
JAIP-MP: A Four-Core Java Application Processor
for Embedded Systems

Chun-Jen Tsai(✉), Tsung-Han Wu, Hung-Cheng Su, and Cheng-Yang Chen

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
cjtsai@cs.nctu.edu.tw

Abstract. In this chapter, we present a four-core Java application processor,
JAIP-MP. In addition to supporting multi-core coherent data accesses to shared
memory, each processor core in JAIP-MP is a hardwired Java core that is capable
of dynamic class loading, two-fold bytecode execution, object-oriented dynamic
resolution, method/object caching, Java exception handling, preemptive multi‐
threading, and memory management. Most of the essential OS kernel functions
are implemented in hardware. In particular, the preemptive multi-threading
performance is much higher than that of a software-based VM running on a tradi‐
tional OS kernel such as Linux. Currently, single-cycle context switching with a
time quantum as small as 20 μs can be achieved by each core. More importantly,
the Java language model itself makes it possible to maintain binary portability of
application software regardless of the hardwired OS kernel component. In
summary, JAIP-MP could be used to study the potential benefits of OS kernel
implementation in hardware.

Keywords: Java processors · Multi-core processors · Embedded SoC ·
Hardwired operating system kernel

1 Introduction

The Java programming language has been one of the most popular programming
languages for over a decade. There are many reasons for its popularity. For example, it
is a clean language designed with object-orientated paradigm from scratch, without
unnecessary features such as multiple inheritance or pointer arithmetic that can be easily
abused by programmers. Memory management in Java is implied by the object-oriented
model and requires no special treatment from the programmers. It maintains a great Job
on backward compatibility that application binaries written for very old version of Java
can usually be executed under the latest versions of Java Runtime Environment (JRE)
regardless of the underneath operating systems. One of the reasons that a Java program
can be portable across versions and platforms is that the Java language model defines
some interfaces, such as multi-thread programming and memory management, which
are usually defined by the operating systems.

There are many variations of JRE for embedded systems, including Sun’s CDC/PBP,
CLDC/MIDP and Google’s Android platform. Most existing implementations are

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 170–192, 2016.
DOI: 10.1007/978-3-319-46097-0_9

software-centric, which means they require a sophisticated operating system (OS) to
support the JRE (e.g., the reference implementations of the Java ME and the Android
platforms heavily depends on Linux or OS’s with similar capabilities). In general, oper‐
ating systems handle thread management, memory management, I/O interfaces, and
dynamic class loading from local and/or remote file systems for the JRE. However, most
Java middleware stacks of JREs have already included main functions of a typical OS
kernel. Therefore, adopting a complete OS underneath a JRE is a duplication of system
functions, which is not a good design philosophy for embedded devices with resource
constraints. A different design approach, the JavaOS model [1, 2], was proposed to
implement the Java application platform. In this approach, the OS itself is written in the
Java language as part of the JRE. The JavaOS system model uses a small microkernel
written in native codes to support low-level physical resource management.

In this chapter, we will present the design of a multi-core Java System-On-a-Chip
(SoC) that implements most of the OS kernel functions, as well as the bytecode execution
pipeline using hardware circuits. The key component of the Java SoC is the Java Appli‐
cation IP (JAIP). JAIP is a reusable processor IP that has hardwired support of the
following Java language features [3, 4]:

– Two-fold instruction folding
– Multithreading, synchronization, and exception handling
– Heap management and garbage collection
– Class inheritance and interface invocations
– Method and heap object caching
– Dynamic class loading and dynamic symbol resolution
– String operation acceleration for matching and copying

The remainder of this chapter is organized as follows. For the rest of Sect. 1, we will
first introduce some previous work on multi-core Java processor designs and discuss the
possible benefits of implementing a multi-core Java SoC with the major OS kernel
functions crafted in hardware. Section 2 presents the architecture of the JAIP core,
including the microarchitecture of the instruction execution pipeline, the stack archi‐
tecture, the preemptive thread manger, and the memory manager and garbage collector.
We also have a brief discussion on how the I/O subsystem interface can be merged into
the dynamic resolution module of a Java VM. Section 3 discusses the required glue
logics to integrate four JAIP cores into a single SoC, mainly, the inter-core communi‐
cation unit, the multi-core thread manager, and the data coherence controller. The
experimental results are presented in Sect. 4. Finally, some discussions are given in
Sect. 5.

1.1 Multi-core Java Processors

Although there are many hardware Java core designs [5], very few of them have been
synthesized in a real multi-core application processor [6]. One of the reasons may be
due to the fact that previous work shows that a Just-in-time (JIT) based VM running on
a high performance general-purpose processor can often outperform a hardwired Java
processor [7]. Therefore, it seems that there is no need to further pursuit the development

JAIP-MP: A Four-Core Java Application Processor 171

of hardwired Java processors. However, most of the JIT vs. hardwired VM comparisons
are conducted using benchmarks where the application class files are not optimized for
Java processors. For example, it has been shown that some popular benchmark class
files can run much faster on a Java processor if bytecode optimizations in the class files
are conducted [8]. Please note that an optimized Java class file still conforms to the Java
specification and is portable across different Java platforms. In addition, many bench‐
marking processes discard the impact of the JIT compilation overhead [3]. Although
ignoring the JIT overhead is reasonable for some applications, it is not valid for remote
invocations that are common for object-oriented distributed computing. Other reasons
why a hardwired VM could be useful for practical applications will be discussed in
Sect. 1.2.

Most Java processors support thread synchronization using software modules
[9–11]. However, the execution time of a software-based synchronization operation,
such as a mutex lock, can take more than a few hundred clock cycles since the lock
objects are often accessed in conventional trap routines. PicoJava [10] uses a few special-
purpose registers for the speedup of synchronization operations, but it still needs to use
the main memory to maintain the information of all waiting threads and lock objects.
Therefore, a high number of concurrent synchronized read/write operations can have
significant synchronization overheads. JOP-CMP [6] supports at most 8 processor cores
with a software-based thread scheduler and a hardwired synchronization unit [6, 12].
There is only one global lock register in the synchronization unit, which means that any
threads trying to acquire the lock must wait until the lock is released. In addition, JOP-
CMP does not have a coherent data cache. All data accesses will be directly issued to
the external memory, which can hinder the multi-thread performance significantly.

1.2 Potentials of Hardwired Virtual Machines

Traditionally, Java programs are executed using software-based virtual machines. To
improve the performance of bytecode execution, JIT or ahead-of-time (AOT) compila‐
tion techniques are often adopted in modern virtual machines. Previous work shows that
JIT or AOT techniques can arguably achieve better performance than a hardwired Java
processor. We have already presented some reasons that may lead to the bias of such
conclusions in Sect. 1.1. Another reason is that existing Java processors mainly focuses
on the architecture design of the bytecode execution pipeline. Things may be different
when the full JRE is considered as the target of hardware design.

For example, one of the most intriguing features of the Java programming model is
that all data accesses and code invocations must go through the dynamic resolution
mechanism. Although dynamic resolution is usually considered as a language feature
that hinders efficiency significantly, there are some benefits of dynamic resolution that
has not been investigated thoroughly, especially when the Java VM is implemented in
hardware. First of all, with dynamic resolution, there is no need to assume a large “flat”
memory model for a Java VM implementation. A Java VM may manage many concur‐
rently accessible memory blocks seamlessly to improve the performance of data
processing without the programmer knowing the physical layout of the memory
subsystem. Securities issues related to malicious pointer-based indirect data accesses

172 C.-J. Tsai et al.

can be handled more rigorously with the Java model since all data accesses must be
approved by the dynamic symbol resolution unit (DSRU). Finally, a method call can be
re-directed to hardware logics without going through memory-mapping process and
shared bus transactions, which may improve throughput significantly. The last point will
be explained further in Sect. 2.5.

In [4], we have presented the preemptive multi-threading efficiency of the JAIP core.
It is capable of single-cycle multi-thread context switching with a time quantum as small
as 20 μs. For a traditional OS kernel such as Linux, the time quantum for a thread is
usually around 10 ms. As a result, for single-core multithread applications, hardware-
based thread manager can achieve much smoother concurrent executions of all threads
of equal priorities than a software-based thread manager. This is a very strong reason
for the development of an efficient hardwired Java processor core. The Java language
specification defines standard programming interfaces for OS kernel services such as
process management and memory management. Other popular languages such as C and
C++ do not standardize these functions. For example, thread creation API’s are OS-
dependent for C programs. Therefore, it would be beneficial to investigate the potentials
of a fully hardwired OS kernel based on the Java programming model.

In short, a Java processor can be designed to implement the entire OS kernel system
services in hardware while maintaining application portability. This is particularly
important for embedded real-time applications where context-switching efficiency and
dynamic memory management overhead are the key performance factors of a system.
On the other hand, it is not so easy to “harden” the OS kernel for a traditional RISC
processor due to lack of “standard” system calls for C/C++ applications.

2 The Architecture of the JAIP Core

In this section, we present some design details of the JAIP core that is used as the key
component of the hardwired multi-core Java runtime environment (JRE). The design
target of the JAIP core is for FPGAs and thus dual-port SRAM blocks that are common
in FPGAs are used extensively to optimize the architecture for the object-oriented
language model that makes Java one of the most popular programming languages.

2.1 The Overview of JAIP Core

Figure 1 shows the overall block diagram of a single-core SoC based on the JAIP core.
The complete SoC is composed of a RISC core and a JAIP core. For the execution of a
Java program, the RISC core is only responsible for reading and parsing of the class
files stored in a JAR file on the Compact Flash (CF) card. The RISC parser will convert
the standard Java class files into runtime class images on-the-fly for direct execution by
the JAIP core. The converted class file images are stored in the second-level method
area in the main memory. The class file parser will maintain a symbol cross reference
table stored in the main memory for all loaded classes. The Java core is completely
responsible for the two-fold execution of bytecodes, dynamic loading of the class images

JAIP-MP: A Four-Core Java Application Processor 173

into the method area, dynamic resolution, memory management, and preemptive multi-
thread scheduling. In the future, we will remove the dependency of the JAIP core on the
RISC core for class file reading and parsing.

RISC Core
External memory

controller

system bus

Application Processor SoC

I/O
controller

irq

Main memory (DDR3-DRAM)
CF card

(Jar files for
system &

application
classes)

Class-parsing
table

2nd-level method
area (for loaded class

runtime images)

Heap space
for

Java objects
RISC ISRs

Synchronization
Logic

Java Application IP (JAIP)

Host service
interface
(only for
dynamic

class-loading)

Method area
manager

Bytecode
execution

engine

Dynamic
resolution
controller

Method image
circular buffer

Two-level
Ping-Pong
Java stack

Data cache
controller

Class symbol
circular buffer

Dynamic
resolution

tables

Exception
manager

Thread
manager Object cache

Fig. 1. The architecture of a Java application processor based on the JAIP core.

JAIP adopts a two-level method area design. All classes loaded at runtime will be
stored in the main memory (i.e., the second-level method area) using the late-resolution
policy. A Java method (and its related symbol information) must be loaded into the on-
chip method cache (the first-level method area) before it can be executed by the bytecode
execution engine. In short, the complete class images of the Java applications are stored
in the main memory while the most recently used methods and symbol information are
stored in the on-chip method area in a FIFO manner.

Since the Java VM is basically a stack machine, i.e., all the local variables and the
intermediate values of operations are stored in the runtime stack, fast accesses to the
most recent stack frames are essential to the performance of a Java processor. JAIP uses
a special-purpose on-chip memory and three top-of-stack registers to form a two-level
Java runtime stack. The special-purpose on-chip memory is a customized four-port
memory device custom-designed for the Java bytecode instruction set architecture. It is
composed of a pair of interleaving two-port memory blocks and four registers. The
design is a good tradeoff between performance and implementation cost as compared
to the Java processors with a large stack cache [10, 13, 14].

174 C.-J. Tsai et al.

The two-level Java stack allows JAIP to perform two-fold instruction folding for
frequent bytecode pairs [15] such as load-load, ALU-store, etc. However, to simplify
the microarchitecture, some folding patterns, e.g. ALU-ALU bytecode pairs, are not
allowed. According to our empirical studies, the instruction folding rate of JAIP ranges
from 10 % to 40 % for different benchmark applications.

2.2 The Bytecode Execution Engine and the Stack Memory

The bytecode execution pipeline of the JAIP core is shown in Fig. 2. The Java bytecodes
are translated into native JAIP instructions called j-codes before instruction decoding
and folding. The JAIP core performs two-fold instruction folding of stack-related Java
operations using a simple decision policy. In short, JAIP only supports the folding of
the following stack operation pairs: Load-Store, Store-Load, ALU-Load, Load-ALU,
Store-ALU, ALU-Store, Load-Load, and Store-Store. Note that in these stack opera‐
tions, ‘Load’ means loading a data item on to the operand stack. The source of the data
can be from the local variable area of the Java stack or a constant value. ‘Store’ means
removing a data item from the operand stack. The destination of the removed data can
be the local variable area or a null space (as in the ‘pop’ operation). Finally, ‘ALU’
means an arithmetic and logic operation. The fetch stage of the pipeline will guarantee
that, at any given cycle, the j-code information passed to the decode stage belongs to
one of the following three cases: a foldable j-code instruction pair, a single control
instruction (such as a conditional branch), or a special data-processing j-code (such as
the ‘swap’ operation). The two-level JAIP stack can encounter structure hazard when‐
ever the j-code instruction pairs try to transfer two local variables stored in the same
SRAM bank to the operand stack (or vice versa). This hazard can be removed by using
a general-purpose four-port memory for the second-level stack. However, since a
general-purpose four-port memory is often expensive, we use a special-purpose 4-port
memory customized to the Java ISA to reduce the occurrence of structure hazards while
maintaining low implementation cost [16].

Translate Stage

bytecodes/operands

Bytecode
classifier

Fetch Stage

Fetch controller
j-code
info.

j-code sequence
ROM

Decode Stage

IPC request
controller

Two-fold
j-code decoder

j-code(s)

Execute Stage

Two-level Java stack
(a customized

4-port memory)

Two-fold Execution
Datapath

ctrl.
signals,
operand

info

branch flag

IPC
request

Hazard detector

48-bit
Instruction

buffer

Lookup ROM

Dynamic
resolution
circuitry

operands IPC request
for dynamic
class loading

branch
dest.

en

Exception Manager

Fig. 2. The bytecode execution engine pipeline of JAIP.

JAIP-MP: A Four-Core Java Application Processor 175

According to the Java VM specification [17], the first four local variables should be
the most frequently used ones (which can be arranged by an optimized Java compiler).
Hence, some Java instructions (with no operands) are designed specifically for accessing
these variables. The second-level Java stack memory is constructed by using two on-
chip memory blocks organized in an interleaving structure to form a Java stack. In addi‐
tion, four 32-bit local variable (LV) registers are used as a small cache for the first four
local variables as shown in Fig. 3.

Dual customized
4-port memory

LV 0

LV 1

LV 2

LV 3

Java Stack 0

dual-port
SRAM

dual-port
SRAM

Java Stack 1

dual-port
SRAM

dual-port
SRAM

RA1

RA2

WA1

WA2

TSA

RD1

RD2

WD1

WD2

CurrSD

NextSD

TOS_A

TOS_B

TOS_C

DDR-SDRAM

TSA: Thread Stack Address
CurrSD: Current Stack Data
NextSD: Next Stack Data

Second-level stack First-level stack

Fig. 3. The architecture of the stacks in a JAIP core.

In Fig. 3, there are two Java stacks instead of one. These two stacks form a ping-
pong buffer to support fast context-switching operations for preemptive multi-threading.
At any given time, only one of the stacks will be used as the active Java stack. The other
stack will be used to load the stack frame of the next selected thread for the execution
in the next time quantum. The details of context switching will be discussed in Sect. 2.3.
Upon a method invocation, the first four local variables will be copied from the Java
stack to the LV registers. Before the method returns, the LV registers will be copied
back to the Java stack. The initialization/restoration of the LV registers only takes one
cycle (since each bank has two ports) and is performed in parallel with the dynamic
resolution process of method invocation/return such that they do not incur extra over‐
head. With this design, the folding of two stack operations of ‘Load’ and ‘Store’ of the
first four local variables do not cause structure hazard. However, accesses to the local
variables beyond the first four will not be folded by JAIP. This is a design choice to
simplify the control logic.

176 C.-J. Tsai et al.

2.3 Single-Core Preemptive Thread Management

For the execution of multi-thread Java programs, each thread must maintain its own
registers and runtime stack. Typically, the register file of a Java processor is only
composed of few special-purpose registers and can be swapped out to main memory
quite efficiently. On the other hand, the Java runtime stack is much larger than the register
file. If the runtime stack is stored in the main memory (e.g., DRAM), there is no need
to save the runtime stack. However, most high-performance Java processors, including
JAIP, use stack cache or on-chip memory to support instruction folding and to reduce
the access delay of operands. In either case, the time it takes to swap out the on-chip
stack would be non-negligible.

Saving/restoring the context of a JAIP thread involves transferring the stack frames
(each ranging from a few bytes to a few hundreds bytes) to/from the main memory. In
order for JAIP to support hardware-based multi-threading, we have designed a low-cost
thread manager unit to reduce the context-switching overhead. As a result, in most cases,
switching from the current thread to the next active thread only takes a single cycle. This
is much faster than any software-based preemptive multi-tasking operations where a
context-switching operation can take anywhere from a few hundreds to over a thousand
cycles.

Thread Control Block

thread_info_in

thread_info_out

Thread Queue

thread_id

Counter Unit

counter

Stack Manager

prepare_addr

access_addr

Thread Controller

thread_init
CS_flag

enable

new_flag

clk

to dual four-port
stack memory

to access
DDR-SARAM

to bytecode
execution engine

new
thread id

thread id

from bytecode
execution engine

Fig. 4. The thread manager unit.

JAIP-MP: A Four-Core Java Application Processor 177

The architecture of the thread manager unit is shown in Fig. 4. When a Java program
executes the start() method of an object derived from the Thread class, the JAIP execu‐
tion pipeline will send a signal to the thread manager unit, informing the controller to
initialize a new task in the on-chip thread control block (TCB) and enters the thread ID
into the thread queue. Note that the execution of the start() method via the ‘inovkevirtual’
bytecode goes through the dynamic resolution unit of JAIP, which trigger the controller
circuit of the thread management unit directly. More discussion on the direct invocation
of hardware logic or I/O devices through a standard Java method invocation mechanism
will be discussed in Sect. 2.5.

The structure of the TCB is shown in Fig. 5. In the current design, a fair round-robin
algorithm is used in the controller to select the next ready thread. The state of a thread
is stored in a TCB entry, which is composed of the following information:

1. The ID of the thread.
2. The Java class and method IDs of the thread.
3. The local variable pointer and the operand stack pointer.
4. The program counter and the number of local variables of the thread.
5. The first-level operand stack (the top-of-stack A, B, and C registers) of the thread.
6. The object reference (pointer) to the thread object in the Java heap.

Thread Control Block

Entry 0 Entry 15

Thread ID

Cls id & Mt id

VP & SP

LV0 ~ LV3 & JPC

TOS_A

TOS_B

TOS_C

Thread Object

…

thread_id

thread_init

thread_info.

Thread ID

Cls id & Mt id

VP & SP

LV0 ~ LV3 & JPC

TOS_A

TOS_B

TOS_C

Thread Object

info

CS_flag

Fig. 5. Structure of the on-chip thread control block.

Each TCB entry is composed of eight 32-bit values. In the current design, the thread
control block is implemented using an on-chip memory. We have set the maximal
number of threads to 16 to limit the size of the TCB to 512 byte. The maximal number
of threads can be extended easily at the cost of a larger on-chip memory. For thread
management, we use a circular queue to store the ID of each thread in the queue. Every
time a new thread is created by the Java application through the execution of the start()

178 C.-J. Tsai et al.

method of a Thread object, a new thread ID will be generated and entered into the end
of the thread queue. When the time slice of the current thread ends, its ID will be moved
to the end of the queue and the thread whose ID is pointed to by the ‘next’ pointer will
become the current thread.

The ping-pong stack architecture works as follows. As soon as a thread is selected
as the current thread and starts its execution, the multi-threading logic also picks the
next thread to be executed and, while the first thread is running, swaps in the runtime
stack of the second thread from the main memory. When the time slice of the first thread
is up, JAIP can be switched to the second thread within a cycle since its stack has already
been setup. In the rare case where the restoration of the runtime stack of the second
thread takes longer than the predetermined time quantum of the first thread, the time
quantum will be extended until the runtime stack of the second thread is in place. The
average time it takes to backup or restore a runtime stack to/from the backing store (the
main memory) for the target system used in this chapter (Xilinx ML 605) is less than
10 μs when the system clock is 83.3 MHz.

When the execution is switched to the second thread, the runtime stack of the first
thread will be saved to the main memory in parallel to the execution of the second thread.
As soon as the stack of the first thread is saved, the multi-thread control logic will proceed
to the setup of the third thread. With this design, the overhead of saving/restoring the
runtime stack can be overlapped with the execution of the current thread. According to
our experiments, the time slice of the proposed architecture can be as small as 20 μs and
the only overhead in context-switching is virtually the reset of the processor pipeline
(similar to a branch instruction). Smaller time slice means the distribution of the CPU
resources to each thread is more even. This level of multi-threading efficiency is very
difficult to achieve with a software-based preemptive multitasking operating system.

2.4 The Memory Manager and Garbage Collector

Garbage collection (GC) is an important feature of the Java programming model. It takes
the burden of memory management off the programmers and removes common memory-
related bugs in programs. However, runtime GC may induce high overhead and affect
the performance of an application [18, 19]. This is particular true for software-based
VM. Therefore, for embedded applications, programmers must be careful to avoid trig‐
gering GC unintentionally or the whole application may stall until the GC process is
finished.

On the other hand, for hardwired Java VM, the GC circuitry can run in parallel to
the bytecode execution pipeline, it is possible to design hardware based GC that does
not stall the execution of the Java applications [20]. Although hardware-based GC is an
active research direction [20–22], most designs are simply technical investigations and
have not been integrated into a complete Java system. For example, [20] presents a
synthesizable GC hardware, but the GC is exclusively evaluated on an FPGA using test
patterns that represent typical applications.

Although GC is a crucial component of a JVM, the JVM specification does not
enforce of any type of GCs for memory management. The memory manager hardware
in JAIP includes hardware controllers that handle memory allocation and object caching

JAIP-MP: A Four-Core Java Application Processor 179

(see Fig. 6). To perform garbage collection, the VM must carry out two types of oper‐
ations. First, the VM must be able to determine that an object on the heap is not pointed
to by any Java reference variables. Secondly, the GC mechanism must return the object
space to the unused memory block list and merging two consecutive unused memory
blocks if possible. In JAIP, we adopt the tracing garbage collector since it has low over‐
head and is suitable for hardware implementation. Furthermore, it can be a pluggable
component to existing memory manager of JAIP.

Heap
Allocation

Unit

Stack

de
m

ux

Object Cache
Controller

SRAM
block

allocSize

allocEn

current
heap

pointer

adder

array header array addr

array
reference

DSRU

objSize

array length

array type

External Memory
Controller

DDR3
SDRAM

System Bus

Heap Management Unit

Fig. 6. The memory manager architecture of JAIP without the GC.

In short, the tracing collector returns all the local references to the unused memory
block list unless the reference is a return value to the caller method. To achieve this goal,
we expand the heap allocation unit in Fig. 6 to the architecture in Fig. 7. The object
allocation controller is responsible for allocation of a new object on the heap and enters
the object into the on-chip GC table. The GC table can be accessed by the GC controller
for unused object collection upon the return of a method. Note that to hide the overhead
of the GC, the GC controller must be able to access the GC table concurrently to the
operation of the object allocation controller. Hence, we use a two-port memory for the
GC table. Another on-chip memory in Fig. 7 is the GC method stack memory. The GC
controller maintains this memory exclusively. During the execution of a method, this
memory records all objects allocated locally and whether they are assigned to references
outside the scope of this method. Upon the return of the method, the GC controller will
go through the list of objects and return the memory blocks to the unused memory list
if possible. Note that the collection process is executed in parallel to the normal bytecode
execution pipeline.

180 C.-J. Tsai et al.

GC
Controller

Object
Allocation
Controller

GC Mthd stack Mem

GC_addr

GC_write_en
GC_data_in

Mthd_addr

Mthd_write_en
Mthd_data_in

GC_data_out

Mthd_data_out

J-code

Two-Port GC table

Heap Request

Fetch Stage
Mthd ref 0

Mthd ref 0

Mthd ref 1

. . .

Fig. 7. The garbage collector of JAIP.

The GC controller will merges consecutive free memory block in the GC table into
a larger block. However, it does not move the occupied memory blocks to create larger
unused blocks because the cost would be too high for embedded applications. Note that
the GC algorithm used in JAIP is not a complete garbage collector. It only collects
unreferenced objects created by a method upon the return of the method to the caller.
The reason this algorithm is chosen is mainly because it has very low runtime overhead
and can be integrated into the existing memory manager of JAIP without major modi‐
fication to the overall microarchitecture.

2.5 Dynamic Symbol Resolution Unit and the I/O Subsystem

In Sect. 1.2, we mentioned that the DSRU can provide a direct interface to the I/O
subsystem of a hardwired Java VM. In this subsection, we use the JAIP DSRU as an
example to explain the details. Since most modern operating systems and processors
adopt the memory-mapped I/O model to manage I/O devices and accelerators, naturally,
accesses to I/O devices are achieved using memory read/write operations in the I/O
subsystem address space. Java uses the symbol space realized by the DSRU to replace
the concept of the address space. Therefore, for a hardwired Java VM, the I/O subsystem
can be integrated seamlessly into the DSRU logic. A method call in Java can be transform
directly by the DSRU into control signals wired to a hardware device through some
routing box (similar to the interconnect module of the ARM AXI bus protocols).
Figure 8 shows the state-diagram of the controller of the DSRU of JAIP. When a program
invokes a method, the controller begins at the ‘IDLE’ state and begins the symbol reso‐
lution process. When the DSRU determines that the target of the method invocation is

JAIP-MP: A Four-Core Java Application Processor 181

for a native method implemented in hardware, it will enter the state of ‘Invoke HW
Logic.’ This state will trigger the I/O subsystem manager to send appropriate hardware
signals to the target device. Currently, all the hardware native methods of JAIP are
determined at synthesis time. The string accelerators and the multi-thread managers of
JAIP are invoked using such facility.

Fig. 8. The state diagram of the dynamic resolution controller of JAIP. XRT stands for ‘cross-
reference table,’ MT stands for ‘method,’ IF stands for ‘interface,’ DRC stands for ‘dynamic
resolution controller,’ and FLD stands for ‘field.’

3 Multi-core Integration of JAIP

3.1 The Multi-core Thread Manager

In order to integrate multiple JAIP cores into one application processor, we must modify
the microarchitecture of JAIP. The multi-core capable JAIP core is shown in Fig. 9. The
new addition to the original JAIP core is the Inter-Core Communication Unit (ICCU).
The interactions between various components of the JAIP core and the ICCU are illus‐
trated in Fig. 10. In the Java programming language, an object belongs to the “Thread”
class can register its own execution context by invocation of the Thread.start() method.
At runtime, the Dynamic Symbol Resolution Unit (DSRU) of JAIP will resolve the
method invocation of start() and trigger a hardwired signal to the thread manager unit
of the local JAIP core that executes the start() method. Such direct invocation of a hard‐
wired logic through the dynamic resolution unit is called the Hardware Native Interface
(HNI). In the original single-core JAIP, the local thread manager will handle the thread

182 C.-J. Tsai et al.

creation requests by itself and register a new entry in its local task queue. However, for
a multi-core capable JAIP, the thread creation request cannot be handled locally. Instead,
the request will trigger the HNI invocation of the ICCU, and the request signal will be
passed to the Data Coherence Controller (DCC). The DCC then talks to a global thread
manager to request for the creation of a new thread. The global thread manager will
assign the new thread to a JAIP core based on the depth of its local task queue.

Java Acceleration IP (JAIP)

Host
service

interface

Method area
manager

Bytecode
execution

engine

Dynamic
resolution
controller

Two-level
ping-pong
Java stack

Method image
circular buffer

Class symbol
circular buffer

Dynamic
resolution

tables

Exception
manager

Thread
manager

Data cache
controller

Object cache

Data Coherence Controller

Inter-Core
Communication

Unit

Fig. 9. Modifications required to a JAIP core to enable multi-core integration.

Inter-Core
Communication

Unit

DSRU

JAIP
decode
stage

Thread
Manager

unit

D
ata C

oherence C
ontroller

Command
and Status
Adaptor

Request a
new thread

monitor_enter_req

monitor_exit_req

Data
Transferring
Controller

Execution
stage

Thread objref

TOS_A

Completion ack.

run_thread_ID

JAIP2DCC_info

DCC2JAIP_info

JAIP2DCC
command

DCC2JAIP
response_msg

Fig. 10. Signaling between ICCU and other components of JAIP.

JAIP-MP: A Four-Core Java Application Processor 183

In addition to thread creations, the Java language also defines standard ways for
synchronization. In short, each Java object contains a lock (similar to mutex in other
programming language). Synchronization can be achieved explicitly through the acquis‐
ition of the lock in an object, or implicitly through invocation of a synchronized method.
Similar to the thread creation problem, the acquisition of a lock cannot be handled locally
since two threads requesting the same lock may be running on different JAIP cores.
Therefore, such locking requests will also be passed to the ICCU for multi-core mutex
operations. However, this time, the ICCU is not activated by a HNI invocation from the
DSRU because the lock request is triggered by the execution of a “monitor” bytecode.
Therefore, the lock request is originated from the decode stage of the bytecode execution
engine, as shown in Fig. 10.

The integration of four JAIP cores into the multi-core application processor, JAIP-
MP, is shown in Fig. 11. In the SoC, we only need one copy of DCC and global thread
manager. The combination of these two hardware logic is referred to as the multicore
coordinator of the JAIP-MP. Each JAIP core has its own ICCU. The local cache
controller of each JAIP core will forward its cache block update status to the DCC so
that the DCC can inform other cache controller to update their cache blocks if necessary.
This is an efficient way to guarantee cache coherence when there are only few processor
cores. However, to simplify the implementation of the coherent object cache, each cache
controller adopts a write-through policy. This is different from the original single-core
JAIP presented in [3], where a write-back policy is used. The write-through cache policy
does hinder the single-core performance slightly. Nevertheless, the overall system
performance still scales up fairly well.

JAIP 0

Cache
controller

Object cache

JAIP 1 JAIP 2 JAIP 3

System bus

Multicore
coordinator

Global Thread
Manager

Data-Coherence
Controller

RISC core
(only for
dynamic

class-loading)

Memory
controller

DDR3
SDRAM

ICCU

Cache
controller

Object cache
ICCU

Cache
controller

Object cache
ICCU

Cache
controller

Object cache
ICCU

Fig. 11. Integration of four JAIP cores into a multi-core JAIP-MP SoC.

184 C.-J. Tsai et al.

3.2 The Data Coherence Controller Architecture

The detail architecture of the DCC is shown in Fig. 12. It is composed of four sub-
modules. The cache coherence controller maintains the data consistency across the
object heap controllers of each core. The heap controller adopts the least-recently used
policy and write-through strategy for caching of Java heap objects. The mutex controller
serially decodes requests sent by the JAIP cores and activates corresponding sub-
module. The thread assignment controller (TAC) is responsible for load balancing
among all JAIP cores. When a JAIP core invokes the Thread.start() method, the TAC
will forward its special-purpose registers to the JAIP cores with the least number of
ready threads. The Lock Object Accessing Controller (LOAC) shown in Fig. 13 main‐
tains the information of waiting threads associated with each occupied lock object.

JAIP A JAIP B JAIP C JAIP D

DCC2JAIP
response_msg

Data Coherence Controller

Cache
Coherence
Controller

Thread Assignment
Controller Lock Object Accessing Controller

Mutex Controller

arbiter_cmd_msg

arbiter_infonew_TH
to_coreID

lock_obj
_match_flag

nxtLock
Owner
Info

ICCU

Heap

ICCU

Heap

ICCU

Heap

ICCU

Heap

Fig. 12. The block diagram of the DCC.

When several JAIP cores try to request locks on the same mutex concurrently, the
mutex controller uses a fixed-priority policy to determine which core can lock the mutex.
Currently, the JAIP core with a smaller ID has a higher priority. The mutex controller
supports three types of requests: dispatching a new thread, acquiring a lock object, and
releasing a lock object. Either the TAC or the LOAC will be activated after the mutex
controller determines the type of the request.

When any of the JAIP cores issues a request for the dispatching of a new thread, the
TAC should determine a JAIP core to handle the new thread. In order to determine the

JAIP-MP: A Four-Core Java Application Processor 185

current number of active threads in each JAIP core, the TAC maintains a table. The table
indexed is the ID of the JAIP core, and its entries store the current number of active
threads of each core. The TAC will always assign the new thread to the lowest ID JAIP
core that has the fewest number of ready threads. The TAC will inform the MHC to send
a response signal to the chosen JAIP core with some essential information of the new
thread. The ICCU of the JAIP core may process the information by decoding the
response signal. Finally, the ICCU activates the thread manager unit of the JAIP core to
add the new thread into its local thread queue.

Figure 14 is an example of the link lists maintained by the LOAC, which consists of
a lock object table, a waiting thread table, and a few internal registers. Each occupied
lock object maintains a linked list in these two tables. The head node of the linked list
of a lock object begins at an entry in the lock object table, and the rest of the linked list
nodes are entries of the waiting thread list. Each entry in the link list (except for the head
node) represents a thread that is performing a lock operation on the object. The first
thread in the linked list is the link list is the current owner of the lock. As soon as any
thread in one of the JAIP cores tries to lock a Java object, the mutex controller will send
a lock object Ln to the LOAC. The LOAC will look for the object address of an entry
that matches Ln in the lock object table. Once the matched entry is found, the information
must be recorded in the waiting thread table. Each entry contains the IDs of the JAIP
core and the thread. The new entry is appended at the end of the link list. If the request
from a thread is to release the lock object Ln, the LOAC will remove the thread from the
link list. If any other thread is waiting for the same lock object Ln, the LOAC will make
the second thread in the link list become the current owner of the lock object.

Lock Object Accessing Controller

monEn_match
_cmplt

nxtLock
OwnerInfo

lastNode_
lockObj_flag

mutex_
state

monEn_
free_cmplt

monEx_
cmplt

Mutex Controller

List Accessing Controller

D
O

A

D
O

B

D
IA

D
IB

lockObj_
curCount

numLock
_checked

lockOwner

nxtEmpty
WaitLst

nxtEmpty
LockObjLs

t

BRAM

Lock Object
Table

Waiting
Thread
Table

the_owner_
acq_again

A
D

D
R

A

A
D

D
R

B

Fig. 13. The block diagram of the LOAC.

186 C.-J. Tsai et al.

Waiting Thread Table
Valid

bit
Core
ID

Thread
ID

Counter Reserved Next node
Address

1 01 0000100 000001 00…..00 0000100

1 11 0000001 000001 00…..00 0001000

0 xx xxxxxxx 000000 00…..00 1111111

1 00 0000010 000001 00…..00 1111111

1 00 0000011 000001 00…..00 1111111

1 10 0000000 000001 00…..00 0000000

1 00 0000001 000011 00…..00 1111111

0 xx xxxxxxx 000000 00…..00 1111111

.... …...
0 xx xxxxxxx 000000 00…..00 1111111

Head node

Valid
bit

Object reference
address

Next node
Address

1 Object reference L0 0000101

0 Unknown value 1111111

1 Object reference L1 0000001

1 Object reference L2 0000110

0 Unknown value 1111111

.... …....

0 Unknown value 1111111

Lock Object Table

A

B

C

A

C

C

Fig. 14. Data structures maintained by the LOAC.

4 Experimental Results

The proposed architecture has been implemented on a Xilinx ML605 platform with a
Xilinx Virtex6 XC6VLX240T FPGA. The RTL model of the JAIP core and the DCC
logic are written in VHDL. Four JAIP cores and one DCC logic are integrated into the
application processor using Xilinx XPS 13.4. The synthesis tool is Xilinx XST 13.4 and
the target clock is 83.3 MHz. According to the place-and-route timing report of the
Xilinx tools, the critical path of the system is currently at the execution stage of JAIP,
from the customized four-port stack memory to ALU and then back to the four-port
memory. The target frequency is chosen at 83.3 MHz due to some restrictions for DDR
DRAM support on the development boards. The FPGA resource usages of JAIP and
DCC are shown in Table 1.

JAIP-MP: A Four-Core Java Application Processor 187

Table 1. Logic usage of a JAIP core and DCC on a Virtex6 FPGA device.

FPGA logic units LUT6s Flip-flops BRAMs
JAIP (per core) 12,580 5,912 34
DCC 663 449 1

Note: LUT6 means a six-input lookup table in a logic cell of a Xilinx
device.

4.1 Single-Core Multithread Performance Evaluation

To evaluate the multi-threading performance of the proposed JAIP, we used the multi‐
threading benchmark programs from the JemBench suites [23]. These test programs are
explained as follows. The ‘Dummy’ test creates multiple threads to execute busy loops
for 5000 iterations. For the ‘Matrix’ test, each thread computes the multiplication of two
20-by-20 matrices. The ‘N-Queens’ test solves the N-Queens puzzle for N = 13 in each
thread. For each test programs, the test scores roughly stand for the number of iterations
each test program can execute per seconds by all threads. However, the scores are asso‐
ciated with quantization noises from the partition of subtasks across multiple threads
and from the synchronization operations. In short, the drop in scores from single-thread
test to multiple-thread tests is not entirely due to the context-switching overhead. Sun’s
CVM-JIT [24] running under Linux kernel 2.6.38 on an 83.3 MHz PowerPC 405
processor is used as the comparison point. JIT compilation is a very popular technique
for Java program acceleration. Since the standard Java compilers (from Sun/Oracle) do
not perform bytecode optimization on the compiled class files, a JIT-based VM could
achieve significant speedup at runtime.

0

50

100

150

200

250

300

350

sc
or

e

threads

JAIP
CVM-JIT

Dummy

Fig. 15. JemBench scores of the ‘Dummy’ test on a single JAIP core.

From Figs. 15 and 16, one can see that the performance of CVM-JIT is higher for
single-thread execution of the Dummy test and the Matrix test, JAIP has better perform‐
ance when the number of threads becomes larger. Since in these tests, both JAIP and
CVM-JIT executes using only one processor core, the scores drops naturally as the

188 C.-J. Tsai et al.

number of threads increases due to task division and synchronization overheads
explained before. However, from these plots, it is quite clear that a software-based
multithread mechanism such as the CVM-JIT has higher overhead in thread manage‐
ment. The performance drops significantly as the number of threads increases. For the
Dummy test, JAIP outperforms CVM-JIT when the thread number is larger or equal to
4. For the Matrix test, JAIP matches the performance of CVM-JIT when the thread
number is equal to 2 and outperforms CVM-JIT when the thread number is larger than
2. Finally, for the N-Queens test result shown in Fig. 17, JAIP outperforms CVM-JIT
even if there is only one thread. This is probably because the NQueens program leaves
little room for bytecode optimization by the JIT technique.

0

50

100

150

200

250

sc
or

e

threads

JAIP
CVM-JIT

Matrix

Fig. 16. JemBench scores of the ‘Matrix’ test on a single JAIP core.

0

20

40

60

80

100

120

140

sc
or

e

#threads

JAIP
CVM-JIT

N-Queens

Fig. 17. JemBench scores of the ‘N-Queens’ test on a single JAIP core.

JAIP-MP: A Four-Core Java Application Processor 189

4.2 Multi-core Multithread Performance Evaluation

For multi-core multi-thread performance evaluation, we do not use CVM-JIT as a
comparison point because the software platform does not support multi-core execution
of Java applications. Here, we focus on the evaluation of performance scalability of
JAIP-MP when the threads are distributed over multiple processor cores. As Table 2
shows, when the total number of threads is less than or equal to four, the JemBench score
scales up fairly well (up to 3.69 times faster for the N-Queens test). When the total
number of threads is more than four, the score of each benchmark naturally drops as the
preemptive multi-threading mechanism of each JAIP core kicks in and there are synchro‐
nization overheads due to the way the benchmarks are designed. This is especially true
for the N-Queens test.

Table 2. The multi-core JemBench scores of the parallel benchmarks.

threads Dummy Matrix N-Queens
1 151 167 116
2 298 240 225
3 374 395 330
4 491 498 428
5 410 425 311
6 373 412 251
8 362 399 262
12 359 366 212
16 340 327 195

Note: Larger number means better scores.

4.3 Synchronization Overhead

In the JemBench tests, context-switching overhead is not the only reason to cause the
performance drop. If several requests are sent concurrently to the DCC of JAIP-MP, it
takes several cycles for the mutex controller to decode the requests sequentially. In
addition, to maintain data cache coherency, as soon as each entry is updated in any of
the object heap controllers, the modified entry and its corresponding address are sent to
the cache coherence controller and the main memory controller for cache validation
among JAIP cores.

Tables 3 and 4 show the synchronization overhead of the proposed architecture under
the Matrix test. The average overhead of a synchronization operation can be as small as
tens of machine cycles.

Table 3. The execution time (in clock cycles) of acquiring a lock object.

threads 4 6 8 12 16
Average 23.1 25.4 25.4 28.9 28.9
Worst-case 43 89 108 108 110
Best-case 9 9 9 9 9

190 C.-J. Tsai et al.

Table 4. The execution time (in clock cycles) of releasing a lock object.

threads 4 6 8 12 16
Average 20.2 21.6 21.8 28.4 28.7
Worst-case 43 76 85 92 98
Best-case 10 10 10 10 10

5 Conclusions and Future Work

In this chapter, we have presented an four-core Java processor, JAIP-MP. The unique‐
ness of JAIP-MP is that the key functions of an operating system kernel are implemented
in hardware circuits. For thread management, the architecture supports arbitrary number
of threads (limited by the on-chip TCB memory size), low context-switching overhead,
small time quantum, and low synchronization overhead. The proposed architecture is
implemented and verified on an FPGA platform. Experimental results show that the
proposed design is very promising for embedded multi-thread applications.

For future work, we will look into the following directions. First of all, although the
ping-pong buffer for context-switching is efficient performance-wise, it does impose
heavy memory accesses. This may result in high power consumption. In the future, we
will try to design a new architecture that can reduce the number of memory access per
context-switch. Secondly, the coherent data cache in our current implementation only
adopts one-level of cache hierarchy. Most general purpose processors nowadays adopt
two or even three levels of cache hierarchy. It would be interesting to study the effects
of a multi-level cache on the object-oriented programming model of the Java language.

Finally, current thread management design only uses a round-robin policy to main‐
tain load balance. We will look into the design of a new architecture that can customize
the thread distribution policy at runtime and allow for thread migration across different
JAIP cores so that better runtime load balance can be achieved.

References

1. Ritchie, S.: Systems programming in Java. IEEE Micro 17(3), 30–35 (1997)
2. Montague, B.R.: JN: OS for an embedded Java network computer. IEEE Micro 17(3), 54–60

(1997)
3. Tsai, C.-J., Kuo, H.-W., Lin, Z., Guo, Z.-J., Wang, J.-F.: A Java processor IP design for

embedded SoC. ACM Trans. Embed. Comput. Syst. 14(2), Article 35 (2015)
4. Su, H.-C., Wu, T.-H., Tsai, C.-J.: Temporal multithreading architecture design for a Java

processor. In: Proceedings of the IEEE International Symposium on Circuit and Systems
(ISCAS 2014), Melbourne, Australia, June 2014

5. Schoeberl, M.: A Java processor architecture for embedded real-time systems. EUROMICRO
J. Syst. Architect. 54(1–2), 265–286 (2008)

6. Gruian, F., Schoeberl, M.: Hardware support for CSP on a Java chip multiprocessor.
Microprocess. Microsyst. 37(4), 472–481 (2013)

JAIP-MP: A Four-Core Java Application Processor 191

7. Brandner, F., Thorn, T., Schoeberl, M.: Embedded JIT compilation with CACAO on YARI.
In: Proceedings of the IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC 2009), Tokyo, 17–20 March, pp. 63–70
(2009)

8. Tyystjaervi, J., Saentti, T., Plosila, J.: Efficient bytecode optimizations for a multicore Java
co-processor system. In: Proceedings of the 12th Biennial Baltic Electronics Conference,
Tallinn, Estonia, 4–6 October 2010

9. Kreuzinger, J., Brinkschulte, U., Pfeffer, M., Uhrig, S., Ungerer, T.: Real-time event-handling
and scheduling on a multithreaded Java microcontroller. Microprocess. Microsyst. 27(1), 19–
31 (2003)

10. Sun Microsystems: picoJava-II Microarchitecture Guide (1999)
11. Uhrig, S., Wiese, J.: jamuth: an IP processor core for embedded Java real-time systems. In:

Proceedings of the 5th International Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2007), 26–28 September, Vienna, pp. 230–237 (2007)

12. Pitter, C., Schoeberl, M.: Towards a Java multiprocessor. In: Proceedings of the 5th ACM
International Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES
2007), 26–28 September, Vienna, pp. 144–151 (2007)

13. Yan, L., Liang, Z.: An accelerator design for speedup of Java execution in consumer mobile
devices. Comput. Electr. Eng. 35(6), 904–919 (2009)

14. Hardin, D.S.: Real-time objects on the bare metal: an efficient hardware realization of the
JavaTM virtual machine. In: Proceedings of the 4th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, 2–4 May, Magdeburg, pp. 53–59 (2001)

15. Vijaykrishnan, N., Ranganathan, N., Gadekarla, R.: Object-oriented architectural support for
a Java processor. In: Proceedings of the 12th European Conference on Object-Oriented
Programming, Brussels, Belgium, pp. 330–354 (1998)

16. Lin, Z.-G., Kuo, H.-W., Guo, Z.-J., Tsai, C.-J.: Stack memory design for a low-cost instruction
folding Java processor. In: Proceedings of the IEEE International Symposium on Circuit and
Systems, 20–23 May, Soeul, Korea, pp. 3326–3229 (2012)

17. Lindholm, T., Yelling, F.: The Java Virtual Machine Specification, 2nd edn. Addison-Wesley,
Longman Publishing Co., Inc., Boston (1999)

18. Chang, Y., Wellings, A.: Garbage collection for flexible hard real-time systems. IEEE Trans.
Comput. 59(8), 1063–1075 (2010)

19. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-the-fly garbage
collection: an exercise in cooperation. Commun. ACM 21(11), 965–975 (1978)

20. Bacon, D.F., Cheng, P., Shukla, S.: And then there were none: a stall-free real-time garbage
collector for reconfigurable hardware. Commun. ACM 56(12), 101–109 (2013)

21. Srisa-an, W., Lo, C.-T.D., Chang, J.M.: Active memory processor: a hardware garbage
collector for real-time Java embedded devices. IEEE Trans. Mobile Comput. 2(2), 89–101
(2003)

22. Gruian, F., Salcic, Z.A.: Designing a concurrent hardware garbage collector for small
embedded systems. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS,
vol. 3740, pp. 281–294. Springer, Heidelberg (2005)

23. Schoeberl, M., Preusser, T. B., Uhrig, S.: The embedded Java benchmark suite JemBench.
In: Proceedings of the JTRES 2010, 19–21 August, Prague, Czech Republic (2010)

24. Oracle: Phoneme project webpage. Accessed 27 Sept 2011. https://java.net/projects/phoneme

192 C.-J. Tsai et al.

https://java.net/projects/phoneme

	JAIP-MP: A Four-Core Java Application Processor for Embedded Systems
	Abstract
	1 Introduction
	1.1 Multi-core Java Processors
	1.2 Potentials of Hardwired Virtual Machines

	2 The Architecture of the JAIP Core
	2.1 The Overview of JAIP Core
	2.2 The Bytecode Execution Engine and the Stack Memory
	2.3 Single-Core Preemptive Thread Management
	2.4 The Memory Manager and Garbage Collector
	2.5 Dynamic Symbol Resolution Unit and the I/O Subsystem

	3 Multi-core Integration of JAIP
	3.1 The Multi-core Thread Manager
	3.2 The Data Coherence Controller Architecture

	4 Experimental Results
	4.1 Single-Core Multithread Performance Evaluation
	4.2 Multi-core Multithread Performance Evaluation
	4.3 Synchronization Overhead

	5 Conclusions and Future Work
	References

