceptance and Control

While curvature information can be used to improve convergence rates, noisy
or stale curvature information may in fact deteriorate performance [3]. SQN
attempts to prevent this problem by using large-batch Hessian-vector products
in (7). Other methods attempt to control the quality of the steps by modifying
the L-BFGS update rule to ensure that Hk is positive definite for all k. However,
we have found that these do not work well in practice. Instead, we control the
quality of the steps by judiciously choosing the curvature pairs used by L-BFGS.
We attempt to store curvature pairs during each cycle but skip the updating if the
calculated curvature is small; see [22, Chapter 6] for details regarding skipping
in quasi-Newton methods. Further, we flush the memory when the step quality
deteriorates, allowing for more reliable steps till the memory builds up again.

The proposed criterion (Line 12 of Algorithm 1) is an inexpensive heuristic
wherein the functions are evaluated on a monitoring set, and γ approximates the
effect of noise on the function evaluations. A step is rejected if the function value
of the new aggregated point is significantly worse (measured by γ) than the pre-
vious. In this case, we reset the memory of L-BFGS which allows the algorithm
to preclude the deteriorating effect of any stored curvature pairs. The algorithm
resumes to take Adagrad steps and build up the curvature estimate again. We
report that, as an alternative to the proposed criterion, a more sophisticated
criterion such as relative improvement,

fM(w̄n) − fM(w̄o)
fM(w̄o)

> γ̃ ∈ (0, 1)

delivered similar performance on our test problems.
In the case when the sufficient curvature condition (Line 19 of Algorithm1)

is not satisfied, the storage of the curvature pair is skipped. In deterministic
optimization, this problem is avoided by conducting a Wolfe line-search. If the
curvature information for a given step is inadequate, the line-search attempts to
look for points further along the search path. We extend this idea to the RNN
setting by not updating w̄o when this happens. This allows us to move further,
and possibly glean curvature information in subsequent update attempts. We
have experimentally found this safeguarding to be crucial for the robust per-
formance of adaQN. That being said, such rejection happens infrequently and
the average L-BFGS memory per epoch remains high for all of our reported
experiments; see Sect. 4.
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3.3 Choice of Curvature Information Matrix

As in SQN, the iterate difference s in our algorithm is computed using aggre-
gated iterates and the gradient difference y is computed through a matrix-vector
product; refer to Eqs. (6) and (7). The choice of curvature matrix for the compu-
tation of y must address the trade-off between obtaining informative curvature
information and the computational expense of its acquisition. Recent work sug-
gests that the Fisher Information matrix (FIM) yields a better estimate of the
curvature of the problem as compared to the true Hessian matrix (which is a
natural choice); see for e.g. [15,23].

Given a function f parametrized by a random variable X , the (true) FIM at
a point w is given by

F (w) = EX [∇fX (w)∇fX (w)T ].

Since the distribution for X is almost never known, the empirical Fisher Infor-
mation matrix (eFIM) is often used in practice. The eFIM can be expressed as
follows

F̂ (w) =
1

|H|
∑

i∈H
∇if(w)∇if(w)T , (10)

where H ⊆ {1, 2, · · · ,m}.
Notice from Eq. (10) that the eFIM is guaranteed to be positive semi-definite,

a property that does not hold for the true Hessian matrix. The use of the FIM
(or eFIM) in second-order methods allows for attractive theoretical and practical
properties. We exclude these results for brevity and refer the reader to [15] for
a detailed survey regarding this topic.

Given these observations and results, the use of the eFIM may seem like a rea-
sonable choice for the Hessian matrix approximation used in the computation of
yt (see Eq. (7)). However, the use of this matrix, even infrequently, increases the
amortized per-iteration cost as compared to state-of-the-art first-order stochastic
methods. Further, unlike second-order methods which rely on relatively accurate
curvature information to generate good steps, quasi-Newton methods are able to
generate high-quality steps even with crude curvature information [22]. In this
direction, we propose the use of a modified version of the empirical Fisher Infor-
mation matrix that uses historical values of stochastic gradients, which were
already computed as part of the step, thus reducing the computational cost con-
siderably. This reduction, comes at the expense of storage and potentially noisy
estimates due to stale gradient approximations. We call this approximation of
the eFIM the accumulated Fisher Information matrix (aFIM) and denote it by F̄ .
Given a memory budget of mF , the aFIM at the kth iteration is given by

F̄ (wk) =
1

∑k
j=k−mF+1 |Bj |

k∑

j=k−mF+1

∇Bj
f(wj)∇Bj

f(wj)T . (11)

For the purpose of our implementation, we maintain a finite-length FIFO
container F̃ for storing the stochastic gradients as they are computed. Whenever
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the algorithm enters lines 12–16, we reject the step, and the contents of F̃ along
with the L-BFGS memory are cleared. By clearing F̃ , we also allow for additional
safeguarding of future iterates against noisy gradients in the F̃ container that
may have contributed in the generation of the poor step.

3.4 Choice of Hyper-Parameters

adaQN has a set of hyper-parameters that require tuning for competitive per-
formance. Other than the step-size and batch-size, which needs to be tuned for
all aforementioned methods, the only hyper-parameter exposed to the user is L.
We prescribe L to be chosen from {2, 5, 10, 20}. We experimentally observed that
the performance was not highly sensitive to the choice of α and L. Often, L = 5
and the same step-length as used for Adagrad gave desirable performance.
The other hyper-parameters have intuitive default values which we have found
to work well for a variety of applications. Additional details about the offline
tuning costs of adaQN as compared to Adagrad and Adam can be found in
Sect. 4.

3.5 Cost

Given the nature of the proposed algorithm, a reasonable question is about the
per-iteration cost. Let us begin by first considering the per-iteration cost of other
popular methods. For simplicity, we assume that the cost of the gradient compu-
tation is O(n), which is a reasonable assumption in the context of deep learning.
SGD has one of the cheapest per-iteration costs, with the only significant expense
being the computation of the mini-batch stochastic gradient. Thus, SGD has a
per-iteration complexity of O(n). Adagrad and Adam also have the same per-
iteration complexity since the auxiliary operations only involve dot-products
and elementary vector operations. Further, these algorithms have O(1) space
complexity. On the other hand, second-order methods have higher per-iteration
complexity since each iteration requires an inexact solution of a linear system,
and possibly, storage of the pre-conditioning matrices.

The per-iteration time complexity of our algorithm consists of three compo-
nents: (i) the cost of gradient computation, (ii) the cost of the L-BFGS two-loop
recursion, and (iii) the amortized cost of computing the curvature pair. Thus,
the overall cost can be written as

O(n)︸ ︷︷ ︸
gradient computation

+ 4mLn︸ ︷︷ ︸
two-loop recursion

+ mFnL−1.︸ ︷︷ ︸
cost of computing curvature pair

(12)

Given the prescription of L ≈ 5, mF = 100 and mL = 10, the cost per-iteration
remains at O(n). The memory requirement of our algorithm is also O(n) since
we require the storage of up to mF + 2mL vectors of size n.

This result is similar to the one presented in [3]. The difference in the com-
plexity arises in the third term of (12) due to our choice of the accumulated
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Fisher Information matrix as opposed to using a sub-sampled Hessian approxi-
mation. It is not imperative for our algorithm to use aFIM for the computation of
yt (7). We can instead use the eFIM (10), which would allow for a lower memory
requirement (from (mF + mL)n to mLn) at the expense of added computation
during curvature pair estimation. However, the time complexity would remain
linear in n for either choice. As we mention in Sect. 3.3, by using the accumulated
Fisher Information matrix, we avoid the need for additional computation at the
expense of memory; a choice we have found to work well in practice.

4 Empirical Results

In this section, we present numerical evidence demonstrating the viability of the
proposed algorithm for training RNNs1. We also present meta-data regarding
the experiments which suggests that the performance difference between adaQN
and its competitors (Adagrad in particular) can be attributed primarily to the
incorporation of curvature.

4.1 Language Modeling

For benchmarking, we compared the performance of adaQN against Adagrad
and Adam on two language modeling (LM) tasks: character-level LM and word-
level LM. For the character-level LM task [10], we report results on two data
sets: The Tale of Two Cities (Dickens) and The Complete Works of Friedrich
Nietzsche (Nietzsche). The former has 792 k characters while the latter has 600 k.
We used the Penn-Tree data set for the word-level LM task [30]. This data set
consists of 929 k training words with 10 k words in its vocabulary.

For all tasks, we used an RNN with 5 recurrent layers. The input and output
layer sizes were determined by the vocabulary of the data set. The character-
level and word-level LMs were constructed with 100 and 400 nodes per layer
respectively. The weights were randomly initialized from N (0, 0.01). Unless oth-
erwise specified, the activation function used was tanh. The sequence length was
chosen to be 50 for both cases. For readability, we exclude other popular meth-
ods that did not consistently perform competitively. In particular, SGD (with or
without momentum) was not found to be competitive despite significant tuning.
For adaQN, Adagrad and Adam, all hyper-parameters were set using a grid-
search. In particular, step-sizes were tuned for all three methods. Adam needed
coarse-tuning for (β1, β2) in the vicinity of the suggested values. For adaQN,
the value of L was chosen from {2, 5, 10, 20}. The rest of the hyper-parameters
(mF ,mL, ε, γ) were set at their recommended values for all experiments (refer
to Algorithm 1). It can thus be seen that the offline tuning costs of adaQN are
comparable to those of Adagrad and Adam. We ran all experiments for 100
epochs and present the results (testing error) in Fig. 1.
1 A MATLAB implementation of all discussed stochastic quasi-Newton methods,

including adaQN, on an example logistic regression problem can be found in our
GitHub repository [11].
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Fig. 1. Numerical results on LM Tasks

It is clear from Fig. 1 that adaQN presents a non-trivial improvement over
both Adagrad and Adam on all tasks with tanh activation function. Specif-
ically, we emphasize the performance gain over Adagrad, the method which
adaQN is safeguarded by. On the character-level task with ReLU activation,
adaQN performed better than Adam but worse than Adagrad. We point out
that experiments with other (including larger) data sets yielded results of similar
nature.

4.2 Average L-BFGS Memory per Epoch

Given the safeguarded nature of our algorithm, a natural question regarding
the numerical results presented pertains to the effect of the safeguarding on the
performance of the algorithm. To answer this question, we report the average
L-BFGS memory per epoch in Fig. 2. This is computed by a running sum initial-
ized at 0 at the start of each new epoch. A value greater than 1 indicates that
at least one curvature pair was present in the memory (in expectation) during a
given epoch. Higher average values of L-BFGS memory suggest that more direc-
tions of curvature were successfully explored; thus, the safeguarding was less
necessary. Lower values, on the other hand, suggest that the curvature informa-
tion was either not informative (leading to skipping) or led to deterioration of
performance (leading to step rejection).

The word-level LM task with the ReLU activation function has interesting
outcomes. It can be seen from Fig. 1 that the performance of Adagrad is similar
to that of adaQN for the first 50 epochs but then Adagrad continues to make
progress while the performance of adaQN stagnates. During the same time, the
average L-BFGS memory drops significantly suggesting that safeguarding was
necessary and that, the curvature information was not informative enough and
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Fig. 2. Average L-BFGS memory per epoch

even caused deterioration in performance (evidenced by occasional increase in
the function value).

4.3 MNIST Classification from Pixel Sequence

A challenging toy problem for RNNs is that of image classification given pixel
sequences [13]. For this problem, the image pixels are presented sequentially
to the network one-at-a-time and the network must predict the corresponding
category. This long range dependency makes the RNN difficult to train. We
report results for the popular MNIST data set. For this experiment, we used
a setup similar to that of [13] with two modifications: we used tanh activation
function instead of ReLU and initialized all weights from N (0, 0.01) instead of
using their initialization trick. The results are reported in Fig. 3.

As can be seen from the Fig. 3, Adam and Adagrad struggle to make
progress and stagnate at an error value close to that of the initial point. On the
other hand, adaQN is able to significantly improve the error values, and also
achieves superior classification accuracy rates. Experiments on other toy prob-
lems with long range dependencies, such as the addition problem [9], yielded
similar results.

5 Discussion

The results presented in the previous section suggest that adaQN is competitive
with popular algorithms for training RNNs. However, adaQN is not restricted to
this class of problems. Indeed, preliminary results on other architectures (such as
Feed-Forward Networks) delivered promising performance. It may be possible to
further improve the performance of the algorithm by modifying the update rule
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Fig. 3. Numerical results on MNIST with sequence of pixels

and frequency. In this direction, we discuss the practicality of using momentum
in such an algorithm and possible heuristics to allow the algorithm to adapt the
cycle length L as opposed to tuning it to a constant value.

Recent work by [27] suggests superior performance of momentum methods
on a wide variety of learning tasks. These methods, with the right initialization,
have been shown to outperform sophisticated methods such as the Hessian-Free
Newton method. However, recent efforts suggest the use of second-order meth-
ods in conjunction with momentum [15,16]. In this case, one interpretation of
momentum is that of providing a pre-conditioner to the CG sub-solver. Signifi-
cant performance gains through the inclusion of momentum have been reported
when the gradients are reliable [15]. We hypothesize that performance gains can
be obtained through careful inclusion of momentum for methods like adaQN
as well. However, the design of such an algorithm, and the efficacy of using
momentum-like ideas is an open question for future research.

Lastly, we discuss the role of the aggregation cycle length L on the perfor-
mance of the algorithm. If L is chosen to be too large, the aggregation points
will be too far-apart possibly leading to incorrect curvature estimation. If L is
too small, then the iterates change insufficiently before an update attempt is
made leading to skipping of update pairs. Besides the issue of curvature quality,
the choice of L also has ramifications on the cost of the algorithm as discussed
in Sect. 3.5. Thus, a natural extension of adaQN is an algorithm where L can
be allowed to adapt during the course of the algorithm. L could be increased
or decreased depending on the quality of the estimated curvature, while being
bounded to ensure that the cost of updating is kept at a reasonable level. The
removal of this hyper-parameter will not only obviate the need for tuning, but
will also allow for a more robust performance.
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6 Conclusions

In this paper, we present a novel quasi-Newton method, adaQN, for train-
ing RNNs. The algorithm judiciously incorporates curvature information while
retaining a low per-iteration cost. The algorithm builds upon the framework pro-
posed in [3], which was designed for convex optimization problems. We discuss
the key ingredients of our algorithm, such as, the scaling of the L-BFGS matrices
using historical gradients, curvature pair updating and step acceptance criterion,
and, suggest the use of an accumulated Fisher Information matrix during the
computation of a curvature pair. We examine the per-iteration time and space
complexity of adaQN and show that it is of the same order of magnitude as
popular first-order methods. Finally, we present numerical results for two lan-
guage modeling tasks and demonstrate competitive performance of adaQN as
compared to popular algorithms used for training RNNs.
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Abstract. Brain networks characterize the temporal and/or spectral
connections between brain regions and are inherently represented by
multi-way arrays (tensors). In order to discover the underlying factors
driving such connections, we need to derive compact representations from
brain network data. Such representations should be discriminative so
as to facilitate the identification of subjects performing different cog-
nitive tasks or with different neurological disorders. In this paper, we
propose semiBAT, a novel semi-supervised Brain network Analysis app-
roach based on constrained Tensor factorization. semiBAT (1) leverages
unlabeled resting-state brain networks for task recognition, (2) explores
the temporal dimension to capture the progress, (3) incorporates classi-
fier learning procedure to introduce supervision from labeled data, and
(4) selects discriminative latent factors for different tasks. The Alter-
nating Direction Method of Multipliers (ADMM) framework is utilized
to solve the optimization objective. Experimental results on EEG brain
networks illustrate the superior performance of the proposed semiBAT

model on graph classification with a significant improvement 31.60 %
over plain vanilla tensor factorization. Moreover, the data-driven factors
can be readily visualized which should be informative for investigating
cognitive mechanisms. The software related to this paper is available at
https://www.cs.uic.edu/∼bcao1/code/semibat.zip.

Keywords: Brain network · Graph mining · Tensor factorization

1 Introduction

Brain networks (a.k.a, connectome [25]) obtained from neuroimaging data have
been commonly employed to study neuropsychiatric disorders [3,15,27,30]. Con-
nectivity patterns are usually embedded within the graph structures by a set
of vertices and edges where vertices correspond to regions of interest in the
brain and edges represent the connectivity strength or correlation between brain
regions. Considering the temporal and spectral domain, original brain networks
are typically represented in multi-way arrays (i.e., tensors) which make the con-
ventional vector-based classification algorithms inapplicable. Moreover, directly
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 17–32, 2016.
DOI: 10.1007/978-3-319-46128-1 2
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Fig. 1. The framework of tensor-based brain network analysis.

reshaping tensors into vectors would result in the curse of dimensionality, and
the number of brain network samples is usually small, thereby making it chal-
lenging to train an effective classifier in a high dimensional feature space with a
limited number of samples.

In order to apply conventional machine learning algorithms and train pattern
classifiers, it is preferable to first derive vector representations from the brain
network data. In general, researchers have proposed to extract two types of fea-
tures: (1) graph-theoretical measures [13,27] and (2) subgraph patterns [6,17].
However, the expressiveness of these features is limited to the predefined formu-
lations. To explore a larger space of potentially informative features to represent
brain networks, it motivates us to learn latent representations from the brain
network data. It is desirable to let the latent representations be discriminative
so that brain networks with different labels can easily be separated. Learning
such representations is a non-trivial task due to the following problems:

(P1) Although labeled brain network data for specific tasks or diseases are usu-
ally costly to obtain, brain networks under resting-state from healthy subjects
are recorded in many neuroimaging experiments. How can we leverage the
unlabeled data, i.e., resting-state brain networks, to facilitate classification?

(P2) Existing studies usually compute time-averaged brain networks before fur-
ther analysis [28] which may result in formidable information loss. How can
we directly fully utilize the temporal information in our model?

(P3) In order to obtain discriminative representations, we should incorporate
the classifier training procedure into the representation learning process for
leveraging the supervision information. How can we effectively fuse these two
procedures together?

(P4) Different classes (or tasks) are usually associated with different subsets of
the latent factors. How can we achieve feature selection in the latent space?

In this paper, we propose semiBAT, a semi-supervised Brain network Analy-
sis approach based on constrained Tensor factorization. The proposed framework
is illustrated in Fig. 1. The contributions of this work are fourfold:

– We leverage unlabeled resting-state brain networks together with labeled data
to collectively learn a latent space, which alleviates the problem that labeled
brain network data for specific tasks or diseases are usually very limited.

– We model brain networks through partially symmetric tensor factorization
which is suitable for inherently undirected graphs, e.g., EEG brain networks.
The temporal dimension is modeled as one of modes in the fourth-order tensor.
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– We blend representation learning and classifier training into a unified optimiza-
tion problem, which allows classifier parameters to interact with discriminative
latent factors by leveraging the supervision information.

– We incorporate the �2,1 norm to conduct feature selection in the latent space,
thereby identifying discriminative latent factors for different tasks.

2 Preliminaries

Table 1 lists some basic symbols that will be used throughout the paper. We
introduce the concept of tensors which are higher order arrays that generalize
the notions of vectors (the first-order tensors) and matrices (the second-order
tensors), whose elements are indexed by more than two indices. Each index
expresses a mode of the data and corresponds to a coordinate direction. The
number of variables in each mode indicates the dimensionality of a mode. The
order of a tensor is determined by the number of its modes. An mth-order tensor
can be represented as X = (xi1,··· ,im) ∈ R

I1×···×Im , where Ii is the dimension of
X along mode i. An overview of tensor notation and operators is given as follows
which will be used to formulate the problem.

Table 1. Overview of tensor notation and operators.

Notation Interpretation

a scalar

a vector

A matrix

X tensor, set or space

X(k) matricization of tensor X along mode k

∗ Hadamard product (elementwise product)

◦ tensor product (outer product)

×k mode-k product

⊗ Kronecker product

� Khatri-Rao product

‖·‖ norm of a vector, matrix or tensor

| · | cardinality of a set

Definition 1 (Tensor Product). The tensor product X ◦ Y of a tensor
X ∈ R

I1×···×Im and another tensor Y ∈ R
I′
1×···×I′

m′ is defined by (X ◦
Y)i1,...,im,i′

1,...,i′
m′ = xi1,...,imyi′

1,...,i′
m′ .

Tensor product is also referred to as outer product in some literature [9,29].
An mth-order tensor is a rank-one tensor if it can be defined as the tensor
product of m vectors.
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Definition 2 (Mode-k Product). The mode-k product X ×k A of a tensor
X ∈ R

I1×···×Im and a matrix A ∈ R
J×Ik is of size I1 × · · · × Ik−1 × J × Ik+1 ×

· · · × Im and is defined by (X ×k A)i1,...,ik−1,j,ik+1,...,im =
∑Ik

ik=1 xi1,...,imaj,ik .

Definition 3 (Kronecker Product). The Kronecker product of two matrices
A ∈ R

I×J ,B ∈ R
K×L is of size IK × JL and is defined by

A ⊗ B =

⎛

⎜⎝
a11B · · · a1JB
...

. . .
...

aI1B · · · aIJB

⎞

⎟⎠

Definition 4 (Khatri-Rao Product). The Khatri-Rao product of two matri-
ces A ∈ R

I×K ,B ∈ R
J×K is of size IJ × K and is defined by A � B =

(a1 ⊗ b1, · · · , aK ⊗ bK) where a1, · · · , aK , b1, · · · , bK are the columns of matrices
A and B, respectively.

Definition 5 (Partially Symmetric Tensor). A rank-one mth-order tensor
X ∈ R

I1×···×Im is partially symmetric if it is symmetric on modes i1, ..., ij ∈
{1, ...,m} and can be written as the tensor product of m vectors: X = x(1) ◦ · · · ◦
x(m) where x(i1) = · · · = x(ij).

Definition 6 (Mode-k Matricization). The mode-k matricization of a ten-
sor X ∈ R

I1×···×Im is denoted by X(k) and arranges the mode-k fibers to be
the columns of the resulting matrix. The dimension of X(k) is R

Ik×J , where
J = I1 · · · Ik−1Ik+1 · · · Im. Each tensor element (i1, · · · , im) maps to the matrix
element (ik, j): j = 1 +

∑m
p=1,p�=k(ip − 1)Jp with Jp =

∏p−1
q=1,q �=k Iq.

3 SEMIBAT Framework

3.1 Problem Formulation

Let D = {G1, · · · , Gn} denote a dynamic graph dataset of brain networks where
|D| = n is the number of graph objects. All graphs in the dataset share a given set
of vertices V which corresponds to a brain parcellation scheme. Suppose the brain
is parcellated via an atlas into |V | = m regions, and the temporal dimensionality
is t. A brain network Gi can be represented by a partially symmetric tensor Zi ∈
R

m×m×t. We assume that the first l graphs within D are labeled and Y ∈ R
l×c

is the class label matrix where c is the number of class labels. Y(i, j) = 1 if
Gi belongs to the j-th class, otherwise Y(i, j) = 0. For convenience, we also
denote the labeled graph dataset by Dl = {G1, · · · , Gl}, and the unlabeled
graph dataset as Du = {Gl+1, · · · , Gn}, D = Dl ∪ Du. In our experiments, brain
networks under emotion regulation tasks compose labeled graphs, while those
under resting-state compose unlabeled graphs.
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3.2 Tensor Modeling

We first address the problem (P1) discussed in Sect. 1 by stacking the brain
network dataset D of n graphs, i.e., {Zi}n

i=1, as a tensor X ∈ R
m×m×t×n.

Through joint tensor factorization, unlabeled graphs in Du could facilitate the
representation learning of labeled graphs in Dl by affecting latent factors.

+

X
A:,kA:,1

B:,1 B:,k

B:,kB:,1

Fig. 2. CP factorization. The fourth-order partially symmetric tensor X is approx-
imated by k rank-one tensors. The f -th factor tensor is the tensor product of four
vectors, i.e., B:,f ◦ B:,f ◦ T:,f ◦ A:,f . The temporal dimension is omitted in the plot.

Note that X is a fourth-order partially symmetric tensor (symmetric on the
first two modes) and it naturally models the temporal dimension discussed as
the problem (P2). We assume that X can be decomposed into k factors in the
following manner

X = C ×1 B ×2 B ×3 T ×4 A (1)

where B ∈ R
m×k is the factor matrix for vertices, T ∈ R

t×k is the factor
matrix for time points, A ∈ R

n×k is the factor matrix for graphs, and C ∈
R

k×···×k is a fourth-order identity tensor, i.e., C(i1, · · · , i4) = δ(i1 = · · · = i4).
Basically, Eq. (1) is a CANDECOMP/PARAFAC (CP) factorization [16] as
shown in Fig. 2. It is desirable to discover distinct latent factors to obtain more
concise and interpretable results, and thus we include orthogonality constraints
ATA = I.1

One of the targets is task recognition based on the brain network data. We
assume that there is a matrix of regression coefficients W ∈ R

k×c which assigns
graphs with labels based on the graph factor matrix A, i.e., Y = DAW where
D = [Il×l, 0l×(n−l)] ∈ R

l×n.
An intuitive idea is to first learn latent representations of brain networks and

then train a classifier on them in a serial two-step manner, which however would
make these two procedures independent with each other and fail to introduce
the supervision information to the representation learning process. Moreover,
the advantage is established in [5] of directly searching for classification-relevant
structure in the original data, rather than solving the supervised and unsuper-
vised problems independently. To address the problem (P3) discussed in Sect. 1,
1 We considered adding non-negativity constraints to enhance interpretability, but our

preliminary results showed that it would degrade performance.
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Fig. 3. Partially coupled matrix Y and tensor X . The temporal dimension is omitted
in the plot.

we propose to incorporate the classifier learning process (i.e., W) into the frame-
work of learning latent feature representations of graphs (i.e., A). In this manner,
the weight matrix W and the feature matrix A can interact with each other in
the same learning framework. Note that it is similar to coupled matrix and ten-
sor factorization [2], however X and Y are coupled only in part of the graph
mode, as shown in Fig. 3.

In summary, the proposed brain network analysis framework can be mathe-
matically formulated as solving the following optimization problem

min
B,T,A,W

‖X − C ×1 B ×2 B ×3 T ×4 A‖2F︸ ︷︷ ︸
factorization error

+α ‖DAW − Y‖2F︸ ︷︷ ︸
classification loss

+λ ‖WT‖2,1︸ ︷︷ ︸
regularization

s.t. ATA = I︸ ︷︷ ︸
orthogonality

(2)

where ‖WT‖2,1 is the sparsity-promoting regularization term that controls the
complexity of W and has the effects of feature selection thereby addressing the
problem (P4), and α, λ are positive parameters which control contributions of
classification loss and regularization, respectively.

3.3 Optimization Framework

The model parameters that have to be estimated include B ∈ R
m×k, T ∈ R

t×k,
A ∈ R

n×k and W ∈ R
k×c. The optimization problem in Eq. (2) is non-convex

with respect to B, T, A and W together. There is no closed-form solution for
the problem. We now introduce an alternating scheme to solve the optimization
problem. The key idea is to optimize the objective with respect to one variable,
while fixing others, and decouple constraints using an Alternating Direction
Method of Multipliers (ADMM) scheme [4]. The algorithm will keep updating
the variables until convergence. First, we define the following notations

E = P � T � A ∈ R
(m∗t∗n)×k, F = B � T � A ∈ R

(m∗t∗n)×k

G = B � P � A ∈ R
(m∗m∗n)×k, H = B � P � T ∈ R

(m∗m∗t)×k
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where P ∈ R
m×k is the auxiliary variable.

Update the vertex factor matrix B while fixing T, A and W. Note that
X is a partially symmetric tensor and the objective function in Eq. (2) involves a
fourth-order term w.r.t. B which is difficult to optimize directly. To obviate this
problem, we use a variable substitution technique and minimize the following
objective function

min
B,P

‖X(1) − BET‖2F
s.t. P = B (3)

The augmented Lagrangian function for problem in Eq. (3) is

L(B,P) = ‖X(1) − BET‖2F +
υ

2
‖B − P − 1

υ
Υ‖2F (4)

where Υ ∈ R
m×k are Lagrange multipliers, υ is the penalty parameter which can

be adjusted efficiently according to [19].
By setting the derivative of Eq. (4) w.r.t. B to zero, we obtain the closed-form

solution

B = (2X(1)E + υP + Υ )(2ETE + υI)−1 (5)

To efficiently compute ETE, we consider the following property of the Khatri-
Rao product of two matrices [16]

ETE = (P � T � A)T(P � T � A) = PTP ∗ TTT ∗ ATA (6)

Similarly, the auxiliary matrix P can be optimized successively

P = (2X(2)F + υB − Υ )(2FTF + υI)−1 (7)

The Lagrange multipliers Υ can be updated using gradient ascent

Υ ← Υ + υ(P − B) (8)

Update the temporal factor matrix T while fixing B, A and W. Since
there is no constraint on T, we directly obtain the closed-form solution

T = (X(3)G)(GTG)−1 (9)

Update the graph factor matrix A while fixing B, T and W. By variable
substitution, we need to minimize the following objective function

min
A,Q

‖X(4) − AHT‖2F + α‖DAW − Y‖2F
s.t. QTA = I, Q = A (10)
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The augmented Lagrangian function for problem in Eq. (10) is

L(A,Q) = ‖X(4) − AHT‖2F + α‖DAW − Y‖2F
+

φ

2
‖A − Q − 1

φ
Φ‖2F +

ψ

2
‖I − QTA − 1

ψ
Ψ‖2F (11)

where Φ ∈ R
n×k and Ψ ∈ R

k×k are Lagrange multipliers, φ and ψ are penalty
parameters. By setting the derivative of Eq. (11) w.r.t. A to zero, we obtain the
Sylvester equation

XA + AY = Z

X = ψQQT

Y = 2HTH + 2αWWT + φI

Z = 2X(4)H + 2αDTYWT + (φ + ψ)Q + Φ − QΨ (12)

which can be solved by several numerical approaches, e.g., the lyap function in
MATLAB.

The closed-form update for Q is

Q = (ψAAT + φI)−1((φ + ψ)A − Φ − AΨT) (13)

The Lagrange multipliers Φ and Ψ can be updated by

Φ ← Φ + φ(Q − A), Ψ ← Ψ + ψ(QTA − I) (14)

Update the weight matrix W while fixing B, T and A. According to the
analysis of the �2,1 norm in [22], we need to minimize the following objective
function

L(W) = ‖DAW − Y‖2F + γ‖WT‖2,1 = ‖DAW − Y‖2F + γtr(WΩWT) (15)

where Ω ∈ R
c×c is an auxiliary diagonal matrix of the �2,1 norm. The diagonal

elements of Ω are computed as Ω(i, i) = 1

2
√

||W(:,i)||22+ε
where ε is a smoothing

term which is usually set to a small constant.
By setting the derivative of Eq. (15) w.r.t. W to zero, we obtain the Sylvester

equation

XW + WY = Z

X = 2ATDTDA

Y = γΩ

Z = 2ATDTY (16)

Based on the above analysis, we develop the optimization framework for brain
network analysis based on tensor factorization, as described in Algorithm 1. The
code has been made available at the author’s homepage2.
2 https://www.cs.uic.edu/∼bcao1/code/semibat.zip.

https://www.cs.uic.edu/~bcao1/code/semibat.zip
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Algorithm 1. semiBAT

Input: X ,Y, α, λ
Output: B,T,A,W
1: Set υmax = φmax = ψmax = 106, ρ = 1.15
2: Initialize B,T,A,W ∼ U(0, 1), Υ = Φ = Ψ = 0, υ = φ = ψ = 10−6

3: repeat
4: Update B and P by Eq. (5) and Eq. (7)
5: Update T by Eq. (9)
6: Update A and Q by Eq. (12) and Eq. (13)
7: Update W by Eq. (16)
8: Update Υ , Φ and Ψ by Eq. (8) and Eq. (14)
9: υ ← min(ρυ, υmax), φ ← min(ρφ, φmax), ψ ← min(ρψ, ψmax)

10: until convergence

3.4 Time Complexity

Each ADMM iteration consists of simple matrix operations. Therefore, rough
estimates of its computational complexity can be easily derived [18].

– The estimate for the update of B according to Eq. (5) is: (1) O(m2ntk) for
the computation of the term 2X(1)E + υP + Υ , (2) O((m + n + t)k2) for the
computation of the term 2ETE + υI due to Eq. (6), O(k3) for its Cholesky
decomposition, and (3) O(mk2) for the computation of the system solution
that gives the updated value of B. An analogous estimate can be derived for
the update of P and T which cost O(k3 + (m + n + t)k2 + m2ntk).

– Considering l < n and c is usually a small constant, the estimate for the update
of A according to Eq. (12) is: (1) O(n2k) for the computation of the term X,
(2) O((m+n+t)k2) for the computation of the term Y , (3) O(nk2+m2ntk+n2)
for the computation of the term Z, and (4) O(nk2 +n2k) for the computation
of the Sylvester equation [14].

– The estimate for the update of Q according to Eq. (13) is O(nk2 + n2k + n3).
– The estimate for the update of W according to Eq. (16) is O(nk2 + n2k).

Overall, the updates of all model parameters require O(k3 + (m + n + t)k2 +
(m2nt + n2)k + n3) arithmetic operations in total.

4 Experiments

4.1 Data Collections

Data were collected from 22 healthy participants at the University of Illinois at
Chicago (UIC) and from 11 healthy participants at the University of Michigan
(UMich), respectively. Each participant underwent an emotion regulation task,
while UIC participants further underwent an eight-minute resting-state record-
ing session which served as unlabeled data. During the ERT session, participants
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Fig. 4. Average brain networks during Neutral, Maintain and Reappraise. (Color
figure online)

were instructed to look at pictures displayed on the screen. Emotionally neu-
tral pictures (e.g., landscape, everyday objects) and negative pictures (e.g., car
crash, natural disasters) would appear on the screen for seven seconds in random
orders. One second after the picture on display, a corresponding auditory guide
would instruct the participant to look: viewing the neutral pictures; to maintain:
viewing the negative pictures as they normally would; or to reappraise: view-
ing the negative pictures while attempting to reduce their emotion response by
re-interpreting the meaning of pictures. All EEG data were recorded using the
Biosemi system equipped with an elastic cap with 34 scalp channels. A detailed
description about data acquisition and preprocessing is available in [28].

Overall, the dataset contains n = 121 EEG brain network samples that are
based upon m = 34 vertices and t = 130 time points. The target is to train
a classifier on the UIC source (66 training samples and 22 unlabeled samples)
to predict which task (Neutral, Maintain, or Reappraise) a subject in the
UMich source (33 test samples) is performing. The average brain networks are
shown in Fig. 4 where the x and y axes represent the vertex id, and the color of the
cell represents the strength of the connection between vertex x and y. Although
the group difference appears to be significant, it is non-trivial to identify the
tasks for each individual. It will be validated in the experiments that simply using
edge values as features to train a classifier could not lead to a good classification
performance.

4.2 Compared Methods

The compared methods are summarized as follows:

– semiBAT: the proposed semi-supervised brain network analysis approach
based on constrained tensor factorization.

– BAT-ridge: replacing the �2,1 norm in semiBAT with a regular ridge term.
– BAT-supv: a fully supervised variant of semiBAT without leveraging the

unlabeled data.
– BAT-unsupv: an unsupervised variant of semiBAT that first learns latent

representations of brain networks and then trains a classifier on them in a
serial two-step manner.

– BAT-3d: applying semiBAT on time-averaged brain networks.
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– ALS: plain vanilla tensor factorization using alternating least squares without
any constraint [8].

– Subgraph: a discriminative subgraph selection method for uncertain graph
classification [7,17].

– CC: extracting local clustering coefficients as features, one of the most popular
graph-theoretical measures that quantify the cliquishness of the vertices [24].

– Edge: using edge values as features by flatting adjacency matrices of brain
networks into vectors.

For a fair comparison, we used a regularized regression in semiBAT as the
base classifier for all the compared methods. The parameters α and λ were tuned
in the range of 2−10, ..., 210, the rank k was tuned in the range of 1, ..., 20. The
accuracy with the best parameter configuration was reported, as well as the
corresponding precision, recall and F1 score.

4.3 Classification Performance

Experimental results in Table 2 show the classification performance of compared
methods on distinguishing the three tasks. Edge serves as the basis for compar-
ison that treats a brain network as a collection of edges, thereby blinding the
connectivity structures of brain networks, which surprisingly outperforms CC.
Although clustering coefficients have been widely used to identify Alzheimer’s
disease [13,27], they appear to be less useful for distinguishing the emotion regu-
lation tasks. Subgraph achieves a better performance by extracting connectivity
patterns within brain networks.

Factorization models demonstrate themselves with significantly better accu-
racy. According to the low-rank assumption, a low-dimensional latent factor of
each graph is obtained by first stacking all the brain network data and then fac-
torizing the constructed tensor.ALS is a direct application of the alternating least

Table 2. Classification performance. N, M and R stand for tasks: Neutral, Maintain

and Reappraise, respectively. The best performance on each metric is in bold.

Methods Evaluation metrics

Accuracy Precision Recall F1

N M R N M R

semiBAT 0.758 0.833 0.889 0.667 0.833 0.667 0.833 0.765

BAT-ridge 0.697 0.909 0.700 0.600 0.833 0.583 0.750 0.706

BAT-supv 0.697 0.714 0.750 0.700 0.833 0.750 0.583 0.706

BAT-unsupv 0.576 0.818 0.600 0.467 0.750 0.500 0.583 0.588

BAT-3d 0.545 0.857 0.538 0.500 0.500 0.583 0.667 0.559

ALS 0.576 0.750 0.636 0.462 0.750 0.583 0.500 0.588

Subgraph 0.515 0.800 0.500 0.444 0.667 0.333 0.667 0.529

CC 0.364 0.286 0.667 0.391 0.167 0.333 0.750 0.382

Edge 0.455 0.462 0.700 0.385 0.500 0.583 0.417 0.471
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squares technique to the standard tensor factorization problem without incor-
porating any constraint or supervision. A significant improvement of 31.60% by
semiBAT over ALS can be observed, mainly due to the fact that the unsuper-
vised ALS approach fails to interact with the classifier training procedure which
shows comparable performance with BAT-unsupv. It indicates the importance
of addressing the problem (P3) discussed in Sect. 1. Moreover, semiBAT outper-
forms BAT-ridge thereby demonstrating that it is critical to apply feature selec-
tion in the tensor factorization framework (i.e., the problem (P4)). The advan-
tages of semiBAT over BAT-supv and BAT-3d are attributed to leveraging
unlabeled resting-state brain network data (i.e., the problem (P1)) and model-
ing the temporal dimension (i.e., the problem (P2)), respectively.
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4.4 Parameter Sensitivity

In all experiments, the regularization parameter λ was tuned for all the baselines,
the rank k was tuned for all the factorization models, and α was tuned for
semiBAT and its variants. We first investigate the influence of α and λ in
semiBAT and present the results in Fig. 5. It illustrates that neither a small
nor a large α or λ would be preferred, and in general, a good choice of α and
λ can be found in the range of 25, ..., 27 and 20, ..., 22, respectively. Moreover,
experimental results of factorization models with different k are shown in Fig. 6.
In general, a small k would rarely be a wise choice, and the best performance
can usually be achieved around k = 17.

4.5 Factor Analysis

We first investigate the factor matrices derived from semiBAT in a row-wise
manner. Note that initially with the best parameter configuration as reported
in the last section where k = 17, we obtain a 17-dimensional feature vector for
each brain network (i.e., A(i, :)) and each time point (i.e., T(i, :)). For visualiza-
tion we use t-SNE [21] to reduce them into a 2-dimensional space. In Fig. 7, we
show the distribution of brain networks, where there are 99 points representing
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Fig. 7. Embedding of brain networks. Fig. 8. Embedding of time points. (Color
figure online)

33 samples from each of the three tasks (22 resting-state samples are omit-
ted). A relatively clear separation between Neutral and Reappraise can be
observed, while Maintain usually mix with the other two conditions which
make the classification problem challenging. Figure 8 illustrates the distribution
of time points, where there are 130 points and each of them represents an exact
time point indicated by the color. Basically, adjacent time points are colored
similarly. From this figure, we can see that continuous time points form distinct
clusters and brain activities change over time, so it is important to capture the
temporal dimension explicitly.

Next, we visualize and interpret the factor matrices in a column-wise manner.
A k-factor semiBAT model extracts the factors B(:, i), T(:, i) and A(:, i), for
i = 1, ..., k, where these factors indicate the signatures of sources in vertex, time
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Fig. 9. The two largest factors in terms of magnitude derived from semiBAT model
for task recognition. (Color figure online)
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and graph domain, respectively. We show the two largest factors in terms of mag-
nitude in Fig. 9. In the left panel, points indicate the spatial layout of electrodes
(i.e., vertices) on the scalp, and factor values of electrodes are demonstrated on
a colormap using EEGLAB [10]. The middle panel shows the temporal changes
of the factor. The right panel shows the strength of 66 brain networks in the
training set performing different tasks where red, green and blue stand for Neu-

tral, Maintain and Reappraise, respectively. A domain expert can identify
the brain activity pattern in the left panel, the corresponding coefficients of time
points in the middle panel, and the graph difference on such pattern in the right
panel. We can see that different latent factors capture activity of different brain
regions. The first factor appears to highlight a quantitative anterior-posterior
gradient (maximum values of the first factor appear in the occipital lobe) that
is shared across all three conditions, thus may be related to visual processing,
while the second factor, which primarily differentiates neutral from maintain
and reappraisal, predominantly involves electrodes around the frontal-parietal
junction and thus may be related to the late positive potential [11,12].

5 Related Work

Tensor factorization has become an effective technique in many healthcare appli-
cations. For example, Acar et al. identify spatial, spectral and temporal signa-
tures of an epileptic seizure as well as an artifact through the application of ten-
sor models [1]. Davidson et al. propose a constrained alternating least squares
framework for network discovery of fMRI data [9]. Papalexakis et al. present a
scalable solution for the coupled matrix-tensor factorization problem, and find
latent variables that jointly explain both the brain activity and the behavioral
responses [23]. Wang et al. introduce knowledge guided tensor factorization for
computational phenotyping [26]. Ma et al. propose a spatio-temporal tensor ker-
nel approach for whole-brain fMRI image analysis [20]. However, these frame-
works are not directly applicable to partially symmetric tensor factorization or
further task recognition.

For graph classification on brain networks, literatures have been focused on
first deriving vector presentations from the brain network data which are then
fed into conventional pattern classifiers. In general, two types of features are usu-
ally extracted: (1) graph-theoretical measures and (2) subgraph patterns. Wee
et al. extract weighted local clustering coefficients of each brain region in relation
to other regions in brain networks to quantify the prevalence of clustered connec-
tivity around brain regions for diagnosis on Alzheimer’s disease [27]. In addition
to the local network property, Jie et al. use a topology-based graph kernel to mea-
sure the topological similarity between paired fMRI brain networks [13]. Kong et
al. propose a discriminative subgraph feature selection method based on dynamic
programming to compute the probability distribution of discrimination scores for
each subgraph pattern within a set of weighted graphs [17]. In contrast to focusing
on the graph view alone, Cao et al. introduce a subgraph mining algorithm using
side information guidance to find an optimal set of subgraph features for graph clas-
sification [6]. However, the expressiveness of these features is limited to the prede-
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fined formulations. It is critical to explore a larger space of potentially informative
features to represent brain networks through data-driven approaches.

6 Conclusion

This paper presents semiBAT, a novel semi-supervised brain network analy-
sis approach based on constrained tensor factorization. It leverages unlabeled
resting-state brain networks for task recognition, explores the temporal dimen-
sion to capture the progress, incorporates classifier learning procedure to intro-
duce supervision from labeled data, and selects discriminative latent factors for
different tasks. ADMM is used to solve the optimization problem. In the experi-
ments on EEG datasets, we demonstrate the superior performance of semiBAT

on graph classification tasks over the state-of-art methods.

Acknowledgement. This work is supported in part by NSF through grants
III-1526499.
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Abstract. In machine learning, hyperparameter optimization is a chal-
lenging but necessary task that is usually approached in a computation-
ally expensive manner such as grid-search. Out of this reason, surrogate
based black-box optimization techniques such as sequential model-based
optimization have been proposed which allow for a faster hyperparameter
optimization. Recent research proposes to also integrate hyperparameter
performances on past data sets to allow for a faster and more efficient
hyperparameter optimization.

In this paper, we use products of Gaussian process experts as surrogate
models for hyperparameter optimization. Naturally, Gaussian processes
are a decent choice as they offer good prediction accuracy as well as esti-
mations about their uncertainty. Additionally, their hyperparameters can
be tuned very effectively. However, in the light of large meta data sets,
learning a single Gaussian process is not feasible as it involves inversion
of a large kernel matrix. This directly limits their usefulness for hyper-
parameter optimization if large scale hyperparameter performances on
past data sets are given.

By using products of Gaussian process experts the scalability issues
can be circumvened, however, this usually comes with the price of hav-
ing less predictive accuracy. In our experiments, we show empirically that
products of experts nevertheless perform very well compared to a variety
of published surrogate models. Thus, we propose a surrogate model that
performs as well as the current state of the art, is scalable to large scale
meta knowledge, does not include hyperparameters itself and finally is
even very easy to parallelize. The software related to this paper is avail-
able at https://github.com/nicoschilling/ECML2016.

Keywords: Hyperparameter optimization · Sequential model-based
optimization · Product of experts

1 Introduction

In recent years, machine learning and data mining has been gaining more and
more attention by showing very good prediction performance in areas such as
recommender systems, pattern, speech and visual object recognition and many
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more. The lift in prediction performance is usually due to the development of
more complex models as we see for example in the area of deep learning. However,
developing more complex models usually has drawbacks, which is the increas-
ing time that is spent for learning the model plus the increasing dimensionality
of the hyperparameter space of the associated model. By hyperparameters we
denote parameters of a model that can not explicitly be learned from the data
by a well-defined optimization criterion such as the minimization of a regular-
ized loss functional. These hyperparameters can be continuous, the reader might
consider a positive learning rate of a gradient descent optimization approach,
or a regularization constant of a Tikhonov regularization term. However, by
hyperparameters we also consider discrete choices, such as the dimensionality of
a low-rank factorization or the number of nodes and layers in a deep feedfor-
ward neural network. Additionally, hyperparameters can also be categorical, for
instance the choice of kernel function in a support vector machine, or even the
choice of loss function to optimize within the optimization criterion. Finally, even
model choice as well as preprocessing of the data can be understood as hyperpa-
rameters of a general learner. What all of these parameters have in common is
that they cannot be optimized in a straightforward fashion, but usually their cor-
rect setting renders methods from producing weak predictions to state-of-the-art
predictions. Due to this impact, practicioners that do not know the underlying
techniques very well usually have a hard time optimizing hyperparameters and
therefore rely on either choosing standard hyperparameters or on performing a
grid-search, which tries many hyperparameters and in the end chooses the one
that performs best. In this way, a lot of unnecessary computations are created.

Out of this reason, recent research proposes to use black-box optimization
techniques such as sequential model-based optimization (SMBO) to allow for
a more directed search in the hyperparameter space. Essentially, SMBO treats
the hyperparameter configuration as input for a black box function and uses a
surrogate model to learn on a few observed performances to then predict the
performance of any arbitrary hyperparameter configuration. The predicted per-
formance as well as the uncertainty of the surrogate model are then used within
the context of an acquisition function to finally predict a hyperparameter con-
figuration that likely performs better, while keeping a good balance between
exploitation and exploration. On the one hand, exploitation is attained when-
ever the acquisition function chooses hyperparameter configurations that are
very close to already observed well-performing configurations and therefore the
surrogate model is quite certain about its estimation. On the other hand, explo-
ration is met if the acquisition function chooses configurations that are very
distant to all observed configurations, i.e. explores new areas of the hyperpara-
meter space, where the surrogate model is quite uncertain about its prediction.
Given that usually only a few initial observations are present and the amount
of overall queries for hyperparameter configurations is limited, a decent tradeoff
between both exploration and exploitation is desired.

More recent work is inspired by the area of meta learning, where the goal
is to transfer knowledge for parameters of a given model from having learned
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this model already on other data sets [4]. Thus, these methods propose to also
take into account the knowledge of hyperparameter performances on different
(past) data sets, where hyperparameter opimization has already been done. This
is quite intuitive, as every experienced practitioner, who has already learned a
model many times on different data sets probably comes up with better hyperpa-
rameter configurations for the target data set to test initially. In many works, the
surrogate model is then learned on the hyperparameter performances of past data
sets and therefore has a better knowledge of well-performing hyperparameters
to choose. In order for the surrogate model to not confuse performances of the
same hyperparameter configuration on different data sets, the meta knowledge
is usually augmented by additional meta features that describe characteristics
of a data set.

Many surrogate models have been proposed, but one of the simplest surro-
gates is probably a Gaussian process (GP), as it is relatively simple to learn,
delivers good predictions and furthermore, due to its probabilistic nature, allows
for a direct estimation of uncertainties, which is a key ingredient for SMBO.
Another advantage of using Gaussian processes compared to other surrogate
models is that they are basically hyperparameter free, as all the parameters
that we have to specify for the kernel can be learned by optimizing their mar-
ginal log likelihood. However, Gaussian processes have one huge drawback which
lies in their scalability. In order to learn a Gaussian process, the kernel matrix
computed over all observed instances has to be inverted which is an operation
with cubic expense in the number of observations. Thus, if we seek to include
meta knowledge of many past data sets into the training data of the Gaussian
process, learning the Gaussian process might even take more time and memory
than learning the model we seek to optimize the hyperparameters for, which
then renders a Gaussian process infeasible, despite its advantages.

In this paper, we propose to use a product of Gaussian process experts as
surrogate model, where basically an independent GP is learned for all the obser-
vation of one past data set and in the end all the predictions of the individual
experts are assembled to predict hyperparameter performances of the target data
set. Following this approach, our work has four main contributions:

� We learn a product of GP experts, which allows for the inclusion of a large
amount of meta information,

� by using GPs as base surrogate model, we employ surrogates that are very
easy and fast to learn, and do not require much memory

� additionally, by using GPs, we do not introduce additional
surrogate-hyperparameters in opposition to many state of the art methods,

� finally, we show empirically that products of GP experts perform very compet-
itively for hyperparameter optimization against a variety of published com-
petitors, as well as make both the implementation and the meta data publicly
available.
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2 Related Work

As already mentioned, in the recent years there has been a growing interest
in research regarding hyperparameter optimization. Random search has been
proposed as an alternative to grid-search and works well in cases of low effective
dimensionality, where a subspace of the hyperparameter space does not influence
the results as much as the remaining hyperparameter dimensions [3].

In the context of SMBO, many different surrogate models have been proposed
in a variety of papers. At first, an independent Gaussian process [17] was used.
We denote it as independent as it does not learn across data [20]. Secondly,
random forests have been proposed as surrogates and inherit the ability to work
well with non numerical as well as hierarchical hyperparameters [13]. Regarding
hyperparameter optimization using meta knowledge, a stacking of a GP on top of
a ranking SVM was proposed [2], as well as a Gaussian process with a multi task
kernel in two closely related works [21,26]. Furthermore, a mixture of a multilayer
perceptron and a factorization machine has been employed as surrogate model
[18], which automatically learns data set representations and therefore does not
necessarily need meta features.

A different aspect of using meta knowledge is conducted through learning an
initialization of well-performing hyperparameters. The first work in this context
is [8] where the initial hyperparameters are chosen based on data sets that are
closest with respect to the Euclidean distance evaluated on the meta features of
the respective data sets. This intuition has been extended by [24] which uses a
differentiable plug in estimator to compute initial hyperparameters. Finally, [25]
employs a static sequence of hyperparameters that is learned using meta knowl-
edge and does not need a surrogate model at all, however, it has the drawback
that it needs meta information over different data sets evaluated on the same
hyperparameter grids.

There is a plethora of other approaches that are either model specific [1] or
use genetic algorithms [7,15], or do both in conjunction [9]. As these approaches
are not embedded in the context of SMBO, we will leave them out of further
discussions.

Since we are seeking to employ product of experts models in the framework
of SMBO-based hyperparameter optimization, we also review the related work
in this field as well as various techniques to speed up Gaussian process learning.
Initially, product of experts models have been proposed by [11] alongside with a
learning algorithm [12] to train the parameters of such a model. The generalized
product of experts [5] introduces additional weighting factors within the product
in order to reduce the overconfidence of the product of experts in unknown areas.
Another model that also estimates a joint probability density given by a set of
experts is the Bayesian committee machine [22], which includes the prior in its
predictions. Finally, the work by [6] combines both the idea of the generalized
POE with its weighting factors with the Bayesian committee machine. We do
want to highlight that all of this work is not specifically tailored to Gaussian
processes, however, [6] argues that using products of experts is an easy way to
make Gaussian processes more scalable to larger training data sets.
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Additionally, many efforts have been made by the means of sparse GPs,
namely Gaussian processes learned on subsets of the original training data such
as [19] which employs kd-trees for subsampling. There are many more works in
this area such as [10,23] or [16], however, as we want to make use of the rich
meta information of hyperparameter performance on other data sets using only
a subset of the meta information seems counterintuitive. Due to this reason,
we do not intend to use sparse GPs as surrogates for Bayesian hyperparameter
optimization.

3 Background

In this section we first review hyperparameter optimization and sequential
model-based optimization in general, secondly, we discuss Gaussian processes
shortly and lastly we give a review of product of experts models which we ulti-
mately seek to employ as surrogate models.

3.1 Problem Setting

Let D denote by the space of all data sets, following the notation by [3], we denote
a learning algorithm for a fixed model class M by a mapping A : Λ×D −→ M.
Thus, an algorithm A is essentially a mapping from a given hyperparameter
configuration and training data to a model which is learned by minimizing a loss
functional. In many cases, the hyperparameter space Λ is the cartesian product
of lower dimensional spaces. Now we can define the problem of hyperparameter
optimization as choosing the hyperparameter configuration λ� which minimizes
the loss of a learned model on given validation data:

λ� := arg min
λ∈Λ

L(A(λ,Dtrain),Dval) =: arg min
λ∈Λ

b(λ,D). (1)

Please note that we use the short b as notation for the process of learning a model
on training data with given hyperparameters and evaluating it on validation
data. Clearly, b is the black box function that we seek to optimize using Bayesian
optimization.

3.2 Sequential Model-Based Optimization

The SMBO framework is depicted in Algorithm1. It starts by learning a sur-
rogate model denoted by Ψ such that Ψ ≈ b on a set of given hyperparameter
performances which are stored in the observation history H. Secondly, the surro-
gate model will be used to predict the hyperparameter performance of unknown
hyperparameters, these predictions as well as the uncertainties will be forwarded
to the acquisition function a, which then picks a hyperparameter configuration
to test. The most commonly used acquisition function is Expected Improve-
ment (EI) and can be computed analytically if one assumes the probability of
improvement to be Gaussian [14]. Having chosen a candidate configuration, b
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Algorithm 1. Sequential model-based optimization across data sets
Input: Hyperparameter space Λ, observation history H, target data set D, number of

iterations T , acquisition function a, surrogate model Ψ , initial best hyperparameter
configuration λbest.

Output: Best hyperparameter configuration λbest for D
1: for t = 1 to T do
2: Fit Ψ to H
3: λnew = arg max

λ∈Λ
a (Ψ(λ, D), H)

4: Evaluate b (λnew, D)
5: if b(λnew, D) < b(λbest, D) then
6: λbest = λnew

7: H = H ∪ (λnew, b (λnew, D))
8: return λbest

will be evaluated for the proposed hyperparameter configuration, the result will
be fed into the observation history and the process is repeated for T many times
until finally a best hyperparameter configuration λbest is found. Additionally, the
surrogate model’s feature vector is usually augmented by meta features, which
are descriptive features of a data set, to allow the surrogate model to distinguish
between different data sets.

3.3 Gaussian Processes

We introduce Gaussian processes as we use them as base models in a product of
experts. Given is a regression problem of the form

y(x) = f(x) + ε, (2)

where we assume i.i.d. noise ε ∼ N (0, σ2). A Gaussian process assumes that
for a given set of input variables X = (x1, ..., xN ) with associated labels y =
(y1, ..., yN ) the labels are multivariate Gaussian distributed y ∼ N (0,K), where
K is a covariance matrix that is defined through a positive semidefinite kernel
function k(x, x′). A very common choice for k is the squared exponential kernel

k(x, x′) = exp
(−‖x − x′‖2

2σ2
l

)
+ σ2δ(x = x′), (3)

where θ = (σl, σ) are denoted as the hyperparameters and the δ function returns
1 if its predicate is true and 0 otherwise. Given a set of known observations, the
conditional distribution of a label f� given its input x� is Gaussian distributed
with mean and covariance

μ(f�) = k�
� K−1y (4)

σ2(f�) = k�� − k�
� K−1k�, (5)

where k� = (k(x1, x�), ..., k(xn, x�)) is the vector of kernel evaluations of the new
input x� to all observed inputs and k�� = k(x�, x�) is the prior covariance of f�.
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As we can see, using a GP for predictions requires inverting the kernel matrix of
size N , which is an operation of O(N3) and thus becomes infeasible for data sets
with many instances. Recalling that our primary goal was to include large scale
meta knowledge of past hyperparameter performances, this boundary might be
reached very soon, which would force us to throw valuable data away or rely
on other surrogate models. However, solving the linear system of equations for
inversion of K can be reduced to O(N2) by using a Cholesky decomposition of
the kernel matrix [17].

The kernel hyperparameters can be learned by maximizing their marginal
log likelihood using standard optimization techniques such as gradient ascent.
Again, for optimizing the kernel hyperparameters, we have to invert the kernel
matrix as well as compute its determinant, which also both scale cubically in
the dimension of K. As gradient ascent might use several iterations to converge
to a useful θ, this inversion becomes even more the bottle neck with respect to
both computational speed as well as memory usage.

3.4 (Generalized) Product of Experts (POE)

In order to scale Gaussian processes to a large training data set (i.e. observation
history) we will use product of experts models [11], of which several variants
have been proposed. Within a product of GP experts, a set of M invididual
Gaussian processes are learned on M disjoint subsets of the training data, so let
us decompose our training data as

X = (X(1), ...,X(M)) y = (y(1), ..., y(M)), (6)

such that the individual subsets of instances and labels are disjoint. Then, follow-
ing the independence assumption, the marginal joint likelihood factorizes into a
product of single likelihoods

p(y |X, θ) =
M∏

i=1

pi

(
y(i) |X(i), θ(i)

)
. (7)

Thus, in order to learn the individual experts, we only need to invert kernel
matrices of the size of roughly N/M , thus learning the individual experts can be
done in O(N3/M3) which is a reasonable reduction for a sufficiently large enough
M . In this way, we also learn M many different sets of kernel hyperparameters.

As the M experts have been learned, we can compute the marginal likelihood
by multiplying all individual likelihoods. The generalized product of experts [5]
introduces additional weighting factors βi such that:

p(y |X, θ) =
M∏

i=1

pi
βi

(
y(i) |X(i), θ(i)

)
. (8)

Naturally, if all βi = 1, we arrive at the initial formulation of Eq. 7. Computing
the product of the individual likelihoods yields a density that is proportional to
a Gaussian with following mean and precision:
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μpoe(f�) = (σpoe(f�))2
M∑

i=1

βiσ
−2
i (f�)μi(f�) (9)

(σpoe(f�))−2 =
M∑

i=1

βiσ
−2
i (f�) (10)

Essentially, by replacing σ−2
i (f�) = τi(f�) with the precision, we see that the

mean predicted by the product of experts is a sum of means, weighted by the
product of the individual βi and the precision τi, which is then divided by the
total sum of weighting factors. Usually, the βi are set such that

∑
i βi = 1,

surprisingly, this already works quite well for βi ≡ 1/M . This does not change
the mean as the multiplication with the precision cancels out the effect, however,
the precisions effectively get weighed down and decrease the overconfidence of
the initial product of experts without any weights.

3.5 Product of Experts in SMBO

Having introduced the product of experts models, their implementation for
hyperparameter optimization in the SMBO framework seems straightforward.
However, a few questions still remain unanswered. At first, we split the meta
knowledge into all the instances belonging to hyperparameter performances of
one data set. In this way, each expert will be learned on the meta information of
one distinct data set. If this would still be too large for a GP to learn, we could
further subdivide them into smaller subsets.

Secondly, the question of how the information on the target data set will be
incorporated into the surrogate model remains. We seek for two alternatives, in
the first one we simply add the information of new points on the target data set
to all the experts in the ensemble. Doing this, we effectively train all experts to
be expert for two data sets, the initial one they have been trained on plus the
target data set. In our implementation, we then follow the intution of all weights
summing up to one, thus we set all βi = 1/M .

As an independent Gaussian process that is learned without any meta knowl-
edge already behaves reasonably well as a surrogate model, we also tried another
alternative. We still feed the target data set information into all experts learned
in the ensemble but additionally create a new GP that carries only the infor-
mation of the target data set and is weighed much higher than the individ-
ual experts. Specifically, we use βi = 1/2M for the individual experts and
βM+1 = 1/2 for the GP learned on only the target data set responses. In this
way, we use the meta information as well as the strength of an independent
Gaussian process.

Additionally, we seek to scale the hyperparameter performances observed in
the meta data as well as the hyperparameter performances of the target data
set. This is due to the fact that the range of b naturally depends on the data
set. Consider for example a classification problem where b models the misclassi-
fication rate of a classifier for some test data. Naturally, for some data sets, very
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low misclassification rates might be achieved in contrast to other data sets that
are simply harder to classify. A POE might then be biased towards choosing
hyperparameter configurations that produce good results on simple data sets,
which is something we want to prevent. In order to do so, we scale the labels of
the meta data to become standard Gaussian distributed, for the target data set,
we do this on-the-fly every time we see a new response of b as was also proposed
by [26].

4 Experiments

To evaluate the proposed surrogate models for hyperparameter optimization, we
conduct hyperparameter optimization within the SMBO framework including a
variety of published baselines. The experiments are performed on two meta data
sets that we have created ourselves.

4.1 Meta Data Set Creation

We have created two meta data sets for the task of classification using two
distinct classifiers, namely being a support vector machine (SVM) and AdaBoost.
These meta data sets consists of a complete grid search for both classifiers on
50 classification data sets that we have taken from the UCI repository1. If splits
were already given, we merged them into one complete data set, shuffled the
resulting data set and then took 80% of the data for training and the remaining
20% for testing. The AdaBoost meta data set was created by running AdaBoost2

with hyperparameters I ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}
and M ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30}. This yields 108 meta instances per data set
and therefore the overall meta data set contains 5400 instances.

The second meta data set was created by running an SVM3 on all of the data
sets, with four hyperparameters. The first one resembles the choice of kernel and
is categorical between a linear, a polynomial and an RBF kernel, thus intro-
duces three binary hyperparameters. The second hyperparameter is the tradeoff
parameter, usually denoted as C, the third and fourth hyperparameter are the
degree d of the polynomial kernel and the width γ of the RBF kernel. If the ker-
nel hyperparameters are not used, i.e. the polynomial degree for an RBF kernel,
we set them to a constant value of zero. As for the AdaBoost meta data set, we
computed the misclassification rates using grid-search, where C was chosen from
the set {2−5, . . . , 26}, the polynomial degree d was chosen from {2, . . . , 10} and
γ was chosen from {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000}.
This results in 288 runs per data set, and therefore the overall meta data set
contains up to 14, 400 instances.

Finally, we also added meta features to the meta data set, to allow the sur-
rogate models to distinguish between the same hyperparameter configurations
1 http://archive.ics.uci.edu/ml/index.html.
2 http://www.multiboost.org.
3 http://svmlight.joachims.org.

http://archive.ics.uci.edu/ml/index.html
http://www.multiboost.org
http://svmlight.joachims.org
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Table 1. List of all meta-features used.

Number of Classes Log Inverse Data Set
Dimensionality

Kurtosis Mean

Number of Instances Class Cross Entropy Kurtosis Standard Deviation

Log Number of Instances Class Probability Min Skewness Min

Number of Features Class Probability Max Skewness Max

Log Number of Features Class Probability Mean Skewness Mean

Data Set Dimensionality Class Probability
Standard Deviation

Skewness Standard Deviation

Log Data Set
Dimensionality

Kurtosis Min

Inverse Data Set
Dimensionality

Kurtosis Max

evaluated on different data sets. A list of all employed meta features can be seen
in Table 1. For our experiments, all features in the meta data set, namely the
computed meta features as well as the hyperparameter configurations have been
scaled to values in [0, 1].

4.2 Competing Surrogate Models

Random Search (RANDOM). This is a surrogate that simply picks a random
point out of the grid.

Random Forests (RF). Sequential Model-based Algorithm Configuration [13]
employs a random forest as surrogate model and computes uncertainties using
the learned ensemble by estimating empirical means and standard deviations.

Independent Gaussian Process (IGP). An independent Gaussian process with
SE-ARD kernel that is only learned on the observations on the target data set,
this was proposed by [20].

Surrogate-based Collaborative Tuning (SCOT). This surrogate model is effec-
tively a stacking of an SVMRANK and a Gaussian process and was proposed by
[2]. The ranking SVM learns how to rank hyperparameter configurations across
data sets, uncertainties are estimated by stacking a GP on the ranked output.

Full Gaussian Process (FGP). A Gaussian process with SE-ARD kernel that
is learned on the whole meta data set. This is basically the model we seek to
approximate by learning a product of experts.

Gaussian Process with MKL (MKLGP). This surrogate was proposed by [26]
and learns basically a full GP over the whole meta data set using a combination
of an SE-ARD kernel and a kernel function that models the distances between
data sets based on meta features.
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Factorized Multilayer Perceptron (FMLP). The surrogate model that was pro-
posed by [18], which learns a multilayer perceptron and factorizes the weights in
the first layer in order to learn latent data set and hyperparameter representa-
tions. Uncertainties are estimated by learning an ensemble of FMLPs.

Product of Gaussian Process Experts (POGPE). This surrogate model learns a
product of GP experts as described in Sect. 3.4. Each expert employs an SE-ARD
kernel. Information of the target data set is distributed to all experts, which are
all weighted equally.

Single Gaussian Process Expert (SGPE). This surrogate model also learns a
product of GP experts as described in Sect. 3.4, however, also learns an indepen-
dent GP for the target data set only and weighs the target GP as much as the
whole set of experts.

4.3 Experimental Setup

Our experiments are performed in a leave-one-out fashion, meaning that we
train the surrogate model on 49 data sets and use the meta knowledge to start
SMBO on the remaining test data set. To cancel out random effects, we ran
all experiments for a total of 100 times and averaged the results in the end.
In total, each SMBO run was allowed to test T = 70 different hyperparameter
configurations on the test data. As acquisition function we employed the pop-
ular expected improvement, which is by now the most widely used acquisition
function in hyperparameter optimization using the SMBO framework.

As evaluation metric, we use the average rank, where, for each target data
set, we rank all competing surrogate models based on the best misclassification
rate they have found so far. Ties are being solved by granting the average rank,
i.e. if one surrogate models find the misclassification rates 0.2, another two find
0.25 and a third one finds only 0.5, we would rank the surrogates with 1, 2.5,
2.5 and 4. As we run the experiments for 50 different target data sets, we report
the average of all average ranks.

The implementations were largely done by ourselves, except for SMAC and
SCOT, where we used MLTK4 for the former and the implementation by
Joachims5 for the ranking SVM used in SCOT. All hyperparameters of the
GP based models have been automatically tuned by maximizing their marginal
likelihood, for FMLP we used the setting proposed by the authors. For SMAC,
SCOT and MKLGP we used leave-one-out cross validation to tune the hyperpa-
rameters. For all GP-based models, we implemented the Cholesky decomposition
to speed up the inversion of kernel matrices. In order to facilitate reproducibility
of our experimental results, we make the program code as well as the employed
meta data sets publicly available on Github6.

4 http://www.cs.cornell.edu/∼yinlou/projects/mltk/.
5 http://svmlight.joachims.org/.
6 https://github.com/nicoschilling/ECML2016.

http://www.cs.cornell.edu/~yinlou/projects/mltk/
http://svmlight.joachims.org/
https://github.com/nicoschilling/ECML2016
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4.4 Performance in SMBO

The average rank among all competing methods can be seen in Fig. 1, where
the left plot shows the average rank on AdaBoost versus the number of trials
conducted, and the right one shows the results for the SVM meta data set. First
of all, we see that for both meta data sets the random baseline shows the worst
performance as is expected. Surprisingly, for both meta data sets, POGPE and
SGPE find the best hyperparameter among the competitors in the first trial.
During the SMBO procedure, both the full Gaussian process as well as MKLGP
perform better on the AdaBoost data set, however, we observe that POGPE
performs better on the SVM data set which is quite a surprise. POGPE, despite
its good starting point, is being outperformed by FMLP on the SVM data set
in the first 15 trials, which then degrades in performance and performs worse
than both full GP approaches. Comparing both of these with each other, we
see that they perform almost equally, however, MKLGP tends to have worse
starting points than a simple full GP. For both meta data sets, we see the lift of
including meta knowledge through comparison with the independent GP, which
performs reasonably on AdaBoost but degrades on SVM. This observation leads
us to the conclusion that optimizing the hyperparameters of AdaBoost seems an
easier task than on SVM.

Fig. 1. Average Rank of all competing methods. The left plot shows results for
AdaBoost, the right plot shows results for the SVM meta data set.

In contrast to POGPE, SGPE does not seem to perform that well, maybe the
tradeoff between product of experts and single GP has to be adjusted for each
trial, however, this would introduce another hyperparameter for the surrogate
model, which we do not seek to do.

Overall, we conclude that POGPE, FMLP, FGP and MKLGP are among
the best performing surrogate models, so for these models we also computed the
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Fig. 2. Average Distance to Minimum of the best performing methods. The left plot
shows results for AdaBoost, the right plot shows results for the SVM meta data set.

average distance to the minimum in terms of b. For each data set, we scale all
values of b (in this case accuracies) to be in [0, 1]. Then, again for each data set,
we compute the distance of the best hyperparameter response so far to the best
on the overall grid. This value is then averaged to become the average distance
to the minimum, which gives an idea of how a surrogate model makes use of the
responses it gets on the target data set. The results can be seen in Fig. 2, where
the left plot shows the results for AdaBoost and the right for SVM. Overall, we
see the same behaviour as we have seen in average rank, however, FMLP seems to
be a little bit better here. For AdaBoost, it achieves the lowest average distance,
this is due to FMLP winning severely against its competitors on the data set
sonar-scale, where in the average rank, this win does not count that much. In
conclusion, we see that POGPE works really well on both evaluatuion metrics,
especially when we consider its simplicity in the light of POGPE actually being
an approximation of a full GP.

4.5 Runtime Experiments

In order to demonstrate the scalability of using POGPE, we have also conducted
a runtime experiment. We have measured the runtime of the most competitive
methods, namely being POGPE, FMLP, and both of the full Gaussian process
approaches FGP and MKLGP. Experiments were conducted on a Xeon E5-
2670v2 with 2.50 GHz clock speed and 64 GB of RAM, where we again performed
a total of 70 trials of an SMBO run on the SVM meta data set. To account for
measurement noise, we repeated all experiments 10 times.

The results can be seen in Fig. 3, where the left plot shows the cumulative
runtime in seconds without the initial training time of the surrogate in opposition
to the right plot which includes it. We plot both results as the training of the
surrogate model can be performed in an offline fashion while waiting for new
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Fig. 3. Runtime comparison among the most competitive surrogate models. The left
plot shows the cumulative runtime in seconds.

data. As we do not take into account the learning of the actual model, i.e. the
evaluation of b, both plots can be understood as the total overhead time of
running SMBO instead of using default hyperparameters. We can observe that
POGPE consumes drastically less time than all its competitors, simply due to
the fact that we have to invert much smaller kernel matrices. By excluding the
potentially offline training time, a full GP is faster than FMLP, however, if the
full GP needs to be trained first an FMLP is faster but gets overtaken with
respect to computation time if only enough trials are performed. In both plots,
MKLGP requires the most computation time. Considering that these differences
will be bigger if we use more meta information, we conclude that POGPE is very
fast while performing also very well in the SMBO procedure.

5 Conclusions

In this paper, we proposed to choose POE models as surrogate models for hyper-
parameter tuning, specifically we chose to employ Gaussian processes because of
their fairly easy implementation as well as their predictive performance in the
field of Bayesian optimizazion. We do acknowledge that POGPE is not the best
model in all experiments, but is quite competitive which is a surprise due to its
simplicity and its approximative nature. In the very first trial both POGPE and
SGPE (as they start out the same) on average pick the best hyperparameter con-
figuration compared to all competitor methods, which shows how efficient usage
of the meta data can simply be made by learning a product of experts on each
invidual data set and querying the committee. Moreover, the other competitive
surrogate models such as FMLP and MKLGP introduce additional hyperpara-
meters for the surrogate model that need to be optimized. For FMLP, tuning
of the network architecture such as number of layers and number of nodes per
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layer as well as setting correct learning rates is demanded. MKLGP requires
tuning of the number of neighboring data sets and the tradeoff term between
both employed kernels. In comparison, a simple product of GP experts does not
require any hyperparameter tuning, as the GP parameters can be learned by
maximizing their marginal likelihood quite effectively.

As we have seen in the results, POGPE can also be trained much faster than
the other competitive surrogate models. In the light of big data we will probably
have access to also growing meta data sets that we can employ for hyperpa-
rameter optimization, which makes scalable use of the meta data a necessity.
Moreover, POE models are easy to parallelize which allows easy usage in dis-
tributed scenarios. Out of all these reasons we see them as a very reasonable
choice to pick as surrogate models for hyperparameter optimization including
large scale meta data.
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Abstract. Commute time is a random walk based metric on graphs
and has found widespread successful applications in many application
domains. However, the computation of the commute time is expensive,
involving the eigen decomposition of the graph Laplacian matrix. There
has been effort to approximate the commute time in offline mode. Our
interest is inspired by the use of commute time in online mode. We
propose an accurate and efficient approximation for computing the com-
mute time in an incremental fashion in order to facilitate real-time appli-
cations. An online anomaly detection technique is designed where the
commute time of each new arriving data point to any data point in the
current graph can be estimated in constant time ensuring a real-time
response. The proposed approach shows its high accuracy and efficiency
in many synthetic and real datasets and takes only 8 milliseconds on
average to detect anomalies online on the DBLP graph which has more
than 600,000 nodes and 2 millions edges.

Keywords: Commute time · Random walk · Incremental learning ·
Online anomaly detection

1 Introduction

Commute time is a well-known measure derived from random walks on
graphs [10]. The commute time between two nodes i and j in a graph is the
expected number of steps that a random walk, starting from i will take to visit
j and then come back to i for the first time. Commute time has been used as
a robust metric for different learning tasks such as clustering [14] and anomaly
detection [7]. It has also found widespread applications in personalized search
[16], collaborative filtering [3] and image segmentation [14]. The fact that the
commute time is averaged over all paths (and not just the shortest path) makes
it more robust to data perturbations.

More advanced measures generally require more expensive computation. Esti-
mating commute time involves the eigen decomposition of the graph Laplacian
matrix and resulting in an O(n3) time complexity which is impractical for large
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 49–64, 2016.
DOI: 10.1007/978-3-319-46128-1 4
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graphs. Saerens, Pirotte and Fouss [15] used subspace approximation to approxi-
mate the commute time. Sarkar and Moore [13] introduced a notion of truncated
commute time and a pruning algorithm to find nearest neighbors in the truncated
commute time. Recently, Spielman and Srivastava [17] proposed an approxima-
tion algorithm to create a structure in nearly linear time so that the pairwise
commute time can be approximated in O(log n) time.

However, all the above-mentioned approximation techniques all work in a
batch fashion and therefore have a high computation cost for online applica-
tions. We are interested in the following scenarios: a dataset or a graph D is
given from an underlying domain of interest such as data from a network traffic
log or a social network graph. A new data point p arrives and we want to deter-
mine if p is an anomaly with respect to D in commute time. A data point is an
anomaly if it is far away from its nearest neighbors in commute time measure
(as described in [7]). This particular application requires the computation of
commute time in an online fashion. In this paper, we propose a method called
iECT to incrementally estimate the commute time and use it to design an online
anomaly detection application. The method makes use of the recursive definition
of commute time in terms of random walk measures. The commute time from a
new data point to any data point in the existing data D is computed based on
the current commute times among points in D. The method is novel and reveals
insights about commute time which is independent of the applications.

The contributions of this paper are as follows:

– We use characteristics of random walk measures to propose a method to
estimate the commute time incrementally in constant time. Then we design
an online anomaly detection technique using the incremental commute time.
To the best of our knowledge, this is the first method to estimate the commute
time in an online fashion.

– The proposed technique is verified by experiments in different applications
using several synthetic and real datasets. The experiments show the effective-
ness of the proposed methods in terms of accuracy and performance.

– The methods can be applied directly to graph data and can be used in any
application that utilizes the commute time (e.g. classification and graph rank-
ing using commute time).

The remainder of the paper is organized as follows. Section 2 reviews nota-
tions and concepts related to random walks and commute time and a method
to approximate the commute time offline in large graphs. Section 3 presents a
simple motivation example to tie up all the definitions and ideas, and proposes a
method to incrementally estimate the commute time. In Sect. 4, we propose an
online anomaly detection algorithm which uses the incremental commute time.
We evaluate our approaches using experiments on synthetic and real datasets in
Sect. 5. Sections 6 and 7 cover the related work and a summary of our work.
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2 Background

2.1 Random Walks on Graphs and Commute Time

We provide a self-contained introduction to random walks with an emphasis on
commute time. Assume we are given a connected undirected and weighted graph
G = (V,E,W ).

Definition 1. Let i be a node in G and N(i) be its neighbors. The degree di of
a node i is

∑
j∈N(i) wij. The volume VG of the graph is defined as

∑
i∈V di.

Definition 2. The transition matrix M = (pij)i,j∈V of a random walk on G is
given by

pij =
{ wij

di
, if (i, j) ∈ E

0, otherwise

Definition 3. The Hitting Time hij is the expected number of steps that a ran-
dom walk starting at i will take before reaching j for the first time.

Definition 4. The Hitting Time can be defined in terms of the recursion

hij =
{

1 +
∑

l∈N(i) pilhlj if i �= j

0 otherwise

Definition 5. The Commute Time cij between two nodes i and j is given by
cij = hij + hji.

Fact 1. The commute time can be expressed in terms of the Laplacian of G.

cij = VG(l+ii + l+jj − 2l+ij) = VG(ei − ej)T L+(ei − ej) (1)

where l+ij is the (i, j) element of L+ (the pseudo-inverse of the Laplacian L) and
ei is the |V | dimensional column vector with 1 at location i and zero elsewhere [3].
L+ can be computed from the eigensystem of L: L+ =

∑|V |
i=2

1
λi

viv
T
i .

2.2 Approximation of Commute Time Embedding (Batch Mode)

Computing commute time involves the eigen decomposition of the graph Lapla-
cian matrix which is impractical for large graphs. Recently, Spielman and Sri-
vastava [17] proposed an approximation algorithm utilizing random projection
and a SDD solver to create a structure in nearly linear time so that the pairwise
commute time can be approximated in kRP = O(log n) time (kRP is the reduced
dimension in random projection). The fast SDD solver [18] for linear systems is
a new class of near-linear time methods for solving a system of equations Ax = b
when A is a symmetric diagonally dominant (SDD) matrix.

The idea is based on the fact that θ =
√

VGL+BT W 1/2 is a commute time
embedding where the commute time cij is a squared Euclidean distance between
points i and j in θ. Here m be the number of edges in G, B is a signed edge-
vertex incidence matrix and W is a diagonal matrix whose entries are the edge
weights. For the details of the embedding creation, refer to [17].
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3 Incremental Commute Time

3.1 Problem and Scope

Problem: Given a dataset or a graph D from an underlying domain of interest.
When a new data instance p comes in, we want to compute the commute time
from p to any data instance in D.

In an Euclidean space, an insertion of a new point does not change the fea-
tures of existing points. However, an insertion of a new node in an original fea-
ture space or a graph will change the features of existing points in the commute
time embedding space, which is spanned by eigenvectors of the graph Laplacian
matrix. Updating an eigensystem of a graph Laplacian is costly and not suitable
for online applications. In this work, we use the characteristics of random walk
measures to estimate the commute time incrementally in constant time and use
it to design online applications.

There are some notes regarding the scope of this work. Firstly, the proposed
method is only suitable for applications which do not need to update the training
model overtime (i.e. a representative training data are available). That means
we treat the new data one by one, estimate its corresponding commute time and
leave the trained model intact. Secondly, in case of graph data, we only deal
with the case of node insertion, not node deletion or weight update.

3.2 Motivation Examples

Consider a graph G shown in Fig. 1a where all the edge weights equal 1. The
sum of the degree of nodes, VG = 8. We will calculate the commute time c12 in
two different ways:

(a) 4-node graph (b) Adding node 5

Fig. 1. c12 increases after an addition of node 5 even though the shortest path distance
remains unchanged.

1. Using random walk approach: note that the expected number of steps for a
random walk starting at node 1 and returning back to it is VG

d1
= 8

1 = 8 [10].
But the walk from node 1 can only go to node 2 and then return from node
2 to 1. Thus c12 = 8.
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2. Using algebraic approach: the Laplacian matrix and its pseudo-inverse are

L =

⎛

⎜⎜⎝

1 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 2

⎞

⎟⎟⎠ and L+ =

⎛

⎜⎜⎝

0.69 −0.06 −0.31 −0.31
−0.06 0.19 −0.06 −0.06
−0.31 −0.06 0.35 0.02
−0.31 −0.06 0.02 0.35

⎞

⎟⎟⎠

Since c12 = VG(e1 − e2)T L+(e1 − e2) and (e1 − e2)T L+(e1 − e2) =

⎛

⎜⎜⎝

1
−1

0
0

⎞

⎟⎟⎠

T ⎛

⎜⎜⎝

0.69 −0.06 −0.31 −0.31
−0.06 0.19 −0.06 −0.06
−0.31 −0.06 0.35 0.02
−0.31 −0.06 0.02 0.35

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
−1

0
0

⎞

⎟⎟⎠ = 1,

c12 = VG × 1 = 8.
Suppose we add a new node (labeled 5) to node 4 with a unit weight as in

Fig. 1b. Then cnew
12 = V new

G /d1 = 10/1 = 10. The example in Fig. 1b shows that
by adding an edge, i.e. making the ‘cluster’ which contains node 2 denser, c12
increases. This shows that commute time between two nodes captures not only
the distance between them (as measured by the edge weights) but also the data
densities. For the proof of this claim, see [7]. This property of commute time
has been used to simultaneously discover global and local anomalies in data - an
important problem in the anomaly detection literature.

In the above example, we exploited the specific topology (degree one node)
of the graph to calculate the commute time efficiently. This can only work for
very specific instances. The general, more widely used but slower approach for
computing the commute time is to use the Laplacian formula as in Eq. 1. One
key contribution of this paper is that for an incremental computation of com-
mute time we can use insights from this example to efficiently approximate the
commute time using random walk in much more general situations.

3.3 Incremental Estimation of Commute Time

In this section, we derive a new method for computing the commute time in an
incremental fashion. This method uses the definition of commute time based on
the hitting time. The basic intuition is to expand the hitting time recursion until
the random walk has moved a few steps away from the new node and then use
the old values. In Sect. 5 we will show that this method results in remarkable
agreement between the batch and online modes.

We deal with two cases shown in Fig. 2.

1. Rank one perturbation corresponds to the situation when a new node connects
with one other node in the existing graph.

2. Rank k perturbation deals with the situation when the new node has k neigh-
bors in the existing graph.
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(a) Rank 1 (b) Rank k

Fig. 2. Rank 1 and rank k perturbation when a new data point arrives.

Rank One Perturbation

Proposition 1. Let i be a new node connected by one edge to an existing node
l in the graph G. Let wil be the weight of the new edge. Let j be an arbitrary
node in the graph G. Then

cij = cold
lj +

VG

wil
+ O(

1
k

) (2)

where ‘old’ represents the commute time in graph G (k nearest neighbor graph)
before adding i.

Proof. (Sketch) Since the random walk needs to pass l before reaching j, the
commute distance from i to j is:

cij = cil + clj . (3)

It is known that:

cil =
(VG + 2wil)

wil
(4)

where VG is volume of graph G [7]. We also know clj = hjl + hlj and hjl = hold
jl .

The only unknown factor is hlj . By definition:

hlj = 1 +
∑

q∈N(l)

plqhqj = 1 +
∑

q∈N(l),q �=i

plqhqj + plihij .

Since commute time is robust against small changes or perturbation in data,
we have hqj ≈ hold

qj . Moreover, plq = (1 − pli)pold
lq , and hij = 1 + hlj . Therefore,

hlj ≈ 1 +
∑

q∈N(l),q �=i

(1 − pli)pold
lq hold

qj + pli(1 + hlj)

= 1 + (1 − pli)
∑

q∈N(l),q �=i

pold
lq hold

qj + pli(1 + hlj)

= 1 + (1 − pli)(hold
lj − 1) + pli(1 + hlj).

After simplification, hlj = hold
lj + 2pli

1−pli
. Then clj ≈ hold

jl + hold
lj + 2pli

1−pli
. Since

there is only one edge connecting from i to G, i is likely an isolated point and
thus pli = O( 1

k ) (G is the k nearest neighbor graph). Then

clj = hold
jl + hold

lj + O(
1
k

) = cold
lj + O(

1
k

). (5)
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As a result from Eqs. 3, 4 and 5:

cij =
(VG + 2wil)

wil
+ cold

lj + O(
1
k

) = cold
lj +

VG

wil
+ O(

1
k

)

Rank k perturbation The rank k perturbation analysis is more involved but
the final formulation is an extension of the rank one case.

Proposition 2. Denote l ∈ G be one of k neighbors of i, and j be a node in G.
The approximate commute time between nodes i and j is:

cij ≈
∑

l∈N(i)

pilc
old
lj +

VG

di
+ O(

1
k

) (6)

For the proof, see Appendix in the supplement document. When k = 1 (rank
one case), the Eq. 6 becomes Eq. 2.

4 Online Applications Using Incremental Commute Time

We return to our original motivation for computing incremental commute time.
We are given a dataset D which is a representative of the underlying domain of
interest. We need to find nearest neighbors of a new data point p in commute
time metric incrementally. We want to check if p is an anomaly in D.

We train the dataset D using Algorithm 1. First, a mutual k1-nearest neigh-
bor graph is constructed from the dataset. This graph connects nodes u and v
if u belongs to k1-nearest neighbors of v and v belongs to k1-nearest neighbors
of u [11]. Then the approximate commute time embedding θ is computed as in
Sect. 2.2. Finally, a distance-based anomaly detection with a pruning rule pro-
posed by Bay and Schwabacher [2] is used in θ to find the top N anomalies. That
means the distance-based method uses commute time, instead of Euclidean dis-
tance. The anomaly score used is the average commute time of a data instance
to its k2 nearest neighbors.

Algorithm 1. Approximate Commute Time Distance Based Anomaly Detection
(for training).
Input: Data matrix X, the numbers of nearest neighbors k1 (for building the k-
nearest neighbor graph) and k2 (for estimating the anomaly score), the number of
random vectors kRP , the numbers of anomalies to return N
Output: Top N anomalies, anomaly threshold τ

1: Construct a mutual k-nearest neighbor graph G from the dataset (using k1)
2: Compute the approximate commute time embedding θ from G
3: Find top N anomalies using a distance-based technique with pruning rule described

in [2] on θ (using k2)
4: Return top N anomalies and the anomaly threshold τ
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Pruning Rule [2]: A data point is not an anomaly if its score (e.g. the
average distance to its k nearest neighbors) is less than an anomaly threshold.
The threshold can be fixed or be adjusted as the score of the weakest anomaly
found so far. Using the pruning rule, many non-anomalies can be pruned without
carrying out a full nearest neighbors search.

After training, the corresponding graph G, the commute time embedding θ,
and the anomaly threshold τ are obtained (τ is the score of the weakest anomaly
found among top N anomalies). We propose a method shown in Algorithm 2
(denote as iECT) to detect anomalies online given the trained model.

Algorithm 2. Online Anomaly Detection using the incremental Estimation of
Commute Time (iECT)
Input: Graph G, the approximate commute time embedding θ and the anomaly
threshold τ computed in the training phase, and a new arriving data point p
Output: Determine if p is an anomaly or not

1: Add p to G satisfying the property of the mutual nearest neighbor graph
2: Determine if p is an anomaly or not by estimating its anomaly score incrementally

using the method described in Sect. 3.3. Use pruning rule with threshold τ to reduce
the computation

3: Return whether p is an anomaly or not

When a new data point p arrives, it is connected to graph G created in the
training phase so that the property of the mutual nearest neighbor graph is
held. The commute times are incrementally updated to estimate the anomaly
score of p using the approach in Sect. 3.3. The embedding θ is used to compute
the commute time cold

lj . The pruning is used as follows: p is not anomaly if its
average distance to k nearest neighbors is smaller than the anomaly threshold τ .
Generally commute time is robust against small changes or perturbation in data.
Therefore, only the anomaly score of a new data point needs to be estimated
and be compared with the anomaly threshold computed in the training phase.
This claim will be verified by experiments in Sect. 5.

4.1 Analysis

The incremental estimation of commute time in Sect. 3.3 requires O(kRP ) for
each query of cold

lj in θ. So if there are k edges added to the graph due to the
addition of a new node, it takes O(kkRP ) for each query of cij .

As explained earlier, we only need to compute the anomaly score of the new
data point. Using pruning rule with the known anomaly threshold, it takes only
O(k2) nearest neighbor search to determine if the test point is an anomaly or not
where k2 is the number of nearest neighbors for estimating the anomaly score.
For each commute time query, it takes O(kkRP ) as described above. Therefore,
iECT takes O(k2kkRP ) to determine if a new arriving point is an anomaly or
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not. [19] has suggested that kRP = 2 ln n/0.252 which is just 442 for a dataset of
a million data points. Therefore kRP � n. Since k, k2 � n, O(k2kkRP ) = O(1)
resulting in a near constant time complexity for iECT.

Note that this constant time complexity of iECT does not depend on the
complexity of O(kRP ) for each query of cold

lj using the method in [17]. If we
query cold

lj using Eq. 1 with just O(kEV ) eigenvectors of Laplacian matrix L (as
described in [7]), each query only takes O(kEV � n) also resulting in a constant
time complexity for iECT.

5 Experiments and Results

In this section, we determined and compared the effectiveness of online anomaly
detection application using incremental commute time. The experiments were
carried out on synthetic as well as real datasets. In all experiments, the numbers
of nearest neighbors were k1 = 10 (for building the nearest neighbor graph),
k2 = 20 (for estimating a nearest neighbor score or an anomaly score in anom-
aly detection applications), and the number of random vectors was kRP = 200
(for creating the commute time embedding) unless otherwise stated. We used
Koutis’s CMG solver [9] as an implementation of the SDD-Solver for creating
the embedding. The solver is used for SDD matrices which is available online
at http://www.cs.cmu.edu/∼jkoutis/cmg.html. The choice of parameters was
determined from the experiments and it was also analyzed in Sect. 5.5.

5.1 Approach

We split a dataset into two parts: a training set and a test set. We trained the
training set to find top N anomalies and the threshold value τ using Algorithm 1.
Then an anomaly score of each instance p in the test set was calculated based
on its k2 neighbors in the training set. If this score was greater than τ then the
test instance was reported as an anomaly.

Baseline: in all experiments, the batch method (Algorithm 1) was used as the
benchmark since there is no other method to estimate commute time incre-
mentally. Note that for both the batch and incremental methods, we need to
compute only the anomaly score of the new arriving data instance and prun-
ing was also applied using τ . The difference is in the batch method, the new
approximate commute time embedding was recomputed and the anomaly score
was estimated using the new embedding space. The incremental method, on the
other hand, estimated the score incrementally using the method described in
Sect. 3.3.

5.2 Synthetic Datasets

We created six synthetic datasets with 1000, 10000, 20000, 30000, 40000 and
50000 data points. Each dataset contained several clusters generated from Nor-
mal distributions and 100 random points generated from uniform distribution

http://www.cs.cmu.edu/~jkoutis/cmg.html
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which were likely anomalies. The number of clusters, the sizes, and the locations
of the clusters were also chosen randomly. Each dataset was divided into a train-
ing set and a test set. There were 100 data points in every test set and half of
them were random anomalies mentioned above.

Experiments on Robustness: We first tested the robustness of commute
time between nodes in an existing graph when a new node is introduced. As
the commute time cij is a measure of expected path distance, the hypothesis is
that the addition of a new point will have minimal influence on cij and thus the
anomaly scores of data points in the existing set are relatively unchanged.

Table 1 shows the average, standard deviation, minimum, and maximum of
anomaly scores of points in graph G before and after a new data point was
added to G. Graph G was created from the training set of a 1000 point dataset
described above. The result was averaged over 100 test points in the test set.
The result shows that the anomaly scores of data instances in G do not change
much when a new point is added to G (the change of the average score was only
about 0.7 %).

Table 1. Robustness of commute time. The anomaly scores of data instances in existing
graph G are relatively unchanged when a new point is added to G.

Average Std Min Max

Without test point 15,362.57 50,779.71 916.27 538,563.38

With test point 15,257.38 50,286.20 904.49 534,317.52

In the following experiments, the change in eigensystem of the graph Lapla-
cian L of the training data due to an addition of a new node was analyzed.
Figures 3a shows average changes in the top 50 eigenvalues before and after an
addition of each test point in the test set in the 1000 point dataset. The changes
are small for most of them (most of them were less than 1 % and all of them
were less than 6 %). Figures 3b shows dot products of eigenvectors with the sec-
ond smallest eigenvalues (the smallest is zero) before and after an addition of
each test point. The eigenvectors did not change much due to node addition. As
shown in Eq. 1, since the change in eigensystem of the Laplacian is small, the
commute times between existing training nodes do not change much.

All these results show commute time is a robust measure: a small change
or perturbation in the data will not result in large changes in commute times.
Therefore, only the anomaly score of the new point needs to be estimated.

Experiments on Effectiveness: We applied iECT to all six datasets men-
tioned earlier. The effectiveness of iECT and the commute time approximation
were reported and discussed.
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Fig. 3. Change in eigensystem when new nodes were added to the graph.

Table 2 presents the results in accuracy and performance of iECT in six
synthetic datasets. Average score was the average anomaly score with pruning
rule over 100 test points. The precision and recall were for the anomalous class.
The time was the average time to process each of 100 test points. iECT captured
all the anomalies, had a few false alarms, and was much more efficient than the
batch method. Note that the scores shown here were the anomaly scores with
pruning rule and the scores for anomalies are always much higher than scores for
normal points. Therefore the average scores shown in the table were dominated
by the scores of anomalies.

Table 2. Effectiveness of the incremental method. iECT captured all the anomalies,
had a few false alarms and was much more efficient than the batch method.

Dataset iECT Batch

Size Precison (%) Recall (%) Avg score Time (s) Avg score Time (s)

1,000 82.4 100 2.30 × 105 0.04 1.88 × 105 1.27

10,000 100 100 7.70 × 106 0.45 6.70 × 106 12.32

20,000 96.0 100 2.36 × 107 0.95 1.93 × 107 16.97

30,000 98.0 100 1.39 × 107 1.22 1.14 × 107 38.68

40,000 95.8 100 2.29 × 107 5.24 1.67 × 107 147.27

50,000 100 100 3.11 × 107 2.16 2.41 × 107 61.90

There is an interesting dynamic at play between the pruning rule and the
number of anomalies in the data. The reason is there was a high proportion
of anomalies in the test set (about 50 %). We know that the pruning rule only
works for non-anomalies and therefore, the time to process anomalies should be
much longer than the others. Table 3 shows the details of time to process data
points in the test set. For batch and iECT methods, the average time to process
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Table 3. Performance of the incremental method. In iECT, the times to process non-
anomalies were much faster than those of anomalies.

Dataset Graph update iECT (s) Batch (s)

Size Time (s) Anomaly Others All Anomaly Others All

1,000 0.001 0.07 0.02 0.04 1.28 1.26 1.27

10,000 0.004 1.11 0.02 0.45 12.81 12.01 12.32

20,000 0.006 1.89 0.08 0.95 17.40 16.57 16.97

30,000 0.009 2.46 0.07 1.22 39.46 37.96 38.68

40,000 0.047 10.90 0.41 5.24 153.86 141.66 147.27

50,000 0.018 4.35 0.06 2.16 63.38 60.47 61.90

only anomalies, only non-anomalies, and all data instances are listed in the
table. There was not much difference in batch method between time to process
anomalies and non-anomalies since for each new data point the time to create
the new commute time embedding was much higher than that of the nearest
neighbor search. On the other hand, this gap was very high for iECT so that
the times to process non-anomalies were much faster than those of anomalies. In
practice, since most of the data points are not anomalies, iECT is very efficient.

Another cost we have not mentioned is the time to update the graph. That
is the time to add a new data point to an existing graph satisfying the property
of the mutual nearest neighbor graph. Since we stored the kd tree corresponding
to the training data, the update cost was very low as shown in Table 3.

5.3 Graph Dataset

In this section, we evaluated the iECT method on a large DBLP co-authorship
network to show the scalability of the method. In this graph, nodes are authors
and edge weights are the number of collaborated papers between the authors.
Since the graph is not fully connected, we extracted its biggest component. It has
612,949 nodes and 2,345,178 edges in a snapshot in December 5th, 2011 which
is available at http://dblp.uni-trier.de/xml/. We randomly chose a test set of 50
nodes and removed them from the graph. We ensured that the graph remained
connected. After training, each node was added back into the graph along with
their associated edges.

We trained the graph using Algorithm1, stored the approximate embedding
in order to query the cold

lj in iECT algorithm. The batch method use the approx-
imate embedding created from a new graph after adding each test point.

The result shows that it took 0.008 seconds on average over 50 test data
points to detect whether each test point was an anomaly or not. The batch
method, which is the fastest approximation of commute time to date, required
1,454 seconds on average to process each test data point. This dramatically
highlights the constant time complexity of iECT algorithm and suggests that
iECT is highly suitable for the computation of commute time in an incremental

http://dblp.uni-trier.de/xml/
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fashion. Since there was no anomaly information in the random test set, we
cannot report the detection accuracy here. The average anomaly score over all
the test points of iECT was 8.6 % higher than the batch method. This shows the
high accuracy of iECT approximation even in a very large graph.

5.4 Real Datasets

In this experiment, we report the results for online anomaly detection using
real datasets in different application domains. They are applications in spam
detection, network intrusion detection and bridge damage detection.

Spambase dataset: The Spambase dataset provided by Machine Learning
Repository [4] was investigated. There are 4,601 emails in the data with 57 fea-
tures each. The task is check whether a email is spam or not. Since the dataset
has duplicated data instances, and the numbers of spams and non-spams are not
imbalanced, we removed duplicated data, kept the non-spams, and sampled 100
spams from the dataset. Finally we had 2631 data instances.

Computer network anomaly detection: The dataset is from a wireless mesh
network at the University of Sydney which was deployed by NICTA [20]. It used
a traffic generator to simulate traffic on the network. Packets were aggregated
into one-minute time bins and the data was collected in 24 hours. There were
391 origin-destination flows and 1270 time bins. Anomalies were introduced to
the network including DOS attacks and ping floods. After removing duplications
in the data, we had 1193 time-bin instances.

Damage detection on bridge: The Sydney Harbour Bridge is one of major
bridges in Australia, which was opened in 1932. As the bridge is aging, it is
critical to ensure it stays structurally healthy. Vibration data caused by passing
vehicles have been recorded by accelerometers installed on the joints under the
deck of bus lane. For this case study, only six instrumented joints were considered
(named 1 to 6). The data were obtained in the period from early August until
late October in 2012. A known crack existed in joint 4 while the other joints
were in good conditions. The feature extraction was used as described in [8].
A dataset was created to include vibration events from all healthy joints and
100 events from the damaged joint (totally 2523 events).

Each dataset was divided into a training set and a test set with 100 data
points. The results of using iECT and batch methods are shown in Table 4.
It shows that iECT has a high detection accuracy and is much more efficient
than the batch method. Also the commute time scores between iECT and batch
method were quite similar.

5.5 Impact of Parameters

In this section, we investigate how the parameters k1, k2, and kRP affect the effec-
tiveness of the proposed method. Parameters k1 and k2 only affect the accuracy
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Table 4. The effectiveness of iECT in real datasets. It shows that iECT has a high
detection accuracy and is much more efficient than the batch method.

Dataset Precision Recall iECT Batch

(%) (%) Avg Score Time (s) Avg Score Time (s)

Spambase 100 100 1.91 × 106 0.004 1.80 × 106 1.98

Network 100 100 6.40 × 105 0.005 6.39 × 105 0.83

Bridge 97.9 100 2.53 × 1012 0.10 2.54 × 1012 1.30

of computing commute time in batch mode and were analyzed in [7]. Therefore,
this section analyses impact of kRP to the incremental commute time.

We conducted an experiment with different kRP for the three real datasets
mentioned in the previous section. The results in Fig. 4 show that the method
can achieve high accuracy with small kRP and is not sensitive to kRP .
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Fig. 4. Anomaly detection accuracy with different kRP .

5.6 Summary and Discussion

The experimental results show that iECT can accurately approximate the com-
mute time in constant time. It is much more efficient than the batch method
using Algorithm 1. The results on real datasets collected from different domains
and applications also have similar tendency showing the reliability and effective-
ness of the proposed method. One weakness of iECT is that it can only be used
in online applications where the update of the graph is given by the addition of
a new node, not by updating the edge weights. However, in the case of updat-
ing edge weights, the method by Ning et al. in [12] can be used. This method
incrementally updates the eigenvalues and eigenvectors of the graph Laplacian
matrix based on a change of an edge weight on the graph. Then we can use the
new eigen pairs of the Laplacian to update the commute time.

6 Related Work

Khoa and Chawla [7] proposed a new method to find anomalies using commute
time. They showed that unlike Euclidean distance, commute time between two
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nodes can capture both the distance between them and their densities so that it
can capture both global and local anomalies using distance based methods.

Incremental learning using an update on eigen decomposition has been stud-
ied for a long time. Early work studied the rank one modification of the sym-
metric eigen decomposition [5,6]. The authors reduced the original problem to
the eigen decomposition of a diagonal matrix. Though they can have a good
approximation of the new eigenpair, they are not suitable for online applications
nowadays since they have at least O(n2) computation for the update.

More recent approach was based on the matrix perturbation theory [1]. It
used the first order perturbation analysis of the rank-one update for a data
covariance matrix to compute the new eigenpair. These algorithms have a linear
time computation. The advantage of using the covariance matrix is if the per-
turbation involving an insertion of a new point, the size of the covariance matrix
is unchanged. This approach cannot be applied directly to increasing matrix
size due to an insertion of a new point. For example, in spectral clustering or
commute time based anomaly detection, the size of the graph Laplacian matrix
increases when a new point is added to the graph.

Ning et al. [12] proposed an incremental approach for spectral clustering to
monitor evolving blog communities. It incrementally updates the eigen system
of the graph Laplacian matrix based on a change of an edge weight on the graph
using the first order error of the generalized eigen system. This algorithm is only
suitable for cases of weight update, not for an addition of a new node.

7 Conclusion

In this paper, we proposed a method to approximate commute time incremen-
tally and used it to design an online anomaly detection application. The method
incrementally estimates the commute time in constant time using properties of
random walk and hitting time. The main idea is to expand the hitting time
recursion until the random walk has moved a few steps away from the new
node and then use the old values. The experimental results in synthetic and real
datasets show the effectiveness of the proposed approach in terms of performance
and accuracy. iECT can incrementally estimate the commute time accurately,
resulting in high accuracy in several datasets from different applications. It only
took 8 milliseconds on average to process a new arriving node in a graph of more
than 600,000 nodes and two millions edges. Moreover, the idea of this work can
be extended in other applications which utilize the commute time.
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Abstract. The joint density of a data stream is suitable for performing
data mining tasks without having access to the original data. However,
the methods proposed so far only target a small to medium number of
variables, since their estimates rely on representing all the interdependen-
cies between the variables of the data. High-dimensional data streams,
which are becoming more and more frequent due to increasing num-
bers of interconnected devices, are, therefore, pushing these methods to
their limits. To mitigate these limitations, we present an approach that
projects the original data stream into a vector space and uses a set of
representatives to provide an estimate. Due to the structure of the esti-
mates, it enables the density estimation of higher-dimensional data and
approaches the true density with increasing dimensionality of the vec-
tor space. Moreover, it is not only designed to estimate homogeneous
data, i.e., where all variables are nominal or all variables are numeric,
but it can also estimate heterogeneous data. The evaluation is conducted
on synthetic and real-world data. The software related to this paper is
available at https://github.com/geilke/mideo.

1 Introduction

In the context of discrete densities, Geilke et al. [6,7] presented online density
estimators that not only capture the distribution of data streams but also sup-
port data mining tasks. The presented density estimates were described using
(ensembles of (weighted)) classifier chains, where each classifier predicts one
variable of the stream and is built using the variables of the previous classifiers.
This relationship is inspired by the chain rule of densities, according to which
the dependencies between the variables are modeled. As long as the density has
only a few variables, this method provides an accurate description of the data [6].
But as soon as the dimensionality increases, the number of classifiers and their
size grows quickly – making this approach unsuitable for data of high dimen-
sionality. High-dimensional data streams, however, are becoming more and more
frequent with the constantly increasing number of interconnected devices that
try to measure aspects of their environment to make intelligent decisions. For
example, future smart homes may have many sensors measuring various para-
meters such as temperature or humidity. By learning from past measurements,
machine learning algorithms have the possibility of distinguishing between typ-
ical and abnormal behavior and can suggest appropriate actions to the user.
c© Springer International Publishing AG 2016
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(a) object types (b) becoming a representative

Fig. 1. On the left are the main object types: landmarks (dark gray squares), repre-
sentatives (red), and instances (gray dots). On the right is the process of becoming
a representative: If a distance vector cannot be assigned to a representative or candi-
date, it is first considered a candidate (big dark gray circle). Over time more instances
appear in its neighborhood. If a predefined number is reached, the candidate is turned
into a representative (big red circle). (Color figure online)

Whereas an increase of the humidity in the basement can be explained by a
tumble dryer that has been started some time ago, such an increase in the bed
room could be due to water entering the room through an open window. The
former situation is probably quite normal for a household and requires no action,
the latter situation needs attention by the user. Providing an estimate that cap-
tures the density of the sensor measurements and provides facilities to perform
data mining tasks can be useful to develop such applications.

In this paper, we address the problem of estimating the joint density of
heterogeneous data streams with many variables. In data mining, one would
usually consider variables in the hundreds or thousands as many variables. For
density estimation, however, even 50 binary variables is already considered high-
dimensional, as there are 250 value combinations. For each of these combinations,
the estimator has to assign a density value, which makes the estimation a chal-
lenging task. To perform density estimation on data with many variables, we
designed an algorithm, called RED (Representative-based online Estimation of
Densities). The main idea is to project the data stream into a vector space of
lower dimensionality by computing distances to well-defined reference points.
In particular, we distinguish between three types of objects (see Fig. 1 for an
illustration): landmarks, representatives, and instances. Landmarks are reference
points spanning a vector space for representatives and instances, so that the posi-
tion of each object can be defined in terms of distances to the landmarks (e.g.,
the position of the red circle in Fig. 1 that is connected to the four landmarks (red
circles) can be specified as a four tuple (d1, d2, d3, d4), where di is the distance
to landmark i, i ∈ [1; 4]). Representatives stand for clusters of instances and
will be the main components for estimating probabilities. The landmarks will be
used to compute the relative distance of instances, and the representatives will
maintain statistical information about instances that have been observed in their
neighborhood. To maintain this information, we employ an extended version of
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the density estimators proposed by Geilke et al. [6]1, called EDO (Estimation
of Densities Online), and estimate the distances to nearby instances for each
representative. Compared to EDO, which directly estimates the density of the
instances, RED reduces the dimensionality of the dataset to the number of land-
marks. If this number is substantially smaller than the number of variables, the
model size of the estimators can be substantially reduced, thereby making the
approach suitable for data of higher dimensionality.

The main contributions of the paper are:

1. an online density estimator for heterogeneous data with many variables, i.e.,
data with many nominal and/or numerical variables,

2. a theoretical analysis for the choice of the landmarks,
3. a theoretical analysis for the consistency of the estimates.

2 Related Work

Whereas many data mining tasks have received considerable attention in the
context of stream mining recently, only little is known about the estimation of
joint densities in an online setting. In this setting, the algorithm has to learn
a joint density f solely from the instances of a data stream. Interdependencies
between instances are usually not taken into account, which distinguishes it from
online learning protocols where the outcome of a given variable is predicted based
on past outcomes [3].

Offline density estimation includes recent work based on decision trees [13],
where the leaves contain piecewise constant estimators. A similar approach was
pursued by Davies and Moore [4] as part of a conditional density estimator.
Work towards the estimation of conditional densities has been pursued among
others by Frank and Bouckaert [5] and Holmes et al. Multivariate densities are
frequently estimated using kernel density estimators [8,14], which is also the
predominant direction of the few online variants of density estimation so far.
For example, Kristan et al. [9–11] proposed a method yielding results that are
comparable to the corresponding batch approaches. Xu et al. [16] introduced
sequences of kernel density estimators to address density estimation from a data
stream with only a few variables. The approach presented in this work differs
from kernel density estimators in two aspects: (1) the data is projected into a
vector space of lower dimensionality by computing distances to reference points,
and (2) the basic density estimators are online density estimators that are able
to represent complex non-parametric densities.

Datasets with many instances were considered by Peherstorfer et al. [12].
They proposed to use a sparse grid where basis functions are not centered around
the instances but at grid points. Partitioning the space of data instances was also
the strategy pursed by RS-Forest by Wu et al. [15], who used a forest of trees

1 The density estimators are designed for discrete variables, but they can be extended
to mixed types of variables by using the conditional density estimators proposed by
Eibe and Frank [5]. Details will be provided in a forthcoming journal publication.
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to partition the data space. Density estimation on data streams with a greater
number of variables has – to the best of our knowledge – not been considered
so far, but the methods by Kristan et al. [11] and RS-Forest come closest to the
requirements and are, therefore, the methods we considered for a comparison.2

Although distances and representative instances have been used before to
project data into a space of lower dimensionality (e.g., multidimensional scaling),
the approach presented in the paper is different. Whereas other techniques try
to preserve the relevant characteristic properties of the data when embedding it
into a space of lower dimensionality, RED characterizes the data using landmarks
and provides a back translation to the original data. This back translation is a
crucial and necessary part to enable density estimation.

The approach pursued by RED is also different from micro-clustering [1].
Whereas micro-clusters maintain simple statistical properties of the data such
as the linear sum, RED uses landmarks and Gaussian mixtures to partition the
data space and then estimates the full joint density of each partition.

3 Density Estimation Using Representatives

Let X1, . . . , Xn be a set of variables and let x be an instance defined over these
variables. Given a possibly infinite stream of instances with many variables,
we address the problem of estimating its density, f : X1 × . . . × Xn → [0; 1],
in an online fashion, i.e., only the current instance and its current estimate is
provided. In order to determine a density estimate f̂ , we propose a method
that reduces their dimensionality by using a small set of reference points L :=
{L1, . . . , Lm}, so-called landmarks. With these reference points, it projects the
data into a vector space of dimensionality m < n by applying a mapping, hL :
X1 × . . . × Xn → R

m, to each instance x . Here, the i-th component of hL(x )
is defined as the distance between x and landmark Li. The estimate f̂ of f
is then expressed as the product of two independent components: an online
estimate ĝ that captures the density in the vector space and a correctionFactor,
which is the expected number of instances that are mapped to the same distance
vector – without the correction factor, we would only estimate g. Hence, f̂(x ) =
ĝ(hL(x )) · correctionFactor. In the remainder of this section, we give a detailed
description of these components and provide a theoretical analysis.

3.1 The Density of the Vector Space

In order to estimate the density g, RED distinguishes three kinds of objects in
the vector space: distance vectors, representatives, and candidates. A distance
vector is a projected data stream instance, which is determined by computing
the distances to the landmarks. A representative is a distance vector together
with a density estimator and a covariance matrix, where the density estimator

2 Unfortunately, even after several emails, the authors of RS-Forest did not respond
to our request to share their program.
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Algorithm 1. updateDensityEstimate
Input: landmarks L, instance x , mapping hL, number of neighbors k ∈ N,

candidate threshold θC→R ∈ N, C := {(c, Σ, b) | candidate c covariance,
matrix Σ, recent instances b}, R := {(r, Σ, e, b) | representative r,
covariance matrix Σ, estimator e, recent instances b}

// check representatives

1 Let (r, Σ, e, b) ∈ R with r being closest to hL(x )
2 e.update(hL(x )) if r.isMember(x , Σ)

// no matching representative?

3 if � ∃(r, Σ, e, b) ∈ R : r.isMember(inst, Σ) then
// no matching candidate?

4 if � ∃(c, Σ, b) ∈ C : c.isMember(inst, Σ) then
// find k closest neighbors

5 pq ← priorityQueue()
6 for (r, Σ, e, b) ∈ R do
7 nb ← (r, e, ‖r − hL(x )‖, b)
8 pq.insert(nb, ‖r − hL(x )‖)

9 neighbors ← {pq.peekMin() | k times}
// compute covariance matrix

10 sample ← ∅
11 for (r, e, ‖r − hL(x)‖, b) ∈ neighbors do
12 sample ← sample ∪ {x ′ | x ′ ∈ b}

// initialize candidate with empty buffer

13 C.append((x , covariance(sample), [x ]))

// matching candidates

14 else
15 for (c, Σ, b) ∈ C do
16 if c.isMember(hL(x ), Σ) then b ← b ∪ {x}; break
17 for (c, Σ, b) ∈ C with |b| ≥ θC→R do
18 e ← initialize EDO estimator
19 e.update(hL(x ))
20 R.append((c, Σ, e, b))

is supposed to provide a density estimate of nearby distance vectors. Whether
a distance is nearby is decided based on its Mahalanobis distance to the repre-
sentative. A candidate is a precursor of a representative. It will be turned into
a representative, if it gathers enough distance vectors around it. The intuition
behind these objects is that the landmarks provide a space with certain proper-
ties and guarantees, and the representatives and candidates are responsible for
modeling the density.

Given the current ĝ, the estimate is updated as follows (illustrated by Fig. 1):
The next instance x is first projected into the vector space by applying hL.
Then the resulting distance vector v is tested against all representatives. If a
representative is found, v is forwarded to the corresponding density estimator.
Otherwise, v is tested against all candidates. If a candidate is found, v is assigned
to the candidate. Otherwise, v becomes a candidate itself. Algorithm 1 describes
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the update procedure of RED in more detail. In lines 1–2, the EDO estimates are
updated if the new instance is considered as a member of that representative.
If it does not belong to any representative (line 5), we distinguish two cases:
the instance does not belong to any existing candidate (lines 3–16) or it does
(line 17–26). In the first case, the given instance becomes a candidate itself,
as no matching representative nor candidate has been found. For this purpose,
we determine the k closest representatives and compute a covariance matrix
from their most recent samples. The result is a new covariance matrix, which
will be used in the future to decide whether or not an instance belongs to the
new candidate. In the second case (there are candidates to which the instance
belongs), there is no need to create a new candidate. Instead, the buffers of
matching candidates are simply updated. However, since the recent updates
could result in buffer sizes of θC→R instances, the update procedure finishes with
checking the buffer size of all candidates (lines 21–25) and turning candidates to
representatives that have more than θC→R instances.

Membership Tests. Whether an instance belongs to a candidate or represen-
tative is decided by employing a multivariate normal density N (v ;Σ), where
v is the distance vector of the representative instance and Σ is a covariance
matrix computed from instances in the neighborhood – when a new candidate is
created, it is computed from recent samples of neighboring representatives. The
membership decision is based on the Mahalanobis distance, which is computed
as follows:

√
(x − r)TΣ−1(x − r). Any vector with a Mahalanobis distance less

than a user-defined threshold is then considered a member.

Handling of Noise. Almost all real-world applications suffer from certain
degrees of noise. Hence, handling noise is of paramount importance for density
estimators but in many cases difficult. In an online setting, the problem is even
more severe, since future instances cannot be included into the decision making
process. The EDO estimators employed by RED are able to handle noise, but in
order to keep them as clean as possible, it is important that a noisy instance does
not become a representative in the first place. Otherwise, this instance and every
instance in its neighborhood becomes inevitably a part of the estimate. There-
fore, RED distinguishes between candidates and representatives. If an instance
cannot be assigned to an existing representative, it is first considered a candidate
for becoming a representative. Only if enough instances are gathered around the
candidate, it becomes an actual representative.

Concept Drift. In real-world applications, the distribution of data streams
is changing constantly and a density estimator has to adapt to these changes
to provide reliable estimates. In order to address this problem, RED pursues
a timestamp-based solution. However, old instances are not simply discarded
when they become too old, but candidates and representatives are discarded if
no instance has been assigned to them within a certain period of time. This
time period is specified as a parameter and can be adjusted according to the
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smallest probability values that should be covered by the estimate – using Cher-
noff bounds, the parameter can be computed with high confidence.

When setting this parameter, one should also consider the parameter θC→R,
as a high value for θC→R prevents rare instances from becoming a part of the
density estimate. In our experiments, we usually set θC→R to 100, which is large
enough for a statistical test but not too large to exclude less frequent instances.

3.2 Distance Measure

With landmarks, high-dimensional data can be mapped to a lower dimensional
vector space. But dependent on the number and the choice of the landmarks,
the resulting vector space could still be relatively large, so that the distance
measure has to be chosen with care. For high-dimensional spaces, the Manhattan
distance (1-norm) or a fractional distance measure is usually the best choice
[2], so that we prefer p-norms with small p. Employing a p-norm, the mapping
hL : X1 × . . . × Xn → V1 × . . . × Vm with Vj ⊆ R, 1 ≤ j ≤ m, is defined as

hL(x )[Vi] :=

⎛

⎝
∑

Xj∈X

‖li[Xj ] − x [Xj ]‖p
⎞

⎠

1
p

,

where ‖ · ‖ computes the distance for the given variable values and is defined
as the difference li[Xj ]−x [Xj ]

max (Xj)−min (Xj)
for numeric values and li[Xj ]−x [Xj ]

#values ∈ [0; 1] for
nominal values. For p, we select values from the range (0; 2], which corresponds
to the Euclidean distance for p = 2, the Manhattan distance for p = 1, and to
fractional norms for 0 < p < 1. The denominator max (Xj) − min (Xj) can only
be estimated, as the currently observed minimum and maximum values cannot be
determined with certainty in a streaming setting, making a correct normalization
impossible. For typical applications, however, an estimate is probably more than
sufficient, since extreme deviations are most likely due to a concept drift.

3.3 Choice of the Landmarks

If the data stream is projected into a vector space with lower dimensionality,
information about the original instances will possibly be lost. In particular, some
of the variable interdependencies are no longer visible, as the mapping hL only
adds up the distances of individual variables. As a consequence, instances may
be projected into the same point of the vector space, i.e., there are x and x ′,
such that hL(x ) = hL(x ′) but x �= x ′. If the original instances has only nominal
variables ({X1, . . . , Xk}) and each variable has |Xi|, 1 ≤ i ≤ k, many values, then
there are already

∏k
i=1 2 · (|Xi|−1) many possible instances that are be mapped

to the same distance value. RED would treat all of these instances equally when
computing their density value, which poses no problem to the density estimate,
as long as similar distances to the landmarks correspond to similar density values
of the instances. But it implies that the information encoded by the distances
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to the landmarks needs to be sufficiently good. Therefore, we propose to choose
the landmarks in such a way that the estimate approaches the accuracy of the
underlying density estimator as |L| approaches n:

Definition 1. Let X := {X1, . . . , Xn} be the set of variables, and let m be
the requested number of landmarks. Then the first landmark L1 is defined as
(0)1≤j≤n and landmark Li+1, 1 ≤ i < m, is defined as

(
(i − j + 1) · max(Xj) − min(Xj)

m

)

1≤j<i

◦ (1) ◦ (0)j>i

where max(Xj) and min(Xj) are the currently observed maximum and minimum,
respectively. The set of landmarks is denoted by L := {Li | 1 ≤ i ≤ m}.

By construction of hL and by the choice of the landmarks, the mapping hL

projects any two instances x and x ′ to different points in the vector space as
long as x �= x ′, |L| = n+1, and certain assumptions hold. (An example is given
below.) Hence, the mapping becomes injective:

Lemma 1. If |L| = n+1, landmark Li, i ∈ [1;n+1], is defined as in Definition
1, and max is the actual maximum for all Xj ∈ X, then the projection mapping
hL : X1 × . . . × Xn → V1 × . . . × Vm with Vj = R, 1 ≤ j ≤ m, is injective.

Proof. Under the assumption that max(Xj) is the actual maximum for all Xj ∈
X, Lj [Xj ] is always larger than hL(x )[Vj ]. Hence, for xj1 �= xj2 ∈ Xj , hL(x j1)[Vj ]
is not equal to hL(x j2)[Vj ]. (Please notice that this would not have been the case,
if we had chosen Lj [Xj ] to be 1

2 ·max(Xj), since hL does not consider the sign of
differences, e.g., (min(Xj)+0.2)− 1

2 ·max(Xj) and (max(Xj)−0.2)+ 1
2 ·max(Xj)

result in the same distance).
So individual variable values do not cause two different instances to have the

same distance vector. It remains to show that this property is preserved when
computing the summation over all variable differences in hL. For this purpose,
we project X1 × . . .×Xn into R

n and first show that, if |L| = n+1, all vectors x
that start in the origin of Rn and are mapped to the same distance vector have
the same length. Let hL(x ) = (v1, v2, . . . , vm) be the distance vector of x . We
can determine the possible lengths of all instance vectors x that are mapped to
hL(x ) by finding the solution for the following system of equations:

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 v1
1 · s1 1 0 . . . 0 v2
2 · s1 1 · s2 1 . . . 0 v3

...
n · s1 (n − 1) · s2 (n − 2) · s3 . . . 1 vn

⎞

⎟⎟⎟⎟⎟⎠
,

where sj equals max(Xj)−min(Xj)
m . Due to the choice of the landmarks, the left-

hand side is a squared matrix with rank n. Hence, the system of equations has
only one unique solution: x = A−1b.
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Dependent on the norm employed by hL, there are fewer or more instances
having the same length in R

n. In case of the Euclidean norm, for example, the
corresponding vectors having the same distances to the landmarks L2, . . . , Ln+1

lie on the border of a (n−1)-dimensional norm sphere (notice that L1 is excluded
here). In order to ensure that the mapping hL is injective, we simply have to
include the landmark L1, which introduces another dimension and reduces the
border of the (n − 1)-dimensional norm sphere to a single point. The same
approach is also valid for arbitrary p-norms, which we prove by constructing a
contradiction: Let L be defined as in Definition 1. Assume that there are x �= y in

the projected vector space, such that ∀Li ∈ L :
(∑

Xj∈X ‖Li[Xj ] − x[Xj ]‖p
) 1

p

=
(∑

Xj∈X ‖Li[Xj ] − y[Xj ]‖p
) 1

p

. Due to the projection of x and y into R
n and

due to the definition of ‖ · ‖, ‖ · ‖ becomes | · | in R
n. From the first part of the

proof, we can conclude that for all Li ∈ L and for all Xj ∈ X:

|Li[Xj ] − x[Xj ]|p = |Li[Xj ] − y[Xj ]|p
⇔ |Li[Xj ] − x[Xj ]| = |Li[Xj ] − y[Xj ]|,

As this equation also has to hold for L1 (L1 = (0)1≤i≤n ∈ L) and as for all
Xj ∈ X : x[Xj ], y[Xj ] ≥ 0, this implies that for all Xj ∈ X : x[Xj ] = y[Xj ],
which contradicts the assumption that x �= y . �

This theorem makes a valuable statement about the validity of the method:
Although n+ 1 landmarks is probably infeasible for extremely high-dimensional
data streams, we know that additional landmarks are beneficial for the accuracy
of the method. Hence, it is up to the user whether the accuracy or memory
consumption is more critical.

3.4 Correction Factor

If |L| < n+1, the projection mapping hL maps several instances from the original
data stream into the same point of the vector space. When RED estimates the
density value of that point, it has actually estimated the density value of all
instances that are mapped to it. Since we have no additional information on
how to divide the density value among those points, we will divide it equally.

To obtain the density value from the original data stream, we have to multi-
ply it by the integral

∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞ (xi, xi+1, . . . , xp)dxi+1dxi+2dxn, which

is the expected density value of the variables Xi,Xi+1, . . . , Xn. In case where
all variables are discrete, this would simply be 1∏k

i=1 |Xi| . For a continuous vari-
able Xj , we will approximate the integral using a sampling technique. In par-
ticular, we employ a conditional density estimator for f(Xj | V1, V2, . . . Vm)
and sum f(xj | v1, v2, . . . , vm) over min(Xj) ≤ xj ≤ max(Xj) with step
size max(Xj)−min(Xj)

|S| and sample size |S|. Hence, the correction factor is 1, if
|L| ≥ n + 1.
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3.5 Illustrative Example

To illustrate the density estimation RED, we give a small example: We generated
a synthetic data stream of dimensionality 3, for which we selected the landmarks
L1 = (1, 0, 0), L2 = (0.2, 1, 0), and L3 = (0.3, 0.2, 1) and projected it into a vector
space of dimensionality 3. Subsequently, we also projected the data into a vector
space of dimensionality 2 – this time with the landmarks L1 = (1, 0, 0) and
L2 = (0.2, 1, 0). As Fig. 2 illustrates, the instance clusters are still visible after
applying hL to the data (see (a) and (d)). The relative positions remain roughly
the same, but due to the landmarks, they capture a different area in the vector
space. For the vector space that is induced by two landmarks, the instance
clusters are arranged similarly. When the instances have been mapped to the
vector space, it is up to the representatives to model the density. The density
values of the original data stream can then be computed by retranslating the
density value using the correctionFactor, where the correctionFactor accounts
for the instances that have been mapped to the same point in the vector space.
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Fig. 2. Illustrates a synthetic data stream (see Plot (a)) that is projected with three
landmarks (see Plot (b)) into a vector space of dimensionality 3 (see Plot (c)) and with
two landmarks to dimensionality 2 (see Plot (d)). Please notice the dark gray dots
in Plot (c) and (d) are the representatives. Due to the Mahalanobis distance, dense
regions have more representatives than sparse regions, which helps to model the density
more accurately. (Color figure online)
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3.6 Consistency

The consistency of a density estimator is a desirable property, as it ensures
that the estimator approaches the true density. We have already shown that the
number of instances that are mapped to the same point in the vector space can
be controlled by the number of landmarks. In the following, we will prove that
RED estimates are consistent, if some further conditions hold:

Theorem 1. If |L| = n + 1, L is defined as in Definition 1, min is the actual
minimum for all Xj ∈ X, max is the actual maximum for all Xj ∈ X, and ĝ is
consistent, then f̂ is consistent.

Proof. If |L| equals n+1, then the correction factor is 1, so that it remains to show
that f̂(x ) = ĝ(hL(x )). Furthermore, as Algorithm 1 partitions the vector space
into independent subregions where each subregion has its own online density
estimator, it suffices to show that the estimator of each subregion is consistent.

Since |L| equals n + 1 and the assumptions for min and max hold, hL is
injective according to Lemma 1. Hence, for any two instances x 1 and x 2 that
only differ in variable Xj by a small amount, it follows that

hL(x 1[Vi])p − hL(x 2[Vi])p =
p∑

k=1

ck · ‖x1 − x2‖,

by definition of hL, where 1 ≤ i ≤ n + 1 and ck are constants that have two
factors: li and a constant that results from the binomial theorem. In other words,
the density in the vector space is only shifted and compressed, but the original
information of f is completely contained in g. Therefore, we can conclude that
f̂(x ) = ĝ(hL(x )). �

4 Evaluation

In this section, we analyze the behavior of RED3 with respect to its parameters
on synthetic datasets and evaluate its capability to estimate joint densities on
several real-world datasets. RED has several parameters that have to be cho-
sen: the number of landmarks |L|, the Mahalanobis distance, the threshold of
becoming a representative θC→R, and the distance measure p. As θC→R is mostly
relevant for drift detection or for application tasks such as outlier detection, we
do not discuss this parameter here. Also not discussed is the parameter p, as a
detailed analysis would be in conflict with the given space constraints. Hence, we
focus our experimental analysis of the parameters on the number of landmarks
|L| and the Mahalanobis distance. For |L|, we consider the values 2, 3, 5, 10,
and 20. For the Mahalanobis distance, we consider the values 0.1, 0.5, 1.0, 2.0,
5.0, and 10.0.

3 An implementation of RED is available as part of the MiDEO framework: https://
github.com/geilke/mideo.

https://github.com/geilke/mideo
https://github.com/geilke/mideo
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As datasets, we generated synthetic data consisting of 1, 2, 5, or 10 multi-
variate Gaussians in a d-dimensional vector space with d ∈ {2, 3, 5, 10, 20}. The
mean variables and covariance matrices were drawn independently and uniformly
at random, where the values for the mean have been drawn from the interval
[−10; 10) and the values for the covariance matrix from the interval [0.5; 3).
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Fig. 3. For data of different dimensionality, the figures give some details about the
behavior of RED when the Mahalanobis or the number of landmarks is increased. All
plots are aggregated over all synthetic datasets. (Color figure online)

The influence of the number of landmarks is illustrated by Fig. 3. The shapes
of the curves show that the performance is increasing with the number of land-
marks until it reached the dimensionality of the dataset. So, for d2, the peak
performance is reached at 2, for d5, the peak performance is reached at 5, and,
for d10, the peak performance is reached at 10. The increase for |L| ≤ d is com-
pletely in line with Theorem 1. The decrease for |L| > d can be explained by the
increase of the vector space: Due to higher dimensionality of the vector space,
fewer and fewer instances share the same space and, hence, fewer instances are
available to provide an estimate for this region. This effect is also responsible for
the increase of the variance for increasing numbers of landmarks (as visible for
d10). Due to the small number of instances per region, the density estimators
are more sensitive to smaller changes, which results in an increased variance. So
generally, up to d landmarks are beneficial for the performance, but the closer |L|
gets to d, the more instances are required to compensate for the higher variance.

The effect of the Mahalanobis distance is summarized by Figs. 3 and 4. For
lower dimensional datasets (e.g., d2 and d3), the performance is slightly degrad-
ing for minor increases of the Mahalanobis distance. For M5.0 and M10.0, how-
ever, we already see substantial improvements, which can be explained by fewer
numbers of representatives, which have more instances at their disposal to pro-
vide a good estimate. For higher dimensional datasets (e.g., d10 and d20), this
trend is reverted, and we consistently observe that a low Mahalanobis distance
is the better choice among the given selection. This can be explained by the
possibility for each representative to specialize on regions with many instances.
Otherwise, one representative would be responsible for a diverse set of instances.
This observation is further supported by Fig. 3. If there is only one Gaussian, a
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Fig. 4. The heatmap summarizes the effects of the Mahalanobis distance for
data of different dimensionality di (i ∈ {2, 3, 5, 10, 20}). It shows the improve-
ment (red) and degradation (blue) if RED uses a specific Mahalanobis distance
(M0.5, M1.0, M2.0, M5.0, M10.0) compared with a Mahalanobis distance of 0.1. (Color
figure online)

higher Mahalanobis distance is beneficial. But if we have several Gaussians (e.g.,
10), a larger Mahalanobis distance leads to an degradation of the performance.
So generally, one can say the higher the dimensionality of the data, the lower
should be the Mahalanobis distance.

If data mining and machine learning should be performed on RED estimates,
the estimates have to describe the density of the data as accurately as possible.
Since several compromises have been made to enable the estimation of data
with many variables, we do not expect to outperform other density estimators.
However, the performance should be in the same order of magnitude.

In order to evaluate RED on real-world data, we selected the state-of-the
art online density estimation method, which is the online kernel density esti-
mator oKDE by Kristan et al. [11], and compared the performance on four
publicly available datasets: covertype (581, 012 instances, 54 attributes), elec-
tricity (45, 313 instances, 9 attributes), letter (19, 999 instances, 17 attributes),
and shuttle (58, 000 instances, 10 attributes). For every parameter setting and
for every dataset, the average log-likelihood is computed 15 times. In order to
take possible concept drifts into account, the log-likelihood was computed in a
prequential way, i.e., the log-likelihood of a given instance has been computed
before using it for training. The instances used to compute the initial estimator
(the first 100) were excluded from this computation.

The results are summarized in Fig. 5. The most apparent observation is the
performance increase with increasing numbers of landmarks. As already observed
on synthetic data, this performance increase is accompanied with an increase of
the variance. Dependent on the dataset the effect is visible to different degrees
and does not even depend on the number of variables (electricity vs. shuttle).
But most surprising is probably the abrupt increase on the covertype dataset.
A more detailed analysis of this matter revealed that this is due to the nature
of its instances. Covertype has 10 numerical variables, 43 binary variables, and
one further nominal variable. As most of the binary variables are 0 for almost all
instances, they do not provide sufficient additional information to justify more
landmarks. Hence, with every new landmark, the estimators have fewer instances
and provide estimates that are more sensitive to individual instances.
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(c) letter (17 attributes)
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Fig. 5. The figure shows a comparison of oKDE with RED for varying numbers of
landmarks (|L| ∈ {1, 2, 3, 4, 5, 10}) in the case of RED. On the y-axis is the average
log-likelihood computed in a prequential way. (Color figure online)

When we compare RED to oKDE, we observe that RED performs surpris-
ingly well. For electricity and letter, RED is approaching the performance of
oKDE. For shuttle, the performance is even better than that of oKDE, if RED
uses 5 or 10 landmarks. For covertype, oKDE was not even able to process
the dataset within 15 hours, whereas RED was able to produce results for all
landmark sizes. Hence, RED is able to compete with oKDE on low dimensional
data, when a sufficient number of landmarks is chosen, while it can also handle
high-dimensional data (e.g., more than 50 attributes). How many landmarks are
sufficient for a specific datasets depends on two aspects: its intrinsic dimension
and the selected landmarks (because the landmarks determine which dimensions
are considered for evaluating the distance function).

Considering that we made several compromises to enable the density esti-
mation of data streams with many variables, RED performed very good on low-
and medium-sized data streams. The insights we gained about the parameters
should be a useful guide for applications to other data streams. Alternatively,
one could also follow a multi-layer approach where three or four RED estima-
tors are initialized with different parameter settings. When enough instances are
available, one could then choose the estimator with highest log-likelihood. This
is enabled by excellent runtime behavior.
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Fig. 6. Number of instances processed per second. (Color figure online)

4.1 Runtime

RED offers many opportunities for parallelism. For our evaluation, however, we
wanted to keep the implementation simple and avoided any advanced optimiza-
tions. The current implementation is still fast enough for data streams appli-
cations, as Fig. 6 summarizes. The general behavior is the same for all tested
datasets (electricity, shuttle, and covertype). In the beginning, when almost no
representatives are discovered and the density estimators are still very simple, the
RED estimate is able to process 1400 or more instances per second. Then, with
increasing numbers of training instances, it drops to several hundred instances
per second before it stabilizes (at 100 to 300 instances per second, depending
on the number of landmarks). This is in line with the expected behavior of the
method. First, the instances are required to find a partitioning of the vector
space. When this partitioning is converging and the corresponding density esti-
mators have received a larger number of instances, the processing speed of the
estimator becomes more and more constant.

5 Conclusions

We proposed a new approach for estimating densities of heterogeneous data
streams with many variables, which reduces the dimensionality of the data by
projecting it into a vector space. In particular, the algorithm chooses a small
number of instances, called landmarks, and creates a vector space in which the
position of each instance is computed in terms of distances to the landmarks.
Subsequently, the density is described by partitioning the vector space with rep-
resentatives and estimating the density of each partition by employing online
density estimators. In the theoretical analysis, we showed the validity and con-
sistency of the presented density estimator. With experiments on synthetic and
real-world data, we showed that – despite the compromises that had to be made
to enable the estimation of densities with many variables – RED produces esti-
mates having a comparable performance to that of state-of-the art density esti-
mates. Keeping in mind that other approaches are possibly not able to handle
large numbers of variables, RED could be, at this point, the only available option
for some data streams.
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In the future, we plan to further analyze the choice of landmarks and plan to
perform data mining tasks such as outlier detection, the detection of emerging
trends and inference on RED estimates.
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Abstract. Structured high-cardinality data arises in many domains,
and poses a major challenge for both modeling and inference. Graphical
models are a popular approach to modeling structured data but they are
unsuitable for high-cardinality variables. The count-min (CM) sketch is
a popular approach to estimating probabilities in high-cardinality data
but it does not scale well beyond a few variables. In this work, we bring
together the ideas of graphical models and count sketches; and propose
and analyze several approaches to estimating probabilities in structured
high-cardinality streams of data. The key idea of our approximations is
to use the structure of a graphical model and approximately estimate its
factors by “sketches”, which hash high-cardinality variables using ran-
dom projections. Our approximations are computationally efficient and
their space complexity is independent of the cardinality of variables. Our
error bounds are multiplicative and significantly improve upon those of
the CM sketch, a state-of-the-art approach to estimating probabilities
in streams. We evaluate our approximations on synthetic and real-world
problems, and report an order of magnitude improvements over the CM
sketch.

1 Introduction

Structured high-cardinality data arises in numerous domains, and poses a major
challenge for modeling and inference. A common goal in online advertising is
to estimate the probability of events, such as page views, over multiple high-
cardinality variables, such as the location of the user, the referring page, and the
purchased product. A common goal in natural language processing is to estimate
the probability of n-grams over a dictionary of 100k words. Graphical models
[9] are a popular approach to modeling multivariate data. However, when the
cardinality of random variables is high, they are expensive to store and reason
with. For instance, a graphical model over two variables with M = 105 values
each may consume M2 = 1010 space.

A sketch [17] is a data structure that summarizes streams of data such that
any two sketches of individual streams can be combined space efficiently into
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 81–97, 2016.
DOI: 10.1007/978-3-319-46128-1 6
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the sketch of the combined stream. Numerous problems can be solved efficiently
by surprisingly simple sketches, such as estimating the frequency of values in
streams [3,4,15], finding heavy hitters [5], estimating the number of unique values
[7,8], or even approximating low-rank matrices [12,18]. In this work, we sketch
a graphical model in a small space. Let (x(t))n

t=1 be a stream of n observations
from some distribution P , where x(t) ∈ [M ]K is a K-dimensional vector and
P factors according to a known graphical model G. Let P̄ be the maximum-
likelihood estimate (MLE) of P from (x(t))n

t=1 conditioned on G. Then our goal
is to approximate P̄ with P̂ such that P̂ (x) ≈ P̄ (x) for any x ∈ [M ]K with at
least 1 − δ probability; in the space that does not depend on the cardinality M
of the variables in G. In our motivating examples, x is an n-gram or the feature
vector associated with page views.

This paper makes three contributions. First, we propose and carefully ana-
lyze three natural approximations to the MLE in graphical models with high-
cardinality variables. The key idea of our approximations is to leverage the
structure of the graphical model G and approximately estimate its factors
by “sketches”. Therefore, we refer to our approximations as graphical model
sketches. Our best approximation, GMFactorSketch, guarantees that P̂ (x) is a
constant-factor multiplicative approximation to P̄ (x) for any x with probability
of at least 1 − δ in O(K2 log(K/δ)Δ−1(x)) space, where K is the number of
variables and Δ(x) measures the hardness of query x. The dependence on Δ(x)
is generally unavoidable and we show this in Sect. 5.4. Second, we prove that
GMFactorSketch yields better approximations than the count-min (CM) sketch
[4], a state-of-the-art approach to estimating the frequency of values in streams
(Sect. 6). Third, we evaluate our approximations on both synthetic and real-
world problems. Our results show that GMFactorSketch outperforms the CM
sketch and our other approximations, as measured by the error in estimating P̄
at the same space.

Our work is related to Matusevych et al. [13], who proposed several exten-
sions of the CM sketch, one of which is GMFactorSketch. This approximation
is not analyzed and it is evaluated only on a graphical model with three vari-
ables. We present the first analysis of GMFactorSketch, and prove that it is
superior to other natural approximations and the CM sketch. We also evaluate
GMFactorSketch on an order of magnitude larger problems than Matusevych
et al. [13]. McGregor and Vu [14] proposed and analyzed a space-efficient stream-
ing algorithm that tests if the stream of data is consistent with a graphical model.
Several recent papers applied hashing to speeding up inference in graphical mod-
els [1,6]. These papers do not focus on high-cardinality variables and are only
loosely related to our work, because of using hashing in graphical models. We
also note that the problem of representing conditional probabilities in graphical
models efficiently has been studied extensively, as early as in Boutilier et al. [2].
Our paper is different from this line of work because we do not assume any spar-
sity or symmetry in data; and our approximations are suitable for the streaming
setting.
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We denote {1, . . . , K} by [K]. The cardinality of set A is |A|. We denote
random variables by capital letters, such as X, and their values by small letters,
such as x. We assume that X = (X1, . . . , XK) is a K-dimensional variable; and
we refer to its k-th component by Xk and its value by xk.

2 Background

This section reviews the two main components of our solutions.

2.1 Count-Min Sketch

Let (x(t))n
t=1 be a stream of n observations from distribution P , where x(t) ∈

[M ]K is a K-dimensional vector. Suppose that we want to estimate:

P̃ (x) =
1
n

n∑

t=1

1
{

x = x(t)
}

, (1)

the frequency of observing any x in (x(t))n
t=1. This problem can be solved in

O(MK) space, by counting all unique values in (x(t))n
t=1. This solution is imprac-

tical when K and M are large. Cormode and Muthukrishnan [4] proposed an
approximate solution to this problem, the count-min (CM) sketch, which esti-
mates P̃ (x) in the space independent of MK . The sketch consists of d hash tables
with m bins, c ∈ N

d×m. The hash tables are initialized with zeros. At time t,
they are updated with observation x(t) as:

c(i, y) ← c(i, y) + 1
{

y = hi(x(t))
}

for all i ∈ [d] and y ∈ [m], where hi : [M ]K → [m] is the i-th hash function.
The hash functions are random and pairwise-independent. The frequency P̃ (x)
is estimated as:

Pcm(x) =
1
n

mini∈[d] c(i, hi(x)). (2)

Cormode and Muthukrishnan [4] showed that Pcm(x) approximates P̃ (x) for any
x ∈ [M ]K , with at most ε error and at least 1−δ probability, in O((1/ε) log(1/δ))
space. Note that the space is independent of MK . We state this result more
formally below.

Theorem 1. Let P̃ be the distribution in (1) and Pcm be its CM sketch in (2).
Let d = log(1/δ) and m = e/ε. Then for any x ∈ [M ]K , P̃ (x) ≤ Pcm(x) ≤ P̃ (x)+
ε with at least 1 − δ probability. The space complexity of Pcm is (e/ε) log(1/δ).

The CM sketch is popular because high-quality approximations, with at most
ε error, can be computed in O(1/ε) space.1 Other similar sketches, such as
Charikar et al. [3], require O(1/ε2) space.
1 https://sites.google.com/site/countminsketch/.

https://sites.google.com/site/countminsketch/
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2.2 Bayesian Networks

Graphical models are a popular tool for modeling and reasoning with random
variables [10], and have many applications in computer vision [16] and natural
language processing [11]. In this work, we focus on Bayesian networks [9], which
are directed graphical models.

A Bayesian network is a probabilistic graphical model that represents con-
ditional independencies of random variables by a directed graph. In this work,
we define it as a pair (G, θ), where G is a directed graph and θ are its para-
meters. The graph G = (V,E) is defined by its nodes V = {X1, . . . , XK}, one
for each random variable, and edges E. For simplicity of exposition, we assume
that G is a tree and X1 is its root. We relax this assumption in Sect. 3. Under
this assumption, each node Xk for k ≥ 2 has one parent and the probability of
x = (x1, . . . , xK) factors as:

P (x) = P1(x1)
K∏

k=2

Pk(xk | xpa(k)),

where pa(k) is the index of the parent variable of Xk, and we use shorthands:

Pk(i) = P (Xk = i), Pk(i, j) = P (Xk = i,Xpa(k) = j), Pk(i | j) =
Pk(i, j)
Ppa(k)(j)

.

Let dom (Xk) = M for all k ∈ [K]. Then our graphical model is parameterized
by M prior probabilities P1(i), for any i ∈ [M ]; and (K − 1)M2 conditional
probabilities Pk(i | j), for any k ∈ [K] − {1} and i, j ∈ [M ].

Let (x(t))n
t=1 be n observations of X. Then the maximum-likelihood estimate

(MLE) of P conditioned on G, θ̄ = arg max θ P ((x(t))n
t=1 | θ,G), has a closed-form

solution:

P̄ (x) = P̄1(x1)
K∏

k=2

P̄k(xk | xpa(k)), (3)

where we abbreviate P (X = x | θ̄,G) as P̄ (x), and define:

∀i ∈ [M ] : P̄k(i) =
1
n

n∑

t=1

1
{

x
(t)
k = i

}
,

∀i, j ∈ [M ] : P̄k(i, j) =
1
n

n∑

t=1

1
{

x
(t)
k = i, x

(t)
pa(k) = j

}
,

∀i, j ∈ [M ] : P̄k(i | j) = P̄k(i, j)/P̄pa(k)(j).

3 Model

Let (x(t))n
t=1 be a stream of n observations from distribution P , where x(t) ∈

[M ]K is a K-dimensional vector. Our objective is to approximate P̄ (x) in (3), the
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frequency of observing x as given by the MLE of P from (x(t))n
t=1 conditioned

on graphical model G. This objective naturally generalizes that of the CM sketch
in (1), which is the MLE of P from (x(t))n

t=1 without any assumptions on the
structure of P . For simplicity of exposition, we assume that G is a tree (Sect. 2.2).
Under this assumption, P̄ can be represented exactly in O(KM2) space. This is
not feasible in our problems of interest, where typically M ≥ 104.

The key idea in our solutions is to estimate a surrogate parameter θ̂. We esti-
mate θ̂ on the same graphical model as θ̄. The difference is that θ̂ parameterizes
a graphical model where each factor is represented by O(m) hashing bins, where
m 	 M2. Our proposed models consume O(Km) space, a significant reduction
from O(KM2); and guarantee that P̂ (x) ≈ P̄ (x) for any x ∈ [M ]K and obser-
vations (x(t))n

t=1 up to time n, where we abbreviate P (X = x | θ̂,G) as P̂ (x).
More precisely:

P̄ (x)
K∏

k=1

[1 − εk] ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

[1 + εk] (4)

for any x ∈ [M ]K with at least 1−δ probability, where P̂ is factored in the same
way as P̄ . Each term εk is O(1/m), where m is the number of hashing bins.
Therefore, the quality of our approximations improves as m increases. More
precisely, if m is chosen such that εk ≤ 1/K for all k ∈ [K], we get:

[2/(3e)]P̄ (x) ≤ P̂ (x) ≤ eP̄ (x) (5)

for K ≥ 2 since
∏K

k=1(1 + εk) ≤ (1 + 1/K)K ≤ e for K ≥ 1 and
∏K

k=1(1 −
εk) ≥ (1 − 1/K)K ≥ 2/(3e) for K ≥ 2. Therefore, P̂ (x) is a constant-factor
multiplicative approximation to P̄ (x). As in the CM sketch, we do not require
that P̂ (x) sum up to 1.

4 Summary of Main Results

The main contribution of our work is that we propose and analyze three
approaches to the MLE in graphical models with high-cardinality variables. Our
first proposed algorithm, GMHash (Sect. 5.1), approximates P̄ (x) as the product
of K − 1 conditionals and a prior, one for each variable in G. Each conditional is
estimated as a ratio of two hashing bins. GMHash guarantees (5) for any x ∈ [M ]K

with at least 1−δ probability in O(K3δ−1Δ−1(x)) space, where Δ(x) is a query-
specific constant and the number of hashing bins is set as m = Ω(K2δ−1). We
discuss Δ(x) at the end of this section. Since δ is typically small, the dependence
on 1/δ is undesirable.

Our second algorithm, GMSketch (Sect. 5.2), approximates P̄ (x) as the
median of d probabilities, each of which is estimated by GMHash. GMSketch
guarantees (5) for any x ∈ [M ]K with at least 1 − δ probabil-
ity in O(K3 log(1/δ)Δ−1(x)) space, when we set m = Ω(K2Δ−1(x))
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and d = Ω(log(1/δ)). The main advantage over GMHash is that the space is
O(log(1/δ)) instead of O(1/δ).

Our last algorithm, GMFactorSketch (Sect. 5.3), approximates P̄ (x) as the
product of K−1 conditionals and a prior, one for each variable. Each conditional
is estimated as a ratio of two count-min sketches. GMFactorSketch guarantees (5)
for any x ∈ [M ]K with at least 1−δ probability in O(K2 log(K/δ)Δ−1(x)) space,
when we set m = Ω(KΔ−1(x)) and d = Ω(log(K/δ)). The key improvement
over GMSketch is that the space is O(K2) instead of being O(K3). In summary,
GMFactorSketch is the best of our proposed solutions. We demonstrate this
empirically in Sect. 7.

The query-specific constant Δ(x) = mink∈[K]−{1} P̄k(xk, xpa(k)) is the min-
imum probability that the values of any variable-parent pair in x co-occur in
(x(t))n

t=1. This probability can be small and our algorithms are unsuitable for
estimating P̄ (x) in such cases. Note that this does not imply that P̄ (x) cannot
be small. Unfortunately, the dependence on Δ(x) is generally unavoidable and
we show this in Sect. 5.4.

The assumption that G is a tree is only for simplicity of exposition. Our
algorithms and their analysis generalize to the setting where Xpa(k) is a vector
of parent variables and xpa(k) are their values. The only change is in how the
pair (xk, xpa(k)) is hashed.

5 Algorithms and Analysis

All of our algorithms hash the values of each variable in graphical model G, and
each variable-parent pair, to m bins up to d times. We denote the i-th hash
function of variable Xk by hi

k and the associated hash table by ck(i, ·). This
hash table approximates nP̄k(·). The i-th hash function of the variable-parent
pair (Xk,Xpa(k)) is also hi

k, and the associated hash table is c̄k(i, ·). This hash
table approximates nP̄k(·, ·). Our algorithms differ in how the hash tables are
aggregated.

We define the notion of a hash, which is a tuple h = (h1, . . . , hK) of K
randomly drawn hash functions hk : N → [m], one for each variable in G. We
make the assumption that hashes are pairwise-independent. We say that hashes
hi and hj are pairwise-independent when hi

k and hj
k are pairwise-independent

for all k ∈ [K]. These kinds of hash functions can be computed fast and stored
in a very small space [4].

5.1 Algorithm GMHash

The pseudocode of our first algorithm, GMHash, is in Algorithm 1. It approximates
P̄ (x) as the product of K − 1 conditionals and a prior, one for each variable Xk.
Each conditional is estimated as a ratio of two hashing bins:

P̂k(xk | xpa(k)) =
c̄k(hk(xk + M(xpa(k) − 1)))

cpa(k)(hpa(k)(xpa(k)))
,
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Algorithm 1. GMHash: Hashed conditionals and priors.
Input: Point query x = (x1, . . . , xK)

P̂1(x1) ← c1(h1(x1))

n
for all k = 2, . . . ,K do

P̂k(xk | xpa(k)) ← c̄k(hk(xk + M(xpa(k) − 1)))

cpa(k)(hpa(k)(xpa(k)))

P̂ (x) ← P̂1(x1)
K∏

k=2

P̂k(xk | xpa(k))

Output: Point answer P̂ (x)

where c̄k(hk(xk + M(xpa(k) − 1))) is the number of times that hash function hk

maps (x(t)
k , x

(t)
pa(k)) to the same bin as (xk, xpa(k)) in n steps, and ck(hk(xk)) is

the number of times that hk maps x
(t)
k to the same bin as xk in n steps. Note

that (xk, xpa(k)) can be represented equivalently as xk +M(xpa(k)−1). The prior
P̄1(x1) is estimated as:

P̂1(x1) =
1
n

c1(h1(x1)).

At time t, the hash tables are updated as follows. Let x(t) be the observation.
Then for all k ∈ [K], y ∈ [m]:

ck(y) ← ck(y) + 1
{

y = hk(x(t)
k )

}
,

c̄k(y) ← c̄k(y) + 1
{

y = hk(x(t)
k + M(x(t)

pa(k) − 1))
}

.

This update takes O(K) time.
GMHash maintains 2K −1 hash tables with m bins each, one for each variable

and one for each variable-parent pair in G. Therefore, it consumes O(Km) space.
Now we show that P̂ is a good approximation of P̄ .

Theorem 2. Let P̂ be the estimator from Algorithm 1. Let h be a random hash
and m be the number of bins in each hash function. Then for any x:

P̄ (x)
K∏

k=1

(1 − εk) ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

(1 + εk)

holds with at least 1 − δ probability, where:

ε1 = 2K[P̄1(x1)δm]−1, ∀k ∈ [K] − {1} : εk = 2K[P̄k(xk, xpa(k))δm]−1.

Proof. The proof is in Appendix. The key idea is to show that the number of
bins m can be chosen such that:

|P̂k(xk | xpa(k)) − P̄k(xk | xpa(k))| > εk (6)
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Algorithm 2. GMSketch: Median of d GMHash estimates.
Input: Point query x = (x1, . . . , xK)

for all i = 1, . . . , d do

P̂ i
1(x1) ← c1(i, h

i
1(x1))

n
for all k = 2, . . . ,K do

P̂ i
k(xk | xpa(k)) ← c̄k(i, h

i
k(xk + M(xpa(k) − 1)))

cpa(k)(i, hi
pa(k)(xpa(k)))

P̂ i(x) ← P̂ i
1(x1)

K∏

k=2

P̂ i
k(xk | xpa(k))

P̂ (x) ← median i∈[d] P̂
i(x)

Output: Point answer P̂ (x)

is not likely for any k ∈ [K] − {1} and ε1, . . . , εK > 0. In other words, we argue
that our estimate of each conditional P̄k(xk | xpa(k)) can be arbitrary precise.
By Lemma 1 in Appendix, the necessary conditions for event (6) are:

1
n

cpa(k)(hpa(k)(xpa(k))) − P̄pa(k)(xpa(k)) > εkαk,

1
n

c̄k(hk(xk + M(xpa(k) − 1))) − P̄k(xk, xpa(k)) > εkαk,

where αk = P̄pa(k)(xpa(k)) is the frequency that Xpa(k) = xpa(k) in (x(t))n
t=1.

In short, event (6) can happen only if GMHash significantly overestimates either
P̄pa(k)(xpa(k)) or P̄k(xk, xpa(k)). We bound the probability of these events using
Markov’s inequality (Lemma 2 in Appendix) and then get that none of the events
in (6) happen with at least 1 − δ probability when the number of hashing bins
m ≥ ∑K

k=1(2/(εkαkδ)). Finally, we choose appropriate ε1, . . . , εK .
Theorem 2 shows that P̂ (x) is a multiplicative approximation to P̄ (x). The

approximation improves with the number of bins m because all error terms εk

are O(1/m). The accuracy of the approximation depends on the frequency of
interaction between the values in x. In particular, if P̄k(xk, xpa(k)) is sufficiently
large for all k ∈ [K] − {1}, the approximation is good even for small m. More
precisely, under the assumptions that:

m ≥ 2K2[P̄1(x1)δ]−1, ∀k ∈ [K] − {1} : m ≥ 2K2[P̄k(xk, xpa(k))δ]−1,

all εk ≤ 1/K and the bound in Theorem 2 reduces to (5) for K ≥ 2.

5.2 Algorithm GMSketch

The pseudocode of our second algorithm, GMSketch, is in Algorithm 2. The
algorithm approximates P̄ (x) as the median of d probability estimates:

P̂ (x) = median i∈[d] P̂
i(x).
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Each P̂ i(x) is computed by one instance of GMHash, which is associated with the
hash hi = (hi

1, . . . , h
i
K). At time t, the hash tables are updated as follows. Let

x(t) be the observation. Then for all k ∈ [K], i ∈ [d], y ∈ [m]:

ck(i, y) ← ck(i, y) + 1
{

y = hi
k(x(t)

k )
}

, (7)

c̄k(i, y) ← c̄k(i, y) + 1
{

y = hi
k(x(t)

k + M(x(t)
pa(k) − 1))

}
.

This update takes O(Kd) time. GMSketch maintains d instances of GMHash.
Therefore, it consumes O(Kmd) space. Now we show that P̂ is a good approxi-
mation of P̄ .

Theorem 3. Let P̂ be the estimator from Algorithm 2. Let h1, . . . , hd be d ran-
dom and pairwise-independent hashes, and m be the number of bins in each hash
function. Then for any d ≥ 8 log(1/δ) and x:

P̄ (x)
K∏

k=1

(1 − εk) ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

(1 + εk)

holds with at least 1 − δ probability, where εk are defined in Theorem 2 for
δ = 1/4.

Proof. The proof is in Appendix. The key idea is the so-called median trick on
d estimates of GMHash in Theorem 2 for δ = 1/4.

Similarly to Sect. 5.1, Theorem 3 shows that P̂ (x) is a multiplicative approxi-
mation to P̄ (x). The approximation improves with the number of bins m and
depends on the frequency of interaction between the values in x.

5.3 Algorithm GMFactorSketch

Our final algorithm, GMFactorSketch, is in Algorithm 3. The algorithm approx-
imates P̄ (x) as the product of K − 1 conditionals and a prior, one for each
variable Xk. Each conditional is estimated as a ratio of two CM sketches:

P̂k(xk | xpa(k)) =
P̂k(xk, xpa(k))

P̂pa(k)(xpa(k))
,

where P̂k(xk, xpa(k)) is the CM sketch of P̄k(xk, xpa(k)) and P̂k(xk) is the CM
sketch of P̄k(xk). The prior P̄1(x1) is approximated by its CM sketch P̂1(x1).

At time t, the hash tables are updated in the same way as in (7). This update
takes O(Kd) time and GMFactorSketch consumes O(Kmd) space. Now we show
that P̂ is a good approximation of P̄ .
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Algorithm 3. GMFactorSketch: Count-min sketches of conditionals and priors.
Input: Point query x = (x1, . . . , xK)

// Count-min sketches for variables in G
for all k = 1, . . . ,K do

for all i = 1, . . . , d do

P̂ i
k(xk) ← ck(i, hi

k(xk))

n
P̂k(xk) ← mini∈[d] P̂

i
k(xk)

// Count-min sketches for variable-parent pairs in G
for all k = 2, . . . ,K do

for all i = 1, . . . , d do

P̂ i
k(xk, xpa(k)) ← c̄k(i, h

i
k(xk + M(xpa(k) − 1)))

n
P̂k(xk, xpa(k)) ← mini∈[d] P̂

i
k(xk, xpa(k))

for all k = 2, . . . ,K do

P̂k(xk | xpa(k)) ← P̂k(xk, xpa(k))

P̂pa(k)(xpa(k))

P̂ (x) ← P̂1(x1)
K∏

k=2

P̂k(xk | xpa(k))

Output: Point answer P̂ (x)

Theorem 4. Let P̂ be the estimator from Algorithm 3. Let h1, . . . , hd be d ran-
dom and pairwise-independent hashes, and m be the number of bins in each hash
function. Then for any d ≥ log(2K/δ) and x:

P̄ (x)
K∏

k=1

(1 − εk) ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

(1 + εk)

holds with at least 1 − δ probability, where:

ε1 = e[P̄1(x1)m]−1, ∀k ∈ [K] − {1} : εk = e[P̄k(xk, xpa(k))m]−1.

Proof. The proof is in Appendix. The main idea of the proof is similar to that
of Theorem 2. The key difference is that we prove that event (6) is unlikely for
any k ∈ [K] − {1} by bounding the probabilities of events:

P̂pa(k)(xpa(k)) − P̄pa(k)(xpa(k)) > εkαk,

P̂k(xk, xpa(k)) − P̄k(xk, xpa(k)) > εkαk,

where P̂k(xk, xpa(k)) is the CM sketch of P̄k(xk, xpa(k)) and P̂pa(k)(xpa(k)) is the
CM sketch of P̄pa(k)(xpa(k)).
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As in Sects. 5.1 and 5.2, Theorem 4 shows that P̂ (x) is a multiplicative
approximation to P̄ (x). The approximation improves with the number of bins
m and depends on the frequency of interaction between the values in x.

5.4 Lower Bound

Our bounds depend on query-specific constants P̄k(xk, xpa(k)), which can be
small. We argue that this dependence is intrinsic. In particular, we show that
there exists a family of distributions C such that any data structure that can
summarize any P̄ ∈ C well must consume Ω(Δ−1(C)) space, where:

Δ(C) = minP̄∈C,x∈[M ]K ,k∈[K]−{1}:P̄ (x)>0 P̄k(xk, xpa(k)).

Our family of distributions C is defined on two dependent random variables,
where X1 is the parent and X2 is its child. Let m be an integer such that
m = 1/ε for some fixed ε ∈ [0, 1]. Each model in C is defined as follows. The
probability of any m values of X1 is ε. The conditional of X2 is defined as follows.
When P̄1(i) > 0, the probability of any m values of X2 is ε. When P̄1(i) = 0, the
probability of all values of X2 is 1/M . Note that each model induces a different
distribution and that the number of the distributions is

(
M
m

)m+1
, because there

are
(
M
m

)
different priors P̄1 and

(
M
m

)
different conditionals P̄2(· | i), one for each

P̄1(i) > 0. We also note that Δ(C) = ε2. The main result of this section is proved
below.

Theorem 5. Any data structure that can summarize any P̄ ∈ C as P̂ such that
|P̂ (x) − P̄ (x)| < ε2/2 for any x ∈ [M ]K must consume Ω(Δ−1(C)) space.

Proof. Suppose that a data structure can summarize any P̄ ∈ C as P̂ such that
|P̂ (x) − P̄ (x)| < ε2/2 for any x ∈ [M ]K . Then the data structure must be able
to distinguish between any two P̄ ∈ C, since P̄ (x) ∈ {

0, ε2
}
. At the minimum,

such a data structure must be able to represent the index of any P̄ ∈ C, which
cannot be done in less than:

log2
((

M
m

)m+1
)

≥ log2
(
(M/m)m2+m

)
≥ m2 log2(M/m)

bits because the number of distributions in C is
(
M
m

)m+1
. Now note that m2 =

1/ε2 = Δ−1(C).
It is easy to verify that GMFactorSketch is such a data structure for

m = 5eΔ−1(C) in Theorem 4. In this setting, GMFactorSketch consumes
O(log(1/δ)Δ−1(C)) space. The only major difference from Theorem 5 is that
GMFactorSketch makes a mistake with at most δ probability. Up to this fac-
tor, our analysis is order-optimal and we conclude that the dependence on the
reciprocal of mink∈[K]−{1} P̄k(xk, xpa(k)) cannot be avoided in general.
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6 Comparison with the Count-Min Sketch

In general, the error bounds in Theorems 1 and 4 are not comparable, because
P̃ in (1) is a different estimator from P̄ in (3). To compare the bounds, we make
the assumption that (x(t))n

t=1 is a stream of n observations such that P̄ = P̃ .
This holds, for instance, when n → ∞, because both P̄ and P̃ are consistent
estimators of P . In the rest of this section, and without loss of generality, we
assume that P̄ = P̃ = P .

In this section, we construct a class of graphical models where
GMFactorSketch has a tighter error bound than the CM sketch. This class con-
tains naive Bayes models with K + 1 variables:

P (x) = P1(x1)
K+1∏

k=2

Pk(xk | x1). (8)

Variable X1 is binary. For any k ∈ [K + 1] − {1}, variable Xk takes values from
[M ]. For simplicity of exposition, we assume that the prior is P1(1) = P1(2) =
0.5. We fix x and define Ck = Pk(xk | x1) for any k ∈ [K + 1] − {1}.

Suppose that GMFactorSketch represents P1 exactly, and therefore P̂1 = P1.
Then by Theorem 4, for any x with at least 1 − δ probability:

P̂ (x) ≤ 1
2

[
K+1∏

k=2

Ck

][
K+1∏

k=2

(
1 +

2e

Ckm

)]
, (9)

where m is the number of hashing bins in GMFactorSketch. Since P̂1 = P1, we
can omit 1+ε1 from Theorem 4. This approximation consumes, up to logarithmic
factors in K, 2Km log(1/δ) space. The CM sketch (Sect. 2.1) guarantees that:

Pcm(x) ≤ 1
2

[
K+1∏

k=2

Ck

]
+

e

m′ =
1
2

[
K+1∏

k=2

Ck

] (
1 +

2e

m′

[
K+1∏

k=2

1
Ck

])
(10)

for any x with at least 1− δ probability, where m′ is the number of hashing bins
in the CM sketch. This approximation consumes m′ log(1/δ) space.

We want to show that the upper bound in (9) is tighter than that in (10)
for any reasonable m. Since GMFactorSketch maintains 2K times more hash
tables than the CM sketch, we increase the number of bins in the CM sketch to
m′ = 2Km, and get the following upper bound:

Pcm(x) ≤ 1
2

[
K+1∏

k=2

Ck

] (
1 +

e

Km

[
K+1∏

k=2

1
Ck

])
. (11)

Now both GMFactorSketch and the CM sketch consume the same space, and
their error bounds are functions of m.

Roughly speaking, the bound in (9) seems to be tighter than that in (11)
because it contains K potentially large values 1/Ck, each of which can be offset
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by a potentially small 1/m. On the other hand, all values 1/Ck in (11) are offset
only by a single 1/m. Now we prove this claim formally. Before we start, note
that both upper bounds in (9) and (11) contain 1

2

[∏K+1
k=2 Ck

]
. Therefore, we

can divide both bounds by this constant and get that the upper bound in (9) is
tighter than that in (11) when:

1 +
e

Km

[
K+1∏

k=2

1
Ck

]
>

K+1∏

k=2

(
1 +

2e

Ckm

)
. (12)

Now we rewrite each (1+2e/(Ckm)) on the right-hand side as (1/Ck)(Ck+2e/m)
and multiply both sides by

∏K+1
k=2 Ck. Then we omit

∏K+1
k=2 Ck from the left-hand

side and get that event (12) happens when:

e

Km
>

K+1∏

k=2

(
Ck +

2e

m

)
. (13)

If Ck is close to one for all k ∈ [K+1]−{1}, the right-hand side of (13) is at least
one and we get that m should be smaller than e/K. This result is impractical
since K is usually much larger than e and we require that m ≥ 1. To make
progress, we restrict our analysis to a class of x. In particular, let Ck ≤ 1/2
for all k ∈ [K + 1] − {1}. Then we can bound the right-hand side of (13) from
above as:

K+1∏

k=2

(
Ck +

2e

m

)
≤

(
1
2

)K (
1 +

4e

m

)K

≤ e

(
1
2

)K

for m ≥ 4eK. This assumption on m is not particularly strong, since Theorem 4
says that we get good multiplicative approximations to P̄ (x) only if m = Ω(K).
Now we apply the above upper bound to inequality (13) and rearrange it as
2K/K > m. Since 2K/K is exponential in K, we get that the bound in (9) is
tighter than that in (11) for a wide range of m and any x where Ck ≤ 1/2 for
all k ∈ [K + 1] − {1}. Our result is summarized below.

Theorem 6. Let P be the distribution in (8) and x be such that Pk(xk | x1) ≤
1/2 for all k ∈ [K + 1] − {1}. Let m ≥ 4eK and m′ = 2Km. Then for any
m < 2K/K, the error bound of GMFactorSketch is tighter than that of the CM
sketch at the same space. More precisely:

P (x)
K+1∏

k=2

(1 + εk) ≤ P (x) +
e

m′ ,

where εk are defined in Theorem 4.

The above result is quite practical. Suppose that K = 32. Then our upper
bound is tighter for any m such that:

4eK < 348 ≤ m ≤ 227 = 232/32 = 2K/K.
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By the pidgeonhole principle, Theorem 6 guarantees improvements in at least
2(M − 1)K points x in any distribution in (8). We can bound the fraction of
these points from below as:

2(M − 1)K

2MK
= exp[K log(M − 1) − K log M ] ≥ exp

[
− K

M − 1

]
≥ 1 − K

M − 1
.

In our motivating examples, M ≈ 105 and K ≈ 100. In this setting, the error
bound of GMFactorSketch is tighter than that of the CM sketch in at least
99.9% of x, for any naive Bayes model in (8).

7 Experiments

In this section, we compare our algorithms (Sect. 5) and the CM sketch on the
synthetic problem in Sect. 6, and also on a real-world problem in online adver-
tising.

7.1 Synthetic Problem

We experiment with the naive Bayes model in (8), where P1(1) = P1(2) = 0.5;
and:

∀i ∈ [N ] : Pk(i | 1) = 1/N, ∀i ∈ [M ] − [N ] : Pk(i | 1) = 0,
∀i ∈ [N ] : Pk(i | 2) = 0, ∀i ∈ [M ] − [N ] : Pk(i | 2) = 1/(M − N)

for any k ∈ [K + 1] − {1} and N 	 M . The model defines the following dis-
tribution over x = (x1, . . . , xK): when x1 = 1, P (x) = 0.5N−K and we refer to
the example x as heavy ; and when x1 = 2, P (x) = 0.5(M − N)−K and we refer
to the example x as light. The heavy examples are much more probable when
N 	 M . We set M = 216.

All compared algorithms are trained on 1M i.i.d. examples from distribution
P and tested on 500k i.i.d. heavy examples from P . We report the fraction of
imprecise estimates of P as a function of space. The estimate of P (x) is precise
when (1/e)P (x) ≤ P̂ (x) ≤ eP (x). When the sample size n is large, both P̄ → P
and P̃ → P , and this is a fair way of comparing our methods to the CM sketch.
We choose d = 5. We observe similar trends for other values of d. All results are
averaged over 20 runs.

7.2 Easy Synthetic Problem

We choose K = 4 and N = 8, and then P (x) = 2−13 for all heavy x. In this
problem, the CM sketch can approximate P (x) within a multiplicative factor
of e for any heavy x in about 213 space. This space is small, and therefore this
problem is easy for the CM sketch.

Our results are reported in Fig. 1a. We observe that all of our algorithms
outperform the CM sketch. In particular, note that Pcm approximates P well
for any heavy x in about 215 space. Our algorithms achieve the same quality of
the approximation in at most 213 space. GMFactorSketch consumes 210 space,
which is almost two orders of magnitude less than the CM sketch.
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7.3 Hard Synthetic Problem

We set K = 32 and N = 64, and then P (x) = 2−193 for all heavy x. In this
problem, the CM sketch can approximate P (x) within a multiplicative factor of
e for any heavy x in about 2193 space. This space is unrealistically large, and
therefore this problem is hard for the CM sketch.

)b()a(

Fig. 1. a. Evaluation of the CM sketch, GMHash, GMSketch, and GMFactorSketch on
the easy problem in Sect. 7.2 (dashed lines) and the hard problem in Sect. 7.3 (solid
lines). b. Evaluation on the real-world problem in Sect. 7.4.

Our results are reported in Fig. 1a and we observe three major trends. First,
the CM sketch performs poorly. Second, as in Sect. 7.2, our algorithms out-
perform the CM sketch. Finally, when the fraction of imprecise estimates is
small, our algorithms perform as suggested by our theory. GMHash is inferior to
GMSketch, which is further inferior to GMFactorSketch.

7.4 Real-World Problem

We also evaluate our algorithms on a real-world problem where the goal is to
estimate the probability of a page view. We experiment with two months of
data of a medium-sized customer of Adobe Marketing Cloud2. This is 65M page
views, each of which is described by six variables: Country, City, Page Name,
Starting Page Name, Campaign, and Browser. Variable Page Name takes
on more than 42k values and has the highest cardinality. We approximate the
distribution P over our variables by a naive Bayes model, where the class variable
is X1 = Country. Since the behavior of users is often driven by their locations,
this approximation is quite reasonable.

All compared algorithms are trained on 1M i.i.d. examples from distribution
P and tested on all heavy examples in this sample. We say that the example x is
heavy when P (x) > 10−6. The rest of the setup is identical to that in Sect. 7.1.

2 http://www.adobe.com/marketing-cloud.html.

http://www.adobe.com/marketing-cloud.html
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Our results are reported in Fig. 1b. We observe the same trends as in Sect. 7.3.
The CM sketch performs poorly, and our methods outperform it at the same
space for any space from 213 to 224. Also note that none of the compared methods
achieve zero mistakes. This is because our sample size n is not large enough to
approximate P well in all heavy x. Even if P̂ = P̄ , our methods would still make
mistakes.

8 Conclusions

Structured high-cardinality data arises in many domains. Probability distrib-
utions over such data cannot be estimated easily with guarantees by either
graphical models [9], a popular approach to reasoning with structured data;
or count sketches [17], a common approach to approximating probabilities in
high-cardinality streams of data. We bring together the ideas of graphical mod-
els and sketches, and propose three approximations to the MLE in graphical
models with high-cardinality variables. We analyze them and prove that our
best approximation, GMFactorSketch, outperforms the CM sketch on a class of
naive Bayes models. We validate these findings empirically.

The MLE is a common approach to estimating the parameters of graphical
models [9]. We propose, analyze, and empirically evaluate multiple space-efficient
approximations to this procedure with high-cardinality variables. In this work,
we focus solely on the problem of estimating P̄ (x), the probability at a single
point x. However, note that our models are constructed from Bayesian networks,
which can answer P (Y = y) for any subset of variables Y with values y. We do
not analyze such inference queries and leave this for future work.

Our work is the first formal investigation of approximations on the inter-
section of graphical models and sketches. One of our key results is that
GMFactorSketch yields a constant-factor multiplicative approximation to P̄ (x)
for any x with probability of at least 1−δ in O(K2 log(K/δ)Δ−1(x)) space, where
K is the number of variables and Δ(x) reflects the hardness of query x. This
result is encouraging because the space is only quadratic in K and logarithmic
in 1/δ. The space also depends on constant Δ(x), which can be small. This con-
stant is intrinsic (Sect. 5.4); and this indicates that the problem of approximating
P̄ (x) well, for any P̄ and x, is intrinsically hard.
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Abstract. We proposed a Hamiltonian Monte Carlo (HMC) method
with Laplace kinetic energy, and demonstrate the connection between
slice sampling and proposed HMC method in one-dimensional cases.
Based on this connection, one can perform slice sampling using a numeri-
cal integrator in an HMC fashion. We provide theoretical analysis on the
performance of such sampler in several univariate cases. Furthermore,
the proposed approach extends the standard HMC by enabling sam-
pling from discrete distributions. We compared our method with stan-
dard HMC on both synthetic and real data, and discuss its limitations
and potential improvements.

1 Introduction

One pivotal question in modern statistical computation is to efficiently sam-
ple from an unnormalized probability density function, where the normalization
constant (partition function) is intractable. Towards this end, many Markov
Chain Monte Carlo (MCMC) [22] methods have been developed. One of the
most influential algorithms is Metropolis-Hastings (MH) [15]. Despite its great
success, the random walk nature often delivers inefficient mixing of the Markov
chain [22]. An inappropriate setting of transition kernel would result in either
low acceptance ratio or slow moves. Such situation is exaggerated in high dimen-
sional cases, where the samples from the chain can be highly correlated. As a
consequence, the effective sample size is usually relatively small. A number of
adaptations have been proposed to mitigate these issues [12,20], however, achiev-
able improvements are limited if attempting maintaining the Markov property
and reversibility of the chain [1,10,18].

To mitigate the random walk behavior in MH, several approaches have been
proposed, such as Hamiltonian Monte Carlo (HMC) [9,20]. HMC augments a tar-
get distribution with auxiliary momentum variables, and uses gradient informa-
tion to propose distant samples, while maintaining ergodic property and detailed
balance. The ability of long-range movement with a high acceptance ratio signif-
icantly improves mixing performance. However, HMC is sensitive to parameter
settings and can only sample continuous distributions. Towards solving these
issues, methods were proposed to use adaptive leap-frog steps [13], or automatic
stepsize [16], and to relax the discrete distributions sampling tasks to continu-
ous distributions [21,26]. The improvement can be further boosted by leveraging
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 98–114, 2016.
DOI: 10.1007/978-3-319-46128-1 7
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geometric manifold information [10], by considering better numerical integrators
[6], or by relaxing the detailed balance constraint [24].

A different direction towards improving sampling performance is the slice
sampler [19]. The slice sampler is related to HMC in the sense that both use aux-
iliary variables for efficient moves. These moves can be automatically adapted
to match the relative scale of the local region being sampled [19]. The sam-
pling procedure alternates between uniformly drawing samples from the target
distribution and uniformly drawing the slice variables. Unlike HMC, slice sam-
pling does not require local gradient information. Instead, the primary effort is
to locate slice intervals, where the unnormalized density values are greater than
the slicing variable. This is typically hard to compute directly, thus requires local
search [19]. Further, it is generally less feasible in high-dimensional parameter
spaces, because the slice interval is difficult to approximate. For example, using
hyper-rectangle estimation may result in high rejection rates [19]. Elliptical slice
sampling [17] alleviate this issue by slicing on a high dimensional elliptical curve
parameterized by a single scalar. However it assumes the latent variable to be
Gaussian distributed.

In this paper, we leverage the Hamiltonian-Jacobi equation from classical
physics [11] to unveil a deeper connection between HMC with modified kinetics
and standard slice sampling in one-dimensional cases. We propose an equiva-
lent slice sampler, which exploits gradient information without evaluating the
slice interval. We formally show that, in several univariate scenarios where the-
oretical analysis is tractable, the proposed sampler yields lower autocorrelation
compared with standard HMC, thus potentially yielding higher effective sample
sizes. Finally, we discuss the scenario where our method is most desirable and
validate it with synthetic and real-world experiments.

2 Preliminaries

Hamiltonian Monte Carlo. Consider sampling from a probability density
function p(x) ∝ exp[−E(x)], where x ∈ R

d and E(x) is the potential energy.
One can augment the density with an auxiliary momentum random variable
p ∈ R

d. By Assumption, p is independent of x, and has a marginal Gaussian
distribution with zero-mean and covariance matrix M . The joint distribution
p(x,p) is defined as p(x,p) ∝ exp[−H(x,p)] = exp[−E(x) − K(p)], where
H(x,p) is the total energy or Hamiltonian, and K(p) = 1

2pT M−1p is the kinetic
energy. Hamiltonian Monte Carlo leverages Hamiltonian dynamics to propose
new samples for x, driven by the following ordinary differential equations (ODE):

dx

dt
= ∇pK(p) ,

dp

dt
= −∇xE(x) . (1)

The Hamiltonian is preserved under perfect simulation, i.e, it is constant over t.
However, closed-form dynamic updates are typically infeasible. As a result, one
typically employs numerical integrators, e.g., the leap-frog [20], to approximate
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the Hamiltonian flow. If the integrator is symplectic, by Liouville’s theorem, the
corresponding sampler is invariant to the target distribution [20].

Slice sampling. Slice sampling [19] was originally proposed as an approach to
overcome the need of manually selecting the proposal scale (or stepsize) in the
Metropolis-Hastings algorithm. Slice sampling leverages the fact that sampling
the unnormalized target distribution f(x) can be perceived as sampling a joint
distribution. Therefore, sampling from the points under the unnormalized den-
sity curve is the same as sampling from the target distribution. The iterative
procedure consists the following slicing and sampling steps:

Slicing : p(yt|xt) =
1

f(xt)
, s.t. 0 < yt < f(xt)

Sampling : q(xt+1|yt) =
1

Z2(yt)
, s.t. f(xt) > yt , (2)

where y is the augmented slicing variable. f(x) � e−E(x) is the unnormalized
density and Z2(y) =

∫
f(x)>y

1dx is the measure of regions that have functional
values greater than the slice variable y. The density function is given by

p(x, y) =
{

1
Z1

, 0 < y < f(x)
0 , otherwise

,

where Z1 =
∫

f(x)dx is the normalizing constant. The marginal distribution for
x exactly recovers the target distribution f(x)/Z1. The evaluation of slice interval
x : f(x) > y is typically non-trivial, where iterative procedures to adaptively
capture the boundaries of such slice interval are used [19].

3 Canonical Transformation

In this section we use the canonical transformation and the Hamilton-Jacobi
equation (HJE) [11] to reveal a connection between HMC with Laplace kinet-
ics and slice sampling. Without loss of generality to the multivariate cases, for
simplicity, here we detail our derivations for the univariate case.

Suppose the kinetic energy function K(p) in HMC can be defined as an arbi-
trary function of p, as long as the K(p) is convex and symmetric w.r.t. p. We
consider two particular kinetics forms. The standard HMC uses quadratic kinet-
ics K(p) = p2/m, where m is the mass parameter and the marginal distribution
of p is proportional to e−K(p), thus is Gaussian distributed with variance m.

We employ the canonical transformation from classical physics to transform
the original HMC system (H,x, p, t) in (1), into a new system space, termed as
canonical space [11]: (H ′, x′, p′, t). The transformation (H,x, p, t) → (H ′, x′, p′, t)
satisfies the Hamilton’s principle [11]:

λ(p · ẋ − H) = p′ · ẋ′ − H ′ +
δG

δt
, (3)
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where λ ∈ R is a constant, ẋ � dx/dt, δ denotes functional derivative and G
is a user-defined generating function [25]. Such a generating function can be of
several types; here we use a type-2 generating function defined as

G � −x′ · p′ + S(x, p′, t) .

The explicit form of S(x, p′, t) is defined below. By substituting G into (3), one
can establish the following equations:

p =
∂S

∂x
, x′ =

∂S

∂p′ , H ′(x′, p′) = H(x, p) +
∂S

∂t
. (4)

In the HJE, we let the new Hamiltonian H ′ to be zero, i.e.,

H(x, p) +
∂S

∂t
= H ′(x′, p′) = 0 . (5)

The Hamilton-Jacobi equation states that after this transformation, the motion
of particles collapse into a point in the new space, i.e., (x′, p′) are constant over
time [25].

Consider setting the Hamilton’s principal function as S(x, p′, t) = W (x)−p′t,
where W (x) is an unknown function of x that needs to be solved. Thereby, (5)
becomes

H(x, p) +
∂S

∂t
= H(x, p) − p′ = 0 . (6)

The implication from (6) is that p′ = H; i.e., the generalized momentum in the
new phase space, (x′, p′), represents the total Hamiltonian in the original space.
We consider the standard Gaussian kinetic function K(p) = |p|2/m. From (4)
and (5), we can solve the functional equation in (6) to obtain,

W (x) =
∫ x(t)

xmin

f(z)dz + C , (7)

where f(z) = H − E(z) if z ∈ X � {x : H − E(x) ≥ 0}, and 0 otherwise, and
xmin = min{x : x ∈ X}. From (4), (6) and (7),

x′ =
∂S

∂p′ =
∂W

∂H
− t =

1
2

∫ x(t)

xmin

f(z)−1/2dz − t . (8)

Note that x′ is a constant. In (8),
∫ x(t)

xmin
f(z)−1/2dz ∈ [0,

∫
X
[H − E(z)]−1/2dz].

Our objective is to mimic the Hamiltonian dynamics evolving with a random
evolution time, t. If we assume a closed contour, the Hamiltonian dynamics has
period T �

∫
X
[H −E(z)]−1/2dz. To sample a new point x(t) on the contour, one

can first sample the time, t, constrained to a single period of movement, i.e,

t ∼ uniform
(

−x′,−x′ +
∫

X

[H − E(z)]−1/2dz

)
. (9)
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where x′ can be understood as the “initial” timestamp of x. With a sampled
time t from (9), one could solve the Eq. (8) for x∗ � x(t), i.e., the value of x at
time t.

However, the integral in (8) is not always tractable. Note that the integral
in (8) can be interpreted as (up to normalization) a cumulative density function
(CDF) of x. As a result, one can circumvent uniformly sampling t from (9), by
directly sampling x∗ from the following density function

p(x∗|H) ∝ [H − E(x∗)]−1/2 , s.t., H − E(x∗) ≥ 0 . (10)

Note that p∗ is not of interest because it is discard after each dynamic update.
This transformation provides the basic setup to reveal the equivalence

between the slice sampler and HMC, which is discussed in Sect. 4.

4 Laplacian HMC

Let L(·;m) denote the Laplace distribution with scale parameter m, the proba-
bility density function is given by

L(p;m) ∝ exp(−|p|/m)

We denote the non-standard HMC with Laplace distribution for the momentum
variable as Laplacian HMC (L-HMC). Suppose we assume the momentum vari-
able have Laplace kinetics, i.e. employing an �1 norm for the kinetic function,
similar to the derivation in (10), we have

p(x∗|H) ∝ 1 , s.t., H − E(x∗) ≥ 0 . (11)

In light of the above observation, we propose to perform standard HMC and
L-HMC with the procedure described in Algorithm 1.

Algorithm 1. HMC/L-HMC in canonical space.
Input: Sample size T , energies E(x) and K(p; m).
Output: Sample results, {x0, . . . , xT }.
Initialization: Choose initial sample point, x0.
for t ∈ {1, . . . , T} do

Sample pt ∼ N (p; m) (standard HMC) or L(p; m) (L-HMC).
Compute Hamiltonian: Ht = E(xt) + K(pt).
Compute X � {x : x ∈ R; E(x) ≤ Ht}.
Sample q(xt+1|Ht) ∝ [Ht − E(xt+1)]

−1/2(standard HMC) or q(xt+1|Ht) ∝ 1 (L-
HMC), with xt+1 ∈ X.

end for

Denote yt = e−Ht , the conditional updates for the L-HMC sampling proce-
dure in Algorithm 1 share the same formulas as standard slice sampling in (2)
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Note that the mass parameter m (scale parameter of the Laplace distribution)
is cancelled out.

Accordingly, the equivalent non-standard slice sampling that corresponds to
standard HMC can be written as

p(yt|xt) =
1

f(xt)
[log f(xt) − log yt]−

1
2 , s.t. 0 < yt < f(xt) (12)

q(xt+1|yt) =
1

Z2(yt)
[log f(xt+1) − log yt]−

1
2 .s.t. f(xt+1) > yt (13)

We denote this slice sampler as HMC-SS (the slice sampler corresponding to
standard HMC). This iterative procedure yields an invariant joint distribution

p(x, y) =

{
1√
πZ1

[log f(x) − log y]
1
2 , 0 < y < f(x)

0 , otherwise
,

leaving the marginal distribution for x as the desired target distribution, while
the marginal distribution of y is given by

p(y) = Z2(y)/(
√

πZ1) . (14)

The equivalent slice sampler for standard HMC and L-HMC is illustrated in
Fig. 1. For HMC-SS, the conditional distribution of q(xt+1|yt) is skewed, so that
points that are close to the boundary of the slice interval are more likely to be
drawn. In addition, from (12) the conditional draw of slice variable yt given xt

tends to take values close to f(xt).
Intuitively, in contrast with the standard slice sampling, the auxiliary variable

yt in HMC-SS tend to stay close with f(xt), rendering xt+1 to be close to xt.
Thus the standard slice sampler with a larger a is expected to be more efficient.
Based on the connection between HMC-SS and HMC, as well as standard SS
with L-HMC, this seems suggest L-HMC is more efficient that standard HMC.
We elaborate more about the mixing performance in Sect. 6.

Fig. 1. Standard slice sampling (Left). The equivalent slice sampler of standard HMC,
HMC-SS (Middle). Mapping between HMC space and canonical space (Right). yt|xt is
sampled from (12) (red line) and xt+1|yt from (13) (blue line). L-HMC is essentially
the same but with yt|xt and xt+1|yt sampled from uniform distributions. (Color figure
online)
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5 Performing L-HMC with Numerical Integrators

Section 4 shows that performing L-HMC in the canonical space can be viewed as
performing standard slice sampling. In practice, however, analytically solving the
slice interval, X, is typically infeasible. By leveraging the connection between L-
HMC and standard slice sampling, one can perform the standard slice sampling
in the original space using a numerical integrator, as done in standard HMC.
Here we consider the second order Störmer-Verlet integration [20]. The updates
for L-HMC1 are thus given as the following leap-frog steps

pt+1/2 = pt − 1
2ε∇E(xt) , (15)

xt+1 = xt + εsign(p)/m , (16)

pt+1 = pt+1/2 − 1
2ε∇E(xt+1) , (17)

Note that the mass matrix in our specification is M = mI. Here we use a
random step size, ε, drawn from a uniform distribution with user-defined width,
as suggested in [20]. Note that this specification is necessary for L-HMC to avoid
moving on a fixed grid determined by ε.

Reflection. Another practical issue that comes with the fact that each contour
in the phase space (x, p) has at least 2D stiff (non-differentiable) points due to
the non-differentiable kinetic function K(p). The stiff points occur whenever the
contour intersect with hyperplanes pd = 0, for d ∈ {1 · · · D}; D denotes the total
dimension.

The naive leap-frog approach of L-HMC in (15)–(17) would lead to high inte-
gration errors, comparing with standard HMC, especially when the dimension-
ality is high. To alleviate this issue, we take a “reflection” action when encoun-
tering these stiff points, which shares some similarities with the “bouncing ball”
strategy mentioned by [20]. Specifically, in (15) and (17), whenever the d-th
component of momentum p(d) changes sign, we set x

(d)
t+1 and p

(d)
t+1 back to x

(d)
t

and p
(d)
t , and flip p

(d)
t = −p

(d)
t . A caveat of such a simple remedy lies in the fact

that it may not guarantee the conservation of volume in phase space, thus may
not leave the distribution invariant. Also, one will probably face “stickiness” in
the high dimensional case [20]. This is because when negating the momentum in
certain dimension(s), the next sample xt may stay at the previous position, for
those dimension(s). In high dimensions, this problem becomes more prominent
since the chance of “reflection” for each update is considerably higher, yielding
the whole sampler to perform less efficiently. Besides, this reflection strategy
may render the sampler to be less sensitive on tail region of the target distribu-
tion. We note that this strategy may violate the invariance property. We hope to
remark that the reflection is a first-remedy to ameliorate numerical difficulties.
Nevertheless, this approach preserves the total Hamiltonian, and performs well
in practice for low-dimensional cases.

1 In the following, we denote L-HMC as the one in the original space, except otherwise
explicitly stated.
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Sample with constrained domain. As mentioned by [20], one could split the
total Hamiltonian, to approach sampling from a bounded domain. An imaginary
infinite potential energy can be imposed on regions that violate the constraints,
which will give such points zero probability. Whenever the new proposed sample
exceeds the constraint, we bounce the sample back. For example, when sampling
from a truncated distribution with constraint x(d) > m, if at time t the proposed
x
(d)
t < m, the value 2m − x

(d)
t would be used instead, while the corresponding

moment, p
(d)
t , changes sign.

Partial momentum refreshment. Using fewer number of leap-frog steps
would reduce the computational cost of L-HMC, however rendering the algo-
rithm less likely to adequately explore the contour and move to a distant point.
[20] described a strategy to partially update the momentum variable, as an app-
roach to further suppress the random-walk behavior when only a small number
of leap-frog steps are taken, in which the distribution of the momentum would
still be invariant. For the double-exponential kinetic energy form, one could con-
sider a similar strategy to partially refresh the momentum. For the univariate
case, without loss of generality to high dimensions, the update for momentum is
given by

p̃ = min(p/α, η/(1 − α))sign(p) , (18)

where α ∈ (0, 1) is a tuning parameter and η is an exponential random variable
with mean 1/m. It can be shown that p̃ has the same distribution as p. When
α is close to 1, the generated new momentum p̃ would be similar to p. When α
is close to zero, the absolute value of the new momentum becomes independent
of its previous value. Similar to partial refreshment in standard HMC [20], one
iteration applying the modification in (18) consists of three steps: (1) Updating
momentum using (18), (2) performing a leap-frog discretization and Metropolis
step, and (3) negating the momentum. In practice, the value of α has to be
manually selected to achieve good performance.

Sampling discrete distributions. Sampling from discrete distributions such
as Poisson, multinomial, Bernoulli, etc., is generally infeasible for standard HMC,
primarily due to the lack of gradient information. Recently proposed techniques
tackle the discrete case by transforming it into sampling from a continuous dis-
tribution [21,26]. We show here that one can directly sample from a discrete
distribution with L-HMC.

Notice from Eq. (16) that the update of x for each leap-frog discretization
step depend only on the sign of the momentum variable p. Based on this observa-
tion, one can sample a discrete distribution exactly, in an HMC manner. Consider
a scenario, where a multivariate distribution with D dimensions is defined on
an infinite grid with equidistant step m. Equation (16) allows the Hamiltonian
dynamics to move in such a way, that each update in x moves with multi-
ples of m, so as to stay on the grid. Meanwhile, the gradients in (15) and (17)
are substituted with the difference vector 	E(x), where its d-th component is
	(d)E(xt−1/2) � E(xt) − E(x(d)

t−1,x
(−d)
t ), x(d) denotes the d-th component of
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x and x
(−d)
t denotes the remaining D − 1 components. The iterative updates

become

xt = xt−1 + ε ◦ sign(p)/m , pt = pt−1 − ε ◦ 	E(xt−1/2) ,

where the stepsize ε is constrained to ZD and ◦ is the element-wise product.
The reason that this strategy can not be applied to standard HMC is because
in L-HMC, each increment xt+1 − xt is a constant that does not depend on
the absolute value of momentum p, while in standard HMC, different value of
p will yield different increment xt+1 − xt. As a result, the sampler may not
move on a uniform grid. In practice, one could sample ε ∈ RD and round
it to the closest integer vector. It can be shown that the Hamiltonian is pre-
served under such procedure in univariate cases. For multivariate cases, the dif-
ference vector can be normalized to enforce the conservation of Hamiltonian,
i.e.

∑	E(xt−1/2) = E(xt) − E(xt−1). Note that when the Hamiltonian is
preserved, the Metropolis-Hasting step can be omitted. As in the continuous
scenario, the momentum is negated whenever it would change sign in the next
iteration. This specification works well in practice for our tested cases when
the dimensionality is low (D < 5), however, we remark that this specification
would violate the volume preservation and is not the principled way to perform
high-dimensional discrete sampling (when the dimensionality increase, the error
between E(xt+1) − E(xt) and 	E(xt would inevitably become larger). How to
perform a high dimensional discrete sampling remain as a interesting topic for
future investigation. If E(x) has well-defined gradient information over the real
domain that covers the grid, one can relax the calculation to the continuous
space, where the gradient ∇E(x) is computed, instead of D evaluations of the
potential energy, E(x).

Adaptive search. The fact that updating x does not explicitly involve p may
have additional implications. Following [23], this observation enables applying
adaptive search for appropriate scale of stepsize, ε, based on the sufficient statis-
tics from previous samples. For example, one could set the relative scale of the
stepsize for each coordinate to match the diagonal elements from the empirical
covariance matrix. Note that this strategy is particularly suitable to be applied
to L-HMC, due to the fact that the update of the dynamics in L-HMC is moving
exactly in the direction of the stepsize, ε. This strategy would be expected to
perform better than choosing a common stepsize for each dimension, when the
landscape has different scales for each dimension. The convergence of adaptive
parameters requires establishing regularity conditions [12]. Though it works well
in many cases, it is known that this strategy results in a chain that is no longer
Markovian, thus it will not always leave the target distribution invariant [23].
Besides, when the distribution has more than one mode, applying this method
may render the sampler prone to get trapped into one of the modes.
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6 Efficiency Analysis

We note that most of previous work of analyzing the mixing performance of HMC
is based on empirical studies. Little work has been done on theoretical analysis
[10,20]. Interestingly, we can leverage the implicit connection between HMC
and slice sampling, to briefly touch on the analysis of the mixing performance
for HMC and L-HMC from examining their corresponding slice samplers. We
use the autocorrelation function and effective sample size to monitor mixing
performance. We consider sampling from a univariate distribution p(x) ∝ e−E(x)

for the analysis. The one-time-lag autocorrelation for HMC and L-HMC, ρ(1),
is given by

ρ(1) = (E[xtxt+1] − E[x]2)/Var(x) . (19)

= ( Ep(yt)[Eq(xt+1|yt)[xt+1]]2 − E[x]2)/Var(x) (20)

From (12) and stationary assumption, for standard HMC

q(xt|yt) ∝ p(yt|xt)p(xt) ∝ [log f(xt) − log yt]−1/2, s.t. f(xt) > yt

For L-HMC, q(xt|yt) ∝ 1, s.t. f(xt) > yt

Given the potential energy form E(x), ρ(1) can be computed from (14), (20)
and (2). The h-time-lag autocorrelation function can be obtained as

ρ(h) = (Ep(x)[Eκh(x′|x)[x′x]] − E[x]2)/Var(x) ,

where, κh(xt+h|xt) represents the h-order transition kernel, and can be calcu-
lated recursively as

κ1(xt+1|xt) =
∫

q(xt+1|yt)p(yt|xt)dyt ,

κh(xt+h|xt) =
∫

κh−1(x′|xt)κ1(xt+h|x′)dx′ .

Finally, the resulting Effective Sample Size (ESS) [5] is given by ESS = N/(1+2×∑∞
h=1 ρ(h)). Analyzing the efficiency of L-HMC for the general case is difficult,

however, we can specify a special case where the ESS can be explicitly calculated.
We consider a simple case to assess the efficiency of standard HMC and L-

HMC. We aim to sample from a univariate exponential distribution, Exp(x; θ),
with energy function, E(x) = θx, for x > 0. From the above analysis, for stan-
dard HMC

ρ(1) =
2
3

, ρ(h) = (
2
3
)h , ESS =

N

5
,

For L-HMC, we have

ρ(1) =
1
2

, ρ(h) = (
1
2
)h , ESS =

N

3
,
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We observe that the ESS becomes larger with L-HMC. As a result, under these
conditions, and many other univariate cases discussed in the experiments, L-
HMC has a theoretical advantage of the mixing rate in stationary period over
standard HMC. This observation is consistent with the intuition discussed in
Sect. 4.

7 Experiments

7.1 Synthetic Toy Examples

We conduct several experiments to validate the theoretical results, as well as the
performance of standard HMC and L-HMC.

Synthetic 1D problems. We first perform our experiments on several univari-
ate distributions, where evaluation of theoretical mixing performance is possible.
Our primary objective for this simulation study is to validate that the theoret-
ical results are consistent with the empirical results. Each density is given by
p(x) = 1

Z1
exp(−E(x)), s.t x ≥ 0 and

– Exponential distribution: Exp(x; θ), where E(x) = θx.
– Truncated Gaussian: N+(x; 0, θ), where E(x) = θx2.

We truncate the Gaussian distribution to the positive side, because for a
symmetric distribution the theoretical autocorrelation is always 0, thus rendering
the comparison less interesting. Note that for each case, as long as the parameter
θ > 0, the performance of the sampler does not depend on θ.

We perform standard HMC and L-HMC, as well as “analytic” slice sampling2

when available. We collected 30,000 Monte Carlo samples, with 10,000 burn-in
samples. The leap-frog steps are set to 100 for each experiment. The mass para-
meter m and stepsize ε are selected manually to achieve around 0.9 acceptance
ratio. We observed that applying the partial momentum refreshment can pro-
vided additional help, especially when taking fewer leap-frog steps. However, the
improvements are not significant when the number of leap-frog steps is adequate
for the tested cases.

As shown in Table 1, in the tested cases, theoretical autocorrelations and ESS
match well with empirical performance of standard HMC, L-HMC and analytic
slice samplers. In every case, L-HMC obtained better empirical results, which is
consistent with our theoretical analysis.

Sampling from a discrete distribution. To demonstrate that the L-HMC
can perform sampling of distributions with discrete support, we consider sam-
pling from a univariate Poisson distribution, P(λ), with fixed rate parame-
ter λ (we use λ = 10 in our experiment). The potential energy is given by

2 Analytic slice sampling is achieved by analytically solving the slice interval and
computing the expectation in (20), and is only available for exponential and positive-
truncated Gaussian cases.
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Table 1. 1D theoretical (Th.) and empirical ρ(1) and ESS. SS denotes the analytical
slice sampler corresponding to standard HMC or L-HMC.

Th. ρ(1) Th. ESS SS ρ(1) SS ESS (L-)HMC ρ(1) (L-)HMC ESS

standard HMC (Exp) 0.6667 6000 0.6620 6204 0.6711 6069

L-HMC (Exp) 0.5 10000 0.4868 10227 0.5218 9773

standard HMC (N+) 0.4787 10576 0.4736 10705 0.4802 10510

L-HMC (N+) 0.3120 15732 0.3040 15457 0.3061 15595

E(x) = −x log λ + log x!. We apply the update scheme described in Sect. 5,
and run 10,000 iterations with 3,000 burn-in samples. The number of iterative
dynamic updates, stepsize, and mass parameter m were set to 15, 2, and 1,
respectively. Results are shown in Fig. 2. The empirical results match well with
the probability mass function of P(λ) with λ = 10. The acceptance ratio is always
one, as during the iterative process, the Hamiltonian is exactly conserved. As a
consequence, the Metropolis step can be omitted. The empirical ρ(1) and ESS
are 0.024 and 9, 984, respectively.

Fig. 2. Histogram of samples for a Poisson distribution, x ∼ P(λ) with λ = 10.

We also apply our methods to sample from a bivariate Poisson distribution
[14]. The bivariate Poisson with random covariates (z1, z2) can be constructed
as z1 = y1 + y3, z2 = y1 + y2, where (y1, y2, y3) are three independent Poisson
variables with mean parameters (λ1, λ2, λ3). The probability function can be
written as

Pr(z1 = k1, z2 = k2) = exp(−λ1 − λ2 − λ3)
λk1
1

k1!
λk2
2

k2!

k1∧k2∑

k=0

(
k1
k

)(
k2
k

)
k!(

λ3

λ1λ2
)k ,

We set the ground truth model parameters to (λ1, λ2, λ3) = (1, 2, 3). The
dynamic update step, stepsize and mass parameter m are set to be 10, 1 and 1,
respectively. When performing the discrete sampling, we normalized the differ-
ence vector to enforce the total Hamiltonian to be conserved. We collect 10,000
Monte Carlo samples after 3,000 burn-in samples. The sampled distribution
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is shown in Fig. 3. The theoretical Pearson correlation for the target bivariate
Poisson distribution is given by λ3√

λ1+λ3
√

λ2+λ3
= 0.6708. We observed that the

empirical Pearson correlation is 0.6983, which matches well with the theoretical
value. We also observed that when the dimensionality increases, the discrepancy
between target distribution and empirical estimated distribution becomes larger.
For this reason, we suggest to consider our method only for low dimensional sam-
pling tasks. How to use HMC to sample from high-dimensional distributions is
left for interesting future work.

Fig. 3. Histogram of samples for bivariate Poisson distribution parameterized by
(λ1, λ2, λ3) = (1, 2, 3). Left: theoretical sample frequency for target distribution. Right:
samples from discrete L-HMC.

High-dimensional synthetic problems. We test the performance of standard
HMC and L-HMC when sampling a high-dimensional Gaussian distribution. We
consider a 100-dimensional Gaussian distribution with zero-mean and diagonal
covariance matrix, with its diagonal elements uniformly drawn from (0, 10]. We
ran 5,000 MC iterations, after 2,500 burn-in samples. For both standard HMC
and L-HMC, we use 5 different leap-frog stepsizes, εt, t = {1, . . . , 5}, where
εt+1 = 0.8εt. This scheme allows us to find the elbow points where performance
is optimal. The ε1 and m for standard HMC and L-HMC are set to (0.025, 2)
and (0.015, 1), respectively. The sampler was initialized at MLE (estimated by
gradient descent) to accelerate burn-in period.

We also compared with the adaptive scheme described in Sect. 5, where
the stepsize is automatically tuned at each 500 interactions during the burn-
in rounds using an empirically estimated covariance. The adaptation is stopped
after burn-in, as suggested by [22]. Both L-HMC and adaptive L-HMC achieved
median effective sample size near to the full sample size, and obtained a lower
discrepancy between the empirically estimated covariance and the ground truth
than standard HMC, see Fig. 4 (left). Employing the adaptive scheme improved
the median ESS, probably due to the fact that the stepsize learned from the
samples can automatically match the scale of each dimension, Fig. 4 (right).
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Fig. 4. Standard HMC and L-HMC performance on a 100-dimensional simulated
Gaussian distribution. Left: Mean Squared Error (MSE) of estimated Σ vs. median
ESS. Labels denote the stepsize index. Right: Elements of diag(Σ) vs. the adapted
stepsize after 2,500 burn-in rounds.

7.2 Real Data Analysis

We perform an empirical comparison on two real-world probabilistic model-
ing tasks: Bayesian Logistic Regression (BLR) and Latent Dirichlet Allocation
(LDA).

Bayesian logistic regression. We evaluated the mixing performance of stan-
dard HMC and L-HMC on 5 Bayesian logistic regression datasets from the UCI
repository [2]. For data X ∈ R

d×N , response variable t ∈ {0, 1}N and tar-
get parameters β ∈ R

d, suppose a Gaussian prior is imposed N (0, αI) (where
α > 0) on β, the log posterior is given by [10],

L(β) = βT Xt −
N∑

n=1

log(1 + exp(βT XT
n,·)) − βT β

2α

Feature dimensions range from 7 to 15 and the number of data instances are
between 250 and 1, 000. All datasets are normalized to have zero mean and unit
variance. The sampler was initialized at gradient estimated MLE as in above
experiments.

The mass matrix for kinetic function is defined as M = m × I, where m
is mass parameter. Gaussian priors N (0, 100I) were imposed on the regression
coefficients. The leap-frog steps were set to be uniformly drawn from [1, 100],
as suggested by [20]. We manually select the stepsize and mass parameter m,
so that the acceptance ratios fall in [0.6, 0.9] [3]. On each dataset, the running
time for each method is roughly identical, due to the fact that each method took
approximately the same number of leap-frog steps. All experiments are based on
5,000 samples, with 1,000 burn-in samples.

Since the MCMC methods that we compared are asymptotically exact to the
true posterior, the sample-based estimator is guaranteed to converge to the true
expectation over the posterior. ESS indicates the variance of sample based esti-
mator, thus is a good metric for comparison. For this reason, following [6,10,21],
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Table 2. The minimum effective sample size, as well as the AUROC (in parenthesis)
for each method. Dimensionality of each dataset is indicated in parenthesis after the
name of each dataset.

Dataset (D) Australian (15) German (25) Heart (14) Pima (8) Ripley (7)

Standard HMC 3124 (0.92) 3447 (0.78) 3524 (0.92) 3434 (0.90) 3317 (0.99)

L-HMC 4308 (0.93) 4353 (0.79) 4591 (0.93) 4664 (0.88) 4226 (0.99)

Table 3. MNIST results. D = 101, N = 12, 214. Total sample size is 4,000. AR denotes
acceptance ratio.

ESS min Median Max Time (s) AR

Standard HMC 2812 3441 3807 287.8 0.978

L-HMC 3198 3808 4000 291.0 0.968

we primarily compare on each method in terms of minimum ESS. We also
evaluate the average predictive AUROC based on 10 fold cross-validation, the
results showed no significant differences between standard HMC and L-HMC.
The results are summarized in Table 2. L-HMC outperforms standard HMC in
all datasets.

To further assess the scalability to high-dimensional problems, we also con-
duct an experiment on the MNIST dataset restricted to digits 7 and 9. We
use 12,214 training instances, where the first 100 components from PCA were
employed as regression features [6]. We ran 4, 000 MC iterations with 1, 000 burn-
in samples, the results are shown in Table 3. L-HMC scales well, and achieved
better mixing performance than standard HMC, while taking roughly the same
running time. The acceptance ratio of L-HMC decreased by 0.01 w.r.t. standard
HMC, presumably because the contours for L-HMC are slightly stiffer than those
for standard HMC.

Topic modeling. We also evaluate our methods with LDA [4]. LDA models a
document as a mixture of multinomial distributions over a vocabulary of size V .
The multinomial distributions are parametrized by φk ∈ ΔV for k = 1, . . . ,K,
where ΔV denotes the V -dimensional simplex. Each φk is associated with a
symmetric Dirichlet prior with parameter β. Specifically, the generative process
for a document is as follows:

– For each topic k, sample a topic-word distribution: φk|β ∼ Dirichlet(β).
– For each document d, sample a topic distribution: θd|α ∼ Dirichlet(α).

- For each word i, sample a topic indicator: zdi|θd ∼ Discrete(θd).
- Sample an observed word: wdi|φzdi

∼ Discrete(φzdii).

To apply the L-HMC and standard HMC, following [8], we re-parametrize φk

with φ̃k as φki = eφ̃ki/(
∑

j eφ̃kj ). Similar to [8], a semi-collapsed LDA formu-
lation is used for sampling, where the distribution over topics for each docu-
ment is integrated out. We use the ICML dataset [7] for the experiment, which
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Fig. 5. Empirical distribution of coordinate-wise effective sample size of standard HMC
and L-HMC, over 57,540 dimensions.

contains 765 documents corresponding to abstracts of ICML proceedings from
2007 to 2011. After stopword removal, we obtain a vocabulary size of 1,918 and
total words of about 44K. We used 80 % of the documents for training and the
remaining 20 % for testing. The number of topics is set to 30, resulting in 57,540
parameters. We use a symmetric Dirichlet prior (i.e., all of the elements of para-
meter vector β have the same value) with parameter β = 0.1. All experiments are
based on 800 MCMC samples with 200 burn-in rounds. We set the stepsizes to
be 2.0 for both L-HMC and standard HMC, to obtain acceptance ratios around
0.68. For each iteration we set 20 leap-frog steps. L-HMC has best mixing perfor-
mance as seen in Fig. 5, and the perplexity is comparable with standard HMC.
The perplexities for L-HMC and standard HMC is 958 and 963, respectively.

8 Conclusion

We demonstrated the equivalency between the slice sampler and HMC with a
Laplace kinetic energy. This enables us to perform the leap-frog numerical inte-
grator for standard slice sampling in high-dimensional space. We further demon-
strated that the resulting sampler can be applied to sampling from discrete
distributions, e.g., Poisson. Our method can be seen as a drop-in replacement
for scenarios where standard HMC applies, and thus it has many potential exten-
sions. However, our method has its limitations. For high dimensional problems,
the numerical issues associated with the sampler are less negligible, and requires
carefully selecting the sampler parameters. Future directions include (1) employ-
ing more sophisticated numerical methods to reduce the numerical error of our
L-HMC approach (2) formal study of the ESS of the proposed L-HMC compared
to standard HMC, and (3) exploiting geometric information [10] in the leap-frog
updates to further improve the sampling efficiency.
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Abstract. Real-time auction has become an important online advertis-
ing trading mechanism. A crucial issue for advertisers is to model the
market competition, i.e., bid landscape forecasting. It is formulated as
predicting the market price distribution for each ad auction provided by
its side information. Existing solutions mainly focus on parameterized
heuristic forms of the market price distribution and learn the parame-
ters to fit the data. In this paper, we present a functional bid land-
scape forecasting method to automatically learn the function mapping
from each ad auction features to the market price distribution without
any assumption about the functional form. Specifically, to deal with the
categorical feature input, we propose a novel decision tree model with
a node splitting scheme by attribute value clustering. Furthermore, to
deal with the problem of right-censored market price observations, we
propose to incorporate a survival model into tree learning and predic-
tion, which largely reduces the model bias. The experiments on real-world
data demonstrate that our models achieve substantial performance gains
over previous work in various metrics. The software related to this paper
is available at https://github.com/zeromike/bid-lands.

1 Introduction

Popularized from 2011, real-time bidding (RTB) has become one of the most
important media buying mechanism in display advertising [7]. In RTB, each ad
display opportunity, i.e., an ad impression, is traded through a real-time auction,
where each advertiser submits a bid price based on the impression features and
the one with the highest bid wins the auction and display her ad to the user [20].
Apparently, the bidding strategy that determines how much to bid for each
specific ad impression is a core component in RTB display advertising [16].

As pointed out in [22], the two key factors determining the optimal bid price
in a specific ad auction are utility and cost. The utility factor measures the value
of ad impression, normally quantified as user’s response rate of the displayed ad,
such as click-through rate (CTR) or conversion rate (CVR) [12]. The cost factor,
on the other hand, estimates how much the advertiser would need to pay to win
the ad auction [3]. From an advertiser’s perspective, the market price is defined
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 115–131, 2016.
DOI: 10.1007/978-3-319-46128-1 8

https://github.com/zeromike/bid-lands


116 Y. Wang et al.

as the highest bid price from her competitors1. In the widely used second-price
auctions, the winner needs to pay the second highest bid price in the auction,
i.e., the market price [4]. Market price estimation is a difficult problem because
it is the highest bid from hundreds or even thousands of advertisers for a specific
ad impression, which is highly dynamic and it is almost impossible to predict
it by modeling each advertiser’s strategy [2]. Thus, the practical solution is to
model the market price as a stochastic variable and to predict its distribution
given each ad impression, named as bid landscape.

Previous work on bid landscape modeling is normally based on predefining
a parameterized distribution form, such as Gaussian distribution [18] or log-
normal distribution [3]. However, as pointed out in [19], such assumptions are
too strong and often rejected by statistical tests. Another practical problem is
the observed market price is right-censored, i.e., only when the advertiser wins
the auction, she can observe the market price (by checking the auction cost),
and when she loses, she only knows the underlying market price is higher than
her bid. Such censored observations directly lead to biased landscape models.

In this paper, we present a novel functional bid landscape forecasting model to
address the two problems. Decision tree is a method commonly used in data min-
ing [5,17]. By building a decision tree, the function mapping from the auctioned
ad impression features to the corresponding market price distribution is automat-
ically learned, without any functional assumption or restriction. More specifically,
to deal with the categorical features which are quite common in online advertis-
ing tasks, we propose a novel node splitting scheme by performing clustering based
on the attribute values, e.g., clustering and splitting the cities. The learning cri-
terion of the tree model is based on KL-Divergence [10] between the market price
distributions of children nodes. Furthermore, to model the censored market price
distribution of each leaf node, we adopt non-parametric survival models [9] to sig-
nificantly reduce the modeling bias by leveraging the lost bid information.

The experiments on a 9-advertiser dataset demonstrate that our proposed
solution with automatic tree learning and survival modeling leads to a 30.7 %
improvement on data log-likelihood and a 77.6 % drop on KL-Divergence com-
pared to the state-of-the-art model [18].

In sum, the technical contributions of this paper are three-fold.

Automatic function learning: a decision tree model is proposed to automat-
ically learn the function mapping from the input ad impression features to
the market price distribution, without any functional assumption.

Node splitting via clustering: the node splitting scheme of the proposed
tree model is based on the KL-Divergence maximization between the split
data via a K-means clustering of attribute values, which naturally bypasses
the scalability problem of tree models working on categorical data.

1 The terms ‘market price’ and ‘winning (bid) price’ are used interchangeably in
related literature [2,3,18]. In this paper, we use ‘market price’.
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Efficient censorship handling: with a non-parametric survival model, both
the data of observed market prices and lost bid prices are fed into the decision
tree learning to reduce the model bias caused by the censored market price
observations.

The rest of this paper is organized as follows. We discuss some related work
and compare with ours in Sect. 2. Then we propose our solution in Sect. 3. The
experimental results and detailed discussions are provided in Sect. 4. We finally
conclude this paper and discuss the future work in Sect. 5.

2 Related Work

Bid Landscape Forecasting. As is discussed above, bid landscape forecasting
is a crucial component in online advertising framework, however, lacking enough
attention. On one hand, researchers proposed several heuristic forms of functions
to model the market price distribution. In [22], the authors provided two forms
of winning probability w.r.t. the bid price, which is based on the observation
of an offline dataset. However, this derivation has many drawbacks since the
appropriate distribution of the market price in real world data may deviate
much from the simple functional form. On the other hand, some fine-studied
distributions are also used in market price modeling. [3] proposed a log-normal
distribution to fit the market price distribution. The main drawback is that these
distributional methods may lose the effectiveness of handling various dynamic
data and they ignore the real data divergency as we will show later in Figs. 1
and 3.

In view of forecasting, [3] presented a template-based method to fetch the
corresponding market price distribution w.r.t. the given auction request. How-
ever, this paper studied the problem as on the seller side which is quite different
from the buyer side as we stand. [18] proposed a regression method to model the
market price w.r.t. auction features. However, those methods do not care much
about the real data properties, i.e. similarity and distinction among data seg-
ments, which may result in poor forecasting performance on different campaigns.
Moreover, none of the above methods deal with the data censorship problem in
modeling training.

Bid Optimization. Bid optimization is a well studied problem and has drawn
many concerns both in RTB environment [1,21,22]. This task aims to optimize
the strategies to allocate budget to gain ad display opportunities [1], so it is
crucial to model the market competition and make accurate bid landscape pre-
diction [3]. In RTB display advertising with cost-per-impression scheme, the bid
decision is made on the level of impression so that the price is also charged on
impression level [11]. It again emphasizes key importance of the forecasting task
in online bidding. In [21,22], the authors proposed a functional optimization
method with the consideration of budget constraints and market price distri-
bution, which led to an optimal bidding strategy. However, the market price
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distribution adopted in these two papers is under heuristic assumptions, which
may not perform well in real-world forecasting tasks.

Learning over Censored Data. In machine learning fields, dealing with cen-
sored data is sometimes regarded as handling missing data, which is a well-
studied problem [6]. The item recommendation task with implicit feedback is a
classic problem of dealing with missing data. [15] proposed a uniform sampling
of negative feedback items for user’s positive ones [14]. In the online advertising
field, the authors in [18] proposed a regression model with censored regression
module using the lost auction data to fix the biased data problem. However, the
Gaussian conditional distribution assumption turns out to be too strong, which
results in weak performance in our experiment. The authors in [2] implemented a
product-limit estimator [9] in handling the data censorship in sponsored search,
but the bid landscape is built on search keyword level, which is not fine-grained
to work on RTB display advertising. We transfer the survival analysis method
from [2] to RTB environment and compare with [18] in our experiment.

3 Methodology

3.1 Problem Definition

The goal of bid landscape forecasting is to predict the probabilistic distribution
density (p.d.f.) px(z) w.r.t. the market price z given an ad auction information
represented by a high-dimensional feature vector x.

Table 1. The statistics of attributes.

Attribute Adex- Weekday Slot- Slotheight Slotwidth Hour Region User- Creative City

change visibility agent

Num of

values

5 7 11 14 21 24 35 40 131 370

Each auction x contains multiple side information, e.g. user agent, region,
city, user tags, ad slot information, etc. In Table 1, we present the attributes
contained in the dataset with corresponding numbers of value. We can easily
find that different attributes vary in both diversity and quantity. Moreover, the
bid price distribution of a given request may be diverse in different attributes.
Take the field Region as an example, the bid distribution of the samples with
region in Beijing is quite different from that of Xizang, which is illustrated in
Fig. 1. Previous work focuses only on the heuristic forms (e.g. log-normal [3] or a
unary function [22]) of distribution and cannot effectively capture the divergency
within data.

Moreover, in RTB marketplace, the advertiser proposes a bid price b and wins
if b > z paying z for the ad impression, loses if b ≤ z without knowing the exact
value of z, where z represents the market price which is the highest bid price
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Fig. 1. Market price distribution over different regions.

from the competitors. Apparently, the true market price is only observable for
who is winning the corresponding auction. As for the lost auctions, the advertiser
only knows the lower bound of the market price, which results in the problem
of right censored data [2]. The censorship from the lost auctions may heavily
influence the forecasting performance in the online prediction [18].

In this paper, we mainly settle down these two problems. First, we propose
to automatically build the function mapping from the given ad auction x to
the market price distribution px(z) without any functional form assumption,
generally represented as

px(z) = Tp(x). (1)

Second, we leverage both the observed market price data of winning auctions
and censored one of losing auctions to train a less biased function Tp(x).

We use a binary decision tree to represent Tp(x). More precisely, every node
represents a set of auction samples. For each node Oi, we split the contained sam-
ples into two sets {St

ij} according to attribute Aj (e.g. Region) value sets (e.g.
{Xizang, Beijing, . . . }), where t ∈ {1, 2}, Aj ∈ Θ and Θ is the attribute space.
For each subset St

ij , the corresponding market price distribution pt
x(z) can be

statistically built. Intuitively, different subsets have diverse distributions and the
samples within the same subset are similar to each other, which requires effec-
tive clustering and node splitting scheme. Furthermore, KL-Divergence [10] is a
reasonable metric to measure the splitted data divergency. So that we choose the
best splitting πi with the highest KL-Divergence value Di

KL calculated between
the resulted two subsets S1

i· and S2
i· in node Oi. Essentially, our goal is to seek

the splitting strategy π = ∪i∈Iπi, where each splitting action πi maximizes the
KL-Divergence DKL between two child sets in node Oi. Mathematically, our
functional bid landscape forecasting system is built as
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Tπ
p (x) = arg max

π

l∑

i=1

Di
KL, (2)

Di
KL = max{Di1

KL,Di2
KL, ...,Dij

KL, ...,DiN
KL} (3)

Dij
KL =

zmax∑

z=1

px(z) log
px(z)
qx(z)

, (4)

where p and q are the two probability distributions for the splitted subsets, zmax

represents the maximum market price, Dij
KL means the maximum KL-Divergence

of splitting over the sample set of attribute Aj in node i, N = |Θ| is the number
of attributes and l is the number of splitting nodes.

When forecasting, every auction instance will follow a path from the root to
the leaf, classified by the dividing strategy according to the attribute value it
contains. The bid landscape px(z) is finally predicted at the leaf node.

3.2 Decision Trees with K-means Clustering

In this section, we propose the K-means clustering method based on KL-
Divergence. Then, we will present our iterative optimization algorithm for the
decision tree learning model with K-means clustering.

K-Means Clustering with KL-Divergence. For each attribute, the values
vary over different samples, as we can see in Table 1. The goal of the binary
decision tree spanning is to group similar values w.r.t. one attribute and split
the data samples into two divergent subsets. We use KL-Divergence to model the
statistics of datasets, which is shown in Eq. (2). KL-Divergence is a measurement
assessing the difference between two probability distributions. The problem need
to solve is that it requires an effective clustering method to group samples w.r.t.
the given metric.

In this paper, the bid samples with the same attribute value are considered
as a single point. The goal of K-means clustering is to partition these points into
two clusters according to the calculated KL-Divergence. The process of K-means
clustering summarize in Algorithm 1.

The input of Algorithm 1 is the attribute Aj and a set of training samples
S = {s1, s2, ..., sk, ..., sn}, where sk is the set of training samples with the same
value for attribute Aj and n is the number of different values of attribute Aj .

We adopted an iterative algorithm to achieve the clustering goal. First, we
randomly split the data into two parts S1 and S2. Then we propose an EM-
fashion algorithm to iterate two steps below until the whole process converges
to the optimal objective, i.e., maximize the KL-Divergence.

E-step: Compute the market price probabilistic distribution Q1 for S1 and Q2

for S2, which will be discussed in Sect. 3.3.
M-step: Consider the sample data with the same value of attribute Aj as a

whole, we will get {s1, s2, ..., sk, ..., sn} if the attribute Aj has n different val-
ues. And we will have n corresponding market price probability distributions
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Algorithm 1. K-Means clustering with KL-Divergence
Input: Training sample S = {s1, s2, ..., sn}; Attribute Aj ;
Output: KL-Divergence Dj

KL over attribute Aj , Data clusters S1 and S2;
1: Randomly split the data into two parts S1 and S2;
2: while not converged do
3: E-step:
4: Get price probability distribution Q1 for S1 and Q2 for S2;
5: M-step:
6: for all Mk,k ∈ {1, 2, 3, ..., n} do
7: Calculate the K1 between Mk and Q1 by Eq. (4);
8: Calculate the K2 between Mk and Q2 by Eq. (4);
9: Update S1 or S2 by comparing with K1 and K2;

10: end for
11: Calculate the Dj

KL between Q1 and Q2 by Eq. (4);
12: end while
13: Return Dj

KL, S1 and S2;

{M1,M2, ...,Mn}. For each market price probability distribution Mk, we will
calculate the KL-Divergence K1 between Mk and Q1, K2 between Mk and
Q2, respectively. If K1 > K2, it means that the probability distribution Mk

is more similar with Q2, thus assign data set sk to the relatively more similar
data set S2, vice versa.

After each M-step, we will calculate the KL-Divergence Dj
KL between Q1 and Q2.

The EM iteration stops when Dj
KL does not change.

In this paper, we only split each node into two subsets, i.e., k = 2. To avoid
bringing another control variable into the model, we do not discuss about cases
of k >= 3. As a result, we choose k = 2 to make it consistent with the bi-spliting
scheme on numeric features.

Building the Decision Tree. The combined scheme of building decision tree
based on K-means clustering node splitting is described in Algorithm 2. In
Algorithm 2, we first find the splitting attribute with highest KL-Divergence.
Then, we perform the binary splitting of the data by maximizing KL-Divergence
between two leaf nodes with K-means clustering. The sub-tree keeps growing
until the length of sample data in leaf node is less than a predefined value.
Finally, we prune the tree by using reduced error pruning method. Compared
with the decision tree algorithm, the main difference of our proposed scheme is
that the binary node splitting scheme with K-means clustering and the usage of
KL-Divergence as the attribute selection criteria.

In the test process, one problem is that there could be new attribute values
of some test data instances which do not match any nodes of our decision tree
learned from the training data. To handle this, we deploy a randomly choosing
method which decides the attribute value of the given test data to randomly
goes to one of the two children, which is equivalent to non-splitting on such
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Algorithm 2. Building Decision Tree with K-Means clustering
Input: Training sample S which contain N attributes;
1: for all attribute Aj ,j ∈ {1, 2, 3, ..., N} do
2: Calculate the KL-Divergence Dj

KL for attribute Aj by Algorithm 1;
3: end for
4: Dbest

KL = max {D1
KL, D

2
KL, ..., D

j
KL, D

N
KL};

5: Find Abest with Dbest
KL ;

6: Create a decision node that splits on Abest;
7: Split the decision node into two nodes S1 and S2;
8: Return new nodes as children of the parent node

attribute. The experiment results show that such random method works well on
the real-world dataset.

Fig. 2. Illustration of the tree.

Figure 2 is an example of the decision tree. As we can see, for each node, we
illustrate its best splitting attribute and the corresponding KL-Divergence. The
red box shows the KL-Divergence value for each attribute, and the best splitting
attribute with the highest KL-Divergence is chosen.

3.3 Bid Landscape Forecasting with Censored Data

In real-time bidding, an advertiser only observes the market prices of the auctions
that she wins. For those lost auctions, she only knows the lower bound of the
market price, i.e., her bid price. Such data is named as the right censored data
[18]. However, the partial information in lost auctions is still of high value. To
better estimate the bid distribution, we introduce survival models [8] to model
the censored data. We implement a non-parametric method to model the real
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market price distribution and transfer survival analysis from keywork search
advertising [2] to RTB environment. That is, given the observed impressions
and the lost bid requests, the winning probability can be estimated with the
non-parametric Kaplan-Meier Product-Limit method [9].

Suppose we have sequential bidding logs in form of {bi, wi,mi}i=1,2,...,M ,
where bi is the bidding price in the auction, wi is the boolean value of whether
we have won the auction or not, and mi is the market price (unknown if wi =
0). Then we transform our data into the form of {bj , dj , nj}j=1,2,...,N , where the
bidding price bj < bj+1, and dj represents the number of the winning auctions
with bidding price bj − 1, nj is the number of auctions that cannot not be won
with bidding price bj −1. Then the probability of losing an auction with bidding
price bx is

l(bx) =
∏

bj<bx

nj − dj

nj
. (5)

Thus the winning probability w(bx) and the integer2 market price p.d.f. p(z) are

w(bx) = 1 −
∏

bj<bx

nj − dj

nj
, p(z) = w(z + 1) − w(z). (6)

4 Experiments

In this section, we introduce the experimental setup and analyze the results3.
We compare the overall performance over 5 different bid landscape forecasting
models, and further analyze the performance of our proposed against different
hyperparameters (e.g. tree depth, leaf size).

4.1 Dataset

For the following experiments, we use the real-world bidding log from iPinYou
RTB dataset4. It contains 64.7 M bidding records, 19.5 M impressions, 14.79 K
clicks and 16.0 K CNY expense on 9 campaigns from different advertisers during
10 days in 2013. Each bidding log has 26 attributes, including weekday, hour,
user agent, region, slot ID etc. More details of the data is provided in [13].

4.2 Experiment Flow

In order to simulate the real bidding market and show the advantages of our
survival model, we take the original data of impression log as full-volume auc-
tion data, and perform a truthful bidding strategy [12] to simulate the bidding
process, which produces the winning bid dataset W and lost bid dataset L respec-
tively. For each data sample xwin ∈ W , the simulated real market price zwin is
2 In practice, the bid prices in various RTB ad auctions are required to be integer.
3 The experiment code is available at http://goo.gl/h130Z0.
4 Dataset link: http://data.computational-advertising.org.

http://goo.gl/h130Z0
http://data.computational-advertising.org
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known for the advertisers, while the corresponding market price zlose remaining
unknown for xlose ∈ L. It guarantees the similar situation as that faced by all
the advertisers in the real world marketplace.

In the test phase, the corresponding market price distribution px(z) of each
sample x in the test data is estimated by all of the compared models respectively.
We assess the performance of different settings in several measurements, as listed
in the next subsection. Finally we study the performance of our proposed model
with different hyperparameters, e.g., the tree depth and the maximum size of
each leaf.

4.3 Evaluation Measures

The goal of this paper is to improve the performance of market price distribution
forecasting. We use two evaluation methods to measure the forecasting error. The
first one is Average Negative Log Probability (ANLP). After we classifying each
sample data into different leaves with the tree model, the sum of log probability
for all sample data Pnl is given by the Eq. (7), and the average negative log
probability P̄nl given by the P̄nl:

Pnl =
k∑

i=1

zmax∑

j=1

(− log Pij)Nij , (7)

N =
k∑

i=1

zmax∑

j=1

Nij , P̄nl = Pnl/N, (8)

where k denotes the number of sub bid landscapes, zmax represents the maximum
market price, Pij means the probability of training sample in the ith leaf node
given price j, Nij is the number of test sample in the ith leaf node given price
j. N is the total number of test samples.

We also calculate the overall KL-Divergence to measure the objective fore-
casting error. DKL is given by the Eq. (9):

DKL =
1
N

k∑

i=1

Ni

zmax∑

j=1

Pij log
Pij

Qij
, (9)

where Ni means the number of test sample in the ith leaf node. Qij means the
probability of test sample in the ith leaf node given price j.

4.4 Compared Settings

We compare five different bid landscape forecasting models in our experiment.

NM - The Normal Model predicts the bid landscape based on the observed
market prices from simulated impression log W , without using the lost bid
request data in L. This model uses a non-parametric method to directly draw
the probability function w.r.t. the market price from the winning dataset.
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SM - The Survival Model forecasts the bid landscape with survival analysis,
which learns from both observed market prices from impression log and the
lost bid request data using Kaplan-Meier estimation [2]. The detail has been
discussed in Sect. 3.3.

MM - The Mix Model uses linear regression and censored regression to predict
the bid landscape respectively, and combines two models considering winning
probability into Mixture Model [18] to predict the final bid landscape.

NTM - The Normal Tree Model predicts the bid landscape using only our pro-
posed tree model, without survival analysis. The detailed modeling method
has been declared in Sect. 3.2.

STM - The Survival Tree Model predicts the bid landscape with the proposed
survival analysis embedded in our tree model, which is our final mixed model.

4.5 Experiment Results

Data Analysis. Table 2 shows the overall statistics of the dataset, where each
row presents the statistical information of the corresponding advertiser in the
first column. In Table 2, Num of bids is the number of total bids, and Num of
win bids is the number of winning bids in the full simulated dataset W ∪L. WR
is the winning rate calculated by |W |

|W∪L| . AMP is the average market price on all
bids. AMP on W and AMP on L are the average market price for the winning
bid set W and the lost bid set L, respectively.

We can easily find that the winning rates of all campaigns are low, which
is practically reasonable since a real-world advertiser can only win a little pro-
portion of the whole-world volume. The market prices of most impressions are
unavailable to the advertiser. We also observe that the average market price
on winning bids (AMP on W ) are much lower than average market price on
lost bids (AMP on L). This verifies the bias between the observed market price
distribution and the true market price distribution.

Table 2. The statistics of the dataset iPinYou.

Advertiser Num of bids Num of win bids WR AMP AMP on W AMP on L

1458 2,055,371 257,077 0.1251 70.2829 29.1130 76.1684

2259 557,038 135,487 0.2432 96.0685 28.3345 117.8383

2261 458,412 176,325 0.3846 92.1654 32.3218 129.5721

2821 881,708 305,134 0.3461 90.6573 35.0455 120.0881

2997 208,292 60,556 0.2907 64.9918 16.6269 84.8163

3358 1,161,403 336,769 0.2900 92.6624 55.6009 107.7978

3386 1,898,535 332,223 0.1750 80.4224 37.4947 89.5276

3427 1,729,177 563,592 0.3259 82.6685 53.1614 96.9359

3476 1,313,574 303,341 0.2309 79.4990 38.7343 91.7393

Overall 10,263,510 2,470,504 0.2407 81.9769 41.1313 94.9256



126 Y. Wang et al.

Bid Landscapes of Leaf Nodes. There are 4 examples of bid landscape
between training and testing samples shown on Fig. 3. From the figures, we can
find that the bid landscape of each leaf node is quite different from that of other
leaf nodes. Especially, some sub bid landscape tends to have a large probability
of some price, and the training distribution fit the test distribution very well.
This result suggests we can predict the bid landscape more accurately with tree
models.

Survival Model. As is mentioned in Sect. 3.3, the observed market price dis-
tribution is biased due to the data censorship. Figure 4 shows the comparison of
the curves for market price distribution and winning probability. TRUTH rep-
resents for the real market price distribution for the test data, which is regarded
as the ground truth. FULL curve is built from full-volume data, i.e., assume
the advertiser has observed all market prices of W ∪ L, which is regarded as
the upperbound performance of any bid landscape model based on censored
data. We observe that (i) FULL curve is the most close to TRUTH since FULL
makes use of full-volume training data and is naturally unbiased. However, in
the practice, advertisers only have a small number of winning logs W [13]. (ii)
Compared to NM, STM curve is much more close to TRUTH, which verifies its
advantage of making use of the censored data with survival analysis to improve
the performance of market price distribution forecasting.

Performance Comparison. We evaluate on five models described in Sect. 4.4
with evaluation measure given in Sect. 4.3. Table 3 presents the Average negative
log probability (ANLP) and KL-Divergence (KLD) of these settings.

For ANLP, we observe that (i) for all campaigns investigated, STM shows
the best performance, which verifies the effectiveness of the survival tree model.
(ii) SM is better than NM because SM learns from both winning bids and lost
bids to handle the censored data problem. (iii) We shall notice that NTM is
the tree version of NM, and STM is the tree version of SM. We find that NTM
outperforms NM, and STM outperforms SM, which means the tree model effec-
tively improves the performance of bid landscape forecasting. (iv) STM is the
combination of SM and NTM, both of which contribute to a better performance
as is mentioned in (ii) and (iii). Thus it is reasonable that STM has the best
performance. It has both advantages of SM and NTM, i.e., dealing with the bid

Fig. 3. Examples of different sub bid landscapes.
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Fig. 4. Comparison of the curves of market price distribution and winning probability.

Table 3. Performance illustration. Average negative probability of five compared set-
tings. ANLP: the smaller, the better. KLD: the smaller, the better.

Campaign ANLP KLD

MM NM SM NTM STM MM NM SM NTM STM

1458 5.7887 5.3662 4.7885 4.7160 4.3308 0.7323 0.7463 0.2367 0.6591 0.2095

2259 7.3285 6.7686 5.8204 5.4943 5.4021 0.8264 0.9633 0.3709 0.8757 0.1668

2261 7.0205 5.5310 5.1053 4.4444 4.3137 1.0181 0.4029 0.2943 0.3165 0.1222

2821 7.2628 6.5508 5.6710 5.4196 5.3721 0.7816 0.9671 0.3562 0.6170 0.2880

2997 6.7024 5.3642 5.1411 5.1626 5.0944 0.7450 0.4526 0.1399 0.3312 0.1214

3358 7.1779 5.8345 5.2771 4.8377 4.6168 1.4968 0.8367 0.5148 0.8367 0.3900

3386 6.1418 5.2791 4.8721 4.6698 4.2577 0.8761 0.6811 0.3474 0.6064 0.2236

3427 6.1852 4.8838 4.6453 4.1047 4.0580 1.0564 0.3247 0.1478 0.3247 0.1478

3476 6.0220 5.2884 4.7535 4.3516 4.2951 0.9821 0.6134 0.2239 0.5650 0.2238

Overall 6.5520 5.6635 5.0997 4.7792 4.6065 0.9239 0.6898 0.2927 0.5834 0.2160

distribution difference between different attribute value and learning from the
censored data.

For KLD, we can also find that STM achieves the best performance. The
results of other models are also similar to those of ANLP, but there are some
interesting differences. Note that for campaign 3427, the KL-Divergence values of
NM and NTM are equal to each other, so do SM and STM. The KL-Divergence
values of SM and STM for Campaign 3476 are also nearly the same. That is
because the optimal depth of tree in these cases is 1. We shall notice that actu-
ally NM and SM are the special cases of NTM and STM respectively when the
tree depthes of the latter two models are equal to 1. The fact arouses the ques-
tion, how to decides the optimal tree depth? We here take the tree depth as a
hyperparameter, and we leave the detailed discussion in the next subsection.

Table 4. p-values in t-tests of ANLP comparison.

Model MM NM SM NTM

STM < 10−6 < 10−6 < 10−6 < 10−6
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As is mentioned above, in terms of KLD, SM and STM for campaign 3476
are actually the same model since the optimal tree depth of STM for campaign
3476 is 1. One may still find that the KLD of SM and STM for campaign 3476
is a little different. That is caused by the handling method of missing feature
values in training data, which is described in Sect. 3.2. As the experiment result
shows, the influence is negligible.

We deploy a t-test experiment on negative log probability between our pro-
posed model STM and each of other compared settings to check the statistical
significance of the improvement. Table 4 shows that the p-value of each test is
lower than 10−6, which means the improvement is statistically significant. The
significant test on KL-Divergence is not performed because KLD is not a metric
calculated based on each data instance.

Fig. 5. Average negative log probability with different tree depth.

Hyperparameter Tuning. There are two problems in decision tree algorithms.
If we do not limit the size of tree, it will split into many quite small sets, and
overfit the training and fail to generalize on new data. However, if the limitation
for the size of tree is too much, some nodes that have useful information cannot
be split in succession, which is known as horizon effect. In order to avoid both
problems, we need to find out the optimal size limitation of the tree. There are
two hyperparameters that influence the size of tree, i.e., (i) tree depth (the upper-
bound of tree depth) and (ii) leaf size (the upperbound of number of training
samples in a leaf). In the experiment, we kept changing these two hyperparame-
ters, and compare the average negative log probability with different values. The
results are illustrated in Fig. 5. Different pictures represent different limitation
on leaf size.

We observe that, for most campaigns, (i) the performance of NTM improves
finally converges as the tree depth grows. (ii) The performance of STM improves
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Fig. 6. Relationship between the leaf number and the tree depth.

at first as the tree depth grows, but after tree depth exceeds a certain value,
the performance is getting worse, which can be explained as overfitting. (iii)
When the tree depth is large enough, the effect of survival model is weakened.
The performance of STM and NTM in this case is almost the same. (iv) The
leaf size will affect the performance of the tree model, but the overall influence
mainly occurs when the tree depth is large. Since the optimal depth for NTM
is usually large, the leaf size tends to have a larger influence on performance of
NTM. While the optimal depth for STM is usually small, the leaf size will have
a smaller influence on STM’s performance.

Figure 6 shows the relationship between the leaf number and the tree depth.
We can find that the number of leaf increases rapidly at first. When the depth of
tree grows up, the growth of leaf number begins to slow down, which corresponds
to the convergence of ANLP shown in Fig. 5.

Table 5. The average optimal tree depth and leaf numbers for different models.

Tree depth Leaf number

Model ANLP KLD ANLP KLD

NTM 20.33 11.33 632.67 398.67

STM 5.89 4.89 25.33 52.11

In the experiment, we use a validation set to find out the optimal tree depth.
Table 5 shows the average optimal tree depths and the corresponding leaf num-
bers for NTM and STM. We can find that the average optimal tree depth and
leaf number of STM is lower than that of NTM, because STM learns from both
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winning bids and lost bids. As the tree grows, it will reach the best performance
earlier than NTM, which only learns from the winning bids.

We also experimentally illustrate the EM convergence of the tree model in
Fig. 7, which shows the value changes of KL-Divergence over EM training rounds.
We observe that our optimization converges within about 6 EM rounds, and the
fluctuation is small. In our experiments, the EM algorithm is quite efficient and
converges quickly. The average training rounds of our EM algorithm is about 4.

Fig. 7. KL-Divergence convergence w.r.t. EM rounds.

5 Conclusion and Future Work

In this paper, we have proposed a functional bid landscape forecasting method-
ology in RTB display advertising, which automatically builds a function map-
ping from the impression features to the market price distribution. The iterative
learning framework trains a decision tree by clustering-based node splitting with
the KL-Divergence objective. We also incorporate the survival model to handle
the model bias problem caused by the censored data observations. The overall
model significantly improves the forecasting performance over the baselines and
the state-of-the-art models in various metrics.

In the future work, we plan to combine the functional bid landscape fore-
casting with utility (e.g. click-through rate, conversion rate) estimation model,
aiming to make more reasonable and informative decisions in bidding strategy.
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Abstract. Influence maximization is a well-studied problem of finding
a small set of highly influential individuals in a social network such that
the spread of influence under a certain diffusion model is maximized. We
propose new diffusion models that incorporate the time-decaying phe-
nomenon by which the power of influence decreases with elapsed time.
In standard diffusion models such as the independent cascade and linear
threshold models, each edge in a network has a fixed power of influence
over time. However, in practical settings, such as rumor spreading, it
is natural for the power of influence to depend on the time influenced.
We generalize the independent cascade and linear threshold models with
time-decaying effects. Moreover, we show that by using an analysis frame-
work based on submodular functions, a natural greedy strategy obtains
a solution that is provably within (1 − 1/e) of optimal. In addition,
we propose theoretically and practically fast algorithms for the proposed
models. Experimental results show that the proposed algorithms are scal-
able to graphs with millions of edges and outperform baseline algorithms
based on a state-of-the-art algorithm.

1 Introduction

Recently, the rapidly increasing popularity of online social networks has created
opportunities to study information diffusion that models the spread of news,
ideas, and product adoption throughout the population. Motivated by appli-
cations to marketing, Domingos and Richardson [8] introduced viral marketing,
which is a cost-effective marketing strategy that promotes products through
word-of-mouth. Formally, the influence maximization problem [17] asks, for a
parameter k, to find a set of k vertices in a social network such that the expected
number of activated vertices is maximized.

The independent cascade (IC) model and linear threshold (LT) model are two
of the most basic and widely studied diffusion models in influence maximization.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 132–147, 2016.
DOI: 10.1007/978-3-319-46128-1 9
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The IC model proposed by Goldenberg et al. [10] focuses on individual (and
independent) interaction among friends in a social network. The LT model [14]
focuses on threshold behavior in influence propagation, where a user is influenced
when a sufficient number of friends are influenced. The two models are tractable
as they are shown to have submodularity [17], which has motivated substantial
theoretical and practical follow-up research [2,4,5,20,25,28,29].

Recent research into empirical social networks [11,15,16] reports that time
plays an important role in the spread of influence in a network. However, in the IC
and LT models, each edge in a network has a fixed power of influence over time.
This does not reflect reality. In a practical setting, such as rumor spreading,
the power of influence may decay over time. Moreover, the influence may be
propagated with delay. In this paper, we incorporate two types of temporal
phenomena, i.e., time-decaying phenomenon and time-delay propagation, into
both the IC and LT models.
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Fig. 1. Time transition of
the average edge probability.

Time-decaying Phenomenon. First, we consider
the “freshness” of information. Intuitively, a rumor
has a lifetime, and a new idea is often affected
by trends. One may also observe that information
becomes less attractive over time. To observe such
phenomenon in a real-world social network, we esti-
mate edge probabilities that represent the power of
influence at each time by applying the method of
[13] to the Digg dataset.1 Figure 1 shows the tran-
sition of the average edge probabilities among all
edges. As can be seen, the average edge probabil-
ity clearly decreases over time, especially halving in a day. Thus, the power of
word-of-mouth effects strongly depends on the elapsed time. This motivates us
to introduce a time-decaying phenomenon to information diffusion models.

Time-delay Propagation. In addition to the time-decaying effect, we incorporate
a time-delay effect, which has been studied extensively [11,13]. In many real-
world examples, the propagation of influence from one person to another may
have a certain time delay due to heterogeneity in human activities. Thus, the
speed of influence spread varies. We capture such time-delaying propagation in
our model by extending the model [11,22,26] with the time-decaying phenom-
enon.

1.1 Contributions

In this paper, we address the above temporal issues and extend well-studied
diffusion models. We first propose an IC model that incorporates time-decaying
probabilities and time-delay propagation. The salient feature of this model is that
the power of influence on edges decays over time, as shown in Fig. 1. This model is

1 http://www.isi.edu/∼lerman/downloads/digg2009.html.

http://www.isi.edu/~lerman/downloads/digg2009.html
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simple and sufficiently general to deal with various time-decaying probabilities.
It should also be noted that our model includes most previous models with
temporal effects, such as [12] (see Sect. 3.2). In addition, we propose an LT model
with time-decaying probabilities and time-delay propagation, which is another
interpretation of temporal phenomena with threshold behavior.

Our main contributions are summarized as follows.

– Time-varying IC model (Sect. 3): We extend the IC model with time-
decaying probabilities and time-delay propagation. We show that the expected
number of activated vertices under the extended model is monotone and sub-
modular with respect to an initial vertex set. Therefore, we can efficiently find
a solution that approximates an optimal solution within the ratio (1−1/e−ε)
using a greedy algorithm [24].

– Time-varying LT model (Sect. 4): We introduce the LT model with time-
decaying probabilities and time-delay propagation, in which the influences
from neighbors decay over time. As with the extended IC model, the expected
number of activated vertices is monotone and submodular, and we can effi-
ciently find an approximate solution within the ratio (1 − 1/e − ε) using a
greedy algorithm.

– Scalable algorithms (Sect. 5): We propose scalable and accurate algorithms
for influence maximization under the proposed models by generalizing sketch-
ing methods [2,28]. To this end, we design novel dynamic programming that
can deal with time-decaying probabilities efficiently.

– Experimental evaluations (Sect. 6): We conduct experiments on real-
world social networks and demonstrate that the proposed algorithms out-
perform baseline methods in terms of both efficiency and accuracy.

Due to space limitations, we omit some of the proofs and the experimental
results, which will be found in the full version of this paper.

2 Related Work

Inspired by the work of Domingos and Richardson [8], Kempe et al. [17] formu-
lated the influence maximization problem as a discrete optimization problem.
They showed that the influence maximization problem is NP-hard for the IC and
LT models and that the expected number of activated vertices is a monotone and
submodular function with respect to an initial vertex set. This implies that an
optimal solution for the influence maximization problem can be approximated
efficiently within the ratio (1 − 1/e − ε) with a greedy-type algorithm [24].

Since Kempe et al.’s greedy algorithm suffers from poor scalability, a plethora
of scalable algorithms have been proposed. Existing approaches (for the IC
and LT models) can be roughly classified into three types. Simulation-based
methods [5,17,20,25] conduct Monte-Carlo simulations of the diffusion process
to estimate the influence spread accurately; however, they suffer from ineffi-
ciency. Heuristic-based methods [4,5,18] avoid using Monte-Carlo simulations
by restricting the spread of influence in a particular group, which often results



Maximizing Time-Decaying Influence in Social Networks 135

in poor-quality solutions due to an absence of accuracy guarantees. Sketch-based
methods [2] resolved the inefficiency of Monte-Carlo simulations while preserv-
ing accuracy guarantees. Rather than directly simulating the diffusion process,
sketch-based methods build sketches in advance based on an outcome of reverse
simulations, and efficiently estimate the influence spread. Subsequently, several
strategies for bounding the sketch size have been developed [28,29]. In this paper,
we generalize sketch-based methods to our proposed models without significant
deterioration of efficiency.

Various information diffusion models with time-delay propagation have been
proposed in different contexts [3,11,13,22,26,27] to resemble actual cascade dis-
tribution. The influence maximization problem in such models has also been
studied [3,9,12,28]. We show in Sect. 3.2 that most previous models are included
in the proposed model. Note that, the existing models only consider the time dif-
ference between two vertices. In contrast, our model considers the time reached
from the seeds, which allows us to introduce the time-decaying probabilities, as
well as the time difference.

3 Time-Varying IC Model

3.1 Model Definition

Here we define the time-varying IC model formally. Let G = (V,E) be a directed
graph, where V is a vertex set of size n and E is an edge set of size m. For a vertex
v in V , N+(v) denotes the set of out-neighbors of v. Each individual vertex can
be either active (an adopter of the innovation) or inactive. In the time-varying
(TV) IC model, we begin with a seed set A of active vertices. Then, the process
unfolds according to the following randomized rule. When a vertex u becomes
active at time tu for the first time, it is given a single chance to activate each
current inactive neighbor v of u through the edge e = (u, v). Here unlike the
standard IC model, both the distance to v and the probability to activate v
depend on time. That is, the conditional likelihood that the influence reaches v
at time t is defined by fe(t | tu). We assume that the likelihood is shift invariant,
i.e., fe(t | tu) = fe(t − tu), and nonnegative, i.e., fe(s) = 0 for s < 0. Moreover,
when v receives the influence at time t, the probability to be activated is given
by a nonincreasing function pe : R+ → [0, 1] of the arrival time, i.e., pe(t). Thus,
the probability that v becomes active at time t is

Pr [v becomes active at time t | u is active at time tu] = pe(t)fe(t − tu). (1)

When v receives influence from more than one newly activated neighbors simul-
taneously, their attempts to activate v are sequenced independently in arbitrary
order. The process runs until no further activations are possible.

Intuitively, the term pe(t) represents the decrease in power of influence as
time passes, because pe is a nonincreasing function on elapsed time. On the
other hand, fe(t − tu) represents the time-delay effect on the edge e. Note that
if pe(t) is a constant ce for any t, then this model is identical to the IC model.
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3.2 Examples of TV-IC Models

Here we present examples of the TV-IC model. The first example is the influence
maximization problem with deadline.

Example 1 (Influence maximization with deadline). Let ce ∈ [0, 1] be a
constant for each edge e and let T be a positive number. Consider the TV-IC
model where a function pe is given by pe(t) = ce if t ≤ T and pe(t) = 0 if t > T .
This case means that the influence will expire at time T . Therefore, the influence
maximization problem over such a model is to maximize the expected number
of vertices activated before deadline T .

Moreover, the TV-IC model extends previous models properly.

Example 2 (Continuous-time independent cascade (CTIC) model [11,
22,26]). The TV-IC model where a function pe is a constant includes various
previously proposed models. For example, Saito et al. [26,27] considered the case
where fe is an exponential function. In their model, the time-delay parameters
re > 0 and diffusion parameters ce ∈ (0, 1) for each edge e = (u, v) are given.
When u is activated at time tu, u will activate an inactive neighbor v with
probability ce. If it succeeds, a delay time δ is sampled from the exponential dis-
tribution re exp(−reδ), and v will become active at time tu+δ. Gomez-Rodriguez
et al. [11] dealt with more general functions of fe. However, in their model, pe(t)
is set to 1 for all e and t, which means that a vertex u always activates its neigh-
bor v at some time. A similar model was also proposed in [13,22]. However, in
all these models, pe is a constant independent of time t.

Example 3 (Independent cascade model with meeting events [3]). In
this model, we are given meeting probabilities me and propagation probabil-
ities ce. When a vertex u is activated at time tu, u will attempt to meet an
inactive neighbor v with probability me, where e = (u, v). Thus a time-delay
δ ∈ {1, 2, . . .} occurs with probability me(1 − me)δ−1. When they meet, u will
activate v with probability ce at that time. This means that the probability that
u will activate v at time tu + δ is ceme(1 − me)δ−1. Thus, it is included in our
model, where pe is a constant.

The following example is one in which the probability decays at arrival time t.
However, the time delay effect is not considered.

Example 4. Assume that pe is given by pe(t) = reα(t) for some constant re and
a nonincreasing function α : R+ → [0, 1], which represents the influence decay
factor. This is the IC model wherein the probability is decreased by a factor of
α(t) when the influence is reached at time t. This case includes the temporal
factor proposed by Cui et al. [7], where pe(t) = re exp(−ct) for some constant c.
Note that the model proposed by Cui et al. [7] is more general in order to resemble
actual cascade distribution, which does not clearly possess submodularity. Thus,
their model has no theoretical guarantee for influence maximization.
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3.3 Submodularity of the Influence Spread Function

We say that a set function f : 2V → R is monotone if f(S) ≤ f(T ) for all
S ⊆ T ⊆ V , and submodular if f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T ) for all
S ⊆ T ⊆ V and v ∈ V \T .

Let σ(A) be the expected number of vertices activated after running the
process of the TV-IC model with an initial seed set A. The following theorem is
the main technical result in this section, which generalizes Kempe et al. [17].

Theorem 1. For the TV-IC model, σ is a monotone submodular function.

We here present the proof idea. The detailed proof is deferred to the next
section. First, we remove the time-delay factor fe, similar to the proof of [12].
Consider the probability distribution obtained by fe of all possible time differ-
ences between each pair of nodes in the network and sample a length de of each
edge e from the probability space. Let σd be the expected number of vertices
activated, assuming that the length of an edge e is de. Since σ is the expected
value of σd, it is sufficient to show that σd is monotone and submodular.

Here we focus on the time-decay factor pe. Note that a standard “coin flip-
ping” technique for the IC model [17] would not work to show the submodularity
when pe depends on time. The key observation was that a set of activated vertices
corresponds to the reachability of a random graph generated by “coin flipping”
on each edge. Then, the expected size of the reachable vertices is shown to be
monotone and submodular. This technique tells us that we do not have to con-
sider time in the IC model. However, due to the time dependency of probability,
we cannot directly apply this observation to our problem setting.

To overcome this difficulty, we prepare a random variable xe in the range
[0, 1] on each edge e before the process. Based on these values, we construct a
graph in a deterministic manner such that the reachability of the graph is equal
to the activated vertices. Note that the obtained graph depends on a seed set, in
contrast to Kempe et al. [17]. This requires more careful analysis in the proof.

It should also be noted that the time decay of probabilities is essential to sat-
isfy the submodularity of σd. To demonstrate this, consider a graph consisting of
a directed triangle (u, v), (v, w), (u,w) with a directed path (w,w1), (w1, w2), . . . ,
(w�−1, w�) of length � > 1. The length d of the edges is defined as duw = 3 and
de = 1 for any edge e �= (u,w). The probabilities are set to pvw(t) = 0 for
t < 2, pvw(t) = 1 for t ≥ 2, pww1(t) = 0 for t < 4, pww1(t) = 1 for t ≥ 4,
and pe(t) = 1 for any other edge e and any time t. This is illustrated in Fig. 2.
For this graph, if we take {u} as the seed set, then u activates v in time t = 1,
v activates w in time t = 2, and w fails to activate w1 in time t = 3, which
stops diffusion. If we take {v}, then v fails to activate w in time t = 1 and
diffusion terminates. However, if we take {u, v}, then v fails to activate w in
time t = 1, but u succeeds in time t = 3, and w activates w1 in time t = 4,
which eventually results in influence spreading to all vertices. Thus, we have
σd({u, v}) − σd({u}) = (� + 3) − 3 > 1 = σd({v}) − σd(∅), which violates sub-
modularity.
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u

v w w1 w −1 ww2

Fig. 2. Example violating submodularity when probability increases.

It follows from Theorem 1 that, using Monte-Carlo simulations to estimate
σ(A), we can maximize σ within (1 − 1/e − ε) approximation factor by a greedy
algorithm [24]. However, naive Monte-Carlo simulations require significant time
to estimate σ(A). Because the proof of Theorem 1 has a nice combinatorial struc-
ture, we provide a theoretically efficient algorithm in Sect. 5.

3.4 Proof of Theorem 1

Here we prove Theorem 1. Let G = (V,E) be a directed graph and pe : R+ →
[0, 1] be a nonincreasing function for each edge e. As described in Sect. 3.3, we
may assume that if u becomes active at time t, then the influence reaches a
neighbor v at time t+de, and the probability that v becomes active is pe(t+de).

For each edge e, we choose a number xe in the range [0, 1] uniformly at
random. We assume that we can use the edge e = (u, v) to activate v in the
TV-IC model if the arrival time t satisfies pe(t) > xe. Then, the probability that
e can activate v in time t is equal to pe(t), which is the case when xe is the range
[0, pe(t)].

Let X = (xe) be a choice of random numbers xe for all edges e ∈ E. Then,
the number of activated vertices is determined uniquely by such X. σX(A) is
defined as the total number of vertices activated by a seed set A by running the
process with X. Since each edge is used at most once in the process, σ(A) can
be described by the functions σX(A):

σ(A) =
∫

Pr[X]σX(A)dX.

The function σX can be characterized by the reachability of a graph. For
each edge e, we say that e is live in time t if pe(t) > xe. For each vertex v, we
denote N+

t (v) = {w ∈ N+(v) | (v, w) is live in t + dvw}. For a seed set A, we
construct a graph GX(A) as follows.

Procedure to obtain GX(A) from X and A.
Step 0. Set rv = 0 for each v ∈ A and rv = +∞ for each v ∈ V \ A. Set t = 0.
Step 1. While t < +∞ do the following:
1-1. Define Vt = {v ∈ V | rv = t}.
1-2. For each v ∈ Vt and each w ∈ N+

t (v), replace rw with min{rv + dvw, rw}.
1-3. Increase t to min{rv | rv > t}.
Step 2. Return GX(A) = (R,F ), where R =

⋃
t<+∞ Vt and F = {(v, w) | rw =

rv + dvw}.
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Note that this procedure simulates the TV-IC model when we fix a choice
X. The obtained vertex set R is the set of vertices activated by A.

By the above procedure, we show in Lemma 1 that σX is monotone and
submodular, which implies Theorem1. Note that the construction of GX(A)
depends on the given seed set A; thus, we cannot extend the proof in [17] directly,
and we must consider the dynamics of reachability.

Lemma 1. The function σX is monotone and submodular.

4 Time-Varying LT Model

Let G = (V,E) be a directed graph. Each vertex v chooses a threshold θv ∈ [0, 1]
uniformly at random. Each edge e has a nonincreasing function qe : R+ → [0, 1]
and has a function fe : R → [0, 1] that represents the shift invariant conditional
likelihood as in the TV-IC model. We suppose that

∑
e:e=(u,v) qe(0) ≤ 1 for each

v ∈ V .
Given a seed set A, the diffusion process in the time-varying (TV) LT model

unfolds, similar to the LT model. The difference is that the distance to a neighbor
and the amount of influences from neighbors depend on arrival times. Consider
the case wherein a vertex u becomes active in time tu. Then, each edge (u, v)
delivers an influence to v, where the likelihood that the influence reaches v at
time t is fe(t − tu). When the influence reaches v at time t, the amount of
influence that v receives is qe(t). The vertex v becomes activated once the total
influence exceeds the threshold θv.

Similar to the TV-IC model, qe(t) represents the time decay of influence,
and fe(t − tu) represents the time-delay of propagation. Note that if qe(t) is a
constant ce for any t, this model coincides with the LT model. Moreover, we can
consider the same situations as given in Sect. 3.2.

Example 5 (Influence maximization with deadline). Let T be a positive
number. For each edge e, define a function qe to be qe(t) = ce if t ≤ T and
qe(t) = 0 if t > T , where ce ∈ [0, 1]. The TV-LT model with such a function qe

represents that the influence will expire at time T .

Example 6 (Continuous-time diffusion model). For each edge e = (u, v),
we are given the time-delay parameters re > 0 and the power of influence
ce ∈ (0, 1). Consider the TV-LT model where qe(t) = ce and fe(t − tu) =
re exp(−re(t − tu)) for each edge e. The model is a continuous-time variant of
the LT model, in which the time-delay on edges occurs based on exponential
distribution.

Let σ(A) be the expected number of vertices activated after running the
process of the TV-LT model with an initial seed set A. Using a technique similar
to Theorem 1, σ is shown to be monotone and submodular. As a corollary, an
optimal solution for the influence maximization problem under the TV-LT model
can be approximated efficiently within the ratio (1 − 1/e − ε).

Theorem 2. For the TV-LT model, σ is a monotone submodular function.
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5 Scalable Greedy Algorithms for the Proposed Models

In this section, we propose scalable greedy algorithms for influence maximization
under the proposed diffusion models by extending a sketching method [2]. We
first describe the sketching method and its generalization, and then discuss how
to extend it to the proposed models.

5.1 Sketching Method and Generalization

The pseudocode of the sketching method is presented in Algorithm1. Given a
directed graph G = (V,E), a diffusion model M, and a seed size k, the sketching
method performs the following two stages. In the first stage, beginning with an
empty family R = ∅, it repeats the following procedure: sample a target vertex
z from V uniformly at random, compute the vertex set R that would influence
z in an outcome of the diffusion process of M, and add R to R. The above
repetition terminates when R includes a sufficient number of vertex sets for
accurate influence estimation. In the second stage, it computes an approximate
solution A of the maximum coverage problem, which seeks to select a set of k
vertices from V that intersects the maximum number of vertex sets in R, by the
greedy algorithm. Finally, it returns a solution A.

Here we discuss why A is influential. Let FR(A) be the fraction of sets in
R intersecting A, i.e., FR(A) = |{R∈R|R∩A �=∅}|

|R| . Then, for any vertex set A,
n · FR(A) is an unbiased estimator of σ(A), i.e., E[n · FR(A)] = σ(A) [2], where
σ(A) is the influence spread of A under M. Therefore, as long as this estimator
gives accurate influence estimations, A is likely to have a large influence spread.

Now we consider applying the sketching method to the diffusion models pro-
posed in this paper. There are two main challenges. The first one is to devise a
procedure for generating a (random) vertex set that would influence a certain
target vertex (line 4 in Algorithm1) under the proposed models. The second is
guaranteeing the accuracy and time complexity of the sketching method with
the devised procedure. For the purpose, we adopt reverse influence (RI) sets, a
model-independent notion introduced by Tang et al. [28], defined as follows.

Algorithm 1. Sketching method for influence maximization.
Require: a directed graph G = (V, E), a diffusion model M, a seed size k.
1: R ← ∅. � Building sketches.
2: repeat
3: z ← a vertex chosen from V uniformly at random.
4: R ← a vertex set that would influence z in an outcome of the process of M.
5: R ← R ∪ {R}.
6: until R includes a sufficient number of vertex sets for accurate influence estimation.
7: A ← ∅. � Selecting a seed set.
8: while |A| < k do

9: s ← argmaxv∈V FR(v). � FR(v) is defined as
|{R∈R|R∩{v}�=∅}|

|R| .

10: A ← A ∪ {s} and remove vertex sets including s from R.

11: return A.
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Definition 1 (Reverse influence set from Definition 3 in [28]). For a
graph G = (V,E) and a diffusion model M, a reverse influence (RI) set for a
vertex z in V is a random vertex set R ⊆ V such that for any vertex set S ⊆ V ,
the probability that R∩S �= ∅ is equal to the probability that the initial activation
of vertices in S results in the activation of z under the diffusion process of M.
A random RI set is defined as an RI set for a vertex randomly sampled from V .

Thus, if we are given a family R of random RI sets for M, then we have n ·
FR(S) = σ(S) for every set S [28]. Furthermore, given a procedure for generating
random RI sets under M, Tang et al. [28] proved the time complexity and
approximation ratio of a sketching algorithm IMM [28] shown as follows.

Theorem 3 (Theorem 5 in [28]). Under a diffusion model for which a ran-
dom RI set takes O(EPT) expected time to generate, IMM returns a (1−1/e−ε)-
approximation with probability at least 1 − 1

n� , and runs in O(EPT
OPT (k + �)(n +

m) log n
ε2 ) expected time, where OPT = maxS⊆V :|S|=k σ(S).

In summary, it suffices to design efficient and correct computation of RI sets.
Remark that such a procedure may not exist depending on M. In the following,
we describe an algorithm that produces RI sets under each proposed model and
analyze its correctness and computation time.

5.2 Efficient RI Set Generation Under TV-IC Model

Algorithm Description. Here we describe an efficient algorithm for generating RI
sets under the TV-IC model. Note that existing approaches for RI set generation,
such as a BFS-like algorithm for the IC and LT models [2,28,29] and a Dijkstra-
like algorithm for the CTIC model [28], cannot be applied to the TV-IC model
due to the time dependency of probability.

For this purpose, we exploit the graph introduced in the proof of Theorem1.
Given the choice of de’s and xe’s, a target vertex z will be activated in the dif-
fusion process with an initial seed vertex v if v can reach z in GX({v}), which
is obtained by the procedure discussed in Sect. 3.4. However, a naive implemen-
tation of the procedure requires at least quadratic time.

We now present a more efficient algorithm. The key idea is to introduce the
latest activation time τ [v] of v, which is defined as the maximum number τ [v]
such that the activation of v within time τ [v] results in the activation of z given
the choice of xe’s and de’s. Obviously, τ [z] = +∞. For each vertex u (�= z), u’s
influence must pass through one of its out-going edges in order to influence z.
Specifically, u influences z by passing through (u, v) if u was activated within
time τ [v] − duv and puv(τ [u] + duv) > xuv. Thus, the latest activation time τ [u]
of u is determined by

τ [u] = max
v∈N+(u)

min{τ [v] − duv, p−1
uv (xuv)},

where p−1
uv (xuv) is the maximum number t such that puv(t + duv) > xuv (note

that p−1
e (x) can be ±∞). From the equation, the values τ [v] for all vertices v

can be obtained efficiently by performing dynamic programming.
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Algorithm 2. Efficient RI set generation under the TV-IC model.
Require: a directed graph G = (V, E), edge probability functions pe : R+ → [0, 1], edge

length likelihoods fe : R → [0, 1], a target vertex z.
1: τ [z] ← +∞ and τ [v] ← −∞ for all v ∈ V \ {z}.
2: Q ← a queue with only one element z.
3: while Q �= ∅ do
4: Dequeue v with the maximum τ [v] from Q.
5: for all u with e = (u, v) ∈ E do
6: de ← an edge length sampled according to fe.
7: xe ← a uniform random number in [0, 1].

8: ρ ← min{τ [v] − de, p−1
e (xe)}.

9: if ρ > τ [u] and ρ ≥ 0 then
10: τ [u] ← ρ and enqueue u onto Q. � O(log n) time

11: return the set of visited vertices, i.e., {v ∈ V | τ [v] ≥ 0}.

The pseudocode of the RI set generation under the TV-IC model is given in
Algorithm 2. Beginning with a queue with a target vertex z with τ [z] = +∞, we
determine the latest activation time of each vertex iteratively. For each iteration,
we extract a vertex v with the maximum τ [v] (≥ 0) from the queue (thereafter,
v’s latest activation time will not be updated), sample a random number xuv

and an edge length duv of each vertex u in the in-neighbors of v, and update its
latest activation time τ [u] if min{τ [v]−duv, p−1

uv (xuv)} > τ [u]. When τ [u] ≥ 0 at
that time, we insert u into the queue. When the queue is empty, we return the
set of vertices v with τ [v] ≥ 0 as an RI set for z. Note that by using a binary
heap, both selecting a vertex from the queue (line 4) and inserting a vertex into
the queue (line 10) can be performed in O(log n) time.

Theoretical Analysis. We first give the correctness and time complexity.

Lemma 2. Algorithm2 produces an RI set for z for the TV-IC model.

Proof. We show that for any vertex z and any vertex set S ⊆ V , the probability
p1 that the algorithm’s output intersects S is equal to the probability p2 that
the initial activation of vertices in S leads to the activation of z.

From the construction of the algorithm, p1 is the probability of the following
event over the choice of xe’s and de’s: For some vertex s in S, there is a path
v1 = s, v2, . . . , v�−1, v� = z of length � such that τ1 ≥ 0 where τ� = +∞ and
τi = min{τi+1 − dvivi+1 , p

−1
vivi+1

(xvivi+1)} (1 ≤ i ≤ � − 1).
From the procedure to obtain GX(A) in Sect. 3.4, p2 is the probability of the

following event over the choice of xe’s and de’s: For some vertex s in S, there is
a path v1 = s, v2, . . . , v�−1, v� = z of length � such that pvivi+1(τ

′
i + dvivi+1) >

xvivi+1 (1 ≤ i ≤ � − 1) where τ ′
1 = 0 and τ ′

i+1 = τ ′
i + dvivi+1 (1 ≤ i ≤ � − 1).

It is easy to see that the two events given the choice of xe’s and de’s are
equivalent. Therefore, p1 = p2 and thus the lemma holds. �
Lemma 3. Algorithm2 runs in O(m·OPT

n log n) expected time for a randomly
selected vertex z.

Then, by Theorem 3 and Lemmas 2 and 3, we obtain the following.



Maximizing Time-Decaying Influence in Social Networks 143

Theorem 4. Under the TV-IC model, IMM with Algorithm2 returns a (1 −
1/e−ε)-approximation with probability at least 1− 1

n� and runs in O((k+�)(m+
m2

n ) log
2 n

ε2 ) expected time.

Although a factor m2/n in the time complexity can be O(m
√

m) for dense
graphs, real-world social networks are sparse, i.e., m/n is small, and thus the
proposed algorithm scales approximately linearly to real-world social networks.

5.3 Efficient RI Set Generation Under TV-LT Model

Similar to the TV-IC model, we develop an efficient algorithm for generating
random RI sets under the TV-LT model and obtain the following theorem.

Theorem 5. Under the TV-LT model, IMM with the above procedure for RI set
generation returns a (1 − 1/e − ε)-approximation with probability at least 1 − 1

n�

and runs in O((k + �)(m + m2

n ) log
2 n

ε2 ) expected time.

6 Experimental Evaluations

In this section, we demonstrate the efficiency and accuracy of our algorithms
through experiments on real-world networks. We conducted the experiments on
a Linux server with an Intel Xeon E5540 2.53 GHz CPU and 48 GB memory.
All algorithms were implemented in C++ and compiled using g++ 4.8.2 with
the -O2 option. We used five real-world social networks (Table 1).

6.1 Experiments with TV-IC Model

Settings of Edge Probability Functions and Edge Length Likelihoods. Motivated
by the empirical evidence shown in Fig. 1, we adopt two nonincreasing functions
for edge probabilities. One is the weighted exponential (WE) IC model, which
assigns puv(t) = 1

d−(v) exp(−ct) to each edge (u, v), where c is sampled randomly
in the range [1, 10]. Here d−(v) is the in-degree of a vertex v. The other is the
weighted reciprocal (WR) IC model, which assigns puv(t) = 1

d−(v)ct , where c is
sampled randomly in the range [1, 10]. Note that these models represent fast and

Table 1. Datasets.

Dataset n m Type

Physicians [1] 241 1, 098 Social

ca-GrQc [21] 5, 241 28, 968 Collaboration

wiki-Vote [21] 7, 115 103, 689 Social

soc-Epinions1 [21] 75, 879 508, 837 Social

ego-Twitter [21] 81, 306 2, 420, 744 Social
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Fig. 3. Influence spreads for TV-IC.
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Fig. 4. Running times for TV-IC.

slow decay of the power of influence, respectively. We show that such differences
in the speed of time-decaying are crucial to the expected size of the cascades.

For each edge e, we set the edge length likelihood to the Weibull distribu-
tion [19], whose probability distribution function is defined as:

fe(δ) = αe

βe
·
(

δ
βe

)αe−1

· exp
(
−

(
δ
βe

)αe
)

, (2)

where αe and βe are randomly sampled in the range [0, 10]. Note that this dis-
tribution has been adopted in continuous-time diffusion model literature [9,28].

Comparative Algorithms. For the proposed algorithm for the TV-IC model, i.e.,
IMM with Algorithm 2, we set ε = 0.5 and � = 1, as described in [28]. Here we
compare the proposed algorithm with the following baseline algorithms.

– LazyGreedy [23]: An accelerated simulation-based greedy algorithm for
monotone submodular function maximization. We conducted Monte-Carlo
simulations 10,000 times to estimate the influence spread.

– IMM-CTIC [28]: A sketching method for the CTIC model. Since this method
takes care of “deadlines” rather than time-decaying edge probabilities, we set
its deadline to 1.

– IMM-IC [28]: A sketching method for the IC model. We set the probability of
each edge e to pe(d̄e), where d̄e is the average edge length.

– Degree: Select k vertices in decreasing degree order.

Results. Figure 3 shows the influence spreads for seed sets of sizes 1, 10, 20, . . . ,
100 computed by each algorithm.2 We omitted the results for Physicians, wiki-
Vote, and soc-Epinions1, which exhibit similar behaviors, due to space limitations.
2 We take the average after conducting simulations of the TV-IC 10,000 times.
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LazyGreedy did not finish in 10,000 seconds with ca-GrQc (WR-IC, k = 100),
ego-Twitter (WE-IC, k ≥ 30), and ego-Twitter (WR-IC). Consequently, we were
unable to obtain seed sets with these settings. Our method and LazyGreedy
returned nearly the best results for most settings. Although IMM-IC is close to
the best results, its influence spread (=4,336) with ego-Twitter (WR-IC, k = 1)
is 30 % worse than the best (=6,279). IMM-CTIC provided ineffective seed sets,
e.g., with ego-Twitter (WR-IC, k = 1). As expected, Degree gave poor seed sets.
We can also see that the WR-IC setting gives larger influence spreads compared
to the WE-IC setting, which demonstrates the critical importance of the time-
decaying phenomenon.

Figure 4 shows the running times required to select seed sets of sizes 1, 10,
20, . . . , 100 for each algorithm. Note that the running times do not include the
time required to read the input graph from secondary storage. LazyGreedy even
did finish in 10,000 seconds with ca-GrQc (k = 100), which is a small network,
due to the computation cost of the Monte-Carlo simulations. Our method and
IMM-IC required only several thousands of seconds for each graph, which is
several orders of magnitude faster than LazyGreedy .

6.2 Experiments for TV-LT Model

Settings of Edge Weight Functions and Edge Length Likelihoods. Similar to the
TV-IC model, we adopt two nonincreasing functions for edge weights, i.e., the
weighted exponential (WE) LT model, which assigns quv(t) = 1

d−(v) exp(−ct),
and the weighted reciprocal (WR) LT model, which assigns quv(t) = 1

d−(v)c(t+1) ,
where c is randomly sampled in the range [1, 10].

We set the edge length likelihood to the Weibull distribution (2).

Comparative Algorithms. For the proposed algorithm for the TV-LT model, i.e.,
IMM with the algorithm in Sect. 5.3, we set ε = 0.5 and � = 1 [28]. Since
there are no algorithms for continuous-time LT models, we compare our method
to LazyGreedy [23] and Degree, the same as for the TV-IC model, and IMM-
LT [28], which is a sketching method for the LT model with edge weights qe(d̄e).
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Results. Figure 5 shows the influence spreads for seed sets computed by each
algorithm. We observe similar behaviors as TV-IC model, LazyGreedy gave the
best solutions, and the proposed method significantly outperformed IMM-LT
and Degree for most settings.

Figure 6 shows the running times required to select seed sets for each algo-
rithm. As in the case of the TV-IC model, the proposed method has much better
scalability than LazyGreedy .

7 Conclusions

In this paper, we proposed diffusion models that incorporate time-decaying phe-
nomenon and time-delay propagation by generalizing two standard diffusion
models, i.e., independent cascade and linear threshold. We demonstrated that
our models include most previous models with temporal effects, and the influ-
ence functions are monotone and submodular. Moreover, we devised scalable
algorithms for influence maximization under the proposed models and experi-
mentally verified their efficiency and accuracy compared to baseline algorithms.

A possible future direction is to learn edge probability functions from cascade
logs. It might also be interesting to consider the influence maximization over
diffusion models where cascades may recur [6], i.e., the power of influence is
not necessarily nonincreasing. Note, however, that the case does not fall into
submodular maximization as described in Sect. 3.3.
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Abstract. In real world machine learning applications, testing data
may contain some meaningful new categories that have not been seen in
labeled training data. To simultaneously recognize new data categories
and assign most appropriate category labels to the data actually from
known categories, existing models assume the number of unknown new
categories is pre-specified, though it is difficult to determine in advance.
In this paper, we propose a Bayesian nonparametric topic model to auto-
matically infer this number, based on the hierarchical Dirichlet process
and the notion of latent Dirichlet allocation. Exact inference in our model
is intractable, so we provide an efficient collapsed Gibbs sampling algo-
rithm for approximate posterior inference. Extensive experiments on var-
ious text data sets show that: (a) compared with parametric approaches
that use pre-specified true number of new categories, the proposed non-
parametric approach can yield comparable performance; and (b) when
the exact number of new categories is unavailable, i.e. the parametric
approaches only have a rough idea about the new categories, our app-
roach has evident performance advantages.

1 Introduction

Human exploration of the world is never-ending, and we never know there still
exist how many unknown things beyond our scope. For real-world machine learn-
ing applications, we often can only collect limited training instances before we
do prediction on a large amount of unlabeled testing instances. Given the tem-
poral and spatial constrictions at the beginning, it is likely that unlabeled new
instances observed after a long time involve some meaningful new categories
of objects, e.g., the news classification problem studied in [11,24,27], and the
bacterial detecting problem in [1,8].

Basically, traditional classification models are unable to recognize new data
categories, while clustering models cannot make full use of the supervised infor-
mation from known categories. An ideal model should simultaneously recognize
the new data categories and assign most appropriate category labels to the data
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 148–164, 2016.
DOI: 10.1007/978-3-319-46128-1 10
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actually from known categories, since these two processes can benefit from each
other. Existing models for such a learning scenario typically assume the num-
ber of unknown new categories is pre-specified. In [27], Zhuang et al. proposed a
double-latent-layered Latent Dirichlet Allocation (DLDA) model, which can uti-
lize supervised information from known categories in a generative manner. While
classifying test data into categories acquired from the training data, their model
can simultaneously group the remaining data into some pre-specified number of
new clusters. In [24], the so-called Serendipitous Learning (SL) model established
a maximum margin learning framework that combines the classification model
built upon known classes with the parametric clustering model on unknown
classes. Though these methods are effective when the true number of unknown
new categories is available, their performances can be significantly degraded by
a vague or wrong specification of the unknown category information.

Given that the accessibility assumption of the true number of unknown cat-
egories often is impractical, in this paper, we propose a Bayesian nonparametric
topic model based on the hierarchical Dirichlet process [20] and the notion of
latent Dirichlet allocation [4], for semi-supervised text modelling beyond the
predefined label space. Unlike existing methods [24,27] which assume that the
number of unknown new categories in test data is known, our model can auto-
matically infer this number via nonparametric Bayesian inference while classify-
ing the data from known categories into their most appropriate categories. Exact
inference in our model is intractable, so we provide an efficient collapsed Gibbs
sampling algorithm for approximate posterior inference. Extensive experiments
on various text data sets show that: (a) compared with parametric approaches
that use pre-specified true number of new categories, the proposed nonparamet-
ric approach can yield comparable performance; and (b) when the exact num-
ber of new categories is unavailable, i.e. the parametric approaches only have
a rough idea about the new categories, our approach has evident performance
advantages.

In the following, we first review related works, and then present the generative
process of our model and its approximate inference; experimental results are
discussed in detail, before we conclude the paper and point out future work.

2 Related Work

A special case of the problem studied in this paper is the Positive and Unlabeled
(PU) learning [11,15,23], where the goal is to identify usually valuable positive
instances from a huge collection of unlabeled ones. Our model generalizes PU
learning in that, it not only identifies (multiple) known category of instances but
also conducts nonparametric clustering for the remaining instances. It should be
noted that the identification of known categories may benefit from a proper
grouping of the unknown instance categories.

Another topic closely related to ours is semi-supervised clustering [3], which
exploits available knowledge to help partition unlabeled data into groups. Gen-
erally, its knowledge is represented in the form of pairwise constraints [3,10,17],
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i.e., cannot-link and must-link, which tends to be inefficient when the number
of constraints is very large. Noting that our assumption is plenty of training
instances are available from the known categories, these algorithms may suf-
fer from efficiency problems. Moreover, violation of the constraints usually is
allowed in these models, so it is not easy to map the resultant data clusters
to the known classes. Instead of using constraints as supervision, we directly
leverage label information in our model.

Under the nonparametric Bayesian framework, a semi-supervised determi-
nantal clustering process was proposed in [19]. However, in each round of its
sampling based inference procedure, its kernelized formulation leads to cubic
computational complexity w.r.t. the number of instances to be clustered, which
makes it infeasible for large data sets.

In nonparametric Bayesian statistics, the Dirichlet Process (DP) is a popular
stochastic process that is widely used for adaptive modelling of the data [21].
Intuitively, it is a distribution over distributions, i.e. each draw from a DP is
itself a distribution. Sethuraman [18] explicitly showed that distributions drawn
from a DP are discrete with probability one, that is, the random distribution G
distributed according to a DP with concentration parameter γ and base distri-
bution H, can be written as

G =
∑∞

i=1
πiδθi

, πi = vi

∏i−1

j=1
(1 − vj),

where θi ∼ H, vi ∼ Beta(1, γ), and δθ is an atom at θ. It is clear from this
formulation that G is discrete almost surely, that is, the support of G consists
of a countably infinite set of atoms, which are drawn independently from H.

Antoniak [2] first introduced the idea of using a DP as the prior for the mix-
ing proportions of simple distributions, which is called the DP Mixture (DPM)
model. Due to the fact that the distributions sampled from a DP are discrete
almost surely, data generated from a DPM can be partitioned according to their
distinct values of latent parameters θi’s. Therefore, DPM is a flexible mixture
model, in which the number of mixture components is random and grows as new
data are observed. Teh et al. [20] proposed the Hierarchical DP (HDP), which
is a nonparametric Bayesian approach to the modeling of grouped data, where
each group is associated with a DPM model, and where we wish to link these
mixture models.

3 Learning Beyond Predefined Labels via Generative
Modelling

3.1 Problem Specification

Assume we have a labeled training data set Dl from the known categories K,
and an unlabeled test data set Du which includes instances from both the known
categories K and some unknown new categories U . The goal is to learn a function
f : Du → K ∪ U that maps any instance in Du to its category label in K ∪ U .
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Specifically, if an instance comes from the known categories K, we aim to identify
its true category label; meanwhile, we aim to group the instances not belonging
to the known categories K into clusters U .

3.2 The Proposed Bayesian Nonparametric Topic Model

For the problem specified above, an ideal model should simultaneously recognize
the unknown new data categories and assign most appropriate category labels
to the data actually from known categories, since these two processes can ben-
efit from each other. However, it is usually difficult to determine the number of
unknown categories in advance, which makes parametric approaches that assume
this number is pre-specified impractical. To avoid performance degrading caused
by a vague or wrong specification of the category information, in this paper, we
propose a Bayesian nonparametric topic model, which can automatically infer
the number of unknown new categories underlying test data Du while classify-
ing the data from known categories K into their most appropriate categories.
Specifically, focusing on text data, we assume the following generative process
for a document corpus:

1. Draw concentration parameters γ ∼ Γ (γ|aγ , bγ) and α ∼ Γ (α|aα, bα), where
a· and b· are the shape and scale parameter of a Gamma distribution respec-
tively;

2. Draw a discrete distribution G0 ∼ DP(γ,H), where the base distribution H
is a L-dimensional Dirichlet with parameter ζ, and G0 has countable but
infinite number of atoms;

3. Draw a discrete category distribution Gd ∼ DP(α,G0) for the d-th document;
4. Choose a document category ϕdn ∼ Gd for the n-th word in the d-th docu-

ment1;
5. Choose a word topic index ydn ∼ Categorical(ϕdn) for the n-th word in the

d-th document;
6. Draw word topics φl ∼ Dir(β), l = 1, ..., L from a P -dimensional Dirich-

let prior with parameter β, where L is the number of topics and P is the
vocabulary size;

7. Choose a word wdn ∼ Categorical(φydn
).

As described above, this generative model integrates the hierarchical Dirich-
let process (HDP) [20] with the notion of Latent Dirichlet Allocation (LDA) [4].
However, the difference from standard LDA is that, here the distribution over
word topics is conditioned on document categories rather than documents. Plac-
ing a DP prior on the document category distribution Gd, a document is allowed
to involve an infinite number of categories. Meanwhile, assuming multiple Gd’s
have the same discrete base distribution G0 (which also has a DP prior), mul-
tiple documents not only can have their distinct categories but also have the
1 Note that, the support of the discrete distribution Gd consists of atoms drawn from

G0, the atoms of which are eventually from H. Thus, ϕdn is a vector rather than an
index.
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Fig. 1. Graphical representation of the proposed LBPL-NTM model.

chance to share some common ones. The actual number of categories used to
model a corpus is determined by nonparametric Bayesian posterior inference.
Note that, if the category label of a document is known, we can fix the corre-
sponding category of all words in this document to the category determined by
the label during posterior inference. In this way, the supervision from known
categories can be injected. For any document without known label, we can infer
the most appropriate category for each of its words, and assign this document
to the category that generates most of its words.

Since the proposed model for Learning Beyond Predefined Labels (LBPL) is
based on Nonparametric Topic Modelling (NTM), it will be denoted by LBPL-
NTM in the sequel. The probabilistic generative process of LBPL-NTM is illus-
trated as a graphical model in Fig. 1.

Note that, LBPL-NTM is conceptually different from the infinite extension of
LDA presented in [20], which learns topics in a purely unsupervised manner and
cannot make use of the labeled information. From pure modeling perspective,
our model introduces an additional topic index layer (ydn) along with L hidden
topics to infinite LDA. What’s worth mentioning is that, it is not a trivial thing
to extend the single-layered infinite LDA to a new two-layered model. With
the introduced topic index layer and the hidden topics serving as low level topic
modeling module, we can interpret Gd as the distribution over categories (rather
than over topics as in infinite LDA) for each document, and then inject labeled
information through φdn and infer the number of unknown categories (rather
than topics as in infinite LDA) automatically from the data.

Besides, LBPL-NTM also differs from supervised topic models [13,25,26]
basically, which train discriminative classification models in the semantic space
with pre-specified category labels and cannot identify new categories underlying
the test data.

The labeled LDA model proposed in [16], adopted a similar word-label cor-
respondence idea by defining a one-to-one correspondence between LDA’s latent
topics and labels. However, it was designed to solve the multi-label problem in
social bookmarking rather than discover new data categories underlying unla-
beled data, thus is different from our model as well.

The double-latent-layered LDA (DLDA) [27] is a more closely related work
to ours, where the authors conditioned the distribution over word topics on the
document categories as in our model. By utilizing supervised information from
known categories in a generative manner, their parametric model can classify
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unlabeled data into categories acquired from the labeled data, while grouping
data into some pre-specified number of new clusters simultaneously. Though
DLDA is effective when the true number of new categories is available, its per-
formance can be significantly degraded by a wrong specification of this number.
Our key difference with theirs is that our nonparametric model can naturally
deal with the scenario where the number of new categories underlying test data
is not clear, via allowing an infinite number of categories to model the corpus.

For the model inference of LBPL-NTM, we need to compute the posterior
distribution of hidden variables given the data and model hyper-parameters:

p(α, γ, φl, ϕd,Yd|aα, bα, aγ , bγ , β,H,Wd)

=
p(α, γ, φl, ϕd,Yd,Wd|aα, bα, aγ , bγ , β,H)

p(Wd|aα, bα, aγ , bγ , β,H)
.

However, the marginal probability in the denominator is intractable to com-
pute. A popular way to conduct approximate posterior inference is the Markov
Chain Monte Carlo (MCMC) method [14]. In the following, we will appeal to the
Chinese restaurant franchise representation [20] of HDP for approximate poste-
rior sampling. Note that, the high-dimensional latent topics φl’s and the latent
category variables ϕdn’s are integrated out to attain efficient collapsed sampling.

3.3 Inference by Collapsed Gibbs Sampling

First we give a brief description of the Chinese restaurant franchise representa-
tion of HDP. In the Chinese restaurant franchise, the metaphor of the Chinese
restaurant process is extended to allow multiple restaurants which share a set of
dishes. A customer entering some restaurant sits at one of the occupied tables
with a certain probability, and sits at a new table with the remaining probabil-
ity. If the customer sits at an occupied table, he eats the dish that has already
been ordered. If he sits at a new table, he needs to pick the dish for the table.
The dish is picked according to its popularity among the whole franchise, while
a new dish can also be tried.

To employ this representation of HDP for posterior sampling, we introduce
necessary index variables. Recall that ϕdn’s are random variables with distrib-
ution Gd. Let θ1, · · · , θK denote K i.i.d. random variables (dishes) distributed
according to H, and, for each d, let ψd1, · · · , ψdTd

denote Td i.i.d. variables
(tables) distributed according to G0. Then each ϕdn is associated with one ψdt,
while each ψdt is associated with one θk. Let tdn be the index of the ψdt asso-
ciated with ϕdn, and let kdt be the index of θk associated with ψdt. Let sdt be
the number of ϕdn’s associated with ψdt, mdk is the number of ψdt’s associated
with θk, and mk =

∑
d mdk as the number of ψdt’s associated with θk over all d.

For each d, by integrating out Gd and G0, we have the following conditional
distributions:

ϕdn|ϕd1, · · · , ϕdn−1, α,G0 ∼

Td∑
t=1

sdt

n−1+αδψdt
+ α

n−1+αG0, (1)
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ψdt|ψ11, ψ12, · · · , ψ21, · · · , ψdt−1, γ,H ∼

K∑
k=1

mk∑
k mk+γ δθk

+ γ∑
k mk+γ H. (2)

Note that, tdn’s and kdt’s inherit the exchangeability properties of ϕdn’s and
ψdt’s, so the conditional distributions in (1) and (2) can be easily adapted to be
expressed in terms of tdn and kdt. In the following, we will alternately execute
four steps: first sample tdn conditioned on all other variables, then sample kdt for
each table of data, thirdly sample ydn for each word, and finally sample hyper-
parameters γ and α. Note that, if the category label of a document is known,
we fix the category index k of all words in this document to the label during the
sampling process.

Sampling t. To compute the conditional distribution of tdn given the remaining
variables, we make use of exchangeability and treat tdn as the last variable
being sampled in the last group. Using (1), the prior probability that tdn takes
on a particular previously seen value t is proportional to s−dn

dt , whereas the
probability that it takes on a new value (say tnew = Tj + 1) is proportional
to α. The likelihood of the data given tdn = t for some previously seen t is
simply f(ydn|θkdt

). To determine the likelihood when tdn takes on value tnew, the
simplest approach would be to generate a sample for kdtnew from its conditional
prior (2) [14]. If this value of kdtnew is itself a new value, say knew = K + 1, we
may generate a sample for θknew as well.

Combining all this information, the conditional posterior distribution of tdn

is then

p(tdn = t|t−dn,k,Y, Θ) ∝
{

αf(ydn|θkdt
), t = tnew,

s−dn
dt f(ydn|θkdt

), t appeared.
(3)

However, here we show that we don’t need to store and update the θ’s, i.e.,
we can get a collapsed sampler. To compute the likelihood that ydn comes from
the k-th class θk, 1 ≤ k ≤ K, we can first compute the posterior distribution
of θk given Y−dn

(k) (elements assigned to class k in Y−dn), then integrate over
this posterior. Specifically, by conjugacy the posterior of θk is also Dirichlet
distributed, whose parameter is updated from the prior base distribution H
according to Y−dn

(k) . If we assume Okl is the number of elements in Y−dn
(k) that

equal to l, 1 ≤ l ≤ L, then

θk|H, t−dn,k−dtdn ,Y−dn ∼ Dir(ζ + Ok·),

where ζ and Ok· both are L dimensional vectors. Integrate over this posterior
we can get the likelihood for ydn,

f(ydn|θk : 1 ≤ k ≤ K) =
∫

θydn
· Dir(θ; ζ + Ok·)dθ =

ζydn
+ Okydn∑

l(ζl + Okl)
. (4)
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To compute the likelihood that ydn comes from a new k = (K + 1)-th class
θK+1, we can directly integrate over the prior H:

f(ydn|θk : k = K + 1) =
∫

θydn
· Dir(θ; ζ)dθ =

ζydn∑
l ζl

. (5)

Sampling k. Sampling the variables kdt is similar to sampling tdn. Since chang-
ing kdt actually changes the component membership of all data items in table
t, the likelihood of setting kdt = k is given by

∏
n:tdn=t f(ydn|θk), so that the

conditional probability of kdt is

p(kdt = k|t,k−dt,Y, Θ) ∝
{

γ
∏

n:tdn=t f(ydn|θk), k = knew,

m−dt
k

∏
n:tdn=t f(ydn|θk), k appeared,

(6)

where f(ydn|θk) can be computed same as above.

Sampling Y. Conditioned on t, k and Y−dn, the prior of ydn = l, 1 ≤ l ≤ L is:

p(ydn = l|t,k,Y−dn) =
∫

θl · Dir(θ; ζ + Okdtdn
·)dθ =

ζl + Okdtdn
l∑

l(ζl + Okdtdn
l)

.

Assume W−dn
(l) denotes the elements in W−dn that are generated from topic

l, and Olw is the number of elements in W−dn
(l) that equal to w, 1 ≤ w ≤ P, 1 ≤

l ≤ L, then
φl|β,Y−dn,W−dn

(l) ∼ Dir(β + Ol·),

where β and Ol· both are P dimensional vectors. Integrating over this posterior,
we can get the likelihood that wdn is generated from topic φl:

f(wdn|t,k,Y−dn,W−dn) =
∫

φwdn
· Dir(φ;β + Ol·)dφ =

βwdn
+ Olwdn∑

w(βw + Olw)
.

The conditional posterior probability of ydn = l, 1 ≤ l ≤ L is proportional
to the prior times the likelihood:

p(ydn = l|t,k,Y−dn,W) ∝ ζl + Okdtdn
l∑

l(ζl + Okdtdn
l)

· βwdn
+ Olwdn∑

w(βw + Olw)
. (7)

Sampling γ and α. In each iteration of our Gibbs sampling, we use the auxiliary
variable method described in [20] to sample γ and α.

We summarize the above approximate posterior sampling process in
Algorithm 1. After this sampling process converges, we take a sample from the
Markov chain and count the words assigned to each category k = 1, 2, ... for each
document, and finally a document is assigned to the category that has generated
most of its words.
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Algorithm 1. Collapsed Gibbs Sampling for LBPL-NTM
Input: the words W, the number of topics L, parameter ζ of the base Dirichlet distrib-
ution H, the hyper-parameters β, aγ , bγ , aα, bα, and the maximal number of iterations
maxIter.
Output: t, k and Y.

1. Initialize the latent variables t, k, Y, γ and α;
2. for iter = 1 to maxIter do
3. Update t according to (3), (4), and (5);
4. Update k according to (6), (4), and (5);
5. Update Y according to (7);
6. Update γ and α using the auxiliary variable method in [20];
7. end for
8. Output t, k and Y.

3.4 Computational Complexity

In each round of our collapsed Gibbs sampling, the dominant computation is
O(|Wu| · (|t̄| + |k|) + |Wa| · L), where |Wu| is the total number of words in the
unlabeled documents, |Wa| is the total number of words in the entire corpus,
|t̄| is the average number of inferred word groups in each document, |k| is the
inferred number of categories, and L is the specified number of topics. Generally,
|k| and |t̄| are very small, and L = 128 throughout the paper2, thus our model
can be seen as scale linearly with the number of words in the corpus.

4 Experiments

In this section, we evaluate the proposed LBPL-NTM model on various text
corpora, including the benchmark 20 Newsgroups data set, the imbalanced TDT2
data set and the sparse ODP data set.

4.1 Baselines and Evaluation Metrics

We compare LBPL-NTM with the following algorithms:

– Serendipitous Learning (SL) [24]: a maximum margin learning framework that
combines the classification model built upon known classes and the parametric
clustering model on unknown classes;

2 For fair comparison with the DLDA model [27], the number of topics L is fixed to the
constant 128. We empirically find that L has little performance influence (compared
to the number of categories) on the learning problem studied here, as long as it is
not too small or too large. This is probably due to the two-layered nature of our
model.
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– DLDA [27]: a double-latent-layered LDA model, which can utilize supervised
information similar as LBPL-NTM when clustering data with pre-specified
number of clusters;

– Constrained 1-Spectral Clustering (COSC) [17]: a state-of-the-art graph-based
constrained clustering algorithm, which can guarantee that all given con-
straints are fulfilled;

– Semi-supervised K-means (SSKM) [10]: clustering data with pairwise con-
straints in original space;

– Unsupervised clustering package CLUTO3;
– Nonparametric Bayesian unsupervised clustering model Dirichlet Process

Gaussian Mixture (DPGM).

Two popular clustering metrics are adopted to compare the clustering qual-
ity of these algorithms: normalized mutual information (NMI) [12] and adjusted
rand index (ARI) [9]. NMI measures how closely the clustering algorithm could
reconstruct the label distribution underlying the data. If A and B represent the
cluster assignments and the ground truth class assignments of the data respec-
tively, then NMI is defined as

NMI = 2 · I(A;B)/(H(A) + H(B)),

where I(A;B) = H(A) − H(A|B) is the mutual information between A and
B, H(·) is the Shannon entropy, and H(A|B) is the conditional entropy of A
given B.

If a denotes the number of pairs of data points that are in the same cluster in
A and in the same class in B, and b denotes the number of pairs of points that
are in different clusters in A and in different classes in B, then the Rand Index
(RI) is given by RI = (a + b)/CD

2 , where CD
2 is the total number of possible

pairs in the dataset. Since the expected RI value of two random assignments
does not take a constant value, Hubert and Arabie [9] proposed to discount the
expected RI of random assignments by defining the ARI as

ARI = (RI − Expected RI)/(max(RI) − Expected RI).

As in [27], we also evaluate the classification accuracy on the data from the
known classes with average F1 measure. For each known class, the F1 score can
be computed as follows,

F1i = 2 · Precisoni · Recalli/(Precisoni + Recalli), i = 1, ..., k,

where Precisoni and Recalli are the precision and recall on the i-th known
class. Then, we use the average F1 score over these k known classes as the final
measure.

3 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download


158 C. Du et al.

4.2 Parameter Settings

In all our experiments, we set the parameters and hyper-parameters of LBPL-
NTM as follows: L = 128, aγ = 1, bγ = 0.001, aα = 5, bα = 0.1, ζl = 1, l =
1, ..., L, βw = 0.01, w = 1, ..., P . We run 3000 Gibbs sampling iterations to
sample from the posteriors of LBPL-NTM and DLDA, and use the last sample
for classification and clustering performance evaluation4.

The parameter settings of all compared algorithms follow the instructions in
their original papers and are carefully tuned on our data sets. The similarity
matrix for COSC is constructed using the cosine value of the angle between each
pair of documents5. For CLUTO, we use its direct implementation for cluster-
ing with default parameter settings. PCA is used to reduce the original high
dimensionality to 500 for SL and DPGM, due to efficiency problems. Without
statement, all algorithms except for DPGM and LBPL-NTM, use the true num-
ber of data categories.

4.3 Evaluation Results

Benchmark data—20 Newsgroups: This data set is widely used in text cat-
egorization and clustering. It has approximately 20,000 newsgroup documents
that are evenly partitioned into twenty different newsgroups. Since some of the
newsgroups are very closely related, a part of these twenty newsgroups are fur-
ther grouped into four top categories, e.g., the top category sci contains four
subcategories sci.crypt, sci.electronics, sci.med and sci.space. We only retain
the terms that have document frequency (DF) above 15 and are not in the
stop words list. As in Table II of [27], we consider two kinds of 4-way learning
problems—the data for each difficult problem consist of all 4 subcategories of a
top category, and the data for each easy problem consist of 4 subcategories from
different top categories. Here these problems are denoted as E1-E4 and D1-D4
for short. For each problem, assume we have supervision from the subcategories
in bold face in Table II of [27], from which 40 % instances are sampled as train-
ing data, and the rest 60 % and all instances from the subcategories without
supervision are used as testing data. We independently repeat the experiments
10 times, and the averaged results over these trials are reported in Fig. 2, from
which we can see LBPL-NTM and DLDA can significantly outperform other
competitors, while these two methods perform similarly. However, it should be
noted that DLDA used the actual number of categories, while LBPL-NTM can
automatically infer the most appropriate number from data owing to the merits
of Bayesian nonparametrics. The posterior frequencies of the inferred numbers
of categories by LBPL-NTM are shown in Fig. 3, from which we can see higher
frequencies around the true number 4.

4 Such a choice is consistent with the evaluation strategy in [27]. Alternatively, we can
also average the classification and clustering scores over multiple posterior samples.

5 COSC works not well with the k-NN similarity graph [5] on our data sets.
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Fig. 2. Comparison on the 4-way learning problems (D1-D4, E1-E4) constructed from
20 Newsgroups data. All results are averaged over 10 independent trials in terms of
NMI, ARI and F1.

One may naturally question the learning performance of DLDA when actual
number of categories is not available. To this end, we further compare LBPL-
NTM with DLDA, assuming that we only have a rough idea about the number
of unknown categories underlying data. Under the same settings as above, Fig. 4
gives the average results over 10 independent trials on 20 Newsgroups data set
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Fig. 3. Posterior frequencies of the inferred numbers of categories on 20 Newsgroups.

when the number of categories K in DLDA is varied from K = 3 to K = 7
(the true number is 4). From these results we can observe that (1) the clustering
performance (in terms of NMI and ARI) of DLDA is quite sensitive to the pre-
specified K while LBPL-NTM can circumvent this issue with nonparametric
prior; (2) it seems that the classification performance (F1) of DLDA becomes
better when the specified number of categories is larger, but as will be seen later
this is not always true.

Imbalanced data—TDT2: The NIST Topic Detection and Tracking (TDT2)
corpus consists of data collected during the first half of 1998 and taken from 6
sources, including 2 news wires, 2 radio programs and 2 television programs. It
consists of 11201 on-topic documents which are classified into 96 semantic cate-
gories. In the experiment, those documents appearing in two or more categories
were removed, and only the largest 20 categories were kept. As above, we only
retain the terms that have DF above 15 and are not in the stop words list. Here
we assume supervision is available in the largest 10 categories, from which 40 %
instances are sampled as training data, and the rest 60 % and all instances from
the categories without supervision are used as testing data. We independently
repeat the experiments 10 times, and the averaged results over these trials are
shown in Table 1. It seems that the parametric approach DLDA doesn’t get its
best performance when the true number of categories is pre-specified, which is
probably due to the severe imbalance among different categories. Surprisingly,
LBPL-NTM achieves the best results without any information of the total num-
ber of data categories. This may be due to its ability to dynamically adjust the
number of data categories during its posterior sampling process. The posterior
frequencies of the inferred numbers of categories by LBPL-NTM are shown in
Fig. 5(a).

Sparse data—ODP: This data set is collected by Yin et al. [22], originally for
web object classification by exploiting social tags. It contains 5536 web pages
from 8 categories, which are detailed in Table 1 in [22]. Since the features on each
web page are the social tags on it, these data are extremely sparse. Specifically,
the average number of tag words on each web page is 25.76, which is much smaller
than that (more than 160) of 20 Newsgroups. Assume that there is supervised
information in the categories of Books, Electronic, Health and Garden. As above,
we randomly sample 40 % instances as training data from these known categories,
and the rest 60 % and all instances from the categories without supervision are
used as testing data. We independently repeat the experiments 10 times, and
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Fig. 4. Further comparison with DLDA on the 4-way learning problems constructed
from 20 Newsgroups. All results are averaged over 10 independent trials in terms of
NMI, ARI and F1.

report the averaged NMI, ARI and F1 values in Table 2, from which we can
see LBPL-NTM also has competitive performance on sparse data. The posterior
frequencies of the inferred numbers of categories are shown in Fig. 5(b). Note
that there is a very small category—Office in ODP, and it is not easy to discover
it due to data sparseness.
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Table 1. Averaged results over 10 independent trials on the TDT2 data.

DPGM CLUTO COSC SSKM SL DLDA LBPL-NTM

K = 15 K = 20 K = 25

NMI 0.4878 0.8217 0.6042 0.8057 0.7743 0.8157 0.8173 0.8135 0.8358

ARI 0.2608 0.6591 0.4375 0.6665 0.7159 0.7804 0.7167 0.6788 0.7873

F1 - - - - 0.8443 0.8473 0.8490 0.8068 0.9075

Table 2. Averaged results over 10 independent trials on the ODP data.

DPGM CLUTO COSC SSKM SL DLDA LBPL-NTM

K = 5 K = 8 K = 10

NMI 0.2825 0.5302 0.3866 0.5155 0.4523 0.6039 0.6054 0.6084 0.5877

ARI 0.0966 0.3983 0.2451 0.4145 0.3684 0.6034 0.5480 0.5119 0.5781

F1 - - - - 0.7045 0.7400 0.7868 0.7461 0.7715

Fig. 5. Posterior frequencies of the inferred numbers of categories on TDT2 and ODP.

4.4 Time Efficiency

The core sampling procedure of LBPL-NTM was implemented in C++, and
all experiments were conducted in Matlab on a desktop with 3.60 GHz CPU.
On the 4-way learning problems constructed from 20 Newsgroups, each round
of our collapsed Gibbs sampling procedure takes about 0.9 s, which is a little
slower than the speed of 0.7 s per sampling round of DLDA (implemented in C).
We attribute this speed difference to the nonparametric nature of LBPL-NTM.

It is also observed empirically that both LBPL-NTM and DLDA run much
faster than constraints based semi-supervised clustering methods. Besides, as
mentioned above, SL and DPGM are quite inefficient for high dimensional text
data, and PCA has to be used for them.

5 Conclusion and Future Work

We proposed a nonparametric Bayesian method for learning beyond the prede-
fined label space. Unlike existing methods which assume the number of unknown
new categories in test data is known, our model can automatically infer this
number via nonparametric Bayesian inference. Empirical results show that: (a)
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compared with parametric approaches that use pre-specified true number of
new categories, the proposed nonparametric approach yields comparable perfor-
mance; and (b) when the exact number of new categories is unavailable, our
approach has evident performance advantages. Our model can be extended in
several aspects, e.g., (1) adapt it to the online learning scenario with sequential
Monte Carlo [6]; and (2) explore multi-source text corpora with cross-domain
learning [7,28].
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Abstract. Multiple Kernel Learning (MKL) suffers from slow learning
speed and poor generalization ability. Existing methods seldom address
these problems well simultaneously. In this paper, by defining a multi-
class (pseudo-) likelihood function that accounts for the margin loss for
kernelized classification, we develop a robust Bayesian maximum margin
MKL framework with Dirichlet and the three parameter Beta normal
priors imposed on the kernel and sample combination weights respec-
tively. For inference, we exploit the data augmentation idea and devise
an efficient MCMC algorithm in the augmented variable space, employ-
ing the Riemann manifold Hamiltonian Monte Carlo technique to sample
from the conditional posterior of kernel weights, and making use of local
conjugacy for all other variables. Such geometry and conjugacy based
posterior sampling leads to very fast mixing rate and scales linearly with
the number of kernels used. Extensive experiments on classification tasks
validate the superiority of the proposed method in both efficacy and effi-
ciency.

1 Introduction

Kernel-based machine learning is a popular technique for dealing with nonlinear-
ities in real prediction tasks. The performance of this kind of learning methods
generally is determined by two orthogonal aspects, i.e., the selected kernel func-
tion and the learning principle. On one hand, a kernel function implicitly maps
the input data points to an infinite-dimensional feature space and actually pro-
vides a similarity measure on it. Since the learning process is conducted in the
feature space, the appropriateness of the chosen kernel usually is crucial for the
final modelling quality. On the other hand, the learning principle, e.g., the max-
imum margin principle in Support Vector Machine (SVM), defines the searching
strategy in the hypothesis space, and thus is responsible for model generalization
ability.
c© Springer International Publishing AG 2016
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Though (single) kernel selection can be done via cross-validation on the train-
ing data, there are at least two reasons for studying Multiple Kernel Learning
(MKL) [21], an active research topic that aims at learning a linear (or convex)
combination of a set of predefined kernels in order to identify a good target
kernel for the applications (see [17] for a survey). First, from the perspective of
users without sufficient domain knowledge, it is desirable to design algorithms
that can learn effective kernels automatically from data. Second and more impor-
tant, to achieve superior performance it is necessary for many real applications
to fully exploit the rich features underlying each sample. A promising way to
achieve this is to define a large set of kernel mappings on all features and each
individual feature, and then learn the optimal combination of them.

Through the past decade, there have been lots of MKL studies, most of
which were focused on seeking (appropriately regularized) max-margin point
model estimates [9,20,33,34]. Adopting the max-margin principle, these models
essentially have advantage in yielding good generalization performance. How-
ever, their deterministic point estimate formulations make them less robust to
noisy and small training data. Under the Bayesian framework, there already
exist some MKL methods [10,14,15] that estimate the entire posterior distribu-
tion of model weights. Unfortunately, these methods either require matrix inver-
sions to compute the posterior covariance of kernel weights or have to perform
time-consuming importance sampling, and thus scale poorly with the number of
kernels used. Moreover, since the max-margin hinge loss does not lend itself to
a convenient description of a likelihood function, the combination of Bayesian
MKL and max-margin principle has been deemed as intractable for a long time.

In this paper, by defining a multiclass (pseudo-) likelihood function that
accounts for the margin loss for kernelized classification, we develop an efficient
Bayesian maximum margin MKL framework. The Bayesian model averaging
mechanism along with the max-margin principle allow us to make robust predic-
tions with the guarantee of arguably good generalization performance. Moreover,
imposing the sparsity-inducing Three Parameter Beta Normal (TPBN) prior [2]
and the Dirichlet prior on the sample and kernel combination weights respec-
tively, the resultant model has good interpretability and adaptivity. For infer-
ence, we exploit the data augmentation idea and devise an efficient Markov Chain
Monte Carlo (MCMC) algorithm in the augmented variable space, employing
the Riemann manifold Hamiltonian Monte Carlo (HMC) technique to sample
from the conditional posterior of kernel weights, and making use of local con-
jugacy for all other variables. Such geometry and conjugacy based posterior
sampling leads to very fast mixing rate and scales linearly with the number of
kernels used.

Extensive experiments on both binary and multiclass classification data sets
show that the proposed Bayesian max-margin MKL model not only outperforms
a number of competitors consistently in terms of prediction performance but also
requires substantially fewer training time when the number of kernels is large.
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2 Related Work

Compared with traditional kernel methods using a single fixed kernel, MKL pro-
vides a natural way for the automated kernel parameter tuning, the integration
of diverse nonlinear mappings, and the concatenation of heterogeneous data. It
was originally formulated as a semi-definite programming (SDP) problem in [21],
and then improved with the quadratically constrained quadratic programming
(QCQP) [4], and the semi-infinite linear programming (SILP) [34].

Over the past decade, MKL has been actively studied, and a variety of algo-
rithms have been proposed to address the efficiency of MKL, e.g., the adap-
tive 2-norm regularization formulation [32], the extended level method [36], the
group lasso based methods [3,37], the proximal minimization method [35], the
online-batch strongly convex two-stage method [29], the spectral projected gra-
dient descent method [19], and the mean-field variational inference method [15].
Besides, a lot of extended MKL techniques have been proposed to improve the
regular MKL method, e.g., the localized MKL [7,16,38] that achieve local assign-
ments of kernel weights at the group level, the sample-adaptive MKL [24,28]
that switches off kernels at the data sample level, the absent MKL [23] that han-
dles the channel missing problem of individual samples, and the Bayesian MKL
[14,15,22] that estimate the entire posterior distribution of model weights. Our
method differs from existing efficient MKL algorithms in that, it employs the
Riemann manifold HMC technique to sample from the conditional posterior of
kernel weights, and makes use of local conjugacy for all other variables. Such
geometry and conjugacy based posterior sampling leads to very fast mixing rate
and scales linearly with the number of kernels used. Our method also differs from
existing Bayesian MKL model since it is based on the max-margin (pseudo-)
likelihood and data augmentation idea, and tends to has better generalization
performance.

As sparsity-inducing approaches to kernel weight learning rarely outperform
trivial baselines in practical applications [8,20], we choose the Dirichlet prior
for kernel combination weights in our Bayesian MKL framework. Though it has
been considered in [14], our expanded-mean parameterization of the Dirichlet
is particularly suitable for HMC based methods, which is more efficient than
importance sampling based variational approximation. Besides, our choice of
the sparsity-inducing TPBN prior for sample combination weights differs from
the Gaussian-inverse-Gamma prior used in [14,15]. As in kernelized SVM, the
sparse sample weights is responsible for selecting support vectors actually needed
in decision function, and thus good interpretability can be obtained.

We note that the GP-based Bayesian nonlinear SVM model proposed in [18]
adopts a similar data augmentation idea for max-margin learning and infers its
GP kernel parameters automatically with slice sampling. Its difference from ours
is that it was designed for single kernel binary classification, and our model can
be seen as an efficient multiclass multi-kernel extension of it. As detailed in the
following and observed in the experiments, such extension is not trivial.
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3 Bayesian Max-Margin MKL

Suppose we have a set of labeled data D = {xi, yi}N
i=1, where yi ∈ {1, 2, ..., C}

and xi ∈ X , a d-dimensional Euclidean space. MKL algorithms typically use a
weighted sum of P kernels {Km : X ×X → R}P

m=1 to measure data similarity. For
multiclass leaning, we adopt the one-versus-all strategy, and learn a shared kernel
combination weights vector w for all binary sub-problems, which corresponds to
sharing the similarity measure when jointly learn all sub-problems [7,15,33].
Note that, this sharing not only is essential for efficient computation when the
number of classes is large, but also is important to alleviate overfitting when we
only have very few training data. Specifically, we define the following decision
function for the c-th binary sub-problem:

f(xi;Θc) = a�
c

(∑P

m=1
wmKm,·i

)
+ bc (1)

where Km,·i = [Km(xi,x1), ...,Km(xi,xN )]� contains the similarities between xi

and each training example under the kernel feature mapping Km; ac and bc are
the sample weights and bias for the c-th binary sub-problem, respectively; w =
[w1, ..., wP ]� is the kernel weights shared by all sub-problems; Θc = {ac, bc,w}.

3.1 Max-Margin Pseudo-likelihood

To account for the training error on (xi, yi), we further define the following
multiclass max-margin pseudo-likelihood function:

L(yi|Θ) = exp
{

− 2
∑C

c=1
max(ζci, 0)

}
, (2)

where ζci = 1− δyi,cf(xi;Θc), δyi,c = 1 if yi = c and −1 otherwise. This pseudo-
likelihood plays the similar role as that in the Bayesian SVM model [31], which
addressed linear binary classification only. Intuitively, the negative margin losses
of each binary multiple kernel classifier are summed up and passed through
an exponential transformation. The larger the loss, the smaller the likelihood
is. Despite its importance in our Bayesian MKL modeling, (2) makes direct
posterior inference intractable due to the max function in L(Θ). Fortunately,
the following identity holds [1]:

exp{−|ζ|} =
∫ ∞

0

exp{−ζ2

2� − �
2 }√

2π�
d�. (3)

Multiplying through (3) by exp{−ζ} and noting max(ζ, 0) = 1
2 (|ζ|+ζ), we have:

L(yi|Θ) =
C∏

c=1

∫ ∞

0

exp{ −1
2λci

(λci + ζci)2}√
2πλci

dλci, (4)

which allows us to introduce auxiliary variables to the original inference problem.
Thus, by regarding the original posterior as the marginal of a higher dimensional
distribution that involves the augmented variables λ, we can bypass the calcu-
lation of the max function. Consequently, efficient algorithms can be designed.
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3.2 Priors on Model Parameters

Symmetric Dirichlet Prior on Kernel Weights. Under the Bayesian frame-
work, we can impose either Dirichlet [14] or Gaussian [15] prior on w. While
Gaussian prior is convenient for inference, it cannot ensure the positivity of each
kernel weight, which sometimes is difficult for interpretation and even degrades
performance. Thus, we consider the symmetric Dirichlet prior w ∼ Dir(η) for
kernel weights, where η > 0. An asymmetric prior can be used if the user has a
rough idea about kernel importance.

Note that, the Dirichlet prior on kernel weights leads to non-conjugacy even
if we can re-express our pseudo-likelihood as the product of C location-scale
mixtures of normals. Such a non-conjugacy issue generally complicates poste-
rior inference. To address it, many strategies have been used in literature, rang-
ing from variational approximations to Metropolis-Hastings methods. Unlike the
inefficient importance sampling method in [14], we will explore the recently devel-
oped Riemann manifold HMC [13] approach. Exploiting the Riemannian geom-
etry of the parameter space, RHMC can efficiently samples from a continuous
distribution with its unnormalized probability density.

Sparsity-inducing Prior on Sample Weights. Similar as in kernelized SVM,
the sample weights a is often expected to be sparse for selecting support vectors
actually needed in decision function. In this paper, we choose the Three Para-
meter Beta Normal (TPBN) [2] as the sparsity-inducing prior due to its better
mixing properties than priors such as the spike-and-slab, the Student’s-t prior,
and the double exponential prior. The TPBN prior can be expressed as scale
mixtures of normals and favors strong shrinkage of small signals while having
heavy tails to avoid over-shrinkage of the larger signals. If aci ∼ TPBN(αa, βa, κ),
c = 1, ..., C, i = 1, ..., N , then:

aci ∼ N (0, νci), νci ∼ Γ (αa, ςci), ςci ∼ Γ (βa, κ),

where N (·) and Γ (·) denote the Gaussian and Gamma (shape-rate parameter-
ization) distribution respectively. One advantage of this hierarchical shrinkage
prior is the full local conjugacy that allows posterior inference easily imple-
mented. For fixed values of αa and βa, decreasing the parameter κ encourages
stronger shrinkage.

Normal Prior on Biases. Finally, an isotropic normal prior is imposed on the
bias vector b, i.e. b ∼ N (0, τIC), where IC is a C-dimensional identity matrix.

4 Inference via Posterior Sampling

4.1 Augmenting the Posterior

As stated above, (2) makes direct posterior inference intractable due to the max
function in L(Θ). However, it is easy to verify that the posterior of our model is
the marginal of

q(Θ,λ|D) = p0(Θ)
∏N

i=1
L(yi,λ·i|Θ)/Z(D), (5)
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where p0(Θ) is the model prior, λ·i denotes a vector of C augmented variables
(each for one class) for xi, and

L(yi,λ·i|Θ) =
C∏

c=1

exp{ −1
2λci

(λci + ζci)2}√
2πλci

. (6)

The above property indicates that we can bypass the calculation of the max
function through sampling from the augmented posterior (5), and the inter-
ested information about the original posterior can be recovered by discarding λ.
Though (5) still is intractable to compute analytically due to the normalization
constant, it is not difficult to develop MCMC algorithms by making use of local
conjugacy and the Riemann HMC.

4.2 Efficient Geometry-Based MCMC

In the following, we devise a Gibbs sampling algorithm that generates a sample
from the posterior distribution of each variable in turn, conditional on the current
values of the other variables. It can be shown that the sequence of samples
constitutes a Markov chain, and the stationary distribution of that Markov chain
is just the joint posterior.

Given λ, a and b, the conditional (augmented) posterior distribution of w is

q(w|λ,a,b, η,D) ∝ Dir(w; η) ·
∏N

i=1
L(yi,λ·i|Θ),

where L(yi,λ·i|Θ) can be transformed into a Gaussian density of w. Since
the Dirichlet prior is not conjugate to the Gaussian distribution, it is hard
to get the analytical form of the above distribution. To generate a sample
from q(w|λ,a,b, η,D) with its unnormalized density, we appeal to the Rie-
mann Hamiltonian Monte Carlo (RHMC) [13] approach. As in HMC [27], which
simulates the Hamiltonian dynamics, RHMC proposes samples with auxiliary
momentum variables r in a Metropolis-Hastings (MH) framework. The differ-
ence from ordinary HMC is that, RHMC explores the underlying geometry of
the target distribution to accelerate mixing.

In doing so, the problem is that the Dirichlet prior represents our belief that
w should lie on the probability simplex {(w1, ..., wP ) : wm ≥ 0,

∑
m wm = 1} ⊂

RP , which is compact and has boundaries that has to be accounted for when
an update proposes a step that brings the vector outside the simplex. There
are several possible ways to simplify boundary considerations via parameteriz-
ing the probability simplex, and the performance of RHMC depends strongly on
the choice of parameterization. As studied in [30], the expanded-mean parame-
terization yields higher effective sample size and more efficient computation,
so it is adopted here. Specifically, we introduce a P -dimensional unnormal-
ized parameter e with a product of P independent Gamma distributions, i.e.,
p(e) ∝ ∏P

m=1 eη−1
m exp (−em). Setting wm = em/

∑P
m=1 em for m = 1, ..., P , the

prior on w is still Dir(η), while the conditional posterior of e is
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q(e|λ,a,b, η,D) ∝
P∏

m=1

eη−1
m exp (−em) ·

C∏

c=1

N∏

i=1

exp{ −1
2λci

(λci + ζci)2}√
2πλci

,

where ζci = 1−δyi,c

(
a�

c hi +bc

)
, hi =

∑P
m=1

(
em∑
m em

)
·Km,·i, δyi,c = 1 if yi = c

and −1 otherwise.
Then we consider the Hamiltonian H(e, r) = − log q(e|λ,a,b, η,D) + 1

2r
�r,

and use the following transition rule to generate proposals:

r∗ = r + εG(e)− 1
2 ∇ log q(e|λ,a,b, η,D) + ε∇G(e)− 1

2 − εG(e)−1r + ξ, (7)

e∗ = |e + εG(e)− 1
2 r∗|, (8)

where ε is the step size, ξ ∼ N (0, 2εG(e)−1) is the added Gaussian noise, and
G(e) = diag(e)−1 is the Riemann manifold used to precondition the dynamics in
a locally adaptive manner. Note that, the boundary reflection idea (by taking the
absolute value of the proposed new e) is used as in [30] to ensure the positivity.

The other posterior conditional distributions can be derived analytically as
follows using the local conjugacy properties.

For λ: The conditional distribution of λci is a generalized inverse Gaussian
(GIG) distribution:

q(λci|Θ,D) = GIG
(1

2
, 1, ζ2ci

)
. (9)

See [11] for generating random variates from the GIG distribution.

For a, b: The conditional distribution of ac and bc is

q(ac, bc|λ, e,ν, τ,D) ∝ exp
(

− a�
c Λνc·ac − τb2c −

∑

i

(λci + ζci)2

2λci

)
,

a multivariate Gaussian with covariance and mean:

Σ(a,b) =
( [

Λ−1
νc· , 0

0, τ−1

]
+

∑

i

1
λci

[
hi

1

] [
hi

1

]� )−1

, (10)

μ(a,b) = Σ(a,b)

∑

i

(
δyi,c +

δyi,c

λci

) [
hi

1

]
, (11)

where Λνc· = diag(νc·).
For TPBN shrinkage: The conditional distribution of ν and ς are

νci|a, ς ∼ GIG(αa − 1
2
, 2ςci, a2

ci), (12)

ςci|ν, κ ∼ Γ (αa + βa, νci + κ). (13)
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4.3 Prediction

For an instance xnew that is unseen during the above sampling process, the
posterior predictive probability of its label ynew can be estimated as follows:

P (ynew = c|xnew) =
1
T

∑T

t=1
P (ynew = c|xnew, Θ(t)),

P (ynew = c|xnew, Θ(t)) =
exp{f(xnew;Θ(t)

c )}
∑C

c=1 exp{f(xnew;Θ(t)
c )}

,

where c ∈ {1, 2, ..., C} is the class label, T is the number of post-convergence
samples Θ(t) obtained from MCMC.

We finally predict the class label of xnew as

ynew = arg max
c

P (ynew = c|xnew).

5 Further Analysis and Efficient Implementation

5.1 More Informative Prior for λ

With (2) and (4), an improper flat prior distribution on [0,∞) is implicitly
imposed on λ. Alternatively, we can impose an exponential prior λ ∼ Exp(γ0) to
restrict λ from taking too large values, which is beneficial to discourage ζ � 0
for correct classifications [18]. Though not so desirable in linear case [31], such
a property is important for robust kernel weights learning in our MKL model,
and generally improves mixing. The corresponding new likelihood is

L′(yi|Θ) =
C∏

c=1

∫ ∞

0

γ0 exp{−γ0λci}√
2πλci

exp
{ (λci + ζci)2

−2λci

}
dλci

=
C∏

c=1

γ0
s

{
exp{−(s + 1)ζci}, if ζci ≥ 0

exp{(s − 1)ζci}, if ζci < 0,

where s =
√

1 + 2γ0 > 1. Note that, the new likelihood always decays faster
when the training samples don’t satisfy the max-margin criterion ζci ≥ 0 for each
binary classification sub-problem, while it also discourages ζ � 0 for correctly
classified samples. When γ0 → 0 (hence s → 1), the hinge loss based pseudo-
likelihood (2) can be recovered. When γ0 � 0 (hence s � 1), L′(yi|Θ) will
behave more like the mechanism behind proximal SVM [26]. For moderate γ0,
this general likelihood is expected to benefit from both sides, thus will be adopted
in our implementation.

For posterior inference, all conditionals remain the same as above, except
that the conditional posterior of λ should be modified as

q(λci|Θ) = GIG
(1

2
, 1 + 2γ0, ζ2ci

)
. (14)
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5.2 Correctness of the Sampler

Here we show the correctness of (7) and (8) using the recent theoretical frame-
work in [25], where a general recipe for constructing MCMC samplers based on
continuous Markov processes was developed. The recipe involves defining a (sto-
chastic) system parameterized by two matrices: a positive semidefinite diffusion
matrix, D(z), and a skew-symmetric curl matrix, Q(z), where z = (e, r) with e
model parameters of interest and r a set of auxiliary variables. The dynamics are
then written explicitly in terms of the target stationary distribution and these
two matrices. It can be verified that (7) and (8) fall within their framework when

D(e, r) =
[
0, 0
0, G(e)−1

]
, Q(e, r) =

[
0, −G(e)−1/2

G(e)−1/2, 0

]
.

5.3 Efficient Implementation

Omitting MH correction in Riemann HMC. Inspired by the stochastic
gradient HMC method [5] and the general stochastic gradient MCMC frame-
work in [25], we can simplify the leapfrog procedure in RHMC and omit the
Metropolis-Hastings correction step by using decreasing step sizes, which guar-
antees the sampler to yield the correct invariant distribution. However, having
to decrease ε to zero comes at the cost of increasingly small updates. We can
also use a finite, small step size in practice, resulting in a biased (but faster)
sampler [25].

Efficiently Sampling. λ and ν: Though directly generating random variates
from the GIG distribution is straightforward according to [11], it can be ineffi-
cient when the data set is very large. In fact, we can make use of the relationship1

between GIG and inverse Gaussian (IG). For λ, it is easy to see λ−1
ci follows the

following inverse Gaussian distribution:

q(λ−1
ci |Θ) = IG

(√
1 + 2γ0
|ζci| , 1 + 2γ0

)
. (15)

For ν, consider the case αa = 1, which leads to

νci|a, ς ∼ GIG
(1

2
, 2ςci, a2

ci

)
. (16)

Consequently, we have

ν−1
ci |a, ς ∼ IG

(√
2ςci

|aci| , 2ςci

)
. (17)

Thus, we can sample from the corresponding IG distribution instead, which
is more efficient and adopted in our implementation.

1 Generally, we have [6]: if λ ∼ GIG(1/2, �, χ), then λ−1 ∼ IG(ϑ, �), where χ = �/ϑ2.
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6 Experiments

We conduct extensive experiments on both binary and multiclass classification
data sets. For each data set, we run 200 MCMC iterations of the proposed
BM3KL model and use the samples collected in the last 20 iterations for pre-
diction. The code for BM3KL was written purely in Matlab and all experiments
were performed on a desktop with 3.2 GHz CPU and 12 GB memory.

6.1 Compared Algorithms and Parameter Settings

We compare BM3KL with the following state-of-the-art kernel-based algorithms:

– A data augmentation based Bayesian nonlinear SVM model (BSVM) [18];
– Bayesian efficient MKL [15] with sparse and non-sparse kernel weights (sBE-

MKL and BEMKL, respectively);
– Maximum Margin Multiple Kernel (M3K) learning [9] for multiclass classifi-

cation;
– Efficient and accurate �p-norm MKL [20], a general max-margin MKL frame-

work with �p-norm constraint on kernel weights. We consider p = 1, 2, 4, ∞
and use its Shogun C++ implementation;

– Online-batch strongly convex MKL (OBSCURE) [29], an efficient two-stage
method which learns an online model for batch initialization;

– SimpleMKL [33], a well-known MKL baseline with max-margin principle.

We perform 5-fold cross-validation on training data sets to select the reg-
ularization parameter C ∈ {10−1, 100, . . . , 104} for SimpleMKL and �p-norm
MKL, and C ∈ {1, 10, 100, 1000} and p ∈ {1.01, 1.05, 1.10, 1.25, 1.50, 1.75, 2} for
OBSCURE, following the instructions in their original papers. The recommended
setting in the publicly available code for BEMKL and sBEMKL is used. The
hyper-parameters of BM3KL are fixed to η = 1, αa = 1, κ = 10−10, τ = 10−4 in
all experiments.

6.2 Binary Classification on Benchmark Data

In this subsection, we evaluate the performance of the proposed BM3KL on
a number of binary classification tasks as shown in Table 1, where five binary
classification tasks were constructed from the TRECVID 2003 data set, which
has five classes of 165-dimensional manually labeled video shots.

Comparison with single kernel machines. Before we systematically com-
pare BM3KL with various MKL algorithms, we first briefly demonstrate the
performance improvements of our multi-kernel method over BSVM [18], which
adopts a similar data augmentation idea and infers its GP kernel parameters
with slice sampling. Following [18], the data sets were normalized to have zero
mean and unit variance, and then randomly split into 10 folds of which one at a
time was used as test set to evaluate models trained on the remaining nine folds.
For MKL, we predefine a pool of 16 kernel functions on each data set, including
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Table 1. The number of instances and the dimensionality for each binary classification
data set.

Data set Ionosphere Sonar Wisconsin Crabs Bupaliver Trecvid03

1vs3 1vs4 3vs4 3vs5 4vs5

#Insance 351 208 683 200 345 393 340 317 303 250

#Dimension 34 60 9 7 6 165 165 165 165 165

13 Gaussian kernels with widths in {2−6, 2−5, . . . , 26} and 3 polynomial kernels
with degrees in {1, 2, 3}. All kernel matrices were normalized to have unit diag-
onal entries (i.e., spherical normalization). Table 2 shows mean accuracy for the
methods under consideration, where the results of BSVM, SVM and Gaussian
Process Classification (GPC) are directly cited from [18], and the results of a
latest Bayesian MKL model (BEMKL) are also listed for reference. For the pro-
posed BM3KL, we fix γ0 = 100 and βa = 0.1 for all data sets. The RHMC step
size ε is set to 0.1 for Sonar, and 0.01 for the others. It is clear that BM3KL can
consistently outperform all other competitors, even without bothersome tuning
of (hyper-) parameters.

Table 2. Comparison with single kernel learning. Listed results are mean test accura-
cies (%) from 10-fold cross validation.

Data set N BSVM SVM GPC sBEMKL BEMKL BM3KL

Ionosphere 315 94.02 94.29 92.59 93.06 92.64 96.11

Sonar 187 88.94 88.46 87.50 85.95 86.53 90.68

Wisconsin 614 97.07 96.93 97.36 97.78 97.79 97.91

Crabs 180 98.50 98.00 97.50 99.00 98.75 99.50

Comparison with various MKL algorithms. We then compare the pro-
posed BM3KL with state-of-the-art MKL algorithms. Following the experimen-
tal settings in [15], we construct Gaussian kernels with 10 different widths
({2−3, 2−2, . . . , 26}) and polynomial kernels with 3 different degrees ({1, 2, 3})
on all features and on each single feature. For the Bupaliver and Sonar data, we
randomly select 70 % of each data set as the training set and use the remaining
as the test set as in [15]. For the binary classification tasks constructed from
Trecvid 2003 (see Sect. 6.3 for its details), the ratio of training/testing split is
20 % vs. 80 % because we have thousands of kernels on them and large train-
ing ratios lead to out of memory. All data sets were normalized to have zero
mean and unit variance, and all base kernel matrices were normalized to have
unit diagonal entries and precomputed before running the algorithm. For the
proposed BM3KL, we set2 γ0 = 500, ε = 0.1/t and select βa ∈ {1, 2, 3} via

2 To get decreasing step sizes, we use t to denote the t-th MCMC iteration.
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Table 3. Comparison of various MKL methods on binary classification tasks. Each ele-
ment in the table shows the mean and standard deviation of testing accuracies/training
times obtained from 20 independent trials. All experiments were conducted in Matlab,
but �p-MKL and OBSCURE called C++ routines. Thus the results of training time
for them may be over optimistic.

5-fold cross-validation for each data set. To get stable results, we independently
repeat the random split of each data set, and then run each algorithm on it, for
20 times. The mean and standard deviation are reported in Table 3 in terms of
testing accuracy and training time.

The superiority of BM3KL over the competitors is evident. When comparing
BM3KL with BEMKL, it is easy to see significant improvements of the former in
terms of prediction performance. We attribute this to the max-margin principle
underlying our model and its more accurate MCMC-based inference rather than
variational approximation with mean-field assumption. As to the computational
complexity, BM3KL and BEMKL scale linearly and cubically with the number
of kernels P respectively, while they both scale cubically with the number of
training samples N . Consequently, as we observed, BEMKL needs considerable
more training time when P is large (e.g., on Trecvid03).

Another thing worth to mention is that, with a simple and fixed Dirich-
let prior on kernel weights, BM3KL can consistently outperform �p-MKL and
OBSCURE. This indicates that the superiority of our method is not brought
in by solely regularizing the weights. We believe this is owing to the inherent
advantages of our Bayesian max-margin modeling, and the Riemann manifold
based HMC method.
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SimpleMKL sBEMKL BEMKL �1-MKL �2-MKL �4-MKL �∞-MKL OBSCURE M3K BM3KL
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Fig. 1. Multiclass classification performance comparison on protein subcellular local-
ization data sets. All results are averaged over 10 independent trials.

6.3 Multiclass Classification

Protein Subcellular Localization. We first consider three biological data sets
(Plant, PsortPos, and PsortNeg) that have been widely used to compare MKL
algorithms. The numbers of data instances in Plant, PsortPos, and PsortNeg are
940, 541, and 1444, respectively, while the numbers of data classes are 4, 4, and 5,
respectively. For each of these three data sets, 69 biologically motivated sequence
kernels [40] are used and the corresponding base kernel matrices are provided
online3. To replicate the experiments of a latest multiclass max-margin multiple
kernel classification model (M3K) [9], all kernel matrices were first centered and
then normalized to have unit diagonal entries, and the training split fractions
for Plant, PsortPos, and PsortNeg were set as 0.5, 0.8, and 0.65, respectively.
As above, we set γ0 = 500, ε = 0.1/t, and select βa ∈ {1, 2, 3} via 5-fold cross-
validation. Then we independently repeat the random split of each data set and
run each algorithm on it, for 10 times. The mean testing accuracies and the
standard deviations are shown in Fig. 1, where the results of M3K are directly
cited from [9]. From the results we can see, (1) BM3KL achieves highest mean
accuracy on each data set; (2) sometimes the performance differences are not
so significant since the training sample ratios are large enough; (3) BM3KL has
advantage in terms of robustness.

Video shots classification. The TRECVID 2003 data set has 1078 manually
labeled video shots which are categorized into 5 classes. Each of the video shots
is represented by a 165-dimensional vector of HSV color histogram. To fully
exploit the rich features underlying each sample, we define a large set of kernel
mappings on all features and each individual feature, and then learn the optimal
combination of them. Specifically, we construct Gaussian kernels with 13 differ-
ent widths ({2−6, 2−5, . . . , 26}) and polynomial kernels with 3 different degrees
({1, 2, 3}) on the 165-dimensional vectors, and construct Gaussian kernels with
7 different widths ({2−3, 2−2, . . . , 23}) on each single feature. This gives us 1171
kernels in total (to avoid out of memory, we didn’t consider even more kernels).

3 http://raetschlab.org//suppl/protsubloc.

http://raetschlab.org//suppl/protsubloc
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As in [12,39], the entire data set was evenly split into training and testing sets.
We independently repeat the random split and run each algorithm on it, for 10
times. Here γ0 = 500, ε = 0.1/t, and βa = 0.5. The mean testing accuracies
and the standard deviations are shown in Fig. 2(a), from which we can observe
significant advantage of BM3KL. Note that, these results are also significantly
better than those reported in [12,39], where max-margin supervised subspace
learning was studied.
Face recognition. The ORL data set contains 10 different face images for each
of 40 distinct subjects. For some subjects, the images were taken at different
times with varying lighting and facial details (open/closed eyes, smiling/not smil-
ing, glasses/no glasses). All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position, and were manually
aligned, cropped and resized to 32 × 32 pixels. We construct Gaussian kernels
with 13 different widths ({2−6, 2−5, . . . , 26}) and polynomial kernels with 3 dif-
ferent degrees ({1, 2, 3}) on the 1024-dimensional pixel vectors, and construct
Gaussian kernels with 2 different widths ({21, 22}) and polynomial kernel with
degree 2 on each single pixel. This gives us 3088 kernels in total (to avoid out of
memory, we didn’t consider even more kernels). For the training sample ratio,
we consider two cases, i.e., 0.2 and 0.7 (accordingly, we have 80 and 280 training
samples respectively). We independently repeat the random splits and run each
algorithm on them, for 10 times. Here γ0 = 10000, ε = 0.01, and βa = 0.1.
The mean testing accuracies and the standard deviations are shown in Fig. 2(b)
and (c), from which we see obvious advantages of BM3KL again.
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(c) ORL, N = 280

Fig. 2. Multiclass classification performance comparison on vision data sets. All results
are averaged over 10 independent trials.

6.4 Time Efficiency and Convergence Rate

As shown in Table 3 and Fig. 3, the training time efficiency of the proposed
BM3KL is either significantly better than or comparable with the state-of-the-art
MKL algorithms on all considered data sets. Note that here we couldn’t directly
compare with M3K since its code is not publicly available. But as shown in [9]
it generally needs several times more training time than OBSCURE.
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(c) ORL, N = 80

Fig. 3. Training time efficiency comparison on multiclass classification data sets. All
results are averaged over 10 independent trials conducted in Matlab, but �p-MKL and
OBSCURE called C++ routines. Thus the results for them may be over optimistic.

Specifically, it is observed that BM3KL generally is more efficient than
BEMKL, a latest Bayesian MKL model focusing on efficient inference [15]. The
reason is that BEMKL has to perform matrix inversion to compute the poste-
rior covariance of kernel weights in each round of iteration while it is avoided in
BM3KL via employing Riemann HMC. Besides, enjoying the Bayesian modelling
advantages, BM3KL achieves even faster learning speed than the optimization-
based point estimate methods. We attribute this to the fast convergence rate of
our geometry and local conjugacy based approximate posterior sampling, which
is depicted in Fig. 4.
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Fig. 4. Convergence rate of the approximate posterior sampling of BM3KL on Sonar,
TRECVID 2003 and ORL (N = 80). All settings are the same as above except that the
single sample of model weights obtained in each MCMC iteration is used for prediction
on each data set.

7 Conclusion and Future Work

By defining a multiclass (pseudo-) likelihood function that accounts for the mar-
gin loss for kernelized classification, we have developed a robust Bayesian max-
margin MKL framework with Dirichlet and TPBN priors imposed on the kernel
and sample weights respectively. Employing Riemann manifold HMC to sample
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from the conditional posterior of kernel weights, and making use of local con-
jugacy for all other variables, an efficient MCMC algorithm in the augmented
variable space is devised. Extensive experiments on both binary and multiclass
data sets show that the proposed classification model not only outperforms a
number of competitors consistently but also requires substantially fewer train-
ing time when the number of kernels is large. In future, we plan to apply our
framework to multi-kernel regression analysis.
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Abstract. In the transactional setting of finding frequent embedded
patterns from a large collection of tree-structured data, the crucial step
is to decide whether a tree pattern is subtree homeomorphic to a database
tree. Our extensive study on the properties of real-world tree-structured
datasets reveals that while many vertices in a database tree may have
the same label, no two vertices on the same path are identically labeled.
In this paper, we exploit this property and propose a novel and efficient
method for deciding whether a tree pattern is subtree homeomorphic to
a database tree. Our algorithm is based on a compact data-structure,
called EMET, that stores all information required for subtree home-
omorphism. We propose an efficient algorithm to generate EMETs of
larger patterns using EMETs of the smaller ones. Based on the pro-
posed subtree homeomorphism method, we introduce TTM, an effective
algorithm for finding frequent tree patterns from rooted ordered trees.
We evaluate the efficiency of TTM on several real-world and synthetic
datasets and show that it outperforms well-known existing algorithms
by an order of magnitude.

Keywords: Transactional tree mining · Rooted ordered trees · Frequent
patterns · Subgraph homeomorphism test

1 Introduction

Mining frequent tree patterns is useful in different domains such as XML doc-
ument mining, user web log data analysis and classification. For example, Zaki
et al. [19] presented XRule, a structural classifier based on frequent tree pat-
terns, and showed its high performance compared to the classifiers such as SVM
and random forest.

The most challenging phase in frequent pattern mining is the frequency
counting step. It has two settings: (i) the transactional setting where it is decided
whether a tree pattern is subtree, under a matching operator, to a database tree,
and (ii) the per-occurrence setting where all occurrences of a tree pattern in a
database tree are counted. The concern of the current paper is the transactional
setting. A widely used matching operator between a tree pattern and a database
tree is subtree homeomorphism, where a parent-child relationship in the tree pat-
tern is mapped onto an ancestor-descendant relationship in the database tree.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 182–198, 2016.
DOI: 10.1007/978-3-319-46128-1 12
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Most of real-world trees have properties that distinguish them from arbitrary
trees. Such properties may be exploited in designing a more efficient algorithm
for finding frequent tree patterns. A property that we observed in widely used
real-world tree datasets is that while many vertices of a database tree have
the same label, no two vertices on the same path starting from the root have
the same label. This property can be seen e.g., in CSLOG1 [19], CSLOG2 [19],
CSLOG3 [19], and the NASA MBONE multicast data [3,4] and Prions [12]. In
this paper, we exploit this property to develop a more effective algorithm for
subtree homeomorphism.

Existing tree pattern mining algorithms usually employ specific data-
structures for storing information that are used to decide whether a tree pattern
is subtree homeomorphic to database trees. When the pattern is extended to a
larger one, its stored information is also extended, to generate the information
required for the subtree homeomorphism tests of the extended pattern. This tech-
nique is sometimes called vertical frequency counting. In our recent work [6], we
introduced an efficient vertical approach for counting all occurrences of tree pat-
terns in database trees under subtree homeomorphism. With P a pattern, d the
size of the rightmost path of P and T a database tree, an O(d) space data structure
was defined that represents all occurrences of P in T that share the rightmost path.
Based on that data structure, we defined efficient join operations that derives a
larger pattern from a smaller one and computes its frequency. However, in the
transactional setting it is not necessary to count all occurrences, and it suffices to
decide whether the tree pattern is subtree homeomorphic to the database tree. So,
a more compact data structure can be used to support frequency counting.

In the current paper, we present a novel and efficient algorithm, called TTM,
for discovering frequent tree patterns from rooted ordered trees in the transac-
tional setting, where vertices on the same path have distinct labels. We propose
a novel subtree homeomorphism algorithm, based on a more compact data-
structure, called EMET (which is an abbreviation for EMbedding Encoder for
Transactional tree mining). The EMET data-structure encodes and stores all
information required for the subtree homeomorphism test. We then present effi-
cient join operations, defined on EMETs, to compute EMETs of larger patterns
based on EMETs of smaller ones. We show that our method has a time com-
plexity better than the most efficient existing methods. To empirically evaluate
the efficiency of TTM, we perform extensive experiments, on both real-world and
synthetic datasets, and compare TTM against the most efficient existing algo-
rithms for transactional tree mining, that are TreeMinerD [18] and MB3Miner-T
[13]. Our experiments reveal that TTM outperforms the other algorithms by an
order of magnitude. In particular, there are several cases where TreeMinerD and
MB3Miner-T fail, but they are handled effectively by TTM.

The rest of this paper is organized as follows. In Sect. 2, preliminaries and
definitions related to the tree pattern mining problem are introduced. In Sect. 3
a brief overview on related works is given. In Sect. 4, we present the EMET
data-structure, our subtree homeomorphism algorithm, its complexity analysis
and the TTM algorithm. We empirically evaluate the effectiveness of TTM in
Sect. 5. Finally, the paper is concluded in Sect. 6.
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2 Preliminaries

We assume the reader is familiar with the basic concepts in graph theory. The
interested reader can refer to e.g., [10]. We use the notations V (G), E(G) and λG

to refer to the set of vertices, the set of edges and the labeling function of a graph G,
respectively. The size of G is defined as the number of vertices of G. A rooted tree is
a directed acyclic graph (DAG) in which: (1) there is a distinguished vertex, called
root, that has no incoming edges, (2) every other vertex has exactly one incoming
edge, and (3) there is an unique path from the root to any other vertex. In a rooted
tree T , u is the parent of v (v is the child of u) if (u, v) ∈ E(T ). The transitive
closure of the parent-child relation is called the ancestor-descendant relation. A
rooted ordered tree is a rooted tree such that there is an order over the children of
every vertex. Throughout this paper, we refer to rooted ordered trees where no two
vertices on the same path have the same label, simply as trees. The position of a
vertex in the list of visited vertices during a preorder traversal is called its preorder
number. We use p(v) to refer to the preorder number of vertex v. Rightmost vertex
of T is the vertex with the largest preorder number, and second rightmost vertex
of T is the vertex with the second largest preorder number. Rightmost path of T is
the path from root(T ) to the rightmost vertex of T , and second rightmost path of
T is the path from root(T ) to the second rightmost vertex of T . Two vertices u and
v are relatives if u is neither an ancestor nor a descendant of v. With p(u) < p(v),
u is a left relative of v, otherwise, it is a right relative. The depth of a vertex v in a
tree T , denoted by dep(T, v), is defined as the number of edges of the path between
the root of T and v. A tree T is a rightmost path extension of a tree T ′ iff there exist
vertices u and v such that: (i) {v} = V (T ) \ V (T ′), (ii) {(u, v)} = E(T ) \ E(T ′),
(iii) u is on the rightmost path of T ′ and (iv) in T , v is a right relative of all children
of u.

A tree C is subtree homeomorphic to a tree T (denoted by C �h T ) iff there
is a mapping ϕ : V (C) → V (T ) such that: (i) ∀v ∈ V (C) : λC(v) = λT (ϕ(v)),
(ii) ∀u, v ∈ V (C): u is the parent of v in C iff ϕ(u) is an ancestor of ϕ(v) in T ,
and (iii) ∀u, v ∈ V (C): p(u) < p(v) ⇔ p(ϕ(u)) < p(ϕ(v)). Under subtree isomor-
phism the ancestor-descendant relationship between ϕ(u) and ϕ(v) is strength-
ened into the parent-child relationship. C is isomorphic to T iff C is subtree
isomorphic to T and |V (C)| = |V (T )|. Note that a pattern C under a sub-
tree morphism can have several mappings to the same database tree T . When
the matching operator is subtree homeomorphism, every mapping is called an
occurrence (or embedding) of C in T . An occurrence (embedding) of a vertex
v is an occurrence (embedding) of the pattern consisting of the single vertex
v. Given an occurrence ϕ of C in T , the occurrence tree OT (ϕ) is defined as
follows: (i) V (OT (ϕ)) = {ϕ(v) : v ∈ V (C)}, (ii) root(OT (ϕ)) = ϕ(root(C)),
(iii) for every v ∈ V (OT (ϕ)), λOT (ϕ)(v) = λT (v), and (iv) E(OT (ϕ)) =
{(ϕ(v1), ϕ(v2))|(v1, v2) ∈ E(C)} [6].

Given a database D consisting of trees and a tree pattern C, support (or
frequency) of C in D, denoted by sup(C,D), is defined as: |T ∈ D : C �h T |.
C is frequent (C is a frequent embedded pattern), iff its support is greater than
or equal to an user defined threshold minsup > 0. The problem studied in this
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paper is as follows: given a database D consisting of trees (where vertices on the
same path starting from the root have distinct labels) and an integer minsup,
find every frequent pattern C such that sup(C,D) ≥ minsup.

3 Related Work

Mining frequent patterns under homeomorphism. Zaki presented TreeMinerD
[18] to find embedded patterns from rooted ordered trees in the transactional
setting. For frequency counting, he used an efficient data structure, called SV-
list. Later, by proposing the SLEUTH algorithm, he extended the work to mine
embedded patterns from rooted unordered trees [17]. Tan et al. [13] proposed the
MB3Miner-T algorithm, where a unique occurrence list representation of the tree
structure is used for efficient implementation of their Tree Model Guided (TMG)
candidate generation. Recently, Chehreghani and Bruynooghe [6] presented an
efficient algorithm for frequent pattern mining when per-occurrence support is
used. They proposed the occ-list data-structure and effective join operators
that are used to count all occurrences of tree patterns. In the current paper, we
propose more effective data-structure and algorithms for mining rooted ordered
trees in the transactional setting. As we discuss in Sect. 4, our algorithm has a
better time complexity than the most efficient existing algorithms.

Mining frequent patterns under isomorphism. Asai et al. [1] developed FreqT for
mining frequent tree patterns. Chi et al. [8] proposed FreeTreeMiner for mining
induced unordered and induced free tree patterns in the transactional setting.
Later, Chi et al. proposed CMTreeMiner [9] for mining closed and maximal
frequent tree patterns. Their algorithm uses an enumeration DAG to prune the
branches of the enumeration tree that do not correspond to closed or maximal
patterns. Tatikonda et al. [15] proposed a generic approach for mining embedded
or induced patterns. They developed TRIPS and TIDES algorithms using two
widely used sequential encodings of trees. In [7], Chehreghani et al. presented the
OInduced algorithm for finding frequent tree patterns. They introduced three
novel encodings for rooted ordered trees and showed that subtree isomorphism
can be done effectively, using these tree encodings. Their method works with
both support and per-occurrence support. Later, in [5], Chehreghani proposed
other encodings for rooted unordered trees.

4 Effective Subtree Homeomorphism for the
Transactional Setting

In this section, we propose a new approach for efficiently deciding whether a tree
pattern is subtree homeomorphic to a database tree. First in Sect. 4.1, we intro-
duce the notions of AD-join and relative-join. Then in Sect. 4.2, we present the
EMET-List data-structure and, in Sect. 4.3, the operators for this data struc-
ture. We present the TTM algorithm in Sect. 4.4 and an optimization technique
in Sect. 4.5.
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4.1 AD-join and Relative-join

Two trees with the same size belong to the same equivalence class iff their
subtrees induced by all but the rightmost vertices are isomorphic. Zaki [18]
proposed every two trees in an equivalence class join to generate larger trees.
Let C1 and C2 be two trees of size at least 2 and v1 and v2 their rightmost
vertices, respectively. Then:

– If dep(C1, v1) = dep(C2, v2), by the join of C1 with C2, two trees C and C ′

are generated, where: C is built by adding v2, as the rightmost child, to the
vertex in the depth dep(C1, v1)−1 of the rightmost path of C1, and C ′ is built
by adding v2, as the rightmost child, to v1,

– If dep(C1, v1) > dep(C2, v2), by the join of C1 with C2, a tree C is built by
adding v2 to the vertex in the depth dep(C1, v1) − 1 of the rightmost path of
C1, as its rightmost child.

– If dep(C1, v1) < dep(C2, v2), no tree is generated by the join of C1 with C2.

This provides a complete procedure to generate all frequent tree patterns
[18]. Since in the current paper we suppose that in all database trees, vertices on
the same path (starting from the root) have distinct labels, the above mentioned
procedure can be simplified as follows: when C1 and C2 are the same tree, by
the join of C1 and C2, only one tree C is built by adding v2, as the rightmost
child, to the vertex in the depth dep(C1, v1) − 1 of the rightmost path of C1.

In all cases, when v2 is added to the vertex in the depth dep(C1, v1) − 1 of
C1, v1 and v2 become relatives, and when v2 is added to the vertex in the depth
dep(C1, v1) of C1, v1 becomes an ancestor of v2. Therefore, we can consider
two types of joins: ancestor-descendant join, or AD-join in short, where in the
generated tree, v2 becomes a descendant of v1, and relative-join, where in the
generated tree, v2 becomes a relative of v1. In Propositions 1 and 2, we intro-
duce two properties of AD-join and relative-join that are useful for our subtree
homeomorphism algorithm.

Proposition 1. Let T be a database tree and C a tree pattern generated by the
AD-join of two trees C1 and C2. Let also v1 and v2 be the rightmost vertices of
C1 and C2, respectively. Suppose that C1 �h T and C2 �h T . C �h T iff there
exists occurrences ϕ1 of C1 and ϕ2 of C2 in T such that ϕ1(v1) is an ancestor
of ϕ2(v2) in T .

Proof. First, we assume there exists an occurrence ϕ of C in T and prove there
exist occurrences ϕ1 of C1 and ϕ2 of C2 both in T such that ϕ1(v1) is an ancestor
of ϕ2(v2) in T . On the one hand, removing ϕ(v2) from ϕ, gives an occurrence ϕ1 of
C1 in T . On the other hand, removing ϕ(v1) from ϕ and adding ϕ(v2) to the parent
of ϕ(v1) in ϕ, yields an occurrence ϕ2 of C2 in T . Furthermore, clearly, ϕ(v1) is
an ancestor of ϕ(v2). Therefore, the proof is done. Second, we assume there exist
occurrences ϕ1 of C1 and ϕ2 of C2 both in T such that ϕ1(v1) is an ancestor of
ϕ2(v2) in T , and prove C �h T . An occurrence tree OT (ϕ) of C in T is generated
by adding ϕ2(v2) to OT (ϕ1) as the child of ϕ1(v1). Note that since in T , ϕ2(v2)
is a descendant of ϕ1(v1), ϕ2(v2) does not already belong to ϕ1. �
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Proposition 2. Let T be a database tree and C a tree pattern generated by the
relative-join of two trees C1 and C2. Let also v1 and v2 be the rightmost vertices
of C1 and C2, respectively, and w1 and w2 the second rightmost vertices of C1

and C2, respectively. Suppose C1 and C2 are subtree homeomorphic to T where
the mappings are ϕ1 and ϕ2, respectively. C �h T iff (i) ϕ1(w1) = ϕ2(w2), and
(ii) ϕ2(v2) is a right relative of ϕ1(v1) in T .

Proof. First, we suppose there exists an occurrence ϕ of C in T and prove there
exist occurrences ϕ1 of C1 and ϕ2 of C2 both in T such that ϕ1(w1) = ϕ2(w2)
and ϕ2(v2) is a right relative of ϕ1(v1) in T . On the one hand, removing ϕ(v2)
from ϕ, gives an occurrence ϕ1 of C1 in T and on the other hand, removing
ϕ(v1) from ϕ yields an occurrence ϕ2 of C2 in T . Furthermore, since v2 is a right
relative of v1 in C, ϕ2(v2) is a right relative of ϕ2(v1) in T ; and since ϕ1 and ϕ2

differ only at ϕ1(v1) and ϕ2(v2), ϕ1(w1) is the same as ϕ2(w2). Therefore, the
proof is done.

Second, we assume there exist occurrences ϕ1 of C1 and ϕ2 of C2 both in T
such that ϕ1(w1) = ϕ2(w2) and ϕ2(v2) is a right relative of ϕ1(v1) in T , and prove
C �h T . Consider the subtree OT (ϕ) of T built as follows: OT (ϕ) is initialized
by OT (ϕ1) and then, ϕ2(v2) is added to the vertex in depth dep(C, v2) − 1 of
OT (ϕ), as the rightmost child. OT (ϕ) is an occurrence tree of C in T . The
reason is that on the one hand, since vertices in the second rightmost path of
OT (ϕ) have distinct labels and ϕ1 and ϕ2 share the second rightmost vertex
and C1 and C2 share the second rightmost path, OT (ϕ1) and OT (ϕ2) share the
second rightmost path. This yields that ϕ(v2) is a descendant of all vertices in
depths 0, . . . , dep(C, v2) − 1 of the second rightmost path of OT (ϕ), and it is a
right relative of all vertices in depths dep(C, v2), . . . , dep(C, v1)−1 of the second
rightmost path of OT (ϕ). On the other hand, ϕ(v2) is a right relative of ϕ(v1)
in T . Therefore, ϕ satisfies all properties of subtree homeomorphism and OT (ϕ)
satisfies all properties of occurrence tree (as mentioned in Sect. 2). �

Note that while Proposition 1 holds for general trees, Proposition 2 holds
only for the trees whose vertices on the same path have different labels. To
exploit Propositions 1 and 2 for the subtree homeomorphism test, we use Dietz
numbering scheme [11]. This scheme associates each vertex v with a pair of
numbers 〈p(v), p(v) + size(v)〉, where size(v) is e.g., the number of descendants
of v. For two vertices u and v in a database tree, u is an ancestor of v iff
p(u) < p(v) and p(v) + size(v) ≤ p(u) + size(u), and v is a right relative of u iff
p(u) + size(u) < p(v). Several algorithms, such as VTreeMiner and TreeMinerD
[16,18] and TPMiner [6] have used this scheme in different forms. In this paper,
we introduce the EMET data structure based on this scheme. We continue with
introducing some more notations. The scope of a vertex x in a database tree T
is a pair (l, u), where l is the preorder number of x in T and u is the preorder
number of the rightmost descendant of x in T . We use the notations x.scope.l
and x.scope.u to refer to l and u of x, respectively.
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4.2 EMET-List: An Efficient Data Structure for Transactional Tree
Mining

In this section, we present the EMET-List data structure for transactional
tree mining under subtree homeomorphism. All occurrences represented by an
EMET share the second rightmost vertex and the rightmost vertex. EMET has
three components: (i) TId: the identifier of the database tree that contains the
occurrences represented by the EMET, (ii) scope: the scope (in the database
tree TId) of the rightmost vertex of the occurrences represented by the EMET,
(iii) srv: the preorder number of the second rightmost vertex of the occurrences
represented by the EMET. For all occurrences of a pattern C that have the
same TId, scope and srv, one EMET in the EMET-List of C is generated.
Every occurrence is represented by exactly one EMET. We refer to the EMET-
List of C by EMET-List(C). It is easy to see that support of C is equal to the
number of elements in EMET-List(C) that have different TIds.

As an example of EMET-List, consider Fig. 1 where T0 and T1 are two
database trees and minimum-support is equal to 2. In the trees presented in all
figures of this paper, the numbers assigned to the vertices show their preorder
numbers and the assigned letters present their labels. Frequent patterns of size
1 are “a”, “b”, “c”, “d” and “e”, and frequent patterns of size 2 are “a b”, “a
c”, “a d”, “a e”, “b c”, “b d” and “c e”. Consider the first occurrence of “a b”;
it occurs at T0 and the preorder number of its second rightmost vertex is 0. The
preorder number of its rightmost vertex is 1, and the preorder number of the
rightmost descendant of its rightmost vertex is 2. Therefore, the EMET formed
for this occurrence is {0, (1, 2), 0}. In a similar way, the EMET data structure
for other occurrences of “a b” and the EMET-Lists of other tree patterns are
generated.

4.3 Operations on the EMET-Lists

As mentioned above, a tree C is generated by either AD-join or relative-join of
two trees C1 and C2. For each case, in Propositions 3 and 4, we present a different

Fig. 1. An example of EMET-List. T0 and T1 are two database trees and minimum-
support is 2. The figure presents EMET-Lists of some of frequent patterns of
size 1 or 2.
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method to generate the EMET-List of C based on the EMET-Lists of C1 and
C2. The proofs of the propositions are straight forward by Propositions 1 and 2.

Proposition 3. Let C1, C2 and C be three trees such that C is generated by
AD-join of C1 and C2. Let also em1 be an EMET in the EMET-List of C1

and em2 an EMET in the EMET-List of C2. If: (i) em1.T Id = em2.T Id, (ii)
em1.scope.l < em2.scope.l and (iii) em2.scope.u ≤ em1.scope.u, then em with
em.TId = em1.T Id, em.scope = em2.scope and em.srv = em1.scope.l is an
element of EMET-List(C).

Every EMET em1 in the EMET-List of C1 and every EMET em2 in the
EMET-List of C2 such that em1 and em2 have the same TId are checked to
see whether or not they can join by AD-join.

Figure 2 illustrates how AD-join works on EMET-Lists. In this figure we
want to generate the EMET-List of C by the AD-join of the EMET-Lists
of C1 and C2. Suppose that minimum-support is 2 and the database consists
of two trees T0 and T1 presented in Fig. 1. Since the rightmost vertex of C2 is
added as a child, to the rightmost vertex of C1, two EMET-Lists are joined
via AD-join. Consider joining the first EMET in EMET-List(C1) and the first
EMET in EMET-List(C2), denoted by em1 and em2, respectively. Both em1

and em2 occur in T0, furthermore, the lower bound of the scope of em2 (i.e.,
2) is greater then the lower bound of the scope of em1 (i.e., 1) and the upper
bound of the scope of em2 (i.e., 2) is less than or equal to the upper bound of
the scope of em1 (i.e., 2). Therefore, em1 and em2 can join together and in the
resulted EMET, denoted by em, TId is set to 0, scope is set to the scope of
em2 (i.e., (2, 2)), and srv is set to the lower bound of scope of em1 (i.e., 1).

Proposition 4. Let C1, C2 and C be three trees such that C is generated
by the relative-join of C1 and C2. Let also em1 be an EMET in EMET-
List(C1) and em2 an EMET in EMET-List(C2). If: (i) em1.T Id = em2.T Id,

Fig. 2. AD-join of EMET-Lists.

Fig. 3. Relative-join of EMET-Lists.
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(ii) em1.srv = em2.srv and (iii) em1.scope.u < em2.scope.l, then em with
em.TId = em1.T Id (or em2.T Id), em.scope = em2.scope and em.srv =
em1.scope.l is an element of EMET-List(C).

Every EMET em1 in the EMET-List of C1 and every EMET em2 in the
EMET-List of C2 such that em1 and em2 have the same TId are checked to
see if they can join by relative-join.

Figure 3 shows how relative-join works on EMET-Lists. In this figure, we
want to compute the EMET-List of C by the relative-join of the EMET-Lists
of C1 and C2. Suppose that minimum-support is 2 and the database contains
two trees T0 and T1 presented in Fig. 1. Since the rightmost vertex of C2 is
not added as a child of the rightmost vertex of C1, EMET-Lists of C1 and C2

join via relative-join. Consider the relative-join of the third EMET in EMET-
List(C1), denoted by em1, and the fourth EMET in EMET-List(C2), denoted
by em2. Both em1 and em2 occur in T1, they have the same srv (i.e., 1), and
the lower bound of the scope of em2 (i.e., 4) is greater than the upper bound
of the scope of em1 (i.e., 2). Thus, em1 and em2 can join together and in the
resulted EMET, denoted by em, TId is set to 1, scope is set to the scope of
em2 (i.e., (4, 4)), and srv is set to the lower bound of scope of em1 (i.e., 2).

4.4 TTM: An Efficient Algorithm for Transactional Tree Mining

In this section, we introduce TTM, an efficient algorithm for finding frequent
embedded tree patterns in the transactional setting. TTM (an abbreviation for
Transactional Tree Miner) takes as input a minimum-support value and a forest
of trees. It uses equivalence class extension [18] for non-redundant and complete
candidate generation.

First, TTM extracts frequent patterns of size 1 (frequent vertex labels) and
constructs their EMET-Lists. This step can be done by one scan of the data-
base. Every EMET of a pattern of size 1 represents one occurrence of the
pattern, where its scope is the scope of the occurrence (and its srv is empty).
Then, frequent patterns of size 2 are extracted. For this purpose, every frequent
pattern C of size 1 is joined, via AD-join, with all other frequent patterns of size
1. Then, EMET-Lists of frequent patterns of size 2 are constructed by AD-join.
Then, every larger pattern C is generated by either AD-join or relative-join of
two smaller patterns C1 and C2 that are in the same equivalence class. If the
rightmost vertex of C2 is added to the rightmost vertex of C1, the EMET-List
of C is computed using AD-join of the EMET-Lists of C1 and C2. Otherwise,
the EMET-List of C is computed using relative-join of the EMET-Lists of
C1 and C2. The high level pseudo code of TTM is presented in Algorithm 1.
F is used to store and keep all frequent patterns.

4.5 An Optimization Technique

For a pattern C, the size of EMET(C) is O(|D|×e), where e is the maximum num-
ber of occurrences,with distinct pairs rightmost vertex and second rightmost vertex,
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Algorithm 1. High level pseudo code of the TTM algorithm.
1: TTM
2: Input. a database D consisting of trees, a user-defined integer minsup.
3: Output. F {the set of frequent embedded tree patterns.}
4: Compute the set F1 of frequent patterns of size 1 and their EMET-Lists
5: Compute the set F2 of frequent patterns of size 2 and their EMET-Lists
6: F ← F1 ∪ F2

7: for each F ∈ F2 do
8: Extend(F,minsup,F)
9: end for

1: Extend
2: Input. a tree pattern C1, a user-defined integer minsup.
3: Input and Output. F : the set of frequent embedded tree patterns
4: Side effect. F is updated with the frequent patterns generated by the extensions

of C1

5: Q ← ∅
6: for each C2 ∈ F so that C1 and C2 are in the same equivalence class do
7: {Let v1 and v2 be the rightmost vertices of C1 and C2, respectively}
8: if dep(C1, v1) = dep(C2, v2) then
9: C ←AD-join of C1 and C2

10: Compute EMET-List(C) by AD-join of EMET-List(C1) and EMET-
List(C2)

11: if sup(C) ≥ minsup then
12: F ← F ∪ {C}, Q ← Q ∪ {C}
13: end if
14: C ← relative-join of C1 and C2

15: Compute EMET-List(C) by relative-join of EMET-List(C1) and EMET-
List(C2)

16: if sup(C) ≥ minsup then
17: F ← F ∪ {C}, Q ← Q ∪ {C}
18: end if
19: end if
20: if dep(C1, v1) > dep(C2, v2) then
21: C ← relative-join of C1 and C2

22: Compute EMET-List(C) by relative-join of EMET-List(C1) and EMET-
List(C2)

23: if sup(C) ≥ minsup then
24: F ← F ∪ {C}, Q ← Q ∪ {C}
25: end if
26: end if
27: end for
28: for each F ∈ Q do
29: Extend(F,minsup,F)
30: end for

that C has in a database tree. If C is generated via AD-join, e is O(n), therefore, the
size of EMET(C) is O(|D|×n). However, if C is generated via relative-join, e is in
the worst case O(n2), which means the size of EMET-List(C) will be O(|D|×n2).
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In this section,we present an optimization technique that helps us to keep theworst
case size of EMET-Lists linear. The technique is based on storing only uncovered
EMETs.

Definition 1 (Covered EMET). Let C be a tree pattern and T a database
tree. An EMET em in EMET-List(C) is covered, iff:

1. there exists an EMET em′ �= em in EMET-List(C) such that em.TId =
em′.T Id and em.scope.l = em′.scope.l, and

2. there exists another EMET em′′ �= em in EMET-List(C) such that
em.TId = em′′.T Id and em.srv = em′′.srv.

If an EMET is not covered, it is called uncovered.

Clearly, a pattern C has at least one EMET in a database tree T if and only
if it has at least one uncovered EMET in T . This means storing only uncovered
EMETs suffices to count frequency of C. In the following, we show that it is also
sufficient to generate uncovered EMETs of C using only uncovered EMETs of
C1 and C2. For this purpose, we slightly revise the EMET data-structure by
adding a new component rv par, which contains the parent of the rightmost
vertex of all occurrences represented by the EMET.

Algorithm 2 shows how uncovered EMETs of C1 and C2 join to generate
uncovered EMETs of C. If C is generated via AD-join, using Proposition 1,
every pair of uncovered EMETs of C1 and C2 that have the same TIds are
checked to see if they can form an EMET of C. In the case of relative-join,
the procedure becomes slightly more complicated as in this case, if every pair
of uncovered EMETs of C1 and C2 that have the same TId are checked to see
whether they can form an EMET of C, some uncovered EMETs of C might
still not be generated. An example is depicted in Fig. 4. In this figure, suppose
since em2 is covered by the other EMETs of C2, it is not generated. Then, when
we generate the EMETs of C by the relative-join of the uncovered EMETs of
C1 and C2, the EMET em of C is not generated, even though it is uncovered.
If C is further extended to the tree C ′ depicted in Fig. 4, the EMET em′ of
C ′ will not be generated, and this makes C ′ non-frequent, while it is a frequent
pattern.

In Algorithm 2, we use a different method to generate all uncovered EMETs
of tree patterns. Suppose trees C1 and C2 join to generate a tree C. First,
the uncovered EMETs of C2 are partitioned, so that all EMETs with the
same TId and rv par are put on the same partition. Then, every uncovered

Fig. 4. An example of uncovered EMET-Lists and their join.



Transactional Tree Mining 193

Algorithm 2. High level pseudo code of the optimized subtree homeomorphism
algorithm.
1: AD-join
2: Input. Two trees C1 and C2 that belong to the same equivalence class and a tree

C which is generated by AD-join of C1 and C2.
3: Output. The uncovered EMETs of C.
4: for each em1 ∈ EMET-List(C1) and em2 ∈ EMET-List(C2) such that

em1.T Id = em2.T Id do
5: if em1.scope.l < em2.scope.l and em2.scope.u ≤ em1.scope.u then
6: Generate an EMET em with: em.TId = em1.T Id, em.srv = em1.scope.l,

em.scope = em2.scope, and em.rv par = em1.scope.l
7: if em is not covered by the existing members of EMET-List(C) then
8: Add em to EMET-List(C)
9: end if

10: end if
11: end for

1: Relative-join
2: Input. Two trees C1 and C2 that belong to the same equivalence class and a tree

C which is generated by relative-join of C1 and C2.
3: Output. The uncovered EMETs of C.
4: Partition EMET-List(C2) based on TId and rv par, i.e., EMETs with the same

TId and rv par are put on the same partition.
5: for each EMET em1 in EMET-List(C1) and partition P of EMET-List(C2)

that has a member p such that em1.T Id = p.TId and em1.srv = p.srv do
6: for each member em2 of P do
7: if em2.scope.l > em1.scope.u then
8: Generate an EMET em with: em.TId = em1.T Id, em.srv = em1.scope.l,

em.scope = em2.scope, and em.rv par = em2.rv par
9: if em is not covered by the existing members of EMET-List(C) then

10: Add em to EMET-List(C)
11: end if
12: end if
13: end for
14: end for

EMET em1 of C1 and every partition P of the EMETs of C2 can join iff P
has at least one member p such that em1.T Id = p.T Id and em1.srv = p.srv.
The join of EMET em1 and partition P is done as follows: for every mem-
ber em2 of P , if the rightmost vertex of the occurrences represented by em2

is a right relative of the rightmost vertex of the occurrences represented by
em1 (i.e., em2.scope.l > em1.scope.u), an EMET em of C is generated with:
em.TId = em1.T Id, em.srv = em1.scope.l, em.scope = em2.scope, and
em.rv par = em2.rv par; and is added to the EMET-List of C if it is not
already generated and it is not covered by the already generated EMETs of
C. Proposition 5 shows that Algorithm 2 generates a complete and valid list of
uncovered EMETs of C. Its proof is omitted due to lack of space.
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Proposition 5. Let C1 and C2 be two tree patterns in the same equivalence
class and suppose that tree C is generated by the join of C1 and C2. Algorithm 2
generates all uncovered EMETs of C by joining only uncovered EMETs of C1

and C2.

Complexity analysis. Compared to most efficient existing vertical algorithms
such as TreeMinerD [18] and TPMiner [6], TTM has a better time complexity.
With n the size of a database tree and C a pattern, while for the database
trees studied in this paper worst case time complexity of both TreeMinerD and
TPMiner is O(n2 ×|V (C)|), it is O(n2) for TTM. Note that this time complexity
holds for TPMiner [6] even if it is implemented efficiently (using linked lists for
the RP components of occ-lists to store only once, those elements of RP that
also belong to the parent pattern) so that its frequency counting data structure
becomes linear for the trees studied in this paper.

Algorithms that perform a homeomorphism test from the scratch between
two trees have a better worst case time complexity. For example, the algorithm
of Bille and Gortz [2] runs in linear space and subquadratic time. However, in
practice vertical approaches that store compact information for each pattern
C and when C is extended to a larger pattern C ′, the stored information is
also extended for C ′, are more efficient. The reason is that in such approaches
frequency of many patterns can be easily computed by extending a little infor-
mation stored for the parent pattern. An empirical comparison of these two types
of methods can be found in e.g., [18].

5 Experimental Results

We performed extensive experiments to evaluate the effectiveness of TTM, using
data from real applications as well as synthetic datasets. The experiments were
done on one core of a single AMD Processor 270 clocked at 2.0 GHz with 16 GB
main memory. All programs were compiled by the GNU C++ compiler 4.8.4.
TreeMinerD [18] is the state of the art algorithm for finding frequent embedded
patterns. Therefore, we choose it for our comparisons. Based on our best knowl-
edge and to the time of writing this paper, MB3Miner-T [13] is the most efficient
recent algorithm for finding frequent embedded tree patterns. Tatikonda et al.
[14] proposed algorithms for parallel mining of trees on multicore systems. Since
we do not aim at parallel tree mining, their algorithms are not proper for our
comparisons. TPMiner [6] is developed to count all occurrences, hence it is not
proper for our comparisons.

In our experiments, we state minimum support as a percentage of the number
of trees in the database. We test the algorithms at very low values of minimum
support: in all datasets, except NASA, the values of minimum support are less
than 1%. When choosing minimum support values, we consider the following:
on the one hand, at least one of the algorithms produce the output and on the
other hand, the mining setting does not become trivial such that all algorithms
produce the output very quickly. Hence, we may use different minimum support
values for different datasets.
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(a) running time over
CSLOG1.

(b) memory usage over
CSLOG1

(c) running time over
CSLOG2.

(d) memory usage over
CSLOG2.

(e) running time over
CSLOG3.

(f) memory usage over
CSLOG3.

Fig. 5. Comparison over the CSLOG datasets.

The first real-world dataset is CSLOGS that contains the web access trees
of the CS department of the Rensselaer Polytechnic Institute [18]. It has 59,691
trees, 716,263 vertices and 13,209 unique vertex labels. Each distinct label corre-
sponds to the URLs of a web page. In [19], the log file of every week is separated
into a different dataset and 3 different datasets are generated: CSLOG1 for
the first week, CSLOG2 for the second week and CSLOG3 for the third week.
CSLOG1 contains 8,074 trees, CSLOG2 contains 7,404 trees and CSLOG3 con-
tains 7,628 trees. Figure 5 compares TTM against TreeMinerD and MB3Miner-T
over the CSLOG datasets.

(a) Running time. (b) Memory usage.

Fig. 6. Comparison over NASA.

The next real-world dataset
used in this paper consists
of MBONE multicast data
that was measured during the
NASA shuttle launch between
the 14th and 21st of February,
1999 [3,4]. It has 333 distinct
vertex labels where every ver-
tex label is an IP address. The
data was sampled from this

NASA dataset with 10 min sampling interval and has 1, 000 trees. It is dense
in the sense that there exist strong correlations among database trees. Hence,
a lot of large frequent patterns are found at high values of minimum support.
Figure 6 compares the algorithms over this dataset.
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We also evaluated the efficiency of the proposed algorithm on several syn-
thetic datasets generated by the method described in [16]. The program is
adjusted by 5 parameters: (1) the number of labels (N), (2) the number of
vertices in the master tree (M), (3) the maximum fan-out of a vertex in the
master tree (F ), (4) the maximum depth of the master tree (D), and (5) the
total number of trees in the dataset (T ). In the trees generated by this program,
two vertices on the same path may find the same label. Hence, we revised this
program to avoid generating of such trees. Figure 7 reports the empirical results
over the synthetic datasets.

The first synthetic dataset is D10 and uses the following default values for
the parameters: N = 100, M = 10, 000, D = 10, F = 10 and T = 100, 000.
Figures 7(a) and (b) present the empirical results over D10. We evaluated the
influence of N on the efficiency of the algorithms. For this purpose, we generate
the N1M dataset with the following values for the parameters: N = 1, 000, 000,
M = 10, 000, D = 10, F = 10 and T = 100, 000. In Figs. 7(c) and (d), we com-
pare the algorithms on N1M. MB3Miner-T fails at minsup = 0.03%. Finally, in
order to study how the algorithms behave on very large datasets, we evaluated
them on T1M. For T1M, the parameters are as follows: N = 100, M = 10, 000,
D = 10, F = 10, and T = 1, 000, 000. Figures 7(e) and (f) compare the algo-
rithms over this dataset.

Discussion. Our extensive experiments show that TTM significantly outperforms
well-known existing algorithms. It is due to the more effective subtree homeo-
morphism algorithm it uses. Moreover, TTM does not generate the tree patterns
that have two vertices on the same path with the same label. One can observe
the followings in our experiments. On the one hand, over CSLOG2, CSLOG3,

(a) Running time over D10. (b) Memory usage over D10. (c) Running time over N1M.

(d) Memory usage over
N1M.

(e) Running time over TM. (f) Memory usage over T1M.

Fig. 7. Comparison over synthetic datasets.
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D10 and N1M, MB3Miner-T behaves poorly in terms of both running time and
memory usage. The reason is that the Tree Model Guided technique used by
MB3Miner-T does not significantly reduce the number of candidates that are
generated but are infrequent. On the other hand, over CSLOG2, CSLOG3 and
T1M, TreeMinerD shows a poor performance. This is due to efficiency of the
subtree homeomorphism algorithm used by TTM.

6 Conclusion

In this paper, we presented a new algorithm for deciding whether a tree pattern
is subtree homeomorphic to a database tree. Our method is based on a compact
data-structure, called EMET, that encodes and stores all information required
for the subtree homeomorphism test. EMETs of larger patterns are generated
by efficient join operations, defined on the EMETs of their proper subtrees.
Based on the proposed subtree homeomorphism method, we introduced TTM,
an effective algorithm for finding frequent tree patterns from tree databases. We
evaluated the efficiency of TTM over several real-world and synthetic datasets
and showed its high efficiency compared to well-known existing algorithms.
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Universitätsplatz 1, 31141 Hildesheim, Germany

{wistuba,schilling,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. The choice of hyperparameters and the selection of algorithms
is a crucial part in machine learning. Bayesian optimization methods have
been used very successfully to tune hyperparameters automatically, in
many cases even being able to outperform the human expert. Recently,
these techniques have been massively improved by using meta-knowledge.
The idea is to use knowledge of the performance of an algorithm on given
other data sets to automatically accelerate the hyperparameter optimiza-
tion for a new data set.

In this work we present a model that transfers this knowledge in two
stages. At the first stage, the function that maps hyperparameter configu-
rations to hold-out validation performances is approximated for previously
seen data sets. At the second stage, these approximations are combined
to rank the hyperparameter configurations for a new data set. In exten-
sive experiments on the problem of hyperparameter optimization as well
as the problem of combined algorithm selection and hyperparameter opti-
mization, we are outperforming the state of the art methods. The software
related to this paper is available at https://github.com/wistuba/TST.

Keywords: Hyperparameter optimization · Meta-learning · Transfer
learning

1 Introduction

The tuning of hyperparameters is an omnipresent problem in the machine learn-
ing community. In comparison to model parameters, which are estimated by a
learning algorithm, hyperparameters are parameters that have to be specified
before the execution of the algorithm. Typical examples for hyperparameters
are the trade-off parameter C of a support vector machine or the number of
layers and nodes in a neural network. Unfortunately, the choice of the hyperpa-
rameters is crucial and decides whether the performance of an algorithm is state
of the art or just moderate. Hence, the task of hyperparameter optimization is
as important as developing new models [2,5,18,23,27].

The traditional way of finding good hyperparameter configurations is by using
a combination of manual and grid search. This procedure are a brute force app-
roach of searching the hyperparameter space. They are very time-consuming or
even infeasible for high-dimensional hyperparameter spaces. Therefore, methods
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to steer the search for good hyperparameter configurations are currently an
interesting topic for researchers [3,23,27].

Sequential model-based optimization (SMBO) [13] is a black-box optimiza-
tion framework and is currently the state of the art for automatic hyperparameter
optimization. Within this framework, the trials of already tested hyperparame-
ter configurations are used to approximate the true hyperparameter response
function using a surrogate model. Based on this approximation, a promising
new hyperparameter configuration is chosen and tested in the next step. The
result of this next trial is then used to update the surrogate model for further
hyperparameter configuration acquisitions.

Human experts utilize their experience with a machine learning model and
try hyperparameter configurations that have been good on other data sets. This
transfer of knowledge is one important research direction in the domain of auto-
matic hyperparameter optimization. Currently, two different approaches to inte-
grate this idea into the SMBO framework exist. Either by training the surrogate
model on past experiments [1,21,25,33], or by using the information on past
experiments to initialize the new search [7,32].

We propose a two-stage approach to consider the experiences with different
hyperparameter configurations on other data sets. At the first stage, we approx-
imate the hyperparameter response function of the new data set as well as of
previous data sets. This approximation is then combined to rank the hyperpara-
meter configurations for the new data set, considering the similarity between the
new data set and the previous ones. In two extensive experiments for the problem
of hyperparameter optimization and the problem of combined algorithm selec-
tion and hyperparameter optimization, we show that our two-stage approach is
able to outperform current state of the art competitor methods, which have been
recently published on established machine learning conferences.

2 Related Work

The aim of automatic hyperparameter optimization is to enable non-experts
to successfully use machine learning models but also to accelerate the process
of finding good hyperparameter configurations. Sequential model-based opti-
mization (SMBO) is the current state of the art for automatic hyperparameter
optimization. Various approaches exist to accelerate the search for good hyper-
parameter configurations. One important approach is the use of meta-knowledge.
This approach has already proven its benefit for other hyperparameter optimiza-
tion approaches [9,16,20,29]. One easy way to make use of meta-knowledge is
through initialization. This approach is universal and can be applied for every
hyperparameter optimization method. Reif et al. [20] suggest to choose those
hyperparameter configurations for a new data set as initial trials that performed
best on a similar data set in the context of evolutionary parameter optimiza-
tion. Here, the similarity was defined through the distance among meta-features,
which describe properties of a data set. This idea was applied to SMBO by Feurer
et al. [7] and later improved [8]. Recently, it was proposed to learn initial hyper-
parameter configurations in such a way that it is no longer necessary to be limited
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to choose initial hyperparameter configurations from the set of hyperparameter
configurations, which have been chosen in previous experiments [32].

While the initialization can be used for any hyperparameter optimization
method, the idea to use transfer surrogate models is specific for the SMBO
framework. Bardenet et al. [1] were the first who proposed to learn the surro-
gate model not only on the current data set but also over previous experiments
in order to make use of the meta-knowledge. Soon, this idea was further investi-
gated: specific Gaussian processes [25,33] and neural networks [21] were proposed
as surrogate models.

The aforementioned ideas make use of meta-knowledge to accelerate the
search for good hyperparameter configurations. Another way of saving time is
to stop an hyperparameter configuration evaluation early if it appears to be
not promising after few training iterations. Obviously, this is only possible for
iterative learning algorithms, which are using gradient-based optimization. Even
though this approach is orthogonal to the meta-learning approach, the aim is
the same, i.e. accelerating the search for good hyperparameter configurations.
Domhan et al. [6] propose to predict the development of the learning curve based
on few iterations. If the predicted development is less promising than the cur-
rently best configuration, the currently investigated configuration is discarded.
A similar approach is proposed by Swersky et al. [26]. Instead of trying different
configurations sequentially and eventually discarding them, they learn the mod-
els for various hyperparameter configurations at the same time and switch from
one learning process to the other if it looks more promising.

3 Background

In this section the hyperparameter optimization problem is formally defined and,
for the sake of completeness, the sequential model-based optimization framework
is presented.

3.1 Hyperparameter Optimization Problem Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter configuration with Λ = Λ1 × . . . × ΛP being the P-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈ M,
which minimizes a loss function L (e.g. residual sum of squares), that is penalized
with a regularization term R (e.g. Tikhonov regularization) with respect to the
training set Dtrain of the data set D:

Aλ

(
Dtrain

)
= arg min

Mλ∈M
L (

Mλ,Dtrain
)

+ R (Mλ) . (1)

Then, the task of hyperparameter optimization is to find the hyperparameter
configuration λ∗ that leads to a model Mλ∗ , which minimizes the loss on the
validation data set Dvalid, i.e.

λ∗ = arg min
λ∈Λ

L (Aλ

(
Dtrain

)
,Dvalid

)
= arg min

λ∈Λ
fD (λ) . (2)



202 M. Wistuba et al.

The function fD is the hyperparameter response function of data set D.

fD (λ) = L (Aλ

(
Dtrain

)
,Dvalid

)
(3)

For the sake of demonstration, in the remaining sections, we consider the problem
of tuning the hyperparameters of a classifier. Thus, f returns the misclassification
rate. This is obviously no limitation, but shall help the reader to understand the
concepts given a concrete example.

3.2 Sequential Model-Based Optimization

Sequential model-based optimization (SMBO) [13], originally proposed for black-
box optimization, can be used for optimizing hyperparameters automatically by
using the SMBO framework to minimize the hyperparameter response function
(Eq. 3) [2]. SMBO consists of two components, (i) a surrogate model Ψ , that
is used to approximate the function f , which we want to minimize, and (ii) an
acquisition function a, that decides which hyperparameter to try next.

Algorithm 1 outlines the SMBO framework for minimizing the function f .
For T many iterations different hyperparameters are tried. In iteration t, we
approximate f using our surrogate model Ψt+1 based on the observation history
Ht, the set of all hyperparameter configurations and performances, which have
been evaluated evaluated so far. The surrogate model is an approximation of
f with the property that it can be evaluated fast. Based on the predictions of
Ψ and the corresponding uncertainties about these predictions, the acquisition
function finds a trade-off between exploitation and exploration and determines
the hyperparameter configuration to try next. This configuration is then evalu-
ated, and the new observation is added to the observation history. After T trials,
the best performing hyperparameter configuration is returned.

Algorithm 1. Sequential Model-based Optimization
Input: Hyperparameter space Λ, observation history H, number of trials T , acquisition

function a, surrogate model Ψ .
Output: Best hyperparameter configuration found.
1: for t = 1 to T do
2: Fit Ψt+1 to Ht

3: λ ← arg maxλ∈Λ a
(
μ (Ψt+1 (λ)) , σ (Ψt+1 (λ)) , fmin

)

4: Evaluate f (λ)
5: Ht+1 ← Ht ∪ {(λ, f (λ))}
6: if f (λ) < fmin then
7: λmin, fmin ← λ, f (λ)
8: return λmin

Since the acquisition function a needs some certainty about the prediction,
common choices are Gaussian processes [1,23,25,33] or ensembles, such as ran-
dom forests [12]. Typical acquisition functions are the expected improvement
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[13], the probability of improvement [13], the conditional entropy of the mini-
mizer [28] or a multi-armed bandit based criterion [24]. The expected improve-
ment is the most prominent choice for hyperparameter optimization and is also
the acquisition function, which we choose. Formally, the improvement for a
hyperparameter configuration λ is defined as

I (λ) = max
{
fmin − Y, 0

}
(4)

where fmin is currently the best function value and Y is a random variable
modeling our knowledge about the value of the function f for the hyperparameter
configuration λ, which depends on Ht. The hyperparameter configuration with
highest expected improvement, i.e.

E [I (λ)] = E
[
max

{
fmin − Y, 0

} | Ht

]
, (5)

is chosen for the next evaluation. Assuming Y ∼ N (
μ (Ψt+1 (λ)) , σ2 (Ψt+1 (λ))

)
,

the expected improvement can be formulated in closed-form as

E [I (λ)] =

{
σ (Ψt+1 (λ)) (Z · Φ (Z) + φ (Z)) if σ (Ψt+1 (λ)) > 0
0 otherwise

(6)

where

Z =
fmin − μ (Ψt+1 (λ))

σ (Ψt+1 (λ))
(7)

where φ (·) and Φ (·) denote the standard normal density and distribution func-
tion, and μ (Ψt+1 (λ)) and σ (Ψt+1 (λ)) are the expected value and the standard
deviation of the prediction Ψt+1 (λ).

4 Two-Stage Surrogate Model

Our proposed two-stage surrogate model is explained in this section. The first
stage of the surrogate model approximates the hyperparameter response func-
tions of a new data set and each data set from the meta-data individually with
Gaussian processes. The second stage combines the first-stage models by tak-
ing the similarity between the new data set and the data set from previous
experiments into consideration. We construct a ranking of hyperparameter con-
figurations as well as a prediction about the uncertainty of this ranking. The
proposed two-stage architecture is visualized in Fig. 1.

4.1 Notation

In the following, the prefix meta is used to distinguish between the different learn-
ing problems. The traditional problem is to learn some parameters θ on a given
data set containing instances with predictors. For the hyperparameter optimiza-
tion problem you can create meta-data sets consisting of meta-instances with
meta-predictors. A meta-data set contains meta-instances (λi, fD (λi)) where
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Fig. 1. At the first stage the hyperparameter response functions of the new data set
Dnew as well as data sets D = {D1, . . . , Dk} used for previous experiments are approx-
imated using known evaluations. At the second stage the predictions of each individual
model f̂D are taken into account weighted by the similarity between D and Dnew to
determine the final predicted score.

fD (λi) is the target and λi are the predictors. The hyperparameter response
function fD : Λ → R is a function for a specific classifier and a specific data set
D. For a given hyperparameter configuration, it returns the misclassification rate
after training the classifier with the respective hyperparameter configuration on
the training data set D. The task is to find a good hyperparameter configura-
tions on a new data set Dnew within T trials. To achieve this, a meta-data set,
i.e. meta-instances for other data sets D ∈ D, is given and this knowledge is
transferred to the new problem.

4.2 First Stage - Hyperparameter Response Function
Approximation

The first stage of our two-stage surrogate model approximates the hyperpara-
meter response function for each data set. The meta-data set can be used to
approximate the hyperparameter response function fD for all D ∈ D by learn-
ing a machine learning model f̂D, using the meta-instances of each data set D.
Similarly, we can learn an approximation f̂Dnew for the new data set, for which
we have only few, but a growing number of meta-instances. Before learning f̂D

for all D ∈ D, the labels of the meta-instances are scaled to [0, 1] per data set.
This is done such that each data set has equal influence on the second stage.
The labels of the new data set Dnew remain untouched.

For approximating the hyperparameter response function fD, any machine
learning model can be used, which is able to capture high non-linearity. We
decide to use Gaussian processes [19], which are a very prominent surrogate
model for SMBO [1,23,25,33].
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4.3 Second Stage - Final Hyperparameter Configuration Ranking

The second stage combines all models of the first stage within one surrogate
model Ψ to rank the different hyperparameter configurations and predict the
uncertainty about the ranking. The predicted score of a hyperparameter config-
uration is determined using kernel regression [11]. We use the Nadaraya-Watson
kernel-weighted average to predict the mean value of the surrogate model

μ (Ψ (λ)) =

∑
D∈D∪{Dnew} κρ

(
χDnew

,χD

)
f̂D (λ)

∑
D∈D∪{Dnew} κρ

(
χDnew

,χD

) (8)

with the Epanechnikov quadratic kernel

κρ (χD,χD′) = δ

(‖χD − χD′‖2
ρ

)
(9)

with

δ (t) =

{
3
4

(
1 − t2

)
if t ≤ 1

0 otherwise
(10)

where ρ > 0 is the bandwidth and χD is a vector describing the data set D. We
discuss the description of data sets in-depth in the next section.

The predicted uncertainty for a hyperparameter configuration λ is defined as

σ (Ψ (λ)) = σ
(
f̂Dnew (λ)

)
(11)

Using Eqs. 8 and 11, the expected improvement for arbitrary hyperparameter
configurations can be estimated. Thus, our Two-Stage Transfer surrogate model
Ψ can be used within the SMBO framework described in Algorithm 1.

4.4 Data Set Description

In this section we introduce three different ways to describe data sets in vector
form.

Description Using Meta-features. The most popular way to describe data
sets is by utilizing meta-features [1,20,22]. These are simple, statistical or infor-
mation theoretic properties extracted from the data set. The similarity between
two data sets, as defined in Eq. 9, is then dependent on the Euclidean distance
between the meta-features of the corresponding data sets. In this work we are
using the meta-features listed in Table 1. For a more detailed explanation, we
refer the reader to Michie et al. [17]. A well-known problem with meta-features
is that it is a difficult problem to find and choose meta-features that are able to
adequately describe a data set [15].
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Table 1. The list of all meta-features used by us.

Meta-features

Number of classes Class probability max

Number of instances Class probability mean

Log number of instances Class probability standard deviation

Number of features Kurtosis min

Log number of features Kurtosis max

Data set dimensionality Kurtosis mean

Log data set dimensionality Kurtosis standard deviation

Inverse data set dimensionality Skewness min

Log inverse data set dimensionality Skewness max

Class cross entropy Skewness mean

Class probability min Skewness standard deviation

Description Using Pairwise Hyperparameter Performance Rankings.
Describing data sets based on pairwise hyperparameter performance rankings
has been used in few approaches [16,29]. The idea is to select all paired com-
binations of hyperparameter configurations (λi,λj) evaluated on the new data
set Dnew and estimate how often two data sets D and D′ agree on the ranking.
Usually, it is assumed that the hyperparameter configurations evaluated on Dnew

have also been evaluated on all data sets from the meta-data set D ∈ D. In the
context of general hyperparameter tuning, this is likely not the case. Therefore,
we propose to use the first stage predictors to approximate the performances to
overcome this problem.

Formally, given t many observations on Dnew for the hyperparameter config-
urations λ1, . . . ,λt, Dnew can be described as χDnew

= ((χDnew)i)i=1,...,t2
∈ R

t2 ,

(
χDnew

)
j+(i−1)t

=

{
1 if fDnew (λi) > fDnew (λj)
0 otherwise

. (12)

Similarly, using the same t hyperparameter configurations, we can define for all
D ∈ D

(χD)j+(i−1)t =

{
1 if f̂D (λi) > f̂D (λj)
0 otherwise

. (13)

Please note that we use f̂ instead of f . As explained before, a hyperparameter
configuration that is evaluated on Dnew was likely not evaluated on all data
sets D ∈ D. For this reason we predict the performance using the first stage
predictors. Using this description, the Euclidean distance between two data sets
is the number of discordant pairs [14].
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5 Experimental Evaluation

5.1 Tuning Strategies

We introduce all tuning strategies considered in the experiments. We consider
strategies that do not use knowledge from previous experiments as well as those
that use it.

Random Search. As the name suggests, this strategy chooses hyperparameter
configurations at random. Bergstra and Bengio [3] have shown that this outper-
forms grid search in scenarios with hyperparameters with low effective dimen-
sionality.

Independent Gaussian Process (I-GP). This tuning strategy uses a Gaussian
process with squared-exponential kernel with automatic relevance determination
(SE-ARD) as a surrogate model [23]. It only uses knowledge from the current
data set and is not using any knowledge from previous experiments.

Spearmint. While I-GP is our own implementation of SMBO with a Gaussian
process as a surrogate model we also compare to the implementation by Snoek
et al. [23]. The main difference to I-GP is the use of the Matérn 5/2 kernel. We
added this as a baseline because it is considered to be a very strong baseline.

Independent Random Forest (I-RF). Besides Gaussian processes, random forests
are another popular surrogate model [12], which we compare against in the
experiments. We compared our own implementation against the original imple-
mentation of SMAC. Since our implementation provided stronger results, we will
report these results. No knowledge from previous experiments is employed.

Surrogate Collaborative Tuning (SCoT). SCoT [1] uses meta-knowledge in a two
step approach. In the first step, an SVMRank is learned over the whole meta-
data. Its prediction for the meta-instances are used to replace the labels of the
meta-instances. Bardenet et al. [1] argue that this overcomes the problem of
having data sets with different scales of labels. On this transformed meta-data
set, a Gaussian process with SE-ARD kernel is trained. In the original work it
was proposed to use an RBF kernel for SVMRank. For reasons of computational
complexity, we follow the lead of Yogatama and Mann [33] and use a linear kernel
instead.

Gaussian Process with Multi-Kernel Learning (MKL-GP). Yogatama and Mann
[33] propose to use a Gaussian process as a surrogate model for the SMBO
framework. To tackle the problem of different scales on different data sets they
are normalizing the data. Furthermore, they are using a kernel which is a linear
combination of an SE-ARD kernel and a kernel modeling the distance between
data sets.
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Factorized Multilayer Perceptron (FMLP). FMLP [21] is the most recent surro-
gate model we are aware of. Published on last year’s ECML PKDD, it is using
a specific neural network to learn the similarity between the new data set and
those from previous ones implicitly in a latent representation.

Two-Stage Transfer Surrogate (TST). This is the surrogate model proposed by
us in this work. We consider two variations with two different data set represen-
tations. TST-M is using the meta-feature representation for the data sets, TST-R
is using the pairwise ranking representation. We are using SE-ARD kernels for
the Gaussian processes.

The kernel parameters are learned by maximizing the marginal likelihood
on the meta-training set [19]. All hyperparameters of the tuning strategies are
optimized in a leave-one-data-set-out cross-validation on the meta-training set.

The results reported estimated using a leave-one-data-set-out cross-validation
and are the average of ten repetitions. For strategies with random initialization
(Random, I-GP, Spearmint, I-RF), we report the average over thousand repe-
titions due to the higher variance. Hyperparameter configurations are limited
to the precomputed grid which makes the experiment computational feasible
for our infrastructure. We do not believe that limiting the black-box search
to a grid has any impact on the results. In the end, this can be considered
as additional constraints on the search space. In practice, our surrogate model
allows finding arbitrary hyperparameter configurations like all other competitor
methods. The evaluation was committed in the same way for transferring and
non-transferring methods. Meta-hyperparameters for the surrogate models were
individually tuned. For those strategies that use meta-features (SCoT, MKL-GP,
TST-M), we use those meta-features that are described in Table 1.

5.2 Meta-data Sets

We use two meta-data set introduced in [31] but increase the number of meta-
features from three to the 22 listed in Table 1. The support vector machine
(SVM) meta-data set was created using 50 classification data sets chosen at
random from the UCI repository. Existing train/test splits were merged, shuffled
and split into 80 % train and 20 % test.

The SVM [4] was trained for three different kernels (linear, polynomial and
Gaussian) such that the hyperparameter dimension is six. Three dimensions are
used for kernel indicator variables, one for the trade-off parameter C, one for
the degree of the polynomial kernel d and one for the width γ of the Gaussian
kernel. If a hyperparameter was not involved, its value was set to 0. The misclas-
sification error was precomputed on the grid C ∈ {

2−5, . . . , 26
}
, d ∈ {2, . . . , 10}

and γ ∈ {
10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103

}
resulting into

288 meta-instances per data set. Creating this meta-data set took about 160
CPU hours.

Furthermore, we use a Weka meta-data set to evaluate on the combined
algorithm and hyperparameter configuration problem as tackled in [27]. 59 clas-
sification data sets are preprocessed as done for the SVM meta-data set. Using
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19 different Weka classifiers [10], we precomputed the misclassification error on a
grid which resulted into 21,871 hyperparameter configurations per data set such
that the overall meta-data contains 1,290,389 meta-instances. It took us more
than 891 CPU hours to create this meta-data set.

To show that the tuning strategies can also deal with hyperparameter con-
figurations they have never seen on other data sets, the tuning strategies only
have access on meta-instances on a subset of the meta-instances. The evaluation
on meta-test was done using all meta-instances.

To enable reproducibility, we provide a detailed description of the meta-data
sets, the meta-data sets itself and our source code on GitHub [30].

5.3 Evaluation Metrics

We compare all tuning methods with respect to two common evaluation met-
rics: average rank and average distance to the global minimum. The average
rank ranks the tuning strategies per data set according to the best found hyper-
parameter configuration. These ranks are then averaged over all data sets. The
average distance to the global minimum after t trials is defined as

ADTM (Λt,D) =
∑

D∈D
min
λ∈Λt

fD (λ) − fmin
D

fmax
D − fmin

D

(14)

where fmax
D and fmin

D are the worst and best value on the precomputed grid,
respectively. Λt is the set of hyperparameter configurations, that have been eval-
uated in the first t trials. The performance per data set is scaled between 0 and 1
to get rid of the influence of different misclassification offsets and scales. Finally,
the distances between the performance of the best performing hyperparameter
configuration found to the best possible performance on the grid is averaged over
all data sets.

5.4 Experiments

We compare the different hyperparameter optimization methods in two different
scenarios: (i) hyperparameter tuning and (ii) combined algorithm selection and
hyperparameter tuning. For the task of hyperparameter tuning, we optimize the
hyperparameters of a support vector machine. The results are summarized in
Fig. 2. What we can see is that TST-R is outperforming the competitor methods
with respect to both evaluation metrics by a large margin. TST-M has a similar
good start as TST-R but its performance degenerates after few trials. Because
the only difference between TST-R and TST-M is the way the data sets are
described, one might argue that meta-features are less descriptive in describing
a data set than the approach of pairwise rankings. We do not think that one
can infer this from these results. The true reason for this behavior is that the
distances for TST-R are updated after each trials and the distance to the data
sets from previous experiments is increasing over time. Thus, the influence of
the meta-data set vanishes and TST-R is focusing only on the knowledge about
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the new data set at some point of time. Contrariwise, TST-M is using a constant
distance between data set based on the meta-features. While the meta-knowledge
is useful especially in the beginning, TST-M keeps relying on this such that
the information of the new data set is not optimally taken into account. One
simple way of fixing this problem is to decay the influence of the meta-knowledge
which would introduce at least one meta-hyperparameter. Because TST-R is
performing well without an additional meta-hyperparameter for the decay, we
do not follow this idea here.

Spearmint provides stronger results than I-GP due to the choice of a different
kernel. This might be an indication that we can further improve TST-R, if we
use the Matérn 5/2 kernel instead of the SE-ARD.

Fig. 2. Our proposed transfer surrogate model TST-R provides the best performance
with respect to both evaluation measures for the task of hyperparameter tuning. For
both metrics, the smaller the better.

We investigate the performance of the optimization methods also for the
problem of combined algorithm selection and hyperparameter tuning on our
Weka meta-data set. For this experiment, we remove some methods for different
reasons. We remove some weaker methods (Random and TST-M) to improve
the readability. Furthermore, we do not compare to methods, which are using
one Gaussian process, that is trained on the complete meta-data (SCoT and
MKL-GP). The reason for this is that Gaussian processes do not scale to these
large meta-data sets (time and memory-wise) [31]. Our approach is learning one
Gaussian process for each data set such that each model only needs to be learned
on a fraction of the data and thus remains feasible. Nevertheless, we compare to
FMLP, the strongest competitor from the previous experiment as well as I-GP
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Fig. 3. Our approach TST-R also outperforms the competitor methods for the task of
combined algorithm selection and hyperparameter tuning. Surrogate models that use
Gaussian processes that train over the whole meta-data are not feasible for this data
set [31]. Therefore, we consider I-GP and I-RF with meta-learning initialization.

and I-RF. Furthermore, we also compare to I-GP and I-RF with five initialization
steps using a strong meta-initialization technique [32]. The results summarized
in Fig. 3 are very similar to our previous experiment. TST-R again is best for
both evaluation metrics but FMLP shows to be a strong competitor.

6 Conclusion

In this work, we propose a two-stage transfer surrogate for using meta-knowledge
to accelerate the search with the SMBO framework. We propose to approximate
the hyperparameter response surface of each data set with an individual model.
These individual models are finally combined at the second stage to estimate
the score of a hyperparameter configuration. In extensive experiments on two
meta-data sets, we compare our method to numerous competitor methods pub-
lished recently on established machine learning conferences. We show empirically
that our two-stage transfer surrogate model is able to outperform all considered
competitor methods for the task of hyperparameter tuning as well as the task
of combined algorithm selection and hyperparameter tuning.

For future work we are planning to have a deeper look into different ways of
describing data sets. Furthermore, we want to investigate whether it is possible
to add a decay meta-hyperparameter that enables our approach to also work
with typical data set descriptions such as meta-features. Most importantly, we
want to investigate the impact of different kernels for TST on the performance.
Currently, the Matérn 5/2 seems to be a promising candidate.
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Abstract. Several machine learning problems arising in natural lan-
guage processing can be modeled as a sequence labeling problem.
Gaussian processes (GPs) provide a Bayesian approach to learning such
problems in a kernel based framework. We develop Gaussian process
models based on pseudo-likelihood to solve sequence labeling problems.
The pseudo-likelihood model enables one to capture multiple dependen-
cies among the output components of the sequence without becoming
computationally intractable. We use an efficient variational Gaussian
approximation method to perform inference in the proposed model. We
also provide an iterative algorithm which can effectively make use of
the information from the neighboring labels to perform prediction. The
ability to capture multiple dependencies makes the proposed approach
useful for a wide range of sequence labeling problems. Numerical experi-
ments on some sequence labeling problems in natural language processing
demonstrate the usefulness of the proposed approach.

Keywords: Gaussian processes · Sequence labeling · Variational infer-
ence

1 Introduction

Sequence labeling is the task of classifying a sequence of inputs into a sequence
of outputs. It arises commonly in natural language processing (NLP) tasks such
as part-of-speech tagging, chunking, named entity recognition etc. For instance,
in part-of-speech (POS) tagging, the input is a sentence and the output is a
sequence of POS tags. The output consists of components whose labels depend
on the labels of other components in the output. Sequence labeling takes into
account these inter-dependencies among various components of the output [17].

In recent years, sequence labeling has received considerable attention from the
machine learning community and is often studied under the general framework of
structured prediction. Many algorithms have been proposed to tackle sequence
labeling problems. Hidden Markov model (HMM) [20], conditional random field
(CRF) [13] and structural support vector machine (SSVM) [25] are the popular
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 215–231, 2016.
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algorithms for sequence labeling. SSVM allows learning a SVM for predicting a
structured output including sequences. It is based on a large margin framework
and is not probabilistic in nature. HMM is a probabilistic directed graphical
model based on Markov assumption and has been widely used for problems in
speech and language processing. CRF is also a probabilistic model based on
Markov random field assumption. These parametric approaches can provide an
estimate of uncertainty in predictions due to their probabilistic nature. However,
they do not follow a Bayesian approach as they make a pointwise estimate of
their parameters. This makes them less robust and heavily dependent on cross-
validation for model selection. Bayesian CRF [19] overcomes this problem by
providing a Bayesian treatment to CRF. Approaches like SSVM and maximum
margin Markov network (M3N) make use of kernel functions which overcome the
limitations arising due to the parametric nature of models such as CRF. Kernel
CRF [14] is proposed to overcome this limitation of the CRF, but it is also not
a Bayesian approach.

Gaussian processes (GPs) [21] have emerged as a better alternative to offer
a non-parametric fully Bayesian approach to solve the sequence labeling prob-
lem. An initial work which studied Gaussian process for sequence labeling is [1],
where GPs were proposed as an alternative to overcome the limitations of CRF;
however they used a maximum a posteriori (MAP) approach instead of a fully
Bayesian approach. This caused problems of model selection and robustness
issues. A more recent work GPstruct [7] provides a Bayesian approach to gen-
eral structured prediction problem with GPs. It uses Markov Chain Monte Carlo
(MCMC) method to obtain the posterior distribution which slows down the infer-
ence. Their approach is based on Markov random field assumption which could
not capture long range dependencies among the labels. This difficulty is over-
come in [8] which uses an approximate likelihood to reduce the computational
complexity arising due to the consideration of larger dependencies. In [8], the
proposed model was used to solve grid structured problems in computer vision
and was found to be effective in these problems.

In this work, we develop a Gaussian process approach based on pseudo-
likelihood to solve sequence labeling problems (which we call GPSL). The GPSL
model helps to capture multiple dependencies among the output components in
a sequence without becoming computationally intractable. We develop a varia-
tional inference method to obtain the posterior which is faster than MCMC based
approaches and does not suffer from convergence problems. We also provide an
efficient algorithm to perform prediction in the GPSL model which effectively
takes into account the dependence on multiple output components. We con-
sider various GPSL models which consider different number of dependencies.
We study the usefulness of these models on various sequence labeling problems
arising in natural language processing (NLP). The GPSL models which capture
more dependencies are found to be useful for these sequence labeling problems.
They are also useful in sequence labeling data sets where the labels might be
missing for some output components, for example, when the labels are obtained
using crowd-sourcing. The main contributions of the paper are as follows:
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1. A faster training algorithm based on variational inference.
2. An efficient prediction algorithm which considers multiple dependencies.
3. Application to sequence labeling problems in NLP.

The rest of the paper is organized as follows. Gaussian processes are intro-
duced in Sect. 2. Section 3 discusses the proposed approach, Gaussian process
sequence labeling (GPSL), in detail. We provide details of the variational infer-
ence and prediction algorithm for the GPSL model in Sects. 4 and 5 respectively.
In Sect. 6, we study the performance of various GPSL models on sequence label-
ing problems and draw several conclusions in Sect. 7.

Notations: We consider a sequence labeling problem over sequences of input-
output space pair (X ,Y). The input sequence space X is assumed to be made
up of L components X = X1 × X2 × . . . XL and the associated output sequence
space has L components Y = Y1×Y2× . . . YL. We assume a one-to-one mapping
between the input and output components. Each component of the output space
is assumed to take a discrete value from the set {1, 2, . . . , J}. Each component in
the input space is assumed to belong to a P dimensional space RP representing
features for that input component. Consider a collection of N training input-
output examples D = {(xn,yn)}Nn=1, where each example (xn,yn) is such that
xn ∈ X and yn ∈ Y. Thus, xn consists of L components (xn1,xn2, . . . ,xnL) and
yn consists of L components (yn1, yn2, . . . , ynL). The training data D contains
NL input-output components.

2 Background

A Gaussian process (GP) is a collection of random variables with the property
that the joint distribution of any finite subset of which is a Gaussian [21]. It
generalizes Gaussian distribution to infinitely many random variables and is
used as a prior over a latent function. The GP is completely specified by a mean
function and a covariance function. The covariance function is defined over latent
function values of a pair of inputs and is evaluated using the Mercer kernel
function over the pair of inputs. The covariance function expresses some general
properties of functions such as their smoothness, and length-scale. A commonly
used covariance function is the squared exponential (SE) or the Gaussian kernel

cov
(
f(xmi), f(xnl)

)
= K(xmi,xnl) = σ2

f exp(−κ

2
||xmi − xnl||2). (1)

Here f(xmi) and f(xnl) are latent function values associated with the input
components xmi and xnl respectively. θ = (σ2

f , κ) denotes the hyper parameters
associated with the covariance function K.

Multi-class classification approaches are useful when the output consists of a
single component taking values from a finite discrete set {1, 2, . . . , J}. Gaussian
process multi-class classification approaches [9,10,26] associate a latent function
f j with every label j ∈ {1, 2, . . . , J}. Let the vector of latent function values
associated with a particular label j over all the training examples be f j. The
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latent function f j is assigned an independent GP prior with zero mean and
covariance function Kj with hyper parameters θj . Thus, f j ∼ N(0,Kj), where
Kj is a matrix obtained by evaluating the covariance function Kj over all the
pairs of training data input components.

In multi-class classification, the likelihood over a multi-class output ynl for
an input xnl given the latent functions is defined as [21]

p(ynl|f1(xnl), f2(xnl), . . . , fJ (xnl)) =
exp(fynl(xnl))∑J

j=1 f j(xnl)
. (2)

The likelihood (2) is known as multinomial logistic or softmax function and is
used widely for the GP multi-class classification problems [9,26]. It is important
to note that the likelihood function (2) used for the multi-class classification
problems is not Gaussian. Hence, the posterior over the latent functions cannot
be obtained in a closed form. GP multi-class classification approaches work by
approximating the posterior as a Gaussian using approximate inference tech-
niques such as Laplace approximation [26] and variational inference [9,10]. The
Gaussian approximated posterior is then used to make predictions on the test
data points. These approximations also yield an approximate marginal likelihood
or a lower bound on marginal likelihood which can be used to perform model
selection [21].

A sequence labeling problem can be treated as a multi-class classification
problem. One can use multi-class classification to obtain a label for each compo-
nent of the output independently. But this fails to take into account the inter-
dependence among components. If one considers the entire output as a distinct
class, then there would be an exponential number of classes and the learning
problem becomes intractable. Hence, the sequence labeling problem has to be
studied separately from the multi-class classification problems.

3 Gaussian Process Sequence Labeling

Most of the previous approaches [7,13] to sequence labeling use likelihood based
on Markov random field assumption which captures only the interaction between
neighboring output components. Non-neighboring components also play a sig-
nificant role in problems such as sequence labeling. In these models, capturing
such interactions are computationally expensive due to large clique size. The
proposed approach, Gaussian process sequence labeling (GPSL), can take into
account interactions among various output components without becoming com-
putationally intractable by using a pseudo-likelihood (PL) model [4].

The PL model defines the likelihood of an output yn given the input xn as
p(yn|xn) ∝ ∏L

l=1 p(ynl|xnl,yn\ynl). where, yn\ynl represents all labels in yn

except ynl. PL models have been successfully used to address many sequence
labeling problems in natural language processing [23,24]. They can capture long
range dependencies without becoming computationally intractable as the nor-
malization is done for each output component separately. In models such as
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CRF, normalization is done over the entire output. This renders them inca-
pable of capturing long range dependencies as the number of summations in
the normalization grows exponentially. The PL model is different from a locally
normalized model like maximum entropy Markov model (MEMM) as each out-
put component depends on several other output components. Therefore, they do
not suffer from the label bias problem [17] unlike MEMM. However, PL models
create cyclic dependencies among the output components [11] and this makes
prediction hard. We discuss an efficient approach to perform prediction in this
case in Sect. 5.

(a) Dependence among input and output
components. Dependence on various out-
put components are modelled separately.

(b) Dependence of local and dependent latent functions. The
local latent functions are defined over input-output pairs and de-
pendent latent functions are defined between output components.

Fig. 1. Dependence of latent functions and input-output components in Gaussian
process sequence labeling model.

The label of an output component need not depend on the labels of all the
other output components. The dependencies among these output components
are captured through the set S. Consider the directed graph in Fig. 1a for a
sequence labeling problem, where each output component is assumed to depend
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only on the neighboring output components. Here, the dependency set S =
{1, 2}, where 1 denotes the dependence of an output component on the previous
output component and 2 denotes its dependence on the next output component.
One can also consider a model where an output component depends on the
previous two output components and the next two output components. Let R
denote the number of dependency relations in a set S (that is, R is the cardinality
of S) and we assume it to be the same for all the output components for the
sake of clarity in presentation. Taking into account those dependencies, we can
redefine the likelihood as

p(yn|xn) ∝
L∏

l=1

p(ynl|xnl,yS
nl). (3)

Here, yS
nl denotes the set of labels {yd

nl}Rd=1 of the output components referred
by the dependency set S and yd

nl denotes the label of the dth dependent output
component. In (3), instead of conditioning on the rest of the labels, we condition
ynl only on the labels defined by the dependency set S.

Now, the likelihood p(ynl|xnl,yS
nl) can be defined using a set of latent func-

tions. We use different latent functions to model different dependencies. The
dependency of the label ynl on xnl is defined as a local dependency and is
modeled as in GP multi-class classification. We associate a latent function with
each label in the set {1, 2, . . . J}. The latent function associated with a label j,
denoted as fUj , is called a local latent function. It is defined over all the training
input components xnl for every n and l and the latent function values associ-
ated with a particular label j over NL training examples are denoted by fUj.
The local latent functions associated with a particular input component xnl are
denoted as fUnl = {fU1

nl , . . . , fUJ
nl }. We also associate a latent function fSd with

each dependency relation d ∈ S and call them dependent latent functions. These
latent functions are defined over all the values of a pair of labels (ŷnl, ynl) where
ŷnl ∈ {1, 2, . . . J} and ynl ∈ {1, 2, . . . J}. The latent function values associated
with a particular dependency d over J2 label pair values are denoted by fSd. The
dependence of various latent functions on the input and output components for
the directed graph in Fig. 1a is depicted in Fig. 1b. Given these latent functions
we define the likelihood p(ynl|xnl,yS

nl) to be a member of an exponential family:

p(ynl|xnl,yS
nl, {fUj}Jj=1, {fSd}Rd=1) =

exp(fUynl(xnl) +
∑R

d=1 fSd(yd
nl, ynl))∑J

ynl=1 exp(fUynl(xnl) +
∑R

d=1 fSd(yd
nl, ynl))

. (4)

This differs from the softmax likelihood (2) used in multi-class classification
in that it captures the dependencies among output components. Given the
latent functions and the input X = {xn}Nn=1, the likelihood of the output
Y = {yn}Nn=1 is

p(Y|X, {fUj}Jj=1, {fSd}Rd=1) =
N∏

n=1

L∏

l=1

p(ynl|xnl,yn{Dnl}, {fUj}Jj=1, {fSd}Rd=1)(5)
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We impose independent GP priors over the latent functions {fUj}Jj=1,
{fSd}Rd=1. The latent function fUj is given a zero mean GP prior with covariance
function KUj parameterized by θj . Thus, fUj is a Gaussian with mean 0 and
covariance KUj of size NL×NL, that is p(fUj) = N (fUj;0,KUj). KUj consists
of covariance function evaluations over all the pairs of training data input com-
ponents {{xnl}Ll=1}Nn=1. The latent function fSd is given zero mean GP prior
with an identity covariance which is defined to be 1 when inputs are the same
and 0 otherwise. Thus fSd is a Gaussian with mean 0 and covariance I of size J2,
that is p(fSd) = N (fSd;0, IJ2). Let fU = (fU1, fU2, . . . , fUJ) be the collection
of all local latent functions and fS = (fS1, fS2, . . . , fSR) be the collection of all
dependent latent functions. Then the prior over fU and fS is defined as

p(fU, fS|X) = N
([

fU

fS

]
;0,

[
KU 0
0 KS

])
, (6)

where KU = diag(KU1,KU2, . . . ,KUJ) is a block diagonal matrix and KS =
IJ2 ⊗ IR.

The posterior over the latent functions p(fU, fS|D) is

p(fU, fS|X,Y) =
1

p(Y|X)
p(Y|X, fU, fS)p(fU, fS|X)

where p(Y|X) =
∫

p(Y|X, fU, fS)p(fU, fS|X)dfUdfS is called evidence. Evi-
dence is a function of hyper-parameters θ = (θ1,θ2, . . . ,θJ ) and is maximized
to estimate them. For notational simplicity, we suppress the dependence of evi-
dence, posterior and prior on the hyper-parameter θ. Due to the non-Gaussian
nature of the likelihood, evidence is intractable and the posterior cannot be deter-
mined exactly. We use a variational inference technique to obtain an approximate
posterior. Variational inference is faster than sampling based techniques used in
[7] and does not suffer from convergence problems [16]. It can easily handle
multi-class problems and is scalable to models with a large number of parame-
ters. Further, it provides an approximation to the evidence which is useful in
estimating the hyper-parameters of the model.

4 Variational Inference

A variational Inference technique [16] approximates the intractable posterior by
an approximate variational distribution. It approximates the posterior p(f |X,Y)
by a variational distribution q(f |γ), where f = (fU, fS) and γ represents the
variational parameters. In variational inference, this is done by minimizing the
Kullback-Leibler (KL) divergence between q(f |γ) and p(f |X,Y). This is often
intractable and the variational parameters are obtained by maximizing a varia-
tional lower bound L(θ,γ).

KL(q(f |γ)||p(f |X,Y)) = −L(θ,γ) + log p(Y|X) (7)

where L(θ,γ) = −KL(q(f |γ)||p(f |X)) +
∫

q(f |γ) log p(Y|X, f)df .
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Maximizing the variational lower bound L(θ,γ) results in minimizing the KL
divergence KL(q(f |γ)||p(f |X,Y)), since the evidence p(Y|X) does not depend
on the variational parameters.

We use a variational Gaussian (VG) approximate inference approach [18]
where the variational distribution is assumed to be a Gaussian. Variational
Gaussian approaches can be slow because of the requirement to estimate the
covariance matrix. Fortunately, recent advances in VG inference approaches [18]
enable one to compute the covariance matrix using O(NL) variational parame-
ters. In fact, we use the VG approach for GPs [12] which requires computation
of only O(NL) variational parameters, but at the same time uses a concave
variational lower bound. We assume the variational distribution q(f |γ) takes
the form of a Gaussian distribution and factorizes as q(fU|γU )q(fS|γU ) where
γ = {γU ,γS}. Let q(fU|γU ) = N (fU;mU,VU) where γU = {mU,VU} and
q(fS) = N (fS;mS,VS) where γS = {mS,VS}. Then, the variational lower
bound L(θ,γ) can be written as

L(θ,γ) =
1
2
(log |VUΩU| + log |VSΩS| − tr(VUΩU) − tr(VSΩS) (8)

−mU�
ΩUmU − mS�

ΩSmS) +
N∑

n=1

L∑

l=1

Eq(fU|γU )q(fS|γS)[log p(ynl|xnl,yS
nl, f)]

where ΩU = KU−1, ΩS = KS−1 and Eq(x)[f(x)] =
∫

f(x)q(x)dx represents
the expectation of f(x) with respect to the density q(x). Since KU is block
diagonal, its inverse is block diagonal, and hence ΩU is block diagonal that is
ΩU = diag(ΩU1,ΩU2, . . . ,ΩUJ), where ΩUj = KUj−1. Similarly, ΩS is also a
block diagonal with each block being a diagonal matrix IJ2 . The marginal vari-
ational distribution of local latent function values fUj is a Gaussian with mean
mUj and covariance VUj, and that of dependent latent function values fSd is
a Gaussian with mean mSd and covariance VSd. The variational lower bound
L(θ,γ) requires computing an expectation of the log likelihood with respect to
the variational distribution. However, the integral is intractable since the likeli-
hood is a softmax function. So, we use Jensen’s inequality to obtain a tractable
lower bound to the expectation of log likelihood. The variational lower bound
L(θ,γ) can be written as

1

2

( J∑

j=1

(log |VUjΩUj| − tr(VUjΩUj) − mUj�ΩUjmUj)

+

R∑

d=1

(log |VSdΩSd| − tr(VSdΩSd) − mSd�
ΩSdmSd)

)

+
N∑

n=1

L∑

l=1

(
mUynl

nl +
R∑

d=1

mSd
(yd

nl
,ynl)

− log
( J∑

q=1

exp(mUj
nl +

1

2
V Uj
(nl,nl)

+
R∑

d=1

mSd
(yd

nl
,q) +

1

2
V Sd
((yd

nl
,q),(yd

nl
,q)))
))

. (9)
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Algorithm 1. Model selection and learning in Gaussian process sequence label-
ing model
1: Input: Training data (X, Y), dependency set S
2: Initialize hyper-parameters θ, variational parameters γ
3: repeat
4: repeat
5: for j = 1 to J do
6: Update mUj by maximizing (9) w.r.t mUj

7: Update VUj by maximizing (9) w.r.t VUj

8: end for
9: for d = 1 to R do

10: Update mSd by maximizing (9) w.r.t mSd

11: Update VSd by maximizing (9) w.r.t VSd

12: end for
13: until relative increase in lower bound (9) is small
14: Update θ by maximizing (9) w.r.t θ
15: until relative increase in lower bound (9) is small
16: Return: θ, γ

The varia tional parameters γ = {{mUj}Jj=1, {VUj}Jj=1, {mSd}Rd=1,
{VSd}Rd=1} are estimated by maximizing the variational lower bound (9). The
lower bound is jointly concave with respect to all the variational parameters [6] and
the optimum can be easily found using gradient based optimization techniques.

The variational parameters are estimated using a co-ordinate ascent app-
roach. We repeatedly estimate each variational parameter while keeping the oth-
ers fixed. The variational mean parameters mUj and mSd are estimated using
gradient based approaches. The variational covariance matrices VUj and VSd

are estimated under the positive semi-definite (p.s.d.) constraint. This can be
done efficiently using the fixed point approach mentioned in [12]. It is reported
to converge faster than other VG approaches for GPs and is based on a concave
objective function similar to (9). The approach maintains the p.s.d. constraint
on the covariance matrix and computes VUj by estimating only O(NL) varia-
tional parameters. Estimation of VUj using the fixed point approach converges
since (9) is strictly concave with respect to VUj. The variational covariance
matrix VSd is diagonal since ΩSd is diagonal. Hence, for computing a p.s.d.
VSd we need to estimate only the diagonal elements of VSd under the element-
wise non-negativity constraint. This can be done easily using gradient based
methods. The variational parameters γ are estimated for a particular set of
hyper-parameters θ. The hyper-parameters θ are also estimated by maximizing
the lower bound (9). The variational parameters γ and the model parameters θ
are estimated alternately following a variational expectation maximization (EM)
approach [16]. Algorithm 1 summarizes various steps involved in our approach.

The variational lower bound (9) is strictly concave with respect to each of the
variational parameters. Hence, the estimation of variational parameters using co-
ordinate ascent algorithm (inner loop) converges [3]. Convergence of EM for expo-



224 P.K. Srijith et al.

nential family guarantees the convergence of Algorithm 1. The overall computa-
tional complexity of Algorithm 1 is dominated by the computation of VUj. It takes
O(JN3L3) time as it requires inversion of J covariance matrices of size NL×NL.
The computational complexity for estimating VSd is O(RNLJ) and is negligible
compared to the estimation of VUj. Note that the computational complexity of
the algorithm increases linearly with respect to the number of dependencies R.

5 Prediction

We propose an iterative prediction algorithm which can effectively take
into account the presence of multiple dependencies. The variational poste-
rior distributions estimated using VG approximation q(fU) =

∏J
j=1 q(fUj)

=
∏J

j=1 N (fUj;mUj,VUj) and q(fS) =
∏R

d=1 q(fSd) =
∏R

d=1 N (fSd;mSd,VSd)
can be used to predict a test output sequence y∗ given a test input sequence x∗.
The predictive probability of assigning a label y∗l to a component of the output
y∗, given x∗l and rest of the labels y∗\y∗l is

p(y∗l|x∗l,y∗\y∗l) =
∫

p(y∗l|x∗l,y∗\y∗l, f∗)p(f∗)df∗

=
∫

exp(fUy∗l

∗l +
∑R

d=1 fSd
∗ (yd

∗l, y∗l))∑J
y∗l=1 exp(fUy∗l

∗l +
∑R

d=1 fSd∗ (yd
nl, ynl))

{p(fUj
∗l )}Jj=1{p(fSd

∗ )}Rd=1{dfUj
∗l }Jj=1{dfSd

∗ }Rd=1 (10)

where p(f∗) denotes the predictive distribution of all the latent function values
for the test input x∗. In (10), p(fUj

∗l ) represents the predictive distribution of
the local latent function j for a test input component x∗l. This is Gaussian with
mean mUj

∗l and variance vUj
∗l where,

mUj
∗l = KUj

∗l
�
ΩUjmUj and

vUj
∗l = KUj

∗l,∗l − KUj
∗l

�
(ΩUj − ΩUjVUjΩUj)KUj

∗l .

Here, KUj
∗l is an NL dimensional vector obtained from the kernel evaluations

for the label j between the test input data component x∗l and the training data
X and KUj

∗l,∗l represents the kernel evaluation of the test data input component
x∗l with itself. fSd is independent of the test data input and the predictive
distribution p(fSd∗ ) is the same as p(fSd). This is a Gaussian with mean mSd and
covariance VSd. The computation of the expected value of softmax with respect
to the latent functions (10) is intractable. Instead we compute softmax of the
expected value of the latent functions and compute a normalized probabilistic
score. We refine the normalized score to take into account the uncertainty in
true labels associated with the dependencies and compute the refined normalized
score (RNS) as

RNS(y∗l,x∗l) =
exp(mUy∗l

∗l + 1
2vUy∗l

∗l +
∑R

d=1 Eyd
∗l

[gd(yd
∗l, y∗l)])

∑J
q=1 exp(mUj

∗l + 1
2vUj

∗l +
∑R

d=1 Eyd
∗l

[gd(yd
∗l, q)])
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Algorithm 2. Prediction in Gaussian process sequence labeling model
1: Input: Test data x∗ = (x∗1, . . . ,x∗L), posterior mean {mUj}J

j=1 and {mSd}R
d=1

and posterior covariance {VUj}J
j=1 and {VSd}R

d=1

2: Obtain predictive means {{mUj
∗l }J

j=1}L
l=1, and variances {{vUj

∗l }J
j=1}L

l=1

3: Initialize : RNS0(y∗l,x∗l) =
exp(m

Uy∗l
∗l

+ 1
2 v

Uy∗l
∗l

)
∑J

j=1 exp(m
Uj
∗l

+ 1
2 v

Uj
∗l

)
∀ y∗l = 1, . . . , J, ∀ l = 1 . . . , L

4: Initialize : t = 0
5: repeat
6: t = t + 1
7: for l = 1 to L do
8: for y∗l = 1 to J do

9: RNSt(y∗l,x∗l) =
exp(m

Uy∗l
∗l

+ 1
2 v

Uy∗l
∗l

+
∑R

d=1 E
yd

∗l
[gd(yd

∗l,y∗l)])

∑J
j=1 exp(m

Uj
∗l

+ 1
2 v

Uj
∗l

+
∑R

d=1 E
yd

∗l
[gd(yd

∗l
,q)])

10: where Eyd
∗l

[·] =
∑J

yd
∗l

=1 RNSt−1(yd
∗l, x

d
∗l)[·]

11: end for
12: end for
13: until change in RNSt w.r.t RNSt−1 is small
14: (ŷ∗1, . . . , ŷ∗L) = (argmaxy∗1

RNSt(y∗1,x∗1), . . . ,
argmaxy∗L

RNSt(y∗L,x∗L))
15: Return: (ŷ∗1, . . . , ŷ∗L)

Here, gd(yd, y) = mSd
(yd,y) + 1

2V
Sd
((yd,y),(yd,y)) determines the contribution of the

label yd of dependency d in predicting the output label y. RNS considers an
expected value over all the possible labelings associated with a dependency d.
The expectation is computed using the RNS value associated with the labels
yd

∗l for the input xd
∗l, that is, Eyd

∗l
[·] =

∑J
yd

∗l=1 RNS(yd
∗l, x

d
∗l)[·].

We provide an iterative approach to estimate the labels of a test output in
Algorithm 2. An initial RNS value is computed without considering the depen-
dencies. We iteratively refine the RNS value using the previously computed
RNS value by taking into account the dependencies. The process is contin-
ued until convergence. The final RNS value is used to make prediction sepa-
rately for each output component by assigning labels with the maximum RNS
value. The computational complexity of Algorithm2 is O(J2RL) and is same
as that of Viterbi algorithm [20] for a single dependency case. The convergence
of Algorithm 2 follows from the analysis presented in [15] for a similar fixed
point algorithm. The algorithm is found to converge in a few iterations in our
experiments.

6 Experimental Results

We conduct experiments to study the generalization performance of the pro-
posed Gaussian Process Sequence labeling (GPSL) model. We use the sequence
labeling problems in natural language processing to study the behavior of the
proposed approach. Although the proposed approach is general and can handle
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dependencies of any length, we consider three different models of the proposed
approach in our experiments. The first model, GPSL1, assumes that the current
label depends only on the previous label. The second model, GPSL2, assumes
that the current label depends both on the previous and the next label in the
sequence. The third model, GPSL4, assumes that the current label depends on
the previous two labels and the next two labels.

We consider four sequence labeling problems in natural language processing
to study the performance of the proposed approach. The datasets for all these
problems are obtained from the CRF++1 toolbox. We provide a brief description
of the tasks in each of these data sets.

Base NP: We need to identify noun phrases in a sentence. The starting word
in the noun phrase is given a label B, while the words inside the noun phrase
are given a label I. All the other words are given a label O. The task here is to
assign each word with a label from the set {B, I,O}.

Chunking: Shallow parsing or chunking identifies constituents in a sentence
such as noun phrase, verb phrase etc. Here, each word in a sentence is labeled
as belonging to verb phrase, noun phrase etc. In the Chunking dataset, words
are assigned a label from a set of size 14.

Segmentation: Segmentation is the process of finding meaningful segments in
a text such as words, sentences etc. We consider a word segmentation problem
where the words are identified from a Chinese sentence. The Segmentation data
set assigns each unit in the sentence a label denoting whether it is beginning of
a word (B) or inside a word (I). The task is to assign either of these two labels
to each unit in a sentence.

Japanese NE: We need to perform Named Entity Recognition (NER) where
the task is to identify whether the words in a sentence denote a named entity
such as person, place, time etc. We use the JapaneseNE dataset where the
Japanese words are assigned one of 17 different named entities.

In all these data sets except Segmentation, a sentence is considered as an
input and words in the sentence as input components. In Segmentation, every
alphabet is considered as an input component. The features for each input com-
ponent are extracted using the template files provided in the CRF++ package.
The properties of all the data sets are summarized in Table 1. It mentions the
number of sentences (N) used for training and testing. The effective sample size
(NL) for the GPSL models is obtained by multiplying this quantity by average
sentence length which increases the data size by an order of magnitude.

We compare the performance of the proposed approach with popular
sequence labeling approaches, structural SVM (SSVM) [2]2, conditional random

1 Available at http://crfpp.googlecode.com/svn/trunk/doc/index.html.
2 Code available at http://drona.csa.iisc.ernet.in/∼shirish/structsvm sdm.html.

http://crfpp.googlecode.com/svn/trunk/doc/index.html
http://drona.csa.iisc.ernet.in/~shirish/structsvm_sdm.html


Gaussian Process Pseudo-Likelihood Models for Sequence Labeling 227

field (CRF) [5]3, and GPstruct [7]4. All the models used a linear kernel. GPstruct
experiments are run for 100000 elliptical slice sampling steps. The performance
is measured in terms of average Hamming loss over all the test data points. The
Hamming loss between the actual test output y∗ and the predicted test output
ŷ∗ is given by Loss(y∗, ŷ∗) =

∑L
l=1 I(y∗l �= ŷ∗l), where I(·) is the indicator func-

tion. Table 1 compares the performance (percentage of the average Hamming
loss) of various approaches on the four sequence labeling problems. The GPSL
models, SSVM, CRF and GPstruct are run over 10 independent partitions of
the data set5 and a mean of the Hamming loss over all the partitions along with
the standard deviation are reported in Table 1.

Table 1. Properties of the sequence labeling data sets and a comparison of the perfor-
mance of various models on these data sets. The approaches GPSL1, GPSL2, GPSL4,
SSVM, CRF and GPstruct are compared using average Hamming loss (in percent-
age). The numbers in bold face style indicate the best results among these approaches.
‘�’ and ‘†’ denote if the performance of a method is significantly different from the
best performing method and GPstruct repectively, according to paired t-test with 5 %
significance level.

Base NP Chunking Segmentation Japanese NE

#labels 3 14 2 17

#features 6438 29764 1386 102,799

training/ 150/150 50/50 20/16 50/50

test sentences

GPSL1 5.73±0.98� 13.02±1.87� 23.45 ± 2.96 8.26±2.63�

GPSL2 5.55±0.92� 12.69±1.69� 23.51±2.93 7.86±2.45 �

GPSL4 5.54±0.94� 12.70±1.79� 23.53±2.85 7.82±2.56 �

CRF 5.21±0.84† 11.76±1.73�† 24.10±3.49�† 7.76±2.80 �

SSVM 5.19 ± 0.91 † 10.71 ± 1.49 † 23.46±3.45 6.17 ± 2.60 †
GPstruct 5.66±0.93� 12.56±1.82� 23.55±2.90 7.79±2.92 �

The reported results show that the GPSL models with multiple dependencies
performed better than GPstruct on BaseNP and Segmentation. In the other
two data sets, GPSL models came close to GPstruct. We find that increasing the
number of dependencies helped to improve the performance in general except
for the Segmentation data set. This is due to the difference in nature of the
sequence labeling task involved in segmentation. For other data sets, the GPSL
model which considered both the previous and next label (GPSL2) gave a better
performance. The performance of the GPSL model which considered the previous
3 Code available at http://leon.bottou.org/projects/sgd#stochastic gradient descent

version 2.
4 Code available at https://github.com/sebastien-bratieres/pygpstruct.
5 The train and test set partitions are different from those used by [7].

http://leon.bottou.org/projects/sgd#stochastic_gradient_descent_version_2
http://leon.bottou.org/projects/sgd#stochastic_gradient_descent_version_2
https://github.com/sebastien-bratieres/pygpstruct
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and the next 2 labels (GPSL4) improved only marginally or worsened compared
to GPSL2 on these data sets. We note that increasing the number of dependencies
beyond four did not bring any improvement in performance for the sequence
labeling data sets that we have considered. Overall, the performance of the SSVM
is found to be better than other approaches in these sequence labeling data sets.
However, GPSL models have the advantage of being Bayesian and can provide
a confidence over label predictions which is useful for many NLP tasks.

6.1 Runtime performance of the GPSL models

The proposed GPSL models are implemented in Matlab. The GPSL Matlab pro-
grams are run on a 3.2 GHz Intel processor with 4 GB of shared main memory
under Linux. The SSVM approach is implemented in C, the CRF approach is
coded in C++ and the GPStruct approach is in Python. Since the implemen-
tation languages differ, it is unfair to make a runtime comparison of various
approaches. Table 2 compares the average runtime (in seconds) for training vari-
ous GPSL models and GPstruct on the sequence labeling data sets. We find that
the GPSL models are an order of magnitude faster than GPStruct. We also find
that increasing the dependencies resulted in only a slight increase in runtime.

Table 2. Comparison of average running time (seconds) of various GPSL models and
GPstruct

Data GPSL1 GPSL2 GPSL4 GPstruct

Segmentation 17.13 19.64 22.83 3.82e+03

Chunking 1.09e+03 1.35e+03 1.71e+03 4.56e+04

Base NP 6.01e+03 6.69e+03 7.25e+03 7.54e+04

Japanese NE 1.24e+03 1.56e+03 1.93e+03 4.92e+04

6.2 Experiments with the Prediction algorithm

We conducted experiments to study the performance of Algorithm2 used to
make prediction. The algorithm is compared with the commonly used Viterbi
algorithm [20] for the sequence labeling task. Viterbi algorithm consists of a for-
ward phase which calculates the best value attained at the end of the sequence
and a backward phase which finds the sequence of labels that lead to it. It is
useful only for the setting where one considers a dependency with the previ-
ous label. Therefore, we study how the performance of the GPSL1 model differs
when Viterbi algorithm is used for prediction instead of the proposed algorithm.
We consider an implementation of the Viterbi algorithm provided by the UGM
toolkit [22]. Table 3 compares the predictive and runtime performance of the two
algorithms. We observe that Algorithm 2 gave a better predictive and runtime
performance than the Viterbi algorithm. The predictive performance of Algo-
rithm2 is significantly better than Viterbi on Segmentation, Chunking and
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Table 3. Comparison of the prediction algorithms using GPSL1 model

average Hamming loss paired t-test average runtime (seconds) average iterations

Data Algorithm2 Viterbi t-value Algorithm2 Viterbi Algorithm2

Segmentation 23.45 24.26 3.8183 0.1227 0.0856 5

Chunking 13.02 13.69 3.6421 0.2491 0.2628 5

Base NP 5.73 5.75 0.3162 0.5207 0.5338 4

Japanese NE 8.26 8.84 2.475 0.3661 0.5653 3

JapaneseNE. The t-values calculated using paired t-test on these data sets are
found to be greater than the critical value of 2.262 for a level of significance 0.05
and 9 degrees of freedom. We also observed that Algorithm 2 converged in 3–5
iterations on an average.

6.3 Experiments with Missing Labels

In many sequence labeling tasks in NLP, the labels of some of the output
components might be missing in the training data set. This is common when

(a) Base NP (b) Chunking

(c) Segmentation (d) Japanese NE

Fig. 2. Variation in accuracy as the fraction of missing labels is varied from 0.05 to 0.5
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crowd sourcing techniques are employed to obtain the labels. Sequence labeling
approaches such as SSVM and CRF are not readily applicable to data sets with
missing labels. GPSL models are useful to learn from the data sets with missing
labels due to their ability to capture larger dependencies. We learn the GPSL
models from the sequence labeling data sets with some fraction of the labels
missing. We vary the fraction of missing labels and study how the performance
of our model varies with respect to missing labels. Figure 2 provides the varia-
tion in performance of various GPSL models as we vary the fraction of missing
labels. The performance is measured in terms of accuracy which is obtained by
subtracting the average Hamming loss from 1. We find that the performance
of the GPSL models does not significantly degrade as the fraction of the miss-
ing labels increases. Figure 2 shows that GPSL4 which uses the previous and
the next 2 labels provides a better performance than the other GPSL models.
GPSL4 learns a better model by considering a larger neighborhood information
and is useful to handle data sets with missing labels.

7 Conclusion

We proposed a novel Gaussian Process approach to perform sequence labeling
based on pseudo-likelihood approximation. The use of pseudo-likelihood enabled
the model to capture multiple dependencies without becoming computationally
intractable. The approach used a faster inference scheme based on variational
inference. We also proposed an approach to perform prediction which makes
use of the information from the neighboring labels. The proposed approach is
useful for a wide range of sequence labeling problems arising in natural lan-
guage processing. Experimental results showed that GPSL models, which cap-
ture multiple dependencies, are useful in sequence labeling problems. The ability
to capture multiple dependencies makes them effective in handling data sets with
missing labels.
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Abstract. We present OSLα—an online structure learner for Markov
Logic Networks (MLNs) that exploits background knowledge axioma-
tization in order to constrain the space of possible structures. Many
domains of interest are characterized by uncertainty and complex rela-
tional structure. MLNs is a state-of-the-art Statistical Relational Learn-
ing framework that can naturally be applied to domains governed by
these characteristics. Learning MLNs from data is challenging, as their
relational structure increases the complexity of the learning process. In
addition, due to the dynamic nature of many real-world applications, it is
desirable to incrementally learn or revise the model’s structure and para-
meters. Experimental results are presented in activity recognition using
a probabilistic variant of the Event Calculus (MLN−EC) as background
knowledge and a benchmark dataset for video surveillance.

Keywords: Markov Logic Networks · Event Calculus · Uncertainty

1 Introduction

Many real-world application domains are characterized by both uncertainty and
complex relational structure. Regularities in these domains are very hard to
identify manually, and thus automatically learning them from data is desirable.
The field of Statistical Relational Learning (SRL) [7] concerns the induction of
probabilistic knowledge by combining the powers of logic and probability. One
of the logic-based frameworks that handles uncertainty, proposed in the area of
SRL, is Markov Logic Networks (MLNs) [24] which combines first-order logic
and probabilistic graphical models.

Structure learning approaches that focus on MLNs have been successfully
applied to a variety of applications where uncertainty holds [6]. However, most
of these methods are batch algorithms that cannot handle large training sets or
large data streams as they are bound to repeatedly perform inference over the
entire training set in each learning iteration. This is computationally expensive,
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 232–247, 2016.
DOI: 10.1007/978-3-319-46128-1 15
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rendering these algorithms inapplicable to real-world applications. Huynh and
Mooney [12] proposed an online strategy, called OSL, for updating both the
structure and the parameters of the model, in order to effectively handle large
training datasets. Nevertheless, OSL does not exploit background knowledge
during the search procedure and explores structures that are very common and
therefore largely useless for the purposes of learning, yielding models that are
not adequate generalizations of the data.

We propose the OSLα online structure learner for MLNs, which extends OSL
by exploiting a given background knowledge, in order to effectively constrain
the search space of possible structures during learning. The space is constrained
subject to characteristics imposed by the rules governing a specific task, herein
stated as axioms. To demonstrate the benefits of OSLα we focus on the domain of
activity recognition. As a background knowledge we are employing MLN−EC [27], a
probabilistic variant of the Event Calculus [20] for event recognition applications.

Running Example. In activity recognition the goal is to recognize composite
events (CE) of interest given an input stream of simple derived events (SDEs).
CEs can be defined as relational structures over sub-events, either CEs or SDEs,
and capture the knowledge of a target application. Due to the dynamic nature
of real-world applications, the CE definitions may need to be refined over time
or the current knowledge base may need to be enhanced with new definitions.
Manual curation of event definitions is a tedious and cumbersome process and
thus machine learning techniques to automatically derive the definitions are
essential. The proposed OSLα method is tested on the task of activity recognition
from surveillance video footage. The goal is to recognize activities that take
place between multiple persons, e.g. people meeting and moving together, by
exploiting information about observed activities of individuals. The input stream
of SDEs represents people walking, running, staying active, or inactive, and
spatial relations, e.g. persons being relatively close to each other.

The remainder of the paper is organized as follows. Section 2 provides back-
ground on MLNs and MLN−EC. Section 3 discusses related work on structure
learning. Section 4 describes our proposed method for online structure learn-
ing. Section 5 reports the experimental results and Sect. 6 proposes directions
for future work and concludes.

2 Background

2.1 Markov Logic Networks

Markov Logic Networks (MLNs) [24] consist of weighted first-order formulas.
They provide a way of softening the constraints that are imposed by the formulas
and facilitate probabilistic inference. Hence, unlike classical logic, all worlds in
MLNs are possible and they are quantified by a certain probability. In event
recognition the focus is on discriminative MLNs [26]. Let X be a set of evidence
atoms, and Y a set of query atoms. The former correspond to the input SDEs
while the latter correspond to the CEs of interest in event recognition. Then the
conditional probability of y given x is defined as follows:
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P (Y = y |X = x) =
1

Z(x)
exp

( |Fc|∑

i=1

wini(x,y)

)

Vectors x ∈ X and y ∈ Y represent a possible assignment of evidence X and
query/hidden variables Y , respectively. X and Y are the sets of possible assign-
ments that the evidence X and query/hidden variables Y can take. Fc is the set
of clauses produced by a knowledge base L and a domain of constants C. The
scalar value wi is the weight of the i -th clause and feature ni(x,y) represents
the number of satisfied groundings of the i -th clause in x and y. Z(x) is the
partition function that normalizes the probability over all possible assignments
y′ ∈ Y of query/hidden variables given the assignment x.

2.2 MLN−EC: Probabilistic Event Calculus Based on MLNs

MLN−EC [27] is a probabilistic variant of the discrete Event Calculus [20] in MLNs
for event recognition applications. The ontology of MLN−EC consists of time-points,
events and fluents, represented by the finite sets T , E and F , respectively.
The underlying time model is linear and represented by integers. A fluent is
a property whose value may change over time by the occurrence of a particular
event. MLN−EC comprises the core domain-independent axioms of Event Calculus
defining whether a fluent holds or not at a specific time-point. In addition, the
domain-independent axiomatization incorporates the common sense law of iner-
tia, according to which fluents persist over time, unless they are affected by an
event occurrence. MLN−EC axioms (1a) and (2a), shown below, determine when a
fluent holds and axioms (1b) and (2b) when a fluent does not hold. Variables and
functions start with a lower-case letter and are assumed to be universally quan-
tified. Predicates start with an upper-case letter and predicate Next expresses
successive time-points to avoid numerical calculations.

HoldsAt(f, t+1) ⇐
InitiatedAt(f, t) ∧
Next(t , t+1 )

(a)
¬HoldsAt(f, t+1) ⇐

TerminatedAt(f, t) ∧
Next(t , t+1 )

(b) (1)

HoldsAt(f, t+1) ⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t) ∧
Next(t , t+1 )

(a)

¬HoldsAt(f, t+1) ⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t) ∧
Next(t , t+1 )

(b) (2)

MLN−EC combines composite event definitions with the domain-independent
axioms of MLN−EC (1)–(2), generating a compact knowledge base that serves
as a pattern for the production of Markov Networks, and enables probabilistic
inference and machine learning. The compact knowledge base is generated by
performing predicate completion [20] – a syntactic transformation that translates
formulas into logically stronger ones. The aim of predicate completion is to rule
out all conditions which are not explicitly entailed by the given formulas and
thus to introduce closed-world assumption to first-order logic.
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3 Related Work

Learning the MLN structure is a task that has received much attention lately.
The main approaches to this task stem either from graphical models [8,18,22]
or Inductive Logic Programming (ILP) [4,23]. Since MLNs represent probabil-
ity distributions, better results are obtained by evaluation functions based on
likelihood, rather than typical ILP ones like accuracy and coverage [14].

Several approaches have been proposed to date [2,9,13,15–17,19], using vari-
ous strategies to search the space of possible structures. Most of these approaches
are batch learning algorithms that cannot handle very large training sets, due
to their requirement to load all data in memory and carry out inference in each
iteration. Moreover, most of these algorithms are strictly data-driven and thus
they only seek to improve the likelihood of known true worlds.

Huynh and Mooney [12] proposed OSL that updates both the structure and
the parameters of the model using an incremental approach whereby training
data are consumed in (non-overlapping) micro-batches. Using incorrect predic-
tions of the current model, OSL searches for clauses, using relational pathfinding
over a hypergraph [25] constrained by mode declarations [21], and estimates or
updates their parameters using the AdaGrad learner [5]. The hypergraph may
be seen as a representation of the search space that contains true ground pred-
icates, while the paths found during the mode-guided search may be seen as
conjunctions of ground predicates, that are eventually generalized to clauses.

OSL does not exploit background knowledge that may be provided to con-
strain the search space and typically explores many structures (paths) that are
not useful. Specifically, even by performing mode-guided search over the hyper-
graph, the space of possible paths can become exponentially large. For instance,
the Event Calculus is a temporal formalism and therefore data used for training
will inevitably contain a large domain of time points (possibly) having multi-
ple complex temporal relations between events. Mode declarations alone cannot
handle this large domain. It will be then fundamental to prune a portion of the
search space and use only meaningful subspaces that may be found by exploiting
the background knowledge axiomatization.

Finally, all aforementioned approaches assume that domains do not contain
functions, which are useful in several applications, such as activity recognition.

4 Online Structure Learning Using Background
Knowledge Axiomatization

Figure 1 presents the components of OSLα. The background knowledge consists of
the MLN−EC axioms (i.e., domain-independent rules) and an already known (possi-
bly empty) hypothesis (i.e., set of clauses). At any step t of the online procedure
a training example (micro-batch) Dt arrives containing simple derived events
(SDEs), e.g. two persons walking individually, their distance being less than
34 pixel positions and having the same orientation. Then, Dt is used together
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Learnt Hypothesis Ht:

0.51 HoldsAt(move(id1, id2), t+1) ⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1) ⇐

InitiatedAt(f, t)

HoldsAt(f, t+1) ⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1) ⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1) ⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Micro-Batch Dt

HappensAt(walking(ID1), 99)
HappensAt(walking(ID2), 99)
OrientationMove(ID1, ID2, 99)
Close(ID1, ID2, 34, 99)
Next(99, 100)
HoldsAt(move(ID1, ID2), 100)
. . .

Micro-Batch Dt+1

HappensAt(exit(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
Next(200, 201)
¬HoldsAt(move(ID1, ID2), 201)
. . .

. . .

. . .

. . .

Data Stream/Training Examples

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

Fig. 1. The procedure of OSLα.

with the already learnt hypothesis to predict the truth values yP
t of the compos-

ite events (CEs) of interest. This is achieved by (maximum a posteriori) MAP
inference based on LP-relaxed Integer Linear Programming [10]. Given Dt OSLα
constructs a hypergraph that represents the space of possible structures as graph
paths. Then for all incorrectly predicted CEs the hypergraph is searched (guided
by MLN−EC axioms) for definite clauses explaining these CEs. The paths discov-
ered during the search are translated into clauses and evaluated. The resulting
set of retained clauses is used for weight learning. Finally, the set of weighted
clauses is appended to the hypothesis Ht and the whole procedure is repeated
for the next training example Dt+1.

4.1 Extracting Templates from Axioms

OSLα begins by partitioning the background knowledge into a set of axioms A and
a set of domain-dependent definitions B, that is the already known hypothesis H
(herein CE definitions). Each axiom α ∈ A must not contain any free variables,
meaning variables only appearing in a single predicate. It should contain exactly
one so-called template predicate and at least one query predicate. In the case
of MLN−EC, A contains the four axioms (1)–(2), HoldsAt ∈ Q are the query
predicates and InitiatedAt, TerminatedAt ∈ P are the template predicates.
Those latter predicates specify the conditions under which a CE starts and stops
being recognized. They form the target CE patterns that we want to learn.

MLN−EC axioms can be used as a template T over all possible structures in
order to search only for explanations of the template predicates. Upon doing so,
OSLα does not need to search over time sequences, instead only needs to find
appropriate bodies over the current time-point for the following definite clauses:
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InitiatedAt(f, t) ⇐ body
TerminatedAt(f, t) ⇐ body

The body of these definitions is a conjunction of n literals �1 ∧· · ·∧ �n, which
can be seen as a hypergraph path, as we shall explain in the following sections.

Given the set of axioms A, OSLα partitions it into templates. Each template
Ti contains axioms with identical Cartesian product of domain types over their
template predicate variables. MLN−EC axioms (1)–(2) should all belong to one
template T1 because InitiatedAt and TerminatedAt both have joint domain
F × T . The resulting template T1 is used during relational pathfinding (see
Sect. 4.3) to find an initial search set I of ground template predicates and search
the space of possible structures for specific bodies of the definite clauses. A tem-
plate Ti essentially provides mappings of its axioms to the template predicates
that appear in the bodies of these axioms. For instance, axiom (1a) of T1 will
be mapped to the predicate InitiatedAt(f, t) since the aim is to construct a
rule for this template predicate.

4.2 Hypergraph and Relational Pathfinding

Similar to OSL, at each step t OSLα receives an example xt, representing
the evidence part of Dt and produces the predicted label yP

t = argmaxy ∈
Y〈w,n(xt,y)〉 using MAP inference. It then receives the true label yt and finds
all ground atoms that are in yt but not in yP

t denoted as Δyt = yt\yP
t . Hence,

Δyt contains the false positives/negatives of the inference step. In contrast to
OSL, OSLα considers all misclassified (false positives/negatives) ground atoms
instead of just the true ones (false negatives) in order to find InitiatedAt def-
initions that correct the false negatives and respectively TerminatedAt for the
false positives. OSLα searches the ground-truth world (xt,yt) for clauses spe-
cific to the axioms defined in the background knowledge using the constructed
templates Ti.

In order to discover useful clauses specific to the set of incorrectly predicted
atoms Δyt, OSLα uses relational pathfinding [25]. It considers Dt as a hypergraph
having constants as nodes and true ground atoms as hyperedges that connect
the nodes appearing as its arguments. Hyperedges are a generalization of edges
connecting any number of nodes. OSLα searches the hypergraph for paths that
connect the arguments of an input incorrectly predicted atom. Functions present
in Dt are transformed into auxiliary predicates (with the prefix AUX) that model
the behavior of a function and are required to indirectly include functions in the
hypergraph. For example the predicate AUXwalking matches the return values
of the function walking and has arity increased by 1 in order to incorporate the
return type of the function as an argument of the auxiliary predicate.

A hypergraph representing the training example Dt of Fig. 1 is presented
on the left of Fig. 2. For each incorrectly predicted ground atom in Δyt (herein
incorrectly predicted CEs), relational pathfinding searches for all paths up to
a predefined length l. A path of hyperedges corresponds to a conjunction of
true ground atoms connected by their arguments and can be generalized into a
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Fig. 2. Initial hypergraph (left) and reduced hypergraph (right). Unlabelled continuous
lines represent HappensAt predicates, while unlabelled dashed lines and dashed ellipses
represent AUXwalking and OrientationMove respectively.

conjunction of variabilized literals. For example consider that the predicted label
yP
t says that HoldsAt(MoveID1ID2, 100) is false, while supervision in Dt, that

is yt, says that it is true. Therefore it is an incorrectly predicted atom and the
hypergraph should be searched for paths explaining the misclassified CE. Below,
we present two of the paths that can be found by searching the left hypergraph
of Fig. 2 for paths up to length l = 7.

{
HoldsAt(MoveID1ID2, 100), Next(99 , 100 ), HappensAt(WalkingID1, 99),
HappensAt(WalkingID2, 99), AUXwalking(WalkingID1, ID1), (3)

AUXwalking(WalkingID2, ID2), AUXmove(MoveID1ID2, ID1, ID2)
}

{
HoldsAt(MoveID1ID2, 100), Next(99 , 100 ), Close(ID1, ID2, 34, 99), (4)

AUXmove(MoveID1ID2, ID1, ID2)
}

Similar to [12], in order to speed up relational pathfinding, OSLα uses path
mode declarations as language bias to constrain the space of paths. A modep(r, p)
has two components: a recall number r ∈ N0, and an atom p whose arguments
are place-markers optionally preceded by symbol ‘#’. A place-marker is ‘+’
(input), ‘−’ (output), or ‘.’ (ignore). The symbol ‘#’ preceding place-markers
specifies that this particular predicate argument will remain constant after the
generalization of the path. The recall number r limits the number of appearances
of the predicate p in a path to r. These place-markers restrict the search of
relational pathfinding. A ground atom is only added to a path if one of its
arguments has previously appeared as ‘input’ or ‘output’ arguments in the path
and all of its ‘input’ arguments are ‘output’ arguments of previous atoms. We
also introduce mode declarations for functions, defined as modef(r, p), that are
used to constrain auxiliary predicates in the hypergraph.

The hypergraph is constructed from a training example Dt, by only adding
true ground atoms in Dt that are input or output nodes. There is no point in
constructing the entire search space, because only the portion of it defined by
the mode declarations will be eventually searched. Template predicates are not
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added in the hypergraph because they are not allowed to appear in the body of
the definite clause. Hence, OSLα does not support recursive definitions.

4.3 Template Guided Search

Starting from each incorrectly predicted ground atom in Δyt, we use the tem-
plates Ti constructed at the initial steps of the algorithm in order to find the
corresponding ground template predicates for which the axioms belonging in Ti

are satisfied by the current training example. As stated in Sect. 4.1 there is only
one template T1 containing all the axioms of MLN−EC. OSLα considers each axiom
α ∈ T1 in turn. Assume, for example, that one of these is axiom (1a) and that we
have predicted that the ground atom HoldsAt(CE, T4) is false (false negative).
We substitute the constants of HoldsAt(CE, T4) into axiom (1a). The result of
the substitution will be the following partially ground axiom:

HoldsAt(CE, T4) ⇐ Next(t , T4 ) ∧ InitiatedAt(CE, t) (5)

If after the substitution there are no variables left in the template predicate
of the axiom, OSLα adds the ground template predicate to the initial search
set I, containing all ground template predicates, and moves to the next axiom
in the template T1. In case there are variables left, such as in axiom (5) were
InitiatedAt has one remaining variable t, OSLα searches for all literals in the
axiom sharing variables with the template predicate. Here the only literal sharing
the remaining variable t is Next. For those literals, it searches the training data
for all jointly ground instantiations among those satisfying the axiom. Because
t represents time-points and Next describes successive time-points, there will
be only one true grounding of Next in the training data having as argument
the constant T3. OSLα substitutes the constant T3 into axiom (5) and adds
InitiatedAt(CE, T3) to the initial search set I. The same applies for axioms
(1b) and (2b) determining the termination conditions in the case of a false pos-
itive.

For each ground template predicate in the resulting initiation set I, the mode-
guided relational pathfinding is used to search the hypergraph for an appropriate
body. It recursively adds to the path hyperedges (i.e., ground atoms) that satisfy
the mode declarations. The search terminates when the path reaches a specified
maximum length or when no new hyperedges can be added.

By employing this procedure, the hypergraph is essentially reduced to contain
only ground atoms explaining the template predicates. Consider the hypergraph
presented on the left of Fig. 2. By exploiting the Event Calculus axioms, the
hypergraph is reduced to contain only predicates that explain the InitiatedAt
and TerminatedAt predicates as presented in the right of Fig. 2. The paths (3)
and (4) are pruned by removing the Next and HoldsAt predicates, resulting into
the paths (6) and (7) shown below. The pruning resulting from the template
guided search is essential to learn Event Calculus definitions, because the size of
the search space becomes independent of time.
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{
InitiatedAt(MoveID1ID2, 99), HappensAt(WalkingID1, 99),
HappensAt(WalkingID2, 99), AUXwalking(WalkingID1, ID1), (6)

AUXwalking(WalkingID2, ID2), AUXmove(MoveID1ID2, ID1, ID2)
}

{
InitiatedAt(MoveID1ID2, 99), Close(ID1, ID2, 34, 99), (7)

AUXmove(MoveID1ID2, ID1, ID2)
}

4.4 Clause Creation and Evaluation

In order to generalize paths into first-order clauses, we replace each constant ki
in a conjunction with a variable vi, except for those declared constant in the
mode declarations. Then, these conjunctions are used as a body to form definite
clauses using as head the template predicate present in each path. The auxil-
iary predicates are converted back into functions. Therefore, from the paths (6)
and (7), the following definite clauses will be created:

InitiatedAt(move(id1, id2), t) ⇐
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t) (8)

InitiatedAt(move(id1, id2), t) ⇐ Close(id1, id2, 34, t) (9)

According to the definitions (8) and (9), the move CE is initiated either
when both entities are walking or the distance between them is less than 34
pixel positions. These definite clauses can be used together with the axioms
of the background knowledge in order to eliminate all template predicates by
exploiting equivalences resulting from predicate completion.

After the elimination process all resulting formulas are converted into clausal
normal form (CNF). Therefore the resulting set of clauses is independent of the
template predicates. Evaluation takes place for each clause c individually. The
difference between the number of true groundings of c in the ground-truth world
(xt,yt) and those in predicted world (xt,yP

t ) is then computed (note that yP
t was

predicted without c). Only clauses whose difference in the number of groundings
is greater than or equal to a predefined threshold μ will be added to the MLN:

Δnc = nc(xt,yt) − nc(xt,yP
t ) ≥ μ (10)

The intuition behind this measure is to add to the hypothesis H clauses whose
coverage of the ground-truth world is significantly (according to μ) greater than
that of the clauses already learnt.

Subsequently, it may be necessary to perform again predicate completion and
template predicate elimination because the resulting set of formulas returned by
this transformation may change entirely if any one definite clause is removed dur-
ing evaluation. To illustrate these changes in the resulting hypothesis, consider
the domain-dependent definitions of move – i.e., rules (8)–(9). After predicate
completion, these rules will be replaced by the following formula:
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InitiatedAt(move(id1, id2), t) ⇔(
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

) ∨

Close(id1, id2, 34, t)
(11)

The resulting rule (11) defines all conditions under which the move CE is ini-
tiated. Based on the equivalence in formula (11), the domain-independent axiom
(1a) of MLN−EC automatically produces the following free of template predicates
(i.e., InitiatedAt, TerminatedAt) rules:

HoldsAt(move(id1, id2), t+1) ⇐
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t) (12)

HoldsAt(move(id1, id2), t+1) ⇐ Close(id1, id2, 34, t) (13)

Similarly, the inertia axiom (2) produces:

¬HoldsAt(move(id1, id2), t+1) ⇐
¬HoldsAt(move(id1, id2), t) ∧
¬(

(HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t))
∨

Close(id1, id2, 34, t)
)

(14)

Consider now, that during the evaluation process the definite clause (13)
yields a score less than μ and therefore must be discarded. Then, the resulting
hypothesis is reduced to rule (12) produced by axiom (1a), as well as rule (15)
produced by axiom (2b) presented below:

¬HoldsAt(move(id1, id2), t+1) ⇐
¬HoldsAt(move(id1, id2), t) ∧
¬(

HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)
) (15)

4.5 Weight Learning

The weights of all retained clauses are optimized by the AdaGrad online learner
[5]. At each step t of OSLα the learnt hypothesis may be updated by adding new
clauses found during the hypergraph search and therefore the resulting set of
clauses Ct may be different from the set Ct−1. In order for AdaGrad to be able to
apply weight updates to a constantly changing theory, OSLα searches for clauses
in the current theory Ct that are θ-subsumed [3] by a clause in the previous
theory, in order to inherit its weight. This way the already learnt weight values
are transferred to the next step of the procedure. All other clauses are considered
new and their weights are set to an initial value close to zero. To illustrate the
procedure consider a set of definite clauses Ct−1 learnt at step t−1, including
rules (8) as well as rule (16) presented below:

TerminatedAt(move(id1, id2), t) ⇐
HappensAt(inactive(id1), t) ∧
HappensAt(active(id2), t)

(16)
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By performing predicate completion upon the set Ct−1 and using the MLN−EC
axioms to eliminate the template predicates, the following hypothesis arises:

Σt−1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HoldsAt(move(id1, id2), t+1) ⇐
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

¬HoldsAt(move(id1, id2), t+1) ⇐
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

Σ′
t−1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

HoldsAt(move(id1, id2), t+1) ⇐
HoldsAt(move(id1, id2), t) ∧
¬(

HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)
)

¬HoldsAt(move(id1, id2), t+1) ⇐
¬HoldsAt(move(id1, id2), t) ∧
¬(

HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)
)

The set Σt−1 contains specialized definitions of axioms (1a) and (1b), speci-
fying that a fluent holds (or does not hold) when its initiation (or termination)
conditions are met. The set Σ′

t−1 contains specialized definitions of the inertia
axioms (2a) and (2b), determining whether a specific fluent continues to hold
or not at any instance of time. Weights for both sets are estimated. In the next
learning step t of OSLα the set of definite clauses Ct may be expanded by the
following learnt definite clause:

TerminatedAt(move(id1, id2), t) ⇐ HappensAt(exit(id1), t) (17)

Similarly to Ct−1, by applying predicate completion to Ct and eliminating the
template predicates using the MLN−EC axioms, a different hypothesis arises. Σt

includes the rules of Σt−1, as well as the following, resulting from rule (17):

¬HoldsAt(move(id1, id2), t+1) ⇐ HappensAt(exit(id1), t)

Σ′
t includes the first rule appearing in Σ′

t−1, as well as the following rule:

¬HoldsAt(move(id1, id2), t+1) ⇐
¬HoldsAt(move(id1, id2), t) ∧
¬(

(HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t))
∨ HappensAt(exit(id1), t)

)

Note that in the set Σt a new rule has appeared and in the set Σ′
t the

second rule changed by incorporating a new literal. Therefore in order to refine
the weights of the current theory at step t a mapping of the previous learned
weights onto the current theory is required so that the already learned values are
retained. Using θ-subsumption, OSLα searches for clauses in Ct that are subsumed
by clauses in Ct−1 to inherit their weights. In the example above, the first rule
of Σt and Σ′

t, as well as the second rule of Σt are identical to the previous
ones. Moreover, the second rule of Σ′

t is θ-subsumed by the second rule of Σ′
t−1.
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Hence the weights of the old rules will be used for the new ones. The last rule
of Σt is completely new and its weight is set to a default initial value.

At the end of the OSLα learning we can choose to remove clauses whose
weights are smaller than a predefined threshold ξ. Hence, the hypothesis may be
pruned significantly, with negligible penalty in accuracy.

All algorithms composing OSLα (e.g., hypergraph construction), in pseudo-
code, are available from iit.demokritos.gr/∼vagmcs/pub/osla/appendix.pdf.

5 Empirical Evaluation

We evaluate OSLα in activity recognition, using the publicly available benchmark
dataset of the CAVIAR project1. The dataset comprises 28 surveillance videos,
where each frame is annotated by human experts from the CAVIAR team on two
levels. The first level contains SDEs that concern activities of individual persons
or the state of objects. The second level contains CE annotations, describing
the activities between multiple persons and/or objects, i.e., people meeting and
moving together, leaving an object and fighting.

5.1 Experimental Setup

The input to the learning methods being compared is a stream of SDEs along
with the CE annotations. The SDEs represent people walking, running, staying
active, or inactive. The first and last time that a person is tracked is represented
by the enter and exit SDEs. Additionally, the coordinates of tracked persons are
also used to express qualitative spatial relations, e.g. two persons being relatively
close to each other. The CE supervision indicates when each of the CEs holds.
The structure of the training sequences is presented Fig. 1. Each sequence is
composed of input SDEs (HappensAt), precomputed spatial constraints (Close),
and the corresponding CE annotations (HoldsAt). Negated predicates in the
sequence state that the truth value of the corresponding predicate is False.

From the 28 videos, we have extracted 19 sequences that are annotated with
the meet and/or move CEs. The rest of the sequences in the dataset are ignored,
as they do not contain positive examples of the target CEs. Out of the 19
sequences, 8 are annotated with both meet and move activities, 9 are anno-
tated only with move and 2 only with meet. The total length of the extracted
sequences is 12869 frames. Each frame is annotated with the (non-)occurrence
of a CE and is considered an example instance. The whole dataset contains a
total of 63147 SDEs and 25738 annotated CE instances. There are 6272 example
instances in which move occurs and 3722 in which meet occurs. Consequently,
for both CEs the number of negative examples is significantly larger than the
number of positive examples, specifically 19466 for move and 22016 for meet.

Throughout the experimental analysis, the evaluation results were obtained
using MAP inference, as per [10] and are presented in terms of True Positives (TP),

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1.

http://iit.demokritos.gr/~vagmcs/pub/osla/appendix.pdf
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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False Positives (FP), False Negatives (FN), Precision, Recall and F1 score. All
reported statistics are micro-averaged over the instances of recognized CEs using
10-fold cross validation over the 19 sequences. The average SDEs per fold are 56832
and the average positiveCEs are 3350 and 5600 for meet and move respectively. The
experiments were performed in a computer with an Intel i7 4790@3.6 GHz proces-
sor (4 cores and 8 threads) and 16 GiB of RAM, running Apple OSX version 10.11.
All weight and structure learning methods are implemented in LoMRF2, an open-
source implementation of MLNs.

We ran experiments using the AdaGrad [5] and CDA [11] online weight learn-
ers as well as a batch max-margin learner [10], using manual definitions developed
in [1]3. These definitions take the form of common sense rules and describe the
conditions under which a CE starts or ends (InitiatedAt, TerminatedAt). For
example, when two persons are walking together with the same orientation, then
move starts being recognized. Similarly, when two persons walk away from each
other, then move stops being recognized. We also include in the experiments the
results of the logic-based activity recognition method of [1], hereafter ECcrisp,
that employs a different variant of the Event Calculus, uses the same manual
definitions of CEs and cannot perform probabilistic reasoning.

5.2 Experimental Results

We ran structure learning using 10-fold cross validation over 5 distinct values
of the evaluation threshold μ—see formula (10). (All other numerical thresholds
were manually set.) The highest accuracy is achieved by using μ = 4 and μ = 1
for the meet and move CEs respectively. See Table 1a and b. The batch max-
margin weight learning yields the best overall accuracy due the fact that it
uses all the data at once to estimate the weights. AdaGrad is the second best
choice among the weight learners as it yields more accurate results as opposed
to CDA. It also outperforms the unweighted manual knowledge base ECcrisp.
OSLα achieves very good results, outperforming AdaGrad in the meet CE and
achieving a similar F1 score with it in the move CE. This is very encouraging
given that OSLα does not use manually curated rules.

Table 2 presents the averaged training times for the two CEs. The training time
for move is much higher than that for meet. This is because move includes the
predicate OrientationMove in its predicate mode declarations, leading to a larger
search space. We also attempted to perform probabilistic structure learning on this
dataset usingOSL. Specifically,webegan running experiments for themeetCEand
we terminated the experimentation after 25 h. During this time OSL had processed
only 4 training examples (micro-batches) out of the 17 of the first fold. OSLα on the
other hand performed 10 fold cross validation for the meet CE in about 4 h.

In order to secure efficient CE recognition, we prune a portion of the learned
weighted structures having absolute weights below a certain threshold ξ, for
various values of ξ, and present the results in terms of both accuracy and testing
2 https://github.com/anskarl/LoMRF.
3 The MLN−EC definitions and CAVIAR dataset can be found in www.iit.demokritos.

gr/∼anskarl/pub/mlnec/MLN-EC CAVIAR-20130319-00 07 20.tar.bz2.

https://github.com/anskarl/LoMRF
www.iit.demokritos.gr/~anskarl/pub/mlnec/MLN-EC_CAVIAR-20130319-00_07_20.tar.bz2
www.iit.demokritos.gr/~anskarl/pub/mlnec/MLN-EC_CAVIAR-20130319-00_07_20.tar.bz2
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Table 1. Recognition accuracy for the two CEs.

Method Precision Recall F1 score

ECcrisp 0.6868 0.8556 0.7620

MaxMargin 0.9189 0.8133 0.8629

CDA 0.9061 0.4878 0.6342

AdaGrad 0.7228 0.8547 0.7833

OSLα 0.8192 0.8509 0.8347

(a) Results for the meet CE (μ = 4)

Method Precision Recall F1 score

ECcrisp 0.9093 0.6390 0.7506

MaxMargin 0.8443 0.9410 0.8901

CDA 0.9032 0.6706 0.7697

AdaGrad 0.9172 0.6674 0.7726

OSLα 0.8056 0.7522 0.7780

(b) Results for the move CE (μ = 1))

Table 2. Average training times for meet and move CE.

Method meet move

OSLα 00 h 23m 04 s 1 h 59m 06 s

OSL > 25 h 00m 00 s -

Fig. 3. Weight distribution learned for meet (left) and move (right).

time. We begin by running OSLα on all 19 sequences of the dataset and present a
histogram for each CE representing the distribution of weights learned (Fig. 3).
The histograms inform us about the portion of the theory that will be pruned for
each ξ value. Note that there is a larger number of clauses with weight values in
the range (−1, 1). Some of these clauses may be pruned in order to simplify the
model without significantly hurting the accuracy, but yielding better inference
times. We pruned the resulting structure for 3 distinct values of ξ and present
the results obtained over 10 folds.

Figure 4 presents the reduction in the number of clauses in the resulting
theory and the effect in accuracy and testing time as ξ increases. It is worth
noting that ξ = 0.5 results in a slight reduction in accuracy for move and no
reduction for meet, but test time is improved a lot. Therefore, we can safely
prune a subset of the resulting theory in order to improve inference performance.
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Fig. 4. Effect in the number of clauses learned (left), accuracy (center), and test time
(right) as ξ increases for the meet CE (top) and the move CE (bottom).

6 Conclusions and Future Work

We presented the OSLα structure learner for MLNs that exploits background
knowledge and uses the MLN−EC axioms to construct CE definitions. The use of
MLN−EC axioms allows OSLα to constrain the space of possible structures (i.e.,
hypergraph) and search only for clauses having characteristics imposed by these
axioms. OSLα considers both types of incorrectly predicted CEs (false positives
and negatives). Experimental results in activity recognition using a real-world
benchmark dataset showed that OSLα outperforms event recognition based on
manual rules, and, in some cases, weighted manual definitions. Moreover, OSLα
outperforms OSL by learning CE definitions orders of magnitude faster.

We are exploring several directions for future work, such as improving the
hypergraph search further using a heuristic or randomized (parallel) graph search
procedure, and learning definitions that include negated predicates. We are also
studying the problem of structure learning in the presence of unobserved data.

Acknowledgments. This work has been funded by the EU FP7 project SPEEDD
(619435).
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Abstract. Problems of class imbalance appear in diverse domains, rang-
ing from gene function annotation to spectra and medical classification.
On such problems, the classifier becomes biased in favour of the majority
class. This leads to inaccuracy on the important minority classes, such
as specific diseases and gene functions. Synthetic oversampling mitigates
this by balancing the training set, whilst avoiding the pitfalls of random
under and oversampling. The existing methods are primarily based on
the SMOTE algorithm, which employs a bias of randomly generating
points between nearest neighbours. The relationship between the gener-
ative bias and the latent distribution has a significant impact on the per-
formance of the induced classifier. Our research into gamma-ray spectra
classification has shown that the generative bias applied by SMOTE is
inappropriate for domains that conform to the manifold property, such
as spectra, text, image and climate change classification. To this end,
we propose a framework for manifold-based synthetic oversampling, and
demonstrate its superiority in terms of robustness to the manifold with
respect to the AUC on three spectra classification tasks and 16 UCI
datasets.

Keywords: Machine learning · Class imbalance · Synthetic oversam-
pling · Manifold and embeddings

1 Introduction

In problems such as radioactive threat classification, oil spill classification, gene
function annotation, medical and text classification, the class distribution is
imbalanced and the minority class is rare [5,6,18]. Rarity, in this sense, breaks
the general assumption of machine learning that demands a representative set
of instances from each class. Failure to satisfy this leads to the induction of a
decision boundary that is biased in favour of the majority class, thereby causing
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 248–263, 2016.
DOI: 10.1007/978-3-319-46128-1 16
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weak classification accuracy [15,25]. Given the practical importance, and the
significant challenge posed by domains of this nature, class imbalance has been
identified as one of the essential problems in machine learning [26] and has
spawned workshops, conferences and special issues [8,9].

The obvious solution to this problem is more training samples. This is not
possible in cases of imbalance arising due to domain properties, such as acqui-
sition cost and class probability. Thus, we turn to the generation of synthetic
instances based on the available training instances. Within class imbalance, this
is known as synthetic oversampling, and was originally devised to compensate
for the weakness of random oversampling [10].

Synthetic oversampling offers a means of balancing the training classes with-
out discarding useful instances from the majority class via random undersam-
pling and without risking overfitting by replicating examples with random over-
sampling. Instead, the training instances that belong to the minority class are
used as the foundation from which to synthesize additional training instances.
This avoids overfitting and effectively expands the minority space. How the space
is expanded depends on the bias of the synthetic oversampling method, which
dictates the way in which the probability mass of the training instances is spread
through the feature space.

The state-of-the-art methods in synthetic oversampling are based on the
SMOTE algorithm. The two major criticisms of SMOTE are that in some cases it
synthesizes instances inside the majority class, thus causing the induced classifier
to overcompensate by pushing the decision boundary into the majority space, and
in other cases it does not synthesize instances close enough to the majority class.
This results from the fact that the instances are synthesized in the convex-hull
formed by the minority training points [3]. These negative effects grow quickly
with absolute imbalance and dimensionality. In a well-sampled low-dimensional
dataset, SMOTE can be expected to interpolate synthetic points between training
instances that are in the same local neighbourhood of the feature space. There-
fore, the likelihood that the synthetic instances are representative of the latent
distribution is high. When there are very few samples of the class, however, the
samples are more likely to be dispersed around the feature space. Thus, interpo-
lating synthetic instances between them is likely to be error prone.

In an attempt to manage this, a set of ad-hoc modifications have been proposed
to remove minority instances generated in the majority space, whilst others have
been proposed to promote the generation of instances close to the majority space
[2,3,14,20].We see these alternatives as addressing symptoms resulting fromagen-
erative bias that is inappropriate for the data rather than treating the root cause of
the weaknesses. Specifically, these methods have been designed and applied with-
out giving consideration to properties of the data to which that are applied.

In order to maximize the likelihood of generating effective instances from a
small training set, we argue that it is essential to design synthetic oversampling
methods with biases that match the properties of the target data. The benefit
of the correct bias is effectively demonstrated with the analogous problem of
inducing a representative function from the training data in Fig. 1. To induce
a function, like a generative model, we start with a bias, such as a linear or
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Fig. 1. Left: Training instance. Right: Approximating a sine function with and without
prior knowledge.

non-linear function, and a set of free parameters that accompany the bias. The
induction process quantifies the free parameters so that they best fit the training
data. Selecting the correct bias, in the case of our example, a sine function,
increases our likelihood of inducing a good representation, whereas selecting an
incorrect bias, such as a linear function with Gaussian noise, will produce a
very weak approximation. Similarly, utilizing an incorrect bias in the context of
synthetic oversampling can lead to inaccurate synthetic instances that negatively
impact classifier induction.

Based on our practical experience in applying synthetic oversampling meth-
ods to gamma-ray spectral classification problems, we were able to identify the
manifold property as one that has a negative impact on the existing methods.
A dataset conforms to the manifold property when its probability density resides
in a lower-dimensional space that is embedded in the feature space [7]. The
embedded space is thus constructed by combining a subset of features from the
feature space. For data that conforms to the manifold property, the embedded
representation offers a more concise form than the feature space, much like the
grammar and syntax of a programming language provide a much more concise
representation of the program to the computer than the pseudo code intended
for human consumption. Whilst the embedded space resulting from manifold
learning is a form of dimension reduction, it is much more than simple feature
selection. Feature selection can, at best find, a subset of the existing features in
the feature space. Alternatively, manifold learning discovers a completely new
set of features to better represent the data.

Data with the manifold property is common within a diverse set of machine
learning domains, ranging from global climate change to medicine. The bias
applied by SMOTE uses the straight line distance between training points in
the minority class. This is generalized as the Minkowski distance, which is an
inaccurate measure for manifolds. Therefore, choosing SMOTE to synthetically
oversample data that conforms to the manifold property is similar to choosing a
linear model to represent the sine function in Fig. 1; the best we can hope for is
synthetic data that is very weakly related to the target distribution. To address
this, we propose a framework for synthetically oversampling data that conforms
to the manifold property.
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The contributions of this paper include: (1) identifying a general weakness in
synthetic oversampling methods on data that conforms to the manifold property,
(2) illustrating the cause of this weakness for SMOTE, (3) articulating the benefit
of synthetic oversampling with a manifold bias, (4) proposing a framework for
manifold-based synthetic oversampling, and (5) demonstrating the superiority
of the framework using two distinct formalization on artificial data, gamma-ray
spectra data and UCI data that conforms to the manifold property.

2 Problem Overview

Our research was originally inspired by our collaboration with the Radiation Pro-
tection Bureau at Health Canada where we applied machine learning for safety
in regards to radiation. The primary challenges were the high-dimensionality of
the domain and the degree of imbalance. These are features that are common to
a large number of classification domains, such as global climate change, image
recognition, human identification, text classification and spectral classification.

We recognized that domains with this property can often be better repre-
sented in a lower-dimensional embedded space. This concept takes advantage of
the reality that instances are not spread throughout the feature space but are
concentrated around a lower-dimensional manifold. A simple example of a man-
ifold in machine learning comes from handwritten digit recognition, where the
digits are recorded in a high-dimensional feature space, but can be effectively
represented in a lower-dimensional embedded space that encodes the various
orientations and rotations of the digit [12]. Thus, manifold learning provides a
gateway to the embedded space in which all possible handwritten digits can be
encoded.

A significant amount of research has been dedicated to the development
of manifold learning methods [17]. The resulting algorithms utilize a diverse
set of assumptions and biases, such as the complexity of the curvature of the
manifold and the nature of the noise. Classic methods such as PCA and MDS
are simple and efficient. These are guaranteed to determine the structure of
the data on or near the embedded manifold. These traditional methods assume
a linear manifold [21]. Other, more algorithmically complex methods, such as
kernel PCA and autoencoding, enable the induction of non-linear manifolds.
Manifold learning has demonstrated great potential in clustering, classification
and dimension reduction [4,23,27]. However, in spite of their potential, manifold
learning methods have gone unconsidered in problems of class imbalance. We
address this gap in the literature with a framework for manifold-based synthetic
oversampling.

We illustrate the weaknesses of SMOTE using a one-dimensional manifold
embedded in a two-dimensional space. This is visualized in Fig. 2. Because the
more recent methods that have been proposed to improve SMOTE all apply the
same bias, they suffer from the same weaknesses on data that conforms to the
manifold property. For this reason, when we refer to SMOTE, we intend for it
to include its derivatives.
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The top left graphic in Fig. 2 shows the manifold in red with samples from
the manifold appearing as black circles. Each instance can be represented by
its one-dimensional coordinate m in the manifold space. In machine learning,
we often have data in the feature space, not the embedded space. Manifold
learning induces a model of the embedded space, and from this we can focus
the generation of instances in high probability regions. This is visualized in the
top right graphic where the blue shading illustrates the probability mass being
spread along the manifold. In the subsequent section, we demonstrate how this
is achieved with our proposed framework.

Fig. 2. Erroneous spread of instances away from the manifold with SMOTE.

The bottom graphics demonstrate the result of synthetic oversampling with
SMOTE with k = 7 and k = 3. It balances the training set by interpolating
points between k nearest neighbours in the minority training set [10]. As a result,
the k value indirectly affects the area covered by the convex hull. The convex hull
is represented by the blue area. A larger k value will uniformly spread points
over a larger area, whereas a smaller k value creates dense, small clusters of
synthetic points. This is emphasized with the shading of the convex hulls.

SMOTE uses the straight line distance to calculate the kNN set for each
instance in the minority class, and generates new instances at random points
on the edges connecting these neighbours. Due to the topological structure of
a manifold, this will only produce an accurate kNN set if the query instances
are close together [13]. In problems of class imbalance there are few minority
training instances and as a result, this is unlikely to occur. When SMOTE is
applied in this context, the convex-hull can extend away from the manifold. In
our example, we see that it extends well below the red line representing the
latent distribution that we hope to synthetically oversample.
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3 Framework

Figure 3 presents the three components of our framework for manifold-based
synthetic oversampling. Our objective is to provide a standalone synthetic over-
sampler. Therefore, although the data is generated in a hidden embedded space,
it is provided to the user in the original feature space. Subsequently, the user
can apply a pre-processing method that is appropriate for the classifier.

The first element of the framework induces a manifold representation of the
minority class via a well-suited method, such as PCA, kernel PCA, autoencod-
ing, local linear embedding, etc. Data is synthesized along the induced manifold
during the second phase of the framework, and the final phase maps the synthe-
sized data to the original feature space and returns it to the user.

Fig. 3. General framework for synthetic oversampling.

The number of training examples and the complexity of the latent manifold
are two factors to consider when selecting a manifold learning method to employ
in the framework. If the learning objective involves a linear manifold, or the
training data is extremely rare, a linear method is appropriate. Alternatively,
non-linear problems with more training data are well-suited for methods that
can represent the complexity. Our experiments focus on PCA and denoising
autoencoder because together they can model linear and non-linear manifolds
that are simple or complex. Moreover, they offer effective and easy-to-implement
means of sampling from the induced manifold.

Formalization with PCA: PCA is a linear mapping from the d-dimensional
input space to a k-dimensional embedded space where k � d. The standard
process is a result of calculating the leading eigenvectors E corresponding to the
k largest eigenvalues λ from the sample covariance matrix Σ of the target data.

In the PCA realization of the framework, a model pca = {μ,Σ,E, λ} of
the d-dimensional target class T with m instances is produced. We produce a
synthetic set S of n instances in the manifold-space by randomly sampling n
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instances from T ′ = T × E (T in the PCA-space) with replacement. In order
to produce unique samples on the manifold, we apply i.i.d. additive Gaussian
noise N (

0, I)
to each sampled instance prior to adding it to the synthetic set

S. The covariance matrix for the Gaussian noise is a diagonal matrix with each
σi,i specified by βλi, where β is the scaling factor applied to the eigenvalues.
This controls the spread of the synthetic instances relative to the manifold, and
can be thought of as a geometric transformation of points along the manifold,
thereby producing new synthetic samples on the manifold. Finally, we map the
synthetic instances S into the feature space as S′ = S × E−1 and return them
to the user for use in classifier induction.

Formalization with Autoencoders: Autoencoders are a form of artificial
neural networks commonly used in one-class classification [16]. They have an
input layer, hidden layer and output layer, with each layer connected to the
next via a set of weight vectors and a bias. The input and output layers have a
number of units equal to the dimensionality of the target domain, and the user
specifies an alternate dimensionality for the hidden space. The learning process
involves optimizing the weights used to map feature vectors from the target class
into the hidden space and those used to map the data from the hidden space
back to the output space.

Fig. 4. Three steps of synthesization for the autoencoder formalization with generic
points and handwritten 4s. (Color figure online)

A manifold bias is incorporated in the autoencoding process through its map-
ping from the feature space to the hidden-space and back via fθ(·) and gθ′(·),
where:

fθ(x) = s(Wx + b)
gθ′(y) = s′(W′y + b′).

(1)

Here, θ and θ′ represent the induced encoding and decoding parameter set,
respectively. Specifically, W is a d × d′ weight matrix and b is a d-dimensional
bias vector. The function s, is a non-linear squashing function, such as the sig-
moidal. In the decoding parameter set, W′ and b′ represent the weight matrix
and the bias vector that cast the encoded vector back to the original space. The s′
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function is typically linear in autoencoders. As is standard with artificial neural
networks, the weights are learnt using backpropagation and gradient descent.
In addition, we utilize denoising during the training process as a form of regu-
larization to promote the learning of key aspects of the input distribution [24].
We add Gaussian noise to the input and the network learns to reconstruct the
clean instances.

The learning processes prioritizes the dual objective of a reconstruction func-
tion g(f(·)) that is as simple as possible, but capable of accurately representing
neighbouring instances from the high-density manifold [1]. This promotes accu-
rate reconstruction of points on the manifold, whilst the reconstruction error
|x − g(f(x))|2 rises quickly for examples orthogonal to the manifold. Given a
point, p, on the manifold, the output g(f(p)) remains on the manifold in essen-
tially the same location. Conversely, when an arbitrary point, q, is sampled from
off the manifold, the output g(f(q)) is mapped orthogonally to the manifold.
This is demonstrated in Fig. 4 as g(f(x̃)) → x, where x̃ is a point off the mani-
fold, with the manifold depicted in red.

The mapping g(f(x̃)) → x is key to the formalization of the autoencoder
version of our framework. The basic objective is to induce the manifold repre-
sentation of the minority class and use its ability to perform orthogonal mappings
to the manifold to generate samples. Generally speaking, we take an arbitrary
minority class instances x, apply a non-orthogonal mapping off the manifold
x → x̃ and map it orthogonally back to the manifold via g(f(x̃)) → y. The result
is a transformation along the manifold from a training instances x to synthetic
instances y. This is illustrated graphically in Fig. 4. The non-orthogonal map-
ping is produced by adding noise to the training instance x. A greater amount
of noise leads to a larger transformation along the manifold. By sampling n
instances from the minority class with replacement and performing the transfor-
mation, we produce the synthetic set. We note that g(·) maps the synthetic set
returned to the user into the target feature space. Algorithm 1 formalizes the
method.

Prior to calling Algorithm 1, we perform model selection with the recon-
struction error by randomly searching the parameter-space using the minority
training data X . This facilitates a simple and effective form of model selection
and is the standard means of model selection for autoencoders. Nonetheless, we
are exploring alternate forms of model selection for this novel application of the
autoencoder. The model selection process of the autoencoder provides the abil-
ity to set the free parameters according to the target class, whereas this is not
possible with the SMOTE-based methods. As a result, the user cannot know
if they have specified a good value for k until they apply the classifiers after
synthetic oversampling.

Given the few training instances in problems of class imbalance, we prefer a
simple model rather than an overly complex model of the manifold. To encourage
this, we conduct the parameter search over a relatively small number of hidden
units and training epochs. For the spectra data, we searched 5–30 hidden units
with fewer than a thousand epochs of training.
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Algorithm 1. dae-SyntheticOversampling(X , DAE{W,b}, n, σ)
Input:

i) X , an m by d dimensional data matrix.

ii) DEA{W,b}, a trained denoising autoencoder with weight matrix W and bias b.

iii) n, the number of instances to synthesize.

iv) σ, variance of the Gaussian sample initiation noise.

Output:

i) Y, the synthetic samples.

Method:

1: X ′: column normalization of X between [−1, 1].
2: normParams: column normalization parameters of X .
3: Z: normalized X plus sample initiation noise N (0, σ).
4: Y ′ = DAE{W,b}(Z): samples Y ′ from the induced manifold.
5: Y: denormalization of Y based on normParams.
6: Return(Y)

End Algorithm

Computational Overhead: The degree to which the framework will add com-
putational overhead depends on the manifold learning method selected. Building
a PCA model, for example, requires eigenvalue decomposition of the covariance
matrix of the feature vectors. Using Jacobis method for diagonalization requires
O(d3 + d2m) computations; however, the efficiency can be improved [19]. More
sophisticated manifold learning methods, such as autoencoders, that involve iter-
ative learning can take longer. The key point to remember here is that learning
is being performed on a small training set. This significantly limits the training
time because there are few examples to look at, and we want to avoid overfit-
ting. This applies to SMOTE as well. Although SMOTE has the potential to be
very slow due to its nearest neighbour search, the small training set means that,
in practice, it is reasonable fast. Unlike our proposed framework, however, the
adaptions of SMOTE take significant performance hits because they search for
nearest neighbours in the entire training set.

4 Gamma-Ray Spectral Classification

Spectra classification for the Radiation Protection Bureau at Health Canada
sparked our initial interest in the relationship between manifolds and synthetic
oversampling.

4.1 Data

Two gamma-ray spectra datasets from the Canadian national environmental
monitoring system, and one collected as part of event security at the Vancou-
ver Olympics are utilized in our experiments. The environmental monitoring
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datasets were recorded at Thunder Bay and Saanich. These cities were selected
for testing because they are geographically, geologically and atmospherically very
distinct. This provides for very distinct data distributions.

During a four month period, 19, 112 spectra were recorded at Saanich, 44 of
which were from the minority class. At Thunder Bay, 11, 602 spectra instances
were recorded, with 29 belonging to the minority class. The Vancouver Winter
Games data was recorded and monitored to ensure that no radioactive material
entered the venue. There are 39, 000 background instances in the dataset and
39 isotopes of interest in the minority class. The two environmental datasets are
250-dimensional and the Vancouver data is 500-dimensional.

Through discussions with our colleagues at the Radiation Protection Bureau
at Health Canada, we inferred the conformance of this data to the manifold
property. In particular, we know that the radioactive occurrences that form the
minority class will affect subset specific energy levels in the spectra, forming an
embedded space.

4.2 Evaluation

We utilize the SVM, MLP, kNN, näıve Bayes and decision tree classifiers in the
following experiments. Synthetic oversampling is performed by the autoencoder
and PCA formalizations of the framework. These are compared to SMOTE and
SMOTE with the removal of Tomek links [22]. The latter is performed in order to
remove synthetic instances generated in, or too close to, the majority class. This
will potentially assist SMOTE by removing erroneously synthesized instances.

We perform 5 × 2-fold cross validation and report the mean and standard
deviations of the AUC performance. This form of cross validation method is ideal
for large datasets such as these, and has been shown to have lower probability
of issuing a Type I error as compared to k-fold cross validation [11].

4.3 Experimental Results

The mean and standard deviation of the AUC after the application of manifold-
based synthetic oversampling and SMOTE-based synthetic oversampling is
reported for each classifier on each dataset in Table 1. We specifically show the
results of the best manifold-based (PCA or autoencoder) and SMOTE-based
(SMOTE or SMOTE with the removal of Tomek links) synthetic oversampling
implementation in these tables. This is done to emphasize the relative perfor-
mance of the two approaches, and shows that the manifold-based framework
is superior on the gamma-ray datasets. The combination of the manifold-based
method with each classifier produces higher mean AUCs on the Vancouver and
Thunder Bay datasets. This is also the case on the Saanich dataset for all except
with the SVM classifier. In addition, we report the mean AUC across all clas-
sifiers. This shows that our framework is generally superior regardless of the
classifier.
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Table 1. The mean AUC results for each method on the gamma-ray dataset.

Vancouver Thunder Bay

Manifold-based Smote-based Manifold-based Smote-based
Mean SD Mean SD Mean SD Mean SD

MLP 0.829 0.056 0.721 0.059 0.948 0.011 0.771 0.059
NB 0.820 0.023 0.762 0.073 0.945 0.010 0.733 0.073
DT 0.778 0.031 0.761 0.077 0.942 0.013 0.723 0.077
SVM 0.802 0.042 0.710 0.060 0.945 0.010 0.728 0.060
KNN 0.854 0.062 0.500 0.056 0.934 0.010 0.784 0.056

Mean 0.817 0.691 0.943 0.739

Saanich

Manifold-based Smote-based
Mean sd Mean sd

MLP 0.739 0.067 0.727 0.059
NB 0.829 0.041 0.699 0.073
DT 0.791 0.031 0.714 0.077
SVM 0.627 0.042 0.714 0.060
KNN 0.677 0.062 0.625 0.056

Mean 0.733 0.696

With respect to the specific methods, the autoencoder formalization is better
than PCA on the Vancouver and Saanich datasets, whereas the PCA implemen-
tation is superior on the Thunder Bay dataset. Interestingly, SMOTE is always
the better than its counterpart using the removal of Tomek links.

5 UCI Classification

In order to generalize our findings, we now shift to examine the impact of the
manifold on synthetic oversampling over benchmark datasets from the UCI
repository. To paint a clearer picture of the impact of the manifold, we arti-
ficially control the degree of conformance of the datasets to the manifold prop-
erty. This is done using a process that we refer to as manifold augmentation,
which we detail later in this section. Performing manifold augmentation on the
UCI datasets enables us to run experiments where we gradually increase the
conformance in order to witness the impact of the manifold on each synthetic
oversampling method, whilst holding the other aspects of complexity, such as
modality and overlap, constant. This enables us to demonstrate the causal link
between the increase in conformance and the change in performance.

5.1 UCI Data

The sixteen UCI datasets specified in the first column of Table 3 were selected
to ensure a diverse range of dimensionalities and complexities. When required,
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the datasets are converted to a binary task by selecting a single class to form
the minority class, and the remaining classes are merged into one.

For each experiment, we train on 25 minority training instances and 250
majority training instances; thus, we render each domain as an imbalanced clas-
sification task involving the concept of absolute imbalance. We have selected
constant values for the training distribution, rather then specifying a percent-
age for the minority class, in order to ensure that the performance differences
between datasets are not the result of having access to different numbers of
minority instances. If we set the minority portion to 10%, for example, then
a dataset with 1, 000 instances would have many more examples in the train-
ing set than a dataset with 200 instances. This can have a great impact on
performance. Finally, we perform a series of augmentations to each dataset to
increasingly strengthen the conformance to the manifold property.

5.2 Manifold Augmentation of UCI Data

Our manifold augmentation process is contingent on the notion that the prob-
ability mass resides in a lower-dimensional space. We introduce this by adding
columns of uniformly distributed random variables that span both classes to the
data matrix. In this case, the augmentation is suggestive of a feature selection
problem; however, feature selection is not an effective means of solving manifold
problems. This is because they will only find a subset of the features. A mani-
fold space is a more general subspace that is formed from combinations of the
original features. These combinations may be simple linear combinations:

f ′
i = a1f1 + a2f2 + ... + adfd, (2)

where f ′
i i ∈ {1, .., k} is one of k components of the manifold-space embedded

in the d-dimensional feature space; other manifolds are formed of much more
complex combinations. In these cases, no subset of the original feature-space
will represent the manifold.

5.3 Evaluation

In this set of experiments, we apply the same synthetic oversampling methods
that were used in the previous section to balance the training sets prior to the
application of the five classifiers. Our primary interest in this set of experiments
is to elicit the affect of the manifold. In order to achieve this, we apply the
augmentation method described above, in which each UCI dataset is augmented
to increase conformance to the manifold property with:

p = {0%, 15%, 30%, 45%, 60%, 75%, 90%}, (3)

where p = 0% is the unchanged UCI data and p = 90% returns a modified
dataset with the dimensionality increased by 90%. Therefore, for each of the
16 UCI datasets, we create 7 augmented versions, where the increasing p values
indicates increasing conformance to the manifold assumption.
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Thirty repeated trials are run for each augmented dataset. Because we have
limited space and we interested in studying the impact of the manifold, we record
the mean performance for each synthetic oversampling method on each dataset
and calculate the average over all of the classifiers (similar to what we reported
in the last row for Table 1). We provide these aggregated results to demonstrate
the relative strength of our proposed method. Our analysis of the individual
classifiers is postponed for a longer paper.

The first set of results reports the ranking of each synthetic oversampling
method based on the AUC. The rankings are tabulated for the performance on
the original UCI datasets (p = 0) and for the mean of the AUC produced on the
augmented datasets (p = {15, .., 90}). This demonstrates how the relative per-
formance of the methods changes when conformance to the manifold assumption
is increased up to p = 90.

In the second set of experiments, we include only the best manifold-based
method and SMOTE-based method for each dataset in our results. We compare
the change in the performance resulting from the increased conformance to the
manifold property from p0 to p90. We refer to this as the loss score for each
dataset D, where:

loss(Dp0 ,Dpk
) = AUC(Dp0) − AUC(Dpk

). (4)

This shows the degradation caused by the manifold. If the manifold has no
impact, then the loss score is zero. The loss score increases with the relative
impact of the manifold

5.4 Experimental Results

AUC Results: Table 2 presents the number of times each synthetic oversam-
pling system produced the highest mean AUC on the UCI datasets. In the case
of a tie between two methods, 0.5 is attributed to each. The first column (p = 0)
refers to the original UCI datasets, and the last column shows the results after
augmentation with p = {15, .., 90}. In both cases, the manifold-based methods
are superior. For p = 0 the manifold-based methods are better 7 + 4 = 11 times
out of 16 and tied once with a SMOTE-based method. The real strength of the
manifold-based method, however, is shown when the conformance to the mani-
fold property is increased. The manifold-based methods are always better when
the conformance to the manifold property is increased. Specifically, the autoen-
coder is the best on 13 of the 16 datasets and PCA is superior on the others.

Loss Results: Table 3 displays the mean loss values for the manifold-based sys-
tem and the SMOTE-based system on the 16 UCI datasets. Specifically, we report
the loss for each dataset with respect to loss(Dp0 ,Dp90) as described in Eq. 4.
Fourteen of the sixteen datasets have lower loss scores when the manifold-based
system is applied; these are highlighted in grey. This shows that in addition to
its superiority in terms of the AUC, the proposed framework is more robust with
respect to loss caused by the manifold. Specifically, the manifold causes less of
a decrease in performance for the manifold-based approach than it causes for
SMOTE.
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Table 2. Total number of AUC wins for each synthetic oversampling method on the
augmented UCI data.

Dataset Wins

p = 0 mean (p = {15, .., 90})
SMOTE 1 0

Tomek 3.5 0

PCA 7 3

AE 4.5 13

Table 3. The degradation between p = 0 and p = 90 of the classifiers after the
application of synthetic oversampling.

Dataset Manifold-Based SMOTE-Based

Letter 0.078 0.116
Musk2 0.018 0.133
Opt Digits 0.001 0.014
Ozone 1hr 0.051 0.055
Pima 0.018 0.028
Sonar 0.061 0.074
Vehicle 0.056 0.062
Wave Form 0.038 0.074
Yeast 0.018 0.063
Satlog 0.067 0.085
Breast 0.002 0.001
Ecoli 0.016 0.022
Heart-Statlog 0.001 0.008
Ionosphere 0.055 0.033
Pen Digits 0.016 0.031
Segment 0.035 0.040

6 Conclusion

We demonstrate that the existing methods of synthetic oversampling based on
SMOTE do not achieve their full potential on data that conforms to the manifold
property, and argue that a manifold-based approach to synthetic oversampling is
required. We address this by proposing a framework for manifold-based synthetic
oversampling, which enables users to incorporate the wide variety of methods
from manifold learning into the framework. We demonstrate the framework with
a PCA and autoencoder formalization. These are selected for their simplicity in
use and their abilities to represent a wide variety of manifolds.

We show that the implementations outperform the SMOTE-based methods
in terms of the AUC on three gamma-ray spectra datasets that conform to the
manifold property. In order to generalize our findings, we use 16 UCI datasets
and show that the framework outperforms SMOTE in terms of the AUC and
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that it is more robust to the manifold property in terms of the loss score. In
addition to its strength on data that conforms to the manifold property, these
experiments suggest that the framework is generally a good choice for synthetic
oversampling.
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Abstract. Given a large-scale and high-order tensor, how can we find
dense blocks in it? Can we find them in near-linear time but with a qual-
ity guarantee? Extensive previous work has shown that dense blocks in
tensors as well as graphs indicate anomalous or fraudulent behavior (e.g.,
lockstep behavior in social networks). However, available methods for
detecting such dense blocks are not satisfactory in terms of speed, accu-
racy, or flexibility. In this work, we propose M-Zoom, a flexible frame-
work for finding dense blocks in tensors, which works with a broad class
of density measures. M-Zoom has the following properties: (1) Scalable:
M-Zoom scales linearly with all aspects of tensors and is up to 114×
faster than state-of-the-art methods with similar accuracy. (2) Prov-
ably accurate: M-Zoom provides a guarantee on the lowest density of
the blocks it finds. (3) Flexible: M-Zoom supports multi-block detec-
tion and size bounds as well as diverse density measures. (4) Effective:
M-Zoom successfully detected edit wars and bot activities in Wikipedia,
and spotted network attacks from a TCP dump with near-perfect accu-
racy (AUC = 0.98). The data and software related to this paper are
available at http://www.cs.cmu.edu/∼kijungs/codes/mzoom/.

Keywords: Dense-block detection · Anomaly/Fraud detection · Tensor

1 Introduction

Imagine that you manage a social review site (e.g., Yelp) and have the records
of which accounts wrote reviews for which restaurants. How do you detect suspi-
cious lockstep behavior: for example, a set of accounts which give fake reviews to
the same set of restaurants? What about the case where additional information
is present, such as the timestamp of each review, or the keywords in each review?

Such problems of detecting suspicious lockstep behavior have been exten-
sively studied from the perspective of dense subgraph detection. Intuitively, in
the above example, highly synchronized behavior induces dense subgraphs in
the bipartite review graph of accounts and restaurants. Indeed, methods which
detect dense subgraphs have been successfully used to spot fraud in settings
ranging from social networks [5,10,13,14], auctions [20], and search engines [8].

Additional information helps identify suspicious lockstep behavior. In the
above example, the fact that reviews forming a dense subgraph were also written
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 264–280, 2016.
DOI: 10.1007/978-3-319-46128-1 17
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Fig. 1. M-Zoom is fast, accurate, and effective. Fast: (a) M-Zoom was 55×
faster with denser blocks than CrossSpot in Korean Wikipedia Dataset. Accurate:
(a) M-Zoom found 24× denser blocks than CPD. (b) M-Zoom identified network
attacks with near-perfect accuracy (AUC = 0.98). Effective: (c) M-Zoom spotted edit
wars, during which many users (distinguished by colors) edited the same set of pages
hundreds of times within several hours. (d) M-Zoom spotted bots, and pages edited
hundreds of thousands of times by the bots. (Color figure online)

at about the same time, with the same keywords and number of stars, makes the
reviews even more suspicious. A natural and effective way to incorporate such
extra information is to model data as a tensor and find dense blocks in it [12,19].

However, neither existing methods for detecting dense blocks in tensors nor
simple extensions of graph-based methods are satisfactory in terms of speed,
accuracy, or flexibility. Especially, the types of fraud detectable by each of the
methods are limited since, explicitly or implicitly, each method is based on only
one density metric, which decides how dense and thus suspicious each block is.

Hence, in this work, we propose M-Zoom (Multidimensional Zoom), a gen-
eral and flexible framework for detecting dense blocks in tensors. M-Zoom allows
for a broad class of density metrics, in addition to having the following strengths:

– Scalable: M-Zoom is up to 114× faster than state-of-the-art methods with
similar accuracy (Fig. 2) thanks to its linear scalability with all aspects of
tensors (Fig. 4).

– Provably accurate: M-Zoom provides a guarantee on the lowest density
of blocks it finds (Theorem 4), as well as shows high accuracy similar with
state-of-the-art methods in real-world datasets (Fig. 1a).

– Flexible: M-Zoom works successfully with high-order tensors and supports
various density measures, multi-block detection, and size bounds (Table 1).



266 K. Shin et al.

Table 1. M-Zoom is flexible. Comparison between M-Zoom and other methods for
dense-block detection. ✓ represents ‘supported’.

M-Zoom CrossSpot [12] CPD [17] Subgraph [16]

Data Matrix ✓ ✓ ✓ ✓

Tensor ✓ ✓ ✓

Density
measure

Average mass (ρari) ✓ ✓

Average mass (ρgeo) ✓ ✓

Suspiciousness ✓ ✓

Features Accuracy guarantee ✓ ✓

Multiple blocks ✓ ✓ ✓

Size bounds ✓ ✓

– Effective: M-Zoom successfully detected edit wars and bot activities in
Wikipedia (Figs. 1c and d), and also detected network attacks with near-
perfect accuracy (AUC =0.98) based on TCP dump data (Fig. 1b).

Reproducibility: Our open-sourced code and the data we used are available
at http://www.cs.cmu.edu/∼kijungs/codes/mzoom.

Section 2 presents preliminaries and problem definitions. Our proposed M-

Zoom is described in Sect. 3 followed by experimental results in Sect. 4. After
discussing related work in Sect. 5, we draw conclusions in Sect. 6.

2 Preliminaries and Problem Definition

In this section, we introduce definitions and notations used in the paper. We
also discuss density measures and give a formal definition of our problems.

2.1 Definitions and Notations

Let R(A1, A2, ..., AN ,X) be a relation with N dimension attributes A1, A2, ...,
AN , and a nonnegative measure attribute X (see the supplementary document
[1] for a running example and its pictorial description). We use Rn to denote
the set of distinct values of An in R, and use an ∈ Rn for a value of An. The
value of An in tuple t is denoted by t[An], and the value of X is denoted by
t[X]. The relation R can be represented as an N -way tensor. In the tensor, each
n-th mode has length |Rn|, and each cell has the value of attribute X, if the
corresponding tuple exists, and 0 otherwise. Let Bn be a subset of Rn. Then,
we define a block B(A1, A2, ..., AN ,X) = {t ∈ R : 1 ≤ ∀n ≤ N, t[An] ∈ Bn},
the set of tuples where each dimension attribute An has a value in Bn. B is
called ‘block’ because it forms a subtensor where each n-th mode has length
|Bn| in the tensor representation of R. The set of tuples of R with attribute
An = an is denoted by R(an) = {t ∈ R : t[An] = an}. We define the mass of R
as MR = Mass(R) =

∑
t∈R t[X], the sum of the values of attribute X in R. We

http://www.cs.cmu.edu/~kijungs/codes/mzoom
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Table 2. Table of symbols.

Symbol Definition

R(A1, A2, ..., AN , X) A relation with N dimension attributes and a measure attribute

N The number of dimension attributes in a relation

an A value of attribute An

Rn The set of distinct values of attribute An in R

t[An] (or t[X]) The value of attribute An (or X) in tuple t

R(an) The set of tuples with attribute An = an in R

MR (or Mass(R)) The mass of R

SR (or Size(R)) The size of R

VR (or V olume(R)) The volume of R

ρ(B,R) Density of block B in R

k The number of blocks we aim to find

[x] {1, 2..., x}

also define the size of R as SR = Size(R) =
∑N

n=1 |Rn| and the volume of R as
VR = V olume(R) =

∏N
n=1 |Rn|. Lastly, we use [x] = {1, 2..., x} for convenience.

Table 2 lists frequently used symbols.

2.2 Density Measures

In this paper, we consider three specific density measures although our method
is not restricted to them. Two of the density measures (Definitions 1 and 2) are
natural multi-dimensional extensions of classic density measures which have been
widely used for subgraphs. The merits of the original measures are discussed in
[7,15], and extensive research based on them is discussed in Sect. 5.

Definition 1 (Arithmetic Average Mass [7]). The arithmetic average mass
of a block B of a relation R is defined as ρari(B,R) = MB/(SB/N).

Definition 2 (Geometric Average Mass [7]). The geometric average mass
of a block B of a relation R is defined as ρgeo(B,R) = MB/V

(1/N)
B .

The other density measure (Definition 3) is the negative log likelihood of MB

on the assumption that the value on each cell (in the tensor representation) of
R follows a Poisson distribution. This proved useful in fraud detection [12].

Definition 3 (Suspiciousness [12]). The suspiciousness of a block B of a
relation R is defined as ρsusp(B,R) = MB(log(MB/MR) − 1) + MRVB/VR −
MB log(VB/VR).

Our method, however, is not restricted to the three measures mentioned
above. Our method, which searches for dense blocks in a tensor, allows for any
density measure ρ that satisfies Axiom 1.
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Axiom 1 (Density Axiom). If two blocks of a relation have the same cardinality
for every dimension attribute, the block with higher or equal mass is at least as
dense as the other. Formally,

MB ≥ MB′ and |Bn| = |B′
n|,∀n ∈ [N ] ⇒ ρ(B,R) ≥ ρ(B′,R).

2.3 Problem Definition

We formally define the problem of detecting the k densest blocks in a tensor.

Problem 1 (k-Densest Blocks). (1) Given: a relation R, the number of blocks
k, and a density measure ρ, (2) Find: k distinct blocks of R with the highest
densities in terms of ρ.

We also consider a variant of Problem 1 which incorporates lower and upper
bounds on the size of the detected blocks. This is particularly useful if the
unrestricted densest block is not meaningful due to being too small (e.g. a single
tuple) or too large (e.g. the entire tensor).

Problem 2 (k-Densest Blocks with Size Bounds). (1) Given: a relation R, the
number of blocks k, a density measure ρ, lower size bound Smin, and upper size
bound Smax, (2) Find: k distinct blocks of R with the highest densities in terms
of ρ (3) Among: blocks whose sizes are at least Smin and at most Smax.

Even when we restrict our attention to a special case (N=2, k=1, ρ=ρari,
Smin=Smax), exactly solving Problems 1 and 2 takes O(S6

R) time [9] and is NP-
hard [3], resp., infeasible for large datasets. Thus, we focus on an approximation
algorithm which (1) has linear scalability with all aspects of R, (2) provides accu-
racy guarantees at least for some density measures, and (3) produces meaningful
results in real-world datasets, as explained in detail in Sects. 3 and 4.

3 Proposed Method

In this section, we propose M-Zoom (Multidimensional Zoom), a scalable, accu-
rate, and flexible method for finding dense blocks in a tensor. We present
the details of M-Zoom in Sect. 3.1 and discuss its efficient implementation in
Sect. 3.2. After analyzing the time and space complexity in Sect. 3.3, we prove
the quality guarantees provided by M-Zoom in Sect. 3.4.

3.1 Algorithm

Algorithm 1 describes the outline of M-Zoom. M-Zoom first copies the given
relation R and assigns it to Rori (line 1). Then, M-Zoom finds k dense blocks
one by one from R (line 4). After finding each block from R, M-Zoom removes
the tuples in the block from R to prevent the same block from being found
again (line 5). Due to these changes in R, a block found in R is not necessarily
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Algorithm 1. M-Zoom

Input : relation: R, number of blocks: k, density measure: ρ,
lower size bound: Smin, upper size bound: Smax

Output: k dense blocks
1 Rori ← copy(R)
2 results ← ∅
3 for i ← 1..k do
4 B ← find single block(R, ρ, Smin, Smax) � see Algorithm 2
5 R ← R − B

6 Bori ← {t ∈ Rori : ∀n ∈ [N ], t[An] ∈ Bn}
7 results ← results ∪ {Bori}
8 return results

Algorithm 2. find single block in M-Zoom

Input : relation: R, density measure: ρ,
lower size bound: Smin, upper size bound: Smax

Output: a dense block
1 B ← copy(R)
2 Bn ← copy(Rn), ∀n ∈ [N ]
3 snapshots ← ∅
4 while ∃n ∈ [N ] s.t. Bn �= ∅ do
5 if B is in size bounds (i.e., Smin ≤ SB ≤ Smax) then
6 snapshots ← snapshots ∪ {B}
7 a∗

i ← ai ∈ ⋃N
n=1 Bn with maximum ρ(B − B(ai),R) � see Algorithm 3

8 B ← B − B(a∗
i )

9 Bi ← Bi − {a∗
i }

10 return B ∈ snapshots with maximum ρ(B,R)

a block of the original relation Rori. Thus, instead of returning the blocks found
in R, M-Zoom returns the blocks of Rori consisting of the same attribute values
with the found blocks (lines 6–7). This also enables M-Zoom to find overlapped
blocks, i.e., a tuple can be included in two or more blocks.

Algorithm 2 describes how M-Zoom finds a single dense block from the
given relation R. The block B is initialized to R (lines 1–2). From B, M-Zoom

removes attribute values one by one in a greedy way until no attribute value is
left (line 4). Specifically, M-Zoom finds the attribute value ai that maximizes
ρ(B − B(ai),R), which corresponds to the density when tuples with Ai = ai

are removed from B (line 7). Then, the attribute value, denoted by a∗
i , and the

tuples with Ai = a∗
i are removed from Bi and B, respectively (lines 8–9). Before

removing each attribute value, M-Zoom adds the current B to the snapshot list
if B satisfies the size bound (i.e., Smin ≤ SB ≤ Smax) (lines 5–6). As the final
step of finding a block, M-Zoom returns the block with the maximum density
among those in the snapshot list (line 10).
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Algorithm 3. Greedy Selection Using Min-Heap in M-Zoom

Input : current block: B, density measure: ρ, min-heaps: {Hn}N
n=1

Output: attribute value to remove
1 for each dimension n ∈ [N ] do
2 a′

n ← an with minimum key in Hn � key= MB(an)

3 a∗
i ← a′

i ∈ {a′
n}N

n=1 with maximum ρ(B − B(a′
i),R)

4 delete a∗
i from Hi

5 for each tuple t ∈ B(a∗
i ) do

6 for each dimension n ∈ [N ]\{i} do
7 decrease the key of t[An] in Hn by t[X] � key= MB(t[An])

8 return a∗
i

3.2 Efficient Implementation of M-Zoom

In this section, we discuss an efficient implementation of M-Zoom focusing on
the greedy attribute value selection and the densest block selection.

Attribute Value Selection Using Min-Heaps. Finding the attribute value
ai ∈ ⋃N

n=1 Bn that maximizes ρ(B − B(ai),R) (line 7 of Algorithm 2) can be
computationally very expensive if all possible attribute values (i.e.,

⋃N
n=1 Bn)

should be considered. However, due to Axiom 1, which is assumed to be satisfied
by considered density measures, the number of candidates is reduced to N if
MB(ai) is known for each attribute value ai. Lemma 1 states this.

Lemma 1. If we remove a value of attribute An from Bn, removing an ∈ Bn

with minimum MB(an) results in the highest density. Formally,

MB(a′
n)

≤ MB(an),∀an ∈ Bn ⇒ ρ(B−B(a′
n),R) ≥ ρ(B−B(an),R),∀an ∈ Bn.

Proof. Let B′ = B−B(a′
n) and B′′ = B−B(an). Then, |B′

n| = |B′′
n|,∀n ∈ [N ].

In addition, MB′ ≥ MB′′ since MB′ = MB − MB(a′
n)

≥ MB − MB(an) = MB′′ .
Hence, by Axiom 1, ρ(B − B(a′

n),R) ≥ ρ(B − B(an),R). ��
By Lemma 1, if we let a′

n be an ∈ Bn with minimum MB(an), we only have
to consider values in {a′

n}Nn=1 instead of
⋃N

n=1 Bn to find the attribute value
maximizing density when it is removed. To exploit this, our implementation of
M-Zoom maintains a min-heap for each attribute An where the key of each value
an is MB(an). This key is updated, which takes O(1) if Fibonacci Heaps are used
as min-heaps, whenever the tuples with the corresponding attribute value are
removed. Algorithm 3 describes in detail how to find the attribute value to be
removed based on these min-heaps, and update keys in them. Since Algorithm 3
considers all promising attribute values (i.e., {a′

n}Nn=1), it is guaranteed to find
the value that maximizes density when it is removed, as Theorem 1 states.

Theorem 1. Algorithm 3 returns ai ∈ ⋃N
n=1 Bn with maximum ρ(B −

B(ai),R).
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Proof. Let a∗
i be ai ∈ ⋃N

n=1 Bn with maximum ρ(B − B(ai),R). By Lemma 1,
a∗
i exists among {a′

n}Nn=1, all of which are considered in Algorithm 3. ��
Densest Block Selection Using Attribute Value Ordering. As explained
in Sect. 3.1, M-Zoom returns the densest block among snapshots of B (line 10
of Algorithm 2). Explicitly maintaining the list of snapshots, whose length is at
most SR, requires O(N |R|SR) computation and space for copying them. Even
maintaining only the current best (i.e., the one with the highest density so far)
cannot avoid high computational cost if the current best keeps changing. Instead,
our implementation maintains the order by which attribute values are removed as
well as the iteration where the density was maximized, which requires only O(SR)
space. From these and the original relation R, our implementation restores the
snapshot with maximum density in O(N |R| + SR) time and returns it.

3.3 Complexity Analysis

The time and space complexity of M-Zoom depend on the density measure
used. In this section, we assume that one of the density measures in Sect. 2.2,
which satisfy Axiom 1, is used.

Theorem 2. The time complexity of Algorithm 1 is O(kN |R| log L) if |Rn| = L,
∀n ∈ [N ], and N = O(log L).

Proof. See Appendix B.

As stated in Theorem 2, M-Zoom scales linearly or sub-linearly with all
aspects of relation R as well as k, the number of blocks we aim to find. This
result is also experimentally supported in Sect. 4.4. In our experiments, the actual
running time scaled sub-linearly with k as well as L since the number of tuples
in R decreases as M-Zoom finds blocks (line 5 in Algorithm 1).

Theorem 3. The space complexity of Algorithm 1 is O(kN |R|).
Proof. See the supplementary document [1]. ��

M-Zoom requires up to kN |R| space for storing k found blocks, as stated in
Theorem 3. However, since the blocks are usually far smaller than R, as seen in
Tables 4 and 5 in Sect. 4, actual space usage is much less than kN |R|.

3.4 Accuracy Guarantee

In this section, we show lower bounds on the densities of the blocks found by M-

Zoom on the assumption that ρari (Definition 1) is used as the density measure.
Specifically, we show that Algorithm 2 without size bounds is guaranteed to find
a block with density at least 1/N of maximum density in the given relation
(Theorem 4). This means that each n-th block returned by Algorithm 1 has
density at least 1/N of maximum density in R − ⋃n−1

i=1 (i-th block). Let B(r)
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be the relation B at the beginning of the r-th iteration of Algorithm 2, and
a
(r)
i ∈ B

(r)
i be the attribute value removed in the same iteration.

Lemma 2. If a block B′ satisfying ∀ai ∈ ⋃N
n=1 B

′
n, MB′(ai) ≥ c exists, there

exists B(r) satisfying ∀ai ∈ ⋃N
n=1 B

(r)
n , MB(r)(ai)

≥ c.

Proof. See Appendix C. ��
Theorem 4 (1/N-Approximation Guarantee for Problem 1). Given a
relation R, let B∗ be the block B ⊂ R with maximum ρari(B,R). Let B′ be the
block obtained by Algorithm 2 without size bounds (i.e., Smin = 0 and Smax =
∞). Then, ρari(B′,R) ≥ ρari(B∗,R)/N .

Proof. ∀ai ∈ ⋃N
n=1 B

∗
n, MB∗(ai) ≥ MB∗/SB∗ . Otherwise, a contradiction would

result since for ai with MB∗(ai) < MB∗/SB∗ ,

ρari(B∗ − B∗(ai),R) =
MB∗ − MB∗(ai)

(SB∗ − 1)/N
>

MB∗ − MB∗/SB∗

(SB∗ − 1)/N
= ρari(B∗,R).

Consider B(r) where ∀ai ∈ ⋃N
n=1 B

(r)
n , MB(r)(ai)

≥ MB∗/SB∗ . Such B(r) exists
by Lemma 2. MB(r) ≥ (SB(r)/N) (MB∗/SB∗) = (SB(r)/N)(ρari(B∗,R)/N).
Hence, ρari(B′,R) ≥ ρari(B(r),R) = MB(r)/(SB(r)/N) ≥ ρari(B∗,R)/N. ��

Theorem 4 can be extended to cases where a lower bound exists. In these
cases, the approximate factor is 1/(N+1), as stated in Theorem 5.

Theorem 5 (1/(N +1)-Approximation Guarantee for Problem 2). Given
a relation R, let B∗ be the block B ⊂ R with maximum ρari(B,R) among
blocks with size at least Smin. Let B′ be the block obtained by Algorithm 2 with
lower size bound (i.e., 1 ≤ Smin ≤ SR and Smax = ∞). Then, ρari(B′,R) ≥
ρari(B∗,R)/(N + 1).

Proof. See the supplementary document [1]. ��

4 Experiments

We designed and performed experiments to answer the following questions:

– Q1. How fast and accurately does M-Zoom detect dense blocks in real data?
– Q2. Does M-Zoom find many different dense blocks in real data?
– Q3. Does M-Zoom scale linearly with all aspects of data?
– Q4. Which anomalies or fraud does M-Zoom spot in real data?
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Table 3. Summary of real-world datasets.

StackO. Youtube KoWiki EnWiki Yelp Netflix YahooM. AirForce

N 3 3 3 3 4 4 4 7

|R1| 545K 3.22M 470K 44.1M 552K 480K 1.00M 3

|R2| 96.7K 3.22M 1.18M 38.5M 77.1K 17.8K 625K 70

|R3| 1.15K 203 101K 129K 3.80K 2.18K 84.4K 11

|R4| - - - - 5 5 101 7.20Ka

|R| 1.30M 18.7M 11.0M 483M 2.23M 99.1M 253M 648K
a |R5|=21.5K, |R6|=512, |R7|=512

4.1 Experimental Settings

All experiments were conducted on a machine with 2.67 GHz Intel Xeon E7-
8837 CPUs and 1TB RAM. We compared M-Zoom with CrossSpot [12], CP
Decomposition (CPD) [17] (see Appendix A for details), and MultiAspectForen-
sics (MAF) [19]. M-Zoom and CrossSpot

1 were implemented in Java, and
Tensor Toolbox [4] was used for CPD and MAF. Although CrossSpot was
originally designed to maximize ρsusp, it can be extended to other density mea-
sures. These variants were used depending on the density measure compared
in each experiment. In addition, we used CPD as a seed selection method of
CrossSpot, which outperformed HOSVD used in [12] in terms of both speed
and accuracy. We used diverse real-world datasets, grouped as follows:

– User behavior logs: StackO.(user,post,timestamp,1) represents who marked
which post as a favorite when on Stack Overflow. Youtube(user,user,date,1)
represents who became a friend of whom when on Youtube. KoWiki(user,page,
timestamp,#revisions) and EnWiki(user,page,timestamp,#revisions) repre-
sent who revised which page when how many times on Korean Wikipedia and
English Wikipedia, respectively.

– User reviews: Yelp(user,business,date,score,1), Netflix(user,movie,date,sco-
re,1), and YahooM.(user,item,timestamp,score,1) represent who gave which
score when to which business, movie, and item on Yelp, Netflix, and Yahoo
Music, respectively.

– TCP dumps: From TCP dump data for a typical U.S. Air Force LAN, we
created a relation AirForce(protocol,service,src bytes,dst bytes,flag,host count
,src count,#connections). See the supplementary document [1] for the
description of each attribute.

Timestamps are in hours in all the datasets. Table 3 summarizes all the datasets.

1 We referred the open-sourced implementation at http://github.com/mjiang89/
CrossSpot.

http://github.com/mjiang89/CrossSpot
http://github.com/mjiang89/CrossSpot
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Fig. 2. Only M-Zoom achieves both speed and accuracy. In each plot, points
represent the speed of different methods and the highest density (ρari) of three blocks
found by the methods. Upper-left region indicates better performance. M-Zoom gives
the best trade-off between speed and density. Specifically, M-Zoom is up to 114 ×
faster than CrossSpot with similarly dense blocks.

4.2 Q1. Running Time and Accuracy of M-Zoom

We compare the speed of different methods and the densities of the blocks found
by the methods in real-world datasets. Specifically, we measured time taken to
find three blocks and the maximum density among the three blocks. Figure 2
shows the result when ρari was used as the density measure. M-Zoom clearly
provided the best trade-off between speed and accuracy in all datasets. For
example, in YahooM. Dataset, M-Zoom was 114 times faster than CrossSpot,
while detecting blocks with similar densities. Compared with CPD, M-Zoom

detected two times denser blocks 2.8 times faster. Although the results are not
included in Fig. 2, MAF found several orders of magnitude sparser blocks than
the other methods, with speed similar to that of CPD. M-Zoom also gave the
best trade-off between speed and accuracy when ρgeo or ρsusp was used instead
of ρari (see the supplementary document [1]).

4.3 Q2. Diversity of Blocks Found by M-Zoom

We compare the diversity of dense blocks found by each method. Ability to
detect many different dense blocks is useful since distinct blocks may indicate
different anomalies or fraud. We define the diversity as the average dissimilar-
ity between the pairs of blocks, and the dissimilarity of two blocks is defined
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Fig. 3. M-Zoom detects many different dense blocks. The dense blocks found
by M-Zoom and CPD have high diversity, while the dense blocks found by CrossSpot

tend to be almost same.

(a) Number of
Tuples (|R|)

(b) Number of
Attributes (N)

(c) Cardinality of
Attributes (|Rn|)

(d) Number of
Blocks to Find (k)

Fig. 4. M-Zoom is scalable. (a) (b) M-Zoom scales linearly with the number of
tuples and the number of attributes. (c) (d) M-Zoom scales sub-linearly with the
cardinalities of attributes and the number of blocks we aim to find.

as dissimilarity(B,B′) = 1 − |(⋃N
n=1Bn)∩(

⋃N
n=1B

′
n)|

|(⋃N
n=1Bn)∪(

⋃
N
n=1B

′
n)| . Diversities were measured

among three blocks found by each method using ρari as the density metric.
As seen in Fig. 3, in all datasets, M-Zoom and CPD successfully detected

distinct dense blocks. CrossSpot, however, found the same block repeatedly
or blocks with slight difference, even when it started from different seed blocks.
Although using CPD for seed-block selection in CrossSpot improved the diver-
sity, the effect was limited in most datasets. Similar results were obtained when
ρgeo or ρsusp was used instead of ρari (see the supplementary document [1]).

4.4 Q3. Scalability of M-Zoom

We empirically demonstrate the scalability of M-Zoom, mathematically ana-
lyzed in Theorem 2. Specifically, we measured the scalability of M-Zoom with
regard to the number of tuples, the number of attributes, the cardinalities of
attributes, and the number of blocks we aim to find. We started with finding
one block in a randomly generated 10 millions tuples with three attributes each
of whose cardinality is 100 K. Then, we measured the running time by changing
one factor at a time while fixing the others. As seen in Fig. 4, M-Zoom scaled
linearly with the number of tuples and the number of attributes. Moreover, M-

Zoom scaled sub-linearly with the number of blocks we aim to find as well as the
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cardinalities of attributes due to the reason explained in Sect. 3.3. These results
held regardless of the density measure used.

4.5 Q4. Anomaly/Fraud Detection by M-Zoom in Real Data

We demonstrate the effectiveness of M-Zoom for anomaly and fraud detection
by analyzing dense blocks detected by M-Zoom in real-world datasets.

M-Zoom spots edit wars and bot activities in Wikipedia. Table 4 lists
the first three dense blocks found by M-Zoom in EnWiki and KoWiki Datasets.
As seen in the third dense block visualized in Fig. 1c, the dense blocks detected
in KoWiki Dataset indicate edit wars. That is, users with conflicting opinions
revised the same set of pages hundreds of times within several hours. On the
other hand, the dense blocks detected in EnWiki Dataset indicate the activities
of bots, which changed the same pages hundreds of thousands of times. Figure 1d
lists the bots and pages corresponding to the second found block.

Table 4. M-Zoom detects anomalous behaviors in Wikipedia. The tables list
the first three blocks detected by M-Zoom in KoWiki and EnWiki Datasets, which
correspond to edit wars and bot activities, respectively.

Korean Wikipedia (KoWiki)

# Volume Mass Density (ρari)

1 2×2×2 546 273
2 2×2×3 574 246
3 11×10×16 2,305 187

English Wikipedia (EnWiki)

# Volume Mass Density (ρgeo)

1 1×1,585×6,733 1.93M 8,772
2 8×12×67.9K 2.43M 13.0K
3 1×1×90 17.6K 3,933

M-Zoom spots network intrusions. Table 5 lists the first three blocks found
by M-Zoom in AirForce Dataset. Based on the provided ground truth labels,
all of the about 3 millions connections composing the blocks were attacks except
only one normal connection. This indicates that malicious connections form
dense blocks due to the similarity in their behaviors. Based on this observa-
tion, we could accurately separate normal connections and attacks based on the
densities of blocks they belong (i.e., the denser block a connection belongs, the

Table 5. M-Zoom identifies network attacks with near-perfect accuracy. The
first three blocks found by M-Zoom in AirForce Dataset consist of attacks.

# Volume Density (ρgeo) # Connections # Attacks (Ratio)

1 2 2,050,505 2,263,941 2,263,941 (100 %)

2 1 263,295 263,295 263,295 (100%)

3 8,100 263,072 952,383 952,382 (99.9 %)
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more suspicious it is). Especially, we got the highest AUC (Area under the curve)
0.98 with M-Zoom, as shown in Fig. 1b, because M-Zoom detects many differ-
ent dense blocks accurately, as shown in previous experiments. For each method,
we used the best density measure that leads to the highest AUC.

5 Related Work

Dense Subgraph/Submatrix/Subtensor Detection. The densest subgraph
problem, the problem of finding the subgraph which maximizes ρari or ρgeo (see
Definitions 1 and 2), has been extensively studied in theory (see [18] for surveys).
The two major directions are max-flow based exact algorithms [9,16] and greedy
algorithms [7,16] giving a 1/2-approximation to the densest subgraph. Variants
allow for size restrictions [3], providing a 1/3-approximation to the densest sub-
graph for the lower bound case. Another related line of research deals with dense
blocks in binary matrices or tensors where the definition of density is designed
for the purpose of frequent itemset mining [22] or formal concept mining [6,11].

Anomaly/Fraud Detection based on Dense Subgraphs. Spectral
approaches make use of eigendecomposition or SVD of the adjacency matrix
for dense-block detection. Such approaches have been used to spot anomalous
pattens in a patent graph [21], lockstep followers in a social network [14], and
stealthy or small-scale attacks in social networks [23]. Other approaches include
NetProbe [20], which used belief propagation to detect fraud-accomplice bipar-
tite cores in an auction network, and CopyCatch [5], which used one-class
clustering and sub-space clustering to identify “Like” boosting in Facebook.
In addition, OddBall [2] spotted near-cliques in links among posts in blogs
based on egonet features. Recently, Fraudar [10], which generalizes densest
subgraph-detection methods so that the suspiciousness of nodes and edges can
be incorporated, spotted follower-buying services in Twitter.

Anomaly/Fraud Detection based on Dense Subtensors. Spectral meth-
ods for dense subgraphs can be extended to tensors where tensor decomposition,
such as CP Decomposition and HOSVD [17], is used to spot dense subtensors.
MAF [19], which is based on CP Decomposition, detected dense blocks cor-
responding to port-scanning activities based on network traffic logs. Another
approach is CrossSpot [12], which finds dense blocks by starting from seed
blocks and growing them in a greedy way until ρsusp (see Definition 3) con-
verges. CrossSpot spotted retweet boosting in Weibo, outperforming HOSVD.

Our M-Zoom non-trivially generalizes theoretical results regarding the dens-
est subgraph problem, especially [3], for supporting tensors, various density mea-
sures, and multi-block detection. As seen in Table 1, M-Zoom provides more
flexibility than other methods for dense-block detection.

6 Conclusion

In this work, we propose M-Zoom, a flexible framework for finding dense blocks
in tensors, which has the following advantages over state-of-the-art methods:
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– Scalable: M-Zoom is up to 114× faster than competitors with similar
accuracy due to its linear scalability with all input factors (Figs. 2 and 4).

– Provably accurate: M-Zoom provides lower bounds on the densities of the
blocks it finds (Theorem 4) as well as high accuracy in real data (Fig. 2).

– Flexible: M-Zoom supports high-order tensors, various density measures,
multi-block detection, and size bounds (Table 1).

– Effective: M-Zoom successfully detected fraud based on a TCP dump with
near-perfect accuracy (AUC =0.98), and anomalies in Wikipedia (Fig. 1).

Reproducibility: Our open-sourced code and the data we used are at http://
www.cs.cmu.edu/∼kijungs/codes/mzoom.
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A CP Decomposition (CPD)

In a graph, dense subgraphs lead to high singular values of the adjacency
matrix [23]. The singular vectors corresponding to the high singular values
roughly indicate which nodes form dense blocks. This idea can be extended
to tensors, where dense blocks are captured by components in CP Decomposi-
tion [17]. Let A(1) ∈ R

|R1|×k, A(2) ∈ R
|R2|×k, ..., A(N) ∈ R

|RN |×k be the factor
matrices obtained by the rank-k CP Decomposition of R. For each i ∈ [k], we
form a block with every attribute value an whose corresponding element in the
i-th column of A(n) is at least 1/

√|Rn|.

B Proof of Theorem 2

Proof. In Algorithm 3, lines 1–3 take O(N) for all the density measures con-
sidered (i.e., ρari, ρgeo, and ρsusp) if we maintain and update aggregated values
(e.g., MB , SB , and VB) instead of computing ρ(B−B(a′

i),R) from scratch every
time. In addition, line 4 takes O(log |Rn|) and lines 5–7 take O(N |B(a∗

i )|) if we
use Fibonacci heaps. Algorithm 2, whose computational bottleneck is line 7, has
time complexity O(N |R| + N

∑N
n=1 |Rn| +

∑N
n=1 |Rn| log |Rn|)) since lines 1–4

of Algorithm 3 are executed SR =
∑N

n=1 |Rn| times, and line 7 is executed N |R|
times. Algorithm 1, whose computational bottleneck is line 4, has time com-
plexity O(kN |R| + kN

∑N
n=1 |Rn| + k

∑N
n=1 |Rn| log |Rn|)) since Algorithm 2 is

executed k times.
Assume |Rn| = L, ∀n ∈ [N ], and N = O(log L). The time complexity of Algo-

rithm 1 becomes O(kN(|R|+NL+L log L)). Since N = O(log L), by assumption,

http://www.cs.cmu.edu/~kijungs/codes/mzoom
http://www.cs.cmu.edu/~kijungs/codes/mzoom
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and L ≤ |R|, there exists a constant c such that |R|+NL+L log L ≤ c|R| log L =
O(|R| log L). Thus, the time complexity of Algorithm 1 is O(kN |R| log L). ��

C Proof of Lemma 2

Lemma 3. a
(r)
i minimizes Mass(B(r)(aj)) among aj ∈ ⋃N

n=1 B
(r)
n .

Proof. From Theorem 1, ρari(B(r) − B(r)(a(r)
i ),R) ≥ ρari(B(r) − B(r)(aj),R),

∀aj ∈ ⋃N
n=1 B

(r)
n . Thus, Mass(B(r) − B(r)(a(r)

i )) = ρari(B(r) − B(r)(a(r)
i ),R)

(Size(B(r))−1)/N ≥ ρari(B(r)−B(r)(aj),R)(Size(B(r))−1)/N = Mass(B(r)−
B(r)(aj)). Then, Mass(B(r)(a(r)

i )) = Mass(B(r)) − Mass(B(r) −B(r)(a(r)
i )) ≤

Mass(B(r)) − Mass(B(r) − B(r)(aj)) = Mass(B(r)(aj)), ∀aj ∈ ⋃N
n=1 B

(r)
n . ��

Proof of Lemma 2.

Proof. Let r be the first iteration in Algorithm 2 where a
(r)
i ∈ ⋃N

n=1 B
′
n.

Since B(r) ⊃ B′, Mass(B(r)(a(r)
i )) ≥ Mass(B′(a(r)

i )) ≥ c. By Lemma 3,
∀aj ∈ ⋃N

n=1 B
(r)
n , Mass(B(r)(aj)) ≥ Mass(B(r)(a(r)

i )) ≥ c. ��
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Abstract. Manifold structure learning is often used to exploit geometric
information among data in semi-supervised feature learning algorithms.
In this paper, we find that local discriminative information is also of
importance for semi-supervised feature learning. We propose a method
that utilizes both the manifold structure of data and local discriminant
information. Specifically, we define a local clique for each data point. The
k-Nearest Neighbors (kNN) is used to determine the structural informa-
tion within each clique. We then employ a variant of Fisher criterion
model to each clique for local discriminant evaluation and sum all cliques
as global integration into the framework. In this way, local discriminant
information is embedded. Labels are also utilized to minimize distances
between data from the same class. In addition, we use the kernel method
to extend our proposed model and facilitate feature learning in a high-
dimensional space after feature mapping. Experimental results show that
our method is superior to all other compared methods over a number of
datasets.

1 Introduction

The performance of machine learning tasks, e.g. classification or clustering, is
mainly affected by the input features that are extracted from raw data. Learn-
ing distinctive features or effective data representations can without doubt ben-
efit the consequent learning tasks. Over the past decade, feature analysis has
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attracted much research attention in different fields, such as machine learn-
ing [32,33,41], multimedia analysis [33], biomedical applications [40,42,43], etc.
In literature, a number of unsupervised and supervised methods have been devel-
oped to learn new features. Clustering algorithms have been widely used as an
unsupervised feature learning procedure to obtain statistical data representation.
A typical example in multimedia analysis is k-means, which learns a dictionary
from a number of image or video training samples without class information
[21,23,34]. Even though increasing the size of the dictionary can squeeze out
a bit of extra performance, it is still difficult to identify the best choice of the
number of centers.

As one of the representative supervised algorithms, Linear Discriminant
Analysis (LDA) [8] finds the best data projection maximizing distances between
different class centers while making data samples from the same class closer to
each other. This is achieved by maximizing the ratio of the between-class covari-
ance to the within-class covariance. When there are sufficient labeled training
data, LDA-based features effectively support machine learning algorithms in a
variety of applications. For example, LDA has been used to strengthen the class
information of face images in many face recognition systems [2,5,11,29,31,37].
Also, LDA has been revisited in [1] and been evaluated in three pipelines over a
few face image datasets for the purpose of gender recognition. In [17], authors
evaluate three LDA-based variants to obtain a discriminant movement repre-
sentation for multi-view action recognition. Unfortunately, when the number of
training samples is small, LDA suffers from the small sample size (SSS) problem.
This is because the small number of training samples will make the within-class
scatter matrix singular, which would result in computational difficulty. Mean-
while, learning new features from a small number of labeled training samples
in a fully supervised manner may lead to the over-fitting problem. To solve
these problems, much research attention has been paid over the last few years.
For example, subspace learning methods, such as Principal Component Analy-
sis (PCA), are applied to reduce feature dimensionality prior to LDA, with the
goal of removing null space of the within-class scatter matrix. However, this pre-
processing step may lose discriminant information which means the consequent
projection in the subspace by LDA may not be the best. A number of methods
[7,15,18,19,35,38,39] have been proposed to tackle the SSS problem without
losing discriminant information. Though the SSS problem is dealt with, the over-
fitting problem persists. Increasing the number of labeled training samples would
be an ideal solution. However, data labeling in the real world is usually time-
consuming and expensive. Considering the huge amount of data without labels,
it is extremely difficult to obtain massive and comparable label information.
For this reason, semi-supervised feature analysis methods [3,6,14,20,22], which
make use of both labeled and unlabeled data, have been extensively studied in
the past. Unfortunately, most of the existing semi-supervised feature learning
algorithms ignore the utilization of both manifold structure and local discrimi-
nant information.
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In this paper, we propose a new kernel-based feature learning method that
can learn new features when the labeled information is limited. Some researchers
[25,36] have pointed out that exploiting the local structures is more effective and
efficient than learning the global structures. Besides, the manifold structure of
data is another crucial property to be considered in feature learning. In this work,
the contribution can be briefly summarized as the utilization of both the mani-
fold structure and the local discriminant information to deal with the shortage of
labeled data points. Compared with those representative semi-supervised feature
learning methods, our proposed method not only makes labeled data within the
same class closer to each other, but also incorporates the local discriminant infor-
mation into a joint framework. We find that the local discriminative information
of the manifold structure is very important for feature learning, especially when
the label information is scarce. This is omitted in most of the previous works on
semi-supervised feature learning. In order to exploit the manifold structure and
the local discriminant information, we learn a new graph Laplacian. Specifically,
for each data point, we define a local clique in which the data point and its
k − 1 geometric neighbors are included. To achieve this point, kNN is used to
exploit the intrinsic manifold structure of data. Moreover, we employ a variant
of the Fisher criterion to each clique to evaluate the local discriminant informa-
tion. The sum of all cliques will be integrated into a joint framework as a global
integration. In this way, a new graph Laplacian that holds manifold information
with local discriminant information can be learned. This method has two-fold
advantages: Firstly, since there are only k data points in each clique (normally
quite smaller than the dimensionality of data points), the overall computational
burden is greatly relieved. This is because calculating an inverse of a k×k matrix
n times is faster than a direct inverse calculation on a n × n matrix when n is
big. Secondly, it is easy to extend the local discriminant model to a kernel-based
version. In this work, we also extend our proposed model using kernel method to
learn both labeled and unlabeled data in a high-dimensional space in which data
are linearly separable. Additionally, we have proposed an algorithm to solve the
optimization problem.

The rest of paper is organized as follows: Notations and definitions will be
presented in Sect. 2. Our proposed method and the optimization algorithm will
be elaborated upon in Sect. 3. In Sect. 4, we will report the experimental settings,
results, and related analysis. The conclusion will be given in the last section.

2 Notations and Definitions

To give a better understanding of the proposed algorithm, notations and defini-
tions used in this paper are summarized in this section. Matrices and vectors are
written as boldface uppercase letters and boldface lowercase letters, respectively.
In this paper, we follow the conventional definition in semi-supervised learning.
In the training dataset, there are n data samples including m labeled data and
n − m unlabeled data. Thus, the training data matrix is defined as:

X =
[
Xl Xu

]
(1)
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X ∈ R
d×n. The labeled data are denoted by Xl ∈ R

d×m, and the unlabeled data
are denoted by Xu ∈ R

d×(n−m). d is feature dimensionality. Correspondingly,
label assignment matrix Y ∈ R

n×c is defined as:

Y =
[

Yl

Yu

]
(2)

Yl ∈ R
m×c is for the labeled data while Yu ∈ R

(n−m)×c is for the unlabeled
data. c is the number of classes. Yu is initialized with all zeros and its entry,
yit ∈ [0, 1], denotes how likely the i-th unlabeled data belongs to the t-th class,
where m + 1 ≤ i ≤ n and 1 ≤ t ≤ c.

3 Locally Discriminative Structure Uncovering

3.1 Proposed Method

Inspired by kernel methods, we assume that, after a non-linear mapping function
f = φ(x), the mapped data within the same class are still geometrically close
to each other in a high-dimensional space that φ(x) maps to. The problem can
be formulated as:

min
φ

c∑

t=1

∑

xp,xq∈πt

||φ(xp) − φ(xq)||2 (3)

πt contains all the data points from the t-th class. Without loss of generality, we
can have:

φ(x) =
m∑

i=1

αik(x,xi), (4)

k is a kernel defined on x1, . . . ,xm ∈ X . Note that Eq. (3) needs class informa-
tion, thus only m labeled data points are considered in Eq. (3). After substituting
(4) into (3) by a matrix representation, the objective becomes:

min
α

c∑

t=1

∑

xp,xq∈πt

||αT k(XT
l ,xp) − αT k(XT

l ,xq)||2

= min
α

αT KlLwKlα,

(5)

where
Lw = D − W (6)

α = [α1, . . . , αm]T ∈ R
m is a vector. The weight matrix Wl ∈ R

m×m for labeled
data is defined as:

Wij =

{
1 xi and xj are in the same class;
0 otherwise,

(7)

D is a diagonal matrix with Dii =
∑m

j=1 Wij . Kl ∈ R
m×m is the kernel matrix of

labeled samples.Note that the representation ofα in (5) is anm-dimensional vector
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that transforms the original feature into onedimension.Now,we extend the learned
feature into r dimensions by using a transformation matrix a = [α1, . . . ,αr] ∈
R

m×r. Consequently, the objective function in (5) is equivalent to

min
aT Kla=I

Tr(aT KlLwKla), (8)

Tr(·) is trace operator. The constraint aT Kla = I is to make the projection
orthogonal.

The objective in (8) is based on label information. We aim to make use of
both labeled and unlabeled data to improve the performance when the class
information is in scarcity. We now extend it into a semi-supervised method by
extending the weighted matrix Wl in (7) into a new one:

W =
[

Wl 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)

]
(9)

Wl is the weighted matrix for labeled data. 0m×(n−m) is a zero matrix with m
rows and (n−m) columns. In this way, the adjacency graph Lw is enlarged from
m × m to n × n.

As mentioned before, we find that local discriminant information among data,
labeled and unlabeled, is quite useful for learning new features especially when
the label information is limited. In this work, we aim to learn such local structures
and to embed the structures into a joint framework. The objective function in
(8) can be re-written as:

min
aT Ka=I

Tr(aT KLwKa) + λΩ(·), (10)

Ω(·) is the regularization term that exploits the local structures among data
samples. λ is the regularization parameter. We assume that all data within the
same class are put together and define a scaled class assignment matrix G ∈ R

n×c

as follows:
G = Y (Y T Y )− 1

2 (11)

Y = [y1, . . . ,yn]T ∈ R
n×c. To exploit the local structure, we define a clique of

xi, denoted as N k(xi), which has k data samples containing xi itself and its k−1
neighbors. Given the data matrix X ∈ R

d×n, the local data matrix for the i-th
data is defined as Xi = [xi,xi1 , . . . ,xik−1 ] ∈ R

d×k. Correspondingly, the local
scaled classification matrix for xi can be defined as Gi = [gi, . . . , gik−1 ]

T ∈ R
k×c.

Note that both Xi and Gi are actually selected from X and G respectively. We
define a selection matrix Si ∈ R

n×k for xi where Spq
i = 1, if xp is the q-th

element of N k(xi), Spq
i = 0 otherwise. 1 ≤ q ≤ k. Thus, the local scaled classifi-

cation matrix for each data can be re-written as Gi = ST
i G = ST

i Y (Y T Y )− 1
2 .

In linear discriminant analysis, the objective is to maximize the separability
of all data points and to minimize the distances among data that are from the
same class. According to the definitions of scatter matrix in linear discriminant
analysis, the corresponding total scatter and between class scatter matrices for
the local data clique can be defined as Sti and Sbi . To simplify the formulation,
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we centralize each local data matrix X̄i = XiH, where H = Ik×k − 1
k1k1T

k . 1k

is a k-dimensional column vector with all ones. Thus, we have:

Sti =
n∑

i=1

(xi − μ)(xi − μ)T = X̄iX̄i
T

Sbi =
c∑

t=1

nt(μt − μ)(μt − μ)T = X̄iGiG
T
i X̄i

T

(12)

where μt is the mean of samples in the t-th class and μ is the global mean that
is zero after the centralization. nt is the number of data points of the t-th class.
Inspired by the Fisher criterion [8], the optimal local scaled class assignment
matrix G∗

i can be obtained by optimizing the follow objective:

G∗
i = arg max

Gi

Tr
(
(Sti + θI)−1Sbi

)

= arg max
Gi

Tr
(
GT

i X̄i
T (X̄iX̄i

T + θI)−1X̄iGi

)
,

(13)

where θI(θ > 0) is added to avoid (Sti + θI) be singular. In Eq. (13), G∗
i is a

score that evaluates the local discriminant information of each data points. A
larger value indicates that the samples in the local clique from different classes
are better separated. To control the capacity of local discriminant model, we
add a regularization term Tr(GT

i HGi). Then the optimization problem in (13)
is equivalent to

arg min
Gi

Tr
(
GT

i HGi − GT
i X̄i

T (X̄iX̄i
T + θI)−1X̄iGi

)
(14)

It is proved in the supplemental document, the problem of (14) is equivalent to

arg min
Gi

Tr
(
GT

i LiGi

)
,

where Li = H(X̄i
T
X̄i + θI)−1H

(15)

Because of Gi = ST
i G, we take all local manifold structures into account

together by summing (15) over all local cliques. Then, the global local discrimi-
nant score can be written as:

arg min
G

n∑

i=1

Tr(GT
i LiGi) = arg min

G
Tr(GT LG), (16)

where

L =
n∑

i=1

SiLiS
T
i (17)

By using the graph Laplacian in (17), local discriminant manifold structures
among data points can be therefore embedded into a joint framework. The objec-
tive function in (10) arrives at:

min
aT Ka=I

Tr(aT KLwKa) + λTr(aT KLKa)

= min
aT Ka=I

Tr(aT K(Lw + λL)Ka)
(18)
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where λ is a parameter that leverages the proportion of utilization of both man-
ifold structure and local discriminant information in the joint framework.

3.2 Optimization

To solve the objective function in (18), we assume

K = V ΛV T , (19)

and Ṽ is the null space of V . For any a, we can represent

a = V β + Ṽ γ, (20)

Thus,
aT Ka = (V β + Ṽ γ)T K(V β + Ṽ γ)

= βT V T KV β = βT Λβ,
(21)

Substituting (20) and (21) into (18), the objective function is re-formulated as

min
βT Λβ=I

Tr(aT K(Lw + λL)Ka)

= min
βT Λβ=I

Tr(βT ΛV T (Lw + λL)V Λβ),
(22)

Note that Λ is invertible, so the solution β is the eigenvectors corresponding to
ΛT V T (Lw + λL)V Λ. To enable the solution in the real domain, we can make

β = Λ− 1
2 ω (23)

and the problem becomes

min
ωT ω=I

Tr(ωT Λ
1
2 V T (Lw + λL)V Λ

1
2 ω) (24)

The optimal solution ω is the eigenvectors of Λ
1
2 V T (Lw+λL)V Λ

1
2 with respect

to its eigenvalues in an ascending order. We summarize the entire procedure in
Algorithm 1 to learn the new features. For any test data x′, its l-th new feature

is obtained by
n∑

i=1

αilk(x′,xi), 1 ≤ l ≤ r.

4 Experiments

In this section, we will briefly introduce the datasets and the compared meth-
ods which are used in the experiments. Afterwards, experimental results are
evaluated and analyzed.
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Algorithm 1. Local Discriminant Structure Uncovering.
Input:

The training data matrix X = [Xl,Xu] ∈ R
d×n

The classification assignment matrix Y = [Yl,Yu] ∈ R
n×c

Output:
Feature transformation matrix a ∈ R

n×r

1: Compute kernel matrix K;
2: Compute graph Lw and L according to (6) and (17);

3: Compute V and Λ by performing eigen-decomposition on K according to (19);

4: Compute ω by performing eigen-decomposition according to (24);

5: Compute β according to (23);
6: Obtain a according to (20);

4.1 Datasets and Compared Methods

To evaluate our algorithm, we have conducted extensive experiments and com-
pared with a number of approaches on five datasets:

– COIL-20 [24]: It contains 1,440 gray-scale images of 20 objects (72 images
per object) under various poses. The objects are rotated through 360 degrees
and taken at the interval of 5 degrees.

– UMIST [12]: The UMIST, which is also known as the Sheffield Face Data-
base, consists of 564 images of 20 individuals. Each individual is shown in a
variety of poses from profile to frontal views.

– USPS [16]: This dataset collects 9,298 images of handwritten digits (0–9)
from envelops by the U.S. Postal Service. All images have been normalized
to the same size of 16 × 16 pixels in grayscale.

– Yale [9]: It consists of 2,414 frontal face images of 38 subjects. Different light-
ing conditions have been considered in this dataset. All images are reshaped
into 24 × 24 pixels.

– MIMIC II [26]: It consists of 32,536 patient records in Intensive Care Unit
(ICU) at the Beth Israel Deaconess Medical Center (BIDMC) collected from
2001 to 2008. We only extract medical notes from the database together
with mortality information (if the patient has been expired at ICU for the
first admission). A similar feature extraction pipeline used in [10] has been
applied. Differently, Bag-of-Words model is used to encode multiple notes at
different times for each patient. Empirically, we set the size of the dictionary
as 500. Afterwards, we randomly select 1,000 adult patients of which are
positive and negative evenly.

For the first four datasets (COIL20, UMIST, USPS and YaleB), we just simply
use their pixels as the input features and the typical RBF kernel. For MIMIC
II dataset, we use a 500 dimensional Bag-of-Words representation and a χ2

kernel. There are a number of kernel functions that have been invented so far.
In this paper, our focus is to demonstration the effectiveness of our proposed
algorithm rather than making comparisons between different kernels regarding
classification performance.



Uncovering Locally Discriminative Structure for Feature Analysis 289

To evaluate our proposed algorithm, we choose several methods as the
baseline:

– Kernel Discriminant Analysis (KDA) [27]: As one of the representative
feature dimensionality reduction methods, KDA aims to project data into a
direction on which class centers are far from each other while data samples
of the same class are close to each other after feature mapping. We use a
speed-up version implemented in [4].

– Kernel Principal Component Analysis (KPCA) [28]: Compared to
KDA, KPCA reduces feature dimensionality by transforming data into a new
coordinate system where the top n greatest variances of data correspond-
ingly lie on the first n coordinates in the new subspace. We test different
dimensionality reduction scenarios by KPCA across all the datasets. The
best classification performance results are reported.

– Kernel Semi-supervised Discriminant Analysis (KSDA) [3]: SDA
aims to solve the problem of scarcity of label information when perform-
ing discriminant analysis. To utilize unlabeled samples, a graph Laplacian
is built to approximate the local geometry of the data manifold where both
the labeled and unlabeled data reside. Kernel SDA (KSDA) is used in the
experiments.

– Kernel Semi-supervised Local Fisher discriminant analysis
(KSELF) [30]: SELF which leverages supervised Local Fisher Discriminant
Analysis and unsupervised Principal Component Analysis, is a linear semi-
supervised dimensionality reduction method which makes feature analysis
effective when only a small number of labeled samples are available. In the
experiments, we use its non-linear extension termed as KSELF.

– Kernel Locality Preserving Projections (KLPP) [14]: KLPP is an
unsupervised manifold learning method which preserves the local structure of
samples, i.e. neighborhood relationship, in the original feature space as well
as in the new projected space.

– Co-regularized Ensemble for Feature Selection (EnFS) [13]: This
method employs a co-regularized framework in which a joint �2,1-norm of
multiple feature selection matrices can alleviate the over-fitting problem when
the number of labeled data is small. Furthermore, a subset of feature that is
more distinctive can be uncovered by removing irrelevant or noisy features.

For all the methods, corresponding parameters are tuned in the same range of
{10−4, 10−3, 10−2, 1, 102, 103, 104}. Support Vector Machine (SVM) with a
linear kernel has been applied as a classifier evaluating the classification perfor-
mance of each method. The SVM parameter that controls the trade-off between
the margin and the size of the slack variables is also tuned in the aforemen-
tioned range. The detailed dataset partition is followed by the convention of
the semi-supervised learning approaches. Specifically, the training set contains
both labeled and unlabeled data, and the testing set is not available during the
training phrase. c is denoted as the number of classes for each dataset. In the
training dataset, we randomly sample a number of labeled data per class (1, 3,
5, and 10) as different class settings. Therefore the numbers of labeled training
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data are 1 × c, 3 × c, 5 × c, and 10 × c in the different class settings, while the
remaining training data are treated as unlabeled. Particularly, we also investi-
gate conditions in which more labeled information is available by using 25 × c,
50× c, 75× c, and 100× c on MIMIC II dataset. We repeat the experiments five
times using the data partitions mentioned above, and report the average results.
Because we focus on classification performance, we use Mean Average Precision
(MAP) as the effectiveness measure in the comparisons.

4.2 Evaluation

We have made comparisons among all the methods mentioned above over five
datasets under different label settings. Generally speaking, our algorithm consis-
tently achieves better classification performance under different settings than all
the counterparts. Specifically, from Table 1, we can observe that our approach
outperforms all supervised and unsupervised methods, including KDA, KPCA
and EnFS, when labeled data are quite few, i.e. 1 × c. For instance, a number
of relatively large margins can be observed on UMIST and USPS. Compared to
the semi-supervised methods (KSDA, KSELF) and the unsupervised manifold
learning method (KLPP), our method still has superior performance over all
the datasets under different settings. In the conditions where more labels are
available, it is observed that our method still performs better than all the com-
pared approaches. However, the difference margins between our method and the
other approaches are quite limited. For example, our method, on the MIMIC II
dataset, performs quite similarly to EnFS and KSELF.

Apart from the overall classification performance comparisons in Table 1, we
also studied the effects of parameters used in our method. Due to the page limit,

Table 1. Performance comparison (Mean Average Precision ± STD) across all datasets
with a linear SVM classifier.

Dataset Settings KDA KPCA KSDA KSELF KLPP EnFS Ours

COIL-20 1 × c 0.728±0.026 0.699±0.026 0.777±0.016 0.702±0.032 0.780±0.020 0.702±0.012 0.818±0.001

3 × c 0.832±0.013 0.833±0.018 0.840±0.020 0.819±0.014 0.822±0.007 0.825±0.025 0.850±0.005

5 × c 0.888±0.015 0.881±0.020 0.878±0.022 0.877±0.014 0.876±0.015 0.880±0.013 0.897±0.002

10 × c 0.948±0.009 0.949±0.012 0.926±0.015 0.931±0.012 0.932±0.007 0.935±0.012 0.957±0.001

UMIST 1 × c 0.574±0.019 0.558±0.021 0.642±0.026 0.573±0.018 0.580±0.020 0.558±0.017 0.654±0.010

3 × c 0.882±0.033 0.851±0.035 0.860±0.034 0.832±0.044 0.812±0.043 0.810±0.037 0.889±0.001

5 × c 0.960±0.013 0.942±0.019 0.945±0.020 0.937±0.019 0.913±0.021 0.909±0.031 0.963±0.001

10 × c 0.995±0.004 0.989±0.003 0.987±0.008 0.990±0.004 0.967±0.006 0.9779±0.01 0.996±0.002

USPS 1 × c 0.536±0.079 0.464±0.056 0.653±0.088 0.351±0.023 0.789±0.056 0.523±0.053 0.801±0.009

3 × c 0.727±0.017 0.720±0.019 0.811±0.015 0.625±0.073 0.905±0.012 0.715±0.027 0.936±0.008

5 × c 0.795±0.024 0.788±0.032 0.865±0.031 0.732±0.028 0.939±0.017 0.788±0.024 0.948±0.007

10 × c 0.868±0.018 0.860±0.007 0.911±0.007 0.837±0.011 0.957±0.005 0.864±0.016 0.964±0.003

YaleB 1 × c 0.359±0.013 0.358±0.015 0.245±0.007 0.220±0.011 0.354±0.028 0.216±0.014 0.463±0.004

3 × c 0.872±0.023 0.761±0.033 0.555±0.034 0.652±0.033 0.572±0.033 0.567±0.083 0.891±0.001

5 × c 0.951±0.003 0.907±0.006 0.769±0.021 0.856±0.008 0.717±0.020 0.723±0.039 0.964±0.002

10 × c 0.981±0.003 0.978±0.005 0.948±0.005 0.963±0.011 0.826±0.018 0.863±0.032 0.992±0.007

MIMIC II 25 × c 0.683±0.029 0.675±0.028 0.666±0.051 0.699±0.017 0.683±0.037 0.696±0.028 0.700±0.027

50 × c 0.727±0.017 0.722±0.026 0.705±0.035 0.733±0.014 0.712±0.004 0.740±0.008 0.741±0.018

75 × c 0.741±0.012 0.749±0.027 0.727±0.024 0.751±0.010 0.737±0.020 0.754±0.028 0.755±0.015

100 × c 0.754±0.025 0.757±0.021 0.759±0.019 0.757±0.028 0.751±0.020 0.762±0.023 0.766±0.017
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we only studied the sensitivity of parameters on four image datasets. Note that
some of the parameters are fixed for demonstration in the following experiments.
Thus, the performance results are not as good as the ones in Table 1 in which all
parameters are tuned to achieve the best performance. In the first round, we test
parameter sensitivity for θ and k which are both required when constructing the
new graph Laplacian. We test θ in the range of {10−4, 10−3, 10−2, 1, 102, 103, 104}
and k in the range of [1, 3, 5, 10, 15, 20]. We find that the system is not sensitive
to θ and the optimal k should be 3 or 5.

In the second round, we firstly fix the aforementioned two parameters of
graph Laplacian, θ = 1 and k = 3, respectively. Moreover, the regularization
parameter, λ, in (24) is set to 1. We plot classification performance changes over
four datasets when dimensionality reduction parameter, r, varies. Our aim is to
understand how the new features with reduced dimensionality impact perfor-
mance by fixing all the parameters except the dimension of the inferred feature.
The results show that we do not have to use full dimensional features. For exam-
ple, in Fig. 1(a), the performance scores 86.04 % when 100 % learned features are
preserved on COIL20. It then peaks at 86.67 % when 70 % are preserved. For
each dataset, a further improvement has been observed after reducing dimen-
sionality of the new features. This improvement might be because irrelevant

(a) COIL20 (b) UMIST

(c) USPS (d) YaleB

Fig. 1. Performance variations w.r.t dimensionality reduction parameter r.
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(a) COIL20 (b) UMIST

(c) USPS (d) YaleB

Fig. 2. Performance variations w.r.t regularization parameter λ.

features and noises are removed by our method after feature mapping in the
higher dimensional space.

In the last experiment, all three parameters are fixed (θ = 1, k = 3 and
r = 1). We compare the variations of classification performance when changing
the regularization parameter, λ, which leverages local manifold structures in the
framework. Note that there is no contribution from local discriminant structure
analysis when λ is close to zero. From Fig. 2, the performance on each dataset is a
relatively lower value when little local manifold information has been considered.
With the variations of λ, for each dataset, the performance varies and scores the
best when the weight of the graph Laplacian is increased to a certain amount
which is obviously greater than 0. For example, in Fig. 1(b), the performance
starts around 94% and almost peaks at 96% when λ = 0.01, with a nearly 2%
improvement. This result confirms that our algorithm successfully incorporates
local manifold information into the feature analysis procedure.

5 Conclusion

In this paper, we have proposed a semi-supervised feature analysis method.
Specifically, our method enforces data from the same class to become closer to
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each other in a high-dimensional space after feature mapping. In order to take
both local discriminant information and manifold structure into account, a local
discriminant model has been applied to the local clique of each data point. Our
method successfully learns both labeled and unlabeled data via leveraging the
new graph Laplacian that holds local discriminant information. It has proven
that our method effectively learns features when the number of labeled data
points is quite small.
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clusions or recommendations expressed in this material are those of the author(s) and
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Abstract. We are interested in discovering user groups from collabo-
rative rating datasets of the form 〈i, u, s〉, where i ∈ I, u ∈ U , and s
is the integer rating that user u has assigned to item i. Each user has
a set of attributes that help find labeled groups such as young computer
scientists in France and American female designers. We formalize the
problem of finding user groups whose quality is optimized in multiple
dimensions and show that it is NP-Complete. We develop α-MOMRI,
an α-approximation algorithm, and h-MOMRI, a heuristic-based algo-
rithm, for multi-objective optimization to find high quality groups. Our
extensive experiments on real datasets from the social Web examine the
performance of our algorithms and report cases where α-MOMRI and
h-MOMRI are useful.

1 Introduction

Today’s data scientists are faced with large volumes of data to explore. In par-
ticular, collaborative rating sites have become essential data resources to make
decisions about mundane tasks such as purchasing a book, renting a movie or
going to a restaurant. The availability of a number of datasets on the social
Web, such as MovieLens, a movie rating site, LastFM, a music rating site and
BookCrossing, a book rating site, appeals to scientists today who design algo-
rithms that help analysts make better decisions on complex tasks such as crowd
data sourcing (which users to ask ratings from), advertisers in determining which
items to recommend to which users, and social scientists in validating hypothe-
ses such as young professionals are more inclined to buying self-help books, on
large datasets.

In practice, however, there does not exist analytics tools that enable the
scalable, on-demand discovery of user groups. In this paper, we are given a
dataset of rating records in the form 〈i, u, s〉, where i ∈ I (set of items), u ∈ U
(set of users), and s is the integer rating that user u has assigned to item i.
We define the notion of user group as a conjunction of demographic attributes
over rating records, such as rich young professionals or teachers who live in the
countryside. Given a dataset, e.g., ratings of Woody Allen movies, we formalize
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 296–312, 2016.
DOI: 10.1007/978-3-319-46128-1 19
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the problem of discovering high quality user groups. Quality is formulated as
the optimization of two dimensions: coverage and diversity. Optimizing coverage
ensures that most input records 〈i, u, s〉 will belong to at least one group in
the output. Optimizing diversity ensures that found groups are as different as
possible from each other, e.g., males and females or young and old, and unveils
ratings by different users. User groups with high coverage and high diversity, can
help analysts make a variety of decisions such as audience targeting in advertising
or hypothesis validation in social science. Example 1 illustrates a common case
in practice.1

Example 1. It is generally believed that romantic movies (e.g., American Beauty,
1999) are mostly watched by females. This observation is based on demographic
breakdown reports on IMDb.2 Anna, who is a social scientist, wants to vali-
date this hypothesis by exploring diverse user groups that cover most ratings
for romance genre movies. Such a group-centric examination would provide the
following 3 user groups: i. female reviewers from DC (District of Columbia),
ii. young female reviewers, and iii. male teenager reviewers with average ratings
of 4.6, 3.7 and 3.1 (out of 5), respectively. By observing those groups, Anna
finds that the hypothesis holds only for a sub-population of female reviewers,
middle-age or residents of DC. Also the results show another group of romance
genre lovers, male teenagers, which contradicts the hypothesis. Anna is confident
in her observation (as the results has high coverage) and she can notice different
aspects of her hypothesis (as results are diversified).

Beyond coverage and diversity, another interesting dimension of group qual-
ity is its rating distribution. As it has been argued in previous work [4], groups
with homogeneous ratings may be more appealing to some applications, while
groups with polarized ratings are preferred by others. Indeed the rating distrib-
ution in a group provides analysts with the ability to tune the quality of found
groups according to specific needs. Example 1 is a good case for homogeneity.
By reporting the average rating of 4.6 for young female reviewers, we know that
most individuals in that group have high ratings. The following example shows
how tuning the rating distribution of discovered groups leads to new discoveries
when used alongside coverage and diversity.

Example 2. Following Example 1, Anna then looks at the variance of ratings in
those groups and finds that male teenager reviewers has a higher variance com-
paring to two other groups. This potentially shows that not all male teenagers
like romantic movies. Anna is more interested in a homogenous group, so she can
either choose the second or third group or ask the system to find other groups
specifically for males or teenagers.

Given an input set of rating records (e.g., Sci-Fi movies from the 90’s, David
Lynch movies, movies starring Scarlett Johansson), our problem is that of dis-
covering a set of user groups. Even when the number of records is not very high,
1 We use this example as our running example throughout the paper.
2 http://www.imdb.com.

http://www.imdb.com
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the number of possible groups that could be built may be very large. Indeed, the
number of groups is exponential in the number of user attribute values and many
groups are very small or empty. Therefore, given the ad-hoc and online nature of
group discovery, our challenge is to quickly identify high quality user groups. We
hence define desiderata that user groups should satisfy (local desiderata) and
those that must be satisfied by the set of returned groups (global desiderata).

Local desiderata: i. (Describability) Each group should be easily understand-
able by the analyst. While this is difficult to satisfy through unsupervised clus-
tering of ratings, it is easily enforced in our approach since each group must be
formed by rating records of users that share at least one attribute value, which
is used to describe that group. ii. (Size) Returning groups that contain too few
rating records is not meaningful to the analyst. We hence need to impose a
minimum size constraint on groups.

Global desiderata: i. (Coverage) Together, returned groups should cover most
input rating records. While ideally we would like each input record to belong
to at least one group, that is not always feasible due to other local and global
desiderata associated with the set of returned groups. ii. (Diversity) Returned
groups need to be different from each other in order to provide complementary
information on users. iii. (Rating Distribution) Ratings in selected groups should
follow a requested distribution (e.g., homogeneity). iv. (Number of groups) The
number of returned groups should not be too high in order to provide the analyst
with an at-a-glance understanding of the data.

A candidate solution is a group-set that verifies all above desiderata. Finding
such a group-set is a hard problem because of two reasons. First the pool of
candidate group-sets is very large as any possible combination of attribute value
pairs can form a group, and any number of groups can form a group-set. By
having only 20 attribute value pairs, we end up with 1, 048, 575 groups (i.e.,
(220) − 1) and over 1012 group-sets of size 5 (i.e., 1, 048, 575 choose 5). The
second reason of hardness is that diversity, coverage and rating distribution are
conflicting objectives (Sect. 5.1), i.e., optimizing one does not necessarily lead
the best values for others. Thus the need for a Multi-Objective optimization
approach that will not compromise one objective over another. Such an approach
would return the set of all candidate group-sets that are not dominated by any
other along all objectives.

In this paper, we propose α-MOMRI, an α-approximation algorithm for
user group discovery that considers local and global desiderata and guarantees
to find group-sets that are α-far from optimal ones. Since α-MOMRI relies on an
exhaustive search in the space of all groups, we propose h-MOMRI, a heuristic
that exploits the lattice formed by user groups and prunes exploration in order to
speed up group-set discovery. Both our algorithms admit a set of rating records of
the form 〈i, u, s〉 and a constrained Multi-Objective optimization formulation [5]
and return group-sets that satisfy the formulation and are not dominated by any
other group-set. The contributions of this paper are as follows.



Multi-Objective Group Discovery on the Social Web 299

1. We formalize specific quality dimensions (coverage, diversity and rating dis-
tribution) which we find to be the most natural for discovering user groups
on the Social Web. We exploit the semantics of these objectives to go beyond
a generic approach.

2. We formalize the problem of discovering user groups as a constrained Multi-
Objective optimization problem with quality dimensions as objectives.

3. We develop α-MOMRI, an α-approximation algorithm for user group dis-
covery. Returned group-sets are instances of Pareto plans and are guaranteed
to be α-far from optimal ones.

4. We develop h-MOMRI, a heuristic-based algorithm that exploits the lattice
formed by user groups to speed up group discovery.

5. In an extensive set of experiments on MovieLens and BookCrossing
datasets, we analyze different solutions of α-MOMRI and h-MOMRI and
show that high quality group-sets are returned by our approximation and
very good response time is achieved by our heuristic.

2 Data Model and Preliminaries

We model our database D as a triple 〈I,U ,R〉, representing the sets of items,
reviewers and rating records respectively. Each rating record r ∈ R is itself a
triple 〈i, u, s〉, where i ∈ I, u ∈ U , and s is the integer rating that reviewer u has
assigned to item i. The values of s are application-dependent and do not affect
our model.

I is associated with a set of attributes, denoted as IA = {ia1, ia2, . . . }, and
each item i ∈ I is a tuple with IA as its schema. In other words, i = 〈iv1, iv2, . . . 〉,
where each ivj is a set of values for attribute iaj . For example, for the movie
Kazaam (1996) in MovieLens dataset, the set of attribute values are 〈Paul M.
Glaser, {Comedy, Fantasy}〉 for the attribute schema 〈director, genre〉. Note
that the attribute genre is multi-valued. We also have the schema UA =
{ua1, ua2, . . . } for reviewers, i.e., u = 〈uv1, uv2, . . . 〉 ∈ U , where each uvj is
a value for attribute uaj . As a result, each rating record, r = 〈i, u, s〉, is a
tuple, 〈iv1, iv2, . . . , uv1, uv2, . . . , s〉, that concatenates the tuple for i, the tuple
for u, and the numerical rating score s. The set of all attributes is denoted as
A = {a1, a2, . . . }. We now define the notion of user group.

Definition 1 (User Group). A group g is a set of rating records 〈u, i, s〉
described by a set of attribute value pairs shared among the reviewers and the items
of those rating records. The description of a group g is defined as {〈a1, v1〉, 〈a2, v2〉,
. . . } where each ai ∈ A (set of all attributes) and each vi is a set of values for ai.
By |g|, we denote the number of rating records contained in g.

For instance, the first group in Example 1, g = {〈gender, female〉,
〈location, DC〉, 〈genre, romance〉} contains rating records in MovieLens for
romance movies whose reviewers are all females in DC. Note that is it au-naturel
to combine item attributes (genre) and user attributes (location and gender)
together. Figure 1 illustrates an example dataset with 7 rating records. The user
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ID Movie Name Gender Age Occup. Rating

r1 Toy Story John M young teacher 4

r2 Toy Story Jennifer F old teacher 3

r3 Toy Story Mary F old teacher 2

r4 Titanic Carine F old other 4

r5 Toy Story Sara F young student 3

r6 Toy Story Martin M young student 5

r7 Titanic Peter M young student 1

r1

r2

r3

r4

r5

r7

r6

g1={<gender,female>}
g2={<occupation,student>, <age,young>}

g3 = {<movie,Toy Story>}

Fig. 1. Example dataset and group-set

group g1 is for female reviewers with 4 rating records, and g2 is for young students
with 3 rating records. There exists one record in common between two mentioned
user groups (r5). Note that a user group differs from a where-clause SQL query,
since our objectives and constraints are not expressible as SQL predicates.

Given a rating record r = 〈v1, v2 . . . , vk, s〉, where each vi is a set of
values for its corresponding attribute in the schema A, and a group g =
{〈a1, v1〉, 〈a2, v2〉, . . . , 〈an, vn〉}, n ≤ k, we say that g covers r, denoted as
r � g, iff ∀i ∈ [1, n], ∃r.vj such that vj is a set of values for attribute g.ai

and g.vj ⊆ r.vi. For example, the rating 〈female, DC, student, 4〉 is covered by
the group {〈gender, female〉, 〈location, DC〉}.

{} 
#records= 3662

{male, young} 
#records= 1588

{CA, 
student} 

#records=20

{male} 
#records=2634

{young} 
#records=2147

{CA} 
#records=664

{student} 
#records=184

{male, young, 
CA} 

#records=268

{male, young, CA, student}  
#records=2

{young, CA} 
#records=375

{male, 
student} 

#records=120

{male, CA} 
#records=477

{young, 
student} 

#records=13

{young, CA, 
student} 

#records=2

{male, young, 
student} 

#records=13

{male, CA, 
student} 

#records=17

Fig. 2. Partial lattice for the movie Toy Story

Similarly to data cubes, the set of all possible groups form a lattice where
nodes correspond to groups and edges correspond to parent/child and ances-
tor/descendant relationships. A partial lattice for rating records of the movie
Toy Story (1995) is illustrated in Fig. 2 where we have four reviewer attributes
to analyze: gender, age, location (CA stands for California) and occupation.
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For simplicity, exactly one distinct value per attribute is shown in the Figure.
The complete lattice contains 15,582 attribute-value combinations.

2.1 Group Quality Dimensions

We now define three quality dimensions for groups, i.e., coverage, diversity and
rating distribution. We are given a set of rating records R ⊆ R and a group-set G.

Coverage is a value between 0 and 1 and measures the percentage of rating
records in R contained in groups in G.

coverage(G,R) = | ∪g∈G (r ∈ R, r � g)|/|R| (1)

For instance, in Fig. 1, coverage(G,R) = 0.8 where G = {g1, g2} and R
contains rating records for the movie Toy Story.

Diversity is a value between 0 and 1 that measures how distinct groups in
group-set G are from each other. Diversity penalizes group-sets containing over-
lapping groups. To prioritize groups with few overlaps, the overlapping penalty
is considered as an exponentiation with a negative exponent.

diversity(G,R) = 1/(1 + Σg1,g2∈G|r ∈ R, r � g1 ∧ r � g2|) (2)
For instance, in Fig. 1, diversity(G,R) = 0.5.
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Fig. 3. Different rating distributions for a group-set

Rating Distribution. A group-set G may be characterized by its rating distri-
bution. Figure 3 illustrates some examples of distributions. A rating distribution
is a function over the set of ratings in the rating records of groups in G. Equa-
tion 3 shows an example of such a function which computes the average diameter
of ratings. Other aggregation functions could be defined.

diameter(G) = avgg∈G(maxr∈g(r.s) − minr′∈g(r′.s)) (3)

The two most common rating distributions are groups whose members have
a consensus (homogeneous distribution, Fig. 3 left), and groups whose members
have very different points of view (polarized distribution, Fig. 3 right). A small
value of diameter(G) leads a homogeneous group-set G and a high value leads
a polarized group-set G. In Fig. 1, diameter(G) = 3.

The diameter function can capture homogeneity and polarization, but not
some other distributions such as “balanced”. A detailed discussion on differ-
ent functions for capturing rating distributions is provided in our technical
report [12].
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2.2 Multi-Objective Optimization Principles

We propose to use the quality dimensions (coverage, diversity and rating
distribution) defined as optimization objectives. When dealing with more
than one dimension to optimize, there may be many incomparable group-
sets. For instance, for a set of ratings R, we can form two group-sets,
G1 with coverage(G1, R) = 0.8 and diversity(G1, R) = 0.4 and G2 with
coverage(G2, R) = 0.5 and diversity(G2, R) = 0.7. Each group-set has its own
advantage: the former has higher coverage and the latter has higher diversity.
Another group-set G3 with coverage(G3, R) = 0.5 and diversity(G3, R) = 0.2 has
no advantage compared to G1, hence it can be ignored. In other words, G3 is
dominated by G1. In this section, we borrow the terminology of Multi-Objective
optimization [5] and define these concepts.

Definition 2 (Plan). Plan pi, associated to a group-set Gi for a set of rating
records R ⊆ R, is a tuple
〈|Gi|, coverage(Gi, R), diversity(Gi, R), diameter(Gi)〉.
Definition 3 (Sub-plan). Plan pi is the sub-plan of another plan pj if their
associated group-sets satisfy Gi ⊆ Gj.

Definition 4 (Dominance). Plan p1 dominates p2 if p1 has better or equiv-
alent values than p2 in every objective. The term “better” is equivalent to
“greater” for maximization objectives (e.g., diversity, coverage and polarization),
and “lower” for minimization ones (e.g., homogeneity). Furthermore, plan p1
strictly dominates p2 if p1 dominates p2 and the values of objectives for p1 and
p2 are not equal.

Definition 5 (Pareto Plan). Plan p is Pareto if no other plan strictly dom-
inates p. The set of all Pareto plans is denoted as P.

3 Problem Definition

We define our constrained Multi-Objective optimization problem as follows: for
a given set of rating records R and integer constants σ and k (number of groups),
the problem is to identify all group-sets, such that each group-set G satisfies:

– coverage(G,R) is maximized;
– diversity(G,R) is maximized;
– rDistb(G) is optimized;
– |G| ≤ k;
– ∀g ∈ G : |g| ≥ σ.

Note that our problem focuses on group-sets in opposition to individual
groups, which is a clear distinction from the literature. The last constraint in
our problem states that a group g should contain at least σ rating records,
an application-defined threshold. For example, if we fix σ to 10 rating records,
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the groups highlighted in gray in Fig. 2 will not be returned. Note that while we
always maximize coverage and diversity, we may either minimize (e.g., in case
of homogeneity) or maximize (e.g., in case of polarization) the diameter based
on the analyst’s needs. We state the complexity of our problem as follows.

Theorem 1. The decision version of our problem is NP-Complete.

Proof (sketch). It is shown in [4] that a single-objective optimization problem for
user group discovery is NP-Complete by a reduction from the Exact 3-Set Cover
problem (EC3). There, homogeneity is maximized and a threshold on coverage
is satisfied. In our case, two new conflicting dimensions (diversity and coverage)
are added. This means that the problem in [4] is a special case of ours, hence
our problem is obviously harder. �

4 Algorithm

The main challenge in designing an algorithm for user group discovery, is the
Multi-Objective nature of the problem. A Multi-Objective problem can be easily
solved if it is possible to combine all objective dimensions into a single dimension
(scalarization), or if optimizing one dimension leads an optimized value for other
dimensions.

Both following transformations are infeasible for our problem because our
objectives are conflicting, i.e., optimizing one does not necessarily lead to an
optimized value for others (Sect. 5.1). For instance, a group-set may cover almost
all input rating records but contains highly overlapping groups thereby hurting
its diversity.

In this paper, we discuss 3 different algorithms for our problem: exhaustive,
approximation and heuristic.

4.1 Exhaustive and Approximation Algorithms

The exhaustive algorithm starts by calculating Pareto plans for single groups.
Then it iteratively calculates plans for group-sets containing more than one group
by combining single groups. At each iteration, dominated plans are discarded.
The algorithm combines sub-plans to obtain new plans and exploits the optimal-
ity principle (POO) for pruning [15]. This approach makes an exhaustive search
over all combinations of user groups to find Pareto plans, i.e., both time and
space consuming [6].

We propose to improve the complexity of the exhaustive algorithm with our
approximation-based algorithm which makes less enumerations and guarantees
the quality of results. Another way of improvement is heuristic-based which will
be discussed in Sect. 4.2. For our approximation algorithm, we exploit the near-
optimality principle (PONO) [15].

Definition 6 (PONO). Given a maximization objective f (e.g., diversity, cov-
erage, polarization) and α ≥ 1, let p1 be a plan with sub-plans p11 and p12. Derive
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Algorithm 1. α-approximation MOMRI (α-MOMRI)
Input: σ, k, α > 1, R
Output: Pareto result set Pα

1 α ← ∅
2 for all user groups g whose size is at least σ do
3 pg ← construct plan(g)
4 if pg is not α-dominated by any other plan in Pα then Pα.add(pg)

5 end
6 for n ∈ [2, k] do
7 for group-sets G of size n do
8 pG ← construct plan(gG)
9 if pG is not α-dominated by any other plan in Pα then Pα.add(pG)

10 end

11 end
12 return Pα

p2 from p1 by replacing p11 by p21 and p12 by p22 where p21 and p22 are sub-
plans of p2. Then f(G21) ≥ f(G11)×α and f(G22) ≥ f(G12)×α together imply
f(G2) ≥ f(G1) × α. The extension for a minimization objective is straightfor-
ward.

We have formally proved that all our objectives satisfy PONO. Proofs are
provided in our technical report [12]. Note that among different definitions in
the literature for coverage, diversity and rating distribution, we picked the ones
that are most intuitive to our problem and that satisfy PONO. For instance, the
rating distribution function in [4] does not satisfy PONO.

PONO overrides POO. Thus a new notion of dominance is introduced in
Definition 7 to be in line with PONO.

Definition 7 (Approximated Dominance). Let α ≥ 1 be the precision
value, a plan p1 α-dominates p2 if for every maximization objective f (e.g.,
diversity, coverage, polarization), f(G1) ≥ f(G2) × α. The extension for a min-
imization objective is straightforward.

Definition 8 (Approximated Pareto Plan). For a precision value α, plan
p is an α-approximated Pareto plan if no other plan α-dominates p.

Generating fewer plans makes a Multi-Objective optimization algorithm run
faster [15]. This is because the execution time heavily depends on the number
of generated plans. Thus a pruning strategy dictated by PONO is at the core
of the α-MOMRI algorithm illustrated in Algorithm 1. In the special case of
α = 1, the algorithm operates exhaustively. If α > 1, the algorithm prunes more
and hence is faster. In the latter case, a new plan is only compared with all
plans that generate the same result. But a new plan are only inserted into the
buffer if no other plan approximately dominates it. This means that α-MOMRI
tends to insert fewer plans than the exhaustive algorithm. Note that α-MOMRI
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Algorithm 2. Heuristic MOMRI (h-MOMRI)
Input: σ, k, α, R
Output: Result set Ph

1 Ph ← ∅
2 N ← Set of intervals on diversity values
3 for n times do
4 Gs ← random groupset(k, σ)
5 G∗

s ← SHC (Gs)
6 interval ← get interval(G∗

s)
7 N [interval ].add(G∗

s)

8 end
9 for interval ∈ N do

10 Keep non-dominated plans in interval and add them to Ph

11 end
12 Ph ← optimize diameter(Ph)
13 return Ph

is objective-independent. In the future, we plan to extend the scope of group
discovery to other objectives (as listed in [7]).

4.2 Heuristic Algorithm

A heuristic algorithm has obviously its own advantages and disadvantages. Of
course a heuristic algorithm does not provide any approximation guarantee.
Eventually, it returns a subset of Pareto set. Nevertheless, the fact that it gen-
erates a subset of Pareto makes it faster.

Algorithm 2 illustrates our heuristic algorithm. The algorithm starts by mak-
ing n different iterations on finding optimal points to avoid local optima (lines 3
to 8). At each iteration, the algorithm begins with a random group-set Gs with
k groups whose size is at least σ (line 4). Then a Shotgun Hill Climbing [14]
local search approach (SHC ) is executed (Algorithm 3) to find the group-set
with optimal value starting from Gs (line 5). SHC maximizes coverage. Diver-
sity is already divided into intervals N for each of which a buffer is associated.
The resulting group-set of SHC is placed in the buffer whose interval matches
the diversity value of the group-set (line 7). Finally, n different solutions are
distributed in different interval buffers. The algorithm then iterates over interval
buffers to prune dominated plans (lines 9 to 11). Based on Definition 4, a plan is
pruned and removed from its buffer if it is dominated by other plans. Finally, for
each interval, we report one unique solution that has the maximum/minimum
value for diameter based on the requested distribution (line 12).

SHC operates on a generalization/specialization lattice of groups (as in
Fig. 2). Navigation of this lattice in a downward fashion satisfies monotonic-
ity property for coverage: given any two groups g1 and g2 where g1 is the parent
of g2, the coverage of g1 is no smaller than the coverage of g2. Note that in
a bi-objective context, SHC can optimize each one of coverage and diversity.
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Algorithm 3. Shotgun Hill Climbing (SHC ) Algorithm
Input: Group-set G, R
Output: Optimized group-set G∗

1 G∗ ← ∅
2 while true do
3 C ← ∅
4 for g ∈ G and each lattice-based parent g′ of g do
5 G′ ← G − {g} + {g}′

6 C.add(G′, coverage(G′, R))

7 end
8 let (G′

m, coverage(G′
m, R)) be the pair with maximum coverage

9 if coverage(G′
m, R) ≤ coverage(G, R) then

10 G∗ ← G
11 return G∗

12 end
13 G ← G′

m

14 end

However, to benefit from the monotonicity property, we use SHC to optimize
coverage. SHC verifies all local neighbors of a group for an improvement of cov-
erage. If no improvement is achieved, it stops and returns the current group-set.
Nevertheless, if we optimize diversity using SHC , navigation in the generaliza-
tion/specialization lattice is nothing but a random walk over the space of groups.

For instance, consider the input group-set Gs = {g1, g2} where g1 =
{〈gender, male〉, 〈occupation, student〉} and g2 = {〈location, CA〉,
〈occupation, student〉}. These two groups are marked in bold boxes in Fig. 2.
We obtain a coverage of 0.79 for Gs. Keeping g2 fixed, the resulting combi-
nations by swapping g1 with its parents are either g3 = {〈gender, male〉} or
g4 = {〈occupation, student〉}. For instance, the coverage of G′

s = {g2, g3} is
0.81. As we observe an improvement, we iterate on this new group-set G′

s to
improve coverage.

A detailed discussion on complexity analysis of our proposed algorithms is
provided in our technical report [12].

5 Experiments

In this section, we first validate the need for Multi-Objective optimization. Then
we compare α-MOMRI and h-MOMRI on the quality of returned groups and
the scalability of those algorithms.

We consider two different rating datasets for our study: MovieLens and
BookCrossing. Due to lack of space, we only show results on MovieLens. An
exhaustive set of results is presented in our technical report [12]. Both datasets
have approximately the same number of ratings. BookCrossing has one order
of magnitude more users and items. We consider a 5-star rating system for both
datasets.
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Table 1. Input sets of rating records

Profile Movie in MovieLens

Highest number of ratings American Beauty

Lowest number of ratings Celtic Pride

Highest average rating Sanjuro

Lowest average rating Kazaam

MovieLens contains four user attributes: gender, age, occupation and
zipcode. We convert the numeric age into four categorical attribute values,
namely teenager (under 18), young (18 to 35), middle-age (35 to 55) and old
(over 55). There are 21 different occupations listed in MovieLens e.g., student,
artist, doctor, lawyer, etc. We convert zipcodes to states in the USA (or to
foreign, if not in USA) by using the USPS zip code lookup.3 We also enriched
MovieLens by crawling IMDb4 using the OMDb API5 to obtain following item
attributes: director, writer and release year and genre.

We implement our prototype system using JDK 1.8.0. All scalability exper-
iments are conducted on an 2.4 GHz Intel Core i5 with 8 GB of memory on OS
X 10.9.5 operating system.

For our experiments, we consider four different sets of input rating records
described in Table 1. Each item contains at least 50 ratings. We assume that it
is straightforward to analyze less than 50 ratings, manually. We also fix σ = 10
as this value is a border line between frequent ratings and the long tail [12].

5.1 Need for Multi-Objective Optimization

What is the added value of Multi-Objective optimization? We compare first
MOMRI with MRI [4], a single-objective approach for group discovery which
some authors of this work have already proposed. MRI minimizes diame-
ter and considers a lower bound on coverage min c. Given a set of rating
records R for the movie American Beauty in MovieLens, k = 3, min c =
0.7, one of the returned group-sets by MRI is GMRI = {g1, g2, g3} where g1 =
{〈gender, female〉, 〈age, young〉}, g2 = {〈occupation, student〉, 〈age, young〉}
and g3 = {〈gender, male〉, 〈occupation, student〉}. The objective values for
GMRI are as follows: coverage(GMRI , R) = 0.81, diversity(GMRI , R) = 0.03 and
diameter(GMRI , R) = 0.13. However, as diversity is not optimized, there exists
huge overlap in groups: many young reviewers are also students.

In the same context, one returned group-set by MOMRI is the one
we already discussed in Example 1: GMOMRI = {g4, g5, g6} where g4 =
{〈gender, female〉, 〈age, young〉}, g5 = {〈age, young〉, 〈location, DC〉} and
g6 = {〈gender, male〉, 〈age, teen − ager〉}. The objective values for GMOMRI

3 http://zip4.usps.com.
4 http://www.imdb.com.
5 http://www.omdbapi.com.

http://zip4.usps.com
http://www.imdb.com
http://www.omdbapi.com
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are as follows: coverage(GMOMRI , R)=0.79, diversity(GMOMRI , R)=0.33 and
diameter(GMOMRI , R) = 0.11. This group-set has optimized values on all objec-
tives. Specifically, it has a high diversity as only 2 female reviewers for American
Beauty are both young and residents of DC. It also shows that min c in MRI is
a hard constraint and can easily miss a promising result which has a very high
coverage but does not meet the threshold.

We already discussed that consistency of objectives transforms the multi-
objective problem into a single-objective one that is trivial to solve (Sect. 4). In
this experiment, we verify if our objectives (defined in Sect. 2.1) are consistent.
We maximize coverage and observe how values of diversity and diameter evolve.
To maximize coverage, we use Algorithm 3. Figure 4 illustrates the results for
different sets of input rating records in Table 1. Each point illustrates the objec-
tive values for each of 20 runs. Note that this experiment is independent of the
heuristic and the approximation algorithms.
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Fig. 4. Conflicting objectives on MovieLens. Movie title initials are illustrated on
points.

We observe that in general, no correlation exists between the optimized value
of coverage and other objectives. Thus each objective should be optimized inde-
pendently. The same result was obtained for BookCrossing [12].

5.2 Comparison of Algorithms

In this section, we compare h-MOMRI and α-MOMRI. Our hypothesis is that
h-MOMRI has a manageable solution space size compared to α-MOMRI which
leads to a reduced execution time.

First we compare the quality of algorithms regarding the dominance of solu-
tions. In Multi-Objective optimization, if for two algorithms X and Y , the major-
ity of X’s solutions dominate Y ’s, it means that X is able to produce solutions
with higher quality than Y . In this experiment, we make the same comparison
between α-MOMRI and h-MOMRI. For this experiment, we need to compare
each pair of α-MOMRI and h-MOMRI solutions. We count the number of times
each algorithm dominates the other in pairwise comparison of their results. We



Multi-Objective Group Discovery on the Social Web 309

consider α = 1.15 for α-MOMRI and nbintervals = 40 for h-MOMRI. We
denote the set of α-MOMRI solutions as Pα and the set of h-MOMRI solu-
tions as Ph. We observe that for all sets of input rating records in Table 1, at
least 62 % of solutions in Ph are dominated by solutions in Pα. This is because
α-MOMRI generates the complete set of α-approximated Pareto plans, while
h-MOMRI produces a subset. For instance, for the movie American Beauty,
α-MOMRI produces 16 times more solutions than the heuristic algorithm. Evi-
dently the solutions in Ph are either as good as Pα’s or worse. Our results show
that although α-MOMRI presents a huge set of all Pareto plans, h-MOMRI
can return an acceptable representative subset where almost half of solutions are
as good as the set Pα.

Now we compare α-MOMRI and h-MOMRI concerning their performance
and the number of solutions they produce. We consider 3 different instances for
each algorithm: for α-MOMRI, we consider instances with α = 2 (A), α = 1.5
(B) and α = 1.15 (C), and for h-MOMRI, we consider instances with 5 (D), 10
(E) and 40 (F ) intervals. We run this experiment with 4 items having the highest
amount of rating records as items with fewer records exhibit similar behavior.

Figure 5 illustrates the results. As expected, in general the number of solu-
tions produced by h-MOMRI is one order of magnitude less than α-MOMRI
in both datasets. In both algorithms, the number of ratings records play an
important role and increases the number of solutions. In [12], it is shown that
the time performance of both algorithms is a function of the group space size.
A data-centric observation in Fig. 5 reveals that more rating records lead more
groups, hence worse performance (which is the case for American Beauty).

A B C D E F

104

105

106

Algorithms

T
im

e
(m

s)

American B.

Jurassic P.

A New H.

Saving P. R.

A B C D E F

102

103

Algorithms

#
S
o
lu

ti
o
n
s

American B.

Jurassic P.

A New H.

Saving P. R.

Fig. 5. Comparison of α-MOMRI and h-MOMRI algorithms in execution time (left)
and # solutions (right) on MovieLens

Choosing between α-MOMRI and h-MOMRI. Both α-MOMRI and h-
MOMRI are useful for analysts in different scenarios. α-MOMRI can be used
in an offline context to produce an exhaustive set of user groups with a preci-
sion defined by α for further analysis. For instance, a movie rating website (like
IMDb) can index user groups generated offline and execute various user queries
like ‘what are interesting groups of female teenagers who have rated romantic
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movies’. On the other hand, in an online or streaming context, h-MOMRI is
beneficial because it can immediately produce a representative subset of results.
For instance, in a movie rating website an analyst can quickly observe interesting
user groups of comedy and romantic movies.

6 Related Work

To the best of our knowledge, no approach has proposed and formalized the prob-
lem of discovering user groups for collaborative rating datasets by considering
multiple independent and conflicting quality dimensions. Recent studies6 have
shown an interest in reporting statistics about pre-defined groups, as opposed
to our work where we look to discover high-quality user groups on the fly. How-
ever our work does relate to a number of others in its aim and optimization
mechanism.

Multi-Objective Optimization. There exist different approaches to solve a
multi-objective problem [15,16]. We already discussed that Scalarization does
not work in our case (Sect. 5.1). Another popular method is ε-constraints [13]
where one objective is optimized and others are considered as constraints. The
approach in [4] can be seen as a relaxed ε-constraints version of our problem.
Another approach is Multi-Level Optimization [11] which needs a meaningful
hierarchy between objectives. In our case, all objectives are independent and
conflicting, hence using this mechanism is not feasible.

User Group Discovery. User groups can be discovered by clustering methods
[1–3,9] where a single objective is optimized. Multi-Objective clustering [8,10]
is an improvement where clusters are obtained from n different clustering algo-
rithms. This guarantees clusters with high quality in multiple dimensions. This
is a two-step approach where i. each clustering algorithm, applied to one quality
dimension, generates its own set of clusters, ii. a goodness measure picks tar-
get clusters by combining results of all algorithms. However, the definition of a
goodness measure is subjective and does not guarantee that all desired objectives
are optimized. Also MOMRI scans data only once as the pruning technique in
α-MOMRI considers all objectives at the same time and determines if a can-
didate group-set should or not be kept for further comparisons. On the other
hand, clustering methods often lead to information overload. Using h-MOMRI,
the analyst receives a manageable subset of high quality results in a reason-
able time. More (precise) results are returned by reducing α for α-MOMRI or
increasing nbintervals for h-MOMRI.

7 Conclusion and Future Work

In this paper, we investigated the question of finding the best group-sets that
characterize a database of rating records of the form 〈i, u, s〉, where i ∈ I, u ∈ U ,

6 http://blog.testmunk.com/how-teens-really-use-apps/.

http://blog.testmunk.com/how-teens-really-use-apps/
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and s is the integer rating that user u has assigned to item i. We showed that
the problem of finding high-quality group-sets is NP-Complete and proposed
a constrained Multi-Objective formulation. Our formulation incorporates local
and global group desiderata. We proposed two algorithms that find group-sets
as instances of Pareto plans. The first one α-MOMRI, is an α-approximation
algorithm and the second, h-MOMRI, is a heuristic-based algorithm. Our exten-
sive experiments on MovieLens and BookCrossing datasets show that our
approximation finds high quality groups and that our heuristic is very fast with-
out compromising quality.

Our work can be improved in many ways. In particular, we plan to perform
an extensive user study to be able to evaluate the quality of returned group-sets.
An online poll (about movies or books) could be used to build a ground-truth
and will be used to evaluate the usefulness of our group-sets. Also, we plan to
investigate an extensive analysis of rating distributions for our algorithms using
some dispersion measures.
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Abstract. This paper proposes a novel classification approach to carry-
ing out sequential data classification. In this approach, each sequence in
a data stream is approximated and represented by one state space model
– liquid state machine. Each sequence is mapped into the state space of
the approximating model. Instead of carrying out classification on the
sequences directly, we discuss measuring the dissimilarity between mod-
els under different hypotheses. The classification experiment on binary
synthetic data demonstrates robustness using appropriate measurement.
The classifications on benchmark univariate and multivariate data con-
firm the advantages of the proposed approach compared with several
common algorithms. The software related to this paper is available at
https://github.com/jyhong836/LSMModelSpace.

Keywords: Sequential learning · Classification · Learning in the model
space

1 Introduction

Sequential data classification is a fundamental problem in the machine learning
community. In the classification, the degree of dissimilarity between sequences
needs to be quantified. If the sequential data are of equal length, it is sufficient to
use conventional machine learning methods by treating sequences as numerical
vectors. Kernel methods could be efficient and might achieve satisfying perfor-
mances [18], provided that the length of sequence is not long. However, in reality,
large amount of sequential data are variable-length.

To deal with sequential data that are variable-length and possibly long, plenty
of algorithms, e.g. dynamic time warping [1], autoregressive kernel [8], spectral
analysis [11], are proposed.

Searching for a global alignment between variable-length sequences is a way
to handle variable-length data. This methodology of non-linear warping and
matching segments of two sequences is exemplified by dynamic time warping
(DTW) [21]. However, due to non-linear warping, the triangular inequality, one
of the requisites for the validity of a metric, is not satisfied. The measurement
in DTW is not a metric actually, lacking geometric interpretation to the exper-
imental result [9].
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 313–328, 2016.
DOI: 10.1007/978-3-319-46128-1 20
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Fisher Kernel [12] fits one single generative model (Hidden Markov Model)
to sequences and compares how much new incoming sequence “stretches” the
average model trained with past sequences. Fisher Kernel defines Fisher Score
as gradients of log-likelihood, log p(x|θ), with regard to hidden parameters. As
Fisher Kernel train the generative model under maximum likelihood principle, it
may lead to sub-optimal results. Since a generative model that fits data well may
easily get stuck in the local minimum of its log-likelihood, where the gradient
representation of data is (nearly) zero [17].

The computation of Fisher Kernel of sequences si and sj is defined as:

∇T
θ p(x|θ)I−1∇θp(x|θ) (1)

where I is the Fisher information matrix. Computation of Fisher Kernel
involves the inverse of Fisher information matrix. This procedure could be time-
consuming. A routinely adopted way to bypass this difficulty is to replace the
Fisher information matrix with identity matrix, at the cost of losing some pre-
cision in the approximation [22].

Fisher Kernel learning [17] leverages the label information so that the objec-
tive functions in the same class have similar gradients. It applies idea from
metric learning to improve its performance. Both methods show effectiveness
but low efficiency in obtaining the representations to data, as more computation
is involved in computing gradients, even when the Fisher information matrix is
assumed to be identity matrix.

Autoregressive Kernel (AR) [8] employs a likelihood profile as features for
sequences. The likelihood profile is generated by a Vector Autoregressive Model
under different parametric settings. The dissimilarity between sequences is com-
puted with Bayesian method. It can be verified that this measurement is a valid
Hilbertian metric [8]. AR relaxes the constraint of using a single generative
model to explain the whole data as did in Fisher Kernel and Fisher Kernel
learning. However, AR does not use the timestamps in a sequence to improve
the prediction [20].

Chen et al. approximated time series via echo state networks (ESN) [4,5], and
demonstrated that readout weights in ESNs could offer discriminant features for
sequences. Under the representation provided by topologically fixed reservoir for
the whole data, the readout weights, the only trained part, covers the unique-
ness of a specific sequence, bringing in more versatility and flexibility. It was
demonstrated that ESN is able to handle continuous sequences in complicated
scenario [6]. In addition, a co-learning strategy was devised to strengthen its
representation capability on continuous sequences [3]. In this paper, we further
extend this methodology to process binary data, and demonstrate the improve-
ment on performance by using liquid state machine (LSM). In LSM, individual
node (neuron) has its own “state memory”, and responds from its own history
and current input signal, while nodes in ESN give responses based on merely their
current state. The replacement brings enhancement “memory” to the reservoir,
and demonstrates to be beneficial by experiments.

In this paper, we propose a novel approach to representing sequences, which
might be of different lengths and of different characteristics, in a higher dimen-
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sional space. In this approach, each sequence is represented by a LSM, which
gives approximation to the conditional probability of likelihood of the sequence.
After obtaining models, the classification is conducted on the models, rather
than on the sequences directly. In this paper, we discuss measurements under
different assumptions on the “model distributions”. The model set, along with
the defined measurements, offers a novel space for classification and other possi-
ble learning tasks. This space is referred as a model space for a certain data set
in this paper.

2 Discriminant Learning in the Model Space

LSM incorporates time into the model of neural network to enhance the level of
realism in the simulation, emerging as a new computational model [16]. A LSM
consists of two parts (apart from input layer) in its framework. A large collection
of nodes that are randomly connected to each other make up the reservoir part.
Each node receives inputs from input layer as well as from other nodes. The
spatio-temporal pattern of the activations in nodes is read out by the final layer
as linear combinations in performing certain tasks. The final layer is the only
part that needs training.

We illustrate the scheme diagram of model space and LSM in Fig. 1. In the
figure, LSMs are used to give approximations to sequences and in turn the set
of LSMs is considered in the learning algorithms.

Fig. 1. The schematic diagram for LSM and model space. LSMs provide representations
for two sequences. The model space is seen as a high dimensional space, in which the
readout weights of LSMs are assembled.

The form of the LSM [14] is generalized as follows:
{
x(t) = Q(Rx(t − 1) + V s(t))
y(t) = f(x(t)) = Wx

(2)
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where x(t) ∈ �n is the state vector defined in the real domain. Subscript n
is the number of reservoir nodes. Input s(t) ∈ �d+1 is input which has been
augmented by adding bias as one of its components. R and V are the appropri-
ately defined coefficient matrices. y(t) ∈ �n′

and W denote output and readout
weights respectively. Superscript n′ is the dimensionality of output. Q(·) is the
response function defined on the internal nodes.

A LSM is trained by making use of past values and predicting the present
value. Readout weights W ∈ �n′×n are trained by adjusting W in order for
Wx(t) = s(t + 1). The dimensionality n′ satisfies n′ = d in this scenario.

We consider an arbitrary sequence s = {s0, s1, · · · , sn} ∈ �d, where d is the
dimensionality of the sequence. We also use s(t) to denote a sequence which is
indexed by t. We assume that the index starts from 0 unless otherwise stated.

The likelihood of a sequence s is expressed as:

�(s) = �({s0, s1, · · · , sn})

which can be further factorized into

�(s) = P0(s0)P1(s1|s0)P2(s2|s1, s0) · · · · · · Pn(sn|sn−1, · · · , s0)

where Pi(si|si−1 · · · s0), i = 0 · · · n is the conditional probability.
In most cases, the assumption is too strong that the conditional probability

Pi(·|·) of a sequence can be generalized and formulated explicitly. Assumptions
on the form of Pi(·|·) might lead to sub-optimal results.

In our approach, we make use of the universal approximating ability [16]
of LSM under a weak assumption on the conditional probability distribution,
assuming Pi(·|·) is time-invariant, i.e. Pi(·|·) = P(·|·). The universal approxi-
mating ability states that, given enough variety in the interior nodes, nonlinear
input-output mappings could be approximated by LSM under training of suf-
ficiently long input sequences. Our approach bases the approximation to P(·|·)
on this ability and therefore uses models rather than simplified formulations in
the classification algorithm.

2.1 Measurement of Dissimilarity Between Models in the Model
Space

The dissimilarity of two sequences is judged from the divergence between two
fitting LSMs. Given two sequences si and sj , a general measurement of dissim-
ilarity is formulated as follows:

D(si, sj) = (
∫

x∈I
||fi − fj ||2dμ(x))1/2 (3)

=
(∫

x∈I
(Wix − Wjx)T (Wix − Wjx)dμ(x)

)1/2
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|| · || is the norm which calculates the disagreement between two model outputs.
I is the change interval for model vector x. μ(x) is the probability distribution
for x.

Uniform distribution over x considers the simplest case, in which the proba-
bility distribution μ(x) is assumed to be only dependent on the interval I. Later,
this assumption will be relaxed and more general cases will be discussed.

Under the assumption of the uniform distribution, the dissimilarity between
sequences si and sj is simplified into

D(si, sj) =
(∫

(Wix − Wjx)T (Wix − Wjx)dμ(x)
)1/2

(4)

= C||Wix − Wjx||.
where the irrelevant terms in last formula of Eq. (4) are generalized into
constant C.

In more general cases where x is not evenly distributed, but not changes
dramatically, we use Gaussian mixture model to approximate the probability
distribution μ(x). It fits the probability distribution μ(x) with a mixture of
finite Gaussian distributions.

μ(x) =
∑

αiN(θi, Σi)

where αi are the mixture coefficients for i-th Gaussian distribution. All αi sum
up to 1,

∑
αi = 1. Parameters θi and Σi are mean and variance in i-th Gaussian

distribution.
Substitute μ(x) with Gaussian mixture model, the dissimilarity between two

sequences is formulated as:

D(si, sj) =
∑

k

αktrace(WT
i WjΣk) + θT

k WT
i Wjθk (5)

Sampling, as a natural alternative to the above approximation method, makes
no assumptions on the form of μ(·). An asymptotic optimal estimation for a
probability distribution μ(·) is guaranteed from the law of large numbers. This
estimation may lead to more robust result, if no prior information on μ(·) exists.
Applying sampling to Eq. (3) is straightforward.

D(si, sj) ≈ 1
m

∑

k

||Wixk − Wjxk|| (6)

where m denotes the amount of sampling points.
Assume the deviation ε(t) between the output of a LSM y(t) = Wx and

the desired output s(t + 1) follows a zero-mean Gaussian distribution ε(t) =
N (0, δ2I). When the methodology of Fisher Kernel is applied, the conditional
probability of observing s(t + 1) given past values is formulated as:

P((s(t + 1)|s(1 · · · t)) = (2πδ2)−d/2exp
( − ||s(t + 1) − Wx(t)||

2δ2
)
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The Fisher score U between si and sj takes the form of inner product of two
derivatives with regard to the hidden parameters. The derivative quantifies how
the model adjusts its current parametric setting in order to fit a new sequence.
The derivative of probability P(·|·) in terms of W gives rise to:

U =
∂ log P(s(1 · · · l))

∂W

=
l∑

t=1

s(t)x(t − 1)T − Wx(t − 1)x(t − 1)
δ2

The dissimilarity between si and sj is expressed as:

D(si, sj) = 1Ui. ∗ Uj1T (7)

where .∗ denotes element-wise multiplication and 1 is the all-one vector.

Extending to Binary Data. The sequential data recorded in binary digits
{0, 1} are more encountered in clinical research, e.g. heart beating signal, signals
from neurons. In terms of binary or discrete data, the traditional ways that
minimize mean square error (MSE) as did on numerical sequences are infeasible.
The traditional ways rely on the gradient of objective function for inference of
parameters, while MSE from binary data is non-smooth and thus no gradients
exist. LSM is extended to process binary data by replacing MSE with exponential
van Rossum metric [23].

A general exponential van Rossum metric ψ(t, t0) can be formulated as:

ψ(t, t0) =

⎧
⎨

⎩
− (t − t0)

e−(t−t0)/τ

τ
0 ≤ t < Δt + t0

+ ∞ otherwise
(8)

where index t0 is the expected index. Δt is a threshold, restricting the comparison
to the affinity of t0. Argument τ is a penalty on the deviation.

3 Experimental Study

This section presents experiments conducted on synthetic binary data and clas-
sifications on benchmark univariate and multivariate data. For a given task, the
topology (200 interior nodes) and interior weights between nodes were initial-
ized and kept fixed. In this way, the randomness in LSM was controlled as an
invariant factor for comparison purpose. The strategy of restart was adopted in
experiments1.

The implementation of LSM made use of a software simulating the micro-
circuits of neural network–CSIM [19]. The parameters were set referring the
attached examples.
1 The source code is available from https://github.com/jyhong836/LSMModelSpace.

https://github.com/jyhong836/LSMModelSpace
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Table 1. The parameters and search ranges

Name Parameters Search range

DTW γ γ ∈ {10−6, 10−5, · · · , 101}
AR γ, ξ, p γ ∈ {10−6, 10−5, · · · , 101}, ξ ∈ {0.1, 0.2, · · · , 0.9}, p ∈ {1, 2, · · · , 10}
FK state state ∈ {1, 2, 3, 10}

λ,γ λ ∈ {10−6, 10−5, · · · , 101}, λ ∈ {10−5, 104, · · · , 101}
γ is the parameter in the kernel function.
ξ and p are the weight and the order of the negative definite kernel.
state is the number of states of hidden Markov model defined in Fisher kernel.
λ is the parameter used in ridge regression.

In the implementation of the Gaussian mixture model, the number of
Gaussian distribution was auto-determined by the method proposed in [10]. In
the sampling, since there existed training sequences that were not sufficiently
long, circular block bootstrap was applied. The block length was auto-determined
by the method proposed in [15].

LIBSVM [2] was adopted in the classification algorithm. Multi-class data
were classified via its default strategy, one-against-one.

The proposed methods were compared with common methods, including
Dynamic Time Warping (DTW), Autoregressive Kernel (AR), Fast Fisher Ker-
nel (Fisher), and Reservoir model (RV) proposed in [4,5].

The parameters in the proposed algorithms (regression parameter λ), support
vector machine (bandwidth θ and cost C), and the comparison algorithms were
tuned with 5-fold-cross-validation2. The search ranges for the parameters are
detailed in Table 1.

Three classification methods defined with Eqs. (4)–(7) are named as LSM
with L2 norm (L2-LSM), LSM with Gaussian mixture model (Gaussian-LSM),
LSM with sampling method (Sampling-LSM), and LSM with Fisher methodol-
ogy (Fisher-LSM).

3.1 Synthetic Data

Synthetic binary data were generated following Poisson distribution p(t) =
λte−λ

t! . The merit of using Poisson distribution is that it makes the events (bars
in Fig. 2) evenly distributed and ensures that no events happen at the same
time. The synthetic data were labeled into three classes. Different classes were
generated under a slightly changed parameter setting.

For each parametric setting, the simulation lasted 2 s with time unit 10−3 s,
generating a 2000-length sequence. We generated 55 sequences for each class. In
addition, all the sequences were corrupted with Gaussian white noise (mean =
0, Σ = 0.02I). The Eq. (8) was adopted as cost function in the training algo-
rithm. Figure 2 demonstrates parts of the binary sequences of three classes. From
this figure, it is not easy to distinguish class labels.

2 The procedure of cross-validation keeps identical to [4] for comparison.
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Fig. 2. The parts of synthetic binary sequences. The data were generated following
Poisson distribution and were corrupted with additive Gaussian white noise. Horizontal
axis denotes the index. Different classes are drew in different colors, and are separated
by a dash line.

The model space in this experiment, which is populated by readout weights
of fitting models, is depicted in Fig. 3. In order to visualize the model space,
multidimensional scaling (MDS) was used to reduce its dimensionality. MDS
keeps the original between-objective distance faithfully in a lower dimensional
space. Although it was hard to distinguish class labels in the binary data as
depicted in Fig. 2, after representing the sequences in the model space, they
became separable in Fig. 3.
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Fig. 3. The model space of synthetic binary data in a 3-dimensional coordinate. Parts
of the data are depicted in Fig. 2. The model space was constructed by fitting LSMs
to the binary data and extracting data-specific features, i.e. the readout weights, from
LSMs. Each point offers representation to an individual binary sequence. Different
classes are denoted with different markers.

The sensitivity of proposed method to the additive Gaussian noise was also
investigated, in comparison with AR and Fast Fisher Kernel (Fisher)3. The
3 The methodology of searching a global alignment is unsuitable for binary data, so

the experiment of DTW was not reported.
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Fig. 4. The classification accuracy versus different amplitudes of Gaussian noise. The
horizontal axis denotes the amplitude of noise, and the vertical axis is the classifica-
tion accuracy on the synthetic data. Overall, the proposed methods demonstrate clear
advantages in handling binary sequences in this experimental setting.

classifications were conducted on data with various amplitudes of Gaussian noise.
The experimental results are depicted in Fig. 4.

An overall advantage can be observed from Fig. 4. Not surprisingly, Fisher-
LSM has the best performance in terms of classification accuracy and robustness
to the noise among all the methods. Fisher-LSM assumes that the deviation
between observation and true value follows zero-mean Gaussian distribution,
which coincides with the noise used in this experiment. Sampling-LSM shows to
be less robust to the added noise. Its classification accuracy drops after corrupt-
ing data with noise. But as the amplitude of noise grows, its influence on the
performance of Sampling-LSM decreases.

3.2 Benchmark Data

The benchmark data sets were obtained from UCR time series classification
archive [7] and UCI machine learning repository4. Table 2 gives a summary of
all data sets. In order to eliminate the influence of different units, all data sets
were rescaled into interval [−1, 1].

The experimental results of 5 runs are listed in Table 3. From this table, A
general advantage of classifications carried out in the model space of LSM over
comparison algorithms can be observed. Among all the proposed methods, learn-
ing based on sampling achieved the best performance. The better performance

4 EEG data was obtained from UCI machine learning repository, https://archive.ics.
uci.edu/ml/datasets/EEG+Database. And it was preprocessed via Principle Com-
ponent Analysis to reduce its dimensionality.

https://archive.ics.uci.edu/ml/datasets/EEG+Database
https://archive.ics.uci.edu/ml/datasets/EEG+Database
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Table 2. Summary description of univariate data sets.

Name Instances Length Classes

Beef 60 470 6

Car 120 576 4

OSULeaf 220 240 6

Adiac 780 176 37

FISH 175 175 7

OliveOil 60 570 4

EEG 60 60 2

Table 3. Classification accuracy of Dynamic Time Warping (DTW), Autoregres-
sive Kernel (AR), Fisher Kernel Learning (Fisher), Reservoir Model (RV), L2-LSM,
Gaussian-LSM, sampling-LSM and Fisher-LSM. The best results are marked in bold.

Name DTW AR Fisher RV [4] L2-LSM Gaussian-LSM Fisher-LSM Sampling-LSM

Beef 66.67 56.67 58.00 86.67 60.00 46.67 53.3 76.67

Car 73.3 60.0 65.00 86.67 78.33 61.67 70.00 90

OSULeaf 62.15 73.33 54.96 64.59 72.31 69.00 69.01 75.20

Adiac 65.47 64.54 68.03 76.73 76.63 78.10 57.54 76.98

FISH 69.86 51.43 57.14 85.71 89.71 85.71 68.57 87.43

OliveOil 83.33 42.15 56.67 90.00 76.67 80.00 73.33 86.67

EEG 38.0 50.0 50.0 - 48.33 51.67 61.67 63.33

of sampling-LSM is largely contributed from the weak hypothesis it imposed
on the probability distribution μ(·). However, Fisher-LSM underperformed on
all sequences. A possible reason for its deficiency lies in the pre-assumption
over the deviation. When strong autocorrelation exists, the assumption of zero-
mean Gaussian noise is unlikely to be true. Compared with good performance
achieved on binary sequences, it is more encouraged to be used on binary or
discrete sequences.

As the number of Gaussian distributions was auto-determined in Gaussian-
LSM and bootstrap was adopted in Sampling-LSM, the computational complex-
ities of proposed approaches are difficult to analyze. We adopted experiments
to illustrate the actual time consumption on benchmark data. Experiments
were conducted on a sequential data set PEMS5. By truncating the sequences
and recording the time consumed in obtaining dissimilarities between pairwise
sequences, we obtained tuples of time consumption6 versus length of sequence.
And the results are plotted in Fig. 7.

5 PEMS was obtained from UCI machine learning repository. The sequences in PEMS
were vectorized to be sufficiently long.

6 The computational environment is Windows 7 with Intel Core i5 Duo 3.2 GHz CPU
and 8 G RAM.
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Fig. 5. The time consumptions on three multivariate data sets. The vertical axis
denotes the time consumption. It is measured in the unit of CPU time (sec).

In the Fig. 7, the time consumptions of all proposed approaches grow slowly
after the sequential length becomes large (beyond 1800). The lines of Gaussian-
LSM and L2-LSM grow in a similar pattern. However, Sampling-LSM maintains
a (roughly) consistent time usage, even when the training sequences are short.
The reason is, in order to compensate the approximation loss when the train-
ing sequences were not sufficiently long, more sampling had to been done. The
computation of Fisher-LSM involves matrix multiplication, which makes it grow
(roughly) linearly with the sequential length in our experiments (not shown).

In contrast, the time complexity of DTW is O(mimj), where mi is the length
of i-th sequence. An improved variation [13] speeds up DTW by using piece-wise
line of length c to approximate the time series. It is reported to have time com-
plexity O(mimj

c2 ). Autoregressive kernel [8] have time complexity (mi+mj −2p)3,
where p is the order of employed model, far less than min(mi,mj). So compared
with the above algorithms, Gaussian-LSM and L2-LSM show computational
advantage.

Multivariate Sequences. The experiments of classifications on three multi-
variate data sets, Brazilian sign language (Libras), handwritten characters and
Australian language of signs (AUSLAN) were conducted. Notably, handwritten
and AUSLAN are also variable-length. The summary of three data sets is listed
in Table 4.

In this experiment, we compared L2-LSM against comparison algorithms in
multivariate data. And the experimental results of 5 runs are plotted in Fig. 6.

From Fig. 6, L2-LSM outperforms all comparison algorithms on handwritten.
It also gains a slight advantage on data set Libras. On high dimensional data
set AUSLAN, L2-LSM only surpasses AR. The hypothesis of uniform distribu-
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Fig. 6. The classification accuracies carried out on three multivariate data sets.
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tion fails to hold in the high dimensional data set AUSLAN, which leads to a
suboptimal result for L2-LSM.

The time consumption of L2-LSM and comparison algorithms are plotted in
Fig. 5. Generally, L2-LSM demonstrates an advantage on its efficiency. It has
comparative time usage with RV. On high dimensional data set AUSLAN, L2-
LSM and RV build a classifier using less time over other algorithms, and the
difference within these two algorithms is not obvious.
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Fig. 8. The approximating errors under different regression coefficients ξ.
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Fig. 9. The classification accuracies under different regression coefficients ξ.

Parametric Sensitivity Analysis. The performance achieved in the model
space of LSM are jointly determined by two factors, i.e. the representations
offered by LSMs to the sequences and the separation of LSMs in the correspond-
ing space. An unsettled issue is the relationship between these two goals. In the
approach, regression coefficient ξ is the parameter which needs careful tuning for
a better trade-off between the approximation to the sequences and separation of
LSMs in the model space.

In this experiment, three data sets were used as benchmark data sets. And
experiments were conducted with different settings of parameter ξ. For simplicity,
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Table 4. The description of multivariate data sets.

Name Dim Len Class Train Test

Libras 2 45 15 360 585

handwritten 3 60-182 20 600 2268

AUSLAN 22 45-136 95 600 1865

we assume a uniform distribution for μ(·). The experimental result in terms of
classification accuracies versus ξ is plotted in Fig. 9, and the approximation errors
versus ξ are plotted in Fig. 8.

Compare Figs. 8 and 9, we can observe a higher classification accuracy and
a lower approximation error are likely to occur jointly, which suggests that two
goals may not be conflicting objectives with regard to ξ. A joint optimization
procedure for ξ may be feasible.

4 Conclusion

This paper proposes model space learning for the sequential data on the basis of
LSM. LSM is used as a universal approximating tool to fit the conditional prob-
ability of a sequence. The models offer representations for sequences of training
data. As a result, the learning strategy is carried out in the model space instead
of on the original data. From the experiments, the benefits brought by replacing
the “memoryless” response function with node that has its own “history” are
clear. Fisher-LSM is shown to be robust and effective on processing binary data.
An overall improvement of classification accuracy on benchmark data has been
observed via experiments. Sampling-LSM is encouraged when the dimensionality
of training data is not high.

This paper also discusses measuring the dissimilarity between two LSMs in
the model space. A set of models, instead of a single model, is used to give approx-
imations to the training data. Learning in model space relaxes the requirement to
use a single model to explain the whole data. The relationship between approx-
imating capability to sequences and separation of LSMs is studied. The result
shows the feasibility to implement joint optimization on two seemingly conflict
targets.

In general, this paper proposes an approach to constructing data representa-
tion without need of assuming a parametric formulation. Its applications on lower
dimensional data have been demonstrated to be effective. Promising future work
includes improving the model space learning on high dimensional data without
sacrificing its efficiency.
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Abstract. Event sequences are ubiquitous, e.g., in finance, medicine,
and social media. Often the same underlying phenomenon, such as tele-
vision advertisements during Superbowl, is reflected in independent event
sequences, like different Twitter users. It is hence of interest to find com-
binations of temporal segments and subsets of sequences where an event
of interest, like a particular hashtag, has an increased occurrence proba-
bility. Such patterns allow exploration of the event sequences in terms of
their evolving temporal dynamics, and provide more fine-grained insights
to the data than what for example straightforward clustering can reveal.
We formulate the task of finding such patterns as a novel matrix tiling
problem, and propose two algorithms for solving it. Our first algorithm
is a greedy set-cover heuristic, while in the second approach we view the
problem as time-series segmentation. We apply the algorithms on real
and artificial datasets and obtain promising results. The software related
to this paper is available at https://github.com/bwrc/semigeom-r.

Keywords: Event sequences · Tiling · Covering · Binary matrices

1 Introduction

Phenomena that evolve over time appear in a wide range of application domains
including finance (e.g., stock markets [16]), process monitoring (e.g., telecommu-
nications systems [19]), medicine (e.g., biosignals or electronic patient records,
[2]), geoscience (e.g., weather or geological measurements [26]), and mobile sen-
sors [15]. Data from such domains can often be represented as event sequences,
i.e., sequences of labels that correspond to various events associated with
a timestamp of the occurrence of the event. Many processes generate such
sequences naturally, or a low level signal can be discretised into an event sequence
by applying some suitable method, such as SAX [25].

Given multiple time-aligned event sequences, an important problem is to find
similarities between them, allowing the detection of underlying higher-level pat-
terns in the data. This problem has been approached using several different tech-
niques, such as segmentation [3], motif detection [29], and clustering [12,14,31].
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 329–344, 2016.
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Finding similarities becomes more challenging when the event sequences are non-
stationary,which is often the case in real application domains, such as volatile stock
markets or rapidly changing social media streams. In a collection of non-stationary
event sequences, interesting local patterns emerge as subsets of event sequences
synchronise and desynchronise over short periods of time. Hence, different event
sequences are related to each other during different time periods, forming group-
ings of intra-related sequences. More importantly, these groupings are not static,
but they can also evolve over time.

In this paper, we study the following problem: given multiple event sequences,
identify continuous time segments where subgroups of these sequences exhibit
similar behaviour. This formulation is generic and goes beyond state-of-the-art
sequence clustering and segmentation problems, since the objective is to iden-
tify subgroups of sequence segments that share dominant local trends. Such
subgroups can reveal local temporal similarities and dependencies between the
sequences belonging to the same subgroup, which would otherwise be hidden by
the global trends and structure of the sequences. Our problem is applicable to
several domains. For example, in stock market analysis, we may want to identify
subgroups of stocks that exhibit similar trends within different time periods.
Identifying such groupings of trends and dependencies can provide insights and
reveal potential underlying socio-economic events partly affecting the market.

We approach our problem as a matrix tiling problem, where event sequences
are compactly represented as a matrix, where each row holds an event sequence
and each column corresponds to a time point. Hence, our task now becomes
equivalent to finding tiles in the matrix. A tile consists of a consecutive range of
columns (time points) and an arbitrary set of rows (event sequences) of the input
matrix. Unlike tiles that are fully geometric (both rows and columns must be
consecutive), or combinatorial (both rows and columns can be chosen arbitrar-
ily), we call our tiles semigeometric, since only one dimension (time) must form
a contiguous segment. A semigeometric tile, thus, represents a group formed by
a subset of event sequences sharing the same dominant feature for the duration
of the tile. We illustrate our approach with an example using stock index data.

Example. Figure 1 shows daily closing values of ten stock market indices during
1995–2000. Segments representing patterns of economic decline are shown in (a)
while segments of economic growth are shown in (b). The discretisation process
used for this dataset is described in detail in Sect. 4. Each of the four panels
shows a tiling of the stock indices using the MaxTile and GlobalTile algorithms
presented in this paper. Vertically aligned segments with the same colour belong
to the same tile and represent a region where the event series share the dominant
feature; here economic growth or decline. More precisely, the coloured tiles in
(a) represent segments of economic decline, whereas in (b) the tiles represent
segments with economic growth. Applying the proposed tiling method allows us
to discover interesting temporal patterns in the data that can be explained by
econo-political events. For instance, all algorithms here detect the concurrent
economic decline due to the Russian economic crisis in the autumn of 1998 (and
the concurrent rebound later the same year).



Semigeometric Tiling of Event Sequences 331

Fig. 1. (a) Periods of economic decline (stock indices (decline)) and (b) growth
(stock indices (growth)) for 10 different stock indices. The coloured regions are
identified using the algorithms presented in this paper. The horizontal axis shows days
between the years 1995–2000. Vertically aligned segments with the same colour are
part of the same tile. Note that the tiles during decline in Figure (a) do not overlap
with the tiles during growth in Figure (b). (Color figure online)

Related Work. The problem of finding regions in data matrices with character-
istic properties has been extensively studied in multiple contexts; e.g., bicluster-
ing (e.g., [5,14]), segmentation (e.g., [12]), tiling (e.g., [10,11,21,33]) and data
streams (e.g., [22]). The problem studied in this paper differs from the tradi-
tional biclustering and tiling problems in the sense that while we are interested
in simultaneously clustering dimensions (rows) over time (columns) based on a
given similarity feature of the data, we require the columns in a tile to be con-
secutive. As discussed below, the temporal ordering has significant impact on
the computational efficiency and implementation of the algorithms. In previous
work on column-coherent biclusters (see, e.g., [23,27,34]) a specific structure is
enforced on the structure column structure of the clusters. The problem of local
correlation patterns discussed in [32] is related, but relates to local correlations
in time and not precision of tiles. In contrast to these, we define the quality of
our tiles in terms of precision and recall, and frame the task of finding a tiling
as a covering problem that allows us to build upon existing efficient algorithms.

Contributions. In this paper, we introduce and formulate the novel problem
of semigeometric tiling of event sequences and present two algorithms for solving
it. The first algorithm, called MaxTile is a greedy approach based on the set-
cover problem, while the second algorithm, called GlobalTile, employs dynamic
programming. In addition, we introduce three metrics to assess the quality of a
tiling. We also discuss the complexity of the problem and show its connection to
two well-known NP-hard problems. Finally, we demonstrate the utility of the
proposed methods through an extensive empirical evaluation on both real and
synthetic datasets.
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2 Problem Definition

In this section we introduce the notation used in the paper and formalise the
problem we address. We consider an n×m matrix X with elements from a finite
alphabet Σ. The rows of X are event series and the columns correspond to time
instances. With Xij we denote the element of X on row i and in column j.
For real-valued event series we assume that some suitable discretisation method
(e.g., using Fourier coefficients or wavelets [1,4], linear or non-linear piecewise
approximations [6,17] or symbolic representations [25]) has been applied in a
pre-processing step. Unless otherwise specified, we assume that Σ = {0, 1}, i.e.,
X is a binary matrix. Generalisation to larger alphabets is rather straightforward
and is discussed below, though for simplicity we focus on binary alphabets.

Given a matrix X, our objective is to identify tiles. These are consecutive
segments in which a subset of the rows of X contain mostly 1s. Formally, a tile
t is a three-element tuple (R, a, b) where R is a set of rows of X, and a and b
are endpoints of the tile, i.e., column indices corresponding to the beginning and
end of the tile, respectively. Below, we use Rt, at, and bt to refer to the tuple
elements for a tile t. The coverage of the tile t, denoted C(t), is a set of matrix
elements belonging to the tile, i.e.,

C(t) = {(i, j) | i ∈ Rt and at ≤ j ≤ bt}.

Tiles t and t′ overlap unless their intersection C(t) ∩ C(t′) is empty. Finally, a
tiling T is a set of possibly overlapping tiles. The coverage of T , denoted C(T ),
is the union of the covers of each tile in T , and the weight W (T ) of T is the sum
of the elements in C(T ), i.e., C(T ) =

⋃
t∈T C(t) and W (T ) =

∑
(i,j)∈C(T ) Xij .

Intuitively, a tiling is good if it (a) has a large weight (covers mainly ones and
only a few zeros), (b) covers as many of the ones in X as possible, and (c) uses
as few tiles as possible. Requirement (c) is easily achieved by constraining the
cardinality of the tiling, while (a) and (b) can be naturally formalised in terms
of precision and recall. Precision is the fraction of ones in the coverage C(T ) and
recall is the fraction of all ones in X belonging to C(T ), i.e.,

precision(T ) =
W (T )
|C(T )| , and recall(T ) =

W (T )∑
i

∑
j Xij

.

Optimising both precision and recall simultaneously requires formulating a
bicriteria optimisation problem, or using some aggregate objective function, such
as the F1-measure. Here we opt for maximising recall with a lower bound con-
straint on precision and an upper bound constraint on the cardinality of the
tiling T . This is a natural definition, as it aims to find a tiling that explains as
much of the 1s in X as possible without using tiles that are too noisy (precision
constraint), nor is too complex (cardinality constraint). Importantly, in most
practical situations the constraint on precision is easy for the user to set given
that the density of X (i.e., fraction of 1s) is known. It should be noted that the
parameters could also be chosen using an approach based on, e.g., the minimum
length description (MDL) principle.

We now formulate the main problem studied in this paper:
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Problem 1. Semigeometric Tiling Given an n×m binary matrix X, an integer
k, and a real number α ∈ [0, 1], find the tiling T maximising recall(T ) subject
to the constraints precision({t}) ≥ 1 − α for each tile t ∈ T and |T | ≤ k.

Problem Complexity. Upon first inspection Semigeometric Tiling seems
very similar to two well-known problems: the nongeometric tiling problem (i.e.,
the combinatorial tiling problem) [10,11], where both rows and columns are
unordered, and to the rectilinear picture compression problem [9, problem SR25],
where both columns and rows have a fixed order. In the semigeometric case, the
smallest tiling covering all 1s in the input matrix can be found in polynomial
time.

Theorem 1. A minimum-cardinality semigeometric tiling for an n × m binary
matrix X with perfect precision and recall can be found in polynomial time.

The proof follows from known results for the problem of covering a vertically
convex polygon with rectangles [8,13,20].

Hence, the problem of semigeometric tiling is computationally different from
the nongeometric and fully geometric tiling problems. Notice, however, that
Theorem 1 does not imply that Semigeometric Tiling is tractable; it merely
suggests that the complexity of this problem is not trivially NP-hard. There
are also other reasons to argue why this might be the case. Namely, for the
nongeometric tiling problem it is easy to establish that merely finding the largest
tile is NP-hard. In our case this sub-problem is also easy, as we discuss below.
However, the actual complexity of Problem 1 is an open question.

Generalisation to Multi-letter Alphabets. It is important to note that
generalisation to multi-letter alphabets follows directly from the above given
definitions. Multi-letter tilings are constructed by first finding the individual
tiling for each letter, after which recall is found by selecting k tiles from the
individual tilings, such that recall is maximised. If different precisions are used
for different alphabet letters, the minimum precision of the multi-letter tiling
corresponds to the smallest single-letter precision.

3 Algorithms

In this section we describe in detail two algorithms (MaxTile and GlobalTile)
for solving the Semigeometric Tiling problem (Problem 1).

3.1 Overview

We approach Problem 1 using two slightly different, yet standard strategies that
make use of the property that the columns of the input matrix X are ordered.
An example of how our algorithms work on a small example dataset containing
three overlapping tiles is shown in Fig. 2.
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Original Data MaxTile
k: 3     P: 1.00     R: 1.00

GlobalTile
k: 5     P: 1.00     R: 1.00

Fig. 2. Example comparing the output between the two algorithms. k stands for car-
dinality, P for precision and R for recall. The maximum cardinality was set to 5 and
the lower bound for precision to 0.95. The solution found by GlobalTile (rightmost
figure) is also equal to the vertical decomposition (see Sect. 3.3 and Proposition 2) of
the original tiling.

Both MaxTile and GlobalTile algorithms are based on the simple observa-
tion that given X and two endpoints a and b, we can easily find the maximum
recall tile (R, a, b) satisfying the precision constraint:

Definition 1. Given the n × m binary matrix X and the precision constraint
α, the maximum recall tile with endpoints a and b is defined as (R∗, a, b), where
R∗ is found by maximising recall subject to the precision constraint α.

We can find the maximum recall tile for every choice of a and b in O(n log n)
time by using cumulative sums of rows to find the number of ones within a row
for a given interval and by sorting the rows by the number of ones. Some choices
of a and b may result in an empty maximum recall tile, e.g., if there are no rows
with enough 1s to satisfy the precision constraint. We omit such tiles, and obtain
the set T of at most

(
m
2

)
candidate tiles.

MaxTile and GlobalTile differ in the way the tiling is constructed from can-
didate tiles. MaxTile greedily solves a cardinality-constrained set-cover problem,
while GlobalTile treats the problem as a time-series segmentation task and finds
the tiling using dynamic-programming, a side effect of which is that GlobalTile
cannot produce overlapping tilings. MaxTile has no such constraint. This is seen
in Fig. 2, where the MaxTile tiling is overlapping and the GlobalTile tiling
consists of vertical non-overlapping stripes.

3.2 MaxTile

The MaxTile algorithm is based on a straightforward mapping of the tiling
problem to a set cover problem. MaxTile first finds all maximum recall tiles
(Definition 1) in the data matrix X with a precision of at least 1 − α. A subset
of k, possibly overlapping, tiles maximising recall is then chosen from these tiles.
The MaxTile algorithm is presented in Algorithm 1 and has a complexity of
O (

m2n log n
)
. The algorithm maintains a tiling T , and always adds a tile t �∈ T

maximising the marginal gain, i.e., recall(T ∪ t) − recall(T ).
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input : n × m binary matrix X, precision threshold α, max no of tiles k.

1 Let T ← ∪1≤a≤b≤mtab, where tab = (R, a, b) is a tile with R ⊆ [n] with the highest recall
and precision ≥ α

2 Greedily find the tiling T ⊆ T , | T |= k maximising recall of X.
3 return The tiling T .

Algorithm 1. MaxTile

input : n × m binary matrix X, precision threshold α, max no of tiles k.

1 Use dynamic programming to compute all l-segmentations Sl up to l = 2k + 1.
2 T ← ∅
3 for l = k to 2k + 1 do
4 Tl ← all tiles from Sl

5 if Tl has more than k tiles then
6 Tl ← the k tiles t ∈ Tl having highest W (t)
7 end
8 insert Tl into T
9 end

10 return The tiling T ∈ T that has the highest W (T )

Algorithm 2. GlobalTile

Proposition 1. The function recall(T ) is submodular, i.e., when T ′ ⊂ T , and
t is some tile not in either T or T ′,

recall(T ′ ∪ t) − recall(T ′) ≥ recall(T ∪ t) − recall(T ).

The proof follows the usual argument for covering functions.
Since recall(T ) is submodular, we can employ the same optimisation as in,

e.g., [24]: we maintain a priority queue of known marginal gains for every tile
and only recompute the marginal gain for a given tile if it is larger than the best
marginal gain observed for the current T .

Also, note that recall(∅) = 0, and that recall(T ) increases monotonically as
T grows. This, together with the submodularity of recall(T ) and well-known
results from [28], yields that the greedy algorithm has a constant approximation
factor of 1 − 1/e, i.e., the recall of the MaxTile tiling is at least 1 − 1/e times
the optimal recall with k tiles.

3.3 GlobalTile

To design the GlobalTile algorithm we view the Semigeometric Tiling prob-
lem as a time-series segmentation task, the objective of which is to partition a
given time-series into l non-overlapping, contiguous intervals, called segments.
The partition is found by optimising the sum of segment-wise scores. We call
this partition an l-segmentation. The input matrix X can be viewed as a mul-
tidimensional time-series, where a contiguous range of columns from column a
to column b forms a segment. The segment-specific score is defined as the recall
of the maximum recall tile (R∗, a, b). The mapping between an l-segmentation
and a tiling is thus straightforward. Every segment in an l-segmentation has
two endpoints, a and b, given which we can compute the maximum recall tile
(R∗, a, b) as specified in Definition 1. Since (R∗, a, b) may be empty for some
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choices of a and b, some segments may correspond to empty tiles. Therefore,
every l-segmentation maps to a tiling of cardinality at most l. In summary, given
the matrix X and the integer k, the idea of GlobalTile is to (a) compute an
optimal l ≥ k-segmentation of X, and (b) turn this l-segmentation into a tiling
of size k ≤ l.

Importantly, an optimal l-segmentation can be computed in polynomial time
with dynamic programming [3]. Unfortunately this does not give a polynomial
time algorithm for Problem 1, because the parameters l and k do not match one-
to-one, and the resulting segmentation must be non-overlapping. This constraint
is not present in Problem 1. However, we can still use an l-segmentation as a
building block in our algorithm as follows. Given the input X and the integer k,
the GlobalTile algorithm first finds all l-segmentations of X from l = k up to
l = 2k + 1. Let Tl denote the tiling corresponding to a given l-segmentation.
Since Tl may contain up to l ≤ 2k + 1 tiles, the algorithm keeps only the k
largest tiles of every Tl to maximise recall. This pruning step is repeated for
every tiling Tl with l ∈ {k, . . . , 2k + 1}, and the algorithm returns the tiling Tl

having the highest recall. Pseudocode of GlobalTile is shown in Algorithm 2.
Next we discuss some properties of the GlobalTile algorithm. In the follow-

ing we call a tiling T of cardinality k a k-tiling. In any k-tiling, tiles (R1, a1, b1)
and (R2, a2, b2) are vertically non-overlapping if b1 < a2 and b2 < a1. A tiling
is vertically non-overlapping if all of its tiles are non-overlapping. The vertical
decomposition of T is the vertically non-overlapping tiling T ′ with smallest car-
dinality that has exactly the same cover as T . See the rightmost panel of Fig. 2
for an example of a vertical decomposition. We make the following observation:

Proposition 2. Any tiling T of cardinality k has a vertical decomposition of
cardinality at most 2k − 1.

The aim of computing the l-segmentation is to find the vertical decomposition
of the underlying tiling. First, observe that if the underlying optimal k-tiling is
vertically non-overlapping, the dynamic programming algorithm finds it directly
(provided l is set appropriately). For other k-tilings, we know from Proposition 2
that their vertical decompositions correspond to segmentations with at most
2k+1 segments (including possible empty segments before and after the leftmost
and rightmost tile, respectively). For inputs with optimal noise-free tilings (i.e.,
tilings with precision equal to 1), we obtain the following:

Proposition 3. Given an input matrix X containing a noise-free k-tiling T ∗

and the integer k, the dynamic programming algorithm finds a k′-tiling T ′, with
recall(T ′) = recall(T ∗), and k ≤ k′ ≤ 2k − 1.

Since the GlobalTile algorithm is given the cardinality constraint k, it may
not return the entire vertical decomposition of size k′ ≥ k. In the worst case
all 2k − 1 tiles in the vertical decomposition T ′ have exactly the same weight,
and GlobalTile drops k − 1 of these, i.e., recall(T ) ≥ k

2k−1 recall(T ∗). Hence,
GlobalTile finds a tiling T with recall(T ) ≥ 1

2 recall(T ∗). Notice that in practice
GlobalTile can perform even better, as it looks for the best k-tiling from all
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segmentations up to size 2k + 1, and the vertical decomposition may in practice
contain fewer than 2k − 1 tiles.

Propositions 2 and 3 above imply in practice that the GlobalTile algorithm
can find tilings with recall very close to optimum, at the cost of using at most
twice the amount of tiles used in an optimal solution.

4 Experiments

In this section we empirically investigate the relationship between (i) precision
and recall and (ii) between recall and cardinality. We test the performance and
behaviour of both tiling algorithms on four real and two synthetic datasets. We
also compare the tilings we find for real data with tilings of a randomised version
of the data having the same row marginals. The purpose of this comparison is
to establish that the tilings we have found indeed reflect meaningful structure
instead of noise.

The algorithms are implemented in R and are released as the semigeom R-
package. This package and all source code used for the experiments is available
for download1.

4.1 Datasets

We consider four real and two synthetic datasets, described in detail below.
Properties of the datasets are summarised in Table 1.

1. Stock indices The stock indices data contains daily stock exchange clos-
ing index data from 1995 to 20002 for 10 stock exchanges. We discretised the
data into a two-letter alphabet by first calculating the gradient of the linear
trend of each stock index in a 30-day windows and assigning 1 if the trend was
rising (gradient positive) and −1 if the trend was decreasing (gradient nega-
tive). Since both labels are of interest, stock indices (growth) will denote
the dataset when the label of interest is 1, and stock indices (decline)
will denote the dataset when the label of interest is −1.

2. Stock prices The stock prices dataset contains daily closing prices
between 03.01.2011–31.12.2015 (1257 trading days) for 400 randomly selected
stocks. The data was discretised by calculating the change (in %) in closing
price from the previous day. Instances for which the closing price dropped
more than −6% were set to 1 and all other instances were set to zero.

3. Paleo data The paleo dataset is a binary 139 × 124 matrix describing the
presence or absence of species (139) of Cenozoic mammals in different sites
(124) [7,30]. The sites in the dataset have a temporal order determined by
specialists.

1 https://github.com/bwrc/semigeom-r.
2 Data from http://www.economicswebinstitute.org/data/stockindexes.zip.

https://github.com/bwrc/semigeom-r
http://www.economicswebinstitute.org/data/stockindexes.zip
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4. EEG dataset The EEG dataset is part of the ISRUC-Sleep dataset [18], con-
sisting of EEG polysomnography recordings from 10 healthy people. There
are six EEG channels located on the frontal (channels F3, F4), central (chan-
nels C3, C4), and occipital (channels O1, O2) parts of the scalp, all sampled
at 200 Hz. We chose to use data from the first 6.5 hours of sleep, where data
from all subjects was available, giving a total of 4680000 samples per channel.
The data was discretised by calculating the EEG frequency spectrum in four-
second windows, and for each window determining which of the following 5
frequency bands was dominant (delta: 1–4 Hz, theta: 4–7 Hz, alpha: 8–15 Hz,
beta: 16–31 Hz, and gamma: 16–100 Hz). Each window was then assigned a
letter corresponding to the dominant band. After the discretisation the data
contains 5850 samples for each of the six channels.

5. Synthetic data The synthetic datasets are randomly generated binary
matrices containing a given number of randomly inserted segments with a
fraction p of ones. We used two types of synthetic datasets; (i) k randomly
inserted tiles of size l × l and (ii) tiles formed from k randomly inserted
varying-width segments spanning l rows.

Table 1. Properties of the datasets used in the experiments. Size is the number of
rows and columns in the original data and the discrete size are the dimensions of the
discretised data used as input to the algorithms. Density is the fraction of 1 s in the
input matrix.

Dataset Size Size discrete Density

Stock indices (growth) 10 × 1353 10 × 45 0.62

Stock indices (decline) 10 × 1353 10 × 45 0.37

Stock prices 400 × 1258 400 × 1257 0.02

Paleo 139 × 124 139 × 124 0.11

EEG subject 4 6 × 4680000 6 × 5850 0.14

EEG subject 7 6 × 4680000 6 × 5850 0.21

Synthetic 1 50 × 100 50 × 100 0.28

Synthetic 2 50 × 100 50 × 100 0.16

4.2 Basic Results

Precision-Recall Trade-Off. We first study the precision-recall trade-off of
the algorithms. Precision-recall curves for two different cardinalities (3 and 7) are
shown in Fig. 3 for the synthetic1, paleo, stock prices, and stock indices
(decline). The curves were computed by modifying the precision constraint
parameter. The results suggest that both MaxTile and GlobalTile perform
similarly in terms of balance between precision and recall.
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Fig. 3. Precision-recall curve for the algorithms for different datasets using cardinalities
of 3 and 7.

Recall in Original vs. Randomised Data. To study if the found tilings
reflect meaningful structure, we compare the recall of the tiling of the original
data with the recall of a tiling for randomised data, using otherwise the same
parameters. The randomised data are generated by shuffling the original values of
every data row uniformly at random. This simple randomisation scheme breaks
any temporal connections the event sequences may have, and thus any tiling
found after randomisation only contains meaningless structure. Tilings found in
the original unshuffled data should have a higher recall.

The cardinality-recall curves for the algorithms on the paleo, stock prices,
stock indices (growth), and stock indices (decline) datasets are shown
in Fig. 4. The precision constraint was set to the value Pmin in Table 2. The
CR-curves show that for every dataset, both algorithms find a tiling with higher
recall than what can be found in the randomised data. This indicates that tilings
of the original data indeed contain meaningful structure. Moreover, although the
algorithms perform quite similarly, MaxTile in general achieves a higher recall
for a given cardinality, as expected, since the algorithm allows overlapping tiles.
The performance of the algorithms on the paleo dataset is very similar. The
structure of the dataset fits well with the assumption of vertical segments of
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Fig. 4. Cardinality-recall curve for the algorithms for different datasets.

GlobalTile and hence GlobalTile achieves a higher recall than MaxTile for
the same cardinality.

Running Times. Typical wall-clock running times (using unoptimised R-code
running on a 1.8 GHz Intel Core i7 CPU) as well as examples of recall and
cardinality for a given precision constraint for all datasets and both algorithms
are shown in Table 2.

4.3 Example Tilings

Paleo dataset. The analysis results of the synthetic1 and paleo datasets are
shown in Fig. 5. Both algorithms manage to successfully capture the structure
in the synthetic1 dataset. Notice the difference in terms of selected tiles, due
to allowance of overlapping tiles by MaxTile. The paleo dataset is very sparse,
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Table 2. Numerical results from the experiments. P, R, and k stand for precision, recall,
and cardinality, respectively. The time-column gives the calculation time in seconds.

Dataset Algorithm Pmin kmax P R k time [s]

stock indices GlobalTile 0.85 5 0.87 0.62 5 0.12

(growth) MaxTile 0.85 5 0.87 0.66 5 0.03

stock indices GlobalTile 0.85 5 0.90 0.33 5 0.11

(decline) MaxTile 0.85 5 0.91 0.38 5 0.03

stock prices GlobalTile 0.30 10 0.32 0.16 10 112.90

MaxTile 0.30 10 0.30 0.19 10 104.41

paleo GlobalTile 0.30 3 0.30 0.85 3 1.32

MaxTile 0.30 3 0.30 0.82 3 0.60

EEG GlobalTile 0.60 10 0.60 0.79 10 1451.61

(alpha, subject 4) MaxTile 0.60 10 0.60 0.79 10 461.38

EEG GlobalTile 0.60 10 0.60 0.94 10 1456.06

(alpha, subject 7) MaxTile 0.60 10 0.60 0.94 10 473.34

synthetic1 GlobalTile 0.75 5 0.76 0.99 5 0.47

MaxTile 0.75 5 0.75 1.00 4 0.21

synthetic2 GlobalTile 0.75 5 0.80 1.00 5 0.48

MaxTile 0.75 5 0.76 1.00 5 0.22

so a precision threshold of 0.3 was used. The structure in the three geological
epochs in the data are clearly visible in the tilings and both algorithms achieve
a high recall already with three tiles. The performance of the two algorithms is
similar in terms of precision, and the discovered structure is also equivalent. The
middle tile (in red) is wider for MaxTile, since the algorithm allows overlapping
tiles.

Fig. 5. Tiling of the synthetic1 and paleo datasets. (Color figure online)

EEG dataset. We chose to consider only one letter corresponding to the alpha
band from each channel and calculated the tilings with a maximal cardinality
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(a) Subject 4 (b) Subject 7

Fig. 6. Tiling of the EEG activity in the alpha band for subjects 4 and 7. (Color figure
online)

of 10 and a precision threshold of 0.60. This analysis, hence, reveals whether
there are segments with similarly dense alpha activity on the different chan-
nels. It is expected that neighbouring channels in the same front-back location
(frontal, central, and occipital) should be similar and channels in different front-
back locations should be somewhat different. We omitted singleton tiles, i.e.,
tiles with a cardinality less than two, since we are interested in the relationships
between different channels. Figure 6 shows the tiling obtained for the two sub-
jects with prominent patterns. The MaxTile and GlobalTile tilings are very
similar, with some small differences. In MaxTile tiling of subject 4 there is a rel-
atively wide segment (green tile), where the neighbouring occipital channels and
the C3 channel share a similar pattern of alpha activity. Both algorithms find
a similar pattern of alpha activity in all channels of subject 4 (red tile at right
end) and subject 7 (red tile at left end). Information regarding the relationships
and spatiotemporal distributions of different EEG rhythms could be useful, e.g.,
when investigating the neural correlates of sleep patterns.

5 Discussion

In this paper we studied the problem of finding segments with similar properties
in a collection of event sequences. We formalised the problem as a tiling problem
and presented two algorithms for finding a tiling maximising the recall of a
dataset discretised into an alphabet.

We empirically demonstrated the performance of the algorithms on real
datasets from different domains; economics, palaeontology, and medicine, as well
as on synthetic datasets. Using the methods described in this paper it is possible
to uncover temporal phenomena in the data and the results provide meaningful
insight into the interpretation of the underlying processes. The two algorithms
emphasise slightly different properties of the data. For instance, the tilings found
by the MaxTile algorithm consist of large, overlapping, submatrices satisfying
the precision requirement, whereas the tilings produced by the GlobalTile algo-
rithm are always non-overlapping.
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Different datasets require different choices of parameters. The cardinality
and precision threshold must be set depending on factors, such as the data
density. As shown in the experimental evaluation, the proportion of the dataset
explained by the tiles (i.e., the recall) varies depending on both the cardinality
and precision. A reasonable heuristic for setting the precision constraint is to
consider the overall data density, and set α to a smaller value so that the tiles
indeed reflect denser regions in the input matrix.

Interestingly, we here showed that the special case of semigeometric tiling of a
dataset, where we find a minimum full cover with perfect precision is tractable in
polynomial time despite the related problems of combinatorial and fully geomet-
ric tiling being NP-hard. However, our main problem of covering a data matrix
with a precision of 1 − α with k tiles appears to be challenging, and we suspect
it is NP-hard. The proof of this, however, remains an open question. Another
important direction for future work is to consider the significance of the tilings
found. In this paper we use a simple sanity check where the recall of the resulting
tiling is compared against the recall of a tiling of the randomised data matrix.
Methods to evaluate the significance of individual tiles are also of interest.
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Abstract. Searching images with multi-attribute queries shows practi-
cal significance in various real world applications. The key problem in
this task is how to effectively and efficiently learn from the conjunction
of query attributes. In this paper, we propose Attribute Conjunction
Recurrent Neural Network (AC-RNN) to tackle this problem. Attributes
involved in a query are mapped into the hidden units and combined in
a recurrent way to generate the representation of the attribute conjunc-
tion, which is then used to compute a multi-attribute classifier as the out-
put. To mitigate the data imbalance problem of multi-attribute queries,
we propose a data weighting procedure in attribute conjunction learning
with small positive samples. We also discuss on the influence of attribute
order in a query and present two methods based on attention mechanism
and ensemble learning respectively to further boost the performance.
Experimental results on aPASCAL, ImageNet Attributes and LFWA
datasets show that our method consistently and significantly outper-
forms the other comparison methods on all types of queries. The software
related to this paper is available at https://github.com/GriffinLiang/
AC-RNN.

Keywords: Attribute learning · Multi-label learning · Image retrieval

1 Introduction

Attribute learning provides a promising way for computer to understand image
content in a fine-grained manner. Beyond traditional object categories, attribute
contains abundant information from holistic perception (e.g., color, shape, etc.)
to the presence or absence of local parts for images. By bridging the gap between
low-level features and high-level categorization, attributes benefit many object
recognition and classification problems (e.g., object recognition [26], face verifi-
cation [15] and zero-shot classification [16]).

Comparedwith single attribute learning, learning attribute conjunctions shows
more practical significance. An attractive application is to retrieve relevant images
based on multi-attribute query. For example, it can be used to discover objects with
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 345–360, 2016.
DOI: 10.1007/978-3-319-46128-1 22
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specified characteristics [5,22], search people of certain facial descriptions [14] and
match products according to users’ requirements [13]. In this scenario, a user may
describe thevisual contentof interestby specifyinga fewattributes.Then the image
search engine will calculate the similarity between the input attribute conjunction
and the images in some datasets. The most similar images will be returned as the
search results.

A common approach [5,16] to tackle multi-attribute query is transforming
the problem into multiple single-attribute learning tasks. Specifically, a binary
classifier is built for each single attribute, then the result of multi-attribute pre-
diction is generated by summing up the scores of all single attribute classifiers.
Though this kind of combination is simple and shows good scalability, it has two
main drawbacks. Firstly, the correlation between attributes is ignored because
of the separate training of each attribute classifier. Secondly, attribute classifi-
cation results are sometimes unreliable since abstract linguistic properties can
have very diverse visual manifestations especially when they come across differ-
ent categories. This situation may get worse with larger number of attributes
appearing in a query. For example, when the query length is three, an unreli-
able attribute classifier may affect

(
A−1
2

)
query results (A is the total number of

attributes).
Instead of training a classifier for each attribute separately, a more promis-

ing approach is to learn from the attribute conjunctions. Since conjunctions
of multiple attributes may lead to very characteristic appearances, training a
classifier that detects the conjunctions as a whole may produce more accurate
results. For example, training a classifier to predict whether the animal is (black
& white & stripe) leads to a specific concept “Zebra”. However, straightforward
training classifiers from attribute conjunctions is not a good choice. Firstly, the
length of multi-attribute query is not fixed and the number of attribute conjunc-
tions grows exponentially w.r.t. the query length. For a three-attribute query,
we need to build

(
A
3

)
classifiers for all possible attribute conjunctions. Secondly,

there are only a small number of positive examples for each multi-attribute
query (a positive sample must have multiple query attributes simultaneously),
which brings the learning process more difficulties. With data bias problem, some
attribute conjunction classifiers may perform even worse than simply adding the
scores of disjoint single-attribute classifiers. Thirdly, the correlation between
attribute conjunctions is not well explored, since the queries which share com-
mon attributes are considered to be independent from each other.

In this paper, we propose a novel attribute conjunction recurrent neural net-
work (AC-RNN) to tackle multi-attribute based image retrieval problem. As
shown in Fig. 1, the input sequence of AC-RNN are the attributes appearing in
a query with a predefined order. Each of the input attributes is then embed-
ded into the hidden units and combined in a recurrent way to generate the
representation for the attribute conjunction. The conjunction representation is
further used to compute the classifier for the input multi-attribute query. As
the multiple attributes in each conjunction are processed by the network recur-
rently, the number of parameters of our model do not increase with the length
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Fig. 1. An Illustration of Attribute Conjunction Recurrent Neural Network (AC-RNN).

of query. Compared with straightforward multi-attribute learning methods, our
AC-RNN model is more appropriate to model the complex relationship among
different attribute conjunctions. We also introduce a data weighting procedure
to address the data bias problem in attribute conjunction learning. Finally, we
discuss on the influence of attribute order in our learning framework and propose
two methods based on attention mechanism and ensemble learning respectively
to improve the performance of AC-RNN.

The rest of this paper is organized as follows. We first introduce some related
works in the following section. In Sect. 3, we present the attribute conjunc-
tion recurrent neural network in detail. Experimental results are then shown
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

Multi-Attribute Query1: Guillaumin et al. [8] propose to use a weighted
nearest-neighbour model to predict the tags of a test image which can directly
support multi-word query based image retrieval. Petterson et al. [19] present a
reverse formulation to retrieve sets of images by considering labels as input. In
this way, they can directly optimize the convex relaxations of many popular per-
formance measures. By leveraging the dependencies between multiple attributes,
Siddiquie et al. [23] explicitly model the correlation between query-attributes and
non-query attributes. For example, for a query such as “man with sunglasses”,
the correlated attributes like beard and mustache can also be used to retrieve
releant images. Since training a classifier for a combination of query attributes
may not always perform well, Rastegari et al. [20] propose an approach to deter-
mine whether to merge or split attributes based on the geometric quantities.
Different from the above methods, we propose to explicitly learn all the sin-
gle attribute embeddings and combine them in a recurrent way to generate the
representation of attribute conjunction.

1 The multi-attribute we denote here may refer to other statements such as keywords
or multi-label in other literature.
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Multi-label Learning: Read et al. [21] extend traditional binary relevance
method by predicting multiple attribute progressively in an arbitrary order. For
instance, one label is predicted first. Then the prediction result is appended at
the end of the input feature which is used as the new feature to predict the second
label. Finally, the multiple label predictions form into a classifier chain. Since a
single standalone classifier chain model can be poorly ordered, the authors also
propose an ensemble method in a vote scheme. Zhang et al. [29] exploit different
feature set to benefit the discrimination of multiple labels. This method exploits
conducting clustering analysis on the positive and negative instances and then
performs training and testing referring to the clustering results. Different from
multi-label learning problems, the task we deal with here is to model attribute
conjunctions instead of multiple separate labels.

Label Embedding: Though deep learning provides a powerful way to learn data
representations, how to represent labels is also a key issue for machine learning
methods. A common way is Canonical Correlation Analysis (CCA) [9] which
maximizes the correlation between data and labels by projecting them into a
common space. Another promising way is to learn label embedding by leveraging
other possible sources as prior information. Akata et al. [1] propose to embed cat-
egory labels into attribute space under the assumption that attributes are shared
across categories. Frome et al. [6] represent category labels with the embedding
learned from textual data. Hwang et al. [11] jointly embed all semantic enti-
ties including attributes and super-categories into the same space by exploiting
taxonomy information. But so far, there is no work on learning the conjunction
representation of multiple labels to the best of our knowledge.

3 Our Method

The problem we aim to address here is to retrieve relevant images according
to the user’s query. Intuitively, multi-attribute queries are conjunctions of sin-
gle attributes and the correlation between them is usually strong. Therefore it
is critical to learn from all attribute conjunctions jointly. Firstly, we propose
to use the recurrent neural network to model complex attribute conjunctions.
The model can not only reveal the representation of attribute conjunctions but
also output the multi-attribute classifiers. Secondly, we integrate the generated
classifiers into traditional logistic regression model. The parameters of recurrent
neural network and logistic regression are optimized simultaneously using back
propagation. We also propose a weighted version of our model to tackle data
imbalance problem. Thirdly, we study the influence of attribute order in each
query and propose two methods to further improve the original formulation.

3.1 Attribute Conjunction Learning

Let Q = {Q1,Q2, ...,QM} be a set of M multi-attribute queries. The mth query
is represented as a matrix Qm = (qm

1 ,qm
2 , ...,qm

Tm
) ∈ {0, 1}A×Tm , where A is the

number of predefined attributes and Tm is the number of attributes appearing
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in the mth query. qm
t = [qm

1t, . . . ,q
m
At]

T is a one-hot query vector, where qm
at = 1

if the tth attribute in the current query is attribute a and qm
at = 0 otherwise.

Our model takes multi-attribute query as input and outputs the represen-
tation of the query as well as the multi-attribute classifiers. More specifically,
for the mth multi-attribute query, the one-hot query vectors qm

t (t = 1, . . . , Tm)
corresponding to the attributes involved in the query are input sequentially to
our model. The subscript t decides the input order. We learn the multi-attribute
conjunction in a recurrent way, as illustrated in Fig. 2. In this model, the first t
attributes of the mth query can be represented as:

hm
t = fh(qm

t ,hm
t−1)

= σ(Wvqm
t + Whhm

t−1 + bh),
(1)

where fh is a conjunction function to model the relationship of all the attributes
belonging to the mth query. Wv ∈ R

H×A and Wh ∈ R
H×H are embedding and

conjunction matrix respectively, where H is the number of hidden units of the
recurrent network. hm

0 ≡ h0 represents the initial hidden state. bh is the bias
and σ(·) is an element-wise non-linear function which is chosen to be sigmoid in
this paper.

Fig. 2. An Illustration of Attribute Conjunction Recurrent Neural Network (AC-RNN)
with triple attribute query.

From Eq. (1), we can see that each column of parameter matrix Wv can be
considered as single attribute representation, noting that the query vector is in
one-hot form. Therefore, all input queries, including long queries with many user
specified attributes, share the same attribute-level representations. In this way,
the parameter growth problem for long queries is addressed.

After computing hm
Tm

of the last query vector with the recurrent network,
we actually obtain the hidden representation of the whole query. Then, we stack
one layer on top of the recurrent units and compute the multi-attribute classifier
wm as the output of the neural network:

wm = fo(hm
Tm

) = Wohm
Tm

+ bo. (2)
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Here, the regression function fo is chosen to be in a linear form, though more
complex form can be considered. The parameter Wo and bo are the output
matrix and bias respectively. In this way, the attribute embeddings of the current
query are combined in a recurrent way to learn the complex relationship between
the attributes. After that we use the output conjunction as the mth multi-
attribute classifier to retrieve relevant images. The model parameters of the con-
junction and output functions are denoted as Θ = {Wv,Wh,Wo,bh,bo,h0}.

3.2 Multi-attribute Classification

Suppose there are N labeled images, {xi,yi}N
i=1, where xi ∈ R

D denotes the
D-dimensional image feature vector, and yi ∈ {0, 1}A indicates the absence and
presence of all attributes. The attribute label can be expressed in matrix form
as Y = [y1,y2, ...,yN ] ∈ {0, 1}A×N . In order to retrieve relevant images given a
multi-attribute query Qm, we resort to multi-attribute classification to estimate
the labels Y.

Since attribute learning is a binary classification problem, we make use of
logistic regression to predict the absence or presence of multiple attributes. The
loss function with respect to the mth multi-attribute query is expressed as the
following negative log likelihood:

L(xi,yi,Qm;Θ) = −ỹimlog(σ(wT
mxi))

−(1 − ỹim)log(1 − σ(wT
mxi)),

(3)

where ỹim = (yT
i q

m
1 & yT

i q
m
2 & · · · & yT

i q
m
Tm

) and & denotes the bitwise
operation AND . wm is the multi-attribute classifier computed from Eq. (2).

Generally speaking, the presences of some attributes are usually much less
than its absence. This situation is even worse for multi-attribute image retrieval
since the positive sample must have multiple query attributes simultaneously.
To tackle the sample imbalance problem, we evolve our formulation with data
weighting procedure inspired by [8,12]. The resulting loss function is rewritten
as the following weighted log likelihood:

Lw(xi,yi,Qm;Θ) = −c+mỹimlog(σ(wT
mxi))

−c−
m(1 − ỹim)log(1 − σ(wT

mxi)),
(4)

where c+m = N/(2 × N+
m) and c−

m = N/(2 × N−
m) which make the loss weights

of all the data sum up to N . N+
m (N−

m) is the number of positive (negative)
images for the mth multi-attribute query. The experimental results show that
the weighted loss function performs better than the original logistic regression.

By combining the attribute conjunction and multi-attribute classification into
a unified framework, the final objective function is formulated in the following
form:

arg min
Θ

1
N

N∑

i=1

M∑

m=1

L∗(xi, yi, Q
m;Θ) + λΩ(Θ), (5)
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where Ω(·) is the weight decay term used to increase the model generalization
ability. The parameters λ is used to balance the relative influence of the regu-
larization terms. The loss function can also be replaced with the weighted form
as defined in Eq. (4).

We solve the above optimization problem by using L-BFGS. The derivatives
of the logistic regression parameters are calculated and back propagated into
the output units of AC-RNN. Then the derivatives of Θ can be easily computed
with the backpropagation through time algorithm [27]. In this way, our model
can be trained in an end-to-end manner.

3.3 Attribute Order in AC-RNN

Recurrent neural networks are well suited to model sequential data. However,
the input query attributes are not naturally organized as a sequence since the
underlying conditional dependency between attributes are not known. The per-
formance of our model is somewhat sensitive to the input order of attributes.
To tackle this problem, we propose two methods by using recurrent attention
mechanism and ensemble learning respectively.

Attention Mechanism Based. Attention mechanism has been successfully
applied in generating image caption [28], handwriting recognition [7] and
machine translation [2]. And it have been used to model the input and output
structure of a sequence to sequence framework in a recent paper [25]. Inspired
by the previous works, we propose to integrate the attention mechanism into our
model to tackle the ordering problem. The pipeline is shown in Fig. 3. The pro-
posed network reads all the attributes according to an attention vector, instead
of processing query attributes one by one at each step. The attention vector
is a probability vector indicating the relevance of all pre-defined attributes to
the current query. And it is automatically modified at each processing step and
recurrently contributes to the representation of the attribute conjunction. Intu-
itively, we first initialize the input attention vector for the mth query as:

pm
1 =

∑Tm

i=1 q
m
i

Tm
. (6)

In this way, the network will first take the query attributes into attention.
Then we refined the attention vector and learn the attribute conjunction step
by step using the recurrent neural network with attention mechanism. In the tth

step, the attribute conjunction and attention vector are generated as follows:

hm
t = fh(pm

t ,hm
t−1) = σ(Wvpm

t + Whhm
t−1 + bh), (7)

pm
t+1 = Softmax(Uhm

t ) =
1

∑A
j=1 eU

T
j hm

t

⎡

⎢⎢⎢⎢⎣

eU
T
1 hm

t

eU
T
2 hm

t

...
eU

T
Ahm

t

⎤

⎥⎥⎥⎥⎦
, (8)
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Fig. 3. AC-RNN with attention mechanism (AC-RNN-ATN).

where the attention matrix U ∈ R
H×A transforms the hidden units into the

attention vector of the next processing step. The other parameters are consistent
with the definition in Sect. 3.1.

By using a recurrent attention model, the output attribute conjunction is
invariant to the input order. In addition, by taking the non-query attributes into
consideration, this model can leverage the co-occurrence information to enhance
the query attribute conjunction. Therefore, an unreliable query attribute might
piggyback on an co-occurring attribute that has abundant training data and
easier to predict.

Ensemble Based. Another method to alleviate the influence of attribute order
is directly using the ensemble of original models. Therefore, we present Ensem-
bles of AC-RNN to reduce the negative effect of poorly ordered input. The
ensemble framework can be trained in parallel without increasing the overall time
cost. Instead of using the pre-defined attribute order, a random order of all the
attributes is generated for each model. Then the input attributes are rearranged
according to the generated order for each multi-attribute query (Fig. 4).

The model parameters of each AC-RNN are learned to obtain a multi-
attribute classifier. At the last stage, the outputs of all the independent models
are averaged to obtain the final multi-attribute classifier:

wm =
1
C

C∑

c=1

wc
m, (9)

where C is the number of models in the ensemble and wc
m represents the weight

of multi-attribute classifier generated by the cth model. The ensemble of multi-
attribute classifier is further used to retrieve the relevant images.
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Fig. 4. AC-RNN based on ensemble learning.

4 Experiments

We evaluate our method2 on three widely used datasets: aPascal [5], ImageNet
Attributes [22] and LFWA [17]. Then we verify the effectiveness of the weighted
version and visualize the ground truth correlation matrix and the learned simi-
larity matrix for comparison. Finally, we present the experimental results of the
proposed two methods to evaluate the influence of attribute order.

4.1 Datasets

aPASCAL. This dataset contains 6430 training images and 6355 testing images
from Pascal VOC 2008 challenge. Each image comes from twenty object cate-
gories and annotated with 64 binary attribute labels. We use the pre-defined
test images for testing and randomly split ten percent images from training set
for validation. The feature we used for all the comparison methods are called
DeCAF [4] which are extracted by the Convolutional Neural Networks (CNN).
Since attributes are only defined for objects instead of the entire image, we use
the object bounding box as the input of CNN.

ImageNet Attributes (INA). ImageNet Attribute dataset contains 9,600
images from 384 categories. Each image is annotated with 25 attributes describ-
ing color, patterns, shape and texture. 3–4 workers are asked to provide a binary
label indicating whether the object in the image contains the attribute or not.
When there is no consensus among the workers, the attribute will be labeled
as ambiguous for this image. The data with ambiguous attribute are not used
for training and evaluating for the queries which contains the corresponding
attribute. We use {60%, 10%, 30%} random split for training/validation/test.
And we also use DeCAF to do feature extraction.

LFWA. The labelled images on this dataset are selected from the widely
used face dataset LFW [10]. It contains 5,749 identities with totally 13,233

2 The code of our method is available at https://github.com/GriffinLiang/AC-RNN.

https://github.com/GriffinLiang/AC-RNN
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images. Each image is annotated with forty face attributes. Different from the
above two datasets, LFWA gives a fine-grained category description. We use
{60%, 10%, 30%} random split on the whole images for training/validation/test.
We use VGG-Face descriptor [18] to extract feature for each image.

4.2 Experimental Settings

Query Generation: We generate multi-attribute queries based on the dataset
annotation. A query is considered to be valid when there are positive samples on
train/validation and test simultaneously. We consider double and triple attribute
queries for comparison. The detail information is shown in Table 1.

Table 1. Valid multi-attribute queries

Dataset # of attributes Double queries Triple queries

aPascal 64 546 2224

INA 25 186 262

LFWA 40 771 9126

Evaluation Metric: We use the AUC (Area Under ROC) and AP (Average
Precision) as the evaluation metric for each query. Since the number of attribute
conjunctions is large, the resulting performance is hard to visualize for compar-
ison. Therefore, we choose to use the mean AUC and mean AP to reflect the
average performance of all the methods.

Comparison Methods: We compare our approach with four baseline methods:
TagProp [8], RMLL [19], MARR [23] and LIFT [29]. For TagProp, we use the
logistic discriminant model with distance-based weights and the number of K
nearest neighbours is chosen on the validation set. For RMLL and MARR, the
loss function to be optimized is Hamming loss which is also used in the original
papers. Since TagProp, RMLL and LIFT do not support for multi-attribute
query directly, we sum up the single attribute prediction scores as the confidence
of multi-attribute query following the suggestion in [23]. The ratio parameter r
of LIFT is set to be 0.1 as suggested in the paper. For our methods, the original
version and the variant based on attention mechanism are presented. The optimal
value of λ and the number of hidden units are chosen based on validation set by
grid search.

4.3 Comparison on Image Retrieval

We calculate the mean AUC and mean AP of double and triple attribute queries
for all the comparison methods. The rank for all the methods is also given for
each dataset in terms of a single evaluation metric. Then we average the ranks on
all the three datasets to demonstrate the overall performance. The experimental
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Table 2. Experimental results (mAUC/mAP rank) for double attribute query.

Data set Evaluate metric TapProp RMLL MARR LIFT AC-RNN AC-RNN-ATN

aPascal mAUC 0.8807 5 0.8876 4 0.9040 3 0.8797 6 0.9356 2 0.9371 1

mAP 0.3361 4 0.3274 6 0.3336 5 0.3383 3 0.3758 2 0.3869 1

INA mAUC 0.8832 6 0.9166 3 0.8945 4 0.8902 5 0.9436 2 0.9450 1

mAP 0.2269 3 0.2126 4 0.1780 6 0.1953 5 0.2794 1 0.2605 2

LFWA mAUC 0.8113 6 0.8293 3 0.8210 4 0.8205 5 0.8482 2 0.8549 1

mAP 0.4075 6 0.4097 5 0.4209 4 0.4372 1 0.4223 3 0.4370 2

Avg.Rank 5.00 6 4.17 3 4.33 5 4.17 3 2.00 2 1.33 1

Total AC-RNN-ATN �AC-RNN � LIFT = RMLL � MARR � TagProp

Table 3. Experimental results (mAUC/mAP rank) for triple attribute query.

Data set Evaluate metric TapProp RMLL MARR LIFT AC-RNN AC-RNN-ATN

aPascal mAUC 0.8921 5 0.8988 4 0.9139 3 0.8910 6 0.9336 2 0.9360 1

mAP 0.2723 3 0.2497 6 0.2582 5 0.2640 4 0.2828 2 0.3034 1

INA mAUC 0.8927 6 0.9539 3 0.9375 4 0.9163 5 0.9627 2 0.9677 1

mAP 0.2001 3 0.1829 4 0.1375 6 0.1521 5 0.2743 1 0.2726 2

LFWA mAUC 0.8177 6 0.8367 3 0.8284 4 0.8247 5 0.8594 2 0.8665 1

mAP 0.2273 5 0.2218 6 0.2355 4 0.2473 2 0.2372 3 0.2499 1

Avg.Rank 4.67 6 4.33 3 4.33 3 4.50 5 2.00 2 1.17 1

Total AC-RNN-ATN �AC-RNN � RMLL = MARR � LIFT � TagProp

results are shown in Tables 2 and 3 for double and triple attribute queries respec-
tively. Comparing the results of RMLL and MARR, we can see that MARR sur-
passes RMLL on different types of queries on aPascal and LFWA but fails on INA
dataset. This is because the number of attribute on INA is too small and the cor-
relation between them is not as strong as aPascal and LFWA. So the performance
of MARR decreases since this method relies on strong attribute correlation. On
the three datasets, we can see that our methods AC-RNN and AC-RNN-ATN
achieve better performance on all types of multi-attribute queries. Therefore recur-
rent neural network is beneficial for modelling the complex relationship of multi-
ple attributes. Compared to the original method, AC-RNN-ATN can leverage non-
query attributes to enhance the retrieval performance and avoid the order problem
by using a recurrent attention vector. It surpasses AC-RNN on both double and
triple attribute queries according to the final rank and its optimal processing step
is two.

Data Weighting Procedure. Images possessing all the query attributes are
considered to be positive for training. Therefore, the positive samples are usu-
ally scarce when a query contains multiple attributes. To explicitly show this
phenomenon, we calculate the positive sample ratio (N+

m/N) for the queries in
which the number of attributes ranges from one to three. For each type of the
queries, we partition them into five parts according to the positive sample ratio
and calculate the corresponding proportion for each part. The results are shown
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Fig. 5. Comparison on the influence of data weighting on AC-RNN. The second row
shows the positive sample ratio distribution on the three datasets.

in the second row of Fig. 5. On all the three datasets, most of double and triple
queries contain less than 10% of the total data as positive samples. Therefore,
how to solve data imbalance problem is essential for multi-attribute query based
image retrieval. Then we train the proposed models by using the loss functions
defined in Eqs. (3) and (4) respectively. The performance of the two versions
with and without using data weighting for AC-RNN are shown in the first row
of Fig. 5. From the results, we can see the method using data weighting pro-
cedure consistently performs better than the original version when the positive
data is imbalance.

aPascal

GT

ImageNet Attribute LFWA

AC−RNN

Fig. 6. Attribute similarity matrix on the embedding space.
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Attribute Embedding. In this section, we validate the quality of the learned
embedding matrix. We first calculate the ground truth correlation matrix which
can reflect the correlation information between attributes. Let R ∈ R

A×A be
the correlation matrix, where the correlation score between attribute i and j is
computed following [24]:

Ri,j =
YT

i,:Yj,:

YT
i,:1 + YT

j,:1 − YT
i,:Yj,:

. (10)

From the definition, we can see that two attributes are strongly correlated
if they have a large number of images in common. Intuitively, the attribute
embedding learned by AC-RNN is expected to reflect the correlation between
attributes. So we visualize the similarity matrix of the learned attribute embed-
dings on all the three datasets in Fig. 6. The similarity score for a pair of
attributes is calculated by using their cosine distance. Comparing the ground
truth correlation matrix and the learned similarity matrix, we can see most of
the correlated attributes are close on the embedding space.

4.4 Influence on Attribute Order

Attention Mechanism Based. We validate the effectiveness of learning
attribute conjunction with a recurrent attention vector in this section. A promis-
ing perspective of AC-RNN-ATN is the learned conjunction is order invariant.
So the dependence of attributes is no longer needed but learned in an automatic
way. Moreover, the non-query attributes which are correlated with the current
query are also used to generate the final representation of attribute conjunction.

The performance on the three datasets are shown in Tables 2 and 3 for double
and triple attribute queries respectively. AC-RNN-ATN achieves superior perfor-
mance on the both evaluation metrics. The performance gap between AC-RNN
and AC-RNN-ATN is larger on aPascal and LFWA than on INA. This is because
the number of attributes on INA is smaller than the other two datasets. There-
fore, the correlation between query and non-query attributes is hard to exploit.
Then we visualize some of the attention vectors learned by our method for both
double and triple attribute queries on LFWA dataset. As shown in Fig. 7, the
query contains “Chubby” will also take “Double Chin” into attention to gener-
ate the representation of attribute conjunction and an “Attractive” person with
“Bushy Eyebrows” is probably “Male”.

Ensemble Based. As discussion in the Sect. 3.3, attribute order for generating
attribute conjunction influences the performance of AC-RNN while the optimal
query order is hard to explore. Here we use an ensemble method to tackle the
above problem. In detail, we repeatedly train AC-RNN for ten times on aPascal
dataset. At the start of each training stage, we randomly change the attribute
order in the queries instead of using the attribute order predefined by the dataset.
The output matrix of each random model are combined to generate the final
result for the multi-attribute query.
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Fig. 7. Attention vector visualization on LFWA dataset.

From the results in Fig. 8, we can see the ensemble method consistently out-
performs the best single model on two types of attribute queries. And the per-
formance of ensemble based method increases rapidly at first and then becomes
flat. Combining weak models may decrease the overall performance. Comparing
the two methods for tackling attribute order problem, we find the ensemble based
method performs better in terms of mAUC but inferior to AC-RNN-ATN accord-
ing to mAP. Since our problem suffering from data imbalance, using an evaluation
metric of Precision-Recall is better than Receiver-Operating-Characteristic AUC
as mention in [3]. Therefore, the attention based method seems more promising.
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Fig. 8. Performance of ensemble based method in terms of mAUC and mAP on aPascal
dataset. The blue bar indicates the performance of single model. (Color figure online)

5 Conclusion

We propose the attribute conjunction recurrent neural network for multi-
attribute based image retrieval. Different from previous methods, our model
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explicitly learns the attribute embedding and generates the representation of
attribute conjunction by recurrently combining the learned attribute embed-
dings. In addition, we propose a variant of our method using data weighting to
mitigate the data imbalance problem. Finally, we have a discussion about the
influence of attribute order on our method and present two methods to boost
the performance based on attention mechanism and ensemble learning respec-
tively. Experimental results on three widely used datasets show the significant
improvement over the other comparison methods on all types of queries.
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Abstract. Discovering patterns in long event sequences is an important
data mining task. Most existing work focuses on frequency-based qual-
ity measures that allow algorithms to use the anti-monotonicity prop-
erty to prune the search space and efficiently discover the most frequent
patterns. In this work, we step away from such measures, and evaluate
patterns using cohesion—a measure of how close to each other the items
making up the pattern appear in the sequence on average. We tackle
the fact that cohesion is not an anti-monotonic measure by developing
a novel pruning technique in order to reduce the search space. By doing
so, we are able to efficiently unearth rare, but strongly cohesive, pat-
terns that existing methods often fail to discover. The data and software
related to this paper are available at https://bitbucket.org/len feremans/
sequencepatternmining public.

1 Introduction

Pattern discovery in sequential data is a well-established field in data mining.
The earliest attempts focused on the setting where data consisted of many (typ-
ically short) sequences, where a pattern was defined as a (sub)sequence that
re-occurred in a high enough number of such input sequences [2].

The first attempt to identify patterns in a single long sequence of data was
proposed by Mannila et al. [8]. The presented Winepi method uses a sliding
window of a fixed length to traverse the sequence, and a pattern is then consid-
ered frequent if it occurs in a high enough number of these sliding windows. An
often-encountered critique of this method is that the obtained frequency is not
an intuitive measure, since it does not correspond to the actual number of occur-
rences of the pattern in the sequence. For example, given sequence axbcdayb, and
a sliding window length of 3, the frequency of itemset {a, b} will be equal to 2, as
will the frequency of itemset {c, d}. However, pattern {a, b} occurs twice in the
sequence, and pattern {c, d} just once, and while the method is motivated by
the need to reward c and d for occurring right next to each other, the reported
frequency values remain difficult to interpret.

Laxman et al. [7] attempted to tackle this issue by defining the frequency
as the maximal number of non-intersecting minimal windows of the pattern in
the sequence. In this context, a minimal window of the pattern in the sequence
c© Springer International Publishing AG 2016
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is defined as a subsequence of the input sequence that contains the pattern,
such that no smaller subsequence also contains the pattern. However, while the
method uses a relevance window of a fixed length, and disregards all minimal
windows that are longer than the relevance window, the length of the minimal
windows that do fit into the relevance window is not taken into account at all.
For example, given sequence axyzbcd, with a relevance window larger than 4,
the frequency of both itemset {a, b} and itemset {c, d} would be equal to 1.

Cule et al. [4] propose an amalgam of the two approaches, defining the fre-
quency of a pattern as the maximal sum of weights of a set of non-overlapping
minimal windows of the pattern, where the weight of a window is defined as
the inverse of its length. However, this method, too, struggles with the inter-
pretability of the proposed measure. For example, given sequence axbcdayb and
a relevance window larger than 3, frequency of {a, b} would be 2/3, while fre-
quency of {c, d} would be 1/2. On top of this, as the input sequence grows longer,
the sum of these weights will grow, and the defined frequency can take any real
positive value, giving the user no idea how to set a sensible frequency threshold.

All of the techniques mentioned above use a frequency measure that satisfy
the so-called Apriori property [1]. This property implies that the frequency of a
pattern is never smaller than the frequency of any of its superpatterns (in other
words, frequency is an anti-monotonic quality measure). While this property is
computationally very desirable, since large candidate patterns can be generated
from smaller patterns, and generating unnecessary candidates can be avoided,
the undesirable side-effect is that larger patterns, which are often more useful
to the end users, will never be ranked higher than all their subpatterns. On top
of this, all these methods focus solely on how often certain items occur near
each other, and do not take occurrences of these items far away from each other
into account. Consequently, if two items occur frequently, and through pure
randomness often occur near each other, they will form a frequent itemset, even
though they are, in fact, in no way correlated.

In another work, Cule et al. [3] propose a method that steps away from anti-
monotonic quality measures, and introduce a new interestingness measure that
combines the coverage of the pattern with its cohesion. Cohesion is defined as
a measure of how near each other the items making up an interesting itemset
occur on average. However, the authors define the coverage of an itemset as
the sum of frequencies of all items making up the itemset, which results in a
massive bias towards larger patterns instead. Furthermore, this allows for a very
infrequent item making its way into an interesting itemset, as long as all other
items in the itemset are very frequent and often occur near the infrequent item.
As a result, the method is not scalable for any sequence with a large alphabet
of items, which makes it unusable in most realistic data sets.

Hendrickx et al. [6] tackle a related problem in an entirely different setting.
Given a graph consisting of labelled nodes, they attempt to discover which labels
often co-occur. In this context, they aim to discover cohesive itemsets (sets of
labels), by computing average distances between the labels, where the distance
between two nodes is defined as the length of the shortest path between them



Efficient Discovery of Sets of Co-occurring Items in Event Sequences 363

(expressed as the number of edges on this path). While the authors also exper-
imented with sequential data, after first converting an input sequence into a
graph, by converting each event into a node labelled by the event type, and con-
necting neighbouring events by an edge, this approach is not entirely suitable for
sequential data. More precisely, in a graph setting, an itemset can only be con-
sidered fully cohesive if all its occurrences form a clique in the graph. Clearly, in
a sequence, for any itemset of size larger than 2, it would be impossible to form
a clique, since each node (apart from the first one and the last one) has exactly
two edges – one connecting the node to the event that occurred last before the
event itself, and the other connecting it to the event that occurred first after
the event itself. For example, given sequence abcd (converted into a graph), the
cohesion of itemset {a, b} would be equal to 1, the cohesion of {a, b, c} would be
3/4, and the cohesion of {a, b, c, d} would be 3/5 (we omit the computational
details here), which is clearly not intuitive.

In this work, we use the cohesion introduced by Cule et al. [3] as a single mea-
sure to evaluate cohesive itemsets. We consider itemsets as potential candidates
only if each individual item contained in the itemset is frequent in the dataset.
This allows us to filter out the infrequent items at the very start of our algo-
rithm, without missing out on any cohesive itemsets. However, using cohesion as
a single measure brings its own computational problems. First of all, cohesion is
not an anti-monotonic measure, which means that a superset of a non-cohesive
itemset could still prove to be cohesive. However, since the size of the search
space is exponential in the number of frequent items, it is impossible to evaluate
all possible itemsets. We solve this by developing a tight upper bound on the
maximal possible cohesion of all itemsets that can still be generated in a partic-
ular branch of the depth-first-search tree. This bound allows us to prune large
numbers of potential candidate itemsets, without having to evaluate them at all.
Furthermore, we present a very efficient method to identify minimal windows
that contain a particular itemset, necessary to evaluate its cohesion. Our exper-
iments show that our method discovers patterns that existing methods struggle
to rank highly, while dismissing obvious patterns consisting of items that occur
frequently, but are not at all correlated. We further show that we achieve these
results quickly, thus demonstrating the efficiency of our algorithm.

The rest of the paper is organised as follows. In Sect. 2 we formally describe
the problem setting and define the patterns we aim to discover. Section 3 provides
a detailed description of our algorithm, while in Sect. 4 we present a thorough
experimental evaluation of our method, in comparison with a number of existing
methods. We present an overview of the most relevant related work in Sect. 5,
before summarising our main conclusions in Sect. 6.

2 Problem Setting

The dataset consists of a single event sequence s = (e1, . . . , en). Each event ek
is represented by a pair (ik, tk), with ik an event type (coming from the domain
of all possible event types) and tk an integer time stamp. For any 1 < k ≤ n, it
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holds that tk > tk−1. For simplicity, we omit the time stamps from our examples,
and write sequence (e1, . . . , en) as i1 . . . in, implicitly assuming the time stamps
are consecutive integers starting with 1. In further text, we refer to event types
as items, and sets of event types as itemsets.

For an itemset X = {i1, ..., im}, we denote the set of occurrences of items
making up X in a sequence s with N(X) = {t|(i, t) ∈ s, i ∈ X}. For an item i,
we define the support of i in an input sequence s as the number of occurrences
of i in s, sup(i) = |N({i})|. Given a user-defined support threshold min sup, we
say that an itemset X is frequent in a sequence s if for each i ∈ X it holds that
sup(i) ≥ min sup.

To evaluate the cohesiveness of an itemset X in a sequence s, we must first
identify minimal occurrences of the itemset in the sequence. For each occurrence
of an item in X, we will look for the minimal window within s that contains that
occurrence and the entire itemset X. Formally, given a time stamp t, such that
(i, t) ∈ s and i ∈ X, we define the size of the minimal occurrence of X around t
as Wt(X) = min{te − ts + 1|ts ≤ t ≤ te and ∀i ∈ X ∃(i, t′) ∈ s, ts ≤ t′ ≤ te}.

We further define the size of the average minimal occurrence of X in s as

W (X) =

∑
t∈N(X) Wt(X)

|N(X)| .

Finally, we define the cohesion of itemset X, with |X| > 0, in a sequence s as
C(X) = |X|

W (X)
. If |X| = 0, we define C(X) = 1.

Given a user-defined cohesion threshold min coh, we say that an itemset X
is cohesive in a sequence s if it holds that C(X) ≥ min coh.

Note that the cohesion is higher if the minimal occurrences are smaller. Fur-
thermore, a minimal occurrence of itemset X can never be smaller than the
size of X, so it holds that C(X) ≤ 1. If C(X) = 1, then every single minimal
occurrence of X in s is of length |X|.

A single item is always cohesive, so to avoid outputting all frequent items,
we will from now on consider only itemsets consisting of 2 or more items. An
optional parameter, max size, can be used to limit the size of the discovered
patterns. Formally, we say that an itemset X is a frequent cohesive itemset if
1 < |X| ≤ max size, ∀i ∈ X : sup(i) ≥ min sup and C(X) ≥ min coh.

Cohesion is not an anti-monotonic measure. A superset of a non-cohesive
itemset could turn out to be cohesive. For example, given sequence abcxacbybac,
we can see that C({a, b}) = C({a, c}) = C({b, c}) = 6/7, while C({a, b, c}) = 1.
While this allows us to eliminate bias towards smaller patterns, it also brings
computational challenges which will be addressed in the following section.

3 Algorithm

In this section we present a detailed description of our algorithm. We first show
how we generate candidates in a depth-first manner, before explaining how we
can prune large numbers of potential candidates by computing an upper bound
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Algorithm 1. FCIseq finds frequent cohesive itemsets in a sequence
1 FI = all frequent items;
2 sort FI on support in ascending order;
3 FC = ∅;
4 DFS(〈∅, F I〉);
5 return FC

Algorithm 2. DFS(〈X,Y 〉) depth-first search
1 if Cmax(X,Y ) ≥ min coh then
2 if Y = ∅ then
3 if |X| > 1 then
4 FC = FC ∪ {X};

5 else
6 a = first(Y );
7 if |X ∪ {a}| ≤ max size then
8 DFS(〈X ∪ {a}, Y \ {a}〉);
9 DFS(〈X,Y \ {a}〉);

of the cohesion of all itemsets that can be generated within a branch of the
search tree, and we end the section by providing an efficient method to compute
the sum of minimal windows of a particular itemset in the input sequence.

3.1 Depth-First-Search

The main routine of our FCIseq algorithm is given in Algorithm 1. We begin by
scanning the input sequence, identifying the frequent items, and storing their
occurrence lists for later use. We then sort the set of frequent items on support
in ascending order (line 2), initialise the set of frequent cohesive itemsets FC as
an empty set (line 3), and start the depth-first-search process (line 4). Once the
search is finished, we output the set of frequent cohesive itemsets FC (line 5).

The recursive DFS procedure is shown in Algorithm 2. In each call, X con-
tains the candidate itemset, while Y contains items that are yet to be enumer-
ated. In line 1, we evaluate the pruning function Cmax(X,Y ) to decide whether
to search deeper in the tree or not. This function will be described in detail
in Sect. 3.2. If the branch is not pruned, there are two possibilities. If we have
reached a leaf node (line 2), we add the discovered cohesive itemset to the output
(provided its size is greater than 1). Alternatively, if there are more items to be
enumerated, we pick the first such item a (line 6) and make two recursive calls to
the DFS function—the first with a added to X (this is only executed if X ∪{a}
satisfies the max size constraint), and the second with a discarded.
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3.2 Pruning

At any node in the search tree, X denotes all items currently making up the
candidate itemset, while Y denotes all items that are yet to be enumerated.
Starting from such a node, we can still generate any itemset Z, such that X ⊆
Z ⊆ X ∪Y and |Z| ≤ max size. In order to be able to prune the entire branch of
the search tree, we must therefore be certain that for every such Z, the cohesion
of Z cannot satisfy the minimum cohesion constraint.

In the remainder of this section, we first define an upper bound for the
cohesion of all itemsets that can be generated in a particular branch of the
search tree, before providing a detailed proof of its soundness. Given itemsets X
and Y , with |X| > 0 and X ∩ Y = ∅, the Cmax(X,Y ) pruning function used in
line 1 of Algorithm 2 is defined as

Cmax(X,Y ) =
min(max size, |X ∪ Y |)(|N(X)| + Nmax(X,Y ))∑

t∈N(X) Wt(X) + min(max size, |X ∪ Y |)Nmax(X,Y )
,

where

Nmax(X,Y ) = max
Yi⊆Y,

|Yi|≤max size−|X|
|N(Yi)|.

For |X| = 0, we define Cmax(X,Y ) = 1.
Note that if Y = ∅, Cmax(X,Y ) = C(X), which is why we do not need to

evaluate C(X) before outputting X in line 4 of Algorithm 2.
Before proving that the above upper bound holds, we will first explain the

intuition behind it. When we find ourselves at node 〈X,Y 〉 of the search tree,
we will first evaluate the cohesion of itemset X. If X is cohesive, we need to
search deeper in the tree, as supersets of X could also be cohesive. However, if
X is not cohesive, we need to evaluate how much the cohesion can still grow
if we go deeper into this branch of the search tree. Logically, starting from
C(X) = |X|

W (X)
= |X||N(X)|∑

t∈N(X) Wt(X) , the value of this fraction will grow maximally
if the nominator is maximised, and the denominator minimised. Clearly, as we
add items to X, the nominator will grow, and it will grow maximally if we add as
many items to X as possible. However, as we add items to X, the denominator
must grow, too, so the question is how it can grow minimally. In the worst case,
each new window added to the sum in the denominator will be minimal (i.e., its
length will be equal to the size of the new itemset), and the more such windows
we add to the sum, the higher the overall cohesion will grow.

For example, given sequence acb and a cohesion threshold of 0.8, assume we
find ourselves in node 〈{a, b}, {c}〉 of the search tree. We will then first find
the smallest windows containing {a, b} for each occurrence of a and b, i.e.,
W1({a, b}) = W3({a, b}) = 3. It turns out that C({a, b}) = 2×2

3+3 = 2
3 , which

is not cohesive enough. However, if we add c to itemset {a, b}, we know that the
size of the new itemset will be 3, we know the number of occurrences of items
from the new itemset will be 3, and the nominator will therefore be equal to 9.
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For the denominator, we have no such certainties, but we know that, in the worst
case, the windows for the occurrences of a and b will not grow (i.e., each smallest
window of {a, b} will already contain an occurrence of c), and the windows for
all occurrences of c will be minimal (i.e., of size 3). Indeed, when we evaluate
the above upper bound, we obtain Cmax({a, b}, {c}) = 3×(2+1)

6+3×1 = 9
9 = 1. We see

that even though the cohesion of {a, b} is 2
3 , the cohesion of {a, b, c} could, in

the worst case, be as high as 1. And in our sequence acb, that is indeed the case.
The above example also demonstrates the tightness of our upper bound, as the
computed value can, in fact, turn out to be equal to the actual cohesion of a
superset yet to be generated.

We now present a full formal proof of the soundness of the proposed upper
bound. In order to do this, we will need the following lemma.

Lemma 1. For any six positive numbers a, b, c, d, e, f , with a ≤ b, c ≤ d and
e ≤ f , it holds that

1. if a+c+e
b+e < 1 then a+c+e

b+e ≤ a+d+f
b+f .

2. if a+c+e
b+e ≥ 1 then a+d+f

b+f ≥ 1.

Proof. We begin by proving the first claim. To start with, note that if a+c+e
b+e < 1,

then a+c
b < 1. For any positive number f with e ≤ f , it therefore follows that

a+c+e
b+e ≤ a+c+f

b+f . Finally, for any positive number d, with c ≤ d, it holds that
a+c+f
b+f ≤ a+d+f

b+f , and therefore a+c+e
b+e ≤ a+d+f

b+f . For the second claim, it directly
follows that if a+c+e

b+e ≥ 1, then a+c
b ≥ 1, a+d

b ≥ 1, and a+d+f
b+f ≥ 1. �

Theorem 1. Given itemsets X and Y , with X∩Y = ∅, for any itemset Z, with
X ⊆ Z ⊆ X ∪ Y and |Z| ≤ max size, it holds that C(Z) ≤ Cmax(X,Y ).

Proof. We know that C(Z) ≤ 1, so the theorem holds if |X| = 0. Assume now
that |X| > 0. First recall that C(Z) = |Z|

W (Z)
= |Z||N(Z)|∑

t∈N(Z) Wt(Z) . We can rewrite
this expression as

C(Z) =
(|X| + |Z\X|)(|N(X)| + |N(Z\X)|)∑

t∈N(X) Wt(Z) +
∑

t∈N(Z\X) Wt(Z)
.

Further note that for a given time stamp in N(X), the minimal window con-
taining Z must be at least as large as the minimal window containing only X,
and for a given time stamp in N(Z\X), the minimal window containing Z must
be at least as large as the size of Z. It therefore follows that

∑

t∈N(X)

Wt(Z) ≥
∑

t∈N(X)

Wt(X) and
∑

t∈N(Z\X)

Wt(Z) ≥ |Z||N(Z\X)|,

and, as a result,
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C(Z) ≤ |X||N(X)| + |Z\X||N(X)| + |Z||N(Z\X)|∑
t∈N(X) Wt(X) + |Z||N(Z\X)| .

Finally, we note that, per definition, |Z\X| ≤ min(max size, |X∪Y |)−|X|, and,
since Z is generated by adding items from Y to X, until either |Z| = max size
or there are no more items left in Y , |N(Z\X)| ≤ Nmax(X,Y ).

At this point we will use Lemma 1 to take the proof further. Note that, per
definition, C(X) = |X||N(X)|∑

t∈N(X) Wt(X) ≤ 1. We now denote

a = |X||N(X)| and b =
∑

t∈N(X)

Wt(X).

Furthermore, we denote

c = |Z\X||N(X)|, d = (min(max size, |X ∪ Y |) − |X|)|N(X)|,
e = |Z||N(Z\X)|, and f = min(max size, |X ∪ Y |)Nmax(X,Y ).

Since a, b, c, d, e and f satisfy the conditions of Lemma 1, we know that it holds
that

1. if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| < 1 then

|X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| ≤

|X||N(X)|+(min(max size,|X∪Y |)−|X|)|N(X)|+min(max size,|X∪Y |)Nmax(X,Y )∑
t∈N(X) Wt(X)+min(max size,|X∪Y |)Nmax(X,Y ) .

2. if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| ≥ 1 then

|X||N(X)|+(min(max size,|X∪Y |)−|X|)|N(X)|+min(max size,|X∪Y |)Nmax(X,Y )∑
t∈N(X) Wt(X)+min(max size,|X∪Y |)Nmax(X,Y ) ≥ 1.

Finally, note that
|X||N(X)|+(min(max size,|X∪Y |)−|X|)|N(X)|+min(max size,|X∪Y |)Nmax(X,Y )∑

t∈N(X) Wt(X)+min(max size,|X∪Y |)Nmax(X,Y ) =
min(max size,|X∪Y |)(|N(X)|+Nmax(X,Y ))∑

t∈N(X) Wt(X)+min(max size−|X|,|Y |)Nmax(X,Y ) = Cmax(X,Y ).

From the first claim above, it follows that if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)|

< 1, then C(Z) ≤ Cmax(X,Y ). From the second claim, it immediately follows
that if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑

t∈N(X) Wt(X)+|Z||N(Z\X)| ≥ 1, then Cmax(X,Y ) ≥ 1, and since,

per definition C(Z) ≤ 1, C(Z) ≤ Cmax(X,Y ). This completes the proof. �
Since an important feature of computing an upper bound for the cohesion is

to establish how much cohesion could grow in the worst case, we need to figure
out which items from Y should be added to X to reach this worst case. As
has been discussed above, the worst case is actually materialised by adding as
many as possible items from Y , and by first adding those that have the most
occurrences. However, if the max size parameter is used, it is not always possible
to add all items in Y to X. In this case, we can only add max size −|X| items
to X, which is why we defined Nmax(X,Y ) as
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Nmax(X,Y ) = max
Yi⊆Y,

|Yi|≤max size−|X|
|N(Yi)|.

Clearly, if |X∪Y | ≤ max size, Nmax(X,Y ) = N(Y ). If not, at first glance it may
seem computationally very expensive to determine |N(Yi)| for every possible
Yi. However, we solve this problem by sorting the items in Y on support in
ascending order. In other words, if Y = {y1, . . . , yn}, with sup(yi) ≤ sup(yi+1)
for i = 1, . . . , n − 1, then we can compute Nmax(X,Y ) as

Nmax(X,Y ) =
∑

i∈{1,...,max size−|X|}
|N({yn−i+1})|.

As a result, the only major step in computing Cmax(X,Y ) is that of computing∑
t∈N(X) Wt(X), as the rest can be computed in constant time. The procedure

for computing
∑

t∈N(X) Wt(X) is explained in detail in Sect. 3.3.

3.3 Computing the Sum of Minimal Windows

The algorithm for computing the sum of minimal windows is shown in Algo-
rithm 3. For a given itemset X, the algorithm keeps a list of all time stamps
at which items of X occur in the positions variable. The nextpos variable keeps
a list of next time stamps for each item, while lastpos keeps a list of the last
occurrences for each item. Since we need to compute the minimal window for
each occurrence, we keep on doing this until we have either computed them all,
or until the running sum has become large enough to safely stop, knowing that
the branch can be pruned (line 7). Concretely, by rewriting the definition of
Cmax(X,Y ), we know we can stop if we are certain the sum will be larger than

Wmax(X,Y ) =
min(max size, |X ∪ Y |)(|N(X)| + (Nmax(X,Y )(1 − min coh)))

min coh
.

When a new item comes in (line 14), we update the working variables, and
compute the first and last position of the current window (line 17). If the smallest
time stamp of the current window has changed, we go through the list of active
windows and check whether a new shortest length has been found. If so, we
update it (line 21). We then remove all windows for which we are certain that
they cannot be improved from the list of active windows (line 23), and update
the overall sum (line 24). Finally, we add the new window for the current time
stamp to the list of active windows (line 25).

Note that the sum of minimal windows is independent of Y , the items yet to
be enumerated. Therefore, if the branch is not pruned, the recursive DFS pro-
cedure shown in Algorithm 2 will be called twice, but X will remain unchanged
in the second of those calls (line 9), so we will not need to recompute the sum of
windows, allowing us to immediately evaluate the upper bound in the new node
of the search tree.
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Algorithm 3. Sum Min Wins(〈X,Y 〉) sums minimal windows of X
1 smw ← 0; index ← 0;
2 positions ← position for every item in X;
3 nextpos ← {positions[i1][0], positions[i2][0], positions[i3][0], ...};
4 lastpos ← {−∞,−∞,−∞, ...};
5 prev min ← −∞; active windows ← ∅;
6 while index < |N(X)| do
7 if smw + (|N(X)| + |active windows| − index) × |X| > Wmax(X,Y ) then
8 return ∞;

9 current pos ← ∞;
10 current item ← ∅;
11 for i in X do
12 if current pos > nextpos[i] then
13 current pos ← nextpos[i];
14 current item ← i;

15 lastpos[current item] ← current pos;
16 nextpos[current item] ← next(positions[current item], current pos);
17 minpos ←min(lastpos); maxpos ←max(lastpos);
18 if minpos 
= −∞ and minpos > prev min then
19 for window ∈ active windows do
20 newwidth ← maxpos−min(minpos, window.pos) + 1;
21 window.width ←min(window.width, newwidth);
22 if window.pos < minpos or window.width == |X| or

window.width < (maxpos − window.pos + 1) then
23 active windows ← active windows\{window};
24 smw ← smw + window.width;

25 active windows ←
active windows ∪ {window(current pos,maxpos − minpos + 1)};

26 prev min ← minpos; index ← index + 1;

27 smw ← smw+sum(window.width|window ∈ active windows);
28 return smw;

We illustrate how the algorithm works on the following example. Assume we
are given the input sequence aabccccacb, and we are evaluating itemset {a, b, c}.
Table 1 shows the values of the main variables as the algorithm progresses. As
each item comes in, we update the values of nextpos and lastpos (other variables
are not shown in the table). In each iteration, we compute the current best
minimal window for the given time stamp as max(lastpos)−min(lastpos)+1. We
also update the values of any previous windows that might have changed for
the better (this can only happen if min(lastpos) has changed), using either the
current window above if it contains the time stamp of the window’s event, or
the window stretching from the relevant time stamp to max(lastpos). Finally,
before proceeding with the next iteration, we remove all windows for which we
are certain that they cannot get any smaller from the list of active windows.
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Table 1. Computation of minimal windows.

Time Item nextpos lastpos w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

0 - (1, 3, 4) (−∞,−∞,−∞) - - - - - - - - - -

1 a (2, 3, 4) (1,−∞,−∞) ∞ - - - - - - - - -

2 a (8, 3, 4) (2,−∞,−∞) ∞ ∞ - - - - - - - -

3 b (8, 10, 4) (2, 3,−∞) ∞ ∞ ∞ - - - - - - -

4 c (8, 10, 5) (2, 3, 4) 4 3 3 3 - - - - - -

5 c (8, 10, 6) (2, 3, 5) - - - - 4 - - - - -

6 c (8, 10, 7) (2, 3, 6) - - - - 4 5 - - - -

7 c (8, 10, 9) (2, 3, 7) - - - - 4 5 6 - - -

8 a (∞, 10, 9) (8, 3, 7) - - - - 4 5 6 6 - -

9 c (∞, 10,∞) (8, 3, 9) - - - - - 5 6 6 7 -

10 b (∞,∞,∞) (8, 10, 9) - - - - - 5 4 3 3 3

In the table, windows that are not active are marked with ‘-’, while defini-
tively determined windows are shown in bold. We can see that, for example, at
time stamp 4, we have determined the value of the first four windows. Window
w1 cannot be improved on, since time stamp 1 has already dropped out of last-
pos, while the other three windows cannot be improved since 3 is the absolute
minimum for a window containing three items. At time stamp 8, we know that
the length of w5 must be equal to 4, since any new window to come must stretch
at least from time stamp 5 to a time stamp in the future, i.e., at least 9. Finally,
once we have reached the end of the sequence, we mark all current values of still
active windows as determined.

4 Experiments

In order to demonstrate the usefulness of our method, we chose datasets in
which the discovered patterns could be easily discussed and explained. We used
two text datasets, the Species dataset containing the complete text of On the
Origin of Species by Means of Natural Selection by Charles Darwin1, and the
Moby dataset containing Moby Dick by Herman Melville2. We processed both
sequences using the Porter Stemmer3 and removed the stop words. After pre-
processing, the length of the Species dataset was 85 450 items and the number
of distinct items was 5 547, and the length of Moby was 88 945 and the number
of distinct items was 10 221.

We performed two types of experiments. In Sect. 4.1, we qualitatively com-
pare our output to that of three existing methods, while in Sect. 4.2, we provide

1 Taken from http://www.gutenberg.org/etext/22764.
2 Taken from http://www.gutenberg.org/etext/15.
3 http://tartarus.org/∼martin/PorterStemmer/.

http://www.gutenberg.org/etext/22764
http://www.gutenberg.org/etext/15
http://tartarus.org/~martin/PorterStemmer/
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a performance analysis of our FCIseq algorithm. To ensure reproducibility, we
have made our implementations and datasets publicly available4.

4.1 Quality of Output

In the first set of experiments, we compared the patterns we discovered to those
found by three existing pattern mining algorithms—Winepi, Laxman

5 and
Marblesw

6. As discussed in Sect. 1, these algorithms use a variety of frequency-
based quality measures to evaluate the patterns. Since the available implementa-
tions were made with the goal of discovering partially ordered episodes, we had
to post-process the output in order to filter out only itemsets. Therefore, making
any kind of runtime comparisons would be unfair on these methods, since they
generate many more candidates. Consequently, in this section we limit ourselves
to a qualitative analysis of the output.

For all methods, we set the relevant thresholds low enough in order to
generate tens of thousands of patterns. We then sorted the output on the
respective quality measures—the sliding window frequency for Winepi, the non-
overlapping minimal window frequency for Laxman, the weighted window fre-
quency for Marblesw, and cohesion for FCIseq. We used pattern size to break
any ties in all four methods, and the sum of support of individual items making
up an itemset as the third criteria for FCIseq. Patterns that were still tied were
ordered alphabetically. The frequency threshold was set to 30 for Winepi in
both datasets, 5 for Laxman in Origin and 4 in Moby, and 1 for Marblesw in
both datasets, with the sliding window size set to 15. We ran FCIseq with the
cohesion threshold set to 0.01, and the support threshold to 5 for Origin and 4
for Moby. Since none of the existing methods produced any itemsets consisting
of more than 5 items, we limited the max size parameter to 5.

The top 5 patterns discovered by the different methods are shown in Table 2.
We can see that there are clear differences between the patterns we discovered
and those discovered by the existing methods, which all produced very similar
results. First of all, the patterns ranked first and second in our output for the Ori-
gin dataset are of size 3, which would be theoretically impossible for Winepi and
Marblesw, and highly unlikely for Laxman, since all three use anti-monotonic
quality measures. Second, we observe that the patterns we discover are in fact
quite rare in the dataset, but they are very strong, since all occurrences of these
patterns are highly cohesive. Concretely, the phrase tierra del fuego occurs seven
times in the book, and none of these words occur anywhere else in the book.
The value of this pattern is therefore quite clear—if we encounter any one of
these three words, we can be certain that the other two can be found nearby.
However, the only other method that ranked this pattern in the top 10 000 was
Marblesw, which ranked it 8 357th. On the other hand, pattern mobi dick is

4 https://bitbucket.org/len feremans/sequencepatternmining public.
5 The algorithm was given no name by its authors.
6 The implementations of all three methods were downloaded from http://users.ics.

aalto.fi/ntatti/software/closedepisodeminer.zip.

https://bitbucket.org/len_feremans/sequencepatternmining_public
http://users.ics.aalto.fi/ntatti/software/closedepisodeminer.zip
http://users.ics.aalto.fi/ntatti/software/closedepisodeminer.zip
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Table 2. Top 5 patterns discovered by the different methods.

Dataset FCIseq Winepi Laxman Marblesw

Species tierra del fuego natur select natur select natur select

natura facit saltum speci varieti speci form speci varieti

del tierra speci form speci varieti speci distinct

del fuego speci natur speci natur speci form

natura facit speci distinct speci distinct life condit

Moby mobi dick whale sperm whale boat whale sperm

vinegar cruet whale boat ship whale whale white

deuteronomi deacon ship whale whale sperm ship whale

defend plaintiff whale white head whale whale boat

erskin defend plaintiff head whale sea whale head mast

both cohesive and frequent, and was ranked 14th by Winepi, 22nd by Laxman

and 7th by Marblesw. None of the other patterns in our top 5 in either dataset
were ranked in the top 3 000 patterns by any of the other algorithms. We con-
clude that in order to find the very strong, but rare, patterns, such as tierra
del fuego or vinegar cruet, with the existing methods the user would need to
wait a long time before a huge output was generated, and would then need to
trawl through tens of thousands of itemsets in the hope of finding them. Our
algorithm, on the other hand, ranks them at the very top.

The patterns discovered by other methods typically consist of words that
occur very frequently in the book, regardless of whether the occurrences of the
words making up the itemset are correlated or not. For example, words speci and
varieti occur very often, and, therefore, also often co-occur. In fact, this pattern
was ranked 82 261st by FCIseq, with a cohesion of just over 0.01, indicating that
the average distance between nearest occurrences of speci and varieti was close
to 100, which clearly demonstrates that this pattern is spurious. Clearly, while
the very top patterns seem very different, there was still some overlap between
the output generated by the various methods. For example, pattern natur select,
ranked first in the Origin dataset by the existing methods, was ranked 17th by
FCIseq, which shows that our method is also capable of discovering very frequent
patterns, as long as they are also cohesive. Similarly, pattern life condit ranked
66th in our output, and pattern speci distinct 129th.

Table 3 shows the size of the overlap between the patterns discovered by
FCIseq and those discovered by the other three methods. We compute the size
of the overlap within the top k patterns for each method, for varying values of
k. We note that, in relative terms, the overlap actually drops as k grows, since
our method ranks many large patterns highly, which is not the case for the other
three methods. For example, the top 500 patterns discovered by FCIseq on the
Species dataset contain 388 patterns of size larger than 3, while the top 500
patterns produced by the other three methods do not contain a single pattern of
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Table 3. Overlap in the top k patterns discovered by FCIseq and other methods.

Dataset k Winepi Laxman Marblesw

Species 100 12 13 11

500 28 35 25

2 500 80 102 68

Moby 100 11 13 11

500 27 28 26

2 500 56 66 49

size larger than 3. Even in the top 100 patterns we discovered in both datasets
less than half were of size 2, while the top 100 produced by all other methods on
either dataset always contained at least 96 patterns of size 2. This demonstrates
the benefit of using a non-anti-monotonic quality measure, which allows us to
rank the best patterns on top regardless of size, while frequency-based methods
will, per definition, rank all subpatterns of a large pattern higher than (or at
least as high as) the pattern itself.

4.2 Performance Analysis

We tested the behaviour of our algorithm when varying the three thresholds.
The results are shown in Fig. 1. As expected, we see that the number of patterns
increases as the cohesion and support thresholds are lowered. In particular, when
the cohesion threshold is set too low, the size of the output explodes, as even
random combinations of frequent items become cohesive enough. However, as
the support threshold decreases, the number of patterns stabilises, since rarer
items typically only make up cohesive itemsets with each other, so only a few
new patterns are added to the output (when we lower the support threshold to
2, we see another explosion as nearly the entire alphabet is considered frequent).
In all settings, it took no more than a few minutes to find tens of thousands
of patterns. With reasonable support and cohesion thresholds, we could even
set the max size parameter to ∞ without encountering prohibitive runtimes,
allowing us to discover patterns of arbitrary size (in practice, the size of the
largest pattern is limited due to the characteristics of the data, so output size
stops growing at a certain point). Since existing methods use a relevance window,
defining how far apart two items may be in order to still be considered part of
a pattern, the existing methods can never achieve this. For example, using a
window of size 15 implies that no pattern consisting of more than 15 items can
be discovered. Finally, while we kept both min sup and min coh relatively high
in the presented experiments with max size set to ∞, it should be noted that
a much lower min sup could be used in combination with a higher min coh in
order to quickly find only the most cohesive patterns, including the rare ones.
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(a) min sup = 4, max size = 5 (b) min sup = 4, max size = 5

(c) min coh = 0.01, max size = 4 (d) min coh = 0.01, max size = 5

(e) min sup = 350, min coh = 0.015 (f) min sup = 250, min coh = 0.01

Fig. 1. Impact of various thresholds on output size and runtime. (a) Varying min coh
on Species.(b) Varying min coh on Moby. (c) Varying min sup on Species. (d) Varying
min sup on Moby. (e) Varying max size on Species. (f) Varying max size on Moby.
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5 Related Work

We have examined the most important related work in Sect. 1, and experimen-
tally compared our work with the existing methods in Sect. 4. Here, we place
our work into the wider context of sequential pattern mining.

At the heart of most pattern mining algorithms is the need to reduce the
exponential search space into a manageable subspace. When working with an
anti-monotonic quality measure, such as frequency, the Apriori property can be
deployed to generate candidate patterns only if some or all of their subpatterns
have already proved frequent. This approach is used in both breadth-first-search
(BFS) and depth-first-search (DFS) approaches, such as Apriori [1] and FP-

growth [5] for itemset mining in transaction databases, GSP [2], SPADE [12]
and PrefixSpan [9] for sequential pattern mining in sequence databases, or
Winepi [8] and Marbles [4] for episode mining in event sequences.

For computational reasons, non-anti-monotonic quality measures are rarely
used, or are used to re-rank the discovered patterns in a post-processing step.
Recently, Tatti proposed a way to measure the significance of an episode by
comparing the lengths of its occurrences to expected values of these lengths if
the occurrences of the patterns’ constituent items were scattered randomly [10].
However, the method uses the output of an existing frequency-based episode
miner [11], and then simply assigns the new values to the discovered patterns. In
this way, the rare patterns, such as those discussed in Sect. 4 will once again not
be found. Our FCIseq algorithm falls into the DFS category, but the proposed
quality measure is not anti-monotonic, and we have had to rely on an alternative
pruning technique to reduce the size of the search space. We believe the addi-
tional computational effort to be justified, as we manage to produce intuitive
results, with the most interesting patterns, which existing methods sometimes
fail to discover at all, ranked at the very top.

6 Conclusion

In this paper, we present a novel method for finding valuable patterns in event
sequences. We evaluate the pattern quality using cohesion, a measure of how far
apart the items making up the pattern are on average. In this way, we reward
strong patterns that are not necessarily very frequent in the data, which allows us
to discover patterns that existing frequency-based algorithms fail to find. Since
cohesion is not an anti-monotonic measure, we rely on an alternative pruning
technique, based on an upper bound of the cohesion of candidate patterns that
have not been generated yet. We show both theoretically and empirically that
the method is sound, the upper bound tight, and the algorithm efficient, allowing
us to discover large numbers of patterns reasonably quickly. While the proposed
approach concerns itemset mining, most of the presented work can be applied
to mining other pattern types, such as sequential patterns or episodes.
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Abstract. With the development of Internet, users can share knowledge
by asking and answering questions on community question answering
(CQA) websites. How to find related experts to contribute their answers
is hence worthy of studying. In this paper, we propose a recommenda-
tion algorithm called collaborative expert recommendation (CER) for
this purpose. We take full advantage of the heterogeneous information
including question tags, content, answer’s votes, which are considered
important for identifying experts. Moreover, we combine such informa-
tion by a causal assumption of questions and answers, and inner con-
nection exploitation among different types of information such as (ques-
tioner, question), (answer, question) and (answerer, question, answer)
correlations, which are more explicable and reasonable comparing with
the existing methods. Experiments carried out on six real-world datasets
prove that CER has a better performance.

1 Introduction

Nowadays, with the development of Internet techniques, people can easily share
a wealth of knowledge on the community question answering (CQA) websites.
Because the accumulation of many useful domain-specific questions and answers,
CQA based websites such as Stack Exchange and Quora have attracted more and
more users. For instance, the Stack Overflow website, which features questions
and answers on a wide range of topics in computer programming, has over 2
million registered users and 7 million questions in just a few years.

Users expect to receive high quality answers after submitting their questions,
prompting some recommendation techniques to be applied to attract more rele-
vant users to provide their ideas and solutions. One way to speed up the delivery
is to filter key words in the question titles and texts, and remind questioners to
add more relevant tags, expecting the additional information to help classify
the questions. Currently, some websites (e.g., Zhihu.com and Quora.com) have
adopted an optimized solution by incorporating an expert invitation system,
through which the registered users can invite their friends to contribute answers.
Although those systems have improved CQA recommendation performance, they
overly relay on users, and lack recommendation stability, because the websites
cannot guarantee to deliver each question to the related experts, and whether
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 378–393, 2016.
DOI: 10.1007/978-3-319-46128-1 24
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they can be answered in time. In fact, there are still many unanswered questions
posted months and years ago. Therefore, recently, some related researches focus-
ing on CQA systems prefer to introduce more active and intelligent solutions to
help recommend experts automatically by involving recommendation algorithms
and some related data mining techniques. With those proposals, each question
has more chance to be reviewed by relevant users in time and can receive more
high quality answers.

Understanding the CQA work flow is helpful for designing expert recommen-
dation systems. To simplify it, we treat each question and its answers as a unit
which contains questions, answers, users, tags and votes.

Question and Questioner. Each question consists of a title, a body, and one
or more tags. Tags are usually the most brief and concise aspects for describing
question topics; the title is more related to the content and can be regarded as a
summary of it, while the body is more concrete and gives more details. Questions
can also reflect questioners’ expertise. A user who often posts questions about a
particular topic may be interested in that topic, but may not have considerable
expertise in solving those questions.

Answer and Answerer. Users are encouraged to provide their answers accord-
ing to their own experience and knowledge. Some of them may contribute sat-
isfying answers with systematic and detailed analysis, while others may not.
Most CQA websites try to evaluate the quality of answers with the help of vote
buttons, by which users or visitors can vote up and vote down each answer.
The interactions result in a ranked answer list, in which the most useful answer
will receive the highest voting score and be placed at the top, while the most
valueless answer will be placed at the end of the page. We generally estimate
the answerers’ expertise according to the votes. If their answers receive higher
voting scores than other users’, we believe they have a high degree of expertise
in the similar questions. This empirical conclusion plays an important role on
designing our expert recommendation algorithms.

Till now, a few researches (e.g., [11,17–19]) have directly or indirectly lever-
aged some aforementioned information for CQA expert recommendation, how-
ever, they suffer from some drawbacks. First, the valuable information such
as tags, questions, answer content and votes are not fully considered. Cor-
rectly revealing their inner connections and taking all of them into account will
undoubtedly improve recommendation accuracy. Second, Questions and answers
are usually modeled on the same level, which is not correct because usually
the answer’s content is determined by the related question’s content and the
answerer’s expertise. Third, the (answerer, question) correlation is commonly
represented as and modeled by (answerer, answer) and (answer, question) cor-
relations separately, hence the expertise estimation is inefficient comparing with
directly modeling (answerer, question, answer) triplets.

To overcome the aforementioned drawbacks, in this paper, we propose a
novel collaborative expert recommendation (CER) model. We directly correlate
users and questions by latent factor techniques, and model (question, answer,
answerer) triplet by a reasonable causal assumption based on topic models.
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The details of CER is discussed in Sect. 2. In Sect. 3, we analyze the perfor-
mance of our models with six real world datasets. In Sect. 4, we talk about some
related works and finally we conclude our study in Sect. 5.

2 Our Model

In this section, we start with the notation used in our paper. Then we present
our assumptions, collaborative expert recommendation (CER) method and the
learning algorithm.

2.1 Notation

The notation we use throughout the paper is defined in Table 1. Note that for
some symbols such as zq and wq,i, we will omit their subscripts if they are clear
in the context.

Table 1. Notation

Symbol Description

Q Set of questions q ∈ Q

A Set of answers a ∈ A

U Set of users u ∈ U

W, T Set of words w ∈ W and tags t ∈ T

Uu, Qq Latent factor for user u and question q

Qu Set of questions answered by u ∈ U

Q′
u Set of questions posted by u ∈ U

Au Set of answers contributed by u ∈ U

z, θq, θa Latent topic, and topic distribution of q and a

φw,z, φt,z Word and tag distribution given topic z

n(d, w) Number of occurrences of w in document d

n(d, t) Number of occurrences of t in document d

su,q Voting score for the answer given by answerer u to question q

2.2 Construction

We assume each user can ask questions, answer questions and give a vote to
the existing answers; each question contains a title, a body and some tags; each
answer contains a body and has a voting score. We make four assumptions about
their correlations in the following three sub-sections, and finally integrate them
into CER model in the final sub-section.
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(User, Question) Correlation. To find the potential relevant experts, we
directly model (user, question) correlations. Here, we use voting scores to quan-
tify answers’ quality. Generally, if most users believe an answer can solve a
question perfectly, this answer and the answerer will receive a high voting score.
We note that this scenario is very similar to item recommendation tasks if we
treat answerers as users, questions as items and votes as rating scores. There-
fore, we here apply collaborative filtering methods to modeling (user, question)
correlation. Let Uu ∈ R

D×|U | and Qq ∈ R
D×|Q| be the latent factors of answerer

u and question q, and su,q be the voting score for the answer given by answerer u
to question q. We assume that UT

u Qq is positive correlated with su,q, and adopt
the latent factor method to model them. Because su,q is discrete, we here adopt
binomial distribution to model it as follows:

B(su,q|Uu,Qq) =
(

S

su,q

)
σ(u, q)su,q (1 − σ(u, q))S−su,q , (1)

where S is the largest voting score in the data, and σ(u, q) is the sigmoid function,

σ(u, q) =
1

1 + exp(−UT
u Qq)

. (2)

By this way, UT
u Qq can be used to approximate u’s expertise in q. For ques-

tioner u′ who proposes q, we assume (s)he is not good at the similar topics or
questions. We also model this assumption into our model by setting su′,q = 0 for
u′. Note that because the voting scores have a large span, in practice we need
to rescale all s to a small range.

Text and Tags. We apply probabilistic latent semantic analysis (pLSA) [5] to
modeling the text, including titles and bodies, of each question. Because tags
are usually consisted with single word or phrases, we combine them together
into a single structure which likes Link-LDA model [3]. Question q’s proportion
is defined as θq(i.e., p(z|q)). We use φw,z (i.e., p(w|z)) and φt,z (i.e., p(t|z)) to
represent word and tag distributions for topic z. Then the likelihood of question
corpus for words can be written as

∏

q∈Q

∏

w∈W

{
∑

z

θq,z, φ
q
w,z}n(q,w), (3)

where we multiply all words and questions in the corpus. The likelihood for tags
is similar to Eq. (3), which we do not discuss here. Note that the number of
tags is relatively less than words for each question, hence they are up-sampled
to improve their priority.

Since q can be represented by both latent factor Qq and topic distribution θq,
we combine them into a more compact form for a unified expression. Note that
we cannot combine them directly because Qq is a random vector in R

D×|Q| and
θq is stochastic. Simply let Qq be stochastic will reduce the power of the latent
factor assumption, while let θq be a random vector without restriction will lose
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probabilistic interpretation of the topics. Inspired by [12], we design a transform
function which allows Qq ∈ R

D×|Q| and enforces
∑

z θq,z = 1. The function is
defined as follows:

θq,z =
exp(βQq,z)∑
z′ exp(βQq,z′)

, (4)

where β controls the influence of each dimension in Qq. If β is large, q will be
mainly about the topic with the highest value in Qq. If β is small, each topic
tends to be evenly discussed.

Similarly, for each answer, we use θa (i.e., p(z|a)) to denote its topic. We
also note that although the details of a question and the related answers may
be quite different, the discussed topics revealed by tags are very similar. To take
advantage of this information, we also consider tags of related question for each
answer.

(Answerer, Question, Answer) Correlation. Beyond words and tags, we
assume answer’s topic proportion θa is determined by the related answerer u
and question q, which we will give a more detailed explanation. (1) An answer’s
content and quality are undoubtedly affected by the related writer’s expertise
and skill. For instance, an answerer who is familiar with a certain type of ques-
tions is more likely to provide reasonable answers. (2) Because an answer is
given for solving a particular question, the content and topics are also deter-
mined by the question’s topics and features. Hence, we assume each answer is
correlated with the answerer and the question. Specifically, we model them by
the following two assumptions. First, each question and its answers share the
similar topics. Second, if an answerer is good at a particular topic, (s)he will
emphasize on that topic. In order to capture the correlation, we propose the
following transformation function,

θa,z =
exp(γUu,zQq,z)∑
z′ exp(γUu,z′Qq,z′)

, (5)

where γ is a parameter which controls topic influence. Intuitively, large γ means
that answerer u tends to focus on a particular topic of question q, while small γ
means that answerer u discusses all topics of question q evenly. When γ is fixed,
if u is familiar with topic z, and q is mainly about topic z, the value of Uu,zQq,z

will be larger, which means the answer is mainly about this topic. Therefore,
Eq. (5) can correctly reflect the causal relationships among answerers, questions
and answers.

2.3 CER Model

We construct our model by linking latent factors Qq and Uu to topic proportions
θq and θa. The graphical representation of CER is shown in Fig. 1.

We do not fit Uu, Qq, θa and θq simultaneously since some parameters
uniquely define the others. In practice, θa and θq are updated through Uu and Qq.
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Fig. 1. The plate notation of CER. Note that the (question, questioner) correlation
is not shown in the model. In the learning process, we model it together with the
(question, answerer) coorrelation.

According to the generative process, our model finally combines users, questions,
answers, tags and words altogether. The log likelihood of CER is as follows:

L =
∑

u∈U

∑

q∈{Qu,Q′
u}

log B(su,q|Uu,Qq)

+
∑

q∈Q

∑

w∈W

n(q, w) log
∑

z∈Z

pq(w|z)p(z|q)

+
∑

a∈A

∑

w∈W

n(a,w) log
∑

z∈Z

pa(w|z)p(z|a)

+
∑

q∈Q

∑

t∈T

n(q, t) log
∑

z∈Z

pq(t|z)p(z|q) − λu

2

∑

u∈U

||Uu||2

+
∑

a∈A

∑

t∈T

n(a, t) log
∑

z∈Z

pa(t|z)p(z|a) − λq

2

∑

q∈Q

||Qq||2,

s.t Eq. (4) and Eq. (5),

(6)

where p(w|z), p(t|z), p(z|q), p(z|a) are probabilistic expressions of φw,z, φt,z, θq,z
and θa,z.1 λu and λq are regularization parameters for u and q.

We use EM (expectation-maximization) algorithm to train CER. Our goal
is to optimize the parameters associated with voting scores Θ = {Uu,Qq}
and the parameters about topics Φ = {p(z|q, w), p(z|q, t), p(z|a,w), p(z|a, t)},
Ω = {pq(w|z), pa(w|z), pq(t|z), pa(t|z)}. In the E step, we compute the para-
meters in Φ for q and a given the other parameters. In the M step, we optimize
the parameters in Θ and Ω. E and M steps are updated alternatively, and the
optimization procedure is summarized in Algorithm 1.
1 To make the learning process more readable, here we use two symbols to indicate

one variable(e.g., p(z|q) equals to θq,z)).
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Algorithm 1. The learning algorithm of CER.
1: Initialize Uu and Qq

2: for � = 1, 2, ..., ITER do
3: Compute p(z|q) (i.e., θq) and p(z|a) (i.e., θa) via Eq. (4) and Eq. (5)
4: E step:
5: Update p(z|q, w), p(z|q, t), p(z|a, w) and p(z|a, t)
6: M step:
7: Update p(w|z) and p(t|z) for each q and a
8: Update Uu and Qq

9: end for

Line 5 of Algorithm 1 describes the E step of CER. For instance, the updating
details for w and k-th topic in the n-th iteration are shown below:

pn+1(z(k)|q(i), w(j)) =
pn(z(k)|q(i))pn(w(j)|z(k))∑
z′∈Z pn(z′|q(i))pn(w(j)|z′)

, (7)

pn+1(z(k)|a(i), w(j)) =
pn(z(k)|a(i))pn(w(j)|z(k))∑
z′∈Z pn(z′|a(i))pn(w(j)|z′)

, (8)

In line 7 of Algorithm1, we update word and tag distributions for each topic.
As an example, p(w(j)|z(k)) for q and a in the n-th iteration are updated as
follows:

pqn+1(w
(j)|z(k)) =

∑
q∈Q n(q, w(j))pn+1(z(k)|q, w(j))

∑
w′∈W

∑
q∈Q n(q, w′)pn+1(z(k)|q, w′)

, (9)

pan+1(w
(j)|z(k)) =

∑
a∈A n(a,w(j))pn+1(z(k)|a,w(j))∑

w′∈W

∑
a∈A n(a,w′)pn+1(z(k)|a,w′)

, (10)

In line 8 of Algorithm1, we update Uu and Qq by gradient descent. We repeat
the process multiple times in each iteration to approximate the local optimal
value. The details of gradient descent are as follows:

∂L
∂Uu,k

=
∑

q∈{Qu,Q′
u}

su,qσ(−UT
u Qq)Qq,k − (S − su,q)σ(UT

u Qq)Qq,k

+ γ
∑

a∈Au

∑

w∈W

n(a,w)
φa
w,kθa,k(1 − θa,k)Qq,k∑

k′ φa
w,k′θa,k′

+ γ
∑

a∈Au

∑

t∈T

n(a, t)
φa
t,kθa,k(1 − θa,k)Qq,k∑

k′ φa
t,k′θa,k′

− λuUu,k,

(11)
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∂L
∂Qq,k

=
∑

u∈Uq

su,qσ(−UT
u Qq)Uu,k − (S − su,q)σ(UT

u Qq)Uu,k

+ β
∑

w∈W

n(q, w)
φq
w,kθq,k(1 − θq,k)∑

k′ φq
w,k′θq,k′

+ β
∑

t∈T

n(q, t)
φq
t,kθq,k(1 − θq,k)∑

k′ φq
t,k′θq,k′

− λqQq,k

+ γ
∑

a∈Aq

∑

w∈W

n(a,w)
φa
w,kθa,k(1 − θa,k)Uu,k∑

k′ φa
w,k′θa,k′

+ γ
∑

a∈Aq

∑

t∈T

n(a, t)
φa
t,kθa,k(1 − θa,k)Uu,k∑

k′ φa
t,k′θa,k′

,

(12)

where Uq are the users who post or answer question q; Aq are all answers to q, and
u is the related answerer. For CER, we use UT

u Qq to predict u’s expertise in q.
Comparing with the existing methods, CER combines ideas from content

analysis and collaborative filtering to model the correlations. It has the following
advantages.

Table 2. Basic statistics of the six real-world datasets, including number of users,
number of questions, number of answers, number of words, number of tags, average
number of questions per user, average number of answers per user.

dataset #users #questions #answers #words #tags #avg.user q #avg.user a

physics 1,709 854 4,138 5,797 403 0.4997 2.4213

unix 4,867 5,782 17,097 11,460 1,109 1.1880 3.5128

tex 3,824 6,301 18,675 20,141 757 1.6478 4.8836

super user 4,450 1,074 7,365 5,361 775 0.2413 1.6551

math 19,047 101,002 210,413 65,768 1,023 5.3028 11.0470

english 1,995 11,130 27,453 17,692 768 5.5789 13.7609

1. CER considers both word and tag information. In applications, the text in
different domains may contain different types of noisy words. For instance,
many questions and answers on Stack Overflow contain a large number of
code snippets, which have negative impacts on topic learning. On the contrary,
tags are always selected carefully by users and more effective for uncovering
question’s topics.

2. For each user, we model questioners’ latent factors and answerers’ latent
factors separately based on the fact that each user plays two roles in CQA:
a questioner and an answerer. Our model can not only discover what types
of questions a user is familiar with, but also avoid providing their unfamiliar
questions to them.
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3. We assume each answer’s topics are directly determined by the related
answerer’s and question’s features. This causal assumption is more reason-
able than existing models which learn latent topics of answers and questions
separately.

4. CER directly correlates answerers with questions rather than construct
(answerer, answer) and (answer, question) correlations separately. With those
advantages, we can optimize (questioner, question), (answerer, question),
(answerer, question, answer) correlations simultaneously, which results to bet-
ter expert recommendations.

3 Experiments

3.1 Datasets

In our experiments, we sample six real-world datasets from Stack Exchange
website to test our models. All the datasets are publicly available through offi-
cial Data Dump Service2. Each sampled data contains plenty of community-
contributed information in a particular domain on Stack Exchange. We pre-
process the data by removing inactive users and questions. Specifically, we treat
a user as an inactive user if (s)he has less than nu ∈ {1, 3, 5, 7} questions
and answers and treat a question as an inactive question if it has less than
nq ∈ {1, 3, 5, 7} answers. To test algorithm stability, we randomly choose nu

and nq for each dataset. The statistic information of questions, users, tags and
answers for each dataset is listed in Table 2. For each experiment, we use 80%
of the data for training, 10% for validation and the left 10% for test.

3.2 Baseline Methods and Evaluation Metrics

We evaluate the effectiveness of our models by comparing them to the state-of-
the-art recommendation methods: Topic Expertise Model (TEM) [19], Tri-Role
Topic Model (TRTM) [11], Dependent Dual Role Model (DDRM) [17] and Tag-
Based Expert Recommendation (TBER) [18].

TEM jointly models users’ topic interests and expertise by combining tex-
tual content model and link structure analysis, in which the answers’ votes are
modeled by Gaussian mixture hybrid and questions’ topics are modeled based
on LDA [1].

TRTM is a very recent question recommendation method which models
different rules of users and tries to find their fine-grained topics by separating
questions and answers into different topic models. It adopts exponential KL −
divergence to correlate users, questions and answers.

DDRM is also a topic model based method which considers {questioners,
answerers, question content}. It assumes questioners, questions’ text, and
answers are dependent on each other, and all of them determine question topics.

2 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange
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Table 3. Top words of 5 topics learned by CER (on the unix dataset).

t1 http, network, firefox, internet, run

t2 driver, launch, desktop, set, system

t3 i386, linux, install, bash, ubuntu

t4 ubuntu, window, pack, help, linux

t5 bash, run, apt-get, write, copy

Table 4. Top tags of 5 topics learned by CER (on the unix dataset).

t1 google, dnsmasq, installed-programs, web, webcam

t2 cpu-load, mount, canon, monitor, pci

t3 time, text-mode, cpu-load, pidgin, unity

t4 thumbnails, ntfs, system-tray, customization, doc

t5 amazon-ec2, coreutils, derivatives, python, source

TBER is a recent proposed expert recommendation model which is mainly
based on {answerers, question tags} information. It applies probabilistic matrix
factorization to modeling answerers and tags. Given a question, the (user, ques-
tion) correlation is estimated by the related (user, tag) correlations.

For the methods based on topic models, we use gensim3 package to pre-
process the text. For our models, we set λ = 0.01, η = 0.005, λu = 0.01, λq = 0.01
and rescale s to [0, 5]. β and γ are selected from {0.1, 1, 10}.

We use some popular ranking evaluation metrics to evaluate the recommen-
dation efficiency of compared models, including mean reciprocal rank (MRR)
[14], discounted cumulative gain (nDCG) [6], precision and recall [15].

3.3 Experimental Results

Topic Analysis. We first study word and tag distributions in each topic for
CER. As an example, the results on unix dataset are listed in Tables 3 and 4.
The former shows the top 5 words and the latter shows the top 5 tags for each
topic. We list some observations below.

1. The top words under the same topic are strong correlated. For instance, the
words in topic 1 are mainly about network, and the top words in topic 5 are
closely related to terminals and scripts.

2. The correlations of the top 5 tags in each topic are still obvious. Further-
more, we find that by involving tags, CER can learn phrase level information
such as “installed-programs”, “cpu-load”, which convey more useful semantic
information than the bag-of-words.

3 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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Table 5. NDCG, precision, recall and MRR results of the compared methods.

NDCG@10

models physics unix tex super user math english

TEM 0.0602 0.0017 0.0042 0.0327 0.0021 0.0360

TRTM 0.0858 0.0012 0.0164 0.0734 0.0014 0.0342

DDRM 0.1009 0.0014 0.0170 0.0571 0.0025 0.0362

TBER 0.0802 0.0020 0.0177 0.0840 0.0034 0.0358

CER 0.1185 0.0132 0.0190 0.0940 0.0043 0.0397

Pre@10

models physics unix tex super user math english

TEM 0.0292 0.0010 0.0039 0.0128 0.0017 0.0225

TRTM 0.0402 0.0008 0.0129 0.0245 0.0011 0.0207

DDRM 0.0450 0.0008 0.0135 0.0198 0.0017 0.0225

TBER 0.0366 0.0012 0.0143 0.0278 0.0020 0.0230

CER 0.0499 0.0073 0.0150 0.0302 0.0024 0.0237

Rec@10

models physics unix tex super user math english

TEM 0.0910 0.0019 0.0063 0.0486 0.0020 0.0448

TRTM 0.1398 0.0014 0.0176 0.1311 0.0005 0.0434

DDRM 0.1599 0.0020 0.0190 0.0948 0.0029 0.0459

TBER 0.1207 0.0029 0.0180 0.1511 0.0047 0.0453

CER 0.1838 0.0248 0.0178 0.1668 0.0063 0.0519

MRR

models physics unix tex super user math english

TEM 0.0854 0.0260 0.0387 0.0509 0.0080 0.0702

TRTM 0.1126 0.0361 0.0367 0.0884 0.0049 0.0687

DDRM 0.1305 0.0386 0.0365 0.0749 0.0084 0.0690

TBER 0.1082 0.0237 0.0416 0.0975 0.0095 0.0711

CER 0.1523 0.0392 0.0426 0.1080 0.0102 0.0757

3. The top words in each topic are related to the top tags. For instance, the first
topic in Table 3 is mainly about the network which is correlated to the tags
such as “google”, “dnsmasq” and “web” in the first line in Table 4. Hence,
CER can exploit words’ and tags’ consistency and take advantage of them,
which shows a reason why our method is better than the compared baselines.

Recommendation Efficiency. We investigate expert recommendation perfor-
mance on some ranking metrics. For all compared models, the number of topics
and the dimension of latent factors are set to 5. We set the recommendation list
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Fig. 2. Performance comparison with different latent dimensions and recommendation
list size.

size to 10 for nDCG, precision and recall. The results on all metrics are shown
in Table 5. We summarize our observations as follows.

1. The results on different datasets vary greatly due to data characteristics and
model stability. We notice that some topic model based methods are sensi-
tive to the data in different domains. For instance, TEM achieves very low
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precision, recall and NDCG@10 scores than the other methods on tex dataset,
but its performance is comparable to the baselines’ on english dataset.

2. The collaborative filtering based models such as TBER can achieve better
overall performance. This is mainly because TBER directly correlates users
and questions via tags. Comparing with words, tag information has more
regular structures and can be effectively learned.

3. In most cases, our CER is stable and effective than the compared methods.
On average, CER can achieve 14.76% improvement than the best baselines
on all metrics. The effectiveness may due to the exploitation of heteroge-
neous information, the direct (user, question) correlation construction, and
the reasonable causal structure.

Stability Analysis. We analysis parameter sensitivity of CER and recommen-
dation stability for the compared models.

Latent dimension (D). We first vary the number of topics D ∈ {5, 10, 15, 20}
for CER, and some experimental results are shown in Fig. 2(a). Clearly, when D
increases, the performance of CER also has general upward trends. This is mainly
because user and question factors can capture more correlated information with
larger D. Therefore, we can still improve CER’s performance by increasing topic
dimensions.

Recommendation size (K). Next, we vary the recommendation size K to be values
in {5, 10, 15, 20} to test recommendation performance of the compared models.
The Pre@K and NDCG@K scores on two datasets are shown in Fig. 2(b). We
find that when the recommendation size increases, our model is consistently
better than the baselines. This is different from some baseline models, of which
the performance is not relatively stable.

4 Related Work

In this section, we briefly overview some studies on expertise modeling for CQA.
Broardly, they can be classified into three types of approaches: link analysis,
content-based techniques and matrix completion methods.

The link analysis based methods construct a network to represent the inter-
action of questions and users. The expertise value is evaluated by the connection
degree of each line in the graph. For instance, to recommend experts in Sun
Java Forum, Zhang et al. [20] construct a directed bipartite graph for users and
posts. They apply some network-based ranking algorithms, including PageRank
and HITS, to identify the users with high expertise. The models based on link
analysis are dataset specific and not general. In addition, they are not effective
to find the latent correlations and ignore question and answer text which carry
abundant useful information.

The content-based methods are proposed to utilize topic-level information
[4,9,17], which are mainly based on pLSA [5] and LDA [1]. To leverage more
useful information, Yang Liu et al.([19]) also try to integrate tags and voting
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scores into PLSA, assuming votes are sampled from Gaussian mixture mod-
els. Some similar assumptions can also be found in [7,8,10,13]. The most recent
related work for CQA recommendation is TRTM proposed in [11]. TRTM explic-
itly separates askers, answerers, questions and answers into different parts and
use exponential KL−divergence to link users to questions and answers. Beyond
those methods, some approaches try to combine the network and topic models
such as [2,16,21,23].

Matrix completion assumption is another method for expert recommenda-
tion. For instance, TBER [18] applies matrix factorization to modeling users
and tags. The users’ expertise in questions is translated to (user, tag) scores.
Zhao et al. [22] try to leverage users’ social networks to help find more relevant
experts with graph regularized matrix completion. Such methods have some
limitations. For example, TBER is not effective if the number of tags for each
question is small. The approach proposed in [22] is not a generalized method for
all CQA websites.

5 Conclusion and Future Work

In this paper, we propose a novel expert recommendation model(CER) for CQA.
Specifically, we design two transformation functions and a causal construction
to model (questioner, question), (answerer, question) and (answerer, question,
answer) correlations. Comparing with the state-of-the-art models, CER can cap-
ture more useful information and reflect their inner connections, which leads to
better experimental results. We apply our models to six real-world datasets to
test the performance of expert recommendation, which is measured from differ-
ent perspectives. The experimental results show that our methods can achieve
better overall performance than the state-of-the-art models.

In the future, we will consider more comprehensive information, including
(1) the followers of each question, and (2) the comments of the followers to each
answer.
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Abstract. Predicting the link state of a network at a future time given
a collection of link states at earlier time is an important task with many
real-life applications. In existing literature this task is known as link pre-
diction in dynamic networks. Solving this task is more difficult than its
counterpart in static networks because an effective feature representation
of node-pair instances for the case of dynamic network is hard to obtain.
In this work we solve this problem by designing a novel graphlet transi-
tion based feature representation of the node-pair instances of a dynamic
network. We propose a method GraTFEL which uses unsupervised
feature learning methodologies on graphlet transition based features to
give a low-dimensional feature representation of the node-pair instances.
GraTFEL models the feature learning task as an optimal coding task
where the objective is to minimize the reconstruction error, and it solves
this optimization task by using a gradient descent method. We validate
the effectiveness of the learned feature representations by utilizing it for
link prediction in real-life dynamic networks. Specifically, we show that
GraTFEL, which use the extracted feature representation of graphlet
transition events, outperforms existing methods that use well-known link
prediction features. The data and software related to this paper are avail-
able at https://github.com/DMGroup-IUPUI/GraTFEL-Source.

1 Introduction

Understanding the dynamics of an evolving network is an important research
problem with numerous applications in various fields, including social network
analysis, information retrieval, recommendation systems, epidemiology, security,
and bioinformatics. A key task towards this understanding is to predict the
likelihood of a future association between a pair of nodes, given the existing state
of the network. This task is commonly known as the link prediction problem.
Since, its formal introduction to the data mining community by Liben-Nowell
et al. [9] about a decade ago, this problem has been studied extensively by
many researchers from a diverse set of disciplines. Comprehensive surveys on
link prediction methods are available for interested readers [7].
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The majority of the existing works on link prediction consider a static snapshot
of the given network, which is the state of the network at a given time [6,9–11]. Nev-
ertheless, for many networks, additional temporal information, such as the time of
link creation and deletion, is available over a time interval. For example, in an on-
line social or a professional network, we may know the time when two persons have
become friends; for collaboration events, such as, a group performance or a collabo-
rative academic work, we can extract the time of the event from an event calendar.
The networks built from such data can be represented by a dynamic network, which
is a collectionof temporal snapshots of thenetwork.The linkprediction taskon such
a network is defined as follows: for a given pair of nodes, predict the link probability
between the pair at time t + 1 by training the model on the link information at times
1, 2, · · · , t. We will refer this task as dynamic link prediction1.

A key challenge of dynamic link prediction is finding a suitable feature rep-
resentation of the node-pair instances which are used for training the prediction
model. For the static setting, various topological metrics (common neighbors,
Adamic-Adar, Jaccard’s coefficient) are used as features, but they cannot be
extended easily for the dynamic setting having multiple snapshots of the net-
work. In fact, when multiple (say t) temporal snapshots of a network are pro-
vided, each of these scalar features becomes a t-sized sequence. Flattening the
sequence into a t-size vector distorts the inherent temporal order of the features.
Authors of [5] overcome this issue by modeling a collection of time series, each
for one of the topological features; but such a model fails to capture signals
from the neighborhood topology of the edges. There exist a few other works
on dynamic link prediction, which use probabilistic (nonparametric) and matrix
factorization based models. These works consider a feature representation of the
nodes and assume that having a link from one node to another is determined by
the combined effect of all pairwise node feature interactions [4,18,22]. While this
is a reasonable assumption, the accuracy of such models are highly dependent on
the quality of the node features, as well as the validity of the above assumption.

Graphlets, which are collection of small induced subgraphs, are increasingly
being used for large-scale graph analysis. For example, frequencies of various
graphlets are used for classifying networks from various domains [17]. They are
also used for designing effective graph kernels [19]. In biological domain, graphlet
frequencies are used for comparing structures of different biological networks [15].
In all these works, graphlets are used as a topological building block of a static
network. Nevertheless, as new edges are added or existing edges are removed from
the given dynamic network, the graphlets which are aligned with the affected
edge transition to different graphlets. For illustration, let us consider a dynamic
network with two temporal snapshots G1 and G2 (Fig. 1). In this example, G2

has one more edge (2, 3) than G1. We observe three different types of transition
events, where a type of graphlet is changed into another type in the subsequent
snapshot (see the table in Fig. 1). Here, all the events are triggered by the edge

1 Strictly speaking, this task should be called link forecasting as the learning model is
not trained on partial observation of link instances at time t+1; however, we refer it as
link prediction due to the popular usages of this phrase in the data mining literature.
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(2, 3). In this work, we use the frequency of graphlet transition events associated
with a node-pair for predicting link between the node-pairs in a future snapshot
of the dynamic network.

Fig. 1. A Toy Dynamic Network. G1 and G2 are two
snapshots of the Network. Three different types of
graphlet events are observed.

A key challenge of
using graphlet transition
event for dynamic link
prediction is to obtain
a good feature repre-
sentation for this task.
This is necessary because
graphlet transition event
matrix is sparse, and on
such dataset, low dimen-
sional feature representation effectively captures the latent dependency among
different dimensions of the data. There exist a growing list of recent works which
use unsupervised methodologies for finding features from raw data representa-
tions of various complex objects, including images [13] and audio [8]. For graph
data, we are aware of only one such work, namely DeepWalk [14], which obtains
the feature representation of nodes for solving a node classification task. How-
ever, no such work exists for finding feature representation of node-pair instances
for the purpose of link prediction.

In this work, we propose a novel learning method GraTFEL (Graphlet
Transition and Feature Extraction for Link Prediction) for obtaining feature
representation of node-pair instances from graphlet transition events in the
observed snapshots of the given network. GraTFEL considers the feature learn-
ing task as an optimal coding problem such that the optimal code of a node-pair
is the desired feature representation. The learning can be considered as a two-
step process (compression and reconstruction), where the first step compresses
the input representation of a node-pair into a code by a non-linear transforma-
tion, and the second step reconstructs the input representation from the code by
a reverse process and the optimal code is the one which yields the least amount of
reconstruction error. The input representation of a node-pair is given as a vector
of graphlet transition events (GTEs) associated with the corresponding node-
pair. After obtaining an appropriate feature representation of the node-pairs, a
traditional supervised learning technique is used (we use SVM and AdaBoost)
for predicting link states at future times in the given dynamic network. Below
we summarize our contributions in this work:

– We use graphlet transition events (GTEs) for preforming link prediction in a
dynamic network. To the best of our knowledge we are the first to use GTEs
for solving a prediction task over a dynamic network.

– We propose a learning model (GraTFEL) for unsupervised feature extrac-
tion of node-pairs for the purpose of link prediction over a dynamic network.

– We compare the performance of GraTFEL with multiple state-of-the-art
methods on three real-life dynamic networks. This comparison results show
that our method is superior than each of the competing methods.
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2 Related Works

Graphlets have been used successfully in static network setup for a multitude
of applications. For a given network, Pržulj et al. [16] count the frequencies of
various graphlets in the network for designing a fingerprint of a biological graph.
In [12], the authors define signature similarity function to characterize the sim-
ilarity of two vertices of a network, thus allowing a user to cluster vertices based
on their structural similarity. Sampling based methods are used for computing
graphlet degree distribution efficiently [1,17]. While the above methods address
graphlet based analysis of static networks, works, exploring dynamic network
characterization using graphlet, are yet to come.

A multitude of methodologies have been developed for link prediction on
dynamic networks. The methods proposed by Güneş et al. [5] captures temporal
patterns in a dynamic network using a collection of time series on topological
features. But this approach fails to capture signals from neighborhood topology,
as each time series model is trained on a separate t-size feature sequence of a
node-pair. The method proposed by Bliss et al. [2] applies covariance matrix
adaptation evolution strategy (CMA-ES) to optimize weights which are used in
a linear combination of sixteen neighborhood and node similarity indices. Matrix
and tensor factorization based solutions are presented in [4], considering a tensor
representation of a dynamic network. The nonparametric link prediction method
presented in [18] uses features of the node-pairs, as well as the local neighbor-
hood of node-pairs. This method works by choosing a probabilistic model based
on features (common neighbor and last time of linkage) of node-pairs. Stochastic
block model based approaches divide nodes in a network into several groups and
generates edges with probabilities dependent on the group membership of partic-
ipant nodes [22]. While probabilistic model based link prediction performs well
on small graphs, they become computationally prohibitive for large networks.

3 Problem Definition

Assume G(V,E) is an undirected network, where V is the set of nodes and E
is the set of edges e(u, v) such that u, v ∈ V . A dynamic network is represented
as a sequence of snapshots G = {G1, G2, . . . , Gt}, where t is the number of time
stamps for which we have graph snapshots and Gi(Vi, Ei) is a graph snapshot
at time stamp i : 1 ≤ i ≤ t. In this work, we assume that the vertex set remains
the same across different snapshots, i.e., V1 = V2 = · · · = Vt = V . However, the
edges appear and disappear over different time stamps. We also assume that,
beside the link information, no other attribute data for the nodes or edges are
available. We use n to denote the number of nodes (|V |), and m to denote all
node-pairs

(|V |
2

)
in the network.

Problem Statement: Given a sequence of snapshots G = {G1, G2, . . . , Gt} of
a network, and a pair of nodes u and v, the link prediction task on a dynamic
network predicts whether u and v will have a link in Gt+1. Note that, we assume
that no link information regarding the snapshot Gt+1 is available, except the
fact that Gt+1 contains the identical set of vertices.
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4 Methods

A key challenge for dynamic link prediction is choosing an effective feature set
for this task. Earlier works choose features by adapting topological features for
static link prediction or by considering the feature values of different snapshots
as a time series. GraTFEL uses graphlet transition events (GTEs) as features
for link prediction. For a given node-pair, the value of a specific GTE feature
is a normalized count of the observed GTE involving those node-pairs over the
training data. The strength of GTEs as feature for dynamic link prediction comes
from the fact that for a given node-pair, GTEs involving those nodes capture
both the local topology and their transition over the temporal snapshots.

Fig. 2. Graphlets of size 4.

We consider GTEs involving graphlets up to size
five (total 30 graphlets), of which graphlets of size
four are shown in Fig. 22. The graphlet size upper
bound of five is inspired by the fact that more
than 95% new links in a dynamic network hap-
pen between vertices that are at most 3 distances
apart in all three real-life dynamic networks that
we use in this work. So, for a given node, GTE of
a five vertex graphlet in the neighborhood of that
node covers a prospective link formation event as a
graphlet transition event. Another reason for limit-
ing the graphlet size is the consideration of compu-
tation burden, which increases exponentially with the size of graphlets. There
are 30 different graphlets of size up to 5 and the number of possible transition
event (GTE) is O(302). Increasing the size of graphlets to 6 increases the number
of GTE to O(1422).

Feature representation for a node-pair in a dynamic network is constructed
by concatenating GTE features from a continuous set of graph snapshots. Con-
catenation, being the simplest form of feature aggregation across a set of graph
snapshots is not essentially the best feature representation to capture temporal
characteristics of a node-pair. So, GraTFEL uses unsupervised feature extrac-
tion (UFE) to get optimal feature representation from GTE features. UFE pro-
vides a better feature representation by discovering dependency among different
data dimensions, which cannot be achieved by simple aggregation. It also reduces
the data dimension and overcomes the sparsity issue in GTE features. Once the
optimal feature representation of a node-pair is known, GraTFEL uses that for
solving the link prediction task using a supervised classification model.

The discussion of the proposed method GraTFEL can be divided into three
steps: (1) graphlet transition event based feature extraction (Sect. 4.1), (2) unsu-
pervised (optimal) feature learning (Sect. 4.2), and (3) supervised learning for
obtaining the link prediction model (Sect. 4.3).

2 There are only one graphlet of size 2, two graphlets of size 3 and twenty-one graphlets
of size 5. These graphlets are not shown due to space constraint.
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4.1 Graphlet Transition Based Feature Extraction

Say, we are given a dynamic network G = {G1, G2, . . . , Gt}, and we are com-
puting the feature vector for a node-pair (u, v), which constitute a row in our
training data matrix. We use each of Gi : 1 ≤ i ≤ t−1 (time window [1, t−1]) for
computing the feature vector and Gt for computing the target value (1 if edge
exist between u and v, 0 otherwise). We use euv

[1,t−1] to represent this vector. It
has two components: graphlet transition event (GTE) and link history (LH).

The first component, Graphlet Transition Event (GTE), guv
[1,t−1] is con-

structed by concatenating GTE feature-set of (u, v) for each time stamp. i.e.,
guv
[1,t−1] = guv

1 || guv
2 || . . . || guv

t−1. Here, the symbol || represents concatenation
of two horizontal vectors (e.g., 0 1 0 || 0.5 0 1 = 0 1 0 0.5 0 1) and guv

i represents
(u, v)’s GTE feature-set for time stamp i, and it captures the impact of edge
(u, v) at its neighborhood structure at time stamp i. We construct guv

i by enu-
merating all graphlet based dynamic events, that are triggered when edge (u, v)
is added with Gi.

Fig. 3. A Toy Dynamic Network with t snap-
shots. First two and last snapshots are shown
in this figure.

For example, consider the toy
dynamic network in Fig. 3. We
want to construct the GTE fea-
ture vector g36

1 , which is the GTE
feature representation of node-pair
(3, 6) at G1. We illustrate the con-
struction process in Fig. 4. In this
figure, we show all the graphlet
transitions triggered by edge (3, 6)
when it is added in G1. These tran-
sition events are listed in center
table of Fig. 4. Column titled Nodes
lists the sets of nodes where the graphlet transitions are observed and Column
Current Graphlet shows the current graphlet structure induced by these nodes.
Column Transformed Graphlet shows the graphlet structure after (3, 6) is added.
The last column Graphlet Event is a visual representation of the transition
events, where the transition is reflected by the red edges. Once all the tran-
sition events are enumerated, we count the frequencies of these events (Table
on the right side of Fig. 4). Graphlet transition frequencies can be substantially
different for different edges, so the GTE vector is normalized by the largest value
of graphlet transition frequencies associated with this edge. Also note that, all
possible graphlet transition events are not observed for a given edge. So, among
all the possible types of GTE, those that are observed in at least one node-pair
in the training dataset are considered in GTE feature-set.

The second component of node-pair feature vector is Link History (LH)
of node-pair, which is not captured by GTE feature-set, guv

[1,t−1]. Link His-
tory, lhuv

[1,t−1] of a node-pair (u, v) is a vector of size t − 1, denoting the
edge occurrences between the participating nodes over the time window [1, t −
1]. It is defined as, lhuv

[1,t−1] = G1(u, v) || G2(u, v) || . . . || Gt−1(u, v).
Here, Gi(u, v) is 1 if edge (u, v) is present in snapshot Gi and 0 otherwise.
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Fig. 4. Construction of graphlet transition based feature representation g36
1 of node-

pair (3, 6) at 1st snapshot of the toy network. (Color figure online)

An appearance of an edge in recent time indicates a higher chance of the edge
to reappear in near future. So, we consider weighted link history, wlhuv

[1,t−1] =
w1 · G1(u, v) || w2 · G2(u, v) || . . . || wt−1 · Gt−1(u, v). here, wi = i/(t − 1)
(a time decay function) represents the weight of link history for time stamp i.
Finally, a frequent appearance of an edge over time indicates a strong tendency
of the edge to reincarnate in the future. This motivates us to reward such events
by considering cumulative sum. We define Weighted Cumulative Link History,
wclhuv

[1,t−1] = CumSum(wlhuv
[1,t−1]).

Finally, the feature vector of a node-pair (u, v), euv[1,t−1], is the concatenation
of GTE feature-set (guv

[1,t−1]) and LH feature-set (wclhuv
[1,t−1]); i.e., euv[1,t−1] =

guv
[1,t−1] || wclhuv

[1,t−1]. For predicting dynamic links in time stamp t+1, we right-
shift the time window by one. In other words, we construct graphlet feature
representation euv[2,t] by using snapshots from time window [2, t]. Final feature
representation for all node-pairs,

Ê = {euv[1,t−1]}u,v∈V

Ē = {euv[2,t]}u,v∈V

(1)

Here, Ê is the training dataset and Ē is the prediction dataset. Both Ê and
Ē can be represented as matrices of dimensions (m,k). The size of the feature
vector is k = |euv[1,t−1]| = c∗ (t−1)+ t−1, where c is the total number of distinct
GTEs that we consider.

GTE enumeration. We compute GTEs by using a local growth algorithm.
For computing guv

i , we first enumerate all graphlets of Gi having both u and v.
Starting from the edge graphlet gl = {u, v}, in each iteration of growth we add a
new vertex w from the immediate neighborhood of gl to obtain a larger graphlet
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gl = gl ∪ {w}. Growth is terminated when |gl| = 5. The enumeration process
is identical to our earlier work [17]. After enumeration, GTE is easily obtained
from graphlet embedding by marking the edge (u, v) as the transition trigger
(see Fig. 4). The computation of GTEs of different node-pairs are not dependent
on each other, this makes GTE enumeration task embarrassingly parallel.

4.2 Unsupervised Feature Extraction

GraTFEL performs the task of unsupervised feature extraction as learning an
optimal coding function h. Lets consider, e is a feature vector from either Ê
or Ē (e ∈ Ê ∪ Ē). Now, the coding function h compresses e to a code vector
α of dimension l, such that l < k. Here l is a user-defined parameter which
represents the code length and k is the size of feature vector. Many different
coding functions exist in the dimensionality reduction literature, but GraTFEL
chooses the coding function which incurs the minimum loss in the sense that
from the code α we can reconstruct e with the minimum error over all possible
e ∈ Ê ∪ Ē. We frame the learning of h as an optimization problem, which we
discuss below through two operations: Compression and Reconstruction.

Compression: It obtains α from e. This transformation can be expressed as a
nonlinear function of linear weighted sum of the graphlet transition features.

α = f(W (c)e + b(c)) (2)

W (c) is a (k, l) dimensional matrix. It represents the weight matrix for compres-
sion and b(c) represents biases. f(·) is the Sigmoid function, f(x) = 1

1+e−x .

Reconstruction: It performs the reverse operation of compression, i.e., it
obtains the graphlet transition features e from α which was constructed during
the compression operation.

β = f(W (r)α + b(r)) (3)

W (r) is a matrix of dimensions (l, k) representing the weight matrix for recon-
struction, and b(r) represents biases.

The optimal coding function h constituted by the compression and recon-
struction operations is defined by the parameters (W , b) = (W (c), b(c),
W (r), b(r)). The objective is to minimize the reconstruction error. Reconstruc-
tion error for a graphlet transition feature vector (e) is defined as, J(W, b, e) =
1
2 ‖ β − e ‖2. Over all possible feature vectors, the average reconstruction error
augmented with a regularization term yields the final objective function J(W , b)
which we want to minimize:

J(W , b) =
1

2m

∑

e∈Ê∪Ē

(
1
2

‖ β − e ‖2) +
λ

2
(‖ W (c) ‖2F + ‖ W (r) ‖2F ) (4)

Here, λ is a user assigned regularization parameter, responsible for preventing
over-fitting. ‖ · ‖F represents the Frobenius norm of a matrix.
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Training: The training of optimal coding defined by parameters (W, b) begins
with random initialization of the parameters. Since the cost function J(W , b)
defined in Eq. (4) is non-convex in nature, we obtain a local optimal solution
using the gradient descent approach. The parameter update of the gradient
descent is similar to the parameter update in Auto-encoder in machine learning.
Unsupervised feature representation of any node-pair (u, v) can be obtained by
taking the outputs of compression stage (Eq. (2)) of the trained optimal coding
(W, b).

αuv
[1,t−1] = f(W (c)euv

[1,t−1] + b(c)) = h(euv
[1,t−1])

αuv
[2,t] = f(W (c)euv

[2,t] + b(c)) = h(euv
[2,t])

Computational Cost: We use Matlab implementation of optimization algo-
rithm L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) for learn-
ing optimal coding. Non-convex nature of cost function allows us to converge
to local optima. We execute the algorithm for limited number of iterations to
obtain unsupervised features within a reasonable period of time. Each iteration
of L-BFGS executes two tasks for each edge: back-propagation to compute par-
tial differentiation of cost function, change the parameters (W, b). For each edge
the time complexity is O(kl); here, k is the length of basic feature representation,
l is length of unsupervised feature representation. Therefore, the time complexity
of one iteration is O(mkl), where m is the number of possible edges.

4.3 Supervised Link Prediction Model

Training dataset, Ê is feature representation for time snapshots [1, t − 1], The
ground truth (ŷ) is constructed from Gt. After training the supervised classifica-
tion model using α̂ = h(Ê) and ŷ, prediction dataset Ē is used to predict links
at Gt+1. For this supervised prediction task, we experiment with several classi-
fication algorithms. Among them SVM (support vector machine) and AdaBoost
perform the best.

4.4 Algorithm

The pseudo-code of GraTFEL is given in Algorithm 1. For training link predic-
tion model, we split the available network snapshots into two overlapping time
windows, [1, t − 1] and [2, t]. GTE features Ê and Ē are constructed in Lines 2
and 4, respectively. Then we learn optimal coding for node-pairs using graphlet
transition features (Ê ∪ Ē) in Line 5. Unsupervised feature representations are
constructed using learned optimal coding (Lines 6 and 7). Finally, a classification
model C is learned (Line 8), which is used for predicting link in Gt+1(Line 9).
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Algorithm 1. GraTFEL

1: procedure GraTFEL(G, t)
Input : G: Dynamic Graph, t: Time steps
1Output: ȳ: Forecasted links at time step t + 1

2: Ê=GraphletTransitionFeature(G,1,t − 1)
3: ŷ=Connectivity(Gt)
4: Ē=GraphletTransitionFeature(G,2,t)
5: h=LearningOptimalCoding(Ê ∪ Ē)
6: α̂=h(Ê)
7: ᾱ=h(Ē)
8: C=TrainClassifier(α̂, ŷ)
9: ȳ=LinkForecasting(C, ᾱ)

10: return ȳ
11: end procedure

5 Experimental Results

5.1 Dataset

We use three real world dynamic networks for evaluating the performance of
GraTFEL. These datasets are Enron, Collaboration and Facebook. The Enron
email corpus consists of email exchanges between 184 Enron employees; the
vertices of the network are employees, and the edges are email events between
a pair of employees. The dataset has 11 temporal snapshots which are prepared
identically as in [22]. The Collaboration dataset is constructed by using citation
data from ArnetMiner (arnetminer.org). Each vertex in this dataset is an author
and the edges represent co-authorship. We consider the data from years 2000-
2009—total 10 snapshots considering each year as a time stamp. Many authors
in the original dataset have published in only one or two years out of all ten
years, so we select only those who participate in a minimum of 2 collaboration
edges in at least 7 time stamps. The final dataset has 315 authors.

Table 1. Basic statistics of the datasets used.

Enron Collaboration Facebook

Time Snaps 11 10 9
Nodes 184 315 663
Avg. Edge 217 255 1299
Node−Pairs 16, 836 49, 455 219, 453
Avg. Density .013 .005 .006

Lastly, the dynamic social
network of Facebook wall
posts [20] has 9 time stamps.
We follow the same time-
stamp setting and node filter-
ing as [21], resulting in 9 time
stamps of data, and 663 nodes.
The dynamic link prediction
task of all three datasets is to
predict links on last snapshot,
given the link information of
all the previous snapshots. Statistics of the dynamic networks are given in
Table 1. Although the number of vertices in these networks are in hundreds,

https://arnetminer.org
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these are large datasets considering the possible node-pairs and multiple tempo-
ral snapshots.

5.2 Competing Methods

To compare the performance of GraTFEL, we choose link prediction methods
from two categories: (1) topological feature based methods and (2) feature time
series based methods [5].

For topological feature based method, we consider three leading topological
features: common Neighbors (CN), Adamic-Adar (AA), and Jaccard’s Coeffi-
cient (J). However, in existing works these features are defined for static network
only; so we adapt these features for the dynamic network setting by taking the
weighted average of the feature values at different time stamps, where the weight
of the t’th time stamp is 1 and the weight of the i’th time stamp is 1

t−i+1 . The
justification of such a weighting is due to the common belief that recent inter-
action is a good indicator of a repeat interaction. We also tried different feature
weighting, but the above weighting gives the best performance for the topological
feature based dynamic link prediction. We also combine the above three features
to construct a combined feature vector of length 3 (CNAAJ) and use it with a
classifier to build a supervised link prediction method, and include this model
in our comparison.

We also compare GraTFEL with time series based neighborhood similarity
scores proposed in [5]. In this work, the authors consider several neighborhood-
based node similarity scores combined with connectivity information (historical
edge information). Authors use time series of similarities to model the change of
node similarities over time. Among 16 proposed methods, we consider 4 which
are relevant to the link prediction task on unweighted networks, and also have
the best performance. TS-CN -Adj represents time series on normalized score of
Common Neighbors and connectivity values at time stamps [1, t]. Similarly, we
get time series based scores for Adamic-Adar (TS-AA-Adj), Jaccard’s Coefficient
(TS-J-Adj) and Preferential Attachment (TS-PA-Adj).

5.3 Implementation

For implementation of GraTFEL we use a combination of Python and Mat-
lab. Graphlet transition is enumerated using a python implementation. Feature
vector construction and unsupervised feature extraction are done using Matlab.
The unsupervised feature extraction method runs for a maximum of 50 iterations
or until it converges to a local optima. We use coding size l = 200 for all three
datasets3. For link prediction we used several Matlab provided classification
algorithms, namely AdaBoostM1, RobustBoost, and Support Vector Machine
(SVM). We use Matlab for computing the feature values (CN, AA, J) that we

3 We experiment with different coding sizes ranging from 100 to 800. The change in
link prediction performance is not very sensitive to the coding size. At most 2.9 %
change in PRAUC was observed for different coding sizes.
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use in other competing methods. Time series methods are implemented using
Python. We use the ARIMA (autoregressive integrated moving average) time
series model implemented in Python module statsmodels. Datasets and source
code are available at https://github.com/DMGroup-IUPUI/GraTFEL-Source.

5.4 Evaluation Metrics

For evaluating the proposed methods we use three metrics; namely, area under
Receiver Operator Characteristics curve (AUC), area under Precision-Recall
curve (PRAUC), and Normalized Discounted Cumulative Gain (NDCG). The
AUC value for a link prediction problem quantifies the probability that a ran-
domly chosen edge is ranked higher than a randomly chosen node pairs without
edge. However, real world datasets for link prediction are generally skewed; the
number of edges (|E|) is very small compared to the number of possible node-
pairs

(|V |
2

)
in the graph. In such scenarios, PRAUC gives a more informative

picture of the algorithm’s performance. The reason why PRAUC is more suit-
able for the skewed problem is that it does not factor in the effect of true nega-
tives. In skewed data where the number of negative examples is huge compared
to the number of positive examples, true negatives are not that meaningful.
The last metric, NDCG, is an information retrieval metric which is widely used
by the recommender systems community. NDCG measures the performance of
link prediction system based on the graded relevance of the recommended links.
NDCGp varies from 0.0 to 1.0, with 1.0 representing the ideal ranking of edges;
p is a user-defined parameter, which represents the number of links ranked by
the method. We use p = 50 (unless stated otherwise). NDCG is suitable when it
is important to return the ranked list of top p predicted links.

5.5 Performance Comparison with Competing Methods

In this section, we present performance comparison of GraTFEL with several
competing methods (see Fig. 5). The bar charts in the top, middle, and bot-
tom rows of Fig. 5 display the results for Enron, Collaboration, and Facebook
datasets, respectively. The bar charts in a row show comparison results using
AUC, PRAUC, and NDCG50 (from left to right). In total, there are 9 bars
in a chart, each representing a link prediction method, where the height of a
bar is indicative of the performance metric value of the corresponding method.
From left to right, the first four bars (blue) correspond to the topological feature
based methods, the next four (green) represent time series based methods, and
the final bar (brown) represents GraTFEL.

We observe that GraTFEL (the last bar) outperforms the remaining eight
methods in all the nine charts in this figure. The performance difference using
PRAUC (Fig. 5(b, e, f), the charts in the middle column) is more pronounced
than the performance difference using the other two metrics. Since, PRAUC is
the most informative metric for classification performance on a skewed dataset,
the performance difference on this metric is a strong endorsement of the supe-
riority of GraTFEL over other methods. We first analyze the performance

https://github.com/DMGroup-IUPUI/GraTFEL-Source
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Fig. 5. Comparison with competing link prediction methods. Each bar represents a
method and the height of the bar represents the value of the performance metrics.
Results for Enron are presented in charts(a)–(c), results of Collaboration are in charts
(d)–(f), and results of Facebook data are presented in charts (g)–(i). The group of bars
in a chart are distinguished by color, so the figure is best viewed on a computer screen
or color print. (Color figure online)

comparison between GraTFEL and topological feature based methods (first
four bars). The best of the topological feature based methods have a PRAUC
value of 0.41, 0.21, and 0.095 in Enron, Collaboration, and Facebook dataset,
whereas the respective PRAUC values for GraTFEL are 0.546, 0.36, and 0.26,
which translates to 33.2 %, 71.4 %, and 173.7 % improvement of PRAUC by
GraTFEL for these datasets. Superiority of GraTFEL over all the topological
feature based baseline methods can be attributed to the capability of graphlet
transition based feature representation to capture temporal characteristics of
local neighborhood. Finally, the performance of time series based method (four
green bars) is generally better than the topological feature based methods. The
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best of the time series based method has a PRAUC value of 0.503, 0.28, and
0.19 on these datasets, and GraTFEL’s PRAUC values are better than these
values by 8.5 %, 28.6 %, and 36.8 %, respectively. Time series based methods,
though model the temporal behavior well, probably fail to capture signals from
the neighborhood topology of the node-pairs.

Now we focus on the performance comparison using the information retrieval
metric NDCG50 (Fig. 5(c, f, i)). This metric puts higher weight on the top-
ranked predicted links than the lower ranked predicted links. GraTFEL shows
substantial improvement over the other methods using this metric also. The
performance improvement of GraTFEL in NDCG50 over the best among the
remaining 8 methods are 9.8 %, 24 %, and 46.8 % on the three datasets. An
interesting observation using this metric is that for all the datasets, the best
among the topological feature based methods is better than the best among the
time series based methods. It indicates that the top ranked predicted links are
explained better by the neighborhood topology than the time series of inter-
action history. Finally, we discuss the comparison results for the AUC metric
(Fig. 5(a, d, g)). GraTFEL is the best performer among all the methods for
all three datasets with a percentage improvement over the second best method
between 2 % to 17 %. Note that, the performance gap among all the methods are
relatively small using AUC. For instance, the AUC values for all the methods in
Enron dataset (Fig. 5(a)) are localized around 0.93. In general, AUC has a poor
discrimination ability among classifiers in a highly skewed datasets and due to
this reason PRAUC should be the preferred metric for such datasets [3].

When we compare the performance of all the algorithms across different
datasets, we observe varying performance. For example, across all the metrics,
the performance of dynamic link prediction on Facebook graph is lower than
the performance on Collaboration graph, which, subsequently, is lower than the
performance on Enron graph, indicating that link prediction in Facebook data
is a harder problem to solve. The performance improvement of GraTFEL over
the second best method for Facebook is the largest among the three datasets
across all three metrics.

5.6 Contribution of Unsupervised Feature Extraction

GraTFEL has two novel aspects: first, utilization of graphlet transition events
(GTEs) as features, and the second is unsupervised feature learning by optimal
coding. In this section, we compare the relative contribution of these two aspects
in the performance of GraTFEL. For this comparison, we build a version of
GraTFEL which we call GTLiP. GTLiP uses GTEs just like GraTFEL, but
it does not use optimal coding, rather it uses the GTEs directly as features. In
Fig. 6, we show the comparison between GraTFEL, and GTLiP using NDCGp

for different p values for all the datasets. The superiority of GraTFEL over
GTLiP for all the datasets over a range of p values is clearly evident from the
three charts. GTLiP also outperforms all the competing methods. Compari-
son of GTLiP and other competing methods is not shown in this figure, but
the NDCG50 from this figure can be compared with NDCG50 charts in Fig. 5
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Fig. 6. Performance comparison between link prediction methods with (GraTFEL)
and without (GTLiP) unsupervised feature extraction. Y-axis represents the NDCGp

score and X-axis represents the value of p.

for confirming this claim. This shows that GTE based features, irrespective of
unsupervised coding, improve the dynamic link prediction performance over the
existing state of-art dynamic link prediction methods.

6 Conclusion

In this paper, we present a dynamic link prediction method, which uses unsu-
pervised coding of graphlet transition events. We demonstrate that the proposed
method performs better than several topological feature based methods and sev-
eral time series based methods on three real-life dynamic graph datasets.
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Abstract. Dynamic selection or combination (DSC) methods allow to
select one or more classifiers from an ensemble according to the char-
acteristics of a given test instance x. Most methods proposed for this
purpose are based on the nearest neighbours algorithm: it is assumed
that if a classifier performed well on a set of instances similar to x, it will
also perform well on x. We address the problem of dynamically combin-
ing a pool of classifiers by combining two approaches: metalearning and
multi-label classification. Taking into account that diversity is a funda-
mental concept in ensemble learning and the interdependencies between
the classifiers cannot be ignored, we solve the multi-label classification
problem by using a widely known technique: Classifier Chains (CC).
Additionally, we extend a typical metalearning approach by combining
metafeatures characterizing the interdependencies between the classifiers
with the base-level features. We executed experiments on 42 classification
datasets and compared our method with several state-of-the-art DSC
techniques, including another metalearning approach. Results show that
our method allows an improvement over the other metalearning approach
and is very competitive with the other four DSC methods.

Keywords: Ensembles · Classifier Chains · Dynamic combination ·
Metalearning

1 Introduction

Ensemble methods are still one of the favorite techniques used by researchers
and practitioners to deal with classification problems. The high predictive per-
formance reported together with the increased computational power that we
have available has led to a widespread of these techniques. Our proposal focuses
on how to aggregate the output of the classifiers in order to achieve a final
prediction. We propose a dynamic combination method to combine a subset
of classifiers for each test instance. The method is based on a widely known
multi-label classification technique, Classifier Chains (CC) [16].

In a typical classification problem, an instance x, represented by a vector
of d attributes values, belongs to only one class, y. However, in a multi-label
classification problem, an instance x can belong to a subset of L labels, therefore
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 410–425, 2016.
DOI: 10.1007/978-3-319-46128-1 26
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Y = {y1, ..., yL}. Each label l, 1 leql ≤ L, is associated with x if yl = 1 or not if
yl = 0.

A common technique to deal with multi-label classification problems in the so
called problem transformation. It consists in decomposing the multi-label prob-
lem into several binary problems. Therefore, instead of using a classifier that has
the ability to deal with multiple outputs, one binary classifier can be trained for
each label. However, this technique has a major drawback: it does not take into
account the intrinsic interdependencies that can exist between the labels. This
is very important for our problem since it is well known that diversity is a fun-
damental concept of ensembles [10] and can only be managed by a meta-model
that has information about the classifiers interdependencies.

Dynamic classifier selection is the problem of deciding which subset of models
from an ensemble should be used to generate the prediction for an instance
x. It can be addressed as a multi-label classification problem. An ensemble F
consists of K, 1 ≤ k ≤ K individual classifiers, F = {f1, ..., fK}. Each classifier is
represented by a label Y = {y1,x, ..., yk,x}, yk,x ∈ {0, 1}. If yk,x = 1, it means that
the classifier k correctly classified the instance x; otherwise, yk,x = 0. Therefore,
using the CC method, we can train a meta-model that relates the attributes of
a dataset with the output of each classifier from the ensemble. Given a new test
instance x, the meta-model is able to predict which classifiers should be used for
the final prediction.

Since our method includes a step in which a model is learned at a higher level
(meta), we consider it as a metalearning approach [1]. Therefore, we compare it
with other dynamic selection or combination methods (DSC) methods, including
an alternative metalearning approach [4].

We executed experiments on 42 classification datasets from the UCI repos-
itory [11]. To the best of our knowledge this is largest set of experiments com-
paring DSC methods. For each dataset, we generated a bagging ensemble of 100
decision stumps. Then, we tested several state-of-the-art DSC methods. Results
show the competitiveness of our method, not only at the base-level but also at
the meta-level. We also explored the performance of our method in the widely
known XOR problem in order to achieve a better understanding of its behaviour.

The main contributions of this paper are:

1. new methods for dynamic combination of classifiers, CHADE and E-CHADE
2. an extensive experimental evaluation to demonstrate the competitiveness of

CHADE and E-CHADE
3. a novel way of using landmarkers as metafeatures for metalearning

The paper is organized as follows. In Sect. 2 we present a summary of the
state-of-the-art for DSC methods. Section 3 presents our method for dynamic
combination of classifiers. In Sect. 4 we describe the experiments that were car-
ried out. Section 5 includes a discussion about the characteristics of our method
in the light of the results that were obtained in the XOR problem. Finally, Sect. 6
concludes the paper and sets directions of future work.
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2 Related Work

We organized the state-of-the-art on dynamic approaches for ensembles of clas-
sifiers into two groups: dynamic selection, for the methods that only select one
classifier for each test instance x; and dynamic combination, for the methods
that can select more than one classifier for each test instance.

2.1 Dynamic Selection

The first paper concerning dynamic selection of classifiers is due to Ho et al. [7].
In that paper, the authors proposed a selection based on a partition of training
examples. The individual classifiers are evaluated on each partition to find the
best one for each. Then, the test instance to be predicted is categorized into a
partition and classified by the corresponding best classifier.

The DS-LA LCA based method and the DS-LA OLA-based method are often
used as benchmark in comparative studies [3,23]. For abbreviation purposes we
refer to these as OLA and LCA, respectively. Both methods calculate an esti-
mation of accuracy of the base classifiers in the local region of the feature space
close to the test instance in the training dataset. In OLA, it is the percentage
of correct classifications within the local region; in LCA, it is the percentage of
correct classifications within the local region but considering only those exam-
ples where the classifier has given the same class as the one it gives for the test
instance. In both methods, only one classifier is selected for the final prediction.

Concerning metalearning approaches, Todorovski and Džeroski [18] proposed
the meta decision trees, a method to select the best predictor of an ensemble of
decision trees for a given test instance. The decision is made by a meta-model
that learns the prediction patterns of the ensemble summarized in a set of three
metafeatures.

Yankov et al. [24] proposed a method to select from an ensemble of two
k-NN models the one best suited for a given instance. The selection is done by a
Support Vector Machine model using metafeatures extracted from the instances.

2.2 Dynamic Combination

The first dynamic combination approach was introduced by Merz [13]. However,
the results showed that a simple majority combination was superior to their
dynamic approach.

Kuncheva and Rodŕıguez [9] proposed a method based on the oracle concept.
Essentially, each classifier of the ensemble consists of two sub-classifiers and an
oracle that decides which of the two sub-classifiers is going to be used to predict
the test instance. The oracle is a random linear function. They claimed that
the random oracle idea works because it adds diversity to the ensemble. Later,
Ko et al. [8] improved this idea by adding a k-nearest neighbours approach
and proposed the KNORA-E and KNORA-U methods. In the former, only the
classifiers that correctly classify all the K-nearest patterns are used; in the latter,
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the classifiers that correctly classify any of the k-nearest neighbours are used -
a single classifier can be selected more than once.

Tsymbal [19] and Tsymbal and Puuronen [21] combined dynamic integration
with classifier ensembles using bagging and boosting algorithms. Results suggest
that dynamic integration improves significantly the performance of the ensembles
instead of the more typical majority voting integration. Later, Tsymbal et al.
[20] also presented experiments in which a dynamic integration approach was
added to Random Forest, instead of the simple majority voting.

Santana et al. [17] proposed a method that explicitly uses accuracy and
diversity to select a subset of classifiers. The method sorts the classifiers in
decreasing order of accuracy and in increasing order of diversity. They presented
two versions: DS-KNN, which is very similar to LCA and OLA but it takes into
account diversity; and DS-Cluster, that uses a clustering process to divide the
validation set into clusters and, for each cluster. The most promising classifiers
are selected.

Liyanage et al. [12] proposed a dynamically weighted ensemble classification
framework whereby an ensemble of multiple classifiers are trained on clustered
features. The decisions from these multiple classifiers are dynamically combined
based on the distances of the cluster centers to each test data sample being
classified. Results showed that their method is significantly better than a Support
Vector Machine baseline classifier.

Recently, Cruz et al. [4] proposed a method that uses metalearning for
dynamic combination of classifiers. This method uses a meta-model to decide
if a base classifier is competent to classify a given test instance. The meta-model
is learned using metafeatures that capture the prediction patterns of the base
classifiers in its regions of competence and in the overall decision space.

3 CHADE

We propose CHADE (CHAined Dynamic Ensemble) for dynamic combination
of ensembles, combining metalearning and multi-label learning. The CHADE
method, as presented in Fig. 1, is composed by three stages: (1) generation, (2)
meta-training and (3) generalization.

The generation Stage simply consists in training an ensemble of K classifiers.
We used bagging [2] for experimental purposes, but this is not a requirement of
CHADE. For future work, we plan to explore other ensemble learning algorithms,
both for homogeneous and heterogeneous ensembles.

Stage 2 is the meta-training phase. The ensemble of classifiers is used to make
predictions on a validation set. These predictions are then used by a 0–1 loss
function, I, that compares them with the true target from the validation set. This
generates k binary variables (metafeatures), that represent the performance of
each classifier for each example in the validation set. Therefore, the meta-training
data D′, is composed by the independent variables of the base-level data, Xval;
and the K binary variables generated, W = {W1,W2, ...,WK}.

Note that the extension of the data, W , can be regarded as landmarkers.
However, in traditional metalearning, landmarkers are aggregated measures of
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Fig. 1. CHADE framework.

performance of a simple algorithm. In CHADE, since we are interested in cap-
turing patterns at the instance level, it is more useful to not aggregate the per-
formance of the models over all the instances in the validation set. We can also
relate this approach with stacking [22], since the dataset is extended with infor-
mation obtained from the predictions made by the base-level classifiers, although
in stacking the predictions are used directly and here we use an indicator of the
accuracy of the prediction. The meta-training dataset D′ shows the morphology
of a typical multi-label classification problem, as shown in the example presented
in Table 1.

Table 1. Example of a meta-training dataset D’.

X1 X2 X3 W1 W2 . . . WK

10 yes 1 0 1 . . . 1

8 no 2 0 1 . . . 1

12 no 5 1 1 . . . 0

. . . . . . . . . . . . . . . . . . . . .

After generating the meta-training data, the CC algorithm [16] for multi-
label classification is used for training the meta-model CHADE. The pseudo
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code for Stage 2 is described in Algorithm 1. The training can be done with any
sort of learning algorithm for classification.

Input: D = (Xval, Yval), Fk = {f1, ..., fK}
Output: CHADE
for k ∈ 1 ... |W | do

meta-label computation and training
D′ ← {}
for (xval, yval) ∈ D do

D′ ← D′ ∪ ((x, w1, ..., wk−1), wk)
Train MCk to predict wk

MCk : D′ → wk ∈ {0, 1}
end

end
Algorithm 1. CHADE training pseudocode.

Finally, in Stage 3, the meta-model trained in Stage 2 is used together with
the ensemble generated in Stage 1 for a dynamic combination of the classi-
fiers. The pseudocode for this Stage is presented in Algorithm 2. The weight
of each classifier for a test instance x is assigned by the meta-model CHADE.
The weights Ŵ are then combined with the base-level predictions Ŷ for x by
majority voting. This results in the final prediction ŷ.

Input: xtest, Fk = {f1, ..., fK}, CHADE
Output: ŷ
Ŷ ← {}
for k ∈ 1 ... |W | do

ŵk ← MCk: (xtest, ŵ1, ..., ŵk−1)

Ŷ ← Ŷ ∪ (ŵk × f̂k ← fk : (xtest))
end

MajorityV oting(Ŷ )
Algorithm 2. CHADE generalization pseudocode.

CHADE does not require parameter tuning. In comparison with the other
DSC techniques that we mentioned in the previous section, CHADE presents a
major advantage difference: it does not rely on the nearest neighbours algorithm.
This can make CHADE particularly useful in datasets with a large number of
training examples, since distance computation can be quite costly in those cases.

The paper that introduced the CC method for multi-label classification also
proposed the Ensemble of Classifier Chains (ECC) [16]. In ECC, several CC
models are trained. However, the order in which the classifiers are chained is
different and each CC model is trained in a bootstrap sample of the training
data. In comparison with CC, ECC allows to reduce the variance component
of the error. Therefore, we also did experiments with an ensemble version of
CHADE that we named E-CHADE.
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4 Experiments

The experiments that we carried out aimed to answer the following research
questions:

1. Can CHADE/E-CHADE improve the performance of Bagging?
2. How does the performance of CHADE/E-CHADE relates with other Met-

alearning approaches for dynamic combination of classifiers?
3. How does the performance of CHADE/E-CHADE relates with other state-

of-the-art DSC techniques?

4.1 Setup

A total of 42 datasets were used in the experiments, all of them obtained from the
UCI machine learning repository [11]. The selection was done randomly although
we took into consideration the variety of the learning problems in order to obtain
a diverse set of datasets. A brief description of each dataset is given in Table 2. To
the best of our knowledge, these are the experiments for dynamic combination
of classifiers with the largest number of datasets.

The datasets were split into training (50 %), validation (25 %) and test set
(25 %). The split was done using stratified sampling. Each experiment was
repeated 10 times and the results were averaged. We used accuracy as evalu-
ation metric. The methodology proposed by Demšar [5] was used for statistical
validation of the results.

For each learning problem, we generated a bagging ensemble of 100 decision
stumps. We chose to use weak learners since it has been reported that this
approach enhances the detection of differences between dynamic approaches [3].

We selected a few DSC techniques for comparison with our approach. The
first is META-DES [4], a metalearning method that uses a set of five different
meta-features to learn a meta-model that predicts if a base classifier is competent
to classify a given test instance. To the best of our knowledge this is the only
metalearning method for dynamic combination of classifiers proposed in the
literature. Our experimental setup is slightly different from the one used by
Cruz et al. [4]. Therefore, we made two changes to adapt it to our experimental
setup: (1) the meta-model is learned with a decision tree algorithm instead of
the Levenberg-Marquadt algorithm. Preliminary results showed that the choice
of the learning algorithm for the meta-training did not have a significant impact
on the method. Therefore, we decided to use decision trees for the meta-training
stage of META-DES and CHADE; (2) one metafeature (perpendicular distance
between the input sample and the decision boundary of the base classifier) could
not be used since its dependent of the base classifier used in the experiments,
which, originally, was a perceptron classifier and, here, we use decision stumps.
The remaining features of the algorithm are implemented as detailed in the
original paper. Concerning the parameters of META-DES, we used the ones
that achieved the best results in the original experiments.
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Table 2. Datasets summary. In all the datasets marked with * we used a sample of
5000 instances in order to speed up the process.

Dataset No. of Instances Dimensionality No. of Classes

abalone 4177 9 28

allbp 3772 28 3

allhyper 3772 28 5

allhypo 3772 28 4

allrep 3772 28 4

ann 7200∗ 22 3

c class flares 1389 11 8

car 1728 7 4

contraceptive 1473 10 3

crx 690 16 2

diabetes 768 9 2

dis 3772 28 2

fluid 537 31 9

german numb 10010 25 2

german symb 1000 21 2

glass 214 10 6

ibm stock val 8087∗ 18 3

ionosphere 351 35 2

krvskp 3196 37 2

led7 3200 8 10

led24 3200 25 10

m class flares 1389 11 6

mushrooms 8124∗ 22 2

optical 5620∗ 65 10

page 5473∗ 11 5

parity 1024 11 2

pyrimidines 6996∗ 55 2

quisclas 5891∗ 19 3

recljan2jun97 33170∗ 20 2

sat 6435∗ 37 6

segment 2310 20 7

shuttle 58000∗ 10 7

sick 3772 28 2

sick-euthyroid 3163 25 2

tic-tac-toe 958 10 2

titanic 2201 4 2

vehicle 846 19 4

vowel 990 11 11

waveform21 5000 22 3

waveform40 5000 41 3

x class flares 1389 11 3

yeast 1484 9 10
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As for other state-of-the-art DSC techniques, we compare CHADE with OLA,
LCA, KNORA-E and KNORA-U. These techniques were selected since they have
shown good results in several experimental studies [3]. Regarding parameters, k
was set to 10 in all experiments. Also, in the base-level experiments, we compare
the DSC methods with an abstract model, the Oracle. This model selects the
classifier that correctly predicts the label for any given test instance, if such
classifier exists. This comparison assesses whether the DSC techniques have room
for improvement or not.

Finally, we tested two variations of CHADE: the single meta-model version
(CHADE ) and the ensemble version (E-CHADE ). The number of meta-models
in E-CHADE was set to 10 since it was reported to be a good value for ensembles
of classifiers chains [16]. The details of these methods can be found in Sect. 3 of
this paper.

4.2 Comparison with Another Metalearning Approach

With the aim of a more complete comparison with the alternative approach
META-DES, we compared the performance of the metalearning methods both
at the base-level and meta-level. The purpose of the meta-level evaluation is to
assess if the methods are combining the correct models and leaving out the ones
that fail the predictions. We also compared the metalearning methods with a
baseline, that is the majority class in the meta-training data. This is important to
evaluate the quality of the combinations that are being made by the metalearning
approaches.

It is important to notice that a better performance at the meta-level does not
necessarily imply a better performance at the base-level. For instance, consider
the classifiers c1, c2 and c3, and the meta-models meta-model1 and meta-model2.
Given a test instance x, meta-model1 recommends combining c1 and c2; on the
other hand, meta-model2 recommends combining c1, c2 and c3. We then verify
that the predictions made by the classifiers are the same for the three of them
and they are all correct. This scenario implies that meta-model1 has an accuracy
of 66.6 % and meta-model2 has an accuracy of 100 %. However, the base-level
prediction is the same for both cases. Therefore, meta-model1 and meta-model2
have the same base-level accuracy.

Figure 2 shows the Critical Difference diagram for the comparison of the met-
alearning approaches at the meta-level. E-CHADE clearly presents the best per-
formance. On one hand, the difference between E-CHADE and the other meth-
ods evaluated is statistically significant. On the other hand, although CHADE
achieves a better mean rank than META-DES and the baseline, there is no
evidence in these experiments that the difference is statistically significant.

Considering now the base-level performance, Fig. 3 shows that E-CHADE
and CHADE have a better performance than META-DES and the baseline,
Bagging. The difference between E-CHADE and CHADE in comparison with
Bagging is statistically significant.

These results indicate that the answer to our first question is positive:
CHADE and E-CHADE do improve the performance of Bagging.
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4 3 2 1

CD

E-CHADE
CHADEMETA-DES

Baseline

Fig. 2. Critical Difference diagrams (with α = 0.05) for the comparison with META-
DES at the meta-level. The null hypothesis of the Friedman’s test is rejected for α =
0.01, 0.05 and 0.1.

However, the difference between E-CHADE, CHADE and META-DES is
not statistically significant. The results suggest that CHADE and E-CHADE
allow an improvement over META-DES but this statement is not statistically
validated. The same conclusion can be made for the difference between META-
DES and Bagging. This answers the second research hypothesis that we stated
previously.

Interestingly, the results obtained at the base-level are in accordance with
the ones obtained at the meta-level. In fact, E-CHADE presents the best overall
performance, although the difference is more clear for the comparison made at
the meta-level. We must also state the Oracle model has indisputably the best
performance of all the methods compared, by far difference. This indicates that
there is room for improvement by the dynamic approaches.

4 3 2 1

CD

5

Oracle
E-CHADE
CHADEMETA-DES

Bagging

Fig. 3. Critical Difference diagrams (with α = 0.05) for the comparison with META-
DES at the base-level. The null hypothesis of the Friedman’s test is rejected for α =
0.01, 0.05 and 0.1.

4.3 Comparison with Other Dynamic Selection/combination
Methods

In this section, we extend the comparison made in the previous section to other
state-of-the-art DSC methods. The comparison is only made at the base-level
since the majority of the methods do not follow a metalearning approach.

Figure 4 presents the Critical Difference diagram of the experiments. The
first result that stands out is that the majority of methods obtain a similar
performance. At the top of the ranking, the Oracle model appears isolated; at
the bottom, LCA and Bagging appear very close to each other.

A more detailed analysis shows that OLA and E-CHADE present the
best performance, followed closely by CHADE and KNORA-E. The difference
between these four methods to META-DES and KNORA-U is not statistically
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significant; however, if we compare them with LCA and Bagging we see that the
difference is now statistically significant. Given these results, we find it difficult
to extract conclusions. However, the fact that E-CHADE and CHADE are two
of the three techniques (excluding the Oracle model) with the best mean ranking
is a very promising result.

4 3 2 1

CD

5

Oracle

OLA

E-CHADE

KNORA-E

Bagging

6789

CHADE
META-DES

KNORA-U

LCA

Fig. 4. Critical Difference diagrams (with α = 0.05) for the comparison with sev-
eral dynamic selection/combination methods at base-level. The null hypothesis of the
Friedman’s test is rejected for α = 0.01, 0.05 and 0.1.

We must also state that these results are consistent with conclusions in a
recent survey about DSC [3]. In that survey the authors concluded that there
is no evidence that one specific technique may win over all the others for any
classification problem. They also suggest that it should be put effort into devel-
oping a method that recommends which dynamic approach should be used for
a specific dataset. Our results reinforce this claim.

We further investigated the performance of E-CHADE in comparison with
CHADE. Specifically, we wanted to verify if the performance of CHADE could
be as good as the one obtained by E-CHADE if the meta-model was trained in a
specific order. The top plot of Fig. 5 shows the mean rank as more meta-models
are added to E-CHADE; at the bottom, the same figure shows the individual
mean rank of each meta-model that is added to E-CHADE. Figure 6 presents
the same graphs but for the meta-level.

We can see in Fig. 5 that none of the individual CHADE meta-models
achieves a mean rank as good as the one obtained by E-CHADE. This shows
that the ensemble framework for classifier chains is effective in improving the
performance of CHADE. This result is consistent with experiments made in
multi-label classification datasets at the base-level [16].

Still regarding Fig. 5, its possible to verify that the performance of E-CHADE
stabilizes after the 4th/5th meta-model is added to the ensemble. This indicates
that E-CHADE does not requires the 10 meta-models that we trained in our
experiments and therefore the computational cost of the method can be reduced.

Finally, Fig. 6 shows the same graphs presented in Fig. 5 but for the meta-
level. The results are quite similar. However, we can see a more pronounced
improvement by adding more meta-models to E-CHADE at the meta-level than
in the base-level.
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Fig. 5. Evolution of the base-level
mean rank as more meta-models are
added to E-CHADE.
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Fig. 6. Evolution of the meta-level
mean rank as more meta-models are
added to E-CHADE.

5 Further Analysis

In this Section we discuss and analyse the behaviour of CHADE and E-CHADE
in comparison with the Oracle model. For this, we carried out experiments with
the XOR problem [14]. The XOR problem is a classic example of a dataset in
which a linear model will not perform well. As we can see in Fig. 7, there does
not exist a linear model that can separate the blue and red points. Therefore,
a decision stump cannot solve this problem. However, a bagging ensemble of
decision stumps together with a DSC technique can be used successfully. For
that, the dynamic component needs to be able to select the appropriate decision
stump(s) for each test instance.

-1

0

1

2

-1 0 1 2

X1

X2

Fig. 7. XOR problem. (Color figure online)
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We generated a dataset with 1000 data points of the XOR problem to improve
our understanding of CHADE’s (and E-CHADE’s) behaviour. The aim of this
experiment is twofold:

1. Assess if CHADE/E-CHADE is able to correctly identify the appropriate
decision stump(s) for each region of the input space.

2. Analyze the combination patterns of CHADE/E-CHADE and compare them
with the Oracle.

The XOR data was split into training (50 %), validation (25 %)
and test set (25 %) using stratified sampling. Once more, we gen-
erated bagging ensembles of 100 decision stumps. Both CHADE and
E-CHADE present 88 % of accuracy in the test set, which greatly improves the
49.6 % achieved by Bagging. By definition, as the data is not noisy, the Oracle
model achieves 100 %.

Figure 8 shows three heat maps that represent the combination of classifiers
made by CHADE, E-CHADE and Oracle, for each test instance. A red square
means that the classifier (column) was selected for the corresponding example
(row). We can see that it is possible to identify four regions in the heat maps,
each region corresponding to the four regions of the input space visible in Fig. 7.
This result is more clearly seen for CHADE and the Oracle than for E-CHADE.
Also, we see that the heat map for CHADE is more similar to the one for the
Oracle than the heat map of E-CHADE.
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Fig. 8. Heat maps showing the combination of classifiers made by each technique.
(Color figure online)

Still regarding Fig. 8, it seems that E-CHADE’s heat map has more red
squares than the other two. This suggests that E-CHADE combines larger sets
of classifiers than CHADE or Oracle. We confirmed this result by analysing the
distribution of the number of classifiers selected per instance by each method,
presented in Fig. 9; and the distribution of the number of times each classifier
was selected, presented in Fig. 10. E-CHADE selects larger sets of classifiers
than the other two; on the other hand, there seems to be no difference between
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Fig. 9. Distribution of the number of
classifiers selected per instance by each
method.
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Fig. 10. Distribution of the number of
times each classifier was selected by
each method.

CHADE and Oracle regarding this statistic. Figure 10 also shows an interesting
result: CHADE and Oracle select the classifiers in a more even manner than
E-CHADE. All the classifiers are used at least 120 times by the first two, while
E-CHADE often discards some of the classifiers from the generalization phase.

Finally, we also computed the percentage of duplicated sets of classifiers
combined by each method, shown in Table 3. We can see that E-CHADE presents
the lower percentage of duplicated classifiers, followed closely by the Oracle
model. This result is consistent with the previous one, since we also verified
that E-CHADE combines more classifiers per instance than the other methods.
Furthermore, this might also indicate that E-CHADE is somehow more dynamic
than the other techniques, which can be useful in some datasets. We plan to
further investigate this characteristic in future work.

Table 3. Percentage of duplicated sets of classifiers combined by each method.

CHADE E-CHADE Oracle

90 % 82.8 % 84.4 %

6 Conclusions and Future Work

This paper proposes a method for dynamic combination of classifiers that uses
the widely known multi-label classification technique, Classifier Chains. In order
to do so, we transform the problem of dynamically combining a set of classifiers
into a multi-label classification problem. We propose two versions of the method:
CHADE and E-CHADE, based on an ensemble variant of CC, ECC.
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We evaluated CHADE and E-CHADE in a large set of experiments with
42 classification datasets. Several state-of-the-art DSC techniques were imple-
mented, including one that also uses a metalearning approach (META-DES). We
tested our methods initially against META-DES and then against several DSC
techniques. In the former experiment, the results obtained with CHADE and E-
CHADE suggest an improvement over META-DES; in the latter, both CHADE
and E-CHADE appear in the top 3 of the techniques with better performance.
Given the large number of datasets that were used in the experiments, we con-
sider these results as very promising. We recall that most empirical experiments
comparing several DSC techniques show that no method is clearly superior to
the others. The characteristics of the learning problem influence a lot the per-
formance of the methods [3]. It is expected that as more datasets are used, the
smaller the difference between the techniques. Our results reinforce this claim.

For a better understanding of the behaviour of CHADE and E-CHADE, we
tested it in the XOR problem. We showed visually that both CHADE and E-
CHADE are able to identify the classifiers that are more suitable for each one of
the four regions of the input space. We also showed that the combination patterns
obtained by CHADE are more similar to the ones made by the Oracle than the
ones created by E-CHADE. This can be justified by the fact that E-CHADE
combines, on average, more classifiers than CHADE.

As for future work, we plan to study strategies for defining in a non-random
way the order in which CHADE and E-CHADE are trained. This could not
only improve the performance of the methods but also reduce its computational
cost (if less CC’s need to be trained). We will start by exploring some strategies
already proposed for ECC [15].

The experiments that we carried out in this paper were conducted with homo-
geneous ensembles. We are interested in verifying the performance of CHADE
and E-CHADE in a heterogeneous ensembles scenario. Since heterogeneous
ensembles are usually more diverse, they should make the task of the dynamic
method more difficult. This could also be an opportunity to study the relation
between the diversity of an ensemble and the performance of the DSC method.

Finally, DSC methods are one of the techniques that can be used for dealing
with concept drift in data streams [6]. We plan to test CHADE and E-CHADE
for that purpose.
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Abstract. Crowdsourcing allows the collection of labels from a crowd
of workers at low cost. In this paper, we focus on ordinal labels, whose
underlying order is important. Crowdsourced labels can be noisy as
there may be amateur workers, spammers and/or even malicious workers.
Moreover, some workers/items may have very few labels, making the esti-
mation of their behavior difficult. To alleviate these problems, we propose
a novel Bayesian model that clusters workers and items together using
the nonparametric Dirichlet process priors. This allows workers/items in
the same cluster to borrow strength from each other. Instead of directly
computing the posterior of this complex model, which is infeasible, we
propose a new variational inference procedure. Experimental results on
a number of real-world data sets show that the proposed algorithm is
more accurate than the state-of-the-art, and is more robust to sparser
labels.

1 Introduction

In many real-world classification applications, acquisition of labels is difficult and
expensive. Recently, crowdsourcing provides an attractive alternative. With plat-
forms like the Amazon Mechanical Turk, cheap labels can be efficiently obtained
from non-expert workers. However, the collected labels are often noisy because of
the presence of inexperienced workers, spammers and/or even malicious workers.

To clean these labels, a simple approach is majority voting [14]. By assum-
ing that most workers are reliable, labels on a particular item are aggregated
by selecting the most common label. However, this ignores relationships among
labels provided by the same worker. To alleviate this problem, one can assume
that labels of each worker are generated according to an underlying confusion
matrix, which represents the probability that the worker assigns a particular
label conditioned on the true label [7,19]. Others have also modeled the dif-
ficulties in labeling various items [2,13,23–25] and workers’ dedications to the
labeling task [2].

On the other hand, besides the commonly encountered binary and multiclass
labels, labels can also be ordinal. For example, in web search, the relevance of a
query-URL pair can be labeled as “irrelevant”, “relevant” and “highly-relevant”.
Unlike nominal labels, it is important to exploit the underlying order of ordinal
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 426–442, 2016.
DOI: 10.1007/978-3-319-46128-1 27
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labels. In particular, adjacent labels are often more difficult to differentiate than
those that are further apart.

To solve the aforementioned problem, Lakshminarayanan and Teh [16]
assumed that the ordinal labels are generated by the discretization of some
continuous-valued latent labels. The latent label for each worker-item pair is
drawn from a normal distribution, with its mean equal to the true label and its
variance related to the worker’s reliability and the item’s difficulty. While this
model is useful for “good” workers, it is not appropriate for malicious workers
whose labels can be very different from the true label. Moreover, it can be too
simplistic to use only one reliability (resp. difficulty) parameter to model each
worker (resp. item).

A more recent model is the minimax entropy framework [26], which is
extended from the minimax conditional entropy approach for multiclass label
aggregation [25]. To encode ordinal information, they compare the worker and
item labels with a reference label that can take all possible label values. The con-
fusion for each worker-item pair as obtained from the model is then constrained
to be close to its empirical counterpart. Finally, the true labels and probabili-
ties are obtained by solving an optimization problem derived from the minimax
entropy principle. In comparison with [16], ordering of the ordinal labels is now
explicitly considered.

In crowdsourcing applications, some workers may only provide very few labels.
Similarly, some items may receive very few labels. Parameter estimation for these
workers and items can thus be unreliable. To alleviate this problem, one can con-
sider the latent connections among workers and items. Intuitively, workers with
similar characteristics (e.g., gender, age, and nationality) tend to have similar
behaviors, and similarly for items. By clustering them together, one can borrow
strength fromoneworker/itemto another.Kajino et al. [12] formulated label aggre-
gation as a multitask learning problem [8]. Each worker is modeled as a classifier,
and the classifiers of similar workers are encouraged to be similar. However, the
ground-truth classifier, which generates the true labels, is required to lie in one of
the worker clusters. Moreover, this algorithm requires access to item features and
cannot be usedwith ordinal labels. Venanzi et al. [21] proposed to clustermulticlass
labels by using the Dirichlet distribution. However, the number of clusters needs to
be pre-specified, which may not be practical. Moreover, item grouping is not con-
sidered. Lakkaraju et al. [15] modeled both item and worker groups. However, they
again require the use of both worker and item features. Moreover, clustering and
label inference are performed as separate tasks.

In this paper, motivated by the conditional probability derived in the dual
of [26], we propose a novel algorithm to aggregate ordinal labels. Different
from [26], a full Bayesian model is constructed, in which clustering of both work-
ers and items are encouraged via the Dirichlet process (DP) [9] priors. DP is a
nonparametric model which is advantageous in that the number of clusters does
not need to be pre-specified. The resultant Bayesian model allows detection of
clustering structure, learning of worker/item characteristics and label aggrega-
tion be performed simultaneously. Empirically, it also significantly outperforms
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the state-of-the-art. However, as we use DP priors with non-conjugate base dis-
tributions, exact inference is infeasible. To address this problem, we extend the
techniques in [11], and derive a mean field variational inference algorithm for
parameter estimation.

2 Ordinal Label Aggregation by Minimax Conditional
Entropy

Let there be N workers, M items, and m ordinal label classes. We use i, j,m
to index the workers, items, and labels, respectively. The true label of item j is
denoted Yj , with probability distribution Q. The label assigned by worker i to
item j is Xij , and Ξ is the set of (i, j) tuples with Xij ’s observed. We assume that
there is at least one observed Xij for each worker i, and at least one observed
Xij for each item j.

Zhou et al. [26] formulated label aggregation as a constrained minimax
optimization problem, in which H(X|Y ) − H(Y ) − 1

αΩ(ξ) − 1
β Ψ(ζ) is maxi-

mized w.r.t. P (Xij = k | Yj = c) and minimized w.r.t. Q(Yj = c). Here,
H(X|Y ) is the conditional entropy of X given Y , H(Y ) is the entropy of Y ,
Ω(ξ) =

∑
i,s(ξ

�,�
is )2, Ψ(ζ) =

∑
j,s(ζ

�,�
js )2 are �2-regularizers on the slack vari-

ables ξ�,�
is , ζ�,�

js (in (1) and (2)), and α, β are regularization parameters. Let
φij(c, k) = Q(Yj = c)P (Xij = k|Yj = c) be the expected confusion from label
c to label k by worker i on item j, and φ̂ij(c, k) = Q(Yj = c)I(Xij = k) be its
empirical counterpart. Besides the standard normalization constraints on prob-
ability distributions P and Q, Zhou et al. [26] requires φij(c, k) be close to the
empirical φ̂ij(c, k):

∑

c�s

∑

k�s

∑

j

[φij(c, k) − φ̂ij(c, k)] = ξ�,�
is , ∀i,∀2 ≤ s ≤ m, (1)

∑

c�s

∑

k�s

∑

i

[φij(c, k) − φ̂ij(c, k)] = ζ�,�
js , ∀j,∀2 ≤ s ≤ m. (2)

Here, s is a reference label for comparing the true label c with worker label
k, and �,� is a binary relation operator (either ≥ or <). Together, they allow
consideration of the four cases: (i) c < s, k < s; (ii) c < s, k ≥ s; (iii) c ≥ s, k < s;
and (iv) c ≥ s, k ≥ s.

At optimality, it can be shown that

P (Xij = k|Yj = c) = exp[σi(c, k) + τj(c, k)]/Zijc, (3)

where Zijc is a normalization factor,

σi(c, k) =
∑

1≤s≤m

∑

�,�
σ�,�

is I(c � s, k�s), (4)

τj(c, k) =
∑

1≤s≤m

∑

�,�
τ�,�
js I(c � s, k�s), (5)
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σ�,�
is , τ�,�

js are Lagrange multipliers for the constraints (1) and (2), respectively,
and I(·) is the indicator function. Note that σi(c, k) controls how likely worker i
assigns label k when the true label is c, and τj(c, k) controls how likely item j is
assigned label k when the true label is c. Equations (4) and (5) can be written
more compactly as σi(c, k) = tT

ckσi and τj(c, k) = tT
ckτ j , where σi = [σ�,�

is ],
τ j = [τ�,�

js ], and tck = [I(c�s, k�s)]. Moreover, let X = [Xij ](i,j)∈Ξ , and Y =
[Yj ]. Equation (3) can be rewritten as

P (X|Y) =
∏

(i,j)∈Ξ

∏

c,k

P (Xij = k|Yj = c)I(Xij=k,Yj=c)

=
∏

(i,j)∈Ξ

∏

c,k

[
1

Zijc
exp[tT

ck(σi + τ j)]
]I(Xij=k,Yj=c)

. (6)

3 Bayesian Clustering of Workers and Items

Note that each worker i (resp. item j) has its own set of variables {σi(c, k)} (resp.
{τj(c, k)}). When the data are sparse, i.e., the set Ξ of observed labels is small,
an accurate estimation of these variables can be difficult. In this section, we
alleviate this data sparsity problem by clustering workers and items. While the
minimax optimization framework in [26] can utilize ordering information in the
ordinal labels, it is non-Bayesian and clustering cannot be easily encouraged. In
this paper, we propose a full Bayesian model, and encourage clustering of workers
and items using the Dirichlet process (DP) [9]. The DP prior is advantageous in
that the number of clusters does not need to be specified in advance. However,
with the non-conjugate priors and DPs involved, inference of the proposed model
becomes more difficult. By extending the work in [11], we derive a variational
Bayesian inference algorithm to infer the parameters and aggregate labels.

3.1 Model

Recall that σi(c, k) = tT
ckσi controls how likely worker i assigns label k when

the true label is c. To encourage worker clustering, we define a prior Ga on
{σi}N

i=1. Ga is drawn from the Dirichlet process DP(βa, Ga0), where βa is the
concentration parameter, and Ga0 is the base distribution (here, we use the
normal distribution N (μ0,Σ0)). Similarly, as τj(c, k) = tT

ckτ j controls how likely
item j assigns label k when the true label is c, we define a prior Gb ∼ DP(βb, Gb0)
on {τ j}M

j=1 to encourage item clustering (with Gb0 = N (ν0,Ω0)).
To make variational inference possible, we use the stick-breaking represen-

tation [20] and rewrite Ga as
∑∞

l=1 φlδσ∗
l
, where φl = Vl

∏l−1
d=1(1 − Vd), Vl ∼

Beta(1, βa), and σ∗
l ∼ Ga0. When we draw σ from Ga, δσ∗

l
= 1 if σ = σ∗

l , and
0 otherwise. Similarly, Gb =

∑∞
i=1 ϕhδτ∗

h
, where ϕh = Hh

∏h−1
d=1(1 − Hd), Hh ∼

Beta(1, βb) and τ ∗
h ∼ Gb0. Similar to σi(c, k), τj(c, k) in [26], σ∗

l (c, k) = tT
ckσ∗

l
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controls how likely workers in cluster l assign label k when the true label is c,
and τ∗

h(c, k) = tT
ckσ∗

h controls how likely items in cluster h are assigned label k
when the true label is c Let zi (resp. uj) indicate the cluster that worker i (resp.
item j) belongs to. We then have σi(c, k) = tT

ckσ∗
zi

and τj(c, k) = tT
ckτ ∗

uj
for all

i, j, c, k. Putting these into (6), we obtain the conditional probability as

P (X|Y, z,u,σ∗, τ ∗) =
∏

(i,j)∈Ξ

∏

c,k

[
1

Zijc
exp

[
tT
ck(σ∗

zi
+ τ ∗

uj
)
]]I(Xij=k,Yj=c)

,

(7)
where Zijc =

∑
k exp[tT

ck(σ∗
zi

+ τ ∗
uj

)], σ∗ = [σ∗
l ], τ

∗ = [τ ∗
h], z = [zi], and

u = [uj ]. In other words, rating Xij is generated from a softmax function [3]
conditioned on Yj , zi, uj ,σ

∗, τ ∗. Finally, the true label Yj of item j is drawn
from the multinomial distribution Mult(π1, π2, . . . , πm), where π1, . . . , πm are
drawn from a Dirichlet prior with hyperparameter α. The whole label genera-
tion process is shown in Algorithm 1. A graphical representation of the Bayesian
model, which will be called Cluster-based Ordinal Label Aggregation (COLA)
in the sequel, is shown in Fig. 1.

Algorithm 1. The proposed generation process.
1: for j = 1, 2, . . . , M do � Generate true labels
2: draw π = [π1, . . . , πm] ∼ Dir(α/m, α/m, . . . , α/m); // Dirichlet distribution
3: draw Yj ∼ Mult(π);
4: end for
5: for l = 1, 2, . . . do � Generate worker clusters
6: draw Vl ∼ Beta(1, βa);
7: φl = Vl

∏l−1
d=1(1 − Vd);

8: draw σ∗
l ∼ Ga0 = N (μ0,Σ0);

9: end for
10: for i = 1, 2, . . . , N do � Generate workers from worker clusters
11: draw zi ∼ Mult(φ);
12: end for
13: for h = 1, 2, . . . do � Generate item clusters
14: draw Hh ∼ Beta(1, βb);
15: ϕh = Hh

∏h−1
d=1 (1 − Hd);

16: draw τ ∗
h ∼ Gb0 = N (ν0,Ω0);

17: end for
18: for j = 1, 2, . . . , M do � Generate items from item clusters
19: draw uj ∼ Mult(ϕ);
20: end for
21: for i = 1, 2, . . . , N ; j = 1, 2, . . . , M do � Generate worker labels
22: draw Xij ∼ P (Xi|Yj , zi, uj , σ

∗, τ ∗);
23: end for
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Fig. 1. Graphical representation of the proposed model.

3.2 Inference Procedure

The joint distribution can be written as

P (X,Y, σ∗, τ ∗, z,u,V,H|μ0,Σ0, ν0,Ω0, α, βa, βb)

= P (X|Y, σ∗, τ ∗, z,u)P (σ∗|μ0,Σ0)P (τ ∗|ν0,Ω0)

P (Y|π)P (π|α)P (z|V)P (V|β1)P (u|H)P (H|β2),

where V = [Vl], and H = [Hh]. Monte Carlo Markov Chain (MCMC) sampling
[1] can be used to approximate the posterior distribution. However, it can be slow
and its convergence is difficult to diagnose [4]. Another approach is variational
inference [11], which approximates the posterior distribution by maximizes a
lower bound of the marginal likelihood. However, due to the infinite number of
variables in the DPs and our use of non-conjugate priors, standard variational
inference cannot be used. To solve this problem, we propose an integration of the
techniques in [4,5] with variational inference. Specifically, we infer the variational
parameters of the DPs based on an extension of [4], and handle the non-conjugate
priors by a technique similar to [5].

Let θ = {σ∗, τ ∗,Y,π, z,u,V,H}. In variational inference, the posterior
P (θ|X) is approximated by a distribution q(θ). The log likelihood of the mar-
ginal distribution of X is log P (X) = L(q) + KL(q‖Pθ|X), where L(q) =∫

q(θ) log P (X,θ)
q(θ) dθ, and KL(q‖Pθ|X) =

∫
q(θ) log q(θ)

P (θ|X)dθ is the KL divergence
between q and Pθ|X. As KL(q‖Pθ|X) ≥ 0, we simply maximize the lower bound
L(q) of log P (X). Using the variational mean field approach, q(θ) is assumed to
be factorized as

∏S
n=1 qn(θn), where S is the number of factors, {θ1, . . . ,θS} is

a partition of θ, and qn is the variational distribution of θn [22]. We perform
alternating maximization of L

(∏S
n=1 qn(θn)

)
w.r.t. qn’s. It can be shown that

the optimal qn is given by

q∗
n(θn) = exp

[
Eq(θ¬n) log P (X,θ)

]
+ constant, (8)

where θ¬n is the subset of variables in θ excluding θn, and Eq(θ¬n) is the corre-
sponding expectation operator.
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As there are infinite variables in the stick-breaking representations of
DP(βa, Ga0) and DP(βb, Gb0), we set a maximum on the numbers of clusters
as in [4]. Note that the exact distributions of the stick-breaking process are not
truncated. The factorized variational distribution is

q(σ∗, τ ∗,Y,π, z,u,V,H)
= qσ∗(σ∗)qτ∗(τ ∗)qY(Y)qπ(π)qz(z)qu(u)qV(V)qH(H)

=
K1∏

l=1

qσ∗
l
(σ∗

l )
K2∏

h=1

qτ∗
h
(τ ∗

h)
M∏

j=1

qYj
(Yj)qπ(π)

N∏

i=1

qzi
(zi)

M∏

j=1

quj
(uj)

K1∏

l=1

qVl
(Vl)

K2∏

h=1

qHh
(Hh),

where K1,K2 are the truncated numbers of clusters for workers and items,
respectively. Using (8), it can be shown that the variational distributions of
{Y,π, z,u,H,V} can be easily obtained as:

q∗
Yj

(Yj) = Mult(rY
j ), q∗

π(π) = Dir(α1, α2, . . . αm),
q∗
zi

(zi) = Mult(rz
i ), q∗

uj
(uj) = Mult(ru

j ),
q∗
Vl

(Vl) = Beta(γl,1, γl,2), q∗
Hh

(Hh) = Beta(ηh,1, ηh,2),

where {rY
j }M

j=1, {rz
i }N

i=1, {ru
j }M

j=1, {αc}m
c=1, {γl,1, γl,2}K1

l=1, and {ηh,1, ηh,2}K2
h=1 are

variational parameters. All these have closed-form updates as

rY
jc ← 1

ZY
j

exp

⎡

⎣Eq(θ¬Y) log πc +
N∑

i:(i,j)∈Ξ

K1∑

l=1

K2∑

h=1

rz
ilr

u
jhUijlhc

⎤

⎦ ,

rz
il ← 1

Zz
i

exp

⎡

⎣Eq(θ¬z) log φl +
∑

j:(i,j)∈Ξ

m∑

c=1

K2∑

h=1

ru
jhrY

jcUijlhc

⎤

⎦ ,

ru
jh ← 1

Zu
j

exp

⎡

⎣Eq(θ¬u) log ϕh +
∑

i:(i,j)∈Ξ

m∑

c=1

K1∑

l=1

rz
ilr

Y
jcUijlhc

⎤

⎦ ,

αc ← α

m
+

M∑

j=1

rY
jc, γl,1 ← 1 +

N∑

i=1

rz
il, γl,2 ← βa +

N∑

i=1

K1∑

d=l+1

rz
id,

ηh,1 ← 1 +
M∑

j=1

ru
jh, ηh,2 ← βb +

M∑

j=1

K2∑

d=h+1

ru
jd,

where ZY
j , Zz

i , Zu
j are normalization constants,

Uijlhc =
m∑

k=1

I(Xij = k)tT
ck[Eq(σ∗

l )
(σ∗

l ) + Eq(τ∗
h)

(τ ∗
h)] − Eq(σ∗

l ,τ∗
h)

Z∗
lhc (9)
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and Z∗
lhc =

∑m
k=1 exp[tT

ck(σ∗
l + τ ∗

h)]. Computing Uijlhc requires knowing the
variational distributions of σ∗

l and τ ∗
h, and will be derived in the following.

Recall that P (σ∗
l ), P (τ ∗

h) are normal distributions. These are not the con-
jugate prior of P (X|Y, z,u,σ∗, τ ∗) in (7). Thus, on maximizing L, q(σ∗) and
q(τ ∗) do not have closed-form solutions. Note that the 1

Zijc
exp

[
tT
ck(σ∗

zi
+ τ ∗

uj
)
]

term in (7) is a softmax function similar to that in [5], which uses variational
inference to learn discrete choice models. However, while the parameters of dif-
ferent sets of choices in [5] are conditionally independent, here in (7) they are
coupled together. Thus, the inference procedure in [5] cannot be directly applied
and has to be extended.

First, (7) can be rewritten as

P (X|Y, z,u, σ∗, τ ∗) =
∏

(i,j)∈Ξ

∏

c,k,l,h

[
exp
[
tT

ck(σ∗
l + τ ∗

h)
]

Z∗
lhc

]
I(zi=l,uj=h,Xij=k,Yj=c)

.

Since P (σ∗
l ), P (τ ∗

h) are normal distributions, we constrain the variational dis-
tributions of σ∗

l and τ ∗
h to be also normal, i.e., qσ∗

l
(σ∗

l ) = N (μl,Σl), and
qτ∗

h
(τ ∗

h) = N (νh,Ωh). Let μ = [μl], ν = [νh], Σ = [Σl], and Ω = [Ωh]. On
maximizing L(q), it can be shown that the variational parameters {μ,Σ,ν,Ω}
can be obtained as

minμ,Σ,ν,Ω Eq(θ) [log qσ∗(σ∗)qτ∗(τ ∗)] − Eq(θ) [log P (σ∗)P (τ ∗)]
−Eq(θ) [log P (X|Y,σ∗, τ ∗, z,u)] . (10)

The first term is the entropy of the normal distribution, and the second
term is the cross-entropy of two normal distributions. Both are easy to com-
pute. The last term can be rewritten as

∑
(i,j)∈Ξ

∑
c,k,l,h rz

ilr
u
jhrY

jcI(Xij =
k)

(
tT
ck(μl + νh) − Eq(σ∗,τ∗) log Z∗

lhc

)
. The term Eq(σ∗,τ∗) log Z∗

lhc, which also
appears in (9), can be approximated as in [5]:

log
m∑

k=1

exp(tT
ckμl +

1
2
tT
ckΣltck) exp(tT

ckνh +
1
2
tT
ckΩhtck).

Problem (10) can then be solved via gradient-based methods, such as L-BFGS
[17]. Denote the objective by f . It can be shown that

∂f

∂μl

= −Σ−1
0 (μl − μ0) +

∑

(i,j)∈Ξ

m∑

c=1

K2∑

h=1

rz
ilr

u
jhrY

jc

m∑

k=1

[I(Xij = k) − wklh]tck,

where

wklh =
exp(tT

ckνh + 1
2t

T
ckΩhtck) exp(tT

ckμl + 1
2t

T
ckΣltck)

∑m
k=1 exp(tT

ckνh + 1
2t

T
ckΩhtck) exp(tT

ckμl + 1
2t

T
ckΣltck)

.
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Moreover, as Σl � 0, we assume that Σl = LT
l Ll, where Ll is lower-triangular.

It can then be shown that

∂f

∂Ll
= L−T

l −
⎡

⎣Σ−1
0 −

∑

(i,j)∈Ξ

m∑

c=1

K2∑

h=1

rz
ilr

u
jhrY

jc

(
m∑

k=1

wklhtT
cktck

)⎤

⎦Ll.

Recall that Ll is lower-triangular, so in updating Ll, we only need the diagonal
elements (L−T

l )ii = 1/(Ll)ii. of the upper-triangular L−T
l [5]. The gradients of

f w.r.t. ν and Ω can be obtained in a similar manner.

4 Experiments

4.1 Synthetic Data Set

In this section, we perform experiments on synthetic data. Workers are generated
from three clusters (w1, w2, w3), items from three clusters (i1, i2, i3), and ordinal
labels in {1, 2, 3, 4, 5}. The cluster parameters σ∗, τ ∗ are sampled independently
from the normal distribution with means in Table 1 and standard deviation 0.1.
Confusion matrices1 of the clusters are shown in Fig. 2. As can be seen, workers
in cluster w1 are the least confused in label assignment. This is followed by
cluster w2, and workers in cluster w3 are most confused (spammers). Similarly,
items in cluster i1 are the least confused, while those in i3 are the most confused.

Table 1. Parameter means of the worker clusters (w1, w2, w3) and item clusters
(i1, i2, i3).

(σ∗
ls)

<,< (σ∗
ls)

<,≥ (σ∗
ls)

≥,< (σ∗
ls)

≥,≥

w1 1 0 0 1
w2 1 0.8 0.8 1
w3 0.3 1 0.5 1

(τ∗
hs)

<,< (τ∗
hs)

<,≥ (τ∗
hs)

≥,< (τ∗
hs)

≥,≥

i1 1 0 0 1
i2 1 0.8 0.8 1
i3 1 0.5 1 0.5

We generate two data sets. Both have 300 workers from the 3 clusters (w1,
w2, w3), with sizes 200, 50, and 50, respectively. The first data set (D1) has
1200 items coming from the 3 clusters (i1, i2, i3), with sizes 800, 200, and 200,
respectively. Each item is labeled by 6 randomly selected workers. The second
data set (D2) has 300 items coming from the 3 clusters with sizes 200, 50, and
50, respectively. Each item is labeled by 30 workers.

1 To obtain the confusion matrices of items, we remove the effects of workers by assum-
ing that workers assign labels randomly. Using (7), it can be shown that the (k, c)th
entry of the confusion matrix of item cluster h is exp

(
t�

ckτ ∗
h

)
/
∑

k exp
(
t�

ckσ∗
l

)
.

Similarly, for worker cluster l, the (k, c)th entry of its confusion matrix is
exp
(
t�

ckσ∗
l

)
/
∑

k exp
(
t�

ck(σ∗
l )
)
.
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Fig. 2. True confusion matrices of the worker and item clusters.

We set the truncated numbers of clusters K1,K2 in COLA to 8, and μ0 =
0,ν0 = 0, Σ0 = 1

λa
I,Ω0 = 1

λb
I, where λb = λaM/N , as in [26]. Parameters

βa, βb, α and λa are tuned by maximizing the log-likelihood as in [26]. Latent
variables are initialized in an non-informative manner: μl = 0,νh = 0, rz

i =
[1/K1, . . . , 1/K1]T , ru

j = [1/K2, . . . , 1/K2]T , ηh,1 = 1, ηh,2 = βa γl,1 = 1, γl,2 =
βb, and rY

j is from the empirical probabilities of the observed labels. We compare
the proposed algorithm with the following state-of-the-art:

1. Ordinal minimax entropy (OME) [26], with the hyperparameters tuned by
the cross-validation method suggested in [26].

2. Ordinal mixture (ORDMIX) [16]: The predicted labels are obtained by dis-
cretizing (normally distributed) continuous-valued latent labels.

3. Dawid-Skene model (DS) [7]: A well-known approach for label aggregation,
which estimates a confusion matrix for each worker.

4. Majority voting (MV) [14], which has been commonly used as a simple base-
line.

To allow statistical significance testing, we learn the model using 90% of the
items and run each experiment for 10 repetitions. As in [16,26], the following
measures are used: (i) mean squared error: MSE = 1

|S|
∑

j∈S((EQ[Yj ] − Y ∗
j )2),

where S is the set of items with ground-truth labels Y ∗
j ’s; (ii) �0 error =

1
|S|

∑
j∈S EQ[I(Yj 	= Y ∗

j )]; (iii) �1 error = 1
|S|

∑
j∈S EQ[|Yj − Y ∗

j |]; and (iv) �2

error =
√

1
|S|

∑
j∈S EQ[(Yj − Y ∗

j )2].
Results are shown in Table 2. As can be seen, on data set D1, the proposed

COLA significantly outperforms the other methods. On D2, with more labels
per item, inference becomes easier and all methods have improved performance.
COLA is still better in terms of MSE and �2 error, but can be slightly outper-
formed by the simpler methods of DS and MV in terms of �0 and �1 errors.

Figure 3 shows the normalized sizes of the worker and item clusters obtained
by COLA. Recall that z indicates the cluster memberships of workers. The nor-
malized size of worker cluster l is defined as E(Sz

l )/
∑K1

l=1 E(Sz
l ), where Sz

l is the

size of worker cluster l, and E(Sz
l ) = E

[∑N
i=1 I(zi = l)

]
=

∑N
i=1 P (zi = l) =

∑N
i=1 rz

il. Similarly, the normalized size of item cluster h is E(Su
h)/

∑K2
h=1 E(Su

h),
where Su

h is the size of item cluster h, and E(Su
h) =

∑M
j=1 ru

jh. As can be seen,
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Table 2. Errors obtained on the synthetic data sets. The best results and those that
are not statistically worse (using paired t-test at 95 % significance level) are in bold.

COLA OME ORDMIX DS MV

D1 MSE 0.249 ± 0.006 0.314± 0.011 0.341± 0.025 0.446± 0.009 0.401± 0.006

�0 0.180 ± 0.003 0.228± 0.001 0.229± 0.006 0.225± 0.003 0.225± 0.003

�1 0.209 ± 0.002 0.284± 0.004 0.273± 0.012 0.289± 0.004 0.304± 0.005

�2 0.522 ± 0.005 0.642± 0.009 0.616± 0.021 0.668± 0.007 0.717± 0.008

D2 MSE 0.073 ± 0.007 0.101± 0.005 0.112± 0.009 0.089± 0.013 0.268± 0.012

�0 0.080± 0.010 0.81± 0.005 0.83± 0.013 0.074± 0.000 0.073 ± 0.004

�1 0.081± 0.010 0.82± 0.004 0.84± 0.013 0.079 ± 0.004 0.083± 0.006

�2 0.282 ± 0.017 0.310± 0.013 0.315± 0.018 0.298± 0.022 0.319± 0.020

the sizes of the three dominant worker clusters are close to the ground truth
on both data sets. However, the item cluster (normalized) sizes on D1 are less
accurate than those on D2. This is due to that each item in D1 only has 6 labels,
while each item in D2 has 30 (in comparison, each worker on average has 24
labels for D1 and 30 labels for D2).

Fig. 3. Normalized sizes of the worker and item clusters on D1 (left) and D2 (right).
The true normalized sizes of the worker and item clusters are 0.667,0.167,0.167.

Next, we show the confusion matrices of the obtained clusters. Since we only
have the distributions of σ∗ and τ ∗, we will use their expectations. Note that
E[σ∗

l ] = μl. From (7), the (c, k)th entry of the confusion matrix of worker cluster
l can be represented as exp[t�

ckμl]/
∑

k exp[t�
ckμl], and similarly, that of the

item cluster h is exp[t�
ckνh]/

∑
k exp[t�

ckνh]. The obtained confusion matrices for
worker and item clusters are shown in Fig. 4. Here, we focus on the three largest
worker/item clusters, which can be seen to dominate in Fig. 3. Comparing with
the ground-truth in Fig. 2, the 3 worker and item clusters can be well detected.
Note again that the item clusters obtained on D2 are more accurate than those
on D1, as each item in D2 has more labels for inference.

4.2 Real Data Sets

In this section, experiments are performed on three commonly-used data sets
(Table 3).
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Fig. 4. Confusion matrices of the obtained worker/item clusters on D1 (top) and D2
(bottom).

Table 3. Summary of the data sets used.

#items #workers #classes #observed

labels

#labels/worker #labels/item

total w/ground truth min mean max min mean max

AC2 11,040 333 825 4 89,799 1 108.8 7551 1 8.1 27

TREC 19,721 3,250 762 3 90,244 1 118.4 7467 1 4.6 34

WEB 2,665 2,665 177 5 15,567 1 87.9 1225 1 5.8 12

1. AC2 [10]: This contains AMT judgments for website ratings, with the 4 levels:
“G”, “PG”, “R”, and “X”;

2. TREC [6]: This is a web search data set, with the 3 levels: “NR” (non-
relevant), “R” (relevant) and “HR” (highly relevant);

3. WEB [26]: This is another web search relevance data set, with the 5 levels:
“P” (perfect), “E” (excellent), “G” (good), “F” (fair) and “B” (bad).

The ordinal labels are converted to numbers (e.g., on the AC2 data set, “G”,
“PG”, “R”, and “X” are converted to 1, 2, 3, 4, respectively). As can be seen
from Table 3, the number of labels provided by the workers can vary significantly.

For the proposed algorithm, we set the truncated numbers of clusters K1,K2

to 10 (on WEB, K1 = 15). Larger values do not improve performance. The
other parameters of all the algorithms are set as in Sect. 4.1. To allow statistical
significance testing, again we learn the model using 90% of the items2, and
repeat this process 10 times.

Results are shown in Table 4. As can be seen, COLA consistently outper-
forms all the other methods on AC2 and WEB. Moreover, ORDMIX is compet-
itive with COLA on TREC, but much inferior on AC2 and WEB. As AC2 and

2 For AC2 and TREC, since performance can only be evaluated on items with ground-
truth labels and these two data sets have fewer such items, all these items (with
ground-truth labels) are always selected into the 90 % subset.
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Table 4. Errors obtained on the real-world data sets. The best results and those that
are not statistically worse (using paired t-test at 95 % significance level) are in bold.

COLA OME ORDMIX DS MV

AC2 MSE 0.262 ± 0.003 0.317 ± 0.001 0.364 ± 0.028 0.302 ± 0.007 0.292 ± 0.000

�0 0.228 ± 0.002 0.230 ± 0.004 0.279 ± 0.015 0.271 ± 0.006 0.241 ± 0.000

�1 0.245 ± 0.002 0.255 ± 0.005 0.348 ± 0.030 0.283 ± 0.006 0.297 ± 0.000

�2 0.513 ± 0.005 0.546 ± 0.005 0.712 ± 0.053 0.564 ± 0.007 0.643 ± 0.000

TREC MSE 0.641 ± 0.006 0.679 ± 0.001 0.603 ± 0.019 0.750 ± 0.004 0.649 ± 0.000

�0 0.492 ± 0.003 0.495 ± 0.001 0.557 ± 0.006 0.513 ± 0.003 0.543 ± 0.000

�1 0.602 ± 0.004 0.615 ± 0.002 0.606 ± 0.011 0.635 ± 0.003 0.661 ± 0.000

�2 0.886 ± 0.005 0.924 ± 0.003 0.838 ± 0.013 0.938 ± 0.004 0.947 ± 0.000

WEB MSE 0.105 ± 0.003 0.106 ± 0.003 0.360 ± 0.032 0.230 ± 0.005 0.517 ± 0.004

�0 0.096 ± 0.003 0.103 ± 0.004 0.194 ± 0.003 0.169 ± 0.006 0.269 ± 0.002

�1 0.108 ± 0.004 0.117 ± 0.004 0.242 ± 0.010 0.204 ± 0.006 0.425 ± 0.004

�2 0.369 ± 0.007 0.381 ± 0.008 0.633 ± 0.024 0.534 ± 0.008 0.923 ± 0.006

WEB have more label classes than TREC (Table 3), ORDMIX, which has fewer
parameters and is less flexible than COLA, is unable to sufficiently model the
confusion matrices of workers and items. The performance of DS is also poor, as
ordinal information of the labels is not utilized. Finally, as expected, the simple
MV performs the worst overall.

Figure 5(a)–(j) show the confusion matrices of worker clusters obtained on
AC2. For most of them (ŵ1−ŵ8), the diagonal values for “G” and “X” are high,
indicating that most clusters can identify these two types of websites easily. For
the largest worker cluster (ŵ1), the highest value on each row lies on the diagonal,
and so the labels assigned by this cluster are mostly consistent with the ground
truth. As for cluster ŵ5, the diagonal entries are much larger than the non-
diagonal ones. Hence, the worker labels are often the same as the ground truth,
suggesting that these workers are experts. This is also confirmed in Table 5,
which shows the �2 error for each cluster. On the other hand, workers in cluster
ŵ9 almost always predict “G”. They are likely to be spammers as observed in
many crowdsourcing platforms [18]. In cluster ŵ10, the off-diagonal values are
larger than the diagonal ones, indicating that workers in this cluster may not
understand this website rating task or may even be malicious.

Table 5. �2 errors for worker clusters obtained on the AC2 data set.

Cluster ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7 ŵ8 ŵ9 ŵ10

�2 error 0.714 0.627 0.789 0.938 0.618 0.922 0.732 0.950 1.133 1.445

Figure 5(k)–(o) show the confusion matrices of the obtained item clusters. In
general, as each item has fewer labels than each worker, the clustering structure
here is less obvious (as discussed in Sect. 4.1). For the item cluster î1, the diagnal
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Fig. 5. Confusion matrices for worker clusters (top two rows) and item clusters (bottom
row) obtained by COLA on the AC2 data set (clusters are ordered by decreasing size).
In each cluster, columns are the cluster-assigned labels (left-to-right: “G”, “PG”, “R”,
“X”), and rows are the true labels (top-to-down: “G”, “PG”, “R”, “X”). The five
smallest item clusters occupy less than 2% of the total size, and so are not shown.

elements have high values, indicating that items belonging to this cluster are
relatively easy to distinguish. Item cluster î2 tends to assign label “G” more
often. In î3, “G” and “PG” are sometimes confused, and so are “R” and “X”.

Varying the Number of Items. In this experiment, we use item subsets of
different sizes to learn the model. With a smaller number of items, the number
of labels per worker is also reduced (Fig. 6), and estimating the workers’ behav-
ior become more difficult. Here, we focus on the two top performers in Table 4,
namely, COLA and OME. Figure 7(a)–(i) show the errors averaged over 10 repe-
titions. As can be seen, as OME does not consider any structure among workers
and items, its performance deteriorates significantly with fewer worker labels.
On the other hand, COLA clusters workers and items. Thus, information within
a cluster can be shared, and the performance is less affected.

Varying the Concentration Parameters. In this experiment, we study the
effect of the DP’s concentration parameters on the performance of COLA. In
general, a smaller concentration parameter encourages fewer clusters, and vice
verse. We first fix βb to the value obtained in the previous experiment, and vary
βa from 0.1 to 3.5.

Figure 8(a) shows how the �2 error varies with βa. Because of the lack of space,
we only show results on the AC2 data set. COLA has stable performance over a
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Fig. 6. Number of labels per worker with different numbers of items.

Fig. 7. �0, �1 and �2 errors for COLA and OME with different proportions(%) of items
used.

wide range of βa. When βa becomes too small, workers can only form very few
clusters, and each cluster may not be coherent. When βa is too large, clusters
are split, and each cluster may not have enough data for accurate parameter
estimation. Figure 8(b) shows the results on varying βb. As can be seen, βb has
little influence on the performance. Again, this is consistent with the observation
in the previous section that items’ cluster structure is more difficult to identify.
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Fig. 8. �2 errors of COLA on the AC2 data set, with different values for βa, βb.

5 Conclusion

In this paper, we proposed a Bayesian clustering model to aggregate crowd-
sourced ordinal labels. Using the Dirichlet process, we encourage the formation
of worker and item clusters in the label generating process, which leads to more
accurate label estimation. While the probability model is complex and uses non-
conjugate DPs, we derive an efficient variational inference procedure to infer the
posterior distributions. Experimental results show that the proposed method
yields significantly better accuracy than the state-of-the-art, and is more robust
to sparser labels. Moreover, it detects meaningful clusters, which can help the
user to study the group’s behavior.
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Abstract. Relation extraction is identifying the relationship of two
given entities in the text. It is an important step in the task of knowledge
extraction, which plays a vital role in automatic construction of knowl-
edge base. When extracting entities’ relations from sentences, some key-
words can reflect the relation pattern, besides, the semantic properties of
given entities can also help to distinguish some confusing relations. Based
on the above observations, we propose a mixture convolutional neural
network for the task of relation extraction, which can simultaneously
learn the semantic properties of entities and the keyword information
related to the relation. We conduct experiments on the SemEval-2010
Task 8 dataset. The method we propose achieves the state-of-the-art
result without using any external information. Additionally, the experi-
mental results also show that our approach can learn the semantic rela-
tionship of the given entities effectively.

Keywords: Relation extraction · Convolutional neural network · Entity
embedding · Keywords extraction

1 Introduction

Relation extraction is identifying semantic relation of the entity pairs in a sen-
tence, which is also called relation classification. It serves as an intermediate step
in knowledge extraction from unstructured texts, which plays an important role
in automatic knowledge base construction

Classical methods for the task of relation extraction focus on designing effec-
tive handcrafted features to obtain better classification performance [1,2,9].
These handcrafted features are extracted by analyzing the text and using dif-
ferent natural language processing (NLP) tools. However, these methods need
complicated feature engineering and heavily rely on the supervised NLP toolkits,
which might lead to the error propagation. In order to reduce the manual work
in feature extraction, recently, deep neural networks [3,5–7] have been applied to
obtain effective relation features from sentences directly. Although these models

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46128-1 28



444 S. Zheng et al.

Table 1. Instances in the SemEval-2010 Task 8 dataset.

Entity-Destination(e1,e2):

(1) Mayans charted venuss motion across the sky poured [chocolate]e1 into [jars]e2
and interred them with the dead

(2) Both his [feet]e1 have been moving into the [ball]e2 union members

Cause-Effect(e2,e1):

(3) Plantar [warts]e1 are caused by a [virus]e2 that infects layer of skin

(4) A wind speed associated with the [devastation]e1 caused by the [tornado]e2

Other:

(5) Frequent agitations throw academic [life]e1 into [disarray]e2

(6) Painting shows a historical view of the [damage]e1 caused by the 1693 catania
earthquake and the [reconstruction]e2

can learn related features from given sentences without complicated feature engi-
neering work, most of them focus on learning the semantic representation of the
whole sentence, and they pay a little attention to keyword information related to
the relation. Besides, they also fail to take full advantage of the entities’ semantic
properties.

Based on our observations, we find that most relation pattern can be reflected
by some keywords in a sentence, especially the words between the given entities.
We randomly select some instances from the SemEval-2010 Task 8 dataset [9]
as Table 1 shows. If entity e1 and entity e2 satisfy the relation of “Entity-
Destination(e1,e2)”, the words between e1 and e2 may be direction words
such as: “into”. If given entities satisfy the relation of “Cause-Effect(e2,e1)”,
the words between e1 and e2 are more inclined to past participles such as:
“caused by”. Therefore, when compared with learning a semantic embedding of
the whole sentence, extracting keyword information between given entities can
better reflect the relation pattern in the sentence. Convolutional neural networks
(CNN) [11–13] have achieved great success in sentence’s semantic representation.
It is able to preserve sequence information and extract the keyword information
in a sentence. Therefore, in order to extract the keyword information which can
reflect the relation pattern, we adopt a CNN architecture to model the sub-
sentence between given entities instead of modeling the whole sentence.

However, it is hard to distinguish the confusing relation category by
only using the keyword information. As Table 1 shows, the sub-sentence
between e1 and e2 in sentence 5 seems to describe the relation of “Entity-
Destination(e1,e2)”, but the semantic information of given entities show that
they do not have the relationship. Hence, making good use of given entities’
semantic properties can help to distinguish the confusing relationship. The
semantic properties of given entities can be reflected by their contextual words.
Some entities’ properties may be reflected by the former (next) one word, some
may be reflected by the former (next) two words or more. We set the entity word
as the center, and select different sub-sentences around the entity as the entity’s
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contexts. Extracting the entity’s semantic properties is mining the semantic
information of these contextual sub-sentences. To achieve this, we apply the
operation of mixture convolution to extract the entities’ different contextual fea-
tures, then use max-pooling operation to select the most suitable contextual
features as the entity’s semantic properties. In this manner, we can solve the
problem of unknown entity words, and represent the semantic relationship of
entities effectively.

Therefore, the model we propose, in this paper, is a kind of mixture convo-
lutional neural network, which can simultaneously learn the semantic properties
of entities and the keyword information related to the relation. Different com-
ponents of the mixture model focus on extracting different information, and all
information is merged in the output layer to fix the task of relation classification.

The main work and contributions of this paper can be summarized as follows:
(1) We propose a mixture convolutional neural network for the task of relation
classification, which can simultaneously learn the semantic properties of entities
and the keyword information related to the relation. (2) The method we proposed
achieves the state-of-the-art results on the SemEval-2010 Task 8 dataset without
using any external information such as: Word-Net or NLP tools. (3) We also
conduct experiments to analyze the entity embedding produced by our method.
The experimental results also show that our approach can represent semantic
relationship of given entities effectively, when compared with word2vec [14].

2 Related Work

Over the years, relation classification is a widely studied task in the NLP commu-
nity. To accomplish the task, various approaches have been proposed. Existing
methods for relation classification can be divided into handcrafted feature based
methods [1,2], neural network based methods [3–7] and the other valuable meth-
ods [6,10].

The handcrafted feature based methods focus on using different natural lan-
guage processing (NLP) tools and knowledge resources to obtain effective hand-
crafted features. Then, they use some statistical classifier such as Support Vector
Machines (SVM) [23] or Maximum Entropy (MaxEnt) [24] to get the right rela-
tion class based on the handcrafted features. The early work [2] employs Maxi-
mum Entropy model to combine diverse lexical, syntactic and semantic features
derived from the text. Rink et al. [1] further designs 16 kinds of features that
are extracted by using many supervised NLP toolkits and resources. It can get
the best result at SemEval-2010 Task 8 when compared with other handcrafted
features based methods.

In recent years, deep neural models have made significant progress in the
task of relation classification. These models learn effective relation features from
the given sentence without complicated feature engineering. The most common
neural-network based models applied in this task are Convolutional Neural Net-
works (CNN) [3,4,8] and sequential neural networks such as Recursive Neural
Networks (RecNN) [7] and Long Short Term Memory Networks (LSTM) [5].
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Zeng [3] early explores convolutional neural network to represent the sentence
level features. But the method still need to use features derived from lexical
resources such as Word-Net to achieve the state-of-the-art results. Santos [4]
and Xu [8] also apply convolutional neural network to classify relation classes.
Santos [4] uses a pair-wise ranking method instead of softmax function on the
top of CNN to reduce the effect of the confusing relation “Other” and Xu [8]
proposes a negative sampling strategy to improve the assignment of subjects and
objects. Some other deep learning approaches [5,7] focus on learning the whole
sentences’ semantic representation. Their differences mainly concentrate in the
model architectures they used. There also exists other valuable methods such as
the kernel-based methods [10] and the compositional embedding model [6].

In this paper, we find that keyword information between given entities and
the semantic properties of given entities are important factors to reveal rela-
tionship. Therefore, we propose a kind of mixture convolutional model by joint
learning the entity semantic properties and relation keywords for the task of
relation classification.

3 Our Method

In order to extract the relation pattern and reduce the effect of confusing rela-
tions for the task of relation classification, we propose the mixture convolutional
neural network (MixCNN), an unified model by joint learning of entities’ seman-
tic properties and relation pattern. In the following sections, we firstly present
the architecture of our method shown in Fig. 1 and then detail each component of
the model. After that, we introduce the objective function and training details.

Fig. 1. The architecture of mixture convolutional neural network.
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3.1 The Architecture of MixCNN

The framework of MixCNN is shown in Fig. 1, which mainly contains the entity
semantic extraction module (ESE) and the relation pattern extraction module
(RPE). When given a sentence, the entity semantic extraction module focuses
on extracting the semantic properties of the given entities based on their sur-
rounding words. The relation pattern extraction module focuses on extracting
the keyword information between the two given entities which can reflect the
relation pattern [4]. We merge the information of entities and relation pattern,
obtained from the ESE and RPE modules, then fed the merged information
into a softmax layer to fix the task of relation classification. In what follows, we
describe these modules in detail.

3.2 The Module of Relation Pattern Extraction

Based on our observations and Santos’s analysis [4], we find that most relation
patterns can be reflected by a few keywords between the given two entities.
Hence, the module of RPE aims to extract the keyword information which is
related to the target relation. Convolutional neural network (CNN) [11–13] is
able to preserve the sequence information and extract the keyword information
in a sentence. [3,4,8] also validate the effectiveness of CNN to extract the related
keyword information. Therefore, in order to extract the keyword information
which can reflect relation pattern, we adopt the CNN architecture [12] to model
the sub-sentence between the given entities instead of representing the whole
sentence as Fig. 2 shows.

Fig. 2. The module of relation pattern extraction.

Firstly, each word is represented by a word embedding. In our experi-
ments, we employ the word2vec1 [14] to produce the word embeddings based
on Wikipedia corpus. Out-of-vocabulary words are initialized randomly. The
dimension of word embeddings is denoted as d. We define X ∈ R

|V |×d as the set
of word embeddings and the size of vocabulary is |V |.
1 https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/
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When given a sentence s, we let xi ∈ R
d be the d -dimensional word vector

corresponding to the i -th word in the sentence. Hence, a sentence with the length
of L is represented as a matrix: s = (x1;x2; ...;xL). In convolution layer, we use
WR(i) ∈ R

k×d to represent the i -th convolution filter and br(i) ∈ R to represent
the bias term accordingly, where k is the context window size of the filter. Filter
WR(i) will slide through the sentence s to get the latent features of sentence s.
The sliding process can be represented as:

z
(i)
l = σ(WR(i) ∗ sl:l+k−1 + br(i)), (1)

where z
(i)
l is the feature extracted by filter WR(i) from word xl to word

xl+k−1. Hence, the latent features of the given sentence s are denoted as:
z(i) = [z(i)1 , ..., z

(i)
L−k+1]. In order to extract keyword information of the sub-

sentence, we apply the max-pooling operation to reserve the most prominent
feature of filter WR(i) and denote it as:

z(i)max = max{z(i)} = max{z
(i)
1 , ..., z

(i)
L−k+1}. (2)

We use multiple filters to extract multiple features. Therefore, the relation
pattern of the given sub-sentence is represented as: Rs = [z(1)max, ..., z

(nr)
max], where

nr is the number of filters on RPE module.

3.3 The Module of Entity Semantic Extraction

The semantic properties of given entities contribute to reduce the impact of con-
fusing relations. In this module, we focus on extracting the semantic properties
of given entities based on their contextual words.

Word embeddings have been shown to preserve the semantic and syntactic
information of words. But if we come across the unknown entity words, we still
cannot obtain their semantic information from word embeddings. Fortunately,
the properties of given entities can be reflected by their surrounding words.
Different entities have different dependency on their contextual words. Some
entities’ property may be reflected by the former (next) one word, some may be
reflected by the former (next) two words or more. Based on these motivations,
we propose a mixture CNN to capture the semantic properties of entities as
Fig. 3 shows.

We set entity word as the center, and select the sub-sentences with differ-
ent scales around the entity as the entity’s contexts. Extracting the entity’s
semantic properties is mining the semantics of these contexts. We still use CNN
to extract the entities’ contextual features. As Fig. 3 shows that CNN ± 1
focuses on extracting the contextual semantic which is from word “early” to
“of”. CNN ± j mines the semantic information of context, which contains 2*j
surrounding words of entity “history”. The architectures of CNNs we used here
are the same as Sect. 3.2 described. We use WE1(i)j to represent the i -th filter of

CNN±j on the ESE module for entity e1 and WE2(i)j to represent the i -th filter
of CNN ± j on the ESE module for entity e2. Entity e1 ’s feature extracted by
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Fig. 3. The module of entity semantic extraction.

WE1(i)j are denoted as ze
(i)
j . Hence, the j -th contextual information of entity e1

can be represented as E1j = [ze
(1)
j , ..., ze

(ne)
j ], where ne is the number of filters

on ESE module. Considering that different entities have different dependency on
the contextual words, we apply a kind of max-pooling operation to merge the
features extracted by CNN ± (1, 2...j). Namely,

E1s =

⎛

⎜⎝
max(ze

(1)
1 ... ze

(1)
j )

... ... ...

max(ze
(n)
1 ... ze

(n)
j )

⎞

⎟⎠ . (3)

3.4 Output Layer and Objective Function

After obtaining the semantic properties of given entities and relation pattern
based on modules described in Sects. 3.2 and 3.3, we then merge these features
by a concatenate manner which can be denoted as f = [E1s, Rs, E2s]. The
output layer is the softmax classifier [15] with dropout:

y = W · (f ◦ r) + b, (4)

pi =
exp(yi)

m∑
j=1

exp(yj)
, (5)

where W ∈ R
m×(nr+2·ne) is the weights between the merge layer and the layer of

labels. m is the total number of relation classes. Symbol ◦ denotes the element-
wise multiplication operator and r ∈ R

(nr+2·ne) is a binary mask vector drawn
from bernoulli with probability ρ. Dropout guards against overfitting and makes
the model more robust. In Formula 5, pi means the probability that the merge
features reflect the relation i.
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The objective function of the method is to minimise the cross entropy errors
between the distribution of predicted labels and the distribution of actual labels.
It is defined as:

L = −
∑

s∈S

m∑

i=1

−log(P (yi|s,Θ)), (6)

where S represents the sentences in training set and yi is the correct class of the
given sentence s. Θ is the parameters of the model, which can be concluded as:
Θ = {X,WR(i), br(i),WE1(i)j , be1(i)j ,WE2(i)j , be2(i)j ,W, b}.

The model is optimized by using stochastic gradient descent [16]. The gra-
dients are obtained via backpropagation. Gradients are backpropagated only
through the unmasked units in the layer with dropout. Besides, the learned
parameters of weight, in the dropout layer, need to be scaled by ρ such that
W = ρ · W .

4 Experimental Setup

Dataset. To evaluate the performance of our method, we use SemEval-
2010 Task 8 dataset [9] that is the widely used for relation classifica-
tion. The dataset contains 8,000 sentences for training, and 2,717 sen-
tences for testing. There are 9 directional relations and one additional
“other” relation, which is used to represent the relation that does not
belong to any of the nine main relations. The directional relations are
“Cause-Effect(C-E)”, “Component-Whole(C-W)”, “Content-Container(C-C)”,
“Entity-Destination(E-D)”, “Entity-Origin(E-O)”, “Instrument-Agency(I-A)”,
“Member-Collection(M-C)”, “Message-Topic(M-T)” and “Product-Producer(P-
P)”. Especially, “Cause-Effect(e1,e2)” and “Cause-Effect(e2,e1)” are differ-
ent relations. “Cause-Effect(e1,e2)” means that e1 causes e2 and “Cause-
Effect(e2,e1)” means e1 is caused by e2. Hence, there are 19 relation classes
in total.

Metric. To compare the performance of different methods, we adopt the offi-
cial metric, the macro-averaged F1 score defined by Hendrickx [9]. The metric
computes the macro-averaged F1-scores for the nine actual relations (excluding
other) and takes the directionality into consideration [4].

Baselines. The baselines we used are recent methods for the SemEval-2010 Task
8 and they can be mainly cast into two main categories: the handcrafted feature
based methods and the neural network based methods.

The handcrafted feature based methods are proposed by Rink [1]. All of these
methods use a considerable amount of resources (WordNet, and FrameNet, for
example) then employ SVM [23] or MaxEnt [24] as the classifier. The results of
handcrafted feature based methods are shown in the first five rows of Table 3.

Recently, neural network models have made significant progress in the task of
relation classification. The neural network models are Convolutional Neural Net-
work (CNN) based methods [3,4,8], Recursive Neural Network (RecNN) based
methods [7] and Long Short Term Memory Network (LSTM) based methods [5].
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– CNN [3] is the early work that exploits a convolutional deep neural network to
extract lexical and sentence level features for the task of relation classification.

– CR-CNN [4] also applies CNN to classify relation classes. Instead of using
softmax function on the top layer of CNN, it employs a pair-wise ranking
strategy to reduce the effect of the confusing relation “Other”.

– depLCNN [8] learns relation representations from shortest dependency paths
through a convolution neural network. Besides, it also proposes a negative
sampling strategy to improve the assignment of subjects and objects and can
achieve the state-of-the-art results by using the external resources such as
WordNet.

– RNN [7] introduces a recursive neural network model that learns composi-
tional vector representations for sentences. Then it uses the sentences repre-
sentations for the task of relation classification.

– MV-RNN [7] finds the path between the two entities in the constituent parse
tree and learns the distributed representation of its highest node. It uses that
node’s vector as feature to classify the relationship.

– SDP-LSTM [5] leverages the shortest dependency path (SDP) between two
entities; multichannel recurrent neural networks, with long short term memory
(LSTM) units, pick up heterogeneous information along the SDP. It is the first
to use LSTM-based recurrent neural networks for the relation classification
task.

– FCM [6] decomposes the sentence into substructures and extracts features
for each of them, forming substructure embeddings. These embeddings are
combined by sum-pooling and inputed into a softmax classifier.

Hyper Parameter Settings. The hyper parameters used in these experiments
are summarized in Table 2. On the ESE module, we set a series of CNNs to model
entities’ contextual information. The context window size of each CNN on ESE
module is set to 5. If the length of input contextual sentence is less than 5, the
context window size of this CNN is set to the length of the input.

Table 2. Hyper parameters of the mixture convolutional neural network (MixCNN)

Parameter symbol Parameter description Parameter value

d Dimension of word embedding 300

nr The filter number of CNN on RPE module 300

ne The filter number of CNN on ESE module 1000

k Context window size of RPE module 20

j The number of CNNs on ESE module 4

ρ The ratio of dropout in merged layer 0.3
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5 Results

5.1 Comparison with the Baselines on Relation Classification

We compare our method with the baselines which are recently published for
the SemEval-2010 Task 8. In order to achieve state-of-the-art results, some
approaches need to add external information such as: Word-Net, FrameNet or
other NLP resources, which is actually an unfair comparison. Because differ-
ent external resources have different effect on improving the predicted results.
Besides, methods using external information have limitations. For example, if a
method uses WordNet, it only suits for the task in English. To better illustrate
the effectiveness of our method, we do not use any external information except
word embedding in this experiment. We report the results of different methods
as Table 3 shows.

In Table 3, only using word embedding as input features, our method achieves
F1 of 84.8 %, which is the best results comparing with other methods. It shows
that joint learning of entities’ semantic properties and relation keywords is good
for the task of relation classification. [3] is the early work that using CNN to
classify relation. Although CNN [3] can extract sentence level features, it cannot
achieve good results when only using word embedding features. Santos [4] also
employs a kind of CNN method, called CR-CNN, to do the task by proposing
a new pairwise ranking loss function. It can achieve the result of 84.1 %. The
pairwise ranking loss function can reduce the impact of “Other” class. If it uses
log-loss instead of the task-specific pairwise ranking loss function, the F1 value
is only 82.5 % which also has two percentage points worse than our method.
Although our method uses the softmax, it can be also superior to CR-CNN
with the pairwise ranking loss function. depLCNN [8] combines the dependency
path and CNN to represent the sentence and can achieve the results of 81.3 %.
Apart from the CNN methods, there are many sequential neural networks [5,7],
which achieve results from 74.8 % to 82.4 %. [6] is a factor based compositional
embedding model that only achieves the F1 of 80.4 %.

We also compare our method with these baselines by adding external
resources as Table 3 shows. Although we do not use any external information
except word embeddings, our method still defeats most baselines which use lex-
ical resources or NLP tools. If depLCNN only uses a negative sampling strategy
to increase the number of training samples, our method can still has +0.8%
improvement. Besides, if depLCNN uses WordNet and negative sampling strat-
egy simultaneously, we can also get comparable results to theirs under the cir-
cumstance that our training set is the half of theirs and without using WordNet.

5.2 The Effectiveness for Extracting Entity Semantic

In this paper we are not only focusing on achieving the state-of-the-art results on
relation classification without using any external information, but also providing
an effective manner to extract the semantic properties of given entities. In order
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Table 3. Comparison of methods with adding different external resources. The exter-
nal resources can be WordNet or other information obtained by NLP tools. Different
resources have different effect on improving the predicted results. To better illustrate
the effectiveness of our method, we do not use any external information except word
embedding in this experiment.

Method External resources F1(%)

SVM [1] POS, stemming, syntactic patterns 60.1

SVM [1] word pair, words in between 72.5

SVM [1] POS, stemming, syntactic patterns, WordNet 74.8

MaxEnt [1] WordNet, FrameNet, Google n-grams, morphological 77.6

SVM [1] WordNet, FrameNet, Google n-grams, morphological 82.2

RNN [7] —- 74.8

RNN [7] POS, NER, WordNet 77.6

MVRNN [7] —- 79.1

MVRNN [7] POS, NER, WordNet 82.4

FCM [6] —- 80.6

FCM [6] Dependency parse, NER 83.0

SDP-LSTM [5] —- 82.4

SDP-LSTM [5] POS, WordNet, Grammar relation 83.7

CNN [3] —- 69.7

CNN [3] WordNet 82.7

depLCNN [8] —- 81.3

depLCNN [8] Negative sampling 84.0

depLCNN [8] WordNet 83.7

depLCNN [8] WordNet, Negative sampling 85.6

CNN + softmax [4] —- 82.5

CNN + CR [4] —- 84.1

MixCNN + CNN —- 84.8

to further illustrate the effectiveness of ESE module on representing the semantic
properties of given entities, we also conduct cluster experiments.

We use ESE(e) to represent the semantic embedding of entity e that is
extracted by module ESE. Hence the semantic relation between an entity pair
(e1, e2) can be denoted as Rese(e1, e2) = ESE(e1) − ESE(e2).

Word embeddings have been empirically shown to preserve semantic relation
between words [14]. For example, v(king) − v(queen) ≈ v(man) − v(woman).
v(w) is the word embedding of word w. We use Rv(e1, e2) = v(e1) − v(e2) to
represent semantic relation between e1 and e2, which is initialized by word2vec.
Here, we use Rv(e1, e2) as our baseline.
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Given the datasets, we obtain the relation embeddings of each entity pair:
Ri

ese(e1, e2) and Ri
v(e1, e2). Then we employ the K-means algorithm [18] to

cluster relation embeddings produced by the above manners. The clustering
performance is evaluated by comparing the clustering results of texts with the
relation labels provided by the datasets. Two metrics, the accuracy (ACC) [20]
and the normalized mutual information (NMI) metrics [19], are used to measure
the clustering performance [22]. Given a text xi, let ci be the predicted cluster
label and yi be the true label provided by corpus. Then the accuracy is defined as:

ACC =

n∑
i=1

δ(yi, ci)

n
, (7)

where n is the size of dataset and δ(x, y) is the indicator function that equals one
if x = y and equals zero otherwise. Normalized mutual information is a popular
metric used for evaluating clustering tasks. It is defined as:

NMI(Y,C) =
MI(Y,C)√
H(Y)H(C)

, (8)

where MI(Y,C) is the mutual information between the predicted label set Y
and the target label set C. H(.) is the entropy and

√
H(Y)H(C) is used for

normalizing the mutual information [22].
We run 100 times for each experiment and obtain the final results as Table 4

shows. The experimental results show that Rese significantly better than Rv

on both the accuracy (ACC) and the normalized mutual information (NMI)
metrics. Although word embeddings can preserve the semantic and syntactic
information of words, when we come across the unknown entity words, word
embedings can do nothing. Besides, word embeddings contain much complex
semantic information, so the semantic relation of word embedding is not obvious.
ESE extracts the semantic properties of given entities by using their contextual
information, which can solve the problem of unknown entity words. Furthermore,
ESE focuses on mining relation properties of entities instead of modeling the
complex semantic and syntactic information. Therefore, the Rese significantly
better than Rv.

Table 4. Comparison of ACC and NMI of K-means cluster algorithm based on different
relation representations.

Dataset Train Test

Relation Embedding Rv Rese Rv Rese

ACC(%) 26.98 ± 1.11 76.17 ± 5.13 23.99 ± 0.99 60.12 ± 2.95

NMI(%) 22.19 ± 0.81 84.72 ± 1.96 20.58 ± 0.76 61.16 ± 0.91

We also visualize the clustering results by using t-SNE [21] as Fig. 4 shows. In
the embedding space produced by ESE, the entity pairs with same relation are
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more close to each other and the entity pairs with different relation are far from
each other. On the contrary, there is no such obvious rule in the word embedding
space produced by word2vec. The results further illustrate the effectiveness of
ESE module on representing the semantic properties of given entities.

(a). Rv of Test (b). Rese of Test

(c). Rv of Train (d). Rese of Train

Fig. 4. The t-SNE visualization of the relation embeddings. Figure (a) and (c) are the
relation embeddings produced by word2vec on training set and testing set. Figure (b)
and (d) are produced by ESE module.

6 Analysis and Discussion

6.1 Module Analysis

In order to extract the relation pattern and obtain the semantic properties of given
entities, we set two modules: RSE described in Sect. 3.2 and ESE in Sect. 3.3. In
this section, we focus on analyzing the properties of these two modules.

At first, we allow each module with different configurations to perform the
task of relation classification. We adopt a CNN architecture [12] called RPE to
model the sub-sentence, which is the words between the given entities, instead
of the whole sentence. We also compare the results of full sentence configura-
tion which is marked as RPE1. Besides, we propose ESE module to extract the
semantic properties of given entities based on their contextual words. In order
to better verify the effectiveness of ESE module, we directly use entity word
embedding to represent entity information. The embedding of unknown entity
word is initialized randomly. We mark this configuration as ESE1. In addition to
testing the effects of each module alone, we also test their various combinations.
In this paper, our method is the combination of RPE and ESE.

From Table 5, we know that RPE and ESE can also achieve comparable
results of F1 when compared with most of the baselines. Besides, when compared
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Table 5. Comparison of the modules on the task of relation classification.

Methods Input Text Prec.(%) Rec.(%) F1(%)

RPE sub-sentence 80.9 84.6 82.6

RPE1 full-sentence 72.4 74.5 73.3

ESE entity-context 81.8 84.6 83.1

ESE1 entities 65.4 58.5 61.5

RPE1+ESE1 full-sentence, entities 70.9 75.6 73.1

RPE1+ESE full-sentence, entity-context 81.3 84.2 82.7

RPE+ESE1 sub-sentence, entities 80.6 82.8 81.6

RPE+ESE sub-sentence, entity-context 83.1 86.6 84.8

with RPE1 that extracts the relation pattern from full sentence, RPE achieves
a +10 % improvement. It matches our observations and Santos’ [4] analysis that
most relation pattern can be reflected by the sub-sentence between the given
two entities. When compared with ESE1, ESE achieves a +26 % improvement.
These results verify the rationality of our motivations and the effectiveness of the
proposed modules. Besides, merging ESE and RPE can bring about 2 points of
improvement in F1 value, which shows the complementarity of the two modules
as well as the necessity of module integration.

6.2 Error Analysis

We conduct extensive qualitative and quantitative analysis of errors to better
understand our method in terms of learning and predicting quality. We visualized
the model’s predicted results as Fig. 5 shows.

The diagonal region indicates the correct prediction results and the other
regions reflect the distribution of error samples. The highlighted diagonal region
means that our method can perform well on each relation class. However, from
Fig. 5, we also can see that the distribution of predicted relation is relatively
dispersed on the last column of “Other”. Besides, most of the specific relation
classes can be predicted as the “Other”, which reflected from the last row shows
in Fig. 5. The class of “Other” is a kind of confusing and heterogeneous class.
It contains many different kinds of relation classes. Although our method can
reduce the impact of confusing classes, it still need further improvement for
the class of “Other”. Apart from the class “Other”, the class “I-A(e1,e2)” per-
form worse than the other 17 classes. Based on our observations, we find there
are many samples in the class “I-A(e1,e2)” have the property that the given
two entities are usually close to each other at the beginning of a sentence. For
examples: “Elevator(e1) operator(e2) is a meditation on the...” and “Camera(e1)
operator(e2) is that person ...”. Because, there is no indicative words between
two entities and there are few contextual words around entities. Our method is
inadequate to deal with this case.
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Fig. 5. The distribution of the predicted results for each relation class. The horizontal
axis is the target relation and each target relation corresponds to a column of predicted
relations. Point (X, Y) means the ratio that the target relation is X and the predicted
relation is Y. The sum of each column value equal to 1.

7 Conclusion

In this paper, we propose a mixture convolutional neural network, which is an
unified model by jointly learning entities’ semantic properties and relation pat-
tern, to fix the task of relation classification. It can achieve the state-of-the-art
results on the SemEval-2010 Task 8 dataset without using any external informa-
tion. Besides, we also conduct experiments to show that the entity embedding
generated by our approach can reflect the relation properties of given entities.

Although our method can help to reduce the impact of the confusing relation,
it still need further improvement for the class of “Other”. In the future, we will
focus on solving the problem of the special class “Other” and test our method
on more related datasets.
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Abstract. Most people now participate in more than one online social
network (OSN). However, the alignment indicating which accounts
belong to same natural person is not revealed. Aligning these isolated
networks can provide united environment for users and help to improve
online personalization services. In this paper, we propose a bootstrap-
ping approach BASS to recover the alignment. It is an unsupervised
general-purposed approach with minimum limitation on target networks
and users, and is scalable for real OSNs. Specifically, we jointly model
user consistencies of usernames, social ties, and user generated contents,
and then employ EM algorithm for the parameter learning. For analy-
sis and evaluation, We collect and publish large-scale data sets covering
various types of OSNs and multi-lingual scenarios. We conduct extensive
experiments to demonstrate the performance of BASS, concluding that
our approach significantly outperform state-of-the-art approaches.

Keywords: Network alignment · Heterogenous networks ·
User modeling

1 Introduction

Online social network (OSN) is playing an important role in multiple aspects of
our lives. We have different OSNs for various needs, e.g. Facebook for friendship,
LinkedIn for professional relations, Instagram and Pinterest for content discov-
ery. To fully keep in touch with friends or to explore various kinds of contents,
most people participate in multiple OSNs. However, the alignment indicating
which accounts belong to the same natural person remains unrevealed.

Benefits of aligning OSNs include but not limited to the followings. (a) Pro-
viding an united environment for users to easily keep up-to-date with friends’
online activities [22]. (b) Achieving better user modeling by aggregating action
histories [25]. (c) Alleviating cold-start problem in recommender system by bor-
rowing data from aligned networks [1,16]. (d) Providing prerequisite information
for cross-network behavior analysis [12].

There are platforms trying to recover the alignment by having users manually
associate their accounts, e.g. About.Me1. However, not all users understand the
1 http://about.me.
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Table 1. Summary of existing approaches

Property Name-Based Profile-Based Network-Based Specific Sites Our Solution

[14,23] [4,16,19,22] [10,21] [9,10] BASS

Target Site general general social relation tag/geo-based general

Target User similar name with profile general general general

Full Mapping no no/yes yes yes no

Leverage UGC no no, but possible no homogeneous heterogeneous

Learning Method statistics rule/supervised supervised rule/supervised unsupervised

Scalability excellent, O(N) worst at O(N2K) poor, O(N2K) poor, O(N2) good, O(ND2)

benefits and do it willingly. It is preferred if we recover the alignment automatically
by mining accessible information. Attempts are made by employing information
such as username [14], user profile (email, location, education) [16], [19] and social
tie [21]. Due to the task’s recency, limitations still exist (summarized in Table 1):

Generality: Limitations on target users implicitly exist in username-based and
profile-based approaches. They target only at users with same/similar usernames
and users with complete profile respectively. There are also works target at spe-
cific types of networks, e.g. tagging system [9] and location-based networks [10].
Besides, most works assume all users participate in both networks (full mapping
assumption), i.e. the set of common users is known as prior knowledge. However,
mining this information itself is not a trival task.

Learning Method: Beside rule-based methods, supervised learning is widely
used in existing works. However, acquiring enough training data for real OSNs
(10 %-30 % according to existing experiments) is impractical.

Scalability2: For real OSN applications, scalability must be achieved. However,
only few existing works discuss this issue. By detailed analysis, several works
have theoretical time complexity of over O(N2) thus not scalable for OSN scale.

In this paper, we propose BASS, a bootstrapping approach that is freed
from aforementioned limitations. It captures user consistencies of usernames,
social ties and preferences jointly. To model the consistencies, partial alignment
is required as pre-knowledge. Instead of using training data as in traditional
approaches, we model the alignment as unobserved latent variables and employ
EM-fashioned algorithm for the learning, leading to an unsupervised approach.
For scalability, we achieve time complexity of O(ND2), which can be considered
as linear to the size of the network. Detailed comparisons are listed in Table 1.

Note that aligning social networks will not result in privacy leak. The align-
ment is recovered using only public available information user revealed in OSNs.
In other word, such alignment already exists online just not explicitly revealed
yet. For users who don’t want to be aligned, understanding how their identities
got revealed can be the guidance for future actions to prevent it.

The paper is organized as follows. In Sect. 2, we discuss the related works.
Then we define the task in Sect. 3. We introduce the data sets and preliminary

2 Notations: N -number of nodes, D-network degree, K-feature space.
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analysis in Sect. 4. BASS is proposed and discussed in Sect. 5. We present the
experiment results in Sect. 6. Finally we draw conclusions in Sect. 7.

2 Related Work

2.1 Social Network Alignment

Due to the flexibility of the task and the variety of information available,
researchers tackle this task from different angles:

Username. As the identification in OSNs, it is highly valuable for this task.
Zafarani et al. make several assumptions upon usernames [23]. However, they
are later claimed to be false in 75.47 % cases by analysis in [14]. Liu et al. further
divide the task into alias-disambiguation (differentiating accounts with same
username) and alias-conflation (linking accounts with different usernames) [14].
They model alias-disambiguation as binary classification task and leave alias-
conflation unsolved. However, the coverage of alias-disambiguation is limited.
By our analyze only 21.52 % users have same username across networks.

User Profile. Vosecky et al. represent profiles as features and propose feature
selection and similarity calculation accordingly [22]. Nunes et al. tackle it with
classification models (SVM and Random Forest) [19]. How to handle missing
data is discussed in [16]. These approaches depend highly on the information
availability. However, the availability may be limited due to privacy setting or
incomplete profile. As reported in [13], there is a growing trend of users’ aware-
ness of privacy. The accessibility might be further restricted. Besides, user profiles
may be heterogeneous, partly missing or with false information [13], making the
profile modeling harder and require heavy manually work [14].

Social Relationship. Friend relations and group relations are also consid-
ered [10]. Tan et al. use latent vector to capture the graph information, and
then combine it with username using rule-based method [21]. The benefit of
social relationship is its accessibility. As reported in [11], friends lists can be
easily accessed in ten of the twelve analyzed OSNs.

There are also works focus on certain types of OSNs. Iofciu et al. aim at
aligning across tagging systems [9]. Geo-location and writing style are considered
in [7]. Liu. et al. take advantage of user behavior and topic modeling [15]. Despite
the performance, they do not directly lead to general solutions.

Most existing works employ supervised learning technics [19,21,22]. Large
amount of training data is required, mostly proportional to the network size. We
need heavy manual work to apply such approaches for real OSNs.

2.2 Author Identification

Although the task is to some extent similar with author identification, there are
still differences. Because authors mostly use real name or same pseudonym in
all articles, author identification focuses more on author-disambiguation. On the
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other hand, in this task we also need to align accounts with different usernames.
For techniques, author identification focuses more on linguistic and writing style
analysis [8,26], while we need to leveraging various heterogeneous user gener-
ated contents. Further, missing information and untruthful information do not
emerge in author identification for most cases. Therefore, author identification
approaches can not be directly borrowed for aligning OSNs.

2.3 Security and Privacy

This task is also considered as a security and privacy issue [2,6,13,18]. They
focus on answering whether the current OSNs are safe in the sense of anonymity
protection. Thus they aim at re-identifying only a part of the users and focus on
precision instead of recall. However, our goal is to recover the whole alignment.
The focus also shifts toward recall and large scale.

3 Problem Definition

We first formulate online social networks and then define the alignment task.

Definition 1. An online social network is: S = (U,E,O, P ), where U is the set
of user accounts; E is the set of social relations; O(u) is the ownership oracle
indicting who owns the account; P (u) is the profile and user generated contents.

Definition 2. Social network alignment task is: Given two social network
SA,SB, generate alignment R̂ ⊂ UA × UB where (u, v) ∈ R̂ indicates that
accounts u, v belong to same natural person according to the algorithm. The
ground truth is:

R = {(u, v)|u ∈ UA, v ∈ UB , OA(u) = OB(v)} (1)

Following this definition, we remove two constraints that widely exist in pre-
vious works. The first is one-to-one constraint [10], forcing each account to align
with at most one account in the other network. The other is full mapping assump-
tion, assuming all users participate in both networks (or the set of common users
is already known).

Preferred Properties. Recall the existing limitations we summarized in intro-
duction (Table 1). We prefer the solution to have the following three properties.
Generality: Minimize assumptions on target sites and target users. Unsuper-
vised: Minimize human effort needed for training. Scalability: Scalable to real
social network scale (billion-scale).

4 Data Set

We collect and publish two data sets for comprehensive evaluation3. The data
sets cover both English and Chinese sites, and include general OSNs, microblog-
ging and movie rating sites.
3 http://dataset.apexlab.org/bass/.

http://dataset.apexlab.org/bass/
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Facebook-Twitter: About.Me is a third party platform for associating one’s
accounts from different OSNs including Facebook and Twitter. We collect
1,107,695 About.Me accounts as well as the corresponding social links. For this
data set we have 328,224 aligned pairs.

Weibo-Douban: Weibo and Douban4 are one of China’s largest microblogging
and movie rating sites respectively. Alignment between them is revealed explic-
itly in Douban’s user profile (self descriptions). In total we have 141,614 aligned
users. Besides the network, we also collect movie rating histories (123.49 per
user) and microblogs (343.78 per user) as user generated contents (UGCs).

4.1 Consistency Analysis

For further insight, we conduct analysis on user consistencies across networks.

Username Consistency. We employ edit distance to measure similarity
between usernames. Define Ped(d) to be the pairs of accounts with edit distance
less than or equal to d, precision and recall as follow:

Prec@d =
|R ∩ Ped(d)|

|Ped(d)| , Rec@d =
|R ∩ Ped(d)|

|R| (2)

where R is the ground truth alignment (Eq. 1). Figure 1(a) depicts the result,
indicating strong relation between username and network alignment. However,
the recall is limited. Only 30% can be achieved for an acceptable precision.

Social Tie Consistency. Social links in OSNs reflect user’s social ties or inter-
ests to some extent. We demonstrate social tie consistency by analyzing whether
one’s social relations in different OSNs tend to be overlapping. We use Jaccard
Similarity Coefficient to capture the overlapping level. As only the relative value
is required, we normalize the coefficient according to each user.

J(u, v) =
OA(EA(u)) ∩ OB(EB(v))
OA(EA(u)) ∪ OB(EB(v))

, Jn(u, v) =
J(u, v)

maxv′∈UB
J(u, v′)

(3)

Fig. 1. Consistency across OSNs (Username, Social Tie and User Preference)

4 http://www.weibo.com/, http://www.douban.com/.

http://www.weibo.com/
http://www.douban.com/
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where EA(u), EB(u) are the neighbors of u in network A,B respectively and
OA, OB are the ownership oracles. Result in Fig. 1(b) indicates the existence of
social tie consistency. However, it also indicates that even the alignment is given
except the target pair, precision based only on social tie is not ideal (∼ 40%).

User Preference Consistency. We demonstrate user preference consistency
by showing that users with similar UGCs in one network tend to be simi-
lar in the other. Specifically, we employ topic model (LDA [3]) for modeling
text-based UGCs and Jaccard Similarity Coefficient for item-based UGCs (rat-
ing/purchasing logs). Result in Fig. 1(c) supports the assumption that user pref-
erence consistency exists.

5 Bootstrapping Approach

In this section we propose our approach BASS. We first present the work flow,
then discuss the algorithm details, and finally tackle the scalability issues.

5.1 Work Flow

We aim at recovering the alignment by mining consistencies of usernames, social
ties and user preferences across the networks. However, we need partial align-
ment as pre-knowledge to model such consistencies. Specifically, to model social
ties we need the alignment over target user’s friends, and to model user prefer-
ences we need large scale aligned pairs to learn the preference transfer between
heterogeneous networks. Traditionally, researchers employ labeled training data
to solve this, leading to supervised approach. Instead, we model the alignment
as unobserved latent data along with the consistency model, and then employ
Expectation-Maximization algorithm for the parameter learning. Following this,
we achieve an unsupervised bootstrapping approach.

We have two sub-models in our framework. One is the consistency model
C(X,R) that captures the aforementioned consistencies based on observed data
X as well as the given alignment R, where X contains usernames, social relations
and user generated contents in both networks. The other is the classification
model Y that takes in the features generated by C(X,R) and estimates the
probability that two accounts belong to the same natural person. For notations,
we use Θ = {ΘC , ΘY} for the set of unknown parameters for the two parts. Our
goal is to estimate the parameters Θ by maximizing the likelihood L(Θ;X), and
then recover the alignment R̂ based on the estimated parameters Θ̂.

L(Θ;X) = p(X|Θ) =
∑

R

p(X,R|Θ)

p(X,R|Θ) =
∏

(u,v)∈R

Y(Cu,v(X,R,ΘC), ΘY)
∏

(u,v)/∈R

(1 − Y(Cu,v(X,R,ΘC), ΘY))

Θ̂ = arg max
Θ

L(Θ;X), R̂ = arg max
R

p(X,R|Θ̂)

(4)
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By viewing the alignment R as the unobserved latent data, we can employ
Expectation-Maximization algorithm for the learning process. For E-step, we
update the alignment R based on current parameters. And for M-step, we update
the parameters for both consistency model and classification model based on the
just-computed R. The overall work flow is depicted in Fig. 2.

Fig. 2. Work Flow of BASS: Bootstrapping approach for Aligning Social networkS

The benefit of bootstrapping strategy is multi-folded. Firstly, we achieve
unsupervised approach thus large-scale labeled training data is no longer
required. Secondly, we employ the whole network for training instead of only
the labeled pairs in traditional approaches. Thirdly, we can directly adopt the
bootstrapping approach for incremental online learning by considering new users
as unaligned, therefore is suitable for real OSN application.

5.2 Algorithm Details

The key components are consistency model and classification model for M-step,
and alignment generation for E-step. We first discuss the components and then
extend the approach for unsupervised learning in the following subsections.

Consistency Model. Based on previous analysis, we target at consistencies of
username, social tie and user generated content.

Username is the easiest as it doesn’t depend on the alignment. Consistency
features include exact/substring match, edit distance and naming patterns [24].

Social tie comes next. It depends on the alignment but fortunately is of
homogeneous format (consider all relationships as undirected). We extend Jac-
card Similarity Coefficient to capture the social tie consistency. Given current
alignment R̂, it can be defined by:

com(u, v, R̂) = (EA(u) × EB(v)) ∩ R̂

J(u, v, R̂) =
|com(u, v, R̂)|

|EA(u)| + |EB(v)| − |com(u, v, R̂)|
(5)
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The most challenging one is modeling the user generated contents consistency
(or user preferences consistency) because it depends on current alignment and
is heterogeneous across networks. Most UGCs can be categorized by text-based
and item-based ones. Text-based UGCs include microblogging, forum and etc.,
and item-based ones include rating log, purchase log and etc. Therefore we target
at these two types of UGCs. We model them using multi-modal Latent Dirichlet
Allocation [3], where each modal corresponds to the UGCs in one network. The
model is depicted in Fig. 3. The detailed distributions for upper modal (text-
based site Weibo) of the multi-modal model are as below:

θi ∼ Dir(α), zw
ij ∼ Multi(θi), φw

k ∼ Dir(βw), wij ∼ Multi(φw
zij

) (6)

And the inference is as follows:

P (zw
ij = k|zw

¬ij , w, φw, ·) ∝ nw,¬ij
ik + αk∑

q(n
w,¬ij
iq + αq)

·
mw,¬ij

kwij
+ βwij

∑
w′(mw,¬ij

kw′ + βw′)
(7)

where nw
ik is the number of times topic k being assigned to user i (number of times

zw
i∗ = k) and mw

kj is the number of times word j being assigned to topic k. The
distribution as well as the inference for lower modal with zm,m, φm are similar
with above. After sufficient sampling iterations, the preference distribution θi

can be estimated by:

θ̂ij =
nw

ik + nm
ik + αk∑

q(n
w
iq + nm

iq + αq)
(8)

α θi

zwij wij φw
k βw

zmij mij φm
k βm

Nw

Nm

M

Kw

Km

Fig. 3. Multi-modal topic model

The learning process of the multi-modal topic model is as follows. We consider
each alignment (u, v) in current alignment R̂ as a user instance with actions in
both modals. With these as anchor links, we learn the correlation and transfer
between heterogeneous modals. We also consider each account u ∈ UA and
v ∈ UB as a user instance with actions only in one modal.

With the multi-modal topic model, we can embed each account in both net-
works into the universal topic space (θ). Then we can quantify the consistency
between accounts u, v using cosine similarity, L1 distance and Kullback-Leibler
Divergence over θu and θv.
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Classification Model. We use binary classification model to separate pairs of
accounts by whether they belong to same natural person. Specifically, we employ
Support Vector Machine [20] here in BASS.

Following the likelihood function in Eq. (4), the current alignment R̂ serves
as the ground truth when updating the classification model. Specifically, all pairs
of accounts that are aligned in the current alignment ((u, v) ∈ R̂) are considered
as positive instances and the rest as negative instances. Following this, we have
O(N2) training instances, where N is the number of accounts. Such amount is
too large for scalability. We will return to this issue in Sect. 5.3.

Note that the current alignment R̂ is not the actual ground truth. Because
the classification model is considered to be noise-robust, applying it to the noisy
alignment R̂ can still optimizing the likelihood function. As long as the likelihood
is being optimized, the bootstrapping approach can work properly.

Alignment Generation. With the consistency model and classification
model trained, we can estimate the pairwise likelihood by S(u, v) =
Y(Cu,v(X,R,ΘC), ΘY). Therefore, the remaining task is: Given pairwise score
S where S(u, v) indicates the likelihood of accounts u, v belonging to the same
natural person, generate the required alignment R.

If we align each account to at most one corresponding account, the alignment
is actually a partial one-to-one mapping M : EA → {EB∪ ⊥}, where M(u) =⊥
indicates no corresponding account for u. The objective function is:

M∗ = arg max
M

∏

u

S(u,M(u))

R∗ = {(u,M∗(u))|u ∈ EA,M∗(u) 
=⊥}
(9)

where we define S(u,⊥) = τ as the penalty for mismatch.
By considering each account as a node and log S(u, v)− log τ to be the weight

of the edge between node u and v, this task can be deduced to a maximum
matching problem on weighted bipartite graph. Such problem can be solved
perfectly in O(N4) by using Kuhn-Munkres (KM) algorithm [17], also known as
Munkres assignment algorithm. The algorithm is later improved by Karp et al.,
achieving a time complexity of O(N3). However, this is still not scalable for real
social network scale. Compromise must be made by using alternative algorithms
instead of perfect matching. We discuss it later in Sect. 5.3.

Extend to Unsupervised Version. To minimize human effort needed, it
is preferred that the algorithm can run in an unsupervised manner. In other
words, the initial alignment need to be automatically generated instead of using
labeled training data. In BASS, the initial alignment serves as seeds for align-
ment propagation. Therefore, precision is strongly required while recall is not.
Previous analysis show that alignment generated by username matching fulfill
the requirement and can be considered as the initial alignment.

There is another potential issue. As BASS uses current alignment to generate
training data for the classification model, there might be a chance that the
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classification model converge to the rules that we used to generate the initial
alignment. To prevent this from happening, we introduce noises into the data
intentionally during training process. Specifically, we randomly alter some of
the usernames (10 % in experiment) during the consistency modeling process for
initial alignment so that username features do not fully suppress other features.
Experiments show that the performance is not very sensitive to this parameter
if set within reasonable ranges.

5.3 Scalability Issue

Due to tremendous size of OSN users, scalability must be considered. It is normal
for social network to be of billion-scale, so even O(N2) approach is impractical.
As stated previously, the size of pairwise training samples and the time complex-
ity of matching algorithm are not scalable under current model settings. Besides,
there is a hidden violation that we have O(N2) candidate pairs.

Training Data Subsampling. Based on learning process proposed previously,
a training set of size O(N2) will be generated, with O(N) positive samples and
O(N2) negative ones. Therefore, we subsample over the negative samples and
keep only a constant number (k) of negative samples for each account.

Conducting the subsampling effectively is not trival. Because most negative
samples can be easily separated from the positive ones and provide almost no
valuable information, purely random sample would highly jeopardized the per-
formance. We follow the idea that boundary samples, the ones that cannot be
easily separated by the classification model, are more valuable for the training
process. Similar ideas are also used in other scenarios. For example, in Support
Vector Machine [20], support vectors are actually boundary samples.

By assuming the models in two consecutive iterations are similar, we con-
sider the negative samples with high but not top scores in previous iteration as
boundary samples. The final approach is: for each account u, consider its current
alignment (u, v) ∈ R̂ as positive sample, and (u, v′) as a negative sample for all
v′ ranked in top k according to S(u, v′) in last iteration. Where k is the para-
meter to balance between performance and scalability. By setting k to infinity,
the process degenerates to original version.

Candidate Pair Generation. As we cannot consider all N2 pairs due to scala-
bility concern, candidate set must be generated. Analysis in Fig. 1(b) shows that
for almost all true alignment (> 99%), their friendships overlap to some extent
(with Jaccard coefficient > 0). Therefore, we consider only accounts pairs with
common neighbors according to current alignment R̂ as candidates. Formally
we construct candidate set by C =

⋃
(u,v)∈R̂ EA(u) × EB(v). Following this we

obtain O(ND2) candidate pairs, where D is the degree of the network. Note that
no matter how the network grows, the degrees of normal users are still limited.
So O(ND2) can be considered as linear to the network’s size.
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Alternative Alignment Generation. Although perfect alignment can be
achieved, it requires large amount of computation. Therefore, we need efficient
alternative alignment generation method. Here we propose two candidates:

Top-1 Alignment. Match each user account u to v that maximize S(u, v):

R̂ = {(u, arg max
v

S(u, v))} ∪ {(arg max
u

S(u, v), v)} (10)

Similar as previous, we ignore alignment with S(u, v) < τ . For users with no
alignment, we consider them as single-site users.

Stable-Marriage Alignment. A matching between two sets of elements is a
stable marriage matching if there does not exist a pair of elements that both ele-
ments prefer each other than their current alignment. We borrow this definition
for social network alignment problem. The algorithm for original stable marriage
problem is: first selecting an unaligned element u and its most preferred element
v that u has not proposed yet; if v is available then link (u, v); otherwise if v
also prefers u over its current alignment then link (u, v) and release v’s original
alignment. This algorithm runs in time complexity of O(N2). Fortunately, in
this setting we have another property: the preference matrix is symmetric. This
property enables us to further speed up the computation. Specifically, if we tra-
verse the candidate pairs (u, v) in descend order of S(u, v) instead of randomly
selecting u, we will never need to replace existing alignment as in the traditional
algorithm. Thus we can achieve time complexity of O(|C| log |C|) where C is the
candidate set. Similar as previous, we link only when S(u, v) > τ .

6 Experiments

6.1 Experiment Setting

The data sets are discussed in Sect. 4. Recall the data includes general-purposed,
microblogging and movie review OSNs, and covers multi-lingual (English and
Chinese) scenarios. Now we explain the metrics and comparing algorithms.

Evaluation Metrics: As defined in Sect. 3, the task is a retrieval task that
mines the aligned pairs of accounts. F-1 Score is used as the metric, defined by:

Prec(R̂) =
|R̂ ∩ R|

|R̂| , Recall(R̂) =
|R̂ ∩ R|

|R| , F1(R̂) = 2 · Prec(R̂)Recall(R̂)

Prec(R̂) + Recall(R̂)
(11)

where R is the ground truth alignment (Eq. (1)) and R̂ is the prediction.

Comparing Algorithms: We compare with the state-of-the-art approaches
that based on similar information with BASS (username, social tie and user
preference), which are listed and described as follows:
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BASS: The bootstarpping approach proposed in this paper. Support Vector
Machine (LibSVM [5]) is employed as the classification model. Stable-Marriage
alignment is used unless indicated otherwise.
BASS-H: BASS without UGC modeling (user preference consistency).
BASS-U: Unsupervised version of BASS (Sect. 5.2).
MNA: Multi-Network Anchoring proposed by Kong et al. in [10].
MAH: The Manifold Alignment on Hypergraph approach, by Tan et al. [21].
MOBIUS: Aligning by modeling user behaviors, proposed by Zafarani in [24].
NAME: Aligning accounts with same username. Precision for exact name
matching is almost 1, the only concern is coverage. So it can be seemed as
an upper-bound for works focusing on alias-disambiguation [14].

There are also approaches not compared due to limitations on target sites or
target users (tagging system [9], profile-based [4,16,19,22] and etc.).

6.2 Results and Analysis

We first conduct experiments based on the full mapping assumption (the
assumption in most existing works): all users participate in both networks thus
a perfect alignment exists. 30 % of alignment is given as training data (except for
the unsupervised version). Parameters such as α, β, τ are set by cross validation.

We show the results in Table 2. Our approaches, both supervised and unsu-
pervised versions, achieve significantly better performance comparing to state-
of-the-art algorithms. Note that UGCs are only available in Weibo-Douban data
set, therefore BASS-H and BASS are the same over Facebook-Twitter data set.
Precision and recall of MAH and MOBIUS are the same respectively because
they always produce full mapping, and in this experiment setting a perfect map-
ping exists (full mapping assumption).

Note that as OSN varies, experimental results using different data sets are
not numerically comparable. For example, In our data set only 21 % users share
same username while 52 % in data used in [21]. The differences may due to the
collecting methodology and the data source used. As previous works did not

Table 2. Experimental results with 30% training data

Approach Facebook-Twitter Weibo-Douban

Precison Recall F1-Score Precison Recall F1-Score

BASS 84.40 % 79.75 %79.75 %79.75 % 0.82010.82010.8201 79.49 % 76.22 %76.22 %76.22 % 0.77820.77820.7782

BASS-H 84.40 % 79.75 % 0.8201 76.56 % 73.26 % 0.7487

BASS-U 82.52 % 78.10 % 0.8025 77.64 % 74.88 % 0.7623

MAH 42.82 % 42.82 % 0.4282 41.74 % 41.74 % 0.4174

MNA 67.64 % 62.21 % 0.6481 64.39 % 61.41 % 0.6287

MOBIUS 55.48 % 55.48 % 0.5548 51.37 % 51.37 % 0.5137

NAME 100.00 %100.00 %100.00 % 21.52 % 0.3541 100.00 %100.00 %100.00 % 14.70 % 0.2562
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publish their data, we can only compare the approaches using our data (we
also publish the data sets to the community). The scale of the data set also con-
tribute to the difficulty of aligning. It is rather difficult to find the corresponding
accounts from millions of accounts comparing to from hundreds of accounts.

Heterogeneous UGC Modeling: By comparing BASS and BASS-H in
Table 2, we show that UGC modeling do improve the alignment quality. To
gain further insight, we list part of the resulting word-dictionary along with the
movie-dictionary in Table 3. Correlation can be noticed, indicating the multi-
modal LDA can capture the heterogeneous UGCs and embed users by their
underlying general preferences. For example, the first topic indicates the users
tweet about pets are more likely to enjoy comedies, cartoons etc.

Effect of Training Size: We vary the size of training size from 10 % to 50 %.
Results showed in Table 4 indicate that our unsupervised version BASS-U defeats
the existing supervised approaches even when 50 % data is given. It is also notice-
able that the first 20 % data does not result in great improvement in BASS com-
paring to BASS-U, indicating that using unsupervised approach can capture
most common knowledge for the aligning task.

Single Network Users: Most existing works assume that all users participate
in both networks (full mapping assumption). However, it is not the real-world
scenario. Now we break this limitation and expand the data set by adding users
that participate in only one OSN. To make it more challenging, we add friends
of existing users instead of purely random users. We show the results in Table 4
(right part), where p indicates the ratio of users participate in both networks (tra-
ditional approaches still aim at aligning all users). Decreasing p makes the task
more challenging. Note that it has more impact on approaches based on social
ties or user preferences, while less on ones based on only usernames (performance
drops dramatically on MAH and MNA while slightly on MOBIUS). Because of
the comprehensiveness of our consistency model (with no heavy dependency on
specific aspect), the performance remains mostly the same with only minor drop.

Improvement Process: The effect of the iterative bootstrapping is depicted
in Fig. 4(a). A clear trend of improvement, or the snowball effect, can be noticed
in both supervised and unsupervised approaches. Note that only few rounds are
needed before convergence, so it does not raise a complexity issue.

Social Tie Strength: As the social tie varies from site to site, we are interested
in how social tie strength effects the performance of aligning. For comprehensive
analysis, we generate synthetic data based on real data. We first union the social
relations from both networks and consider them as the potential links. Then we
plug each link into the two networks with probability of p, q respectively. Here
p, q are parameters controlling the density and coupling strength. User profiles as
well as UGCs are kept the same as the real data. By varying p, q from 0 to 1, we
can simulate different social tie scenarios. Specifically, we have: (1) Isomorphic
by setting p = q = 1; (2) Subnetwork by setting p = 1, q < 1 or vice versa; (3)
Partially Overlapping by setting p, q < 1.
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Table 3. Dictionaries for Multi-modal topic model over Weibo & Douban

ID Top Words Top Movies

1 Food, Cat, Friend, Dog, Home,
Like, Life

Hotaru no haka, The Pursuit of
Happyness, Jeux d’enfants The
Devil Wears Prada, Up, Tonari
no Totoro, Ratatouille

2 China, Article, Book, Issue,
America, Country, Society

Inception, Social Network, Source
Code, Avatar, WALL·E V for
Vendetta, The Lord of the
Rings, Argo The Shawshank
Redemption, The Bourne
Identity, Titanic

3 We, Love, Myself, Life, Want,
Time, Like, World

Amour, Love Letter, Amlie, Forrest
Gump, Before Sunrise Before
Sunset, Flipped, Love Actually,
The Notebook

Table 4. Varying size of Training Data & Common User Ration (results in Table 4 are
according to Facebook-Twitter set.)

F1 Score Training Size Common User Ration p

10% 20% 30% 40% 50% 100% 90% 80% 70% 60%

MAH 0.3789 0.4065 0.4282 0.4330 0.4426 0.4282 0.4026 0.3706 0.3444 0.3253

MNA 0.6021 0.6259 0.6481 0.6549 0.6612 0.6481 0.6201 0.5928 0.5503 0.5196

MOBIUS 0.5327 0.5457 0.5548 0.5617 0.5620 0.5548 0.5479 0.5465 0.5431 0.5390

BASS 0.8073 0.8093 0.8201 0.8265 0.8374 0.8201 0.8205 0.8164 0.8158 0.8087

BASS-U 0.8025 0.8025 0.8047 0.7985 0.7990 0.7973

Results for the p = q cases are showed in Fig. 5(a). Our approaches out
perform existing approaches except when p, q are too small, which indicates
almost no social relations available. In these cases the social ties become total
noises and the consistency propagation may be restricted. Hence, username-
based approaches have great advantage. We depict results for all p, q in
Fig. 5(b). Except for the cases that one network’s social relationship is too weak
(min(p, q) ≤ 0.1), our approach has a satisfying performance.

6.3 Performance vs Scalability

Subsampling. Recall that we conduct subsampling over training data for the
classification model. A parameter k controls the number of negative samples
for each user. Larger k leads to larger computational complexity but better
performance. By varying k, we show the results in Fig. 4(b). We conclude that
when k is larger than some small threshold (3–5), keep increasing k does not
achieve a significantly better performance. This indicates that our subsampling
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Fig. 4. Detail analysis - Iteration, Alignment Algorithm, Subsampling

Fig. 5. Experimental results over synthetic data

strategy can shrink the training set of size O(N2) into of size O(N) with ignorable
sacrifice of performance.

Alignment Algorithms. Due to the high time complexity of KM algorithm,
two alternative alignment algorithms (Top-1 alignment and Stable-Marriage
alignment) are proposed. We show the results using different alignment algo-
rithms in Fig. 4(c). As expected, KM algorithm always gives the best result.
Stable-Marriage alignment can always achieve a compatible result with a much
lower time complexity. Thus a great balance between the scalability and perfor-
mance can be achieved using it.

7 Conclusions and Future Works

In this paper, we focus on aligning heterogeneous social networks. To tackle
the problem, we propose a bootstrapping approach BASS, which starts with an
unperfect alignment and refines it iteratively based on consistency propagation
over usernames, social ties and user preferences. The advantage is multi-folded.
Firstly, it is a general-purpose approach with minimum limitation on target sites
and users, and can be adopted for various heterogeneous scenarios. Secondly,
full-mapping constraint is removed. Thirdly, we achieve unsupervised approach.
Finally, it is scalable for large-scale social networks without jeopardizing the
performance. We also collect and publish large-scale real-world data sets covering
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various scenarios. To the best of our knowledge, this is the first public available
data set for this task. We conduct comprehensive experiments. Results indicate
that BASS outperform state-of-the-art approaches with a relative improvement
of about 40 % in most scenarios.

Due to the novelty of this topic, there exist plenty of future works. One
direction is considering aligning accounts over multiple social networks instead
of two, such task would be much more general but harder as well. Further, we can
employ the aligned social networks for user behavior analysis across sites. It is
also an interesting topic to reveal the underlying real friend relation, i.e. the true
friendship among natural persons. Following this work, we can also study what
online actions jeopardies the user’s anonymity and how to prevent accordingly.
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Abstract. Learning from graph data has been attracting much atten-
tion recently due to its importance in many scientific applications, where
objects are represented as graphs. In this paper, we study the problem
of multi-graph clustering (i.e., clustering multiple graphs). We propose
a multi-graph clustering approach (MGCT) based on the interior-node
topology of graphs. Specifically, we extract the interior-node topological
structure of each graph through a sparsity-inducing interior-node clus-
tering. We merge the interior-node clustering stage and the multi-graph
clustering stage into a unified iterative framework, where the multi-graph
clustering will influence the interior-node clustering and the updated
interior-node clustering results will be further exerted on multi-graph
clustering. We apply MGCT on two real brain network data sets (i.e.,
ADHD and HIV). Experimental results demonstrate the superior perfor-
mance of the proposed model on multi-graph clustering.

Keywords: Multi-graph clustering · Interior-node topology · Brain
network

1 Introduction

In recent years, graph mining has been a popular research area because of numer-
ous applications in social network analysis, computational biology and computer
networking. In addition, many new kinds of data can be represented as graphs.
For example, from common brain images such as the functional magnetic reso-
nance imaging (fMRI) data of multiple subjects, we can construct a brain connec-
tivity network for each of them, where each node represents a brain region, and
each link represents the functional/structural connectivity between two brain
regions [12]. These multiple brain networks provide us with an unprecedented
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 476–492, 2016.
DOI: 10.1007/978-3-319-46128-1 30
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opportunity to explore the inner structure and activity of the human brain,
serving as valuable supportive information for clinical diagnosis of neurologi-
cal disorders [18]. Therefore, mining on graphs becomes a crucial task and may
benefit various real-world applications.

Among the existing works on graph learning, quite a few of them fall into
supervised learning, which usually aim to select frequent substructures such as
connected subgraph patterns in a database of graphs and then feed these sub-
graph features into classifiers [6,11]. These methods typically work well when
the graph database is very large or the access to side information is assumed.
However, the number of subgraphs is exponential to the size of graphs, thus
the subgraph enumeration process is both time and memory consuming which
makes it infeasible to explore the complete subgraph space. Moreover, in many
real-world cases, only a small number of labeled graphs are available. Therefore,
finding discriminative subgraph patterns from a large number of candidate pat-
terns based on such limited instances is not reliable. While supervised methods
focus on training classifiers, unsupervised clustering could provide exploratory
techniques for finding hidden patterns in multiple graphs. In this paper, we
investigate the unsupervised scenarios by exploring the multi-graph clustering
based on the interior-node topology of graphs. Topology is the mathematics of
neighborhood relationships in space, which is independent of the distance met-
ric, thus the interior-node topology of graphs could provide complementary local
structure information for the original linkage, which can only characterize the
global structure information of graph. Despite its value and significance, to our
best knowledge, the interior-node topology of graphs has not been studied in the
problem of multi-graph clustering so far. There are two major challenges in this
multi-graph clustering problem:

– How to capture the interior-node topology of each graph? Conventional
approaches extract graph-theoretical measures, e.g., clustering coefficients, to
quantify the prevalence of clustered connectivity [10,23]. However, assigning
a predefined measure to specific nodes in a graph might not fully characterize
the subtle local topological structure of the graph.

– How to effectively leverage the extracted topological structure information
to facilitate the process of multi-graph clustering? The original linkage met-
ric describes the global connectivity structure in the graph, while the topo-
logical structure depicts the local neighborhood relationships. An effective
multi-graph clustering model should fuse these two complementary structural
information together.

To address the above challenges, we propose a framework of multi-graph clus-
tering with interior-node topology. The contributions of this work are twofold:

– We propose to consider both the global structure and the local topological
structure of graphs for the multi-graph clustering task. Specifically, we utilize
interior-node clustering to capture local topological structure of graphs.

– Considering the fact that graphs with a high similarity tend to have a similar
interior-node topology, we propose to merge the multi-graph clustering stage
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and interior-node clustering process into a unified iterative framework called
MGCT, where the results of interior-node clustering are exerted on multi-
graph clustering and the multi-graph clustering will in turn improve interior-
node clustering of each graph, thus achieving a mutual reinforcement.

Fig. 1. The framework of the proposed model.

In the scenario of brain network analysis for multiple subjects, the proposed
framework of multi-graph clustering can be illustrated with the example shown
in Fig. 1. There are two stages in each iteration of the framework: multi-graph
clustering and interior-node clustering. In the multi-graph clustering stage, the
given six brain networks are clustered into two clusters, and then in the second
stage, the interior-node clustering of each graph will be updated with a weighted
influence from their neighbor graphs in the same cluster, after which the new
interior-node clustering results will be utilized for the multi-graph clustering
in the next iteration. After the model converges, we will obtain the final opti-
mal multi-graph clustering results, which can be used for further analysis, for
example, the neurological disorder identification.

We evaluate the proposed method on two real brain network data sets
(ADHD and HIV). Experimental results illustrate the superior performance of
the proposed approach for multi-graph clustering in brain network analysis.

2 Preliminaries

In this section we establish key definitions and notational conventions that sim-
plify the exposition in later sections.

Throughout this paper, matrices are written as boldface capital letters and
vectors are denoted as boldface lowercase letters. For a matrix M ∈ R

n×m, its
elements are denoted by mij , and its i-th row, j-th column are denoted by mi, mj

respectively. The Frobenius norm of M is defined as ‖M‖F =
√∑n

i=1 ‖mi‖22,
and the �2,1 norm of M is defined as ‖M‖2,1 =

∑n
i=1

∥∥mi
∥∥
2
. For any vector

u ∈ R

n, Diag(u) ∈ R

n×n is the diagonal matrix whose diagonal elements are
ui. In denotes an identity matrix with size n. ‖u‖0 is the �0 norm, which counts
the number of nonzero elements in the vector u.
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Definition 1 (Multi-graph Clustering). An undirected graph can be for-
mally represented as G = (V,E,A), where V is the set of vertices, E ⊂
V × V is the set of edges, and A is the weighted affinity matrix whose entry
denotes the affinity between a pair of nodes. Given a set of such graphs
D = {G1, G2, · · · , Gn}, the goal of multi-graph clustering is to cluster the graphs
in D into c subsets.

Definition 2 (Interior-node Clustering). Given an undirected graph G =
(V,E,A), the goal of interior-node clustering is to group the nodes of the graph
into k clusters C = {C1, · · · , Ck}, with V = C1 ∪ · · · ∪ Ck and Ci ∩ Cj = ∅ for
every pair i, j with i �= j.

Definition 3 (Topology). Topology is the mathematics of neighborhood rela-
tionships in space independent of metric distance. In the context of graph struc-
tures, such neighborhood relationships often correspond to the connectivity of
nodes, i.e., how nodes are connected to each other.

3 Methodology

In this section, we first introduce the proposed multi-graph clustering framework
MGCT, where we formulate the multi-graph clustering stage and the interior-
node clustering stage, both of which can be formulated as optimization problems.
We then present an iterative algorithm based on half-quadratic optimization to
solve this minimization problem.

3.1 An Iterative Framework: MGCT

In the literature of multi-graph clustering, the pairwise distance is mainly mea-
sured based on the structure of each graph, and graphs with highly similar
structures tend to be clustered into the same group. In other words, the graphs
that are clustered into the same group tend to have highly similar topological
structure [3]. Following these observations, we propose an iterative framework
called MGCT for multiple-graph clustering based on interior-node topology. In
each iteration, there are two stages: the interior-node clustering and the multi-
graph clustering, where the interior-node clustering results which imply local
topological structure are used together with the global structure of graph for
clustering multiple graphs, and then the multi-graph clustering results will be
utilized in turn to improve the interior-node clustering. Through this iterative
mutual reinforcement of interior-node clustering and multi-graph clustering, we
can finally achieve a refined multi-graph clustering result.

Multi-graph Clustering. In this part, we focus on the formulation of the
multi-graph clustering stage. Since the multi-graph clustering and interior-node
clustering depend on each other and are performed alternatively, here we assume
we have obtained the interior-node clustering results of the graphs, which can
be used for the multi-graph clustering. The formulation of the interior-node
clustering problem and the overall iterative process will be discussed later.
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Given a set of graphs D = {G1, G2, · · · , Gn}, with the corresponding set
of affinity matrices A = {A1,A2, · · · ,An}, where Ai ∈ R

m×m is the weighted
affinity matrix of Gi, and its entry denotes the pairwise affinity between nodes in
Gi, suppose we have performed interior-node clustering on each of these graphs
and obtained a set of clustering indicators F = {F1,F2, · · · ,Fn}, where Fi ∈
R

m×k is the interior-node clustering indicator of Gi, we build a similarity matrix
S ∈ R

n×n, where sij denotes the similarity between the two graphs Gi and Gj ,
and we define it as:

sij = δ(− ‖Ai − Aj‖2F ) + (1 − δ)(− ‖Fi − Fj‖2F ) (1)

which is a weighted combination of the similarity based on the original affinity
matrix of each graph and the similarity based on interior-node clustering results,
where δ is the weight parameter balancing the two parts. In this way, the interior-
node topology characterized by the interior-node clustering indicator matrix can
be incorporated for multi-graph clustering. With this similarity matrix, we can
formulate the clustering of graphs in D as a spectral clustering problem, where
graphs with a higher pairwise similarity tend to be grouped into the same cluster.
Let H ∈ R

n×c be the multi-graph clustering indicator matrix, then the optimal
H can be obtained by solving the following objective function [22]:

min
H

Tr
(
HTLH

)

s.t. HTH = Ic (2)

where L = D− 1
2 (D−S)D− 1

2 is the symmetric normalized Laplacian matrix, and
D is a diagonal matrix with dii =

∑n
j=1 sij .

Interior-Node Clustering. We now study the problem of interior-node clus-
tering of graph in the context of multi-graph clustering.

In graph theory, a cluster is described as a set of nodes more densely con-
nected with each other than with the rest nodes of the graph. Given a graph G
with m nodes and the weighted affinity matrix A ∈ R

m×m , the goal of interior-
node clustering is to group the m nodes into k clusters, i.e., to find a cluster
indicator matrix F ∈ R

m×k, whose entry indicates which cluster a node may
belong to.

Intuitively, nodes with a higher correlation should have a similar cluster indi-
cator. With this assumption, a graph regularization can be embedded to learn
the cluster indicator matrix F, which is formulated as the following minimization
problem on the basis of the spectral analysis [22]:

min
F

m∑

i,j=1

aij

∥∥∥
f i

√
dii

− f j

√
djj

∥∥∥
2

2
= Tr

(
FTL′F

)

s.t. FTF = Ik (3)

where L′ = D′− 1
2 (D′ − A)D′− 1

2 is the symmetric normalized Laplacian matrix,
and D′ is a diagonal matrix with dii =

∑m
j=1 aij .



Multi-graph Clustering Based on Interior-Node Topology 481

The above formulation provides a measure of the smoothness of F over the
edges in G. Notice that when a node connects to the nodes in different clusters, it
will lead to a relatively large value of Tr

(
FTL′F

)
[21]. Therefore, it is expected

to identify these boundary-spanning nodes to moderate this influence. In the
following, we show how to model and leverage the topology of interior-node to
achieve this goal.

From the definition of the topology, we know it is the mathematics of neigh-
borhood relationships in space independent of metric distance. In the context of
graph structures, such neighborhood relationships often correspond to the con-
nectivity of nodes, i.e., how nodes are connected to each other. In view of the
involvement of graph, a näıve approach is that the value of f i at every node vi is
the weighted average of f i at neighbors of vi, with the weights being proportional
to the edge weights in adjacency matrix A, which can be fitted as

min
F

∥∥F − D′−1AF
∥∥2

F
(4)

Since there are some boundary-spanning nodes across clusters, and their
neighbors naturally occur in different clusters, to exploit the formulation of (4)
on interior-node clustering more effectively, it is crucial for the clustering indica-
tor matrix F to have discriminative ability for such boundary-spanning nodes,
i.e., promoting row-wise sparsity to discriminate relevant boundary-spanning
nodes, and thus achieving only characterizing interior nodes. Inspired by [8],
we introduce the �2,1-norm penalty to make it and thus we have the following
optimization problem:

min
F

Tr
(
FTL′F

)
+ α

∥∥F − D′−1AF
∥∥
2,1

s.t. FTF = Ik (5)

where α is a parameter balancing two terms (i.e., smoothness and sparsity). It
can be seen the sparsity-inducing property of �2,1 norm pushes the clustering
indicator matrix F to be sparse in rows. More specifically, f i shrinks to zero
if the neighbors of node vi belongs to different clusters. In particular, the more
nodes having neighbors belonging to different clusters, the larger

∥∥fi−D′−1Afi
∥∥2

2

tends to be, so the value of f i gets penalized more harshly. We can thus obtain
a better clustering indicator F for interior nodes.

As we discussed earlier, the graphs clustered into the same group tend to have
more similar topological structure, in each iteration of our framework, we hope
to further improve the interior-node clustering of each graph by incorporating
the interior-node clustering results of its neighbors, i.e., the graphs clustered into
the same group by the multi-graph clustering stage of the previous iteration. For
two graphs in the same cluster, the closer they are, the more similar interior-
node clustering they tend to have. Based on this assumption, for graph Gi, we
consider only the graphs that are in the same cluster with Gi, and we aim to
infer the weights of influence they should have on Gi.
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Suppose we have a set of feature matrices X = {X1,X2, · · · ,Xn}, where Xi

can represent both the global and local structure of Gi, we aim to infer a weight
matrix W by solving the following minimization problem:

min
W

∑

i

∥∥∥Xi −
∑

j

wijXj

∥∥∥
2

F

s.t.
∑

j

wij = 1 (6)

where wij denotes the weight of Gj for Gi, which will be used to control the
extent that Fj will be used to influence Fi in the next iteration, and Gj can only
be a graph from the cluster containing Gi. A larger wij implies a closer distance
between Gi and Gj in the same cluster.

Now we can improve the interior-node clustering of each graph by adding a
weighted influence from the neighbour graphs based on the multi-graph cluster-
ing. For a graph Gi, the interior-node clustering can be obtained by solving the
following objective function extended from Eq. (5):

min
Fi

Tr
(
FT

i LiFi

)
+ α

∥∥∥Fi − D−1
i AiFi

∥∥∥
2,1

+ β
∥∥∥Fi −

∑

j

wijFj

∥∥∥
2

s.t. FT
i Fi = Ik (7)

where Ai is the weighted affinity matrix of Gi, Di is the diagonal matrix, and
Li is the symmetric normalized Laplacian matrix.

With the two stages illustrated above, we can formulate the overall iterative
process. We first obtain an initial multi-graph clustering indicator matrix H0

by Eq. (2), where S is computed by Eq. (1) with δ = 1. Then we can infer
the weight matrix W by solving (6), which will be used for optimizing the
interior-node clustering of each graph in (7). With the resulted Fi for each graph
Gi, a new similarity matrix can be created by Eq. (1), which leads to another
iteration of multi-graph clustering by Eq. (2). The overall iterative algorithm
with optimization solutions will be discussed in the following section.

3.2 Optimization

Since the minimization problem in Eq. (2) is a typical spectral clustering prob-
lem, we can directly solve it by computing the first c generalized eigenvectors of
the eigenproblem as illustrated in [20].

To solve the minimization problem (7), we propose an iterative algorithm
based on the half-quadratic minimization [16] and the following lemma [9].

Lemma 1. Let φ(.) be a function satisfying the conditions: x → φ(x) is convex
on R; x → φ(

√
x) is convex on R+; φ(x) = φ(−x),∀x ∈ R; φ(x) is C1 on

R; φ′′(0+) ≥ 0, lim
x→∞φ(x)/x2 = 0. Then for a fixed ‖ui‖2, there exists a dual

potential function ϕ(.), such that
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φ(‖ui‖2) = inf
p∈R

{p‖ui‖22 + ϕ(p)} (8)

where p is determined by the minimizer function ϕ(.) with respect to φ(.).

Let Pi = Fi − D−1
i AiFi. According to the analysis for the �2,1 norm in [9], if

we define φ(x) =
√

x2 + ε, we can replace ‖Pi‖2,1 with
∑n

j=1 φ(‖pj
i‖2). Thus,

based on Lemma 1, we reformulate the objective function of Eq. (7) as follows:

min
Fi

Tr
(
FT

i LiFi

)
+ αTr

(
PT

i QPi

)
+ β

∥∥∥Fi −
∑

j

wijFj

∥∥∥
2

s.t. FT
i Fi = Ik (9)

where Q = Diag(q), and q is an auxiliary vector of the �2,1 norm. The elements
of q are computed by qj = 1

2
√

‖pj
i ‖2

2+ε
, where ε is a smoothing term and is usually

set to be a small constant value (we set ε = 10−4 in this paper).
The quadratic optimization problem with orthogonal constraint have been

well studied, and can be solved by a lot of solvers [1,24]. Here we employ the
solver Algorithm 2 in [24] to solve Eq. (9), which is a more efficient optimization
algorithm with publicly available code.

Another optimization problem we need to solve is Eq. (6). In [19], such a min-
imization problem with respect to vectors is solved as a constrained least squares
problem for locally linear embedding. Since the Frobenius norm for matrices is a
straightforward generalization of the l2 norm for vectors, we can directly obtain
the following equation based on the analysis in [19].

∥∥∥Xi −
∑

j

wijXj

∥∥∥
2

F
=

∑

jr

wijwirCjr (10)

where Gj and Gr denote two neighbors of Gi, i.e., Gj and Gr are in the cluster
containing Gi. Cjr is the local covariance matrix, which can be obtained by

Cjr =
1
2
(Mj + Mr − mjr − M0) (11)

where mjr = −sjr denotes the squared distance between the jth and rth neigh-
bors of Gi, thus can be obtained by Eq. (1), Mj =

∑
z mjz, Mr =

∑
z mrz and

M0 =
∑

jr mjr. Then the optimal weights can be obtained by:

wij =

∑
r C−1

jr∑
lz C−1

lz

(12)

For details about the derivation of the above solution, readers can refer to [19].
Based on the above analysis, we summarize the overall optimization algorithm
of MGCT in Algorithm 1.
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Algorithm 1. MGCT
Input: D = {G1, G2, · · · , Gn}, c, k
Output: Assignments to c clusters
1: Initialize H0 s.t. HT

0 H0 = Ic;
2: while not converge do
3: Compute W according to Eq. (12);
4: for i = 1; i <= n; i + + do
5: Initialize Fi0 s.t. Fi

T
0 Fi0 = Ik,t ← 0;

6: while not converge do
7: Set Qt ← Diag( 1

2
√

‖pi
t‖2

2+ε
);

8: Compute Fit+1 by solving Eq. (9);

9: t ← t + 1;
10: end while
11: end for
12: Update H by solving Eq. (2);
13: Cluster H by k-means;
14: end while

4 Experiments

In order to empirically evaluate the effectiveness of the proposed multi-graph
clustering approach for brain network analysis, we test our model on real fMRI
brain network data and compare with several state-of-the-art baselines.

4.1 Data Collection and Preprocessing

In this work, we use two real resting-state fMRI datasets as follows:

– Human Immunodeficiency Virus Infection (HIV): This dataset is collected
from Chicago Early HIV Infection Study in Northwestern University [18].
The clinical cohort in this study includes 77 subjects, 56 of which are early
HIV patients (positive) and the other 21 are seronegative controls (negative).
The two groups did not differ in the demographic characteristics including
age, gender, racial composition and education level.

– Attention Deficit Hyperactivity Disorder (ADHD): This dataset is collected
from ADHD-200 global competition dataset1, which contains the resting-state
fMRI images of 768 subjects. Subjects are either ADHD patients or normal
controls. In particular, the patient group in ADHD involves three stages of
ADHD disease, which can be treated as three different groups, making the
total number of groups be 4.

We use DPARSF toolbox2 for fMRI data preprocessing. A time series of
responds is extracted from each of the 116 anatomical volumes of interest
(AVOI), which represents the 116 different brain regions. We perform the stan-
dard fMRI brain image processing steps, including functional images realign-
ment, slice timing correction and normalization. Afterwards, spatial smoothing
is performed on these images with an 8-mm Gaussian kernel for increasing signal-
to-noise ratio, followed by the band-pass filtering (0.01–0.08 Hz) and the linear
1 http://neurobureau.projects.nitrc.org/ADHD200/.
2 http://rfmri.org/DPARSF.

http://neurobureau.projects.nitrc.org/ADHD200/
http://rfmri.org/DPARSF
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trend removing of the time series. We also apply linear regression to reduce spu-
rious variance coming from hardware reasons or subject factors such as thermal
motion of electrons. After all these preprocessing steps, we compute the brain
activity correlations among different brain regions based on the obtained time
series for each of them, and then we use the positive correlations to form the links
among the regions. Finally, we exclude the 26 cerebellar regions, and each brain
is represented as a graph with 90 nodes, which correspond to the 90 cerebral
regions.

4.2 Baselines and Metrics

We use four clustering methods as baselines.

– k-means: a classic clustering method [4]. We convert the adjacency matrix
of each subject graph into vectors and then apply the k-means algorithm
to cluster all the subject graphs. For the implementation of the k-means
algorithm, we adopt the Litekmeans [5], which has been proven to be a fast
MATLAB implementation of the k-means algorithm.

– Spectral Clustering (SC) [7]: a method for constructing graph partitions
based on eigenvectors of the adjacency matrix of graph. In the experiment,
we apply the normalized spectral clustering algorithm proposed in [20]. We
first construct the similarity matrix for the multiple graphs only based on
their adjacency matrices and then use the similarity matrix as the input for
normalized spectral clustering of the multiple graphs.

– Clustering Coefficient (CC): the k-means clustering with clustering coef-
ficient [17] as the feature representation of each graph.

– Two-layer Spectral Clustering(TSC): We adapt the typical spectral clus-
tering into both of the two stages in our framework, where spectral clustering
on the multi-graph is based on the spectral clustering on each graph. We call
the model TSC.

– MGCT: our proposed multi-graph clustering method based on interior-
node topology. To evaluate the discriminative ability of the sparsity-inducing
term, i.e., the �2,1-norm penalty term in Eq. (7), we employ MGCT with
and without the sparsity-inducing term and denote them as MGCT and
MGCTnonST respectively.

We adopt the following two measures for the evaluation.

– Accuracy . Let ci represent the clustering label result of a multi-graph clus-
tering algorithm and yi represent the corresponding ground truth label of the
graph Gi. Then Accuracy is defined as: Accuracy =

∑n
i=1 δ(yi,map(ci))

n , where
δ is the Kronecker delta function, and map(ci) is the best mapping function
that permutes clustering labels to match the ground truth labels using the
KuhnMunkres algorithm [13]. A larger Accuracy indicates better clustering
performance.
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– Purity . Purity is a measure used to evaluate the clustering method’s abil-
ity to recover the groundtruth class labels, and it is defined as: Purity =
1
n

∑k
q=1 max1≤j≤l n

j
q, where n is the total number of samples, and nj

q is the
number of samples in cluster q that belongs to original class j. Therefore,
the purity is a real number in [0, 1]. The larger the Purity, the better the
clustering performance.

The main parameters in our framework include the weight parameters α, β,
and δ as well as the number of interior-node clusters k. Note that in the rest
part of this paper, we use k specifically to denote the number of interior-node
clusters in each graph although it might has been used for denoting other general
variables in the equations above. For the convenience of evaluation, we directly
use the number of distinct labels in each dataset as the number of clusters in
multi-graph clustering. Since there are four possible labels of the samples in
ADHD datasets, we set the number of clusters to be 4. For HIV dataset, we
have two possible labels (positive, negative), so we set the cluster number to
be 2. We apply the grid search to find the optimal values for α, β and δ. We
do grid search for α in {10−2, 10−1, · · · 102}, β in {10−4, 10−3, · · · 104}, and δ in
{0.1, 0.2, · · · 0.9}. The optimal k is selected by the grid search from {2, 3, · · · , 12}.
For fair comparisons of all the methods, we employ Litekmeans [5] for all the
k-means clustering step if it is needed in the implementation of the six methods
listed above. We repeat clustering for 20 times with random initialization as
k-means depends on initialization. For the evaluation, we repeat running the
program of each methods for 50 times and report the average accuracy and
purity as the results.

4.3 Performance Evaluations

As shown in Tables 1 and 2, our MGCT method performs the best on the two
datasets in terms of both accuracy and purity. Among the six clustering meth-
ods, the first two methods (i.e., k-means, Spectral Clustering) directly use the
original matrix of each graph in the data set for calculating the distance or simi-
larity between each pair of the graphs, which is utilized for the final multi-graph
clustering. From Tables 1 and 2, we can see that the clustering accuracy and
purity of these two methods are quite low. This is probably because that they
do not consider the interior-node topology of these graphs when doing cluster-
ing. The CC achieves a slightly better result compared to k-means and Spectral
Clustering. This is mainly due to the fact that CC does consider some local
structure information while calculating the clustering coefficient. However, since
it only assigns a single predefined measure to each node in the graph, which rep-
resents each brain region in the brain networks, the subtle topological structure
of each brain network might not be fully characterized.

Comparatively, the last three methods (i.e., TSC, MGCT, MGCTnonST ) all
utilize the topological structure informationbut atdifferent level.TheTSCmethod
first performs spectral clustering on each graph, and the resulted matrix containing
the clustering indicator vectors areused in themulti-graph spectral clustering.This
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process does include the topological structure, but it only has the one-way and one-
time influence on themulti-graph clustering task.The result ofmulti-graph cluster-
ing does not have influence on the interior-node clustering. Different from TSC, the
two methods we proposed namely the MGCT and MGCTnonST perform the task
in an iterative way, and achieves the mutual reinforcement by leveraging the topol-
ogy structure into multi-graph clustering and inferring a better topology structure
for each graph from the multi-graph clustering result alternatively. According to
Tables 1 and 2, we can also see that the proposed MGCT method outperforms the
MGCTnonST in both accuracy and purity. This indicates the importance of the �2,1

norm we add in Eq. (7), which has the sparsity-inducing property.
In order to evaluate the effectiveness of MGCT for interior-node topology

extraction of brain networks, we investigate the resulted brain networks with
interior-node clusters detected by MGCT and show the results of two brain net-
works in Fig. 2. We can find from the figure that the interior nodes of the normal
brain network have been well grouped into several clusters, while the cluster
boundaries in the patient’s brain network are very blurred and the nodes widely
spread out. Usually, the correlated regions of human brain will work together
towards a task, and tend to present an approximately synchronized trend in their
time series. Thus, the nodes representing these correlated regions would become
more possible to be grouped into the same cluster. Therefore, the fuzzy cluster
boundaries of the patient’s interior nodes indicate that the collaboration activity

Table 1. Clustering Accuracy.

Methods Accuracy

ADHD (k = 6) HIV (k = 9)

k-means 52.0% 60.3%

Spectral Clustering 55.2% 60.9%

CC 56.8% 63.7%

TSC 57.6% 62.5%

MGCTnonST 59.3% 64.9%

MGCT 62.8% 68.1%

Table 2. Clustering Purity.

Methods Purity

ADHD (k = 6) HIV (k = 9)

k-means 0.55 0.63

Spectral Clustering 0.59 0.65

CC 0.57 0.66

TSC 0.57 0.64

MGCTnonST 0.62 0.69

MGCT 0.67 0.72

(a) a typical normal control (b) a stage-2 ADHD patient

Fig. 2. Comparison of two brain networks with interior-node topology captured by
MGCT from two subject graphs in ADHD dataset



488 G. Ma et al.

2 4 6 8 10 12
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

k

Accuracy
Purity

(a) ADHD

2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

k

Accuracy
Purity

(b) HIV

Fig. 3. Accuracy and purity with different k

of different regions might not be very organized. These observations imply that
our proposed framework can be further used for distinguishing subjects with
neurological disorders from healthy controls.

4.4 Parameter Sensitivity

In this section, we explore the sensitivity and effects of the four main parameters
in our proposed method, including α, β, δ and k. We first evaluate the clustering
performance of MGCT with different k values, ranging from 2 to 12. Figure 3
shows the clustering performance of MGCT in accuracy and purity with different
k on both ADHD and HIV datasets. As we can see from the figure, the multi-
graph clustering performance is very sensitive to the value of k, especially when
the value for k keeps very small. For example, as shown in Fig. 3(a), the accuracy
increases dramatically when the value of k goes from 2 to 6 before it reaches the
peak value at 6. The main reason for such high sensitivity is that when k is set to
be a small number, the interior-node clusters identified from each brain network
tend to have large sizes, which could not capture the interior-node topological
structure very well, resulting in a less discriminative measure for distinguishing
subjects in different neurological states. A similar changing trend is shown for
the purity, while noticeably the peak purity value shows up when k = 9 instead
of k = 6. This can be traced back to the definition of purity. Since it counts
the number of nodes in the dominated class for each cluster instead of counting
the number of nodes only when they match the correct groundtruth labels.
Thus, when the number of clusters increases, each cluster becomes easier to be
dominated by one class, leading to a higher purity.

Now, we analyze the sensitivity of MGCT to δ, which balances the weights
from the original affinity matrix and the interior-node clustering indicator matrix
when creating the similarity matrix among multiple graphs. As shown in Fig. 4,
MGCT achieves different level of accuracy and purity when the value of δ varies.
For ADHD, the highest accuracy is achieved when δ = 0.4, while for HIV, it
achieves the highest accuracy when δ = 0.7, and similar situations for the purity.
These results indicate that both the global structure and the interior-node topo-
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Fig. 4. Accuracy and purity with different δ

logical structure are important for the multi-graph clustering analysis, and their
weights need to be determined for specific practical situations. Next, we evaluate
the sensitivity of MGCT to α and β. We set k to be 6 and run the MGCT method
with different values for α and β on ADHD and HIV data. The clustering accu-
racy of MGCT is plotted versus the values for α and β in Fig. 5. As shown in the
figure, MGCT achieves the best performance when α = 102, β = 103 on ADHD
dataset, and α = 102, β = 102 on HIV dataset. Parameter α controls the sparsity
while parameter β controls the influence of iterative multi-graph clustering results
on interior-node clustering. If the value for α is very small, then it will not really
enforce the sparsity. Similarly, if the value for β is quite small, the iterative process
would barely have influence on interior-node clustering optimizing. In these cases,
the performance will decline. However, when the values for them are too large,
they would enforce too much sparsity or influence, which might make the perfor-
mance drop as well. Therefore, an optimal combination of the two parameters is
crucial for improving the performance of MGCT.
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Fig. 5. Accuracy with different α, β

5 Related Work

Our work relates to several bodies of studies, including the multi-graph cluster-
ing, node clustering in graphs, and brain network analysis.
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In the context of multi-graph clustering, there are a few of strategies that
have been proposed and widely used [3], for example the structural summary
method discussed in [2], and the hierarchical algorithm with graph structure
proposed in [15]. However, these methods only focus on finding a summary from
the global structure of the graphs without looking into the topological structure,
thus would lose very important local structural information, leading to a less
effective clustering of multiple graphs.

For node clustering in graphs, there has also been a vast literature of works. One
classic category of these methods are the spectral clustering algorithms [22], which
use the eigenvalues of the Laplacian matrix to perform dimension reduction and
then cluster the data in fewer dimensions.Recently, newmethods of node clustering
have been proposed for various applications, such as the works for social network
analysis [25,26], which utilize the heterogeneous information in aligned networks
for node clustering. Although these work use information from multiple graphs,
they focus on the mutual relationship of graphs at the node level instead of the
graph-graph neighbourhood relationship as we consider.

Brain network analysis has become a hot research topic of medical data
mining these years. A major task in brain network analysis is to identify the
difference of a healthy subject and a neurological demented subject in brain
network structure. In the past decade, quite a few of works have been done to
solve this problem. In [11], a discriminative subgraph mining method is proposed
for classifying brain networks. In [14], they find a unified cut and a contrast cut
of multiple graphs for studying brain networks of multiple subjects. This work is
the most related one of ours. However, they study the brain networks when the
labels of subjects (healthy or demented) are given, while we cluster the unlabeled
subjects into groups with their brain network features.

6 Conclusions

In this paper, we propose an iterative framework MGCT for multi-graph cluster-
ing based on interior-node topology of graphs. To capture the local topological
structure of the graphs, we perform the sparsity-inducing interior-node cluster-
ing on each graph. In this framework, the interior-node clustering and the multi-
graph clustering are performed alternatively, where the results of interior-node
clustering are exerted on multi-graph clustering and the multi-graph clustering
in turn improves the interior-node clustering of each graph. After this iterative
mutual reinforcement process, we can obtain a refined multi-graph clustering
result, which can be used for further analysis of the graphs. Experiments on
two real brain network datasets demonstrate the superior performance of the
proposed model in multi-graph clustering for brain network analysis.
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Abstract. Interactive learning is a process in which a machine learning
algorithm is provided with meaningful, well-chosen examples as opposed
to randomly chosen examples typical in standard supervised learning. In
this paper, we propose a new method for interactive learning from multi-
ple noisy labels where we exploit the disagreement among annotators to
quantify the easiness (or meaningfulness) of an example. We demonstrate
the usefulness of this method in estimating the parameters of a latent
variable classification model, and conduct experimental analyses on a
range of synthetic and benchmark datasets. Furthermore, we theoreti-
cally analyze the performance of perceptron in this interactive learning
framework.

1 Introduction

We consider binary classification problems in the presence of a teacher, who
acts as an intermediary to provide a learning algorithm with meaningful, well-
chosen examples. This setting is also known as curriculum learning [1,9,21] or
self-paced learning [7,8,10] in the literature. Existing practical methods [10,11]
that employ such a teacher operate by providing the learning algorithm with
easy examples first and then progressively moving on to more difficult examples.
Such a strategy is known to improve the generalization ability of the learning
algorithm and/or alleviate local minima problems while optimizing non-convex
objective functions.

In this work, we propose a new method to quantify the notion of easiness
of a training example. Specifically, we consider the setting where examples are
labeled by multiple (noisy) annotators [4,14,18,20]. We use the disagreement
among these annotators to determine how easy or difficult the example is. If a
majority of annotators provide the same label for an example, then it is rea-
sonable to assume that the training example is easy to classify and that these
examples are likely to be located far away from the decision boundary (sepa-
rating hyperplane). If, on the other hand, there is a strong disagreement among
annotators in labeling an example, then we can assume that the example is dif-
ficult to classify, meaning it is located near the decision boundary. In the paper
by Urner et al. [19], a strong annotator always labels an example according to
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 493–508, 2016.
DOI: 10.1007/978-3-319-46128-1 31
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the true class probability distribution, whereas a weak annotator is likely to err
on an example whose neighborhood is comprised of examples from both classes,
i.e., whose neighborhood is label heterogeneous. In other words, both strong
and weak annotators do not err on examples far away from the decision bound-
ary, but weak annotators are likely to provide incorrect labels near the decision
boundary where the neighborhood of an example is heterogeneous in terms of
its labels. There are a few other theoretical studies where weak annotators were
assumed to err in label heterogeneous regions [6,12]. The notion of annotator
disagreement also shows up in the multiple teacher selective sampling algorithm
of Dekel et al. [3]. This line of research indicates the potential of using annotator
disagreement to quantify the easiness of a training example.

To the best of our knowledge, there has not been any work in the literature
that investigates the use of annotator disagreement in designing an interactive
learning algorithm. We note that a recent paper [17] used annotator disagree-
ment in a different setting, namely as privileged information in the design of
classification algorithms. Self-paced learning methods [7,8,10] aim at simulta-
neously estimating the parameters of a (linear) classifier and a parameter for
each training example that quantifies its easiness. This results in a non-convex
optimization problem that is solved using alternating minimization. Our setting
is different as the training example is comprised of not just a single (binary)
label but multiple noisy labels provided by a set of annotators, and we use the
disagreement among these annotators (which is fixed) to determine how easy or
difficult a training example is. We note that it is possible to parameterize the
easiness of an example as described in Kumar et al.’s paper [10] in our framework
and use it in conjunction with the disagreement among annotators.

Learning from multiple noisy labels [4,14,18,20] has been gaining traction in
recent years due to the availability of inexpensive annotators from crowdsourc-
ing websites like Amazon’s Mechanical Turk. These methods typically aim at
learning a classifier from multiple noisy labels and in the process also estimate
the annotators’ expertise levels. We use one such method [14] as a test bed to
demonstrate the usefulness of our interactive learning framework.

1.1 Problem Definition and Notation

Let X ⊆ R
n denote the input space. The input to the learning algorithm is a set

of m examples with corresponding (noisy) labels from L annotators denoted

by S =
{(

xi, y
(1)
i , y

(2)
i , . . . , y

(L)
i

)}m

i=1
where

(
xi, y

(�)
i

)
∈ X × {±1}, for all

i ∈ {1, . . . , m} and � ∈ {1, . . . , L}. Let z1, z2, . . . , zL ∈ [0, 1] denote the annota-
tors’ expertise scores, which is not known to the learning algorithm. A strong
annotator will have a score close to one and a weak annotator close to zero.
The goal is to learn a classifier f : X → {±1} parameterized by a weight vec-
tor w ∈ R

n, and also estimate the annotators’ expertise scores {z1, z2, . . . , zL}.
In this work, we consider linear models f(x) = 〈w, x〉, where 〈·, ·〉 denotes the
dot-product of input vectors.
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2 Learning from Multiple Noisy Labels

One of the algorithmic advantages of interactive learning is that it can potentially
alleviate local minima problems in latent variable models [10] and also improve
the generalization ability of the learning algorithm. A latent variable model
that is relevant to our setting of learning from multiple noisy labels is the one
proposed by Raykar et al. [14] to learn from crowdsourced labels. For squared loss
function,1 i.e., regression problems and a linear model,2 the weight vector w and
the annotators’ expertise scores (the latent variable) {z�} can be simultaneously
estimated using the following iterative updates:

ŵ = argmin
w∈Rn

1
m

m∑

i=1

(〈w, xi〉 − ŷi)
2 + λ‖w‖2 , with ŷi =

∑L
�=1 ẑ�y

(�)
i∑L

�=1 ẑ�

;

1
ẑ�

=
1
m

m∑

i=1

(
y
(�)
i − 〈ŵ, xi〉

)2

, for all � ∈ {1, . . . , L} ,

(1)

where λ is the regularization parameter. Intuitively, the updates estimate the
score z of an annotator based on her performance (measured in terms of squared
error) with the current model ŵ, and the label of an example is adjusted {ŷi}
by taking the weighted average of all its noisy labels from the annotators. In
practice, the labels {ŷi} are initialized by taking a majority vote of the noisy
labels. The above updates are guaranteed to converge only to a locally optimum
solution.

We now use the disagreement among annotators in the regularized risk min-
imization framework. For each example xi, we compute the disagreement di

among annotators as follows:

di =
L∑

�=1

L∑

�′=1

(
y
(�)
i − y

(�′)
i

)2

, (2)

and solve a weighted least-squares regression problem:

ŵ = argmin
w∈Rn

1
m

m∑

i=1

g(di) (〈w, xi〉 − ŷi)
2 + λ‖w‖2 , (3)

where g : R → [0, 1] is a monotonically decreasing function of the disagreement
among annotators, and iteratively update {z�} using:

1
ẑ�

=
1
m

m∑

i=1

g(di)
(
y
(�)
i − 〈ŵ, xi〉

)2

, for all � ∈ {1, . . . , L} . (4)

1 We consider squared loss function to describe our method and in our experiments for
the sake of convenience. The method can be naturally extended to the classification
model described in Raykar et al.’s paper [14]. Also, we note that it is perfectly valid
to minimize squared loss function for classification problems [15].

2 Although we consider linear models in our exposition, we note that our method can
be adapted to accommodate any classification algorithm that can be trained with
weighted examples.
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In our experiments, we use g(d) = (1+eαd)−1. The parameter α controls the
reweighting of examples. Large values of α place a lot of weight on examples with
low disagreement among labels, and small values of α reweight all the examples
(almost) uniformly as shown in Fig. 1. The parameter α is a hyperparameter
that the user has to tune akin to tuning the regularization parameter.

Fig. 1. Example reweighting function.

The optimization problem (3) has a closed-form solution. Let X ∈ R
m×n

denote the matrix of inputs, D ∈ R
m×m denote a diagonal matrix whose diagonal

entries are g(di), for all i ∈ {1, . . . ,m} and ŷ denote the (column) vector of
labels. The solution is given by: ŵ = (X�DX + λI)−1X�Dŷ, where I is the
identity matrix. Hence, optimization solvers used to estimate the parameters in
regularized least-squares regression can be adapted to solve this problem by a
simple rescaling of inputs via X ← √

DX and ŷ ← √
Dŷ.

In the above description of the algorithm, we fixed the weights g(·) on the
examples. Ideally, we would want to reweight the examples uniformly as learning
progresses. This can be done in the following way. Let PX denote some proba-
bility distribution induced on the examples via g(·). In every iteration t of the
learning algorithm, we pick one of PX or the uniform distribution based on a
Bernoulli trial with success probability 1/tc for some fixed positive integer c to
ensure that the distribution on examples converges to a uniform distribution as
learning progresses. Unfortunately, we did not find this to work well in practice
and the parameters of the optimization problem did not converge as smoothly
as when fixed weights g(·) were used throughout the learning process. We leave
this as an open question and use fixed weights in our experiments.
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3 Mistake Bound Analysis

In this section, we analyze the mistake bound of perceptron operating in the
interactive learning framework. The algorithm is similar to the classical per-
ceptron, but the training examples are sorted based on their distances from the
separating hyperplane and fed to the perceptron starting from the farthest exam-
ple. The theoretical analysis requires estimates of margins of all examples. We
describe a method to estimate the margin of an example and also its ground-
truth label (from the multiple noisy labels) in the Appendix. We would like to
remark that the margin of examples is needed only to prove the mistake bound.
In practice, the perceptron algorithm can directly use the disagreement among
annotators (2).

Theorem 1 (Perceptron [13]). Let ((x1, y1), . . . , (xT , yT )) be a sequence of
training examples with ‖xt‖ ≤ R for all t ∈ {1, . . . , T}. Suppose there exists a
vector u such that yt〈u, xt〉 ≥ γ for all examples. Then, the number of mistakes
made by the perceptron algorithm on this sequence is at most (R/γ)2‖u‖2.
The above result is the well-known mistake bound of perceptron and the proof
is standard. We now state the main theorem of this paper.

Theorem 2. Let ((x1, ŷ1, γ̂1), . . . , (xT , ŷT , γ̂T )) be a sequence of training exam-
ples along with their label and margin estimates, sorted in descending order
based on the margin estimates, and with ‖xt‖ ≤ R for all t ∈ {1, . . . , T}. Let
γ̂ = min(γ̂1, . . . , γ̂T ) = γ̂T and K = �R/γ̂ − 1. Suppose there exists a vector
u such that ŷt〈u, xt〉 ≥ γ̂ for all examples. Divide the input space into K equal
regions, so that for any example xtk

in a region k it holds that ŷtk
〈xtk

, u〉 ≥ kγ̂.
Let {ε1, . . . , εK} denote the number of mistakes made by the perceptron in each
of the K regions, and let ε =

∑
k εk denote the total number of mistakes. Define

εs =
√

1/K
∑

k(εk − ε/K)2 to be the standard deviation of {ε1, . . . , εK}.
Then, the number of mistakes ε made by the perceptron on the sequence of

training examples is bounded from above via:

√
ε ≤

R‖u‖ +
√

R2‖u‖2 + εsK(K + 1)2
√

K − 1γ̂2

γ̂(K + 1)
.

We will use the following inequality in proving the above result.

Lemma 1 (Laguerre-Samuelson Inequality [16]). Let (r1, . . . , rn) be a
sequence of real numbers. Let r̄ =

∑
i ri/n and s =

√
1/n

∑
i(ri − r̄)2 denote

their mean and standard deviation, respectively. Then, the following inequality
holds for all i ∈ {1, . . . , n}: r̄ − s

√
n − 1 ≤ ri ≤ r̄ + s

√
n − 1.

Proof. Using the margin estimates γ̂1, . . . , γ̂T , we divide the input space into K =
�R/γ̂ − 1 equal regions, so that for any example xtk

in a region k, ŷtk
〈xtk

, u〉 ≥
kγ̂. Let T1, . . . , TK be the number of examples in these regions, respectively. Let
τt be an indicator variable whose value is 1 if the algorithm makes a prediction
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mistake on example xt and 0 otherwise. Let εk =
∑Tk

t=i τti
be the number of

mistakes made by the algorithm in region k, ε =
∑

k εk be the total number of
mistakes made by the algorithm.

We first bound ‖wT+1‖2, the weight vector after seeing T examples, from
above. If the algorithm makes a mistake at iteration t, then ‖wt+1‖2 = ‖wt +
ŷtxt‖2 = ‖wt‖2 + ‖xt‖2 + 2ŷt〈wt, xt〉 ≤ ‖wt‖2 + R2, since ŷt〈wt, xt〉 < 0. Since
w1 = 0, we have ‖wT+1‖2 ≤ εR2.

Next, we bound 〈wT+1, u〉 from below. Consider the behavior of the algo-
rithm on examples that are located in the farthest region K. When a predic-
tion mistake is made in this region at iteration tK + 1, we have 〈wtK+1, u〉 =
〈wtK

+ ŷtK
xtK

, u〉 = 〈wtK
, u〉 + ŷtK

〈xtK
, u〉 ≥ 〈wtK

, u〉 + Kγ̂. The weight vector
moves closer to u by at least Kγ̂. After the algorithm sees all examples in the
farthest region K, we have 〈wTK+1, u〉 ≥ εKKγ̂ (since w1 = 0), and similarly
for region K − 1, 〈wT(K−1)+1, u〉 ≥ εKKγ̂ + εK−1(K − 1)γ̂, and so on for other
regions. Therefore, after the algorithm has seen T examples, we have

〈wT+1, u〉 ≥
K∑

k=1

εkkγ̂ ≥
( ε

K
− εs

√
K − 1

) (
K(K + 1)

2

)
γ̂ .

where we used the Laguerre-Samuelson inequality to lower-bound εk for all k,
using the mean ε/K and standard deviation εs of {ε1, . . . , εK}.

Combining these lower and upper bounds, we get the following quadratic
equation in

√
ε:

( ε

K
− εs

√
K − 1

) (
K(K + 1)

2

)
γ̂ − √

εR‖u‖ ≤ 0 ,

whose solution is given by:

√
ε ≤

R‖u‖ +
√

R2‖u‖2 + εsK(K + 1)2
√

K − 1γ̂2

γ̂(K + 1)
.

��
Note that if εs = 0, i.e., when the number of mistakes made by the perceptron

in each of the regions is the same, then we get the following mistake bound:

ε ≤ 4R2‖u‖2
γ̂2(K + 1)2

,

clearly improving the mistake bound of the standard perceptron algorithm. How-
ever, εs = 0 is not a realistic assumption. We therefore plot x-fold improvement
of the mistake bound as a function of εs for a range of margins γ̂ in Fig. 2.
The y-axis is the ratio of mistake bounds of interactive perceptron to standard
perceptron with all examples scaled to have unit Euclidean length (R = 1) and
‖u‖ = 1. From the figure, it is clear that even when εs > 0, it is possible to get
non-trivial improvements in the mistake bound.
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Fig. 2. Illustration of the improvement in the mistake bound of interactive perceptron
when compared to standard perceptron. The dashed line is y = 1.

The above analysis uses margin and label estimates, γ̂1, . . . , γ̂T , ŷ1, . . . , ŷT ,
from our method described in the Appendix, which may not be exact. We there-
fore have to generalize the mistake bound to account for noise in these estimates.
Let {γ1, . . . , γT } be the true margins of examples. Let εγu

, εγ�
∈ (0, 1] denote

margin noise factors such that γ̂t/εγ�
≥ γt ≥ εγu

γ̂t, for all t ∈ {1, . . . , T}. These
noise factors will be useful to account for overestimation and underestimation in
γ̂t, respectively.

Label noise essentially makes the classification problem linearly inseparable,
and so the mistake bound can be analyzed using the method described in the
work of Freund and Schapire [5] (see Theorem 2). Here, we define the deviation
of an example xt as δt = max(0, γ̂/εγ�

− ŷt〈u, xt〉) and let Δ =
√∑

t δ2t . As
will become clear in the analysis, if γ̂ is overestimated, then it does not affect
the worst-case analysis of the mistake bound in the presence of label noise. If
the labels were accurate, then δt = 0, for all t ∈ {1, . . . , T}. With this notation
in place, we are ready to analyze the mistake bound of perceptron in the noisy
setting. Below, we state and prove the theorem for εs = 0, i.e., when the number
of mistakes made by the perceptron is the same in all the K regions. The analysis
is similar for εs > 0, but involves tedious algebra and so we omit the details in
this paper.

Theorem 3. Let ((x1, ŷ1, γ̂1), . . . , (xT , ŷT , γ̂T )) be a sequence of training exam-
ples along with their label and margin estimates, sorted in descending order
based on the margin estimates, and with ‖xt‖ ≤ R for all t ∈ {1, . . . , T}. Let
γ̂ = min(γ̂1, . . . , γ̂T ) = γ̂T and K = �R/γ̂ − 1. Suppose there exists a vector u
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such that ŷt〈u, xt〉 ≥ γ̂ for all the examples. Divide the input space into K equal
regions, so that for any example xtk

in a region k it holds that ŷtk
〈xtk

, u〉 ≥ kγ̂.
Assume that the number of mistakes made by the perceptron is equal in all the K
regions. Let {γ1, . . . , γT } denote the true margins of the examples, and suppose
there exists εγu

, εγ�
∈ (0, 1] such that γ̂t/εγ�

≥ γt ≥ εγu
γ̂t for all t ∈ {1, . . . , T}.

Define δt = max(0, γ̂/εγ�
− ŷt〈u, xt〉) and let Δ =

√∑
t δ2t .

Then, the total number of mistakes ε made by the perceptron algorithm on
the sequence of training examples is bounded from above via:

ε ≤ 4(Δ + R‖u‖)2

ε2γu
γ̂2(K + 1)2

.

Proof. (Sketch) Observe that margin noise affects only the analysis that bounds
〈wT+1, u〉 from below. When a prediction mistake is made in region K, the
weight vector moves closer to u by at least Kεγu

γ̂. After the algorithm sees
all examples in the farthest region K, we have 〈wTK+1, u〉 ≥ εKKεγu

γ̂ (since
w1 = 0). Therefore, margin noise has the effect of down-weighting the bound
by a factor of εγu

. The rest of the proof follows using the same analysis as in
the proof of Theorem 2. Note that margin noise affects the bound only when
γ̂t is overestimated because the margin appears only in the denominator when
εs = 0.

To account for label noise, we use the proof technique in Theorem 2 of Freund
and Schapire’s paper [5]. The idea is to project the training examples into a
higher dimensional space where the data becomes linearly separable and then
invoke the mistake bound for the separable case. Specifically, for any example
xt, we add T dimensions and form a new vector such that the first n coordinates
remain the same as the original input, the (n + t)’th coordinate gets a value
equal to C (a constant to be specified later), and the remaining coordinates are
set to zero. Let x′

t ∈ R
n+T for all t ∈ {1, . . . , T} denote the examples in the

higher dimensional space. Similarly, we add T dimensions to the weight vector
u such that the first n coordinates remain the same as the original input, and
the (n + t)’th coordinate is set to ŷtδt/C, for all t ∈ {1, . . . , T}. Let u′ ∈ R

n+T

denote the weight vector in the higher dimensional space.
With the above construction, we have ŷt〈u′, x′

t〉 = ŷt〈u, xt〉 + δt ≥ γ̂/εγ�
. In

other words, examples in the higher dimensional space are linearly separable by a
margin γ̂/εγ�

. Also, note that the predictions made by the perceptron in the origi-
nal space are the same as those in the higher dimensional space. To invoke Theorem
2, we need to bound the length of the training examples in the higher dimensional
space, which is ‖x′

t‖2 ≤ R2 + C2. Therefore the number of mistakes made by the
perceptron is at most 4(R2 + C2)(‖u‖2 + Δ2/C2)/(ε2γu

γ̂2(K + 12)). It is easy to
verify that the bound is minimized when C =

√
RΔ/‖u‖, and hence the number

of mistakes is bounded from above by 4(Δ + R‖u‖)2(ε2γu
γ̂2(K + 1)2). ��
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4 Empirical Analysis

We conducted experiments on synthetic and benchmark datasets.3 For all
datasets, we simulated annotators to generate (noisy) labels in the following
way. For a given set of training examples, {(xi, yi)}m

i=1, we first trained a linear
model f(x) = 〈w, x〉 with the true binary labels and normalized the scores fi

of all examples to lie in the range [−1,+1]. We then transformed the scores via
f̃ = 2× (1− (1/(1+exp(p×−2.5∗ |f |)))), so that examples close to the decision
boundary with fi ≈ 0 get a score f̃i ≈ 1 and those far away from the decision
boundary with fi ≈ ±1 get a score f̃i ≈ 0 as shown in Fig. 3.

Fig. 3. Illustration of the function used to convert the score from a linear model to a
probability that is used to simulate noisy labels from annotators.

For each example xi, we generated L copies of its true label, and then flipped
them based on a Bernoulli trial with success probability f̃i/2. This has the effect
of generating (almost) equal numbers of labels with opposite sign and hence
maximum disagreement among labels for examples that are close to the decision
boundary. In the other extreme, labels of examples located far away from the
decision boundary will not differ much. Furthermore, we flipped the sign of all
labels based on a Bernoulli trial with success probability f̃i if the majority of
labels is equal to the true label. This ensures that the majority of labels are noisy
for examples close to the decision boundary. The noise parameter p controls the
amount of noise injected into the labels – high values result in weak disagreement

3 Software is available at https://github.com/svembu/ilearn.

https://github.com/svembu/ilearn
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Table 1. Labels provided by a set of 10 simulated annotators for a one-dimensional
dataset in the range [−1, +1]

f f̃ True label Noisy labels Label disagreement, d (Eq. (2))

−1.0 0.15 −1 [−1, −1, −1, −1, −1, −1, −1, −1, −1, −1] 0

−0.9 0.19 −1 [1, −1, −1, −1, −1, −1, −1, −1, −1, −1] 36

−0.8 0.24 −1 [−1, −1, −1, −1, 1, −1, −1, −1, −1, −1] 36

−0.7 0.3 −1 [−1, 1, 1, −1, −1, −1, −1, 1, −1, −1] 84

−0.6 0.36 −1 [−1, −1, −1, −1, −1, −1, −1, −1, −1, −1] 0

−0.5 0.45 −1 [1, −1, 1, −1, −1, −1, −1, −1, −1, −1] 64

−0.4 0.55 −1 [1, 1, 1, 1, 1, 1, −1, 1, 1, −1] 64

−0.3 0.64 −1 [1, 1, 1, −1, 1, 1, −1, −1, 1, 1] 84

−0.2 0.76 −1 [1, 1, 1, −1, 1, 1, 1, 1, 1, −1] 64

−0.1 0.88 −1 [1, −1, 1, −1, 1, −1, 1, 1. −1, 1] 96

0 1 1 [−1, 1, 1, −1, −1, −1, −1, 1, −1, −1] 84

0.1 0.88 1 [−1, 1, −1, −1, −1, 1, 1, −1, 1, 1] 100

0.2 0.76 1 [−1, −1, 1, −1, 1, −1, −1, −1, −1, −1] 64

0.3 0.64 1 [−1, −1, 1, −1, −1, −1, 1, −1, 1, 1] 96

0.4 0.54 1 [1, −1, −1, 1, −1, −1, −1, −1, 1, −1] 84

0.5 0.45 1 [1, −1, −1, −1, −1, −1, −1, −1, −1, −1] 36

0.6 0.36 1 [1, 1, 1, 1, 1, 1, 1, 1, −1, 1] 36

0.7 0.3 1 [1, 1, 1, 1, 1, −1, −1, 1, −1, 1] 84

0.8 0.24 1 [−1, −1, −1, −1, 1, −1, −1, −1, −1, −1] 36

0.9 0.19 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 0

1.0 0.15 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, −1] 36

among annotators and low label noise, as shown in Fig. 3. Table 1 shows the noisy
labels generated by ten annotators for p = 1 on a simple set of one-dimensional
examples in the range [−1,+1]. As is evident from the table, the simulation is
designed in such a way that an example close to (resp. far away from) the decision
boundary will have a strong (resp. weak) disagreement among its labels.

4.1 Synthetic Datasets

We considered binary classification problems with examples generated from two
10-dimensional Gaussians centered at {−0.5}10 and {+0.5}10 with unit variance.
We generated noisy labels using the procedure described above. Specifically,
we simulated 12 annotators – one of them always generated the true labels,
another flipped all the true labels, the remaining 10 flipped labels using the
simulation procedure described above. We randomly generated 100 datasets,
each of them having 1000 training examples equally divided between the two
classes. We used half of the data set for training and the other half for testing.
In each experiment, we tuned the regularization parameter (λ in Eq. (3)) by
searching over the range {2−14, 2−12, . . . , 212, 214} using 10-fold cross validation
on the training set, retrained the model on the entire training set with the best-
performing parameter, and report the performance of this model on the test
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set. We experimented with a range of (α, p) values. Recall that the parameter α
influences the reweighting of examples with small values placing (almost) equal
weights on all the examples and large values placing a lot of weight on examples
whose labels have a large disagreement (Fig. 1). The parameter p as mentioned
before controls label noise. We compared the performance of the algorithm in
interactive and non-interactive modes described in Sect. 2. The non-interactive
algorithm is the one described in Raykar et al.’s paper [14].

The results are shown in Table 2. We use area under the receiver operating
characteristic curve (AU-ROC) and area under the precision-recall curve (AU-
PRC) as performance metrics. In the table, we show the number of times the
AU-ROC and the AU-PRC of the interactive algorithm is higher than its non-
interactive counterpart (#wins out of 100 datasets). We also show the two-sided
p-value from the Wilcoxon signed-rank test. From the results, we note that the
performance of the interactive algorithm is not significantly better than its non-
interactive counterpart for small and large values of α. This is expected because
small values of α reweight examples (almost) uniformly and so there is not much
to gain when compared to running the algorithm in the non-interactive mode.
In the other extreme, large values of α tend to discard a large number of exam-
ples close to the decision boundary thereby degrading the overall performance
of the algorithm in the interactive mode. α = 2 gives the best performance. We
also note that for high values of p, i.e., weak disagreement among annotators
and hence low label noise, the interactive algorithm offers no statistically signif-
icant gains when compared to the non-interactive algorithm. This, again, is as
expected.

Table 2. Experimental results on synthetic datasets. Also shown in the table are two-
sided p-values of the Wilcoxon signed-rank test.

Parameters AU-ROC (#wins) p-value AU-PRC (#wins) p-value

α = 0.1, p = 1 61 0.0542 61 0.0535

α = 1, p = 1 75 4.11 × 10−11 75 2.97 × 10−11

α = 2, p = 1 88 6.26 × 10−14 89 3.65 × 10−14

α = 5, p = 1 73 3.56 × 10−5 75 2.26 × 10−5

α = 0.1, p = 2 50 0.5684 49 0.6199

α = 1, p = 2 51 0.1822 50 0.1799

α = 2, p = 2 61 0.0007 61 0.0009

α = 5, p = 2 49 0.5075 49 0.7463

α = 0.1, p = 5 32 0.4784 34 0.8479

α = 1, p = 5 44 0.0615 42 0.0817

α = 2, p = 5 48 0.2334 49 0.3661

α = 5, p = 5 37 0.0562 33 0.028
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Table 3. Datasets used in the experiments

Name No. of training examples No. of test examples No. of features

a1a 1,605 30,956 123

a2a 2,265 30,296 123

a3a 3,185 29,376 123

a4a 4,781 27,780 123

a5a 6,414 26,147 123

Australian 690 - 14

Breast-cancer 683 - 10

Diabetes 768 - 8

Fourclass 862 - 8

German.nuner 1000 - 24

Heart 270 - 13

Ionosphere 351 - 34

Liver-disorders 345 - 6

Splice 1,000 2,175 60

Sonar 208 - 60

w1a 2,477 47,272 300

w2a 3,470 46,279 300

w3a 4,912 44,837 300

w4a 7,366 42,383 300

w5a 9,888 39,861 300

4.2 Benchmark Datasets

We used LibSVM benchmark4 datasets in our experiments. We selected binary
classification datasets with at most 10,000 training examples and 300 features
(Table 3), so that we could afford to train multiple linear models (100 in our
experiments) for every dataset using standard solvers and also afford to tune
hyperparameters carefully in a reasonable amount of time. We generated noisy
labels with the same procedure used in our experiments on synthetic data. Also,
we tuned the regularization parameter in an identical manner. For datasets with
no predefined training and test splits, we randomly selected 75 % of the examples
for training and used the rest for testing. For each dataset, we randomly gen-
erated 100 sets of noisy labels from the 12 annotators resulting in 100 different
random versions of the dataset. The results are shown in Table 4. In the table,
we again show the number of times the AU-ROC and the AU-PRC of the inter-
active algorithm is higher than its non-interactive counterpart (#wins out of 100
datasets). We report results on only a subset of (α, p) values that were found to

4 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 4. Experimental results on benchmark datasets. Statistically insignificant
results (p-value > 0.01) are indicated with an asterisk (∗).

Dataset α = 1, p = 1 α = 2, p = 1 α = 5, p = 1

AU-ROC | AU-PRC AU-ROC | AU-PRC AU-ROC | AU-PRC

a1a 59 | 65 79 | 73 66 | 53*

a2a 64 | 68 83 | 79 66 | 57

a3a 74 | 76 88 | 83 71 | 63

a4a 80 | 83 88 | 84 67 | 70

a5a 82 | 83 95 | 92 79 | 74

Australian 44* | 43* 47* | 50* 41* | 43*

Breast-cancer 51 | 54 60 | 63 61 | 62

Diabetes 84 | 80 81 | 76 67 | 65

Fourclass 38* | 37* 41* | 39* 46* | 41

German.numer 79 | 75 73 | 67 49* | 48*

Heart 55* | 52* 63* | 58* 57* | 50*

Ionosphere 56* | 56* 64 | 65 49* | 54*

Liver-disorders 67 | 64 61 | 60* 52* | 54*

Splice 93 | 93 90 | 90 70 | 68

Sonar 62 | 66 66 | 64 56* | 50*

w1a 38* | 37* 48* | 46* 28 | 32

w2a 64 | 57 69 | 61 46* | 44*

w3a 54* | 48* 52* | 48* 34 | 33

w4a 85 | 81 79 | 74 71 | 59*

w5a 89 | 80 89 | 78 75 | 66

give good results based on our experimental analysis with synthetic data. From
the table, it is clear that the interactive algorithm performs significantly better
than its non-interactive counterpart on the majority of datasets. On datasets
where its performance was worse than that of the non-interactive algorithm, the
results were not statistically significant across all parameter settings.

As a final remark, we would like to point out that the performance of the
interactive algorithm dropped on some of the datasets with class imbalance.
We therefore subsampled the training sets (using a different random subset in
each of the 100 experiments for the given dataset) to make the classes balanced.
We believe the issue of class imabalance is orthogonal to the problem we are
addressing, but needs further investigation and so we leave this open for future
work.



506 S. Vembu and S. Zilles

5 Concluding Remarks

Our experiments clearly demonstrate the benefits of interactive learning and how
disagreement among annotators can be utilized to improve the performance of
supervised learning algorithms. Furthermore, we presented theoretical evidence
by analyzing the mistake bound of perceptron. The question as to whether anno-
tators in real world scenarios behave according to our simulation model, i.e., if
they tend to disagree more on difficult examples located close to the decision
boundary when compared to easy examples farther away, is an open one. How-
ever, if this assumption holds then our experiments and theoretical analysis show
that learning can be improved.

In real-world crowdsourcing applications, an example is typically labeled only
by a subset of annotators. Although we did not consider this setting, we believe
we could still use the disagreement among annotators to reweight examples, but
the algorithm would require some modifications to handle missing labels. We
leave this setting open for future work.

Appendix: Estimating the Margin of an Example

The margin of an example x with respect to a linear function f(·) is defined as
γ(x; f) = |f(x)| = |〈w, x〉|. Examples close to the decision boundary will have a
small margin and those that are farther away will have a large margin. We assume
that an annotator labels an example x using the true labels of all neighboring
examples in a ball of some radius centered at x. The size of an annotator’s ball
is inversely proportional to her strength (expertise). This model of annotators
is similar to the one used in Urner et al.’s analysis [19]. Note that neither the
true labels nor the size of the annotator’s ball is known to us. Our only input is
a set of m examples with corresponding (noisy) labels from L annotators. Given
this input, the goal is to estimate the radius of the annotator’s ball. This will
then allow us to estimate the margin of an example, i.e., its distance from the
separating hyperplane. We proceed in two steps: first, we describe a method to
estimate the annotators’ expertise scores {z1, z2, . . . , zL} and the ground-truth
labels; second, we use these estimates to compute the radii of the annotators’
balls.

Estimating an Annotator’s Expertise, z. We use a variant of kernel target
alignment [2] to estimate the expertise score of each annotator. Let K denote
the (centered) kernel matrix on the input examples, i.e., K ∈ [−1,+1]m×m with
kij = 〈φ(xi), φ(xj)〉, where φ(·) is a feature map. For linear models, the entries
of the kernel matrix are pairwise dot-products of training examples. We consider
the following optimization problem to estimate an annotator’s expertise score:

ẑ = argmin
z∈[0,1]L

m∑

i=1

m∑

j=1

(
kij − 1

L

∑

�

z�y
(�)
i y

(�)
j

)2

.
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This is a constrained least-squares regression problem. The complexity of this
optimization problem is quadratic in the number of examples. However, we can
use stochastic (projected) gradient descent to remove the dependence on the
number of examples.

The ground-truth label of an example xi can be estimated by taking the
weighted average of labels provided by the annotators, i.e., for each given
tuple

(
xi, y

(1)
i , y

(2)
i , . . . , y

(L)
i

)
, we form a new training example (xi, ŷi) with

ŷi = sgn
(∑

� z�y
(�)
i

)
and let Ŝ = {(xi, ŷi), . . . , (xi, ŷm)}.

Estimating the Radius of an Annotator’s Ball. Let r1, r2, . . . , rL ≥ 0
denote the radii of the annotators’ balls. Let Br(x) = {z ∈ X | d(x, z) ≤ r}
denote the ball of radius r centered at x, with d(·, ·) being a distance metric,
such as the Euclidean distance for linear models, defined on the input space X .
Given the expertise score z� for an annotator �, we estimate the radius r� of her
ball by solving the following univariate optimization problem:

r̂� = argmin
r∈R+

m∑

i=1

⎛

⎜⎝

∑

(z,ŷ)∈Br(xi)∩Ŝ

ŷ

|Br(xi) ∩ Ŝ| − y
(�)
i

⎞

⎟⎠

2

.

Intuitively, the above optimization problem is trying to estimate the radius of the
annotator’s ball by minimizing the squared difference between the (noisy) label
of the annotator and the average of the estimates of true labels of all neighboring
examples in the ball.

Putting it all Together. Given a training example x, its noisy labels (y(1), . . . ,
y(L)), an estimate of the ground-truth label ŷ, and the radius estimates of the
annotators’ balls, we compute a lower bound on the margin of x, i.e., its distance
from the decision boundary, as follows. Centered at x, we draw nested balls
of increasing size, one for each annotator using her radius. Starting from the
annotator with the smallest ball, we compare her noisy label with the ground-
truth label estimate. At some ball/expert, the noisy label and the ground-truth
label estimate will differ, and the radius of this ball is a lower bound on the
distance of x from the decision boundary.
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Abstract. The hierarchical Dirichlet processes (HDP) is a Bayesian
nonparametric model that provides a flexible mixed-membership to doc-
uments. In this paper, we develop a novel mini-batch online Gibbs sam-
pler algorithm for the HDP which can be easily applied to massive and
streaming data. For this purpose, a new prior process so called the gener-
alized hierarchical Dirichlet processes (gHDP) is proposed. The gHDP is
an extension of the standard HDP where some prespecified topics can be
included in the top-level Dirichlet process. By analyzing various datasets,
we show that the proposed mini-batch online Gibbs sampler algorithm
performs significantly better than the online variational algorithm for
the HDP.

Keywords: Topic model · hierarchical Dirichlet processes · Mini-batch
online algorithm · generalized hierarchical Dirichlet processes

1 Introduction

Hierarchical Bayesian modeling has received much attention in machine learning
and applied statistics. Bayesian models provide a natural way to model compli-
cated observed data efficiently by the use of latent variables. Probabilistic topic
model is a popularly used hierarchical Bayesian model for sparse vectors of count
data such as bags of words for documents and bags of features for images, where
the posterior distribution reveals a latent semantic structure that can be used
for many applications.

There are two popularly used Bayesian topic models - latent Dirichlet
allocation (LDA, [2]) and its nonparametric counterpart hierarchical Dirichlet
processes (HDP, [11]). Both the LDA and HDP are derived from a generative
model which provides a flexible mixed-membership (called a topic) to documents.
While it is easy to understand, the LDA requires a prior choice of the number
of topics that is not easy in practice. In contrast, the HDP can infer the number

c© Springer International Publishing AG 2016
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of topics from the data though it is conceptually and technically much more
involved.

Posterior inference for the HDP is analytically intractable, and various com-
putational algorithms to approximate the posterior distribution have been pro-
posed. Among these, the Gibbs sampler [5,11,14] and variational Bayesian meth-
ods [12,16] are widely used. Both methods attempt to approximate the poste-
rior distribution of parameters as well as latent topics. As is well-known, the
Gibbs sampler algorithm generates samples from a Markov chain whose sta-
tionary distribution is equal to the posterior distribution, while the variational
Bayesian method finds the nearest distribution to the posterior with respect
to the Kullback-Leibler divergence among a class of variational distributions.
Since algorithms based on the variational Bayesian method usually have closed
form updates, they can be implemented faster than the Gibbs sampler algo-
rithms. Moreover, using the stochastic gradient descent method, the online algo-
rithm can be easily devised where the posterior distribution can be sequentially
approximated as data arrive [6,16].

While being computationally efficient, the performance of variational
Bayesian algorithms is not fully satisfied because the variational distribution
could be significantly different from the true posterior distribution. In particular,
the discrepancy between two distributions becomes large when the variational
distribution assumes that the parameters are independent while the correlations
between the parameters are large in the full posterior distribution [13]. More-
over, it is difficult to infer the number of topics by a variational Bayesian method
for the HDP. Therefore, there is still a need to devise computationally efficient
Gibbs sampler algorithms to analyze a large collection of documents.

In this paper, we propose a novel mini-batch online Gibbs sampler algorithm
for the HDP. For this purpose, we propose a new prior process so called the
generalized hierarchical Dirichlet processes (gHDP). The gHDP is an extension
of the standard HDP where some prespecified topics can be included. The main
idea of the proposed algorithm is to approximate the current posterior distrib-
ution with the gHDP and use it as a prior for the next update of the posterior
distribution. To be more specific, suppose that the whole dataset is divided into
two groups, say x = (xold,xnew). Then, the Bayes rule implies

p(θ|x) ∝ p(xnew|θ)p(θ|xold) , (1)

where θ is the parameters. We approximate p(θ|x) by replacing p(θ|xold) in (1)
with the gHDP pgHDP(θ|η) with parameter η as its proxy, where the parameter
η is estimated based on the posterior samples generated from p(θ|xold). By ana-
lyzing various datasets, we demonstrate that the proposed method outperforms
the variational Bayesian method.

The rest of this paper is organized as follows. We briefly review the HDP in
Sect. 2. In the next section, the gHDP is proposed and a Gibbs sampler algorithm
is provided to infer parameters in the gHDP. Based on the proposed gHDP, a
mini-batch online algorithm for HDP is developed in Sect. 4. Theoretical and
experimental results are presented in Sects. 5 and 6, respectively. Concluding
remarks follow in Sect. 7.
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2 Review of Hierarchical Dirichlet Processes

In this section, we briefly review the HDP proposed by [11]. Since the main appli-
cation of the HDP is document analysis, we focus on the HDP with multinomial
distributions. For a given positive integer W , that is the number of words in
the dictionary, let S = {(p1, . . . , pW ) : pw ≥ 0,

∑W
w=1 pw = 1} be the (W − 1)-

dimensional simplex. Denote DP(α,H) the Dirichlet process with a precision
parameter α > 0 and a mean probability measure H. See [4] for the definition
of Dirichlet processes.

Let (xj)n
j=1 be the vector of observed words in n documents, where xj =

(xji)
nj

i=1 and xji is the word at the ith position in the jth document that is an
element of the dictionary {1, . . . , W}. Here, nj is the number of words in the
jth document. For given probability distributions Gj ’s on S, we assume that
x1, . . . ,xn are conditionally independent with

p(xj |Gj) =
nj∏

i=1

∫
p(xji|φ)dGj(φ) ,

where p(xji|φ) is a multinomial distribution with the cell probabilities φ =
(φ1, . . . , φW ). As a prior for Gj ’s, the HDP is composed of

G0 ∼ DP(α0,D(β, . . . , β)), Gj |G0
indep∼ DP(α1, G0), j = 1, . . . , n . (2)

Here α0, α1 and β are hyperparameters and assumed to be fixed constants
throughout this paper.1 We denote this prior as HDP(α0, α1, β).

Since a Dirichlet process has a discrete sample path almost surely, we can
write

G0 =
∞∑

k=1

πkδφk
, Gj =

∞∑

k=1

θjkδφk
, j = 1, . . . , n ,

for some nonnegative πk’s and θjk’s with
∑∞

k=1 πk =
∑∞

k=1 θjk = 1 and φk ∈ S,
where δφ(·) denotes the Dirac measure which assigns mass 1 at the point φ. Let
π = (πk)∞

k=1, φ = (φk)∞
k=1, φk = (φkw)W

w=1, θ = (θj)n
j=1 and θj = (θjk)∞

k=1. By
using the stick breaking representation of Dirichlet processes [10], we can rewrite
the HDP model as the following Bayesian hierarchical model:

π ∼ GEM(α0), θj |π indep∼ DP(α1,Hπ), φk
indep∼ D(β, . . . , β) ,

p(zji = k|θj) = θjk, p(x|z,φ) =
n∏

j=1

nj∏

i=1

p(xji|zji,φzji
) ,

where z = (zj)n
j=1, zj = (zji)

nj

i=1 and Hπ is the distribution on the set of all natural
numberswhoseprobabilitiesaregivenbyHπ({k}) = πk.Hereπ ∼ GEM(α),where
1 These hyperparameters also can be inferred with additional hyperpriors. See for

example [11].
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the letters stand for Griffiths-Engen-McCloskey [8], means that π1 = π′
1 and πk =

π′
k

∏k−1
l=1 (1 − π′

l) for k ≥ 2 where π′
k

iid∼ Beta(1, α).
There are various Gibbs sampler algorithms to infer the posterior distribu-

tion of the HDP model [5,11,14], among which we use the partially collapsed
Gibbs sampler algorithm [3,11], which integrates out θ and generates π,φ, z
and auxiliary variables m = (mjk : 1 ≤ j ≤ n, 1 ≤ k < ∞) iteratively as follows.
For given z, let Njkw be the cardinality of the set {i : xji = w, zji = k} and let
· in the subscripts represent the summation over the corresponding indices. For
example, Njk· =

∑W
w=1 Njkw and Nj·· =

∑∞
k=1

∑W
w=1 Njkw. When z is given,

we relabel zji’s so that zji ∈ {1, . . . , K} and rearrange π,φ and Njkw accord-
ingly. Here K is the integer such that N·k· > 0 for k ≤ K and N·k· = 0 for
k > K. Let πu =

∑
k>K πk. Then, we sample π,φ, z and auxiliary variables

m = (mjk : 1 ≤ j ≤ n, 1 ≤ k < ∞) iteratively from the following conditional
distributions:

p(mjk = m|x, z) ∝ s(Njk·,m)(α1πk)m for m = 1, . . . , Njk· , (3)
φk|z,x ∼ D(β + N·k1, . . . , β + N·kW ), for k ≥ 1 , (4)

(π1, . . . , πK , πu)|m ∼ D(m·1, . . . ,m·K , α0) , (5)
(πk)k>K |πu ∼ πuGEM(α0) , (6)

p(zji = k|x, z−ji,π,φ) ∝ (N−ji
jk· + α1πk)φkxji

. (7)

Here s(n,m) is the unsigned Stirling’s number of the first kind and the super-
script −ji means that the corresponding word is excluded in the counts. For the
interpretation of mjk in the Chinese restaurant franchise metaphor, see [11].

Remark 1. While the collapsed Gibbs sampler algorithm, which generates π, z
and m after integrating out φ as well as θ, is popularly used in many applications
[7,11], we use the partially collapsed Gibbs sampler algorithm since samples of
φ are needed in the proposed online algorithm.

3 Generalized Hierarchical Dirichlet Processes

For a given nonnegative integer K0, let μk and βk = (βkw)W
w=1 be given positive

numbers for k = 1, . . . ,K0. For a given β > 0, let β = (βk)∞
k=1, where βk =

(β, . . . , β) for k > K0. The gHDP prior with parameters α0, α1,β and μ =
(μ1, . . . , μK0), denoted by gHDP(α0, α1,β,μ,K0), is defined as

φk
indep∼ D(βk1, . . . , βkW ), k = 1, . . . , K0 ,

G0|φ1, . . . ,φK0 ∼ DP
(

α0 + μ·, w0D(β, . . . , β) +
K0∑

k=1

wkδφk

)
,

Gj |G0
indep∼ DP(α1, G0), j = 1, . . . , n ,

where μ· = μ1 + · · · + μK0 , w0 = α0/(μ· + α0) and wk = μk/(μ· + α0) for
k = 1, . . . ,K0. The gHDP is an extension of the HDP(α0, α1, β) in (2) where
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the prior information about topics, represented by μ and β, is incorporated into
G0. For example, the wk’s reflect the prior belief of the proportions of the topics
φk in the whole corpus.

As in the HDP, we can rewrite the gHDP model by using the stick breaking
representation as follows. We write the sample path of G0 by

∑∞
k=1 πkδφk

where

φk
indep∼ D(βk1, . . . , βkW ) for k ≥ 1 ,

(π1, . . . , πK0 , πu) ∼ D(μ1, . . . , μK0 , α0) ,

(πk)k>K0 |πu ∼ πuGEM(α0) .

Note that these are quite similar to the conditional posterior distributions of
the HDP in (4)–(6). Therefore, we expect that we can closely approximate
the posterior distribution of π and φ with the HDP(α0, α1, β) prior to the
gHDP(α0, α1,β,μ,K0) prior distribution. Here β,μ and K0 are estimated using
samples from the posterior distribution. This is the main motivation of consid-
ering the gHDP.

The novelty of the gHPD is that the posterior distribution can be inferred by
a Gibbs sampler algorithm similar to that for the HDP which generates π,φ, z
and auxiliary variables m = (mjk : 1 ≤ j ≤ n, 0 ≤ k < ∞) iteratively from their
conditional posteriors as follows. For given z, let Z = {zji : zji �∈ {1, . . . , K0}}.
Similarly to the HDP, we relabel zji in Z such that Z = {K0 + 1, . . . ,K} for
K ≥ K0, and rearrange the corresponding quantities accordingly. Then, the
conditional distributions are given as

p(mjk = m|z,π) ∝ s(Njk·,m)(α1πk)m for m = 1, . . . , Njk· ,
φk|z,x ∼ D(βk1 + N·k1, . . . , βkW + N·kW ) , for k ≥ 1,

(π1, . . . , πK , πu)|m ∼ D(μ1 + m·1, . . . , μK0 + m·K0 ,m·(K0+1), . . . ,m·K , α0) ,

(πk)k>K |πu ∼ πuGEM(α0) ,

p(zji = k|x, z−ji,π,φ) ∝ (N−ji
jk· + α1πk)φkxji

.

Similarly to the case of HDP, φ can be integrated out from the Gibbs sampler
algorithm to have the collapsed Gibbs sampler algorithm.

4 Mini-batch Online Algorithm for HDP

We develop a mini-batch online algorithm for HDP(α0, α1, β) in this section.
In the HDP, parameters can be distinguished by corpus-level parameters π and
φ (or G0) and document-level parameter θ. Once the corpus-level parameters
are given, it is not difficult to infer θ, because every documents are condition-
ally independent given π and φ. Therefore, we focus on the mini-batch online
algorithm for the posterior distribution of π and φ.

Suppose that the whole data x can be divided into two groups as x =
(xold,xnew). The Bayes rule implies

p(π,φ|xold,xnew) ∝ p(π,φ|xold)p(xnew|π,φ) .
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Algorithm 1. The mini-batch online algorithm for the HDP
1: Divide x into mini-batches x = (x[1],x[2], . . . ,x[S]).

2: Initialize K
[0]
0 = 0.

3: for s = 1, . . . , S do
4: Run the Gibbs sampler with gHDP(α0, α1, β

[s−1], μ[s−1], K
[s−1]
0 ) as prior and

x[s] as data to collect samples (π(m), φ(m))Mm=1.

5: Estimate μ[s], β[s] and K
[s]
0 based on the MCMC samples (π(m), φ(m))Mm=1.

6: end for

That is, the full posterior distribution p(π,φ|xold,xnew) can be understood as
the posterior distribution of π and φ given the new data xnew with the prior
p(π,φ|xold). The main idea of the proposed mini-batch Gibbs sampler algorithm
is to approximate p(π,φ|xold) by the gHDP(α0, α1,β,μ,K0), where β,μ and K0

are estimated based on MCMC samples (π(m),φ(m), z(m))M
m=1 generated from

p(π,φ, z|xold).
To estimate β,μ and K0, let K = {k : N

(M)
·k· > 0}. Initially, we estimate K0

by the cardinality of K. Once we relabel the topics so that K = {1, . . . , K0}, we
estimate wk =

∑M
m=1 π

(m)
k /M for k = 1, . . . , K0 and w0 = 1 − ∑K0

k=1 wk, which
are the method of moments estimators. Then, we estimate μk = (μ· + α0)wk for
k = 1, . . . , K0 with μ· = α0/w0 − α0. Since topics with a small proportions are
likely to cause overfitting, we delete topics from K when wk < ε, where ε is a
prespecified small positive constant (so called the topic threshold). Finally, we
let K0 be the cardinality of K, relabel the topics so that K = {1, . . . , K0} and
modify μ accordingly.

Once K is given, we estimate βk, k = 1, . . . , K0 as follows. We assume that
φ

(m)
k ∼ D(βk1, . . . , βkW ). First, we estimate γkw = βkw/βk· by the corresponding

method of moments estimator
∑M

m=1 φ
(m)
kw /M for w = 1, . . . ,W. To estimate βk·,

we choose a set I ⊂ {1, . . . , W} and consider φ
(m)
kI =

∑
w∈I φkw. Since φ

(m)
kI ∼

Beta(βk·
∑

w∈I γkw, βk·
∑

w/∈I γkw), we estimate βk· by the maximum likelihood
estimator based on φ

(m)
kI ,m = 1, . . . , M. For the choice of I, we recommend an

I such that
∑

w∈I γkw is close to 1/2.
This two step procedure can be generalized for streaming data x which are

divided into batches as x = (x[1], . . . ,x[S]), where x[s]’s are disjoint collections of
documents in the corpus x. We first set K

[0]
0 = 0 and generate MCMC samples of

(π,φ) from the posterior distribution p(π,φ|x[1]). Then, we estimate K
[1]
0 ,μ[1]

and β[1] using the aforementioned method. For given K
[s−1]
0 ,μ[s−1] and β

[s−1]
k ,

we obtain MCMC samples of (π,φ) from the approximated posterior distribu-
tion that is proportional to p(x[s]|π,φ)pgHDP(π,φ|α0, α1,β

[s−1],μ[s−1],K
[s−1]
0 ).

Then, we estimate K
[s]
0 ,μ[s] and β

[s]
k accordingly. The proposed mini-batch

online Gibbs sampler algorithm is summarized in Algorithm 1.
A novel aspect of the proposed algorithm is that we do not need to store

MCMC samples (π(m),φ(m))M
m=1 which requires a large memory space. This is
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because to estimate parameters for the next batch, it suffices to have
∑

m π
(m)
k ,∑

m

∑
w∈I φ

(m)
kw ,

∑
m log(

∑
w∈I φ

(m)
kw ) and

∑
m log(1 − ∑

w∈I φ
(m)
kw ).

Remark 2. The proposed algorithm approximates p(π,φ|xold) by gHDP(γ) with
γ = (α0, α1,β,μ,K0), and estimates γ based on the MCMC samples. Suppose
that γ is estimated by the maximum likelihood estimator. Then the proposed
algorithm can be considered as an algorithm to search a distribution which
minimizes the Kullback-Leibler divergence between p(π,φ|xold) and gHDP(γ)
with respect to p(π,φ|xold). That is, the algorithm finds γ which minimizes

Ep(π,φ|xold)

{
log p(π,φ|xold) − log gHDP(γ)

}
. (8)

The variational Bayes method, on the other hand, would find γ which minimizes

EgHDP(γ)

{
log gHDP(γ) − log p(π,φ|xold)

}
. (9)

The main difference of the proposed algorithm and variational Bayes method
is that the expectation operators in the calculation of the K-L divergence are
different. Analytically, the K-L divergence (8) is easier to be minimized compared
to (9) since the parameter γ affects only log gHDP(γ) in (8) while it affects
EgHDP(γ) as well as log gHDP(γ). It is almost impossible to find γ minimizing
(9) and in general a distribution with much simpler form (e.g. all parameters are
assumed to be independent) is used instead of gHDP(γ) in the variational Bayes
method, which explains why the proposed algorithm is superior to the variational
Bayes method in approximating the posterior distribution. In the algorithm, we
used the mixture of the method of moments and maximum likelihood estimators
instead of the maximum likelihood estimators since the former is more stable.

5 Theoretical Results

In this section, we study theoretical properties of the proposed mini-batch online
algorithm for the HDP. In particular, we provide sufficient conditions for mea-
suring the degree of approximation of the posterior distribution.

The proposed online Gibbs sampler algorithm approximates the posterior
distribution p(θ|xold) by a certain distribution g(θ). Then, the full posterior
distribution

p(θ|xnew,xold) ∝ p(xnew|θ)p(θ|xold)

is approximated by
pa(θ|xnew) ∝ p(xnew|θ)g(θ) .

Therefore, the accuracy of the approximated posterior distribution depends on
the degree of approximation of p(θ|xold) by g(θ). The following theorem pro-
vides a method of measuring the degree of approximation of the full posterior
distribution. We use the capital letter P to denote the corresponding probability
measure of the density p.
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Theorem 1. Suppose that there exists an ε > 0 such that

P a
({

θ : | log p(θ|xold) − log g(θ)| < ε
}∣∣xnew

)
> 1 − ε . (10)

Assume also that there exists a constant c > 0 such that

p(θ|xold)
g(θ)

≤ c (11)

for all θ ∈ Θ. Then, for any constant M > 0, there exists a constant C > 0,
depending only on M and c, such that

∣∣Ef (h(θ)|xnew,xold) − E
a(h(θ)|xnew)

∣∣ ≤ Cε

for every bounded function h : Θ → [−M,M ], where E
f and E

a denote the
expectations with respect to the full and approximated posterior distributions.

Proof. It is easy to see that

E
f (h(θ)|xnew,xold) =

E
a{h(θ)p(θ|xold)/g(θ)|xnew}
Ea{p(θ|xold)/g(θ)|xnew} .

Hence, it suffices to show that there exists a constant C1 > 0, depending only
on M and c, such that

∣∣Ea{h(θ)p(θ|xold)/g(θ)|xnew} − E
a(h(θ)|xnew)

∣∣ ≤ C1ε .

We may assume that h(θ) ≥ 0 for all θ because h(θ) = h(θ)I(h(θ) ≥ 0) +
h(θ)I(h(θ) < 0), where I denotes the indicator function. Let

A = {θ : | log p(θ|xold) − log g(θ)| < ε} .

Then, we can write

E
a{h(θ)p(θ|xold)/g(θ)|xnew}

=
∫

A

h(θ)p(θ|xold)
g(θ)

pa(θ|xnew)dθ +
∫

AC

h(θ)p(θ|xold)
g(θ)

pa(θ|xnew)dθ

≤ eε

∫

A

h(θ)pa(θ|xnew)dθ +
∫

AC

h(θ)p(θ|xold)
g(θ)

pa(θ|xnew)dθ

≤ E
a{h(θ)|xnew} + Ru ,

where
Ru ≤ (eε − 1)

∫

A

h(θ)pa(θ|xnew)dθ + McP a(Ac|xnew) .

Hence, we can choose cu > 0 such that

E
a{h(θ)p(θ|xold)/g(θ)|xnew} − E

a(h(θ)|xnew) ≤ cuε

because P a(Ac|xnew) < ε.
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For the lower bound, write

E
a{h(θ)p(θ|xold)/g(θ)|xnew} ≥

∫

A

h(θ)p(θ|xold)
g(θ)

pa(θ|xnew)dθ

= E
a{h(θ)|xnew} − Rl ,

where
Rl ≤ M

[
(1 − e−ε) + P a(Ac|xnew)

]
.

Thus, there exists cl > 0 such that

E
a{h(θ)p(θ|xold)/g(θ)|xnew} − E

a(h(θ)|xnew) ≥ −clε .

By letting C1 = max{cl, cu}, the proof is done. ��
Condition (10) requires that g(θ) approximates p(θ|xold) well on the area

where the mass of the approximated posterior is large. In Sect. 6.3, we propose
a way of measuring the degree of approximation ε in practice.

In general, condition (11) would hold when g(θ) has heavier tails than
p(θ|xold), which is a standard requirement for approximating a density. In the
gHDP approximation, every parameter is supported on a compact set, so the
condition (11) is easily satisfied.

Typically, the centers of p(θ|xold) and p(θ|xnew,xold) are close, while the dis-
persion of p(θ|xold) is larger than that of p(θ|xnew,xold). Also, p(θ|xold) usually
has most of its mass at a small neighborhood of its center. Hence, if g(θ) approx-
imates p(θ|xold) well around the center of p(θ|xold), the approximated posterior
works well and has most of its mass around the center of p(θ|xold) too. Hence,
condition (10) would be satisfied when g(θ) approximates p(θ|xold) well around
the center of p(θ|xold).

When we apply the mini-batch online algorithm with the (s+1)-th batch, we
can apply Theorem 1 repeatedly to conclude that there exists a constant C > 0,
depending only on M and c, such that

∣∣Ef (h(θ)|x[0], . . . ,x[s+1]) − E
a⊗s(h(θ)|x[s+1])

∣∣ ≤ sCε

provided conditions (10) and (11) are satisfied at each batch, where Ea⊗s denotes
the expectation with respect to the approximated posterior distribution after
applying the (s + 1)-th batch.

6 Experimental Results

In this section, we evaluate the performance of the proposed mini-batch algo-
rithm compared with the full Gibbs sampler algorithm (3)–(7) and the online
variational algorithm of [16] by analyzing various datasets.
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Table 1. Basic information of the datasets used in the experiments

KOS NIPS ENRON NYTIMES PUBMED

Number of documents 3,430 1,500 39,961 300,000 8,200,000

Dictionary size 6,909 12,419 28,102 102,660 141,043

6.1 Data

Our experiments are based on five datasets which can be found in
UCI machine learning repository https://archive.ics.uci.edu/ml/datasets/
Bag+of+Words. Table 1 shows the summary of the datasets.

We eliminate words whose popularity (the number of documents containing
the word) is less than a threshold. After elimination, empty documents are also
removed. Table 2 shows thresholds and results of words elimination. For each
dataset, we divide the dataset randomly into training and test datasets, whose
sizes are given in Table 3.

Table 2. Basic information after elimination

KOS NIPS ENRON NYTIMES PUBMED

Threshold 50 50 100 1, 000 5,000

Number of documents 3,430 1,500 39,859 299,645 8,199,998

Dictionary size 1,663 3,002 5,918 9,542 11,140

Table 3. The numbers of documents in training and test datasets

KOS NIPS ENRON NYTIMES PUBMED

Train 3,000 1,300 36,000 290,000 8,190,000

Test 430 200 3,859 9,645 9,998

In our experiments, we want to investigate how well the proposed algorithm
approximates the full posterior. For this purpose, it should be able to run the
full Gibbs sampler algorithm within a reasonable amount of time. To run the full
Gibbs sampler algorithm for PUBMED dataset, having more than 8,000,000 doc-
uments, we used a parallel computation of the partially collapsed Gibbs sampler
algorithm, which was proposed implicitly in [11], with several dozens of CPUs.
This is why we didn’t analyze really huge and streaming data. We believe that
applying the proposed algorithm for such big data is not that difficult.

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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6.2 Results

We use the test log-likelihood as an evaluation metric. First, we fix π and φ
obtained from analyzing the training dataset. Then, we generate ztest from (7)
for 1,000 times. We estimate θtest from last 500 samples of ztest. Finally, we
calculate the test log-likelihood by

1
N test

∑

j,i

log
(∑

k

θtestjk φkxtest
ji

)
,

where N test is the total number of words in xtest.
Wang et al. (2011, [16]) used hold-out words instead of hold-out documents.

We thought that using hold-out documents is easier than using hold-out words
since we don’t have to care about how much words we should hold-out from each
document in the test dataset. A similar metric to ours is also used in [15].

For prior parameters, we set α0 = 3, α1 = 0.5, β = 0.01 for the HDP.
These values are chosen so that the posterior distribution of the number of
topics converges after reasonable amount of iterations of the full Gibbs sampler
algorithm. For the mini-batch online Gibbs sampler algorithm, we divided the
training dataset into 10 batches. For each batch x[s], we first ran 500 gHDP Gibbs
sampler iterations as a burn-in period and the next 500 samples are collected to
estimate μ[s],β[s] and K

[s]
0 . For the topic threshold, we set ε = 10−4. For the full

Gibbs sampler algorithm, we ran 1000, 2000, 3000, 4000 and 5000 HDP Gibbs
sampler iterations with the whole training dataset. For the online variational
algorithm of [16], we also divided the training dataset into 10 batches and set
κ = 0.9, τ = 1024,K = 150, T = 15 as [16] and the running time of each dataset
as Table 4.

Table 4. The running times of the online variational HDP algorithm

KOS NIPS ENRON NYTIMES PUBMED

Running time (seconds) 5,000 5,000 10,000 20,000 30,000

We plot the test log-likelihoods of different algorithms for five datasets in
Fig. 1(a). Solid black line represents the test log-likelihood obtained from the
online Gibbs sampler algorithm. The bottom solid red line is the test log-
likelihood of the online variational algorithm after processing the whole batches,
and five horizontal lines with various color are the test log-likelihoods of the full
Gibbs sampler algorithm after 1000, 2000, 3000, 4000 and 5000 iterations.

The test log-likelihood of the online variational algorithm is much lower than
the others. Surprisingly, this is less than the test log-likelihood of the online
Gibbs sampler algorithm after processing only one batch. This may be due to
that the correlations between the parameters are large so that the assumption
of independent parameters used in the variational algorithm does not work well.
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Fig. 1. (a) Solid black line represents the test log-likelihood obtained from the online
Gibbs sampler algorithm with a topic threshold ε = 10−4. The bottom solid red line
is the test log-likelihood of the online variational algorithm, and five horizontal lines
with various color in the top of the graph are the test log-likelihoods of the full Gibbs
sampler algorithm after 1000, 2000, 3000, 4000 and 5000 iterations. (b) The number of
topics of the online Gibbs sampler algorithm as well as those of the full Gibbs sampler
algorithm with different iterations. The number of topics in online variational algorithm
is 150. Since it is a predetermined value, we omit this from the graph. (Color figure
online)
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In contrast, the test log-likelihood of the online Gibbs sampler algorithm keeps
increasing as it processes more batches, and the final test log-likelihood after
processing all batches is not much smaller than those of the full Gibbs sampler
algorithm.

Figure 1(b) shows the number of topics of the online Gibbs sampler algorithm
as well as those of the full Gibbs sampler algorithm with different iterations.
The number of topics of the online Gibbs sampler algorithm increases as more
batches are processed, which indicates that the online Gibbs sampler algorithm
has a capability of discovering new topics, which lacks in the online variational
algorithm.

6.3 A Diagnostic Tool for Approximation

A novel feature of Theorem 1 is that there is a natural way to check the condi-
tion (10) in practice. Suppose θ1, . . . , θN are posterior samples generated from
p(θ|xold). Then, we can evaluate the degree of approximation by

sup
j∈J

| log p(θj |xold) − log g(θj)| ,

where J is an index set whose cardinality |J | satisfies |J |/N ≥ 1 − ε for given
ε > 0. This method would be applicable only when the form of p(θ|xold) and
g(θ) are explicitly given. For the case of the HDP, however, the closed forms of
p(θ|xold) and g(θ) are not available. Nonetheless, condition (10) gives a guide
to check indirectly whether the approximation of g(θ) is sufficient as follows.
We first choose a parameter of interest γ, which is a functional of θ and whose
marginal density derived from the density g(θ) can be easily calculated. With a
slight abuse of notation, we also denote the marginal density of γ derived from
p(θ|xold) and g(θ) by p(γ|xold) and g(γ), respectively. Then, we can evaluate the
degree of approximation by supj∈J | log p(γj |xold) − log g(γj)|, where p(γ|xold)
can be estimated by the use of any method of density estimation based on the
MCMC samples of γ.

In the HDP topic model, the number of topics tends to increase as more
documents are involved, so parameters that are directly affected by the number
of topics are not appropriate for γ. Hence, we propose to use

∑
w∈I φkw as the

parameter of interests, where k is a fixed integer and I is an index set with which∑
w∈I φkw ≈ 1/2. Note that g(γ) is a density of a beta distribution.
Figure 2 draws the plots of supj∈J | log p(γj |xold) − log g(γj)| with various

values of ε for the KOS and NIPS datasets. We set k = 1, s = 1 and
I = {1, 3, 5, . . .}. It shows that supj∈J | log p(γj |xold) − log g(γj)| is small and
stable until 1 − ε < 0.9, which implies that the loss of information in the gHDP
approximation is around 10 % of the full posterior distribution.

Figure 3 compares p(γ|xold) and g(γ) for the KOS and NIPS datasets. The
shapes of the two densities are similar. However, some discrepancies around the
mode of the posterior distributions are observed, which suggests that considering
a larger class of densities for estimating g(γ) other than the Dirichlet distribution
would be helpful to improve the degree of approximation.
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Fig. 2. Degree of approximation supj∈J | log p(γj |xold)−log g(γj)| (y-axis) with various
values of 1 − ε (x-axis) for the the KOS (left) and NIPS (right) datasets.

Fig. 3. Plots of p(γ|xold) (red dashed line) and g(γ) (black solid line) for the KOS (left)
and NIPS (right) datasets. (Color figure online)

7 Discussion

The numerical results confirmed that the proposed online Gibbs sampler algo-
rithm is a very promising alternative to the online variational algorithm. More-
over, certain theoretical results about the degree of approximation are available,
with which a diagnostic tool has been developed.

In the gHDP, the hyperparameters α0, α1 and β also can be learned with addi-
tional priors on them as is done for the HDP [11]. The corresponding mini-batch
online Gibbs sampler algorithm can be implemented easily, where the posterior
distribution of the hyperparameters after processing each batch is used as a prior
for the next batch. The posterior distribution of the hyperparameters based on
MCMC samples can be estimated with standard parametric or nonparametric
approaches.

In this paper, we assume that the underlying probability model is the same
for all the batches. When there is a structural change of the underlying model
as time goes [1,9], we can reflect the structural change into the online Gibbs
algorithm by modifying the gHDP accordingly while it is not possible for the
full Gibbs sampler algorithm. We leave this topic as a future work.
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Abstract. As information spreads across social links, it may reach dif-
ferent people and become cascades in social networks. However, the elu-
sive micro-foundations of social behaviors and the complex underlying
social networks make it very difficult to model and predict the infor-
mation diffusion process precisely. From a different perspective, we can
often observe the interplay between information diffusion and the cas-
cade structures. On one hand, information driven by different mechanics
may evolve into diverse structures; On the other hand, different cascade
structures will reach different groups people and thus affect the diffusion
process.

In this paper, we explore the relationships between information dif-
fusion and the cascade structures in social networks. By embedding the
cascades in a lower dimensional space and employing spectral cluster-
ing algorithm, we find that the cascades generally evolve into five typical
structure patterns with distinguishable characteristics. In addition, these
patterns can be identified by observing the initial footprints of the cas-
cades. Based on this observation, we propose to predict cascade growth
with the structure patterns. The experiment results show that the accu-
racy of predicting both the structure and virality of cascades can be
improved significantly.

1 Introduction

How does information spread in social networks? When users observe informa-
tion from their neighbors in the social network, they may make decisions and
share the information to their friends. Starting from some root node, the infor-
mation could then spread out and become cascades with tree structures. This
phenomenon of information cascades has been observed ubiquitously in social
networks across various domains. With the proliferation and emergence of online
social networks, understanding and predicting how will the cascades evolve have
attracted enormous attentions in opinion monitoring, advertising prediction and
rumor control.

In a micro scope, we can model each user’s behavior to predict the process
of information diffusion [2,11,13]. The diffusion can often be described as a
stochastic process where the nodes spread the information according to some
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predefined probability. According to the social sciences, the information diffusion
probability is mainly dependent on two factors: homophily and social influence
[3]. Homophily is the phenomenon that people tend to build social relationship
and spread information with users in similar interests or background [18], while
social influence occurs when users emotions or opinions are influenced by others.
Despite extensive researches in studying the process of information diffusion,
the complex micro-foundations of social diffusion and unpredictability of user
decisions make it very difficult to extract the diffusion models precisely.

Instead, we can often observe the interplay between information diffusion
and the cascade structures. On one hand, different mechanics of information
diffusion can cause different cascade structures [6,8]. For example, influence-
driven cascades usually evolve as rapid, complex structures, whereas homophily-
driven cascades may become simple and star-like structures [3]. On the other
hand, according to the widely used information diffusion models [13], different
structures of the cascades may reach different people or communities, and thus
affect the spread of information. Such phenomenon motivates us to study the
relationships between information diffusion and cascade structures, despite that
the intricate and diverse structures of the information cascades are often very
difficult to analyze [15,20].

In this paper, we dive into the structures of information cascade in social
networks and explore the relationships with information diffusion empirically.
We propose that the structure patterns can be predictive of the cascade growth.
In our first experiment, by dimension reduction and defining similarity measure
between the cascades, we find that the information cascades in social networks
generally evolve into five typical structure patterns with distinguishable statis-
tics. In addition, these patterns can be detected from the early footprints of
the cascades. Based on this observation, we predict the growth of the cascades
by incorporating the structure patterns. The results show that the accuracy
of predicting both the structure and virality of the cascades can be improved
significantly when considering the structure patterns.

Contributions. The main contributions of this paper are:

– We propose a novel method for embedding the cascades in a lower dimensional
space by incorporating social influence and homophily at the same time.

– By dimension reduction and spectral clustering, we find that the information
cascades generally evolve into five typical structure patterns with distinguish-
able characteristics.

– We propose that the structure patterns can be predictive of the growth of
information cascades. The experiment results show that the accuracy of pre-
dicting the growth of the cascades can be improved significantly by using the
structure patterns as new features.

Organization. The rest of this paper is organized as follows: In Sect. 2, we
review the research works related to this paper. Then we will introduce some
preliminaries including the data set, the theories of information diffusion and
cascade structures in Sect. 3. Section 4 formally presents the method for finding
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the structure patterns of the cascades. In Sect. 5, we present the experiments
of predicting the cascade growth. Finally, the paper is discussed and concluded
in Sect. 6.

2 Related Works

There are three threads of researches related to our work: the mechanics of
information diffusion, the prediction of cascade virality and analysis of cascade
structures. We now introduce each of them respectively.

Modeling information diffusion. Modeling information diffusion is a central
problem in studying social networks. Earlier research works proposed that infor-
mation spreads like epidemics. The epidemic model generally assumes homoge-
neous networks [2,4] where the network is full clique and each person has the
same probability for spreading the information. Typical diffusion models include
the SIS (Susceptible, Infected), SIR (Susceptible, Infected, Recovered) etc. In
[17], the authors proposed to fit the temporal curves of the cascade spikes using
SI-like model. Compared to the biological viruses, extensive researches have been
proposed to model the rumors, ideas, memes using social influence models, such
as the independent cascade model [13], threshold models [11,23] and coverage
models [21] etc. Following works have studied how to select the most influen-
tial nodes to maximize the spread of information diffusion [7,14]. Despite the
algorithmic progress on selecting the most influential nodes, how to infer the
diffusion models accurately remains a challenge.

Cascade prediction. From a macro scope, we can omit the diffusion process
and predict the statistics of a cascade from its early footprints directly. Previ-
ous works usually considered the task as a regression problem [5,22] or a binary
classification problem [12,24]. The growth of cascades may originate from mul-
tiple factors. In [20,22], the authors proposed to dive into the content of the
information diffusion and analyze the spread of the information. The temporal
features are also often used to predict the evolution of cascades [17,25]. The
temporal dynamics of online usually falls into six different patterns [25]. In [17],
the authors fit the model with one unified model. Recently, the structures of
the social network are also taken into account to predict the evolution of cas-
cades [1,6,19,24]. Generally, cascades that spread across multiple communities
are considered to be more viral than those trapped in a single community. In
comparison, we try to analyze the structure pattern of the cascade to observe
how it evolves from time to time.

Cascade structures. When information starts to spread in the social network,
it usually generates a tree structure. The properties of the structures have been
studied over years. In [15], the authors find that the cascades in email network are
usually very narrow and continually reaching people several hundred levels away.
There are also implications that cascades with different topics spread in different
structures [20]. For example, the political topics are usually more persistent than
the conversational idioms. To quantitatively differ the structures of the cascades,
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the authors in [9] proposed to use wiener index to characterize the structure of
information cascades. The wiener index is the average distance between each
pair of nodes in the cascade, which is often used to describe the complexity of
the structure of a graph. Due to the intricate and diverse structures of social
cascades, it is necessary to fully understand the cascade structures and explore
the relationships with information diffusion.

3 Data Set, Information Diffusion, and Structure
Patterns

In this section, we first present the collected data set for analysis. Then we will
briefly introduce the mechanics of information diffusion in social networks. In
the last part, we show how the information could shape the structure of the
cascades.

3.1 Data Collection

We choose Weibo (http://weibo.com) as the basis social network platform for
analysis. Weibo is a Twitter-like micro-blog platform in China. The network can
be modeled as a directed graph G = (V,E) where the nodes set V represents
users and the edges E represent following/follower relationships between users.
For a user i, we denote the followers of i as N(i). In Weibo, each user can post
a message with at most 140 (Chinese) characters publicly. Once the message is
posted, the neighbor users may observe the occurrence and share the message.

In Weibo, we can trace the information diffusion path by analyzing the
spreading contents. For a message with content “A: xxx//@B: yyy//@C: zzz”,
it means that, user B first shares the origin message with content “yyy” from
user C; then, user A shares B’s message with content “xxx”. A diffusion path
as C → B → A can be constructed from the above message. To get the full
trace of each cascade, we start from the root message and get all the shared
messages. Each cascade can then be modeled as a tree structure with the origin
message from the root node. Figure 1 presents an example of the tree structure
of a cascade.

In total, we crawled 16, 439, 997 messages from Weibo during April 1st 2015
to April 30th 2015, and extracted 33, 214 cascades with at least 10 shares. The
social network has 6,738, 199 users and 11,271,789 following relationships. By
adopting text clipping on the text and training a multinomial Naive Bayes clas-
sifier with a labeled data set, the messages are classified into 8 topics, including:
Economy, Education, Technology, Culture, Sports, Health, Politics and Travel.

3.2 The Mechanics of Information Diffusion

Information diffusion is ubiquitous in online social networks. There are complex
factors that drive the diffusion of information between people. Among them,

http://weibo.com
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rootroot

T
G

Fig. 1. Cascade example. A cascade example in the social network G, where the lines
are social links between users. The cascade starts from the root node to spread. The
cascade include the nodes with orange color, denoted as T . The green nodes are those
in the social network but not engaged in the cascade. The information spreads only on
the solid line. (Color figure online)

homophily and social influence are usually considered to be the most impor-
tant ones [3]. Homophily refers to the tendency of individuals to associate with
similar peers, such as age, gender, religion etc. In addition, researches show
that homophily also contributes a lot to the information diffusion [26], since
the behaviors of similar users are often correlated. Accordingly, information
driven by homophily is more likely to spread to the close neighbors. In compar-
ison, Social influence occurs when one’s opinions are affected by others. When
the information is driven by the social influence, it is more likely to spread
across communities and in long distances. Thus, the information diffusion is
more unpredictable in this case.

Due to complex micro-foundations of user decisions, it is often difficult to
distinguish the two factors from information diffusion processes. Moreover, in
most cases, both the factors may play a role in driving the spread of informa-
tion. From a different perspective, we can often observe the interplay between
information diffusion and the cascade structures. Thus, if we could identify the
different structure patterns of information cascade, it may help us understand the
mechanics of information diffusion and accordingly predict the cascade growth.

3.3 Cascade Structures

We propose that the cascade structures can often reflect the mechanics of the
information diffusion. For instance, the deep and complex structure of a cascade
tree means that the information is spreading in different communities and long
distances, which may be the result of the social influence. Such observations
motivate us to explore the structure patterns of information cascades.
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In Fig. 2 we show two illustrative examples of the evolution of cascade struc-
tures in social networks. The topic of the first message belongs to Culture, which
is possibly driven by homophily. As shown in the figure, it has a star-like struc-
ture, since the information mainly spreads to users not too far away. While in the
second example, the message of the information is about Technology, which is
more likely to be driven by social influence. There may be professional discussion
and complex diffusion in this topic. But the information may not be interested
to a wide range of the near neighbors, since the social links are probably built
on homophily.

Fig. 2. Evolution of the cascades. Two illustrative examples of the cascade structures.
The size of the nodes reflects the degree of the nodes in the tree.

4 Finding the Structural Patterns

In this section, we formally present the method for finding the structural pat-
terns. We first embed the cascades into a lower dimensional space, and then
apply spectral clustering to find structure patterns. Finally we will show the
properties of the patterns.

4.1 Cascade Embedding

Due to the intricate structures of the information cascades, we first try to embed
the cascades in a lower dimensional space to find the structure patterns. To pre-
serve the structure characteristics, the following prerequisites should be consid-
ered: 1. The embedded cascades can distinguish cascades with different struc-
tures, such as star-like trees and the trees with deep complex structure; 2. It can
reflect the virality of the cascades; 3. In the embedded cascade, users with close
proximity are less important since information is more likely to spread between
these users as a result of homophily.
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Considering the above aspects, we propose to extract a centrality value for
each of the nodes in the cascades. The basic idea is that the centrality increases
with the influence of a user, but is offset by the proximity to the root of the
cascade. First, we assume that the information diffusion on each edge depends
on the difference of the posting time: Δij = |ti − tj |, which has been extensively
studied in papers such as [10,16]. The weight of influence strength from i to j
can be formulated as:

wij = αije
−αijΔij = αije

−αij(tj−ti)

Thus, an edge with larger weight indicates the information is more “viral” on
the edge. The influence of the user can then be measured as the sum of the
influence to all users, i.e.

∑
j∈N(i) wij . We also consider the effect of homophily:

the users with close proximity to the root is less central in the cascade since
the homophily may play a more important role. Thus, we propose an amplified
factor of di + γ parameterized by γ, where di is the distance between user i and
the root user. The centrality of a user i can be formally represented as:

wi = (di + γ)
∑

j∈N(i)

wij

In practice, we empirically choose uniform value for αij as 1.0 and γ as 5.0.
Finally, we extract the skeleton of a cascade by sorting the nodes according to
their centralities in decreasing order as a vector w.

4.2 Spectral Clustering

After embedding the cascade in a vector space, the distance between two embed-
ded trees wi and wj can be computed with the Euclidean distance, which is
defined as:

d(w(i),w(j)) =
∑

t

||w(i)
t − w(j)

t ||

where || · || is the l2 norm. The Euclidean distance is then converted to similar-
ity as:

Sij = e− d(w(i),w(j))
σ

where σ is the standard variance of the derived distance matrix. Given the
similarity measure, we use spectral clustering to find the structure patterns of
the cascades, so that trees with similar structures are clustered into the same
group. The spectral clustering techniques make use of the spectrum (eigenvalues)
of the similarity matrix of the data to perform dimensionality reduction. The first
step of the spectral clustering algorithm is to get the graph Laplacian matrix L.

L = D − S
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where D is the diagonal matrix Dii =
∑

j Sij . Then, we get the first k eigen-
vectors of L, denote as u1, u2, ..., uk. Let yi be a row vector of the matrix
U = [u1, u2, ..., uk], i.e., yi = [u1i, u2i, ..., uki]. The results can be derived by
applying k-means clustering on y to get the cluster results.

4.3 Structure Patterns of Cascades

In this experiment, we will apply spectral clustering algorithm on the diffusion
trees to find the structure patterns. Specifically, we explore the relationship
between the early structure patterns and the eventual growth of the cascades.
The clustering algorithm is employed on the first k = 30 nodes of each cascade.
The value of k is chosen empirically and the reason will be explained in Sect. 5.

To apply the clustering algorithm, the first step is to choose the number of
clusters. Here we use the average silhouette score to evaluate the performance of
the results of clustering algorithm. The higher silhouette score indicates better
cluster results. We find that the scores are almost the same ranging from 0.1 to
0.2 with cluster number from 3 to 8. We choose 5 as the number of the clusters
when the silhouette score is 0.14. Despite that the silhouette score is higher with
fewer clusters, it reveals less information about the structures.

After clustering the cascades, we observe the statistics of the cascades in each
cluster in Table 1. We show the average size, average depth, largest degree and
average wiener index of the cascades in each cluster. Generally, higher wiener
index indicates more complex structures. According to the statistics, even though
the clustering algorithm is employed on the initial structures (first 30 nodes) of
the cascades, the eventual statistics in the clusters are quite distinguishable from
each other. For example, The cascades in C2 have almost the same size (243.14)
as the cascades in C3 (292.34). However, the cascades depth (4.07) is much
higher than that in C3 (2.62). In C4, the cascades have more nodes (308.30)
than both C2 and C3, but the average depth (3.56) is between them. In C1 and
C5, the cascades have significantly more nodes (1265.57 and 2448.77) than other
clusters. And the depth in C1 (4.70) is almost the same as that in C5 (4.93). The
cascades in C1 and C5 usually have a dominated node since the largest degree
is very close to the size of the cascades. Moreover, the cascades in C2 have more
complex structures, since the wiener index (2.28) is higher than other cascades.

Table 1. Table of statistics.

C1 C2 C3 C4 C5

Cascade number 4537 12482 9409 3762 3024

Average size 1265.57 243.14 292.34 308.30 2448.77

Average depth 4.70 4.07 2.62 3.56 4.93

Largest degree 999.25 128.71 56.69 218.27 2054.28

Average wiener 2.14 2.28 2.01 2.09 2.13
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In addition to the statistics, we also plot the cumulative distribution of the
cascades size and depth in each cluster in Fig. 3. It can be observed that cascades
in the same clusters tend to have the similar statistics, since the cumulative
distribution curves increase steeply around the average size or depth. This also
strongly implies that the early structure of a cascade may be predictive of the
cascade growth.

(a) (b)

Fig. 3. CDF of cascade depth and size. In the first figure, the x-axis is the log of the
cascade size. The cascades in different clusters are distinguished in different colors.
(Color figure online)

Now we plot the representatives of from C1 to C5 to observe their structures
in Fig. 4. The representatives are selected as the cascade which has the closest
distance to all other cascades in the same cluster. As observed from the figure, the
structures of cascades from different clusters vary significantly from each other.
The representatives of C3 and C4 have fewer nodes and star-like structure; and
the representatives of C1 and C5 have more nodes and complex structures. In
particular, in C2, there are relevant as many nodes as that in C3 and C4, while
the structure of C2 seems to be much more complex.

Fig. 4. Representative cascade in each cluster.

Finally, we explore the topic distributions of different clusters of the cascades.
Figure 5 shows the proportion of the cascades of each cluster in the 8 topics. As
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observed, the cascades with topics such as Culture, Health, Travel are more
likely to have wide and simple structures in C3, C4 and C5. These topics may
be related to user interests or public opinions that may be driven by homophily.
Meanwhile, the cascades with topics such as Economics, Education, Politics,
Sports, Technology are more likely to grow as complex structures in C1 and C2.
The topics are more likely to be controversial or professional that may cause
social influence between users. This result is consistent with the “persistence” of
topics as introduced in [20].

Fig. 5. The proportion of cascades in each topics.

5 Predicting Cascade Growth

By spectral clustering, we identify five patterns of cascades with distinguishable
characteristics. The observation implies that the early structures can be predic-
tive of the future growth of the cascades. In this section, we use the patterns to
predict the structure and virality of the cascades growth respectively.

5.1 Experiment Setup

In predicting the cascade growth, our general method is to use the machine
learning techniques to predict the labels of the target data with a set of features.
Here, we use the method of logistic regression algorithm. Other classification
methods such as random forest, SVM etc. were also tried. The results show that
the performances of different classification methods do not vary a lot from each
other. We use 5-fold cross validation for training and testing.

Features. We select a set of features that might be correlated with the growth of
the cascade. The features are extracted from the first k nodes of the cascades on
5 dimensions: content, temporal, structural, root and structure pattern features.
In total, we extract 50 features for each of the cascade.
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– Content Features. The content features include some origin content related
statistics: whether the content has a link, a hashtag or a mention; and whether
the content belongs to one of the 8 topics.

– Temporal Features. In the temporal features, we first use the average time
between the first and the last k/2 shares; and the temporal features also
include the time elapsed between the original and the first 10 shares.

– Structural Features. In the structural features, we have the total number of
friends of the root node in the first k shares, the total number of uninfected
friends of the first k sharers, the average depth of the first k users, and the
out-degree of the first 10 shares.

– Root Features. The root features include the number of followers of the root
user, the gender, the verification status and the number of messages that has
been posted by the root user.

– Structure Pattern Features. Finally, we employ the cascade embedding on each
of the cascade, and extract the first 10 nodes with highest centralities.

Comparison Methods. Denote our method as SP-based (Structure Pattern
based). We compare our method with the following algorithms:

– SP-blind: In SP-blind method, we exclude the structure pattern features and
employ the logistic regression method for prediction.

– PCA-based: Instead of using the structure pattern features, in PCA method,
we use PCA (principle component analysis) for dimension reduction of the
cascade matrix T and get the eigenvector of the covariance matrix with largest
eigenvalue as features.

– Wiener-based: Similar to PCA-based method, we compute the wiener index
of the first k nodes as a feature for prediction.

– Random: We randomly guess the result to be positive or negative.

5.2 Predicting Cascade Structure

We begin by predicting the structures of the cascades. The intuition is that: a
cascade that is initially wide is more likely to evolve as star-like structure, while
a cascade with complex structure initially would also grow to be complex in the
future.

First, we observe the average Pearson correlation between the node central-
ities and the wiener index of the eventual structure of the cascades. The higher
absolute value of the correlation implies higher importance of the node central-
ity in the feature space. Figure 6 shows the changes of the feature importance
of the first 6 nodes with respect to different values of k. As expected, the node
centralities are positive correlated with the wiener index (or complexity) of the
cascade. This is because a node with high centrality has high influence and low
homophily, which is more likely to cause rapid and complex structures. The cor-
relation grows with the number of observed nodes k in the early cascade. But
when k reaches 30, the correlation has diminishing returns and stablizes around
a certain value.
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Fig. 6. Average Pearson correlation between node centralities and the cascade wiener
index.

According to the above observation, we now predict whether a cascade will
have a wide structure or a deep structure by observing the first k nodes of the
cascade. We use wiener index to measure the structure of a cascade. Generally,
a tree with wiener index approximately 2.0 is wide shallow, while a tree with
higher index indicates it has complex structure. In Table 2, we show our results
for predicting whether the wiener index of the cascade will evolve to be below or
above a chosen value of wiener index. The results include the precision, recall,
F1-score and accuracy. To avoid the imbalance of data set, we set the value
of wiener index for prediction as 2.05. As presented in Table 2, our SP-based
method can reach the best result in almost all cases, showing the effectiveness
of the structure pattern features. In comparison to our method, the SP-blind,
PCA-based and Wiener-based based method have worse results, since they did
not consider the mechanics of information diffusion. According to the selection
of wiener index, the random method reaches almost 50% in every result.

Table 2. Predicting cascade structures.

Algorithm Prec. Rec. F1 Accu.

SP-based 0.775 0.641 0.697 0.722

SP-blind 0.591 0.643 0.613 0.596

PCA-based 0.597 0.628 0.607 0.598

Wiener-based 0.596 0.642 0.615 0.601

Random 0.504 0.505 0.500 0.499

5.3 Predicting Cascade Virality

Another important application of the structure pattern is to predict the virality
of a cascade by observing its early footprints. As shown in Fig. 3, the cascades
in the same cluster tend to have the same size. Based on this observation, in
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Fig. 7. Average Pearson correlation between the cascade size and node centralities.

this section, we aim to predict the virality of the cascades using the structural
patterns.

We start by observing the Pearson correlation between the node centralities
and the size of the eventual cascades in Fig. 7. Surprisingly, we find that from the
second node, the centralities are negative correlated with the size of the cascades.
This implies that the cascades are more likely to be viral if the structures of
cascade are simple and wide. The centrality of the second node becomes less
important when observing more nodes. This may be the reason that a node with
high centrality is also common in homophily-driven cascades. And in most other
cases, the absolute value of the correlation would increase with the size initial
cascade.

Table 3. Predicting cascade virality with respect to different thresholds.

Threshold Algorithm Prec. Rec. F1 Accu.

100 SP-based 0.790 0.783 0.775 0.809

SP-blind 0.742 0.732 0.727 0.753

PCA-based 0.768 0.776 0.755 0.788

Wiener-based 0.742 0.737 0.730 0.755

Random 0.463 0.498 0.477 0.499

200 SP-based 0.769 0.719 0.727 0.836

SP-blind 0.690 0.493 0.534 0.738

PCA-based 0.698 0.465 0.517 0.738

Wiener-based 0.674 0.485 0.529 0.742

Random 0.327 0.495 0.395 0.499

400 SP-based 0.755 0.545 0.589 0.847

SP-blind 0.731 0.368 0.426 0.817

PCA-based 0.771 0.455 0.516 0.835

Wiener-based 0.733 0.368 0.425 0.813

Random 0.229 0.493 0.310 0.499
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Next, we predict whether the cascade will reach a certain number of nodes.
We try different values of the threshold as 100, 200 and 400. Table 3 shows the
results of the predictions. Obviously, our SP-based method performs the best
in almost all cases. And according to the setting of the experiment, the accu-
racy of the Random method is almost around 50% when the threshold is 100.
When the threshold increases, generally, the precision and the recall will decrease
as the cascades become more and more unpredictable. However, our SP-based
algorithm could still reach a high F1-measure. The significant improvement in
the results validates the effectiveness of the importance of the structure pattern
features. In predicting the virality, we should try to identify as many viral cas-
cades as possible. Thus, recall is often a critical measure. And in all cases, our
SP-based method can has the highest recall of all.

(a) (b)

Fig. 8. Predicting virality with respect to different values of k.

Finally, we examine the effect of the prediction with respect to different values
of k from 10 to 50. The results are shown in Fig. 8. As presented, the precision
and recall are almost monotone with the increase of k. The values increases
quickly at early steps. But when k exceeds 30, the values are not likely to grow
too much. This also demonstrates that k = 30 is reasonable for predicting the
growth of the cascades.

6 Conclusions

In this paper, we studied the structures of cascades in online social networks and
explore the relationships with information diffusion. By embedding the cascades
in a lower dimensional space and employing the spectral clustering algorithm, we
can identify five typical patterns of the cascade structures with distinguishable
characteristics. In addition, since the structure patterns of the cascades can be
identified based on the early footprints, we can incorporate the structure patterns
to predict the growth of information cascades.

The analysis and experiments of the results are based on the Weibo platform.
We believe that the Weibo data set is comprehensive for the information cascades
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since it has large scale of data and includes topics across different disciplines. For
the future work, first, we would empirically analyze the effect of our algorithm
on other data sets; On the other hand, we would use the structure patterns to
guide the micro analysis of user behaviors in social networks, so that we can
predict even the individual behaviors more accurately.
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Abstract. Since instances in multi-label problems are associated with
several labels simultaneously, most traditional feature selection algo-
rithms for single label problems are inapplicable. Therefore, new cri-
teria to evaluate features and new methods to model label correlations
are needed. In this paper, we adopt the graph model to capture the
label correlation, and propose a feature selection algorithm for multi-
label problems according to the graph combining with the large margin
theory. The proposed multi-label feature selection algorithm GMBA can
efficiently utilize the high order label correlation. Experiments on real
world data sets demonstrate the effectiveness of the proposed method.
The codes of the experiment of this paper are available at https://github.
com/Faustus-/ECML2016-GMBA.

Keywords: Feature selection · Multi-label learning · Graph · Margin

1 Introduction

Multi-label learning studies the problem in which each instance is associated
with a set of labels simultaneously. It usually occurs in text categorization,
automatic annotation and bioinformatics, etc. [24]. For example, each music
in emotions [15] data set can be associated with at most six different emotion
tags simultaneously. A straightforward method to solve the multi-label problem
is to decompose the problem into a series of single label binary classification
problems, such as Binary Relevance [2] and ML-kNN [23]. However, this strat-
egy neglects the label correlation which is usually helpful for improving the
performance of a multi-label learning algorithm. To complement this, various
multi-label learning algorithms with the consideration of label correlation have
been proposed, such as [4,7,8,11,13,19,22]. According to the utilization of label
correlation, these algorithms can be divided into three orders [24]: (a) the first
order algorithms predict labels for an unseen instance one by one. They are very
simple while neglecting label correlation [2,23]. (b) the second order algorithms
consider pairwise relation between labels, which usually leads to a label ranking
problem [4,8]. (c) the high order algorithms capture more complex correlation
between labels, but they are computationally expensive [7,11,13,19,22].
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Similar to other machine learning tasks, multi-label learning also suffers
from the curse of dimensionality. Redundant and irrelevant features make data
intractable, resulting in unreliable model and degraded learning performance.
Feature selection is an efficient and popular technique to reduce dimensional-
ity. Several feature selection algorithms for the multi-label problem have been
presented. For example, feature selection algorithms for multi-label naive bayes
classifier and Rank-SVM classifier are introduced in [5,21] respectively. These
multi-label feature selection algorithms belong to the wrapper model [14], which
evaluates features according to predictive results of the specified learning algo-
rithm, thus they share bias of the learning algorithm and it is prohibitively
expensive to run for data with a large number of features. In [6], two classic
single-label feature selection algorithms, F-Statistic and ReliefF, are extended
to handle multi-label problems. These algorithms belong to the filter model [14],
which evaluates features by measuring the statistics of a multi-label data set.
Algorithms belonging to the filter model are independent of specified classifiers
and more flexible than those belonging to the wrapper model.

In this paper, a graph-margin based multi-label feature selection algorithm
(GMBA) is proposed. GMBA firstly describes multi-label data with a graph, which
has good discrimination capability and shares similar expression capability to the
hypergraph applied in [13,19]. Then, it measures features based on the graph com-
bining with the large margin theory. Since GMBA evaluates features according to
the graph derived from the training data, it is independent of a specified learning
algorithm and belongs to the filter model. We will introduce GMBA in the follow-
ing order. In Sect. 2, we define a similarity measure for multi-label instances and
describe multi-label data by a graph. The discrimination capability and expression
capability of the graph are also discussed in this section. In Sect. 3, we define a mar-
gin for multi-label data and derive GMBA depending on the graph combining with
the margin. In addition, experimental results on real world data sets are reported
in Sect. 4 and paper concludes in Sect. 5.
Notations. Before introducing the algorithm, we will give the notations in this
paper. n, D and Q denote the number of training instances, the data dimension-
ality, and the number of labels, respectively. Fd denotes the dth feature and lq

denotes the qth label, where 1 ≤ d ≤ D and 1 ≤ q ≤ Q. nq denotes the number
of training samples associated with lq. (x i,y i) denotes the ith instance in the
training data.

x i =
(
x1i , ..., x

d
i , ..., x

D
i

)
denotes the features of the ith instance in the training

data, where xd
i denotes the dth component of the ith instance, or the ith instance

has value xd
i for Fd.

x d =
(
xd
1, ..., x

d
i , ..., x

d
n

)T denotes a feature vector of the dth feature. The
superscript T means the transpose of a vector or matrix.

y i =
(
y1i , ..., y

q
i , ..., y

Q
i

)
denotes the relationship between labels and the ith

instance in the training data. If the ith instance is associated with lq then yq
i = 1,

or yq
i = 0. For single-label problems, there is a constraint that |y i| = 1, 1 ≤ i ≤ n,

where |·| denotes the 1-norm of the vector.
s(i,i′) denotes the similarity between the ith and i′th instances.
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G = (V,E) denotes a graph, where V and E denote the vertex set and the
edge set of the graph, respectively. AG denotes the adjacent matrix of G, DG

denotes the degree matrix of G. LG = DG −AG is the corresponding Laplacian
matrix.

[π] returns 1 if predicate π holds, and 0 otherwise.
|·| and ‖·‖ returns 1-norm and 2-norm respectively.
ω is a weight vector of features.

2 Graph Model for Multi-label Data

2.1 Graph Definition

Graph is a widely used model for its powerful expression capability. For example,
well-known page rank and image segmentation algorithm in [3] are based on
the graph model. In this paper, we adopt the graph to capture the correlation
between labels and instances for multi-label data.

Suppose, in a graph, each vertex vi ∈ V represents an instance and an edge
e(i,i′) ∈ E connecting two vertexes denotes the similarity of the corresponding
instances, then a simple undirected graph G = (V,E) can be built to model the
correlation between instances. The key of building the graph depends on how
one measures the instance similarity. For a single-label problem, the similarity
between two instances x i and x i′ are usually defined as Eq. 1 [25].

ssingle (i, i′) =

{
1
nq

, yq
i = yq

i′ = 1

0, otherwise
(1)

which means that instances in the same class share the same similarity, while
similarity between instances from different classes is 0. However, when it comes
to multi-label problems, an instance is associated with several labels (classes)
simultaneously and it is ambiguous to compare the belongingness of two different
instances. Therefore, Eq. (1) is not suitable when solving multi-label problems
and we define Eq. 2 to measure the similarity between two multi-label instances.

smulti (i, i′) =

⎧
⎨

⎩

∑Q
q=1 nq·[yq

i=1∧yq

i′=1]
∑Q

q=1 nq·[yq
i=1∨yq

i′=1] ,
∑Q

q=1 nq · [yq
i = 1 ∨ yq

i′ = 1] �= 0

0, otherwise
(2)

In Eq. 2, the numerator counts the labels two instances shared, and the denom-
inator counts the labels at least one of the two instances associated with. nq is
the number of training samples associated with lq and it is applied as a weight to
tune the importance of different labels. Equation 2 is a variation of the Jaccard
similarity, which measures the ratio of the size of intersection and the size of
union for two sets. Then, the multi-label data can be represented as a graph
using an adjacent matrix AG definded in Eq. 3, where AG (i, i′) is the element
in the ith row, i′th column of AG.

AG (i, i′) =

{
smulti (i, i′) , i �= i′

0, otherwise
(3)
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Fig. 1. (a) Our proposed graph for multi-label data, (b) The graph for multi-class
data transformed from the multi-label data. The edges in graphs are denoted with
solid lines and circles are vertexes. The fractions on the edges represent the similarity
weight. Circles fallen in the same ellipse (dash line) represent instances associated
with the same label/class. The circle fallen in the intersection of two ellipses means the
instance is associated with two labels simultaneously. And the two instances associated
with no labels are put in the ellipse below.

2.2 Discrimination Capability

To explain the discrimination capability of the proposed graph, an exam-
ple is presented below. Assuming that there are Q different labels, we have
y i ∈ {0, 1}Q. Without loss of generality, we set Q = 2 and two labels are named l1

and l2. We also assume that a multi-label training data set consists of one
instance associated with l1, two instances associated with l2, one instance asso-
ciated with l1 and l2 simultaneously and two instances associated with no labels.
The proposed graph to describe these instances is given in Fig. 1(a). Then, if
one can split the graph into different parts (such as the ellipses of dash line),
instances associated with different labels will be discriminated. Hence multi-label
instances are discriminable in the proposed graph. Moreover, some off the shelf
algorithms can be applied to finish this task, such as normalized cut [12], ration
cut [18], etc.

In addition, the discrimination capability of the proposed graph is similar to
the one derived from label power set algorithms as in [16,17], while the proposed
graph is smoother and can capture label correlation. More specifically, a label
power set algorithm usually transforms a multi-label problem into a multi-class
problem in which each class corresponds to a label power set. For the multi-label
problem mentioned above, a label power set algorithm will transform it into a
multi-class problem with 4 different classes: ∅,

{
l1

}
,
{
l2

}
and

{
l1, l2

}
, and each

instance is associated with one class. Since a multi-class problem belongs to the
single-label learning problem, the similarity between instances can be measured
by Eq. 1. The resulting graph is shown in Fig. 1(b), which includes 4 unconnected
subgraphs. The partitions of the graph (ellipses of dash line) are similar to the
ones in Fig. 1(a), hence they have similar discrimination capability. However, in
multi-class problems, the similarity between instances from different classes is
0, and there are no edges connecting them, such as the instance belonging to
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the class
{
l1

}
and the one belonging to the class

{
l1, l2

}
in Fig. 1(b). Although

these instances actually share some labels in common, such as the label l1 for
the class

{
l1

}
and the class

{
l1, l2

}
, the correlation is not considered by the

graph in Fig. 1(b). On the contrary, such kind of correlation is considered in
our graph as in Fig. 1(a) through the edges weight between 0 and 1. Therefore,
the proposed graph for a multi-label problem is smoother than the graph for a
multi-class problem transformed from a multi-label problem in [16,17] and can
capture label correlation.

2.3 Expression Capability

Though the proposed graph in Sect. 2.1 is a simple-graph, it has similar expres-
sion capability to a hypergraph, which has been successfully applied to capture
high order label correlation in [13,19].

Different from edges in a simple-graph, an edge, which is called hyperedge,
in a hypergraph connects more than two vertexes simultaneously. Hence multi-
label data can be described by a hypergraph as follows: in a hypergraph GH =
(VH ,EH), each vertex vi ∈ VH corresponds to an instance in the multi-label
data set, each hyperedge eq ∈ EH is a subset of VH , where eq = {vi | yq

i =
1, 1 ≤ i ≤ n}. The degree of each hyperedge d (eq) is defined as the number of
vertexes on that hyperedge, namely nq, and we may set the weight of a edge,
w (eq), equals to its degree.

If we apply Clique Expansion [1,13,19] to expand the hypergraph above, we
obtain a simple-graph GC = (VC ,EC), where VC = VH and EC = {e(i,i′) |
vi ∈ eq ∧ vi′ ∈ eq, eq ∈ EH}. The weight of e(i,i′) is defined as Eq. 4.

w
(
e(i,i′)

)
=

∑

vi∈eq∧vi′ ∈eq,eq∈EH

w (eq) =
Q∑

q=1

nq · [yq
i = 1 ∧ yq

i′ = 1] (4)

Normalizing it to obtain Eq. 5, we find that Eq. 5 is the same to the similarity
defined in Eq. 2

ŵ
(
e(i,i′)

)
=

∑
vi∈eq∧vi′ ∈eq,eq∈EH

w (eq)∑
vi∈eq∨vi′ ∈eq,eq∈EH

w (eq)
=

∑Q
q=1 nq · [yq

i = 1 ∧ yq
i′ = 1]

∑Q
q=1 nq · [yq

i = 1 ∨ yq
i′ = 1]

(5)

Thus our proposed graph is the same to the simple-graph expanded from a
hypergraph by Clique Expansion. According to [1,13], both the hypergraph and
the expanded simple-graph, as well as the proposed graph, can capture similar
high order correlation and therefore they share similar expression capability for
multi-label data.

3 Graph-Margin Based Multi-label Feature Selection
(GMBA)

In Sect. 2, we propose a discriminative graph to describe multi-label data.
According to the similarity measure defined in Eq. 2, the graph reflects the rela-
tions of data in label space. However, these relations in label space are usually
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different from the one in feature space. We will illustrate this case in Fig. 2(a)
and (b). For an instance denoted by star in Fig. 2(a), its several nearest neighbors
in label space are represented by squares. That is to say, the similarity measured
by Eq. 2 between a square and the star is greater than a threshold smin, and
these squares are the closest instances to the star in the proposed graph as in
Fig. 2(a). However, if we estimate similarities among instances in feature space,
such as using a radial basis function, an instance represented by triangle could
be more similar (closer) to the star than squares. This means that the graph
built in feature space as in Fig. 2(b) is inconsistent with the graph in label space
as in Fig. 2(a).

Fig. 2. A comparison of graphs built in different spaces. Each star, square or triangle
represents an instance. The edges connect two different shapes denote the similarity
between them. The shorter an edge is, the more similar two instances are. We omit the
edges that do not connect with the star.

Furthermore, for classification problems, the target of a classifier is using
features to divide instances into different classes, which means that we have to
use features to predict the partitions of the graph in label space. Although the
graph built in label space is discriminative as analyzed in Sect. 2.2, an incon-
sistent counterpart in feature space does not maintain its discrimination power
and may lead to wrong partition. Thus we propose a multi-label feature selection
algorithm GMBA, which will choose a subset of features that the graph built
in this feature subspace, as in Fig. 2(c), is similar to the one in label space, as
Fig. 2(a). In addition, a margin, as depicted in Fig. 2(c), is applied in GMBA to
guarantee the generalization capability of the selected features.

3.1 Loss Function

To evaluate the inconsistency described above, we design a loss function based on
margin. Firstly, we apply sim (i) and dissim (i) to represent the instance subsets
similar and dissimilar to (x i,y i) in label space respectively. They are described
in Eqs. 6 and 7.

sim (i) = {(x i′ ,y i′) | smulti (i, i′) ≥ smin, 1 ≤ i′ ≤ n and i �= i′} (6)
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dissim (i) = {(x i′ ,y i′) | smulti (i, i′) < smin, 1 ≤ i′ ≤ n and i �= i′} (7)

where smin is a given threshold and smulti (i, i′) is the similarity defined in Eq. 2.
Then, the loss function is designed in Eq. 8 to evaluate the inconsistency between
the graph in label space and the one in feature space for (x i,y i).

Loss (i) =
∑

i′∈neighbor(i)

smulti (i, i′) ‖x i − x i′‖2 + λ
∑

i′′∈dissim(i)

δ (i′, i′′) (8)

where neighbor (i) denotes a instance subset with k instances those are both
nearest to (x i,y i) in feature space and belong to sim (i). The first term of
Eq. 8 penalizes large distance between (x i,y i) and its neighbors (x i′ ,y i′) in
neighbor (i). The second term δ (i′, i′′) is a penalty defined in Eq. 9 and λ is the
tuning parameter.

δ (i′, i′′) =

(smulti (i, i′) − smulti (i, i′′)) · max
(
0,m (i) + ‖x i − x i′‖2 − ‖x i − x i′′‖2

) (9)

δ
(
i′, ii

′′
)

is the hinge loss penalizing (x i′′ ,y i′′), which is an instancec in
dissmiss (i) but closer to (x i,y i) than (x i′ ,y i′) to (x i,y i) in feature space.
The closer (x i′′ ,y i′′) to (x i,y i) in feature space and more dissimilar (x i′′ ,y i′′)
to (x i,y i) in label space, the larger the penalty. m (i) is the margin defined
in Eq. 10, where nh (i) and nm (i) are the nearest instances from sim (i) and
dissim (i) respectively to the (x i,y i) in feature spaces.

m (i) =
∣∣∣
∥∥x i − xnh(i)

∥∥2 − ∥∥x i − xnm(i)

∥∥2
∣∣∣ (10)

We will illustrate the penalty defined Eq. 9 for the case depicted in Fig. 2(b).
Assuming that the star represents (x i,y i), the margin m (i) is the absolute
value of the square Euclidean distance between the square marked nh and the
star minus the square Euclidean distance between the triangle marked nm and
the star. If the square Euclidean distance between any triangle and the star is
smaller than the square Euclidean distance between a square and the star plus
this margin, it will be penalized by Eq. 9.

3.2 Feature Ranking

Based on the loss function in Eq. 8, one can evaluate the inconsistency between
the graph in label space and the one in feature space by summing up the loss of
all training data as depicted in Eq. 11. The smaller Eq. 11 is, the more consistent
two graphs are. In addition, for feature selection, it is key to find a feature
subspace that minimize Eq. 11.

Loss (G) =
n∑

i=1

Loss (i) (11)
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However, it suffers from the complexity of O
(
2D

)
to find the best subspace for

Eq. 11. As a result, according to [9,10], we evaluate the fitness of features by a
weight vector ω and find the best ω by gradient descent method. Specifically,
searching for the best ω can be formulated as Eq. 12

min
ω

Loss (ω,G) = min
ω

n∑

i=1

Loss (ω.i) (12)

where

Loss (ω.i) =
∑

i′∈neighbor(i)

smulti (i, i′) ‖x i − x i′‖2ω + λ
∑

i′′∈dissim(i)

δ (ω, i′, i′′)

(13)
δ (ω, i′, i′′)

= (smulti (i, i′) − smulti (i, i′′)) · max
(
0,m (i) + ‖x i − x i′‖2ω − ‖x i − x i′′‖2ω

)

(14)

and ‖z‖ω =
√∑D

d=1 (ωdzd)2.
Then Eq. 12 can be solved by the gradient descent and the algorithm is summa-
rized as follows.

Step 1: Initialize ω = (1, 1, 1, ..., 1), and set the number of iterations I.
Step 2: For i =1, 2, ... , I.
(a) Pick up an instance (x i,y i), and find sim (i) and dissim (i) according to
Eqs. 2, 6 and 7.
(b) Find k nearest instances to (x i,y i) in feature space from sim (i) as
neighbor (i).
(c) Find nh(i) and nm(i) from sim (i) and dissim (i) respectively.
(d) Calculate m (i) according to Eq. 10
(e) For d =1, 2, ... , D

∇d = 2ωd
∑

i′∈neighbor(i) smulti (i, i′)
∥∥xd

i − xd
i′
∥∥2 + λ

∑
i′∈dissim(i)

∂δ(ω,i′,i′′)
∂ωd ,

where
∂δ(ω,i′,i′′)

∂ωd is the partial derivative of δ (ω, i′, i′′) given in Eqs. 15 and 16

∂δ (ω, i′, i′′)
∂ωd

=

{
0, m (i) + ‖x i − x i′‖2 < ‖x i − x i′′‖2
diff (d) , otherwise

(15)

diff (d) = 2ωd (smulti (i, i′) − smulti (i, i′′))
(∥∥xd

i − xd
i′
∥∥2 − ∥∥xd

i − xd
i′′

∥∥2
)

(16)

(f)ω = ω − β∇/ ‖∇‖, where β is a decay factor.
Step 3: Ranking features based on ω. The greater the ωd, the better the Fd.

4 Experiments

To demonstrate the effectiveness of the proposed GMBA, we empirically com-
pare the GMBA with the multi-label F-Statistic (MLFS)[6] and the multi-label
ReliefF (MLRF) [6].



548 P. Yan and Y. Li

In addition, spectral feature selection framework (SPEC) [25] is an algorithm
which selects features based on the graph structure for single label problems. It
measures features according to Eq. 17.

φ
(
Fd

)
=

(
x̂ d

)T

LGx̂d =
∑

1≤i,i′≤n

ssingle (i, i′)√
d (i) d (i′)

∥∥∥x̂d
i − x̂d

i′

∥∥∥
2

(17)

where d (i) is the degree of vertex vi, x̂
d = D

1
2 xd

∥
∥
∥D

1
2 xd

∥
∥
∥

is the normalized feature

vector and LG = D
− 1

2
G LGD

− 1
2

G is the normalized Laplacian matrix. The smaller
the Eq. 17, the better the Fd. We adapt it to multi-label problems by replacing
the ssingle (i, i′) with the proposed similarity smulti (i, i′), so that it will select
features consistent with the proposed graph structure for multi-label data.

4.1 Data Sets

Eight benchmark multi-label data sets from different domains are used for exper-
iments, which are downloaded from MULAN1. Details about data sets are listed
in Table 1. All numerical features are normalized with zero mean and unit vari-
ance in experiments. Features with variance 0 are eliminated.

Table 1. Summary of 8 benchmark data sets

Name Instance Features Labels Domain Name Instance Features Labels Domain

bibtex 7395 1836 159 text mediamill 43907 120 101 video

emotions 593 72 6 music medical 978 1449 45 text

enron 1702 1001 53 text scene 2407 294 6 image

genebase 662 1186 27 biology yeast 2417 103 14 biology

4.2 Classifiers and Parameters

Binary Relevance [2] (1st order algorithm) and Classifier Chain [11] (high order
algorithm) are used as multi-label learning strategy respectively, 3-Nearest Neigh-
bor (3-NN) classifier in scikit-learn2 is applied as the base classifier. Number of
neighbors for MLRF and neighbor (i) in GMBA are set 3. The threshold smin and
tuning parameter λ are 1. The number of iterations I equals to the number of train-
ing data n. The decay factor β is 0.9. Experiments3 are carried on under the envi-
ronment of Python 2.7.

1 http://mulan.sourceforge.net/.
2 http://scikit-learn.org/stable/.
3 Codes can be acquired at https://github.com/Faustus-/ECML2016-GMBA.

http://mulan.sourceforge.net/
http://scikit-learn.org/stable/
https://github.com/Faustus-/ECML2016-GMBA
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4.3 Evaluations

Three different measurements [24], i.e., Hamming loss (↓), micro (↑) and macro
(↑) F1-Measure, are applied to validate the performance of the selected features
for multi-label learning. (↓) denotes the smaller the better, while (↑) denotes the
larger the better. Except for mediamill and bibtex, all results reported in this
paper are the average of 10-cross validation. Since the big size of mediamill and
bibtex, we randomly select 1800 instances and other 10 percent of total instances
for training and testing respectively. The results reported are the average of 10
trials of experiments.

4.4 Results

Experimental results are shown in Figs. 3, 4, 5 and 6. For space limitation, we
display the Hamming Loss for the bibtex, emotions, enron and genebase, macro
F1-Measure metrics for mediamill, medical, scene and yeast when the multi-
label learning strategy is Binary Relevance. We also display the Hamming Loss
for mediamill, medical, scene and yeast, macro F1-Measure metrics for bibtex,
emotions, enron and genebase when the multi-label learning strategy is Classifier
Chain. Complete results of micro F1-Measure metrics are displayed in Figs. 5
and 6.

Experimental results show that features selected by proposed GMBA obtain
better classifying performance than others in most cases. For emotions and scene
data sets, all algorithms achieve similar performance, which might result from
the fact that there are only 6 labels, causing a weak discrimination power of
graphs built in the label space. In addition, GMBA and the adapted SPEC are
suitable for more data sets than MLFS and MLRF, since the performance of
MLFS and MLRF vary from different data sets.

5 Discussions and Conclusions

According to experimental results, GMBA performs better than other algo-
rithms, and both GMBA and SPEC are suitable for more data sets than MLFS
and MLRF. In addition, while GMBA and SPEC all aim to find a feature subset
that the graph built in this subspace is consistent with the graph built in label
space, GMBA is superior to the SPEC in most cases. This results from the mar-
gin we applied in GMBA, since a margin usually leads to better discrimination
and generalization, such as LMNN in [20] and the classic SVM. More specifically,
as illustrated in Fig. 2(c), similar instances are pushed close to each other and
dissimilar instances are pulled away from them according to the margin. In this
way, the margin makes features in this subspace become more discriminative.

In conclusion, based on the graph and the large margin theory, the proposed
GMBA can capture high order label correlation and guarantee generalization
capability. Experimental results on different real world data sets indicate the
effectiveness and good performance of the proposed algorithm.



550 P. Yan and Y. Li

Fig. 3. Hamming loss (↓). The first 4 diagrams show the hamming loss of applying
the Binary Relevance while the rest show the results from the Classifier Chain. Y-axis
corresponds to different metrics and X-axis denotes the percentage of features selected.
The horizontal lines are the results of classifying with all features
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Fig. 4. macro F1-Measure (↑). The first 4 diagrams show the macro F1-Measure of
applying the Binary Relevance while the rest show the results from the Classifier Chain.
Y-axis corresponds to different metrics and X-axis denotes the percentage of features
selected. The horizontal lines are the results of classifying with all features
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Fig. 5. The micro F1-Measure (↑) of applying the Binary Relevance. Y-axis corresponds
to the metrics and X-axis denotes the percentage of features selected. The horizontal
lines are the results of classifying with all features
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Fig. 6. The micro F1-Measure (↑) of applying the Classifier Chain. Y-axis corresponds
to the metrics and X-axis denotes the percentage of features selected. The horizontal
lines are the results of classifying with all features
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Abstract. We consider a variant of the pure exploration problem in
Multi-Armed Bandits, where the goal is to find the arm for which the
λ-quantile is maximal. Within the PAC framework, we provide a lower
bound on the sample complexity of any (ε, δ)-correct algorithm, and pro-
pose algorithms with matching upper bounds. Our bounds sharpen exist-
ing ones by explicitly incorporating the quantile factor λ. We further pro-
vide experiments that compare the sample complexity of our algorithms
with that of previous works.

1 Introduction

In the classical multi-armed bandit (MAB) problem, the learning agent faces a
set K of stochastic arms, from which it chooses arms sequentially. In each round,
the agent observes a random reward that depends on the selected arm. The goal
of the agent is to maximize the cumulative reward (in the regret formulation),
or to identify the arm with the highest expected reward (in the pure exploration
problem). The MAB model has been studies extensively in the statistical and
learning literature, see [2] for a comprehensive survey.

In this paper, we consider a quantile-based variant of the pure exploration
MAB problem (quantile-MAB). In this variant, for a given 0 < λ < 1, the goal
is to identify the arm for which the λ-quantile is the largest among all arms
(here, as usual the λ-quantile is such that the probability of observing a larger
reward is at least λ). More precisely, considering the PAC framework, the goal is
to identify an (ε, δ)-correct arm, namely an arm for which the (λ− ε)-quantile is
not smaller than the largest λ-quantile among all arms, with a probability larger
than 1 − δ. In addition, we wish to minimize the sample complexity, i.e., the
expected number of samples observed until the learning algorithm terminates.

For the standard MAB problem, algorithms that find the best arm (in terms
of its expected reward) in the PAC sense were presented in [1,5–8,10], and lower
bounds on the sample complexity were presented in [1,9,11].

Similar to the present quantile-MAB problem is the variant of the MAB
problem in which the goal is to find the arm from which the largest possible
sample can be obtained. This is known as the max k-armed bandit problem,
and was first introduced in [3]. For this variant, algorithms that find the best
arm in the PAC sense were provided in [4,13], and a lower bound was presented
in [4]. In contrast to the current quantile-MAB problem, in the max k-armed
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 556–571, 2016.
DOI: 10.1007/978-3-319-46128-1 35
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setting, it is necessary to assume a lower bound on the tail probabilities of the
arms. When the tail functions of the arms are known, and ε = λ, the algorithms
for the max k-armed bandit setting can be applied in the present quantile-MAB
problem. However, their sample complexity upper bounds are larger than those
of the algorithms presented in this paper.

More related to the present quantile-MAB problem is the work [15] which
consider a measure of risk called value-at-risk (see [12]). The value-at-risk of a
given random variable (R.V.) X is actually the same as the quantile of the R.V.
−X. An algorithm with an upper bound on the sample complexity that increases
as λ|K|

ε2δD , (where D is the upper bound on the density functions) was provided in
[15], that algorithm is computationally demanding since at each iteration it solves
a non-linear constrained and integer-valued optimization problem. Recently, the
quantile-MAB problem was studied in [14]. They provided a lower bound for the
case in which λ = 3/4 and an algorithm with an upper bound on the sample
complexity of the order of

∑
k∈K

1
(max(ε,Δk,λ))

2 ln( |K|
δ max(ε,Δk,λ)

), where Δk,λ is
the difference between the λ-quantile of arm k and that of the best arm.

In this paper, for certain arm distributions, we provide a lower bound of
the order of

∑
k∈K

λ(1−λ) ln( 1
δ )

(max(ε,Δk,λ))
2 on the sample complexity of every (ε, δ)-correct

algorithm. That lower bound improves the bound in [14] in the sense of consid-
ering the quantile factor λ(1−λ). This is significant when λ is close to 1 or to 0.
Furthermore, for general distribution functions, we provide two algorithms that
attain the lower bound up to the logarithmic terms ln (|K|ε) and ln (|K| log2(ε))
respectively. The upper bounds of these algorithms are smaller than that in [14]
by a factor of λ and a logarithmic factor in ε for the second algorithm.

The paper proceeds as follows. In the next section we present our model. In
Sect. 3, a lower bound on the sample complexity of every (ε, δ)-correct algorithm
is presented. Then in Sect. 4 we present our (ε, δ)-correct algorithms, and pro-
vide upper bounds on their sample complexity. The second algorithm is bases
on applying the doubling trick on the first one. Then, in Sect. 5 we provide
experiments that illustrate the improved sample complexity of our algorithms
compared with the results presented in [14]. In Sect. 6 we close the paper with
some concluding remarks.

2 Model Definition

We consider a finite set of arms, denoted by K. At each stage t = 1, 2, . . . the
learning agent chooses an arm k ∈ K, and a real valued reward is obtained from
that arm. The rewards obtained from each arm k are independent and identically
distributed, with a distribution function (CDF) Fk(x), x ∈ R. We denote the
quantile function of arm k ∈ K by Qk : [0, 1] → R, and define it as follows.

Definition 1. For every arm k ∈ K, the quantile function Qk(λ) is defined by

Qk(λ) � inf{x ∈ R|1 − λ < Fk(x)}.
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Note that P (xk ≥ Qk(λ)) ≥ 1 − λ where xk stands for a random variable with
distribution Fk. Clearly, if Fk is continuous at the point Qk(λ), we have equality,
namely, P (xk ≥ Qk(λ)) = 1 − λ.

An algorithm for the quantile-MAB problem samples an arm at each time
step, based on the observed history so far (i.e., the previously selected arms
and observed rewards). We require the algorithm to terminate after a random
number T of samples, which is finite with probability 1, and return an arm k′.
An algorithm is said to be (ε, δ)-correct if the returned arm is ε-optimal with
a probability larger than 1 − δ, (see a precise definition later in this section).
The expected number of samples E[T ] taken by the algorithm is the sample
complexity, which we wish to minimize.

We next provide some definitions and notations which we use later in this
paper. A λ-quantile optimal arm is defined as follows.

Definition 2. Arm k ∈ K is λ-quantile optimal if

Qk(λ) = x∗
λ � max

k′∈K
Qk′(λ).

We use the following quantity which represents the distance of an arm from
being optimal,

Δk,λ = sup{Fk(x)|x < x∗
λ} − (1 − λ). (1)

If Fk is continuous, then Δk,λ = Fk(x∗
λ) − (1 − λ). Furthermore, note that for

every suboptimal arm k, namely, an arm for which Qk(λ) < x∗
λ, it follows by the

monotonicity of CDF functions that Δk,λ > 0.
Now we are ready to precisely define an (ε, δ)-correct algorithm.

Definition 3. For λ and ε such that 0 < ε < λ < 1 and δ > 0, an algorithm is
(ε, δ)-correct if

P (Qk′(λ − ε) ≥ x∗
λ) ≥ 1 − δ

where k′ stands for the arm returned by the algorithm.

3 Lower Bound

Before presenting our algorithms, we provide a lower bound on the sample com-
plexity of any (ε, δ)-correct algorithm for certain arm distributions. The lower
bound is provided in the following Theorem.

Theorem 1. Assume that Fk is continuous for every k ∈ K. Fix some ε0 such
that 0 < ε0 < 1

4 . For every λ ∈ [2ε0, 1 − 2ε0], ε ∈ (0, ε0] and δ ≤ 0.15, there
exist some set of arm distributions {Fk}k∈K , such that for every (ε, δ)-correct
algorithm,

E[T ] ≥
∑

k∈K\k∗

λ (1 − λ)
2 (max (ε,Δk,λ))2

ln
(

1
2.4δ

)
(2)

where k∗ denote some optimal arm, with Qk∗(λ) = x∗
λ.
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The above lower bound refines the one presented in [14] in the sense that
here the size of the quantile λ is considered in the bound. To illustrate the lower
bound, we provide an example.

Example 1. Let {μk}k∈K be a set of constants, and let μ∗ = maxk∈K μk. Suppose
that the rewards of each arm k ∈ K are uniformly distributed on the interval
(μk − 1, μk). Since, μk − x∗

λ ≤ 1, for every arm k ∈ K it follows that

sup{Fk(x)|x < x∗
λ} = Fk(x∗

λ) =

{
1 − (μk − x∗

λ), μk ≥ x∗
λ

1, μk < x∗
λ

.

As x∗
λ = μ∗ − λ, Eq. (1), implies that

Δk,λ = min (λ, μ∗ − μk) .

Since ε < λ, the denominator term in Eq. (2) can be seen to be

max (ε,Δk,λ) =

⎧
⎪⎨

⎪⎩

ε, μ∗ − μk < ε

μ∗ − μk, ε ≤ μ∗ − μk < λ

λ, λ ≤ μ∗ − μk

.

Proof. (Theorem 1). First we assume that the quantile value of the optimal
arm, namely, x∗

λ is known. Moreover, we assume that for every arm k ∈ K, the
conditional probabilities P (xk|xk ≥ x∗

λ) and P (xk|xk < x∗
λ) are also known.

Therefore, the learning algorithm needs only to estimate the parameters

pk � P (xk ≥ x∗
λ) , ∀k ∈ K.

Now, by the continuity of the distribution functions it follows that maxk∈K pk =
λ. Also, by Eq. (1) it follows that

max
k∈K

pk − pk′ = Δk′,λ.

Therefore, finding an arm k′ such that Δk′,λ ≤ ε is the same as finding a Bernoulli
arm k′, such that its expected value is ε-optimal, namely, maxk∈K pk − pk′ ≤ ε.
So, our problem is the same as the standard Bernoulli bandit problem with
{pk}k∈K as the Bernoulli parameters.

Then, by Remark 5 in [9], in which a lower bound for the standard MAB
problem with Bernoulli arms is provided for δ ≤ 0.15, we have

E[T ] ≥
⎛

⎝ |Sε| − 1
KL (λ, λ − ε)

+
∑

k∈{K\Sε}

1
KL (pk, λ + ε)

⎞

⎠ ln
1

2.4δ
, (3)

where Sε � {k|k ∈ K, pk ≥ λ − ε} and KL (p, q) stands for the Kullback-
Leibler divergence between two Bernoulli distributions with parameters p and q
respectively.
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We note that ln(1 + x) ≤ x. Hence,

KL (p, q) = p ln

(
p

q

)

+ (1 − p) ln

(
1 − p

1 − q

)

≤ p
p − q

q
+ (1 − p)

q − p

1 − q
=

(p − q)2

q(1 − q)
. (4)

Therefore, by Eqs. (3) and (4) it follows that

E[T ] ≥
⎛

⎝ (λ − ε) (1 − λ + ε) (|Sε| − 1)
ε2

+
∑

k∈{K\Sε}

(λ + ε) (1 − λ − ε)
(λ + ε − pk)2

⎞

⎠ ln
1

2.4δ
.

Hence, by the facts that 2ε ≤ λ and 2ε ≤ (1−λ) and since Δk,λ = λ−pk, Eq. (2)
is obtained. ��

4 Algorithms

In this section we provide two related algorithms. The first one is simpler and
attains the lower bound in Theorem 1 up to a logarithmic term. The second
algorithm is based on applying the doubling trick on the first one and hence its
upper bound attains Theorem1 up to a double logarithmic term.

4.1 The Max-Q Algorithm

Here we present our Max-Q algorithm. The algorithm is (ε, δ)-correct and based
on sampling the arm which has the highest potential λ-quantile value.

The Max-Q algorithm starts by sampling a fixed number of times from each
arm. Then, for each arm, the algorithm associates a value that has been sampled
from its quantile in a large probability and choses the arm for which the value
is maximal. If the number of times that arm has been sampled is larger than
a certain threshold, the algorithm stops returns that arm, else it samples one
more time from the chosen arm.

The fundamental difference between the Max-Q algorithm and the algorithm
presented in [14] is the fact that in the latter the entire CDF is estimated, while
in this paper, just the value of the quantile is estimated. That difference leads
to a bound on the sample complexity of the Max-Q algorithm which is smaller
by a factor of λ, compared to that in [14].

Theorem 2. For every λ ∈ (0, 1), ε ∈ (0, λ) and δ ∈ (0, 1), Algorithm 1 is
(ε, δ)-correct with a sample complexity bound of

E[T ] ≤
∑

k∈K

10λL

(max (ε,Δk,λ))2
+ |K| + 1, (5)

where L = 6 ln
(
|K|

(
1 + −10λ ln(δ)

ε2

))
− ln (δ) as defined in the algorithm.
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Algorithm 1. Maximal Quantile (Max-Q) Algorithm
1: Input: Quantile λ ∈ (0, 1), constants δ > 0 and ε > 0.

Define L = 6 ln
(
|K|
(
1 + −10λ ln(δ)

ε2

))
− ln (δ).

2: Initialization: Counters C(k) = N0, k ∈ K,
where N0 = � 3L

λ
� + 1.

3: Sample N0 times from each arm.
4: Set k∗ ∈ arg maxk∈K V k (with ties broken arbitrary), where V k is the mk-th largest

reward observed so far from arm k and

mk = �λC(k) −
√

3λC(k)L� + 1.

5: if C(k∗) > 10λL
ε2

then
6: Stop and return arm k∗.
7: else
8: Sample once from arm k∗, set C(k∗) = C(k∗) + 1 and return to step 4.
9: end if

It may be observed that for λ ≤ 1
2 , the upper bound provided in Theorem 2 is

of the same order as the lower bound in Theorem 1, up to a logarithmic factor.
To establish Theorem 2, we first bound the probability of the event under

which the m-th largest sample of one of the optimal arm is below the λ-quantile.
Then, we bound the number of samples needed to be observed from each subop-
timal arm such that the m-th largest value (obtained from that arm) is below the
(λ − ε)-quantile. For establishing these bounds in a way that the multiplicative
factor of λ remains in the bounds, we use Bernstein’s inequality for bounding
the difference between the empirical mean and the mean value of a Bernoulli
R.V. which is one if the sampled value is above the quantile and zero otherwise.

Proof. (Theorem 2). We denote the time step of the algorithm by t, the value of
the counter C(k) at time step t by Ct(k) and we use the notations L′ = L+ln (δ)
and x∗ as a short for x∗

λ. Recall that T stands for the random final time step.
By the condition in step 5 of the algorithm, for every arm k ∈ K, it follows that,

CT−1(k) ≤ 	10λ (L′ − ln(δ))
ε2


 + 1. (6)

Note that by the facts that for x ≥ 6 it follows that d6 ln(x)
dx ≤ 1, and that for

x0 = 20 it follows that x0 > 6 ln(x0) + 1, it is obtained that

L′′ � |K|
(−10λ ln(δ)

ε2
+ 1

)
> 6 ln

(
|K|

(−10λ ln(δ)
ε2

+ 1
))

+ 1 = L′ + 1,

for L′′ ≥ 20. So, by the fact that T =
∑

k∈K CT−1(k) + 1, for L′′ ≥ 20 it follows
that

T ≤ |K|
(

10λ (L′ − ln(δ))
ε2

+ 1
)

+ 1 < |K|
(

10λ (L′′ − ln(δ))
ε2

+ 1
)

≤ L′′2 = e
L′
3 .

(7)
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We proceed to establish the (ε, δ)-correctness of the algorithm. Let V k
N (m) stand

for the m-th largest value obtained from arm k after sampling it for N times and
assume w.l.o.g. that Q1(λ) = x∗

λ. Then, for N ≥ N0 and m = 	λN−√
3λNL
+1,

as stated in the algorithm, by Lemma 1 below it follows that

P
(
V 1

N (m) < x∗) ≤ δe−L′
. (8)

Hence, at every time step t, by Eqs. (7) and (8), applying the union bound
obtains

P
(
V t,1 < x∗) ≤

exp
(

L′
3

)

∑

N=N0

P
(
V 1

N (m) < x∗) = δe− 2L′
3 . (9)

where V t,k stands for the value of V k at time step t.
Let k∗

T stand for the arm returned by the algorithm. Also, by Lemma 1, for

N >
10λ(L′−ln(δ))

ε2 , it follows that

P
(
V k

N (m) > Qk(λ − ε)
) ≤ δe−L′

. (10)

So, since by the condition in step 5, it is obtained that C(k∗
T ) >

10λ(L′−ln(δ))
ε2 , it

follows by Eq. (10) and the union bound that

P
(
V T,k∗

T > Qk∗
T
(λ − ε)

)
≤

∑

k∈K

exp
(

L′
3

)

∑

t=1

exp
(

L′
3

)

∑

N=1

δe−L′
= |K|δe− L′

3 . (11)

Also, by Eq. (9) and the union bound it follows that

P
(
V T,1 < x∗) ≤

exp
(

L′
3

)

∑

t=1

P
(
V t,1 < x∗) ≤ δe− L′

3 . (12)

So, since by step 4 of the algorithm, V T,k∗
T ≥ V T,1, it follows by Eqs. (11) and

(12) that

P
(
Qk∗

T
(λ − ε) < x∗) ≤ P

(
V T,k∗

T > Qk∗
T
(λ − ε)

)
+ P

(
V T,1 < x∗) < δ.

It follows that the algorithm returns an ε-optimal arm with a probability
larger than 1 − δ. Hence, it is (ε, δ)-correct.

To prove the bound on the expected sample complexity of the algorithm, we
define the following sets:

M(ε) = {l ∈ K|Δk,λ ≤ ε} and N(ε) = {l ∈ K|Δk,λ > ε}.

As before, we assume w.l.o.g. that Q1(λ) = x∗. Then, for the case in which

E1 �
⋂

1≤t≤T

{
V t,1 ≥ x∗}
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occurs, for every arm k ∈ K, a necessary condition for CT (k) > N ′
k, where

N ′
k = 	 10λ(L′−ln(δ))

Δ2
k,λ


 + 1 is

Ek �
{

V k
N ′

k
(m′

k) ≥ x∗
}

,

where m′
k = 	λN ′

k − √
3λN ′

k (L′ − ln(δ))
 + 1.
Now, by using the bound in Eq. (6) and the fact that

∑
k∈K CT (k) =∑

k∈K CT−1(k) + 1 for the arms in the set M(ε), N ′
k as a bound for the arms in

the set N(ε), and the bound in Eq. (7), it is obtained that

E[T ] ≤ (1 − P (E1)) e
L′
3 + P (E1)

∑

k∈N(ε)

(

(1 − P (Ek|E1)) Φk(ε) + e
L′
3 P (Ek|E1)

)

+
∑

k∈M(ε)

Φk(ε) + 1,

(13)

where Φk(ε) = 	 10λ(L′−ln(δ))
(max(ε,Δk,λ))

2 
 + 1. But, by Eq. (9) it follows that

P (E1) ≥ 1 −
exp
(

L′
3

)

∑

t=1

P
(
V t,1 < x∗) ≥ 1 − δe

−2L′
3 e

L′
3 = 1 − δe

−L′
3 . (14)

Also, since Q′
k � Qk

(
λ −

√
10λ(L′−ln(δ))

N ′
k

)
< x∗ for k ∈ N(ε), it follows by

Lemma 1 that

P (Ek|E1)P (E1) ≤ P (Ek) ≤ P
(
V k

N ′
k
(m′

k) > Q′
k

)
≤ δe−L′

, ∀k ∈ N(ε) (15)

Therefore, by Eqs. (13), (14) and (15) and the definition of Φk(ε), the bound
on the sample complexity is obtained. ��
Lemma 1. For every arm k ∈ K, let V k

N (m) stand for the m-th largest value
obtained from arm k after sampling it for N times. Then, for any positive inte-
gers m and N such that m < N , and every λ ∈ [0, 1], it follows that,

1. If m
N > λ, then

P
(
V k

N (m) > Qk(λ)
) ≤ f0(m,N, λ) .

2. If m
N < λ, then

P
(
V k

N (m) < Qk(λ)
) ≤ f0(m,N, λ) ,

where f0(m,N, λ) = exp
(
− |m−Nλ|2

2(Nλ+|m−Nλ|/3)
)
.

The proof is based on Bernstein’s inequality.
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Proof. In this proof, we omit the arm index k for short. We start with claim
(1). Let xi stand for the i-th sampled value from the arm, and let {Xi(λ)} and
{Yi(λ)} be random variables for which

Xi(λ) =

{
1 w.p λ

0 w.p 1 − λ
and Yi(λ) =

{
1 xi > Q(λ)
0 xi ≤ Q(λ)

. (16)

Note that the variables {Yi(λ)} are i.i.d. The variables {Xi(λ)} are i.i.d as well.
Then, since P (Yi(λ) = 1) ≤ P (Xi(λ) = 1), after sampling N times,

P (VN (m) > Q(λ)) = P

(
1
N

N∑

i=1

Yi(λ) ≥ m

N

)
≤ P

(
1
N

N∑

i=1

Xi(λ) ≥ m

N

)

= P

(
1
N

N∑

i=1

X̃i(λ) ≥ m

N
− E[X1(λ)]

)
� Υ(λ,m,N) ,

(17)
where X̃i(λ) = Xi(λ) − E[X1(λ)]. So,

{
X̃i(λ)

}
satisfies the conditions of Bern-

stein’s inequality with σ2 = λ (1 − λ), and E[X1(λ)] = λ. Therefore

Υ(λ,m,N) ≤ exp

(
− (m − Nλ)2

2 (Nλ (1 − λ) + (m − Nλ) /3)

)

≤ exp

(
− (m − Nλ)2

2 (Nλ + (m − Nλ) /3)

)
.

(18)

Proceeding to claim (2), let {Zi(λ)} be random variables for which

Zi(λ) =

{
1 xi ≥ Q(λ)
0 xi < Q(λ)

. (19)

Note that {Zi} are i.i.d. Then, since P (Zi(λ) = 1) ≥ P (Xi(λ) = 1),

P (VN (m) < Q(λ)) = P

(
1
N

N∑

i=1

Zi(λ) <
m

N

)
≤ P

(
1
N

N∑

i=1

Xi(λ) ≤ m

N

)

= P

(
1
N

N∑

i=1

X̃i(λ) ≤ m

N
− E[X1(λ)]

)
� Υ̂(λ,m,N)

(20)

and by symmetry

Υ̂(λ,m,N) ≤ exp

(
− (Nλ − m)2

2 (Nλ (1 − λ) + (Nλ − m) /3)

)

≤ exp

(
− (Nλ − m)2

2 (Nλ + (Nλ − m) /3)

)
.

(21)

��
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Algorithm 2. Doubled Maximal Quantile (Max-Q) Algorithm
1: Input: Quantile λ ∈ (0, 1), constants δ > 0 and ε > 0.

Define LD = 6 ln
(
|K| log2

(
−20λ ln(δ)

ε2

))
− ln (δ).

2: Initialization: Counters C(k) = N0, k ∈ K,
where N0 = � 3LD

λ
� + 1.

3: Sample N0 times from each arm.
4: Set k∗ ∈ V k (with ties broken arbitrary), where V k is the mk-th largest reward

observed so far from arm k and

mk = �λC(k) −
√

3λC(k)LD� + 1.

5: if C(k∗) > 10λLD
ε2

then
6: Stop and return arm k∗.
7: else
8: Sample C(k∗) times from arm k∗, set C(k∗) = 2C(k∗) and return to step 4.
9: end if

4.2 The Doubled Max-Q Algorithm

Here we improve on the previous algorithm by resorting to the doubling trick.
The Doubled Max-Q Algorithm is based on the same principle as the Max-Q
Algorithm. However, instead of observing one sample at each time step, here
the algorithm doubles the number of samples of the chosen arm. Consequently,
the number of times at which the algorithm needs to choose an arm is roughly
logarithmic compared to that under the previous algorithm, leading to a tighter
bound. Algorithm 2 presents the proposed Doubled Max-Q algorithm.

Theorem 3. For every λ ∈ (0, 1), ε ∈ (0, λ) and δ ∈ (0, 1), Algorithm 2 is
(ε, δ)-correct with a sample complexity bound of

E[T ] ≤
∑

k∈K

20λLD

(max (ε,Δk,λ))2
+ |K| + 1, (22)

where LD = 6 ln
(
|K| log2

(
−20λ ln(δ)

ε2

))
− ln (δ) as defined in the algorithm.

Here, the upper bound is of the same order as the lower bound in Theorem 1,
up to a double-logarithmic order.

The proof of Theorem 3 is established by some adjustments of the proof of
Theorem 2.

Proof. As before, we denote the time step of the algorithm by t, the value of the
counter C(k) at time step t by Ct(k) and we use the notations L′

D = LD +ln (δ)
and x∗ as a short for x∗

λ. We note that here, at each time step, there may be
more than a single sample, so T , the sample complexity, may be different than
the final time step. Hence, here we denote the (random) final time step by TD.
By the condition in step 5 of the algorithm, for every arm k ∈ K, it follows that,

CTD−1(k) ≤ 10λ (L′
D − ln(δ))
ε2

. (23)
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Note that by the facts that for x ≥ 6 it follows that d6 ln(x)
dx ≤ 1, and that for

x0 = 20 it follows that x0 > 6 ln(x0) + 1 it is obtained that

L′′
D � |K| log2

(−20λ ln(δ)
ε2

)
> 6 ln

(
|K| log2

(−20λ ln(δ)
ε2

))
+ 1 = L′

D + 1,

for L′′
D ≥ 20. So, by the fact that T =

∑
k∈K log2

(
2CTD−1(k)

)
, for L′′

D ≥ 20 it
follows that

T ≤ |K| log2

(
20λ (L′

D − ln(δ))
ε2

)
< |K| log2

(
20λ (L′′

D − ln(δ))
ε2

)

≤ |K| log2 (L′′
D) + L′′

D ≤ L′′
D (log2 (L′′

D) + 1) ≤ (L′′
D)2

2
=

1
2
e

L′
D
3 .

(24)

Recall that x∗ is used as a short for x∗
λ. Now, we begin with proving the (ε, δ)-

correctness property of the algorithm. We let V k
N (m) stands for the m-th largest

value obtained from arm k after sampling it for N times and we assume w.l.o.g.
that Q1(λ) = x∗. Then, for N ≥ N0 and m = 	λN − √

3λNLD
 + 1, as stated
in the algorithm, by Lemma 1 it follows that

P
(
V 1

N (m) < x∗) ≤ δe−L′
D (25)

Hence, at every time step t, by Eqs. (24) and (25), by applying the union
bound, for Ni = 2iN0 it follows that

P
(
V t,1 < x∗) ≤

1
2 exp

(
L′

D
3

)

∑

i=0

P
(
V 1

Ni
(m) < x∗) = δe− 2L′

D
3 .

(26)

where V t,k stands for the value of V k at time step t.
Now, we let k∗

TD
stands for the arm returned by the algorithm. Also, by

Lemma 1, for N >
10λ(L′

D−ln(δ))
ε2 , it follows that

P
(
V k

N (m) > Qk(λ − ε)
) ≤ δe−L′

D . (27)

So, since by the condition in step 5, it is obtained that C(k∗
TD

) >
10λ(L′

D−ln(δ))
ε2 ,

it follows by Eq. (27) and the union bound that

P
(
V

TD,k∗
TD > Qk∗

TD
(λ − ε)

)
≤
∑

k∈K

1
2 exp

(
L′

D
3

)

∑

t=1

1
2 exp

(
L′

D
3

)

∑

i=0

δe−L′
D = |K|δe− L′

D
3 . (28)

Also, by Eq. (26) and applying the union bound it follows that

P
(
V TD,1 < x∗) ≤

1
2 exp

(
L′

D
3

)

∑

t=1

P
(
V t,1 < x∗) ≤ δe− L′

D
3 (29)
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So, since by step 4 of the algorithm, V TD,k∗
TD ≥ V TD,1, it follows by Eqs. (28)

and (29) that

P
(
Qk∗

TD
(λ − ε) < x∗

)
≤ P

(
V TD,k∗

TD > Qk∗
TD

(λ − ε)
)

+ P
(
V TD,1 < x∗) < δ

Therefore, it follows that the algorithm returns an ε-optimal arm with a
probability larger than 1 − δ. So, it is (ε, δ)-correct.

For proving the bound on the expected sample complexity of the algorithm
we define the following sets:

M(ε) = {l ∈ K|Δk,λ ≤ ε} and N(ε) = {l ∈ K|Δk,λ > ε}.

As before, we assume w.l.o.g. that Q1(λ) = x∗. For the case in which

E1 �
⋂

1≤t≤T

{
V t,1 ≥ x∗} ,

occurs, for every arm k ∈ K, a necessary condition for CTD (k) > N ′
k,D, where

N ′
k,D � min

{
Ni|Ni >

10λ (L′
D − ln(δ))
Δ2

k,λ

, i ∈ N

}

is
Ek,D �

{
V k

N ′
k,D

(m′
k,D) ≥ x∗

}
,

where m′
k,D = 	λN ′

k,D −
√

3λN ′
k,D (L′

D − ln(δ))
 + 1.
Then for

Φk,D(ε) =
20λ (L′

D − ln(δ))
(max (ε,Δk,λ))2

for k ∈ N(ε) it follows that
N ′

k,D ≤ Φk,D(ε)

So, by using the bound in Eq. (23) and the fact that
∑

k∈K CTD (k) =
2
∑

k∈K CTD−1(k) for the arms in the set M(ε), N ′
k,D as a bound for the arms

in the set N(ε) and the bound in Eq. (24), it is obtained that

E[T ] ≤ (1 − P (E1)) e
L′

D
3

+ P (E1)
∑

k∈N(ε)

(
(1 − P (Ek,D|E1)) Φk,D(ε) + e

L′
D
3 P (Ek,D|E1)

)

+
∑

k∈M(ε)

Φk,D(ε) + 1,

(30)
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But, by Eq. (26) it follows that

P (E1) ≥ 1 −
exp

(
L′

D
3

)

∑

t=1

P
(
V t,1 < x∗) ≥ 1 − δe− 2L′

D
3 e

L′
D
3 = 1 − δe

−L′
D

3
(31)

Also, since Qk

(
λ −

√
10λ(L′

D−ln(δ))
N ′

k,D

)
< x∗ for k ∈ N(ε), it follows by

Lemma 1 that

P (Ek,D|E1) P (E1) < δe−L′
D , ∀k ∈ N(ε) (32)

Therefore, by Eqs. (30), (31) and (32) and the definition of Φk,D(ε), the bound
on the sample complexity is obtained. ��

5 Experiments

In this section we investigate numerically the Max-Q and the Double-Max-Q
algorithms presented in this paper and compare them with the QPAC algorithm
presented in [14].

In Fig. 1, we present the average sample complexity of 10 runs vs. the quantile
λ for δ = 0.01 and various values of ε. As shown in Fig. 1, and detailed in
Tables 1, 2, 3 and 4, the Max-Q and the Double-Max-Q algorithms significantly
outperform the QPAC algorithm. The arms distribution functions used here were
uniform with an interval of length 1.

Table 1. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.005 ε = 0.005 ε = 0.005

1 − λ = 0.8 7.26 7.43 7.6

1 − λ = 0.85 7.26 6.47 6.75

1 − λ = 0.9 7.26 6.35 6.57

1 − λ = 0.95 7.26 6.05 6.25

1 − λ = 0.96 7.26 5.85 6.16

1 − λ = 0.97 7.26 5.68 6.04

1 − λ = 0.98 7.26 5.58 5.88

1 − λ = 0.99 7.28 5.42 5.72
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Fig. 1. The average sample complexity of the Max-Q, the Double-Max-Q and the
QPAC algorithms for various of parameters settings. The number of arms was 10 and
the averages were computed over 10 runs.

Table 2. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.01 ε = 0.02 ε = 0.01 ε = 0.02 ε = 0.01 ε = 0.02

1 − λ = 0.8 6.22 6.01 6.83 6.2 6.96 6.26

1 − λ = 0.85 6.63 6.01 5.86 5.26 6.11 5.48

1 − λ = 0.9 6.63 6.01 5.74 5.15 5.93 5.33

1 − λ = 0.95 6.63 6.01 5.46 4.92 5.64 5.12

1 − λ = 0.96 6.63 6.03 5.28 4.8 5.57 5.09

1 − λ = 0.97 6.63 6.23 5.15 4.76 5.47 5.07

1 − λ = 0.98 6.66 6.23 5.11 4.81 5.4 5.1

1 − λ = 0.99 6.85 — 5.12 — 5.41 —
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Table 3. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.03 ε = 0.04 ε = 0.03 ε = 0.04 ε = 0.03 ε = 0.04

1 − λ = 0.8 5.64 5.41 5.64 4.85 5.51 5

1 − λ = 0.85 5.63 5.42 5.63 4.69 5.13 4.92

1 − λ = 0.9 5.64 5.41 5.64 4.62 5 4.78

1 − λ = 0.95 5.74 5.6 5.74 4.53 4.9 4.76

1 − λ = 0.96 5.85 5.6 5.85 4.51 4.89 4.82

1 − λ = 0.97 5.85 — 5.85 — 4.92 —

Table 4. log10 of the average sample complexity of the Max-Q, the Double-Max-Q and
the QPAC algorithms. The number of arms was 10 and the averages were computed
over 10 runs.

log10(E[T ]) Algorithm

QPAC Double-Max-Q Max-Q

ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1

1 − λ = 0.8 5.31 5 4.57 4.09 4.85 4.46

1 − λ = 0.85 5.3 5 4.44 4.04 4.73 4.33

1 − λ = 0.9 5.3 5 4.4 4.1 4.69 4.42

1 − λ = 0.95 5.48 — 4.41 — 4.66 —

6 Conclusion

In this paper we studied the pure exploration problem where the goal is to find
the arm with the maximal λ-quantile. Under the PAC framework, we provided
a lower bound and algorithms that attain it up to a logarithmic term (for the
first algorithm) and a double-logarithmic term (for the second algorithm).

A challenge for future work is closing the logarithmic gap between the lower
and upper bounds.
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Abstract. The analysis of complex and massive biological data issued
from metabolomic analytical platforms is a challenge of high importance.
The analyzed datasets are constituted of a limited set of individuals
and a large set of features where predictive biomarkers of clinical out-
comes should be mined. Accordingly, in this paper, we propose a new
hybrid knowledge discovery approach for discovering meaningful predic-
tive biological patterns. This hybrid approach combines numerical classi-
fiers such as SVM, Random Forests (RF) and ANOVA, with a symbolic
method, namely Formal Concept Analysis (FCA). The related experi-
ments show how we can discover among the best potential predictive
biomarkers of metabolic diseases thanks to specific combinations of clas-
sifiers mainly involving RF and ANOVA. The visualization of predictive
biomarkers is based on heatmaps while FCA is mainly used for visual-
ization and interpretation purposes, complementing the computational
power of numerical methods.

1 Introduction

The analysis of metabolomic data using data mining methods is one main chal-
lenge addressed in this paper. This analysis can be considered as a hard knowl-
edge discovery task since data generated by analytical metabolomic platforms,
e.g., mass spectrometry (MS), are massive, complex and noisy. In such data, one
of the major objectives is to identify, among thousands of features, predictive
biomarkers of disease development [11]. More precisely, in the current study, we
aim at identifying early predictive biomarkers of T2D, i.e. type 2 diabetes, a few
years before occurrence of the disease, in homogeneous populations considered
as healthy at the time of analysis. In general, the considered datasets have a
limited set of individuals and very large sets of features (or variables) and thus
require a specific data processing. In addition, it is desirable that the data analy-
sis methods differentiate a two state clinical feature, i.e. healthy vs. not healthy,
and contribute to explanations about this difference.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 572–587, 2016.
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For carrying out the knowledge discovery task, we have to pay attention to
the reduction of dimensionality, i.e. feature selection, and to avoid overfitting.
Accordingly, we defined a “knowledge discovery workflow” (KD workflow) based
on various data mining methods for the discovery of predictive biomarkers from
metabolomic data. This KD workflow is based on an original combination of
numerical data mining methods to analyze a data table with a large number
of numerical features, e.g. molecules or fragments of molecules, and a limited
number of individuals (samples), and one binary target variable (having or not
the disease at the follow-up, 5 years after the time of analysis). The resulting
reduced dataset is then transformed as binary data table that can be used as a
context for applying Formal Concept Analysis (FCA [5]) and discovering candi-
date biomarkers.

This hybrid knowledge discovery process involve several numerical classifiers
including Random Forests (RF) [2], Support vector Machine (SVM) [15], and
ANOVA [3]. RF, SVM and ANOVA are used to discover relevant biological
patterns which are then organized within a binary table. The numerical clas-
sifiers are used for feature selection with the help of filtering methods based
on the correlation coefficient and mutual information, for eliminating redun-
dant/dependent features, reducing the size of the data table and preparing the
application of RF, SVM and ANOVA.

Among the numerous combinations of RF, SVM and ANOVA with the fil-
tering methods, we defined ten reference combinations of classifiers (CC) in
agreement with the wishes of biologists (especially w.r.t. metabolomic data and
usage). Then a comparative study was run to identify the top-k features in com-
puting the so-called “top-ranking degree” a feature, i.e. the number of times that
a feature is classified among the first features for each CC. Actually, we retained
the best ranked features having a top-ranking degree greater or equal to 6.
A binary table can then be built, where features are lying in rows and combina-
tion of classifiers (CC) are lying in columns. A cell (i, j) in the table is marked
with 1 when the feature i has a sufficient top-ranking degree for the CC j. Such
a binary table can be in turn considered as a formal context and a starting point
for Formal Concept Analysis, and used for the identification of the best features.
These last features, which have the best ranking w.r.t. the ten combinations of
classifiers, are considered as candidates to be “potential predictive biomarkers”.

For experts in metabolomics, it is crucial to compute the ability of the poten-
tial biomarkers in predicting the disease. This is usually done thanks to ROC
analysis [18] which returns a short list of the best features retained as a core set
of predictive biomarkers. Based on ROC analysis and FCA, we are able to iden-
tify a list of the best combinations of classifiers that provide the best ranking of
potential biomarkers. One final objective of this study is to provide a short list
of at most 10 biomarkers that can be used in clinical assays, where the simplest
combination of metabolites producing an effective predictive outcome must be
found. In this way, we can measure the actuality of our knowledge discovery
results. This whole process defines an original and hybrid knowledge discovery
approach where numerical and symbolic classifiers are combined.
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The remainder of this paper is organized as follows. Section 2 provides a
description of related works. Section 3 presents the proposed hybrid knowl-
edge discovery approach and explains the analysis of biomarker identification.
Section 4 describes the experiments performed on a real-world metabolomic data
set and discusses the results, while Sect. 5 concludes the paper.

2 State of the Art

In [13], authors provide an overview on fundamental aspects of univariate and
multivariate analysis related to the analysis of metabolomic data. They make pre-
cise the main differences between possible approaches and explain several exper-
iments on real and simulated metabolomic data. In this case, the analysis of such
data is performed by supervised learning techniques, such as PLS-DA (partial
least squares-discriminant analysis), PC-DFA (Principal component-discriminant
function analysis), LDA (Linear discriminant analysis), RF and SVM.

In [7], authors show that PLS-DA outperforms other approaches in terms of
feature selection and classification. In a more detailed study [8], authors compare
different variable selection approaches such as LDA, PLS-DA, SVM-Recursive
Feature Elimination (RFE), RF (with accuracy and gini), for identifying the
best suited method for analyzing metabolomic data and classifying the Gram-
positive bacteria Bacillus. They conclude that RF with accuracy and gini and
SVM with RFE [9] provide the best results. However, these studies also show
that the choice of appropriate algorithms is highly dependent of the dataset
characteristics and on the objective of the data mining process.

In the field of biomarker discovery, SVM and RF algorithms proved to be
robust for extracting relevant chemical and biological knowledge from complex
data, especially in metabolomics [8]. RF is a highly accurate classifier, based on a
robust model to outlier detection. One main advantage is its power to deal with
overfitting and missing data [1], as well as its ability to handle large datasets.

Finally, in [12], authors discuss recent papers on applying a symbolic classi-
fication method such as Formal Concept Analysis in biology and medicine. For
example, in [6], authors use a classifier based on FCA to identify combinatorial bio-
markers of breast cancer from genes expression values. However, according to liter-
ature, no working approach combining supervised and unsupervised data mining
techniques was proposed so far for processing metabolomic data. This is precisely
the objective of the present paper to fill this gap and to propose an original com-
bination of numerical and symbolic classifiers for mining metabolomic data.

3 The Design of a Hybrid Knowledge Discovery
Approach for Metabolomic Data

In this section, we explain how to design a hybrid knowledge discovery process in
agreement with experts in biology and in combining various numerical classifiers,
e.g. RF, SVM, and ANOVA, with a symbolic knowledge discovery method such
as FCA, to discover the top-k biological features having a high predictive ability.
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3.1 The Reduction of Dimensionality

Here, the reduction of dimensionality is mainly based on feature selection. This
is one of the most important operations that can be carried out, especially con-
sidering the data table at hand, with small sets of individuals but very large sets
of features. Such an operation requires a careful choice of appropriate feature
selection methods [14]. Two main types of approaches can be considered:

– “Filtering” (or filter methods) consists in selecting features using statistical
test. Metabolomic data usually contain highly correlated features, leading to
some problems when using RF for example [7]. Filter methods allow to select
“good features”, such as the “coefficient of correlation” (Cor) or the “mutual
information” (MI) measures. Cor and MI can be used to discard highly cor-
related features for keeping a reasonable number of features to be analyzed.

– The so-called “embedded methods” are searching for an optimal subset of
features based on a reference classifier such as RF or SVM [10]. Embedded
methods are dependent on the classifier and try to optimize the results of this
classifier.

Based on that, we will consider two kinds of classifiers, the first kind using one
of the two filters, i.e. correlation coefficient “Cor” and mutual information “MI”,
and the other not using any filtering, as this is illustrated by the KD workflow
in Fig. 1. Filtering based on “Cor” and “MI” eliminates redundant/dependent
features, i.e. highly correlated are filtered out and features with MI average
values smaller than a given threshold are selected [16]. The result of the filtering
is used an an input for the application of the RF and SVM classifiers. Regarding
embedded methods, “Recursive Feature Elimination” (RFE), i.e. a backward
elimination method proposed in [9] for improving the classification process, is
most of the time used for lowering correlation between features when it is still
high, either with RF or SVM. Accordingly, we can build three different classifiers,
namely RF, RF-RFE and SVM-RFE.

The selection of the top-ranked features can be completed by the use of
accuracy measures, including “MdGini1”, “MdAcc2”, and “Kappa3”. One gen-
eral idea supporting these measures is to permute the values of each feature and
then to measure the decrease in accuracy of the classifier.

In parallel, even if filter methods are generally robust against overfitting,
they may still fail to select the best features. For being able to consider this
problem, we can apply the classifiers without any filtering, directly working on
data. We decided to consider the two classifiers RF and ANOVA alone, and a
classifier with an embedded method, namely SVM-RFE. In these last cases, we

1 Mean decrease in Gini index (MdGini) provides a measure of the internal structure
of the data.

2 Mean decrease in accuracy (MdAcc) measures the importance/performance of each
feature to the classification.

3 Cohens Kappa (Kappa) is a statistical measure which compares an “observed accu-
racy” with an “expected accuracy”.
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Fig. 1. The KD workflow and the ten combinations of classifiers.

still can choose accuracy measures such as “MdGini” and “MdAcc”. In addition,
we also decided to try the “features weight W”, i.e. the weight magnitude of
features, with SVM-RFE, and and the “p-value” with ANOVA, for improving
the classification of features and the identification of the features with the highest
discriminant ability.

Finally, we design ten different combinations of classifiers (CC) as illustrated in
Fig. 1. Applying eachCC to the original dataset produces a set of “best ranked fea-
tures” corresponding to the ten datasets called rFSi (for “reduced Feature Sets”).
The ten rFSi include the best ranked features w.r.t. the corresponding CCi.

3.2 Identification of the “top-k Best Features”

Now, we have at our disposal ten reduced features sets denoted by rFSi of best
ranked features. We will compare these feature datasets and try to discover which
are the “top-k features”, i.e. the features which have the best ranking considering
all rFSi. This can be likened to a problem of preferences and decision-making, and
this is precisely here that symbolic methods can play a major role, and they do. . .
A binary table relating features and combinations of classifiers, i.e. features×CC
can be designed (see Table 1), where the rows are related to best ranked features
and the columns are related to combinations of classifiers (10 CCi).
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Each feature has a “top-ranking degree” w.r.t. a given CC. Then, we retain
all features which have a top-ranking degree superior or equal to 6, i.e., features
belonging to an rFSi (i = 1 . . . 10) and which are top-ranked by at least 6 CC
out of 10.

3.3 Selecting Predictive Biomarkers (prediction)

For evaluating the predictive power of the best ranked features selected as
explained just above, we used the RF classifier again with several configura-
tions, taking the set of the best ranked features as a training set and considering
the whole set of available features. In this way, we are able to obtain several
different sets of ranked features that can be evaluated thanks to specific evalu-
ation measures, namely “sensitivity4”, “specificity5”, “accuracy6”, “precision7”,
“OOB error8” and “misclassification rate9”. Since the number of features to
propose as potential predictive biomarkers should be low and of high biological
relevance, we should find the best classifier w.r.t. these evaluation measures.

A second feature selection algorithm based on RF, namely “VarSelRF” [4],
can be applied for prediction purpose. VarSelRF is based on a “backward vari-
able elimination” for selecting small sets of non-redundant features and provides
a reduced set of predictive features. Several trials can be carried out, each pro-
ducing a different reduced set of relevant features, until obtaining the lowest
OOB error rate.

Then, the results of RF and VarSelRF can be combined, as well as computing
the p-values of the selected predictive features using T-tests10. The core set
of best features with the smallest p-values and the highest accuracy values is
selected to finally obtain a short list of potential predictive biomarkers.

4 Sensitivity evaluates the efficiency of the classifier in identifying the true positive
instances.

5 Specificity also called true negative rate, measures the proportion of correctly iden-
tified negative instances relative to all real relative ones.

6 Accuracy evaluates the overall performance of the feature selection method, since it
measures the ability of the predictive model to correctly classify both positive and
negative instances.

7 Precision rates the predictive power of a method, by measuring the proportion of
the true positive instances relative to all the predicted positive ones.

8 A Random Forest classifier returns a measure of error rate based on the out-of-bag
(OOB) cases for each fitted tree.

9 This rate refers to the misclassification rate of the learning model, by estimating the
proportion of wrongly classified negative and positive features.

10 T-test or Student T-test is a statistical hypothesis test which can be used to deter-
mine if two sets of data are significantly different from each other. If the p-value is
below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or
0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
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3.4 Visualization and Interpretation

Now we can consider the core set of best ranked features identified in the previ-
ous prediction step for visualization and interpretation purposes. Visualization
can be carried out using heatmaps, which are currently used in metabolomics
and which provide useful insights about the understanding of the metabolomic
changes w.r.t. experimental settings and sample groupings. Heatmaps are very
useful for patterns recognition in mass spectrometry-based metabolomic domain.
They can be used to visualize the results of “biclustering”, e.g. classification
w.r.t. the both sets of features and of individuals. Heatmaps represent with
different colors the features (or molecules) which predict the set of individuals
that are affected or not by the disease. Hotter areas indicate a more intense
presence of the feature(s) among individuals. Cooler areas show a lower level of
importance.

For completing interpretation of the resulting sets of features and the identi-
fication of predictive features, we should find the best classifiers to apply on the
metabolomic data at hand. We would like to help the expert to rank the classifiers
w.r.t. their ability to detect the best ranked predictive features among a large set
of features. A short list of potential predictive biomarkers can be noticed in the
binary Table 1 where they are denoted by bold 1. Then, the related combinations
of classifiers can be recommended for reducing dimensionality of metabolomics
data and for identifying the best predictive features. Moreover, FCA can be also
applied to such a binary table as discussed farther.

4 Experiments

In this section, we discuss the experiments related to our hybrid knowledge
discovery approach. Practically, we used a Dell machine running Ubuntu 14.04
LTS, a 3.60 GHZ ×8 CPU and 15, 6 GB RAM. All experiments were performed
in the Rstudio software environment (Version 0.98.1103, R 3.1.1).

4.1 The Dataset and Its Preparation

The reference dataset is composed of homogeneous individuals considered
healthy at the beginning of the study. The binary variable describing the two
target classes, i.e. healthy and not healthy, is based on the health status of the
same individuals at another time, actually five years after the initial analysis.
Meanwhile, some individuals developed the disease. In particular, discriminant
features which enable a good separation between target data classes (healthy vs.
not healthy) are not necessarily the best features predicting the disease devel-
opment five years later.

More precisely, the dataset to be analyzed is based on a case-control study
from the GAZEL French population-based cohort (20000 subjects). This set
includes numeric and symbolic data about 111 male subjects (54-64 years old)
free of T2D at baseline. Fifty five subjects who developed T2D at the follow-up
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belong to class “1” (non healthy or diabetic subjects) while 56 subjects belong
to class “−1” (controls or healthy subjects). 3000 features are generated for
each individuals after carrying out mass spectrometry (MS) analysis, resulting
in a dataset containing peak intensities (continuous numerical values of these
measurements).

The metabolomic database contains thousands of features with a wide inten-
sity value range. A data preprocessing step is mandatory for adjusting the impor-
tance weights allocated to the features. Thus, before applying any classifier,
data are transformed using zero mean normalization and Unit-Variance scal-
ing method. This method removes the average and divides each feature value
by its standard deviation. This enables all features to have the same chance to
contribute in the classification model when they have an equal unit variance.
Finally, the transformed dataset including 1195 features is used as input for all
combinations of classifiers.

4.2 The Combination of Classifiers

Following the KD workflow as introduced in Sect. 3.1 and as depicted in Fig. 1,
we defined ten different combinations of classifiers (CCi, i = 1 . . . 10) for feature
selections purposes. These ten CCi are detailed hereafter. For example, “Cor-RF-
MdAcc” denotes the sequence of three operations, i.e. the correlation coefficient
“Cor” is used on the original dataset for retaining features whose correlation
value is less than a given threshold, then the classifier Random Forests (RF) is
applied, and the final ranking is provided according to the “MdAcc” accuracy
measure.

The nine other CCi are named accordingly as (2) “Cor-RF-MdGini”, (3)
“Cor-RF-RFE-Acc”, (4) “Cor-RF-RFE-Kap”, (5) “MI-SVM-RFE-Acc”, (6)
“MI-SVM-RFE-Kap”, (7) “RF-MdAcc”, (8) “RF-MdGini”, (9) “SVM-RFE-W”
and (10) “ANOVA-pValue”.

To work only with important features, we retain the 200 first ranked features
from each of the ten CCi, except for the CC “ANOVA-pValue” from which we
only retained 107 features having a “reasonable” p-value (i.e. lower than 0.1).

Then, to analyze and interpret the relative importance of each feature, the
reduced feature sets rFSi related to each CCi (i = 1 . . . 10) are compared.
Since we are looking for the best ranked features according to the different CCi,
features which are among the best ranked features in at least 6 CCi are selected.
This leads to the identification of 48 features and the generation of the binary
Table 1 whose dimension is 48× 10, where features are lying in rows and CCi in
columns.

In this binary table, we can identify four features, namely “m/z 383”, “m/z
227”, “m/z 114” and “m/z 165” as the best ranked features for all CCi (i =
1 . . . 10) because they generate a “maximum rectangle full of 1” (the four first
rows in Table 1), i.e., they are best ranked in all the 10 CCi. Furthermore, we
can see that some other features are also best ranked by a high number of CCi

such as “m/z 284”, “m/z 204”, “m/z 132”, “m/z 187”, “m/z 219”, “m/z 203”,
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“m/z 109”, “m/z 97” and “m/z 145”. Moreover, among these 48 best ranked
features, 39 are significant w.r.t ANOVA, i.e. the p-value is less that 0.05.

4.3 The Search for Predictive Biomarkers

Here we intend to use two feature selection algorithms, namely “VarSelRF”
and “Random Forests”, for prediction purposes. The first algorithm is based
on a subset selection method and the second one is based on a feature ranking
method as introduced previously.

During the application of “VarSelRF”, it was decided to train the algorithm
100 times and to retain the stable features identified w.r.t. the different repli-
cations results. Experiments were performed on the subset of 48 best ranked
features and revealed 5 features common to all repeated tests, i.e. “m/z 145”,
“m/z 162”, “m/z 263”, “m/z 268” and “m/z 97”, as potential predictive bio-
markers.

When using the RF classifier, we are highly interested in measuring the
impact of each feature on the accuracy of classification. Thus, we first split
the data into a training set and a test set. Then, we apply the RF classifier
on the set of best ranked features including the 48 features using the “MdAcc”
measure for ranking. 100 replications of the procedure are performed and the
classification with the lowest error is retained. A confusion matrix is generated
where a new set of 48 ranked features denoted by “48-RF-MdAcc” is obtained.
From “48-RF-MdAcc”, 5 additional sets of features, namely “40-RF”, “30-RF”,
“20-RF”, “10-RF” and “5-RF” are built, containing respectively 40, 30, 20, 10
and 5 best ranked features.

Table 2 summarizes the scores obtained from the six common evaluation met-
rics, starting from the set of 1195 features, through the set of 200 features (the
200 best ranked features w.r.t. RF with “MdAcc”) until the reduced set of the
5 best ranked features according to RF-MdAcc on the set of 48 best ranked fea-
tures. The table shows that training RF on the whole data set gives the lowest
values. However, reducing data dimensionality to 48 features, better values are
obtained. As there is not a set of features which outperforms all the others, the
smallest set of the 5 top ranked features, i.e. “m/z 219”, “m/z 268”, “m/z 145”,
“m/z 97”, and “m/z 325”, is retained.

In addition, Table 2 shows that only a small fraction of features is discrimi-
nant, highlighting the importance of feature selection methods for obtaining the
best performances of predictive classifiers. Actually, the RF classifier is able to
handle thousands of features, but when applied to the original dataset (1195-
RF), it does not achieve a good accuracy (26.1% of OOB error). The set of 48
features (48-RF) gives the best value for “Recall” only. The highest values for
“precision” and “specificity” are obtained with the set of 30 features i.e. 30-RF.
The measures “Accuracy” (which gives an overall estimate of the performance
of a classifier) and “F-measure” are better for the set of 20 features. The worst
values are measured for the whole data set of 1195 features. This underlines
another time the fact that reducing the dimension of the original data table to
identify relevant features is essential.
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Table 1. The 48 × 10 binary table relating the 48 features which are the best ranked
w.r.t. the 10 combinations of classifiers.
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m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 227 1 1 1 1 1 1 1 1 1 1
m/z 114 1 1 1 1 1 1 1 1 1 1
m/z 165 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 441 1 1 1 1 1 1 1 1 1
m/z 109 1 1 1 1 1 1 1 1 1
m/z 203 1 1 1 1 1 1 1 1 1
m/z 219 1 1 1 1 1 1 1 1 1
m/z 198 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 187 1 1 1 1 1 1 1 1 1
m/z 132 1 1 1 1 1 1 1 1 1
m/z 204 1 1 1 1 1 1 1 1 1
m/z 261 1 1 1 1 1 1 1 1 1
m/z 162 1 1 1 1 1 1 1 1
m/z 284 1 1 1 1 1 1 1 1 1
m/z 603 1 1 1 1 1 1 1 1
m/z 148 1 1 1 1 1 1 1 1
m/z 575 1 1 1 1 1 1 1 1
m/z 69 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 405 1 1 1 1 1 1 1
m/z 929 1 1 1 1 1 1 1 1
m/z 58 1 1 1 1 1 1 1 1
m/z 336 1 1 1 1 1 1 1 1
m/z 146 1 1 1 1 1 1 1
m/z 104 1 1 1 1 1 1 1
m/z 120 1 1 1 1 1 1 1 1
m/z 558 1 1 1 1 1 1 1
m/z 231 1 1 1 1 1 1
m/z 132* 1 1 1 1 1 1 1
m/z 93 1 1 1 1 1 1 1
m/z 907 1 1 1 1 1 1 1
m/z 279 1 1 1 1 1 1 1
m/z 104* 1 1 1 1 1 1 1
m/z 90 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1
m/z 288* 1 1 1 1 1 1 1
m/z 287 1 1 1 1 1 1 1
m/z 167 1 1 1 1 1 1 1
m/z 288 1 1 1 1 1 1 1
m/z 252 1 1 1 1 1 1 1
m/z 141 1 1 1 1 1 1 1
m/z 275 1 1 1 1 1 1
m/z 148* 1 1 1 1 1 1
m/z 92 1 1 1 1 1 1 1
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Table 2. The values of measures for several sets of features computed with RF and
accuracy.

Metrics Recall Specificity F-measure Accuracy Precision OOB error

1195-RF 0.81 0.65 0.75 0.73 0.71 0.261

200-RF 0.86 0.82 0.85 0.84 0.84 0.154

48-RF 0.93 0.80 0.88 0.87 0.83 0.131

40-RF 0.85 0.88 0.86 0.87 0.87 0.131

30-RF 0.83 0.90 0.86 0.87 0.90 0.131

20-RF 0.90 0.85 0.88 0.88 0.86 0.119

10-RF 0.85 0.86 0.85 0.85 0.85 0.142

5-RF 0.86 0.85 0.86 0.85 0.86 0.142

In parallel, using ANOVA, we also retained the 5 best ranked features w.r.t.
an ascending order of their p-value, i.e. “m/z 383”, “m/z 145”, “m/z 97”, “m/z
268”, “m/z 263”. In metabolomics, it is usually interesting to consider features
with a small p-value for prediction.

Finally, considering the three features, i.e. “m/z 145”, “m/z 268” and “m/z
97”, which are common to RF and VarSelRF classifiers, plus the top five ANOVA
features, we obtain 8 potential predictive features.

4.4 Interpretation of the Potential Biomarkers

Now we want to show that the 8 selected features are potential predictive bio-
markers. This validation is based on the value of AUC and T-tests. Table 3 shows
how the 8 selected features are ranked w.r.t. AUC (univariate ROC curves). This
analysis was performed thanks to the ROCCET11 tool. If we only keep features
with an AUC higher than or equal to 0.75, and with significantly small T-test
values (i.e. smaller than 10E−5), we should exclude two features, namely “m/z
219” and “m/z 162”, leading to a short list of 6 features as potential predictive
biomarkers.

In multifactorial diseases such as T2D, a combination of a multiple “weak”
multivariate biomarkers instead of a single “strong” individual biomarker often
provides the required high levels of discrimination and confidence. Therefore, the
performances of the top ranked features (top 8 and top 6) previously obtained
are evaluated and compared (see Table 4) using the ROCCET RF tool. The
results show that the multivariate top features (top 8 and top 6) are very accu-
rate w.r.t. the single features (RF-top5, VarSelRF-top5, ANOVA-top5), with an
AUC higher than 0.81. For comparison, we select the six first features having
an AUC higher than 0.75, and a significant small T-test value for building a
multivariate ROC curve. The combination of these single features did not show
any improvement in prediction accuracy compared to the multivariate features.
Finally, prediction based on the six top ranked features (top 6) shows a misclas-
sification rate of 20.7% which is close to the rate of 19.8% obtained by RF-top5.

11 http://www.roccet.ca.

http://www.roccet.ca
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Table 3. The 8 best AUC ranked features.

Name AUC T-tests 95% CI

m/z 145 0.79 1.4483E-6 0.657 - 0.896

m/z 383 0.79 5.0394E-7 0.703 - 0.876

m/z 97 0.78 1.5972E-6 0.657 - 0.898

m/z 325 0.77 2.2332E-5 0.627 - 0.896

m/z 268 0.75 4.564E-6 0.614 - 0.866

m/z 263 0.75 5.996E-6 0.642 - 0.874

m/z 219 0.71 1.177E-4 0.162 - 0.798

m/z 162 0.65 0.00195 0.225 - 0.710

Table 4. The 5 predictive classifiers.

Name AUC 95% CI Misclassification (%)

RF-top5 0.83 0.749 - 0.923 19.8

VarSelRF-top5 0.841 0.765 - 0.924 22.5

ANOVA-top5 0.826 0.755 - 0.906 20.7

top 8 0.827 0.694 - 0.918 21.6

top 6 0.812 0.714 - 0.903 20.7

4.5 Visualization

For visualization purposes, we also used “heatmaps” as an easy-to-use inter-
active tool for exploring data and results, as heatmaps are commonly used in
metabolomics [17]. The rows of the heatmap table represent the features while
the columns correspond to the samples or individuals. The color gradient denotes
the normalized abundance of each feature among the samples. Heatmaps can be
used to visualize feature classification vs. individual classification. Hotter areas
indicate a higher “intensity” of the feature(s) among the individuals.

Figure 2 presents the heatmap corresponding to the 6×111 data matrix relat-
ing the 6 predictive features and the 111 individuals (healthy and not healthy
individuals), as a mean to visualize the classification of individuals w.r.t. pre-
dictive biomarkers. The relationships that can be discovered are very useful for
the experts in biology and allow to identify subgroups of individuals who share
same metabolite (linked to a feature) levels. For example, from the set of 6 pre-
dictive features (input), we identify that 4 of them, namely “m/z 383”, “m/z
325”, “m/z 97” and “m/z 145”, which are highly correlated according to Fig. 3,
characterize a group of individuals with intensity values ranging between 2 and
6 (this group of individuals is described by the highlighted rectangle in Fig. 2).
Meanwhile both remaining features have very low intensity values (between −4
and 0) for the same group of individuals, but, by contrast, are more present
among healthy individuals. These results show the need of combining markers
to be able to predict the disease within a whole heterogeneous population.
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Fig. 2. A heatmap matrix displaying the predictive power of the 6 best features w.r.t.
the 111 individuals. Colors represent the distribution of the data ranging from −6
to 6. From −6 to 0, the features are not representative, while from 0 to 6, the features
are more and more representative. The idea is to show the functional relationships
among the 6 features and the 111 samples by means of a color-coded matrix elements
and adjacent dendrograms. The class −1 represents healthy individuals while class 1
represents not healthy individuals (or patients). (Color figure online)

Fig. 3. The correlation network based on the 6 best predictive features.
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4.6 The Role of Symbolic KD Methods

A close examination of the relationships between the best predictive features
can contribute to a better understanding of the results Actually, quite strong
correlations and associations can be found within the 6 best features. This can
help the experts, firstly, in the identification of the structure of metabolites
related to predictive features and secondly, in the biological interpretation, as
metabolites from a same metabolic pathway should be linked.

Here, it is also time to go back to the role that can be played by symbolic
methods in such an hybrid knowledge discovery process. In this way, FCA can be
used for information retrieval and visualization purposes, and also to identify the
combination of classifiers (CCi) that shows the best behavior. Considering the
final set of six potential predictive features, we built a binary table corresponding
to the part of Table 1 with bold 1. The associated concept lattice can be seen in
Fig. 4, involving 5 combinations of classifiers, namely “ANOVA-pValue”, “MI-
SVM-RFE-Kappa”, “MI-SVM-RFE-Acc”, “RF-MdAcc” and “RF-MdGini” and
the 6 features. The interpretation of this concept lattice is still under discussion
before validation.

In a second time, we consider the 6 best predictive features and their rankings
w.r.t the 5 CCi above. Table 5 shows that RF-based techniques and ANOVA
usually give a good ranking to the 6 features by contrast with “MI-SVM-
RFE-MdAcc” and “MI-SVM-RFE-Kappa”. For example, “m/z 145” is ranked
first according to “RF-MdAcc”, “RF-MdGini”, second according to “ANOVA-
pValue”, 100th for “MI-SVM-RFE-Acc” and 125th for “MI-SVM-RFE-Kappa”.
The feature “m/z 268” is ranked 9th according to “RF-MdAcc”, 6th for “RF-
MdGini”, 168th for “MI-SVM-RFE-Acc”, 181th for “MI-SVM-RFE-Kappa”,
and 4th for “ANOVA-pValue”. Consequently, the top list combination of classi-
fiers for predictive biomarker identification from metabolomic data is based on
RF and ANOVA. However, the choice of appropriate feature selection methods
is highly dependent of the dataset characteristics. Moreover, it is also clear that,
so far, there is no universal combination of classifiers [8].

Based on these results, one recommendation could be to explore the com-
bination of ANOVA and RF-MdGini methods for reducing the dimensional-
ity of datasets in metabolomic data, especially when predictive biomarkers are
searched.

Table 5. Rankings of the 6 predictive features.

Feature RF-MdAcc RF-MdGini MI-SVM-RFE-Acc MI-SVM-RFE-Kappa ANOVA-pValue

m/z 145 1 1 100 125 2

m/z 383 3 3 40 39 1

m/z 97 2 2 63 67 3

m/z 325 5 5 38 37 8

m/z 268 9 6 168 181 4

m/z 263 8 7 28 27 5
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Fig. 4. The concept lattice of the 6 best predictive features.

5 Conclusion

In this paper, we presented a new hybrid knowledge discovery process for the
identification of relevant predictive biomarkers in metabolomic data. Such data
are usually highly correlated and noisy. Accordingly, the reduction of dimen-
sionality and feature selection are two tasks of the higher importance. We used
classifiers such as Random Forests, SVM and ANOVA, completed by the use of
measures for minimizing noise and feature correlations.

This study shows that different combinations of classifiers and measures can
be designed and that some of them are better applied to specific datasets, such as
metabolomic datasets. Several experiments were performed to assess the predic-
tive power of the best ranked features and visualization tools such as heatmaps
allowed a deeper interpretation of the results.

In addition, a symbolic knowledge discovery method such as Formal Concept
Analysis was used for visualization and interpretation purposes. Such an asso-
ciation of numerical and symbolic classifiers is original and should be further
studied. The present paper is a first step in this direction and more extended
theoretical studies and experiments remain to be done.
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Abstract. We study native advertisement selection and placement in
social media post feeds. In the prevalent pay-per-click model, each ad
click leads to certain amount of revenue for the platform. The probabil-
ity of click for an ad depends on attributes that are either inherent to the
ad (e.g., ad quality) or related to user profile and activity or related to the
post feed. While the first two types of attributes are also encountered in
web-search advertising, the third one fundamentally differentiates native
from web-search advertising, and it is the one we model and study in this
paper. Evidence from online platforms suggests that the main attributes
of the third type that affect ad clicks are the relevance of ads to preced-
ing posts, and the distance between consecutively projected ads; e.g., the
fewer the intervening posts between ads, the smaller the click probability
is, due to user saturation.

We model the events of ad clicks as Bernoulli random variables. We
seek the ad selection and allocation policy that optimizes a metric which
is a combination of (i) the platform expected revenue, and (ii) uncer-
tainty in revenue, captured by the variance of provisionally consumed
budget of selected ads. Uncertainty in revenue should be minimum, since
this translates into reduced profit or wasted advertising opportunities for
the platform. On the other hand, the expected revenue from ad click-
ing should be maximum. The constraint is that the expected revenue
attained for each selected ad should not exceed its apriori set budget. We
show that the optimization problem above reduces to an instance of a
resource-constrained minimum-cost path problem on a weighted directed
acyclic graph. Through numerical evaluation, we assess the impact of var-
ious parameters on the objective, and the way they shape the tradeoff
between revenue and uncertainty.

Keywords: Native advertising · Advertisement allocation · Social
media feeds · Mathematical modeling · Optimization · Shortest-path
problem

1 Introduction

Internet advertising in its early form more than 15 years ago consisted in spon-
sored search advertising, whereby personalized targeted advertisements were dis-
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played in certain order next to web-search results after a search query. The pro-
liferation of social media, micro-blogging and social-networking platforms has
created novel opportunities for advertising. Facebook, Twitter, Tumblr, Pinter-
est and other online platforms aim at user engagement by providing services
or showing content of interest, and they leverage the user base for marketing
campaigns run by advertisers who pay to have their advertisements displayed.
Advertising is performed by inserting sponsored posts in certain positions in the
post feed on the user screen as the user scrolls (Fig. 1). A feed or timeline is a
set of posts displayed on a user’s screen, such as news, posts, updates, photos
or videos. A sponsored post can be an ad adhering to the pay-per-click or the
pay-per-impression model, a sponsored news item, or a promoted item such as
a video or image.

The term coined for this type of advertising is native or in-stream advertising,
as the ad format is assimilated into that of other content shown and is least
intrusive for the user. Native advertising is becoming a multi-billion business
with projected spend at $6.4 billion by 2017 only in USA. Selection, ranking
and pricing of ads are realized with the Generalized Second-Price (GSP) auction
as in web-search advertising. Advertisers bid an amount to pay per ad click, and
ads are selected and displayed in prespecified positions in the post feed. Since
the user scrolls on the screen and presumably views ads at a rate of one ad every
some tens of seconds, a plausible scenario is that advertisers do not change their
bids in between consecutive ad positions. Hence, the auction is run once before
user scroll, and ads end up in their positions according to their rank as a result
of the auction.

Fig. 1. Native advertisements in Facebook and Twitter online post feeds.

Click probability of an ad depends on three types of attributes: those that
are inherent to the ad (e.g., ad quality), those related to the user profile and
activity, and those related to the post feed itself. The main inherent feature
of an ad is its quality, which is reflected into ad design format, nature of the
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advertised product, accompanying text, and quality of the landing page. On the
other hand, the relevance of the ad to the user profile captures the similarity of
an ad to user preferences, search activity, posted items, and so on. For example
an ad about a restaurant seems more appealing to a user that usually places
food-related posts than it is to a user that posts text about books.

The third type of attributes concern the placement of ads in the user post
feed. Based on evidence from online platforms [1–3], in native advertising, the
ad click probability may depend on: (i) Relevance (i.e. context similarity) of the
ad to preceding posts. For example, an ad about a hotel may be more likely to
be clicked if shown directly after a post discussing vacation than after one on
politics. (ii) Distance between consecutively shown ads. It is plausible that, the
fewer the intervening posts between two ads, the smaller the click probability
for the latter ad is, due to user saturation or fatigue effects. (iii) Position of the
ad in the stream. If an ad is shown earlier in a feed, it will be clicked with higher
probability than if shown later, since the user may quit scrolling.

In web search, the ranked list of ads is created through the GSP auction
and is displayed next to search results. The rank of an ad is determined by the
product of bid and click probability. On the other hand, in native advertising,
the notion of rank is less clear, since native ads are placed in between diverse
user posts. Further, in web search, the expected revenue of an ad decreases
with its rank in the list. In native advertising, this is not the case, since the ad
click probability depends on the precise placement of an ad in the post feed.
As explained above, ads that appear earlier in the feed are not necessarily more
likely to be clicked at, unless they are relevant to preceding posts or they are
projected sparsely enough. In addition, in web search, the click probability of an
ad depends only on its own rank and not on other ads. In native advertising the
situation is more complex. Placing an ad at a certain position in the feed affects
the click probability of this ad but also the click probabilities of subsequent ads.
If these are placed close to the first ad and close to each other in general, user
saturation due to frequent ad projection may lead to reduced click probability.

While the first two types of attributes above are also encountered in web-
search advertising, the third one fundamentally distinguishes native from web-
search advertising, and it is the one we model and study in this paper.

1.1 Our Contribution

We study optimal native ad selection and placement in social media post feeds,
and the way it impacts the platform revenue. A set of ads emerge out of a
GSP auction. Each ad comes with its apriori budget. In the prevalent pay-per-
click model, each ad click entails a given amount of revenue for the platform
and a corresponding amount of reduction for ad budget. The budget of each ad
is renewed after a certain time interval. The product of click probability and
revenue per ad click is the expected revenue from the ad. In our model, the
ad click events are represented by Bernoulli random variables, and the ad click
probability depends on the relevance of the ad to the preceding post, and on the
distance between consecutive ads in the feed.
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We seek the ad selection and allocation policy that optimizes a metric which
combines (i) platform expected revenue, and (ii) uncertainty in revenue, cap-
tured by the variance of provisionally consumed budget of selected ads. The
constraint is that the expected revenue attained for each selected ad should not
exceed its apriori set budget. Uncertainty in revenue should be minimum, since
this translates into reduced profit or wasted advertising opportunities for the
platform. An ad selection and allocation policy that would lead to few clicks and
small expected consumed budget is not preferable, since the revenue of the plat-
form is smaller that it could potentially be. On the other hand, an ad allocation
policy that would involve too many ad clicks while the ad budget is exhausted
is also not desirable, since it leads to wasted advertising opportunities for the
platform that are provided for free. That is, ad clicks that correspond to ad
budget beyond the apriori one do not incur additional revenue for the platform.
Furthermore, the expected revenue from ad clicking should be maximum.

To the best of our knowledge, both the problem and the model are novel in
the literature. For clarity purposes, we study the problem for the post feed of
one user. The model is amenable to multiple users as well as to extensions that
include the other two types of features i.e., those inherent to the ad or related
to user profile. The contributions of our work are as follows.

– We provide a model and mathematical formulation for the problem of min-
imizing a combined metric of (i) uncertainty in ad-click generated revenue,
which is quantified as the variance of provisionally consumed budget, and (ii)
total expected revenue. The constraint is that the expected consumed budget
for each selected ad should be no more than its apriori budget.

– We showcase how the relative positioning of ads in the post feed alters the ad
click probabilies and therefore the revenue and uncertainty about it, and we
specify the way in which the joint positioning of ads needs to be engineered
so as to achieve the optimization objective above.

– We show that the problem above is an instance of a resource-constrained
minimum-cost path one on an appropriately defined directed acyclic graph.
The solution path reflects the policy of selecting which ads to show in the feed
(out of a given set of ads), and in which positions to place them.

Through numerical evaluation results, we verify the tradeoff between revenue
and uncertainty. The work in [27] is the most relevant to ours. Compared to
that work, we consider the relevance of ads to posts as a factor that shapes
ad click probability. Further, rather than adhering to the cumulative effect of
projected ads on click probability as in [27], we assume that click probability of
an ad depends on the distance from the previously shown ad. This essentially
translates to a dependence of click probability on the average ad projection rate
i.e., the average number of posts elapsed until an ad is shown, which is a more
plausible scenario that captures user annoyance. The work [21] is also relevant,
in the sense that the measure of “regret” could be seen as similar to variance.
In that work, the emphasis is on controlling social-network diffusion through
user targeting without considering post feed aspects, while our work considers
ad placement in the post feed.
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The paper is organized as follows. In Sects. 2 and 3 we present the model,
problem formulation and solution. Numerical results are provided in Sect. 4,
literature overview is provided in Sect. 5, and the paper is concluded in Sect. 6.
In the sequel, we use the words “ad” and “advertisement” interchangeably.

2 Model

We consider a set T of T posts displayed on a user screen in a social-media
platform. Posts are displayed as a stream in a certain order e.g. most recently
occurred, and the user scrolls through the posts. There is also a set A of N
native ads with N < T . Typically, N = βT , 0 < β < 1, with β in the range 10−2

to 10−1. The set of ads A is the outcome of a bidding process among competing
advertisers, and the social media platform selects the ones to display and their
positions. Non-selected ads may be placed in subsequent feeds.

We assume the pay-per-click payment model; each time the user clicks on a
displayed ad a, the advertiser is committed to pay the platform an amount ba

which emerges from the auction. Each ad comes with an apriori budget Ba, and
each time an ad is clicked by a user, its budget is reduced by ba. The budget of
each ad is renewed after a certain time interval, and we focus our attention in
studying the ad allocation policy in such a time interval.

For each ad a ∈ A and post t ∈ T , let rat ∈ [0, 1] be the relevance of ad
a and post t. Relevance quantifies context similarity between the ad and the
post. For example, an ad about a hotel is more relevant to a post on vacation
than to one on politics. Relevance may be computed through cosine similarity
[4, Chap. 9] or other metrics on vectors of words that are representative of the
post and the ad. These may be defined e.g., with the Term-Frequency-Inverse
Document Frequency (TF-IDF) metric from information retrieval [4, Chap. 1].

We consider two main determinants of probability of click for an ad: ad
relevance to the preceding post (after which the ad is placed), and distance (in
elapsed posts) from the previously displayed ad. We assume that we learn from
historical data the probability p(r, d) that an ad is clicked if placed at distance
d posts from the previous ad, d = 1, . . . , T , and if it is displayed after a post
of relevance r to it. Logistic regression or other machine-learning tools can be
used to train a model and learn p(r, d). Recall that the ad click probability may
depend on other attributes such as user profile or ad quality, or its position
(early/late) on the stream. However, we choose not to include them here for
clarity of presentation, and because we wish to focus on attributes that are
peculiar to native advertising.

The nature of native advertising implies that, besides the style and layout
of the ad, the content of the ad should be assimilated to that of other content
shown on the platform e.g., the post feed. Hence, we consider the relevance of
the ad to the preceding post as an attribute that affects the ad click probability.
Further, the distance from the previously shown ad is essentially mapped to ad
projection rate i.e., average number of posts elapsed until an ad is shown. Our
rationale for selecting these attributes to map to ad click probability is spurred
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by realistic marketing principles in online social networks and media. Platforms
aim at high user experience while ensuring that ads obtain substantial attention.
For instance, Facebook does not show too many ads and too frequent so as to
prevent negative impact on user experience and engagement. It shows adequate
number of ads so as to consume their budget and have advertisers satisfied.

Let us index post positions by t = 1, . . . , T , and ads by a = 1, . . . , N . Define
binary variables xat, for a = 1, . . . , N , and t = 1, . . . , T , with xat = 1, if ad a is
placed after post t, and xat = 0 otherwise. An ad selection and allocation policy
is a NT × 1 ad allocation vector x = (xat : a ∈ A, t ∈ T ). For ad a, let tx(a) be
the post after which ad a is placed according to policy x. For ad a, define the
distance from the previous ad, da(x), for allocation policy x, as

da(x) =

⎧
⎪⎨

⎪⎩

tx(a), if tx(a) = min
a′∈A

tx(a′),

tx(a) − max
a′∈A:

tx(a′)<tx(a)

tx(a′), otherwise . (1)

If an ad is the first one placed in the feed, its distance is just the index of
the preceding post (after which the ad is placed). Otherwise, the distance is the
difference between the index of the preceding post of that ad, and that of the
preceding post of the immediately previously placed ad. We define da(x) = 0 if
ad a is not allocated in the feed, i.e. if xat = 0 for all t.

Given an ad allocation policy x, each allocated ad a has a click probability
p(rat, da(x)). For notational simplicity, and with a little abuse of notation, let
us in the sequel use notation pat(x) to denote p(rat, da(x)). The event of click
of each allocated ad a when placed after post t according to allocation policy x
may be represented by a Bernoulli random variable Xat(x) having as parameter
the probability pat(x). Thus,

Xat(x) =

{
ba, w.p. pat(x),
0, w.p. 1 − pat(x),

(2)

with expectation E[Xat(x)] = bapat(x) and variance

var[Xat(x)] = b2a pat(x) · (1 − pat(x)) . (3)

Denote by R(x) the random variable that shows platform revenue as function
of the allocation policy x, with

R(x) =
N∑

a=1

T∑

t=1

Xat(x)xat . (4)

The total expected revenue for the platform for an ad allocation policy x is

E[R(x)] =
N∑

a=1

T∑

t=1

bapat(x)xat . (5)
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The underlying assumption in (5) is that the Bernoulli random variables that
show click events of different ads in the feed are independent from each other.
This is a plausible assumption, since the probability that an ad is clicked does
not seem to depend on whether a previous ad was clicked or not. On the other
hand, the model recognizes that the probability of ad click depends on how many
posts elapse since the appearance of the most recent ad in the feed, and thus it
captures in a sense the annoyance caused to the user; this is reflected through
the dependence of click probability on distance. The variance of revenue is

var[R(x)] =
N∑

a=1

T∑

t=1

var[Xat(x)]xat =
N∑

a=1

T∑

t=1

b2apat(x)(1 − pat(x))xat . (6)

3 Problem Formulation and Solution

We are interested in the ad selection and allocation policy x∗ that minimizes a
metric of the form, (var[R(x)] − λE[R(x)]), where λ ≥ 0 is a calibration para-
meter that determines the relative emphasis on total expected revenue and its
variance. The rationale for selecting this metric is that it arises in the constrained
optimization problems of maximizing expected revenue subject to keeping vari-
ance of revenue less than a given value, and that of minimizing variance of
revenue subject to keeping expected revenue larger than a value. The optimal
policy selects a number of ads to place in the feed and may place an ad several
times in the feed. The number of selected ads may be small or large, depend-
ing on what is better for the objective above. The optimal policy may place
an ad more times after posts that induce small click probability or fewer times
after posts that induce larger click probability. An allocation policy x changes
the expected values and the variances of individual random variables that cor-
respond to placed ads in the feed, and hence it affects E[R(x)] and var[R(x)].
There exists a non-trivial coupling in the problem. The probability associated
with a certain ad placed depends on the specific position (post) through the
ad-post relevance, but it also depends on the post distance from the previously
placed ad.

If λ = 0 or it is very small, the objective is to minimize deviation of revenue
from the expected one. As the total expected revenue has no or little weight in
the objective, the platform is selective in choosing a subset of ads to allocate in
the feed such that the uncertainty in revenue is minimized. A large uncertainty
translates to potentially reduced revenue or to wasted advertising opportuni-
ties for the platform. Specifically, an ad allocation policy that would lead to
an ad clicking profile with few clicks would result in a smaller expected con-
sumed budget than the one that could potentially be consumed. On the other
hand, an ad allocation policy with an ad clicking profile with too many clicks is
also not desirable, since it would translate into wasted advertising opportunities
and advertising service that the platform would provide for free. That is, ad
clicks that correspond to ad budget beyond the apriori defined one do not incur
revenue until the budget is renewed. If λ = ∞ or it is very large, the aim is to
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Ads

Posts

t=1 t=2 t=3 t=4 t=5

a=1 a=2 a=3

Fig. 2. Example of a feasible ad placement in T = 5 posts. Ad 1 is placed after post
1, ad 2 is placed after post 3, and ad 3 is placed after post 4. The expected revenue
for this assignment is b1p(r11, 1) + b2p(r23, 2) + b3p(r34, 1). For example, for ad 2, click
probability is p(r23, 2) since the ad is placed after post 3 (hence the relevance factor
r23) and at distance d2 = 2 posts from the previous ad, ad 1. Here, each ad is placed
in exactly one position in the feed; in our case, an ad may be repeated.

maximize total expected profit. In that case, the platform does not place empha-
sis on revenue uncertainty, and hence it is more tolerant to wasted advertising
opportunities.

The problem of ad selection and allocation so as to minimize the combined
metric above is formulated as follows:

min
x

(var[R(x)] − λE[R(x)]) = min
x

N∑

a=1

T∑

t=1

(
b2apat(x)(1−pat(x))−λbapat(x)

)
xat

(7)
subject to:

T∑

t=1

bapat(x)xat ≤ Ba, ∀ ad a ∈ A , (8)

and
N∑

a=1

xat ≤ 1, ∀ post t ∈ T , (9)

with xat ∈ {0, 1}. Constraint (8) says that for each ad, the expected revenue
from policy x should be no more than its apriori budget, Ba. Further, constraint
(9) says that at most one ad is placed after a post. Figure 2 depicts an example
allocation policy of ads to posts, where each ad is displayed exactly once.

Problem (7)–(9) is a non-standard one. If ad positions were known, distances
da(·) between ads would also be known, and the problem would be to select
the ads to place in these positions. Even in that case, the problem would be a
generalized assignment (GAP) one on the bipartite graph of nodes A ∪ T with
link weights b2apat(1 − pat) − λbapat, for each link connecting ad a and post t.
The GAP problem is already NP-Hard [5]. The need to determine distances da(·)
further complicates the problem, since the decision on distance da(·) of an ad a
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(1,2)

s
q

)3,1()1,1(

(2,1) (2,2) (2,3) 

Fig. 3. A graph G corresponding to N = 2 ads and T = 3 posts that illustrates
the mapping of the ad selection and placement problem to a shortest-path one. For
example, if the shortest path is s → (1, 3) → (2, 1) → q, this means that placing ad 1
after post 3 and ad 2 after post 1 minimizes the value of objective (7).

would affect the weights of links emanating from ad a but also the weights of
links for the ad to be placed after ad a.

3.1 Graph Model and Solution

We construct the following directed graph G. For each pair of ad a ∈ A and
post t ∈ T , we define a node (a, t). The easiest way to visualize it is if we place
nodes (a, t) in rows and columns; for each ad a, nodes (a, t), t = 1, . . . , T are in
one row, and nodes corresponding to different ads are in different rows. Node
(a, t) represents the tentative placement of ad a after post t. There also exist
two other nodes s and q.

Next, we add links as follows. We add a link from each node (a, t) to nodes
(a′, t′) with t′ < t. That is, for each ad a, we add links between nodes (a, t) and
(a, t′) for t′ < t. We also add links between (a, t) and (a′, t′), for a′ �= a and
t′ < t. The weight of each link that points from node (a, t) to (a′, t′) is

w(a,t),(a′,t′) = b2ap(rat, t − t′)[1 − p(rat, t − t′)] − λbap(rat, t − t′) . (10)

We also add a link from node s to each node (a, t) in the graph with weight 0
and a link from each node (a, t) to q with weight

w(a,t),q = b2ap(rat, t)[1 − p(rat, t)] − λbap(rat, t) . (11)

For each node (a, t), let O(a,t) be the set of outgoing links of node (a, t), i.e. the
set of links that originate from (a, t). The resulting graph is a weighted directed
acyclic graph (DAG).

Main observation. A path from s to q in the weighted graph G corresponds
to an ad selection and placement policy. A minimum-cost path from s to q
corresponds to a policy that leads to minimum value in the objective (7). Nodes
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(a, t) that are part of the minimum-cost path correspond to ads a that are
assigned in positions t. An example graph G for N = 2 ads and T = 3 posts is
shown in Fig. 3.

First, consider the problem with the optimization objective (7) subject only
to constraint (9), while the ad budget constraint (8) is relaxed. From the dis-
cussion above, we deduce that finding a policy that minimizes the objective (7)
subject to constraint (9) is equivalent to finding a minimum-cost path from s
to q in the graph above. The minimum-cost path from s to q can be found
by running the Bellman-Ford (BF) algorithm, which also applies to graphs with
negative weights, as long as there are no negative cycles. In our case, the graph is
a DAG with possibly negative link weights, but with no cycles. In fact, a variant
of the BF algorithm can find the minimum-cost path for a DAG in Θ(|V | + |E|)
time, where |V | is the number of nodes and |E|is the number of links of the graph
[6, Sect. 24.2]. In G, there exist (NT + 2) nodes and O(NT 2) number of links,
thus the algorithm runs in O(NT 2) time.

Now, consider our problem with the optimization objective (7) subject to
constraints (8) and (9). In our formulation, the expected consumed budget for
each ad should not exceed Ba. We associate each ad a with a “resource type”
a. For link e ∈ O(a,t) from node (a, t) to node (a′, t′) let ad a have budget
consumption de

a = bap(rat, t−t′) while other ads a′ �= a have consumption de
a′ = 0

for that link. Furthermore, link e from node (a, t) to node q has consumption
level de

a = bap(rat, t) for ad a, and 0 for all other ads. Links from node s to nodes
in the graph have consumption level equal to 0 for all ads. The total consumption
level for ad a in a path p is da(p) =

∑
�∈p d�

a.
A resource-constrained path p (where “constrained” refers to the total con-

sumed budget of a resource type, i.e., ad in it) from s to q is feasible, if and
only if da(p) ≤ Ba for all ads a ∈ A, i.e. if it comprises links such that the total
consumed budget for each ad included in the path is more than Ba. For ads that
are not included in the path, the inequality trivially holds since these ads do not
consume budget. The problem in this case is equivalent to a resource-constrained
shortest-path one, which is NP-Hard [5]. There exist several heuristics proposed
in the literature for solving the problem, see e.g., [7,8].

4 Numerical Evaluation

4.1 Setup and Data

We approach user ad click behavior as an instance of the two-class probabilistic
classification problem, where the two classes C0 and C1 correspond to the alter-
natives of not clicking and clicking an ad respectively. The way the user weighs
the attributes associated with an ad a (namely the relevance ra to the post,
and the distance da from the previous ad) so as to reach a decision is modeled
through a logistic regression model. Given a vector of values x for the two ad
attributes, the ad is clicked with probability

Pr(C1|x) =
1

1 + e−w·x = σ(w · x), (12)
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where σ(y) = (1 + e−y)−1 denotes the logistic sigmoid function, while w · x
denotes vector dot product, and w is the vector of attribute weights. These
weights are learned from historical data and capture the significance that the
user places on the two different attributes and their values in reaching a decision.
Similarly, ad a is not clicked with probability Pr(C0|x) = 1 − Pr(C1|x). An
important property of logistic regression is that the objective for learning weights
w is convex, so there are no local optima involved.

Real datasets for native advertising are scarce to find, and studies on native
ads are either purely theoretical with no data experiments, e.g., [23,27], or they
use company proprietary data, e.g., [24,25] [26, Chap. 7]. Hence in this work, we
employ synthetic datasets to justify our claims and test our model. The training
dataset consists of triads of the form (ra, da, ca), where each triad represents an
ad a. In each triad, ra ∈ [0, 1] is the relevance to the post after which the ad was
placed, while da ∈ [0, 1] is the distance from the previous ad, normalized with
a defined maximum possible distance between two ads, and ca ∈ {0, 1} denotes
whether the ad a was clicked or not. To set the value of ca to 0 or 1, we calculate
metric 0.5 × ra + 0.5 × da, and if this is greater than a configurable threshold,
which we take here to be equal to 0.75, then we set ca = 1, else we set ca = 0.

The classical loss function minimization approach with regularization was
used to train our algorithm [9]. For training, we generate 50 triads and for testing
we generated 1, 000 (r, d)-pairs. Given the trained logistic-regression model, we
estimate the ad click probabilities through the sigmoid function. We create a
pool of 50 ads and in each experiment, we select T = 20 posts and we draw from
the pool a certain maximum number of ads, Kmax to include in the feed. For
simplicity we take the bid ba = 1 and the apriori budget Ba = 5 for each ad.

The resource-constrained minimum-cost problem (7)–(9) was solved with the
Lagrangian relaxation heuristic from [7], and the parameters were selected so
that problem feasibility was not an issue. Based on [7], we can show that the

Fig. 4. Variance of revenue as a function of λ for different values of ad pool size,
Kmax = 2, 5, 8.
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Fig. 5. Expected revenue as function of λ for different ad-post relevance.

algorithm runs in O(N2T 4 log4(NT 2)) time. Note that the algorithm does not
need to solve the problem in an online fashion, but rather it pre-computes the
position of ads in a post feed, hence the algorithm requirements in execution time
(and thus, complexity) are not so stringent. Although the scale of the problem
will be larger in practice, our conjecture is that the trends will remain the same,
as only the associated parameters of the optimization problem will change.

4.2 Numerical Results

In the first set of numerical experiments, we assess the impact of calibrating
parameter λ. In Figs. 4 and 5 we depict var[R] and E[R] respectively as a function
of λ for a maximum number of ads to be placed in the feed Kmax = 2, 5 and 8. For
each value of λ, we solve the resource-constrained shortest-path problem, and for
the solution path we measure var[R] and E[R] by summing the corresponding
link costs over path links. Each value in the plot corresponds to the average
value over ten experiments, where for each experiment the pool of ads and the
set of T = 20 posts are varied. Both the variance of revenue and the expected
revenue are seen to increase as λ increases up to a certain value i.e., λ = 2, while
for values λ > 2, the respective values of variance and expected revenue are
almost stabilized, or they change slightly. This fact demonstrates the tradeoff
that, if the platform wishes to increase revenue, it would have to tolerate higher
variance, i.e., higher uncertainty in revenue. As λ increases, link costs decrease,
and therefore more ads tend to be placed in principle in the feed. This results
both in higher var[R] and E[R].

The second observation from Figs. 4 and 5 is that as the value of Kmax

increases, both the expected revenue and the revenue variance increase, albeit
the difference in the increase of these metrics decreases, as Kmax increases.
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In a second set of experiments, in Figs. 6 and 7, we plot var[R] and E[R]
respectively as function of λ for different values of average ad-post relevance,
which were produced by changing the parameters of a uniform distribution with
which we generated different ads. The value of Kmax was 5. We observe that a
higher ad-post relevance resuts in higher var[R] and E[R] as expected, because
of the raise in click probability. A moderate change in relevance seems capable
of making a difference both in expected revenue and revenue variance. The same
behavior as that in Figs. 4 and 5 is observed with respect to λ.

Fig. 6. Variance of revenue as function of λ for different ad-post relevance.

Fig. 7. Expected revenue as function of λ for different ad-post relevance.
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5 Related Work

In sponsored-search auctions that are used in web search advertising, ads are
ranked based on expected profit, which is the product of bid and click-through-
ratio (CTR), i.e., the probability that the ad will be clicked. When the user
clicks on an ad at the k-th position with bid bk and CTRk, the advertiser pays
bk+1×CTRk+1 according to the Generalized Second-Price (GSP) auction [10,11].
In [12], a variation of GSP is presented, where each ad bid undergoes a fine, equal
to a metric of negative impact of the ad on user experience. Advertisers that are
charged with large fines are less willing to enter the competition, and thus the
platform becomes more attractive to other advertisers. Under certain conditions,
the winners’ gains in this new less crowded setting may supercede payments due
to fines, and thus overall winners are benefited.

A recent thread concerns ad allocation through stochastic optimization. In
[13], the optimal-auction framework is used for the single-slot revenue maximiza-
tion. The optimal policy is to allocate the slot to users in decreasing order of
qiνi where qi, νi are the selling probability and valuation of user i. In [14], the
authors use Lyapunov optimization for the problem of maximizing long-term
average revenue for a web-search service provider by dynamically allocating ads
to webpage slots in the presence of dynamic keyword query arrivals, subject
to a long-term average budget constraint. The work [15] studies the problem
of allocating budget-constrained advertisers in each keyword auction round so
as maximize the likelihood of ad click or to reduce advertiser cost per click.
Dynamic actions under limited budget over the entire horizon are studied in [16]
through the lens of multi-armed bandit theory.

Another thread that relates to advertising is social influence, which involves
positive externalities, namely that the benefit from influencing a user comes also
from indirect influence of that user onto others. The seminal paper [17] for-
mulates the problem of influence maximization as one of selecting a subset of
users (seeds) to advertise to so that the cascading effect in the graph reaches the
maximum number of users. They show that the problem is NP-Hard and pro-
pose a greedy algorithm with constant-factor approximation guarantees based
on sub-modularity properties of the set function of anticipated influence. Vari-
ous extensions have been considered, e.g., on optimal marketing strategies that
include pricing and the sequence of offers to social-network users that may or
may not respond strategically [18,19], and on user targeting for global opin-
ion maximization under a game-theoretic model for opinion formation [20]. The
work [21] studies ad allocation to social-network users under a certain diffusion
model and topic-based influence. The host aims on leveraging virality to improve
advertising efficacy, while avoiding giving away free service due to uncontrolled
virality. The problem is to allocate ads to minimize regret, defined as the absolute
difference between the expected revenue and the budget of each ad. Social dif-
fusion in ads is also considered in [22], where the joint problem of targeting ad
impressions to users and of scheduling them in time is studied with the aim
to maximize expected number of clicks. The work [23] considers the problem
of selecting a set of ads and the number of times to display each ad so as to
minimize the error in estimating the true CTR of ads.
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Native ads have spurred interest of the research community in the last two
years or so, aiming at improved used experience, see e.g., [24,25] [26, Chap. 7].
The works [24,25] aim to predict ad quality by focusing respectively on post-click
user behavior on the ad landing page, and on user feedback about offensive ads.
In a related work [27], the problem of ad placement in a stream is addressed.
The model involves a probability that the user will reach to the ad, which is
decreasing function of the number of ads shown previously. Given a set of ads, a
reward and a set of candidate positions to place each ad, the objective is to find
an ad placement that maximizes total reward. An approximation algorithm is
proposed, albeit the computational complexity of the problem is not character-
ized. The authors also use the optimal-auction framework to design a mechanism
that is truthful and approximately optimal in terms of revenue.

6 Conclusion

We study native advertisement selection and placement in the post feed of a user,
and we optimize a metric that combines expected platform revenue and revenue
uncertainty. Ad click probabilities are derived with a machine-learning model
that maps the key attributes of post-ad relevance and distance from the previous
ad to click probability. Next, these ad click probabilities are engineered and
adapted through ad selection and placement in the feed to achieve the objective.
We showed that the problem becomes a resource-constrained minimum-cost path
one.

To the best of our knowledge, both the problem and the model are novel.
The model is amenable to various extensions such as the one for multiple user
feeds, thus encapsulating the relevance of an ad to personalized user profile as a
factor that shapes click probability. In that case, personalized user models for ad
click behavior would be needed. Other attributes that shape ad click probability
could be included in the model as well, such as ad quality. We are currently in
the process of designing a larger-scale real-life experiment with training and test
data that come through some hundreds of real users on tentative Facebook feeds
and ads presented to them through a mobile app.
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Abstract. Learning from datasets with a massive number of possible
features to obtain more accurate predictors is being intensively stud-
ied. In this paper, we aim to perform effective learning by using the L1
regularized risk minimization problems regarding both time and space
computational resources. This is accomplished by concentrating on the
effective features from among a large number of unnecessary features.
To achieve this, we propose a multithreaded scheme that simultaneously
runs processes for developing seemingly important features in the main
memory and updating parameters regarding only the important features.
We verified our method through computational experiments, showing
that our proposed scheme can handle terabyte-scale optimization prob-
lems with one machine.

1 Introduction

In this paper, we consider the regularized risk minimization problems using
L1 regularization, which is formulated as minimization of the following convex
function [12]:

P (w) � ‖w‖1 + C

n∑

i=1

�(〈w, φ(xi)〉 , yi). (1)

Here, xi ∈ X and yi ∈ Y represent the input and output of a datapoint,
w ∈ R

p is a vector of parameters, � : R × Y → R defines a convex function
for any given y ∈ Y, and φ : X → R

p explicitly denotes a certain feature func-
tion. This formulation includes many important problems in machine learning.
For example, �(〈w, φ(xi)〉 , yi) = (〈w, φ(xi)〉 − yi)

2 corresponds to an equiva-
lent problem in the LASSO introduced in [16]. The setting of �(〈w, φ(xi)〉 , yi) =
log (1 + exp (−yi 〈w, φ(xi)〉)) corresponds to L1 logistic regression in binary clas-
sification and �(w,xi, yi) = −〈w, φ(xi) ⊗ yi〉 + log

(∑
y exp (〈w, φ(xi) ⊗ y〉)

)

corresponds to multiclass classification.
With the availability of a larger number of datapoints because of recent devel-

opments in information technology, it has become important to consider larger
number of features to avoid underfitting, fully utilize data, and enhance the per-
formance of a predictor. Recent intensive research has revealed that complex
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 604–618, 2016.
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multilayer nonlinear models perform better than simple linear models without
overfitting despite a much larger hypothesis space [7]. This suggests that prepar-
ing a large class of feature functions and adaptively choosing informative feature
functions can enhance the performance of the predictor for linear models as well.

Conventionally, when we solve (1) in practice, the process of computing
Φ � {φj(xi)}1≤i≤n,1≤j≤p, and finding a solution for the formulation are sepa-
rated. We develop the features φj(xi) for all i and j before optimization (typically
into the lower level of memory such as hard disk), and run an optimization algo-
rithm to find the solution. However, when the number of features is extremely
large, their extraction leads to huge memory costs, associated with storing all
the values of Φ, and substantial computational time costs. Especially, when Φ
cannot fit into the main memory, running an optimization algorithm with fre-
quent accesses to lower levels of memory is impractical. Moreover, finding the
solution requires considerable computational time because of the increasing size
of the optimization problem. Furthermore, designing feature spaces containing
an exponentially large number of features is straightforward in most cases, as
discussed in Sect. 3.1. Therefore, the entire process (or scheme), including the
optimization algorithm and methods of developing the feature Φ, needs to be
efficient.

The block minimization scheme presented by Yu et al. was the first scheme
to propose solving of the regularized risk minimization problem when the data
does not fit in the memory [20]. In this scheme, it was proposed that the data
would be split into several blocks, each containing a relatively small number of
datapoints to fit each block into a higher level of memory. By considering both
primal and dual variables, they obtained a subproblem in which only datapoints
in a single block can be accessed at a time. They showed that the global solution
can be achieved by solving subproblems successively and repeatedly. Matsushima
et al. proposed the dual cached loop method, which uses multithreading to run a
reading thread that accesses a disk to read each datapoint and a training thread
that updates parameters simultaneously [8]. The aforementioned schemes are all
focused on L2 regularized risk minimization problems, in which it is preferable
to solve the dual problem rather than the primal problem. For the L1 regularized
problem, which has rarely been focused upon, it is preferable to solve the primal
problem than the dual problem.

From an algorithmic perspective, a key insight that has been used to scale up
this risk minimization problem is that there are several optimization methods
that do not require all the information within Φ at once. Stochastic gradient
methods [14] are widely used in large-scale optimization problems because they
require only one instance at a time. Similarly, coordinate descent methods [9]
can update parts of parameters, j-th component of w in this case, with only
information from the j-th column of Φ, as explained in Sect. 2. Moreover, the
L1 regularization problem (1) implies that most features are redundant and
contribute no information to the estimated predictor. In particular, the following
statement is said to hold true [14].
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Property 1. Let w∗
j be the j-th component of the solution of (1) based on (Φ,y).

Further, let J∗ represent columns {j|w∗
j �= 0} and ΦJ∗ be a matrix containing

only the j-th column such that j ∈ J∗. Then, ŵ∗
j , the component of the solution

of (1) based on (ΦJ∗ ,y) corresponding to j, coincides with w∗
j .

This implies that the intrinsic size of the optimization problem (1) is much
smaller than it appears; the optimization problem can be reduced, given the
information in which components of the parameter vector will be annihilated.
This suggests that computational efforts to not only optimize by considering
such parts of the parameter but also to develop such features and load them
into memory are inefficient.

The dual cached loop scheme, similar to the block minimization scheme, can
be easily integrated into the stochastic gradient descent (SGD) method, although
this is not explicitly indicated in prior research [8]. Therefore, the L1 regularized
problem when the dataset cannot fit into memory can be solved using the SGD
method on the basis of the aforementioned schemes. However, as SGD requires
access to one row of the data matrix, we cannot exploit the fact that the intrinsic
size of the optimization problem is much smaller than it initially appears.

In this study, we develop a scheme to efficiently compute the solution of
(1) with a large value of Φ that cannot fit in the main memory by utilizing
structures of coordinate descent algorithms and L1 regularization problems. We
call our scheme feature cached loops (FCL). In this scheme, two threads run
asynchronously and simultaneously: one for extracting features and another for
updating the solutions to the optimization problem. We thus aim to efficiently
extract effective features for the temporal values of parameters. As discussed in
Sect. 3.2, this algorithm can be said to operate on a principle similar to that
used in boosting algorithms [13].

The remainder of this paper is organized as follows. Section 2 reviews the
coordinate descent method, which is the most important building block of our
scheme. In Sect. 3, we explain our scheme in detail and discuss similarities with
the boosting algorithm. Section 4 presents the experimental evaluation of our
method. Finally, Sect. 5 concludes this paper.

2 Coordinate Descent Method

Coordinate descent methods are well-known optimization methods used for min-
imizing convex functions. Recently, several studies have highlighted the meth-
ods computational efficiency, fast theoretical convergence rate, and suitability
to large scale learning [1,9]. Coordinate descent methods aim to find the solu-
tion by selecting one component of the parameters, wj in case of (1), and then
solving the one-variable optimization problem to update wj . This procedure is
repeated for each choice of a parameter component. The coordinate choice can
be random, cyclic, or sampled from an arbitrary distribution. In the LASSO
formulation, that is, minimizing (1) when �(〈w, φ(xi)〉 , yi) = (〈w, φ(xi)〉 − yi)

2,
the one-variable optimization can be solved analytically as follows:
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wt+1
j = argmin

wj

P (wt + (wj − wt
j)ej)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt
j −

∑
i(〈wt,φ(xi)〉−yi)φj(xi)+

1
2C∑

i φ2
j (xi)

wt
j >

∑
i(〈wt,φ(xi)〉−yi)φj(xi)+

1
2C∑

i φ2
j (xi)

wt
j −

∑
i(〈wt,φ(xi)〉−yi)φj(xi)− 1

2C∑
i φ2

j (xi)
wt

j <
∑

i(〈wt,φ(xi)〉−yi)φj(xi)− 1
2C∑

i φ2
j (xi)

0 o.w.

In binary logistic regression, �(〈w,xi〉 , yi) = log (1 + exp (−yi 〈w, φ(xi)〉)),
implying that we cannot solve the subproblem analytically. Therefore, it is sug-
gested that the quadratic approximation of the function P (wt+δej) ∼ P t

j (wt
j+δ)

must be utilized as follows [21]:

P t
j (wt

j + δ) � |wt
j + δ| + ∇jL(wt)δ +

1
2
∇jjL(wt)δ2,

where

∇jL(w) � P t′
j (wt

j) = C

n∑

i=1

yiφj(xi)
1 + exp (yi 〈w, φ(xi)〉) ,

∇jjL(w) � P t′′
j (wt

j) = C
n∑

i=1

φ2
j (xi) exp (yi 〈w, φ(xi)〉)

(1 + exp (yi 〈w, φ(xi)〉))2
.

To stabilize the algorithm, a sufficient decrease condition is examined while the
stepsize βd is geometrically discounted [17]. This can be said to be the modified
version of Armijo’s rule and is denoted as

P (w) − P (w + βδej) ≥ σβ
(∇jL(wt)δ + |wj + δ| − |wj |

)
, (2)

where 0 < β ≤ 1 and σ > 0 is a fixed value throughout the optimization. First,
condition (2) is verified by setting β = 1 and δ = argmin P t

j (wt
j + δ). Next β is

decreased geometrically until (2) is satisfied. The resulting update is written as

wt+1
j = wt

j + βδ. (3)

A remarkable property of coordinate descent methods regarding the solving
of (1) is that we only need to look at φj , one column of Φ, while updating. In
LASSO, by monitoring ui = 〈w, φ(xi)〉, the update can be given as

wt+1
j =

⎧
⎪⎪⎨

⎪⎪⎩

wt
j −

∑
i(ui−yi)φj(xi)+

1
2C∑

i φ2
j (xi)

wt
j >

∑
i(ui−yi)φj(xi)+

1
2C∑

i φ2
j (xi)

wt
j −

∑
i(ui−yi)φj(xi)− 1

2C∑
i φ2

j (xi)
wt

j <
∑

i(ui−yi)φj(xi)− 1
2C∑

i φ2
j (xi)

0 o.w.

,

where Ωj � {j|φj(xi) �= 0} and ui is updated as

ut+1
i = ut

i + (wt+1
j − wt

j)yixij
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in O(|Ωj |) time. Similarly, in case of logistic regression, we can compute ∇jL(wt)
and ∇jjL(wt) by monitoring ut

i = exp (yi 〈wt, φ(xi)〉),

∇jL(wt) = C
∑

i∈Ωj

yiφj(xi)
1 + ut

i

, (4)

∇jjL(wt) = C
∑

i∈Ωj

ut
iφ

2
j (xi)

(1 + ut
i)

2 , (5)

each time we update ui as

ut+1
i = ut

i exp(βδyixij)

This holds for any function of form � that depends only on 〈w, φ(x)〉. We main-
tain ut

i = exp (yi 〈wt, φ(xi)〉) in logistic regression problems to reduce the num-
ber of exponential and log computations.

Another remarkable property of coordinate descent methods is that it is pos-
sible to solve the optimization problem efficiently by concentrating on updating
parameters that are not zero at the optimal solution, i.e., the value of a para-
meter remains at 0 after a certain update point for j such that w∗

j = 0 [21]. In
other words, for sufficiently large t,

−1 < C∇jL(wt) < 1 (6)

will hold for all j, such that w∗
j = 0. This suggests that it is unlikely to observe

a j such that

−1 + M t < C∇jL(wt) < 1 − M t (7)

and w∗
j �= 0 holds simultaneously for a given large t. Here, M t is an amount

that expresses a suboptimality level or a closeness to the optimal solution. The
value of M t that was used in the implementation of the L1 problem solver in [5]
(liblinear) is formally written as

M t �
maxτ=�t/n�n−n+1,...,�t/n�n vτ

j

n
,

where

vt
j �

⎧
⎪⎨

⎪⎩

|∇jL(wt) − 1| wt
j < 0

|∇jL(wt) + 1| wt
j > 0

max{∇jL(wt) − 1,−∇jL(wt) − 1, 0} wt
j = 0.

3 Proposed Scheme

In this section, we explain our proposed FCL scheme, which can handle datasets
with large feature spaces. This scheme is flexible because the class of basis func-
tions (feature space) can be arbitrary. Therefore, after introducing our FCL
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Algorithm 1. Pseudo-algorithm of writer thread in binary L1 logistic
regression
1: J ← ∅, Φ ← ∅

2: share J, Φ, w, u with Algorithm 2
3: while Algorithm 2 running do
4: randomly choose j ∈ {1, . . . , p}
5: extract φj = {φj(xi)}
6: compute ∇jL(w) using (4)
7: if C|∇jL(w)| > 1 then
8: Φ ← Φ ∪ {φj}
9: J ← J ∪ {j}

10: end if
11: while |J | > capacity of feature cache do
12: randomly select j′ ∈ J
13: J ← J \ {j′}
14: Φ ← Φ \ {φj′}
15: end while
16: end while
17: // no output

scheme, we show two cases in which combinatorial features and random Fourier
features are applied. In addition, we discuss the relationship between our algo-
rithm and the boosting algorithm in Sect. 3.2.

In the FCL scheme, two types of threads are prepared asynchronously: the
writer and trainer threads. The writer thread sequentially reads datapoints
and writes a column of the matrix Φ into the main memory repeatedly. If the
extracted column does not improve the current solution, it is discarded without
being shared with the trainer thread to save space in the limited memory. The
condition for discarding the column can be written as

−1 < C∇jL(wt) < 1. (8)

Note that this amount can be easily computed by allowing the value of u to be
shared. If the amount of memory used by the columns of Φ exceeds a prespecified
amount, the thread discards columns randomly and places a new column in the
freed location. The pseudo-code of this algorithm is shown in Algorithm 1.

In contrast, the trainer thread selects one random column uniformly per-
forms the standard coordinate descent method, explained in Sect. 2. If the coor-
dinate is not effective for learning, that is, if (8) holds, the column is discarded
from the memory. Note that this condition (8) is stricter than that used in [5]
and other studies as discussed in the previous section, and thus may not correctly
discriminate against columns that correspond to 0 in the optimal solution. This
enables the coordinate descent to update in the trainer thread and become
more efficient, while the entire scheme is still guaranteed to reach the optimal
solution because the reader thread repeatedly checks the condition in (8) for
all j. The pseudo-code of this algorithm is shown in Algorithm 2.
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Algorithm 2. Pseudo-algorithm of trainer thread in binary L1 logistic
regression
1: w ← 0, u ← 1
2: share J, Φ, w, u with Algorithm 1
3: while not converged do
4: randomly choose j ∈ J
5: compute ∇jL(w), ∇jjL(w) using (4) and (5)
6: if C|∇jL(w)| < 1 then
7: J ← J \ {j}
8: Φ ← Φ \ {φj}
9: end if

10: δ ← argmin |wj + δ| + ∇jL(w)δ + 1
2
∇jjL(w)δ2

11: while (2) does not hold do
12: δ ← βδ
13: end while
14: wj ← wj + δ
15: ui ← ui exp (δyiφj(xi)) for i ∈ Ωj

16: end while
17: output w

3.1 Examples of Large Feature Spaces and Their Relation
to Learning with Kernels

In this section, we show examples of feature spaces containing large number of
features.

Use of Combinatorial Features. When xi is already embedded in a Euclid
space, that is, X = R

l for some natural number l, we can create a new feature
by combining their components.

φj(xi) = cj

∏

k

〈
xi, ejk(j)

〉
,

where cj ∈ R and jk(j) ∈ {1, . . . , l}. For example, if the datapoint and its
component correspond to a document and the number of occurrences of a word,
φj expresses the co-occurrence of a certain combination of words. When cj and
jk are chosen appropriately, the set of features is equivalent to that induced by
a polynomial kernel and is expressed as

k(x,x′) = (〈x,x′〉 + c1)c2 .

with c1 ∈ R and c2 ∈ N given.

Use of Random Fourier Features. Again, we consider the case of X = R

l.
By generating a random vector ωj ∈ R

l, we can produce a feature function as

φj(x) = cj cos(〈ωj ,x〉).
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Algorithm 3. General boosting method template
1: set an initial distribution on examples d(0)

2: while t = 0, 1, 2, . . . , T do
3: The oracle gives a hypothesis h(t) under the current distribution d(t)

4: if The oracle gives no hypothesis then
5: break
6: end if
7: find a distribution d(t+1) under hypotheses {h(s)}s=1...,t

8: end while
9: output the final strong hypothesis using d(T ) and {h(s)}s=1,...,T

This class of feature functions can be said to be induced by the Gaussian kernel,

k(x,x) = exp(−μ ‖x − x′‖2),

by appropriately setting cj and sampling ωj from the specific distributions. Fur-
thermore, an arbitrary shift-invariant kernel can be approximated as in [10,11].

These examples imply that our scheme can handle several types of kernelized
versions of L1 regularized risk minimization problems. Note that a representer
theorem cannot be applied with L1 regularization; therefore, applying a kernel
function to L1 regularization is usually difficult.

3.2 Relation to Boosting

A boosting algorithm consists of two processes: first, an oracle hypothesizes
that h(t) ∈ H under the current distribution of each datapoint d(t) ∈ R

n
≥0,

then the next distribution d(t+1) is determined, for which the past hypothesis
performs poorly. Each boosting algorithm differs in choosing a new hypothesis
and updating the distribution over the datapoints. The abstraction of the algo-
rithm is summarized in Algorithm 3. It is well known that a greedy coordinate
descent method with respect to empirical risk minimization problems can be
described as a boosting method [13]. Furthermore, a similarity to the problem
in the form of (1) is reported in [3,4]. Therefore, we explain in this section
that the writer thread of our scheme continuously generates new Hypotheses,
whereas the trainer thread of our scheme continuously updates the adversarial
distributions.

For simplicity, we focus on binary classification problems. In the context of
boosting, the parameter w in our scheme can be interpreted as the parameter
defining unnormalized distribution d such that

di(w) = −yi∇�(yi 〈w, φ(xi)〉), (9)

if we aim to minimize (1), where �(〈w, φ(x)〉 , yi) is a form of �(yi 〈w, φ(x)〉).
Furthermore, a hypothesis h corresponds to a feature expression φj if the range
of our feature functions is restricted to {+1,−1}.
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Generating Hypothesis h . In conventional boosting algorithms, such as
Adaboost introduced in [6], at the t-th iteration, the oracle formulates the fol-
lowing hypothesis h that maximizes the edge γ(h) �

∑
i d

(t)
i yih(xi) among all

possible hypothesis h ∈ H. That is,

h(t) = argmax
h∈H

γ(h). (10)

In contrast, the writer in our scheme repeatedly searches for φj such that the
derivative is sufficiently large to satisfy the following condition:

∣∣∣∣∣C
∑

i

∇�(yi 〈w, φ(xi)〉)yiφj(xi)

∣∣∣∣∣ > 1, (11)

depending on the currently available parameter w. By defining and substituting

h(·) � sign

(
∑

i

−∇�(yi 〈w, φ(xi)〉)yiφj(xi)

)
φj(·),

into (11), the condition can be rewritten as
∑

i

d
(t)
i yih(xi) > C−1.

Therefore, the strategy of writer is to accept all hypotheses that show larger
edge than a certain threshold. Note that this property is inherited from random
coordinate descent methods, whereas the greedy coordinate descent method cor-
responds to the strategy of (10).

The Distribution Update. As in [13], the updates of the distribution over
datapoints are conventionally formulated as follows:

d(t+1) = argmin
d

RE(d|d(t)) (12)

subject to
∑

i

diyih
(t)(xi) = 0, (13)

where RE(d|d(t)) denotes a certain type of relative entropy between d and d(t)

in case of (nonregularized) empirical risk minimization. Duchi and Singer pro-
vided an alternative formulation of distribution update corresponding to the L1
regularized risk minimization, in which (13) is replaced by

∑

i

d
(t+1)
i yih

(t)(xi) ≤ ν, (14)

while minimizing a relative entropy. Those strategies of the distribution updates
have a unified consistent viewpoint as coordinate descent methods for minimizing

n∑

i=1

�(yi 〈w, φ(xi)〉) +
p∑

j=1

r(wj),
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where r(wj) = 0 or r(wj) = C|wj |. From this point of view, the exact form of
relative entropy varies depending on the underlying function �. The one-variable
subproblem that the coordinate descent method defines can be reformulated as
follows:

argmin
wj

n∑

i=1

�(yi 〈w, φ(xi)〉) + r(wj)

= argmin
wj

n∑

i=1

max
di

diyi 〈w, φ(xi)〉 − �∗
i (di) + r(wj),

for a fixed j, while any other components of w are fixed. Here, �∗ denotes the
Fenchel dual of �. Therefore, the dual problem can be formulated as

d = argmax
d

n∑

i=1

−�∗(di) +
∑

j′ 
=j

diwj′yiφj′(xi) − r∗
(

n∑

i=1

diyiφj(xi)

)
.

The primal-dual relationship can be written as in (9). Moreover, when r(wj) = 0,
r∗ is 0 if (13) holds and ∞ otherwise. Furthermore, when r(wj) = C|wj |, r∗ is 0
if (14) is true for ν = C−1 and ∞ otherwise. Therefore, relative entropy terms
correspond to

∑n
i=1 −�∗(di)+

∑
j′ 
=j diwj′yiφj′(xi), which coincides with various

relative entropies except the difference of constant when � is appropriately set.
A similar consistency holds for the totally corrective boosting algorithm [18].

The updates to the distribution are provided by selecting dt+1 that satisfies
∑

i

d
(t+1)
i yih

(s)(xi) ≤ ν,

for all s = 1, . . . , t, while some relative entropy is minimized. With a similar
argument, we can see that this corresponds to the dual problem of (1), in which
we restrict to hold wj = 0 if wt

j = 0 for all j and set ν = C−1. Therefore, the
procedure of the trainer thread in our scheme, which aims to solve a subproblem
restricted to a feature cache, is similar to the strategy of updating distributions
over datapoints defined by totally corrective boosting algorithms.

4 Experimental Results

In this section, we verify the effectiveness of our scheme for large-scale optimiza-
tion of L1 logistic regression that uses �(〈w, φ(xi)〉 , yi) = log(1+exp(yi 〈w,x〉))
in (1). We first demonstrate that optimization can be performed efficiently by
the asynchronous feature extraction of the FCL scheme, and secondly show that
the method can be used effectively on problems with a large number of features
that is overly difficult for any other known scheme. We consider the binary clas-
sification of spam e-mail recognition in our first set of experiments, and splice
site recognition by using over one million DNA sequences for the second set
of experiments. Further, we implemented the proposed scheme and the DCL
scheme using C++. All experiments were performed on Intel Xeon CPU X5690
3.47 GHz processor with 96 GB memory.
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Table 1. Dataset configuration

Dataset # of instances # of features # of non-zero

elements

Sparsity (%) Data size (GB in

text file)

Webspam 280,000 16,609,163 1.231 × 109 0.022 20.03

Splice(d = 8) 50,000,000 41,875,000 875.6 × 109 0.410 < 9, 000

(sampled) 50,000,000 200,000 4.179 × 109 0.418 44.44

Splice(d = 9) 50,000,000 207,812,500 1.702 × 1012 0.164 < 18, 000

Splice(d = 10) 50,000,000 1,031,250,000 3.38 × 1012 0.066 < 36, 000

4.1 Spam Recognition

In the initial experiments, we verified that our scheme can find the optimal
solution efficiently even when the feature cache cannot fit all the data matrix
using of the largest public dataset for binary classification. We used webspam
dataset [19], in which trigram features are already developed. We limited the
memory capacity for storing the columns of the data matrix to 20 GB, whereas
the dataset utilizes more than 20 GB in the text format. We plotted the relative
value of the objective function as a function of elapsed time and compared it
to the dual cached loops with SGD. The relative value of the objective function
refers to P (wt)

P (wt)−P ∗ for a given time t. For comparison, we also implemented
the modified version of the dual cached loop scheme with SGD, as discussed in
Sect. 1. We omitted a comparison with the block minimization scheme because
the dual cached loops are reported to be consistently superior [8]. Following [2],
we used scheduling of the step size denoted as ηt � η0

(
1 + 1

Cnη0t
)−1

. For the
value of the hyper-parameter, we used C = 0.1, 1, 10, and 100.

The results are shown in Figs. 1 and 2. FCL achieves the optimal solution
more quickly than the dual cached loops scheme by using any step size for any
value of C. This is not only because the coordinate descent method enjoys a
faster convergence rate for this specific form of optimization problem but also
because the selective deletion of columns facilitates to focus updates on parame-
ters corresponding to important features.

4.2 Splice Site Recognition

In the second set of experiments, we examined the performance of the FCL
scheme on the binary splice site classification problem for a DNA sequence.
Each xi and yi represent a DNA sequence of length 141 and a label of whether
the corresponding sequence has a splice site respectively [15]. The dataset can be
obtained from http://sonnenburgs.de/soeren/item/coffin/. We used 50,000,000
sequences as the training data, and used the first 100,000 sequences from the test
data to compute the testing indicators. Owing to the dataset being extremely
imbalanced, only 143,688 datapoints out of 50,000,000 have positive labels, we
evaluated the learning performance by using the area under precision-recall curve
(AUPRC).

http://sonnenburgs.de/soeren/item/coffin/
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Fig. 1. Relative objective function value versus elapsed time (sec)

We consider simple combinatorial features using the following methods.
We denoted a sequence of {A,T,C,G,?}, with length d that does not begin with
“?,” with b and a natural number less than 141 − (d − 1) with k, and consider a
one-to-one correspondence between (b, k) and j = 1, . . . , p. The value of φj(xi)
is defined as 1 if the subsequence of xi from k to k + d matches the regular
expression represented by b, and 0 otherwise. Therefore, the total possible num-
ber of features p is (141 − (d − 1)) × 4 × 5d−1 and a single datapoint consists of
(141 − (d − 1)) × 2d−1 nonzero elements. The entire data matrix requires approx-
imately 3,000 GB of memory even when formulated as a sparse matrix, assuming
that one nonzero element requires 4 bytes when d = 8. We examined the cases for
d = 8, 9, 10 and C = 0.1, 0.01, by setting the capacity of feature cache as 70×2d−1.
To accelerate feature extraction, we asynchronously ran 5 writer threads for this
experiment. Furthermore, to evaluate the performance of those results, we exam-
ined the performance obtained by liblinear. We randomly sampled a part of the
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Fig. 2. Relative objective function value versus elapsed time (sec)
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features so that the required amount of memory becomes 60 GB, as described in
Table 11.

Figure 3 plots the objective function value versus elapsed time and AUPRC
versus elapsed time for different values of C and d. As shown, d = 8 achieves the
highest value of AUPRC and the lowest value of the objective function. d = 10
achieves lower AUPRC and higher objective values. This result contradicts the
function value at the optimal solutions as the feature space of d = 8 is strictly
included by that of d = 9, which is similarly included by d = 10. This indicates
that when d = 8, the optimization progresses more efficiently by focusing on
important features. For d = 10, a more efficient extraction of features is required
to accelerate the entire scheme.

Notably, even for developing sampled features used by liblinear, more than
two days were required for each dataset. Therefore, our scheme could obtain
higher values of AUPRC than those obtained by randomly sampling features in
shorter time when the same hyper-parameters are set. In addition, our scheme
keeps decreasing the objective values and increasing AUPRC for more than a
week. This implies that the optimization is not completed yet and AUPRC could
be further improved. This observation also indicates that a more efficient scheme
is desired for better performance for solving even larger feature spaces.

5 Conclusion

In this paper, we proposed a scheme for solving the L1 regularization problem with
a large number of datapoints and an even larger number of features. By simultane-
ously developing the data matrix Φ and optimizing the parameters, the proposed
scheme can efficiently learn the parameters, while only the seemingly important
features are developed. The experiments show that the proposed scheme can effi-
ciently learn parameters with richer feature spaces than could be used in the past.
In our research, we demonstrated the performance of our scheme by using combi-
natorial features. In the future, we will consider an extensive application of various
types of feature spaces and distributed optimization schemes.
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Abstract. We discuss a method to improve the exact F-measure max-
imization algorithm called GFM, proposed in [2] for multi-label clas-
sification, assuming the label set can be partitioned into conditionally
independent subsets given the input features. If the labels were all inde-
pendent, the estimation of only m parameters (m denoting the number
of labels) would suffice to derive Bayes-optimal predictions in O(m2)
operations [10]. In the general case, m2 + 1 parameters are required by
GFM, to solve the problem in O(m3) operations. In this work, we show
that the number of parameters can be reduced further to m2/n, in the
best case, assuming the label set can be partitioned into n conditionally
independent subsets. As this label partition needs to be estimated from
the data beforehand, we use first the procedure proposed in [4] that finds
such partition and then infer the required parameters locally in each label
subset. The latter are aggregated and serve as input to GFM to form the
Bayes-optimal prediction. We show on a synthetic experiment that the
reduction in the number of parameters brings about significant benefits
in terms of performance. The data and software related to this paper are
available at https://github.com/gasse/fgfm-toy.

Keywords: Multi-label classification · F-measure · Bayes optimal
prediction · Label dependence

1 Introduction

Multi-label classification (MLC) has received increasing attention in the last
years from the machine learning community. Unlike in the case of multi-class
learning, in MLC each instance can be assigned simultaneously to multiple binary
labels. Formally, learning from multi-label examples amounts to finding a map-
ping from a space of features to a space of labels. Given a multi-label training set
D, the goal of multi-label learning is to find a function which is able to map any
unseen example to its proper set of labels. From a Bayesian point of view, this
problem amounts to modeling the conditional joint distribution p(y|x), where
x is a random vector in R

d associated with the input space, y a random vector
in {0, 1}m associated with the labels, and p the probability distribution defined
c© Springer International Publishing AG 2016
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over (x,y). Knowing the label conditional distribution p(y|x) still leaves us with
the question of deciding what prediction y should be made given x in order
to minimize the loss. Dembczynski et al. [3] show that the expected benefit of
exploiting label dependence depends on the type of loss to be minimized and,
most importantly, one cannot expect the same MLC method to be optimal for
different types of losses at the same time. In particular, optimizing the subset
0/1 loss, the F-measure loss or the Jaccard index requires some knowledge of
the dependence structure among the labels that cannot be inferred from the
marginals p(yi|x) alone.

The F-measure is a standard performance metric in information retrieval
that was used in a variety of prediction problems including binary classification,
multi-label classification and structured output prediction. Let y = (y1, . . . , ym)
denote the label vector associated with a single instance x in MLC, and h =
(h1, . . . , hm) ∈ {0, 1}m denote the prediction for x, the F-measure is defined as
follows:

F (y,h) =
2(y · h)

y · y + h · h , (1)

where · denotes the dot product operator1 and 0/0 = 1 by definition. Optimizing
the F-measure is a statistically and computationally challenging problem, since
no closed-form solution exists and few theoretical studies of the F-measure were
carried out. Very recently, Waegeman et al. [9] presented a new Bayes-optimal
algorithm regardless of the underlying distribution that is statistically consis-
tent. Assuming the underlying probability distribution p is known, the optimal
prediction h∗ that maximizes the expected F-measure is given by

h∗ = arg max
h∈{0,1}m

Ey[F (y,h)] = arg max
h∈{0,1}m

∑

y∈{0,1}m

p(y)F (y,h). (2)

The corresponding optimization problem is non-trivial and cannot be solved
in closed form. Moreover, a brute-force search is intractable, as it would require
checking all 2m combinations of prediction vector h and summing over an expo-
nential number of terms in each combination. As a result, many works reporting
the F-measure in experimental studies rely on optimizing a surrogate loss like
the Hamming loss and the subset zero-one loss as an approximation of (2). How-
ever, Waegeman et al. [9] have shown that these surrogate loss functions yield a
high worst-case regret.

Apart from optimizing surrogates, a few other approaches for finding the F-
measure maximizer have been presented but they explicitly rely on the restrictive
assumption of independence of the Yi [5,10]. This assumption is not tenable in
domains like MLC and structured output prediction. Algorithms based on inde-
pendence assumptions or marginal probabilities are not statistically consistent
when arbitrary probability distributions p are considered.

1 In a binary setting the dot product h · y offers a convenient notation to count the
number of positives values common to both h and y.



F-Measure Maximization in Multi-Label Classification 621

In [4], we established several results to characterize and compute disjoint
label subsets called irreducible label factors (ILFs) that appear in the factoriza-
tion of p(y|x) (i.e., minimal subsets YLF ⊆ Y such that YLF ⊥⊥ Y \ YLF | X)
under various assumption underlying the probability distribution. In that paper,
the emphasis was placed on the subset zero-one loss minimization. In the present
work, we show that ILF decomposition can also benefit to the F-measure maxi-
mization problem in the MLC context.

Section 2 introduces the General F-measure Maximizer method (GFM)
from [2]. Section 3 discusses some key concepts about irreducible label factors, and
addresses the problem of exploiting a label factor decomposition within GFM, with
an exact procedure called Factorized GFM (F-GFM). Section 4 presents a practi-
cal calibrated parametrization method for GFM and F-GFM, and finally Sect. 5
presents a synthetic experiment to corroborate our theoretical findings.

2 The General F-Measure Maximizer Method

We start by reviewing the General F-measure Maximizer method presented in
Dembczynski et al. [2]. Jansche [5] noticed that (2) can be solved via outer and
inner maximization. The inner maximization step is

h(k) = arg max
h∈Hk

Ey[F (y,h)], (3)

where Hk = {h ∈ {0, 1}m|h · h = k}, followed by an outer maximization

h∗ = arg max
h∈{h(0),...,h(m)}

Ey[F (y,h)]. (4)

The outer maximization (4) can be done in linear time by simply checking
all m + 1 possibilities. The main effort is then devoted to solving the inner
maximization (3). For convenience, Waegeman et al. [9] introduce the following
quantities:

sy = y · y, Δik =
∑

y∈Yi

2p(y)
sy + k

,

with Yi = {y ∈ {0, 1}m|yi = 1}. The first quantity is the number of ones in the
label vector y, while Δik is a specific marginal value for the i-th label. Using
these quantities, the maximizer in (3) becomes

h(k) = arg max
h∈Hk

m∑

i=1

hiΔik,

which boils down to selecting the k labels with the highest Δik value. In the
special case of k = 0, we have h(0) = 0 and Ey[F (y,h(0))] = p(y = 0). As a
result, it is not required to estimate the 2m parameters of the whole distribution
p(y) to find the F-measure maximizer h∗, but only m2+1 parameters: the values
of Δik which take the form of an m × m matrix Δ, plus the value of p(y = 0).
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The resulting algorithm is referred to as General F-measure Maximizer
(GFM), and yields the optimal F-measure prediction in O(m2) (see [9] for
details). In order to combine GFM with a training algorithm, the authors decom-
pose the Δ matrix as follows. Consider the probabilities

pis = p(yi = 1, sy = s), i, s ∈ {1, . . . , m}
that constitute an m × m matrix P, along an m × m matrix W with elements

wsk =
2

s + k
,

then it can be easily shown that

Δ = PW. (5)

If the matrix P is taken as an input by the algorithm, then its complexity is
dominated by the matrix multiplication (5), which is solved naively in O(m3).

In view of this result, Dembczynski et al. [2] establish that modeling pairwise
or higher degree dependences between labels is not necessary to obtain an opti-
mal solution, only a proper estimation of marginal quantities pis is required to
take the number of co-occurring labels into account. In this work, we will show
that modeling high degree dependences between labels can help to obtain a bet-
ter estimation of pis, and thereby better predictions within the GFM framework.

3 Factorized GFM

In the following we will show that, assuming a factorization of the conditional
distribution of the labels, the pis parameters can be reconstructed from a smaller
number of parameters that are estimated locally in each label factor, at a com-
putational cost of O(m3).

3.1 Label Factor Decomposition

We now introduce the concept of label factor that will play a pivotal role in the
factorization of p(y|x) [4].

Definition 1. A label factor is a label subset YF ⊆ Y such that YF ⊥⊥ Y\YF |
X. Additionally, a label factor is said irreducible when it is non-empty and has
no other non-empty label factor as proper subset.

The key idea behind irreducible label factors (ILFs as a shorthand) is the
decomposition of the conditional distribution of the labels into a product of
factors,

p(y | x) =
n∏

k=1

p(yFk
| x),

where {YFk
}nk=1 is a partition of Y = {Y1, Y2, . . . , Ym}. From the above defin-

ition, we have that YFi
⊥⊥ YFj

| X, ∀i �= j. To illustrate the concept of label
factor decomposition, consider the following example.
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Example 1. Suppose p is faithful to one of the DAGs displayed in Fig. 1. In
DAG 1a, it is easily shown using the d-separation criterion that {Y1} ⊥⊥
{Y2, Y3} | X, so both {Y1} and {Y2, Y3} are label factors. However, we have
{Y2} �⊥⊥ {Y1, Y3} | X and {Y3} �⊥⊥ {Y1, Y2} | X, so {Y2} and {Y3} are not label fac-
tors. Therefore {Y1} and {Y2, Y3} are the only irreducible label factors. Likewise,
in DAG 1b the only irreducible label factor is {Y1, Y2, Y3}. Finally, in DAG 1c we
have that {Y1} �⊥⊥ {Y2, Y3} | X, {Y2} ⊥⊥ {Y1, Y3} | X and {Y3} �⊥⊥ {Y1, Y2} | X,
so {Y2} and {Y1, Y3} are the irreducible label factors.

X1 X2 X3

Y1 Y2 Y3

p(y|x) =

p(y1|x) × p(y2, y3|x)

(a)

X1 X2 X3

Y1 Y2 Y3

p(y|x) =

p(y1, y2, y3|x)

(b)

X1 X2 X3

Y1 Y2 Y3

p(y|x) =

p(y1, y3|x) × p(y2|x)

(c)

Fig. 1. Three Bayesian networks for illustration purposes, along with the induced fac-
torization of p(y|x).

For convenience, the conditioning on X will be made implicit in the remainder
of this work. Let mk denote the number of labels in a particular label factor, we
introduce for every label factor YFk

= {Y1, . . . , Ymk
} the following terms,

pkis = p(yi = 1, syFk
= s), i, s ∈ {1, . . . ,mk},

which constitute an mk × mk matrix Pk.
Given a factorization of the label set into label factors, our proposed method

called F-GFM requires to estimate, for each label factor, a local matrix Pk of
size mk

2, and then combine them to reconstruct the global matrix P of size m2.
The total number of parameters is therefore reduced from m2 to

∑n
k=1 mk

2. It
is easily shown that, in the best case, the total number of parameters is m2/n
when mk = m/n for every label factor, and the worst case is (n−1)+(m−n+1)2

when all the label factors, but one, are singletons. In both cases the number of
parameters is reduced, which results in a better estimation of these parameters
and a better robustness of the model. In the following, we describe a procedure
to recover P and p(y = 0) from the individual Pk matrices in O(m3).

3.2 Recovering dk

Consider, for every label factor YFk
, the following probabilities,

dks = p(syFk
= s), s ∈ {0, . . . , mk},
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which form a vector dk of size mk + 1. Instead of estimating these additional
terms, they are extracted directly from Pk in mk

2 operations. Extracting these
parameters is done prior to recovering P. We now describe how to recover a
particular dk vector from a Pk matrix. Note that the same method holds to
recover d from P, therefore in the following we will drop the superscript k to
keep our notations uncluttered. Consider the following expression for pis and ds,

pis =
∑

y∈{0,1}m

p(y) · I[sy = s] · I[yi = 1],

ds =
∑

y∈{0,1}m

p(y) · I[sy = s].

Notice that, for a particular y ∈ {0, 1}m, the following equality holds,

I[sy = s] ·
m∑

i=1

I[yi = 1] = s · I[sy = s].

Therefore, when s > 0, ds can be expressed as

ds =
∑

y∈{0,1}m

p(y) · I[sy = s] · 1
s

m∑

i=1

I[yi = 1].

This expression can be further simplified in order to express ds as a composition
of pis terms,

ds =
1
s

m∑

i=1

pis, ∀s ∈ {1, . . . , m}.

We may recover d0 from

d0 = 1 −
m∑

s=1

ds.

As a result, each vector dk can be obtained from Pk in mk
2 operations. Inter-

estingly, because p(y = 0) = d0, this additional parameter can actually be
inferred from P at the expense of m2 operations, thereby reducing the number
of parameters required by GFM to m2 instead of m2 + 1.

3.3 Recovering P

We will now show how the whole P matrix can be recovered from the Pk matrices
in O(m3).
When n =2. Let us first assume that there are only two label factors YF1 and
YF2 . Consider a label Yi that belongs to YF1 , from the marginalization rule pis
may be decomposed as follows,

pis =
∑

s′
p(yi = 1, sy = s, syF1

= s′). (6)
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The inner term of this sum factorizes because of the label factor assumption.
First, recall that sy = syF1

+ syF2
, which allows us to write

p(yi = 1, sy = s, syF1
= s′) = p(yi = 1, syF1

= s′, syF2
= s − s′).

Second, due to the label factor assumption, i.e. YF1 ⊥⊥ YF2 , we have

p(yi, sy, syF1
) = p(yi, syF1

) · p(syF2
). (7)

We may combine (7) and (6) to obtain

pis =
∑

s′
p(yi = 1, syF1

= s′) · p(syF2
= s − s′). (8)

Finally, we have necessarily s′ ≤ s and s′ ≤ m1, which implies s′ ≤ min(s,m1).
Also, s − s′ ≤ m2 and s′ ≥ 1 because yi = 1, which implies s′ ≥ max(1, s − m2).
So we can re-write (8) as follows,

pis =
min(s,m1)∑

s′=max(1,s−m2)

p1is′ · d2s−s′ . (9)

In the case where Yi ∈ YF2 , we obtain a similar result. In the end, given that
both Pk and dk are known for YF1 and YF2 , (9) allows us to recover all term in
P in (m2+1)m1

2+(m1+1)m2
2 operations. Assuming that only the Pk matrices

are known, we must add up the additional cost for recovering the dk vectors,
which brings the total computational burden to (m2 + 2)m1

2 + (m1 + 2)m2
2.

For any n. The same procedure can be used iteratively to merge P1 and P2

into a matrix P′ of size (m1 +m2)2, then combine this matrix with P3 to form a
new matrix of size (m1 +m2 +m3)2, and so on until every label factor is merged
into a matrix of size m2. In the end we obtain P in a total number of operations
equal to

n∑

i=2

(mi + 2)(
i−1∑

j=1

mj)2 + m2
i (2 +

i−1∑

j=1

mj).

To avoid tedious calculations, we can easily compute a tight upper bound of the
number of computations, i.e.

max
m1,...,mn

n∑

i=2

(mi + 2)

⎛

⎝
i−1∑

j=1

(mj + 2)

⎞

⎠

⎛

⎝
i∑

j=1

(mj + 2)

⎞

⎠ s.t.
n∑

i=1

mi = m.

Solving ∇L(m1, . . . ,mn, λ) = 0 yields

mi =
(
(m + 2n)2 − λ

)1/2
+ 2n, ∀i ∈ {1, . . . , n},

which implies that all the label factors have equal size. As a result, with mi =
m/n for every label factor we obtain an upper bound on the worst case number
of operations equal to (mn + 2)3(n2 − 1). Thus, the overall complexity to recover
P is bounded by O(m3).
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3.4 The F-GFM Algorithm

Given that the label factors are known and that every Pk matrix has been
estimated, the whole procedure for recovering P and then h∗ is presented in
Algorithm 1. As shown in the previous section, the overall complexity of F-GFM
is O(m3), just as GFM.

4 Parameter Estimation

Our proposed method F-GFM requires to estimate for each label factor YFk
the

mk × mk matrix Pk, instead of the whole m × m matrix P in GFM. Still, the

Algorithm 1. Factorized-GFM
Require: Y the label set, YF1 , . . . ,YFn the label factors, m1, . . . , mn their size and

P1, . . . ,Pn their matrix of pk
i,s parameters.

Ensure: h∗ the F-measure maximizing prediction.
1: Initialize m ← 0, P ← ∅, d ← {1}
2: for all k ∈ {1, . . . , n} do
3: m′ ← m, P′ ← P, d′ ← d, m ← m′ + mk

4: Initialize dk = {d0, . . . , dmk} a vector of size mk + 1
5: for all s ∈ {1, . . . , mk} do � 1) recover dk from Pk

6: dk
s ← s−1∑mk

i=1 pk
i,s

7: end for
8: dk

0 ← 1 −∑mk
s=1 dk

s

9: Initialize P a zero matrix of size m × m
10: for all i ∈ {1, . . . , mk} do � 2) merge Pk and d′ into P
11: for all s1 ∈ {1, . . . , mk} do
12: for all s2 ∈ {0, . . . , m′} do
13: pi,s1+s2 ← pi,s1+s2 + pk

i,s1 · d′
s2

14: end for
15: end for
16: end for
17: for all i ∈ {1, . . . , m′} do � 3) merge P′ and dk into P
18: for all s1 ∈ {1, . . . , m′} do
19: for all s2 ∈ {0, . . . , mk} do
20: pi+mk,s1+s2 ← pi+mk,s1+s2 + p′

i,s1 · dk
s2

21: end for
22: end for
23: end for
24: Initialize d a zero vector of size m + 1
25: for all s ∈ {1, . . . , m} do � 4) recover d from P
26: ds ← s−1∑m

i=1 pi,s

27: end for
28: d0 ← 1 −∑m

s=1 ds

29: end for
30: h∗ ← GFM(P, d0) � 5) obtain h∗ from P and d0

31: Rearrange h∗ to match the order of the labels in Y.
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problem of parameter estimation in GFM and F-GFM is essentially the same,
that is, estimating the matrix P (resp. Pk) for a particular input x, given a set
of training samples (x,y) (resp. (x,yFk

)).
Dembczynski et al. [1] propose a solution to estimate the pis terms directly,

by solving m multinomial logistic regression problems with m + 1 classes. For
each label Yi the scheme of the reduction is the following:

(x,y) → (x, y = yi · sy).

However, we observed that the parameters estimated with this approach are
inconsistent, that is, they often result in a negative probability for d0 when
trying to recover d from P. To overcome this numerical problem, we found
a straightforward and effective approach. Instead of estimating the pis terms
directly, we can proceed in two steps. From the chain rule of probabilities, we
have that

p(yi, sy|x) = p(sy|x) · p(yi|sy,x). (10)

The idea is to estimate each of these two terms independently. First, the p(sy =
s|x) terms are obtained by performing multinomial logistic regression with m+1
classes, using the following mapping:

(x,y) → (x, y = sy).

Second, for each label Yi we estimate the p(yi = 1|sy = s,x) terms with a binary
logistic regression model, using the following mapping:

(x,y) → ((x, sy), y = yi).

To summarize, for each label factor, one multinomial logistic regression model
with mk + 1 classes, and mk binary logistic regression models are trained. In
order to estimate the pkis terms, we combine the outputs of the multinomial and
the binary models according to (10). This approach has the desirable advantage
of producing calibrated Pk matrices and dk vectors, which appears to be crucial
for the success of F-GFM. Notice that in our experiments this approach was also
very beneficial to GFM in terms of MLC performance.

5 Experiments

In this section, we compare GFM and F-GFM on a synthetic toy problem to
assess the effective improvement in classification performance due to the label
factorization. The code to reproduce this experiment was made available online2.

2 https://github.com/gasse/fgfm-toy.

https://github.com/gasse/fgfm-toy
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5.1 Setup Details

Consider Y = {Y1, . . . , Y8} 8 labels and X = {X1, . . . , X6} 6 binary random
variables. The true joint distribution p(x,y) is encoded in a Bayesian network
(one example is displayed in Fig. 2) which imposes different label factor decom-
positions and serves as a data-generative model. In this BN structure (a directed
acyclic graph, DAG for short), each of the features X1,X2,X3,X4 is a parent
node to every label, to enable a relationship between X and Y. The remaining
features X5 and X6 are totally disconnected in the graph, and thus serve as
irrelevant features. Each label factor YFk

is made fully connected by placing
an edge Yi → Yj for every Yi, Yj ∈ YFk

, i < j. As a result each label factor is
conditionally independent of the other labels given X, yet it exhibits conditional
dependencies between its own labels. We consider 4 distinct structures encoding
the following label factor decompositions:

– DAG 1: {Y1, Y2}, {Y3, Y4}, {Y5, Y6}, {Y7, Y8};
– DAG 2: {Y1, Y2, Y3, Y4}, {Y5, Y6, Y7, Y8};
– DAG 3: {Y1, Y2, Y3, Y4, Y5, Y6}, {Y7, Y8};
– DAG 4: {Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8}.

X1,2,3,4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Fig. 2. BN structure of our toy problem with DAG 2, i.e. two label factors
{Y1, Y2, Y3, Y4} and {Y5, Y6, Y7, Y8}. Note that nodes X1, X2, X3 and X4 are grouped
up for readability.

Once these BN structures are fixed, the next step is to generate random
distributions p(x,y) to sample from. For each BN structure we generate a prob-
ability distribution by sampling uniformly the conditional probability table of
each node given its parents, p(x|pax), from a unit simplex as discussed in [7].
The process is repeated 100 times randomly, and each time we generate 7 data
sets with 50, 100, 200, 500, 1000, 2000 and 5000 training samples, and 5000 test
samples. We report the comparative performance of GFM and F-GFM on the
test samples with respect to each scenario (DAG structure) and each training
size, averaged over the 100 repetitions.
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(b) DAG 2 (4, 4)
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(c) DAG 3 (6, 2)
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Fig. 3. Mean F -measure of GFM and F-GFM on each DAG, with 7 different training
sizes (50, 100, 200, 500, 1000, 2000, 5000) displayed on a logarithmic scale, averaged over
100 repetitions with random distributions. F-GFM (true) uses the true decomposition,
while F-GFM (ILF) uses the decomposition learned with ILF-Compo from the training
data.

5.2 Implementation Details

To extract the irreducible label factors, we employ the ILF-Compo algorithm
proposed in [4], with α = 0.01. To estimate the parameters, we use the standard
multinomial logistic regression model from the nnet [8] R package, with weight
decay regularization and λ chosen over a 3-fold cross validation.

5.3 Results

The comparative performance results for GFM and F-GFM are displayed in
Fig. 3 in terms of mean F-measure on the test set averaged over 100 runs, each
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time using a new probability instantiation. In order to assess separately the
influence of the F-GFM procedure and the label factors discovery procedure
ILF-Compo, we present two instantiations of F-GFM: one which uses the true
decomposition that can be read from the DAG (true), and one obtained from
ILF-Compo based on the training data (ILF).

As expected, the more date available for training, the more accurate the
parameter estimates, and thus the better the mean F-measure on the test set.
F-GFM based on ILF-compo outperforms the original GFM method, sometimes
by a significant margin (see Fig. 3c and d with small sample sizes). Interestingly,
F-GFM based on ILF performs not only better than GFM, but also better than
F-GFM based on the true label factor decomposition, especially in the last case
with a single ILF of size 8 with small sample sizes. The reason is that the label
conditional independencies extracted by ILF-Compo are actually observed in
the small training sets while being false in the true distribution. As these false
label conditional independencies are found almost valid in these small samples
- at least from a numerical point of view - they are exploited by F-GFM to
reduce the number of parameters. This is not surprising as Binary Relevance is
sometimes shown to outperform other sophisticated MLC techniques exploiting
the label correlations while being based on wrong assumptions when training
data are insufficient [6]. The same remark holds for the Naive Bayes model
in standard multi-class learning tasks, which wrongly assumes the features to
be independent given the output. It is also worth noting that F-GFM with the
learned ILF decomposition behaves usually as good or better than F-GFM based
on the ground truth ILF decomposition.

6 Conclusion

We discussed a method to improve the exact F-measure maximization algorithm
(GFM), for multi-label classification, assuming the label set can be partitioned
into conditionally independent subsets given the input features. In the general
case, m2 + 1 parameters are required by GFM, to solve the problem in O(m3)
operations. In this work, we show that the number of parameters can be reduced
further to m2/n, in the best case, assuming the label set can be partitioned into
n conditionally independent subsets. As the label partition needs to be estimated
from the data beforehand, we use first the procedure proposed in [4] that finds
such partition and then infer the required parameters locally in each label subset.
The latter are aggregated and serve as input to GFM to form the Bayes-optimal
prediction. Our experimental results on a synthetic problem exhibiting various
forms of label inpedendencies demonstrate noticeable improvements in terms of
F-measure over the standard GFM approach. Interestingly, F-GFM was shown
to take advantage of purely fortuitous label independencies in small training
sets, despite being false in the underlying distribution, to reduce further the
number of parameters, while performing better than F-GFM based on the true
decomposition. This is not surprising as Binary Relevance is sometimes shown to
outperform other sophisticated MLC techniques exploiting the label correlations
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while being based on wrong assumptions when training data are insufficient [6].
Future work will be aimed at reducing further the number of parameters and the
overall complexity of the inference algorithm. Large real-world MLC problems
will also be considered in the future.
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Abstract. In time series classification, two antagonist notions are at
stake. On the one hand, in most cases, the sooner the time series is clas-
sified, the more rewarding. On the other hand, an early classification is
more likely to be erroneous. Most of the early classification methods have
been designed to take a decision as soon as sufficient level of reliability
is reached. However, in many applications, delaying the decision with no
guarantee that the reliability threshold will be met in the future can be
costly. Recently, a framework dedicated to optimizing a trade-off between
classification accuracy and the cost of delaying the decision was proposed,
together with an algorithm that decides online the optimal time instant
to classify an incoming time series. On top of this framework, we build
in this paper two different early classification algorithms that optimize a
trade-off between decision accuracy and the cost of delaying the decision.
These algorithms are non-myopic in the sense that, even when classifi-
cation is delayed, they can provide an estimate of when the optimal
classification time is likely to occur. Our experiments on real datasets
demonstrate that the proposed approaches are more robust than exist-
ing methods. The data and software related to this paper are available
at https://github.com/rtavenar/CostAware ECTS.

Keywords: Time-series classification · Early classification

1 Introduction

Time series classification has received a lot of attention from researchers in the
last years due to the increasing amount of data available and its applicability
in many domains like medicine, environment, business, etc. Classical methods
for time series classification have been designed to make a decision based on
complete time series. However, in many applications where observations arrive
one at a time, it is rewarding to be able to classify a time series even without
knowing it entirely. In this case, each time a new sample arrives, one can decide
either to perform classification or to wait for more data. It is more valuable to
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make a decision as soon as possible, but premature decisions are more likely to
be erroneous. Consequently, two antagonist notions are at stake. For example,
in applications related to business, higher profits can be made thanks to early
classification of customer behaviours, provided that the classification is accurate.
Hence, two different costs clearly appear from this point of view: the cost of
delaying the decision and the cost of misclassification.

Most of the approaches for early classification in the literature focus on the
design of algorithms that make a reliable decision from incomplete time series,
without explicitly accounting for the cost of delaying the decision [1,4–7,10,13,14].
In these works, sufficient guarantee of accuracy triggers the decision.

In this paper, we focus on cost-aware early classification of time series. Let
us illustrate the advantages of cost-aware early classification of time series on
a concrete example. In a surveillance scenario, one would want the system to
warn the police as soon as a crime scene is detected. The optimal time to make
a decision depends on two antagonist notions: accuracy and earliness. For this
scenario, warning the police too early would induce a cost if the scene is actually
not a crime scene, but waiting too long would prevent the police from stepping in
the crime scene. It hence becomes desirable to allow end-users to set a trade-off
between earliness and accuracy, which is the goal of cost-aware early classification
of time series.

Recently, Dachraoui et al. [3] introduced a framework for cost-aware early
classification that is dedicated to optimizing a trade-off between the accuracy
of the prediction and the time at which it is performed. This framework hence
involves both costs defined above: a misclassification cost and a cost of delaying
the decision. The authors of [3] derive an algorithm that decides, at test time,
whether the decision should be made at a given time instant t or if more data
should be waited for (based on both costs defined above). In addition, the method
of [3] has two other interesting properties: it is adaptive and non-myopic. It is
adaptive in the sense that the optimal time of decision depends on the time series
to be classified. It is non-myopic because at every time instant t, the algorithm
not only decides if t is the optimal time instant to classify, but it also estimates
when this optimal time is likely to happen, if not at time t. Such a property is
essential since it can help end users of such systems to get prepared for action
when the decision should soon be made (e.g. for medical applications).

In this paper, we propose two new early-classification schemes built upon
the framework defined in [3]. This framework is based on approximating an
expected cost through clustering, which tends to bring vagueness in the process.
Our schemes improve on this existing work by removing the clustering step.
They optimize a trade-off between a misclassification cost and a cost of delaying
the decision, they are adaptive and non-myopic.

The rest of this paper is organized as follows. Section 2 explains the prob-
lem statement and reviews the related work on early classification of time series.
Section 3 presents both proposed approaches and how they differ from [3]. Exper-
iments on real time series data sets are presented in Sect. 4. Notations used
throughout this paper are summarized in Table 1.
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Table 1. Mathematical notations used throughout the paper.

Notation Description

x = (x1, . . . , xT ) The time series to be classified

xt = (x1, . . . , xt) Time series x truncated after t observations, t ≤ T

τ(x) Time index at which early classification of x is performed,
also referred to as classification time

τ∗(x) Optimal time index for early classification of x

τ̂(xt) Time index (greater than current time t) at which
classification is most likely to occur (for non-myopic
methods only)

y ∈ Y Class label of time series x

T = {(xi, yi)}1≤i≤N A training set of N time series and their labels

Tt = {(xi
t, y

i)}1≤i≤N A training set of N truncated time series and their labels

Cm(ŷ, y) Cost of misclassifying a time series of class y into class ŷ

Cd(t) Cost of delaying classification after t time instants

C(x, y) Overall early classification cost

Et(x) Expected cost of performing classification of time series x at
time t

H = {ht}1≤t≤T A set of classifiers for predicting the class of time series of
length t

D = {dt}1≤t≤T A set of classifiers for predicting whether early classification
should be performed or not at time t (for 2Step method
only)

M = {mt}1≤t≤T A set of regressors predicting when early classification is likely
to happen (for 2Step method only)

2 Related Work

A wide range of methods tackle the early classification problem without explicitly
accounting for thecostofdelayingthedecision [1,4–7,10,13,14].Thesemethodsdif-
fer in (i) the design of the early classifiers and (ii) the estimation of the optimal time
tomakeadecision.Theymostlywait for sufficient confidence tomake theirdecision,
using varied procedures to define this confidence. The authors of [7] design an early
classification scheme based on the boosting procedure for classification, where one
weak classifier is built at each time stamp.Thismethod is able to predict the class of
atest timeseriesatanytime,butthe issueofestimatingtheoptimal timetomakethe
decision is not adressed.Hatami et al. [5] propose an ensemble classifierwith a reject
option.Adecision is made as soon as the agreement between all classifiers is above a
certain threshold. Otherwise, the reject option is activated and more data is waited
for. In [14], the authors rely on feature extraction for early classification. They first
extract, from a training set of time series, a set of features called shapelets with a
high discriminating power. Shapelets having high utility are then selected, where
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utility is an extension of the F -measure which also takes earliness into account. At
test time, classification is performed as soon as one of the selected shapelets is found
in the testing time series.Ghalwash et al. [4] extend thiswork so that it also provides
an estimation of uncertainty associated with the decision. An alternative of these
works designed formultivariate time series is proposed in [6].Antonucci et al. [1] use
HiddenMarkovModelClassifierswith set valued parameters to determinewhether
the model is confident enough about its prediction (if not, several possible outputs
are returned, which illustrates the uncertainty of the model). Early classification
happens when there exists no ambiguity anymore about the prediction.

These methods do not attempt to infer whether future observations could
improve classification accuracy. For difficult classification problems, they might
tend to delay the decision even if future observations are unlikely to help. To
bypass this limitation, Xing et al. [13] present a method that relies on neighbor-
hood properties. For a given training time series xi ∈ T , optimal prediction time
τ(xi) is set to the smallest τ i such that the set of reverse nearest neighbors for
xi is stable for all t ≥ τ i. At test time, if a time series has xi

t as nearest neighbor
after t ≥ τ(xi) time steps, classification is performed at this point. To improve
on this setting, clustering can be performed on training time series so that sta-
bility can be robustly evaluated at the cluster level. Parrish et al. [10] design a
probabilistic approach based on Quadratic Discriminant Analysis which aims at
maximizing the reliabilty, i.e. the probability that the early decision leads to the
same classification result as the classification of the complete time series.

One drawback of these methods is that they do not explicitly optimize a
trade-off between earliness and accuracy, hence leading to sub-optimal solutions
in this regard. In order to overcome this limitation, Dachraoui et al. [3] propose
a framework for early classification, where the cost of delaying the decision is
included in the optimization function. This framework considers a time series
classification task for which two cost functions are given:

– Cm(ŷ, y) is the misclassification cost function, i.e. the cost of predicting class
label ŷ whereas the effective class label was y;

– Cd(t) is the cost of delaying the decision to time t.

In this framework, the cost of classifying a time series x of class y using a set
H = {ht}1≤t≤T of classifiers is given by:

C(x, y) = Cm(hτ(x)(x), y) + Cd(τ(x)), (1)

where τ(x) is the time index at which classification is performed and hτ(x)(x) is
the class predicted at time τ(x) by the ad hoc classifier. To optimize on Eq. (1),
the authors compute an expected cost for current and future time instants. If the
current expected cost is lower than all future ones, classification is performed.
This method is further discussed in Sect. 3.

The authors of [9] also design an early classification scheme that takes the
cost of delaying the decision into account. They define a stopping rule that
depends on 4 parameters (to be fine tuned), on the time of the decision and on
the posterior probabilities output by the classifiers. The optimal parameters for
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the stopping rule are learned through cross-validation so that they minimize a
cost function that is similar in spirit to Eq. (1):

C ′(x, y) = α × Cm(hτ(x)(x), y) + (1 − α) × Cd(τ(x)), (2)

where α is a parameter that designs a trade-off between Cm and Cd. Unlike the
method proposed in [3], the one from [9] is myopic in the sense that at a given
time t, if the algorithm decides that it is better to wait to perform classification,
it cannot provide an estimate τ̂(xt) > t of the optimal classification time.

In this paper, we propose two non-myopic early classification methods taking
into account the cost of delaying the decision. These methods are improvements
over the framework defined in [3]. In the next section, we detail this framework
and position the methods we propose with respect to it.

3 Proposed Early Classification Schemes

The problem tackled in this paper is to estimate, for an incoming time series x,
the optimal time τ∗(x) at which the classification of x should be done in order to
minimize the cost given by Eq. (1). In Sect. 3.1, we first give a detailed review of
the method proposed in [3] and its limitations. We then introduce an improved
version of this approach from which we derive two early classification methods
presented in Sects. 3.2 and 3.3.

3.1 Computing Expected Costs for Training Time Series

As an attempt to optimize on Eq. (1), Dachraoui et al. [3] intend to perform
classification at a time t such that the expected cost:

f(xt) =
∑

y∈Y
P (y|xt)

∑

ŷ∈Y
P (ŷ|y,xt)Cm(ŷ, y) + Cd(t) (3)

is minimized. The term P (y|xt) is unknown by definition of the learning problem,
which prevents us from computing this expected cost directly.

In order to approximate Eq. (3), authors rely on a clustering C = {c1, . . . , cK}
of the set T of complete training time series. At any given instant t, the expected
cost of classifying x at future time instants t + δ (for δ ≥ 0) is computed as:

fδ(xt) =
K∑

k=1

P (ck|xt)
∑

y∈Y
P (y|ck)

∑

ŷ∈Y
Pt+δ(ŷ|y, ck)Cm(ŷ, y) + Cd(t + δ)

=
K∑

k=1

P (ck|xt)Et+δ(ck), (4)

where Et+δ(ck) is the expected cost of performing classification at time t+ δ for
series in cluster ck, that is computed as follows. At every time t, probabilities
Pt(ŷ | y, ck) are estimated using cross-validation on the training set. Each of these
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(a) Sample training time series

(b) Sample training expected cost functions

t

(c) Incoming test time series xt

δ = 0 τ̂ (xt)

(d) Expected cost fδ(xt) as computed by NoCluster

(e) Histogram of τ values using NoCluster

(f) Histogram of τ values using 2Step

Fig. 1. Illustration of proposed methods on Gun Point time series.

probabilities correspond to a bin of the confusion matrix associated to cluster
ck at time t. The computation of the expected cost function fδ(xt) also depends
on the probabilities P (ck |xt). In [3], these probabilities are computed as:

P (ck|xt) =
sk

∑K
i=1 si

, where sk =
1

1 + exp−λΔk
t

, (5)

λ is some positive constant and Δk
t = (D̄t − dk

t )/D̄t is the normalized difference
between the average D̄t of the distances between xt and all the clusters, and the
distance dk

t between xt and the cluster ck. We refer the interested reader to [3]
for more details on these equations.
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In other words, the expected cost function fδ(xt) for a time series to be
classified is a weighted sum of the per-cluster expected cost functions Et+δ(ck)
computed from the training set. Classification is finally performed at time t if,
for any δ > 0, fδ(xt) ≥ f0(xt).

This approach hence relies on the assumption that intra-cluster variability
is sufficiently low for distance to centroid to be an acceptable proxy for the
distance between time series. In practice, such an assumption is unlikely to hold.
Furthermore, the clustering C is obtained using complete time series whereas
distances between xt and the centroids are computed from incomplete series.
This surely impacts the estimation of τ∗(x).

In order to overcome these two weaknesses, we propose to get rid of the
clustering step used in [3]. Training expected costs are then computed on a
per-series basis as:

Et(xi) =
∑

y∈Y
P (y|xi)

∑

ŷ∈Y
Pt(ŷ |xi

t)Cm(ŷ, yi) + Cd(t)

=
∑

ŷ∈Y
Pt(ŷ |xi

t)Cm(ŷ, yi) + Cd(t). (6)

Indeed, as we do not tackle the multilabel case in this work, for every individual
time series xi (of class yi) in the training set, we have P (y |xi) = 1 if y = yi

and 0 otherwise, which removes the summation over y. Then, Pt(ŷ |xi
t) can be

obtained from any classifier with probabilistic outputs.1 To do so, we learn a set
of classifiers H−i = {h−i

t }1≤t≤T . In order to get reliable estimations of Pt(ŷ |xi
t),

classifiers h−i
t are built on subsets of Tt that do not contain xi

t. In practice, we
use a standard cross-validation procedure to make sure that this condition is
fulfilled. In this case, reliable estimation of Pt(ŷ |xi

t) is given by the probabilities
output by h−i

t .
An example of 4 sample time series together with their expected cost func-

tions is given respectively in Fig. 1a and b.

3.2 NoCluster

Our first proposed method, which we denote NoCluster, consists in computing
the expected cost for a test time series as a weighted sum of training expected
costs calculated using Eq. (6). In other words, present and future expected costs
for a time series to be classified are computed, at time t, as:

∀δ ≥ 0, fδ(xt) =
N∑

i=1

1
K0

1
1 + exp−λΔi

t

Et+δ(xi), (7)

where K0 =
∑N

i=1
1

1+exp−λΔi
t

and Δi
t is computed the way Δk

t is in Eq. (5), where

distance to centroids are replaced by distance to training time series. As in [3],
1 Note that even when using classifiers that do not inherently compute probability

estimates, cross validation can be used to get such estimates, as done in [2].
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classification is performed at the smallest time t such that, for any δ > 0, we
get fδ(xt) ≥ f0(xt). This time instant is denoted τ(xt). At test time, the Δi

t are
computed for all times t up to τ(x), while when clustering was used, only K such
normalized distance computations were required per time t. As this method is
derived from [3], it preserves its non-myopia and adaptiveness properties.

Figure 1c shows a sample test time series of length t, and Fig. 1d shows its
associated expected cost from time t, and the estimation of the optimal decision
time τ̂(xt). Figure 1e depicts the histogram of τ values obtained by NoCluster
for all the test time series of the Gun Point dataset. Note that peaks of this
histogram (which also correspond to valleys of the expected cost presented in
Fig. 1d) are related to regions of high interest in the time series for this dataset: a
first increasing part of the time series, followed by a plateau and a final decrease.
Algorithmic description of this method is provided in Algorithms 1 and 2.

Algorithm 1. Offline training of NoCluster method
Input: T = {(xi, yi)}i∈{1..N}, {H−i}i∈{1..N}
Output: {Et(x

i)}i∈{1..N},t∈{1..T}
for i ∈ {1..N} do

for t ∈ {1..T} do
Compute Pt(ŷ |xi

t) for all ŷ ∈ Y using h−i
t

Compute Et(x
i) using Pt(ŷ |xi

t) according to Eq. (6)
end for

end for
return {Et(x

i)}i∈{1..N},t∈{1..T}

Algorithm 2. Classification using NoCluster method
Input: {Et(x

i)}i∈{1..N},t∈{1..T},x, H = {ht}t∈{1..T}, tmin

Output: ŷ, τ(x)
for t ∈ {tmin..T} do

for i ∈ {1..N} do
Δi

t ← ‖xt − xi
t‖2

end for
for δ ∈ {0..T − t + 1} do

Compute fδ(xt) using Δi
t and Et(x

i), according to Eq. (7)
end for
if ∀δ ≥ 0, f0(xt) ≤ fδ(xt) then

break
end if

end for
return ht(xt), t
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3.3 2Step

As explained above, the computational complexity of NoCluster at test time is
higher than that of the baseline, which can be a limitation for some applications.
In this section, we present another early classification method that we call 2Step.
This method has a lower complexity at test time, at the cost of possibly higher
training complexity. 2Step also relies on the computation of the expected costs
for every training time series (Eq. (6)), but uses them in a different manner. A
set of classifiers D = {dt}1≤t≤T is built as follows. The classifier dt is built on
the training set Tt. Its target variable is not the class of the time series but a
binary variable γt indicating if t is the expected optimal time to classify the time
series. In other words,

Algorithm 3. Offline training of 2Step method
Input: T = {(xi, yi)}i∈{1..N}, {H−i}i∈{1..N}
Output: D = {dt}t∈{1..T}

for i ∈ {1..N} do
for t ∈ {1..T} do

Compute Pt(ŷ |xi
t) for all ŷ ∈ Y using h−i

t

Compute Et(x
i) using Pt(ŷ |xi

t) according to Eq. (6)
end for
for t ∈ {1..T} do

Compute γt(x
i
t) according to Eq. (8).

end for
end for
for t ∈ {1..T} do

Learn classifier dt with training set Tt and target variables {γt(x
i
t)}i∈{1..N}

end for
return {dt}t∈{1..T}

∀xi
t ∈ Tt, γt(xi

t) =

⎧
⎨

⎩
1 if Et(xi) = min

δ≥0
Et+δ(xi)

0 otherwise.
(8)

A graphical example showing how γt can be computed from the expected cost of
classification of a time series is given in Fig. 2. In particular, this figure illustrates
that γt is not monotonically increasing with t.

At test time, time series xt is given to classifier dt. If the output of dt is 1,
then τ(x) = t and ht is used to classify xt. Otherwise, the classification of xt

is delayed. Figure 1f depicts the histogram of τ values obtained by 2Step for all
the test time series of the Gun Point dataset. One can note from Fig. 1e and f
that both proposed methods are adaptive, in the sense that predicted timings τ
vary across test time series. Algorithmic description of this method is provided
in Algorithms 3 and 4.



Cost-Aware Early Classification of Time Series 641

0 20 40 60 80 100 120 140
Time index t

E
xp
ec
te
d
co
st

E
t γt = 0 γt = 1

Fig. 2. Expected early classification cost for a training time series from the Gun Point
dataset, together with the corresponding γt values. For all time instants that are
depicted in pink, γt = 0, and for time instants depicted in green, γt = 1. Best viewed
in color

Algorithm 4. Classification using 2Step method
Input: D = {dt}t∈{1..T}, H = {ht}t∈{1..T},x, tmin

Output: ŷ, τ(x)
for t ∈ {tmin..T} do

if dt(xt) = 1 then
break

end if
end for
return ht(xt), t

The early classification method as presented in this section is myopic. In
order to keep the non-myopic property, a set of regressors M = {mt}1≤t≤T

should be learned in addition to the set D of classifiers. The target variable of
regressor mt should represent the time difference between t and the expected
time of minimal cost, that is arg min

δ≥0
(Et+δ(xt)).

4 Experimental Results

In this section, we design extensive experiments in order to evaluate the perfor-
mance of both NoCluster and 2Step early classification methods. The method
presented in [3] is used as our main baseline, as (i) our proposed methods are
built on top of it and (ii) all three methods share the desirable properties of
non-myopia and adaptiveness. However, comparison with other state-of-the-art
methods is also provided in Sects. 4.4 and 4.5. The cost function defined in Eq. (1)
(which defines a trade-off between accuracy and earliness of the decision) is used
as our main performance indicator. Other criteria such as classification accu-
racy, earliness (expressed as the average prediction time τ̄) and timings are also
considered.
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4.1 Experimental Setup

Experiments are conducted on all 76 datasets from the UCR archive [8] that
have sufficient training data for cross-validation on the method parameters to be
conducted (as a rule of thumb, we keep all datasets with at least 10 training time
series per class). The complete list of datasets on which experiments are run is
provided in the Supplementary material, which details per-dataset performance
of the methods. Datasets from this archive cover a wide range of application
domains. They are also diverse in terms of the number and the lengths of time
series in each dataset. The datasets are split into a training and a test set in
the archive and we keep this separation in our experiments. For this set of
experiments, the cost of delaying the decision is chosen linear in t:

Cd(t) = β × t. (9)

So as not to focus on a single trade-off between accuracy and earliness, we
vary β in the set {0.0005, 0.001, 0.005, 0.01} in all experiments. In real-world
applications, β should be set according to expert knowledge and effective cost of
waiting for more observations. For instance, in remote sensing applications where
buying new images can be costly, high β values shall be used, unlike applications
such as ECG monitoring for which new observations are made at almost no cost.

Results are reported for all setups (i.e., all datasets and β values) for which
any of the compared methods finishes in less than 7 days. Presented results (for
all criteria) are medians over 4 runs for each method.

Classifiers from sets D and H are linear Support Vector Machines trained
using scikit-learn and LIBSVM Python binding [2,11]. Parameters C from the
SVM and λ from the expected cost functions are learned through cross-validation
on the training set. Five values for parameter C are sampled regularly from a
logarithmic scale between 10−1 and 101. Five values for λ are sampled in a similar
way between 101 and 103. As done in [3], we do not perform early classification
before time tmin = 4. For the baseline method, the number of clusters is chosen
so as to maximize the silhouette factor [12], as suggested in [3].

Following the principle of reproducible research, the Python code used in
these experiments (including both proposed method and our implementation of
the baseline) is made publicly available for download2.

4.2 Sensitivity to β

Figure 3 presents results obtained for dataset FISH in terms of accuracy, ear-
liness and overall early classification cost function (C(x, y)) for different values
of β. As expected, when parameter β increases, accuracy and earliness both
drop, for all methods. Indeed, high values of β indicate that it is more costly to
wait for more data. Decision is hence made earlier, leading to worse accuracy.
On the contrary, overall early classification costs increases with β, whatever the
method. For this dataset (see Sect. 4.5 for more results) and for the whole range
2 https://github.com/rtavenar/CostAware ECTS.

https://github.com/rtavenar/CostAware_ECTS
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Fig. 3. Early classification performance as a function of β for dataset FISH.
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Fig. 4. Cumulative density functions of training (a) and test (b) times over all datasets
and β values.

of β values considered here, 2Step and NoCluster methods both outperform the
baseline in terms of early classification cost, which is the indicator all three
methods optimize on (remind that the lower cost, the better).
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Table 2. Win / Tie / Lose scores based on early classification costs. Results from
all datasets using all β values are used. For these scores, “Win” means that proposed
method outperforms the baseline in terms of cost minimization.

EDSC ECTS1 ECTS2 RelClass1 RelClass2 RelClass3 RelClass4

[14] [13] [13] [10] [10] [10] [10]

W T L W T L W T L W T L W T L W T L W T L

2Step 49 0 21 52 0 21 51 0 22 54 0 19 56 0 17 57 0 16 54 0 19

NoCluster 54 0 17 56 0 19 56 0 19 56 0 19 58 0 17 58 0 17 57 0 18

4.3 Timings

Figure 4 presents both training and test timings of the two proposed methods
using cumulative density functions (CDF), and compare them to the baseline
method. At a given probability level, a smaller execution time would correspond
to a faster method, hence leftmost CDF curves are the most desirable. This figure
shows that the baseline method runs faster than NoCluster for both training and
test. The difference in test timings is due to the fact that NoCluster requires to
compute more distances than the baseline, as explained in Sect. 3.2. For training
timings, the difference is due to the number of expected cost function calculations
that is lower for the baseline (one per cluster for the baseline versus one per
training time series for NoCluster).

Concerning 2Step method, training consists in computing the same expected
cost functions as for NoCluster and then building classifiers on top of them, so it
is expected that this method has higher training timings. Yet, it is important to
notice that the use of classifiers has a positive impact on test timings, for which
2Step even outperforms the baseline. As explained in Sect. 3, this feature can be
important for some applications where decisions need to be made quickly.

4.4 Comparisons with Classical Early Classification Methods

We first compare 2Step and NoCluster methods with classical early classification
methods that do not directly optimize on a mixed cost function. To do so, we
use earliness and accuracy scores published in the Supplementary material asso-
ciated to [9]. Such scores are available for EDSC [14], strict and loose variants
of ECTS [14] (denoted ECTS1 and ECTS2 respectively) and RelClass [10] with
four different reliability thresholds (0.001, 0.1, 0.5, 0.9 for methods RelClass1 to
RelClass4 respectively). Based on these scores, we can compute early classifica-
tion costs for all methods with varying β values. Win/Tie/Lose scores computed
from these costs are presented in Table 2. These results show that both proposed
methods outperform all these baselines. To assess statistical significance, we per-
form one-sided Wilcoxon signed rank tests between each proposed method and
each baseline. All tests show significance with p-values lower than 10−6.

This performance improvement was expected, as baseline methods consid-
ered in this Section do not optimize on the cost function that mixes earliness
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Fig. 5. Comparison of early classification costs between proposed methods and the
baselines from [3] and [9]. Results from all datasets using all β values are gathered
here. Solid line indicates equal costs and dashed lines correspond to the +/-20 % cost
interval.

and accuracy. To further evaluate performance of our proposed methods, we
compare them to other cost-aware methods in the following Section.

4.5 Comparisons with Cost-Aware Methods

Figure 5 presents comparisons of early classification costs between both our pro-
posed methods and cost-aware baselines. Presented results show that proposed
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methods enable to reach lower early classification cost than the baseline from [3]
in most cases: 2Step outperforms the baseline in 128 out of the 198 cases (i.e.,
in 64.6% of the cases), while NoCluster has better results in 135 cases (68.2%).
Moreover, the number of setups for which the baseline is improved by more than
20 % is another indicator showing the benefit of both proposed methods (cf.
points outside the dashed lines in Fig. 5a and b).

One-sided Wilcoxon signed rank tests between each proposed method and
the baseline show significance with a p-value lower than 10−6, which confirms
that both our methods outperform the baseline in terms of cost minimization.

We then compare both proposed methods to EarlyOpt.SVM [9], that opti-
mizes on a slightly different trade-off between accuracy and earliness, in Fig. 5
When doing so, evaluation can be performed with respect to two different cost
functions: the one on which EarlyOpt.SVM optimizes or the one used for our
methods. Figure 5c and d present results obtained when using the cost func-
tion from EarlyOpt.SVM, that favors the latter in the comparison3. In spite of
this, both proposed methods improve on EarlyOpt.SVM performance and these
improvements are statistically significant at the 5 % significance level.

Finally, when comparing 2Step and NoCluster costs as shown in Fig. 5e,
NoCluster gets slightly better results that are considered significant when tested
at the 5 % significance level (p = 0.037).

5 Conclusion

In this paper, we build upon the framework introduced in [3]. This framework
deals with the problem of early classification from a new point of view: it aims
at minimizing a cost function that includes a cost of misclassification and a cost
of delaying the decision.

Following this framework, our proposition consists in designing two different
methods (called NoCluster and 2Step) that optimize on such a cost function.
These methods decide online for an incoming testing time series if the current
time instant is the optimal moment to classify the time series (with respect to
the cost function) or if it is more valuable to wait for more samples of the time
series before classifying it. In the latter case, they also give an estimate of when
the optimal moment is more likely to occur. Both methods are hence adaptive
and non myopic.

We have performed extensive experiments on a large and widely used set
of datasets in order to evaluate the appropriateness of these methods, in terms
of performance and timings. It turns out that (i) 2Step outperforms the state-
of-the art in terms of both cost minimization and classification time and (ii)
NoCluster is an even better option in terms of early classification cost at the
expense of slower classification. As future work, we will consider the use of time
series specific classifiers, which should improve the overall performance of these
approaches.

3 See Supplementary material for more details on this comparison.
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Abstract. While the Matrix Generalized Inverse Gaussian (MGIG)
distribution arises naturally in some settings as a distribution over sym-
metric positive semi-definite matrices, certain key properties of the distri-
bution and effective ways of sampling from the distribution have not been
carefully studied. In this paper, we show that the MGIG is unimodal,
and the mode can be obtained by solving an Algebraic Riccati Equation
(ARE) equation [7]. Based on the property, we propose an importance
sampling method for the MGIG where the mode of the proposal dis-
tribution matches that of the target. The proposed sampling method is
more efficient than existing approaches [32,33], which use proposal dis-
tributions that may have the mode far from the MGIG’s mode. Further,
we illustrate that the the posterior distribution in latent factor models,
such as probabilistic matrix factorization (PMF) [24], when marginalized
over one latent factor has the MGIG distribution. The characterization
leads to a novel Collapsed Monte Carlo (CMC) inference algorithm for
such latent factor models. We illustrate that CMC has a lower log loss
or perplexity than MCMC, and needs fewer samples.

1 Introduction

Matrix Generalized Inverse Gaussian (MGIG) distributions [3,10] are a family
of distributions over the space of symmetric positive definite matrices and has
been recently applied as the prior for covariance matrix [20,32,33]. MGIG is
a flexible prior since it contains Wishart, and Inverse Wishart distributions as
special cases. We anticipate the usage of MGIG as prior for statistical machine
learning models to grow with potential applications in Bayesian dimensionality
reduction and Bayesian matrix completion (Sect. 4).

Some properties of the MGIG distribution and its connection with Wishart
distribution has been studied in [10,26,27]. However, to best of our knowledge,
it is not yet known if the distribution is unimodal and, if it is unimodal, how
to obtain the mode of MGIG. Besides, it is difficult to analytically calculate
mean of the distribution and sample from the MGIG distribution. Monte Carlo
methods like the importance sampling can in principle be applied to infer the
mean of MGIG but one needs to design a suitable proposal distribution [21,23].

There is only one important sampling procedure for estimating the mean of
MGIG [32,33]. In this approach, MGIG is viewed as a product of the Wishart
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 648–664, 2016.
DOI: 10.1007/978-3-319-46128-1 41
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and Inverse Wishart distributions and one of them is used as the proposal dis-
tribution. However, we illustrate that the mode of the proposal distribution in
[32,33] may be far away from the MGIG’s mode. As a result, the proposal
density is small in a region where the MGIG density is large yielding to an
ineffective sampler and drastically wrong estimate of the mean (Figs. 1 and 2).

In this paper, we first illustrate that the MGIG distribution is unimodal
where the mode can be obtained by solving an Algebraic Riccati Equation (ARE)
[7]. This characterization leads to an effective importance sampler for the MGIG
distribution. More specifically, for estimating the expectation EX∼MGIG [g(X)],
we select a proposal distribution over space of symmetric positive definite matri-
ces like Wishart or Inverse Wishart distribution such that the mode of the pro-
posal matches the mode of the MGIG. As a result, unlike the current sam-
pler [32,33], by aligning the shape of the proposal and the MGIG, the density
of the proposal gets higher values in the high density regions of the target,
yielding to a good approximation of EX∼MGIG [g(X)].

Further, we discuss a new application of the MGIG distribution in latent
factor models such as probabilistic matrix factorization (PMF) [24] or Bayesian
PCA (BPCA) [4]. In these settings, the given matrix X ∈ R

N×M is approxi-
mated by a low-rank matrix X̂ = UV T where U ∈ R

N×D and V ∈ R
M×D with

Gaussian priors over the latent matrices U and V . We show that after analyti-
cally marginalizing one of the latent matrices in PMF (or BPCA), the posterior
over the other matrix has the MGIG distribution. This illustration yields to a
novel Collapsed Monte Carlo (CMC) inference algorithm for PMF. In particular,
we marginalize one of the latent matrices, say V , and propose a direct Monte
Carlo sampling from the posterior of the other matrix, say U . Through exten-
sive experimental analysis on synthetic, SNP, gene expression, and MovieLens
datasets, we show that CMC has lower log loss or perplexity with fewer samples
than Markov Chain Monte Carlo (MCMC) inference approach for PMF [25].

The rest of the paper is organized as follows. In Sect. 2, we cover background
materials. In Sect. 3, we show that MGIG is unimodal and give a novel impor-
tance sampler for MGIG. We provide the connection of MGIG with PMF in
Sect. 4, present the results in Sect. 5, and conclude in Sect. 6.

2 Background and Preliminary

In this section, we provide some background on the relevant topics and tools
that will be used in our analysis. We start by an introduction to importance
sampling, MGIG distribution, followed by a brief overview of the ARE.

Notations: Let S
N
++ and S

N
+ denote the space of symmetric (N × N) posi-

tive definite and positive semi-definite matrix, respectively. Let |.| denote the
determinant of matrix, Tr(.) be the matrix trace. A matrix Λ ∈ S

N
++ has a

Wishart distribution denoted as WN (Λ|Φ, τ) where τ > N −1 and Φ ∈ S
N
++ [31].

A matrix Λ ∈ S
N
++ has an Inverse Wishart distribution denoted as IWN (Λ|Ψ, α)

where α > N − 1 and Ψ ∈ S
N
++ is the scale matrix. We denote x:m as the mth

column of matrix X ∈ R
N×M and xn as the nth row of X.
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Fig. 1. An illustration of bad proposal distribution in importance sampling. Let p(x) =
h∗(x)g∗(x)/Zp ∝ h(x)g(x). Neither h(x) = h∗(x)/Zh nor g(x) = g∗(x)/Zg are a good
candidate proposal distribution since their modes are far away from the one of p(x).

2.1 Importance Sampling

Consider distribution p(x) = 1
Zp

p∗(x) where Zp is the partition function which
plays the role of a normalizing constant. Importance sampling is a general tech-
nique for estimating Ex∼p(x)[g(x)] where sampling from p(x) (the target distrib-
ution) is difficult but we can evaluate the value of p∗(x) at any given x [21]. The
idea is to draw S samples {xi}S

i=1 from a similar but easier distribution denoted
by proposal distribution q(x) = 1

Zq
q∗(x). Define w(xi) = p∗(xi)

q∗(xi)
as the weight of

each sample i. Then, we calculate the expected value as follows

Ex∼p[g(x)] = Ex∼q

[
g(x)p(x)

q(x)

]
≈

∑S
i=1 g(xi)w(xi)∑S

i=1 w(xi)
,

The efficiency of importance sampling depends on how closely the proposal
approximates the target in the shape. One way for monitoring the efficiency of
importance sampling is the effective sample size ESS = (

∑S
i=1 w(xi))

2
∑S

i=1 w2(xi)
[15]. Very

small value of ESS indicates a big discrepancy between the proposal and target
(for example when the mode of the proposal distribution is far away from the
target’s mode) leading to a drastically wrong estimate of Ex∼p[g(x)] [21].

2.2 MGIG Distribution

MGIG distribution was first introduced in [3] as a distribution over the space
of symmetric (N × N) positive definite matrices defined as follows.

Definition 21. A matrix-variate random variable Λ ∈ S
N
++ is MGIG distrib-

uted [3,10] and is denoted as Λ ∼ MGIGN (Ψ,Φ, ν) if the density of Λ is

f(Λ) =
| Λ |ν−(N+1)/2

| Ψ
2 |ν Bν(Φ

2
Ψ
2 )

exp{Tr(−1
2
ΨΛ−1 − 1

2
ΦΛ)},

where Bν(.) is the matrix Bessel function [13] defined as

Bν(
Φ

2
Ψ

2
) = |Φ

2
|−ν

∫

S
N
++

|S|−ν− N+1
2 exp{Tr(−1

2
ΨS−1 − 1

2
ΦS)}dS. (1)
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When N = 1, the MGIG is the generalized inverse Gaussian distribution
GIG [14] which is often used as the prior in several domains [6,12]. If Ψ = 0, the
MGIG distribution reduces to the Wishart, and if Φ = 0, it becomes the Inverse
Wishart distribution.

Proposition 1. [32, Proposition 2] If matrix Λ ∼ MGIGN (Ψ,Φ, ν), then
Λ−1 ∼ MGIGN (Φ, Ψ,−ν).

Sampling Mean of MGIG: The sufficient statistics of MGIG are log |Λ|,
Λ, and Λ−1. It is, however, difficult to analytically calculate the expecta-
tions EΛ∼MGIG [Λ] and EΛ∼MGIG [Λ−1]. Importance sampling can be applied
to approximate those quantities. Note that based on the result of Proposi-
tion 1, the importance sampling procedure for estimating mean of MGIG,
i.e., EΛ∼MGIG [Λ], can also be applied to infer the reciprocal mean i.e.
EΛ∼MGIG [Λ−1].

An importance sampling procedure proposed in [32,33], where the MGIG is
viewed as a product of Inverse Wishart and Wishart distributions and one of
the multiplicands is used as the natural choice of the proposal distribution. In
particular, in [32,33], the MGIG is viewed as

MGIGN (Λ|Ψ, Ψ, ν) ∝ eTr(− 1
2 ΦΛ)

︸ ︷︷ ︸
T1

IWN (Λ | Ψ, −2νu)
︸ ︷︷ ︸

T2

∝ eTr(− 1
2 ΨΛ−1)

︸ ︷︷ ︸
T3

WN (Λ | Φ, 2νu)
︸ ︷︷ ︸

T4

.

In [32,33], authors advocate using T2 (or T4) as the proposal distribution which
simplify the weight calculation to the evaluation of T1 (or T3). However, it is
not studied how close T2 (or T4) are to the MGIG distribution in shape. For
example, consider the 1−dimensional MGIG distribution

MGIG1(Λ | 35, 10, 10) ∝ eTr(− 35
2 Λ−1)

︸ ︷︷ ︸
T3

W1(Λ | 10, 20)︸ ︷︷ ︸
T4

. (2)

In [32,33], T4 : W1(Λ | 10, 20) is considered as the proposal distribution, but the
mode of T4 is far away from the mode of MGIG1(Λ | 35, 10, 10) (Fig. 2(a)). As
a result, samples drawn from T4 will be on the tail of the MGIG1(Λ | 10, 20)
distribution, and will end up getting low weights from the MGIG1(Λ | 10, 20)
distribution. Such a sampling procedure will be wasteful, i.e., drawing samples
from the tails of the target MGIG1 distribution, leading to a very low ESS.
Similar behavior is observed with several different choices of parameters for the
MGIG, here we only show three of them in Fig. 2 due to the lack of space.

2.3 Algebraic Riccati Equation

An algebraic Riccati equation (ARE) is

AT X + XA + XRX + Q = 0, (3)
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Fig. 2. (a,b) Comparison of different proposal distribution (a) Wishart (W) and (b)
Inverse Wishart (IW) for sampling mean of MGIG1(Ψ, Φ, ν) where Λ∗ is the mode
of MGIG. The blue curves are the proposal distribution defined in [32,33] which can
not recover the mode of the MGIG distribution. (c) Density of MGIG2(Ψ, Φ, ν) for
1000 samples generated by each proposal distribution is calculated. More than 90% of
samples generated by the previous proposal distribution in [32,33] (IW(ψ, −2ν)) have
zero MGIG density leading to ESS = 40. Whereas, the new proposal distribution
IW (23Λ∗, 20) has the ESS = 550 which has a very similar shape to the target MGIG.
(Color figure online)

where A ∈ R
N×N , Q ∈ S

N
+ , and R ∈ S

N
+ . We associate a 2N × 2N matrix called

the Hamiltonian matrix H with the ARE (3) as H =
[

A R
−Q −AT

]
. The ARE (3)

has a unique positive definite solution if and only if the associated Hamiltonian
matrix H has no imaginary eigenvalues (Section 5.6.3 of [7]).

There have been offered various numerical methods to solve the ARE which
can be reviewed in [1]. The key of numerical technique to solve ARE (3) is to
convert the problem to a stable invariant subspace problem of the Hamiltonian
matrix i.e., finding the invariant subspace corresponding to the eigenvalues of
H with negative real parts. The usual ARE solvers such as the Schur vector
method [16], SR methods [9], the matrix sign function [2,11] require in general
O(n3) flops [19]. For special cases, faster algorithms such as [19] can be applied
which solves such an ARE with 20k dimensions in seconds. In this paper, we use
Matlab ARE solver (care) to find the solution of ARE.

3 MGIG Properties

Some properties of the MGIG and its connection with Wishart distribution has
been studied in [10,26,27]. However, to best of our knowledge, it is not yet known
if the distribution is unimodal and how to obtain the mode of MGIG. In the
following Lemma we show that the MGIG distribution is unimodal.

Lemma 1. Consider the MGIG distribution MGIGN (Λ|Ψ,Φ, ν). The mode of
MGIG is the solution of the following Algebraic Riccati Equation (ARE)

−2αΛ + ΛΦΛ − Ψ = 0, (4)

where α = (ν − N+1
2 ). ARE in (4) has a unique positive definite solution, thus

the MGIG distribution is a unimodal distribution.



The Matrix Generalized Inverse Gaussian Distribution 653

Proof. The log-density of MGIGN (Λ|Ψ,Φ, ν) is

log f(Λ) = α log |Λ| − 1
2

Tr(ΨΛ−1 + ΦΛ) + C, (5)

where α = (ν − N+1
2 ), and C is a constant which does not depend on Λ. The

mode of MGIGN is obtained by setting derivative of (5) to zero as follows

∇f(Λ) = −2αΛ + ΛΦΛ − Ψ = 0, (6)

which is a special case of ARE (3). The associated Hamiltonian matrix for (6)

is H =
[−αIN Φ

Ψ αIN

]
. Recall that ARE has a unique positive definite solution if

and only if the associated Hamiltonian matrix H has no imaginary eigenvalues
(Section 5.6.3 of [7]). Thus, to show the unimodality of MGIG, it is enough to
show that the corresponding characteristic polynomial |H − λI2N | = 0 has no
imaginary solution.

|H − λI2N | = |−(α + λ)IN | ∣∣(α − λ)IN + (α + λ)−1ΨΦ
∣∣

= |(α − λ)IN | ∣∣−(α + λ)IN − (α − λ)−1ΦΨ
∣∣ =

N∏

i=1

{−(α2 − λ2) − λ̃i} = 0,

which yields to λ2 = λ̃i + α2 where λ̃i is the ith eigenvalue of ΦΨ . Note λ̃i > 0
since Φ and Ψ are positive definite and product of two positive definite matrix
has positive eigenvalue. As a result, (7) has no imaginary solution and H does
not have any imaginary eigenvalue. As a result, ARE in (6) has a unique positive
definite solution. This completes the proof. ��
Importance Sampling for MGIG: Since MGIG is a unimodal distribu-
tion, we propose an efficient importance sampling procedure for MGIG by mode
matching. We select a proposal distribution over space of positive definite matri-
ces by matching the proposal’s mode to the mode of MGIG (mode matching)
which aligns the proposal and MGIG shapes. As a result, the proposal q(x) is
large in a region where the target distribution MGIG is large leading to a good
approximation of EΛ∼MGIG [g(Λ)]. An example of such proposal distribution is
Inverse Wishart or Wishart distribution.

Let Λ∗ be the mode of MGIGN (Λ|Ψ,Φ, ν) which can be found by solving
the ARE (6). The mode of WN (Λ|Σ, ρ) distribution is Σ∗ = (ρ − N − 1)Σ. To
match the mode of WN (Λ|Σ, ρ) with that of MGIGN (Λ|Ψ,Φ, ν), we choose the
scale parameter Σ of the Wishart distribution by setting Σ∗ = Λ∗. In particular,

Σ∗ = Λ∗ = (ρ − N − 1)Σ ⇒ Σ =
Λ∗

ρ − N − 1
. (7)

Thus, we suggest using WN ( Λ∗
ρ−N−1 , ρ) as the proposal distribution. At each

iteration, we draw a sample Λi ∼ WN ( Λ∗
ρ−N−1 , ρ), and calculate w(Λi). More

specifically, the density of Wishart distribution is
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Algorithm 1. Random Generator of WN (Λ|Σ, ρ, L) [28]
1: Note LT L = Σ is the Cholesky factorization of Σ
2: Pii ∼√χ2(ρ − (i − 1)) for all i = 1 · · · N .
3: Pij ∼ N (0, 1) for i < j. 	 P : upper triangular
4: R = PL.
5: Return Λ = RT R, Λ−1 = R−1R−1T

, and |Λ| = [
∏N

i=1 Rii]
2.

q(Λ) =
q∗(Λ)
Zq

, where q∗(Λ) = |Λ| ρ−N−1
2 exp{−1

2
Tr(Σ−1Λ)}. (8)

Then, the importance weight can be calculated as

w(Λi) =| Λi |ν− ρ
2 exp

{
−1

2
Tr

(
ΨΛ−1

i + [Φ − Σ−1]Λi

)}
. (9)

As a result, we approximate EΛ∼MGIG [g(Λ)] ≈
∑S

i=1 w(Λi)g(Λi)∑S
j=1 w(Λj)

. A similar argu-

ment holds when the proposal distribution is an Inverse Wishart distribution.
Note that the weight calculation requires to calculate the inverse and determi-

nant of sampled matrix Λi. However, as illustrated in Algorithm 1, the random
samples generator from W [28] returns the upper triangular matrix R where
Λ = RT R. Hence the inverse and determinant of Λ can be calculated efficiently
from the inverse and diagonal of the triangular matrix R, respectively. Therefore,
the cost of weight calculation is reduced to the cost of solving a linear system
and upper triangular matrix production at each iteration.

Figure 2 illustrates that the proposed importance sampling outperforms the
one in [32,33] for three examples of MGIG. In particular, more than 90% of
samples drawn from the proposal distribution T2 in [32,33] have zero weights
leading to ESS = 40 (Fig. 2 (c)). Whereas, our proposal distribution achieved
ESS = 550 leading to a better approximation of the mean of MGIG. Similar
behavior is observed with several different choices of parameters for the MGIG.

4 Connection of MGIG and Bayesian PCA

In this section, we illustrate that the mapping matrix V in Bayesian PCA can
be marginalized or ‘collapsed’ yielding a Matrix Generalized Inverse Gaussian
(MGIG) [3,10] posterior distribution over the latent matrix U denoting as the
marginalized posterior distribution. Then, we explain the derivation of the mar-
ginalized posterior for data with missing values, followed by a collapsed Monte
Carlo Inference for PMF.
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4.1 PMF, PPCA, and Bayesian PCA

First, we give a review of PMF [24], Probabilistic PCA (PPCA) [29], and
Bayesian PCA (BPCA) [4], to illustrate the similarity and differences between
the existing ideas and our approach. A related discussion appears in [18]. All
these models focus on an (partially) observed data matrix X ∈ R

N×M . Given
latent factors U ∈ R

N×D and V ∈ R
M×D, the rows of X are assumed to be gen-

erated according to x:m = UvT
m + ε, where ε ∈ R

N . The different models vary
depending on how they handle distributions or estimates of the latent factors
U, V . Without loss of generality, in this paper, we are considering a fat matrix
X where M > N .

PMF and BPMF: In PMF [24], one assumes independent Gaussian pri-
ors for all latent vectors un and vm, i.e., un ∼ N (0, σ2

uI), [n]N1 and vm ∼
N (0, σ2

vI), [m]M1 . Then, one obtains the following posterior over (U, V )

p (U, V |X, θ)=
∏

n,m

[N (xnm

∣∣〈un,vm〉, σ2)]δnm

∏

n

N (un

∣∣0, σ2
uI)

∏

m

N (v:m

∣∣0, σ2
vI) ,

where δnm = 0 if xnm is missing and δ = {σ2, σ2
u, σ2

v}. PMF obtains point esti-
mates (Û , V̂ ) by maximizing the posterior (MAP), based on alternating opti-
mization over U and V [24].

Bayesian PMF (BPMF) [25] considers independent Gaussian priors over
latent factors with full covariance matrices, i.e., un ∼ N (0,Σu), [n]N1 and vm ∼
N (0,Σv), [m]M1 . Inference is done using Gibbs sampling to approximate the pos-
terior P (U, V |X). At each iteration t, U (t) is sampled from the conditional prob-
ability of p(U |V (t−1),X), followed by sampling V from p(V |U (t),X).

Probabilistic PCA: In PPCA [29], one assumes independent Gaussian prior
over un, i.e., un ∼ N (0, σ2

uI), but V is treated as a parameter to be estimated.
In particular, V is chosen so as to maximize the marginalized likelihood of X

p (X |V ) =
∫

U

p(X|U, V )p(U)dU =
N∏

n=1

N (xn|0, σ2
uV V T + σ2

I). (10)

Interestingly, as shown in [29], the estimate V̂ can be obtained in closed form.
For such a fixed V̂ , the posterior distribution over U |X, V̂ can be obtained as

p(U |X, V̂ ) =
p(X|U, V̂ )p(U)

p(X|V̂ )
=

N∏

n=1

N
(
un|Γ−1V̂ T xn, σ−2Γ

)
, (11)

where Γ = V̂ T V̂ +σ−2
u σ−2

I. Note that the posterior of the latent factor U in (11)
depends on both X and V̂ . For applications of PPCA in visualization, embed-
ding, and data compression, any point xn in the data space can be summarized
by its posterior mean E[un|xn, V̂ ] and covariance Cov(un|V̂ ) in the latent space.

Bayesian PCA: In Bayesian PCA [4], one assumes independent Gaussian priors
for all un and vm, i.e., un ∼ N (0, σ2

uI) and vm ∼ N (0, σ2
vI), [m]M1 . Bayesian pos-

terior inference by Bayes rule considers p(U, V |X) = p(X|U, V )p(U)p(V )/p(X),
which includes the intractable partition function
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p(X) =
∫

U

∫

V

p(X|U, V )p(U)p(V )dUdV . (12)

The literature has considered approximate inference methods, such as varia-
tional inference [5], gradient descent optimization [18], MCMC [25], or Laplace
approximation [4,22].

While PPCA and Bayesian PCA were originally considered in the context
of embedding and dimensionality reduction, PMF and BPMF have been widely
used in the context of matrix completion where the observed matrix X has many
missing entries. Nevertheless, as seen from the above exposition, the structure
of the models are closely related (also see [17,18]).

4.2 Closed Form Posterior Distribution in Bayesian PCA

The key challenge in models such as Bayesian PCA or BPMF is that joint
marginalization over both latent factors U, V is intractable. PPCA gets around
the problem by considering one of the variables, say V , to be a constant. In
this section, we show that one can marginalize or ‘collapse’ one of the latent
factors, say V , and obtain the marginalized posterior P (U |X) over the other
variable denoted. In fact, we obtain the posterior with respect to the covariance
structure Λu = βuI + UUT , for a suitable constant βu, which is sufficient to do
Bayesian inference on new test points xtest. Note that

p(U |X) ∝ p(U)P (X|U) = p(U)
∫

V

P (X|U, V )p(V )dV , (13)

and, based on the posterior over U , one can obtain the probability on a new
point as p(xtest|X) =

∫
U

p(xtest|U)p(U |X)dU.
Next, we show that the posterior over U as in (13), rather the distribution

over Λu = βuI+UUT , can be derived analytically in closed form. The distribution
is the Matrix Generalized Inverse Gaussian (MGIG) distribution.

Similar to (10), marginalizing V gives

p (X |U) =
∫

V

p(X|U, V )p(V )dV =
M∏

m=1

N (
x:m | 0, σ2

vΛu

)
, (14)

where Λu = βvI + UUT and βv = σ2

σ2
v
. Then, the marginalized posterior of U is

p(U |X) ∝ p(X|U) p(U) = | Λu |−M/2 exp

⎧
⎨

⎩
−Tr

(
Λ−1

u

∑M
m=1 x:mxT

:m

)

2σ2
v

⎫
⎬

⎭

× exp
{−Tr(Λu)

2σ2
u

}
× exp

{
Tr(βuI)

2σ2
u

}
(15)

= | Λu |−M/2 exp
{

Tr(−1
2
Λ−1

u Ψu − 1
2
ΛuΦu)

}

∼ MGIG(Λu |Ψu, Φu, νu), (16)

where Ψu = 1
σ2

v
XXT , Φu = 1

σ2
u
I, and νu = N−M+1

2 .
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Therefore, by marginalizing or collapsing V , the posterior over Λu = βvI +
UUT corresponding to the latent matrix U can be characterized exactly with
a MGIG distribution with parameters depending only on X. Note that this is
in sharp contrast with (11) for PPCA, where the posterior covariance of un is
σ−2Γ which in turn depends on the point estimate for V̂ .

4.3 Posterior Distribution with Missing Data

In this section, we consider the matrix completion setting, when the observed
matrix X has missing values. In presence of missing values, the likelihood of the
observed sub-vector in any column of X is given as

p (xnm,m |U, V ) = N
(
xnm,m | ŨmvT

m, σ2
I

)
. (17)

where nm is a vector of size Ñm containing indices of non-missing entries in
column m of X, and Ũm is a sub-matrix of U with size of Ñm × D where each
row correspond to a non-missing entry in the mth column of X. The marginalized
likelihood (14) is p (X |U) =

∏M
m=1 N (

xnm,m | 0, σ2
vΛun

)
, where Λun = βvI +

ŨnŨT
n and βv = σ2

σ2
v
. The marginalized posterior is given by

p(U |X) ∝ exp
{

−Tr(UUT )
2σ2

u

} M∏

m=1

| Λun |−M/2 exp
{

−1
2
xT

nm,mΛ−1
unxnm,m

}
.

Thus, in presence of missing values, the posterior cannot be factorized as in (15)
because each column x:m contributes to different blocks Λun of Λ.

We propose to address the missing value issue by gap-filling. In particular,
if one can obtain a good estimate of the covariance structure in X, so that
Ψu = 1

σ2
v
XXT in (16) can be approximated well, one can use the MGIG posterior

to do approximate inference. We consider two simple approaches to approximate
the covariance structure of X: (i) by zero-padding the missing value matrix X
(assuming E[X] = 0 or centering the data in practice), and estimating the
covariance structure based on the zero-padded matrix [30], and (ii) by using
a suitable matrix completion method, such as PMF, to get point estimates of
the missing entries in X, and estimating the covariance structure based on the
completed matrix. We experiment with both approaches in Sect. 5, and the zero-
padded version seems to work quite well.

4.4 Collapsed Monte Carlo Inference for PMF

Given that Λu ∼ MGIGN , we predict the missing values as follows. Let x =
[xo,x∗] ∼ N (0, Λ), where xo ∈ R

p is the observed partition of x ∈ R
N and

x∗ ∈ R
N−p is missing. Accordingly, partition Λ as Λu =

p N − p( )
Λoo Λo∗ p
Λ∗o Λ∗∗ N − p

.
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Algorithm 2. CMC Inference for PMF

1: Let Ψu = ZZT

σ2
v

, Φu = I

σ2
u
, and νu = N−M+1

2
.

2: Solve (6) to find mode Λ∗ of MGIG(Ψu, Φu, νu).
3: Let LT L = Λ∗ be the Cholesky factorization of Λ∗. Let L̃ = L√

ρ−M−1
.

4: for t = 1 · · · T do

5: Let Λ(t) ∼ WN ( Λ∗
ρ−M−1

, ρ, L̃) 	 Algorithm 1

6: Let wt = MGIGN (Λ(t)|Ψu,Φu,νu)

WN (Λ(t)| Λ∗
ρ−M−1 ,ρ,L̃)

.

7: Let μt = Λ
(t)
∗o Λ

(t)
oo

−1
xo. Let Σt = Λ

(t)
∗∗ − Λ

(t)
∗o Λ

(t)
oo

−1
Λ

(t)
o∗ .

8: Let μ̄ = μ̄ + wtμt.
Let Σ̄ = Σ̄ + wtΣt.

9: Report the distribution of x∗ ∼ N (μ̃∗, Σ̃∗) where μ̃∗ = μ̄
∑T

t=1 wt and Σ̃∗ = Σ̄∑T
t=1 wt .

Then the conditional probability of x∗ given xo and Λ is

p(x∗ |xo, Λ) ∼ N (Λ∗oΛ
−1
oo xo

︸ ︷︷ ︸
μ∗

, Λ∗∗ − Λ∗oΛ
−1
oo Λ∗o︸ ︷︷ ︸

Σ∗

) (18)

where y = Λ∗oΛ
−1
oo is the solution of the linear system Λooy = ΛT

∗o and can be
calculated efficiently. Since sampling from MGIG is difficult, we propose to use
importance sampling to infer the missing values as

p(x∗
n|xo

n) = EΛ∼MGIG [p(x∗
n|xo

n, Λ)] = EΛ∼q

[
p(x∗

n|xo
n, Λ)MGIGN (Λ|Ψu, Φu, νu)

q(Λ)

]

,

where q is the proposal distribution as discussed above and sampling Λ(t) from
q yields to the estimate of

μ̃∗ =
∑T

t=1 Λ
(t)
∗o Λ

(t)
oo

−1
xow(Λ(t))

∑t
t=1 w(Λ(t))

, Σ̃∗ =
∑T

t=1[Λ
(t)
∗∗ − Λ

(t)
∗o Λ

(t)
oo

−1
Λ

(t)
∗o ]w(Λ(t))

∑t
t=1 w(Λ(t))

.

Algorithm 2 illustrates the summary of the collapsed Monte Carlo (CMC) infer-
ence for predicting the missing values. A practical approximation to avoid the
calculations in Lines 7–8 of Algorithm 2 at each iteration is to simply estimate
the mean of the posterior Λ̄ =

∑T
t=1 Λ(t)wt

∑T
t=1 wt with samples drawn from the proposal

distribution (line 6), then do the inference based on Λ̄.

5 Experimental Results

We compared the performance of MCMC and CMC on both log loss and running
times. We evaluated the models on 4 datasets: (1) SNP: single nucleotide poly-
morphism (SNP) is important for identifying gene-disease associations where
the data usually has 5 to 20 % of genotypes missing [8]. We used phased SNP
dataset for chromosome 13 of the CEU population1. We randomly dropped 20 %
1 http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/.

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/
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10% 20% 30% 40% 50% 60% 70% 80% 90%
10

0

10
1

Log Loss Percentile

L
o

g
 L

o
ss

Synthetic: δ = 0.2

CMC: σ
v
2=σ

u
2=0.05

CMC: σ
v
2=σ

u
2=0.1

MCMC: σ
u
2=σ

v
2=0.05, D=10

MCMC: σ
u
2=σ

v
2=0.2, D=10

(c) Synthetic with δ = 0.2

10%  20%   30%    40%     50%      60%       70%        80%         90%          100%
100

101

102

103

LL percentile

L
o

g
 L

o
ss

MCMC
CMC: zero−padded
CMC: PMF initialization
CMC: Proposal [32, 33]

(d) MovieLens

10% 20%  30%   40%    50%     60%      70%       80%        90%         100%
100

101

102

103

LL Percentile

L
o

g
 L

o
ss

MCMC

CMC: PMF initialization

CMC: zero−padded

CMC: Proposal [32,33]

(e) SNP

10% 20%  30%  40%   50%    60%     70%      80%       90%        100%
100

101

102

103

LL Percentile

L
o

g
 L

o
ss

MCMC

CMC: PMF initialization

CMC: zero−padded

CMC: Full Sampling

CMC: Proposal [32,33]

(f) Gene Expression

Fig. 3. Log loss (LL) of CMC and MCMC for different log loss percentile on different
datasets presented in the log scale (δ denotes the missing proportion). CMC consistently
achieves lower LL compared to MCMC. LL of MCMC increases exponentially (linearly
in log scale) by adding data points with higher log loss. Proposal in [30,31] achieved
infinity LL for MovieLens. Empty bar represents infinity LL (e.g. 90% and 100 %
percentile in (d)

of the entries. (2) Gene Expression: DNA microarrays provides measurement
of thousands of genes under a certain experimental condition where suspicious
values are usually regarded as missing values. Here we used gene expression
dataset for Breast Cancer (BRCA)2. We randomly dropped 20 % of the entries.
(3) MovieLens: we used MovieLens3 dataset with 1M rating represented as a
fat matrix X ∈ R

N×M where M = 3900 movies and N = 6040 users. (4) Syn-
thetic: first the latent matrices U and V are generated by randomly choosing
each {un}N

n=1 and {vm}M
m=1 from N (0, σ2

uI) and N (0, σ2
vI), respectively. Then,

matrix X is built by sampling each xnm from N (〈un,vm〉, σ2). The parameters
are set to N = 100, M = 6000, σ2

u = σ2
v = 0.05, and σ2 = 0.01. We dropped

random entries using Bernoulli distributions with δ = 0.1, 0.2.

5.1 Methodology

We compared CMC with MCMC inference for PMF. Gibbs sampling with diag-
onal covariance prior over the latent matrices is used for MCMC. For the model
evaluation, average of log loss (LL) is reported over 5-fold cross-validation. LL
measures how well a probabilistic model q predicts the test sample defined as
LL = − 1

T

∑N
i=1

∑M
j=1 δij log q(xij) where q(xij) is the inferred probability and T

2 http://cancergenome.nih.gov/.
3 www.movielens.umn.edu.

http://cancergenome.nih.gov/
www.movielens.umn.edu
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is the total number of observed values. A better model q assign higher probability
q(xij) to observed test data, and have a smaller value of LL.

LL Percentile: For any posterior model q(x), a test data point xtest with low
q(xtest) has large log loss, and high q(xtest) has low log loss. To comparatively
evaluate the posteriors obtained from MCMC and CMC, we consider their log
loss percentile plots. For any posterior, we sort all the test data points in ascend-
ing order of their log loss, and plot the mean log loss in 10 percentile batches.
More specifically, the first batch corresponds to the top 10 % of data points with
the lowest log loss, the second batch corresponds to the top 20 % of data points
with the lowest log loss (including the first 10 % percentile), and so on.

5.2 Results

We summarize the results from different aspects:

Log loss: CMC has a small log loss across all percentile batches, whereas log loss
of MCMC increases exponentially (linear increase in the log scale) for percentile
batches with higher log loss i.e., smaller predicting probability, (Fig. 3). Thus,
MCMC assigned extremely low probability to several test points as compared
to CMC. Figure 4(a) illustrates that log loss of MCMC continues to decrease
with growing sample size up to 2000 samples, implying that MCMC has not yet
converged to the equilibrium distribution. Note that log loss of CMC with 200
samples (Fig. 4(b)) is 10 times less than log loss of MCMC with 2000 samples. We
also compared the results with the previous proposal [32,33], and observed that
for MovieLens the results are worse than our proposed result as they achieved
Inf LL on the last batch.

Effective number of samples: For the synthetic, SNP, and gene expression
datasets, we generated 10,000 samples using MCMC. The burn-in period is set
to 500 with a lag of 10 yielding to 1000 effective samples. For the MovieLens,
we generated 5,000 samples using MCMC with the burn-in period of 1000 and
a lag of 2 yielding to 2000 effective samples. We initialized the latent matrices
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Fig. 4. LL of CMC and MCMC for different sample size of MovieLens data in the
log scale. LL of both CMC and MCMC is decreasing by adding more samples. LL of
MCMC is in magnitude 10 times more than CMC.
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U and V with the factors estimated by PMF, to help the convergence of MCMC.
Sample size in CMC procedure is set to 1,000 for all datasets. Note that MCMC
alternately sample both latent matrices U and V from a Markov chain and
the quality of the posterior improves with increasing number of samples. For the
proposed CMC procedure, the bigger matrix V is marginalized and only samples
from the smaller U matrix is drawn directly from the true posterior distribution.
Hence, CMC has considerably improved sample utilization.

Initialization: As discussed in Sect. 4.3, in order to use the MGIG posterior
for inference, the covariance structure of matrix X should be estimated. Here
we evaluate two approaches to approximate the covariance structure of X: (i)
by zero-padding the missing value matrix X, and (ii) by computing the point
estimates of the missing entries in X with PMF. CMC with zero-padded initial-
ization has a similar log loss behavior as point estimate initialization with PMF
(Figs. 3 (d-f)).

Full sampler vs Mean sampler: Figure 3(f) shows the result of the full sam-
pler (Algorithm 2), and the mean sampler (approximating the inference by esti-
mating Λ̄ = EΛ∼MGIG [Λ] as discussed in Sect. 4.4) on gene expression data.
Since the log losses are similar with both samplers, and the behavior is typi-
cal, we presented log loss results on the other datasets only based on the mean
sampler, which is around 100 times faster.
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Fig. 5. Density of CMC and MCMC for several data input on MovieLens data with LL
of (a) CMC:-1.78, MCMC:-Inf, (b) CMC:-3, MCMC:-17, (c) CMC:-4.2, MCMC:-6.4,
(d) CMC:-1.4, MCMC:–2.04. CMC achieves lower LLs compared to MCMC. (Color
figure online)

Comparison of inferred posterior distributions: To emphasize the impor-
tance of choosing the right measure for comparison, e.g., log loss vs RMSE, we
illustrate the inferred posterior distributions over several missing entries/ratings
in MovieLens obtained from MCMC and CMC in Fig. 5. Note that the scales for
CMC (red) and MCMC (blue) are different. Overall, the posterior from CMC
tends to be more conservative (not highly peaked), and obtains lower log loss
across a range of test points. Interestingly, as shown in Fig. 5(a), MCMC can
make mistakes with high confidence, i.e., predicts 5 stars with a peaked poste-
rior whereas the true rating is 3 stars. Such troublesome behavior is correctly
assessed with log loss, but not by RMSE since it does not consider the confidence
in the prediction. As shown in Fig. 5(d), for some test points, both MCMC and
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Table 1. Time Comparison of CMC and MCMC on different datasets. At each step
of MCMC, rows of U and V can be sampled in parallel denoted by MCMC parallel.
The running time is reported over 1000 steps for both methods. Note that the effective
number of samples of MCMC is less than 1000 and more steps is required to obtain
enough samples. The number of iterations for convergence of CMC is less than 1000.

Dataset Size MCMC(200 samples) CMC(1000 samples)

Serial Parallel Serial Parallel

Synthetic 100 × 6,000 728s 404s 6s 4s

SNP 120 × 104,868 12,862s 5,859s 75s 22s

Gene Expression 591 × 17,814 3,478s 2,278s 140s 90s

MovieLens 3,233 × 6,040 2,350s 2,100s 5,387s 2,058s

CMC inferred similar posterior distributions with a bias difference where the
mean of CMC is closer to the true value.

Time Comparison: We have compared running time in both serial and in
parallel over 1000 steps yielding to 200 and 1000 samples for MCMC and CMC,
respectively. We implement the algorithms in Matlab. The computation time is
estimated on a PC with a 3.40 GHz Quad core CPU and 16.0 G memory. The
average run time results are reported in Table 1. For Synthetic, SNP, and gene
expression datasets, MCMC converges very slowly. For MovieLens dataset, the
running time of both are very close but note that MCMC requires more number
of samples for convergence than CMC (Fig. 4).

6 Conclusion

We studied the MGIG distribution and provided certain key properties with a
novel sampling technique from the distribution and its connection with the latent
factor models such as PMF or BPCA. With showing that the MGIG distribution
is unimodal and the mode can be obtained by solving an ARE, we proposed a new
importance sampling approach to infer the mean of MGIG. The new sampler,
unlike the existing sampler [32,33], chooses the proposal distribution to have
the same mode as the MGIG. This characterization leads to a far more effective
sampler than [32,33] since the new sampler align the shape of the proposal to the
target distribution. Although, the MGIG distribution has been recently applied
to Bayesian models as the prior for the covariance matrix, here, we introduced a
novel application of the MGIG in PMF or BPCA. We showed that the posterior
distribution in PMF or BPCA has the MGIG distribution. This illustration,
yields to a new CMC inference algorithm for PMF.
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Abstract. The convergence of Stochastic Gradient Descent (SGD)
using convex loss functions has been widely studied. However, vanilla
SGD methods using convex losses cannot perform well with noisy labels,
which adversely affect the update of the primal variable in SGD meth-
ods. Unfortunately, noisy labels are ubiquitous in real world applications
such as crowdsourcing. To handle noisy labels, in this paper, we present
a family of robust losses for SGD methods. By employing our robust
losses, SGD methods successfully reduce negative effects caused by noisy
labels on each update of the primal variable. We not only reveal the con-
vergence rate of SGD methods using robust losses, but also provide the
robustness analysis on two representative robust losses. Comprehensive
experimental results on six real-world datasets show that SGD meth-
ods using robust losses are obviously more robust than other baseline
methods in most situations with fast convergence.

1 Introduction

To handle large-scale optimization problems, a popular strategy is to employ
Stochastic Gradient Descent (SGD) methods because of two advantages. First,
they do not need to compute all gradients over the whole dataset in each itera-
tion, which lowers computational cost per iteration. Secondly, they only process
a mini-batch of data points [1] or even one data point [2] in each iteration, which
vastly reduces the memory storage. Therefore, many researchers have extensively
studied and applied various SGD methods [3,4]. For instance, Large-Scale SGD
[5] has been substantially applied to the optimization of deep learning models
[6]. Primal Estimated Sub-Gradient Solver (Pegasos) [7] is employed to speed
up the Support Vector Machines (SVM) methods, which is suitable for large-
scale text classification problems. However, vanilla SGD methods suffer from
the label noise problem since the noisy labels adversely affect the update of the
primal variable in SGD methods. Unfortunately, the label noise problems are
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Fig. 1. Left Panel: Squares represent real negative instances. Circles denote real pos-
itive instances, however one circle instance “A” is erroneously annotated as negative
class, which creates a noisy label. Right Panel: Red curve and blue curve respectively
denote Ramp Loss and Smooth Ramp Loss parameterized by s∗. Magenta curve, black
curve and green curve correspond to Logistic Loss, Hinge Loss and Reversed Gompertz
Loss accordingly. It can be observed that the incorrectly labeled instance “A” in the
left panel can be regarded as the outlier of negative class, and its loss value r(zA) is
upper bounded by Ramp Loss, Smooth Ramp Loss, and Reversed Gompertz Loss (see
“zA” in the right panel). (Color figure online)

very common in real-world applications. For instance, Amazon Mechanical Turk
(MTurk) is a crowdsourcing Internet platform that takes advantage of human
intelligence to provide supervision, such as labeling different kinds of bird pic-
tures and annotating keywords according to geoscience records. However, the
quality of annotations is not always satisfactory because many workers are not
sufficiently trained to label or annotate such specific data [8]. Another situation
is where the data labels are automatically inferred from user online behaviors or
implicit feedback. For example, the existing recommendation algorithms usually
consider a user clicking on an online item (e.g., advertisements on Youtube or
eBay) as a positive label indicating user preference, whereas users may click the
item for different reasons, such as curiosity or clicking by mistake. Therefore,
the labels inferred from online behaviors are often noisy.

The aforementioned issues lead to a challenging question- if the majority
of data labels are incorrectly annotated, can we reduce the negative effects on
SGD methods caused by these noisy labels? Our high-level idea is to design a
robust loss function with a threshold for SGD methods. We illustrate our idea by
using a binary classification example. In the left panel of Fig. 1, we notice that
the instance xA (i.e., data point “A”) is incorrectly annotated with the label
yA = −1, which is opposite to its predicted label value (+1) according to the
hyperplane. Moreover, this instance is far away from the distribution of negative
class. Therefore, this instance xA with the noisy label yA can be regarded as the
outlier of negative class.
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Let the output of the classifier fw for a given x be fw(x). Let z be the product
of the real label and the predicted label of an instance x (i.e., z = yfw(x)). Then,
given the outlier {xA, yA} in the left panel of Fig. 1, we have zA = yAfw(xA) < 0.
As illustrated in the right panel of Fig. 1, with z on the x-axis, the gradient of
Hinge Loss is non-zero on the zA, which will mislead the update of the primal
variable w in SGD methods. However, if the loss function has a threshold, for
example Ramp Loss [9] in Fig. 1 with a threshold 1 − s∗, the gradient of Ramp
Loss on the zA is zero, which minimizes the negative effects caused by this outlier
on the update. Therefore, it is reasonable to employ the loss with a threshold
for SGD methods in the label noise problem.

Although the Ramp Loss is robust to outliers, it is computationally hard to
optimize due to its nonsmoothness and nonconvexity [10]. Therefore, we con-
sider to relax the Ramp Loss into smooth and locally strongly-convex loss. With
random initialization, SGD methods can converge into a qualified local minima
with a fast speed. Our main contributions are summarized as follows.

1. We present a family of robust losses, which specifically benefit SGD methods
to reduce the negative effects introduced by noisy labels, even under a high
percentage of noisy labels.

2. We reveal the convergence rate of SGD methods using the proposed robust
losses. Moreover, we provide the robustness analysis on two representative
robust losses.

3. Comprehensive experimental results on varying scale datasets with noisy
labels show that SGD methods using robust losses are obviously more robust
than other baseline methods in most situations with fast convergence.

2 Related Works

First, our work is closely related to SGD methods. For example, Xu proposes the
Averaged Stochastic Gradient Descent (ASGD) method [11] to lower the testing
error rate of the SGD [5]. However, their work is based on the assumption that
the data is clean, which significantly limits their applicability to the label noise
problem. Ghahdimi & Lan introduce a randomized stochastic algorithm to solve
nonconvex problems [12], and then generalize the accelerated gradient method to
improve the convergence rate if the problem is nonconvex [13]. However they do
not focus on learning with noisy labels specifically, and do not consider strongly
convex regularizer.

Second, our work is also related to bounded nonconvex losses for robust clas-
sification. For example, Collobert et al. propose the bounded Ramp Loss for
support vector machine (SVM) classification problems. Wang et al. further pro-
pose a robust SVM based on a smooth version of Ramp Loss for suppressing the
outliers [14]. Their models are commonly inferred by Concave-Convex Procedure
(CCCP) [9]. However, both of them do not consider that SGD methods suffer
from the label noise problem. In other words, our robust losses are tailor-made
for SGD methods to alleviate the effect of noisy labels while their loss is designed
only for robust SVM.
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Finally, our work is highly related to noisy labels. For instance, Reed &
Sukhbaatar focus on training deep neural networks using noisy labels [15].
Natarajan et al. propose a probabilistic model for handling label noise prob-
lems [16]. However, all these works are unrelated to SGD methods. Moreover,
they cannot be used in real-time or large-scale applications due to their high
computational cost. It is also demonstrated that the 0-1 loss function is robust
for outliers. However, the 0-1 loss is neither convex nor differentiable, and it is
intractable for real learning algorithms in practice. Even though the surrogates
of 0-1 loss is convex [17], they are very sensitive to outliers. To the best of our
knowledge, the problem of SGD methods for noisy labels has not yet been suc-
cessfully addressed. This paper therefore studies this problem and provides an
answer with theoretical analysis and empirical verification.

3 A Family of Robust Losses for Stochastic Gradient
Descent

In this section, we begin with the definition of a family of robust losses for
SGD methods. Under this definition, we introduce two representative robust
losses: Smooth Ramp Loss and Reversed Gompertz Loss. Then, we reveal the
convergence rate of SGD methods using robust losses, and provide the robustness
analysis on two representative robust losses.

3.1 Notations and Definitions

Let D = {xi, yi}n
i=1 be the training data, where xi ∈ R

d denotes the ith instance
and yi ∈ {−1,+1} denotes its binary label. The basic support vector machine
model for classification is represented as

min
w

G(w) = min
w

1
n

n∑

i=1

gi(w) (1)

where w ∈ R
d is the primal variable. Specifically, gi(w) = ρλ(w) + r(w;

{xi, yi}) where λ is the regularization parameter, ρλ(w) is the regularizer and
r(w; {xi, yi}) is a loss function.

Based on Restricted Strong Convexity (RSC) and Restricted Smoothness
(RSM) [18,19], we propose two extended definitions. We use ‖·‖ to denote the
Euclidean norm, and Bd(w∗, γ) to denote the d dimensional Euclidean ball of
radius γ centered at local minima w∗. And we assume that function G and gi

are continuously differentiable.

Definition 1 (AugmentedRestricted StrongConvexity (ARSC)). If there
exists a constant α > 0 such that for any w, w̃ ∈ Bd(w∗, γ), we have

G(w) − G(w̃) − 〈∇G(w̃),w − w̃〉 ≥ α

2
‖w − w̃‖2 (2)

then G satisfies Augmented Restricted Strong Convexity.
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Definition 2 (Augmented Restricted Smoothness (ARSM)). If there
exists a constant β > 0 such that for any i ∈ {1, · · · , n} and w, w̃ ∈ Bd(w∗, γ),
we have

gi(w) − gi(w̃) − 〈∇gi(w̃),w − w̃〉 ≤ β

2
‖w − w̃‖2 (3)

then gi satisfies Augmented Restricted Smoothness.

3.2 A Family of Robust Losses

We first present the motivation and definition of a family of robust losses. Take
Support Vector Machines (SVM) with convex hinge loss as an example. SGD
methods are commonly used to optimize the SVM model for large-scale learning.
However, if data points with noisy labels deviate significantly from the hyper-
plane, these mislabeled data points can be equally viewed as outliers. These
outliers will severely mislead the update of the primal variable in SGD meth-
ods. Therefore, it is intuitive to design a loss function with a threshold, which
truncates the value that exceeds the threshold. Inspired by Ramp Loss [9], we
consider whether we can design a family of bounded, locally strongly-convex
and smooth losses. If we combine this new loss with strongly-convex regularizer,
the objective then satisfies the ARSC (i.e., Definition 1) and ARSM (i.e., Defi-
nition 2) simultaneously. Here, we define a family of robust losses r(z) for SGD
methods, where z is the variable of loss function in the x-axis of Fig. 1.

Definition 3. A loss function r(z) is robust for SGD methods if it simultane-
ously meets the following conditions:
1. Upper bound condition - it should be bounded such that lim

z→−∞ r′(z) = 0.
2. Locally λ-strongly convex condition - it should be locally λ-strongly convex if

there exists a constant λ > 0 such that r(z) − λ
2 ‖z‖2 is convex when z ∈

B1(z∗, γ), where B1(z∗, γ) denotes the 1 dimensional Euclidean ball of radius
γ > 0 centered at local minima z∗.

3. Smoothly decreasing condition - it should be monotonically decreasing and
continuously differentiable.

Remark 1. We explain three conditions on Definition 3. (1) Since the upper
bound can be equally viewed as the threshold, it is natural that the negative
effects introduced by outliers are removed by the upper bound. (2) The loss
function should be locally λ-strongly convex. If the loss function is locally λ-
strongly convex and the regularizer is globally λ-strongly convex (e.g., λ

2 ‖w‖2),
the objective G(w) is locally strongly-convex. Then, objective G(w) satisfies
the ARSC. (3) If the loss function is monotonically decreasing, we reasonably
assume that the objective is non-increasing around some local minima, which is
convenient to prove the convergence rate. If the loss function is differentiable at
every point, gi(w) satisfies the ARSM when λ

2 ‖w‖2 is used.

Then a family of robust losses for SGD methods can be acquired under
these conditions. Here, we propose two representative robust losses that perfectly
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satisfy the above three conditions. Both of them are presented in Fig. 1 and
employed through the whole paper.

The first one is the Smooth Ramp Loss (4), which is the smooth version of
Ramp Loss1. If we smooth the Ramp Loss around s∗ and around 1, it is much
easier to optimize and satisfy the ARSM. Therefore, we employ reversed sigmoid
function to represent the Smooth Ramp Loss.

r(s∗, z) =
1 − s∗

1 + eαs∗ (z+βs∗ ) (4)

where we set the s∗ of Ramp Loss, then the parameters αs∗ and βs∗ of Smooth
Ramp Loss are determined by minimizing the difference between Smooth Ramp
Loss and Ramp Loss.

The second one is the Reversed Gompertz Loss, which is a special case of the
Gompertz function and we reverse the Gompertz function by the y-axis.

r(c∗, z) = e−ec∗·z
(5)

where the curve of this loss is controlled by parameter c∗. The aforementioned
losses are integrated into the SVM model and SGD methods are employed to
update the primal variable w.

By employing two above robust losses, we finally summarize the robust SGD
algorithm - Stochastic Gradient Descent with Robust Losses in Algorithm 1.
Specifically, the generalized algorithm consists of two special cases. For Stochas-
tic Gradient Descent with Smooth Ramp Loss, the algorithm employs “Set I
and Update I”. For Stochastic Gradient Descent with Reversed Gompertz Loss,
the algorithm employs “Set II and Update II”. In practical implementations, we
often choose option A and also provide averaging option B.

3.3 Convergence Analysis

When we apply SGD methods to SVM model with proposed robust losses, it
converges into the qualified local minima. According to the detailed explanation
about the three conditions in Sect. 3.2, the objective G(w) satisfies the ARSC
and gi(w) satisfies the ARSM. Based on the ARSC and ARSM, we can analyze
the convergence rate of SGD methods using robust losses. We use E

[ ·] to denote
the expectation.

Theorem 1. Consider that G(w) satisfies Augmented Restricted Strong Con-
vexity and gi(w) satisfies Augmented Restricted Smoothness. Define w∗ as a local
minima and β as the parameter of Augmented Restricted Smoothness. Assume
that learning rate η is sufficient to let G(w(t)) be a non-increasing update. After
T iterations, we have

G(w(T )) − G(w∗) ≤ E
[‖w(0) − w∗‖2]

(2η − 12η2β) · T

1 The common optimization method for Ramp Loss is using Concave-Convex Proce-
dure (CCCP). However, CCCP is time-consuming compared to SGD methods.
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Algorithm 1. Stochastic Gradient Descent with Robust Losses (SGDRL)
Input: λ ≥ 0, s∗, c∗, the learning rate η, the max number of epochs Tmax, and the

training set D = {xi, yi}n
i=1

Initialize: w̃(0) = 0

Set:

{
I : f(αs∗ , βs∗ , g) = eαs∗ (g+βs∗ )

II : f(c∗, g) = c∗g − ec∗g

for epoch = 1, 2, . . . , Tmax do

Preprocess: w(0) = w̃(epoch−1) and randomly shuffle n training instances in D
for t = 1, . . . , n do

Sequentially pick: {xit, yit} from D , it ∈ {1, ..., n}
Compute: g(w(t−1)) = (〈w(t−1),xit〉 + b)yit

w(t) =

⎧
⎨

⎩

I : w
(t−1) − η

[
λw

(t−1) − (1 − s
∗
)αs∗xityit

f(αs∗ , βs∗ , g(w(t−1)))

(1 + f(αs∗ , βs∗ , g(w(t−1))))2

]

II : w
(t−1) − η

[
λw

(t−1) − c
∗
xityite

f(c∗,g(w(t−1)))]

end

option A: w̃(epoch) = w(n) or option B: w̃(epoch) = 1
n

∑n
t=1 w

(t)

end

Output: w̃(Tmax)

Proof Sketch for Theorem1

Proof. Due to space constraints, here we focus on key steps, and the detailed
proof is in the arXiv version2. According to stochastic gradient descent update
rule w(t) = w(t−1) − η∇git(w(t−1)) where random number it ∈ {1, ..., n}, and
E

[∇git(w(t−1))
]

= ∇G(w(t−1)) by (1), we construct the following inequality

E
[‖w(t) − w∗‖2]

= E
[‖w(t−1) − w∗‖2] + η2

E
[‖∇git(w(t−1))‖2]

− 2η〈∇G(w(t−1)),w(t−1) − w∗〉
≤ E

[‖w(t−1) − w∗‖2] + η2
E

[‖∇git(w(t−1))‖2]

− 2η
[
G(w(t−1)) − G(w∗)

]

(6)

where the inequality employs the ARSC. Then we construct an auxiliary function
ϕi(w)

ϕi(w) = gi(w) − gi(w∗) − 〈∇gi(w∗),w − w∗〉 (7)

And it is obvious that

ϕi(w∗) = gi(w∗) − gi(w∗) = 0 (8a)
∇ϕi(w) = ∇gi(w) − ∇gi(w∗) (8b)

∇ϕi(w∗) = ∇gi(w∗) − ∇gi(w∗) = 0 (8c)

2 Please search the arXiv version in https://arxiv.org/abs/1605.01623.

https://arxiv.org/abs/1605.01623
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Thus, w∗ is local minima of ϕi(w) by (8c) and we construct the following inequal-
ity from (7)

0 = ϕi(w∗) ≤ min ϕi(w − γ∇ϕi(w))

≤ min ϕi(w) +
βγ2

2
‖∇ϕi(w))‖2 − γ‖∇ϕi(w))‖2

= ϕi(w) − 1
2β

‖∇ϕi(w)‖2 (9)

where the last inequality satisfies the ARSM and the function is minimized at
the parameter γ = 1

β . We construct the following inequality based on (7), (8b)
and (9)

‖∇gi(w) − ∇gi(w∗)‖2
≤ 2β

[
gi(w) − gi(w∗) − 〈∇gi(w∗),w − w∗〉] (10)

Therefore, we have

E
[‖∇gi(w) − ∇gi(w∗)‖2]

≤ 2β
[
G(w) − G(w∗) − 〈∇G(w∗),w − w∗〉]

≤ 4β
[
G(w) − G(w∗)

]
(11)

where the second last inequality satisfies the ARSC. Because ‖A + B + C‖2 ≤
3‖A‖2+3‖B‖2+3‖C‖2 and w∗ is a local minima, we have the following inequality
with ∇G(w∗) = 0 and (11)

E
[‖∇git(w(t−1))‖2]

≤ 3E
[‖∇git(w(t−1)) − ∇git(w∗)‖2]

+ 3E
[‖∇git(w∗) − ∇G(w∗)‖2] + 3E

[‖∇G(w∗)‖2]

≤ 12β
[
G(w(t−1)) − G(w∗)

]
(12)

Therefore, (6) equals to the following inequality

E
[‖w(t) − w∗‖2]

≤ E
[‖w(t−1) − w∗‖2] + η2

E
[‖∇git(w(t−1))‖2]

− 2η
[
G(w(t−1)) − G(w∗)

]

≤ E
[‖w(t−1) − w∗‖2]

+ (12η2β − 2η)
[
G(w(t−1)) − G(w∗)

]

(13)

Based on (13), when t varies from 1 · · · T , we get T inequalities respectively, and
then simultaneously add the left hand side and right hand side of T inequalities
to get

E
[‖w(T ) − w∗‖2] ≤ E

[‖w(0) − w∗‖2]

+ (12η2β − 2η)
[ T∑

t=1

G(w(t−1)) − T · G(w∗)
] (14)
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Under the assumption of a non-increasing update, we have the following
inequality

(2η − 12η2β)
[
T · G(w(T )) − T · G(w∗)

]

≤ (2η − 12η2β)
[ T∑

t=1

G(w(t−1)) − T · G(w∗)
]

≤ E
[‖w(0) − w∗‖2] − E

[‖w(T ) − w∗‖2]
(15)

We thus obtain

G(w(T )) − G(w∗) ≤ E
[‖w(0) − w∗‖2] − E

[‖w(T ) − w∗‖2]

(2η − 12η2β) · T

≤ E
[‖w(0) − w∗‖2]

(2η − 12η2β) · T
=

d

η · T
= ε (16)

where d =
E

[
‖w(0)−w∗‖2

]

(2−12ηβ) . Therefore we conclude that when T = d
η·ε , SGD

methods using robust losses have ε-solution and the convergence rate is O(1/T ).
Therefore, to achieve a ε-solution, the complexity of Algorithm1 is O(n·d

η·ε ).

4 Robustness Analysis

Theorem 2. Assume that an instance xi is annotated with noisy label yi, which
means yi(KT

i α + b) < 0. Its corresponding weighted coefficient φi for Smooth
Ramp Loss with (s∗, αs∗ , βs∗) is

φi =
(1 − s∗)αs∗δeαs∗ (yiKT

i α+yib)

(1 − (yiKT
i α + yib))(1 + δeαs∗ (yiKT

i α+yib))2

for Reversed Gompertz Loss with c∗ is

φi =
c∗ec∗(yiKT

i α+yib)−ec∗(yiKT
i α+yib)

1 − (yiKT
i α + yib)

if |fw(xi)| = |(KT
i α + b)| increases, which means xi with noisy label yi becomes

an outlier, then both φi will definitely decrease. It indicates that the proposed
Robust Losses do reduce the negative effects introduced by noisy labels.

Proof Sketch for Theorem 2

Proof. Firstly, we assume that {xi, yi}k
i=1 is a random subset of training data

D and fw is the decision function, according to the representer theorem, zi =
yifw(xi) = yi(

∑k
j=1 K(xj ,xi)αj + b) = yiKT

i α + yib, where α = (α1, α2, ..., αk)′,
K = (K1,K2, ...,Kk)′ and Ki = (K(x1,xi),K(x2,xi), ...,K(xk,xi))′. λ > 0 is
a regularizer parameter, K is a mercer kernel and HK is a Reproducing Kernel
Hilbert Space (RKHS). For a family of robust losses r(z), we define two functions
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ρ(z) and �(z) such that r(z) = ρ(1 − z) and �(z) = ρ′(z)
z . Therefore, our robust

model can be presented as

f∗
w = arg min

fw

1
k

k∑

i=1

r(zi) +
λ

2
‖fw‖2

= arg min
fw

1
k

k∑

i=1

r(fw(xi) · yi) +
λ

2
fT
wfw

= arg min
α,b

1
k

k∑

i=1

ρ(1 − yiKT
i α − yib) +

λ

2
αT Kα

(17)

The last equation satisfies the second condition of robust losses r(z) = ρ(1−z).
Due to �(z) = ρ′(z)

z , we define coefficient φi = �(1 − yiKT
i α − yib), then

ρ′(1 − yiKT
i α − yib) = (1 − yiKT

i α − yib)φi (18)

Because our proposed loss is nonconvex, we assume that (α̂, b̂) is one of
the critical points for above minimization problem (17). Let’s set Q(α, b) =
1
k

∑k
i=1 ρ(1 − yiKT

i α − yib) + λ
2αT Kα, therefore: ∂Q(α̂,b̂)

∂α = 0 and ∂Q(α̂,b̂)
∂b = 0.

Then, we have two equations below

1
k

k∑

i=1

(1 − yiKT
i α̂ − yib̂)(yiKi)φi − λKT α̂ = 0 (19)

1
k

k∑

i=1

(1 − yiKT
i α̂ − yib̂)yiφi = 0 (20)

The solution (α̂, b̂) of Eqs. (19) and (20) can be achieved by solving the fol-
lowing L2-SVM

min
α,b

1
k

k∑

i=1

(yi − KT
i α − b)2φi +

λ

2
αT Kα (21)

When k = 1, we solve it by streaming stochastic gradient descent. If k > 1,
we solve it by mini-batch stochastic gradient descent. Currently, we consider φi

as an important coefficient that affects the update of stochastic dual variable α,
and therefore, we analyze robust statistics briefly from coefficient φi view.

If an instance xi is annotated with noisy label yi, it means that yifw(xi) < 0.
By the representer theorem, we can easily find yi(KT

i α+b) < 0 for this instance.
We consider |(KT

i α + b)| as the degree where this instance is far away from the
hyperplane. So we define φi = �(1 − yiKT

i α − yib). To analyze the robustness
of r(z), we only take Smooth Ramp Loss as an example here due to space
constraints. And the robustness analysis of Reversed Gompertz loss can be found
in the arXiv version. We define δ = eαs∗ βs∗ and according to our inference
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φi = �(1 − yiKT
i α − yib)

=
(1 − s∗)αs∗δeαs∗ (yiKT

i α+yib)

(1 − (yiKT
i α + yib))(1 + δeαs∗ (yiKT

i α+yib))2
(22)

Remark 2. If {xi, yi} is an instance with a noisy label (yi(KT
i α + b) < 0),

then the mislabeled instance becomes an outlier when |fw(xi)| = |(KT
i α + b)|

increases. It means this mislabeled instance is far away from the hyperplane.
The coefficient φi will then decrease because 1 − (yiKT

i α + yib) will increase

while eαs∗ (yiKT
i α+yib)

(1+δeαs∗ (yiKT
i

α+yib))2
will decrease. This indicates that the coefficient φi

will decrease with the increase of |fw(xi)| for outlier instance xi and does not
play a significant role in the update of the dual variable. Therefore, Smooth
Ramp Loss can reduce the negative effects introduced by noisy labels.

5 Experiments

In this section, we mainly perform experiments on noisy datasets to verify the
convergence and robustness of SGD methods with two representative robust
losses. The datasets range from small to large scale. For convenience, we abbre-
viate SGD with Smooth Ramp Loss as SGD(SRamp) and SGD with Reversed
Gompertz Loss as SGD(RGomp) respectively.

5.1 Experimental Settings

All experimental datasets come from the LIBSVM datasets webpage3. The sta-
tistics of the datasets are summarized in the Table of the arXiv version. Among
them, REAL-SIM, COVTYPE, MNIST38 and IJCNN1 are manually split into
the training set and testing set by about 4 : 1. We normalize the data by scal-
ing each feature to [0,1]. To generate the datasets with noisy labels, we follow
the settings in [16]. Specifically, we proportionally flip the class label of training
data. For example, we randomly flip 20 % of data labels from −1 to 1 or 1 to
−1, and assume that the data has 20% of noisy labels. We then repeat the same
process to produce 40 % and 60 % of noisy labels on all datasets.

In the experiments, the baseline methods are classified into two categories.
The first category consists of SGD methods with different losses ranging from
convex losses to robust nonconvex losses, which can verify the convergence and
robustness of SGD methods with two representative losses for noisy labels.
For example, we choose SGD with Logistic Loss (SGD(Log)), Hinge Loss
(SGD(Hinge)) and Ramp Loss (SGD(Ramp)). We also choose ASGD [11] with
Logistic Loss (ASGD(Log)) and PEGASOS [7] as baseline methods. For the sec-
ond category, we compare proposed methods with LIBLINEAR (We abbreviate
L2-regularized L2-loss SVM Primal solution as LIBPrimal and Dual solution
as LIBDual) due to its wide popularity in large-scale machine learning. All the

3 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1. Testing error rate (in %) with standard deviation on datasets without noisy
labels. Methods are indicated by “-”due to running out of memory.

Methods A7A IJCNN1 REAL-SIM COVTYPE MNIST38 SUSY

LIBPRIMAL 14.99 8.25 2.57 24.35 5.71 21.34

LIBDUAL 15.02 8.20 2.67 24.25 6.09 35.32

PEGASOS 17.62 ± 1.56 8.50 ± 0.19 3.32 ± 0.06 26.36 ± 1.99 - -

SGD(Log) 15.16 ± 0.06 9.08 ± 0.48 2.62 ± 0.03 25.07 ± 0.28 5.73 ± 0.09 20.93 ± 0.01

ASGD(Log) 14.99 ± 0.14 8.04 ± 0.04 2.54 ± 0.01 24.38 ± 0.01 5.54 ± 0.01 20.83 ± 0.09

SGD(Hinge) 15.45 ± 0.09 8.40 ± 0.22 2.69 ± 0.13 24.62 ± 0.54 5.77 ± 0.16 20.89 ± 0.08

SGD(Ramp) 15.54 ± 0.54 8.50 ± 0.03 4.02 ± 0.02 24.22 ± 0.10 6.04 ± 0.08 21.36 ± 0.05

SGD(SRamp) 15.11 ± 0.06 6.49 ± 0.12 2.55 ± 0.03 23.69 ± 0.04 5.76 ± 0.06 20.81 ± 0.03

SGD(RGomp) 15.10 ± 0.01 6.45 ± 0.02 2.45 ± 0.03 23.29 ± 0.03 5.56 ± 0.01 20.94 ± 0.01

methods are implemented in C++. Experiments are performed on a computer
with a 3.20 GHz Inter CPU and 8 GB main memory running on a Windows 7.

The regularization parameter λ is chosen by 10-fold cross validation for all
methods in the range of {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. For SGD
methods with different losses, the number of epochs is normally set to 15 for
convergence comparison and the primal variable w is initialized to 0. For LIB-
LINEAR, we set the bias b to 1 and the stopping tolerance ε to 10−2 for primal
solution and 10−1 for dual solution by default. For PEGASOS, the number of
epochs for convergence is set to 10

λ by default and the block size k is set to 1
for training efficiency. For SGD(SRamp), the parameter s∗ is chosen by 10-fold
cross validation in the range of [−2, 0] according to real-world datasets. There-
fore, the parameter (s∗, αs∗ , βs∗) is optimized to (−0.7, 3,−0.15), (−1, 2,−0.03)
or (−2, 1.5, 0.5). For SGD(RGomp), the parameter c∗ is randomly fixed to 2. All
the experiments are repeated ten times and the results are averaged over the 10
trials. Methods are indicated by “-”in Table 1 due to running out of memory.
Methods are not reported in Figs. 3 and 4 due to running out of memory or too
long training time.4

5.2 The Performance of Convergence

First, we verify the convergence of SGD methods with two representative losses
for noisy labels. Due to the limit of space, we provide the primal objective
value of SGD(SRamp) with the number of epochs on representative small-scale
IJCNN1 and large-scale SUSY datasets in the arXiv version. We observe that
SGD(SRamp) converges within 15 epochs. This observation is consistent with
our convergence analysis in Sect. 3.3. Since SGD(SRamp) and SGD(RGomp) are
very similar, the convergence curve of SGD(RGomp) is also similar to that of
SGD(SRamp). Thus, we do not report the results of SGD(RGomp).

Then, we further observe the convergence comparison of SGD methods with
different losses for noisy labels in Fig. 2 where, with the increase of number

4 On MNIST38 and SUSY datasets, PEGASOS run out of memory, and the training
time of LIBDual is several orders of magnitude more than that of other baselines.
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Fig. 2. Testing error rate (in %) with the number of epochs on A7A and REAL-SIM.
Datasets have varying percentages (in %) of noisy labels (20%, 40 % and 60 %). For
PEGASOS, the number of epochs for convergence is set to 10

λ
by default. Therefore,

we do not report its result

of epochs, the testing error rate of SGD(SRamp) and SGD(RGomp) not only
decrease faster than that of other baseline methods but also keep relative stable
in the most cases. In other words, our method takes 1–5 epochs to converge while
SGD(Hinge) takes more than 15 epochs to converge. Even worse, SGD(Hinge)
diverges in presence of 60% of noisy labels.

5.3 The Performance of Robustness

Finally, we verify the robustness of SGD methods with two representative losses
for noisy labels. Figures 3 and 4 respectively report testing error rate and variance
with varying percentages of noisy labels. From Figs. 3 and 4, we have the follow-
ing observations. (a) On all datasets, SGD(SRamp) and SGD(RGomp) obviously
outperform the other baseline methods in testing error rate beyond 40% of noisy
labels. Between 0% to 40%, SGD(SRamp) and SGD(RGomp) still have compar-
ative advantages. In particular, for a high-dimensional dataset REAL-SIM, the
advantage of SGD(SRamp) and SGD(RGomp) is extremely obvious in the whole
range of the x-axis. (b) Meanwhile, we notice that the variance of testing error
rate for baseline methods (e.g., PEGASOS) gradually increases with the growing
percentage of noisy labels, but the variance of testing error rate for SGD(SRamp)
and SGD(RGomp) remains at the lowest level in the most cases. Therefore, the
robustness of SGD(SRamp) and SGD(RGomp) have been validated by their test-
ing error rate and variance. Although two losses are comparable in the perfor-
mance of robustness, the parameter of SGD(RGomp) is easier to tune.
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Fig. 3. Testing error rate (in %) on datasets with varying percentages (in %) of noisy
labels. We provide the subfigures to compare the testing error rate with 0 % to 40 % of
noisy labels on all datasets except for REAL-SIM. The y-axis is in log-scale.
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Fig. 4. Variance on datasets with varying percentages (in %) of noisy labels. The y-axis
is in log-scale. Note that there is no variance for LIBPrimal and LIBDual because in
each update of the primal variable, they compute full gradients instead of stochastic
gradients.
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In the most cases, the proposed SGD(SRamp) and SGD(RGomp) outper-
form other baseline methods not only on datasets with varying percentage of
noisy labels but also on clean datasets. For example, Table 1 demonstrates that
in terms of the testing error rate with the standard deviation, SGD(SRamp)
and SGD(RGomp) outperform other baseline methods on IJCNN1, REAL-SIM,
COVTYPE and SUSY datasets without noisy labels.

6 Conclusions

This paper studies SGD methods with a family of robust losses for the label
noise problem. For convenience, we mainly introduce two representative robust
losses including Smooth Ramp Loss and Reversed Gompertz Loss. Our theoret-
ical analysis not only reveals the convergence rate of SGD methods using robust
losses, but also proves the robustness of two representative robust losses. Com-
prehensive experimental results show that, on real-world datasets with varying
percentages of noisy labels, SGD methods using our proposed losses are robust
enough to reduce negative effects caused by noisy labels with fast convergence. In
the future, we will extend our proposed robust losses to improve the performance
of SGD methods for regression problems with noisy labels.
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Abstract. In representation learning, it is often desirable to learn fea-
tures at different levels of scale. For example, in image data, some edges
will span only a few pixels, whereas others will span a large portion of
the image. We introduce an unsupervised representation learning method
called a composite denoising autoencoder (CDA) to address this. We
exploit the observation from previous work that in a denoising autoen-
coder, training with lower levels of noise results in more specific, fine-
grained features. In a CDA, different parts of the network are trained
with different versions of the same input, corrupted at different noise lev-
els. We introduce a novel cascaded training procedure which is designed
to avoid types of bad solutions that are specific to CDAs. We show that
CDAs learn effective representations on two different image data sets.

Keywords: Denoising autoencoders · Unsupervised learning · Neural
networks

1 Introduction

In most applications of representation learning, we wish to learn features at dif-
ferent levels of scale. For example, in image data, some edges will span only a
few pixels, whereas others, such as a boundary between foreground and back-
ground, will span a large portion of the image. Similarly, in speech data, different
phonemes and different words vary a lot in their duration. In text data, some
features in the representation might model specialized topics that use only a
few words. For example a topic about electronics would often use words such
as “big”, “screen” and “tv”. Other features model more general topics that use
many different words. Good representations should model both of these phenom-
ena, containing features at different levels of granularity.

Denoising autoencoders [12,28,29] provide a particularly natural framework
to formalise this intuition. In a denoising autoencoder, the network is trained
to be able to reconstruct each data point from a corrupted version. The noise
process used to perform the corruption is chosen by the modeller, and is an
important aspect of the learning process that affects the final representation.
On a digit recognition task, Vincent et al. [29] noticed that using a low level
of noise leads to learning blob detectors, while increasing it results in obtaining
detectors of strokes or parts of digits. They also recognise that either too low or
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 681–696, 2016.
DOI: 10.1007/978-3-319-46128-1 43
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too high level of noise harms the representation learnt. The relationship between
the level of noise and spatial extent of the filters was also noticed by Karklin
and Simoncelli [18] for a different feature learning model. Despite impressive
practical results with denoising autoencoders (e.g. [13,23]), how to choose the
noise distribution is not fully understood.

In this paper, we introduce composite denoising autoencoders (CDA), in
which different parts of the network receive versions of the input that are cor-
rupted with different levels of noise. This encourages different hidden units of
the network to learn features at different scales. A key challenge is that finding
good parameters in a CDA requires some care, because naive training meth-
ods will cause the network to rely mostly on the low-noise corruptions, without
fully training the features for the high-noise corruptions, because after all the
low noise corruptions provide more information about the original input. We
introduce a training method specifically for CDA that sidesteps this problem.

On two different data sets of images, we show that CDAs learn significantly
better representations that standard DAs. In particular, we achieve to our knowl-
edge the best accuracy on the CIFAR-10 data set with a permutation invariant
model, outperforming scheduled denoising autoencoders [10].

2 Background

The core idea of learning a representation by learning to reconstruct artificially
corrupted training data dates back at least to the work of Seung [24], who
suggested using a recurrent neural network for this purpose. Using unsupervised
layer-wise learning of representations for classification purposes appeared later
in the work of Bengio et al. [3] and Hinton et al. [16].

The denoising autoencoder (DA) [28] is based on the same intuition as the
work of Seung [24] that a good representation should contain enough information
to reconstruct corrupted versions of an original input. In its simplest form, it
is a single-layer feed-forward neural network. Let x ∈ R

d be the input to the
network. The output of the network is a hidden representation y ∈ R

d′
, which is

simply computed as fθ(x) = h(Wx + b), where the matrix W ∈ R
d′×d and the

vector b ∈ R
d′

are the parameters of the network, and h is a typically nonlinear
transfer function, such as a sigmoid. We write θ = (W,b). The function f
is called an encoder because it maps the input to a hidden representation. In
an autoencoder, we have also a decoder that “reconstructs” the input vector
from the hidden representation. The decoder has a similar form to the encoder,
namely, gθ′(y) = h′(W′y + b′), except that here W′ ∈ R

d×d′
and b′ ∈ R

d. It
can be useful to allow the transfer function h′ for the decoder to be different
from that for the encoder. Typically, W and W′ are constrained by W′ = WT ,
which has been justified theoretically by Vincent [27].

During training, our objective is to learn the encoder parameters W and b.
As a byproduct, we will need to learn the decoder parameters b′ as well. We
do this by defining a noise distribution p(x̃|x, ν). The amount of corruption is
controlled by a parameter ν. We train the autoencoder weights to be able to



Composite Denoising Autoencoders 683

reconstruct a random input from the training distribution x from its corrupted
version x̃ by running the encoder and the decoder in sequence. Formally, this
process is described by minimising the autoencoder reconstruction error with
respect to the parameters θ∗ and θ′∗, i.e.,

θ∗, θ′∗ = arg min
θ,θ′

E(X,X̃)

[
L

(
X, gθ′(fθ(X̃))

)]
, (1)

where L is a loss function over the input space, such as squared error. Typically
we minimize this objective function using SGD with mini-batches, where at each
iteration we sample new values for both the uncorrupted and corrupted inputs.

In the absence of noise, this model is known simply as an autoencoder or
autoassociator. A classic result [2] states that when d′ < d, then under certain
conditions, an autoencoder learns the same subspace as PCA. If the dimensional-
ity of the hidden representation is too large, i.e., if d′ > d, then the autoencoder
can obtain zero reconstruction error simply by learning the identity map. In a
denoising autoencoder, in contrast, the noise forces the model to learn interest-
ing structure even when there are a large number of hidden units. Indeed, in
practical denoising autoencoders, the best results are found with overcomplete
representations for which d′ > d.

There are several choices to be made here, including the noise distribution,
the transformations h and h′ and the loss function L. For the loss function L,
for continuous x, squared error can be used. For binary x or x ∈ [0, 1], as we
consider in this paper, it is common to use the cross entropy loss,

L(x, z) = −
D∑

i=1

(xi log zi + (1 − xi) log (1 − zi)) .

For the transfer functions, common choices include the sigmoid h(v) = 1
1+e−v

for both the encoder and decoder, or to use a rectifier h(v) = max(0, v) in the
encoder paired with sigmoid decoder.

One of the most important parameters in a denoising autoencoder is the
noise distribution p. For continuous x, Gaussian noise p(x̃|x, ν) = N(x̃;x, ν) can
be used. For binary x or x ∈ [0, 1], it is most common to use masking noise, that
is, for each i ∈ 1, 2, . . . d, we sample x̃i independently as

p(x̃i|xi, ν) =

{
0 with probability ν,

xi otherwise.
(2)

In either case, the level of noise ν affects the degree of corruption of the input. If
ν is high, the inputs are more heavily corrupted during training. The noise level
has a significant effect on the representations learnt. For example, if the input
data are images, masking only a few pixels will bias the process of learning the
representation to deal well with local corruptions. On the other hand, masking
many pixels will push the algorithm to use information from more distant regions.

It is possible to train multiple layers of representations with denoising autoen-
coders by training a denoising autoencoder with data mapped to a representation
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learnt by the encoder of another denoising autoencoder. This model is known as
the stacked denoising autoencoder [28,29]. As an alternative to stacking, con-
structing deep autoencoders with denoising autoencoders was explored by Xie
et al. [30].

Although the standard denoising autoencoders are not, by construction, gen-
erative models, Bengio et al. [5] proved that, under mild regularity conditions,
denoising autoencoders can be used to sample from a distribution which consis-
tently estimates the data generating distribution. This method, which consists
of alternately adding noise to a sample and denoising it, yields competitive per-
formance in terms of estimated log-likelihood of the samples. An important con-
nection was also made by Vincent [27], who showed that optimising the training
objective of a denoising autoencoder is equivalent to performing score matching
[17] between the Parzen density estimator of the training data and a particular
energy-based model.

3 Composite Denoising Autoencoders

Composite denoising autoencoders learn a diverse representation by leverag-
ing the observation that the types of features learnt by the standard denoising
autoencoders differ depending on the level of noise. Instead of training all of the
hidden units to extract features from data corrupted with the same level of noise,
we can partition the hidden units, training each subset of model’s parameters
with a different noise level.

y1 y2

x̃ν1 x̃ν2

z

Fig. 1. A composite denoising autoencoder using two levels of noise. (Color figure
online)

More formally, let ν = (ν1, ν2, . . . , νS) denote the set of noise levels that is to
be used in the model. For each noise level νs the network includes a vector ys ∈
R

Ds of hidden units and a weight matrix Ws ∈ R
Ds×d. Note that different noise

levels may have different numbers of hidden units. We use D = (D1,D2, . . . DS)
to denote a vector containing the number of hidden units for each noise level.

When assigning a representation to a new input x, the CDA is very similar
to the DA. In particular, the hidden representation is computed as

ys = h(Ws x + bs) ∀s ∈ 1, . . . , S, (3)
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where as before h is a nonlinear transfer function such as the sigmoid. The full
representation y for x is constructed by concatenating the individual represen-
tations as y = (y1, . . . ,yS).

Where the CDA differs from the DA is in the training procedure. Given a
training input x, we corrupt it S times, once for each level of noise, yielding
corrupted vectors

x̃s ∼ p(x̃s|x, νs) ∀s. (4)

Then each of the corrupted vectors are fed into the corresponding encoders,
yielding the representation

ys = h(Ws x̃s + bs) ∀s ∈ 1, . . . , S. (5)

The reconstruction z is computed by taking all of the hidden layers as input

z = h′
(

S∑

s=1

W�
s ys + b′

)
, (6)

where as before h′ is a nonlinear transfer function, potentially different from h.
Finally given a loss function L, such as squared error, an update to the parame-
ters can be made by taking a gradient step on L(z,x).

This procedure can be seen as a stochastic gradient on an objective function
that takes the expectation over the corruptions:

E(X,X̃ν1 ,...,X̃νS
)

[
L

(
X,h′

(
S∑

s=1

W�
s h (Wsx̃νs

+ bs) + b′
))]

, (7)

This architecture is illustrated in Fig. 1 for two levels of noise, where we use the
different colours to indicate the weights in the network that are specific to a
single noise level.

3.1 Learning

A CDA could be trained by standard optimization methods, such as stochastic
gradient descent on the objective (7). As we will show, however, it is difficult to
achieve good performance with these methods (Sect. 4.1). Instead, we propose a
new cascaded training procedure for CDAs, which we describe in this section.

Cascaded training is based on two ideas. First, previous work [10] found that
pretraining at high noise levels helps learning the parameters for the low noise
levels. Second, and more interesting, the problem with taking a joint gradient
step on (7) is that low noise levels provide more information about the original
input x than high noise levels, which can cause a training procedure to get stuck
in a local optimum in which it relies on the low noise features without using the
high noise features. Cascaded training first trains the weights that correspond
to high noise levels, and then freezes them before moving on to low noise levels.
This way the hidden units trained with lower levels of noise are trained to correct
what the hidden units associated with higher noise levels missed.
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y1 y2 y3

x̃ν1 x̃ν1 x̃ν1

z

(step 1)

y1 y2 y3

x̃ν1 x̃ν2 x̃ν2

z

(step 2)

y1 y2 y3

x̃ν1 x̃ν2 x̃ν3

z

(step 3)

Fig. 2. The cascaded training procedure for a composite denoising autoencoder with
three noise levels. We use the notation y1:3 = (y1,y2,y3). First all parameters are
trained using the level of noise ν1. In the second step, the blue parameters remain
frozen and the red parameters are trained using the noise ν2. Finally, in the third
step, only the green parameters are trained, using the noise ν3. This is more formally
described in Algorithm 1. (Color figur online)

Putting these ideas together, cascaded training works as follows. We assume
that the noise levels are ordered so that ν1 > ν2 > · · · > νS . Then the first step
is that we train all of the parameters W1 . . .WS ,b1, . . .bS ,b′, but using only
the noise level ν1 to corrupt all S copies x̃1 . . . x̃S of the input. Once this is done,
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Algorithm 1. Training the composite denoising autoencoder
for R in 1, . . . , S do

for KR steps do
Randomly choose a training input x
Sample x̃s ∼ p(·|x, νs) for s ∈ {1, 2, . . . , R − 1}
Sample x̃s ∼ p(·|x, νR) for s ∈ {R, R + 1, . . . , S}
Compute ys for all s as in (5)
Compute reconstruction z as in (6)
Take a gradient step

Ws ← Ws − α∇WsL(z,x)

bs ← bs − α∇bsL(z,x)

b′ ← b′ − α∇b′L(z,x)

for s ∈ {R, R + 1, . . . S}
end for

end for

we freeze the weights W1,b1 and we do not alter them again during training.
Then we train the weights W2 . . .WS ,b2 . . .bS ,b′, where the corrupted input
x̃1 is as before corrupted with noise ν1, and the S − 1 corrupted copies x̃2 . . . x̃S

are all corrupted with noise ν2. We repeat this process until at the end we
are training the weights WS ,bS ,b′ using the noise level νS . This process is
illustrated graphically in Fig. 2 and in pseudocode in Algorithm1. To keep the
exposition simple, this algorithm assumes that we employ SGD with only one
training example per update, although in practice we use mini-batches.

The composite denoising autoencoder builds on several ideas and intuitions.
Firstly, our training procedure can be considered an application of the idea of cur-
riculum learning [4,14]. That is, we start by training all units with high noise level,
which serves as a form of unsupervised pretraining for the units that will be trained
later with lower levels of noise, giving them a good starting point for further opti-
misation. We experimentally show that the training of a denoising autoencoder
learning with data corrupted with high noise levels needs less training epochs to
converge, therefore, it can be considered an easier problem. This is shown in Fig. 3.
Secondly, we are inspired by multi-column neural networks (e.g. Ciresan et al. [7]),
which achieve excellent performance for supervised problems. Finally, our work
is similar in motivation to scheduled denoising autoencoders [10], which learn a
diverse set of features thanks to the training procedure which involves using a
sequence of levels of noise. Composite denoising autoencoders achieve this goal
more explicitly thanks to their training objective.

3.2 Recovering the Standard Denoising Autoencoder

If, for every training example, the corrupted inputs x̃νi
were always identical,

[W1, . . . ,WS ] were initialised randomly from the same distribution as W in
the standard denoising autoencoder, bi and b′ were initalised to 0 and Vi
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Fig. 3. Classification results with the CIFAR-10 data set yielded by representations
learnt with standard denoising autoencoders and data corrupted with two different
noise levels. Dashed lines indicate the errors on the validation set. The stars indicate
the test errors for the epochs at which the validation errors had its lowest value. The
DA trained with high noise level learns faster at the beginning but stops to improve
earlier. See Sect. 4 for the details of the experimental setup.

were constrained to be Vi = WT
i , then this model is exactly equivalent to

the standard denoising autoencoder described in Sect. 2. Therefore, it is natural
to incrementally corrupt the training examples shown to the composite denois-
ing autoencoders in such a way that when all the noise levels are the same, this
equivalency holds. For example, when working with masking noise, consider two
noise levels νi and νj such that νi > νj . Denote the random variables indicat-
ing the presence of corruption of a pixel in a training datum by Cνi

and Cνj
.

Assuming Cνj
∼ Bernoulli(νj), we want Cνi

∼ Bernoulli(νi), such that when
Cνj

= 1 then also Cνi
= 1. It can be easily shown that this is satisfied when

Cνi
= max(Cνj

+ Cνj→νi
, 1), where Cνj→νi

∼ Bernoulli(νi−νj

1−νj
). We use this

incremental noising procedure in all our experiments.

4 Experiments

We used two image recognition data sets to evaluate the CDA, the CIFAR-10
data set [19] and a variant of the NORB data set [21]. To evaluate the quality of
the learnt representations, we employ a procedure similar to that used by Coates
et al. [8] and by many other works1. That is, we first learn the representation in
an unsupervised fashion and then use the learnt representation within a linear
classifier as a measure of its quality. For both data sets, in the unsupervised
feature learning stage, we use masking noise as the corruption process, a sigmoid
encoder and decoder and cross entropy loss (Eq. 2) following Vincent et al. [28,
29]. To do optimisation, we use stochastic gradient descent with mini-batches.

1 We do not use any form of pooling, keeping our setup invariant to the permutation
of the features.
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For the classification step, we use L2-regularised logistic regression with the
regularisation parameter chosen to minimise the validation error. Additionally,
with the CIFAR-10 data set, we also trained a single-layer supervised neural
network using the parameters of the encoder we learnt in the unsupervised stage
as an initialisation. When conducting our experiments, we first find the best
hyperparameters using the validation set, then merge it with the training set,
retrain the model with the hyperparameters found in the previous step and
report the error achieved with this model.

We implemented all neural network models using Theano [6] and we used
logistic regression implemented by Fan et al. [9]. We followed the advice of Glorot
and Bengio [11] on random initialisation of the parameters of our networks.

4.1 CIFAR-10

This data set consists of 60000 colour images spread evenly between ten classes.
There are 50000 training and validation images and 10000 test images. Each
image has a size of 32 × 32 pixels and each pixel has three colour channels,
which are represented with a number in {0, . . . , 255}. We divide the training
and validation set into 40000 training instances and 10000 validation instances.
The only preprocessing step we use is dividing the intensity of every pixel by
255 to get numbers in [0, 1].

In our experiments with this data set we trained autoencoders with the total
number of 2000 hidden units (undercomplete representation) and 4000 hidden
units (overcomplete representation).

Training the Baselines. The simplest possible baseline, logistic regression
trained with raw pixel values, achieved 59.4 % test error. To get the best possible
baseline denoising autoencoder we explored combinations of different learning
rates, noise levels and numbers of training epochs. For 2000 hidden units we
considered ν ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and for 4000 hidden units we also
additionally considered ν = 0.15. For both sizes of the hidden layers we tried
learning rates ∈ {0.01, 0.02, 0.04}. Each model was trained for up to 2000 training
epochs and we measured the validation error every 50 epochs. The best baselines
we got achieved the test errors of 40.71% (2000 hidden units) and 38.35% (4000
hidden units).

Concatenating Representations Learnt Independently. To demonstrate
that diversity in noise levels improves the representation, we evaluate rep-
resentations yielded by concatenating the representations from two different
DAs, trained independently. We will combine DAs trained with noise levels
ν ∈ {0.1, 0.2, . . . , 0.5} for each noise level training three DAs with different ran-
dom seeds. Denote parameters learnt by a DA with the noise level ν and using
the random seed R by

(
W(R,ν),b(R,ν),b

′(R,ν)
)

and denote by Ekl
ij the classifi-

cation error on the test set yielded by the concatenating the representations of
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Fig. 4. Example filters (columns of the matrix W) learnt by standard denoising autoen-
coders with ν = 0.1 (left) and ν = 0.5 (right).

two independently trained DAs, the first trained with random seed Rk and noise
level νi, and the second trained by random seed Rl and noise level νj . For each
pair of noise levels (νi, νj), we measure the average error across random seeds,

that is, Ēij = 1

2(K
2 )

(∑
k �=l E

kl
ij + Ekl

ji

)
. The results of this experiment are shown

in Fig. 5. For every ν we used, it was optimal to concatenate the representation
learnt with ν with a representation learnt with a different noise level. To under-
stand this intuition, we visually examine features from DAs with different noise
levels (Fig. 4). From this figure it can be seen that features at higher noise levels
depend on larger regions of the image. This demonstrates the benefit of using a
more diverse representation for classification.
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Fig. 5. Classification errors for representations constructed by concatenating represen-
tations learnt independently.
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Comparison of CDA to DA. The CDA offers freedom to choose the number
of noise levels, the value νs for each noise level, and the number Ds of hidden
units at each noise level.

For computational reasons, we limit the space of possible combinations of
hyperparameters in the following manner (of course, expanding the search space
would only make our results better). We considered models containing up to four
different noise levels. We first consider only the models with two noise levels and
hidden units divided equally between them. For 2000 total hidden units, we con-
sider all possible pairs of noise levels drawn from the set {0.5, 0.4, 0.3, 0.2, 0.1, 0.05}.
Once we have found the value of ν that minimizes that validation error for D1 =
D2, we try splitting hidden units such that the ratio D1 : D2 = 1 : 3 or D1 : D2 =
3 : 1. Similarly, for four noise levels, we consider the following sets of noise levels
ν ∈ {(0.5, 0.4, 0.3, 0.2), (0.4, 0.3, 0.2, 0.1), (0.3, 0.2, 0.1, 0.05)}. We select the value
of ν that has lowest validation error for an equal split D1 = · · · = D4, and then try
splitting the hidden units with different ratios: D1 : D2 : D3 : D4 = 3 : 1 : 1 : 1,
D1 : D2 : D3 : D4 = 9 : 1 : 1 : 1 and the permutations of these ratios. As for the
learning rate, we train each of the cascaded DAs with the learning rate that had
the best validation error for the first noise level ν1. The models were trained for
up to 500 epochs at each consecutive noise level and we computed the validation
error every 50 training epochs. Note that when training with four noise levels, it is
possible that the lowest validation error occurs before the training procedure has
moved on to the final noise level. In this circumstance, it is possible that the final
model will have only two or three noise levels instead of four.

We trained the models with 4000 hidden units the same way, except that we
used different sets of noise levels for this higher number of hidden units. This is
because our experience with the baseline DAs was that units with 4000 hidden
units do better with lower noise levels. For the CDAs with four noise levels,
we compared three difference choices for ν: (0.4, 0.3, 0.2, 0.1), (0.3, 0.2, 0.1, 0.05),
and (0.2, 0.15, 0.1, 0.05). For the models with two noise levels the values were
drawn from {0.4, 0.3, 0.2, 0.15, 0.1, 0.05}.

For either number of hidden units, we find that CDAs perform better than
simple DAs. The best models with 2000 hidden units and 4000 hidden units we
found achieved the test errors of 38.86% and 37.53% respectively, thus yielding
a significant improvement over the representations trained with a standard DA.
These results are compared to the baselines in Table 1. It is also noteworthy that
a CDA performs better than concatenating two indepedently trained DAs with
different noise levels (cf. Fig. 5).

Table 1. Classification errors of standard denoising autoencoders and composite
denoising autoencoders.

Hidden units Best DA Test error Best CDA Test error

2000 ν = 0.2 40.71% ν = (0.3, 0.2, 0.1), D = (500, 500, 1000) 38.86%

4000 ν = 0.1 38.35% ν = (0.3, 0.05), D = (1000, 3000) 37.53%
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Comparison of Optimization Methods. One could consider several simpler
alternatives to the cascaded training procedure from Sect. 3.1. The simplest alter-
native, which we call joint SGD, is to train all of the model parameters jointly, at
every iteration sampling each corrupted input x̃s using its corresponding noise
level νs. This is simply SGD on the objective (7). A second alternative, which
we call alternating SGD, is block coordinate descent on (7), where we assign
each weight matrix Ws to a separate block. In other words, at each iteration we
choose a different parameter block Ws, and take a gradient update only on Ws

(note that this requires computing a corrupted input x̃s for all noise levels νs).
Neither of these simpler methods try to prevent undertraining of the parameters
for the high noise levels in the way that cascaded training does.

Figure 6 shows a comparison of joint SGD, alternating SGD, and our cas-
caded SGD methods on a CDA with four noise levels ν = (0.4, 0.3, 0.2, 0.1)
and D = (500, 500, 500, 500). We ran both joint SGD and cascaded SGD until
they converged in validation error, and then we ran alternating SGD until it
had made the same number of parameter updates as joint SGD. This means
that alternating SGD was run for four times as many iterations as joint SGD,
because alternating SGD only updates one-quarter of the parameters at each
iteration. Cascaded SGD was stopped early when it converged according to vali-
dation error. The vertical dashed lines in the figure indicate the epochs at which
alternating SGD switched between parameter blocks.

From these results, it is clear that the cascaded training procedure is signifi-
cantly more effective than either joint or alternating SGD. Joint SGD seems to
have converged to much worse parameters than cascaded SGD. We hypothesize
that this is because the parameters corresponding to the high noise levels are
undertrained. To verify this, in Fig. 7 we show the features learned by a com-
posite CDA with joint training at two different noise levels. Note that at the
higher noise level (at right) there are many filters that are mostly noise; this
is not observed at the lower noise or to the same extent in an standard DA.
Alternating SGD seems to converge fairly slowly. It is possible that its error
would continue to decrease, but even after 8000 iterations its solution is still
much worse than that found by cascading SGD after only 3500 iterations.

We have made similar comparisons for other choices of ν and found a similar
difference in performance between joint, alternating, and cascaded SGD. One
exception to this is that alternating SGD seems to work much better on models
with only two noise levels (S = 2) than those with four noise levels. In those
situations, the performance of alternating SGD often equals, but usually does
not exceed, that of cascaded SGD.

Fine-Tuning. We also trained a supervised single-layer neural network using
parameters of the encoder as the initialisation of the parameters of the hid-
den layer of the network. This procedure is known as fine-tuning. We did that
for the best standard DAs and CDAs with 4000 hidden units. The learning
rate, the same for all parameters, was chosen from the set {0.00125, 0.00125 ·
2−1, . . . , 0.00125 · 2−4} and the maximum number of training epochs was 2000
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Fig. 6. Classification errors achieved by three different methods of optimising the objec-
tive in (7).

Fig. 7. Example filters (columns of the matrix W) learnt by composite denoising
autoencoders with ν = 0.1 (left) and ν = 0.4 (right) when all the parameters were
optimise using joint SGD. While the filters associated with ν2 = 0.1 have managed
to learn interesting features, many of these associated with ν1 = 0.4 remained under-
trained. These hard to interpret filters are much more rare with cascaded SGD.

(we computed the validation error after each epoch). We report the test error for
the combination of the learning rate and the number of epochs yielding the lowest
validation error. The results are shown in Table 3. Fine-tuning makes the per-
formance of DA and CDA much more similar, which is to be expected since the
fine-tuning procedure is identical for both models. However, note that the result
achieved with a standard denoising autoencoder and supervised fine-tuning we
present here is an extremely well tuned one. In fact, its error is lower than any
previous result achieved by a permutation-invariant method on the CIFAR-10
data set. Our best model, yielding the error of 35.06% is, by a considerable mar-
gin, more accurate than any previously considered permutation-invariant model
for this task, outperforming a variety of methods. A summary of the best results
reported in the literature is shown in Table 2.
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Table 2. Summary of the results on CIFAR-10 among permutation-invariant methods.

Model Test error

Composite Denoising Autoencoder 35.06%

Scheduled Denoising Autoencoder [10] 35.7 %

Zero-bias Autoencoder [22] 35.9 %

Fastfood FFT [20] 36.9 %

Nonparametrically Guided Autoencoder [25] 43.25 %

Deep Sparse Rectifier Neural Network [12] 49.52 %

Table 3. Test errors on CIFAR-10 data set for the best DA and CDA models trained
without supervised fine-tuning and their fine-tuned versions.

DA CDA

no fine-tuning fine-tuning no fine-tuning fine-tuning

38.35% 35.30 % 37.53 % 35.06 %

4.2 NORB

To show that the advantage of our model is consistent across data sets, we
did the same experiment use a variant of the small NORB normalized-uniform
data set [21], which contains 24300 examples for training and validation and
24300 test examples. It contains images of 50 toys belonging to five generic
categories: animals, human figures, airplanes, trucks, and cars. The 50 toys are
evenly divided between the training and validation set and the test set. The
objects were photographed by two cameras under different lighting conditions,
elevations and azimuths. Every example consists of a stereo pair of grayscale
images, each of size 96× 96 pixels whose intensities are represented as a number
∈ {0, . . . , 255}. We transform the data set by taking the middle 64 × 64 pixels
from both images in a pair and dividing the intensity of every pixel by 255 to
get numbers in [0, 1]. The simplest baseline, logistic regression using raw pixels,
achieved the test error of 42.32 %.

In the experiments with learning the representations with this data set we
used the hidden layer with 1000 hidden units and adapted the set up we used for
CIFAR-10. To find the best possible standard DA we considered all combinations
of the noise levels ∈ {0.1, 0.2, 0.3, 0.4} and the learning rates ∈ {0.005, 0.01, 0.02}.
The representation learnt by the best denoising autoencoder yielded 18.75 %
test error when used with logistic regression. By contrast, a composite denoising
autoencoder with ν = (0.4, 0.3, 0.2, 0.1) and D = (250, 250, 250, 250) results in a
representation that yields a test error of 17.03 %.
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5 Discussion

We introduced a new unsupervised representation learning method, called a com-
posite denoising autoencoder, by modifying the standard DA so that different
parts of the network were exposed to corruptions of the input at different noise
levels. Naive training procedures for the CDA can get stuck in bad local optima,
so we designed a cascaded training procedure to avoid this. We showed that
CDAs learned more effective representations than DAs on two different image
data sets.

A few pieces of prior work have considered related techniques. In the context
of RBMs, the benefits of learning a diverse representation was also noticed by
Tang and Mohamed [26], achieving diversity by manipulating the resolution of
the image. Also, ensembles of denoising autoencoders, where each member of
the ensemble is trained with a different level or different type of noise, have been
considered by Agostinelli et al. [1]. This work differs from ours because in their
method all DAs in the ensemble are trained independently, whereas we show
that training the different representations together is better than independent
training. The cascaded training procedure has some similarities in spirit to the
incremental training procedure of Zhou et al. [31], but that work considered
only DAs with one level of noise. Usefulness of varying the level of noise during
training of neural nets was also noticed by Gulcehre et al. [15], who add noise
to the activation functions. Our training procedure also resembles the walkback
training suggested by Bengio et al. [5], however, we do not require our training
loss to be interpretable as negative log-likelihood. Understanding the relative
merits of walkback training, scheduled denoising autoencoders and composite
denoising autoencoders would be an interesting future challenge.
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Abstract. In the trust-centric context of signed networks, the social
links among users are associated with specific polarities to denote the
attitudes (trust vs distrust) among the users. Different from traditional
unsigned social networks, the diffusion of information in signed networks
can be affected by the link polarities and users’ positions significantly. In
this paper, a new concept called “trust hole” is introduced to characterize
the advantages of specific users’ positions in signed networks. To uncover
the trust holes, a novel trust hole detection framework named “Social
Community based tRust hOLe expLoration” (Scroll) is proposed in
this paper. Framework Scroll is based on the signed community detec-
tion technique. By removing the potential trust hole candidates, Scroll
aims at maximizing the community detection cost drop to identify the
optimal set of trust holes. Extensive experiments have been done on
real-world signed network datasets to show the effectiveness of Scroll.

Keywords: Trust hole detection · Signed networks · Data mining

1 Introduction

In traditional works on sociology and social networks, the concept structural hole
refers to individuals who act as intermediaries or bridges between others who are
not directly connected [9]. Via these structural holes, information can propagate
to separated individuals in different communities, or those who are otherwise
not interacting with each other. As a result, the structural holes who take these
bridging positions in society or social networks will accrue significant advantages
than other users [9]. In traditional social networks with regular friendship con-
nections among users, structural holes related problems have been studied for
years, and dozens of papers on it have already been published [1,3,5,9]
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Meanwhile, in some online social networks like Epinions1, the connections
connected to users are associated with specific polarities (e.g., positive vs nega-
tive) to denote different attitudes among users (e.g., trust vs distrust). Such a
kind of online social networks are formally represented as the signed networks
[11]. Different from traditional regular unsigned social networks, in the trust-
centric context of signed networks, diffusion of information can be affected by the
link polarities significantly. For instance, in signed networks, information tends
to propagate via the trust links between users who trust each other instead of
those distrusted ones. Viewed in this way, users who bridge different cliques via
distrust links actually cannot transmit information across these cliques. There-
fore, the traditional structural holes (i.e., the inter-community users in unsigned
networks) concept [9] can no longer work for the signed networks.

To characterize the advantages of specific users’ positions in signed networks,
a new concept named trust holes is introduced in this paper. Depending on the
polarities of links attached to them, the trust hole concept has two variants:
(1) positive trust holes who connect multiple isolated social communities via
positive links, and (2) negative trust holes who connect users within commu-
nities via negative links instead. Via the positive trust holes, information can
propagate between different social communities, as people will trust information
propagated from these hole users. Meanwhile, via the negative trust holes, the
intra-community information dissemination will be blocked instead, as few of
the neighbors will believe the information from the people they distrust. There-
fore, the positions of both positive trust holes and negative trust holes will have
great advantages in passing information among users in signed networks. The
formal definition of the trust hole concept is available in Sect. 2. Specifically, the
inter-community nodes attached with negative links and the intra-community
nodes attached with positive links are not trust holes, as their position own no
advantages in propagating information in signed networks. We will clarify that
in detail in Sect. 2.

Problem Studied: In this paper, we aim at identifying the trust holes from
the signed networks, and the problem is referred to as the “Signed network trust
HolE iDentification” (Shed) problem formally.

The Shed problem is an interesting research problem, and it is also very
important for many concrete applications, e.g., community structure [6,10], and
information diffusion [13,14] (existence of the holes can help disseminate the
information more broadly) in signed networks. In addition, the Shed problem is
a novel problem and we are the first to study it in signed networks. Different from
existing works about structural holes in unsigned networks [3,9], the networks
studied in this paper are signed networks, and the target to be identified are the
trust holes instead. For more information about related works, please refer to
Sect. 5.

1 http://www.epinions.com.

http://www.epinions.com
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The Shed problem is very challenging to solve due to the following reasons:

– definition of trust hole: The trust hole proposed in this paper is a new concept.
A formal definition of the trust hole concept is needed before studying the
Shed problem.

– formulation of the Shed problem: In the signed network setting, how to for-
mulate the Shed problem with clear motivations and objectives is still an
open problem.

– solution to the Shed problem: The Shed itself is a difficult problem. Some
trivial methods, like isolated trust hole identification in the positive sub-graph
(and negative sub-graph) along, will face great challenges in both obtaining
the positive and negative trust holes independently and fusing the trust hole
results from these two sub-graphs to get the final consistent results. An inte-
grated trust hole detection framework based on the whole signed network is
desired.

To address the above challenges, an integrated trust hole detection framework
named Scroll (Social Community based tRust hOLe expLoration) is proposed
in this paper. Before introducing Scroll, we will first define the trust hole con-
cept with full considerations about the link polarities in the signed networks.
Scroll formulates the Shed problem from the community detection perspec-
tive. By removing the potential trust hole users, Scroll aims at maximizing the
community detection cost drop to identify the optimal set of trust hole candi-
dates, which maps the Shed to a max-min optimization problem. A new concept
named “signed normalized cut decrease” is proposed in Scroll to quantify the
cost drop formally based on the signed normalized cut measure introduced in this
paper. The Shed problem is shown to be NP-hard, but based on such a formu-
lation, Scroll can solve the Shed approximately with an alternative updating
schema based schema.

The following parts of this paper are organized as follows. Terminology defi-
nition and problem formulation are given in Sect. 2. The method is introduced in
Sect. 3, which is evaluated in Sect. 4. Finally, Sect. 5 is about the related works
and Sect. 6 concludes this paper.

2 Problem Formulation

2.1 Terminology Definition

The networks studied in this paper are signed networks, where links are associ-
ated with different polarities.

Definition 1 (Signed Network): A signed network can be represented as G =
(V, E , s), where V (|V| = n) and E (|E| = m) are the sets of users and links
respectively. Sign mapping s : E → {+1,−1} projects links to their different
polarities, where polarities +1 and −1 denote that the links are the trust and
distrust links respectively.
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Users in regular social networks will form social communities based on the
connections among them, where intra-community connections are more dense
compared with those between different communities [17]. The social communities
formed in signed networks can be different due to the polarities attached to links.

Definition 2 (Signed Social Community): Given a signed network G, we can
represent the communities formed by users in G as C = {C1, C2, · · · , Ck}, where
k is the community number, Ci ⊆ V,∀i ∈ {1, 2, · · · , k} and

⋃k
i=1 Ci = V. Gener-

ally speaking, in the trust-centric context, users connected by positive links tend
to trust each other and will be grouped in the same community. Meanwhile, for
those connected by distrust links, they will have very few social interactions and
will be partitioned into different communities.

However, in the real scenario, the signed social communities formed by people
cannot fit the definitions exactly, and there may still exist a large number of
inter-community positive links and intra-community negative links. In such a
case, the positions of individuals connecting different communities via positive
links, as well as those connecting individuals within the same community via
negative links will have significant advantages in information dissemination (as
introduced in Sect. 1).

Definition 3 (Signed Trust Hole): Given a signed network G (with signed social
community C), literally, the signed trust holes in G denote a subset of users in G
(i.e., H ⊂ V) occupying positions of the largest advantages. More specifically, the
signed trust holes in H are the users either (1) connecting different communities
via positive links (connected with users in them), who are referred to as the
positive trust holes; or (2) connecting users within the same community with
negative links, who are called the negative trust holes respectively.

To help illustrate this concept more clearly, we also give an example in Fig. 1,
where the colored regions denote different communities in the network. In plots A
and B, we show the signed networks, where the links are associated with different
polarities (i.e., positive vs negative). In the signed networks, nodes bridging
different groups are not necessarily the trust holes. For instance, in plot A, the
“Green” nodes which connecting different groups via positive links is defined as
the positive trust hole, while the “Red” node bridging groups with negative links
is not, as information will not propagate between groups via him/her. Besides the
inter-community nodes, in signed networks, the intra-community nodes can also
be the trust holes. For instance, in plot B, we observe that, in the “Blue” group,
the central node connects to other nodes via both positive and negative links,
which will partially block the dissemination of information within the group as
some of his neighbors distrust information from him/her (he/she is still in the
group as some others tend to trust him). The remaining intra-community nodes
are not trust holes on the other hand. As a result, the positions of both the
“Green” node in plot A and the central “Blue” node in plot B have significant
advantages, which are called the positive and negative trust holes respectively.
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Fig. 1. Trust Holes vs Structural Hole. (A: positive trust hole, B: negative trust hole)
(Color figure online)

2.2 Problem Statement

In this paper, we aim at identifying the set of trust holes from signed networks.
Let G = (V, E , s) be the signed network and C be the community structures
detected from G. Various cost functions can be utilized to measure the quality
of the detected community structure C, which can be denoted as cost(C, G).
Meanwhile, let G′ = (V ′, E ′) be the network obtained after removing the positive
and negative trust holes, where V ′ = V \ H and E ′ = {(u, v)|(u, v) ∈ E , u /∈
H, v /∈ H}, and C′ be the new community structures of G′, which will lead to
cost cost(C′, G′).

According to the definition of trust holes, the existence of positive/negative
trust hole will not only influence the dissemination of information, but also blur-
ring the network community structure. Removal of the trust holes from network
G will also delete the inter-community positive links and intra-community neg-
ative links attached to them, and better community structures can be identified
from G.

Therefore, in this paper, we propose to formulate the Shed problem from the
community detection perspective. The optimal trust holes set H of size h can
be identified by removing potential trust hole candidates from the network. The
users removal of whom introducing the maximum community detection cost drop
will be the optimal result. Formally, the objective function of the Shed problem
can be represented as

max
H

Cost(C∗, G) − Cost((C′)∗, G′)

s.t. |H| = h,

where Cost(·) denote the costs introduced by the community structure in the net-
work, and its concrete representations will be introduced in the following sections.
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And C∗ = arg minC Cost(C, G) and (C′)∗ = arg minC′ Cost((C′), G′) denote the
optimal community structure introducing the minimum costs in networks G and
G′ respectively.

Meanwhile, identification of the trust hole number (i.e., h) can be another
interesting problem, but it is out of the scope of this paper, and we will leave it
as a future work. In the Shed problem, the trust hole number is pre-given but
we will also analysis the effects of different parameter h on the performance of
different comparison methods in the experiment section.

3 Proposed Methods

In this section, we will introduce the method Scroll in detail. Based on the
community cost function introduced in Sect. 3.1, we will provide the objective
function of the Shed problem in Sect. 3.2 based on the “signed normalized cut
decrease” concept. With some simple analysis, the Shed problem is shown to
be NP-hard. An alternative updating schema based solution will be applied to
address the objective function in Sect. 3.3.

3.1 Signed Normalized Cut Cost Function

Any community quality measures, e.g., entropy, normalized dbi, can be applied
to define the community cost function. In this paper, we propose to use the
normalized cut [20]. In this part, we will first do a quick review about the nor-
malized cut measure for unsigned networks. Next, we propose to extend it to the
signed network setting with full considerations of the constraints introduced by
link polarities.

Traditional Normalized Cut Measure for Unsigned Networks. Given a
traditional unsigned social network Gu, based on the connection among users
in which, we can define its adjacency matrix as Au. Its corresponding Laplace
matrix can be represented as Lu = Diag(Au)−Au, where Diag(Au) denotes the
corresponding diagonal matrix of A and Diag(Au)(i, i) =

∑
j A(i, j). Meanwhile,

given the social structure Cu = {Cu
1 , Cu

2 , · · · , Cu
k }, we can define the correspond-

ing indicator matrix as X = (x1,x2, · · · ,xk), where xj = (x1,j , x2,j , · · · , xn,j)�,
and entry xj(i) = xi,j denotes whether user ui is in cluster Cu

j or not. Traditional
unsigned normalized cut cost function [16] is defined to be

Ncut(Cu, Gu) =
i=k∑

i=1

x�
i L

uxi = Tr(X�LuX),

where Tr(·) denotes the trace of a matrix, andX is subject to constraintX�X = I.
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Extended Signed Normalized Cut Measure for Signed Networks. How-
ever, in signed networks studied in this paper, the polarities associated to links
can post extra constraints [22] on the community structures:

– constraint of positive links: From the trust-centric point of view, trust links
(i.e., positive links) are stronger indicators of the closeness among users in
signed networks. Generally, users who trust each other are more likely to
share information and can be in the same community.

– constraint of negative links: Meanwhile, on the other hand, distrust links (i.e.,
negative links) can show the negative attitudes among users in signed net-
works. Users who distrust each other tend to have less social interactions, and
will stay in different communities.

To handle the constraints introduced by the polarities of these signed links,
in this paper, we propose to extend the traditional normalized cut concept to
the trust-centric signed networks. Based on the positive links in network signed
network G, we propose to construct the positive Laplace matrix L+. The cost
introduced by detected communities C in cutting positive links can be repre-
sented as the positive normalized cut cost function:

Ncut(C, G)+ =
i=k∑

i=1

x�
i L

+xi = Tr(X�L+X).

Meanwhile based on the negative links in signed network G, we can construct
the negative Laplace matrix L−. The cost introduced by detected communities
C in cutting the negative links can be represented as the following negative
normalized cut cost function:

Ncut(C, G)− =
i=k∑

i=1

x�
i L

−xi = Tr(X�L−X).

By considering the polarities of links in signed networks, in the trust-centric
context, the optimal community structure should cut the minimum positive links
but the maximum negative links. Viewed in this way, we introduce the signed
normalized cut cost function for network G to be

Ncut(C, G) = α · Ncut(C, G)+ − (1 − α) · Ncut(C, G)−

= α · Tr(X�L+X) − (1 − α) · Tr(X�L−X)

= Tr
(
X�(α · L+ − (1 − α) · L−)X

)

= Tr
(
X�LX

)
,

where matrix L = (α · L+ − (1 − α) · L−) and α is the weight of the positive
normalized cut cost term.

Moreover, the optimal community structure C∗ (i.e., the optimal indicator
matrix X∗) which can minimize the signed normalized cut cost function can be
represented as:
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X∗ = arg min
X

Tr
(
X�LX

)
,

s.t. X�X = I.

Constraint X�X = I ensures the obtained indicator matrix X is orthogonal.
The discrete binary value constraint on X is usually relaxed, which can actually
take any real values in range [0, 1].

3.2 Objective Function of the SHED Problem

As introduced in Sect. 2, the trust holes either connecting different communities
via positive links or linking individuals within communities via negative links
will make the social community structure of the network hard to distinguish.
Therefore, we propose to remove potential trust hole candidates together with
their attached links from the network. The users removal of whom from the
network can lead to the maximum community detection cost drop will be the
optimal trust holes to be identified in the Shed problem. Based on the signed
normalized cut cost function introduced in the previous section, we will define
the concrete objective function of Shed in this section.

Let G, C∗ and G′, (C′)∗ be the networks and their optimal community struc-
tures before and after removing the signed trust holes H respectively. Consid-
ering that, in the signed normalized cut cost function, network information is
actually stored in the Laplace matrix, next we will first study how to represent
the Laplace matrix of network G′ (i.e., L′) after removing the signed trust holes
from the original Laplace matrix of network G (i.e., L).

Let matrix I ∈ {0, 1}|V|×|V| be the identity matrix with 1s on its diagonal
only. Given the user set V and structure hole set H = {ui, uj , · · · , um}, we
define the corresponding transformation matrix T ∈ {0, 1}(|V|−|H|)×|V| based
on I, where the rows corresponding structure holes in H are all removed. For
instance, if ui is identified as a trust hole, after removing ui, we can define the
corresponding transformation to be T ∈ {0, 1}(|V|−1)×|V|, where rows T (l, :) =
I(l, :),∀l ∈ {1, 2, · · · , i − 1} and T (l, :) = I(l + 1, :),∀l ∈ {i, i + 1, · · · , |V| − 1}.
Therefore, given a set of structure holes H, we can define a unique transformation
matrix T for it. In this paper, we will misuse matrix T to denote the signed trust
hole for simplicity. With transformation matrix T, we can represent the Laplace
matrix to be L′ = Diag(TAT�) − TAT�, where A is the signed adjacency
matrix of G weighted by parameter α.

Definition 4 (Signed NCut Decrease): Based on the Laplace matrices L and
L′ as well as transformation matrix T, we can define the signed ncut decrease
introduced by matrix T to be

NCut-Decrease(T) = Ncut(C∗, G) − Ncut((C′)∗, G′)

= min
X

Tr
(
X�LX

) − min
X′

Tr
(
(X′)�L′(X′)

)
.
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Furthermore, the objective function for detecting the optimal signed trust
hole H∗ can be represented as

H∗ = arg max
H

NCut-Decrease(T)

= arg max
T

(
min
X

Tr
(
X�LX

) − min
X′

Tr
(
(X′)�L′(X′)

) )
,

s.t. X�X = I, (X′)�(X′) = I,TT� = I,

|H| = h,T ∈ {0, 1}(|V|−|H|)×|V|.

Considering that matrix T is obtained from the identity matrix by removing
rows corresponding to the structure hole users, the last constraint is added to
ensure each row of T should contain only one entry with value 1, while the
remaining entries are all 0s.

3.3 Solution to the SHED Problem

In this section, we will first analyze the objective function of the Shed problem
first, and after that we will introduce an approximated method to address it.

Objective Function Analysis. By studying the objective equation, we observe
that the first constrained minimization equation is actually a constant, removal
of which has no effects on the solutions. Therefore, we can simplify the objective
function as follows

H∗ = arg min
T

min
X′

Tr
(
(X′)�L′(X′)

)
,

s.t. (X′)�(X′) = I,TT� = I, |H| = h,T ∈ {0, 1}(|V|−|H|)×|V|.

As we can see, the objective function is actually a joint min-min non-linear
integer programming problem involving multiple variables simultaneously, joint
optimization of which is shown to be NP-hard [7]. Therefore, a new approximated
method Scroll is proposed in this paper to address the objective function based
on an alternative updating schema. Constraint |H| = h will be removed from the
objective function since the number of detected trust holes has been denoted by
the dimension of matrix T already.

Solution SCROLL with Alternative Updating. As introduced in the previ-
ous section, Laplace matrix L′ can be represented as L′ = Diag(TAT�)−TAT�.
The transformation matrix T is also involved in the Diag(·), which will make
the partial derivatives calculation of the objective function about variable T
infeasible. To address this problem, in this paper, we propose approximate the
representation of L′ as L′ ≈ TLT� instead. The introduced deviation by such a
approximation will be TLT� − (Diag(TAT�) − TAT�) = T · Diag(A) · T� −
Diag(TAT�), which are mainly about the values (about the out-degrees of the
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trust holes) on the diagonal of L′. Based on such an approximation, the new
objective function can be represented as

H∗ = arg min
T

min
X′

Tr
(
(X′)�TLT�(X′)

)
,

s.t. (X′)�(X′) = I,TT� = I.

Here the integer constraint matrix T is relaxed and entries in T can take any
real values in range [0, 1].

We propose to address the objective function with an alternative updating
schema: (1) fix T and update X′; and (2) fix X′ and update T.

Step 1: By fixing variable T and adding the constraint term (X′)�(X′) = I as
a regularizer term, we can represent the objective function to be

min
X′

Tr
(
(X′)�TLT�(X′)

)
+ ρ

∥∥(X′)�(X′) − I
∥∥2

F
,

where parameter ρ denotes the weight of the regularizer term, and it is assigned
with very large value (e.g., 10) in the experiment to ensure the constraint can
be maintained.

The above objective function is a convex function can be addressed with
gradient descent method, and the updating equation of variable X′ can be rep-
resented as

X′ = X′ − η1
∂
(
Tr

(
(X′)�TLT�X′) + ρ

∥∥(X′)�X′ − I
∥∥2

F

)

∂X′

= X′ − 2η1

(
TLT�X′ + 2ρ

(
X′(X′)�X′ − X′)),

where parameter η1 denotes the learning step and it is assigned with a small
constant value (0.0001) in the experiments.

Step 2: Meanwhile, in a similar way, by fixing parameter X′ and adding the
constraint term TT� = I as a regularizer term, we can find that the result-
ing objective function is also a convex function. We can further represent the
updating equation of variable T to be

T = T − 2η2
(
X′(X′)�TL + 2ρ(T(T)�T − T)

)
,

where parameter η2 denotes the learning step of updating T.
Therefore, the alternative updating equation of variables X′ and T at step

τ can be represented as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X′(τ) = (X′)(τ−1) − 2η1

(
T(τ−1)L(T(τ−1))�(X′)(τ−1)

+2ρ
(
(X′)(τ−1)((X′)(τ−1))�(X′)(τ−1) − (X′)(τ−1)

))
,

T(τ) = T(τ−1) − 2η2
(
(X′)(τ)((X′)(τ))�(T′)(τ−1)L

+2ρ(T(τ−1)(T(τ−1))�T(τ−1) − T(τ−1))
)
.
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Such a alternative updating process will continue until both X′ and T converge.
From the result of T, we can recover the rows that are removed from the identified
results, which corresponding to the signed trust holes of the signed network.
Under the constraint that each row and each column can constrain at most
one entry being filled with value 1, for entries in T(τ), we sort their values in
decreasing order to select the entries with the largest values to preserve, which
will be assigned with 1. The rest will all be assigned with value 0. In addition,
based on matrix X′, we can obtain the community structures formed by users in
the signed networks. Depending on the positions and the connections attached to
the identified trust holes (i.e., intra or inter community, and positive or negative
links), we can differentiate the specific categories of trust holes (i.e., positive and
negative trust holes respectively) from the results.

4 Experiments

To test the effectiveness of Scroll in addressing the Shed problem. We conduct
extensive experiments on real-world signed network datasets, and compare them
with both state-of-art and traditional baseline methods.

4.1 Dataset Description

The real-world signed network dataset used in the experiments include the Epin-
ions network and the Slashdot network. Some basic statistical information about
these two datasets is available in Table 1.

Table 1. Properties of different networks

network # nodes # links link type

Epinions 131,828 841,372 directed

Slashdot 77,350 516,575 directed

Reproducible Research?: The dataset used in this paper is public accessible,
which can be downloaded from the SNAP site2.

4.2 Experiment Setting

Based on the positive and negative links, the positive and negative adjacency
matrices are constructed respectively. With the positive/negative adjacency
matrices, we can define the integrated Laplace matrix and the weight of posi-
tive Laplace matrix α is set as 0.5. Framework Scroll infers the transformation
matrix T and confidence matrix X simultaneously with the alternative updating
schema. From the transformation matrix T we can recover the trust holes.
2 http://snap.stanford.edu/data/index.html#signnets.

http://snap.stanford.edu/data/index.html#signnets
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(a) N-Cut Decrease

(b) TH Index

Fig. 2. Experiment results on the Epinions network.

Comparison Methods. The networks studied in this paper are signed, and
no existing works have studied the trust hole detection problem based on signed
networks before yet. We propose to apply the existing works on traditional struc-
tural hole detection problem to the signed networks by discarding the polarity
information. In Shed, no community structure information is available about the
signed networks, thus the unsigned structural hole detection method proposed
in [15] taking the community structure as the input cannot work for the Shed

problem. The list of comparison methods used in the experiments are provided
as follows:

– Scroll: Method Scroll is the trust hold detection method proposed in this
paper, which can consider both the links as well as the polarities attached to
the links.

– BICC: Method BICC is the state-of-art structural hole detection method for
unsigned networks [18]. To accommodate the setting of BICC, we transform
the signed networks to a unsigned one by discarding the link polarities.
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(a) N-Cut Decrease

(b) TH Index

Fig. 3. Experiment results on the Slashdot network.

– Constraint: Method Constraint proposed in [2] uses constraint to esti-
mate the importance of each node and selects the nodes with the lowest K
constraint scores as the hole candidates.

– PageRank: Traditional node ranking algorithm PageRank can also be used
as a method for structural hole detection in [15], which returns the nodes with
the top K page rank scores as the result.

– Degree: Method Degree selects the users with the top K degree as the hole
candidates. Considering that the links in the network datasets are directed,
the social degree of user u is identical to the number of neighbors of u in the
network (i.e., |Γ (u)| = |{v|v ∈ U , (u, v) ∈ E ∨ (v, u) ∈ E}|).

– Random: Method Random randomly selects K users as the hole candidates.



710 J. Zhang et al.

Table 2. Intersection of trust holes selected by different comparison methods.

SCROLL BICC CONSTRAINT PAGERANK DEGREE RANDOM RANDOM DEGREE PAGERANK CONSTRAINT BICC SCROLL

50 26 1 32 25 4 SCROLL 4 35 27 4 23 50
50 2 25 26 3 BICC 5 23 23 4 50

50 1 1 2 CONSTRAINT 0 4 5 50
50 22 4 PAGERANK 6 27 50

50 4 DEGREE 4 50
Epinions 50 RANDOM 50 Slashdot

Evaluation Metrics. For the real-world signed network datasets, we propose
to measure the performance of these different comparison methods two differ-
ent metrics. One of the evaluation metrics is the signed normalized cut decrease
introduced in this paper. Generally, higher signed normalized cut decrease cor-
responds to better performance.

Another evaluation metric used in the experiments is the trust hole index
introduced in this paper. Generally, the optimal trust holes are the user nodes
which connect to other nodes in different communities via the positive links or
nodes in the same community via negative links.

Definition 5 (Trust Hole Index): Let Γ−(u) and Γ+(u) be the sets of negative
and positive neighbors of user u respectively and mapping c : U → C be the
function projects users to their communities respectively. The trust hole index
for user u can be represented as

TH-Index(u) =
1

Z(Γ+(u))

∑

v,w∈Γ+(u),v �=w

I(c(v) 	= c(w))

+
1

Z(Γ−(u))

∑

v,w∈Γ −(u),v �=w

I(c(v) = c(w)).

where the normalization term Z(Γ+(u)) = 1
|Γ+(u)|×(|Γ+(u)|−1) , and term

Z(Γ−(u)) = 1
|Γ −(u)|×(|Γ −(u)|−1) . Function I(c(v) 	= c(w)) is 1 if c(v) 	= c(w)

and similar for I(c(v) = c(w)).

Generally, users with higher trust hole index are more likely to be the trust holes,
and methods achieving higher trust hole index will have better performance.

4.3 Experiment Result

The experiment results on the real-world signed networks, Epinions and Slash-
dot, are shown in Figs. 2 and 3 respectively.

In Fig. 2(a), we show the performance of different comparison methods eval-
uated by the normalized cut decrease metric at different hole numbers. From the
plot, we can observe that Scroll can outperform other comparison methods for
different hole numbers. For instance, when the hole number is 25, the normalized
cut decrease achieved by Scroll is 0.150, which is more than two times higher
than that obtained by Degree and PageRank, about 7 times larger than that
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achieved by BICC, Random and Constraint. In Fig. 2(b), we show the per-
formance of the comparison methods when the evaluation metric is trust hole
index. According to the plot, we can observe that Degree and PageRank has
comparable performance, both of which are below the trust hole index curve of
Scroll. The constraint method cannot work well when dealing with the signed
networks at all, which is the baseline of all the comparison methods.

Similar results of these comparison methods can be observed for the Slashdot
network in Fig. 3, and Scroll can outperform other methods for different hole
numbers.

In addition, in Table 2, we show the shared trust holes detected by the dif-
ferent comparison methods in the Epinions and Slashdot networks respectively.
From the results, we can observe that the trust holes selected by Scroll have
some overlapping with BICC, Degree and PageRank. In the Epinions, the
number of detected trust holes by Scroll and BICC is 26, the number of shared
trust holes by Scroll and PageRank is 32, while those shared by Scroll and
Degree is 25 respectively. Meanwhile, the trust holes detected by these three
methods are quite different from those selected by Random and Constraint.
For instance, in Epinions, the trust holes shared by Scroll and Constraint is
merely 1, and those shared by Scroll and Random is only 4. Similarly results
can be observed for the Slashdot network, and Scroll can choose some common
holes with BICC, PageRank and Degree, but have quite different results with
Random and Constraint.

5 Related Works

Traditional structural holes are usually correlated to a wide range of indicators
about social success, which have been studied in various papers already [1,3,4].
Ahuja [1] proposes to study the effects of a firm’s network of relations on inno-
vation from three different perspectives: direct ties, indirect ties and structural
holes, where structural holes are discovered to have both positive and negative
influences on subsequent innovations. Burt [3] introduces the relation between
structural holes and good ideas. Burt discovers that structural holes connect-
ing different groups are more likely to express ideas, less likely to have ideas
dismissed, and more likely to have ideas evaluated as valuable.

Later, some works propose to study the formation of structural holes in social
networks from the game theory perspective [5,8,9]. Goyal et al. [8] propose
that in social networks, individuals form links with others to create surplus,
to gain intermediation rents, and to circumvent others, which are the forces
in the process of strategic network formation. Kleinberg et al. [9] propose to
apply a game-theoretic approach to study the structural holes, and notice that
individuals will differentiate themselves in equilibrium of the game, occupying
different social strata and receiving different payoffs.

Recently, some works have been done on finding the structure holes from
social networks [15,23]. Lou et al. [15] formulate the structure hold mining prob-
lem from the information diffusion and community detection perspectives, and



712 J. Zhang et al.

discover that the problem is NP-hard based on these two modeling. Vilhena et al.
[23] extend the structural hole concept to “culture holes” and propose to find
the “culture holes” from the citation networks. For more background knowledge
about online social networks and the research works studied based on them,
please refer to a recent survey paper written by Shi et al. in [19].

Signed networks since introduced by Leskovec et al. [12] have become a hot
research topic, as links in signed networks can denote different attitudes among
users, which provide new opportunities for researchers to study the connections
among users. Leskovec et al. [11] propose to predict the positive and negative
links in signed networks based on the balance theory. Doreian et al. [6] study
the partition problem in signed networks. A recent survey about related works
in signed networks is given by Tang et al. in [21].

6 Conclusion

In this paper, we have studied the trust hole detection problem in signed net-
works. A formal definition about the trust hole concept as well as its two dif-
ferent variants are clearly illustrated in this paper. To identify the set of trust
holes from the signed network, a community detection based trust hole detection
framework, Scroll, is introduced in this paper. By identifying the set of users,
removal of whole from the network can lead to the maximum signed normalized
cut decrease, Scroll can detect the optimal set of trust holes from the signed
network. Extensive experiments have been done on real-world signed networks,
and the results demonstrate the effectiveness of Scroll in addressing the Shed

problem.

Acknowledgement. This work is supported in part by NSF through grants III-
1526499.

References

1. Ahuja, G.: Collaboration networks, structural holes, and innovation: a longitudinal
study. Adm. Sci. Q. 45, 425–455 (2000)

2. Burt, R.: Structural Holes. Cambridge University Press, Cambridge (1992)
3. Burt, R.: Structural holes and good ideas. Am. J. Sociol. 110(2), 349–399 (2004)
4. Burt, R.: Second-Hand brokerage: evidence on the importance of local structure

for managers, bankers, and analysts. Acad. Manage. J. 50, 119–148 (2006)
5. Buskens, V., van de Rijt, A.: Dynamics of networks if everyone strives for structural

holes. Am. J. Soci. 92(6), 1287–1335 (2008)
6. Doreian, P., Mrvar, A.: Partitioning signed social networks. Soc. Netw. 33, 196–221

(2009)
7. Gao, D., Sherali, H. (eds.): Advances in Applied Mathematics and Global Opti-

mization. Springer, Heidelberg (2009)
8. Goyal, S., Vega-Redondo, F.: Structural holes in social networks. J. Econ. Theor.

137, 460–492 (2007)



Trust Hole Identification in Signed Networks 713

9. Kleinberg, J., Suri, S., Tardos, E., Wexler, T.: Strategic network formation with
structural holes. ACM SIGecom Exchanges 7, 1–4 (2008)

10. Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J.: Spectral analysis of signed
graphs for clustering, prediction and visualization. In: SDM (2010)

11. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links
in online social networks. In: WWW (2010)

12. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In:
CHI (2010)

13. Li, D., Xu, Z., Chakraborty, N., Gupta, A., Sycara, K., Li, S.: Polarity related
influence maximization in signed social networks. PLOS 9(7), e102199 (2014)

14. Li, Y., Chen, W., Wang, Y., Zhang, Z.: Influence diffusion dynamics and influ-
ence maximization in social networks with friend and foe relationships. In: WSDM
(2013)

15. Lou, T., Tang, J.: Mining structural hole spanners through information diffusion
in social networks. In: WWW (2013)

16. Luxburg, U.: A tutorial on spectral clustering. Statist. Comput. 17, 395–416 (2007)
17. Newman, M.E.J.: Detecting community structure in networks. Europ. Phys. J. B

- Condens. Matter Complex Syst. 38, 321–330 (2004)
18. Rezvani, M., Liang, W., Xu, W., Liu, C.: Identifying top-k structural hole spanners

in large-scale social networks. In: CIKM (2015)
19. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.: A survey of heterogeneous information

network analysis. CoRR abs/1511.04854 (2015)
20. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell. 22(8), 888–905 (2000)
21. Tang, J., Chang, Y., Aggarwal, C., Liu, H.: A survey of signed network mining in

social media. ACM Computing Surveys, to appear CoRR abs/1511.07569 (2015)
http://arxiv.org/abs/1511.07569

22. Traag, V., Bruggeman, J.: Community detection in networks with positive and
negative links. Phys. Rev. E 80(3), 36115 (2009)

23. Vilhena, D., Foster, J., Rosvall, M., West, J., Evans, J., Bergstrom, C.: Finding
cultural holes: How structure and culture diverge in networks of scholarly commu-
nication. Sociol. Sci. 1, 221–238 (2014)

http://arxiv.org/abs/1511.07569


Huber-Norm Regularization
for Linear Prediction Models

Oleksandr Zadorozhnyi1(B), Gunthard Benecke1, Stephan Mandt2,
Tobias Scheffer1, and Marius Kloft3

1 Department of Computer Science, University of Potsdam, Potsdam, Germany
{zadorozh,gunthard.benecke,tobias.scheffer}@uni-potsdam.de

2 Department of Computer Science, Data Science Institute,
Columbia University, New York City, USA

sm3976@columbia.edu
3 Department of Computer Science,

Humboldt-Universität zu Berlin, Berlin, Germany
kloft@hu-berlin.de

Abstract. In order to avoid overfitting, it is common practice to reg-
ularize linear prediction models using squared or absolute-value norms
of the model parameters. In our article we consider a new method of
regularization: Huber-norm regularization imposes a combination of �1
and �2-norm regularization on the model parameters. We derive the dual
optimization problem, prove an upper bound on the statistical risk of
the model class by means of the Rademacher complexity and establish
a simple type of oracle inequality on the optimality of the decision rule.
Empirically, we observe that logistic regression with Huber-norm regu-
larizer outperforms �1-norm, �2-norm, and elastic-net regularization for
a wide range of benchmark data sets.

1 Introduction

Linear classification and regression models—such as the support vector machine
(SVM) and logistic and linear regression—are widely used in machine learning,
and regularized empirical-risk minimization is a standard approach to optimizing
their parameters. To avoid overfitting, linear models are typically either densely
or sparsely regularized. With an �2 regularizer, one obtains a dense weight vector
in which all features contribute to the prediction task. For interpretability, one is
often interested in a sparse solution in which many entries of the weight vector are
zero. To this end, one may employ an �1 absolute value norm regularizer [18,25].
While this type of regularization may lead to lower predictive accuracies than
�2 regularization [10], the result focuses only on the most relevant features.

This paper promotes the idea of using a combination of both types of regu-
larization, thus combining the best of both worlds. Instead of using just a single
weight vector w that is either dense or sparse, we employ a sum of two weight
vectors w+v. While w is �2 regularized and therefore dense, v is �1 regularized

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 714–730, 2016.
DOI: 10.1007/978-3-319-46128-1 45
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Fig. 1. Geometrical illustration of the proposed Huber-norm regularizer and compari-
son to common regularizers.

and therefore sparse. Having two different weight vectors with different regular-
izations allows linear models to more flexibly fit the data. It comes at a moderate
computational cost, since the number of parameters is doubled.

We first show that the proposed combination of two weight vectors is mathe-
matically equivalent to imposing Huber-norm [7] regularization on the empirical
risk of a linear model. This approach is known to be statistically more robust [8]
in the sense that individual sparse weights do not necessarily involve a huge cost
in the loss. This Huber norm involves quadratic costs near the origin and linear
costs far away from the origin, this way penalizing outliers less severely. Because
of this analogy, we call our method Huber-norm regularization. We derive uni-
form and data-dependent upper bounds on the statistical risk of the model class
by means of the Rademacher complexity. We deduce a simple type of oracle
inequality on the inference efficiency of the decision rule which measures the
deviation of the model’s risk from the lowest risk of any model in the class.

Our empirical studies show that Huber-norm regularized logistic regres-
sion outperforms �1- and �2-regularized as well as elastic-net-regularized logistic
regression [26] in the majority of cases over a wide range of benchmark problems.
To support this claim we provide evidence based on empirical studies on the UCI
machine learning repository, where our method performs best among the com-
pared methods on 23 out of 31 data sets. On particular data set—the well-known
Iris data set—Huber-norm regularization leads to a prediction accuracy of 0.96
while the next-best method merely achieves 0.84.

Our paper is organized as follows. Section 2 reviews related work. In Sect. 3,
we describe our model and its basic properties. We also prove the equivalence
of the two weight vectors to Huber-norm regularization in the conventional set-
ting. In Sect. 4 we then present the underlying theoretical foundations of our
approach, where we prove an upper bound on the statistical risk. We present
our experimental results in Sect. 5 and conclude in Sect. 6.

2 Related Work

Comparisons between �1-norm and �2-norm SVMs are ubiquitous in the liter-
ature [13,14,25]. A robust alternative to the SVM based on the smooth ramp
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loss [23] requires the convex-concave procedure to convert this non-convex opti-
mization problem into a convex one [24]. Another way of making the SVM
robust [20] is based on the weighted LS-SVM that yields sparse results. Different
type of classification problems for the SVM (both convex and non-convex) are
discussed by Hailong et al. [6] where the conjugate gradient approach is used to
solve the optimization problem.

Our novel type of regularizer relates to the elastic-net regularizer [26] that
simply amounts to taking the sum of an �1 and �2 regularizer. Our proposed
regularizer is very different, as is evident from Fig. 1. The plot shows contours of
different regularizers in comparison. As a major difference between the elastic net
and our approach, our regularizer grows asymptotically linearly for large weight
vectors whereas the elastic net grows asymptotically quadratically. Lastly, our
theoretical contributions are based on fundamental work by Vapnik [22].

The Huber norm [7] is frequently used as a loss function; it penalizes outliers
asymptotically linearly which makes it more robust than the squared loss. The
Huber norm is used as a regularization term of optimization problems in image
super resolution [21] and other computer-graphics problems. The inverse Huber
function [17] has been studied as a regularizer for regression problems. While the
Huber norm penalizes large weights asymptotically linearly, the inverse Huber
function imposes an asymptotically squared penalty on large weights.

3 Huber-Norm-Regularized Linear Models

In this section, after formally introducing the problem setting and optimization
criterion, we show that this optimization criterion has an equivalent formulation
in which the Huber norm becomes explicit. We derive the dual form and show
how Huber-norm regularization for linear models can be implemented.

3.1 Problem Setting and Preliminaries

We consider the standard supervised prediction setup, where we are given a
training sample S = {xi, yi}n

i=1 from a space X × Y with X = R
d. We aim

at finding a linear function f that predicts well. A common way to achieve
this is to first define a loss function � : R × Y → R+ ∪ {0} that measures the
deviation of the prediction f(x) from the correct value y, such as the logistic loss
�(f(x), y) := log(1+exp(−yf(x))) or hinge loss �(f(x), y) := max(0, 1− yf(x)).
The empirical risk is then the averaged loss over the training sample, L̂n(f) =
1
n

∑n
i=1 �(f(xi), yi) of f .

In this paper we consider methods that employ linear prediction functions
f(x) = w�x. To avoid overfitting, one usually uses a regularizer such as the �1
regularizer R1(w) = ||w||1, the �2 regularizer R2(w) = ||w||22, or the elastic-net
regularizer Ren(w) = ||w||1+ ||w||22. This results in the regularized empirical risk
minimization or short reg-ERM problem:

min
w

λR(w) +
1
n

n∑

i=1

�(yi,w�xi).
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The �1 and elastic-net regularizers produce sparse, �2-norm regularizer dense
weight vectors. Hence, depending on the problem, the regularizer can be chosen
to match the underlying sparsity of the problem.

3.2 Linear Models with Sums of Dense and Sparse Weights

Using �1-, �2-, or elastic-net-regularized ERM either produces dense or sparse
solutions. In this paper, we argue it can be beneficial to produce dense solutions
with pronounced feature weights as in �1-norm regularized methods. We pro-
pose to consider linear models of the form f(x) := (v + w)�x (for notational
convenience, we disregard constant offsets and assume that the first element of
each x is a constant 1) and the regularizer RH(v,w) = λ||v||1 + μ||w||22, hence
resulting in the following optimization problem.

Optimization Problem 1 (Sums of dense and sparse weights). Given
λ, μ > 0 and loss function �(t, y), solve:

(ŵ, v̂) = arg min
v,w

G(w,v, S)

with G(w,v, S) = λ||v||1 + μ||w||22 +
1
n

n∑

i=1

�(yi, (w + v)�xi), (1)

where || · ||2 and || · ||1 denote standard �2-norm and �1-norm correspondingly.

For reasons that will become clear in the section below we call the method Huber-
regularized empirical risk minimization or short Huber-regERM. Note that by
letting λ → ∞, we obtain the classic �2-norm regularization, while letting μ → ∞
leads to �1-norm regularization. Thus these methods are obtained as limit cases
of our method. Elastic-net-regularization is not a special case of this framework,
but it could be obtained by enforcing an additional constraint v = w.

3.3 Geometry of the Huber Norm

The following geometrical interpretation lets us compare linear models with sums
of dense and sparse weights to the �1, �2, and elastic-net regularizers. We prove
that Problem 1 is equivalent to the following problem.

Optimization Problem 2 (Equivalent Huber-Norm Problem). Opti-
mization Problem 1 can equivalently be formulated as:

ẑ = arg min
z

RH(z) +
1
n

n∑

i=1

�(yi, z�xi) (2)

where RH(z) =
∑d

i=1 rH(zi), and rH(zi) =

{
λ

(
|zi| − λ

4μ

)
if |zi| ≥ λ

2μ

μz2i , otherwise
.
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Note that RH(z) is the Huber norm of z. While the Huber norm is often used as
a robust loss function that is less sensitive to outliers, Optimization Problem 2
employs the Huber norm as regularizer. Intuitively, this results in a regularization
scheme that is less sensitive to individual features which have a stong impact on
f than �2 regularization. Figure 1 illustrates isotropic lines for the Huber-norm
regularizer and known regularizers for λ = μ = 1. The Huber norm is composed
of linear and squared segments. While it does not encourage sparsity as the �1
regularizer does, it encourages that most attributes only have a small impact on
the decision function.

Proof (Equivalence of Optimization Problems 1 and 2). Let z = w+v. Problem 1
can then be formulated as

min
w,v

G(w,v, S) = min
z,v

λ||v||1 + μ||z − v||22 +
1
n

n∑

i=1

�(yi, z�xi)

= min
z

(
μmin

v

(
λ

μ
||v||1 + ||z − v||22

)
+

1
n

n∑

i=1

�(yi, z�xi)

)
. (3)

Let us define R(v, z) := c||v||1 + ||z−v||22 where c := λ
μ . It remains to be shown

that min
v

R(v, z) is a Huber-norm regularizer.

Simplifying R = v�v − 2v� (
z − c

2 sgn(v)
)

+ z�z, we find

min
v

R = min
v=(v1,...,vd)

(
d∑

i=1

v2
i − 2vi(zi − c

2
sgn(vi))

)
+

d∑

i=1

z2i . (4)

For each i ∈ {1, ..., d} we minimize Ri := v2
i − 2vi(zi − c

2 sgn(vi)) with respect to
vi. This is equivalent to:

[
min

vi

v2
i − 2(zi − c̄

2 )vi if vi > 0

min
vi

v2
i − 2(zi + c̄

2 )vi if vi ≤ 0.

We can minimize each of these two quadratic terms analytically:
[−(zi − c

2 )2 if zi ∈ A := {z ∈ R : |z| ≥ c
2}

0 if zi ∈ Ac := {z ∈ R : |z| < c
2}.

This means, that for Eq. 4 we have explicitly:

min
v

R =
d∑

i=1

(
z2i −

(
zi − c

2

)2

Izi∈A

)
=

d∑

i=1

(
z2i Izi∈AC + c

(
|zi| − c

4

)
Izi∈A

)
.

This is exactly the Huber-norm regularizer RH(z) of Optimization Problem 2.
�	
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3.4 Dual Problem

In order to classify a training point, we need to compute the scalar product
(w+v)�x which may be expensive when the dimension of vectors w,v is large.
One possible solution to overcome this consists in considering a weighted sum of
constraints together with an objective function computed on the training sample.
This leads to a dual approach. Steinwart [19] gives a general overview of dual
optimization problems for SVMs using �2- and �1-norm regularizers. The dual
form of the optimization problem depends on the loss function. We complete
Steinwart’s overview by deriving the dual form of the Huber-norm regularized
SVM in the following.

Optimization Problem 3 (Dual Huber-Norm SVM Problem). Opti-
mization Problem 1 with hinge-loss loss function (Huber-Norm SVM) has an
equivalent dual form which can be formulated as follows:

max
α∈Rn

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjyiyjx�
i xj

s.t. α ∈ [0, C]n ∧ ||X�α||∞ ≤ λ

2μ
, (5)

where C := 1
2nμ and X = (x1, ...,xn) ∈ R

n×d.

Proof. The Lagrangian L(w,v, ξ, α, η) that corresponds to Eq. 1 is given as fol-
lows:

L(w,v, ξ, α, η) := C

n∑

i=1

ξi+
λ

2μ
||v||1 +

1
2
||w||22+

n∑

i=1

αi

(
1 − yi(w� + v�)xi − ξi

) −
n∑

i=1

ηiξi, (6)

where α = (α1, ..., αn) ∈ [0,∞)n and η = (η1, ..., ηn) ∈ [0,∞)n. So the dual
problem [3] can be written as:

max
α,η

inf
w,v,ξ

L(w,v, ξ, α, η). (7)

Grouping the terms in the Lagrangian gives us:

L(w,v, ξ, α, η) =
n∑

i=1

(C − αi − ηi)ξi +
λ

2μ
||v||1

−
n∑

i=1

αiyiv�xi +
1
2
||w||22 −

n∑

i=1

αiyiw�xi +
n∑

i=1

αi.
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Now, considering the infimum with respect to v and w separately, and using the
definition of a conjugate function [3,19] we obtain:

inf
v

λ

2μ
||v||1 −

n∑

i=1

αiyiv�xi = − sup
v

λ

2μ
||v||1 + v�

n∑

i=1

αiyixi

=

{
0, when |X�α||∞ ≤ λ

2μ

−∞, otherwise,
(8)

where X = (x1, ...,xn) ∈ R
n×d is the data matrix whose rows x�

i are the
instances and || · ||∞ -supremum norm in R

d. Analogously, for w we have:

inf
w

1
2
||w||22 −

n∑

i=1

αiyiw�xi = − sup
w

−1
2
||w||22 + w�

n∑

i=1

αiyixi

=
1
2

(
n∑

i=1

αiyixi

)� (
n∑

i=1

αiyixi

)
. (9)

Finally, computing the gradient with respect to ξ gives that for each i ∈ {1, ...n}:

C − ηi − αi = 0 ⇔ αi = C − ηi. (10)

Now, for fixed λ, μ, and X, define P = {α|α ∈ [0, C]n ∧ ||X�α||∞ ≤ λ
2μ},where

y = (y1, ..., yn) ∈ R
n. Substituting Eqs. 8, 9, and 10 into Eq. 7 gives the following

dual problem:

max
α∈P

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjyiyjx�
i xj , (11)

which is a quadratic optimization problem within set P and can be solved with
known methods. �	

By close inspection of Eq. 11, we observe that our dual optimization problem
closely resembles the one for SVM using �2 regularization, but with a difference
in the form of the domain P of the optimization problem.

3.5 Algorithm and Implementation

Algorithm 1 implements Huber-regularized empirical risk minimization for linear
models. The algorithm works by alternatingly minimizing the occurring �1-norm
and �2-norm regularized minimization problems, respectively. For each step of
optimization procedure we use gradient descent, assuming that the other vector
is constant. The gradient of the �1 norm of v is not defined for v = 0; here, we
use subgradients [3].

4 Theoretical Analysis

In this section we present a theoretical analysis of the proposed Huber-norm
regularizer for linear models. We obtain bounds on the statistical risk based on
the established framework of Rademacher complexities [2,16] and, consequently,
on the norms of the vectors v,w and number of training samples n [2].
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Algorithm 1. Optimization Procedure
1: Input: S = {xi, yi}ni=1

2: w = 0, v = 0.
3: repeat
4: solve ŵ:= arg minw G(w,v, S) by gradient descent,
5: solve v̂:= arg minv G(ŵ,v, S) by gradient descent,
6: let w,v = (ŵ, v̂).
7: until convergence.
8: Output: w,v

4.1 Preliminaries and Aim

Let S = {xi, yi}n
i=1 be a sample of n training points that are independently

drawn from one and the same distribution PX,Y over X × Y, where X = R
d; let

the output space Y be discrete for classification and continuous for regression.
In this theoretical analysis, we study the Huber-regERM model class

F := {f : x �→ (w + v)�x : Rd → R|||w||2 ≤ W, ||v||2 ≤ V }, (12)

where W and V are initially unknown constants. Loss function � : R × Y →
R+ ∪ {0} may be any convex loss function that is L-Lipschitz continuous and
absolutely bounded by constant B ∈ R. The aim of our theoretical analysis is
to obtain bounds on the deviation of the risk L(f) = EPX,Y

[�(f(x), y)] of the
model f ∈ F from empirical risk L̂n(f) = 1

n

∑n
i=1 �(f(xi), yi).

Let {σi}n
i=1 be independent Rademacher random variables, meaning that

each of them is uniformly distributed over {−1,+1}. Denote by Σ the joint
uniform distribution of σ1, . . . , σn. Then the empirical Rademacher complexity
is defined as

R̂S(� ◦ F) := EΣ

[
sup
f∈F

1
n

n∑

i=1

σi�(f(xi), yi))

]
, (13)

and the (theoretical) Rademacher complexity [2,16] is defined as Rn(� ◦ F) :=
ES [R̂S(�◦F)]. Here, the expectation is taken under the distribution of the sample
S. It has been shown [2,16] that when � is L-Lipschitz continuous in the second
argument, then with probability at least 1 − δ, for all f ∈ F :

L(f) ≤ L̂n(f) + 2LES

[
R̂S(F)

]
+ B

√
log δ−1

2n
. (14)

4.2 Bounds on the Risk of Huber-Regularized Linear Models

Our main theoretical contributions are bounds on statistical risk based on data-
dependent and uniform upper bounds on the Rademacher complexity of the
model class F defined by Eq. 12.
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Theorem 1 (Uniform risk bound for Huber regularization). Let F be
defined by Eq. 12, let � be a L-Lipschitz continuous loss function, and let R be
a constant such that |�(t, y)| ≤ R for all t ∈ R and y ∈ Y. Let the �2 norm of
all instances is bounded by ||x||2 ≤ Rx with probability 1 by some Rx. Then, for
every δ ∈ (0, 1), with probability at least 1 − δ the following holds for all f ∈ F :

L(f) ≤ L̂n(f) + 2L
√

2(W 2 + V 2)
n

Rx + R

√
log δ−1

2n
(15)

where W =
√

R
μ , V = R

λ .

Instead of relying on a uniform bound Rx on the data xi, we can give the
following data-dependent bound on the risk.

Proposition 1 (Data-dependent risk bound for Huber regularization).
Let F be defined by Eq. 12, and let � be a L-Lipschitz continuous loss function.
Then, for every δ ∈ (0, 1), with probability at least 1 − δ the following holds for
all f ∈ F , where W , V , and R as defined as in Theorem 1:

L(f) ≤ L̂n(f) + 2L

√
2(W 2 + V 2)

n∑
i=1

||xi||2

n
+ (2L + 1)R

√
log(2δ )

2n
. (16)

4.3 Lemmata and Auxilary Results

The risk bounds are based on the following three lemmas.

Lemma 1. For the functional class F of Eq. 12, the following data-dependent
bound on the empirical Rademacher complexity holds:

R̂S(F) ≤

√
2(W 2 + V 2)

n∑
i=1

||xi||2

n
. (17)

Lemma 2. For the functional class F of Eq. 12, the (theoretical) Rademacher
complexity is bounded as follows:

Rn(F) = ES [R̂S(F)] ≤
√

2(W 2 + V 2)
n

Rx. (18)

where Rx is a constant such that ||x||2 ≤ Rx almost surely under PX .

Lemma 3. Let (ŵ, v̂) = arg min
v,w

G(w,v, S). Then ||ŵ||2 ≤
√

R
μ , ||v̂||2 ≤ R

λ ,

where R as in Theorem 1.
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Proof (Lemma 1). Following the ideas presented by Mohri [16], we rewrite the
empirical Rademacher complexity using the Cauchy-Schwartz inequality:

R̂S(F) =
1
n

Eσ

[
sup

||w||2≤W,||v||2≤V

n∑

i=1

(
σi(w + v)�xi

)
]

=
1
n

Eσ

[
sup

||w||2≤W,||v||2≤V

(w + v)�
n∑

i=1

σixi

]

≤ 1
n

Eσ

[
sup

||w||2≤W,||v||2≤V

||w + v||2
∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥
2

]
. (19)

Using the inequality
∑d

i=1(wi + vi)2 ≤ 2
∑d

i=1(w
2
i + v2

i ) for the right-hand
side of Eq. 19, according to the restrictions on the norms of w,v we get:

Eσ

[
sup

||w||2≤W,||v||2≤V

||w + v||2
∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥
2

]
≤

√
2(W 2 + V 2)Eσ

[∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥
2

]

(20)
and because of Jensen’s inequality for Eσ [|| · ||], linearity of expectation and
independence of σi, σj for j �= i we obtain:

Eσ

[∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥
2

]
≤

√√√√√Eσ

⎡

⎣
n∑

i,j=1

σiσjxi
txj

⎤

⎦

=

√√√√
n∑

i=1

Eσ [||xi||22] =

√√√√
n∑

i=1

||xi||22. (21)

Uniting the results of Inequality 20 and Eq. 21 in Eq. 19 we get the statement of
Lemma 1. �	
Proof (Lemma 2). Using Lemma 1 and the assumption that the xi are uniformly
bounded by constant Rx we obtain:

R̂S(F) ≤
√

2(W 2 + V 2)
n

Rx. (22)

Equation 22 no longer depends on the sample, and therefore Lemma 2 follows.
�	

Naturally, one may not have any a-priori knowledge about the constants W
and V that restrict the possible values of w and v in Inequality 18. Despite that,
for a given optimization problem that includes the current class of models, one
can apply certain arguments from which one can infer bounds for W and V .
Lemma 3 gives us such bounds for Optimization Problem 1.
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Proof (Lemma 3). When (ŵ, v̂) is a solution of optimization problem (1), then

G(ŵ, v̂, S) ≤ G(0,0, S) ≤ R

This implies that the optimal solution necessarily satisfies the following condi-
tion: λ||v||1 + μ||w||2 ≤ R. As far as ||v||1 ≥ ||v||2 we have that in order to be
an optimal solution v̂ should satisfy following constraint: ||v||2 ≤ R

λ . For ŵ we
obtain straightforward necessary condition, that ||w||22 ≤ R

μ which implies the
claim of Lemma 3. �	

Lemma 3 implies that the norms of the vectors v and w of a solution of
Optimization Problem 1 necessary have to lie within balls with radius W :=

√
R
μ

for w and of radius V := R
λ for v, centered in the origin.

4.4 Proof of the Huber-Norm Risk Bounds

We are now equipped to prove Theorem 1.

Proof (Theorem 1). Lemma 2 gives us a bound on the Rademacher complexity
of the functional class of Eq. 12, and Lemma 3 gives us necessary constraints on
the norms W and V . Inserting both into Inequality 14, we obtain Theorem 1. �	
Proof (Proposition 1). Lemma 1 gives us a data-dependent bound on the empiri-
cal Rademacher complexity of the functional class of Eq. 12. Adapting Inequality
(3.14) from theorem 3.1 in Mohri et al. [16] for our needs, we have with proba-
bility at least 1 − δ

2 :

Rn(F) ≤ R̂S(F) + R

√
log(2δ )

2n
. (23)

Using the union bound for Inequality 14 (with δ
2 instead of δ and constant R

from Theorem 1) and Inequality 23, we get with probability 1 − δ:

L(f) ≤ L̂n(f) + 2LR̂S(F) + 2LR

√
log(2δ )

2n
+ R

√
log(2δ )

2n
. (24)

Together with Lemma 1 this yields the claim of Proposition 1. �	

4.5 Corollaries

In practice, we will be interested in obtaining upper bounds for concrete loss
functions such as the hinge loss �(t, y) = max(0, 1 − yt) or logistic loss �(y, t) =
log(1 + exp(−yt)) in case of two-class classification problems. Since these loss
functions are 1-Lipschitz [19], Theorem 1 produces therefore following corollaries.
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Corollary 1. For Optimization Problem 1 under the assumptions of Theorem 1
with loss-function �(y, t) = max(0, 1 − yt), t ∈ R, y ∈ {−1, 1} one obtains that,
with probability at least 1 − δ for all f ∈ F :

L(f) ≤ L̂n(f) + 2

√
2(W 2 + V 2)

n
Rx + B

√
log δ−1

2n
(25)

where W =
√

1
μ , V = 1

λ , B = 1 +
√

2(W 2 + V 2)Rx.

Corollary 2. For Optimization Problem 1 under the assumptions of Theorem 1
with loss-function �(y, t) = log(1+exp(−yt)), t ∈ R, y ∈ {−1, 1} one obtains that
with probability at least 1 − δ for all f ∈ F :

L(f) ≤ L̂n(f) + 2

√
2(W 2 + V 2)

n
Rx + Bl

√
log δ−1

2n
(26)

where W =
√

log 2
μ , V = log 2

λ , Bl := exp(Rx

√
2(W 2+V 2))

√
exp(Rx

√
2(W 2+V 2))+1

.

Proof. For the hinge loss, under the conditions of Theorem 1, we have that for
any x ∈ R

d, s.t, ||x||2 ≤ Rx the loss is bounded by 1+|(w+v)�x|, which is upper-
bounded by 1 +

√
2(W 2 + V 2)Rx as the combination of bounds on ||w + v||2

and ||x||2. So, |�(t, y)| ≤ B := 1+
√

2(W 2 + V 2)Rx. Then the conclusion follows
by applying Theorem 1. The proof for the logistic loss is analogous. �	

4.6 Discussion of Results

We will now compare the generalization performance of the developed Huber-
norm regularizer with the performance of known regularizers.

Comparison to �1 and �2-Norm Regularization. The optimization problems
of the �2-norm and �1-norm empirical risk minimization are

ŵ = arg min
w

μ||w||22 +
1
n

n∑

i=1

�(yi,wTxi) and (27)

v̂ = arg min
v

λ||v||1 +
1
n

n∑

i=1

�(yi,vTxi), (28)

respectively. Theoretical upper bounds on the statistical risk for both Eqs. 27
and 28 result from Mohri [16] for the Rademacher complexity of linear models.
In these cases, the upper bound on the Rademacher complexity is also of the

order of
√

1
n and depends as well on the bounds on norms of the vectors W,V

(for each case separately) and on the bounds on the data.
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Comparison to Elastic Net. The optimization problem of the empirical risk
minimization with elastic-net regularizer is

ŵ = arg min
w

λ||w||1 + μ||w||22 +
1
n

∑n

i=1
�(yi,w�xi) (29)

with �(y, 0) = 1 [26]. From a similar argumentation as in Theorem 1 [11,16] one
can infer that upper bounds on the Rademacher complexity for this procedure

will also be of order O(
√

W 2R2
x

n ), where now W =
√

1
λ+μ and Rx as before.

Oracle Inequality. We will relate the generalization performance of the model
to the performance of the best possible model in that class—which is unknown
in practice—using an oracle-type inequality [4,12]. As a corollary of Theorem 1,
we can obtain an oracle-type inequality in high probability for F :

G(ŵ, v̂, S) ≤ arg min(w,v) G(w,v, S) + 2Δ,

where Δ is the parameter that defines the complexity of (ŵ, v̂) ∈ F and is given
explicitly in the following Proposition 2 that follows from Theorem 1.

Proposition 2. Let all conditions of Theorem 1 hold, let (ŵ, v̂) =
arg minw,v G(w,v, S), and let W , V , Rx, and R be defined in Theorem 1. Then
with probability at least 1 − δ:

G(ŵ, v̂, S) − arg min
w,v

G(w,v, S) ≤ 2L
√

2(W 2 + V 2)
n

Rx + R

√
log δ−1

2n
. (30)

Tightness Comparison. Comparing the order of our upper risk bound with
classical results for empirical risk minimization problems [1], [5] one can see that

our bound is tight, and of order
√

1
n .

5 Experiments

This section compares logistic regression with Huber-norm regularization to
logistic regression with �1, with �2, and with elastic-net regularization.

5.1 Experimental Setting

We conduct experiments on benchmark problems from the UCI repository [15].
In order to avoid a possible selection bias, we select the 31 first (in alphabetical
order) classification problems that use matrix data format. We skip trivial prob-
lems for which all models achieve perfect accuracy. We transform categorical
features into binary values using one-hot coding. For multi-class problems, we
removed classes that have fewer instances than the number of cross-validation
folds. All features are centered and scaled to unit variance. Missing values are
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Table 1. Accuracies and standard errors for UCI data sets

Data Set �1 regularization Elastic-net reg. �2 reg. Huber reg.

Abalone 0.236± 0.008 0.236± 0.008 0.238± 0.015 0.262 ± 0.016∗
Arrhythmia 0.687± 0.044 0.683± 0.049 0.634± 0.053 0.722 ± 0.033∗
Audiology 0.576± 0.071 0.688± 0.045 0.738± 0.044 0.748 ± 0.055

Balance-scale 0.907± 0.016 0.910± 0.015 0.910± 0.015 0.957 ± 0.019∗
Bank 0.899± 0.001 0.899± 0.000 0.899± 0.000 0.901 ± 0.001∗
Banknote 0.977± 0.011 0.976± 0.011 0.977± 0.011 0.991 ± 0.004

Blood 0.770± 0.010 0.769± 0.010 0.771± 0.013 0.774 ± 0.012

Breast-canc 0.689± 0.029 0.692± 0.039 0.696± 0.052 0.710 ± 0.065

Breast-canc-wisc 0.963± 0.017 0.970± 0.009 0.953± 0.013 0.973 ± 0.012

Breast-canc-wisc-dia 0.952± 0.032 0.952± 0.031 0.959± 0.019 0.977 ± 0.017

Breast-tissue 0.879± 0.083 0.878± 0.060 0.878± 0.060 0.907 ± 0.044

Car 0.841± 0.012 0.842± 0.011 0.841± 0.010 0.896 ± 0.005∗
Climate-model 0.915± 0.004 0.915± 0.004 0.915± 0.004 0.955 ± 0.018∗
Congress-voting 0.956 ± 0.029 0.956± 0.029 0.954± 0.025 0.954± 0.032

Conn-sonar 0.746± 0.050 0.760± 0.071 0.736± 0.036 0.770 ± 0.036

Contraceptive 0.506± 0.041 0.505± 0.041 0.508± 0.042 0.512 ± 0.035

Credit-approval 0.851± 0.012 0.855± 0.018 0.859± 0.015 0.862 ± 0.009

Cylinder-bands 0.746± 0.014 0.780± 0.020 0.802 ± 0.025 0.798± 0.016

Dermatology 0.975 ± 0.027 0.965± 0.031 0.970± 0.025 0.970± 0.026

Echocardiogram 0.757± 0.058 0.770± 0.075 0.784± 0.119 0.797 ± 0.106

Ecloi 0.840± 0.034 0.840± 0.034 0.837± 0.032 0.871 ± 0.070

First-order 0.822± 0.001 0.822 ± 0.001 0.822± 0.002 0.821± 0.001

Flags 0.675± 0.046 0.691 ± 0.029 0.659± 0.032 0.670± 0.022

Glass 0.588± 0.042 0.583± 0.033 0.592± 0.056 0.603 ± 0.052

Haberman-survival 0.735 ± 0.005 0.726± 0.019 0.684± 0.114 0.709± 0.038

Hepatitis 0.800± 0.075 0.806± 0.067 0.806± 0.077 0.815 ± 0.111

Horse-colic 0.831± 0.025 0.848 ± 0.041 0.826± 0.025 0.845± 0.024

Image-segmentation 0.829± 0.010 0.833± 0.011 0.846± 0.007 0.865 ± 0.127

Ionosphere 0.880 ± 0.034 0.866± 0.012 0.878± 0.038 0.878± 0.042

Iris 0.840± 0.060 0.833± 0.047 0.833± 0.071 0.960 ± 0.015∗
Leaf 0.644± 0.048 0.665± 0.065 0.675± 0.036 0.834 ± 0.036∗

filled in using mean imputation for continuous values and are represented as a
separate one-hot coded attribute for categorical values.

We run nested stratified cross validation with an outer loop of five folds.
Regularization parameters [λ, μ] are tuned by an inner loop of three-fold cross
validation on the training portion over the grid of [10−5, ..., 103]× [10−3, ..., 104].
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5.2 Results

Table 1 shows the accuracies of different regularizers. For each problem the high-
est empirical accuracy is typeset in bold face; asterisks mark models that are
significantly better than the best of the other three models, based on a paired t
test with p < 0.05. logistic regression with Huber-norm regularization achieves
the highest empirical accuracy for 23 out of 31 problems; its accuracy is signifi-
cantly higher than the accuracy of any other model for 8 problems. No reference
methods outperform Huber-norm regularization significantly.

The UCI repository reflects a certain distribution P (S) over data sets. We
state the null hypothesis A that the probability of Huber-norm regularization
outperforming all three reference methods on a randomly drawn problem under
P (S) does not exceed 0.5, and the null hypothesis B that the probability of
Huber-norm regularization outperforming all three reference methods on a ran-
domly drawn problem under P (S) is below 0.5. We count each cross-validation
fold of each UCI data set as a single observation of a binary random variable and
determine the binomial likelihood of observing the outcomes which are reflected
in Table 1. Logistic regression with Huber-norm regularization achieves a higher
empirical accuracy than all three baselines in 86 out of 155 cross-validation folds,
and an equally high accuracy as the best baseline in an additional 24 cases. We
can therefore reject the null hypothesis A at p = 0.09 and null hypothesis B
even at p < 0.001. We conclude that for the distribution of UCI problems, the
Huber-norm regularization is the best-performing regularizer among the �1, �2,
elastic-net and Huber regularization.

6 Conclusions

We proposed a new way of regularizing linear prediction models based on a com-
bination of dense and sparse weight vectors. In more detail, we employ a linear
weight vector that is the sum of two terms, w+v, where w is �2 regularized and
v is �1 regularized. This results in an effective Huber-norm regularizer for w+v,
which is very different from an elastic net. Starting with theoretical considera-
tions, we first derived bounds on the statistical risk based on the framework of
Rademacher complexities. In our subsequent experimental study, our algorithm
showed higher predictive accuracies on a majority of UCI data sets, where we
compared against �1, �2, and elastic-net regularization. In future work, we would
like to study extensions to non-linear kernel functions and multiple kernels [9].
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Abstract. This paper presents a novel dictionary learning method in
kernel feature space that is part of a reproducing kernel Hilbert space
(RKHS). Our method focuses on several popular kernels, e.g., radial basis
function kernels like the Gaussian, that implicitly map data to a Hilbert
sphere, a Riemannian manifold, in RKHS. Our method exploits this man-
ifold structure of the mapped data in RKHS, unlike typical methods for
kernel dictionary learning that use linear methods in RKHS. We show that
dictionary learning on a Hilbert sphere in RKHS is possible without the
need of the explicit lifting map underlying the kernel, but using solely the
Gram matrix. Unlike the typical L1 norm sparsity prior, we incorporate
the non-convex Lp quasi-norm based penalty, with p < 1, on coefficients to
enforce a stronger sparsity prior and achieve more robust dictionary learn-
ing in the presence of corrupted training data. We evaluate our method for
image classification on two large publicly available datasets and demon-
strate the improved performance of our method over the state of the art
dictionary learning methods.

1 Introduction

Methods for modeling data as sparse linear combinations of a set of basis ele-
ments, often referred to as a dictionary, have found a wide spectrum of appli-
cations in machine learning, signal and image processing, and statistical analy-
ses [20,30–32,48,54]. Each element of the dictionary is often referred to as an
atom. Dictionary-based modeling leads to optimization problems that can be
thought of as posterior mode estimation problems [45], where the dictionary fit
relates to the likelihood term and the sparsity-based regularization relates to a
prior term on the coefficients in the linear combination. The problem of fitting
a given dictionary to the data is a sparse-regression problem for which different
sparsity penalties lead to different forms of regression such as the Lasso [54] and
subset selection [30], where the efficacy of the Lasso formulation exploits the con-
vexity of the underlying optimization problem [18,31]. The principles of sparse
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modeling also play a key role in compressed sensing [20] during reconstruction
of signals from corrupted and missing data.

When the data exhibits a nonlinear manifold structure within Euclidean
space, the representation of the data using a linear combination of atoms can
become inefficient because the linearity in the dictionary representation can fail
to adapt to the nonlinearity of the data distribution. Better fits may be obtained
by increasing the number of atoms in the dictionary, but doing that increases
the complexity of the model and makes the problems of dictionary learning and
fitting more difficult, often leading to higher variance [30]. A standard way of
adapting to the nonlinearity in the data in input space is to use a nonlinear
kernel [49,50] to (implicitly) map the data to a high-dimensional kernel feature
space, where the nonlinearity in the distribution of the mapped data in kernel
feature space is significantly reduced. This mapping to the kernel feature space is
typically denoted by Φ(·). Subsequently, dictionary learning methods can employ
standard Euclidean/linear learning in kernel feature space, utilizing the kernel
trick to avoid the need to explicitly map the data to the high-dimensional kernel
feature space. Our method also exploits kernels and the kernel trick for learning
a dictionary model, but, furthermore, exploits the additional spherical structure
of the mapped data in the kernel feature space associated with several popular
kernels.

In some special cases, the data, in input space, resides on a Riemannian
manifold that is analytically known, e.g., the space of symmetric positive def-
inite matrices [6,7,14,21,47,51], the Grassmann manifold [15,55], the hyper-
sphere [40,53], or shape space [27,33,36]. In such cases, the dictionary model and
the learning [14,29,52,61,65] can exploit the known structure of the manifold to
provide atoms that also, desirably, reside on the manifold and efficiently capture
the variability in the data. Our method shares the spirit of these approaches in
exploiting any known geometrical structure of the data for better modeling and
improving performance in practice.

Our method relies on standard kernels that (implicitly) map the data in
input space to a known manifold in kernel feature space, specifically, the unit
Hilbert sphere in a reproducing kernel Hilbert space (RKHS). Such a mapping
occurs for (i) several common kernels [23] including the radial basis function
(RBF) kernels like the Gaussian, (ii) kernel normalization, which is common,
e.g., in pyramid match kernel [26], and (iii) polynomial and sigmoid kernels
when the input points have constant L2 norm, which is common in certain
image analyses [49]. This special structure arises because for these kernels κ(·, ·),
the self similarity of any data point x equals unity, i.e., κ(x, x) = 1. The kernel
defines the inner product in the RKHS H, and thus, 〈Φ(x), Φ(x)〉H = 1, which, in
turn, equals the distance of the mapped point Φ(x) from the origin in H. Thus,
all of the mapped points Φ(x) lie on a Hilbert sphere in RKHS. Figure 1(a)
illustrates this behavior. Subsequently, we exploit the Riemannian structure of
the Hilbert sphere in RKHS, on which the mapped data resides, to perform
dictionary learning in RKHS.
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An ideal notion of sparsity relates to the subset-selection problem [30] or,
equivalently, constraints or penalties related to the L0 pseudo-norm [17] of the
coefficients for atoms in the dictionary fit. However, because this ideal notion of
sparsity leads to combinatorial optimization problems that are NP hard, typi-
cal approaches constrain or penalize the L1 norm of the coefficients. We know
that the L0 pseudo-norm penalty is actually the limiting case of penalizing the
p-th power of the Lp quasi-norm as p approaches zero. In fact, there are close
theoretical relationships [22,64] between L0 regularization/combinatorial opti-
mization and Lp-based regularization for sufficiently small p > 0. In practice,
compared to the squared-L2-norm penalty, the use of the L1 norm leads to
increased robustness to corruption and outliers in the data [56,58] via a stronger
sparsity-promoting penalty. Extending the argument, for our dictionary learn-
ing framework, we incorporate the non-convex Lp-to-the-power-p penalties with
p < 1 on coefficients to enforce a stronger sparsity-promoting penalty and achieve
more robust dictionary learning, compared to the L1-norm penalty.

This paper makes the following contributions. First, we propose a novel dic-
tionary learning framework adapted to the Riemannian manifold of the Hilbert
sphere in RKHS. In this way, we combine the advantages of kernel-based frame-
works together with the benefits of adapting the analysis to the Riemannian
manifold of the (mapped) data. We show that such a learning algorithm does
not require the knowledge of the explicit mapping function Φ(·) implied by the
kernel κ(·, ·), but only requires the Gram matrix. Second, our method relies on
a stronger notion of sparsity, i.e., the Lp quasi-norm for p < 1, which is similar
to the desired L0 sparsity for sufficiently small p, thereby increasing the robust-
ness of the learning algorithm to the noise and outliers in the data. Third, it
uses empirical evaluations on two publicly available large real-world datasets to
demonstrate the advantages of (i) Riemannian modeling in RKHS as well as
(ii) sparsity priors stronger than the typical L1 norm.

2 Related Work

This section describes the relationships of our method to several related works
in the literature, including the state of the art.

Some recent works have presented dictionary learning on the manifolds of sym-
metric positive definite matrices [14,52,61] and the Grassmann manifold [29,65],
which rely on adapting the analyses to the Riemannian metric underlying the man-
ifold. However, the data can have significantly nonlinear distributions even within
such manifolds, where typical dictionary models, relying on linear combinations of
atoms, can be challenged. Unlike these methods, we rely on (i) kernel-based map-
ping to reduce the nonlinearity in the data (even when it may lie on a manifold) and
(ii) a stronger Lp quasi-norm based sparsity model for robustness to large amounts
of corruptions in the training data.

The recent interesting work in [41] exploits kernels for learning dictionar-
ies in RKHS, but does not exploit the manifold structure of the mapped data
in the RKHS. The method in [41] relies on a greedy approximation algorithm
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(orthogonal matching pursuit) to handle the sparsity constraint. Another very
recent work [28] adapts dictionary learning for non-Euclidean data by designing
the kernel based on the Riemannian metric of the manifold (in input space) on
which the data lies. Thus, while [28] exploits the manifold structure in the input
space, it ignores the manifold structure in the RKHS. Our framework allows
exploitation of the manifold structure of the data in both the input space (via
kernel design) and the RKHS (via spherical statistics). We also demonstrate
robustness to large levels of noise and outliers.

Several previous works [1,9,16,19,25,49] perform statistical analyses on the
Hilbert sphere in RKHS, but are outside the realm of dictionary learning and
sparse modeling. Nevertheless, the spirit of these works, in adapting the analy-
ses to the Hilbert sphere in RKHS to improve performance, is akin to the spirit
of our approach. This prior knowledge of the mapped data (and atoms) lying
on a sphere leads to added regularization that can prevent overfitting in high-
dimension low-sample-size scenarios where Euclidean analysis is known to be
unstable and error prone as it interacts with the curvature of the sphere on
which the data resides [2]. For directional data, although distributions modeling
the covariance structure exist in the literature, the underlying parameter esti-
mation is intractable in high-dimensional spaces [10,40,46]; furthermore, these
distributions don’t exploit sparsity-based regularization. Indeed Gaussian and
Factor models have exploited sparsity as a regularizer [37,59].

Several applications require learning that is robust to large levels of cor-
ruption in the (training) data. Some approaches [39,44] achieve robustness to
non-Gaussianity of the data distributions, resulting from non-Gaussianity of
the noise/likelihood model, by replacing the squared-L2-norm penalty on the
residual arising from the data fitting term by the L1-norm penalty. Other
approaches [34] further propose limiting such a L1-norm penalty by capping
the penalty at a fixed level. Alternate strategies [13] continue to penalize the
squared L2 norm of the residual, but modify the residual to explicitly include
outlier variables such that residual distribution remains close to a Gaussian.
Instead of modifying the data-fit (likelihood) term, robustness can result from
using a stronger sparsity prior that prevents the overfitting of the dictionary to
the (highly) corrupted data. In this spirit, some approaches achieve robustness
by changing the squared-L2-norm penalty on the coefficients to the L1-norm
penalty on the coefficients [56,58]; this is akin to replacing ridge regression by
Lasso. Other approaches [42] use the L1-norm penalty for the data fit along
with a mixed l2,1-norm penalty on the sparse matrix of coefficients to obtain
robustness. In contrast to these approaches, our method employs Lp quasi-norm
penalties for p ∈ (0, 1) for the sparsity prior to demonstrate improved robustness
to corruption in data in the form of noise and outliers.

Alternate approaches to sparsity include the local coordinate coding or,
rather, locally constrained sparse coding [62,63] that relies on the empirical
observation that the sparse code for a datum is likely to exhibit non-zero coef-
ficients for atoms that are in the locality of the datum. Subsequently, [62,63]
redesign the standard L1 penalty on coefficients as a weighted L1 penalty, where,
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for each datum, the weight increases the penalty for atoms far from that datum.
A fast approximate extension of local coordinate coding for image classification
appears in [57] that replaces the dictionary with a local dictionary (nearest few
atoms) for coding each datum; such schemes have also been used in RKHS [29].
Complementary to these approaches, our approach also adds to the conventional
notion of L1 sparsity, but it does so by using the Lp quasi-norm and tuning the
parameter p to get solutions closes to the ones found with the L0 pseudo-norm.

3 Riemannian Geometry of the Hilbert Sphere in RKHS

Many popular kernels are associated with an infinite-dimensional RKHS. So,
the analysis in this paper focuses on such spaces. Nevertheless, analogous theory
holds for other important kernels (e.g., normalized polynomial) where the RKHS
is finite dimensional.

Let X be a random variable taking values x in input space X . Let {xn}N
n=1

be a set of observations in input space. Let κ(·, ·) be a real-valued Mercer kernel
with an associated map Φ(·) that maps x to Φ(x) := κ(·, x) in a RKHS H [5,49].
Consider two points in RKHS, within the span of the mapped data, represented
as f :=

∑I
i=1 αiΦ(xi) and f ′ :=

∑J
j=1 βjΦ(xj) where the weights αi ∈ R and

βj ∈ R. The inner product 〈f, f ′〉H :=
∑I

i=1

∑J
j=1 αiβjκ(xi, xj). The norm

‖f‖H :=
√〈f, f〉H.

Let Y := Φ(X) be the random variable taking values y in RKHS. Previous
methods for kernel-based dictionary learning [28,41] model each y as a sparse
linear combination of atoms in RKHS. The analysis in this paper applies to
kernels that map points in input space to a Hilbert sphere in RKHS, i.e., ∀x :
κ(x, x) = θ, a constant (without loss of generality, we assume θ = 1). Methods
for non-Euclidean dictionary learning in input space [29,52,61,65] exploit the
Riemannian structure of the manifold on which the data lie to propose dictionary
learning on the manifold. The proposed dictionary-learning method exploits the
property of y lying on the Riemannian manifold of the unit Hilbert sphere [4,11]
in RKHS. Thus, we now introduce differential geometric constructs specific to
this Hilbert sphere in RKHS [9].

Consider a and b on the unit Hilbert sphere in RKHS represented, in general,
as a :=

∑
n γnΦ(xn) and b :=

∑
n δnΦ(xn). The logarithmic map, or Log map,

of a with respect to b is the vector

Logb(a) =
a − 〈a, b〉Hb

‖a − 〈a, b〉Hb‖H
arccos(〈a, b〉H) (1)

=
∑

n

ζnΦ(xn), where ∀n : ζn ∈ R. (2)

Clearly, Logb(a) can always be written as a linear combination of points
{Φ(xn)}N

n=1. The tangent vector Logb(a) lies in the tangent space, at b, of the unit
Hilbert sphere. The tangent space to the Hilbert sphere in RKHS inherits the
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(a) Points implicitly mapped to Hilbert sphere (b) Dictionary modeling

Fig. 1. Dictionary Modeling on a Hilbert Sphere in RKHS. (a) Points xn in
input space get mapped implicitly, via several popular Mercer kernels, to yn := Φ(xn)
on a Hilbert sphere in RKHS. (b) Dictionary atoms dk, on the Hilbert sphere in RKHS,
being used to fit to a point yn.

same structure (inner product) as the ambient space and, thus, is also a RKHS.
The geodesic distance between a and b is dg(a, b) = ‖Logb(a)‖H = ‖Loga(b)‖H.

Now, consider a tangent vector t :=
∑

n βnΦ(xn) lying in the tangent space
at b. The exponential map, or Exp map, of t with respect to b is

Expb(t) = cos(‖t‖H)b + sin(‖t‖H)
t

‖t‖H
(3)

=
∑

n

ωnΦ(xn), where ∀n : ωn ∈ R. (4)

Clearly, Expb(t) can always be written as a linear combination of points
{Φ(xn)}N

n=1. Expb(t) maps a tangent vector t to the unit Hilbert sphere, i.e.,
‖Expb(t)‖H = 1.

4 Robust Dictionary Learning on a Hilbert Sphere
in RKHS

Motivated by principles underlying sparse modeling, we model each y = Φ(x)
in RKHS, where ‖y‖H = 1, to have been generated as a sparse, but nonlinear,
combination of atoms that also lie on the unit Hilbert sphere in RKHS. We
consider the dictionary to have K atoms {dk ∈ H}K

k=1, each with ‖dk‖H = 1.
Given data {xn}N

n=1 and the number of atoms K, we learn the atoms {dk}K
k=1.

Figure 1(b) gives an illustration.
In Euclidean spaces, dictionary learning typically penalizes the squared norm

of the residual between the datum and its representation as a sparse linear com-
bination of atoms. The natural generalization of this residual to a Riemannian
manifold is the logarithmic map. The notion of sparsity in Euclidean spaces
is generalized to the notion of affine sparsity in non-Euclidean spaces [61–63],
which makes the dictionary representation independent of a coordinate frame
shift or a notion of origin in the Riemannian space. Affine sparsity constraints
the sum of weights, in the dictionary fit, to 1 and is important in the nonlinear



Robust Dictionary Learning on the Hilbert Sphere in Kernel Feature Space 737

sparse-coding setting because Riemannian analyses treats y as a point, unlike
linear sparse coding in Euclidean space that treats y as a vector. Another moti-
vation is as follows. Consider K atoms on the Hilbert sphere in RKHS in general
position, i.e., these points are not contained in any great (K − 2)-sphere [43].
Given K points in general position on a Hilbert sphere, there is a unique great
(K − 1)-sphere containing them [43]. Given K atoms in general position and
a sparsity level M ≤ K, principles underlying sparse modeling motivate us to
model each y as lying within the unique great (M − 1)-sphere containing some
M atoms. Thus, ideally we would desire to fit y by, say, ŷ, where ŷ lies within
such a great (M −1)-sphere. When ŷ lies within this great (M −1)-sphere, there
exists a set of weights wm ∈ R where

M∑

m=1

wm = 1 and
M∑

m=1

wmLogŷ(dm) = 0, (5)

i.e., in the tangent space at ŷ, there exist weights wm that satisfy the affine
constraint and make the weighted combination of vectors Logŷ(dm) coincide
with the origin. Thus, our fitting problem for y, given the dictionary, reduces
to finding weights wm that, under the sparsity prior and the affine constraints,
minimize

‖
M∑

m=1

wmLogy(dm)‖H. (6)

This fitting term is in the same spirit as the fitting terms in [24,61].
However, because the ideal sparsity prior on weights (L0 pseudo-norm [17]

equivalent to subset selection [30]) leads to a combinatorial optimization problem
that is NP hard, the sparsity prior is typically relaxed by (i) using all K atoms,
instead of some subset of size M < K, for the fitting and (ii) penalizing the
p-th power of the Lp norm of the weight vector w associated with the fit, where
p ∈ R>0 is a free parameter. In the Euclidean case, the typical relaxed penalty is
the L1 norm of the weight vector, i.e., p = 1, that is motivated by the desire to
retain the convexity of the optimization problem when the dictionary-fitting term
is the squared residual between the datum and the linear combination of atoms.
As with other manifolds, in the case of the Hilbert sphere, the dictionary-fitting
term is itself nonconvex. Furthermore, choosing p ∈ (0, 1) leads to the penalty
‖w‖p

p =
∑

m |wm|p that tends to the L0 pseudo-norm as p → 0 and improves the
robustness of the dictionary learning to outliers.

We now formulate the robust dictionary learning problem. Let {xn}N
n=1 be

the data points in input space. Let yn := Φ(xn) be the (implicitly) mapped
points in RKHS where the mapping Φ(·) ensures that ‖yn‖H = 1. We do not
need the mapping Φ(·) explicitly, but use the kernel trick for all the analysis
in RKHS. Let the dictionary D comprise K atoms dk, as described before. Let
W be the weight matrix comprising columns wn that comprise the weights wnk

for the contribution of the k-th atom in the fit for the n-th point yn. Then, we
propose to formulate robust dictionary learning as
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arg min
D

[
min
W

N∑

n=1

(
‖

K∑

k=1

wnkLogyn
(dk)‖2H + λ‖wn‖p

p,ε

)]

under the constraints: ∀n,

K∑

k=1

wnk = 1 and ∀k, ‖dk‖H = 1, (7)

where λ > 0 is the regularization parameter balancing the data-fitting/fidelity
term and the sparsity prior term, p ∈ (0, 1) is a free parameter, and ‖wn‖p

p,ε is
the p-th power of the ε-regularized Lp quasi-norm

‖wn‖p
p,ε :=

K∑

k=1

(|wnk|2 + ε)p/2 (8)

that is smooth and amenable to gradient-based optimization. The affine con-
straint is useful here, without which the formulation leads to the trivial solution:
wnk = 0,∀n, k.

Because the dictionary fit attempts to minimize the norm of a linear com-
bination of tangent vectors Logyn

(dk), it is natural to have atoms dk within a
subsphere S that corresponds to the intersection of (i) the linear subspace in
RKHS representing the span of the set of points yn with (ii) the unit Hilbert
sphere in RKHS. For instance, if all but one atom dl lies outside the span of the
data, then either (i) that atom remains unused, i.e., all weights wnl for atom
dl are zero, or (ii) the use of atom dl leads to an increase in the norm of the
linear combination, as compared to using an atom that is the projection of dl

on the subsphere S, because it leads to an additional vector component in the
linear combination along a direction orthogonal to the other log-mapped atoms
Logyn

(dl) in the tangent space at yn. Thus, if dl is to be used, replacing dl with
its projection on the subsphere S will reduce the objective function and be a
better solution. Take another instance where multiple atoms dk lie outside the
span of the data, or equivalently outside the lowest-dimensional subsphere S that
contains all the mapped points yn. In this case, if there is a sparse combination
of atoms dk that exactly fits the data, i.e., ‖∑K

k=1 wnkLogyn
(dk)‖H = 0, then

we can use the same weights wnk and use the projections of atoms dk on the
subsphere S to again get the exact fit. Thus, it is unnecessary to use atoms dk

outside the subsphere S. So, we represent each atom as

dk :=
N∑

n=1

γknΦ(xn), where ∀n : γkn ∈ R and ‖dk‖H = 1. (9)

This representation for atoms ensures that each logarithmic map Logyn
(dk) can

be represented as a linear combination of the Φ(yn).
Within the first term in the objective function, ∀yn, the norm

‖∑K
k=1 wnkLogyn

(dk)‖2H can be represented purely in terms of the Gram matrix
and the coefficients γkn underlying the atoms’ representation, as follows. Each
tangent vector Logyn

(dk) can be represented as a weighted combination of Φ(xn).



Robust Dictionary Learning on the Hilbert Sphere in Kernel Feature Space 739

Thus, the linear combination
∑K

k=1 wnkLogyn
(dk) is also weighted combination

of Φ(xn). Then, the norm

‖
K∑

k=1

wnkLogyn
(dk)‖2H = ‖

N∑

p=1

ξpΦ(xp)‖2H, for some weights ξp ∈ R (10)

=
N∑

n′=1

N∑

n′′=1

ξn′ξn′′〈Φ(xn′), Φ(xn′′)〉H =
N∑

n′=1

N∑

n′′=1

ξn′ξn′′Gn′n′′ , (11)

where G is the Gram matrix such that Gn′n′′ := 〈Φ(xn′), Φ(xn′′)〉H with all
diagonal elements Gnn := 〈Φ(xn), Φ(xn)〉H = 1. The scalar weights ξp are

ξp =
K∑

k=1

wnk
arccos(〈dk, yn〉H)

‖dk − 〈dk, yn〉Hyn‖H
(γkp − In,p〈dk, yn〉H) , (12)

where the indicator function In,p = 1 if n = p and In,p = 0 otherwise.
The constraint on the atoms, ‖dk‖H := ‖∑N

n=1 γknΦ(xn)‖H = 1, can also be
specified in terms of the Gram matrix G as

N∑

n′=1

N∑

n′′=1

γkn′γkn′′Gn′n′′ = 1. (13)

This confirms that the optimization problem, both the objective function and the
constraints, can be specified purely in terms of the variables {{wnk ∈ R}K

k=1}N
n=1

and {{γkn ∈ R}N
n=1}K

k=1, given the Gram matrix G. Hence, we do not need the
explicit mapping Φ(·) for our dictionary learning method.

We optimize the atoms dk, represented through the parameters {γkn ∈ R},
and weights wn ∈ R

K alternatingly using projected gradient descent that guar-
antees convergence to a stationary point. For each atom dk, the projection is on
the unit Hilbert sphere, which involves a simple rescaling of the parameters γkn.
For each weight vector wn, the projection is on the hyperplane through the ori-
gin

∑K
k=1 wnk = 1, which is also straightforward. We adjust the step sizes, using

a line search, to ensure that the objective function decreases. To alleviate the
difficulty of the non-convexity resulting from the ε-regularized Lp quasi-norm,
we use continuation-based optimization [3,60] (a general strategy for optimizing
non-convex functions; similar to annealing) that starts with a relatively large
value of ε = 1 and gradually reduces ε to 0.001. In practice, such continuation
strategies help find better local minima for non-convex objective functions.

Given the number of atoms K, we initialize atoms dk using kernel k-means
using geodesic distances on the Hilbert sphere in RKHS. We initialize the k-
means using the k-means++ algorithm [8]. After initializing the atoms dk, we
initialize the weight wnk in inverse proportion to the distance of yn from dk

Logyn
(dk), normalized such that the weights of any input sum to 1 as required

by the affine constraint, i.e.,

winit
nk :=

‖Logyn
(dk)‖−1

H∑K
k′=1‖Logyn

(dk′)‖−1
H

. (14)
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For each yn, this gives larger weights wnk for those atoms dk that are closer
to yn.

We summarize the proposed algorithm for dictionary learning below:

1. Inputs: A set of points {xn}N
n=1 in input space. Gram matrix G underlying

a kernel such that all diagonal elements Gnn = 1. Number of atoms K.
Parameters λ > 0 and p ∈ (0, 1). Set iteration number i = 0.

2. Initialize the dictionary Di comprising atoms {di
k}N

k=1 using kernel k-means
adapted to the Hilbert sphere in RKHS, as described previously. Each atom
dk is represented using parameters {γi

kn}, as described in Eq. 9.
3. Initialize the weights matrix W i, as described before.
4. Fix ε = 1.
5. Fixing the weights W i, use projected gradient descent to optimize for {γkn}

based on the formulation in (7) to get the updated parameters {γi+1
kn } used

to represent atoms {di+1
k }N

k=1 in the dictionary Di+1.
6. Fixing the parameters {γi+1

kn }, use projected gradient descent to optimize for
W based on the formulation in 7 to get the updated weight matrix W i+1.

7. If the relative change in the values of the objective function, in 7, evaluated
at (W i,Di) and (W i+1,Di+1), is less than a small threshold, then terminate,
otherwise increment i by 1 and repeat the last 2 steps.

8. Reduce ε ← ε/10. If ε < 0.001, then terminate, otherwise repeat the last 3
steps (projected gradient descent optimization) with the initial solution as
that obtained for the previous value of ε.

9. Outputs: A set of parameters {γ∗
kn} representing the optimal atoms d∗

k in
the optimal dictionary D∗ and an optimal weight matrix W ∗ representing the
coefficients wn, for all atoms, in the fit to each yn.

5 Application: Image Classification

We apply the proposed dictionary learning framework for image classification.
The framework is general and considers image feature vectors xn extracted from
each image as the training data. We assume a kernel, e.g., Gaussian, such that the
self similarity κ(x, x) = 1 for all feature vectors x. We first learn a dictionary
from training data and then use it to code each training datum, where each
datum’s code is the vector of coefficients obtained from the dictionary fit. We
then train a linear support vector machine (SVM) to learn a classifier on these
codes.

We summarize the proposed algorithm for learning a dictionary-based clas-
sifier for the purpose of image classification.

1. Inputs: For the Q classes (denoted by q = 1, 2, · · · , Q), Nq feature vectors
{xqn}Nq

n=1 for class q. Gram matrix G, for the pooled dataset, underlying a
kernel such that all diagonal elements equal 1. The number of atoms Kq in
the dictionary Dq for each class q. Parameters λ > 0 and p ∈ (0, 1).

2. For all Q classes, use the dictionary learning algorithm in Sect. 4 to learn
dictionary Dq of Kq atoms each for class q.
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3. Pool all the dictionaries {Dq}Q
q=1 to create a dictionary D having K :=

∑Q
q=1 Kq atoms.

4. Use the pooled dictionary D to fit to the mapped data {yqn := Φ(xqn)}Nq

n=1

for all classes q, using the algorithm in Sect. 4, but keeping the dictionary
fixed to D. This gives weight matrices Wq for all feature vectors in each class
q, where each column wqn has length K.

5. Learn a classifier C based on feature vectors {wqn ∈ R
K}Nq

n=1 for each class q,
using a linear SVM to classify any w into one of the Q classes. We do so by
training Q one-versus-all SVM classifiers [12].

6. Outputs: Pooled dictionary D and the classifier C.

We summarize the proposed algorithm for dictionary-based image
classification.

1. Inputs: Pooled dictionary D and the Gram matrix G for which it is learned.
The classifier C. Test image x to be classified along with the extension of the
Gram matrix (one row/column) for this test image’s feature vector x, giving
kernel similarity of the test image’s feature vector x with all training image
feature vectors.

2. Use the pooled dictionary D to fit to the mapped datum y := Φ(x) using the
algorithm in Sect. 4, but keeping the dictionary fixed to D. This gives weight
vector w of length K.

3. Use classifier C to classify the weight vector w into one of the Q classes, say q′.
4. Output: Class q′.

6 Results and Discussion

This section shows the results of empirical evaluation of our dictionary-learning
based method, compared with the state of the art, on two large publicly avail-
able real-world image datasets of handwritten digits: (i) the MNIST dataset [38]
available at http://yann.lecun.com/exdb/mnist/ and (ii) the USPS dataset [30]
available at www-stat.stanford.edu/∼tibs/ElemStatLearn/data.html. For eval-
uation on each dataset, we consider each raw image, after vectorization, as
an input feature vector xn. We use the popular Gaussian kernel κ(xi, xj) :=
exp(−0.5‖xi − xj‖22/σ2) and set σ2, as per convention, to the average squared
Euclidean distance between all pairs (xi, xj). We measure performance by the
classification accuracy, i.e., the percentage of correctly classified images out of
the total number of image classified.

We compare our method against state-of-the-art approaches involving kernel-
based dictionary learning (all methods use the same dictionary size) and varying
sparsity priors. First, we compare our Riemannian dictionary learning on the unit
Hilbert sphere in RKHS with the alternate strategy that assumes the mapped
data to lie in a linear space and performs standard linear dictionary learning in
RKHS, e.g., in [28,41]. This compares two different data-fitting strategies in ker-
nel feature space, i.e., our method using Hilbert-sphere modeling in RKHS and

http://yann.lecun.com/exdb/mnist/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
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(a) Lp sparsity; p ∈ (0, 1) (b) Lp sparsity; p ∈ (0, 1)

(c) Locality-constrained coding (LCC) (d) Locality-constrained coding (LCC)

Fig. 2. USPS Handwritten Digit Image Recognition. Recognition rates (aver-
ages and standard deviations obtained by bootstrap sampling of the training dataset)
for images with varying levels of corruptions (i.i.d. additive zero-mean Gaussian noise
or missing pixels), when the sparsity prior is the (a)-(b) Lp quasi norm, with optimally
tuned value of p ≤ 1 for each noise level, and (c)-(d) locality-constrained coding, with
optimally tuned value of ρ > 0 for each noise level.

the state of the art involving Euclidean modeling in RKHS. Second, we evaluate
both aforementioned methods for two different kinds of sparsity priors, i.e., our
Lp quasi-norm for p < 1 and the alternate strategy based on locality constrained
coding, e.g., in [29,57,62,63]. However, unlike the faster, but approximate, ver-
sions [29,57] that use the few nearest atoms for coding each datum, we use the
version with the weighted L1 penalty over all atoms, i.e.,

λ
N∑

n=1

K∑

k=1

(
wnk exp(ρ‖yn − dk‖)

)2

(15)

where ρ ∈ R>0 is a free parameter. Unlike the heuristic of choosing the nearest
atoms for coding, this penalty lends itself to optimization via gradient descent
that guarantees the reduction in the objective function at each step. When we
use Hilbert-sphere modeling in RKHS, we choose the distance ‖yn − dk‖ as the
geodesic distance ‖Logyn

(dk)‖H; otherwise, we choose the norm ‖yn − dk‖H in
RKHS.
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(a) Lp sparsity; p ∈ (0, 1) (b) Lp sparsity; p ∈ (0, 1)

(c) Locality-constrained coding (LCC) (d) Locality-constrained coding (LCC)

Fig. 3. MNIST Handwritten Digit Image Recognition. Recognition rates (aver-
ages and standard deviations obtained by bootstrap sampling of the training dataset)
for images with varying levels of corruptions (i.i.d. additive zero-mean Gaussian noise
or missing pixels), when the sparsity prior is the (a)-(b) Lp quasi norm, with optimally
tuned value of p ≤ 1 for each noise level, and (c)-(d) locality-constrained coding, with
optimally tuned value of ρ > 0 for each noise level.

We evaluate the robustness of the dictionary learning methods under two
kinds of corruptions in the training data: (i) independent and identically distrib-
uted (i.i.d.) additive zero-mean Gaussian noise and (ii) missing data at randomly
chosen pixels in the image. In case of images with missing intensities at specific
pixels, we replace the missing intensity values with the average intensity over
the pixels where the intensities are observed. We found this strategy of filling
in missing information to be easy, parameter free, and leading to stable results.
In the real-world, missing-pixel scenarios arise naturally in solving recognition
problems for partially visible/occluded objects [35]. For both these kinds of cor-
ruptions, we evaluate performance over a range of corruption levels. At each
corruption level, we tune the parameters underlying each method, i.e., the reg-
ularization parameter λ and the parameter underlying the sparsity prior (i.e.,
either p or ρ) using 5-fold cross validation [12] on the chosen training data.

To measure the variability of the classification performance with respect to
the variability in the training data sample, we use bootstrap sampling to ran-
domly select 90% of the available training set to learn the classifier and, then,
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use the learned classifier to classify the test set. Repeated bootstrap sampling,
learning, and classification gives us the reliability of the performance of the meth-
ods. For each corruption level, we perform bootstrap 25 times to get 25 different
training data samples.

The results on the USPS dataset (in Fig. 2) and the MNIST dataset (in Fig. 3)
show that the proposed Riemannian modeling on the Hilbert-sphere in RKHS
clearly achieves superior classification accuracy over linear modeling in RKHS
for (i) both sparsity priors and (ii) both kinds of corruptions. Compared to linear
dictionary modeling in RKHS, the gains from our Hilbert-spherical modeling in
RKHS are often more than 10% and are almost always statistically significantly
better, as determined by a two-sample Student’s t-test (p-value < 0.01).

The results on the MNIST and USPS datasets in Fig. 4 show that for higher
corruption levels, of both noise and missing-pixel types, the best performance is
typically obtained when the values of the parameter p in our Lp quasi-norm spar-

(a) MNIST; Gaussian noise, variance s2 (b) MNIST; Missing pixels, fraction f

(c) USPS; Gaussian noise, variance s2 (d) USPS; Missing pixels, fraction f

Fig. 4. Robustness of Dictionary Learning to Corrupted Training Data.
Recognition rates (averages and standard deviations obtained by bootstrap sampling
of the training dataset) for images with varying levels of corruptions (i.i.d. additive
zero-mean Gaussian noise or missing pixels), with various values of the parameter
p < 1 in the Lp quasi-norm sparsity penalty for (a) MNIST dataset with i.i.d. additive
zero-mean Gaussian noise, (b) MNIST dataset with a fraction of pixels with missing
intensity values, (c) USPS dataset with i.i.d. additive zero-mean Gaussian noise, and
(d) USPS dataset with a fraction of pixels with missing intensity values.
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sity penalty is less than 1. For very small values of p, the performance expectedly
degrades possibly because of the increasing non-convexity of the penalty and the
greater tendency to get stuck in a local minimum. This can also happen in some
rare cases, where better continuation strategies can help. Nevertheless, for large
corruption levels, the optimal performance almost always occurs for values of p
significantly less than 1; for these datasets, the optimal p is typically in the range
0.2 and 0.8. This confirms the benefits of our proposed Lp quasi-norm sparsity
penalty for tuned values of p < 1.

7 Conclusion

This paper presents a new method for kernel-based dictionary learning that
addresses the hyperspherical geometry of the (implicitly) mapped points in
RKHS, which naturally arises from many popular kernels and kernel normal-
ization. In the same spirit that motivates manifold-based dictionary learning in
input space, we perform manifold based dictionary learning in RKHS. We also
propose stronger sparsity priors in the form of the non-convex Lp quasi-norm
penalties that we deal with practically using a continuation-based optimiza-
tion algorithm. We utilize the new dictionary learning algorithm for recognizing
handwritten digits on large standard datasets and clearly demonstrate improved
performances resulting from the modeling the Hilbert-sphere geometry in RKHS.
We also demonstrate the gain in the robustness of the dictionary learning, to
corruptions in the training data, arising from the stronger sparsity constraint.
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Abstract. One transfer learning approach that has gained a wide pop-
ularity lately is attribute-based zero-shot learning. Its goal is to learn
novel classes that were never seen during the training stage. The classi-
cal route towards realizing this goal is to incorporate a prior knowledge,
in the form of a semantic embedding of classes, and to learn to pre-
dict classes indirectly via their semantic attributes. Despite the amount
of research devoted to this subject lately, no known algorithm has yet
reported a predictive accuracy that could exceed the accuracy of super-
vised learning with very few training examples. For instance, the direct
attribute prediction (DAP) algorithm, which forms a standard baseline
for the task, is known to be as accurate as supervised learning when as
few as two examples from each hidden class are used for training on some
popular benchmark datasets! In this paper, we argue that this lack of
significant results in the literature is not a coincidence; attribute-based
zero-shot learning is fundamentally an ill-posed strategy. The key insight
is the observation that the mechanical task of predicting an attribute
is, in fact, quite different from the epistemological task of learning the
“correct meaning” of the attribute itself. This renders attribute-based
zero-shot learning fundamentally ill-posed. In more precise mathemati-
cal terms, attribute-based zero-shot learning is equivalent to the mirage
goal of learning with respect to one distribution of instances, with the
hope of being able to predict with respect to any arbitrary distribution.
We demonstrate this overlooked fact on some synthetic and real datasets.
The data and software related to this paper are available at https://mine.
kaust.edu.sa/Pages/zero-shot-learning.aspx.

Keywords: Zero-shot learning · Attribute-based classification · Multi-
label classification

1 Introduction

Humans are capable of learning new concepts using a few empirical observa-
tions. This remarkable ability is arguably accomplished via transfer learning
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techniques, such as the bootstrapping learning strategy, where agents learn sim-
ple tasks first before tackling more complex activities [22]. For instance, humans
begin to cruise and crawl before they learn how to walk. Learning to cruise and
crawl allows infants to improve their locomotion skills, body balance, control
of limbs, and the perception of depth, all of which are crucial pre-requisites for
learning the more complex activity of walking [11,16].

In many machine learning applications, a similar transfer learning strategy is
desired when labeled examples are difficult to obtain that can faithfully represent
the entire target set Y. This is often the case, for example, in image classification
and in neural image decoding [14,17]. The transfer learning strategy typically
employed in this setting is either called few-shot, one-shot, or zero-shot learn-
ing, depending on how many labeled examples are available during the training
stage [10,14]. Here, a desired target set Y (classes) is learned indirectly by learn-
ing semantic attributes instead. These attributes are, then, used to predict the
classes in Y.

The motivation behind the attribute-based learning approach with scarce
data is close in spirit to the rationale of the bootstrapping learning strategy.
In brief terms, it helps to learn simple tasks first before attempting to learn
more complex activities. In the context of classification, semantic attributes are
(chosen to be) abundant, where a single attribute spans multiple classes. Hence,
labeled examples for the semantic attributes are more plentiful, which makes
the task of predicting attributes relatively easy. Moreover, the target set Y is
embedded in the space of semantic attributes, a.k.a. the semantic space, which
makes it possible, perhaps, to predict classes that were rarely seen, if ever, during
the training stage.

In this paper, we focus on the attribute-based zero-shot learning setting,
where a finite number of semantic attributes is used to predict novel classes that
were never seen during the training stage. More formally [14]:

Definition 1 (Attribute-Based Zero-Shot Setting). In the attribute-based
zero-shot setting, we have an instance space X , a semantic space A, and a
target set Y, where |A| < ∞ and |Y| < ∞. A sample S comprises of m
examples {(Xi, Yi, Ai)}i=1,...,m, with Xi ∈ X , Yi ∈ Y, and Ai ∈ A. More-
over, Y is partitioned into two non-empty subsets: the set of visible classes
YV =

⋃
(Xi,Yi,Ai)∈S{Yi} and the set of hidden classes YH = Y\YV . The goal

is to use S to learn a hypothesis f : X → YH that can correctly predict the
hidden classes YH .

The key part of Definition 1 is the final goal. Unlike the traditional setting
of learning, we no longer assume that the sample size m is large enough for
all classes in Y to be seen during the training stage. In general, we allow Y
to be partitioned into two non-empty subsets YV and YH , which, respectively,
correspond to the visible and the hidden classes in the given sample S. The
classical argument for why the goal of learning to predict the hidden classes
is possible in this setting is that the hidden classes YH are coupled with the
instances X and the visible classes YV via the semantic space A [14].
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Fig. 1. In the polygon shape recognition problem, the instances are images of polygons
and we have five disjoint classes: equilateral triangles, non-equilateral triangles, squares,
non-square rectangles, and non-rectangular parallelograms.

To illustrate the traditional argument for attribute-based zero-shot learning,
let us consider the simple polygon shape recognition problem shown in Fig. 1.
In this problem, the instance space X is the set of images of polygons, i.e. two-
dimensional shapes bounded by a closed chain of a finite number of line segments,
while the target set Y is the set of the five disjoint classes shown in Fig. 1.

In the traditional setting of learning, a large sample of instances S would be
collected and a classifier would be trained on the sample (e.g. using one-vs-all
or one-vs-one). One of the fundamental assumptions in the traditional setting of
learning for guaranteeing generalization is the stationarity assumption; examples
in the sample S are assumed to be drawn i.i.d. from the same distribution as
the future examples. Along with a few additional assumptions, learning in the
traditional setting can be rigorously shown to be feasible [1,5,19,23].

In the zero-shot learning setting, by contrast, it is assumed that the target set
Y is partitioned into two non-empty subsets Y = YV ∪ YH . During the training
stage, only instances from the visible classes YV are seen. The goal is to be
able to predict the hidden classes correctly. This goal is arguably achieved by
introducing a coupling between YV and YH via the semantic space. For example,
we recognize that the five classes in Fig. 1 can be completely determined by the
values of the following three binary attributes:

– a1: Does the polygon contain 4 sides?
– a2: Are all sides in the polygon of equal length?
– a3: Does the polygon contain, at least, one acute angle?

The set of all possible answers to these three binary questions forms a seman-
tic space A for the polygon shape recognition problem. Given an instance X with
the semantic embedding A = (a1, a2, a3) ∈ {0, 1}3, its class can be uniquely
determined. For example, any equilateral triangle has the semantic embedding
(0, 1, 1), which means that the latter polygon (1) does not contain four sides, (2)
its sides are all of equal length, and (3) it contains some acute angles. Among
the five classes in Y, only the class of equilateral triangles satisfy this semantic
embedding. Similarly, the four remaining classes have unique semantic embed-
dings as well.

Because the classes can be inferred from the values of the three binary
attributes mentioned above, it is often argued that hidden classes can be pre-
dicted by, first, learning to predict the values of the semantic attributes based
on a sample (training set) S, and, second, by using those predicted attributes
to predict the hidden classes in YH via some hand-crafted mappings [7,9,13–
15,17,20,21]. In our example in Fig. 1, suppose the class of non-square rectangles
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is never seen during the training stage. If we know that a polygon has the seman-
tic embedding (1, 0, 0), which means that it has four sides, its sides are not all of
equal length, and it does not contain any acute angles, then it seems reasonable
to conclude that it is a non-square rectangle even if we have not seen any non-
square rectangles in the sample S. Does this imply that zero-shot learning is a
well-posed approach? We will show that the answer is, in fact, negative. The key
ingredient in our argument is the fact that the mechanical task of predicting an
attribute is quite different from the epistemological task of learning the correct
meaning of the attribute.

The rest of the paper is structured as follows. We first explain why the
two tasks of “predicting” an attribute and “learning” an attribute are quite
different from each other. We will illustrate this overlooked fact on the simple
shape recognition problem of Fig. 1 and demonstrate it in a greater depth on
some synthetic and real datasets afterward. Next, we use such a distinction
between “predicting” and “learning” to argue that the attribute-based zero-shot
learning approach is fundamentally ill-posed, which, we believe, explains why
the previous zero-shot learning algorithms proposed in the literature have not
performed significantly better than supervised learning with very few training
examples.

2 Why Learning and Predicting Are Two Different Tasks

2.1 The Polygon Shape Recognition Problem

Let us return to the original polygon shape recognition example of Fig. 1. Sup-
pose that the two classes of non-square rectangles and non-rectangular parallel-
ograms are hidden from the sample S. That is:

YV = {equilateral triangles, non-equilateral triangles, squares}
YH = {non-square rectangles, non-rectangular parallelograms}

In the attribute-based zero-shot learning setting, we learn to predict the three
semantic attributes (a1, a2, a3) mentioned earlier based on the sample S that only
contains examples from the visible three classes. Once we learn to predict them
correctly based on the sample S, we are supposed to be able to recognize the two
hidden classes via their semantic embeddings. The semantic embedding for non-
square rectangles is, in this example, (1, 0, 0), while the semantic embeddings for
non-rectangular parallelograms is the set {(1, 0, 1), (1, 1, 1)}.

To see why this is, in fact, an incorrect approach, we note that the task of
predicting an attribute aims, by definition, at utilizing all the relevant informa-
tion in the sample S that aid the prediction task. In our example, since only the
three visible classes YV are seen in the sample S, a good predictor should infer
from S the following logical assertions:

1. If a polygon does not contain four sides, then it contains one acute angle.
Formally:

(a1 = 0) → (a3 = 1)
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From this, the contrapositive assertion (a3 = 0) → (a1 = 1) is deduced as
well.

2. If the sides of a polygon are not of equal length, then it does not contain four
sides. Formally:

(a2 = 0) → (a1 = 0)

Again, its contrapositive assertion also holds.
3. If the polygon does not contain an acute angle, then all of its sides are of

equal length. Formally:
(a3 = 0) → (a2 = 1)

These logical assertions and others are likely to be used by a good predictor,
at least implicitly, since they are always true in the sample S. In addition, such
a predictor would have a good generalization ability if the instances continued
to be drawn i.i.d. from the same distribution as the training sample S, i.e. if the
set of visible classes remained unchanged.

If, on the other hand, an instance is now drawn from a hidden class in YH ,
then some of these logical assertions would no longer hold and the original algo-
rithm that was trained to predict the semantic attributes would fail. This follows
from the fact that instances drawn from the hidden classes have a different dis-
tribution. Therefore, the fact that classes can be uniquely determined by the
values of the semantic attributes is of little importance here because the seman-
tic attributes are likely to be predicted correctly for the visible classes only.
Needless to mention, this violates the original goal of the attribute-based zero-
shot learning setting.

2.2 Optical Digit Recognition

To show that the previous argument on the polygon shape recognition problem
is not a contrived argument, let us look into a real classification problem, in
which we can visualize the decision rule used by the predictors. We will use the
optical digit recognition problem to illustrate our argument. In order to be able
to interpret the decision rule used by the predictor, we will use the linear support
vector machine (SVM) algorithm [4,6], trained without the bias term using the
LIBLINEAR package [8].

One way of introducing a semantic space for the ten digits is to use the seven-
segment display shown in Fig. 2. That is, the instance space X is the set of noisy
digits, the classes are the ten digits Y = {0, 1, 2, . . . , 9}, and the semantic space
is A = {−1,+1}7 corresponding to the seven segments. For example, using
the order of segments (a,b,c,d,e,f,g) shown in Fig. 2, the digit 0 in Fig. 2
has the semantic embedding (1, 1, 1, 0, 1, 1, 1) while the digit 1 has the semantic
embedding (0, 0, 1, 0, 0, 1, 0), and so on.

In our implementation, we run the experiment as follows1. First, a perfect
digit is generated, which is later contaminated with noise. In particular, every
1 The MATLAB implementation codes that generate the images in this section are

available at https://mine.kaust.edu.sa/Pages/zero-shot-learning.aspx.

https://mine.kaust.edu.sa/Pages/zero-shot-learning.aspx
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Fig. 2. In optical digit recognition, a semantic space can be introdued using the seven
segment display segments shown in this figure.

Fig. 3. The instance space in the optical digit recognition problem is the set of noisy
digits, where the value of every pixel is flipped with probability 0.1.

pixel is flipped with probability 0.1. As a result, the instance space is the set of
noisy digits, as depicted in Fig. 3. Then, five digits are chosen to be in the visible
set of classes, and the remaining digits are hidden during the training stage. We
train classifiers that predict the attributes (i.e. segments) using the visible set
of classes, and use those classifiers to predict the hidden classes afterward.

Now, the classical argument for attribute-based zero-shot learning goes as
follows:

1. Every digit can be uniquely determined by its seven-segment display. When
an exact match is not found, one can carry out a nearest neighbor search
[7,9,15,17,20,21] or a maximum a posteriori estimation method [13,14].

2. Every segment in {a,b,c,d,e,f,g} is a concept class by itself that spans
multiple digits. Hence, the number of training examples available for each
segment is large, which makes it easier to predict.

3. Because each of the seven segments spans multiple classes, we no longer need
to see all of the ten digits during the training stage in order to learn to predict
the seven segments reliably.
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This argument clearly rests on the assumption that “learning” a concept is
equivalent to the task of reliably “predicting”it. From the earlier discussion in
the polygon shape matching problem, this assumption is, in fact, invalid. Figure 4
shows what happens when a proper subset of the ten digits is seen during the
training stage. As shown in the figure, the linear classifier trained using SVM
exploits the relevant information available in the training set to maximize its
prediction accuracy of the attributes.

For example, when we train a classifier to predict the segment ‘a’ using the
visible classes {0, 1, 2, 3, 4}, a good predictor would use the fact that the segment
‘a’, which is the target concept, always co-occurs with the segment ‘g’. There-
fore, the contrapositive rule implies that the absence of ‘g’ implies the absence
of the segment ‘a’. This is clearly seen in Fig. 4 (top left corner). Of course,
what the predictor learns is even more complex than this, as shown in Fig. 4.
When novel instances from the hidden classes are present, these correlations no
longer hold and the algorithm fails to predict the semantic attributes correctly.
To reiterate, such a failure is fundamentally due to the fact that the hidden
classes constitute a different distribution of instances from the one seen during
the training stage.

The results of applying a linear SVM using binary relevance to predict the
seven segments is shown in Fig. 4. In this figure, the blue regions correspond
to the pixels that contribute positively to the decision rule for predicting the
corresponding segment, while the red regions contribute negatively. There are
two key takeaways from this figure. First, the prediction rule used by the classifier
does not correspond to the “true” meaning of the semantic attribute. After all,
the goal of classification is to be able to “predict”the attribute as opposed to
learning what it actually means. Second, changing the set of visible classes can
change the prediction rule for the same attribute quite notably. Both observations
challenge the rationale behind the attribute-based zero-shot learning setting.

2.3 Zero-Shot Learning on Popular Datasets

Next, we examine the performance of zero-shot learning on benchmark datasets.
Two of the most popular datasets for evaluating zero-shot learning algorithms
are the Animals with Attributes (AwA) dataset [14] and the aPascal-aYahoo
dataset [9]2. We briefly describe each dataset next.

The Animals with Attributes (AwA) Dataset: The AwA dataset was
collected by querying search engines, such as Google and Flickr, for images of
50 animals. Afterward, these images were manually handled to remove outliers
and duplicates. The final dataset contains 30,475 images, where the minimum
number of images per class is 92 and the maximum is 1,168. In addition, 85

2 These datasets are available at:
http://attributes.kyb.tuebingen.mpg.de/
http://vision.cs.uiuc.edu/attributes/.

http://attributes.kyb.tuebingen.mpg.de/
http://vision.cs.uiuc.edu/attributes/
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Fig. 4. In this figure, linear SVM was implemented to predict the seven segments of
noisy optical images. The columns correspond to the seven segments {a, b, c, d, e, f, g}
while the rows correspond to different choices of visible classes. From top to bottom,
the visible classes are {0, 1, 2, 3, 4} for the first row, {5, 6, 7, 8, 9} for the second row,
{0, 2, 4, 6, 8} for the third row, and {1, 3, 5, 7, 9} for the fourth row. Every figure depicts
the coefficient vector w that is learned by linear SVM, where blue regions correspond
to the pixels that contribute positively towards the corresponding segment and red
regions contribute negatively. The black figures are not applicable because the training
sample S either lacks negative examples for the corresponding attribute or it lacks
positive examples. (Color figure online)

attributes are introduced. In the zero-shot learning setting, 40 (visible) classes
are used for training and 10 (hidden) classes are used for testing [14].

The aPascal-aYahoo (aP-AY) Dataset: The aP-aY dataset contains 12,695
images, which were chosen from the PASCAL VOC 2008 data set [9]. These
images are used during the training stage of the zero-shot learning setting. In
addition, a total of 2,644 images were collected from the Yahoo image search
engine to be used during the test stage. Both sets of images have disjoint classes.
More specifically, the training dataset contains 20 classes while the test dataset
contains 12 classes. Moreover, every image has been annotated with 64 binary
attributes.

Results: Table 1 presents some fairly-recent reported results on the two datasets
AwA and aP-aY. The zero-shot learning algorithms provided in the table are
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the direct attribute prediction (DAP) algorithm proposed in [13,14], which is
one of the standard baseline methods for this task, the indirect attribute predic-
tion (IAP) algorithm proposed in [13,14], the embarrassingly simple zero-shot
learning algorithm proposed in [18], and the zero-shot random forest algorithm
proposed in [12]. The best reported prediction accuracy for the AwA dataset
is 49.3 % while the best reported prediction accuracy for the aP-aY dataset
is 26.0 %.

Table 1. In this table, some fairly-recent results of zero-shot learning algorithms are
presented. The reported figures of the four zero-shot learning algorithms are for the
multiclass prediction accuracy on the two datasets AwA and aP-aY, where the figures
are taken from the original papers [12–14,18]

Algorithm AwA aP-aY

direct attribute prediction 41.4 % 19.1 %

indirect attribute prediction 42.2 % 16.9 %

embarrassingly simple zero-shot 49.3 % 15.1 %

zero-shot random forest 43.0 % 26.0 %

Average # Training Examples/Visible Class 607.38 634.75

Best Reported Accuracy 49.3 % 26.0 %

Equivalent # Training Examples/Hidden Class ≈ 20 ≈ 2

In order to properly interpret the reported results, we have also provided
in Table 1 the number of training examples from the hidden classes that would
suffice, in a traditional supervised learning setting, to obtain the same accuracy
reported by the zero-shot learning algorithms in the literature. These latter
figures are obtained from the experimental study conducted in [14]. Note that
while about 600 examples per visible class are used during the training stage, the
best reported zero-shot prediction accuracy on the hidden classes is equivalent
to the accuracy of supervised learning using fewer than 20 training examples
per hidden class. In fact, the zero-shot learning accuracy reported on the aP-
aY is worse than the accuracy of supervised learning when as few as 2 training
examples per hidden class are used.

When the area under the curve (AUC) is used as a performance measure,
which is known to be more robust to class imbalance than the prediction accu-
racy, then the apparent merit of zero-shot learning becomes even more question-
able. For instance, the popular direct attribute prediction (DAP) on the AwA
dataset achieves an AUC of 0.81, which is equivalent to the performance of
supervised learning using as few as 10 training examples from each hidden class
only (c.f. Tables 4 and 7b in [14]). Recall, by contrast, that over 600 examples
per visible class are used for training.
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3 A Mathematical Formalism

The above argument and empirical evidence on the ill-posedness of attribute-
based zero-shot learning can be formalized mathematically. Incidentally, this
will allow us to identify paradigms of zero-shot learning for which the above
argument no longer holds.

As stated in Sect. 2 and illustrated in Fig. 4, the fundamental problem with
attribute-based zero-shot learning is that it aims at learning concept classes
(semantic attributes) with respect to one distribution of instances (i.e. when
conditioned on the visible set of classes) with the goal of being able to predict
those concept classes for an arbitrary distribution of instances (i.e. when condi-
tioned on the unknown hidden set of classes). Clearly, this is an ill-posed strategy
that violates the core assumptions of statistical learning theory.

To remedy this problem, we can cast zero-shot learning as a domain adapta-
tion problem [18]. In the standard domain adaptation setting, it is assumed that
the training examples are drawn i.i.d. from some source distribution DS whereas
future test examples are drawn i.i.d. from a different target distribution DT . Let
h : X → Y be a predictor. Then, the average misclassification error rate of h
with respect to DT is bounded by:

E(X,Y )∼DT
{h(X) �= Y } ≤ E(X,Y )∼DS

{h(X) �= Y } + dTV (DS ,DT ), (1)

where dTV (DS ,DT ) is the total-variation distance between the two probability
distributions DS and DT [2]. Similar bounds that also hold with a high prob-
ability can be found in [3]. Hence, learning a good predictor h with respect to
some source distribution DS does not guarantee a good prediction accuracy with
respect to an arbitrary target distribution DT unless the two distributions are
nearly identical.

Therefore, in order to turn zero-shot learning into a well-posed strategy, it is
imperative that a common representation R(X) is used, such that the induced
distribution of R(X) remains nearly unchanged when the instances X are con-
ditioned on the visible set of classes or on the hidden set of classes. Then, by
learning to predict semantic attributes given R(X), generalization bounds, such
as the one provided in Eq. (1), guarantee a good prediction accuracy in the
zero-shot setting. One method that can accomplish this goal is to divide the
instances Xi into multiple local segments Xi → (Zi,1, Zi,2, . . .) ∈ Zr such that a
classifier h : Z → A is trained to predict the semantic attributes in every local
segment separately. If these local segments have a stable distribution across the
visible and hidden set of classes, then zero-shot learning is feasible. A proto-
typical example of this approach is segmenting sounds into phonemes in word
recognition systems and using those phonemes to recognize words (classes) [17].

4 Conclusion

Attribute-based zero-shot learning is a transfer learning strategy that has been
widely studied in the literature. Its aim is to learn to predict novel classes
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that are never seen during the training stage by learning to predict semantic
attributes instead. In this paper, we argue that attribute-based zero-shot learn-
ing is an ill-posed strategy because the two tasks of “predicting” and “learning”
an attribute are fundamentally different. We demonstrate our argument on syn-
thetic datasets and use it, finally, to explain the poor performance results that
have been reported so far in the literature for various zero-shot learning algo-
rithms on popular benchmark datasets.
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Abstract. In this paper, we formulate the K-sparse compressed signal
recovery problem with the L0 norm within a Stochastic Local Search
(SLS) framework. Using this randomized framework, we generalize the
popular sparse recovery algorithm CoSaMP, creating Stochastic CoSaMP
(StoCoSaMP). Interestingly, our deterministic worst case analysis shows
that under the Restricted Isometric Property (RIP), even a purely ran-
dom version of StoCoSaMP is guaranteed to recover a notion of strong
components of a sparse signal, thereby leading to support convergence.
Empirically, we find that StoCoSaMP outperforms CoSaMP, both in
terms of signal recoverability and computational cost, on different prob-
lems with up to 1 million dimensions. Further, StoCoSaMP outperforms
several other popular recovery algorithms, including StoGradMP and
StoIHT, on large real-world gene-expression datasets.

1 Introduction

Sparse Signal Recovery. The fundamental problem of K-sparse signal recov-
ery from compressed samples is to identify the correct support over the measure-
ment matrix atoms or columns. Given an M × N measurement matrix Φ and
a set of M measurements in the form of the measurement vector y, we want to
determine an N -dimensional vector x, a K-sparse signal. Moreover, we want to
identify which K atoms of Φ (i.e., the support) were used to generate the signal.
Once the support is known, it is trivial to recover the signal using least squares
estimation. Looking at this problem naively, one sees that the problem is to pick
the right support among

(
N
K

)
different ones, which is known to be NP-hard [13].

Early sparse signal recovery algorithms for Compressed Sensing were greedy
pursuit algorithms, e.g., OMP [22], ROMP [14], and CoSaMP [15] (among oth-
ers such as GraDes [7], IHT [2], and AMP [6]). A key assumption that many
greedy pursuit recovery algorithms, including OMP and CoSaMP, make is that
Φ satisfies the Restricted Isometry Property (RIP) [4]. A Φ matrix that satisfies
RIP preserves the norm of K-sparse signals under its transformation, i.e., Φx.

Definition 1 (RIP). A real-valued matrix Φ satisfies the Restricted Isometry
Property (RIP) with constant δK if for all K-sparse vectors x we have

(1 − δK)‖x‖22 ≤ ||Φx||22 ≤ (1 + δK)||x||22.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 761–776, 2016.
DOI: 10.1007/978-3-319-46128-1 48
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OMP, ROMP, and CoSaMP all have a well-defined phase transition boundary
beyond which they begin to fail due to RIP breaking down. This is also because of
the inherent non-convexity of the search space as the recovery problems become
more difficult (higher sparsity K and more columns than rows for Φ). The phase
transition diagram characterizes the degree of difficulty of the recovery problem
and is parameterized by M , N , and K.

Stochastic Local Search (SLS). Stochastic Local Search (SLS) algorithms
seek to obtain approximate solutions for non-convex problems through random-
ization. SLS has long played a key role in state-of-the-art algorithms for tackling
NP-hard and other difficult computational problems [8]. Example problems for
which SLS algorithms are competitive include satisfiability of propositional logic
formulas [8]; most probable explanation in Bayesian networks [11]; and max-
imum a posteriori hypothesis in Bayesian networks [18]. SLS algorithms show
great variety [8], however they all use pseudo-randomness (often called “noise”in
the SLS literature) during initialization, local search, or both. Carefully balanc-
ing randomness and greediness typically has a dramatic and positive impact on
the run-time of SLS algorithms [10,20], leading us to strive for similar positive
results for sparse signal recovery in this paper.

Related Work. A stochastic approach based on Threshold Accepting (a deter-
ministic form of Simulated Annealing) has been developed [1]. This approach
uses an objective function as the product between the L1 norm and the spectral
entropy. A more direct method of randomizing atom selection has also emerged
[19], based on Matching Pursuit and OMP. Limitations of this work are exper-
imental validation using low-dimensional problems (up to 128 dimensions) and
modest theoretical insights. Another randomized approach to Matching Pursuit
uses a non-adaptive random sequence of sub-dictionaries in the decomposition
process [12]. More recently, StoGradMP [17] has focused on an approach similar
to ours, namely randomizing GradMP [16]. GradMP is a generalized version of
CoSaMP. However, StoGradMP is based on stochastic gradient descent, ran-
domly picking one support component at every iteration before projecting the
gradient onto a 2K dimensional subspace before merging. Under RIP, the algo-
rithm is shown to have exponential convergence in error on average.

Contribution. Our StoCoSaMP method is inspired by SLS and generalizes
CoSaMP. Thus, we randomly execute a greedy or a stochastic step at every iter-
ation. During a stochastic step, we randomly choose 2K atoms to merge into
the support (see Sect. 2.1). In contrast to StoGradMP [17], which has only been
shown to handle problems with up to 1000 dimensions so far, we show Sto-
CoSaMP to be effective even in problems with up to 1 million dimensions. This
renders StoCoSaMP immediately available to real-world applications. Further,
StoGradMP requires a careful choice of the block size parameter which has a
significant impact on performance. StoCoSaMP also has a parameter, namely
the probability PR of a random step. However, as we find in our experiments,
StoCoSaMP’s performance is robust for a large range of values for PR.
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In this paper, we make the following contributions:

– We formulate the sparse recovery problem within an SLS framework and
propose a novel randomized version of CoSaMP: Stochastic CoSaMP (Sto-
CoSaMP). Key in StoCoSaMP is to randomize support selection: we randomly
choose 2K elements of the support, augmenting the greedy selection through
a signal proxy as in CoSaMP [15].

– In a worst case deterministic analysis of StoCoSaMP, we find that under
RIP, random support selection is sufficient for StoCoSaMP to recover β-strong
components of the true sparse signal. We also show that even a purely random
version of StoCoSaMP converges to the true support.

– In experiments with random Gaussian and Hadamard measurement matri-
ces, we demonstrate that StoCoSaMP is more efficient than and outperforms
CoSaMP for problems with up to 1 million dimensions.

– In experiments focused on the problem of classification of large-scale
real-world gene expression cancer datasets, we compare StoCoSaMP with
StoGradMP, StoIHT, CoSaMP, OMP, ROMP, IHT, and AMP. We find that
StoCoSaMP outperforms all of these algorithms in terms of test error.

2 Stochastic Local Search for Sparse Signal Recovery

2.1 Stochastic CoSaMP (StoCoSaMP)

Signal proxy and CoSaMP. A popular greedy recovery algorithm is CoSaMP
[15]. We generalize CoSaMP to Stochastic CoSaMP (StoCoSaMP) as presented
in Fig. 1. StoCoSaMP takes as input a measurement matrix Φ, a measurement
vector y, a sparsity level K, and the probability of a random step PR. It outputs
a sparse coefficient vector a.

StoCoSaMP invokes, with probability PR (line 6 in Fig. 1), a random step
(line 7 in Fig. 1). This random step complements the greedy optimization of
the most correlated atoms through the signal proxy (lines 9–10 in Fig. 1); see
Definition 6. The random step randomly chooses 2K atoms to merge into the
current support set T (line 12 in Fig. 1). Lines 12 to 16 proceed exactly like
CoSaMP. CoSaMP maintains a constant sized support (size K) at every iteration
(while loop in Fig. 1) and hence can be represented in an SLS framework (see
Sect. 2.2). Theoretically, in Sect. 2.5, we find that a least squares approximation
provides guarantees that do not require a greedy selection such as through the
signal proxy. Example stopping criteria (line 3 in Fig. 1) are (i) a maximum
number of iterations and (ii) a threshold on the difference between reconstruction
errors in subsequent iterations.

We now introduce the framework for defining an SLS algorithm and proceed
to model StoCoSaMP in that framework.

2.2 Stochastic Local Search Framework

Definition 2 (General SLS model). An SLS model is a 4-tuple (S,Nb, G,O),
where: S is the set of all states in the search space; G : S → R is the objective



764 D.K. Pal and O.J. Mengshoel

1: StoCoSaMP (Φ,y, K, PR):
2: a0 ← 0, v ← y, i ← 0, T ← {} (Initialization)
3: while stopping criterion not satisfied do
4: i ← i + 1
5: r ← sample uniform U [0, 1]
6: if r < PR then
7: λ ← Randomly choose 2K atoms to merge (Novel random step)
8: else
9: u ← ΦTv (Form signal proxy or estimate, i.e., Traditional greedy step from

CoSaMP)
10: λ ← supp(u2K) (Identify 2K largest components)
11: end if
12: T ← λ ∪ supp(ak−1) (Merge supports)
13: b|T ← Φ†

Ty (Estimate signal using least squares)
14: b|Tc ← 0 (Set the complement support to 0)
15: ai ← bK (Next approximation: keep largest K elements)
16: v ← y − Φai

17: end while
18: return ai

Fig. 1. StoCoSaMP algorithm. supp(·) returns the indices of the non-zero atoms. Lines
6 and 7 contain the key randomization step distinguishing StoCoSaMP from CoSaMP.

or evaluation function; O is the set of optimal states, defined as O = {s∗|s∗ =
arg maxs G(s)}; and Nb denotes the neighborhood relation, i.e., Nb ⊆ S × S.

Sparse signal recovery can be framed as an SLS problem. We consider binary
vectors s ∈ B

N . If si = 1, then the i-th atom or column is included in the support
estimate while if si = 0, then it is not. Thus, the cardinality of the search space
is |S| = |BN | = 2N . Typically, SLS techniques randomly alternate between a
greedy step and a random step. The greedy step usually enumerates the entire
neighborhood search space Nb and chooses the state which produces the lowest
error with respect to some objective function. Sometimes, the random step is
only invoked when the previous greedy step produced no improvement.

2.3 SLS for Sparse Signal Recovery

We consider a relaxed neighborhood relation definition as in Definition 3 in order
to utilize an efficient search method prevalent in sparse signal recovery: the signal
proxy [15]. The signal proxy results in a closed form search step of polynomial
complexity. CoSaMP and StoCoSaMP on the whole, at every iteration, search
for the next best K atoms for approximation. However, the signal proxy step
searches for the top 2K atoms. Thus, a relaxation in the neighborhood size is
required for modelling it in the SLS framework. This also results in StoCoSaMP
being modelled as two interconnected sub-models in the SLS framework (see
Definitions 5 and 6).
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Definition 3 (Relaxed Neighborhood). For some η,K ∈ N, we define the
neighborhood relation NηK

b (s) = {s′ ∈ B
N | ||s − s′||0 ≤ ηK} with a neighbor

threshold of ηK.

For binary vectors, the Manhattan distance between two vectors equals the
L1 distance. Also, η is chosen to model an algorithm. For CoSaMP and Sto-
CoSaMP, η = 2. This relaxation on the neighborhood size threshold from 2
to 2K enables using the signal proxy as the greedy element of the search. We
now model a sparse signal recovery algorithm in the SLS framework that is
constrained to maintain a fixed sized support of cardinality K.

Definition 4 (SLS model for K-sparse signal recovery). An SLS model
for K-sparse signal recovery is a 4-tuple (S,NηK

b , G,O), where: S is the set of all
states in the search space with each binary vector state s satisfying

∑N
i=1 si = K.

Lastly, NηK
b denotes the relaxed neighborhood function, i.e., NηK

b ⊆ S × S as
defined in Definition 3.

In the case of well-conditioned signal recovery problems, |O| = 1, i.e., there
exists a single unique solution to the problem [3,5]. The framework remains the
same even if the solution is not unique.

2.4 StoCoSaMP in the SLS Framework

StoCoSaMP uses a polynomial complexity search step called the signal proxy
[22]. We utilize this technique to get around the computational bottleneck of the
standard SLS greedy step.

Signal proxy (line 9 in StoCoSaMP): An efficient greedy search. Greedy
sparse signal recovery utilizes the top γK components (for some γ ∈ N) of the
signal proxy. The signal proxy is defined as (ΦT v)γK , where (·)γK chooses the
top γK elements, and v is the current residue. The signal proxy is an efficient way
to determine the most likely active components in the residue. This provides an
efficient closed form solution to evaluate the greedy step with s∗ = arg maxs H(s)
where H(s) = ||(ΦT v) � s||1, with � denoting the Hadamard product. Recall
that s is a binary vector with γK non-zeros. Note that H depends on the residue
v and thus might change with every iteration.

Due to the incorporation of the signal proxy step, a relaxed neighborhood
definition was needed. This complicates the SLS model for StoCoSaMP since
there are now two different search spaces. One is the overall space of the top
K atoms for the current support estimate (line 15 in Fig. 1) and the other is
the selection of the top 2K atoms through the signal proxy (line 10 in Fig. 1).
StoCoSaMP therefore needs a more elaborate SLS model than given in Defin-
ition 4. We thus introduce two connected sub-models: Definition 5 models the
overall K-sparse support search of StoCoSaMP whereas Definition 6 models the
top 2K atom selection through the signal proxy.
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Definition 5 (Sub-model 1: SLS model for K-sparse signal recovery

with StoCoSaMP). This SLS model is a 4-tuple (S,NηK
b , G,O) and parame-

terizes Definition 4 with S = {s ∈ B
N | ||s||1 = K}. Also, η = 2, therefore N2K

b

denotes the relaxed neighborhood function for S as in Definition 3. Definitions
for G and O remain the same.

Definition 6 (Sub-model 2: SLS model for support selection in Sto-

CoSaMP). The SLS model is a 4-tuple (S′, NηK
b , G′, O′

s) and parameterizes
Definition 4 with S′ = {s′ ∈ B

N | ||s′||1 = γK}. G′ : S × S′ → R where S
belongs to sub-model 1. G′

s(s
′) = ||(ΦT (y − Φ(ai � s))) � s′)||1 where ai is the

current coefficient estimate (line 15 in StoCoSaMP) and G′
s(s

′) is parameter-
ized by s′ ∈ S; O′

s = {s′∗ | s′∗ = arg maxs′ G′
s(s

′)} denoting the optimal state for
G′

s(s
′), which is unique, i.e., |O′

s| = 1. Lastly, with η = 2γ, N2γK
b denotes the

relaxed neighborhood function for S′ as in Definition 3.

In StoCoSaMP, the SLS technique is only explicitly used within S′ in Sub-
model 2 (for support selection) and not in S where the original problem lies.
However, as we explain Sect. 2.5, SLS effects in S′ allow StoCoSaMP to escape
local minima in S as well. In Sub-model 1, G is not evaluated explicitly by
the algorithm. G′ in Sub-model 2, however, is efficient to evaluate while being
parameterized by s ∈ S = {s ∈ B

N | ||s||1 = K}. Greedily optimizing G′

for s′∗ = arg maxs′ G′
s(s

′), such that ||s′||1 = γK, offers the exponential recov-
ery guarantees that CoSaMP enjoys. These guarantees also arise due to a least
squares approximation in subsequent steps.

2.5 Analysis of StoCoSaMP

Since StoCoSaMP randomly picks a random step or a greedy step, a compre-
hensive analysis of the phenomenon of escaping local minima is difficult. Exper-
imentally, we observe strong performance of StoCoSaMP as reported in Sect. 3.
Analytically, we have some but limited results as reported below.1

We first analyze the extreme cases PR = 0 and PR = 1, under RIP, before
discussing the general case 0 ≤ PR ≤ 1. Note that our analysis assumes RIP
only for PR = 0 and PR = 1. We only hypothesize a condition (when RIP breaks
down) under which local minima arise in the general case.

Special Case: PR = 0 (Purely Greedy Pursuit)

Lemma 1. When PR = 0, StoCoSaMP is equivalent to CoSaMP, i.e.,
CoSaMP = StoCoSaMP(Φ,y,K, 0).

StoCoSaMP with PR = 0 enjoys the same exponential recovery guarantees
as CoSaMP [15]. Unfortunately, it also inherits the propensity of CoSaMP to
get trapped in local optima that may not be global.

Special Case: PR = 1 (Purely Random Pursuit). The primary goal here
is to show that even if PR = 1, StoCoSaMP will retain strong components per
Definition 9.
1 Proofs of all results not found here will be included in the full version of this paper.
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Lemma 2. When PR = 1, StoCoSaMP is equivalent to a random walk or a
purely random pursuit.

We have Φ as a normalized matrix with the RIP constant δK for K-sparse
signals. Let x ∈ R

N be a K-sparse vector. The following two definitions model
lines 13 in Fig. 1 and the true support and the current support estimate supp(bK)
respectively.

Definition 7 (Least Squares Estimate). For any randomly selected or
arbitrary support set T (see lines 6 and 7 of StoCoSaMP) with |T | = 2K, the
least squares estimate for the signal at any particular iteration b is defined as
b|T = Φ†

T y together with b|T c = 0.

Definition 8 (True Support and Current Support). We define the true
support to be λ∗ = supp(x) and the current support to be λ = supp(bK) where
bK is the best K-sparse approximation of b at the current StoCoSaMP iteration.

The following notion of strong components will prove useful in our analysis
(see Theorems 1 and 2).

Definition 9 (β-Strong Component w.r.t. Ψ). We define a true signal com-
ponent xΩ (|Ω| = 1) to be β-strong w.r.t. Ψ , if for a subset Ψ ⊂ λ∗ of the indices
of the true components, with |Ψ | ≤ K − 1 and Ω /∈ Ψ , we have |x|Ω |

||x|Ψ ||2 ≥ β.

Notation: We now define notations for the rest of Sect. 2.5. We denote, for one
iteration of StoCoSaMP, a selected support by λ. For the analysis, we also define
Ω ∈ F = {T ∩λ∗} with |Ω| = 1; F represents the true components in the current
support estimate. Z = T\λ∗ represents the rest of the false components in the
current support set T , which are not active in the actual signal. Lastly Ψ = F\Ω
for every iteration of the random step (lines 6 and 7 of StoCoSaMP).

The following lemma is useful in proving Theorem1.

Lemma 3. We have

||((Φ∗
F ΦF )−1)Ωx||2 �

(
1 ± δ2Kη

) |x|Ω | ± η||x|Ψ ||2

where η =
(

δK

1−δK−1−δ2
K

)
and ((Φ∗

F ΦF )−1)Ω corresponds to the Ωth row of

(Φ∗
F ΦF )−1. Further, we assume Φ∗

ΨΦΨ is full rank and that Φ has normalized
columns.

Lemma 3 involves two inequalities which have been combined in one state-
ment. It is useful since it bounds the projection of x onto the Ωth row of
(Φ∗

F ΦF )−1. We now present our main result.

Theorem 1 (Retaining Strong True Support). For StoCoSaMP with PR =
1, if δZ ≤ δZ+K ≤ 0.03, δK ≤ δZ+K and x|Ω is β-strong w.r.t. Ψ with β = 0.1,
then Ω ∈ λ.
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Interestingly, under RIP, Theorem 1 shows that even if an algorithm is not
greedy and always picks a random support, β-strong true components of the
signal present in the current support (w.r.t. to the other true components) are
guaranteed to be retained. Our proof strategy is to find a condition such that
the lower bound for ||b|Ω ||2 is greater than the upper bound for ||b|Ψ ||2. This
forces the true component Ω into the top K elements chosen during pruning.
We find the lower and upper bounds through RIP.

When the sparse signal is exactly K-sparse, the β-strong constraint might
seem restrictive, since it only allows components stronger w.r.t. the rest of the
components by a factor of β to be recovered. However, in the case of general
signals, where the true sparse vector contains noise, the β-strong constraint is
more easily satisfied due the presence of very small noisy components. Thus, the
K large components are more likely to be recovered.

Support convergence under β -strong condition: Now let Υ i be the set of
true components in the support estimate at the ith StoCoSaMP iteration, i.e.,
Υ i = λi ∩ λ∗. Thus, at every iteration, we would like |Υ | to increase up until
the desired cardinality of the support, (i.e., K). We have the following result on
support convergence.

Theorem 2 (Support Convergence for Purely Random StoCoSaMP).
For StoCoSaMP with PR = 1, i.e., a purely random pursuit, if {δK , δZ} ≤
δZ+K ≤ 0.03 and ∃x|Ω in support T i at iteration i, such that x|Ω is β-strong
w.r.t. some Ψ with β = 0.1 and Ω /∈ λi, then |Υ i+1| ≥ |Υ i|.

Theorem 2 shows that even for StoCoSaMP’s purely random case (PR = 1),
the support estimate does not worsen as the algorithm progresses. There will
be no improvement when β-strong components are not present: the support
estimate does not change. These results are deterministic since they analyze the
worst case and are stronger guarantees than the average case analysis typical
of randomized algorithms. For 0 < PR < 1, the greedy step has already been
shown to have exponential reduction in error [15], thus the results presented here
ensure that the algorithm does not diverge while executing a random step.

Theorem 2 is a contrast to earlier results suggesting that greed is important
for recoverability [21]. Although a greedy algorithm might have stronger guar-
antees for recoverability, random support selection allows for practical improve-
ments (analogous to those in the SLS literature) in situations where RIP breaks
down, (e.g., past the phase transition boundaries of greedy pursuits). Note that
in such a case, Theorem 1 will not hold and StoCoSaMP, like CoSaMP, currently
has no theoretical guarantees. The SLS properties of StoCoSaMP then assume
a larger role, which is difficult to analyze theoretically.2

2 Indeed, in our experiments, we find that for PR = 1, when RIP breaks down, Sto-
CoSaMP does not perform well. A few greedy steps are needed for convergence (see
Fig. 4(a)). Nonetheless, in experiments in Sect. 3 we find that StoCoSaMP converges
towards the true solution even in large dimensions for high PR = 0.9 but not for
PR = 1 (see Fig. 4(a)). In most cases, we find empirically that StoCoSaMP converges
on average faster than CoSaMP.
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General Case: 0 ≤ PR ≤ 1 (Randomized Greedy Pursuit). With 0 ≤
PR ≤ 1, under RIP, the individual theoretical guarantees of greedy and random
steps still hold. However, when RIP does not hold, the random effects of the SLS
model S from Definition 5 become interesting. We now define an active variable
for use in the informal discussion about escaping local minima.

Definition 10 (Active Variable). Let y = Φx where x ∈ R
N is a K-sparse

vector. Then the set A = {i | |xi| > 0} is called the active set, and the corre-
sponding i-th element of x is called an active variable.

Assume that a column or atom τ of Φ is approximately linearly dependent
on some other set of columns Γ belonging to Φ, i.e., φ|τ ≈ ∑

i∈Γ αiφi for some
αi. Now, if the signal had each element in Γ as its active variable, but not τ , then
the signal proxy ΦT v (line 9 in StoCoSaMP) forces CoSaMP (and StoCoSaMP)
to pick τ . The atom τ can be said to be “stronger” than the atoms in the set
Γ since τ is more likely to be picked by the signal proxy rather than the true
atoms in Γ . This is because picking τ explains much more of the signal.

In this situation, when a “stronger” component τ exists w.r.t. a set Γ , the
search falls into a local minimum. It would be hard to drop τ from the support
estimate, as it approximately explains the components Γ in the signal by itself.
This is where StoCoSaMP randomness could help. In randomly choosing 2K
atoms from Φ, it is more likely than in a greedy setting that the algorithm
might pick a few atoms that are active and “weak” compared to some other
atom. Once CoSaMP (and StoCoSaMP) chooses a variable, it explains away
that component. Thus, the random step in StoCoSaMP (for 0 < PR ≤ 1) helps
the search to avoid being trapped in a local minimum.

This effective dodging of local minima acts even when RIP might not hold.
However, in the case where RIP does hold for Φ, Theorem 1 shows that greed is
not necessary for recovering β-strong components of the signal w.r.t. Ψ . In many
of our experiments, such as the real-world gene expression data (Sect. 3.5), we
do not check for the RIP condition, but StoCoSaMP still works well.

3 Experimental Results

3.1 Phase Transition Diagrams

Goal. The goal of this experiment is to investigate whether StoCoSaMP can
solve a broader and harder range of problems compared to CoSaMP. Specifically,
we seek to reconstruct K-sparse i.i.d. Gaussian signals with no noise added.

Method and Data. The inherent dimensionality of the problem was set to
N = 200. The measurement matrices were i.i.d. sampled from the standard
normal distribution, N (0, 1). For StoCoSaMP, PR = 0.3.3 As is standard in the

3 For all experiments, we set the maximum number of iterations for both CoSaMP
and StoCoSaMP generously to 250.
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(a) Phase transition diagram
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Fig. 2. (a) Phase transition boundary diagrams (showing probability of signal recovery)
for CoSaMP and StoCoSaMP (with PR = 0.3). (b) Effect of varying the probability of
the random step PR, along the x-axis, on StoCoSaMPs signal recoverability, along the
y-axis, for Gaussian measurement matrices. CoSaMP is PR = 0 in (b).

literature [9], intrinsic recovery capability of the algorithm was measured in a
noiseless setting with a 90 % threshold in probability of recovery.

Results. We compare the phase transition diagrams of CoSaMP and Sto-
CoSaMP in Fig. 2(a). The x-axis is α = M/N and the y-axis is ρ = K/M ,
where K is the sparsity and M,N are the dimensions of Φ. If a point is below
the transition boundary, problems of that setting are considered solved given
a threshold for the probability of recovery (90 %). The axes denote gradual
change in difficulty, with the most difficult setting being the top left corner and
the easiest being the bottom right corner. Figure 2(a) shows that StoCoSaMP
clearly improves on the phase transition region over CoSaMP, especially for
0.35 ≤ α ≤ 0.5.

3.2 Effect on Recoverability: Random Gaussian Matrices

Goal. The goal of this experiment is to compare the performance of CoSaMP
and StoCoSaMP for a broad range of PR-values.4 This will (i) shed light on the
problem of local optima in sparse signal recovery and (ii) provide an experimental
counter-point to Theorem 1.

Method and Data. We constructed 100 normalized synthetic signal recov-
ery problems; the M × N measurement matrix was sampled i.i.d. from N (0, 1).
Then, by varying PR, we examine the percentage of successful recoveries for Sto-
CoSaMP (recovered SNR > 50 dB). We investigate a challenging point on the
phase transition, specifically α = 0.6 and ρ = 0.5 (see Fig. 2(a)). The dimension-
ality is varied from N = 200 to N = 5000.

4 For comparative results on real-world data please refer to Sect. 3.5.
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(a) N = 200 (b) N = 500 (c) N = 1000

Fig. 3. Effect of varying the random step probability PR (x-axes) on the mean wall
clock run time (y-axes). CoSaMP is PR = 0. The reduction in mean wall clock time is
relatively small, but comes in addition to improved accuracy (see Fig. 2(b)).

Results. Figure 2(b) illustrates the serious handicap of purely greedy pursuits
in escaping local optima. Specifically, Fig. 2(b) shows that at α = 0.6 and
ρ = 0.5, CoSaMP (PR = 0) performs poorly.5 For 0.1 ≤ PR ≤ 0.9, StoCoSaMP
tends to succeed significantly more often. For these lower dimensions, even a
purely random walk (PR = 1) performs better than CoSaMP (PR = 0), owing to
SLS properties and Theorem 1 (random Gaussian matrices are known to satisfy
RIP). The result, though perhaps initially surprising, is consistent with previous
studies of the role of randomization in hard combinatorial problems. In problems
of high difficulty, the expected time to find a global optimum is minimized when
search is close to a random walk [10].

Figure 3(a)-(c) show the mean wall clock run time for the convergence over
these 100 problems as PR in StoCoSaMP was varied. Since the time complexity
of a single random step is lower than that of a single greedy step, the overall
computational time generally decreases as we increase PR. Hence, StoCoSaMP
can not only outperforms CoSaMP in terms of recoverability, but also in terms
of computation time for a significant range of PR.

3.3 Effect on Recoverability: High-Dimensional Problems

Goal. To handle high-dimensional data such as images or spatio-temporal data,
we experiment with Hadamard matrices with up to 1 million dimensions.

Method and Data. We use sets of randomly permuted rows of the Hadamard
matrix as the measurement matrix, and set α = 0.1 and ρ = 0.05, giving us
reasonable values for the sparsity K and the number of measurements M . We
simulate 100 different problems, and define a strict SNR threshold for a successful
recovery at 120 dB.

5 We consider a recovery successful if the SNR of the recovered sparse signal to the
ground truth is above a certain threshold (50 dB for this experiment).
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(a) Recovery performance versus PR
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Fig. 4. Effect of varying PR, along x-axis, on: (a) StoCoSaMP’s signal recoverability
for randomly permuted Hadamard measurement matrices and (b) the mean number of
iterations required for convergence by StoCoSaMP. PR = 0 is CoSaMP. (Color figure
online)
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Fig. 5. Histograms of recovery errors (top row) and SNRs (bottom row) for CoSaMP
(green), StoCoSaMP (blue), CoSaMP+SWAP (black), and StoCoSaMP+SWAP (red),
for different levels of noise (50 dB, 40 dB, or 33 dB) added to the measurement vector.
(Color figure online)



Stochastic CoSaMP: Randomizing Greedy Pursuit 773

Table 1. Mean (μ) and Standard deviations (σ) of recovery errors and SNRs for
the comparison of CoSaMP, StoCoSaMP and SWAP initialized by each algorithm
(denoted by CoSaMP+SWAP and StoCoSaMP+SWAP), under different noise added
to measurement vector (SNR in dB). For a given SNR level, bold and italics signify
the best and the second-best results respectively.

SNR Algorithm μError σError μSNR σSNR

50 CoSaMP 0.1135 0.0803 13.934 18.393

StoCoSaMP 0.0334 0.0784 37.954 14.595

CoSaMP+SWAP 0.0735 0.0527 15.923 20.543

StoCoSaMP+SWAP 0.0216 0.0516 42.157 15.942

40 CoSaMP 0.1031 0.0719 13.222 13.749

StoCoSaMP 0.0600 0.0748 24.157 14.002

CoSaMP+SWAP 0.0665 0.0478 15.134 15.634

StoCoSaMP+SWAP 0.0390 0.0508 27.471 15.624

33 CoSaMP 0.1189 0.0678 9.633 10.589

StoCoSaMP 0.0625 0.0652 20.974 9.718

CoSaMP+SWAP 0.0781 0.0473 11.331 12.254

StoCoSaMP+SWAP 0.0401 0.0441 24.179 10.887

Results. Figure 4(a) reports success rates, while Fig. 4(b) reports the number
of iterations. The figures suggest that the advantages, both in terms of suc-
cess rate and computation time (iterations), of StoCoSaMP over CoSaMP are
not restricted to the lower-dimensional case. For success rate (see Fig. 4(a)), the
advantage of StoCoSaMP over CoSaMP is very clear for the high-dimensional
cases of N = 100K (blue line) and N = 1 million (black line).6 In image process-
ing applications, for example, N = 1 million is typical. As seen in Fig. 4(a), at
these high dimensions, a purely random pursuit (PR = 1) fails in many cases,
whereas 0.1 ≤ PR ≤ 0.9 does much better.

Using 0.1 ≤ PR ≤ 0.6, StoCoSaMP also gives faster convergence than
CoSaMP (PR = 0) in terms of number of iterations, see Fig. 4(b). This and
the results of the previous experiment in Sect. 3.2 experimentally validate The-
orem 1. From this and the previous experiment, it seems that recoverability is
best when StoCoSaMP employs a combination of greedy and random steps. To
the practitioner, we suggest to use 0.2 ≤ PR ≤ 0.6, where both high success rates
and computational gains are apparent.7 The theoretical justification is unclear
and would be interesting to explore in future work.

6 The variation of success for different dimensions for both StoCoSaMP and CoSaMP
is inherent to the performance characteristics of CoSaMP itself.

7 This does not hold for the smallest N = 1K problems, which on the other hand are
the least interesting from a scalability point of view.
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3.4 Effect of Noise on Recoverability

Goal. We now focus on noisy measurement signals. We also evaluate the per-
formance of SWAP when it is initialized by CoSaMP and StoCoSaMP. SWAP
is a greedy algorithm; it can be used to fine-tune the solutions of other recovery
algorithms [2]. Here, we use SWAP to investigate whether a solution obtained
by StoCoSaMP on average lies in a better basin than a solution obtained by
CoSaMP. Intuitively, SWAP’s explicit greediness forces the solution within each
basin towards the local optimum of that particular basin.

Method and Data. We experiment with three noise levels in the measurement
vector 50 dB (low noise), 40 dB, 33 dB (high noise). We construct 100 synthetic
problems with the measurement matrix and the sparse vectors being sampled
i.i.d. from N(0, 1). We add varying amounts of white Gaussian noise to our
measurement vectors, such that the SNR is at one of the three levels of noise.
For all problems, we set PR = 0.3 in StoCoSaMP and N = 200.

Results. We report the error and SNR statistics and the corresponding his-
tograms for the four algorithmic combinations in Table 1 and Fig. 5. Table 1
suggests that StoCoSaMP achieves higher quality recoveries (SNR) on average
compared to CoSaMP over all problems (SNR ≥ 33 dB) in the presence of vary-
ing levels of noise. In fact, StoCoSaMP in most cases performs better on average
than SWAP initialized with CoSaMP. This is powerful, since StoCoSaMP is also
computationally less expensive than either CoSaMP (purely greedy) or SWAP
(exponential complexity). The histogram plots in Fig. 5 clearly show that both
StoCoSaMP and StoCoSaMP+SWAP tend to achieve much lower errors than
their CoSaMP counterparts. This experiment suggests that the advantages of
StoCoSaMP extend to situations with significant noise.
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Fig. 6. 10-fold cross-validation testing error on the gene-expression datasets for (a)
Leukemia data (72 × 5147) (b) and Prostate data (102 × 12533).
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3.5 Real-World Data: Classifying Gene Expression

Goal. To evaluate StoCoSaMP’s real-world classification performance, we study
two large-scale gene expression cancer datasets. We compare StoCoSaMP,
CoSaMP, StoGradMP, StoIHT, OMP, ROMP, IHT, and AMP.

Method and Data. The datasets contain the gene expression levels for
leukemia (M = 72 and N = 5147) and prostate cancer (M = 102 and
N = 12533) with a binary label.8 This is a classification problem where unseen
gene expression values are to be classified. We learn a K-sparse linear classifier
for this experiment. The labels act as the signal to be expressed as a linear com-
bination of the gene expressions. The linear combination is parameterized by a
weight vector that is recovered by a sparse signal recovery algorithm. Following
a previous study [23], we explore sparsities ranging from K = 2 to K = 10.

AMP determines the sparsity level internally through soft thresholding. For
AMP, unlike for the other algorithms, we do not enforce K-sparsity. We per-
form 10-fold cross validation for each level of sparsity (20 trials for StoCoSaMP,
StoIHT and StoGradMP for each sparsity) with PR = 0.5 for StoCoSaMP. For
StoGradMP and StoIHT, we set the block size to min(K,M) as in previous
work [17]. We then pick the classifier (sparse solution) that minimizes the train-
ing error as our model for testing for all stochastic algorithms.

Results. Figure 6(a) and (b) show the experimental results for all algorithms for
the two datasets. StoCoSaMP’s results (black line) are a consistent improvement
over all other algorithms (including StoGradMP) in all cases. AMP achieved an
error of 11.10 (with K = 62) on the Leukemia dataset and 31.35 (with K = 89)
on the Prostate dataset, worse than StoCoSaMP. StoIHT performed worse in
all cases and reported an error consistently above 10, and is not plotted in the
figure.

4 Conclusion

In this paper, we present a Stochastic CoSaMP (StoCoSaMP) method. Under
RIP, even a purely random version of StoCoSaMP (PR = 1) will observe support
convergence. This provides an interesting addition to previous results, which
have suggested that greed is good for recovery [21]. Our experiments show that
StoCoSaMP out-performs CoSaMP on a variety of signal recovery problems, and
other algorithms (including CoSaMP, StoGradMP and StoIHT) on a real-world
large scale classification task.

Acknowledgements. We thank Aswin C. Sankaranarayanan for his helpful com-
ments and for checking the correctness of the proofs.

8 See http://www.biolab.si/supp/bi-cancer/projections/info/leukemia.htm and
/prostate.htm.

http://www.biolab.si/supp/bi-cancer/projections/info/leukemia.htm
http://www.biolab.si/supp/bi-cancer/projections/info/prostate.htm
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Abstract. We present Deep Stochastic Neighbor Compression (DSNC),
a framework to compress training data for instance-based methods (such
as k-nearest neighbors). We accomplish this by inferring a smaller set of
pseudo-inputs in a new feature space learned by a deep neural network.
Our framework can equivalently be seen as jointly learning a nonlinear
distance metric (induced by the deep feature space) and learning a com-
pressed version of the training data. In particular, compressing the data
in a deep feature space makes DSNC robust against label noise and issues
such as within-class multi-modal distributions. This leads to DSNC yield-
ing better accuracies and faster predictions at test time, as compared to
other competing methods. We conduct comprehensive empirical evalua-
tions, on both quantitative and qualitative tasks, and on several bench-
mark datasets, to show its effectiveness as compared to several baselines.

1 Introduction

In machine learning problems there are situations for which the massive data
scale renders learning algorithms infeasible to run in a reasonable amount of
time. One solution is to first summarize the data in the form of a small set
of representative data points that best characterize and represent the original
data, and then run the original algorithm on this subset of the data. This may
be desirable due to the requirement of making a fast prediction at test time,
in problems where the predictions depend on the entire training data, e.g.,
k-nearest neighbors (kNN) classification [4,8] or kernel methods such as SVMs
[21]. For example, in traditional kNN classification, the prediction cost for each
test example scales linearly in the number of training examples, which can be
expensive if the number of training examples is large. Traditional approaches
to speed-up such methods usually rely on cleverly designed data structures or
select a compact subset of the original data (e.g., via subsampling [4]). Although
such methods may reduce the storage requirements and/or prediction time, the
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 777–794, 2016.
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performance tends to suffer, especially if the original data is high-dimensional
and/or noisy.

Recently [24] introduced Stochastic Neighbor Compression (SNC), which
learns a set of pseudo-inputs for kNN classification by minimizing a stochas-
tic 1-nearest neighbor classification error on the training data. Compared to
the data sub-sampling approaches, SNC achieves impressive improvements in
test accuracy when using these pseudo-inputs as the new training set. However,
since SNC performs data compression in the original data space (or in a linearly
transformed lower-dimensional space), it may perform poorly when the data in
the original space are highly non-separable and noisy.

Motivated by this, we present Deep Stochastic Neighbor Compression
(DSNC), a new framework to jointly perform data summarization akin to the
methods like SNC, while also learning a nonlinear feature representation of the
data via a deep learning architecture. Our framework is based on optimizing an
objective function that is designed to learn nonlinear transformations that pre-
serve the neighborhood structure in the data (based on label information), while
simultaneously learning a small set of pseudo-inputs that summarize the entire
data. Note that, due to the neighborhood preserving property, our framework
can also be viewed as performing a nonlinear (deep) distance metric learning [22],
while also learning a summarized version of the original data. The data summa-
rization aspect also makes DSNC much faster than other metric learning based
approaches which need all the training data. In DSNC, the data summarization
and feature learning, both, are performed jointly through backpropagation [31]
using stochastic gradient descent, making our framework readily scalable to large
data sets. Moreover, our framework is also more general than standard feedfor-
ward neural networks which perform simultaneous feature learning and classifi-
cation but are not designed to learn a summary of the data which may be useful
in its own right.

In our comprehensive empirical studies, DSNC achieves superior classification
accuracies on the seven datasets we used in the experiments, outperforming SNC
by a significant margin. For example, with DSNC, 1-NN is able to achieve 0.67%
test error on MNIST with only ten compressed data samples (one per class) on
a 20-dimensional feature space, compared to 7.71% for SNC. We also report
qualitative experiments (via visualization) showing that DSNC is effective in
learning a good summary of the data.

2 Background

Throughout this paper, we denote vectors as bold, lower-case letters, and matri-
ces as bold, upper-case letters. ‖·‖ applied to a vector denotes the standard vector
norm, [X]ij means the (i, j)-th element of matrix X. We denote the training data
X = {x1, ...,xN}, where X ∈ R

D×N are N observed data samples of dimension-
ality D with corresponding labels Y = {y1, ..., yN} ∈ YN , with Y as a discrete
set of possible labels.

To motivate our proposed framework DSNC (described in Sect. 3), we first
provide an overview of Neighborhood Components Analysis (NCA) [16,32] and
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Stochastic Neighbor Compression (SNC) [24], which our proposed framework
builds on.

2.1 Neighborhood Components Analysis

Neighborhood Components Analysis (NCA) [16] is a distance metric learning
method that learns a mapping f(·|W) with parameters W to optimize the
k-nearest-neighbors classification objective. The optimization is based on pre-
serving the Euclidean distance dij = ‖f(xi) − f(xj)‖2 in the transformed space
for xi and xj , based on their original neighborhood relationship in the origi-
nal space. Specifically, soft neighbor assignments are used in NCA to directly
optimize the mapping f for kNN classification performance. The probability
pij that xi is assigned to xj as its stochastic nearest-neighbor is modeled
with a softmax over distances between xi and the other training samples, i.e.,
pij = exp(−dij)∑

k:k �=i exp(−dik)
. The objective of NCA is to maximize the expected num-

ber of correctly classified points, expressed here as a log-minimization problem:
Ŵ = arg minW −∑N

i=1 log(pi), where pi is the probability that the mapped sam-
ple f(xi|W) is correctly classified with label yi, i.e., pi =

∑
j:yi=yj

pij . Although
NCA can learn a distance metric adaptively from data, the entire training data
still needs to be stored, making it computationally and storage-wise expensive at
test time. To extend NCA with nonlinear transformations, [32] defines f(·|W)
to be a feedforward neural network parameterized by weights W.

2.2 Stochastic Neighbor Compression (SNC)

Stochastic Neighbor Compression (SNC) is an improvement over NCA by learn-
ing a compressed kNN training set by optimizing a soft neighborhood objec-
tive [24]. The goal in SNC is to find a subset of m � N compressed samples
Z = [z1, ..., zm] with labels Ŷ = [ŷ1, ..., ŷm], to best approximate the kNN deci-
sion rule on the original set of training samples X and labels Y. Different from
NCA, a compressed set Z needs to be learned from the whole data. The objec-
tive is to maximize the stochastic nearest-neighbor accuracy with respect to
Z, i.e., Ẑ = arg minZ −∑N

i=1 log(pi), where the probability of a correct assign-
ment between a training sample xi and the compressed neighbors zi is defined
as pi =

∑
j:yi=yj

exp(−γ2‖xi−zj‖2)∑m
k=1 exp(−γ2‖xi−zk‖2) , where γ is the width of the Gaussian

kernel. Given such probabilities, the objective of SNC is constructed as in the
case of NCA and is optimized w.r.t. the m pseudo-inputs Z. In [24], a linear
metric learning extension of this approach was also considered, which defines
pi =

∑
j:yi=yj

exp(‖−A(xi−zj)‖2)∑m
k=1 exp(−γ2‖−A(xi−zk)‖2) , in which the pseudo-inputs will be

learned in the linearly transformed space. However, in the case of noisy and
highly non-separable data sets, the linear transformation may not be able to
learn a good set of pseudo-inputs. Our proposed framework, on the other hand,
is designed to learn these pseudo-inputs, while simultaneously learning a nonlin-
ear feature representation for these.
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3 Deep Stochastic Neighbor Compression

Our proposed framework Deep Stochastic Neighbor Compression (DSNC) is
based on the idea of summarizing/compressing data in a nonlinear feature space
learned via a deep feedforward neural network. Although methods like SNC
(Sect. 2.2) can achieve a significant data compression, the inferred pseudo-inputs
Z still belong to the original feature space, or a linear subspace of the original
data. In contrast, DSNC learns Z in a more expressive, nonlinear feature space.
Note that, in our framework, nonlinear feature learning naturally corresponds
to a nonlinear (deep) metric learning.

DSNC consists of a deep feedforward neural network architecture which
jointly learns a compressed set Z ∈ R

d×m with m pseudo-inputs (m � N),
along with a deep feature mapping f(·|W) from the original feature space R

D

to a transformed space R
d. The procedure is illustrated in Fig. 1. The set Z con-

sisting of the inferred pseudo-inputs and the deep feature representation f(·|W)
are used as a reference set and feature transformation, respectively, at test-time
of an instance based method such as kNN classification. In the following we
describe the key components of DSNC.

Input Data
Deep Feature 

Transformation After Optimization

Compressed Data

Fig. 1. A conceptual illustration of DSNC, which transforms the data via a deep feed-
forward neural net while simultaneously learning the pseudo-inputs that summarize
the original data.

3.1 Deep Stochastic Reference Set

Let f(·|W) :RD →R
d be a deep neural network mapping function, with W as

the set of parameters from all layers of the network.1 Similar to SNC, we aim to
learn a compressed set of pseudo-inputs, Z = [z1, · · · , zm] with z ∈ R

d, such that
Z summarizes the original training set in the deep feature space. To this end,
akin to SNC, we define the probability that input xi chooses zj as its nearest
reference vector as:

pij =
exp(−γ2‖f(xi) − zj‖2)∑m

k=1 exp(−γ2‖f(xi) − zk‖2) . (1)

1 For conciseness, we will typically omit the parameters W from the notation for the
mapping function, i.e., f(·) � f(·|W).
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In the optimization, in addition to learning the parameters of a deep neural
network, the compressed set Z is also learned from the data. This is done by
first initializing Z with m randomly sampled examples from X, noted as X

′
,

and then computing their deep representation via Z = f(X
′
), while recording

their original labels. Note that while learning f and Z, these labels are fixed
throughout, while Z and the parameters W of the deep mapping f are learned
jointly with the objective defined below.

3.2 DSNC Objective

To define an objective function for DSNC, we would like to ensure pi �∑
j:yi=yj

pij = 1 for all xi ∈ X, where pij is defined in (1). This means that
the probability pij corresponding to an input xi and a pseudo-input zj , both
having different labels, is zero. We then define the KL-divergence between the
“perfect” distribution “1” and pi as

KL(1‖pi) = − log(pi) (2)

We wish to find a compressed set Z such that as many training inputs as possible
are classified correctly in the deep feature space. In other words, we would like
pi to be close to 1 for all xi ∈ X. This leads to the following objective:

L̃(Z,W) = −
n∑

i=1

log(pi), (3)

where W denotes the parameters of the deep feedforward neural network.
There are two possible issues that may arise while optimizing the objective

(3) for DSNC and need to be properly accounted for. First, since we are jointly
learning the deep feature map f and the compressed set Z, without any con-
straints, it is possible that the mapped samples f(xi) are on a different scale than
the compressed samples Z in the deep feature space, while achieving a small value
for the objective function (3). To handle this issue, we encourage the distance
between f(xi) and zj to be small to avoid an inhomogeneous distribution in the
feature space.

Second, it is also possible that all the compressed data samples with the
same label collapse into a single point since our objective aims to maximize
the classification accuracy. As a result, we also penalize the distribution of the
compressed samples to encourage a multi-modal distribution for each label. This
is done by maximizing the pair-wise distance between two pseudo-inputs zi and
zj with the same label. Consequently, the DSNC objective function combines
the KL-divergence term L̃(Z,W) with two additional regularization terms to
account for these, and is given by
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Algorithm 1. DSNC in pseudo-code
1: Input: {X,Y}; compressed data set size m
2: Initialize Z by sampling m inputs from X, uniformly in each class, and forwarding

into the initialized deep neural network f(·)
3: Learn Z and the deep networks f(·) with back-propagation using gradients in (5)

and (6)
4: Return f(·) and Z

L(Z,W) = −
n∑

i=1

log(pi) + λ1

n∑

i=1

m∑

j=1

‖f(xi) − zj‖2

︸ ︷︷ ︸
R1

− λ2

m∑

i=1

m∑

j=1

δ(ŷi, ŷj)‖zi − zj‖2

︸ ︷︷ ︸
R2

(4)

where λ1 and λ2 are regularization coefficients and the delta function δ(ŷi, ŷj)=1
if ŷi = ŷj , and 0 otherwise. {ŷi} are the labels for the compressed set Z. R1

regularizes the compressed samples to be close to the training data in the deep
feature space, while R2 encourages compressed samples with the same label to
dissociate.

3.3 Learning with Stochastic Gradient Descent

The objective function (4) can be easily optimized via the back-propagation
algorithm with stochastic gradient descent [7]. We adopt the RMSProp
algorithm [35].

Specifically, there are two components that need to be updated: the para-
meters W of the deep neural network, and the compressed set Z. Parameters
W are updated by back-propagation, which requires the gradient of the objec-
tive with respect to the output f(X), which is then back-propagated down the
neural network. The compressed set Z can be simply updated with a stochastic
gradient descent step. The stochastic gradients for both Z and f(X) have simple
and compact forms. To write down the gradients, we first define the following
matrices {Q,P, P̂} ∈ R

n×m,Q1 ∈ R
m×m,P1 ∈ R

d×n, and {P2,Q2} ∈ R
d×m as

[Q]ij = (δyi,ŷj
− pi), [Q2]ij =

m∑

i=1

Qij

[Q1]ij = δ(ŷi, ŷj), [P]ij =
pij

pi
, [P̂]ij = pij

[P1]ik =
m∑

j

zij , [P2]jk =
n∑

i

xji
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Here, pij is defined in (1), xij and zij denote the corresponding elements
of row/column i/j in X/Z. After some careful algebra, the gradient of L with
respect to the compressed set Z and f(X) can then be conveniently represented
in matrix operations with the above defined symbols, i.e.,

∂L
∂Z

= −2γ2
(
X (Q ◦ P) − Z diag

(
(Q ◦ P)T 1n

))
(5)

+ 2λ1 (nZ − P2) + 2λ2 (ZQ1 − Q2 ◦ Z)
∂L

∂f(X)
= −2γ2Z

(
Q ◦ P − P̂

)T

+ 2λ1 (mX − P1) . (6)

where ◦ is the Hadamard (element-wise) product, 1n is the n × 1 vector of all
ones, and diag(·) is the diagonal operator placing a vector along the diagonal
of an otherwise 0 matrix. Given the gradients, learning is straightforward by
applying the RMSProp algorithm on Z and the back-propagation for learning
W , described in Algorithm 1.

3.4 Relationship with Deep Neural Net with Softmax Output

We now show how DSNC is related to a deep neural network with a softmax
output. Note they are comparable only when m = |Y |, i.e., the number of
pseudo-inputs is equal to the number of classes. Note that, for a deep neural
network with a softmax output, the corresponding probability for (1) can be
written as

pij =
exp(fT (xi)zj)

∑|Y |
k=1 exp(fT (xi)zk)

.

Note that the Euclidean distance in DSNC is replaced by an inner prod-
uct in softmax function above. When γ2 = 1

2 and ||f(xi)||22 = ||zj ||22 = 1, the
probability that xi belongs to “class” zj , as given by (1) can be written as

pij =
exp(− 1

2
‖f(xi)‖2) exp(− 1

2
‖zj‖2) exp(fT (xi)zj)

∑|Y |
k=1 exp(− 1

2
‖f(xi)‖2) exp(− 1

2
‖zk‖2) exp(fT (xi)zk)

=
exp(fT (xi)zj)

∑|Y |
k=1 exp(f

T (xi)zk)

which exactly recovers the softmax output. Therefore, a deep neural network
with a softmax output can be viewed as a special case of our DSNC framework.

4 Related Work

Our work is aimed at improving the accuracies of instance based methods,
such as kNN, by learning highly discriminative feature representations (equiv-
alently, learning a good distance metric), while also speeding up the test-time
predictions. It is therefore related to both feature/distance-metric learning algo-
rithms, as well as data summarization/compression algorithms for instance based
methods.
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In the specific context of kNN methods, there have been several previous
efforts to speed up kNN’s test-time predictions. The vast majority of these meth-
ods reduce to speeding up the retrieval of k nearest neighbors without modifying
the training set. These include space partition algorithms such as ball-trees [6,30]
and kd-trees [5], as well as approximate neighbor search like local-sensitive hash-
ing [3,14]. Our paper addresses the problem from the perspective of data com-
pression that reduces the size of the training set. Note that data compression
approach is orthogonal to prior efforts on fast retrieval approaches, and thus
these two methodologies could be combined.

Perhaps the most straightforward idea for data compression is subsampling
the dataset. The seminal work in this area is Condensed Nearest Neighbors
(CNN) proposed by [18]. It starts off with two sets, S and T , where S contains
an instance of the training set and T contains the rest. CNN repeatedly scans
T , looking for an instance in T that is misclassified using the data in S. This
instance is then moved from T to S. This process continues until no more data
movement can be made. Since this work, there have been several variants of
CNN, including MCNN to address the order dependent issue of CNN [11], post-
processing method [13], and fast CNN (FCNN) [4]. With these methods, the
compressed training set is always a subset of the original training set, which is not
necessarily a good representation. Recently, [24] introduce Stochastic Neighbor
Compression (SNC), which learns a synthetic set as the compressed set. Assum-
ing the synthetic set is presented as the design variables, SNC uses stochastic
neighborhood [16,20,26] to model the probability of each training instance being
correctly classified by the synthetic set. The synthetic set is obtained through
numerical optimization, where the objective is to minimize the KL-divergence
between the modeled distribution and the “perfect” distribution in which all
training instances are correctly classified.

Among other works on summarizing/compressing massive data sets for
machine learning problems includes methods such as coresets [1] for geometric
problems (e.g., k-means/k-median clustering, nearest neighbor methods, etc.).
Kernel methods are also known to have the problem of having to store the entire
training data in the memory and being slow at test time, and several methods
such as landmarks based approximations [21,40] have been proposed to address
these issues. However all these methods can only perform data compression by
learning a set of representatives in the original feature space, and are not suited
for data sets that are high-dimensional and exhibit significant nonlinearities.

All of the above methods operate on the original data space, not embracing
the superior expressive power of deep learning. With unprecedented generaliza-
tion performance, deep learning has achieved great success in various impor-
tant applications, including speech recognition [17,19,29], natural language
processing [9,27,28], image labeling [12,23,34,39], and object detection [15,36].
Recently, the kNN classifier has been equipped with deep learning in modern face
recognition systems, such as FaceNet [33]. In particular, kNN performs classifi-
cation on the space mapped by a convolutional net [25]. However, Facenet trains
the convolutional net to reflect the actual similarity between images/faces, rather
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than the accuracy performance of kNN. [32] introduce a method to train a deep
neural net for kNN to perform well on the transformed space. Though inspired
by this work, our DSNC is fundamentally different in that it not only optimizes
the kNN performance but also simultaneously learns a compressed set in a new
nonlinear feature space learned by a feedforward deep neural network.

5 Results

We present experimental results on seven benchmark datasets, including four
from [24], i.e., mnist, yaleface, isolet, adult; and three additional, more
complex datasets, i.e., 20news, cifar10 and cifar100. Some statistics are
listed in Table 1. Since yaleface has no predefined test set, we report the aver-
age performance over 10 splits. All other results are reported on predefined
test sets. We begin by describing the experimental settings, and then evaluate
the test errors, compression ratios, feature representations, sensitivity to hyper-
parameters and visualization of distributions of the test sets in the deep feature
space. Our code is publicly available at http://people.duke.edu/∼ww107/.

Table 1. Summary of datasets used in the evaluation.

Dataset n |Y | d (dL) Nmax

mnist 60000 10 784 (164) 600

yaleface 1961 38 8064 (100) 100

isolet 3898 26 617 (172) 100

adult 32562 2 123 (50) 100

20news 11314 20 2000 (100) 100

cifar10 50000 10 3072 (200) 100

cifar100 50000 100 3072 (200) 300

5.1 Experimental Setting

To explore the advantages of our deep-learning-based method, we use raw fea-
tures as the input for DSNC and the corresponding reference deep neural net-
works2. For mnist, yaleface (rescaled to 48 × 42 pixels [37]), cifar10 and
cifar100, we adopt convolutional neural networks, while isolet, adult and
20news are fitted with feed-forward neural networks. ReLU is adopted as the
activation function after hidden layers for all models. Details of the network
structures are shown in Table 2. When comparing the error with varying com-
pressed ratios in Sect. 5.3, we fix d in Hd to be dL in Table 1, and the time

2 The same network structure as DSNC except with a softmax-output.

http://people.duke.edu/~ww107/
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Table 2. The feedforward neural network structure used for each dataset. ‘Ck’ (‘Hk’)
indicates a convolutional (fully-connected) layer with k filters (hidden units). The vari-
able d represents the dimensionality of the output feature representation of the inferred
pseudo-inputs Z.

Dataset Network Structure

mnist C20-C50-Hd

yaleface C20-C50-Hd

isolet H500-H500-Hd

adult H200-H200-Hd

20news H800-H800-Hd

cifar10 C64-C128-C256-C128-Hd

cifar100 C64-C128-C256-C128-Hd

comparing the error with varying dimensions in Sect. 5.4, we keep the compared
size m to be Nmax.

DSNC is implemented using Torch7 [10] and trained on NVIDIA GTX
TITAN graphics cards with 2688 cores and 6 GB of global memory. We verify
the implementation by numerical gradient checking, and optimize using stochas-
tic gradient descent with RMSprop, using mini-batch in size of 100. For all the
datasets, we randomly select 20% of the training data for cross-validation of
hyper-parameters λ1 and λ2 and early stopping. In contrast to SNC, our DSNC
is not sensitive to γ. Thus we use a constant value 1 for all DSNC experiments
set up.

With SNC we follow a similar setup to [24]. For isolet and mnist, the
dimensionality is reduced with LMMN as described in [38]. For yaleface, we
follow [38] and first rescale the images to 48 × 42 pixels, then reduce the dimen-
sionality with PCA, while omitting the leading five principal components which
largely account for lighting variations. Finally we apply large margin nearest
neighbor (LMNN) to reduce the dimensionality further to d = 100. For cifar10
and cifar100, we use LMNN to reduce the dimensionality to d = 200. In fact,
the dimensionality of SNC is determined by LMNN. The parameters used for
comparing the test error with varying compression rates and dimensionality
are exactly the same as DSNC as we described before. Parameters are listed in
Table 1. Notice that LMNN is used as the pre-processing step for all the methods
except our DSNC and the corresponding reference networks.

5.2 Baselines

We experiment with two versions of DSNC, one uses the compressed data Z as
the kNN reference during testing, denoted by Compression, the other uses the
entire training data, denoted by ALL. We compare DSNC against the follow-
ing related baselines, where the 1-nearest neighbor rule is adopted for all kNN
methods.
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– kNN without compression, with/without dimensionality reduction with
LMNN;

– kNN using Stochastic Neighbor Compression (SNC) [24];
– Approximate kNN with Locality-Sensitive Hashing (LSH) [2,14];
– kNN using CNN [18] and FCNN [4] dataset compression;
– Deep neural network classifier with the same network structure as DSNC.

5.3 Errors with Varying Compression Ratios

In this section we experiment with varying compressed ratio of the dataset,
defined as the ratio between the compressed data size and the whole data size.
The results are plotted in Fig. 2. Several conclusions can be drawn from the
results: (1) DSNC outperforms other methods on all data sets. The gap between
DSNC and SNC is huge for all the data sets, which indicates the advantage of
learning the nonlinear feature space for data compression. (2) DSNC emerges
as a stable compression method that is robust to the compression ratio. This
is especially true when the compression ratio is small, for example, when the
compression data size equals the number of classes (m = |Y |), DSNC still
performs well, yielding significantly lower errors than LSH, CNN, FCNN and
SNC. And, generally, with increasing m, test errors tend to decrease to a certain
degree. (3) Compared with reference deep neural networks with softmax out-
puts, DSNC exhibits better performances on most datasets except adult, but
with smaller gaps than the other methods. A possible reason could be that the
task is binary classification and multi-modality within class distributions may be
not that explicit in the dataset. It is notable when m = |Y |, DSNC degrades to
the reference neural network using Euclidean distance as the metrics in softmax.
We can see on 20news, cifar10 and cifar100, the reference neural networks
perform better. However, with an adaptive m, DSNC can always surpass the
reference neural networks; while the observation on Y aleFace is particular sur-
prising, as there is a big performance gap between DSNC and the corresponding
convolutional neural networks. This indicates our motivation of learning a repre-
sentative feature space for data compression to be effective, as DSNC has more
degrees of freedom to adapt the compression data to a weak feature presentation.

5.4 Errors with Varying Feature Dimensions

Next we investigate the impact of feature dimensions on the classification accu-
racy. To test the adaptive ability of DSNC to extremely low-dimensional feature
spaces, we vary the feature space dimensions from 10 to 300 on CIFAR10 and
CIFAR100, and from 10 to 100 on the other datasets. The results are plotted in
Fig. 3. We can see from the figure that the performance does not deteriorate when
learning with a deep nonlinear transformation, i.e., DSNC and DNN/CNN yield
almost the same test errors with different feature dimensions on all the datasets,
while other methods produce significantly worse performance when the feature
dimension is low. Particularly, for MNIST and Isolet, a 20 dimensional space
is found to be powerful enough to express the dataset, while for CIFAR100,
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a nonlinear transformation into a 100-dimensional space obtains an accuracy
that is close to the optimal performance. Interestingly, we also notice that using
the compressed data outperforms the one using the entire mapped data. This
is because our objective optimizes directly on the compressed data set, which
can effectively filter out the noise in the original data set consisting of all the
observations.
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Fig. 2. Test error with varying dataset compression rates. The images below or on the
right side in the blue rectangle are the zoom in images (Color figure online)



Deep Metric Learning with Data Summarization 789

0 50 100
0

0.05

0.1
MNIST

0 50 100

6

8

10
10-3

0 50 100

0.05

0.1

0.15

0.2
Isolet

0 50 100
0.04

0.05

0.06

0 50 100
0

0.1

0.2
YaleFace

0 50 100
0.02

0.04

0.06

0 50 100
0.1

0.2

0.3

0.4
Adult

0 50 100
0.14

0.16

0.18

20 40 60 80 100

0.3

0.4

0.5

0.6
20news

20 40 60 80 100
0.25

0.3

0.35

100 200 300

0.2

0.4

0.6

CIFAR10

100 200 300
0.1

0.2

0.3

100 200 300

0.6

0.8

1
CIFAR100

100 200 300

0.55

0.6

0.65

kNN without LMNN
kNN with LMNN
LSH(Gionis et al, 1999)
CNN(Hart, 1968)
FCNN(Angiulli, 2005)
SNC(Kusner et al, 2014)
DSNC(All)
DSNC(Compression)
DNN/CNN

Dimensionality

E
rr

o
r 

R
at

e

Fig. 3. Test error rates after mapping into different size of feature space. Zoom in
images are organized the same as Fig. 2

5.5 Sensitivity to Hyper-parameters

In contrast to SNC, it is found that our model is not sensitive to the parameter γ
in the stochastic neighborhood term. However, the hyper-parameters λ1 and λ2

do influence the performance of DSNC, because they control different behaviors
of the objective. Specifically, λ1 tends to pull the compressed data closer to the
training sets in the deep feature space, while λ2 pushes the compressed data with
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Fig. 4. tSNE visualization on 20news with varying λ1 and λ2, compression size 500
(black circle), color indicates categories (Color figure online)

the same label to be far away from each other, such that they do not collapse into
a single point and tend to capture the within-class multi-modality. We visualize
the effects for these hyper-parameters by embedding the compressed data into
2-dimensional space using tSNE [26]. We use the 20news dataset for visualiza-
tion in Fig. 4. Consistent with our intuition, we find that with increasing λ1,
the compressed data tends to be condense, and far way from the training data;
while increasing λ2 generally pushes the compressed data in the same class to
distribute more scatteringly. This indicates that if we want a larger compressed
set of pseudo-inputs (i.e., m is large), a larger value of λ2 should be set. The
accuracies with different values of λ1 and λ2 are summarized in Table 3, which
indicates suitable choices for λ1 and λ2 is essential for good performance.
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Table 3. Test errors on 20news with varying the hyper-parameters λ1 and λ2 under
the networks structure H800-H800-H100. The compressed size m fixes to be 100.

λ2

λ1
10−3 10−4 10−5 10−6 10−7

10−4 30.36 28.75 30.48 32.80 34.10
10−5 29.96 28.47 30.33 32.86 33.50
10−6 30.80 29.27 29.77 33.55 32.70
10−7 29.12 28.74 29.80 32.84 33.20
10−8 29.02 28.54 30.68 33.86 33.27

5.6 Comparison of DSNC with SNC and SOFTMAX

In order to further understand the advantage of DSNC over SNC and softmax-
based deep neural networks (SOFTMAX), we visualize them on MNIST. We
adopt the same models as the above experiments with a reference set consisting
of m = 100 pseudo-inputs. This gives us cleaner results in the visualization. The
inferred pseudo-inputs in the feature space are plotted in Fig. 5. It can be clearly
seen that DSNC is able to learn both separable feature space and representative
data, whereas for the SNC, the compressed data does not seem to be separable. In
terms of SOFTMAX, even though it can learn centered clusters, its tendency to
only learn unimodal within-class distributions lead to poor performance around
the decision boundary.

DSNC SNC SOFTMAX

Fig. 5. Comparison of DSNC (left) with SNC (middle), SOFTMAX (right) on MNIST
dataset. Circles represent the reference set.

6 Conclusion

We propose DSNC to jointly learn a deep feature space and a subset of com-
pressed data that best represents the whole data. The algorithm consists of a
deep neural network component for feature learning, on top of which an objec-
tive is proposed to optimize the kNN criteria, leading to a natural extension of
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the popular softmax-based deep neural networks. We test DSNC on a number
of benchmark datasets, obtaining significantly improved performance compared
to existing data compression algorithms.
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Abstract. In 1963, Polyak proposed a simple condition that is sufficient
to show a global linear convergence rate for gradient descent. This condi-
tion is a special case of the �Lojasiewicz inequality proposed in the same
year, and it does not require strong convexity (or even convexity). In this
work, we show that this much-older Polyak-�Lojasiewicz (PL) inequality
is actually weaker than the main conditions that have been explored to
show linear convergence rates without strong convexity over the last 25
years. We also use the PL inequality to give new analyses of coordinate
descent and stochastic gradient for many non-strongly-convex (and some
non-convex) functions. We further propose a generalization that applies
to proximal-gradient methods for non-smooth optimization, leading to
simple proofs of linear convergence for support vector machines and L1-
regularized least squares without additional assumptions.

Keywords: Gradient descent · Coordinate descent · Stochastic
gradient · Variance-reduction · Boosting · Support vector machines ·
L1-regularization

1 Introduction

Fitting most machine learning models involves solving some sort of optimiza-
tion problem. Gradient descent, and variants of it like coordinate descent and
stochastic gradient, are the workhorse tools used by the field to solve very large
instances of these problems. In this work we consider the basic problem of mini-
mizing a smooth function and the convergence rate of gradient descent methods.
It is well-known that if f is strongly-convex, then gradient descent achieves a
global linear convergence rate for this problem [28]. However, many of the fun-
damental models in machine learning like least squares and logistic regression
yield objective functions that are convex but not strongly-convex. Further, if f
is only convex, then gradient descent only achieves a sub-linear rate.
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This situation has motivated a variety of alternatives to strong convexity
(SC) in the literature, in order to show that we can obtain linear convergence
rates for problems like least squares and logistic regression. One of the oldest
of these conditions is the error bounds (EB) of Luo and Tseng [22], but four
other recently-considered conditions are essential strong convexity (ESC) [20],
weak strong convexity (WSC) [25], the restricted secant inequality (RSI) [45], and
the quadratic growth (QG) condition [2]. Some of these conditions have different
names in the special case of convex functions: a convex function satisfying RSI
is said to satisfy restricted strong convexity (RSC) [45] while a convex function
satisfying QG is said to satisfy optimal strong convexity (OSC) [19] or (confus-
ingly) WSC [23]. The proofs of linear convergence under all of these relaxations
are typically not straightforward, and it is rarely discussed how these conditions
relate to each other.

In this work, we consider a much older condition that we refer to as the
Polyak-�Lojasiewicz (PL) inequality. This inequality was originally introduced
by Polyak [31], who showed that it is a sufficient condition for gradient descent
to achieve a linear convergence rate. We describe it as the PL inequality because
it is also a special case of the inequality introduced in the same year by
�Lojasiewicz [21]. We review the PL inequality in the next section and how it
leads to a trivial proof of the linear convergence rate of gradient descent. Next,
in terms of showing a global linear convergence rate to the optimal solution, we
show that the PL inequality is weaker than all of the more recent conditions
discussed in the previous paragraph. This suggests that we can replace the long
and complicated proofs under any of the conditions above with simpler proofs
based on the PL inequality. Subsequently, we show how this result implies gra-
dient descent achieves linear rates for standard problems in machine learning
like least squares and logistic regression that are not necessarily SC, and even
for some non-convex problems (Sect. 2.3). In Sect. 3 we use the PL inequality
to give new convergence rates for randomized and greedy coordinate descent
(implying a new convergence rate for certain variants of boosting), sign-based
gradient descent methods, and stochastic gradient methods in either the clas-
sical or variance-reduced setting. Next we turn to the closely-related problem
of minimizing the sum of a smooth function and a simple non-smooth function.
We propose a generalization of the PL inequality that allows us to show lin-
ear convergence rates for proximal-gradient methods without SC. This leads to
a simple analysis showing linear convergence of methods for training support
vector machines. It also implies that we obtain a linear convergence rate for �1-
regularized least squares problems, showing that the extra conditions previously
assumed to derive linear converge rates in this setting are in fact not needed.

2 Polyak-�Lojasiewicz Inequality

We first focus on the basic unconstrained optimization problem

argmin
x∈Rd

f(x), (1)
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and we assume that the first derivative of f is L-Lipschitz continuous. This
means that

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
||y − x||2, (2)

for all x and y. For twice-differentiable objectives this assumption means that
the eigenvalues of ∇2f(x) are bounded above by some L, which is typically a
reasonable assumption. We also assume that the optimization problem has a
non-empty solution set X ∗, and we use f∗ to denote the corresponding optimal
function value. We will say that a function satisfies the PL inequality if the
following holds for some μ > 0,

1
2
||∇f(x)||2 ≥ μ(f(x) − f∗), ∀ x. (3)

This inequality simply requires that the gradient grows faster than a quadratic
function as we move away from the optimal function value. Note that this
inequality implies that every stationary point is a global minimum. But unlike
SC, it does not imply that there is a unique solution. Linear convergence of gra-
dient descent under these assumptions was first proved by Polyak [31]. Below we
give a simple proof of this result when using a step-size of 1/L.

Theorem 1. Consider problem (1), where f has an L-Lipschitz continuous gra-
dient (2), a non-empty solution set X ∗, and satisfies the PL inequality (3). Then
the gradient method with a step-size of 1/L,

xk+1 = xk − 1
L

∇f(xk), (4)

has a global linear convergence rate,

f(xk) − f∗ ≤
(
1 − μ

L

)k

(f(x0) − f∗).

Proof. By using update rule (4) in the Lipschitz inequality condition (2) we have

f(xk+1) − f(xk) ≤ − 1
2L

||∇f(xk)||2.

Now by using the PL inequality (3) we get

f(xk+1) − f(xk) ≤ −μ

L
(f(xk) − f∗).

Re-arranging and subtracting f∗ from both sides gives us f(xk+1) − f∗ ≤(
1 − μ

L

)
(f(xk) − f∗). Applying this inequality recursively gives the result. �	

Note that the above result also holds if we use the optimal step-size at each
iteration, because of the inequality

min
α

f(xk − α∇f(xk)) ≤ f

(
xk − 1

L
∇f(xk)

)
.
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A beautiful aspect of this proof is its simplicity; in fact it is simpler than the
proof of the same fact under the usual SC assumption. It is certainly simpler than
typical proofs which rely on the other conditions mentioned in Sect. 1. Further, it
is worth noting that the proof does not assume convexity of f . Thus, this is one
of the few general results we have for global linear convergence on non-convex
problems.

2.1 Relationships Between Conditions

As mentioned in the Sect. 1, several other assumptions have been explored over
the last 25 years in order to show that gradient descent achieves a linear conver-
gence rate. These typically assume that f is convex, and lead to more complicated
proofs than the one above. However, it is rarely discussed how the conditions
relate to each other. Indeed, all of the relationships that have been explored
have only been in the context of convex functions [19,25,44]. In Appendix 2.1,
we give the precise definitions of all conditions and also prove the result below
giving relationships between the conditions.

Theorem 2. For a function f with a Lipschitz-continuous gradient, the follow-
ing implications hold:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex then we have

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

This result shows that (QG) is the weakest assumption among those considered.
However, QG allows non-global local minima so it is not enough to guarantee
that gradient descent finds a global minimizer. This means that, among those
considered above, PL and the equivalent EB are the most general conditions
that allow linear convergence to a global minimizer. Note that in the convex
case QG is called OSC, but the result above shows that in the convex case it
is also equivalent to EB and PL (as well as RSI which is known as RSC in this
case).

2.2 Invex and Non-convex Functions

While the PL inequality does not imply convexity of f , it does imply the weaker
condition of invexity. Invexity was first introduced by Hanson in 1981 [12], and
has been used in the context of learning output kernels [8]. Craven and Glover [7]
show that a smooth f is invex if and only if every stationary point of f is a
global minimum. Since the PL inequality implies that all stationary points are
global minimizers, functions satisfying the PL inequality must be invex. Indeed,
Theorem 2 shows that all of the previous conditions except (QG) imply invexity.
The function f(x) = x2 + 3 sin2(x) is an example of an invex but non-convex
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function satisfying the PL inequality (with μ = 1/32). Thus, Theorem 1 implies
gradient descent obtains a global linear convergence rate on this function.

Unfortunately, many complicated models have non-optimal stationary points.
For example, typical deep feed-forward neural networks have sub-optimal sta-
tionary points and are thus not invex. A classic way to analyze functions like
this is to consider a global convergence phase and a local convergence phase. The
global convergence phase is the time spent to get “close” to a local minimum,
and then once we are “close” to a local minimum the local convergence phase
characterizes the convergence rate of the method. Usually, the local convergence
phase starts to apply once we are locally SC around the minimizer. But this
means that the local convergence phase may be arbitrarily small: for example,
for f(x) = x2 + 3 sin2(x) the local convergence rate would not even apply over
the interval x ∈ [−1, 1]. If we instead defined the local convergence phase in
terms of locally satisfying the PL inequality, then we see that it can be much
larger (x ∈ IR for this example).

2.3 Relevant Problems

If f is μ-SC, then it also satisfies the PL inequality with the same μ (see Appen-
dix 2.3). Further, by Theorem 2, f satisfies the PL inequality if it satisfies any
of ESC, WSC, RSI, or EB (while for convex f , QG is also sufficient). Although
it is hard to precisely characterize the general class of functions for which the
PL inequality is satisfied, we note one important special case below.

Strongly-convex composed with linear: This is the case where f has the
form f(x) = g(Ax) for some σ-SC function g and some matrix A. In Appen-
dix 2.3, we show that this class of functions satisfies the PL inequality, and we
note that this form frequently arises in machine learning. For example, least
squares problems have the form

f(x) = ‖Ax − b‖2,
and by noting that g(z) � ‖z − b‖2 is SC we see that least squares falls into this
category. Indeed, this class includes all convex quadratic functions.

In the case of logistic regression we have

f(x) =
n∑

i=1

log(1 + exp(bia
T
i x)).

This can be written in the form g(Ax), where g is strictly convex but not SC.
In cases like this where g is only strictly convex, the PL inequality will still be
satisfied over any compact set. Thus, if the iterations of gradient descent remain
bounded, the linear convergence result still applies. It is reasonable to assume
that the iterates remain bounded when the set of solutions is finite, since each
step must decrease the objective function. Thus, for practical purposes, we can
relax the above condition to “strictly-convex composed with linear” and the PL
inequality implies a linear convergence rate for logistic regression.
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3 Convergence of Huge-Scale Methods

In this section, we use the PL inequality to analyze several variants of two
of the most widely-used techniques for handling large-scale machine learning
problems: coordinate descent and stochastic gradient methods. In particular,
the PL inequality yields very simple analyses of these methods that apply to
more general classes of functions than previously analyzed. We also note that
the PL inequality has recently been used by Garber and Hazan [9] to analyze
the Frank-Wolfe algorithm. Further, inspired by the resilient backpropagation
(RPROP) algorithm of Riedmiller and Braun [32], in Appendix 3 we also give
the first convergence rate analysis for sign-based gradient descent methods.

3.1 Randomized Coordinate Descent

Nesterov [29] shows that randomized coordinate descent achieves a faster con-
vergence rate than gradient descent for problems where we have d variables and
it is d times cheaper to update one coordinate than it is to compute the entire
gradient. The expected linear convergence rates in this previous work rely on
SC, but in this section we show that randomized coordinate descent achieves an
expected linear convergence rate if we only assume that the PL inequality holds.

To analyze coordinate descent methods, we assume that the gradient is
coordinate-wise Lipschitz continuous, meaning that for any x and y we have

f(x + αei) ≤ f(x) + α∇if(x) +
L

2
α2, ∀α ∈ R, ∀x ∈ R

d, (5)

for any coordinate i, and where ei is the ith unit vector.
Theorem 3. Consider problem (1), where f has a coordinate-wise L-Lipschitz
continuous gradient (5), a non-empty solution set X ∗, and satisfies the PL
inequality (3). Consider the coordinate descent method with a step-size of 1/L,

xk+1 = xk − 1
L

∇ikf(xk)eik . (6)

If we choose the variable to update ik uniformly at random, then the algorithm
has an expected linear convergence rate of

E[f(xk) − f∗] ≤
(
1 − μ

dL

)k

[f(x0) − f∗].

Proof. By using the update rule (6) in the Lipschitz condition (5) we have

f(xk+1) ≤ f(xk) − 1
2L

||∇ikf(xk)||2.
By taking the expectation of both sides with respect to ik we have

E [f(xk+1)] ≤ f(xk) − 1
2L

E
[||∇ikf(xk)||2]

≤ f(xk) − 1
2L

∑

i

1
d
||∇if(xk)||2

= f(xk) − 1
2dL

||∇f(xk)||2.
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By using the PL inequality (3) and subtracting f∗ from both sides, we get

E[f(xk+1) − f∗] ≤
(
1 − μ

dL

)
[f(xk) − f∗].

Applying this recursively and using iterated expectations yields the result. �	
As before, instead of using 1/L we could perform exact coordinate optimization
and the result would still hold. If we have a Lipschitz constant Li for each
coordinate and sample proportional to the Li as suggested by Nesterov [29],
then the above argument (using a step-size of 1/Lik) can be used to show that
we obtain a faster rate of

E[f(xk) − f∗] ≤
(
1 − μ

dL̄

)k

[f(x0) − f∗],

where L̄ = 1
d

∑d
j=1 Lj .

3.2 Greedy Coordinate Descent

Nutini et al. [30] have recently analyzed coordinate descent under the greedy
Gauss-Southwell (GS) rule, and argued that this rule may be suitable for prob-
lems with a large degree of sparsity. The GS rule chooses ik according to the
rule ik = argmaxj |∇jf(xk)|. Using the fact that

max
i

|∇if(xk)| ≥ 1
d

d∑

i=1

|∇if(xk)|,

it is straightforward to show that the GS rule satisfies the rate above for the
randomized method.

However, Nutini et al. [30] show that a faster convergence rate can be
obtained for the GS rule by measuring SC in the 1-norm. Since the PL inequality
is defined on the dual (gradient) space, in order to derive an analogous result we
could measure the PL inequality in the ∞-norm,

‖∇f(x)‖2∞ ≥ 2μ1(f(x) − f∗).

Because of the equivalence between norms, this is not introducing any additional
assumptions beyond that the PL inequality is satisfied. Further, if f is μ1-SC
in the 1-norm, then it satisfies the PL inequality in the ∞-norm with the same
constant μ1. By using that |∇ikf(xk)| = ‖∇f(xk)‖∞ when the GS rule is used,
the above argument can be used to show that coordinate descent with the GS
rule achieves a convergence rate of

f(xk) − f∗ ≤
(
1 − μ1

L

)k

[f(x0) − f∗],

when the function satisfies the PL inequality in the ∞-norm with a constant of
μ1. By the equivalence between norms we have that μ/d ≤ μ1, so this is faster
than the rate with random selection.
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Meir and Rätsch [24] show that we can view some variants of boosting algo-
rithms as implementations of coordinate descent with the GS rule. They use the
error bound property to argue that these methods achieve a linear convergence
rate, but this property does not lead to an explicit rate. Our simple result above
thus provides the first explicit convergence rate for these variants of boosting.

3.3 Stochastic Gradient Methods

Stochastic gradient (SG) methods apply to the general stochastic optimization
problem

argmin
x∈IRd

f(x) = E[fi(x)], (7)

where the expectation is taken with respect to i. These methods are typically
used to optimize finite sums,

f(x) =
1
n

n∑

i

fi(x). (8)

Here, each fi typically represents the fit of a model on an individual training
example. SG methods are suitable for cases where the number of training exam-
ples n is so large that it is infeasible to compute the gradient of all n examples
more than a few times.

Stochastic gradient (SG) methods use the iteration

xk+1 = xk − αk∇fik(xk), (9)

where αk is the step size and ik is a sample from the distribution over i so that
E[∇fik(xk)] = ∇f(xk). Below, we analyze the convergence rate of stochastic
gradient methods under standard assumptions on f , and under both a decreasing
and a constant step-size scheme.

Theorem 4. Consider problem (7). Assume that each f has an L-Lipschitz
continuous gradient (2), f has a non-empty solution set X ∗, f satisfies the PL
inequality (3), and E[‖∇fi(xk)‖2] ≤ C2 for all xk and some C. If we use the SG
algorithm (9) with αk = 2k+1

2μ(k+1)2 , then we get a convergence rate of

E[f(xk) − f∗] ≤ LC2

2kμ2
.

If instead we use a constant αk = α < 1
2μ , then we obtain a linear convergence

rate up to a solution level that is proportional to α,

E[f(xk) − f∗] ≤ (1 − 2μα)k[f(x0) − f∗] +
LC2α

4μ
.
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Proof. By using the update rule (9) inside the Lipschitz condition (2), we have

f(xk+1) ≤ f(xk) − αk〈f ′(xk),∇fik(xk)〉 +
Lα2

k

2
||∇fik(xk)||2.

Taking the expectation of both sides with respect to ik we have

E[f(xk+1)] ≤ f(xk) − αk〈∇f(xk),E [∇fik(xk)]〉 +
Lα2

k

2
E[‖∇fi(xk)‖2]

≤ f(xk) − αk||f ′(xk)||2 +
LC2α2

k

2

≤ f(xk) − 2μαk(f(xk) − f∗) +
LC2α2

k

2
,

where the second line uses that E[∇fik(xk)] = f ′(xk) and E[‖∇fi(xk)‖2] ≤ C2,
and the third line uses the PL inequality. Subtracting f∗ from both sides yields:

E[f(xk+1) − f∗] ≤ (1 − 2αkμ)[f(xk) − f∗] +
LC2α2

k

2
. (10)

Decreasing step size: With αk = 2k+1
2μ(k+1)2 in (10) we obtain

E[f(xk+1) − f∗] ≤ k2

(k+1)2 [f(xk) − f∗] + LC2(2k+1)2|
8μ2(k+1)4 .

Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2
E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) +
LC2(2k + 1)2

8μ2(k + 1)2

≤ δf (k) +
LC2

2μ2
,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from

k = 0 to k and using the fact that δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + LC2

2μ2

∑k
i=0 1 ≤ LC2(k+1)

2μ2

⇒ (k + 1)2E[f(xk+1) − f∗] ≤ LC2(k+1)
2μ2

which gives the stated rate.

Constant step size: Choosing αk = α for any α < 1/2μ and applying (10)
recursively yields

E[f(xk+1) − f∗] ≤ (1 − 2αμ)k[f(x0) − f∗] +
LC2α2

2

k∑

i=0

(1 − 2αμ)i

≤ (1 − 2αμ)k[f(x0) − f∗] +
LC2α2

2

∞∑

i=0

(1 − 2αμ)i

= (1 − 2αμ)k[f(x0) − f∗] +
LC2α

4μ
,

where the last line uses that α < 1/2μ and the limit of the geometric series. �	
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The O(1/k) rate for a decreasing step size matches the convergence rate of
stochastic gradient methods under SC [27]. It was recently shown using a non-
trivial analysis that a stochastic Newton method could achieve an O(1/k) rate for
least squares problems [4], but our result above shows that the basic stochastic
gradient method already achieves this property (although the constants are worse
than for this Newton-like method). Further, our result does not rely on convexity.
Note that if we are happy with a solution of fixed accuracy, then the result with
a constant step-size is perhaps the more useful strategy in practice: it supports
the often-used empirical strategy of using a constant size for a long time, then
halving the step-size if the algorithm appears to have stalled (the above result
indicates that halving the step-size will at least halve the sub-optimality).

3.4 Finite Sum Methods

In the setting of minimizing finite sums, it has recently been shown that there
are methods that have the low iteration cost of stochastic gradient methods
but that still have linear convergence rates [33]. While the first methods that
achieved this remarkable property required a memory of previous gradient val-
ues, the stochastic variance-reduced gradient (SVRG) method of Johnson and
Zhang [16] does not have this drawback. In Appendix 3.4, we give a new analysis
of the SVRG method that shows that it achieves a linear convergence rate under
the PL inequality. Similar results for finite-sum methods under the PL inequality
recently appeared in the works of Reddi et al. [36,37]. Garber and Hazan [10]
have also given a related result in the context of an improved algorithm for prin-
cipal component analysis (PCA), showing that the fi do not need to be convex
in order to achieve a linear convergence rate. However, their result still assumes
that f is SC while our analysis only assumes the PL inequality is satisfied.

4 Proximal-Gradient Generalization

Attouch and Bolte [3] consider a generalization of the PL inequality due to
Kurdyak to give conditions under which the classic proximal-point algorithm
achieves a linear convergence rate for non-smooth problems (called the KL
inequality). However, in practice proximal-gradient methods are more relevant
to many machine learning problems. While the KL inequality has been used to
show local linear convergence of proximal-gradient methods [6,18], in this section
we propose a different generalization of the PL inequality that yields a simple
global linear convergence analysis.

Proximal-gradient methods apply to problems of the form

argmin
x∈Rd

F (x) = f(x) + g(x), (11)

where f is a differentiable functionwith anL-Lipschitz continuous gradient and g is
a simple but potentially non-smooth convex function. Typical examples of simple
functions g include a scaled �1-norm of the parameter vectors, g(x) = λ‖x‖1, and
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indicator functions that are zero if x lies in a simple convex set and are infinity
otherwise.

In order to analyze proximal-gradient algorithms, a natural (though not par-
ticularly intuitive) generalization of the PL inequality is that there exists a μ > 0
satisfying

1
2
Dg(x,L) ≥ μ(F (x) − F ∗), (12)

where

Dg(x, α) ≡ −2α min
y

[〈∇f(x), y − x〉 +
α

2
||y − x||2 + g(y) − g(x)]. (13)

We call this the proximal-PL inequality, and we note that if g is constant (or
linear) then it reduces to the standard PL inequality. Below we show that this
inequality is sufficient for the proximal-gradient method to achieve a global linear
convergence rate.

Theorem 5. Consider problem (11), where f has an L-Lipschitz continuous
gradient (2), F has a non-empty solution set X ∗, g is convex, and F satisfies
the proximal-PL inequality (12). Then the proximal-gradient method with a step-
size of 1/L,

xk+1 = argmin
y

[〈∇f(xk), y − xk〉 +
L

2
||y − xk||2 + g(y) − g(xk)] (14)

converges linearly to the optimal value F ∗,

F (xk) − F ∗ ≤
(
1 − μ

L

)k

[F (x0) − F ∗].

Proof. By using Lipschitz continuity of the function f we have

F (xk+1) = f(xk+1) + g(xk) + g(xk+1) − g(xk)

≤ F (xk) + 〈∇f(xk), xk+1 − xk〉 +
L

2
||xk+1 − xk||2 + g(xk+1) − g(xk)

≤ F (xk) − 1
2L

Dg(xk, L)

≤ F (xk) − μ

L
[F (xk) − F ∗],

which uses the definition of xk+1 and Dg followed by the proximal-PL inequal-
ity (12). This subsequently implies that

F (xk+1) − F ∗ ≤
(
1 − μ

L

)
[F (xk) − F ∗], (15)

which applied recursively gives the result. �	
We note that the condition μ ≤ L is implicit in the definition of the proximal-PL
inequality, but this is not restrictive since we can simply set μ to a smaller value
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to satisfy this. While other conditions have been proposed to show linear con-
vergence rates of proximal-gradient methods without SC [17,44], their analyses
tend to be much more complicated than the above while, as we discuss in the
next section, the proximal-PL inequality includes the standard scenarios where
these apply.

4.1 Relevant Problems

As with the PL inequality, we now list several important function classes that
satisfy the proximal-PL inequality (12). We give proofs that these classes satisfy
the inequality in Appendices 4.1, 4.2, and 4.4.

1. The inequality is satisfied if f satisfies the PL inequality and g is constant.
Thus, the above result generalizes Theorem 1.

2. The inequality is satisfied if f is SC. This is the usual assumption used to show
a linear convergence rate for the proximal-gradient algorithm [34], although
we note that the above analysis is much simpler than standard arguments.

3. The inequality is satisfied if f has the form f(x) = h(Ax) for a SC function
h and a matrix A, while g is an indicator function for a polyhedral set.

4. The inequality is satisfied if F is convex and satisfies the QG property. In
Appendices 4.2 and 4.4 we show that L1-regularized least squares and the
support vector machine dual (respectively) fall into this category, and we
discuss these two notable cases further below.

We expect that it is possible to show the proximal-PL inequality holds in other
cases where the proximal-gradient achieves a linear convergence rate like the
case of group L1-regularization [40] and nuclear-norm regularization [14].

4.2 Least Squares with L1-Regularization

Perhaps the most interesting example of problem (11) is the �1-regularized least
squares problem,

argmin
x∈IRd

1
2
‖Ax − b‖2 + λ‖x‖1,

where λ > 0 is the regularization parameter. This problem has been studied
extensively in machine learning, signal processing, and statistics. This problem
structure seems well-suited to using proximal-gradient methods, but the first
works analyzing proximal-gradient methods for this problem only showed sub-
linear convergence rates. There subsequently have been a variety of works show-
ing that linear convergence rates can be achieved under additional assumptions.
For example, Gu et al. [11] prove that their algorithm achieves a linear conver-
gence rate if A satisfies a restricted isometry property (RIP) and the solution is
sufficiently sparse. Xiao and Zhang [43] also assume the RIP property and show
linear convergence using a homotopy method that slowly decreases the value of λ.
Agarwal et al. [1] give a linear convergence rate under a modified restricted strong
convexity and modified restricted smoothness assumption. In Appendix 4.2 we
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show that any L1-regularized least squares problem satisfies the QG property if
we use a descent method and thus by convexity also satisfies the proximal-PL
inequality. Thus, Theorem 5 implies a global linear convergence rate for these
problems without making additional assumptions or making any modifications
to the algorithm. A similar result recently appeared in the work of Necoara and
Clipici [26] under a generalized EB, but with a much more complicated analysis.

4.3 Proximal Coordinate Descent

It is also possible to adapt our results on coordinate descent and proximal-
gradient methods in order to give a linear convergence rate for coordinate-wise
proximal-gradient methods for problem (11). To do this, we require the extra
assumption that g is a separable function. This means that g(x) =

∑
i gi(xi)

for a set of univariate functions gi. The update rule for the coordinate-wise
proximal-gradient method is

xk+1 = argmin
α

[
α∇ikf(xk) +

L

2
α2 + gik(xik + α) − gik(xik)

]
, (16)

We state the convergence rate result below.

Theorem 6. Assume the setup of Theorem 5 and that g is a separable function
g(x) =

∑
i gi(xi), where each gi is convex. Then the coordinate-wise proximal-

gradient update rule (16) achieves a convergence rate

E[F (xk) − F ∗] ≤
(
1 − μ

dL

)k

[F (x0) − F ∗], (17)

when ik is selected uniformly at random.

The proof is given in Appendix 4.3 and although it is more complicated than
the proofs of Theorems 4 and 5, it is still simpler than existing proofs for prox-
imal coordinate descent under SC [39]. It is also possible to analyze stochas-
tic proximal-gradient algorithms, and indeed Reddi et al. use the proximal-PL
inequality to analyze finite-sum methods in the proximal stochastic case [38].

4.4 Support Vector Machines

Another important model problem that arises in machine learning is support
vector machines,

argmin
x∈IRd

λ

2
xT x +

n∑

i=1

max(0, 1 − bix
T ai). (18)

where (ai, bi) are the labelled training set with ai ∈ R
d and bi ∈ {−1, 1}. We

often solve this problem by performing coordinate optimization on its dual, which
has the form

min
w̄

f(w̄) =
1
2
w̄T Mw̄ −

∑
w̄i, w̄i ∈ [0, U ], (19)
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for a particular matrix M and constant U . This function satisfies the QG prop-
erty and thus Theorem 6 implies that coordinate optimization achieves a linear
convergence rate in terms of optimizing the dual objective. Further, since Hush
et al. [15] show that we can obtain an ε-accurate solution to the primal prob-
lem with an O(ε2)-accurate solution to the dual problem, this also implies a
linear convergence rate for stochastic dual coordinate ascent on the primal prob-
lem. Global linear convergence rates for SVMs have also been shown by oth-
ers [23,41,42], but again we note that these works lead to much more compli-
cated analyses. Although the constants in these convergence rate may be quite
bad (depending on the smallest non-zero singular value of the Gram matrix), we
note that the existing sublinear rates still apply in the early iterations while, as
the algorithm begins to identify support vectors, the constants improve (depend-
ing on the smallest non-zero singular value of the block of the Gram matrix
corresponding to the support vectors).

The result of the previous section is not only restricted to SVMs. Indeed,
the result of the previous section implies a linear convergence rate for many
�2-regularized linear prediction problems, the framework considered in the sto-
chastic dual coordinate ascent (SDCA) work of Shalev-Shwartz and Zhang [35].
While Shalev-Shwartz and Zhang [35] show that this is true when the primal
is smooth, our result gives linear rates in many cases where the primal is non-
smooth.

5 Discussion

We believe that this work provides a unifying and simplifying view of a variety
of optimization and convergence rate issues in machine learning. Indeed, we have
shown that many of the assumptions used to achieve linear convergence rates can
be replaced by the PL inequality and its proximal generalization. Throughout
the paper, we have also pointed out how our analysis implies new convergence
rates for a variety of machine learning models and algorithms. Some of these
were previously known, typically under stronger assumptions or with more com-
plicated proofs, but many of these are novel. Note that we have not provided
any experimental results in this work, since the main contributions of this work
are showing that existing algorithms actually work better on standard prob-
lems than we previously thought. We expect that going forward, efficiency will
no longer be decided by the issue of whether functions are SC, but rather by
whether they satisfy a variant of the PL inequality.
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