
123

23rd IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2015
Daejeon, Korea, October 5–7, 2015
Revised Selected Papers

VLSI-SoC: Design
for Reliability, Security,
and Low Power

Youngsoo Shin
Chi Ying Tsui
Jae-Joon Kim

Kiyoung Choi
Ricardo Reis

(Eds.)

IFIP AICT 483

IFIP Advances in Information
and Communication Technology 483

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

Foundation of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Security and Privacy Protection in Information Processing Systems
Stephen Furnell, Plymouth University, UK

Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

Human-Computer Interaction
Jan Gulliksen, KTH Royal Institute of Technology, Stockholm, Sweden

Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102

Youngsoo Shin • Chi Ying Tsui
Jae-Joon Kim • Kiyoung Choi
Ricardo Reis (Eds.)

VLSI-SoC: Design
for Reliability, Security,
and Low Power
23rd IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2015
Daejeon, Korea, October 5–7, 2015
Revised Selected Papers

123

Editors
Youngsoo Shin
KAIST
Daejeon
Korea (Republic of)

Chi Ying Tsui
Hong Kong University of Science and
Technology

Clear Water Bay
Hong Kong

Jae-Joon Kim
POSTECH
Pohang
Korea (Republic of)

Kiyoung Choi
Seoul National University
Seoul
Korea (Republic of)

Ricardo Reis
Federal University of Rio Grande do Sul
Porto Alegre, Rio Grande do Sul
Brazil

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-46096-3 ISBN 978-3-319-46097-0 (eBook)
DOI 10.1007/978-3-319-46097-0

Library of Congress Control Number: 2016950745

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This book contains extended and revised versions of the highest quality papers, which
were presented during the 23rd IFIP/IEEE WG10.5 International Conference on Very
Large Scale Integration (VLSI-SoC), a global System-on-Chip Design & CAD con-
ference. The 23rd conference was held at the Daejeon Convention Center, South Korea,
during October 5–7, 2015. Previous conferences have taken place in Edinburgh,
Scotland (1981); Trondheim, Norway (1983); Tokyo, Japan (1985); Vancouver,
Canada (1987); Munich, Germany (1989); Edinburgh, Scotland (1991); Grenoble,
France (1993); Chiba, Japan (1995); Gramado, Brazil (1997); Lisbon, Portugal (1997);
Montpellier, France (2001); Darmstadt, Germany (2003); Perth, Australia (2005); Nice,
France (2006); Atlanta, USA (2007); Rhodes Island, Greece (2008); Florianopolis,
Brazil (2009); Madrid, Spain (2010); Kowloon, Hong Kong (2011), Santa Cruz, USA
(2012), Istanbul, Turkey (2013), and Playa del Carmen, Mexico (2014).

The purpose of this conference, which was sponsored by IFIP TC 10 Working
Group 10.5, the IEEE Council on Electronic Design Automation (CEDA), and by IEEE
Circuits and Systems Society, with the In-Cooperation of ACM SIGDA, was to provide
a forum for the exchange of ideas and presentation of industrial and academic research
results in the field of microelectronics design. The current trend toward increasing chip
integration and technology process advancements has brought new challenges both at
the physical and system design levels, as well as in the test of these systems. VLSI-SoC
conferences aim to address these exciting new issues.

The quality of submissions (117 regular papers from 28 countries, excluding PhD
Forum and special sessions) made the selection process a very difficult one. Finally, 44
submissions were accepted as full papers and 17 as posters. Out of the 44 full papers
presented at the conference, 10 papers were chosen by a selection committee to have an
extended and revised version included in this book. The selection process of these
papers considered the evaluation scores during the review process as well as the review
forms provided by members of the Technical Program Committee and Session Chairs
as a result of the presentations.

The chapters of this book have authors from China, Denmark, France, Germany,
Hong Kong, Italy, Ireland, South Korea, The Netherlands, Switzerland, and the USA.
The Technical Program Committee comprised 92 members from 24 countries.

VLSI-SoC 2015 was the culmination of the work of many dedicated volunteers:
paper authors, reviewers, session chairs, invited speakers, and various committee
chairs. We thank them all for their contribution.

This book is intended for the VLSI community, mainly those persons who did not
have the chance to attend the conference. We hope you will enjoy reading this book
and that you will find it useful in your professional life and for the development of the
VLSI community as a whole.

August 2016 Youngsoo Shin
Chi Ying Tsui
Jae-Joon Kim
Kiyoung Choi
Ricardo Reis

VI Preface

Organization

The IFIP/IEEE International Conference on Very Large Scale Integration-System-
on-Chip (VLSI-SoC) 2015 took place during October 5–7, 2015 in the Daejeon
Convention Center, South Korea. VLSI-SoC 2015 was the 23rd in a series of
international conferences, sponsored by IFIP TC 10 Working Group 10.5 (VLSI),
IEEE CEDA, and ACM SIGDA. The organization of the conference was done by the
following people:

General Chairs

Naehyuck Chang KAIST, South Korea
Kiyoung Choi Seoul National University, South Korea

Technical Program Chairs

Youngsoo Shin KAIST, South Korea
Chi-Ying Tsui HKUST, Hong Kong, China

Technical Vice Program Chair

Jae-Joon Kim POSTECH, South Korea

Special Sessions Chair

Gi-Joon Nam IBM, USA

Local Arrangement Chairs

Ji-Hoon Kim Chungnam National University, South Korea
Seokhyeong Kang UNIST, South Korea

Publication Chairs

Yoonjin Kim Sookmyung Women’s University, South Korea
Jongeun Lee UNIST, South Korea

Publicity Chairs

Tsung-Yi Ho National Chiao Tung University, Taiwan
Nak Woong Eum ETRI, South Korea
Hiroshi Nakamura University of Tokyo, Japan
Jose L. Ayala Complutense University of Madrid, Spain

Registration Chair

Jaeyong Chung Incheon National University, South Korea

Finance Chair

Youngmin Yi University of Seoul, South Korea

PhD Forum Chairs

Srinivas Katkoori USF, USA
Jason Xue City University of Hong Kong, Hong Kong, China

VLSI-SoC Steering Committee

Manfred Glesner TU Darmstadt, Germany
Matthew Guthaus UC Santa Cruz, USA
Salvador Mir TIMA, France
Ricardo Reis UFRGS, Brazil
Michel Robert University of Montpellier, France
Luis Miguel Silveira INESC ID/IST - University of Lisbon, Portugal
Chi-Ying Tsui HKUST, Hong Kong, China
Fatih Ugurdag Ozyegin University, Turkey

Technical Program Committee

Analog and Mixed-Signal IC Design

Chairs

Jaeha Kim Seoul National University, South Korea
Tai-Cheng Lee National Taiwan University, Taiwan

Members

Ke-Horng Chen National Chiao-Tung University, Taiwan
Kenichi Okada Tokyo Institute of Technology, Japan
Sai-Weng Sin University of Macau, China
Michiel Steyaert KU Leuven, Belgium
Jose M. de La Rosa Instituto de Microelectrónica de Sevilla, IMSE-CNM

(CSIC), Spain
Jaehyouk Choi Ulsan National Institute of Science and Technology,

South Korea

VIII Organization

System Architectures NoC, 3D, Multi-core, and Reconfigurable

Chairs

Yuan Xie UC Santa Barbara, USA
Nam Sung Kim University of Wisconsin, USA

Members

Jishen Zhao University of California, Santa Cruz, USA
Jiang Xu Hong Kong University of Science and Technology,

Hong Kong, USA
Myoung Jung UT Dallas, USA
Ulya Karpuzcu University of Minnesota, USA
Radu Teodorescu Ohio State University, USA
Leandro Indrusiak University of York, USA
Ian O’Connor Lyon Institute of Nanotechnology, France
Michael Huebner Ruhr-University Bochum, Germany

CAD Synthesis and Analysis

Chairs

Minsik Cho IBM, USA
Masahiro Fujita University of Tokyo, Japan

Members

Bei Yu UT Austin, USA
Duo Ding Oracle Microelectronics, USA
Myung-Chul Kim IBM Corporation, USA
Takashi Kambe Kinki University, Japan
Tiziano Villa Università di Verona, Italy
Ricardo Reis Universidade Federal do Rio Grande do Sul, Brazil
Zhiru Zhang Cornell University, USA

Circuits and Systems for Signal Processing and Communications

Chairs

Oscar Gustafsson Linköping University, Sweden
Per Larsson-Edefors Chalmers University, Sweden

Members

Hyeon-Min Bae KAIST, South Korea
Liam Marnane University College Cork, Ireland
Tobias Noll RWTH Aachen University, Germany
Jongsun Park Korea University, South Korea

Organization IX

Christoph Studer Cornell University, USA
Dajiang Zhou Waseda University, Japan
Fatih Ugurdag Ozyegin University, Turkey
Luc Claesen Universiteit Hasselt, Belgium

Embedded System Architecture, Design, and Software

Chairs

Vijaykrishnan Narayanan Penn State University, USA
Jason Xue City University of Hong Kong, Hong Kong, China

Members

Ingchao Lin National Cheng Kung University, Taiwan
Wang Yu Tsinghua University, China
Zili Shao Hong Kong Polytechnic University, Hong Kong, China
Lar Bauer Karlsruhe Institute of Technology, Germany
Koji Inoue Kyushu University, Japan
Sri Parameswaran University of New South Wales, Australia
Akash Kumar National University of Singapore, Singapore

Low-Power and Thermal-Aware Design

Chairs

Massimo Poncino Politecnico di Torino, Italy
Tadahiro Kuroda Keio University, Japan

Members

Jose L. Ayala Complutense University of Madrid, Spain
Aida Todri-Sanial French National Center for Scientific Research, France
Mirko Loghi Università di Udine, Italy
Donghwa Shin Yeungnam University, South Korea
Chia-Lin Yang National Taiwan University, Taiwan
Masaaki Kondo The University of Electro-Communications, Japan

Memory Technology, Circuit, and System

Chairs

Yiran Chen University of Pittsburg, USA
Rahul Rao IBM, India

Members

Minki Cho Intel, USA
Swaroop Ghosh Intel, USA
Jingtong Hu Oklahoma State University, USA

X Organization

Kwanyeob Chae Samsung Electronics, South Korea
Nitin Chandrachoodan IIT Madras, India
Chengmo Yang University of Delaware, USA
Lionel Torres LIRMM, France

Prototyping, Verification, Modeling, and Simulation

Chairs

Graziano Pravadelli University of Verona, Italy
Swarup Bhunia Case Western Reserve University, USA

Members

Daniel Grosse University of Bremen, Germany
Pierre-Emmanuel

Gaillardon
Ecole Polytechnique Fédérale de Lausanne (EFPL),

Switzerland
Anupam Chattopadhyay Nanyang Technological University, Singapore
Prabhat Mishra University of Florida, USA
Sandip Ray Intel, USA
Laurence Pierre TIMA, France
Florian Letombe Synopsys, France
Adam Pawlak Silesian University of Technology, Poland

Design for Variability, Reliability, and Test

Chairs

Chris Kim University of Minnesota, USA
Jing-Jia Liu National Tsing-Hua University, Taiwan

Members

Matteo Sonza Reorda Politecnico di Torino, Italy
Swaroop Ghosh Intel, USA
Victor Champac INAOE, Mexico
Tony Kim Nanyang Technological University, Singapore
Xiaofei Wang University of Minnesota, USA
Satoshi Ohtake Oita University, Japan

Security

Chairs

Ozgur Sinanoglu New York University Abu Dhabi, UAE
Srinivas Katkoori University of South Florida, USA

Organization XI

Members

Debdeep Mukhopadhyay IIT Kharagpur, India
Mohammad Tehranipoor University of Connecticut, USA
Paolo Maistri TIMA Laboratory, France
Joseph Zambreno Iowa State University, USA
Siddharth Garg New York University, USA
Yier Jin The University of Central Florida, USA

XII Organization

Contents

On the Use of System-on-Chip Technology in Next-Generation Instruments
Avionics for Space Exploration. 1

Xabier Iturbe, Didier Keymeulen, Patrick Yiu, Daniel Berisford,
Robert Carlson, Kevin Hand, and Emre Ozer

Fault Collapsing in Digital Circuits Using Fast Fault Dominance
and Equivalence Analysis with SSBDDs . 23

Raimund Ubar, Lembit Jürimägi, Elmet Orasson, and Jaan Raik

A Hardware Accelerator for Real Time Sliding Window Based Pedestrian
Detection on High Resolution Images . 46

Asim Khan, Muhammad Umar Karim Khan, Muhammad Bilal,
and Chong-Min Kyung

Wearable ECG SoC for Wireless Body Area Networks: Implementation
with Fuzzy Decision Making Chip . 67

Manikandan Pandiyan and Geetha Mani

Delay Testing Based on Multiple Faulty Behaviors 87
Masahiro Fujita

A Temperature-Aware Battery Cycle Life Model for Different Battery
Chemistries . 109

Alberto Bocca, Alessandro Sassone, Donghwa Shin, Alberto Macii,
Enrico Macii, and Massimo Poncino

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing for
Ultra-low Power Camera Front Ends . 131

Anvesha Amaravati, Manan Chugh, and Arijit Raychowdhury

Electromagnetic Transmission of Intellectual Property Data to Protect
FPGA Designs . 150

Lilian Bossuet, Pierre Bayon, and Viktor Fischer

JAIP-MP: A Four-Core Java Application Processor for Embedded Systems 170
Chun-Jen Tsai, Tsung-Han Wu, Hung-Cheng Su, and Cheng-Yang Chen

Automatic Generation and Qualification of Assertions on Control Signals:
A Time Window-Based Approach. 193

Alessandro Danese, Francesca Filini, Tara Ghasempouri,
and Graziano Pravadelli

Author Index . 223

http://dx.doi.org/10.1007/978-3-319-46097-0_1
http://dx.doi.org/10.1007/978-3-319-46097-0_1
http://dx.doi.org/10.1007/978-3-319-46097-0_2
http://dx.doi.org/10.1007/978-3-319-46097-0_2
http://dx.doi.org/10.1007/978-3-319-46097-0_3
http://dx.doi.org/10.1007/978-3-319-46097-0_3
http://dx.doi.org/10.1007/978-3-319-46097-0_4
http://dx.doi.org/10.1007/978-3-319-46097-0_4
http://dx.doi.org/10.1007/978-3-319-46097-0_5
http://dx.doi.org/10.1007/978-3-319-46097-0_6
http://dx.doi.org/10.1007/978-3-319-46097-0_6
http://dx.doi.org/10.1007/978-3-319-46097-0_7
http://dx.doi.org/10.1007/978-3-319-46097-0_7
http://dx.doi.org/10.1007/978-3-319-46097-0_8
http://dx.doi.org/10.1007/978-3-319-46097-0_8
http://dx.doi.org/10.1007/978-3-319-46097-0_9
http://dx.doi.org/10.1007/978-3-319-46097-0_10
http://dx.doi.org/10.1007/978-3-319-46097-0_10

On the Use of System-on-Chip Technology
in Next-Generation Instruments Avionics

for Space Exploration

Xabier Iturbe1(B), Didier Keymeulen2, Patrick Yiu3, Daniel Berisford2,
Robert Carlson2, Kevin Hand2, and Emre Ozer1

1 ARM Research, Cambridge, UK
{xabier.iturbe,emre.ozer}@arm.com

2 NASA Jet Propulsion Laboratory, Pasadena, CA, USA
didier.keymeulen@jpl.nasa.gov

3 Massachusetts Institute of Technology, Cambridge, MA, USA
pyiu@mit.edu

Abstract. System-on-Chip (SoC) technology enables integrating all the
functionality required to control and process science data delivered by
space instruments in a single silicon chip (e.g., microprocessor + pro-
grammable logic). This chapter discusses the implications of using this
technology in deep-space exploration avionics, namely in the next gen-
eration of NASA science instruments that will be used to explore our
Solar system. We present here our experience at the NASA Jet Propul-
sion Laboratory (JPL) using Xilinx Zynq SoC devices to implement the
data processing of a Fourier transform spectrometer, namely the Compo-
sitional InfraRed Imaging Spectrometer (CIRIS). Besides, we also discuss
the different fault-tolerance techniques that have been implemented in
the CIRIS controller SoC to deal with harsh radiation conditions pre-
vailing in deep-space environments.

Keywords: Fault-tolerance · Avionics · System-on-chip integration ·
ARM processor · Signal processing

1 Introduction

Hybrid System-on-Chip (SoC) devices that embed the most energy efficient
processor (ARM cores [1]) and the latest and most powerful FPGA architecture
(Xilinx 7-series [2]) into a single chip (Xilinx Zynq [3]) promise new opportu-
nities due to the performance, power consumption, weight and volume benefits
they bring. This is especially relevant for building more capable space avionics.

Xabier Iturbe was also affiliated with the NASA Jet Propulsion Laboratory, Califor-
nia Institute of Technology, when conducting this research.
Patrick Yiu was affiliated with the California Institute of Technology when conduct-
ing this research.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 1–22, 2016.
DOI: 10.1007/978-3-319-46097-0 1

2 X. Iturbe et al.

Currently most of these systems combine programmable logic and processors
as separate components distributed along one or several PCB board(s), which
results in power consumption overheads and larger volume to be put into space
[4,5]. Besides, currently existing space-grade processors (e.g., RAD750 [6]) are
not suitable to be used in the next-generation spacecraft computing platforms
because they do not provide sufficient performance and energy efficiency [7]. As
a result, NASA and other space agencies have approached ARM and SoC tech-
nology, hoping to pave the way for future space exploration missions that are
becoming ever more performance demanding.

Despite the fact that currently there are no space-qualified SoC parts, NASA
is testing commercial Xilinx Zynq SoC devices in the International Space Station
(ISS) as well as in precursor CubeSats operating in Low Earth Orbit (LEO),
where the exposure to radiation is limited.

In view of a potential radiation-hardened SoC device that might be ready
to fly in deep-space missions in the near to mid future, JPL and ARM have
partnered together to develop a SoC platform to be used as a research vehicle
for powering next-generation flight instruments intended to be used in NASA
deep-space missions. Presently this platform, called APEX-SoC (APEX stands
for Advanced Processor core for space EXploration), is being prototyped using
a commercial Xilinx Zynq device. The APEX-SoC includes a generic and adapt-
able infrastructure that provides support for hardware and software based science
processing. More specifically, the data acquisition and processing proper to each
science instrument is to be implemented as a collection of “custom software and
hardware applications” that are encapsulated by the APEX-SoC infrastructure
and run on the Zynq’s on-chip ARM processor and reside on the Zynq’s FPGA
fabric. Besides the infrastructure itself, the APEX-SoC includes a set of Radia-
tion Hardened By Design (RHBD) features to protect the instrument-dependent
modules implemented on the FPGA fabric from harsh space radiation. In con-
nection with this, we are currently carrying out two research efforts to create
a space-grade ARM processor that could potentially replace commercial ARM
processors embedded in future radiation-tolerant SoC devices. First, we are con-
ducting a thorough soft-error analysis of the ARM Cortex-R5 microprocessor,
which is currently used in terrestrial safety-critical real-time applications, to
identify the most vulnerable parts in the micro-architecture of this processor,
analyze what level of protection is required for these vulnerable parts (e.g., detec-
tion only, correction only or hybrid), and then decide how to achieve this level of
protection. Secondly, we are designing a Cortex-R5 based fail-operational Triple
Core Lock-Step ARM processor (TCLS-ARM) with the capability to recover
from errors within microseconds [8].

This chapter describes the first prototype of the APEX-SoC platform imple-
mented on the Zynq SoC and presents an illustrative case-study drawn from
the JPL Compositional Infrared Imaging Spectrometer (CIRIS) [11], which has
been proposed to be used in icy moons, such as Jupiter’s moon Europa [12]. The
remainder of this chapter is as follows. Section 2 introduces the SoC technology
and its use in space missions so far. Section 3 describes the APEX-SoC platform,

On the Use of System-on-Chip Technology 3

and then Sect. 4 presents a case-study where the JPL CIRIS spectrometer data
processing is implemented on this platform. Section 5 summarizes the implemen-
tation, performance and irradiation results that have been collected so far and,
finally, Sect. 6 concludes the chapter and points out to future work.

2 System-on-Chip Technology and Its Use in Space
Exploration Avionics

Despite miniaturized SoC technology is very convenient for space, where every
gram of mass launched involves enormous costs, it is currently designed for and
used by consumer terrestrial applications, where a single device with very low
power consumption has found a niche in the network and telecommunication
markets. Commercial SoCs have developed very advanced computation capa-
bilities in consumer electronics that is continuously demanding more powerful
devices and applications. One example of the sophistication degree achieved
by commercial SoCs is the Xilinx Zynq-UltraScale+ MPSoC that is scheduled
for release in early 2016 [13]. This will include an ARM Cortex-A53 high-
performance 64-bit processor, an ARM Cortex-R5 real-time processor and a
Xilinx UltraScale FPGA architecture.

Current SoC devices available in the market typically include at least one
processor and an FPGA fabric. Since ARM cores are the standard processors
used in all SoCs, the difference between them comes from the FPGA fabric they
use. This fabric embeds routing resources, programmable logic, DSP and RAM
blocks together with the memory cells to store their configuration.

Although the current use of SoCs is largely limited to terrestrial applications,
space agencies consider this technology could be an alternative to overcome the
current performance crisis seen in the space sector [7] as long as it develops an
adequate degree of reliability to operate in harsh space environments. Indeed,
when used in space, both ARM cores and FPGA fabric embedded in SoCs are
vulnerable to radiation-induced soft-errors [9,10], which pose a greater reliabil-
ity threat to SRAM-based FPGAs, such as those from Xilinx and Altera. In
the latter FPGAs, the charged particles and outer radiation in general can alter
the configuration information stored in SRAM-based memory cells, resulting in
undesired logic functions implemented in the programmable logic and/or wrong
inter-connections between the components. On the other hand Microsemi uses
flash memory in its FPGA fabric, which is more resilient to radiation provoked
soft-errors but allows for lower integration density, thus delivering more modest
computation capabilities. Scrubbing is a classical method to protect the configu-
ration memory in SRAM-based FPGAs. This technique consists in periodically
checking the Error Correction Codes (ECCs) associated to the configuration
information stored in the FPGA configuration memory and correct any errors
that might have been occurred by rewriting the correct value, which is typi-
cally stored in an external rad-hard non-volatile flash memory. That said, Xilinx
has released several generations of radiation-hardened FPGAs (e.g., Virtex-5QV
[14]) and software tools for making designs fault-tolerant (e.g., Xilinx TMR Tool

4 X. Iturbe et al.

[15]) that are used in a number of space systems. The Xilinx roadmap includes
the development of a radiation-tolerant SoC technology as well as the necessary
software tools for creating fault-tolerant designs on it.

Current space instrument payload systems typically include either a flash-
based FPGA (e.g., Microsemi ProASIC3 [16]) or a rad-hard SRAM-based FPGA
(e.g., Xilinx Virtex5-QV) for implementing data acquisition, synchronization
and processing, and an antifuse-based FPGA (e.g., Microsemi RTAX [17]) for
implementing data communications with spacecraft main computer, internal bus
handling, housekeeping data collection and management of the configuration of
the SRAM-based FPGA. In applications that are critical for spacecraft mission,
such as Guidance Navigation and Control (GNC), the antifuse FPGA is replaced
by a rad-hard processor such as a BAE Systems RAD750 [6] or a Cobham
Gaisler Leon3 [18]. A couple of recent NASA instruments that use this classic
architecture are the ChemCAM on the Mars Curiosity rover [4] and the Goddard
Space Flight Center (GSFC) SpaceCube [5]. Hence, a SoC that includes these
two components (processor + programmable logic) into a single chip is perfectly
suited for space instrument payload systems.

Two are the reasons that have made us choose Xilinx Zynq SoC to proto-
type our APEX-SoC platform. First, Xilinx is one of the vendors with the most
advanced SoC technology roadmap, which also addressed radiation-hardened
FPGAs. Second and most important, NASA has recently approached Xilinx
technology in the scope of its CubeSat Launch initiative (CSLI), as described
in the paragraph below. Xilinx Zynq SoCs integrate a dual-core ARM Cortex-
A9 centric Processing System (PS) and a 28 nm Xilinx 7-Series (Artix-7 or
Kintex-7) Programmable Logic (PL) fabric. The chip includes abundant on-
chip AXI ports with low power rails to communicate the PS with the PL, which
results in substantially less power consumption, considerably higher bandwidth
and lower latency.

The Xilinx Zynq SoC is in the heart of the Computer Space Processor
(CSP) designed by the National Science Foundation (NSF) Center for High-
performance Reconfigurable Computing (CHREC) and licensed for fabrication
to Space Micro Inc. [19–21]. The CSP uses a combination of commercial and
rad-hard components, where commercial devices perform critical computations
and are supervised by the rad-hard devices (e.g., reset and watchdog circuits).
This Zynq-based processor will be part of future NASA missions such as the
Space test Program-Houston-ISS-5 SpaceCube experiment [22] and the Com-
pact Radiation bElt Explorer (CeREs) heliophysics CubeSat [23]. PlanetiQ Inc.
will also integrate 3 CSPs on each of the 12 LEO weather satellites scheduled
to be launched in 2017. In addition to these space missions, the CSP has been
tested in neutron radiation and heavy-ion environment by Brigham Young Uni-
versity [24]. JPL, Xilinx and Swift LLC have also tested the Xilinx SoC part
and other Xilinx 7-series FPGAs under heavy-ions radiation [25–27].

On the Use of System-on-Chip Technology 5

3 The APEX-SoC Platform and Infrastructure

The APEX-SoC platform is currently prototyped on a ZedBoard mini-ITX
board, which is populated with a Xilinx Zynq 7Z100 SoC device. An FMC
board containing an ADC is attached to the ZedBoard to deal with the ana-
log electrical signals that are typically delivered by space science instruments.
The APEX-SoC platform is also coupled with two external DDR memories to
enable its use with instruments that generate large amounts of data: the PS-
DDR is solely dedicated to the ARM processor in the Zynq, while the PL-DDR
is used as scratchpad memory by the data processing modules implemented on
the FPGA fabric and is also accessible by the ARM processor to retrieve the
intermediate results computed by these. The last external component connected
to the APEX-SoC is a SATA Solid State Device (SSD). This is used to temporar-
ily store the (likely large amounts of) science results produced by the APEX-
SoC until a downlink communication window with Earth is available, allowing
for creating independent and stand-alone instruments avionics subsystems. The
typical data-flow in the APEX-SoC is thus as follows: (1) the instrument data
is acquired and processed by the FPGA logic, (2) the computed intermediate
results by the FPGA logic are DMA-transferred to the DDR memory dedicated
to the ARM processor for final processing, and (3) the final results are copied
to the SSD prior to being downloaded to Earth.

The APEX-SoC provides support for integrating multiple identical data
processing stages that can be used to process different science data in paral-
lel to increase performance, or to detect computation errors by comparing their
results when they process the same science data. This flexibility is needed when
the requirements might change during the mission.

Figure 1 shows a block diagram of the APEX-SoC architecture. The following
subsections describe the major aspects related to this architecture as well as the
main fault-tolerance mechanisms that are implemented on it.

3.1 ARM-Centric Processing System

The ARM-centric PS includes all the peripherals that are typically required by
flight science instruments, including: DMA support, GPIOs, Ethernet, SATA,
interrupt controller and a memory-mapped register bank to exchange state and
configuration data with the FPGA processing logic. As previously mentioned,
process data are exchanged with the FPGA logic through the DMA-accessible
PL-DDR memory. In order to speed-up the development of APEX-SoC-based
instruments avionics, one of the ARM cores runs a standard Linux-based oper-
ating system, which provides Ethernet protocol to communicate with the space-
craft’s main computer and a file system to ease the management of science results
stored in the SSD. The second ARM core can be dedicated for software-based
processing of instrument data. One scenario where software processing is con-
venient is when dealing with floating-point intensive algorithms, which can be
easily computed using the NEON Floating Point Unit (FPU) [28] available in
the ARM processor. A Real-Time Operating System (RTOS) can be deployed in

6 X. Iturbe et al.

F
ig
.
1
.
T

h
e

A
P

E
X

-S
o
C

p
la

tf
o
rm

On the Use of System-on-Chip Technology 7

this core to use software multitasking to extend the hardware parallel processing
carried out in the FPGA fabric while ensuring a sustainable use of CPU by all
of the tasks [29].

3.2 Data-Flow Infrastructure

Each data processing module in the FPGA fabric is assigned a private data
segment in the PL-DDR, with its size depending on the computing needs of
that particular module. In order to exploit the full bandwidth delivered by the
PL-DDR memory (6.4 GB/s) and to support the parallel/redundant execution
of the hardware modules, the APEX-SoC implements eight 32-bit DDR access
ports at 200 MHz using Xilinx-provided AXI-Stream Data Movers, which act as
DMA controllers for the FPGA processing logic [30]. One of the DDR ports is
dedicated to the instrument data acquisition logic (shown in blue color), another
one is assigned to the ARM DMA, and the remaining six ports are connected to
a crossbar that multiplexes them among the instrument data processing stages.
The objective of this crossbar is thus to create as many communication channels
as needed by the instrument-dependent modules using the physically available
DDR ports. A data-flow controller drives the connections in the crossbar and
schedules the PL-DDR accesses to maximize performance. For each data transfer,
it specifies the memory address and size of the data segment to be read or
written to the corresponding Data Mover. The data-flow controller is based on a
tiny Xilinx 8-bit PicoBlaze processor [31], which consumes only 26 LUTs in the
Zynq FPGA fabric, and implements a collection of reusable assembler routines
that provide the required flexibility to deal with a wide range of instruments.
Most of the HDL code used to describe the APEX-SoC infrastructure is also
parameterizable and can be easily customized to the needs of any instrument.

3.3 Fault-Tolerance Features

The temperature on the Zynq die is continuously monitored using an on-chip
sensor (see XADC in Fig. 1) [32] to identify and prevent overheat situations that
could lead to the eventual destruction of the chip. Excessive noise situations in
the power supply are also detected with this sensor. These may indicate that
there is a problem with the voltage regulators, power lines in the PCB or even
in the spacecraft power subsystem. Finally, the PL-DDR AXI Stream ports are
continuously monitored to detect stuck-at situations and errors in memory data
transfers. All storage resources in the APEX-SoC platform are protected with
ECCs. The Xilinx ECC solution built in the silicon of the Zynq is used for the PS-
DDR, whereas a custom ECC logic for the PL-DDR is implemented on the FPGA
fabric. This ECC logic uses Hamming (32, 26) codes to protect the data words
transferred through each of the PL-DDR ports and is pipelined to maximize
performance. It allows for detecting and automatically correcting single bit flips
(e.g., radiation-induced SEUs) in a PL-DDR data word and detecting, but not
correcting, double bit errors. Note that the possibility that multiple bit errors
are accumulated in the same data word is small, as the ECC logic corrects

8 X. Iturbe et al.

every single bit flip that might have occurred in the short period of time data
remains stored in the PL-DDR memory between consecutive write accesses. Data
words affected by uncorrectable double bit errors can be either replaced by zeros
or with the interpolated value of the two neighboring samples. All the finite
state machines in the APEX-SoC are implemented using “one-hot” encoding,
in such a way that radiation-provoked upsets in state flip-flops result in the
state machine flow being redirected to an “illegal” state that signals the ARM
processor the error situation. The correctness of the configuration data stored in
the Zynq configuration memory is periodically checked by a Xilinx Single Event
Mitigation (SEM) controller [33]. Single-bit upsets are automatically fixed by
the Xilinx SEM, and in the event of a double bit upset, the ARM processor
carries out a full reconfiguration of the FPGA fabric.

3.4 Reliability Mode

As previously introduced, the APEX-SoC permits to increase system reliability
by using multiple identical data processing stages in an N-out-of-M scheme. The
number of M redundant stages that can be implemented is only limited by the
amount of FPGA resources available on the fabric and the energy budget, how-
ever Dual Modular Redundancy (DMR) or Triple Modular Redundancy (TMR)
are typically used. In all cases, three redundant copies of the same science data
are kept in the PL-DDR memory and replicated majority voters are connected
both at the input and output of the M redundant processing stages as shown in
Fig. 2. The input voters do not consider corrupted data that cannot be recovered
using ECCs. When any of the output voters detect that all of its input results
are different, a computation error is assumed and the processing of that science
dataset is repeated. Computation errors can occur when radiation affects data
registers and/or FPGA configuration [10]. While upsets in the data registers
cannot be detected by the Xilinx SEM controller, these are automatically cor-
rected when reloading the data to process again. The Xilinx SEM is still needed
to deal with the corrupted configuration bits, as described in Sect. 3.3. The data-
flow controller coordinates the access by the voters to the redundant data in the
PL-DDR in a ping-pong fashion, so that the voted results do not overwrite the
source data, in case the computation needs to be repeated.

4 Case-Study: APEX-SoC-Based Controller of the JPL
CIRIS Spectrometer

This section describes a proof-of-concept SoC implementation of a controller for
the JPL CIRIS spectrometer using the APEX-SoC platform.

4.1 The JPL CIRIS Spectrometer

CIRIS is one of the new generation JPL instruments proposed to search for life
indicators in icy moons, such as Europa [12]. It is based on the COTS instru-
ment prototype described in [34], and it a small, rugged and lightweight Fourier

On the Use of System-on-Chip Technology 9

Fig. 2. DMR scheme implemented in the APEX-SoC-based CIRIS controller

Transform Spectrometer (FTS) with a high Signal-to-Noise Ratio (SNR) in the
near-IR to thermal-IR region (2–12 µm) where the strongest and most diagnos-
tic vibrational bands of the compounds of interest in Europa are found (e.g.,
‘CHNOPS’ functional groups). CIRIS can work in cryogenic temperatures from
70–130 K with the use of passive cooling methods while onboard a spacecraft.
More importantly, as opposed to related instruments such as grating spectrom-
eters (e.g., Galileo NIMS [35]), CIRIS has intrinsic immunity from radiation-
induced noise, enabling it to perform mid-IR solar reflectance and thermal emis-
sion spectroscopy with limited interference from the radiation environment in
Europa.

10 X. Iturbe et al.

The major structural novelty introduced by CIRIS is the constant-velocity
rotating refractor it uses to vary the optical path difference of the two rays in
which incoming light is divided by a beam splitter at the entrance of the instru-
ment (red and green rays in Fig. 3). The reflected rays in the rotating refractor
recombine after travelling through the instrument, resulting in a fringe interfer-
ence light pattern (interferogram) that is measured with a photo-detector (purple
ray in Fig. 3). There are up to four regions over the course of a revolution of the
refractor where the optical interference between the input light rays can be mea-
sured with a photo-detector. These regions are located at approximately 16◦

arcs around the four positions where the refractor is parallel or perpendicular
to the beam splitter. Note that the interferogram amplitude value is maximum
in these four positions as all of the light rays travel the same distance along the
spectrometer and recombine in phase at its output. This is why these positions
are called Zero Path Difference (ZPD) positions. An optical incremental encoder
mounted on the servomotor that drives the refractor’s rotation is used on the
ground prototype of CIRIS to identify these regions. As the CIRIS refractor
performs 6.5 revolutions per second, each interferogram spans over a period of
13.6 ms every 24.8 ms. The optics and functioning of CIRIS result in an inter-
ferogram with the high-amplitude values assembled in a narrow central burst,
and small-amplitude values spanning the vast majority of the tail positions and
carrying the spectral resolution information (see Fig. 4). The interferogram sig-
nal delivered by the photo-detector is conditioned, filtered and amplified to ±5V
range prior to being digitized at 1 MSPS using the ADC available in the APEX-
SoC. The interferogram samples are then processed via a Fast Fourier Transform
(FFT) to produce a spectrum that illustrates the intensity of the wavelengths
present in the light beam. This in turn permits to find out the chemical com-
position of the sample or body under study by looking at the absorption lines
in the spectrum. However, spectral leakage (e.g., “picket-fence” effect) and noise
are also present in the spectrum due to the limited discretization of the interfer-
ograms through time limited digital sampling, and need to be properly handled
by the instrument electronics to produce meaningful results [36].

Fig. 3. CIRIS Spectrometer (Color figure online)

On the Use of System-on-Chip Technology 11

Although radiation has small impact on the spectral content of CIRIS data,
FTS data processing allows increasing the SNR of the instrument even further
[37]. As shown in Fig. 4, the shape of the CIRIS interferogram allows the data
processing for detecting (and removing) most of the radiation hits that induce
large current pulses (i.e., significantly greater than the nominal value) in the
instrument’s photo-detectors. In Fig. 4, note there are two radiation hits at −266
and −500 µs.

Fig. 4. CIRIS interferogram with radiation hits

At the moment there is a single photo-detector in the ground prototype
of CIRIS, however the flight version of CIRIS will be equipped with an array
of up to 25 photo-detectors to increase the instrument’s spatial resolution and
sensitivity in different IR bands. This will also increase the computation burden,
as more interferograms will need to be processed within the same span of time
(24.8 ms).

4.2 CIRIS Data Processing

The section describes the different processing stages that must be applied on the
CIRIS interferogram data in order to produce meaningful spectroscopy results
that can be interpreted by the scientists on Earth [36]. Figure 5 shows a block
diagram of these stages as well as their interfaces with the APEX-SoC infrastruc-
ture. In this figure, note the two superposed main blocks that represent the dual
data processing solution adopted in the CIRIS APEX-SoC to increase the per-
formance and reliability.

The first stage prepares the digitized interferogram samples for subsequent
processing by selecting 8,192 samples centered around the ZPD positions. This
is done to deal with any temporal shift that might have occurred while sampling
the interferogram.

The second stage removes the DC offset in the ZPD aligned interferogram
by subtracting its average value, which is computed using a Cumulative Moving
Average (CMA).

The third stage implements a radiation hit filter to detect and remove the
outlier in the interferogram provoked by radiation striking the CIRIS photo-
detector. The radiation pulses at the output of the CIRIS transconductance

12 X. Iturbe et al.

F
ig
.
5
.
C

IR
IS

d
a
ta

p
ro

ce
ss

in
g

b
lo

ck
d
ia

g
ra

m

On the Use of System-on-Chip Technology 13

amplifier, with a bandwidth of 100 kHz, are about 10µs full width at half maxi-
mum and easily recognized in the small-amplitude tail samples using statistics,
namely the mean and variance (shown by triangles in Fig. 6) [37]. Radiation hit
samples are then replaced by zeros without modifying significantly the spectral
content of the interferogram. This property comes from the fact that interfero-
gram points outside the central burst mainly carry redundant resolution infor-
mation, and hence, removing a few points out of 8,192 lead to indistinguishable
changes in the spectrum. In effect, each of the interferogram samples contributes
only in about 0.1 % to the spectrum. Note here that the undetectable radiation
hits that are at or below the un-irradiated noise level spread their energy over all
wavelengths and therefore average to a constant DC offset in the spectrum, which
is removed in the second stage. The mean and variance statistics are computed
on the tail samples of the interferogram using the Knuth algorithm [38].

1000 2000 3000 4000 5000 6000 7000 8000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Index

D
et

ec
to

r
O

ut
pu

t
(V

)

Radiation Remediation of Interferograms at Position 1 at Line 1

1 rad / sec Radiation

Mitigation of 1 rad / sec Radiation

3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Index

D
et

ec
to

r
O

ut
pu

t
(V

)

Radiation Remediation of Interferograms at Position 1 at Line 1

1000 2000 3000 4000 5000 6000 7000 8000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Index

D
et

ec
to

r
O

ut
pu

t
(V

)

Radiation Remediation of Interferograms at Position 1 at Line 1

3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Index

D
et

ec
to

r
O

ut
pu

t
(V

)

Radiation Remediation of Interferograms at Position 1 at Line 1

Fig. 6. CIRIS interferogram radiation effects and mitigation

The fourth stage (STAT Inter.) computes the variance and performs a CMA
on successive interferograms detected around the same ZPD positions with the
objective of estimating and increasing the SNR by removing the effect of high
frequency and random noise. As in the third stage, the Knuth algorithm is used
to calculate these statistics.

The fifth stage apodizes the averaged interferograms at the edges of the
sampled regions to minimize the effects of spectral leakage.

The sixth stage computes the FFT on the interferogram. In light of increasing
spectral resolution, this stage adds 4,096 zeros to each of the tails of the interfer-
ogram to obtain 8,192 additional interpolated spectrum points in-between the

14 X. Iturbe et al.

original nonzero-filled spectrum data, that is, 16,384 total spectrum points. This
zero padding allows us to reduce the erroneous signal due to the “picket-fence”
effect by up to 36 % [39].

The seventh stage relies on the Knuth algorithm to compute the variance and
CMA on the spectrums resulting from the successive interferograms detected
around the same ZPD positions.

The eighth and ninth stages are intended to correct the deviations provoked
by CIRIS refractor’s refractive index variations with wavelength and due to
minor dissimilarities in the CIRIS optics between the four interferogram acqui-
sition regions.

All of the processing stages described in this section are runtime configurable
from Earth to adapt to potentially unexpected conditions when exploring distant
planetary bodies. Some of the parameters that can be configured include: (1)
the method to detect the position of the ZPD sample (e.g., most-negative, most-
positive or most-magnitude) in the ZPD alignment core, (2) the number of trials
to be averaged and the requirement to compute or not the variance in the STAT
cores, (3) the apodizing function in the apodization core, and (4) the requirement
for zero-filling (16,384 spectrum points) or not (8,192 spectrum points) in the
FFT core.

It is important to note here that the interferograms detected in the photo-
detector array that will be available in the flight version of CIRIS are independent
of each other, and hence, the processing stages presented above are suitable
for a parallel implementation on the APEX-SoC. Currently we simulate the
photo-detector array by copying multiple times (to different PL-DDR memory
segments) the same interferogram samples digitized by the single ADC in the
system.

4.3 CIRIS Data Processing Integration into the APEX-SoC
Infrastructure

All of the processing stages presented in Sect. 4.2 are implemented on the FPGA
fabric, except stages 7 and 8, which run as software routines in the ARM proces-
sor because they involve floating-point operations. Two instances of the whole
IRIS data processing are integrated into the APEX-SoC infrastructure, as shown
in Fig. 5. As previously mentioned, these can be used to boost performance or to
improve reliability (i.e., DMR scheme), depending on the mission’s requirement
at each time. For this specific scenario, a crossbar with 13 communication chan-
nels is created and the associated assembler routines in the data-flow controller
are appropriately tailored for the data transfers required by CIRIS processing
stages.

5 Results

This section summarizes the implementation, performance and irradiation
results we have collected so far in the APEX-SoC-based CIRIS controller.

On the Use of System-on-Chip Technology 15

5.1 Implementation

The amount and type of resources consumed by the APEX-SoC infrastructure
and the CIRIS data acquisition and processing modules when implemented on a
Zynq 7Z100 device are detailed in Table 1. The most important implementation
aspect to note here is the spatial isolation of the CIRIS modules within the FPGA
fabric, which has been carried out following the Xilinx Isolation Design Flow
(IDF) [40]. This permits to increase the availability of the system by preventing
the situation where a single charged particle corrupts multiple processing stages
in the FPGA fabric. As shown in Fig. 7, the crossbar and the data-flow controller
are mapped in-between the two processing stages forming a fence. It is also
important to note the small footprint of the voters compared to the processing
stages, in the range of hundreds of LUTs and flip-flops, which minimizes the
chances of being corrupted by radiation.

Table 1. Resources consumed in a Xilinx Zynq 7Z100 SoC

Component LUTs Flip-flops DSP48s BRAM36s

Data acquisition 347 267 N/A N/A

RHBD features 6,194 3,818 N/A 14.5

Data processing 61,874 46,152 414 155

Infrastructure 61,773 49,631 N/A 395

Total 130,148 (47 %) 99,868 (18 %) 414 (20 %) 564.5 (75%)

The power consumption reported by Xilinx Vivado design tool for the whole
APEX-SoC-based CIRIS controller is approximately 5 W, which is about 3 W
less than that of an equivalent board based controller.

The APEX-SoC uses up to 256 MB in the PL-DDR memory (approximately
25 % of the total DDR memory capacity) to process 25 interferograms simul-
taneously. The memory is arranged into several data segments across different
categories, each containing a given type of data (e.g., raw interferogram, inter-
ferogram mean/variance, spectrum amplitude mean/variance or spectrum phase
mean/variance) related to the information detected by a given photo-detector
when the rotating refractor was in a given position. Besides, as explained in
Sect. 3.4, each data is stored three times in the PL-DDR memory in different
TMR data pools to increase reliability, and each TMR pool is itself replicated
two times (A and B) to allow for data re-processing, if needed.

5.2 Performance

Table 2 shows the performance results measured when the FPGA processing logic
is clocked at 200 MHz and both DDR memories and ARM Cortex-A9 processor
run at 800 MHz. As shown in Fig. 8, the parallelism provided by the dual data

16 X. Iturbe et al.

Orange: ARM cores + Peripherals
+ multi-ported PL-DDR
Red: ECC Logic + XADC
Blue: CIRIS data acquisition

Green: CIRIS data processing
Orange: DDR Interfaces
Red: ECC Recovery + Voters

Green: CIRIS data processing
Orange: DDR Interfaces
Red: ECC Recovery + Voters

Orange: Crossbar + Data-flow ctrl.
Cyan: Data-flow PicoBlaze mem.
Red: Xilinx SEM ctrl.

Fence

Fig. 7. APEX-SoC-based CIRIS controller floor-planning

processing channels in the APEX-SoC and the efficient PL-DDR memory access
schedule allow for processing two interferograms every 460 µs, with a latency
of 867 µs. Up to 4.6 GB/s of the total PL-DDR bandwidth (approx. 85 %) are
allocated to processing and the long latency introduced by the radiation hit
filter and the FFT computation is hidden by overlapping parallel processing
and PL-DDR data transfers. As a result, the APEX-SoC almost quadruples
the processing requirements of the flight CIRIS spectrometer as it is able to
process about a hundred interferograms within the time span the refractor in
the instrument takes to get between consecutive ZPD positions (24.8 ms). On the
other hand, when using the two redundant data processing channels to increase
reliability (i.e., DMR scheme), the APEX-SoC-based CIRIS controller is still able
to fulfill the processing requirement for the next-generation of CIRIS, requiring
up to 900µs to process each interferogram.

5.3 Robustness Against Radiation

A radiation test was conducted at JPL using a 60Co γ-ray source (1 rad/sec)
directed toward the CIRIS photo-detector operating at 77 K to reduce detector
noise below the radiation hit pulses. The hit rate in this test was approximately
3,400 hits per second, exceeding what is expected in the Europa mission by at
least a factor of three. Figure 9 shows the obtained results, where the blue line
represents the measured values without radiation, the purple line represents the

On the Use of System-on-Chip Technology 17

F
ig
.
8
.
T

im
in

g
d
ia

g
ra

m
a
n
d

P
L
-D

D
R

sc
h
ed

u
le

(S
T
A

T
i=

S
T
A

T
In

te
rf

er
o
g
ra

m
,
S
T
A

T
a
=

S
T
A

T
A

m
p
li
tu

d
e

S
T
A

T
p
=

S
T
A

T
P

h
a
se

)

18 X. Iturbe et al.

Table 2. Performance results

CIRIS processing Receive data Process data Deliver data

ZPD alignment 100µs N/A 41µs

DC removal N/A 281 µs N/A

Radiation hit filter N/A 320 µs N/A

STAT interferogram 229µs ∼0 µs 188µs/41 µs

Apodization 47 µs ∼0 µs 41µs

FFT 41 µs 165 µs 43µs

STAT spectrum 229µs ∼0 µs 188µs

values measured with radiation and the yellow line represents the values mea-
sured when the radiation hit filter was enabled. As shown in Fig. 9a, the radiation
hit filter stage reduces the distortion of the line shape and spectrum provoked
by radiation while keeping all other spectral components unaltered. Note in this
figure that the high artificial “emission” peaks on the spectrum are coming from
electrical noise generated by the vacuum pumps in the laboratory. These results
are of utmost importance towards building an instrument that could cope with
Europa-like radiation, which indeed deteriorated the spectroscopy data collected
by NASA’s previous generation NIMS spectrometer aboard the Galileo space-
craft more than a decade ago [35]. In addition, as shown in Fig. 9b, the adopted
mitigation solution increases the instrument SNR by eliminating the noise due
to radiation hit pulses.

We have not conducted any specific experiment to test the implemented fault-
tolerance features yet, as these are well known and proven to be effective. Plans
are to port the APEX-SoC-based CIRIS instrument described in this chapter to
a radiation-hardened Xilinx SoC as soon as this technology is available and test
the design in a simulated Europa-like thermal and radiation environment.

6 Conclusions and Future Work

This chapter has presented an ongoing research conducted by NASA’s Jet
Propulsion Laboratory (JPL) and ARM to develop a SoC platform (APEX-
SoC) to power instruments avionics in future space exploration missions. This
platform reduces significantly the size and power consumption of the instru-
ment avionics as most of the electronics required for science processing of the
instrument data are fitted in a single chip. At the moment this platform is pro-
totyped using a commercial Xilinx Zynq SoC, where a number of fault-tolerance
mechanisms have been implemented. The expectation is to port this design to
a radiation-tolerant SoC part that might be available in the near future. The
chapter has presented a case-study where the APEX-SoC prototype is used to
process data delivered by a JPL spectrometer (CIRIS). Finally, the chapter has
discussed the implications of using SoC technology in future space missions.

On the Use of System-on-Chip Technology 19

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

1

2

3

4

5

6
x 10

-3

S
pe

ct
ra

l A
m

pl
itu

de
 M

ea
n

Wavelength (um)

Spectral mean at position 1 across 128 trials beginning at line 1

(a) Radiation mitigation in spectrum

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

1

2

3

4

5

6

7

8

9

10

11

R
ad

io
m

et
ric

 S
pe

ct
ra

l S
N

R

Wavelength (um)

Radiometric SNR of Radiation Spectra at position 1 line 1 across 128 trials beginning at line 1 with windows of 33 points

(b) SNR improvement

Fig. 9. Radiation mitigation in APEX-SoC-based CIRIS data processing

20 X. Iturbe et al.

Future work at ARM will focus on making the processor more resilient to
radiation. Namely, a thorough study of the ARM Cortex-R5 microarchitecture
will be conducted to identify the parts that are more vulnerable and to choose
the most suitable fault-tolerance techniques to be used in each of these parts
without compromising the area and power consumption efficiency of the ARM
architecture. At the processor architecture level, a fail-operational Triple Cortex-
R5 Core Lock-Step (TCLS) processor will be developed [8]. JPL will look forward
using the APEX-SoC platform with other space instruments.

Besides the research described in this chapter to design the next-generation
space instruments avionics, JPL is also working in collaboration with the God-
dard Space Flight Center (GSFC) and the Air Force Research Laboratory
(AFRL) on designing a next-generation high-performance spaceflight processor
based on a dual quad-core ARM Cortex-A53 [41].

Acknowledgment. The research described in this chapter was carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration (NASA). Xabier Iturbe is funded
by the European Commission’s FP7 Marie-Curie International Outgoing Fellowship
Program with “Project No. 627579”.

References

1. Blem, E., Menon, J., Sankaralingam, K.: A detailed analysis of contemporary ARM
and x86 architectures. Technical report, University of Wisconsin - Madison (2013)

2. Mehta, N.: Xilinx 7 Series FPGAs: the logical advantage. Xilinx WP405 (2012)
3. Xilinx Inc.: Zynq-7000 All Programmable SoC: Technical Reference Manual,

UG585 (2015)
4. Wiens, R.C., et al.: The ChemCam instrument suite on the Mars Science Labo-

ratory (MSL) Rover: body unit and combined system tests. Space Sci. Rev. 170,
167–227 (2012). Springer

5. Petrick, D., Gill, N., Hassouneh, M., Stone, R., Winternitz, L., Thomas, L., Davis,
M., Sparacino, P., Flatley, T.: Adapting the SpaceCube v2.0 data processing system
for mission-unique application requirements. In: Proceedings of the NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2015) (2015)

6. BAE Systems Plc.: RAD750 Radiation-Hardened PowerPC Microprocessor (2008)
7. Doyle, R., Some, R., Powell, W., Mounce, G., Goforth, M., Horan, S., Lowry, M.:

High performance spaceflight computing (HPSC) next-generation space processor
(NGSP): a joint investment of NASA and AFRL. In: Proceedings of the Workshop
on Spacecraft Flight Software (2013)

8. Iturbe, X., Venu, B., Ozer, E., Das, S.: A triple core lock-step (TCLS) ARM Cortex-
R5 microprocessor for safety-critical and ultra-reliable applications. In: Proceed-
ings of the IEEE/IFIP International Conference on Dependable Systems and Net-
works (2016)

9. Ebrahimi, M., Evans, A., Tahoori, M.B., Costenaro, E., Alexandrescu, D., Chan-
dra, V., Seyyedi, R.: Comprehensive analysis of sequential and combinational
soft errors in an embedded processor. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 10, October 2015

On the Use of System-on-Chip Technology 21

10. Kastensmidt, F.L., Carro, L., Reis, R.: Fault-Tolerance Techniques for SRAM-
Based FPGAs. Springer, Heidelberg (2006)

11. Berisford, D.F., Hand, K.P., Younse, P.J., Keymeulen, D., Carlson, R.W.: Thermal
testing of the compositional infrared imaging spectrometer (CIRIS). In: Proceed-
ings of the International Conference on Environmental Systems (2012)

12. Carlson, R.W., Hand, K.P., Berisford, D.F., Keymeulen, D.: The compositional
infrared interferometric spectrometer (CIRIS) for assessing the habitability of
Europa. In: Proceedings of the American Geophysical Union Fall Meeting (2013)

13. Xilinx Inc.: UltraScale Architecture and Product Overview, DS890 (2015)
14. Xilinx Inc.: Radiation-Hardened, Space Grade Virtex5-QV FPGA Data Sheet: DC

and AC Switching Characteristics, DS692 (2015)
15. http://www.xilinx.com/ise/optional prod/tmrtool.htm
16. Microsemi Inc.: Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash

FPGAs with Flash Freeze Technology (2012)
17. Microsemi Inc.: RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs (2015)
18. Cobham Gaisler: LEON3-FT SPARC V8 Processor Data Sheet and User’s Manual

(2013)
19. Rudolph, D., Wilson, C., Stewart, J., Gauvin, P., George, A., Lam, H., Crum, G.,

Wirthlin, M., Wilson, A., Stoddard, A.: CHREC space processor: a multifaceted
hybrid architecture for space computing. In: Proceedings of the AIAA/USU Con-
ference on Small Satellites (2014)

20. http://www.spacemicro.com/news/43.html
21. Mandl, D.: Intelligent payload module update. In: Proceedings of the HyspIRI

Symposium (2015)
22. Wilson, C., Stewart, J., Gauvin, P., MacKinnon, J., Coole, J., Urriste, J., George,

A., Crum, G., Timmons, E., Beck, J., Flatley, T., Wirthlin, M., Wilson, A., Stod-
dard, A.: CSP hybrid space computing for STP-H5/ISEM on ISS. In: Proceedings
of the AIAA/USU Conference on Small Satellites (2014)

23. Kanekal, S., Jones, A., Randol, B., Patel, D., Summerlin, E., Gorman, E., Crum,
G., Nolfo, G.D., Paschalidis, N., Heyward, S., Riall, S.: CeREs: a Compact Radi-
ation bElt Explorer (2014)

24. Wirthlin, M.: Neutron radiation test results of the linux operating system executing
within the CHREC space processor (CSP). In: Proceedings of the Military and
Aerospace Programmable Logic Device International Conference (MAPLD 2015)
(2015)

25. Amrbar, M., Irom, F., Guertin, S.M., Allen, G.: Heavy Ion single event effect
measurements of Xilinx Zynq-7000 FPGA. In: Proceedings of the Radiation Effects
Data Workshop (REDW 2015) (2015)

26. Switft, G.: Investigation of high current events in 28 nm 7-series FPGAs. In: Pro-
ceedings of the Military and Aerospace Programmable Logic Device International
Conference (MAPLD 2015) (2015)

27. Koszek, W.A., Lesea, A., Steiner, G., White, D., Maillard, P.: Challenges in assess-
ing single event upset impact on processor systems. In: Proceedings of the Work-
shop on Silicon Errors in Logic and System Effects (SELSE 2015) (2015)

28. ARM Ltd.: Cortex-A9 NEON Media Processing Engine: Technical Reference Man-
ual (2011)

29. Xilinx Inc.: Zynq All Programmable SoC Linux-FreeRTOS AMP Guide, UG978
(2013)

30. Xilinx Inc.: AXI DataMover User Guide, PG022 (2014)
31. Chapman, K.: PicoBlaze for Spartan-6, Virtex-6, 7-Series, Zynq and UltraScale

Devices (KCPSM6) (2014)

http://www.xilinx.com/ise/optional_prod/tmrtool.htm
http://www.spacemicro.com/news/43.html

22 X. Iturbe et al.

32. Xilinx Inc.: LogiCORE IP AXI XADC v1.00a Product Guide, PG019 (2012)
33. Xilinx Inc.: Soft Error Mitigation Controller, PG036 (2014)
34. Wadsworth, W., Dybwad, J.P.: Rugged high-speed rotary imaging fourier trans-

form spectrometer for industrial use. In: Proceedings of the International Society
for Optics and Photonics Conference on Environmental and Industrial Sensing
(2002)

35. Carlson, R.W., Weissman, P., Smythe, W., Mahoney, J.: Near-infrared mapping
spectrometer experiment on galileo. Space Sci. Rev. 60, 457–502 (1992). Springer

36. Saptari, V.: Fourier Transform Spectroscopy Instrumentation Engineering, vol. 61.
SPIE Press, Bellingham (2004)

37. Yiu, P., Iturbe, X., Keymeulen, D., Berisford, D., Hand, K.P., Carlson, R.W.,
Wadsworth, W., Levy, R.: Adaptive controller for a fourier transform spectrometer
with space applications. In: Proceedings of the IEEE Aerospace Conference (2015)

38. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2. Addison-Wesley, Boston (1998)

39. Gronholz, J., Herres, W.: Understanding FT-IT data processing. Instrum. Comput.
3(10), 1–23 (1985)

40. Hallett, E.: Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-7000 AP
SoCs (ISE Tools), Xilinx XAp1086 (2015)

41. Statement of Work (SOW) for the Development of the High Performance
Space Computing (HPSC) Processor. http://prod.nais.nasa.gov/eps/eps data/
167836-DRAFT-001-001.pdf

http://prod.nais.nasa.gov/eps/eps_data/167836-DRAFT-001-001.pdf
http://prod.nais.nasa.gov/eps/eps_data/167836-DRAFT-001-001.pdf

Fault Collapsing in Digital Circuits Using Fast
Fault Dominance and Equivalence Analysis

with SSBDDs

Raimund Ubar, Lembit Jürimägi(&), Elmet Orasson, and Jaan Raik

Department of Computer Engineering,
TTU, Ehitajate tee 5, 19086 Tallinn, Estonia
{raiub,elmet,jaan}@pld.ttu.ee,

lembit.jyrimagi@gmail.com

Abstract. The paper presents a new method and an algorithm for structural
fault collapsing to reduce the search space for test generation, to speed up fault
simulation and to make the fault diagnosis easier in digital circuits. The pro-
posed method is based on hierarchical topology analysis of the circuit
description at two levels. First, the gate-level circuit will be converted into a
macro-level network of Fan-out Free Regions (FFR) each of them represented as
a special type of structural BDD. This conversion procedure represents as a
side-effect the first step of fault collapsing, resulting in a compressed Structurally
Synthesized BDD (SSBDD) model explicitly representing the collapsed set of
representative fault sites. The paper presents an algorithm which implements a
complementary step of further fault collapsing. This algorithm is carried out at
the macro-level FFR-network by topological reasoning of equivalence and
dominance relations between the nodes of the SSBDDs. The algorithm has
linear complexity and is implemented as a continuous scalable fault eliminating
procedure. We introduce higher and lower bounds for fault collapsing and
provide statistics of distribution of fault collapsing results over a broad set of
benchmark circuits. Experimental research has demonstrated considerably better
results of structural fault collapsing in comparison with state-of-the-art.

Keywords: Combinational circuits � Fault collapsing � Fault equivalence and
dominance � Binary decision diagrams � Lower and higher bounds

1 Introduction

Fault collapsing is a procedure which is applied to reduce the number of faults of a
given circuit to be targeted for testing purposes. Using a reduced set of only repre-
sentative faults instead of a full set of faults has the goal to minimize the efforts in many
test related tasks like test pattern generation, fault simulation for test quality evaluation,
fault diagnosis, circuit testability evaluation etc.

The methods of fault collapsing are classified as structural and functional. Structural
fault collapsing uses only the topology of the circuit whereas functional fault collapsing
uses the circuit functional properties inherent in the circuit.

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 23–45, 2016.
DOI: 10.1007/978-3-319-46097-0_2

There are two classical ways used for structural fault collapsing: fault equivalence
based and fault dominance based collapsing [1]. A fault fj is said to dominate a fault fi if
every test that detects fi also detects fj. If fj dominates fi, only fi needs to be considered
during test generation. When two faults dominate each other, they are called equiva-
lent. If two faults are equivalent, only one of them needs to be considered during test
gene-ration or fault diagnosis. Structural fault collapsing uses the topology of the
circuit structure. For example, a stuck-at 0 fault (SAF y/0) at the output y of AND gate
is equivalent to all of the SAF x/0 faults at its inputs xi. In a similar way, SAF y/1 at the
output of AND gate dominates all the input SAF x/1 faults. The classical structural
approaches to fault collapsing are based on gate-level circuit processing. An approach
based on fault-folding was introduced in [2] for structural collapsing faults, using the
iterative analysis of gate fault equivalence and dominance relations. Since structural
fault collapsing is very fast, it is employed in many Automated Test Pattern Generators
(ATPG) [3, 4].

Functional fault collapsing uses the circuit’s functional information to establish
equivalence and dominance relations. Two faults are functionally equivalent if they
produce identical faulty functions [5] or we can say, two faults are functionally
equivalent if we cannot distinguish them at the Primary Outputs (PO) with any input
test vector [6]. Functional fault collapsing is generally regarded as very difficult to
compute because it deals with the whole function of the circuit under test. In [7] it has
been shown that the algorithmic complexity for identifying functionally equivalent
faults is similar to that of ATPG.

Approximate fault collapsing via simulation has been proposed in [8]. In [9], a
metric called level of similarity has been introduced and is efficiently used to improve
the level of approximation. The fault collapsing suffers from the danger that if a fault in
the collapsed fault set remains undetected then all other faults equivalent or dominating
this fault removed from the collapsed fault set remain undetected as well. In [10], a
safety parameter s to restrict the use of the dominance relation is introduced, and a safe
fault collapsing method with a level of safety s is proposed.

The potentials of hierarchical fault collapsing were discussed in [11]. It was shown
that hierarchical approach to fault collapsing gives more possibilities to increase the
efficiency compared to the non-hierarchical one. An algorithm based on transitive
closures on the dominance graphs has been proposed [12, 13], which enables more
efficient hierarchical fault collapsing. It is a graph theoretic, fault independent and
polynomial technique for functional fault collapsing.

In [14], functional dominance has been used to collapse the fault sets. However,
this technique requires quadratic number of ATPG runs to obtain the collapsed fault
set. An improvement was proposed in [15], which has the linear complexity regarding
the number of ATPG runs. Since ATPG itself is used for learning functional dominance
relations, both these techniques are suitable for small circuits only, but they can be
helpful when combined with hierarchical fault collapsing. In [7] two theorems were
introduced based on unique requirements and D-Frontiers of faults to extract equiva-
lence and dominance relations. Similar approach was used in [16] based on the
dominator theory for identifying more functionally equivalent fault pairs. In [17] a
generalized dominance approach requires similar or lower run-times than that of [7].

24 R. Ubar et al.

A collapsed fault set helps generating smaller test sets for achieving the desired
fault coverage, and it contributes to fault diagnosis as well. Since fault diagnosis deals
with fault pairs, a linear reduction of the number of faults would result in a quadratic
reduction of the target pairs.

In [5, 15], a novel diagnostic fault equivalence and dominance technique was
proposed. A new method for fault collapsing for diagnosis called dominance with
sub-faults was proposed in [18]. The method allows reducing the diagnosis search
space. A framework where equivalence and dominance relations are defined for fault
pairs is introduced in [19]. A fault pair collapsing is described, where fault pairs are
removed from consideration under diagnostic fault simulation and test generation, since
they are guaranteed to be distinguished when other pairs are distinguished. A technique
to speed-up diagnosis via dominance relations between sets of faults using
function-based techniques was proposed in [20]. Due to the high memory and time
complexity this approach is applicable for small circuits only. All the listed techniques
are fault oriented approaches, i.e. they consider a fault-pair at a time and use ATPG for
identification of equivalence or dominance relations. In [10], a dynamic fault collapsing
procedure is presented for fault diagnosis, where the faults are collapsed during the
diagnostic test pattern generation contrary to the traditional static approaches described
above where the faults are collapsed before test generation.

One of the main limitations of the described methods is that there is no evidence that
investing more effort in fault collapsing reduces the total test generation time [10]. The
reason is that most of the methods are using ATPG itself as a tool for fault collapsing, or
they are usable only for small circuits because of the high computing complexity.

In this paper we concentrate on the structural fault-independent fault collapsing
based on the topology analysis of the circuit. We target the minimal necessary set of
representative faults as objectives for both, test generation and fault simulation. To cope
with the complexity problem in case of big circuits, we use a hierarchical approach to
structural fault collapsing, which is based on the topology analysis of the circuit at two
levels – gate- and macro-levels, where the Fan-out-Free Regions (FFR) are regarded as
macros. The proposed method is characterized at both levels by linear complexity which
allows achieving high speed in fault collapsing, and provides smaller collapsed repre-
sentative fault sets compared to other known structural methods. Due to low complexity,
the method is well scalable and is therefore usable for large circuits where the functional
fault collapsing methods give up because of the complexity.

The approach we propose consists of two consecutive procedures. During the first
procedure, fault collapsing is carried out at the gate level by superposition of Binary
Decision Diagrams (BDD) [21] of logic gates with the main goal of constructing a
higher macro-level model of the circuit in form of Structurally Synthesized BDDs
(SSBDD) [22, 23] where to each FFR an SSBDD corresponds. The fault collapsing can
be regarded here as a side-effect (byproduct) of the SSBDD model synthesis. The
second procedure, complementary part of the approach, is carried out at the higher
macro-level by topological analysis of SSBDDs. Both parts of the fault collapsing
procedure have linear complexity. It has been shown that SSBDDs can be efficiently
used for fault simulation, outperforming in the speed state-of-the-art fault simulators
[24, 25]. In this paper we show the possibility of additional fault collapsing using
SSBDDs, which in turn can lead to further speed-up of fault simulation.

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 25

The paper is organized as follows. In Sect. 2 we give an overview of SSBDDs and
in Sect. 3 we describe the synthesis of SSBDDs as the first step of gate-level fault
collapsing. Section 4 presents the main theoretical concepts for the analysis of
equivalence and dominance relations between the faults in the higher level
FFR-networks modeled with SSBDDs, and Sect. 5 describes the algorithm of fault
collapsing with SSBDDs. In Sect. 6, lower and higher bounds for fault collapsing are
given. Section 7 presents experimental data, and Sect. 8 concludes the paper.

2 Structurally Synthesized BDD

Binary Decision Diagrams (BDD) have become by today a state-of-the-art data
structure in VLSI CAD for representation and manipulation of Boolean functions.
BDDs were first introduced for logic simulation in [26], and for test generation in [27,
28]. In 1986, Bryant proposed a new data structure called Reduced Ordered BDDs
(ROBDDs) [21]. He showed simplicity of the graph manipulation and proved the
model canonicity that made BDDs one of the most popular representations of Boolean
functions. This model, however, suffers from the memory explosion problem, which
limits its usability for large designs. Moreover, it cannot be used as a model for
representing structural information about the design like representation of faults directly
in the model. In [22, 27, 29], Structurally Synthesized BDDs (SSBDDs) were proposed
with the goal to represent the structural features of circuits. The most significant
difference between the function-based BDDs [21] and SSBDDs [22] is the method how
they are generated. While BDDs are generated on the functional basis by Shannon’s
expansions, which handle only the Boolean function of the logic circuit, the SSBDD
models are generated by a superposition procedure that extracts both, functions and
data about structural signal paths of the circuit. The linear complexity of the SSBDD
model results from the fact that a digital circuit is represented as a system of SSBDDs,
where for each FFR a separate SSBDD is generated.

SSBDDs are generated by iterative superposition of library BDDs for simple or
complex gates, guided by the structure of the given circuit. To avoid the explosion of
the complexity of the SSBDD model, and to keep its size as minimal as possible, the
superposition of BDDs is stopped at fan-out stems of the circuit. Using this restriction,
to each FFR in the circuit an SSBDD will be created where a signal path in the FFR
corresponds to each node in an SSBDD.

Example 1. An example of a combinational circuit and its SSBDD is depicted in
Fig. 1. The SSBDD represents an FFR of the circuit obtained after cutting all the input
fan-out branches of the circuit. This FFR can be described by the following Boolean
expression:

y ¼ f Xð Þ ¼ x1x21 _ x22x3 _ x4 x5 _ x61ð Þð Þx71ð Þx81 _ x82x9 x72 _ x62ð Þx10

26 R. Ubar et al.

The non-terminal (internal) nodes of the SSBDD are labeled by the input variables of
the FFR. To differentiate the fan-out branch variables from the fan-out stem variable we
introduce for each of them a second subscript. The node variables may be inverted.

When using SSBDDs for calculating the output signals at given test patterns, we
have to traverse the graph starting from the root node up to a terminal node guided by
the input pattern. Let us agree that we exit each node during simulation to the right if
the node variable has value 1, and downwards if the value is 0. In this case we don’t
need to label the edges in the graph by the values of the node variables on Figures.
Entering the terminal node #1 as the outcome of graph traversing will mean the result
of simulation y = 1, and entering the terminal node #0 will mean y = 0.

Example 2. For the circuit in Fig. 1 with function y = f(X) the output signal y for the
given input pattern Xt in Fig. 2 will be y = 1. During simulation of this pattern on the
SSBDD, the following nodes are traversed: x1, x22, x3, ¬x71, x81, #1 (shown by bold
lines).

SSBDD model has several features that make it attractive compared to other
commonly used mathematical models, such as conventional BDDs or gate-level netlists
[30, 31]. The worst-case complexity (time) of generating SSBDD model from a cir-
cuit’s netlist is linear in respect to the number of gates, while it is exponential for

Fig. 1. Combinational circuit with a single output and its representation as an SSBDD

Fig. 2. Test pattern for detecting selected faults SAF/0 or SAF/1 for the circuit in Fig. 1

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 27

common BDDs. The size of the SSBDD model is always linear in respect to the circuit
size (BDDs can be of exponential size). Compared to the gate-level representation,
SSBDDs help to reduce the complexity of the circuit by representing them as FFR
(SSBDD) networks whereas the algorithms of processing the network components do
not need dedicated treatment of the components described usually by design libraries.
Moreover, instead of considering each gate separately, it deals with macros – FFRs
represented by SSBDDs.

The most important feature of the SSBDD model is that it preserves structural
information about the circuit while traditional BDDs do not. This is why differently
from traditional BDDs, SSBDDs support structural test generation [22, 27] and fault
simulation [24, 25, 29] for gate-level structural faults in terms of faulty signal paths
with representing the faulty paths explicitly in the model. Each node in the SSBDD
represents a signal path in the corresponding circuit, and the faults of the nodes rep-
resent the faults in signal paths.

For example, the SSBDD in Fig. 1 consists of 14 internal nodes where each of
them represents a corresponding signal path of the total 14 paths in the circuit in Fig. 1
(the correspondence is shown by the variables x where xi denote input signals, and xij
denote the signals at the fan-out branches). The one-to-one mapping between the nodes
in SSBDD and the paths in the circuit is the result of the SSBDD synthesis from the
netlist of the given circuit. The synthesis process is presented in Sect. 3.

Note, that the SSBDD model in Fig. 1 represents only the FFR of the circuit. The
faults of the input fan-out stems x2, x6, x7 and x8 should be handled separately, either
by introducing trivial single-node BDDs to represent the input fan-out stems, or by
modeling the stem faults as multiple faults in the nodes which represent the fan-out
branches.

3 Synthesis of SSBDDs

Consider first, the following graph theory related definitions of the BDDs (SSBDDs).
We use the graph theory notations instead of traditional ite expressions [21] because all
the test related procedures based on SSBDDs are based on the topological reasoning
rather than on symbolic manipulations as is traditionally the case for BDDs.

Definition 1. A BDD that represents a Boolean function y = f(X), X = (x1,x2, …, xn), is
a directed acyclic graph Gy = (y,M,Γ,X) with a set of nodesM and mapping Γ fromM to
M. Γ(m) � M denotes the set of successor nodes of m 2 M, and Γ −1(m) � M denotes
the set of predecessor nodes of m. M consists of two types of nodes: internal
(non-terminal) MN and terminal MT. For terminal nodes mT we have Γ (mT) = ∅. There
is a single node m0 2 M where Γ −1(m) = ∅ called the root node. A terminal node mT

2{mT,0, mT,1} is labeled by a constant x(mT) 2{0,1} and is called leaf, while all the
nodes m 2 MN are labeled by Boolean variables x(m) 2 X, and have exactly two
successor nodes Γ (m) = {m0, m1}.

Definition 2. We say, the edge l(m, me) between nodes m and me 2 Γ (m) is activated
when the node variable x(m) is assigned to one of the values e 2 {0,1}. We say, a path l

28 R. Ubar et al.

(mi, mj) between the nodes mi and mj is activated if all the edges which form the path
are activated.

Definition 3. We say that a BDD Gy = (y,M,Γ,X) represents a Boolean function y = f
(X), iff for every possible vector Xt 2 {0,1}n, a path l(m0, m

T) is activated so that y = f
(Xt) = x(mT).

The main idea of superposition of BDDs as the basis procedure of SSBDDs pro-
posed first in [22, 27], is illustrated in Example 3.

Example 3. Let us have in Fig. 3 a network of two components y and x3 in Fig. 3,
connected by the wire x3. The components implement the following functions:

y ¼ x1x2 _ x3 _ x4ð Þx5; x3 ¼ x6x7 _ x8x9

The components y and x3 are represented by the SSBDDs y and x3, respectively.
For simplicity, we have omitted in SSBDDs the terminal nodes, with introducing the
agreement that leaving the graph to the right means entering the terminal node #1, and
leaving the graph down means entering the terminal node #0. Superposition of the two
graphs y and x3 is equivalent of merging the two components y and x3 into a single
component y* which implements the function:

y� ¼ x1x2 _ x6x7 _ x8x9 _ x4ð Þx5
To carry out this operation we have to substitute the node x3 in the graph y with the
graph x3. To do that, we:

(1) connect the incoming edges of the node x3 in graph y with the root node x6 of
graph x3;

(2) connect all the nodes in the graph x3, which enter into #1, with the right-hand
neighbor of x3 in graph y and

Fig. 3. Superposition of two SSBDDs

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 29

(3) connect all the nodes in the graph x3, which enter into #0, with the down-hand
neighbor of x3 in graph y.

The new SSBDD y* represents the function of the network with two merged com-
ponents y and x3.

Let us have, in general case, a gate-level circuit C where each gate is represented by
an elementary BDD. The procedure of generating the SSBDD model G(C) for C starts
from the BDD of an output gate, and uses iteratively the superposition procedure where
a node in a BDD is replaced by another BDD [22].

Consider two BDDs, Gy for the output gate gy 2 C with output y, and Gx for the
gate gx connected to the input x of gy. Let us call further, for simplicity, a node in a
BDD labeled by a variable z as a “node z”. By substitution of the node x in Gy with the
BDD Gx we create from Gy a new SSBDD Gy’ which represents now the extended
network consisting of gy and gx. We call the new graph as SSBDD because the new
nodes z in Gy’ which belonged to G′

x represent the signal paths from the inputs z of the
gate gx via the connection line x between the two gates up to the output y of the gate gy.

The procedure of the superposition of a node m labeled by x in BDD Gy with BDD
Gx can be presented as follows.

Procedure 1. Superposition of BDDs

(1) The node m labeled by x is removed from Gy.
(2) All the edges in Gx connected to terminal nodes mT,e in Gx will be cut and then

connected, respectively, to the successors me of the node m in Gy.
(3) All the incoming edges of m in Gy will be now incoming edges for the root node

m0 in Gx.

By applying Procedure 1 for two BDDs, we reduce the current model by one node
and by one BDD. Suppose, the label variable x of a node m in a BDD Gy corresponds to
the output of the gate gx with k output branches. This means that the variable x is used
as a label for k different nodes in the initial model as a set of BDDs. If we would
proceed the superposition of graphs beyond the fan-out stem x, and would try to replace
all the k nodes labeled by x with the BDD Gx, the complexity of the model would
increase instead of reduction, i.e. the k nodes will be replaced by k BDDs Gx.
Therefore, to keep the complexity of the final SSBDD model linear with the size of the
circuit, and to reach the maximum compression of the initial model given as a set of
elementary BDDs, we generate SSBDDs only for FFRs. Hence, at each fan-out stem
we start a new superposition procedure for the next FFR.

Definition 4. A BDD which is constructed for a given FFR by Procedure 1 is called
structurally synthesized BDD (SSBDD).

Corollary 1. It is easy to conclude from Procedure 1 that in the SSBDD Gy generated
for the given FFR Cy with a function y = f (x1,x2, …, xn), there are exactly n nodes with
labels x1,x2, …, xn, and the node m with label xi represents a unique signal path in Cy

from the input xi to the output y.

30 R. Ubar et al.

Corollary 2. Since all the SAF faults at the inputs of FFR according to the approach of
fault folding [2] form the collapsed fault set of the FFR, and since all these faults are
represented by the faults at the nodes of the corresponding SSBDD, then the creation of
the SSBDD is equivalent to the fault collapsing procedure similar to fault folding.

Theorem 1. Let G(C) be the SSBDD model generated for the combinational circuit
C by Procedure 1. Then, any set of tests that checks all the SAF faults at the nodes of G
(C) checks all the SAF faults in C.

Proof. The proof follows from Corollaries 1 and 2, and from Theorem 5 in [2].
Unlike the traditional gate level approaches to test generation and fault simulation

that use the collapsed fault list apart from the simulation model, the SSBDD based test
generation and fault simulation are carried out on the macro-level (FFRs as macros)
with direct representation of the faults in the model. Therefore there is no need for
separate fault list to be used during test generation and fault simulation.

Example 4. The node x22 in the SSBDD represents the path from x22 to y in the circuit
shown by bold lines in Fig. 1. On the other hand, the stuck-at faults SAF y/0 and SAF
y/1 dominate the faults x22/0 and x22/1, respectively. The same dominance relation
stands for all the faults along the bold path from x22 to y, regarding to the faults at x22.

From this dominance relation, it results that all the faults along the signal path from
x22 to y, except x22/0 and x22/1, can be collapsed. The two faults at x22 will form the
representative fault subset for the full signal path from x22 to y. But, exactly these faults
are represented in the SSBDD as the faults of the node x22.

From above it follows that the SSBDD model can be regarded as the model where
all the collapsed faults are removed and the fault sites are not visible either. This fault
collapsing result is similar to that of fault folding method presented in [2].

The minimum size of SSBDDs, generated with Procedure 1 is always fixed and
determined by the circuit structure. Let us denote NSSBDD as the number of nodes in the
SSBDD model, as the size characteristic of SSBDDs. Let NSignals be the number of
lines, and NG is the number of gates in the circuit represented by SSBDD. In [16] it has
been shown that the number of nodes in SSBDDs can be calculated as

NSSBDD ¼ NSignals � NG

Since a digital circuit can be represented both by gate-level and by FFR-level
SSBDDs, then in order to compare the gain in fault collapsing we get from translating
the gate level SSBDD into FFR-level SSBDD, let us use the same units for measuring
the size of SSBDDs in both cases – the number of SSBDD nodes in the model.

Denote s – as the number of inputs of the circuit, s0 – as the number of inputs with
no fan-outs, s1 – as the number of internal lines with no fan-outs, sk – as the number of
nets in the circuit with k fan-outs (k > 1), n – as the number of outputs, and m – as the
maximum number of fan-out branches over all fan-out stems in the circuit.

In [32] we have developed the following estimations for the sizes of SSBDDS for
the gate-level Ngate and for FFR-level NSSBDD cases:

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 31

NGate ¼ s0 þ s1 þ
Xm

k¼2

sk kþ 1ð Þ

NSSBDD ¼ sþ
Xm

k¼2

sk kþ 0ð Þ

Since in both cases for the stuck-at fault model, the number of nodes must be
doubled to get the number of faults, then the ratio Ngate / NSSBDD will characterize the
gain in fault collapsing as the side-effect of FFR-level SSBDD synthesis from the initial
gate-level SSBDD model, and the subtraction Ngate − NSSBDD gives the exact number
of collapsed faults thanks to the SSBDD synthesis.

Example 5. For the FFR of the circuit and its SSBDD in Fig. 1 we get Ngate = 30 and
NSSBDD = 18. The values of the arguments of the formulas for Ngate and NSSBDD are
depicted in Table 1. Hence, the gain in the SSBDD sizes, in this example, is 1.7, and
the number of collapsed faults is 12. Note, the SSBDD with 14 nodes in Fig. 1
represents only the FFR part of the circuit. To get the full FFR-level SSBDD model, we
have to include 4 single node SSBDDs for representing the 4 fan-out inputs in the
circuit.

To summarize, the procedure of SSBDD synthesis can be regarded as the first part
of fault collapsing for the given circuit. In the next section we will discuss the possi-
bility of additional fault collapsing directly on the SSBDD model.

4 Fault Equivalence and Fault Dominance on the SSBDD
Model

The second part of fault collapsing will consist of the processing of the SSBDD model
with the goal to find additional set of faults which may be collapsed using the
equivalence and dominance relationship on the SSBDD level. Since the nodes of
SSBDDs represent signal paths on the gate-level circuit then each node related fault on
the SSBDD to be collapsed is equivalent to all the related gate-level faults on the signal
path represented by the node. Whereas the first part of fault collapsing was carried out
by tracing the signal paths in the gate-level circuit level, then the second part con-
centrates on the path analysis at the higher FFR-level by tracing the paths on the
SSBDDs.

Table 1. Calculation of the number of nodes for 2 types of SSBDDs

s0 s1 sk m s N

Ngate 6 12 4 2 – Ngate = 6 + 12 + 4 * 3 = 30
NSSBDD – – 4 2 10 NSSBDD = 10 + 4*2 = 18

32 R. Ubar et al.

Definition 5. Let us call a path L(a, b) in the SSBDD between two nodes a and b,
activated by a given input pattern Xt, if by traversing the graph under guidance of Xt,
the node b will be reached from a.

In SSBDD-based test generation the targets are node related faults. As explained in
[22], to test a node m in an SSBDD we have to activate three paths in it: (1) L(m0,
m) from the root node m0 to m, (2) L(m1, #1) from the neighbor m1 of m to the terminal
node #1, and (3) L(m0, #0) from m0 to #0.

Example 6. To test the node x22 in the SSBDD in Fig. 1 we have to activate three
paths in it: (1) L(x1, x22) from the root node x1 to x22, (2) L(x3, #1) from x3 to the
terminal node #1, and (3) L(x4, #0) from x4 to #0. When we assign x22 = 1 then the
activation of the listed paths produce a test pattern Xt which detects the fault SAF x22 ≡
0. The pattern Xt which activates these paths (bold lines in Fig. 1) is depicted in Fig. 2.

Definition 6. Let us call the path which is activated from the root node up to the one of
the terminal nodes, the full activated path in SSBDD. The full activated path which
terminates in the node #1 (#0) is called 1-path (0-path). The nodes traversed along the
1-path (0-path) in direction to 1 (0), are called 1-nodes (0-nodes).

Example 7. The path L(x1, #1) = (x1, x22, x3, ¬x7, x81, #1) in Fig. 1, activated by the
pattern in Fig. 2, is 1-path, the node x1 on this path is 0-node, and all other nodes are
1-nodes.

Property 1. If a test vector Xt activates in SSBDD a 0-path (1-path), then only 0-nodes
(1-nodes) have to be considered as candidate fault sites [31].

The Property 1 can be taken into account to speed-up fault simulation. According to
Property 1, the analysis of the 1-path in Fig. 2 shows us that all the nodes, except x1,
may be qualified as candidate fault sites. However, further analysis is needed to confirm
which of the candidate nodes are in fact detectable by the pattern. Since the faults at all
1-nodes for Xt (in Fig. 2), will cause the direction change during graph traversing, then
the faults at all 1-nodes are detectable by Xt.

Example 8. In the path L(x1, #1) activated by the test in Fig. 2, according to Property
1, the nodes x22, x3, ¬x7, and x81 are the candidates of fault sites. By additional
simulation – by inverting the values of these variables, and by tracing the related paths
L(x22, #0), L(x3, #0), L(¬x7, #0), L(x81, #0) for each of these nodes, we can find that the
test pattern in Fig. 2 detects the faults: x22 ≡ 0, x3 ≡ 0, ¬x7 ≡ 0, and x81 ≡ 0,
respectively.

Theorem 2. The faults at two connected SSBDD nodes a and b are equivalent iff the
following two conditions are satisfied: (1) the nodes have the same neighbor c, and
(2) the node b has a single incoming edge from a.

Proof. The first condition refers to the fact that both nodes can be tested by the same
test pattern which activates the paths L(Root,a), L(a,#e) where e2{0,1}, and the path L
(c,#(¬e)). The second condition refers to that this test pattern is the only one which can
test both of the node faults a/¬ e and b/¬ e.

Example 9. For example the faults x22/0 and x3/0 are equivalent, because the related
nodes x22 and x3 have the same neighbor node x4, and a single entry edge into x22, hence,

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 33

one of these faults can be collapsed. In a similar way, using Theorem 2, it is easy to find
in the SSBDD in Fig. 1 other equivalent faults: x1/0 ≡ x21/0, x5/0 ≡ x61/0 (or ¬x5/1 ≡
¬x61/1, according to the notation in the SSBDD), x8,2/0 ≡ x9/0, and x72/1 ≡ x62/0. On the
other hand, the faults ¬x71/0 and x81/0 are not equivalent. Despite of having the same
neighbor x82, the node ¬x71 has three entry edges, and the single entry requirement of
Theorem 2 is not satisfied.

Property 2. SSBDDs have always a single Hamiltonian path that visits all the nodes
(except #0 and #1), and which determines a unique ranking of the nodes. The nodes
a and b are in the relationship a < b if the node a will be traversed before b along the
Hamiltonian path [31].

Figure 4 depicts an example of two possible presentations of the same SSBDD
which represents the following Boolean expression:

y ¼ x11x21 _ x12 x31 _ x4ð Þ _ x13x22x32

Theorem 3. The fault b/0 dominates a/0 (or b/1 dominates a/1), iff the following
conditions are satisfied: (1) there exists a single 1-path (or a single 0-path) through the
nodes for detecting both of these faults, (2) a < b, and (3) the node b has more than 1
incoming edges.

Proof. The first condition demands that these faults can be detected by a single test
pattern (the condition of the equivalency). The second condition demands that there
will be no other path for testing a and not testing b. The third condition is needed to
give the possibility to test b and not to test a. From satisfying these conditions, it
follows that any test for a must detect the related fault as well at b. Hence, the fault at
a is dominated by b. If the third condition is not fulfilled, the related node faults at the
nodes a and b are equivalent.

Fig. 4. Hamiltonian path in two presentations of the same SSBDDs

34 R. Ubar et al.

Example 10. In Fig. 1, the faults ¬x71/0 and x81/0 dominate x22/0, and, according to
Theorem 3, can be collapsed. Based on this result and taking into account Example 7,
we can collapse 3 faults on the activated path L(x1,#1): x3/0, ¬x71/0 and x81/0.

Corollary 3. The fault a/0 dominates b/0 (a/1 dominates b/1) iff the following con-
ditions are satisfied: (1) there exists a single 1-path (0-path) through the nodes for
detecting both of these faults, (2) a < b, and (3) the node a can be tested by activating
another path where b is not tested.

Proof. The proof results directly from Theorem 3 after transforming the SSBDD, so
that the ranking of nodes a and b involved in the dominance relation will be swapped
(see Fig. 5 and Example 10).

Example 11. In Fig. 5 two different SSBDDs are shown which represent the same
digital circuit, and correspond to the following two Boolean expressions:

y ¼ x11x21 _ x12 x31 _ x4ð Þ ¼ x11x21 _ x31 _ x4ð Þx12

The graphs represent the following rankings R1: x12 < x31 < x4 and R2: x31 <
x4 < x12, respectively, according to the Hamiltonian paths in the SSBDDs. In the
SSBDD with node ranking R2, we determine that the node x12 dominates both, x31 and
x4, according to Theorem 3, and the same result we get for the SSBDD with node
ranking R1, according to Corollary 3.

Using Theorems 2, 3 and Corollary 3 may directly lead to a simple algorithm of
fault collapsing by systematic pairwise analysis of the equivalence and dominance
relationships. However, in the worst case, such a pairwise analysis may lead to a
quadratic complexity of SSBDD tracing.

On the other hand, taking into account the possibility of mapping sub-graphs in the
SSBDD into the sub-circuits of the gate network, it would be possible to develop an
algorithm of fault collapsing which will use only a single trace through the SSBDD
with local analysis of proximate node pairs, and which would provide linear com-
plexity of the algorithm.

Fig. 5. Transformation of SSBDDs by swapping the nodes or subgraphs

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 35

5 Fault Equivalence and Fault Dominance Fast Reasoning
on the SSBDD Model

From the definition of the SSBDDs [31] we can derive the following rules for
recognition of gates and sub-circuits in the SSBDD model, which will help us to
develop a fault collapsing algorithm on SSBDDs with linear complexity.

Definition 7. Let us call the consecutive nodes on the Hamiltonian path of SSBDD as
a group if they all have the same neighbor node, and all these nodes except the first one
have a single incoming edge.

Example 12. Consider a circuit and its SSBDD model in Fig. 1. The two consecutive
nodes x22 and x3, and the nodes ¬x5 and ¬x61 form two groups in the SSBDD in Fig. 3.
No more groups exist in this graph. The nodes ¬x61 and ¬x71 don’t form a group.

Rule 1. A group of two nodes connected by horizontal edges (vertical edges) repre-
sents AND (OR) gate, and due to the fault equivalence, a fault at one of the inputs can
be collapsed. The Rule 1 results directly from the method of synthesis SSBDDs by
superposition of BDDs of gates [22].

Example 13. The nodes x22 and x3 in the SSBDD in Fig. 6 represent AND gate, and
¬x5 with ¬x61 represent OR gate. These gates can be recognized in the circuit.
According to Rule 1, the faults x22/0 (or x3/0) and ¬x5/1 (or ¬x61/1) can be collapsed.

Rule 2. If a node b in SSBDD has at least two or more incoming edges, it represents a
path to a gate G where all the paths, represented by a subset of nodes S(b) = {a |
a < b}, are joining. The fault of b dominates over the related faults of the nodes a 2 S
(b), since the conditions of Theorem 3 are satisfied.

Example 14. The node ¬x71 in SSBDD in Fig. 6 has three incoming edges. It rep-
resents a path to the gate G joining with the paths represented by all other nodes a,

Fig. 6. Mapping SSBDD subgraphs into the circuit

36 R. Ubar et al.

a < ¬x71, in this SSBDD. The nodes ¬x61 and¬x71 don’t form a group according to
Definition 7 and don’t represent AND.

The Rules 1 and 2 help to understand, how the fault equivalence and dominance
relations in SSBDDs can be related to the similar equivalence and dominance relations
in the gate-level circuit. If we have recognized a gate in SSBDD, the equivalence
relations overlap for SSBDD and the circuit. The dominance relation in an SSBDD for
a node with several incoming edges can be explained by transitive closure of domi-
nance relations. For example, the dominance ¬x71/0 → ¬x61/0 (or x71/1→x61/1 in the
circuit) in the SSBDD in Fig. 6 can be explained by the following transitive closures in
the circuit: x71/0 ≡ d/0 ≡ c/0, and c/0 → b/1 → a/0→ x61/1, from which x71/1→ x61/1
results (x71/1 dominates x61/1).

Algorithm 1 presents a procedure for fault collapsing in circuits which are repre-
sented by the SSBDD model. The algorithm is based on pairwise checking of Rule 1
(for equivalence) and Rule 2 (for dominance) by traversing along the Hamiltonian path
in SSBDD. The algorithm has linear complexity.

Example 15. Consider the fault collapsing in the SSBDD in Fig. 1 according to
Algorithm 1. The SSBDD represents the FFR region of the circuit in Fig. 1 where the
fan-out inputs are not included. The initial number of the gate level SAF faults in the
FFR in Fig. 1 is 52 (2 faults per each of 26 lines). By synthesizing the SSBDD for the
FFR of the circuit according to Procedure 1 we reduce the number of representative
faults from all 52 faults to 28 faults (2 faults per each of 14 nodes in the SSBDD). By
using Algorithm 1, we further collapse 10 faults (x1/0, x22/0, x4/0, x5/0, x71/1, x81/0, x82/
0, x9/0, x72/1, x10/1) which results in the total number of remaining 18 representative
faults, i.e. 3 times reduction compared to the initial number of faults.

Table 2 shows which node faults in the SSBDD in Fig. 1 are collapsed on the basis
of equivalence relation and which faults on the basis of dominance relation.

Table 2. Fault collapsing results for the SSBDD in Fig. 1

Node Collapsed fault Comments

x1 SAF x1/0 Equivalent with x21/0
x21 No collapse
x22 SAF x22/0 Equivalent with x3/0
x3 No collapse
x4 SAF x4/0 Dominates x5/1, x61/1
¬x5 SAF x5/0 Equivalent with x61/0
¬x61 No collapse
¬x71 SAF x71/1 Dominates x22/0, x3/0, x22/0, x5/1, x61/1
x81 SAF x81/0 Dominates x22/0, x3/0, x22/0, x5/1, x61/1, x1/0, x21/0, x71/1
x82 SAF 82/0 Equivalent with x9/0
x9 SAF 9/0 Dominates x82/0
x72 SAF x72/1 Equivalent with x62/0
¬x62 No collapse
¬x10 SAF x10/1 Dominates x72/0, x62/1, x9/0, x82/0

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 37

38 R. Ubar et al.

6 Lower and Higher Bounds for Fault Collapsing

Denote by N the number of all nodes in the SSBDD model of a circuit and by C the
number of collapsed faults. The number of all SAF faults is 2N, the number of rep-
resentative faults after fault collapsing will be R = 2N − C, and the effect from fault
collapsing can be expressed by the ratio R/2N.

Theorem 4. The effect of fault collapsing in the SSBDD model of the given digital
circuit will be always in the boundary 1/2 < R/2N ≤ 5/6. For a single FFR of any given
digital circuit the effect of fault collapsing in the related single SSBDD will be always
in the boundary 1/2 < R/2N ≤ 3/4.

Proof. Any tree-like circuit with N inputs can be represented by SSBDD with N nodes.
Examples of such circuits, with fan-outs only in inputs, and the related SSBDDs for the
FFRs are depicted in Figs. 7 and 8, respectively.

In the simplest tree, a single gate with N inputs (gate y in Fig. 7 and SSBDD y in
Fig. 8), we can collapse N-1 faults. Hence, R = 2N − (N − 1) = N + 1. Any parti-
tioning of the set of inputs for more than one gate in this tree will reduce the total C by

Fig. 7. Tree-like circuits with fan-out inputs of increasing complexity

Fig. 8. SSBDD models for FFRs in the circuits in Fig. 4

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 39

one fault per added gate and, hence, increase R. When increasing N, the lower bound
for R/2N is:

lim
n!1

Rþ n
2Nþ 2n

¼ lim
n!1

Nþ nþ 1
2Nþ 2n

¼ lim
n!1

n
2n

¼ 1
2

On the other hand, consider formally (neglecting the redundancy) a single-input
logic gate y1 in Fig. 7. The SSBDD model of the gate has N = 3 nodes representing the
fan-out stem with 2 branches. The SSBDD for only the FFR of this gate has 2 nodes.
There are two equivalent faults at the gate inputs where one of them can be collapsed.
Hence, the number of representative faults in this circuit will be R = 2N − 1 = 5, and
R/2N = 5/6. Similarly, the SSBDD for the FFR has only R = 2N − 1 = 3, and R/
2N = 3/4.

Consider now the tree-like circuit y2 in Fig. 7 with two 2-input gates and two
fan-out nodes. The SSBDD model of the circuit has N = 6 nodes. There are again two
equivalent faults at the gate inputs where one of them can be collapsed. Hence, the
number of representative faults after fault collapsing will be R = 2N − 2 = 10, and
again we get R/2N = 5/6. Similarly, for the SSBDD representing only the FFR in this
circuit, we get N = 4, R = 2N − 2 = 6, and R/2N = 3/4.

The circuit y4 in Fig. 7 illustrates how we can generalize the series of two circuits y1
and y2 into a series of expanding circuits yn, n = 1,2,3,4…, where each circuit will
consist of an input sub-circuit INn as a chain of n 2-input gates, and a tree-like
sub-circuit Fn. In each such a circuit, the ratio R/2N = 5/6 remains constant. In INn for
each gate, only a single fault can be collapsed resulting in total in n collapsed faults.

It is easy to realize that any structural change inside the sub-circuit Fn will not
change the ratio R/2N = 5/6. The reason is that all the faults in Fn will dominate the
faults in INn. On the other hand, by adding n = 1, 2,… non-fan-out inputs to the
sub-circuit INn we get R/2N* = (R + n)/(2N + 2n), and by adding n fan-out inputs with
2 branches to INn we will get R/2N** = (R + 2n)/(2N + 6n). Each addition of a fan-out
branch is equivalent to the case of adding a single input node where no faults can be
collapsed.

From above it follows that for the case of digital circuits as networks of FFRs the
higher bound (the worst case of remaining representative faults) for the ratio R/2N
will be:

R=2N��\R=2N�\R=2N� 5=6

Hence, the range between lower and higher bounds for the ratio R/2N characteriz-
ing the number of remaining representative faults after using Algorithm 1 for fault
collapsing will be:

1=2\R=2N� 5=6

Extending the same analysis for a single sub-circuit as an FFR, we will have the
range between lower and higher bounds for the ratio R/2N as:

40 R. Ubar et al.

1=2\R=2N� 3=4

Corollary 4. From Theorem 4, it directly follows that for the SSBDD model of the
given digital circuit with N nodes in the model, the number of collapsed faults
C = 2N − R belong will always to the interval N/3 ≤ C < N. Hence, N/3 will serve as
the lower bound for the number of collapsed faults achievable in the SSBDD model.

Corollary 5. From Theorem 4, it directly follows that for the SSBDD with N nodes
which represents any FFR in digital circuits, the number of collapsed faults
C = 2N − R will always belong to the interval N/2 ≤ C < N. Hence, N/2 will serve as
the lower bound for the number of collapsed faults achievable in any single SSBDD
created for the given FFR.

Example 16. Consider again the digital circuit and the FFR of the circuit in Fig. 1. In
Example 15 we found the number of collapsed faults C = 10, and the numbers of
remaining representative faults for the case of FFR RFFR = 18, and for the full circuits
(with the SSBDD for FFR and additional 4 single-node SSBDDs for 4 inputs with
fan-outs) R circuit = 26. For FFR we get N/2 = 7 ≤ C = 10 < N = 14, whereas for the
full model we have N/3 = 6 ≤ C = 10 < N = 18.

The result shows that the interval between lower and upper bounds for a single FFR
is smaller compared to the interval for whole circuit. More discussion in that topic
follows in the experimental part of the paper.

7 Experimental Data

The fault collapsing experiments were carried out with Intel Core i5 3570 Quad Core
3.4 GHz, 8 GB RAM, using ISCAS’85, ISCAS’89 and ITC’99 benchmark circuits.
The experimental results are presented in Tables 3 and 4.

In Table 3, the sizes of fault sets after fault collapsing for the proposed method
(New) with previous structural [2, 14, 33] and functional [18] methods are compared.
The new proposed method has better results in fault collapsing than the previous

Table 3. Comparison with other methods

Circuit # Faults Fault set size CPU time,
s

[2] [14] [33] [18] New [18] New

c1355 2710 1234 1210 1100 808 1210 46 0.003
c1908 3816 1568 1566 1286 753 1243 14 0.008
c2670 5340 2324 2317 2046 1853 1989 110 0.009
c3540 7080 2882 2786 2584 2092 2340 831 0.010
c5315 10630 4530 4492 4404 3443 3900 72 0.012
c6288 12576 5840 5824 4832 5824 5824 4 0.019
c7552 15104 6163 6132 5480 4707 5156 232 0.016

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 41

structural methods. The functional method [18] is very slow and not scalable due to
high computational cost of calculating transitive closures on dominance graphs
whereas the proposed method has a very high speed due to the linear complexity and is
well scalable. As an example, the difference in time costs for c3540 and c6288 in case
of [18] is 200 times whereas for the proposed method the difference is 2 times.

Due to different computing frameworks the speeds of the algorithms [18] and
developed in this paper cannot be directly compared. On the other hand, the time cost
needed for the first part of fault collapsing as a side effect of SSBDD synthesis was not
included into the CPU time data in Table 3.

The experimental results for larger ISCAS’89 and ITC’99 circuits (R* is the number
of remaining faults after collapsing) are depicted in Table 4. The column R*/R shows
the gain (1.2 times in average) of the achieved fault collapse (in the column R(New))
compared to the results in [34, 35]. The last column shows that Algorithm 1 has linear
complexity, is well scalable and can be efficiently used for large circuits. The linear
complexity of the method is explained by the fact that the fault equivalence and dom-
inance reasoning is reduced only to the local pairwise analysis of the neighbor nodes
during traversing the Hamiltonian path of the SSBDD. The number of pairs to be
analyzed, as it results from Algorithm 1, is in the interval (N − 1, N/2 + 1) where the
lower bound refers to the extreme case of the logic gate with N inputs, and the higher
bound refers to the extreme case of the two-level AND-OR (OR-AND) circuits with 2
inputs for the 1st level AND (OR) gates, plus one additional input for the 2-nd level gate.

Note, that according to Theorem 4, the higher bound for R/2 N is 83 % and the
lower bound is 50 %. The best result of fault collapsing – 73.0 % of remaining faults,
the worst result – 77.9 % and the average of 74.1 % all fit well into the interval

Table 4. Fault collapsing for ISCAS’89 and ITC’99 circuits

Circ # Gates R* [34, 35] 2N R (New) R/2N % Gain R*/R Time s

s13207 24882 9815 10456 7933 75.9 1.24 0.04
s15850 29682 11727 12150 9178 75.5 1.28 0.04
s35932 65248 39094 39094 29797 76.2 1.31 0.26
s38417 69662 31180 32320 25162 77.9 1.24 0.20
s38584 72346 36305 38358 28016 73.0 1.30 0.18
b15 47414 21072 23498 17439 74.2 1.21 0.04
b17 154220 68037 81330 60684 74.6 1.12 0.12
b18 463570 206736 277978 205866 74.1 1.00 0.42
b18_1 453088 202812 264244 196179 74.2 1.03 0.40
b19 1345442 533142 560704 415251 74.1 1.28 0.84
b19_1 1275720 507476 534184 396151 74.2 1.28 0.80
b21 79556 35994 48182 35169 73.0 1.02 0.08
b21_1 63732 29091 34510 25359 73.5 1.15 0.06
b22 113308 51277 70464 51511 73.1 1.00 0.11
b22_1 98006 44771 52172 38359 73.5 1.17 0.08
Aver 290392 121902 138643 102804 74.1 1.2 0.24

42 R. Ubar et al.

between the bounds. However the results are considerably closer to the higher bound of
83.3 % of remaining representative faults than the lower bound of 50 %.

In Fig. 9 we show statistical data collected from the fault collapse experiments with
SSBDDs in 0.5 million tree-like sub-circuits (FFRs) in 111 different circuits of
ISCAS’85, ISCAS’89 and ITC’99 families. Figure 6 presents a plot of different
sub-circuit cases characterized by the number of nodes N in SSBDDs and the results of
fault collapsing R/2N. Two extreme cases are highlighted: single-gate circuits (the best
fault collapsing case) and the circuits with 2-input gates at the first level of tree-like
circuits – the worst fault collapsing case where the higher bound for the remaining
representative faults R/2N = 3/4 was reached, respectively the lower bound (the min-
imum number) of faults collapsing C = N/2.

8 Conclusions

In this paper we proposed a new structural fault collapsing method and an algorithm
with linear complexity. The method is based on using SSBDD model for representing
gate-level circuits as higher FFR-level networks. The synthesis of SSBDDs presents the
first step of fault collapsing in FFR-s, and the resulting collapsed fault set can be
regarded as a side-effect of SSBDD synthesis. We have introduced the concepts of fault
equivalence and dominance relations between the faults on the SSBDD model, and
present an algorithm for systematic fault collapsing in SSBDDs as a process of creating
of the representative fault set defined at the higher level communication network of
FFRs.

Fig. 9. Distribution of SSBDD cases with different characteristics (N, R/2N)

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 43

We developed the lower and higher bounds of the SSBDD based fault collapsing,
and showed that the number of collapsed faults C in the SSBDD model of an arbitrary
digital circuits belongs to the interval N/3 ≤ C < N where N is the number of nodes in
the SSBDD model.

Experiments showed that the proposed method is more efficient than the previous
structural fault collapsing methods and due to high scalability makes it very promising
for large circuits.

Acknowledgments. The work has been supported by EU FP7 STREP project BASTION, and
HORIZON 2020 RIA project IMMORTAL.

References

1. Bushnell, G.M.L., Agrawal, V.D.: Essentials of Electronic Testing. Springer, Boston (2000)
2. To, K.: Fault folding for irredundant and redundant combinational circuits. IEEE Trans.

Comput. C-22(11), 1008–1015 (1973)
3. Niermann, T., Patel, J.H.: HITEC: a test generation package for sequential circuits. In:

EDAC, pp. 214–218, February 1991
4. Kelsey, T.P., Saluja, K.K., Lee, S.Y.: An efficient algorithm for sequential circuit test

generation. IEEE Trans. Comput. 42(11), 1361–1371 (1993)
5. Sandireddy, R.K.K.R., Agrawal, V.D.: Using hierarchy in design automation: the fault

collapsing problem. In: Proceedings of the 11th VLSI Design and Test Symposium Kolkata,
8–11 August 2007

6. Veneris, A., Chang, R., Abadir, M.S., Seyedi, S.: Functional fault equivalence and
diagnostic test generation in combinational logic circuits using conventional ATPG. JETTA
21(5), 495–502 (2005)

7. Lioy, A.: Advanced fault collapsing. IEEE Des. Test Comput. 9(1), 64–71 (1992)
8. Al-Assad, H., Lee, R.: Simulation based approximate global fault collapsing. In:

Proceedings of International Conference on VLSI, pp. 72–77 (2002)
9. Pomeranz, I., Reddy, M.: Level of similarity: a metric for fault collapsing. In: Proceedings of

DATE, pp. 56–61, February 2004
10. Pomeranz, I., Reddy, S.: Safe fault collapsing based on dominance relations. In: Proceedings

of ETC, pp. 7–8 (2008)
11. Hahn, R., Krieger, R., Becker, B.: A hierarchical approach to fault collapsing. In:

Proceedings of EDTC, pp. 171–176 (1994)
12. Prasad, A.V.S.S., Agrawal, V.D., Atre, M.V.: A new algorithm for global fault collapsing

into equivalence and dominance sets. In: Proceedings of ITC, pp. 391–397, October 2002
13. Sethuram, R., Bushnell, M.L., Agrawal, V.D.: Fault nodes in implication graph for

equivalence dominance collapsing, and identifying untestable and independent faults. In:
Proceedings of VLSI Test Symposium, pp. 329–335 (2008)

14. Agrawal, V.D., Prasad, A.V.S.S., Atre, M.V.: Fault collapsing via functional dominance. In:
International Test Conference, pp. 274–280 (2003)

15. Sandireddy, R.K.K.R., Agrawal, V.D.: Diagnostic and detection fault collapsing for multiple
output circuits. In: Proceedings of DATE, pp. 1014–1019 (2005)

16. Amyeen, M.E., Fuchs, W.K., Pomeranz, I., Boppana, V.: Fault equivalent identification in
combinational circuits using implication and evaluation techniques. IEEE Trans. CAD 22(7),
922–936 (2003)

44 R. Ubar et al.

17. Vimjam, V.C., Hsiao, M.S.: Efficient fault collapsing via generalized dominance relations.
In: Proceedings of VLSI Test Symposium, pp. 258–265 (2006)

18. Adapa, R., Tragoudas, S., Michael, M.K.: Sub-faults identification for collapsing in
diagnosis. In: International Conference ISCAS, pp. 815–818 (2006)

19. Pomeranz, I., Reddy, S.: Equivalence and dominance relations between fault pairs and their
use in fault pair collapsing for fault diagnosis. In: International Conference on VLSI Design,
pp. 1–6 (2007)

20. Adapa, R., Tragoudas, S., Michael, M.K.: Accelerating diagnosis via dominance relations
between sets of faults. In: Proceedings of the VLSI Test Symposium, pp. 219–224 (2007)

21. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput. C-35, 677–691 (1986)

22. Ubar, R.: Test synthesis with alternative graphs. IEEE Des. Test Comput. 13, 48–59 (1996).
Springer

23. Ubar, R., Raik, J., Vierhaus, H.-T.: Design and test technology for dependable
systems-on-chip. In: IGI Global, p. 550 (2011)

24. Ubar, R., Devadze, S., Raik, J., Jutman, A.: Parallel X-fault simulation with critical path
tracing technique. In: Proceedings of DATE (2010)

25. Gorev, M., Ubar, R., Devadze, S.: Fault simulation with parallel exact critical path tracing in
multiple core environment. In: DATE (2015)

26. Lee, C.Y.: Representation of switching circuits by binary decision diagrams. Bell Syst. Tech.
J. 38(7), 985–999 (1959)

27. Ubar, R.: Test generation for digital circuits using alternative graphs. In: Proceedings of the
Tallinn Technical University, Tallinn, vol. 409, pp. 75–81 (1976)

28. Akers, S.: Binary decision diagrams. IEEE Trans. Comput. 27, 509–516 (1978)
29. Ubar, R.: Multi-valued simulation of digital circuits with structurally synthesized BDDs. In:

Multiple Valued Logic, vol. 4. OPA, Gordon and Breach Publishers (1998)
30. Jutman, A., Raik, J., Ubar, R.: SSBDDs: Advantageous model and efficient algorithms for

digital circuit modeling, simulation and test. In: 5th International Workshop on Boolean
Problems, Freiberg, Germany, pp. 157–166, 19–20 September 2002

31. Ubar, R.: Overview about low-level and high-level decision diagrams for diagnostic
modeling of digital systems. Facta Univ. (Nis) Ser.: Electron Energ. 24(3), 303–324 (2011)

32. Mironov, D., Ubar, R.: Lower bounds of the size of shared structurally synthesized BDDs.
In: IEEE 17th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), Warsaw, pp. 77–82, 23–25 April 2014

33. Ubar, R., Mironov, D., Raik, J., Jutman, A.: Structural fault collapsing by superposition of
BDDs for test generation in digital circuits. In: IEEE ISQED, San Jose, CA, USA, pp. 250–
257 (2010)

34. Brglez, F., et al.: Combinational profiles of sequential benchmark circuits. In: ISCAS 1989
(1989)

35. ITC 1999: http://www.cad.polito.it/downloads/tools/itc99.html

Fault Collapsing in Digital Circuits Using Fast Fault Dominance 45

http://www.cad.polito.it/downloads/tools/itc99.html

A Hardware Accelerator for Real Time Sliding
Window Based Pedestrian Detection on High

Resolution Images

Asim Khan(&), Muhammad Umar Karim Khan, Muhammad Bilal,
and Chong-Min Kyung

Department of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST),

Daejeon, South Korea
{asimkhan,umar,bilalm,kyung}@kaist.ac.kr

Abstract. Pedestrian detection has lately attracted considerable interest from
researchers due to many practical applications. However, the low accuracy and
high complexity of pedestrian detection has still not enabled its use in successful
commercial applications. In this chapter, we present insights into the complexity-
accuracy relationship of pedestrian detection. We consider the Histogram of
Oriented Gradients (HOG) scheme with linear Support Vector Machine
(LinSVM) as a benchmark. We describe parallel implementations of various
blocks of the pedestrian detection system which are designed for full-HD
(1920 × 1080) resolution. Features are improved by optimal selection of cell size
and histogram bins which have been shown to significantly affect the accuracy and
complexity of pedestrian detection. It is seen that with a careful choice of these
parameters a frame rate of 39.2 fps is achieved with a negligible loss in accuracy
which is 16.3x and 3.8x higher than state of the art GPU and FPGA implemen-
tations respectively. Moreover 97.14 % and 10.2 % reduction in energy con-
sumption is observed to process one frame. Finally, features are further enhanced
by removing petty gradients in histograms which result in loss of accuracy. This
increases the frame rate to 42.7 fps (18x and 4.1x higher) and lowers the energy
consumption by 97.34 % and 16.4 % while improving the accuracy by 2 % as
compared to state of the art GPU and FPGA implementations respectively.

Keywords: FPGA � Low power � Object detection � Real-time

1 Introduction

Researchers in industry and academia have been striving for accurate and real-time
pedestrian detection (PD) for more than a decade owing to many commercial and
military applications. Industries such as surveillance, robotics, and entertainment will
be greatly influenced by appropriate application of PD. Advanced driver assistance
systems (ADAS) and unmanned ground vehicles (UGV) are merely a distant dream
without automated pedestrian detection. The fact that more than 15 % of traffic acci-
dents include pedestrians [1] shows the importance of real-time pedestrian detection for
the modern society [2].

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 46–66, 2016.
DOI: 10.1007/978-3-319-46097-0_3

Amid numerous applications, the search for an accurate yet fast PD algorithm is
ongoing. Researchers have shown great interest over the past few years in extracting
diverse features from an image and finding an appropriate classification method to
perform robust PD [10–14]. However, the histogram of oriented gradients (HOG) ap-
proach has proven to be a groundbreaking effort, and has shown good accuracy in
various illumination conditions and multiple textured objects. Inspired from SIFT [5],
the authors in their seminal paper [4] present a set of features over a dense grid in a
search window. For training and classification, they used the linear support vector
machine (linSVM). Their work inspired many other researchers and is still used as a
benchmark PD scheme.

Although HOG was presented many years back, it is surprising to see that very few
efforts have been made for an optimal hardware implementation of HOG. In fact, most
of the research has been targeting pedestrian detection on a high end CPU or GPU or
combination of both [24–29]. Field Programmable Gate Arrays (FPGA) and Appli-
cation Specific Integrated Circuits (ASIC) often provide better execution speed and
energy efficiency as compared to GPUs due to deep pipelined architectures. Further-
more, in many embedded applications, such as surveillance, there are numerous con-
straints on hardware cost, speed, and power consumption. For such applications, it is
more suitable to use task-specific (FPGA, ASIC) rather than general-purpose platforms.
Moreover, to meet such constraints, certain parameters of the algorithm need to be
tuned and an insight is required into how the change of parameters of PD affects not
only the accuracy but also the hardware complexity.

Efforts have been made in the research community to either improve the accuracy
of PD or reduce the hardware complexity of HOG. In [6] and [7], the computational
complexity of HOG is reduced with cell-based scanning and simultaneous SVM cal-
culation using FPGA and ASIC implementations for full HD resolution; however, the
implementations use the parameters as suggested in [4]. Various hardware optimiza-
tions are presented in [15–22] for an efficient pedestrian detection system. However, for
real-time PD with power and area constraints, it is imminent to find the set of
parameters of HOG that provide the best compromise in terms of computational
complexity and accuracy. Recently, a hardware architecture for fixed point HOG
implementation has been presented [8] where the bit-width has been optimized to
achieve significant improvement in power and throughput. We believe that in addition
to bit-width there are other parameters which need to be optimized to provide a holistic
understanding of the relationship between accuracy, speed, power, and complexity.
Moreover, sliding window based pedestrian detection requires detection to be per-
formed at multiple scales of image. It has been shown that the best detection perfor-
mance can be achieved with scale factor (the ratio to scale the image after each
detection) of at-least 1.09. This results in processing around 45 scales for full-HD
resolution. As shown in Fig. 1, a combination of the number of scales (=45) required
for maximum accuracy [8, 9] and throughput for real-time pedestrian detection at
full-HD resolution has not been achieved before.

The key contributions of our work can be summarized as follows.

• We present parallel implementation of various blocks of HOG-based PD on an
FPGA. Parallel implementation has been used to improve the speed of PD.

A Hardware Accelerator for Real Time Sliding Window 47

• We derive the accuracy, speed, power, and hardware complexity results of
HOG-based PD with different choices of cell sizes and number of histogram bins.

• We show that by using the right choice of cell size and number of histogram bins, a
significant reduction in power consumption and increase in throughput can be
achieved with reasonable accuracy.

• Finally features are refined by removing insignificant gradients which results in not
only improvement of throughput and power consumption but also accuracy.

This chapter is an extension of our original paper [10] including more detailed
literature survey and hardware implementation details. The rest of the chapter is
organized as follows. Section 2 summarizes the state of the art in PD. In Sect. 3, a brief
overview of HOG is presented. The proposed hardware implementation is discussed in
Sect. 4. In Sect. 5, the accuracy, speed, power, and hardware complexity results are
shown for different choices of parameters and the optimal choice of parameters under
given constraints is described. Section 6 concludes the work.

2 Literature Survey

Numerous efforts have been made in the past to perform PD efficiently. An extensive
survey of PD schemes is given in [9]. Generally, these approaches can be classified into
two categories: segmentation-based approaches [34] and sliding window-based
approaches [11]. A segmentation-based approach processes the whole frame at once
and extracts segments of the frame which include pedestrians. On the other hand,
sliding window-based approaches divide a frame into multiple, overlapping windows
and search pedestrians in each of these windows.

[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]

[18]
[25]
[26]
[27]
[29]
[20]
[23]

[8]
[19]

[6]
[24]
[22]
[28]

[8]
[6]

[21]
Our

[18] [25] [26] [27] [29] [20] [23] [8] [19] [6] [24] [22] [28] [8] [6] [21] Our
fps 38 57 23.8 32 5.6 62.5 30 68.2 10 72 17 13 2.4 10.4 30 64 42.7

scales 1 1 1 1 1 1 1 34 1 1 37 13 1 34 1 18 45

Fig. 1. Comparison of the state of the art in terms of frames per second and number of scales.

48 A. Khan et al.

2.1 Sliding Window Based Pedestrian Detection

Recently, researchers have put more effort into sliding window approach as this
approach simplifies the problem of PD to binary classification in a given window.
Sliding window-based approaches can be further subdivided into rigid and part-based
methods. The rigid schemes consider the window holistically to identify a pedestrian.
Part-based schemes, such as [35, 36] identify different parts of a pedestrian in a win-
dow, and decide the presence of a pedestrian based on the location and confidence
(accuracy) of detected parts. Part-based schemes have been shown to perform better
compared to rigid schemes as the decision in these methods is based on the aggregate
of decisions for different parts and these schemes can handle occlusion better compared
to rigid schemes. However, the higher computational complexity of part-based methods
makes them infeasible for real-time applications. Rigid schemes utilize a single feature
or multiple features to detect an object. We have categorized the schemes depending on
the feature and implementation platform.

Single Feature Pedestrian Detection. In [11], the authors use Haar-like features with
Support Vector Machines (SVM) to identify objects in a scene. Their method was
advanced in [37] for face detection, where the authors obtained an astounding increase
in speed by using integral images to compute Haar-like features. Furthermore, cascaded
boosted trees were used for classification. The method of [37] was used for PD in [38].
However, using Haar-like features for PD detection did not show much promise until
recently [4] due to their low accuracy.

A set of rich and compact features was required to improve PD. Rich features were
needed to extract maximum information from a window and compactness was needed
to better generalize from training to testing. HOG [4] performed both these tasks by
including the complete (or rich) gradient information of a window into compact his-
tograms. They trained Linear Support Vector Machine (LinSVM) framework for
classification. Furthermore, they developed and used the INRIA pedestrian dataset,
which was the most extensive dataset for PD at that time. Resultantly, their method
achieved significant improvement in accuracy of PD compared to the previous
schemes.

Since its inception, HOG has influenced most of the modern PD methods. In [39],
gradients in local patches, similar to HOG, are used to represent shape descriptors.
These shape descriptors are combined to create a single feature which is classified
using boosted trees. The method is used for PD as well as detection of other objects.
Edgelets, used in [40] and [41], have been used to learn and classify body parts with
boosted trees. Other variations include distance transform and template hierarchy [42]
to match images with templates, granularity-tunable gradients partition to define spatial
and angular uncertainty of line segments [43] and its extension to spatiotemporal
domain [44], shape features [45] and finally motion based features [46, 47].

Multiple Feature Pedestrian Detection. To further enhance the PD accuracy of
HOG, researchers have complimented HOG with other features. Local Binary Pattern
(LBP) is a very simple feature based on magnitude comparison of surrounding pixels,
and has typically been used for texture classification [48] and face detection [49]. It has
also been used in PD [50]. In [51], the authors present a feature combining both HOG

A Hardware Accelerator for Real Time Sliding Window 49

and LBP and use linSVM for classification. They show that this combination improves
the PD performance under partial occlusion. In [52], the authors use implicit seg-
mentation and divide the image into separate foreground and background, followed by
HOG. HOG, LBP and local ternary patterns were combined in [53] for pedestrian and
object detection. Gradients information and HOG, textures (co-occurrence matrices),
and color frequency are combined in [54]. Partial least squares are used to reduce the
dimensions of the feature and SVM is used for classification. HOG has been combined
with Haar-like [55], shapelets [39], color self-similarity and motion [56] features as
well. Note that none of these features when used independently from HOG has been
able to outperform HOG.

2.2 Real Time Pedestrian Detection

Numerous applications require PD at fast rates. For such applications, it is more
suitable to use task-specific (GPU, FPGA, ASIC) rather than general-purpose plat-
forms. A fine grain parallel ASIC implementation of HOG-based PD is presented in
[7]. In [15], simplified methods are presented for division and square root operations
for use in HOG. However, by employing their methods, the accuracy of PD is severely
degraded. A multiprocessor system on chip (SoC) based hardware accelerator for HOG
feature extraction is described in [16]. In [17], the authors reuse the features in blocks
to construct the HOG features of overlapping regions in detection windows and then
use interpolation to efficiently compute the HOG features for each window.

In [18], the authors developed an efficient FPGA implementation of HOG to detect
traffic signs. In [19], a real-time PD framework is presented which utilizes an FPGA for
feature extraction and a GPU for classification. A deep-pipelined single chip FPGA
implementation of PD using binary HOG with decision tree classifiers is discussed in [20].
A heterogeneous system is presented in [22] to optimize the power, speed and accuracy.

From the discussion above, we notice that HOG is integral to most PD algorithms.
Efforts have been made in the research community to either improve the accuracy of
PD or reduce the hardware complexity of HOG. In our study, we are yet to find an
effort which analyzes the effects of reducing hardware costs on accuracy of HOG. For
real-time PD with power and area constraints, it is imminent to find the set of
parameters of HOG that provide the best compromise in terms of computational
complexity and accuracy.

3 Overview of HOG

In this section, we present a brief overview of the HOG algorithm for PD.
Although HOG can be used in a part-based PD scheme, we limit our discussion to the
rigid HOG as described in the original paper [4]. A block diagram showing functional
blocks of the algorithm is shown in Fig. 2.

In HOG, a search window is divided into multiple overlapping blocks which are
further divided into cells as shown in Fig. 3, where ðwF ; hFÞ; ðwW ; hW Þ; ðwB; hBÞ;
ðwC; hCÞ; are the frame, window, block and cell (width, height) respectively. Nbin is the

50 A. Khan et al.

number of histogram bins. The blocks have an overlap of 50 %, creating a dense grid
over the search window. So a single ðwW � hWÞ window has nC ¼ ww=wC � hW=hC

cells and nB ¼ wW�wC
wC

� hW�hC
hC

� �
blocks. Gradient features are extracted from these

blocks and cells, and are concatenated to create a single feature vector for the whole
window.

A filter with coefficients [−1, 0, 1] is applied to the window in horizontal and
vertical directions, creating the images Gx and Gy, respectively. These images are used
to generate the gradient magnitude image, Gm; and the gradient orientation image, Go;
for each pixel x; yð Þ as follows.

Gm x; yð Þ ¼ G x; yð Þj j ¼
ffi
Gx x; yð Þ2 þGy x; yð Þ2

q
ð1Þ

Go x; yð Þ ¼ tan�1 Gy x; yð Þ
Gx x; yð Þ ð2Þ

The histogram used in the feature accumulates the orientation information of an
image. Each histogram has multiple bins, where each bin represents a specific orien-
tation in the interval [0, π). The value Gmðx; yÞ is added to the bin of the histogram
which corresponds to Goðx; yÞ. Such histograms are developed for every cell of the
window, as shown in Fig. 3.

Image
Scanning and

Gradient
Calculations

Cell
Histogram
Generation

Block
Histogram

Normalization

Linear SVM
Classification

Classification
Results

Fig. 2. Block diagram of HOG based pedestrian detection

•
•
•

Image

WindowBlock

Cell

Cell Histogram

Fig. 3. A depiction of image division for sliding window based object detection. An input image
(wF × hF) is divided into overlapping windows. The window is divided into overlapping blocks
which are further divided into cells. A histogram is generated for every cell.

A Hardware Accelerator for Real Time Sliding Window 51

The cell histograms belonging to a single block are concatenated to form block
histogram of length M ¼ 4� Nbin, where, Nbin is the number of bins in each cell
histogram. Block histograms are further L2-normalized using (3), and then added to the
feature vector. L2-norm for an un-normalized feature vector v, is given by,

xbi ¼
vbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vk k22 þ e2

q : ð3Þ

where i ¼ 1; . . .;M; b ¼ 1; . . .; nB; vk k22¼ v21 þ v22 þ . . .þ v2M and e is a small constant
to avoid division by zero. L2-normalization is performed to improve robustness against
illumination changes.

For classification, LinSVM is used. From an implementation perspective, a weight
vector is obtained after the training stage. During classification, a dot product of the
feature extracted from the window and the weight vector is compared against a
threshold. If the dot product is greater than the threshold, then a pedestrian is identified.

4 Hardware Architecture

The hardware implementation of HOG presents a unique challenge, which is quite
distinct from the software implementation. First, we cannot store and access a complete
frame, and read and write from multiple addresses at once as this will require unre-
alistically large hardware resources. Second, floating point operations are quite costly
in hardware, as they use more FPGA area and runs at a lower frequency; therefore, we
avoid them in hardware implementation. Finally, the choice of parameters affects
hardware complexity significantly compared to software implementation.

Our key objectives in this implementation are to maintain the maximum accuracy
and minimum power consumption while performing real time PD by controlling local
features. Hardware/memory optimization is done using optimal values of these fea-
tures. The optimized architecture thus obtained results in a reduced workload and low
bandwidth.

The conceptual block diagram of the proposed HOG Accelerator (HOG-Acc) is
shown in Fig. 4. In the following we present a description of the major functional
blocks shown in Fig. 4.

4.1 Gradient Computation

To compute the gradient magnitude and orientation, the horizontal and vertical gradient
images, i.e., Gx and Gy, need to be generated. Gradient is computed over the 3 × 3
neighborhood of each pixel; therefore, two line buffers are required to store two
consecutive scan lines of the image to maintain a 3 × 3 neighborhood of every pixel.

A straight forward computation of the gradient magnitude, as given in (1), will
require the implementation of the square root operation, which will consume significant
hardware resources; thereby, delay and power consumption will increase. In order to

52 A. Khan et al.

reduce the computational complexity, the following approximations from [15] have
been used to compute the gradient magnitude and orientation.

GM x; yð Þ � max 0:875aþ 0:5bð Þ; að Þ; ð4Þ

where,

a ¼ max Gx x; yð Þ;Gy x; yð Þ� �
; ð5Þ

and

b ¼ min Gx x; yð Þ;Gy x; yð Þ� �
: ð6Þ

The circuitry for gradient magnitude computation is shown in Fig. 5. Equations (5)
and (6) are implemented using a single compare operation, while (4) requires four shift
operations yielding 0.875a and 0.5b, then an adder and one more comparator is used to
give the final gradient magnitude.

Pixel Line
Buffer

Cell Histogram
Generation

Block
Histogram

Normalization

SVM
Classification

Gradient
Computation

SRAM for
intermediate

Cell Histograms

SRAM for
intermediate
Normalized
Histograms

 SVM weights

Image
Pixels

Classification
Decision

Fig. 4. Block diagram of hardware architecture. Gradient is computed over input pixels stored in
Pixel Line buffer, cell histograms are then built using gradients, SRAM is used to store
intermediate cell histograms. Next steps are normalization of histograms generated and finally
classification.

CMP

>>1

>>2

>>3

>>1a

b

Adder

CMP Gm(x,y)

Gx(x,y)

Gy(x,y)

SUB

SUB

Gx(x,y)
G(x+1,y)

G(x-1,y)

G(x,y+1)

G(x,y-1)
Gy(x,y)

(a)

(b)

Fig. 5. Gradient magnitude computation module. (a) Simply subtract the horizontal and vertical
neighboring pixels to compute the horizontal and vertical gradients. (b) Gradient magnitude is
computed by shift and compare operations to implement (4)–(6)

A Hardware Accelerator for Real Time Sliding Window 53

Similarly, a direct implementation of (2) for computing the gradient orientation will
require two costly hardware operations: the inverse tangent and division. To reduce the
complexity, (2) can be rewritten as

Gx x; yð Þ tan Go x; yð Þð Þ ¼ Gy x; yð Þ: ð7Þ

The problem of identifying the gradient orientation can be solved using (7) as:
multiplying the horizontal gradient value with the values of the right column of
Table 1; the product which best matches against the vertical gradient indicates the
gradient of the pixel. Note that even the multiplication operation is not required, as the
product with the values in the right column of Table 1 can be performed by simple
arithmetic shifting.

The circuit to compute the histogram bin is shown in Fig. 6. It consists of two parts,
one deals with the quadrant decision and other decides the bin. Comparing horizontal
and vertical neighboring pixels sets the Q-flag value which indicates whether the bin
lies in first or second quadrant. Once we know the quadrant, we have to decide which
histogram bin the orientation value lies in. By using Table 1 to approximate the value
of tangent function at different orientations, complex operations such as inverse tangent
and division can be avoided. The hardware utilizes only comparators, shifters and
adders, hence reducing the complexity significantly.

Table 1. Approximated values of tanh

Tangent Approximated value

tan0
� 0

tan10
�

2�3 þ 2�4

tan20
�

2�2 þ 2�3

tan30
�

2�1 þ 2�4 þ 2�6

tan40
�

2�1 þ 2�2 þ 2�4

CMP

CMP

G(x+1,y)

G(x-1,y)

G(x,y+1)

G(x,y-1)

0
1

Q-flag
CMP

CMP

Gx(x,y) × tanθi

Gy(x,y)

Gx(x,y) × tanθi+1 bin

AND

Quad 1
Quad 2

Fig. 6. Bin computation module: bin quadrant is decided using a Q-flag, which is computed by
comparing horizontal and vertical pixels, histogram bin is then decided implementing (7) using
comparators and AND gate.

54 A. Khan et al.

It has been shown in [8] that bit-width assigned to magnitude has a significant
impact on accuracy, throughput and power consumption as it affects the data sizes at all
the next stages. In [8] fixed-point implementation is considered and bit width of gra-
dient magnitude is optimized as 13 bits (9:4 (integer: fractional)). We argue that using
only integer values of gradient magnitude can further improve the accuracy, throughput
and power consumption. The details are given in Sect. 4. The key insight is that by
using integer values for gradient magnitudes, we can remove the histogram values
which are less significant. The advantages are twofold. (1) It reduces the hardware
complexity due to reduced bit width and integer operations. (2) It improves the
accuracy because removing these petty gradient magnitudes enhances the feature vector
for training and classification.

4.2 Cell Histogram Generation

We propose a parallel Cell Histogram Generation (CHG) module as shown in Fig. 7.
Gradient magnitudes and orientation bins for every wC � hC pixels are given as input to
CHG. Decoders and adders are used to build the histogram. Each bin value is given as
input to the decoder. Only one output is set to ‘1’ corresponding to the specific bin;
gradient magnitude for that bin hence propagates to the input of adder, where all the
magnitudes of the same bin are added.

The decoder size is dependent on the number of bits required to represent single
bin, i.e. if number of histogram bins increase the size of decoder increases. On the other
hand, the cell size ðCsize ¼ wC � hCÞ affects the number of decoders as the total number
of decoders required equals Csize. Multipliers required for CHG are dependent on both

Fig. 7. Cell Histogram Generation (CHG) Engine: Histogram bins and gradient magnitudes are
given as input and cell histograms are generated.

A Hardware Accelerator for Real Time Sliding Window 55

Nbin and Csize. Multipliers in each stage depend on Nbin while number of stages depends
on Csize. Finally, the number of adders is equivalent to the Nbin chosen. Adder size,
however, varies according to Csize. We can clearly see that the complexity of CHG is
strongly dependent on Nbin and Csize.

Since pixels are coming row by row, we have to maintain cell histograms for
multiple blocks and windows as each row has multiple windows. Therefore, the gra-
dient magnitudes and orientations computed for every wC pixels (one cell) are con-
catenated and stored in memory. Pixels of row index which is a multiple of hC indicate
the completeness of cell. This row is directly stored into registers. At the start of every
such row, respective values of previous rows for the particular cell are read into
registers from block RAM every clock cycle. As we have considered wC ¼ hC the cell
completes in horizontal and vertical directions simultaneously. Hence, the number of
shift registers required is equivalent to hC. Each shift register stores magnitudes and
bins for wC pixels. After wC cycles the data of one cell is completed so it is shifted to
the memory, which in turn writes the data for the previous row in the next register.

The resultant cell histogram is given to the next stage for processing. This is done
every time the new cell is completed. i.e. when the row index is a multiple of hC and
column index is a multiple of wC. The cell histograms for multiple windows in a frame
are stored in memory while they are shifted to registers for each active window (the
window whose cells histograms are completed).

4.3 Block Histogram Normalization

Cell histograms are maintained in the memory till four neighboring cells are completed
and a block is obtained. Note that the memory required to store the cell histograms
increases with smaller cells (more cells per row and column) and larger number of
histogram bins for every cell (more data per cell). In other words, Csize affects the
memory locations required while Nbin influences the width of each location.

The histogram is normalized using the Block Histogram Normalization Engine
(BHN) shown in Fig. 8. Normalization is performed every time a new block is com-
pleted. Each histogram value in a block is squared and added. The sum is given as input
to inverse square root module which is approximated using “fast inverse square root”
algorithm [30]. In summary, logical shifting, subtraction and finally one iteration of
Newton’s method approximates the inverse square root. Finally, the result of inverse
square root is multiplied with each histogram value to generate the normalized block
histogram.

It is seen that the number of multipliers in BHN depends on the size of the block
histogram, which is related to number of bins assigned to each cell histogram. Adding a
single bin to cell histogram adds eight multipliers to the hardware. The adder size also
increases proportionately.

56 A. Khan et al.

4.4 SVM Classification

The normalized histograms obtained from the BHN block are again stored in the
memory. Once normalized histograms for the whole window are available classifica-
tion can be performed which can consume a fair amount of memory. Performing
classification for the whole window at once also requires a large number of multipliers
and adders. The situation gets worse as the feature vector size increases with smaller
cell sizes or large number of bins. Therefore, we have opted for partial classification by
dividing the classification for the whole window into multiple stages. The hardware
shown in Fig. 9. is reused at every stage. The strategy behind reusing the hardware is
very straightforward. Since it takes wC cycles to completely process a cell, we have
reused the same hardware over these wC cycles doing partial classification every
NB=wC blocks. So the number of partial classification stages is equal to Cw. The results
of each stage are accumulated to get the final classification result.

The key observation is that the cell size effects the hardware complexity in two
ways. First, it has a direct impact on feature vector size. Second, larger the cell size,

Fig. 8. Block Histogram Normalization (BHN) engine: un-normalized Block histograms
(concatenated cell histograms) are used as inputs to generate normalized block histograms.

Fig. 9. Partial Classification Engine (PCE), single stage of LinSVM classification to be
performed for whole window. Inputs are normalized histograms while output is the partial
classification result.

A Hardware Accelerator for Real Time Sliding Window 57

more cycles will be available to perform classification, thereby, smaller hardware is
required for partial classification.

5 Results and Discussion

In this section, we evaluate our hardware implementation for multiple cell sizes and
histogram bins to obtain optimal set of these parameters. Results are presented for
full-HD (1920 × 1080) resolution videos. Window size is considered to be 64 × 128.
Block size is 2 × 2 cells, while block and window step size is one cell for both
horizontal and vertical directions. Scale factor to rescale images is set to 1.05. This
results in 45 scales to be processed per frame. Other parameters depend on the choice
of cell size and histogram bins.

Here, we first present our experimental setup then we analyze the effect of different
cell sizes and histogram bins on accuracy, throughput and power. Using these results,
parameters yielding least power and maximum throughput with negligible loss in
accuracy are selected. Finally, using these parameters comparison with the state of the
art object detection implementations is presented.

5.1 Experimental Setup

We have implemented our system on Xilinx Virtex 7 (XC7VX485T) FPGA. There are
75,900 slices, 607,200 Configurable Logic Blocks (CLBs) and 485,760 logic cells in
this FPGA. Moreover, 37,080 Kb block RAM and 2,800 DSP slices are present. Image
rescaling and window sampling is done for positive and negative images and then sent
to HOG-Acc for processing which returns the detection result. Processing 45 scales
requires a large amount of memory and pipelined stages so we have utilized the time
multiplexing approach of [21]. The host software is written using Visual Studio 2012
and Verilog is used for HOG-Acc design. Design is synthesized using Xilinx ISE 14.7
and along with Modelsim 10.2, a hardware/software co-simulation is performed to
verify the implementation functionality.

5.2 Accuracy Analysis

We have used INRIA dataset [31], to evaluate our HOG implementation. There are
several other datasets available for pedestrian detection evaluation like Caltech [32],
ETH [33], and Daimler [3]. We have, however, restricted our results to INRIA because
it provides us with a reasonable variety of images with different poses and backgrounds
so these results can be generalized to other datasets and real life scenarios.

All detection results are collected, and afterwards recall is calculated from number
of true positives (TP) and false negatives (FN) as shown in (8).

58 A. Khan et al.

Recall ¼ TP
TPþFN

ð8Þ

A false positive per window (FPPW) of 10−4 is mostly considered in literature for
pedestrian detection results. We also present the Miss Rate (1-Recall) results for
FPPW = 10−4 for multiple cell sizes and number of bins. The results are shown in
Fig. 10. It is seen that generally larger histogram bins gives better detection rates. This
is obvious, as more histogram bins allow fine division gradient orientations, hence
better feature vector for training and classification. On the other hand, improvement is
seen in detection rates by increasing cell size up to a certain value and it drops
increasing cell sizes too much. Smaller cell sizes provide a dense grid of blocks and
windows in a frame, therefore, using smaller cells would improve accuracy. However,
using too small cell sizes results in degraded performance because there are not enough
distinguishing features within the cells. Minimum miss rate of 12 % is achieved at
ðCsize;NbinÞ ¼ 7� 7; 11ð Þ.

5.3 Throughput and Power Consumption Analysis

Power consumption and throughput are directly related to the hardware resources used.
In the previous section it is seen that the cell size and histogram bins has significant
impact on hardware complexity. The effect on different hardware components for
different cell sizes and number of bins for a single core is shown in Fig. 11. We see a
significant reduction in hardware resources by increasing cell size or reducing number
of bins. The reasons being discussed in previous section for independent blocks.

Number of frames processed per second (fps) is dependent on the maximum fre-
quency at which the hardware can operate. In our hardware architecture it is mainly
dependent on the size of partial classification engine and the block normalization
engine. As discussed in previous section, the complexity of PCE is heavily dependent

Fig. 10. Accuracy analysis, miss rate generally reduces with increasing cell sizes and decreasing
number of bins

A Hardware Accelerator for Real Time Sliding Window 59

Fig. 11. Hardware utilization comparison. Breakdown of usage of multiple slices of
Xilinx FPGA with varying cell size and histogram bins. Increasing any one of them results in
increased hardware complexity.

Fig. 12. Throughput analysis, an increase in throughput is seen for bigger cell sizes and
histogram bins.

60 A. Khan et al.

on Csize while that of BHN depends on both Csize and Nbin. Figure 12 shows the results.
We get the maximum frequency at the point where both PCE and BHN have overall
minimal hardware complexity. Specifically, the ðCsize;NbinÞ ¼ 11� 11; 6ð Þ.

We have used Xilinx Xpower analyzer (XPA) 14.7 to estimate the deviations in
power consumption by varying the parameters. We have simulated the hardware and
created ‘Value Change Dump’ (vcd) files are used to set the toggle rates of all signals.
Post place and route results are obtained and are shown in Fig. 13. Power consumption
increases by reducing the cell size or increasing the histogram bins. This is fairly
understandable due to the fact that both these parameters increase the hardware com-
plexity due to increase in the feature vector size. Minimum power consumption is
9.98 W with ðCsize;NbinÞ ¼ 12� 12; 6ð Þ, the maximum cell size and minimum his-
togram bins as expected.

5.4 Choice of Parameters

We have seen from the previous analysis that there does not exist a set of parameters
which give us best accuracy, power and throughput. Improving the accuracy worsens
the power and throughput while maintaining minimum power and maximum
throughput severely degrades the accuracy. Similarly, trying to improve throughput
may degrade power consumption significantly and vice versa. However, accuracy is
changing very slightly at certain regions in Fig. 9. Similarly, there are more than one
sets of parameters which give almost the same power consumption. This allows us to
select the best of one of these metrics while slightly compromising on another metric.
We can achieve best results by selecting ðCsize;NbinÞ ¼ 9� 9; 10ð Þ. Further we
obtained results for miss rate by changing bit-width for this optimal parameter set. The
results are shown in Fig. 14. Bit-width is hence set to eight bits as it gives maximum
accuracy and minimum hardware complexity. Note that this further results in reduced
bit-width in all the next blocks.

0

10

20

30

40

50

60

5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12P
ow

er
 C

on
su

m
pt

io
n

(W
)

Cell size

Power Consumption vs. Cell size, Number of bins

Nbin = 6 Nbin = 7 Nbin = 8
Nbin = 9 Nbin = 10 Nbin = 11
Nbin = 12 Nbin = 13

Fig. 13. Power consumption analysis, large cell size and smaller number of histogram bins
results in low power consumption.

A Hardware Accelerator for Real Time Sliding Window 61

Parameters optimized for low power and high speed are shown in Tables 2 and 3
comparing the throughput and energy consumption results with the other state of the art
FPGA and GPU implementations. We have presented three results. (1) HOGCONV,
which shows the results for conventionally used parameters. We can achieve 32 fps for
full-HD while dissipating 0.656 J/frame and 15 % miss rate. (2) HOGOCB, presents
results for optimized cell size and histogram bins. Frame rate achieved by optimizing
cell size and histogram bins is 39.2 fps with energy consumption of 0.484 J/frame
while maintaining a miss rate at 15 %. Gradient magnitude bit-width is considered to
be 13 bits. (3) Finally, HOGOCB-RF, in which features are further refined by removing
insignificant gradients, is presented. This results in a frame rate of 42.7 fps while
energy consumption is 0.45 J/frame at 13 % miss rate.

Fig. 14. Variation in miss rate for ðCsize;NbinÞ ¼ 9� 9; 10ð Þ.

Table 2. Comparison of parameters and throughput for various GPU and FPGA
implementations

Cell size Histogram bins Win. stride # scales Resolution Windows/frame FPS

GPU implementation

[22, 24] 8 × 8 9 8 37 1024 × 768 – 17

[25] 8 × 8 – – >1 640 × 480 4,096 57

[26] 8 × 8 8 2 >1 640 × 480 50,000 23.8

[27] 8 × 8 9 8 1 640 × 480 – 32

[28] 8 × 8 9 4 >1 1280 × 960 150,000 2.4

[29] 8 × 8 9 – >1 640 × 480 – 5.6

FPGA implementation

[18] 8 × 8 8 4 >1 320 × 240 3,615 38

[19] 8 × 8 9 – 1 800 × 600 1000 >10

[20] 8 × 8 8 9 1 640 × 480 1,540 62.5

[21] 8 × 8 9 8 18 1920 × 1080 27,960 64 (estimated)

[22] 8 × 8 9 8 13 1024 × 768 20,868 13

[23] 8 × 8 8 4 >1 640 × 480 56,466 30 (estimated)

[6] 8 × 8 9 8 1 800 × 600 5,580 72

[8] 8 × 8 9 4 34 640 × 480 121,210 68.18

[8] 8 × 8 9 4 34 1600 × 1200 1,049,886 10.41 (estimated)

HOGCONV 8 × 8 9 8 45 1920 × 1080 264,062 32

HOGOCB 9 × 9 10 8 45 1920 × 1080 264,062 39.2

HOGOCB-RF 9 × 9 10 8 45 1920 × 1080 264,062 42.7

62 A. Khan et al.

6 Conclusion

We have presented fully parallel architectures for various modules of pedestrian
detection system utilizing Histogram of oriented gradients (HOG). HOG has shown
high detection accuracy but the detection speed and power consumption are major
bottlenecks for real time embedded applications. We have optimized parameters, cell
size and histogram bins, to achieve low power and high throughput while maintaining
the detection accuracy. Feature refinement is done to further improve the results.

Combination of optimal parameters and our hardware accelerator results in a frame
rate of 42.7 fps for full-HD resolution and lowers the energy consumption by 97.34 %
and 16.4 % while improving the accuracy by 2 % as compared to state of the art GPU
and FPGA implementations respectively. This work can be extended to use multiple
cores on a single FPGA or using multiple FPGAs to further increase throughput while
an ASIC implementation would greatly reduce the power consumption. It can also be
extended to include other features and classifiers or combinations of those to optimize
for objects other than pedestrians.

Acknowledgments. This work was supported by the Center of Integrated Smart Sensors funded
by Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2013M3
A6A6073718).

References

1. Shankar, U.: Pedestrian roadway fatalities. Department of Transportation Technical report
(2003)

2. Geronimo, D., Lopez, A.M., Sappa, A.D., Graf, T.: Survey on pedestrian detection for
advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7),
1239–1258 (2010). 1, 2, 10, 16, 18

3. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust
multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–8 (2008)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings
of IEEE Conference on Computer Vision Pattern Recognition, vol. 1, pp. 886–893, June
2005

5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110
(2004)

Table 3. Comparison of parameters and energy consumption for various GPU and FPGA
implementations

Cell size Histogram bins Win. stride # scales Resolution Windows/frame Power (W) Energy (J/Frame)

[8] (GPU) 8 × 8 9 4 34 640 × 480 121,210 225 17

[8] (FPGA) 8 × 8 9 4 34 640 × 480 121,210 37 0.54

HOGCONV 8 × 8 9 8 45 1920 × 1080 264,062 21 0.656

HOGOCB 9 × 9 10 8 45 1920 × 1080 264,062 19 0.485

HOGOCB-RF 9 × 9 10 8 45 1920 × 1080 264,062 19.276 0.451

A Hardware Accelerator for Real Time Sliding Window 63

6. Mizuno, K., Terachi, Y., Takagi, K.: Architectural study of HOG feature extraction
processor for real-time object detection. In: Proceedings of IEEE Workshop Signal
Processing Systems, pp. 197–202, October 2012

7. Takagi, K., et al.: A sub-100-milliwatt dual-core HOG accelerator VLSI for real-time
multiple object detection. In: ICASSP (2013)

8. Ma, X., Najjar, W.A., Roy-Chowdhury, A.K.: Evaluation and acceleration of
high-throughput fixed-point object detection on FPGAs. IEEE Trans. Circ. Syst. Video
Technol. 25(6), 1051–1062 (2015)

9. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state
of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

10. Khan, A., Khan, M.U.K., Bilal, M., Kyung, C.-M.: Hardware architecture and optimization
of sliding window based pedestrian detection on FPGA for high resolution images by
varying local features. In: VLSI-SoC 2015, pp. 142–148 (2015)

11. Papageorgiou, C., Poggio, T.: A trainable system for object detection. Int. J. Comput. Vis.
38(1), 15–33 (2000)

12. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using
wavelet templates. In: Proceedings of IEEE Conference on Computer Vision Pattern
Recognition, pp. 193–199, June 1997

13. Lowe, G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60
(2), 91–110 (2004)

14. Cheng, H., Zheng, N., Qin, J.: Pedestrian detection using sparse Gabor filter and support
vector machine. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 583–587,
June 2005

15. Chen, P.Y., Huang, C.C., Lien, C.Y., Tsai, Y.H.: An efficient hardware implementation of
HOG feature extraction for human detection. IEEE Trans. Intell. Transp. Syst. 15(2), 656–
662 (2014)

16. Lee, S.E., Min, K., Suh, T.: Accelerating histograms of oriented gradients descriptor
extraction for pedestrian recognition. Comput. Elect. Eng. 39(4), 1043–1048 (2013)

17. Pang, Y., Yuan, Y., Li, X., Pan, J.: Efficient HOG human detection. Signal Process. 91(4),
773–781 (2011)

18. Hiromoto, M., Miyamoto, R.: Hardware architecture for high-accuracy real-time pedestrian
detection with CoHOG features. In: Proceedings of IEEE ICCVW, pp. 894–899 (2009)

19. Bauer, S., Kohler, S., Doll, K., Brunsmann, U.: FPGA-GPU architecture for kernel SVM
pedestrian detection. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 61–68, June 2010

20. Negi, K., Dohi, K., Shibata, Y., Oguri, K.: Deep pipelined one-chip FPGA implementation
of a real-time image-based human detection algorithm. In: Proceedings of International
Conference on FPT, pp. 1–8, 12–14 December 2011

21. Hahnle, M., Saxen, F., Hisung, M., Brunsmann, U., Doll, K.: FPGA based real-time
pedestrian detection on high-resolution images. In: 2013 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 629–635, June 2013

22. Blair, C., Robertson, N., Hume, D.: Characterizing a heterogeneous system for person
detection in video using histograms of oriented gradients: power versus speed versus
accuracy. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(2), 236–247 (2013)

23. Kadota, R., Sugano, H., Hiromoto, M., Ochi, H., Miyamoto, R., Nakamura, Y.: Hardware
architecture for HOG feature extraction. In: 5th International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIHMSP), pp. 1330–1333 (2009)

24. OpenCV: http://opencv.org/

64 A. Khan et al.

http://opencv.org/

25. Sudowe, P., Leibe, B.: Efficient use of geometric constraints for sliding-window object
detection in video. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS,
vol. 6962, pp. 11–20. Springer, Heidelberg (2011)

26. Machida, T., Naito, T.: GPU & CPU cooperative accelerated pedestrian and vehicle
detection. In: IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pp. 506–513 (2011)

27. Yan-ping, C., Shao-zi, L., Xian-ming, L.: Fast HOG feature computation based on CUDA.
IEEE Int. Conf. Comput. Sci. Autom. Eng. (CSAE) 4, 748–751 (2011)

28. Bilgic, B., Horn, B.K.P., Masaki, I.: Fast human detection with cascaded ensembles on the
GPU. In: 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 325–332 (2010)

29. Prisacariu, V., Reid, I.: fastHOG - a real-time GPU implementation of HOG. Department of
Engineering Science, Oxford University, Technical report 2310/09 (2009)

30. http://en.wikipedia.org/wiki/Fast_inverse_square_root
31. INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/
32. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 304–311 (2009)
33. Enzweiler, M., Gavrila, D.: Monocular pedestrian detection: survey and experiments. IEEE

Trans. Pattern Anal. Mach. Intell. 31(12), 2179–2195 (2009)
34. Gu, C., Lim, J.J., Arbelaez, P., Malik, J.: Recognition using regions. In: IEEE Conference on

Computer Vision and Pattern Recognition (2009)
35. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale,

deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition
(2008)

36. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with
discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 99
(2009). PrePrints

37. Porikli, F.M.: Integral histogram: a fast way to extract histograms in Cartesian spaces. In:
IEEE Conference on Computer Vision and Pattern Recognition (2005)

38. Viola, P.A., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and
appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)

39. Sabzmeydani, P., Mori, G.: Detecting pedestrians by learning shapelet features. In: IEEE
Conference on Computer Vision and Pattern Recognition (2007)

40. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by
Bayesian combination of edgelet part det. IEEE Int. Conf. Comput. Vis. 6(10), 11 (2005)

41. Wu, B., Nevatia, R.: Cluster boosted tree classifier for multi-view, multi-pose object
detection. In: ICCV (2007)

42. Gavrila, D.M.: A Bayesian, exemplar-based approach to hierarchical shape matching. IEEE
Trans. Pattern Anal. Mach. Intell. 29(8), 1408–1421 (2007)

43. Liu, Y., Shan, S., Zhang, W., Chen, X., Gao, W.: Granularity tunable gradients partition
descriptors for human detection. In: IEEE Conference on Computer Vision and Pattern
Recognition (2009)

44. Liu, Y., Shan, S., Chen, X., Heikkila, J., Gao, W., Pietikainen, M.: Spatial-temporal
granularity-tunable gradients partition (STGGP) descriptors for human detection. In:
Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311,
pp. 327–340. Springer, Heidelberg (2010)

45. Gavrila, D.M., Philomin, V.: Real-time object detection for smart vehicles. In: IEEE
International Conference on Computer Vision, pp. 87–93 (1999)

46. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and
appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952,
pp. 428–441. Springer, Heidelberg (2006)

A Hardware Accelerator for Real Time Sliding Window 65

http://en.wikipedia.org/wiki/Fast_inverse_square_root
http://pascal.inrialpes.fr/data/human/

47. Wojek, C., Walk, S., Schiele, B.: Multi-cue onboard pedestrian detection. In: IEEE
Conference on Computer Vision and Pattern Recognition (2009)

48. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution grayscale and rotation invariant
texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24
(7), 971–987 (2002)

49. Rodriguez, Y.: Face detection and verification using local binary patterns. Ph.D. thesis, EPF
Lausanne (2006)

50. Zheng, Y., Shen, C., Hartley, R.I., Huang, X.: Effective pedestrian detection using
center-symmetric local binary/trinary patterns. In: CoRR (2010)

51. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion
handling. In: IEEE International Conference on Computer Vision (2009)

52. Ott, P., Everingham, M.: Implicit color segmentation features for pedestrian and object
detection. In: IEEE International Conference on Computer Vision (2009)

53. Hussain, S., Triggs, B.: Feature sets and dimensionality reduction for visual object detection.
In: British Machine Vision Conference (2010)

54. Schwartz, W., Kembhavi, A., Harwood, D., Davis, L.: Human detection using partial least
squares analysis. In: IEEE International Conference on Computer Vision (2009)

55. Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people
detection. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 82–91. Springer,
Heidelberg (2008)

56. Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian
detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

66 A. Khan et al.

Wearable ECG SoC for Wireless Body Area
Networks: Implementation with Fuzzy

Decision Making Chip

Manikandan Pandiyan1(&) and Geetha Mani2

1 Mercedes-Benz Research and Development India, Bangalore, India
vanajapandi@gmail.com

2 School of Electrical Engineering, Vellore Institute of Technology,
Vellore, India

geethamr@gmail.com

Abstract. The work aims to present an ultra-low power Electrocardiogram
(ECG) on a chip with an integrated Fuzzy Decision Making (FDM) chip for
Wireless Body Sensor Networks (WBSN) applications. The developed device is
portable, wearable, long battery life, and small in size. The device comprises
two designed chips, ECG System-on-Chip and Fuzzy Decision Maker
chip. The ECG on-chip contains an analog front end circuit and a 12-bit
SAR ADC for signal conditioning, a QRS detector, and relevant control cir-
cuitry and interfaces for processing. The analog ECG front-end circuits precisely
measure and digitize the raw ECG signal. The QRS complex with a sampling
frequency of 256 Hz is extracted after filtering. The extracted QRS details are
sent to the decision maker chip, where abnormalities/anomalies in patient’s
health are detected and an alert signal is sent to the patient via wireless com-
munication protocol. The patient’s ECG data is wirelessly transmitted to a PC,
using ZigBee or a mobile phone. The chip is prototyped and employed in a
standard 0.35 µm CMOS process. The operating voltage of Static RAM and
digital circuits and analog core circuits are 3.3 V and 1 V, respectively. The
total area of the device is about 6 cm2 and consumes about 8.5 µW. Small size
and low power consumption show the effectiveness of the proposed design,
suitable for wireless wearable ECG monitoring devices.

1 Introduction

According to World Health Organization (WHO), cardiovascular and modern human
behavior-related diseases are the major cause of mortality worldwide. These types of
cardiovascular related-diseases, like Cardiac arrhythmias, Atrial fibrillation, and Cor-
onary heart diseases, can be monitored and controlled with continuous personal
healthcare supervision [1, 2]. Electrocardiogram (ECG) embodies the cardiovascular
condition, therefore, is considered one of the most important human physiological
signals. In applying measurement of physiological signals for continuous monitoring,
patients usually cannot carry a bulky instrument, which restricts their mobility and
makes them uncomfortable, with so many electrodes and cables attached to their
bodies. Therefore, there is growing demand for a compact wearable ECG acquisition

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 67–86, 2016.
DOI: 10.1007/978-3-319-46097-0_4

system [2]. Wearable monitoring devices can record physiological variables, like ECG,
blood pressure, etc. for several hours and store them in the memory for future use. The
stored ECG data can then be utilized by clinicians or cardiologists for further diagnosis.

The graphical embodiment of a wearable system for continuous remote monitoring
is illustrated in Fig. 1. Wearable sensors/electrodes (deployment in accordance with the
clinical application) collect the physiological signals for monitoring the patient’s health
status. These wearable sensors continuously monitor vital signs, like heart rate and
blood pressure, when the patient with chronic heart disease is undergoing clinical
involvement. Wearable devices are also applied in home-based rehabilitation inter-
ventions for continuous personal health monitoring. Wireless protocols can be inte-
grated with wearable systems to facilitate long-term health monitoring for patients
diagnosed with cardiac diseases. The wireless communication is relied upon and used
to transmit the physiological data continuously to a central place (an access point or a
mobile) and to remote central (server or emergency centre) via internet. In emergency
situations, an alarm/alert signal can be transmitted to the remote emergency centre for
facilitating medical assistance to patients. Family members or clinicians are also
alarmed when the patient is in an emergency condition through the technology and
enabled to monitor the patient’s medical status continuously. Even though there are
advantages of wearable devices, many future challenges should be addressed. This
primarily requires the support of innovative sensor technologies, especially Wireless
Body Sensor Networks (WBSN), formed with various wearable biomedical sensors.

Fig. 1. Graphical illustration of wearable health care monitoring

68 M. Pandiyan and G. Mani

Since the constraints on battery life and form factor are crucial, these sensors have a
very stringent power requirement. To aid low cost, ultra-low power design is essential
for developing wearable devices. In terms of cost, size, and performance,
System-on-Chip (SoC) implementation is an attractive option.

In this chapter, the development and deployment of the wearable ECG SoC
monitoring system are studied, regarding key technology perspective. The following
sections present the prior art and essential components of wearable devices, System
overview, Proposed ECG SoC, and Fuzzy Decision Maker Chip. Concluding remarks,
observations, and future reservations are discussed in the final section.

2 Prior Art

Wireless Body Area Network (WBAN) is the fundamental component of a wireless
ECG monitoring system. WBAN allows the integration of various other components,
like intelligent systems, miniaturized components, low-power sensor nodes, etc.
Therefore, the combination of SoC concepts, wearable technology, Wireless Sensor
Network (WSN), and research in artificial intelligence produce novel approaches,
resulting in better health care services. System-on-a-chip (SoC) is a felicitous option for
device development because of its small size, low power consumption, and lower cost
features. Developing SoC for Wireless Body Area Network applications intends to
carry healthcare monitoring closer from clinical intervention to domiciles. It allows
physiological signal monitoring to be conducted more regularly than limiting it to
hospitals or clinics. WBSN is foreseen as the next generation health care monitoring
platform, as it is considered a reliable, low-cost high-patient-safety health care moni-
toring system. In recent years, the development of ECG SoC for WSBN applications
has attracted much attention [2, 14]. A wearable monitoring system is proposed in [3]
to monitor various physiological variables, such as ECG, blood pressure, and tem-
perature. Also, the Global Positioning System (GPS) co-ordinates of patient or wearer
with the acquired variables are transmitted wirelessly to a remote station.

Targeting patients with chronic high-risk heart/respiratory diseases, a wrist worn
wearable medical monitoring and alert system (AMON) monitors physiological vari-
ables. For terrestrial and space applications, physiological parameters of the astronauts
in space should be monitored continuously. To address the mentioned problem, a
wearable system, called ‘Life Guard’, is proposed [4] to monitor the health status of
astronauts. The deployment of a biopatch with integrated low-power SoC prototype is
proposed by Yang et al. [5] to facilitate features, such as a three-stage front-end signal
conditioning circuit, 8-bit successive-approximation-register (SAR) ADC, and a digital
core. An integrated wireless ECG SoC for WBSN applications is proposed in [6],
which comprises a two-channel ECG front-end, an 8-bit SAR-ADC, a simple micro-
controller, a SRAM memory, and RF-transceivers. Many ECG SoCs implementations
for WBSN applications employ a microcontroller or microprocessor to establish the
remote gateway [7, 14]. In worst cases, there is a need for an artificial intelligence
approach, integrated with wearable ECG SoC, when abnormal ECG episodes are to be
detected instantly. This solution addresses diseases, like cardiac arrhythmia or silent
myocardial ischemia, to be easily identified for clinical treatment. This increases the

Wearable ECG SoC for Wireless Body Area Networks 69

need for low cost and easy to use wearable wireless ECG sensors with integrated
decision making to alert personnel. The following sections narrate about an ultra-low
power ECG on Chip with integrated CMOS Fuzzy Decision Making Chip that
addresses the issues in existing solutions.

3 Wearable ECG System: With Decision Making

3.1 System Overview

The proposed health care architecture includes two parts: (a) Main unit and (b) Remote
unit, as shown in Fig. 2. The Main unit contains wearable textile electrodes, designed
ECG front-end chip, FDM chip, a controller, and a ZigBee transceiver. The remote unit
(personal gateway) can be a mobile phone or a personal computer with an USB
interface. The main unit records the ECG from wearable textile electrodes and wire-
lessly transfers the data to a remote unit. The designed ECG acquisition chip for low
power use is described in the next sub-section. The ECG acquisition chip comprises:
(1) specially designed textile electrodes for acquiring the ECG; (2) a miniature printed
circuit board with ECG front end circuits; (3) Analog to Digital Conversion unit;
(4) QRS Detection; and (5) System control unit. The ECG data is buffered, using low
power microcontroller internal memory to minimize power consumption before wire-
lessly sending it to the remote unit. The main unit also performs the other tasks, such as
system initialization, data buffering, and scheduling wireless communication. The
Fuzzy Decision Making (FDM) chip (3 × 3 fuzzy controller; nine rules are accessible)
takes decisions when necessary. Depending on applications, control voltages set on IC
pins change the rules of fuzzy inference. The study of the Fuzzy chip is explained in
detail in subsequent sections. ZigBee protocol is chosen as a wireless communication
protocol (TI CC2420) to provide reasonable power consumption and adequate data
rate. The prototype uses a low power TI MSP430 microcontroller for data management,
wireless ZigBee baseband, and routing management. The prototype model is designed
for patients, regarding comfort and ease of use, thus, not affecting regular activities of
patients. In addition, the entire unit is sealed within a smart textile shirt. So, the patient
can wear and remove it easily.

For various medical applications, the acquired physiological variables should be
analyzed continuously. The remote unit (personal gateway) can be a mobile phone or a
personal computer with an USB interface. The important functions of the remote unit
are receiving the data wirelessly, database management, ECG analysis, graphical user
interface (GUI) interface, and customization. To avoid signal interference from other
wireless devices, the remote unit has specific authentication to process the received
data. In addition, there are several options in the GUI interface for customization.

3.2 ECG on Chip

A. ECG Analog Front-End Amplifier. The ECG front-end amplifier is mainly
responsible for noise suppression, signal conditioning, and amplification, which

70 M. Pandiyan and G. Mani

comprises two phases as shown in Fig. 3, namely, low noise AFG with band pass
function and a programmable gain amplifier (PGA) to amplify the acquired ECG
signals (from textile electrodes), with amplitude in a few millivolts, adopting a
flip-over-capacitor technique. The Low noise amplifier not only acts as a preamplifier,
but also acts as a band pass filter function with bandwidth between 0.3 and 100 Hz. In
the AFG design, two switches (S1 and S2) are integrated to settle down quicker when
power is applied, due to the large resistance by the pseudo-resistors. The speeding up of
the AFG is done by a reset signal with an appropriate switch during startup of the
system.

Fig. 2. Block diagram of proposed healthcare architecture

Fig. 3. Typical circuit diagram of ECG front-end low noise amplifier

Wearable ECG SoC for Wireless Body Area Networks 71

B. Analog to Digital Converter (ADC). Successive Approximation Register
(SAR) ADC is chosen for this WBSN application because of its moderate accuracy and
low power overhead. Figure 4 depicts the architecture of the SAR ADC, adopted from
literature. The analog ECG output is driven directly by the preceding buffer stage,
without the need of an additional hold amplifier, sampled through a bootstrapped
switch and held in the capacitive 12 bit DAC, and is then used by open-loop
Sample/Hold. The reason for open-loop Sample/Hold is to obtain low power, low cost,
fast settling, and less offset error. The obtained analog ECG data are being compared
with a reference (REF) and then level-shifted by the DAC. The fixed reference REF
helps to compensate the dynamic offset error at the comparator. An on-chip crystal
oscillator is used to drive the logic and timing sequence for achieving low power
consumption and low jitter. The resultant digital codes are passed to a System Control
Unit (SCU) after level conversion and to QRS complex detector for data processing.

C. Heart Rate Calculation and QRS Detection. The morphological filter [8] is
adopted to reduce the noise artifacts present in the ECG data and to detect\estimate the
QRS complex details and R-R intervals. The filter comprises a pair of Opening and
Closing operations, using dilation and erosion operators, which suppress peaks and
valleys. The flowchart for QRS complex detection is illustrated in Fig. 5. The impacts
of wandering baseline drift are eradicated by subtracting the mean result of operations
(opening and closing) with the original input. The ECG samples are loaded serially into
the shift register and then added/subtracted (for dilation/erosion respectively) with the
structure element g(x) [8]. The results are compared continuously, using a comparator
tree to find the minimum/maximum (for dilation/erosion respectively). A moving
average filter (serial structured) is used to reduce the impulse noises and smooth the

Fig. 4. Schematic architecture of successive approximation ADC

72 M. Pandiyan and G. Mani

filtered signal. The received signals are continuously compared against the adaptive
threshold and monitored to detect the R-peaks. The current threshold is updated reg-
ularly when a new R-peak is identified. By counting the number of clocks between R
peaks using a binary counter, R-R interval is measured. The Heart Rate (HR) variable is
also calculated by simply counting the number of R-peaks in the last sixty seconds.
A parallel-to-serial converter is integrated with the wearable system for transmitting the
HR variable through the SPI interface.

D. System Control Unit and SPI Interface. System Control Unit (SCU) is solely
responsible for generating the interface control signals, based on the host or main
controller commands for all the blocks in ECG on-chip. Data framing, CPU interrupt
handling, etc. are done by the SCU system, based on control signals, which are gen-
erated by state machine. In-order to interface the chip with various host CPUs, the
System Control Unit uses an asynchronous FIFO with 8 Kb buffers. Data from the
ADC and QRS block is continuously written into the FIFO at the sampling frequency
of 256 Hz. Based on the FIFO status, FIFO write/read controllers generate many status
signals, which are “full”, “nearly full”, “empty”, and “nearly empty”. A microcontroller
is employed externally to communicate with the proposed wearable device via a duplex
SPI communication interface. The data link transmits QRS complex codes and ECG
details with the internal FIFO status flags.

Fig. 5. Flow process for QRS detection and HRV calculation

Wearable ECG SoC for Wireless Body Area Networks 73

The control vector from external microcontroller is delivered to the internal control
registers by the command link.

3.3 Fuzzy Decision Making Chip: Concepts, Design and Implementation

In real world worst-case scenarios, there is a need for an artificial intelligence approach,
integrated with a wearable ECG SoC, for detecting abnormal ECG episodes instantly.
Especially, diseases like cardiac arrhythmia or silent myocardial ischemia should be
identified immediately to alert the clinicians/family members for assistance. Therefore,
a Fuzzy Classifier chip meets the critical requirements of medical applications: no delay
in response, reliable, high-safety, and low cost. The functional blocks of the FDM chip
are detailed in the following sections. It comprises three parts: fuzzifier, inference
engine, and defuzzifier. In the fuzzifier, input variables (non-fuzzy) are mapped to the
input membership functions. The inference engine handles fuzzy inference, depending
on the inference method. Finally, the defuzzifier is used to convert the fuzzy output
values from inference engine to non-fuzzy values.

Fuzzy Interface. The implemented architecture is a two-input one-output fuzzy
supervisor. Each input has three trapezoidal membership functions or linguistic terms
abbreviated as L (Low), M (Medium), and H (High), while the output variable is
characterized by singletons. The parameters used for determining membership func-
tions (Vrþ , Vr�, Vcþ , Vc�) are calibrated by voltages applied on FDM IC pins. Since
input membership functions have three parts, architecture is a 3 × 3 fuzzy controller,
and nine rules are accessible. Depending on various applications, Control voltages set
on IC pins can change these rules. The controller architecture in Fig. 6 is constructed
with CMOS components, such as Membership function generator (MFG), MIN circuits
and a defuzzifier (D blocks) circuit. A ramp function generation circuit is used for
MFG. In fuzzy interface, three basic circuits are used: a ramp generator (RG) circuit
[8], a minimum circuit, and a fuzzy complementary circuit. The membership functions
for input and output variables of a controller are built, using two ramp functions. In
Fig. 7, a form of trapezoidal membership function, using a ramp function and its
parameters, is depicted.

The membership functions are generated for input and output variables of a fuzzy
decision supervisor. It shows that two ramp functions are necessary to build a mem-
bership function. The triangular membership function is a special case of trapezoidal
membership function, when c and d coincide. The slope of the ramp functions and
position of the membership functions must be tunable. Changing the parameters, a, b,
c, and d allow the construction of different membership functions.

Figure 8a shows the ramp generator circuit for membership function generation. It
is assumed that all fuzzy sets are normalized. Supremumx (x) = 1. In RG circuit, the
output current i0 is a function of v1 and v2. Considering Iss fixed, and M3, M4, M5, and
M6 are matched,

74 M. Pandiyan and G. Mani

Fig. 6. Block diagram of fuzzy classifier

Fig. 7. Trapezoidal membership function and its parameters

Wearable ECG SoC for Wireless Body Area Networks 75

i0 ¼ i3 þ i5 � i4 þ i6ð Þ ¼ gm3
vr
2
� gm5

vr
2

�gm4
vr
2
þ gm6

vr
2

� �

¼ vr
2

I1
vgso3 � vt

� I2
vgso5 � vt

þ I1
vgso4 � vt

� I2
vgso5 � vt

� �

¼ vr
2

2I1
vgso3 � vt

� 2I2
vgso5 � vt

� �
;

where, all v0gsos are gate to source voltages in quiescent point, and also

I1 ¼
Iss

vc
2

vgso1 � vt
; I2 ¼

�Iss
vc
2

vgso2 � vt

Using previous equations, assuming M1 and M2 are also matched, then

i0 ¼ Iss
vgso1 � vt

1
vgso3 � vt

þ 1
vgso5 � vt

� �
vrvc

Assuming vc is set to be a constant value, hence vgso1 � vt is constant. Also,

changes of vgso3 � vt and vgso5 � vt are in opposite directions. So 1
vgso3�vt

þ 1
vgso5�vt

� �
is

approximately constant.

 (a) (b)

Fig. 8. Schematic of (a) Ramp generator circuit and (b) CMFG

76 M. Pandiyan and G. Mani

Therefore, i0 ¼ kv1v2
where,

k ¼ Iss
vgso1 � vt

1
vgso3 � vt

þ 1
vgso5 � vt

� �

The RG circuit can generate both a positive and negative slope ramp function.
Suppose vc� ¼ 0; vcþ and vr� are constant, then

i0 ¼ k vrþ � vr�ð Þ vþð Þ ¼ kvcþ vr� � kvcþ vr� ¼ mvrþ � n

where,

m ¼ kvcþ ; n ¼ kvcþ vr�

Thus, a positive slope ramp is generated.
Similarly, if vcþ ¼ 0; and let vc�; vr� be constant, then

i0 ¼ k vrþ � vr�ð Þ �vc�ð Þ ¼ �kvc�vrþ þ kvc�vr� ¼ �mvrþ � n

where,

m ¼ kvc�; n ¼ kvc�vr�

Therefore, by changing vrþ ; vr� and vc; different ramp functions are generated. It is
evident that the output voltage of RG circuit

v0 ¼ Routiout

where Rout is output resistance.
Two ramp functions f1 and f2 with positive and negative slopes, respectively, are

shown in Fig. 7. Assuming RG circuit has generated these functions, f1 and f2 can be
equated as below

f1 ¼ m1v� n1

f2 ¼ n2 � m2v

To construct a tunable membership function,

f1 0ð Þ ¼ �n1 ¼ �kvr1�vc1þ

f2 0ð Þ ¼ n1 ¼ kvr2�vc2�

a ¼ vjf1¼0 ¼
n1
m1

¼ kvr1�vc1þ
kvc1þ

¼ vr1�;

Wearable ECG SoC for Wireless Body Area Networks 77

b ¼ vjf2¼0 ¼
n2
m2

¼ kvr2�vc2þ
kvc2þ

¼ vr2�;

When f1 ¼ f2, can be written as m1c� n1 ¼ �n2 þm2c
Therefore,

c ¼ n1 � n2
m1 � m2

¼ vr1�vc1þ � vr2�vc2�
vc1þ � vc2�

With this value for c,

f cð Þ ¼ f1 cð Þ

¼ f2 cð Þ ¼ kvc1þ vc2�
vc1þ � vc2�

vr1� � vr2�ð Þ

To construct a fuzzifier with desirable capabilities, Set vr1� ¼ vr2�: A reverse
triangular in the positive region of vertical axis will be formed as shown in Fig. 7. By
clipping this triangular area with a constant value E, a controllable membership
function can be obtained.

In this case,

a ¼ vjf2¼E ¼ n2 � E
m2

¼ vr2� � E
kvc2�

;

b ¼ vjf1¼E ¼ E � n1
m1

¼ E
kvc1þ

� vr1�;

Varying vc1 and vc2 results in a change in a and b. For vr1 ¼ vr2, it will also be
variable. The position of the membership function can be changed. Note that a
trapezoidal membership function is obtained when vcþ [vc� and in this case, c ¼ vc�
and d ¼ vcþ . Considering these points, it is necessary that c and d are selected equal to
vr1 and vr2, respectively, and then by changing vc1 and vc2, a and b are determined.
Diodes are used to eliminate the extra parts of membership function. Since two ramp
functions are needed, two RG circuits are used for each membership function. The
typical circuit diagram of complementary membership function generator (CMFG) is
shown in Fig. 8b and adapted from [8]. Considering the output voltage v0ut ¼ Rio
where,

i0 ¼ i1 ¼ k v1þ � vinð Þvc1þ ; vr1þ fvin
i2 ¼ k vin � vr2�ð Þvc2�; vr2�pvin

�

Minimum circuits can be used to clip the extra curves and then reverse it by a fuzzy
complementary circuit (FCC). Figure 10 illustrates the circuit diagram of a fuzzy
complementary circuit. In FCC, the two inputs are connected to the gates of the
transistors. A multi-input minimum circuit with over two transistors is needed in

78 M. Pandiyan and G. Mani

applications, such as three-input fuzzy controllers. As illustrated in Fig. 9, the output
voltage voðminÞ always takes the smaller value of two inputs vin1 and vin2 with a positive
offset voltage voffset.

voðminÞ ¼ minðvin1; vin2Þþ voffset

This result voðminÞ specifies that the offset voltage is about 1 V. To compensate the
offset voltage,voff a negative level shifter circuit is necessary. The Negative shift is
achieved by a fuzzy complement circuit with a reference voltage of E. The comple-
mentary membership function must be converted to an ordinary membership function,
achieved by a fuzzy complementary circuit of two gm circuits.

From Fig. 10, assuming the reference voltage E = 0,

vcomp ¼ Ri ¼ R i1 þ i2ð Þ ¼ R �gmvin � gmvcomp
� �

Therefore, this is opposite to the input voltage. The complement of the membership
function is E 6¼ 0,

vcomp ¼ E � vin if Rgm � 1

Note that, in the final fuzzifier structure, E must be set to compensate offset voltage,
associated with the minimum circuit. The attenuation is due to the limited gain of Rgm
that is equal to �Rgm ¼ 1þRgm. This attenuation is the same in each one of the
fuzzifiers used in the controller, and the error due to attenuation does not affect fuzzy
processing considerably. If the input signal has a negative DC value, then E must be
chosen to be greater than the Supremum value by Vdcj j.

Fig. 9. Schematic representation of minimum circuit

Wearable ECG SoC for Wireless Body Area Networks 79

Inference Engine. With Mamdani’s inference technique, the inference engine is
accomplished by a set of intersection and union operations [10, 12]. The Min- Product
inference method is chosen for inferencing in which a minimum of two inputs can be
specified. Nine two-input minimum circuits in the inference engine are needed.
Therefore, the controller has two inputs with three membership functions. The Min
blocks [10] and their synthesis in the complete controller structure will do the
inferencing.

Defuzzification. A novel defuzzifier is used [8, 10] in which the center of the area is
calculated without employing a division circuit. Therefore, it occupies a small chip
area. The main idea is based on parallel conductances gn; stating implicitly that the
output voltage of the defuzzifier circuit is the average value of the inputs. The con-
tribution of each input to the output is weighted by the conductance gi that is a
controllable variable. The below equation provides a non-fuzzy or defuzzifier output.

Vdefuzz ¼ g1V1 þ g2V2 þ . . .þ gnVn

g1 þ g2.þ gn

MOS transistor is used as a controllable g-element in this work. Offset voltage vt in
a MOS transistor must be cancelled to control gds by vgs gds ¼ kvgs

� �
linearly.

gds ¼ k vgs � vt
� �

; k ¼ 1
2
lcox

W
L

Level shifter circuit (LSC) is used to compensate offset voltage [8]. The complete
schematic diagram of defuzzifier is depicted in Fig. 11.

Fig. 10. Schematic diagram of fuzzy complementary circuit

80 M. Pandiyan and G. Mani

4 Results and Discussion

The wearable ECG sensor node system fits perfectly on a shirt. The main unit provides
a versatile framework for incorporating sensing, monitoring, and information pro-
cessing devices. The designed wearable device can be deployed in a variety of
applications, such as public safety, health monitoring, and sports. The vital signal
monitoring functionality of the smart shirt is tested in real time. The inference per-
formance test is done, based on physical activity under various conditions. The
abnormal ECG signal is measured and stored in the fuzzy inference engine. The fuzzy
decision making rules are framed in such a way that, when an abnormal ECG signal is
detected, an alert signal is sent promptly to the remote gateway via microcontroller.
A wearable smart shirt transfers the physiological ECG signals over a wireless sensor
network at the test. The following sections depict the important results of the proposed
system.

4.1 ECG Acquisition

To ensure comfort, the clothing is designed from a knitted conductive textile fabric for
reducing flammability. Rectangles of electrically conductive textile fabric in knitted
design were stitched on the position of the pectoral muscles [13]. The conductive
textile fabric is realized from a blended yarn of the composite containing silver
nanoparticles, which provide electrical conductivity of the yarn and the resultant
knitted fabric. The content of silver nanoparticles provides corrosion resistance of
textile electrodes, antibacterial and anti-allergic properties, and mechanical and elec-
trical stability when exposed to sweat. The design of blended conductive textile fabric,

Fig. 11. Schematic illustration of defuzzifier

Wearable ECG SoC for Wireless Body Area Networks 81

made from conductive yarn, enables traditional maintenance of T-shirts (washing,
ironing) and long-term stability of surface conductivity of the electrodes with a high
number of wash cycles. The designed conductive textile fabrics are circular in shape,
with dimensions 5 × 5 cm. Figure 12 shows the wearable electrodes, which comprise
a conductive fabric electrode pair and the wearable sensor node system placed on the
wearer’s chest placement. To provide a sufficient potential difference, the electrodes are
positioned 100 mm apart. The ECG measurements are obtained through wearable
textile electrodes (Zero Resistance, 100 % Silver fiber for conductive part), and the
acquired ECG signals are processed, using other modules in this health architecture for
decision making.

4.2 Fuzzy Decision Making

In the FDM module, the Heart rate variability (HRV) is computed from the time series
R-R intervals (R-peak to R-peak), converted into a uniformly sampled time-spaced
sequence. As the physiological condition (wakefulness state, sleep state, etc.) of a
patient changes, the power spectral density (PSD) of heart rate differs. The low-to-high
(L/H) frequency ratio is considered an effective assessment and indicator of such
change, because it reflects the balancing action of the sympathetic and parasympathetic
nervous-system branches. Power Spectral Density of HR variations is calculated, and
the three frequency bands, such as Very low frequencies (VLF: 0–0.04 Hz), Low
frequencies (LF: 0.04–0.15 Hz), and High frequencies (HF: 0.15–0.5 Hz), have been
utilized. The features extracted from HRV and PSD are used to feed the fuzzy logic
engine that computes epoch-by-epoch (30 or 60 s per period) inferences. The fuzzy
inference rules are based on the observed details of normal and abnormal ECG signals.
The inputs of FDM chip are details of QRS complex and PSD results. The ranges of
membership functions are tunable by changing the voltages of FDM IC pins, which is
done by the developer via microcontroller.

The FDM chip provides the index values (i.e., defuzzified output in the range of
0–2), which is sent to the microcontroller. Hence, there are output states, such as

Fig. 12. Placement of wearable textile electrodes

82 M. Pandiyan and G. Mani

normal, sleep onset/fatigue, and abnormal, decoded by microcontroller unit. A set of
meaningful rules has been framed. The following are the strongest:

IF HR Variability is Low AND LF/HF ratio is Medium
THEN the Output signal is SLEEP_ ONSET
IF HR Variability is High AND LF/HF ratio is High
THEN the Output signal is NOR_WAKE
IF HR Variability is Low AND LF/HF ratio is Low
THEN the Output signal is DROWSY

Figure 13 shows the major difference between normal and abnormal ECG signals,
noting that an abnormal ECG data has an elevated T wave.

4.3 Performance Evaluation

The status is continuously sent to the remote unit every 2 min or preset time in the
controller. The results of the experiments, as shown in Table 1, confirmed our
hypothesis that human health status can be predicted by the FDM module through
extracted ECG features. Detection succeeds, based on ECG signal captured from the
wearable textile electrodes. When the signal is sensed, the system detects the status, and
if abnormal, an alert signal is transmitted. Measurement accuracy of Fuzzy based ECG
classification confirms to be robust enough to perform over 95 % successful early
detections. Therefore, the proposed system can make decisions, based on the acquired
ECG data.

Fig. 13. Measured sample ECG data for inference engine

Wearable ECG SoC for Wireless Body Area Networks 83

Figure 14 depicts the designed graphical user interface for the proposed architec-
ture. Timing of the early detection capability of each system is also evaluated during
the tests.

Table 1. Performance evaluation of fuzzy decision making in the proposed system

Rule-check Clinical datasets
Number of data
sets used for
testing

Number of data
sets correctly
classified

Number of data
sets wrongly
classified

Accuracy
(%)

Drowsiness 21 19 2 90
Sleep onset 19 18 1 94
Normal 23 23 0 100

Rule-check Simulated datasets
Number of data
sets used for
testing

Number of data
sets correctly
classified

Number of data
sets wrongly
classified

Accuracy
(%)

Drowsiness 89 82 7 92
Sleep onset 102 98 4 96
Normal 213 213 0 100

Fig. 14. Designed graphical user interface for testing and measurements

84 M. Pandiyan and G. Mani

5 Concluding Remarks

A wireless ECG on a chip with an integrated Fuzzy Decision making system is pro-
posed for real-time ECG health monitoring. The proposed wearable device is small,
user-friendly, has a long battery life, and is capable of wirelessly transmitting ECG data
continuously to a remote station for detailed diagnosis. The FDM chip is integrated
with ECG on Chip to take the decisions for alerting the patients when necessary. The
designed FDM responds immediately when anomalies are found in ECG data. The
proposed device has already been tested with a reference high-quality measurement
system for verification of accuracy and showed that the accuracy of the proposed
device is good enough, and the variation in key ECG parameters obtained from the
proposed device and the reference device is acceptable for clinical usage.

Acknowledgement. This research was financially supported by International Society of
Automation (ISA) Educational Foundation Scholarship 2014. We would like to show our
heartfelt gratitude to editors and reviewers for sharing their pearls of wisdom with us during
manuscript preparation. We also thank Natarajan Sivaraman, Asst. Prof., Dept. of ICE, PSG Tech
for the valuable comments that greatly improved the manuscript.

References

1. Chen, C.Y., Chang, C.L., Chang, C.W., Lai, S.C.T., Chien, F., Huang, H.Y., Chiou, J.C.,
Luo, C.H.: A low-power bio-potential acquisition system with flexible PDMS dry electrodes
for portable ubiquitous healthcare applications. Sensors 13, 3077–3091 (2013)

2. Pandiyan, M., Mani, G., Jerome, J., Sivaraman, N.: Integrating wearable low power
CMOS ECG acquisition SoC with decision making system for WSBN applications. In: 2015
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), pp. 154–
158, 5–7 October 2015

3. Pandian, P.S., et al.: Wearable multi-parameter remote physiological monitoring system.
Med. Eng. Phys. 30(4), 466–477 (2007)

4. Anliker, U., Ward, J.A., Lukowicz, P., et al.: AMON: a wearable multi parameter medical
monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 8(4), 1–11 (2004)

5. Yang, G., Xie, L., Mantysalo, M., Chen, J., Tenhunen, H., Zheng, L.R.: Bio-patch design
and implementation based on a low-power system-on-chip and paper-based inkjet printing
technology. IEEE Trans. Inf. Technol. Biomed. 16(6), 1043–1050 (2012)

6. Khayatzadeh, M., Zhang, X., Tan, J., Liew, W.S., Lian, Y.: A 0.7-V 17.4-ψW3-lead wireless
ECG SoC. IEEE Trans. Biomed. Circ. Syst. 7(5), 583–592 (2013)

7. Halin, N., Junnila, M., Loula, P., Aarnio, P.: The life shirt system for wireless patient
monitoring in the operating room. J. Telemed. Telecare 11, 41–43 (2005)

8. Peyravi, H., Khoei, A., Hadidi, K.: Design of an analog CMOS fuzzy logic controller
chip. Fuzzy Sets Syst. 132, 245–260 (2002)

9. Lobodzinski, S.S., Laks, M.M.: New devices for very long-term ECG monitoring. Cardiol.
J. 19(2), 210–214 (2012)

10. Pandiyan, M., Mani, G.: Embedded low power analog CMOS fuzzy logic controller chip for
industrial applications. In: 2015 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 43–48, 5–7 October 2015

Wearable ECG SoC for Wireless Body Area Networks 85

11. Van Helleputte, N., Tomasik, J.M., Galjan, W., Mora-Sanchez, A., Schroeder, D.,
Krautschneider, W.H., Puers, R.: A flexible system-on-chip (SoC) for biomedical signal
acquisition and processing. Sens. Actuators A 142(1), 361–368 (2008)

12. Manikandan, P., Geetha, M., Jerome, J.: Weighted fuzzy fault tolerant model predictive
control. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 83–90.
IEEE (2014)

13. Vojtch, L., Bortel, R., Neruda, M., Kozak, M.: Wearable textile electrodes for ECG
measurement. Adv. Electr. Electron. Eng. 11(5), 410–414 (2013)

14. Lopez, G., Custodio, V., Moreno, J.I., Moreno, J.I.: LOBIN: E-textile and
wireless-sensor-network-based platform for healthcare monitoring in future hospital
environments. IEEE Trans. Inf. Technol. Biomed. 14(6), 1446–1458 (2010)

86 M. Pandiyan and G. Mani

Delay Testing Based on Multiple
Faulty Behaviors

Masahiro Fujita(B)

VLSI Design and Education Center, The University of Tokyo, 2-11-16 Yayoi,
Bunkyo-ku, Tokyo, Japan

fujita@ee.t.u-tokyo.ac.jp

Abstract. We discuss overall “observed” behaviors of circuits due to
additional delays caused by various variations in the chips and propose
delay testing methods based on such analysis. First we examine func-
tional changes caused by the additional delays on the inputs of each gate
in the circuit. We show that unlike structural faults, e.g., stuck-at faults,
such additional delays can introduce many more different faulty func-
tions on a gate, and we propose two functional delay fault models for the
changed behaviors caused by the additional delays, one with one time
frame and the other with two time frames. As such additional delays
by variations and other reasons naturally happen in multiple locations
simultaneously, there can be exponentially many multiple fault combi-
nations to be considered. It is not at all easy to analyze them with tra-
ditional automatic test pattern generation (ATPG) methods which rely
on fault dropping with explicit representation of fault lists. So in the
second part of the paper, we present an ATPG method based on implicit
representations of fault lists. As faults are represented implicitly, even
if numbers of simultaneous faults are large and total numbers of fault
combinations are exponentially many, we may still be able to successfully
perform ATPG processes. Experimental results have shown that even for
large circuits in the ISCAS89 benchmark circuits, complete sets of test
vectors for all multiple combinations of the proposed functional delay
faults are successfully generated in a couple of hours. The numbers of
required test vectors for complete testing are surprisingly small, e.g., only
a few thousands for circuits having more than ten thousands of gates,
even though there are more than 2(ten thousands) combinations of mul-
tiple faults in those circuits. This indicates that the proposed multiple
functional delay fault models may have practical values as they consider
all types of multiple functional faults caused by extended delays in the
circuit.

1 Introduction

As the semiconductor technology continues to shrink, we have to expect more
and more varieties of variations in the process of manufacturing in particular for
large chips. Such variations, especially ones on delays in circuits, can change the

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 87–108, 2016.
DOI: 10.1007/978-3-319-46097-0 5

88 M. Fujita

circuits’ “observed” functional behaviors, which is generally called delay fault.
Here, we discuss such changed functionality caused by the additional delays due
to variation and other reasons. Delay testing is getting a lot of attention as there
are more and more additional delays possibly happening within a chip in distrib-
uted ways, such as accumulated effects of small delays. There have been works
on testing whether such delays causes any changes in behaviors of the circuit,
which is generally called delay testing. Most of them try to measure delays of
the circuit being tested by checking delays of signal propagation paths using
two test vectors as shown in Fig. 1, such as testing longest paths [1], analyz-
ing accumulation of small delays in gates [2], and many others. With the two
test vectors, specific signal propagation paths are activated, and their actual
delays are measured by physical facilities such as LST testers. It is measured
and checked whether some paths exceed the maximum allowed amount of delays
or not. In this paper, although we discuss long path delay problems only, short
path delay problems can be dealt with in a similar way.

… …

1

0

1

0

1

1

First vector
Second vector

0 to 1

1 to 0

Physically measure

actual delays

Fig. 1. Measure delays with two test vectors

As there may be so many signal propagation paths in large circuits and delays
could vary a lot depending on variations, delay estimation, such as minimum and
maximum delays, may have to have large ranges in values. As a result, those
delay testing methods may not work well, because appropriate threshold delays
for delay testing may not be easily defined, especially when variations in the
chips are large and distributed.

In this paper instead of trying to measure or estimate delays, which is a
common way in the current delay testing methods, we concentrate on analyzing
what are possible functional changes due to such distributed and accumulated
delays with wide ranges of values. Our proposed delay fault model is to define the
possible situations where inputs of some gates in the circuit could get the values
of previous cycles instead of the current cycles due to the increase of delays in
the circuit. This fault model is called as FDF2 (Functional Delay Fault with two
time frames), as it needs two time frames to define. We also define a simplified
functional delay fault model where inputs to gates could get the wrong values
rather than the previous values due to widely distributed and additional delays.
We call this delay fault model as FDF1 (Functional Delay Fault with one time
frame), as it is based on one time frame.

Under FDF2, for a signal in a circuit, if the value in the previous cycle is the
same as the one in the current cycle, such additional delay will not introduce

Delay Testing Based on Multiple Faulty Behaviors 89

any changes in terms of functionality. On the other hand, if they are different,
“observed” functionality may change from the original one, or may not change
depending on internal don’t cares derived from the fanout regions from the faulty
locations. If we assume that a gate in a circuit may use the values in the previous
cycles as its inputs, the observed and resulting functions realized by the gate can
vary in many ways as discussed in the following sections. For example, there are
possibly “16” different functions which can be realized by a two-input AND (OR)
gate with such additional delays. That is, all possible functions with two-inputs
may potentially be observed with a two-input AND (OR) gate with additional
delays based on our fault model, FDF2. This may suggest that it may make
sense to model faulty behaviors caused by distributed and additional delays as
general functional faults rather than structurally defined faults, such as stuck-at
faults, although in this paper we use a different and more straightforward way
to define the faulty behaviors.

Please note that in the above discussion, for example, an AND gate is
assumed to be doing the correct operations all the time, but its input values
can become partially or totally wrong due to delays, which is observed as func-
tional changes.

The functional delay fault model, FDF2, is defined over two time frames
of sequential circuits, since for an input of each gate in the circuit we need to
refer to its previous value as well as its current value, i.e., if it is faulty, use
the previous one, and if it is not faulty, use the current one. We also define and
evaluate a less accurate but simpler fault model, FDF1. It is a fault model where
inputs of a gate get the complemented values of the correct ones under faults.
As the values of the same signal may or may not be different in the fault model,
FDF2, this simpler model is more conservative in terms of faulty behaviors, i.e.,
always receiving wrong values in this simplified fault model, if it is faulty.

In both fault models, in order to analyze the delay related faulty behaviors,
it is essential to deal with multiple faults rather than single faults. As there is
no specific assumption on the variations which cause additional delay, here we
assume each input of a gate may have independent accumulated delays from
primary inputs and inputs from the flipflops. Such additional delays can happen
in multiple locations simultaneously. It may be the case where most of the gates
in a circuit may get the values for the previous cycle rather than the current
cycle. In such cases, from the viewpoint of faults caused by the delays, there can
be many, such as hundred, thousands or more simultaneous faults in the circuit.
As a result, when we are generating test vectors for such combinations of faults,
we need to manage ultra large lists of fault combinations, since there can be
exponentially many fault combinations under multiple fault models.

In general, ATPG (Automatic Test Pattern Generation) processes use fault
simulators to eliminate all of the faults combinations which can be detected with
the current set of test vectors (called fault dropping process). Traditionally in
almost all cases, fault combinations are explicitly represented in fault lists, as
that is an easy and simple way for their manipulations. For functional and mul-
tiple faults, however, explicit representation is no longer feasible. For example,

90 M. Fujita

if there are 16 faults possible with a gate and we need to consider up to 10
simultaneous and multiple faults, the size of the fault list in explicit representa-
tions is in the order of 1610 or more. This is the case when we consider only one
particular set of 10 faulty locations. In general, we need to take care of much
more fault combinations.

In general there are many such sets of locations in a circuit. No explicit
representation can keep such large numbers of instances. Instead we need to
represent them with some sorts of “implicit” methods. This is in some sense
a similar problem to so called “state explosion” problem [14] in model check-
ing and formal analysis in general. In those fields, implicit representations are
commonly used in order to deal with larger problems. In this paper, we show
an ATPG method based on such implicit representation of fault lists based on
the techniques first developed in [5]. By formulating the ATPG process as an
incremental Satisfiability (SAT) solving, fault lists are naturally represented and
processed in implicit ways as logical formulae. We define circuits based on mul-
tiplexers in order to represent the two delay fault models, FDF1 and FDF2,
discussed above.

Those circuits have parameter variables, and the values of parameter vari-
ables determine which faults currently exist or do not exist in the target circuit.
Such a circuit for fault modeling is introduced to each possibly faulty location,
i.e., all inputs of each gate in the target circuit. Therefore, all the parameter
variables altogether show how multiple faults exist in the circuit. This is an
implicit way to represent multiple faults. As faults are represented implicitly,
even if numbers of simultaneous faults are large, such as 2(ten thousands), we can
still successfully perform ATPG processes as shown in the experiments below.

The rest of the paper is organized as follows. In the next section we discuss
possible functional faults or wrong operations caused by widely distributed and
additional delays in the circuit. We define two fault models, FDF1 and FDF2.
FDF2 is based on two time frames, and FDF1 is more conservative and based
on one time frame in the following section. Then we present an ATPG method
based on incremental SAT formulations which represents fault lists implicitly.
The experimental results are shown next, and the final section gives concluding
remarks.

2 Functional Faults Caused by Distributed Additional
Delay

As we discussed in the introduction, additional delays due to variation and others
can let a gate in a circuit receive possibly incorrect values in the previous cycles
rather than the correct ones in the current cycles, which may result in wrong
computations by the gate compared with the original functionality of the gate
using the correct input values. Please note that the functionality of the gate still
remains correct, but the values it uses for computations may be wrong due to
additional delays. Let us discuss these issues using an example shown in Fig. 2.

Delay Testing Based on Multiple Faulty Behaviors 91

x

y

z

Primary

input

Primary

output

x

y

z

Primary

input

Primary

output

1

1

0

1

Current cycle

Previous cycle

Fig. 2. Values on inputs and output of a gate in a circuit

There is an AND gate in a sequential circuit. For normal operations, the
output, z, of the AND gate is 1 for the previous cycle and 0 for the current cycle,
as the input values of the gate are (1, 1) and (1, 0) respectively as shown in the
figure. Now assume that there are significantly large and distributed additional
delays in the circuit due to variation and others. Such delays can let the AND
gate get the previous values of the input, x and y, instead of the current ones.
Under this situation, the output becomes 1 for the “current” cycle, as the input
values the AND gate actually received are (1, 1), i.e., the previous values. This is
observed as an incorrect function, which is different from AND operation, as the
current inputs are (1, 0) but the output observed is 1. An important observation
here is that it is possible that only x-input of the AND gate gets the previous
value, which results in the situation where the output of the AND gate is still
correct, as the values in the previous cycle and the current cycle for the x-input
are the same. On the other hand, if only the y-input of the AND gate gets the
values in the previous cycle, the output of the AND gate becomes wrong. It
becomes 1 instead of 0 which is correct.

In this section we discuss how functionality of a gate may look like changed
due to such delay increase. In general, the value of a signal can be the one for the
current or the one in the previous cycle due to delays, and so there are possibly
four combinations of values for the current and previous values, i.e., (previous,
current) = (0, 0), (0, 1), (1, 0), and (1, 1) for an input of a gate. Obviously if the
current and previous values are the same, there will not be any changes in the
observed function. So the cases to be examined are the ones where (previous,
current) = (0, 1) and (1, 0). Also, depending on the values of the other inputs of
the gate, the observed functionality of the gate may or may not change. In order

92 M. Fujita

to change the functionality, the other inputs need to be so called non-controlling
values, i.e., 0 for OR gate and 1 for AND gate, or those other inputs must also
change their values due to additional delays simultaneously.

For simplicity, in this paper we assume that inputs to the combinational
part of a sequential circuit can have any possible value combinations. This is,
in general, not true, as values provided by the flipflops are only the ones for
reachable states from initial states, which may not be all states. Accurately
speaking, as we are dealing with sequential circuits, we need to manage which
are “reachable” states and which are not in order to precisely compute effects of
the additional delays. As reachability computation is very expensive for practical
sizes of designs, here we simply assume all states are reachable. This is the same
assumption used in scan-based testing. There are ways to compute supersets of
reachable states, such as using techniques for property directed reduction [9,10],
but utilization of such techniques within our proposed method is a future topic
and out of the scope of this paper.

Fig. 3. Functionality changes of AND gate due to input delays

Now let us discuss how additional delays can affect the observed functional-
ity of AND and OR gates in the given circuit. Figure 3 shows partial possible
behaviors of an AND gate with additional delays. The column, “NoFault” shows
the truth table values of the correct AND operation. For each value combination
of x and y, that is, for each row of the truth table, the gate may get the previous
values of x and/or y instead of the current values if there are delay faults, and
those previous values can be different from the current values. The column, “zx1”
shows the case where only in the second row of truth table, the AND gate gets
the value of x in the previous cycle and that value is 1 which is different from the
value in the current cycle. Due to this incorrect value, the output of the AND
gate becomes 1 which is wrong as shown with underlined italic in the figure.
Assuming that this is the only error in the output of the AND gate, as shown in
the truth table, the resulting observed logic function at the output of the AND
gate is y instead of x ∧ y. Please note the AND gate is performing the correct
AND operations, but one of its inputs gets the wrong value. The column, “zx2”,
shows the case where only the fourth row of the truth table changes its value due
to the late arrival of x-input of the AND gate. Here we assume that such late
arrival value, which is 0, is different from the correct current value, which is 1.
So the resulting observed function becomes x∧¬y instead and simple AND. The
column, “zx3” shows the case where these two errors happen simultaneously. As

Delay Testing Based on Multiple Faulty Behaviors 93

we mentioned above, we assume additional delays in the circuits can happen in
distributed and independent ways.

Columns, “zy1”,“zy2”, and “zy3”, show the corresponding cases where val-
ues of y-input of the AND gate arrive late and their previous and incor-
rect values are used by the AND gate. As seen from the figure, the resulting
observed functions are, x, 0 (constantly 0 function), and x ∧ ¬y. Moreover, if
values of both x-input and y-input may arrive late, which are the cases shown
in columns,“zxy1”,“zxy2”, and“zxy3”, as seen from the figure, the resulting
observed functions are, exlusive − nor, 0 (constantly 0 function), and ¬x ∧ ¬y.
Figure 3 shows that there are seven incorrect functions possibly observable at
the output of the AND gate, if inputs of the gate arrive late and the previous
wrong values are used.

Please note that as discussed before, the previous values may or may not
be different from the current correct values. It depends on the behavior of the
sequential circuits. The discussions here is assuming the cases where the previous
values are different from the current ones.

Similar analysis results are shown in Fig. 4 for an OR gate. Similar to the
cases of the AND gate, Fig. 4 shows that there are also seven incorrect functions
possibly observable at the output of the OR gate. Columns, “zxy1”,“zxy2”,
and“zxy3”, show the corresponding cases where the x-input of the OR gate gets
the wrong values, and columns,“zy1”,“zy2”, and“zy3”, show the correspond-
ing cases where the y-input of the OR gate gets the wrong values. Columns,
“zxy1”,“zxy2”, and“zxy3”, show the corresponding cases where both of the
x-input and y-input of the OR gate gets the wrong values,

Fig. 4. Functionality changes of OR gate due to input delays

Please note that here we have analyzed only a subset of possible behaviors.
It is possible that the values of x and y can be independently chosen to be the
previous values. By observing the truth tables shown in Figs. 3 and 4, we can
realize that each row of the truth tables for AND/OR functions could change its
value with appropriate late arrival of inputs and different values in the previous
cycle from the ones in the current cycle independently. This means that in our
models, essentially all possible logic functions with two-inputs can potentially be
realized by the delays due to variations and others. Therefore, for the analysis of
faulty behaviors caused by late arrival of signal values, all functional faults, which
are 15 in total in the case of two-input gates, should be taken into account. Of
course this depends on the behaviors of the given sequential circuit. It may realize

94 M. Fujita

all of the 15 functions under faults, or it may not. Therefore, it is important to
take into account the sequential behaviors in two time frames, the current and
the previous cycles.

Please also note that this discussion is true only if we can freely choose the
values as the ones for the previous cycles. In real sequential circuits, however, the
values in the previous cycles are determined by the sequential circuits themselves
and can not be freely chosen. As we will show in the following section, we define
two functional delay fault models, one with one time frame, called FDF1, and
the other with two time frames, called FDF2. In FDF1 model, we assume the
values in the previous cycle can be freely chosen, which means that values for
any inputs of gates can become wrong. Here we need just one time frame to
define the fault. On the other hand, in FDF2 model, the values in the previous
cycle are determined by the sequential circuits, and so we need two time frames
for defining the faults.

3 Functional Delay Fault Models

Based on the discussions in the previous section, in this section we present two
functional delay fault models, FDF1 and FDF2. FDF2 is the one with two time
frames and FDF1 is the one with one time frame. The former is basically fol-
lowing the discussions in the introduction section while the latter is based on a
simplified assumption from the former. Please note that in our functional delay
fault model, it is essential to deal with “multiple” faults, as additional delays
by variations and others are widely distributed in a circuit, and the values in
many internal signals may change their values simultaneously. We introduce
these functional delay fault models in the rest of this section.

3.1 Functional Delay Fault Model with Two Time Frames, FDF2

Because we need information on the values of signals in the current cycle as well
as the ones in the previous cycle, given sequential circuits must be time-frame
expanded by two times. For example, an example sequential circuit and its two
time-frame expanded one are shown in Figs. 5 and 6 respectively. Please note
that although there are flipflops in the expanded circuit shown in Fig. 6, those
should be analyzed as pure buffers with no delays for the following mathematical
analysis. That is, in our analysis, circuits are considered as pure combinational
circuits with no delays in flipflops of the circuits.

Our first fault model caused by additional delays, are called Functional delay
fault model with two time frames, FDF2, and it assumes that under faults, the
values of the inputs of a number of gates in the circuit are the ones in the previous
cycle instead of the current cycle. This can be represented with a multiplexer
for each input of a gate in the second time frame of the expanded circuit. The
0-input of the multiplexer is connected to the original source whereas the 1-input
is connected to the corresponding signal of the gate in the first time frame of the
expanded circuit. Example insertions are shown in Fig. 7. Please note that for

Delay Testing Based on Multiple Faulty Behaviors 95

a

b

c

d

Fig. 5. An example sequential circuit

a0

c0

d0

a1

c1

d1

b1

c2

d2

b2

Fig. 6. Two time-frame expanded circuit from Fig. 5

easiness of drawing figures, only one gate in the second time frame is converted
to have such multiplexers in its inputs. In actual modeling the inputs of all gates
in the second time frame of the expanded circuit should have their multiplexers.

These multiplexers allow the inputs of the gates in the second time frame to
get either values in the current cycle or the ones in the previous cycle depend-
ing on the control signals, v1, v2, of the multiplexer. Those control signals are
called parameter variables and represent which faults are active in the circuit.
Please note that if both of them are 0, there is no fault on the inputs of that
gate. Therefore, if the summation of the numbers of inputs of all gates is m in
the combinational part of the given sequential circuit, there are totally 2m − 1
multiple fault combinations in the circuit. As we said, it is essential to deal with
all of these fault combinations, or as many as possible, when we perform ATPG
for functional delay fault testing.

96 M. Fujita

a0

c0

d0

a1

c1

d1

b1

c2

d2

b2

1
0

0
1

v1

v2

FF should be processed as simple buffer

Fig. 7. Multiplexers are added to a gate in the circuit shown in Fig. 6

3.2 Functional Delay Fault Model with One Time Frame, FDF1

The functional delay fault model defined in the previous sub-section uses two
time frames as the value of an input of a gate can get the value of the previous
cycle rather than the current cycle. This means we need to analyze two time
frames for ATPG, and so simpler model with one time frame could become useful
if circuits become larger. From the viewpoint of the functions and operations of
gates, the faulty values of the previous cycle used in the previous sub-section
may be replaced simply with the complemented values of the current ones. Such
complemented values are always incorrect, which means the resulting fault model
is more conservative, but need only one time frame. This fault model with one
time frame is called Functional Delay Fault with one time frame, FDF1, in this
paper.

Under faulty situations, this fault always introduces incorrect values to the
inputs of the gates in the circuit whereas the fault in the precious sub-section
introduces incorrect values only when the values of the current and previous
cycles are different. So the fault model defined in this sub-section introduces
more erroneous values, and as a consequence, if we completely test given circuits
with this fault model, we may be testing too much and so called “over-testing”
problem could happen. That is, infeasible situations are also taken into account
when generating test vectors. Please note that even the fault model in the previ-
ous sub-section may introduce over-testing as we assume all value combinations
are feasible as the values of flipflops. This is essentially the same over-testing
problem as the one for full scan based designs with stuck-at faults.

This fault model with one time frame can be represented in a similar way
as the previous one by using multiplexers as shown in Fig. 8. Please note that
the 1-input is connected to the output of an inverter whose input is connected
to the original signal. The original signal is connected to the 0-input of the
multiplexer as well. Although multiplexers are inserted into the inputs of one

Delay Testing Based on Multiple Faulty Behaviors 97

a0

c0

d0

c1

d1

b1

1

0

v1

1

0
v2

Fig. 8. Multiplexers are added for FDF1 model

gate in the figure for easiness of drawing figures, all inputs of all gates should
have multiplexers for multiple faults just like the previous case.

4 ATPG Methods Based on Incremental SAT
Formulation

As we assume all states of flipflops are reachable in this paper, the values of
pseudo inputs coming from flipflops, that is, inputs, c0 and d0, in Figs. 6 and 8
are assumed to be able to have all combinations of values. All possible fault com-
binations under our fault models can be represented by all value combinations
of the control inputs of the multiplexers, except for all 0 which represents the
non-faulty (fault free) case. Such control inputs are called parameter variables
in this paper.

This is an implicit way to represent multiple faults just like the state encoding
with state variables in model checking [14]. This method was first proposed in
[5]. The number of possible fault combinations is exponential with respect to the
number of multiplexers, which is the same as the number of inputs of all gates.
With this implicit representation, very large numbers of possible simultaneous
faults are represented with exponentially small numbers of variables (parameter
variables).

ATPG methods for the two fault models, FDF1 and FDF2, are basically the
same. The only difference is how to represent faults with multiplexers and their
associated parameter variables. Let x be the set of inputs to the one time frame
or two time frame circuit, and v be the set of control signals of multiplexers, that
is, parameter variables. Please note that the x variables in the two time frame
circuits represent both primary inoputs of the first and second time frames, and

98 M. Fujita

the v variables exist only in the second time frame as only the second time frame
has multiplexers.

Also, let NoFault(x) and Faulty(v, x) be the logic functions realized at the
outputs by the circuit without and with multiplexers, respectively. An example
of formula of NoFault(x) can be generated from the circuit shown in Fig. 6, and
an example of formula of Faulty(v, x) can be generated from the circuits shown
in Figs. 7 and 8 respectively assuming that all inputs of gates have multiplexers.

Although NoFault(x) and Faulty(v, x) are multiple output functions, for
easiness of notations, we write them just like a single output function. For exam-
ple, their equality, i.e., all output values are the same, is simply described as
NoFault(x) = Faulty(v, x) in this paper.

Then an ATPG process for one fault combination can be formulated as the
following SAT problem:

∃v, x.Faulty(v, x) �= NoFault(x) (1)

Please note that this is a normal SAT problem and says some fault can be
detected by some input vector, as under that input vector the two circuits behave
differently. Let the solution values of variables, (v, x), be (v1, x1) respectively.
Now we have found that the fault corresponding to v1 can be detected by the
input, x1.

In traditional ATPG processes, fault simulators are used for the input vector,
x1, to eliminate all of the detectable faults from the target remaining faults (fault
dropping process). In our case, this approach does not work as we are dealing
with multiple faults and there are so many possible fault combinations which
can never be manipulated explicitly (exponentially many with respect to the
numbers of multiple faults). Please remind that multiple faults are essential in
order to deal with the faults caused by distributed and additional delays. So
the question is how to eliminate faults which are detectable by a test vector
“implicitly” not explicitly ?

We formulate the ATPG process as a SAT problem in the following way:

∃v.Faulty(v, x1) �= NoFault(x1)

where x1 is one of the solutions for (1). All the faults corresponding to the values
of v, which are the solution of the SAT problem, can be detected by the test
vector, x1. Therefore, in order to eliminate the detected faults by the test vector,
x1, when generating next test vector, we should add the following constraint on
top of (1):

Fauty(v, x1) = NoFault(x1)

This constrains that values of v should be the ones which behave correctly with
test vector, x1, that is, undetectable faults.

So the next step of our ATPG process is to solve the following SAT problem:

∃v, x.(Faulty(v, x) �= NoFault(x))
∧ (Faulty(v, x1) = NoFault(x1)) (2)

Delay Testing Based on Multiple Faulty Behaviors 99

where x1 is the solution of (1) above.
Let the solution values of the variables, (v, x), for (2) be (v2, x2) respectively.

Then x2 becomes the second input test vector. It detects some faults which
cannot be detected by the previous test vector, x1.

We keep doing this until there is no more solution. Here we assume that the
following SAT problem has a solution

∃v, x.(Faulty(v, x) �= NoFault(x))
∧ (Faulty(v, x1) = NoFualt(x1))

∧ (Faulty(v, x2) = NoFault(x2)) ∧ ...

∧ (Faulty(v, xn−1) = NoFault(xn−1)) (3)

but the following SAT problem has no solution, that is, unsatisfiable,

∃v, x.(faulty(v, x) �= NoFault(x))
∧ (Faulty(v, x1) = NoFault(x1))

∧ (Fauty(v, x2) = NoFault(x2)) ∧ ...

∧ (Faulty(v, xn−1) = NoFault(xn−1)
∧ (Faulty(v, xn) = NoFault(xn)). (4)

As (3) has a solution and (4) does not have a solution, the input test vectors,
x1, x2, ..., xn can detect all of the detectable faults, as the unsatisfiability of the
formula (4) guarantees that there is no more detectable fault. So they become a
set of complete test vectors for our multiple fault model exclusive of redundant
faults. Please note that redundant faults are automatically excluded from the
target faults, as redundant faults have no valid test vectors, which means there
is no solution for the SAT problem.

Discussions above can be summarized as the flow shown in Fig. 9. The set
in testVectors keeps the set of test vectors accumulated so far. The formula in
InConstraints excludes all of the faults which are detectable by the current test
vectors. The numbers of test vectors required to detect all faults, or in other
words, the performance of the ATPG algorithm depends on how many times the
formula (3) becomes satisfiable, i.e., numbers of iterations in the loop of Fig. 9.
Please note that each test vector is generated explicitly whereas detectable faults
by the current set of test vectors are implicitly and automatically excluded from
the target fault combinations.

As can be clearly seen from Fig. 9, the SAT problems to be solved are pure
“incremental SAT” problem. The formulae are updated to have more constraints,
that is, the following formula is a super set of the previous formulae. Therefore,
all learning and backtracks made so far in case-split based SAT solvers, which are
common nowadays, are guaranteed to be all valid in the following formulae, and
the reasoning in the previous formula can simply be continued, not restarted,
in the following formula. In reasoning about the formula (1) above, after some
number of backtracks, a SAT solver finds a solution (v1, x1). The next formula
to be checked is (2) where (v1, x1) is not a solution, and so the SAT solver simply

100 M. Fujita

ntsInConstrai)NoFault(x)x)(Faulty(v, ∧≠

Let solutions be vi and xi

satisfiable ?

Is

{}stestVector
0i

 truentsInConstrai

=
=

=

Satisfiable

Unsatisfiable

}{xstestVectorstestVector
1ii

))NoFault(x)x(Faulty(v,ntsInConstraintsInConstrai

i

ii

∪=
+=

=∧=

Test patterns have been generated

Fig. 9. ATPG flow with incremental SAT

backtracks without any reasoning required. After some number of more back-
tracks, the SAT solver finds another solution, (v2, x2). This reasoning continues
until the expanded formula becomes unsatisfiable, which means case-splitting
has covered all cases implicitly.

Now in order to illustrate the ATPG process more clearly, we show an exam-
ple run for FDF2 testing on a small ISCAS89 circuit, s27 by using an imple-
mented command for the ATPG on top of the logic synthesis and verification
tool, ABC [6]. The execution trace on the ABC tool is illustrated in Fig. 10.
The implemented command for the proposed ATPG methods for FDF2 faults is
“&fftest” with“-A 1”option. The option of “-v” gives detailed execution traces.
The command is included in the standard distribution of ABC.

abc 03> &r s27.aig

abc 03> &ps

s27 : i/o = 4/ 1 ff = 3 and = 8 lev = 5 (3.75) mem = 0.00 MB

abc 03> &fftest -v -A 1

FFTEST is computing test patterns for delay faults...

Using miter with: AIG nodes = 55. CNF variables = 49. CNF clauses = 103.

Iter 0 : Var = 49 Clause = 103 Conflict = 14

Iter 1 : Var = 77 Clause = 136 Conflict = 14

Iter 2 : Var = 103 Clause = 160 Conflict = 15

Iter 3 : Var = 130 Clause = 189 Conflict = 15

Iter 4 : Var = 157 Clause = 211 Conflict = 15

Iter 5 : Var = 185 Clause = 234 Conflict = 20

Iter 6 : Var = 211 Clause = 239 Conflict = 21

Solver time = 0.00 sec

The problem is UNSAT after 6 iterations. Testing runtime = 0.01 sec

abc 03>

Fig. 10. ATPG execution trace example for the benchmark circuit, s27

Delay Testing Based on Multiple Faulty Behaviors 101

After reading the circuit, s27, in AIG format, the statistics of the circuit are
shown. Then the ATPG command, “&fftest” is invoked. First the formula of
(1) above for s27 is solved by a SAT solver. This formula has 103 clauses. After
14 conflicts/backtracks the SAT solver generate a first test vector. In the next
step, the formula of (2) above for s27 becomes the target. That has 136 clauses
which are 33 more than the previous (first) formula. This additional clauses
comes from (Faulty(v, x1) = NoFault(x1)) part of (2) above as well as the
learned clauses in the first SAT solving. In the second run of the SAT solver, it
generates second test vector without additional conflict/backtrack. The formula
for the third run of the SAT solver has 160 clauses, which are 24 clauses more
than the second run, in order to exclude the faults detectable by the second
test vector efficiently also with newly learned clauses. The third run finds the
third test vector with one additional conflict/backtrack. This process continues
and after seven iterations, the resulting SAT formula becomes unsatisfiable. In
total six test vectors are generated and the final formula is unsatisfiable. This
unsatisfiability can be made sure with 21 conflicts/backtracks in total. That is,
the total number of conflicts/backtracks required for all seven (the number of test
vectors plus 1 for the final UNSAT problem) SAT solving for s27 is 21. Please
note that the final problem is unsatisfiable and needs 21 conflicts/backtracks
in total to prove its unsatisfiability for s27.

As can be seen from the above execution trace, the problem is an incremental
SAT problem as a whole. Or we can say that we are solving an unsatisfiable
problem as a whole, but start with satisfiable ones and add more constraints
incrementally based on the test vectors generated. That is, the set of the SAT
problems (or formulae) can be considered as a single SAT problem, which should
be unsatisfiable eventually. So the overall process of the proposed ATPG method
is just to solve single SAT problem to make sure it is unsatisfiable, allowing
dynamic addition of more constraints during the SAT reasoning process. That
is, each time we find a new test vector, new constraints which exclude the faults
detectable by that test vector are added. The learned clauses in the previous run
are also included. By slightly modifying existing (case-split based) SAT solvers,
we can realize the proposed ATPG method inside SAT solvers.

One remark in our formulation is that ATPG for single, or double, or triple
faults, and so on, can easily be formulated within our SAT based ATPG with
implicit representations of fault lists. We can add constraints to restrict how
many parameter variables can be simultaneously one. If only one parameter
variable can be one at a time, it is an ATPG for single faults. In the experiments
below, we compare the numbers of test vectors for complete multiple faults
(there are 2m − 1 fault combinations where m is the number of potential faulty
locations) and single faults.

The above discussions can also be casted to non-SAT based ATPG techniques
with learning, such as [3,4], if we introduce additional circuits with parameter
variables to represent faults. As ATPG tools are well developed utilizing various
circuit-related and structural techniques and reasoning, such ATPG tools with
the above method for the representation of detectable faults as circuits can

102 M. Fujita

circuit circuit
FFFF

Test vector Test vectorTest vector

Must be

scanned in

FF

Must be

scanned out

Fig. 11. Scan-based testing for the proposed methods

potentially realize very efficient ATPG tools for our fault models as well. This
will be one of our future directions.

4.1 Application of Test Vectors

The generated test vectors for the functional delay fault model, FDF1, are
applied to the manufactured chips just like the ones for scan based designs for,
say, stuck-at faults, as the test vectors for FDF1 have only one time frame. As
for the test voters for the functional delay fault model, FDF2, using the scan
chains, they are applied to the manufactured chips in the way shown in Fig. 11.

The test vectors for FDF2 have two time frames. A test vector consists of
the values for the flipflops in the first time frame and the values for the primary
inputs for the first and second time frames. So the values for the flipflops for the
first time frame is scanned in and then the chip runs for two cycles instead of
one cycle. Please note that the values for the flipflops in the second time frame
are generated inside the chip. After running the chip for two cycles, the values
for the flipflops are scanned out. So we do not need any additional mechanisms
when applying the test vectors for FDF2, and we can simply use the existing
scan mechanisms.

5 Experimental Results

We have implemented the proposed ATPG methods for the proposed functional
delay faults, FDF1 and FDF2 on top of ABC tool [6] including the use of pre-
viously learned clauses in later SAT solving. For easiness of experiments, all
ISCAS89 circuits are first converted into AIG (AND Inverter Graph) format
where there are only two-input AND gates and inverters. So all the faults of
FDF1 and FDF2 are defined on inputs of those two-input AND gates. The results
for FDF2 (functional delay fault with two time frames) are shown in Table 1 and
the ones for FDF1 (flip fault with one time frame) are shown in Table 2. One
test vector for FDF2 consists of two time frames whereas the one for FDF1 has
only one time frame. In both tables, Name is the name of an ISCAS89 bench-
mark circuit, and PI/PO/FF/AND are the numbers of primary inputs, outputs,
flipflops, and AIG nodes used to represent the circuits. Vars/Clauses/Conflicts
are the numbers of SAT variables, clauses, and conflicts, and Tests is the total
number of test vectors computed using the proposed ATPG algorithm.

Delay Testing Based on Multiple Faulty Behaviors 103

Please note that for all circuits with multiple faults of either FDF1 or FDF2,
the ATPG processes have finished completely, that is, these sets of test vec-
tors can detect all combinations of the multiple faults as long as they are not
redundant. The sets of test vectors detect exponentially many combinations of
multiple faults. For large ISCAS89 circuits, there are more than 10,000 AND
gates in AIG format. So the numbers of multiple fault combinations are in the
order of 210,000. Time is the processing time on a sever computer having Linux
kernel 2.6.32 64-bit, Dual Xeon E5-2690 2.9 GHz, 128 GB memory.

As seen from the tables, we have succeeded in generating complete test vec-
tors for all multiple faults of FDF1 and FDF2. Redundant faults are automat-
ically excluded from the target faults as unsatisfiable cases. In general as func-
tional delay fault models, FDF2 is more accurate than FDF1, because FDF2
regards the cases where the current and previous values are the same to be auto-
matically non-faulty. The numbers of test vectors and execution times for FDF1
and FDF2 are somehow similar although the numbers of test vectors for FDF1
are slightly smaller for large circuits. On the other hand, the ATPG times for
FDF2 is slightly shorter than the ones for FDF1 for large circuits. This may not
be intuitively understood as FDF2 needs two time frames whereas FDF needs
only one time frame. These are issues for future research with more detailed and
intensive experiments.

In both fault models, a couple of thousands of test vectors or less are sufficient
to detect all multiple faults on ISCAS89 circuits. This suggests that FDF1 and
FDF2 could be reasonable functional delay fault models in practice. FDF2 is
better as it works with two time frames and its model is more accurate than
FDF1. Although FDF2 does not measure any actual delays of any paths, it tries
to cover all possible resulting functionally different cases due to distributed and
additional delays. It can detects all possible functional effects caused by delay
faults, and so the complete sets of test vectors for all multiple fault combinations
may make sense in practice especially with the fact that the numbers of test
vectors are not so many as seen from the experimental results.

Finally as for comparison of ATPGs for multiple faults and simple faults, we
have also generated complete test vectors for “single” functional delay faults. As
discussed above, we should expect wide and distributed delays in circuits, and
it makes much more sense for multiple faults rather than single faults. So these
results are just to see how many “more” test vectors required and how much
more difficult for multiple faults over single faults. As discussed above, it is easy
to set constraints for single faults in our formulation, i.e., add clauses to let only
one parameter variable be one when generating test vectors.

In order to save the space in the paper, experimental results for large
ISCAS89 circuits are compared. The comparisons are shown in Table 3 for FDF2
faults and in Table 4 for FDF1. From Table 3, we can say that for FDF2, the
problem sizes in terms of numbers of variables and clauses are 2–3 times differ-
ence, whereas the numbers of conflicts/backtracks are around the same (actu-
ally a little bit smaller in many cases). This is quite interesting in that for FDF2
model, ATPG for single faults and multiple faults are not much different in terms

104 M. Fujita

Table 1. Complete test generation results for FDF2 on ISCAS89 circuits

Name PI PO FF AND Vars Clauses Conflicts Tests Time (s)

s27 4 1 3 8 211 239 21 6 0.01

s208.1 10 1 8 72 3504 4132 279 27 0.05

s298 3 6 14 102 6172 6994 285 37 0.02

s344 9 11 15 105 7666 8966 286 40 0.02

s349 9 11 15 109 7173 8660 274 35 0.02

s382 3 6 21 140 10801 12571 401 48 0.03

s386 7 7 6 166 16792 20352 435 76 0.05

s400 3 6 21 148 7739 10362 507 32 0.03

s420.1 18 1 16 160 18285 23217 905 71 0.13

s444 3 6 21 155 9071 10717 601 37 0.03

s510 19 7 6 213 19598 17235 691 65 0.05

s526 3 6 21 203 13593 17004 1184 46 0.09

s641 35 24 19 146 24355 19125 589 80 0.05

s713 35 23 19 160 26792 22872 629 84 0.06

s820 18 19 5 345 52472 52085 1096 117 0.16

s832 18 19 5 356 55846 55701 1165 122 0.19

s838.1 34 1 32 336 55812 53108 1446 110 0.56

s953 16 23 29 347 60703 49819 1508 121 0.17

s1196 14 14 18 477 104047 97072 2256 172 0.95

s1238 14 14 18 532 132631 120833 2151 202 0.89

s1423 17 5 74 462 118481 160938 2358 156 0.5

s1488 8 19 6 663 143999 163873 1582 184 0.53

s1494 8 19 6 673 138016 140575 1437 175 0.45

s5378 35 49 179 1389 704511 763815 4486 334 5.96

s9234 19 22 228 1958 1744224 1699261 7356 639 36.75

s13207 31 121 669 2719 4207211 3751671 8757 919 201.17

s15850 14 87 597 3560 4456945 3833199 16824 860 243.74

s35932 35 320 1728 11948 12764553 12765854 18600 719 912.98

s38417 28 106 1636 9219 27676324 26501629 49582 1948 3363.42

s38584 12 278 1452 12400 63168314 61442523 42009 3819 26221.71

of computing complexity. We need more detailed experiments to confirm this,
which we are working on.

On the other hand from Table 4, we can say that for FDF1, multiple faults
are much more difficult than single faults as the former needs a lot more con-
flicts/backtracks. However, the numbers of test vectors are different up to 3–4
times or so. The different behaviors in the two functional fault models, FDF1

Delay Testing Based on Multiple Faulty Behaviors 105

Table 2. Complete test generation results for FDF1 on ISCAS89 circuits

Name PI PO FF AND Vars Clauses Conflicts Tests Time (s)

s27 4 1 3 8 187 309 24 6 0.01

s208.1 10 1 8 72 10570 22936 1162 76 0.23

s298 3 6 14 102 7271 16662 827 35 0.04

s344 9 11 15 105 7226 17594 2354 30 0.2

s349 9 11 15 109 8234 18308 730 35 0.13

s382 3 6 21 140 12134 26631 918 43 0.17

s386 7 7 6 166 14208 30735 2772 54 0.21

s400 3 6 21 148 12418 28691 1517 41 0.13

s420.1 18 1 16 160 62279 141652 17761 210 2.88

s444 3 6 21 155 11554 28741 2216 36 0.1

s510 19 7 6 213 25663 68806 11058 66 0.52

s526 3 6 21 203 29752 76137 4523 77 0.32

s641 35 24 19 146 27264 55077 1897 80 0.15

s713 35 23 19 160 21224 46485 1639 56 0.13

s820 18 19 5 345 69613 168271 12831 127 1.15

s832 18 19 5 356 89826 217392 16966 158 1.84

s838.1 34 1 32 336 337602 735817 476696 555 368.42

s953 16 23 29 347 68247 172198 19507 94 1.74

s1196 14 14 18 477 127849 312047 16891 155 2.79

s1238 14 14 18 532 173882 419099 18423 194 2.95

s1423 17 5 74 462 88218 193894 9134 90 1.14

s1488 8 19 6 663 122603 274328 12370 131 1.98

s1494 8 19 6 673 138915 316904 18147 148 3.13

s5378 35 49 179 1389 732113 1656343 2101830 263 547.32

s9234 19 22 228 1958 1585886 3570590 5564626 423 2100.66

s13207 31 121 669 2719 2723282 4987122 711130 474 557.43

s15850 14 87 597 3560 3203371 6933658 18862813 440 3625.81

s35932 35 320 1728 11948 3447907 6548092 1070785 173 7709.4

s38417 28 106 1636 9219 17657911 35695772 140866184 901 70512.05

s38584 12 278 1452 12400 14291557 28562060 1298930 609 6095.87

and FDF2, for single and multiple faults may come from the fact that in FDF1
all faults actually introduce wrong values to the circuits whereas in FDF2 even
under faulty, the values can still be correct if the values in the previous cycle
are the same as the current ones. So the numbers of wrong behaviors intro-
duced to the circuits could be a lot different. This could be part of the reasons,
although things are not so sure and need much more experiments. Also, please

106 M. Fujita

Table 3. Comparison of ATPG for single and multiple FDF2 faults

Name FDF1 single faults FDF1 multiple faults (normalized with single= 1)

Vars Clauses Conflicts Tests Time (s) Vars Clauses Conflicts Tests Time

s5378 327012 817209 6696 116 9.17 2.24 2.03 313.89 2.27 59.69

s9234 500987 1309285 9605 131 28.26 3.17 2.73 579.35 3.23 74.33

s13207 614918 1318897 11706 102 35.92 4.43 3.78 60.75 4.65 15.52

s15850 1102997 2631088 19302 149 77.29 2.90 2.64 977.25 2.95 46.91

s35932 7875486 15535384 40238 373 1535.48 0.44 0.42 26.61 0.46 5.02

s38417 5313144 12680228 91227 269 1472.31 3.32 2.82 1544.13 3.35 47.89

s38584 9331642 22354257 53863 392 2157.43 1.53 1.28 24.12 1.55 2.83

Table 4. Comparison of ATPG for single and multiple FDF1 faults

Name FDF2 single faults FDF2 multiple faults (normalized with single= 1)

Vars Clauses Conflicts Tests Time (s) Vars Clauses Conflicts Tests Time

s5378 530545 576418 4795 249 2.84 1.33 1.33 0.94 1.34 2.10

s9234 1125880 1215152 7690 414 17.88 1.55 1.40 0.96 1.54 2.06

s13207 2731864 2187226 8033 599 62.76 1.54 1.72 1.09 1.53 3.21

s15850 2888242 2472141 20667 559 100.43 1.54 1.55 0.81 1.54 2.43

s35932 9495349 8829489 23100 527 411.34 1.34 1.45 0.81 1.36 2.22

s38417 13426351 11950943 53452 943 689.76 2.06 2.22 0.93 2.07 4.88

s38584 24822660 16479553 41426 1496 2534.52 2.54 3.73 1.01 2.55 10.35

note that we did not spend any efforts to try to make the sets of test vectors
more compact. Instead we just solve the incremental SAT problems. We do need
to analyze much more details with intensive experiments, but the tables shown
in this paper can give a good first step.

6 Concluding Remarks

We have shown functional delay fault models caused by delay variations and their
associated ATPG methods with implicit representations of multiple fault lists.
We are recognizing that the algorithm shown in Fig. 9 is essentially doing the
same or very similar as the techniques introduced in [7,8], although the goals
are different. Similar ATPG methods have been developed targeting multiple
stuck-at faults [5].

As discussed in the literature, the problem to be solved is naturally for-
mulated as QBF (Quantified Boolean Formula), but solved through repeated
application of SAT solvers, which was first discussed under FPGA syntheis in
[11] and in program synthesis in [12]. [13] discusses the general framework on
how to deal with QBF only with SAT solvers.

The largest ISCAS89 circuits have more than ten thousands two-inpur AND
gates, which means that there are more than 2(ten thousands) of multiple fault
combinations. For such large numbers of fault combinations, according to our
experiments, a couple of thousands of test vectors are sufficient to detect all of
them exclusive of redundant faults. This is a very important and also interesting

Delay Testing Based on Multiple Faulty Behaviors 107

result, as our functional delay fault models make good sense if we can deal with
wide varieties of multiple faults. This is because the effects of additional delays
can be distributed very widely, and as a result, there can be many simultaneous
value errors happening in the circuit.

Also, future directions include comparison with multiple stuck-at faults from
the viewpoints of test vectors, such as the test vectors for our fault models can
detect how much of multiple stuck-at faults and vice versa. As we can deal
with large numbers of multiple faults, application of the proposed techniques to
functional design verification should also be included as future directions.

Finally we like to mention about over-testing issues. As we assume flipflops
can have all combinations of values, test vectors may be generated using
“unreachable” states. This is a general problem for ATPG with scan based
designs. In formal verification fields, there have been significant works performed
on computing approximate reachable states or smallest supersets of reachable
states. It may be interesting to see how test vectors are affected with constraints
coming from such reachable/unreachable states. Given sets of approximated
reachable states are simply added to our formulation as additional constraints.
Another important issue on the numbers of test vectors is their compaction.
There have been works on test vector compaction with SAT-based ATPG, such
as [15]. How we can utilize such techniques on compaction with our multiple
fault ATPG is clearly one of the very important future researches.

References

1. Qiu, W., Walker, D.M.H.: An efficient algorithm for finding the k longest testable
paths through each gate in a combinational circuit. In: IEEE International Test
Coference (ITC), pp. 592–601 (2003)

2. Sauer, M., Kupferschmid, S., Czutro, A., Polian, I., Reddy, S.M., Becker, B.: Func-
tional test of small-delay faults using SAT and Craig interpolation. In: IEEE Inter-
national Test Coference (ITC) (2012)

3. Schulz, M.H., Trischler, E., Sarfert, T.M.: SOCRATES: a highly efficient automatic
test generation system. In: IEEE Transaction on Computer Aided Design, pp. 126–
137, January 1988

4. Giraldi, J., Bushnell, M.L.: Search State Equivalence for Redundancy Identification
and Test Generation, International Test Conference (ITC), pp. 184–193 (1991)

5. Fujita, M., Mishchenko, A.: Efficient SAT-based ATPG techniques for all multiple
stuck-at faults. In: International Test Conference (ITC) (2014)

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

7. Jo, S., Matsumoto, T., Fujita, M.: SAT-BEfficient implementation of property
directed reachability. In: Formal Asian Test Symposium (ATS), pp. 19–24, Novem-
ber 2012

8. Fujita, M., Jo, S., Ono, S., Matsumoto, T.: Partial synthesis through sampling
with and without specification. In: International Conference on Computer Aided
Design (ICCAD), pp. 787–794, November 2013

108 M. Fujita

9. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

10. En,N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Formal Methods in Computer-Aided Design (FMCAD)
(2011)

11. Ling, A., Singh, D.P., Brown, S.D.: FPGA logic synthesis using quantified Boolean
satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
444–450. Springer, Heidelberg (2005)

12. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. ASPLOS 2006, 404–415 (2006)

13. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

14. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012)

15. Eggersglus, S., Wille, R., Drechsler, R.: Improved SAT-based ATPG: more con-
straints, better compaction. In: International Conference on Computer Aided
Design (ICCAD), pp. 85–90 (2013)

A Temperature-Aware Battery Cycle Life Model
for Different Battery Chemistries

Alberto Bocca1(B), Alessandro Sassone1, Donghwa Shin2, Alberto Macii1,
Enrico Macii1, and Massimo Poncino1

1 Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
{alberto.bocca,alessandro.sassone,alberto.macii,

enrico.macii,massimo.poncino}@polito.it
2 Yeungnam University, 280 Daehak-Ro,

Gyeongsan, Gyeongbuk 712-749, Republic of Korea
donghwashin@yu.ac.kr

Abstract. With the remarkable recent rise in the production of battery-
powered devices, their reliability analysis cannot disregard the assess-
ment of battery life. In the literature, there are several battery cycle life
models that exhibit a generic trade-off between generality and accuracy.

In this work we propose a compact cycle life model for batteries of
different chemistries. Model parameters are obtained by fitting the curve
based on information reported in datasheets, and can be adapted to the
quantity and type of available data. Furthermore, we extend the basic
model by including some derating factors when considering temperature
and current rate as stress factors in cycle life.

Applying the model to various commercial batteries yields an aver-
age estimation error, in terms of the number of cycles, generally smaller
than 10 %. This is consistent with the typical tolerance provided in the
datasheets.

Keywords: Battery modeling · Cycle life · Battery chemistry · Capac-
ity fading

1 Introduction

Rechargeable batteries are an essential component in many application domains,
such as electric vehicles, mobile systems, renewable energy, and telecommuni-
cation systems. In order to carry out an early verification of these systems,
including the exchange of energy between the energy storage devices and other
components, it becomes essential to have accurate and efficient battery models,
especially models that evaluate the lifetime of the battery in terms of useful
charge-discharge cycles.

In the literature various models for different functional aspects of batteries
have been proposed, with differing tradeoffs between accuracy and generality.
In the field of electronic design, the most commonly used ones are those in

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 109–130, 2016.
DOI: 10.1007/978-3-319-46097-0 6

110 A. Bocca et al.

which the battery is described by a generic standard model expressed in terms
of an equivalent electrical circuit. (e.g., [1,2]). This is then populated either using
data obtained from direct measurements on actual devices or by extrapolation
of battery characteristics available from datasheets (e.g., [3]). These kinds of
models are typically generated for a specific battery chemistry and show a high
degree of accuracy. This accuracy may significantly degrade if these models are
applied to different battery chemistries. Furthermore, they are specific to a given
battery chemistry and thus show a very high degree of accuracy. Obviously, this
degree of accuracy can vary (decrease) significantly if the model, generated for
a particular battery chemistry, is applied to batteries with different chemical
characteristics.

On the other hand, in certain contexts (e.g., automotive, aerospace, smart
grids), designers often rely on simpler compact analytical macromodels, such as
Peukert’s law [4], as a quick estimator for the sizing of the battery sub-system or
for preliminary what-if analysis. These macromodels are aimed at the generation
of a general relationship between the battery intra-cycle runtime and the most
relevant parameters, like the Depth of Discharge (DOD) or State of Charge
(SOC) of a battery.

While these models have reasonable generality (e.g., they can be applied
to various batteries with different chemical characteristics, once characterized),
they are focused on a single charge/discharge cycle of a battery. They do not pro-
vide information about the “lifetime” of a battery, i.e., decrease in performance
due to long-term inter-cycle effects, such as the fading of the total capacity
(ampere-hour) caused by repeated cycling. It is possible to incorporate such
aging effects into these circuit-level or analytical models, for instance by replac-
ing the use of a fixed battery capacity value with a generic function of some
parameters. However, this operation requires (i) an understanding of the vari-
ous phenomena that affect battery aging, and (ii) the construction of a compact
model that can be used either as a standalone model or incorporated in tradi-
tional functional battery models.

The literature provides several studies on these effects, proposing mathe-
matical models that are based on the electrochemical properties or the physics
of the batteries and are therefore strongly bound to specific battery materials
and chemistry (e.g., [5–9]). Although some other aging models, such as those
proposed in [10–15], are empirically characterized onto a pre-defined equation
template, they are still derived by measurements and, therefore, are not general
enough to support different battery chemistries.

The objective of this work is the generation of an aging model with similar
characteristics to a Peukert-like equation. This should be (i) analytical, but able
to be empirically populated, and (ii) general enough to support different battery
chemistries. Specifically, we propose a mathematical model for estimating the
number of cycles with respect to the related capacity fade of batteries.

The accuracy of the approach proposed is demonstrated by applying this
model to various commercial batteries of different chemistries, for which the
manufacturers provide information on the long-term effects in their datasheets.

A Temperature-Aware Battery Cycle Life Model 111

The results show an average estimation error, referring to the number of cycles,
generally within 10 %, which is consistent with the typical tolerance provided in
various datasheets (e.g., [16]).

The paper is organized as follows. Section 2 reports related works on battery
modeling, while Sect. 3 describes the proposed mathematical model for estimat-
ing the number of cycles of batteries, and Sect. 4 reports the experimental results.
In addition, Sect. 5 reports the proposed model extended to the temperature and
current effects on battery aging, with the related results, while Sect. 6 draws some
conclusions.

2 Background and Motivations

2.1 Battery Aging Issues

The life degradation of a rechargeable battery depends on some irreversible
changes of physical, mechanical, and chemical nature (e.g., [17,18] for lithium-
ion batteries) in its basic components, such as (i) corrosion, cracking, plating, or
exfoliation of the electrodes, (ii) decomposition of the electrolyte and/or of the
binder, and (iii) corrosion of the separator, just to list the most evident ones.

The most tangible effect of such deterioration is the irreversible reduction of
the total battery capacity, which is named capacity fade. This fading in capacity
is often measured by the so-called state-of-health (SOH), calculated as the ratio
between the actual total capacity Caged and the rated capacity CR (i.e., the total
capacity of one fresh battery), as reported in (1), while the difference CR - Caged

defines the capacity loss (i.e., Cfade). In this case, most manufacturers provide
information on fading as a percentage (i.e., in a normalized form).

SOH =
Caged

CR
(1)

Battery aging is largely determined by:

– Temperature (T). As with other typical reliability mechanisms, aging usu-
ally increases with increasing temperatures; as energy generation process in the
battery involves a chemical reaction, the relation with temperature follows an
Arrenhius-type of equation. Section 5.1 describes the main temperature effects
on cycle life, from a battery perfomance point of view.

– Depth-of-Discharge (DOD). The DOD is the percentage of battery capac-
ity that has been discharged before starting a new charge phase. A DOD of
100 % implies that a battery has been fully discharged before starting a new
charge phase. Aging increases with deeper discharge cycles (i.e., higher DOD
values).

– Charge/discharge current. Both currents affect battery degradation, but
generally with a different impact on aging (e.g., [19]). Aging worsens with
larger charge or discharge currents. Impact of a certain current on aging
strictly depends on the battery chemistry and temperature. Section 5.2 faces
this issue considering an analysis for various batteries.

112 A. Bocca et al.

– Number of cycles (N). In a given cycle, deterioration mainly depends on
the working and operating conditions. In addition, it may also depend on the
number of charge/discharge cycles previously encountered or, in other terms,
on the battery SOH at which a certain cycle is performed.

2.2 Battery Aging Models

Although various models have been proposed in literature, they usually have
many parameters whose values have to be empirically extracted from direct
analysis. For instance, [5] proposes an aging model for a certain lithium-ion (Li-
ion) battery that relies on crack propagation theory, with some battery specific
constants also related to mechanical strain. It further includes the average state-
of-charge (SOC) in the model, since battery aging generally increases for high
average SOC values. However, although that mathematical comprehensive model
is well-known in the literature, there are practical difficulties to adapt it to
different Li-ion batteries.

Concerning cycle life estimation, numerous researchers have proposed ana-
lytical models capturing the main aging mechanisms and capacity fading based
on the electrochemical properties of the batteries and even including full-physics
based models (e.g., [8] for Li-ion batteries). In fact, the causes for degradation
in batteries generally differs when considering the various cell components (e.g.,
electrolyte chemical composition, electrodes design, and active material) [17].
However, from the perspective of an electronic designer this modeling approach
is unfeasible and, therefore, more simple and generic aging models are searched.
In this work, we focus on compact mathematical battery cycle life models with
only a couple of parameters in their formulas, other than the aforementioned
aging factors (e.g., DOD and N).

In [9] the authors proposed a model to calculate the usable number of cycles
N of a battery based on the following equation:

N = N1 · eα·(1−DOD′) (2)

where DOD′ is the normalized depth of discharge (0 ≤ DOD′ ≤ 1), α is a
characteristic constant of the battery and N1 is the number of cycles at DOD′ =
1. This model is empirically characterized for lead-acid, nickel-cadmium (NiCd)
and nickel-metal hydride (Ni-MH) batteries, whose cycle-life vs. DOD curve has
an exponential shape. It is not, however, suitable for many lithium-based cells,
whose cycle-life vs. DOD curve sometimes exhibits a more linear behavior (e.g.,
for LiFePO4 cells).

A slightly different relationship between cycle-life and DOD was introduced
in [10]:

N = N0.8 · DOD′ · eα·(1−DOD′) (3)

where N0.8 is the cycle life at DOD = 80%, while α is a constant whose value
is, respectively, 3 and 2.25 for lead-acid and Ni-MH tested battery packs.

Thaller [11] has defined another relationship for battery cycle life after con-
sidering excess capacity F , with respect to the rated capacity, and a penalty

A Temperature-Aware Battery Cycle Life Model 113

factor due to the DOD, by including the P parameter, as reported in (4), which
gives this mathematical prediction model for a general battery:

N =
1 + F − DOD′

A · (1 + P · DOD′) · DOD′ (4)

In our work, F is always considered equal to 0, so that each analysis is
performed after starting from the rated capacity of any commercial cell or cell
string. The product A · DOD′ represents the irreversible capacity loss in each
cycle. Values of the parameter A were originally declared to be in the range 0.000
÷ 0.002 [11].

These previous models estimate the cycle life of a battery, always after con-
sidering a fixed irreversible capacity fading (e.g., 20 %, that is, when the total
maximum available capacity reaches 80 % of the nominal one).

In [12] the authors introduce a complex cycle life model consisting of dif-
ferent equations, one for each stress factor considered, i.e., C-rate, T and DOD.
Despite its high accuracy, the model derivation requires extensive empirical mea-
surements and the model itself lacks the compactness and the generality of a
Peukert-like equation.

Another analytical method for battery life prediction is based on the ampere-
hour throughput, i.e., the total energy supplied by the battery during its life [13],
also called “charge life”. The charge life ΓR in ampere-hours (Ah) is defined as:

ΓR = LR · DOD′ · CR (5)

where CR is the rated capacity in Ah at a rated discharge current IR, and LR is
the maximum number of cycles referring to a given normalized depth of discharge
DOD′ and a discharge current IR. In the model presented in [14], the authors
proposed calculating an equivalent Ah weighted-throughput parameter.

The model proposed in [15] adopted this approach to estimate the cycling
capacity fade through a modified definition of the Arrhenius equation, charac-
terized by a square root time dependence.

2.3 Motivations for the Work

Nowadays, with the remarkable rise in the production of battery-powered elec-
tronic devices, system-level design requires an analysis of both circuit and power
supply in order to optimize the entire system [1]. Furthermore, battery technol-
ogy is always “work in progress”, as novel battery chemistries are continuously
proposed. For instance, during the last two decades Li-ion batteries have mostly
replaced NiCd and Ni-MH batteries in mobile phones and portable computers,
mainly due to a greater specific energy (Wh/kg) [20].

Therefore, although various models have been proposed in the literature for
specific battery types, a more general and flexible model for different chemistries,
but still simple enough for fast characterization and simulation, is required.

In spite of the various differences, all the aforementioned models reported
in Sect. 2.2 are built by extracting parameter values through measurements on

114 A. Bocca et al.

Fig. 1. A typical plot of Number of cycles vs. DOD.

the batteries under test. Although the generated models are typically very accu-
rate, this approach is quite time-consuming (especially when multiple cycles are
involved) and requires expensive laboratory instrumentation.

There are other methods for analyzing cycle life through computer simulation
[21], but they consider the complex governing equations of the chemical reac-
tions. For this reason, methods that only rely on available manufacturer data
(e.g., datasheets) to derive the capacity fade in batteries using analytical models
(e.g., [22]) or equivalent electrical circuits (e.g., [23]) have been reported in the
literature in recent years. Clearly, the accuracy of these models depends on the
amount of available information reported in battery datasheets.

The main result of this work is to provide a compact model [24], which
expresses the number of usable cycles as a function of the DOD, extended for
including the other factors affecting capacity fade, namely temperature and
charge/discharge current.

The basic outcome of the characterization is a N vs. DOD curve, such as the
one shown in Fig. 1. This information is seldom available in typical datasheets
and has to be extracted by building an analytical model according to the method-
ology described in the next section. Needless to say, for the rare cases in which
this information is available in the datasheet, the plot can be used directly with-
out resorting to our method. However, in this work we will also consider batter-
ies whose datasheets provide this information, in order to validate our proposed
model.

A Temperature-Aware Battery Cycle Life Model 115

3 Modeling Methodology

3.1 Model Definition

The model proposed in this work somehow mimicks the shape of Peukert’s law,
as expressed by (6), which models the intra-cycle non-linear dependency between
capacity and the discharge current:

t =
C

Ik
(6)

where C is the capacity of the battery, I is the discharge current, and t is the
time for totally discharging the battery; k is the Peukert coefficient; typical
values of k depend on the battery chemistry and the manufacturing process and
they typically range from 1.1 to 1.3. As a matter of fact, the curves describing
the Capacity vs. Number of cycles exhibit a similar non-linear relationship.

Our objective is therefore to derive a model expressing battery cycle life in a
compact mathematical form similar to Peukert’s law, and describing the general
non-linear relationship between the capacity fade and the DOD.

In the case of capacity fade, the non-linearity concerns both the number of
cycles N as well as the DOD, and the actual relationship among these quantities
depends also on the value of the target capacity degradation (i.e., the behavior
for a 20 % capacity fade will be different from that for a 30 % capacity fade).
In order to model this non-linearity we need to define a new parameter that
characterizes the battery performance during the cycling.

The proposed mathematical model is shown in (7); it allows to estimate the
number of charging-discharging cycles N for a given battery based on four main
parameters.

N = L · Cfade

DODh
(7)

– L (called the empirical factor) is the parameter that is used to calibrate the
second term of the model with respect to the number of cycles.

– Cfade is the percentage of irreversible capacity loss for which battery life:
usually it is considered as 20 %, but some manufacturers considers a different
value (e.g., 30 %).

– DOD is the depth of discharge expressed as a percentage (eg. 50 %); to avoid
division by 0, it must be > 0, so its range is 1–100%.

– h is the coefficient that models the nonlinear relationship between N and
DOD for a certain Cfade.

The similarity with Peukert’s law is evident. N , considered as an inter-cycle
“lifetime” parameter, is obtained as the ratio of capacity fade and a weighted
metric of the rated capacity discharged on average per cycle (DODh). There
are however two relevant differences: (i) factor L is used to scale the ”lifetime”
across multiple cycles, and (ii) h is not constant, but depends on Cfade. This
makes our approach more general with respect to previous models and allows
one to adapt it to the available manufacturer’s data. In fact, the proposed model

116 A. Bocca et al.

have two degree of freedom, i.e., L and h, while in the aforementioned models
in Eqs. (2), (3), and (4) reported in Sect. 2, one of the two parameters is always
fixed because it is strictly related to a physical characteristic, while only the
other might be set in order to fit the cycle life function.

Concerning the typical range of DOD, most manufacturers avoid using very
low values of DOD (which will results in very large values of N, besides being
unrealistic) and usually provide data for DOD in the range from 10–30 % to
80–100 % [25]. Moreover, in case of only a few cycles in a long period of time,
aging is usually more influenced by calendar life than cycle life.

The model of Eq. (7), by defining a generic model template, is adaptable also
to some batteries like some LiFePO4 batteries, which report a strictly linear
Capacity vs. Number of cycles characteristic; for this battery, a value of h closer
to 1 will fit easily the linear dependency.

3.2 Analysis of the Mathematical Model

In Eq. (7), Cfade is constant, and fixed to a standard value, i.e., 20 % as in typ-
ical datasheets. Besides the “physical” quantities (Cfade and DOD), the model
includes two other scale parameters, i.e., the empirical factor L and the binding
coefficient h, which have to be determined by fitting empirical data derived from
available information (e.g., datasheet). These two parameters reflect a specific
characteristic of the battery behavior during its cycle life.

The empirical factor L usually has a value with an order of magnitude com-
parable to the value of N at low (e.g., 10 or 20 %) DODs. In other words, we
can see L as a factor that calibrates the value of the second term of the model
(the fraction). Since Cfade is constant for a given battery, the fraction actually
reduces to 1/DOD h. By plotting this expression as a function of the DOD
(Fig. 2) for different values of h, we can clearly see how the non-linearity of
1/DODh is modulated quite markedly by h. For large (≥1) values of h, the
curve tends to flatten out, implying that the fraction 1/DODh tends to become
independent of DOD, and relatively low (<0.1). Smaller values of h, conversely,
emphasize the dependency on DOD, resulting in significant differences (in order
of 0.15–0.2) between low and high DOD values.

The analysis also implies that it is not possible to extract this factor only
by analyzing the battery inter-cycle behavior, so an algorithm should be run in
order to find the two parameters L and h generating the model that best fits
the battery cycle life characteristic.

In the next section we present such an algorithm, which searches for the
values of both L and h that populate the model having the minimum error in
the cycle life estimation with respect to the actual data.

3.3 Extraction of Model Parameters

The actual parameter identification depends on the amount of available data.
Many manufacturers provide information about capacity fade in the form of a

A Temperature-Aware Battery Cycle Life Model 117

Fig. 2. 1/DODh vs. DOD for different h values.

Capacity vs. Number of cycles curve as also depicted in Fig. 3. From these plots,
it is no simple matter to perform the battery cycle life evaluation, since the data
about the number of cycles are available for a given number of DODs only (e.g.,
[16]) and, furthermore, sometimes they might even show an uncertainty that
may range from 8 to 10 %, or even higher.

As discussed in Sect. 2, our model is meaningful if the battery under analysis
only provides information in the form of two or more curves in the (capacity,
number of cycles) plane, each corresponding to a different DOD.

Let us assume that there are M such curves available in a datasheet or in
a measured set of data. Obviously the larger M , the more accurate the fitting
process will be. Figure 3 exemplifies this scenario.

Since we need to determine two parameters from the curve(s) (h and L),
and given the limited number of samples points to be considered, it is feasible
to derive them from an exhaustive exploration for all Cfade and DOD points,
as the values of h and L that minimize the maximum error with respect to the
curves. However, an exploration requires a feasible range for these two para-
meters, which is not easy to determine because they are only weakly linked to
“physical” quantities. Of the two, L is the one with some physical interpretation
since it can be regarded as a correction factor of the number of cycles N . There-
fore, we can assume that L ranges between 1 and a value Lmax, determined by
inspection of the datasheet. As a rule of thumb, it is usually near to the largest
value of N reported in the datasheet curves. Conversely, we have no insight of
possible values of h. For this reason, we implement the search as a two-phase
process, as described by Algorithm 1.

The search is organized into of two main iterations over L. In the first one
(Lines 1–7), for all values of Cfade (assumed to be discretized into P values) and

118 A. Bocca et al.

Fig. 3. Model extraction scenario.

Algorithm 1. Search for the best value of L

1: for all L ∈ [1, Lmax] do
2: for all Cfade = 1 . . . P do
3: for all DOD = 1 . . . M do
4: Compute h by (8)
5: end for
6: end for
7: end for
8: H ← [hmin, hmax]
9: MinMaxErr ← ∞.

10: for all L = 1 . . . Lmax do
11: MaxErr ← 0.
12: for all h ∈ H do
13: TotErr ← 0, MinAvgErr ← ∞.
14: for all Cfade = 1 . . . P do
15: for all DOD = 1 . . . M do
16: Calculate N using (7) and compute the

absolute error E
17: TotErr ← TotErr + E
18: end for
19: end for
20: AvgErr ← TotErr/(P ∗ M)
21: if AvgErr < MinAvgErr then
22: H[L] ← h
23: Err[L] ← AvgErr
24: end if
25: end for
26: end for
27: Lopt ← argmin(Err)
28: hopt ← H[Lopt]

A Temperature-Aware Battery Cycle Life Model 119

of the M DOD values it computes the resulting value of h using (8), which is
simply a re-arrangement of (7) expressing h instead of N , and determines thus
a feasible range H = [hmin, hmax] for h.

h =
log(L · Cfade

N)
log(DOD)

(8)

Now that we have a feasible range for h, in the second iteration (Lines 10–
26), we determine the optimal values of h and L, as follows. In the outer loop
over L (Line 10), the optimal value of h is calculated first; for each value of
h (using some discretization step), Cfade and DOD, N is computed using the
model Eq. (7) (Line 16), and the error between this value and the one extracted
from the datasheet is evaluated. The value of h that yields the least average
error is stored as the best for a given value of L into an array h, together with
the relative errors (array Err, Lines 22–23).

At the end of the iteration over L, the value of L corresponding to the smallest
error is selected as single Lopt for the model (Lines 27–28), which is used as an
index in h to determine hopt for each Cfade.

4 Model Validation

The validation of the proposed model is performed after considering batteries of
various chemistries produced by different manufacturers. Although the type of
aging data may differ from one datasheet to another, we have collected the avail-
able information and translated it into the tabular format described in Sect. 3;
using these data, we ran the search algorithm to populate the model for each
battery under analysis.

4.1 VRLA Batteries

We start our evaluation from Valve Regulated Lead Acid (VRLA) batter-
ies, which have a more evident nonlinear aging behavior with respect to
many other chemistries. Moreover, datasheets for most VRLA batteries include
more detailed information on aging, typically in the form of the plot of
Capacity vs. Number of cycles (e.g., Fig. 3).

Table 1 reports the extracted manufacturer data and the resulting model
parameters for two different Absorbed Glass Mat (AGM) VRLA batteries: the
XTV1272 by CSB Battery and the EV12A-B by DISCOVER R©. The first three
columns represent the data given from the related datasheets, in both cases for
three different Cfade points, namely 10, 20, and 40 %. The last four columns
report the parameters obtained by the search algorithm, the resulting number of
cycles Nm from the model, and the estimation maximum absolute error. After
comparing Nm against the cycle life extracted from the datasheets (i.e., Nd), the
greatest errors are given for a low (i.e., 10 %) Cfade, while they are fairly small
for typical lifespan (i.e., Cfade = 20 % or greater).

120 A. Bocca et al.

Table 1. Extracted parameters and number of cycles estimation for the CSB XTV1272
and DISCOVER EV12A-B AGM-VRLA batteries.

Battery
Datasheet Model

Nd DOD Cf ade L h Nm Max. error (%)
C

S
B

X
T

V
12

72
681 30

10

2464

1.093621
597 -12.33

305 50 342 12.13
151 100 160 5.96
861 30

20 1.222672
770 -10.57

374 50 412 10.16
186 100 177 -4.84

1130 30
40 1.343506

1021 -9.65
459 50 514 11.98
231 100 203 -12.12

D
IS

C
O

V
E

R
E

V
12

A
-B

1321 20
10

2691

0.961111
1512 14.46

734 50 627 -14.58
348 80 399 14.66
953 20

20 1.075976
2143 9.73

885 50 800 -9.60
455 80 482 5.93

2949 20
40 1.193213

3017 2.31
1071 50 1011 -5.60
545 80 577 5.87

Although the error is not negligible, it is worth emphasizing that very often
datasheets report a possible range of the number of cycles rather than a single
curve, to indicate the intrinsic uncertainty of the estimation. The spread of the
values actually increases for increasing DODs. For instance, from the datasheet
for the XTV1272 [16], we found that the possible variation of the cycle life (mea-
sured as the difference between the minimum or maximum value with respect to
the average) might even be up to 10, 11, and 16 % for Cfade = 10, 20, and 40 %,
respectively. Hence, the absolute maximum estimation error obtained by the
proposed model (i.e., around 12, 11, and 12 %, respectively) is comparable with
the maximum tolerance given by the manufacturer.

4.2 Other Battery Chemistries

Evaluation of other battery chemistries is complicated by the fact that
in general only the manufacturers of VRLA batteries provide plots of
Capacity vs. Number of cycles, for different DODs. In particular, datasheets
usually report only a single curve referring to a single DOD value for lithium-
based batteries. The availability of just one DOD reference, however, would yield
a model with little practical use in this case, since the calibration for discharge
patterns would be different from that used for characterization.

Therefore, in order to have a more meaningful assessment of the accuracy of
the proposed model, we only selected those batteries whose datasheets report the

A Temperature-Aware Battery Cycle Life Model 121

Number of cycles vs. DOD characteristic, even just for a single Cfade value. In
any case, values of DOD below 10 % are not used for the derivation of the model
because (i) they are not representative of typical battery usage and (ii) they are
not statistically representative. It is worth noticing that the number of cycles
should approach infinity as DOD → 0%; therefore, as DOD gets smaller it would
be correct to consider a range of values rather than a precise value. Of course, all
the characteristics given by the manufacturers always refer to certain operating
and working conditions (e.g., charge/discharge current and temperature), which
are usually different from one brand to another. In order to validate the basic
proposed model, at the beginning we do not consider the differences among
these conditions. However, both temperature and current rate, as stress factors
in battery aging, are included in the extended model as reported in Sect. 5.

The parameters and estimation errors for the benchmark batteries are
reported in Tables 2 and 3, which also report, for a more comprehensive vali-
dation, the results of the application of the existing and most meaningful ana-
lytical models [9,11]. As (2) requires the number of cycles at DOD = 100 % as
input parameter, the evaluation of that previous model was not possible for
two batteries because this value is not available in their datasheets, as reported
in Table 2. On the other hand, as the model proposed by [11] is useless for
DOD′ = 1 (in this case, N in (4) would be equal to zero), the analysis was
re-performed by considering the maximum DOD = 80 % as reported in Table 3.

In Table 2, the largest absolute estimation error of the model occurs for a
LiFeMgPO4 battery, almost 20 %, while the maximum mean value is 11.35 %
for the Alpha R© one. However, the total average error of the maximum errors for
the 10 batteries in the table is 10.66 %. The mean errors are obviously smaller,
in general less than 10 %, and in one case 11.35 %.

In general, the proposed model shows robustness and accuracy for different
types of electric storage devices. For the Li-ion battery by Saft Evolion the linear
factor L is very high with respect to any other battery. In fact, the linear factor
usually depends on the battery properties of cycling, while the range of the h
parameter strictly depends on the linearity of the cycle life with respect to the
DOD. The lowest h coefficient found in the model validation is 0.225627 for
the Discover 22-24-700 battery, whereas the highest h is 2.000414 for the Saft
Evolion.

In order to give a more comprehensive example about accuracy, Fig. 4 shows
the plots obtained from all the information in the datasheet for the Lithium
Manganese Dioxide Maxell ML2016 battery, and the estimation data produced
by the proposed model.

Figure 5 reports the plots, normalized to the Cfade and parameter L, of
the models for the selected batteries. The plot for the DISCOVER 22-24-6700,
whose model has h = 0.225627, is reported separately in the upper right pane
for the sake of clarity. The others are represented in a descending order of the h
parameters reported in the fifth column of Table 2, i.e., the curve for the lowest
value (0.995693) is at the top while the one for the highest value (2.000414) is
at the bottom.

122 A. Bocca et al.

T
a
b
le

2
.

B
a
tt

er
y

d
a
ta

,
p
re

d
ic

ti
o
n

m
o
d
el

p
a
ra

m
et

er
s,

a
n
d

es
ti

m
a
ti

o
n

er
ro

r
o
f

th
e

cy
cl

e
li
fe

fo
r

va
ri

o
u
s

b
a
tt

er
ie

s
w

h
o
se

m
a
n
u
fa

ct
u
re

rs
p
ro

v
id

e
th

e
N

u
m

b
er

o
f
cy

cl
es

v
s.

D
O

D
ch

a
ra

ct
er

is
ti

c.

P
ro

d
u
ce

r
C

o
d
e

T
y
p
e

M
o
d
el

P
ro

p
o
se

d
[9

]

L
h

A
b
s.

er
ro

r
[%

]
N

1
α

A
b
s.

er
ro

r
[%

]

m
a
x

m
ea

n
m

a
x

m
ea

n

E
n
er

S
y
s

6
5
-P

C
1
7
5
0

A
G

M
-V

R
L
A

9
0
8
3

1
.3

9
3
2
1
2

1
2
.3

4
8
.0

5
3
3
0

2
.4

8
8
7
9
3

6
3
.0

3
3
4
.4

9

C
o
n
co

rd
e

S
u
n

X
te

n
d
er

A
G

M
-V

R
L
A

4
6
2
9

1
.1

7
6
5
6
3

1
5
.2

0
8
.7

9
3
5
4

2
.6

4
4
0
4
4

2
8
.5

6
1
5
.7

3

S
o
n
n
en

sc
h
ei

n
A

6
0
0

G
el

-V
R

L
A

3
8
7
4

1
.0

2
0
3
1
7

2
.0

3
0
.9

2
7
1
8

1
.7

4
7
6
2
4

2
1
.1

2
1
2
.8

4

A
lp

h
a

T
ec

h
.

K
L
,
K

M
,
K

H
ty

p
es

N
iC

d
3
1
1
0
7

1
.5

8
7
1
8
9

1
8
.1

0
1
1
.3

5
4
6
3

2
.4

1
2
7
9
4

5
4
.0

4
2
8
.3

8

C
&

D
T
ec

h
.

L
I

T
E

L
4
8
-1

7
0

C
L
i-
io

n
1
0
9
8
8
2

1
.4

2
0
1
3
5

6
.2

7
3
.6

0
2
9
8
7

2
.0

2
2
8
3
2

2
.5

3
1
.2

2

S
a
ft

E
v
o
li
o
n

L
i-
io

n
1
1
5
7
4
5
2

2
.0

0
0
4
1
4

1
3
.8

4
8
.1

5
n
.a

-
-

-

S
ei

k
o

(S
II

)
M

S
6
2
1

M
n

S
i

L
i
−

io
n

9
8
6

0
.9

9
5
6
9
3

0
.9

0
0
.3

8
2
0
2

1
.7

1
2
3
9
8

2
0
.2

9
1
2
.0

7

M
a
x
el

l
M

L
2
0
1
6

L
i/

M
n
O

2
2
3
9
3

1
.5

6
6
1
2
5

1
1
.2

8
6
.4

9
3
9

2
.7

4
3
1
0
1

6
5
.1

1
3
6
.8

1

D
is

co
v
er

2
2
-2

4
-6

7
0
0

L
iF

eP
O

4
6
7
1

0
.2

2
5
6
2
7

6
.9

9
4
.3

6
n
.a

-
-

-

V
a
le

n
ce

U
-C

H
A

R
G

E
L

iF
eM

g
P

O
4

1
5
3
4
2
5

1
.4

9
1
0
9
4

1
9
.6

6
9
.2

1
2
6
7
9

2
.7

6
4
4
4
4

1
9
.1

0
1
2
.3

1

N
o
te

.
n
.a

.:
n
o
t

av
a
il
a
b
le

A Temperature-Aware Battery Cycle Life Model 123

T
a
b
le

3
.

B
a
tt

er
y

d
a
ta

,
p
re

d
ic

ti
o
n

m
o
d
el

p
a
ra

m
et

er
s,

a
n
d

es
ti

m
a
ti

o
n

er
ro

r
o
f

th
e

cy
cl

e
li
fe

fo
r

va
ri

o
u
s

b
a
tt

er
ie

s
w

h
o
se

m
a
n
u
fa

ct
u
re

rs
p
ro

v
id

e
th

e
N

u
m

b
er

o
f
cy

cl
es

v
s.

D
O

D
ch

a
ra

ct
er

is
ti

c.
T

h
e

m
a
x
im

u
m

D
O

D
is

8
0

%
fo

r
a
ll

th
e

a
n
a
ly

se
s.

P
ro

d
u
ce

r
C

o
d
e

T
y
p
e

M
o
d
el

P
ro

p
o
se

d
[1

1
]

L
h

A
b
s.

er
ro

r
[%

]
A

P
A

b
s.

er
ro

r
[%

]

m
a
x

m
ea

n
m

a
x

m
ea

n

E
n
er

S
y
s

6
5
-P

C
1
7
5
0

A
G

M
-V

R
L
A

9
0
8
3

1
.3

9
3
2
1
2

1
2
.3

4
7
.4

9
0
.0

0
1
4
0

−0
.4

3
6
2
2
8

3
6
.5

7
2
2
.6

8

C
o
n
co

rd
e

S
u
n

X
te

n
d
er

A
G

M
-V

R
L
A

4
6
2
9

1
.1

7
6
5
6
3

1
5
.1

9
8
.8

1
0
.0

0
1
8
0

−0
.9

5
3
0
2
9

8
.3

7
5
.4

4

S
o
n
n
en

sc
h
ei

n
A

6
0
0

G
el

-V
R

L
A

3
8
7
4

1
.0

2
0
3
1
7

2
.0

3
0
.8

2
0
.0

0
1
4
0

−1
.0

1
0
0
2
8

3
.6

4
0
.9

9

A
lp

h
a

T
ec

h
.

K
L
,
K

M
,
K

H
ty

p
es

N
iC

d
3
1
1
0
7

1
.5

8
7
1
8
9

1
8
.1

0
1
0
.7

0
0
.0

0
1
1
0

−0
.6

7
4
0
3
2

1
3
.6

7
7
.2

9

C
&

D
T
ec

h
.

L
I

T
E

L
4
8
-1

7
0

C
L
i-
io

n
1
0
9
8
8
2

1
.4

2
0
1
3
5

6
.2

6
4
.2

1
0
.0

0
0
2
0

−0
.8

6
4
0
3
0

9
.9

4
4
.4

3

S
a
ft

E
v
o
li
o
n

L
i-
io

n
1
1
5
7
4
5
2

2
.0

0
0
4
1
4

1
3
.8

4
8
.1

5
0
.0

0
0
1
0

−0
.4

5
2
0
4
5

5
9
.8

1
3
4
.8

4

S
ei

k
o

(S
II

)
M

S
6
2
1

M
n

S
i

L
i
−

io
n

9
8
6

0
.9

9
5
6
9
3

0
.9

0
0
.4

0
0
.0

0
5
0
0

−0
.9

9
9
0
2
8

0
.9

9
0
.4

2

M
a
x
el

l
M

L
2
0
1
6

L
i/

M
n
O

2
2
3
9
3

1
.5

6
6
1
2
5

1
1
.2

8
6
.5

3
0
.0

0
5
0
0

1
.2

2
8
0
0
6

4
8
.2

0
3
2
.7

1

D
is

co
v
er

2
2
-2

4
-6

7
0
0

L
iF

eP
O

4
6
7
1

0
.2

2
5
6
2
7

6
.9

9
4
.3

6
0
.0

0
0
6
0

−1
.2

0
0
9
3
4

5
2
.8

3
3
8
.5

2

V
a
le

n
ce

U
-C

H
A

R
G

E
L

iF
eM

g
P

O
4

1
5
3
4
2
5

1
.4

9
1
0
9
4

1
9
.6

6
8
.8

0
0
.0

0
0
2
0

−0
.9

6
7
0
2
8

2
7
.4

7
1
5
.6

9

124 A. Bocca et al.

Fig. 4. Extracted N vs. DOD plots for the lithium manganese dioxide Maxell ML2016
battery.

Fig. 5. 1/DODh vs. DOD of the generated models for the selected batteries.

At the end, the chart in Fig. 6 reports a comparison of the estimation models
after applying each of them to the benchmarks. For a comprehensive report, it
also includes the main results obtained for the analysis of the model by [10],
whose estimation errors are too great to be reported. Furthermore, for the
here proposed model, this chart considers the worst case (i.e., data reported
in Table 2).

Although the previous models have two parameters (i.e., coefficients) in their
expressions, one of them always strictly depends on the battery properties. In the
here proposed model, both parameters L and h can be characterized, resulting
in higher accuracy thanks to an additional degree of freedom in the modeling
process.

A Temperature-Aware Battery Cycle Life Model 125

Fig. 6. Maximum and mean estimation errors given by the models for all the selected
benchmarks.

5 Extension of the Basic Model

This Section provides an overview of temperature and current as stress factors
that may accelerate the aging of batteries, and presents an extended version of
the model reported in Sect. 3.1, in order to also include the dependency of the
cycle life on these stress factors.

In this context, the total battery cycle life is the number of cycles that a
battery may guarantee at different temperatures and current rates.

5.1 Impact of the Temperature on Cycle Life

The battery capacity is strongly dependent on temperature and it is not always
a monotonic function. Furthermore, such a dependency changes for different
battery chemistries [20].

Temperature effects on battery performance may manifest themselves in a
reversible change of the total battery capacity in a single cycle, and in an irre-
versible capacity fading during the battery cycle life.

In the literature, an Arrhenius-type equation typically describes the rela-
tionship between battery aging due to cycle life and temperature (T) [15,22].
For fixed values of charge and discharge C-rates, this analyitical model can be
written as follows [23]:

Cfade = B · e−Ea/(Rg·Tb) · Az
h (%) (9)

In (9), B is a constant, Tb is the battery temperature (K), while Ea and Rg

are, respectively, the activation energy (J·mol−1) and the universal gas constant
(i.e., 8.3143 J·mol−1·K−1); Ah is the total ampere-hour throughput processed
after a certain number of cycles (i.e., given by N · DOD′ · CR), while z is the
power law factor. Regarding the latter, [15] reports that z is always near 0.5 for

126 A. Bocca et al.

a graphite-LiFePO4 cell, being “fairly constant at all C-rates”. In addition, this
work provides all the exact values of the coefficients in (9) for a certain battery
cell under test. Furthermore, it should be pointed out that both input and output
ampere-hour throughputs due to charge and discharge currents, respectively,
contribute to capacity fading [14].

Although equations based on Arrhenius’ law provide reference analytical
models, nowadays batteries may have different characteristics. In fact, there are
batteries for which temperature effects, in service and cycle life, do not exactly
follow Arrhenius’ law. For instance, the handbook for the Sonnenschein R© A600
Gelled Electrolyte (GEL) VRLA battery [26] reports a better performance with
respect to Arrhenius’ law, from the test results, after comparing the temperature
effects on both service and cycle life. Therefore, a more adaptive model that fits
any characteristics concerning capacity fading should be considered when ana-
lyzing the effect of the temperature in different battery chemistries and products.

Since (9) refers to the capacity loss due to the effect of temperature in cycle
life, in order to obtain a similar equation for the calendar (service) life, the term
Ah in (9) must be replaced with the battery lifetime t (months) [15,22].

The Proposed Model for Temperature Effect on Aging. In order to
include the temperature effect in the model, we consider a slightly different
mathematical expression with respect to the model given in (7), but still with
only two parameters, for extracting the temperature derating factor (TDF), as
given by the following equation:

TDF = LT ·
(

Tb

Tref

)hT

+ (1 − LT) (10)

In (10), Tref is the temperature at which the model in (7) refers to (e.g.,
25◦C), while Tb is the battery temperature; LT is an empirical constant, which
appears two times in the formula, while ht is the power factor that reflects the
characteristic of the battery cycle life for different temperatures. Notice that the
TDF is a non-negative value; it is in fact determined by the values of ht and
LT using the algorithm of Sect. 3 to empirically fit the curve of N vs. T , which
obviously represents a non-negative value.

5.2 Impact of the Current on Cycle Life

In various battery aging models, current is not usually considered as one of
the main stress factors in cycle life (e.g., [5]). For instance, in [14] the authors
claimed that the C-rate effect on aging is negligible in Li-ion cells for relatively
large C-rates (in a range ±4C). This assumption cannot however be generalized
for all applications and batteries. In fact, various datasheets report a different
cycle life for different charge/discharge currents. For this reason, the authors in
[27] proposed an extended version of Millner’s aging model [5] by including both
charge/discharge C-rates with their related coefficients, as extracted from the
manufacturer’s data for a commercial LiFePO4 battery.

A Temperature-Aware Battery Cycle Life Model 127

So, with respect to the aforementioned expression reported in (9), [15] pro-
vides a similar Arrhenius-type equation that includes the current rate (for values
greater than C/2), here rewritten as follows:

Cfade = B(irated) · e(−Ea+k1·irated)/(Rg·Tb) · Az
h (%) (11)

In (11), the value of the pre-exponent factor B is different for each current irated

(i.e., expressed in C-rate), while Ea and z can be set to a fitted value [15], as
well as the coefficient k1.

Since charge and discharge currents usually have a different impact on aging,
coefficients values in (11) are generally different when considering the charge and
discharge phases.

The Proposed Model for Current Effect on Aging. The discharge current
derating factor (DDF) is given by the following expression:

DDF = Lid ·
(

id
idref

)hd

+ (1 − Lid) (12)

where idref
is the current (in C-rate value) to which the model in (7) refers,

and idrated
is the discharge current rate; Lid is an empirical factor, and hd is the

power factor that reflects the characteristic of the battery cycle life for different
discharge rates.

Similarly, the charge current derating factor (CDF) is given by the following
equation:

CDF = Lic ·
(

ic
icref

)hc

+ (1 − Lic) (13)

where icref is the charge current (in C-rate value) to which the model in (7)
refers to, while ic is the discharge current; similar to the previous expression in
(12), Lic and hc are the parameters for characterizing the battery behavior for
different charge rates.

Finally, the full equation for analyzing the battery cycle life as a function of
DOD, T, and C-rate, is given by the following formula:

N(DOD,T, i) = L · Cfade

DODh
· TDF · DDF · CDF (14)

In (14), both the derating factors for charge and discharge currents must be
included because generally they have a different impact on battery aging and,
therefore, different coefficients in their formulas.

5.3 Results

Preliminary results are obtained for the Sonnenschein A600 GEL-VRLA and Dis-
cover 22-24-6700 LiFePO4 batteries, as their datasheets provide enough infor-
mation for modeling their cycle life considering temperature effects. For both
batteries, the analysis was conducted considering a maximum Tb equal to 50◦C.

128 A. Bocca et al.

Table 4. Extracted parameters of the derating factor for the model extended to the
temperature effect in cycle life, and consequent estimation error of the model with
respect to the manufacturers’ data.

Producer Code Type LT hT Max. error (%) Mean error (%)

Sonnenschein A600 Gel-VRLA 2.99 −0.391034 9.77 3.87

Discover 22-24-6700 LiFePO4 2.13 −0.840028 8.44 3.23

Table 4 reports the extracted hT parameter for each battery, and the estima-
tion errors of the temperature derating factor given by the model in (10) with
respect to the manufacturers’ data.

It is worth noticing that in both cases the maximum error is less than 10 %.
As far as concerns the current effect on battery aging, which is usually con-

sidered for high C-rates only, the model given in (12) was applied to the Discover
22-24-6700 LiFePO4 battery, for which the extracted parameters Lid and hd are,
respectively, 0.98 and −0.851245. In this case, the maximum and mean estima-
tion errors are, respectively, 2.36 % and 0.96 %. These results demonstrate the
high level of accuracy that the proposed extended model may guarantee.

6 Conclusion

A compact mathematical model for estimating the number of cycles of a bat-
tery with respect to an expected capacity fade, has been proposed. The related
equation describes the cycling behavior of batteries of different chemistries, and
it demonstrates the possibility of obtaining a very fast and also accurate explo-
ration of battery lifespan. The characterization of the long-term effects for a
specific battery only requires two battery-specific parameters: an empirical fac-
tor L and the exponential h coefficient. Validation results show an estimation
mean error generally within 10 %.

Furthermore, the basic model has been extended to include temperature and
current rate effects in battery cycle life. In this scenario, various derating factors
have been defined using mathematical models similar to the basic one. The mean
absolute estimation errors of these models related to temperature and discharge
current are, respectively, less than 4 % and about 1 %.

References

1. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: Discrete-time
battery models for system-level low-power design. IEEE Trans. Very Large Scale
Integr. Syst. (VLSI) 9(5), 630–640 (2001)

2. Chen, M., Rincón-Mora, G.A.: Accurate electrical battery model capable of pre-
dicting runtime and I-V performance. IEEE Trans. Energy Convers. 21(2), 504–511
(2006)

A Temperature-Aware Battery Cycle Life Model 129

3. Petricca, M., Shin, D., Bocca, A., Macii, A., Macii, E., Poncino, M.: An auto-
mated framework for generating variable-accuracy battery models from datasheet
information. In: International Symposium on Low Power Design, pp. 365–370.
IEEE/ACM (2013)

4. Peukert, W.: Über die Abhängigkeit der Kapazität von der Entladestromstärke bei
Bleiakkumulatoren. Elektrotechnische Zeitschrift 20, 20–21 (1897)

5. Millner, A.: Modeling lithium ion battery degradation in electric vehicles. In: IEEE
Conference on Innovative Technologies for an Efficient and Reliable Electricity
Supply, pp. 349–356 (2010)

6. Ramadass, P., Haran, B., White, R., Popov, B.N.: Mathematical modeling of the
capacity fade of Li-ion cells. J. Power Sources 123(2), 230–240 (2003). Elsevier

7. Lam, L., Bauer, P.: Practical capacity fading model for Li-ion battery cells in
electric vehicles. IEEE Trans. Power Electron. 28(12), 5910–5918 (2013)

8. Ramadesigan, V., Chen, K., Burns, N.A., Boovaragavan, V., Braatz, R.D.,
Subramanian, V.R.: Parameter estimation and capacity fade analysis of lithium-ion
batteries using reformulated models. J. Electrochem. Soc. 158(9), A1048–A1054
(2011). ECS

9. Seiger, H.N.: Effect of depth of discharge on cycle life of near-term batteries. In:
16th Intersociety Energy Conversion Engineering Conference, pp. 102–110. Amer-
ican Society of Mechanical Engineers (1981)

10. Burke, A.F.: Cycle Life Considerations for Batteries in Electric and Hybrid Vehi-
cles. Technical paper, No. 951951. SAE (1995)

11. Thaller, L.H.: Expected cycle life vs. depth of discharge relationships of well-
behaved single cells and cell strings. J. Electrochem. Soc. 130(5), 986–990 (1983).
ECS

12. Omar, N., Monem, M.A., Firouz, Y., Salminen, J., Smekens, J., Hegazy, O.,
Gaulous, H., Mulder, G., Van den Bossche, P., Coosemans, T., Van Mierlo, J.:
Lithium iron phosphate based battery - assessment of the aging parameters and
development of cycle life model. Appl. Energy 113, 1575–1585 (2014). Elsevier

13. Symons, P.: Life estimation of lead-acid battery cells for utility energy storage.
In: Fifth International Conference on Batteries for Utility Storage. Puerto Rico
Electric Power Authority (1995)

14. Marano, V., Onori, S., Guezennec, Y., Rizzoni, G., Madella, N.: Lithium-ion bat-
teries life estimation for plug-in hybrid electric vehicles. In: Vehicle Power and
Propulsion Conference, pp. 536–543. IEEE (2009)

15. Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M.,
Tataria, H., Musser, J., Finamore, P.: Cycle-life model for graphite-LiFePO4 cells.
J. Power Sources 196(8), 3942–3948 (2011). Elsevier

16. CSB Battery Co., Ltd. http://www.csb-battery.com/upfiles/dow01404206487.pdf.
Accessed 7 Jan 2016

17. Vetter, J., Novák, P., Wagner, M.R., Veit, C., Möller, K.-C., Besenhard, J.O.,
Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A.: Ageing mecha-
nisms in lithium-ion batteries. J. Power Sources 147(1–2), 269–281 (2005). Elsevier

18. Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev,
K., Staniewicz, R.J.: Main aging mechanisms in Li ion batteries. J. Power Sources
146(1), 90–96 (2005). Elsevier

19. Bashash, S., Moura, S.J., Fathy, H.K.: Charge trajectory optimization of plug-in
hybrid electric vehicles for energy cost reduction and battery health enhancement.
In: 2010 American Control Conference, pp. 5824–5831. IEEE (2010)

20. Reddy, T.B.: An introduction to secondary batteries. In: Linden, D., Reddy, T.B.
(eds.) Linden’s Handbook of Batteries, 4th edn. McGraw-Hill Co, New York (2011)

http://www.csb-battery.com/upfiles/dow01404206487.pdf

130 A. Bocca et al.

21. Ning, G., White, R.E., Popov, B.N.: A generalized cycle life model of rechargeable
Li-ion batteries. Electrochim. Acta 51(10), 2012–2022 (2006). Elsevier

22. Spotnitz, R.: Simulation of capacity fade in lithium-ion batteries. J. Power Sources
113(1), 72–80 (2003). Elsevier

23. Petricca, M., Shin, D., Bocca, A., Macii, A., Macii, E., Poncino, M.: Automated
generation of battery aging models from datasheets. In: 32nd IEEE International
Conference on Computer Design, pp. 483–488. IEEE (2014)

24. Bocca, A., Sassone, A., Shin, D., Macii, A., Macii, E., Poncino, M.: An equation-
based battery cycle life model for various battery chemistries. In: 2015 IFIP/IEEE
International Conference on Very Large Scale Integration, pp. 57–62. IEEE (2015)

25. Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K., Staniewicz,
R.J.: Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources
97, 13–21 (2001). Elsevier

26. GNB Industrial Power: Sonnenschein R©: Handbook for Stationary Gel-VRLA Bat-
teries Part 2: Installation, Commissioning and Operation, 17th edn. Exide Tech-
nologies (2012)

27. Bocca, A., Sassone, A., Macii, A., Macii, E., Poncino, M.: An aging-aware battery
charge scheme for mobile devices exploiting plug-in time patterns. In: 33rd IEEE
International Conference on Computer Design, pp. 407–410. IEEE (2015)

A SAR Pipeline ADC Embedding Time
Interleaved DAC Sharing for Ultra-low Power

Camera Front Ends

Anvesha Amaravati(B), Manan Chugh, and Arijit Raychowdhury

School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, USA

aamaravati3@gatech.edu

Abstract. The growing need for ultra-low power cameras for sen-
sors, surveillance and consumer applications has resulted in signifi-
cant advances in compressed domain data acquisition from pixel arrays.
In this journal we present a novel 64-input Successive Approximation
(SAR) Pipeline analog-to-digital converter (ADC) suitable for com-
pressed domain data acquisition in camera front-ends. The proposed
architecture features a time interleaved capacitive digital-to-analog con-
verter (DAC) shared between column parallel ADCs for area savings
(2.28X); and a shared amplifier stage for power savings (60 %), achiev-
ing 4X throughput as compared to traditional architectures. Simulations
on a 130 nm foundry process shows that the proposed SAR Pipeline
ADC draws 31µW at 2 MS/s having a target Figure-of-Merit (FOM) of
87 fJ/conv. per step at Nyquist rate. The proposed compressive sensing
front end achieves per patch energy per patch of 0.9 nJ.

1 Introduction

Mobile devices for IOT (Internet of Things) require CMOS image sensor (CIS)
with low power and area [1]. Traditional CIS for wearable devices consume power
more than 50 mW [2]. In a CMOS image sensor system the most power consum-
ing blocks are: digital image processing back end & column parallel ADCs [3,4].
In most of the reported image sensors, column parallel ADCs draw 50–65 % of
the power of the entire image sensor signal acquisition chip [1,5]. The power con-
sumed by column parallel ADCs is proportional to the number of measurements
to be performed by the ADC. It increases with the number of pixels. For next
generation IoT devices like “always on” Camera based image sensors, human
machine interface systems with built in machine intelligence, low power is the
key enabler.

Figure 1 shows the traditional nyquist domain signal processing. Pixel volt-
ages are digitized using high speed column parallel ADCs. Digitized image is
encoded using algorithms like discrete cosine transform (DCT), discrete wavelet
transform (DWT) etc. The power budget for transmitter blocks is shown in

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 131–149, 2016.
DOI: 10.1007/978-3-319-46097-0 7

132 A. Amaravati et al.

Fig. 1. Traditional nyquist signal acquisition and transmission

Fig. 2. Power budget for various blocks in transmitter

Fig. 2. We can observe that encoding part like DCT, DWT consumes significant
amount of power followed by Analog to Digital signal acquisition etc. As the
resolution of the image goes up the number of measurements per ADC goes up
and hence the encoding power also increases. This places huge power constraint
on acquisition device and transmitter.

Recently developed algorithms of compressive sensing (CS) promise to reduce
the number of measurements with non-linear recovery at the back-end [6]. The
signal processing chain for compressing sensing is shown in Fig. 3. This approach
makes the encoding done at the transmitter simpler by completely eliminating
power hungry blocks like DCT, DWT. If the pixel values in a camera are repre-
sented as a discrete time signal X = [x1x2x3x4 · · · xn]T , the number of measure-
ments needed in traditional column parallel ADCs will be equal to n. Instead
of n samples, CS needs only m linear measurements (m << n). Figure 4 shows
the plot of PSNR of the recovered image w.r.to number of measurements done
at receiver. We can observe that to achieve PSNR of 30 dB, 250 measurements

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 133

Fig. 3. Compressed domain signal acquisition & transmission

are sufficient. PSNR of 30 dB is sufficient for classifying objects [11]. Therefore
the value of m can be as small as n/250. Therefore compressive sensing achieves
significant reduction is encoding power & transmission bandwidth. The CS mea-
surement matrix is given by Eq. 1.

Y [m] = φ[m,n] × X[n] =

⎛
⎜⎜⎜⎝

0 1 · · · 1
1 1 · · · 0
...

...
. . .

...
1 0 · · · 0m,n

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ (1)

Here Y [m] is the m-dimensional measured array, φ is a random binary matrix
of size m ∗ n and follows the “Independent and Identically Distributed (IID)”
property. X is traditionally recovered at the back-end using an optimization
algorithm, like determining the L1 norm [6].

In this paper we present a novel pipeline-SAR ADC architecture with capaci-
tive DAC sharing with the capability of acquiring linear combinations of 64 pixel
data in a single conversion cycle. This is suitable for such compressed domain
data acquisition.

2 ADC Architectures for CS Image Acquisition

In prior work for obtaining compressed domain data, both analog and digital
techniques have been used to perform compressive measurements from the raw
data. Typically, analog implementations of compressed sensing require an analog
to digital converter to improve accuracy & digital transmission [7,8]. Resistor
based compressed sensing multiplexor reported in [9], suffers from static power
dissipation and the number of inputs (n) is limited, making it suitable for RF
receiver applications only.

To overcome some of the disadvantages of analog CS circuits, [10] has pro-
posed compression in the digital domain after Analog to Digital Conversion.
Figure 5 (a) shows the technique proposed in [10]. The entire analog signal is
converted into the digital domain by high-speed ADCs and the CS encoder does
compression in the digital domain. This is primarily suited for low bandwidth
application like bio-medical signal processing. However, for CIS of a typical

134 A. Amaravati et al.

Fig. 4. Recovered image using L1 norm

256 ∗ 256 size, ADCs would need to acquire all the samples and then con-
vert to the digital domain. The number of measurements by the ADC will not
be reduced and it defeats the purpose of compressed domain data acquisition.
Therefore ADC power will remain the same for image acquisition. Further, the
size of digital CS encoder grows exponentially with the number of inputs. CS
encoders will further add significant power along with the ADC making it infea-
sible for “always on” imaging front-end applications (Fig. 6).

To overcome the limitations of data acquisition followed by compressed
domain measurements, Oike et.al, has proposed a CS camera through simul-
taneous averaging and quantization of pixels using a Σ − Δ ADC [5]. Figure 5
(b) shows the schematic of the resetting Σ − Δ ADC used for such linear mea-
surements. Pixel values are multiplied with random numbers (from the φ matrix)
sequentially and passed to the input of the Σ −Δ ADC. This approach requires
m measurements; however it requires n conversion cycles for one measurement.
This architecture requires a 16 ∗ 16 block for linear measurement. For each

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 135

Fig. 5. CS encoder on acquired samples of ADC [10]

Fig. 6. Simultaneous compression and quantization within [5]

measurement of the block, the resetting Σ −Δ ADC needs 256 clock cycles. For
m measurements Σ −Δ ADC needs n ∗ 256 clock cycles. During this conversion
period, all the high gain amplifiers will remain on and consume power. Hence,
for lowering the total power dissipation, faster conversion with the opportunity
for power gating once the conversion is complete, will be critical.

Once compressed domain data is acquired, the image is often used for online
classification to detect potential trigger signals. For such in-situ classification
[16] and trigger identification, 8 bits of inputs are sufficient. We have plotted
classification accuracy vs. Bit resolution for MNIST data base in Fig. 7. We can
observe that recognition accuracy becomes constant after more than 6 bits of
resolution. Further, it has been shown that for most of the machine learning
applications moderate resolution (6–8 bits) is sufficient [1,11]. Figure 8 shows
the Energy per conversion with respect to the Signal to Noise and Distortion
ratio (SNDR) for state of the art SAR, Pipeline and Σ − Δ ADCs. SNDR is
related to effective number of bits (ENOB = SNDR − 1.76/6) [19]. From this
plot we can observe that SAR ADC has best FOM (order of 10–1000 fJ/conv)
for moderate resolution (6–8 bits). Pipeline ADCs also have competitive FOM
for moderate and high speed applications. Since most of the image sensors speed
varies from 1 MS/s to 10 MS/s and we are interested in 8 b of resolution for
in-situ image processing applications, we propose a SAR-Pipeline ADC which
achieves ultra-low power and high area efficiency.

136 A. Amaravati et al.

Fig. 7. Classification accuracy vs. Bit resolution for MNIST database

Fig. 8. Energy vs. SNDR for state of the art reported SAR, Pipeline and Σ−Δ ADCs
[15]

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 137

3 SAR-Pipeline ADC Architecture for CS Measurements

For most of the low power applications SAR ADCs are used since they consume
ultra-low energy per conversion (Fig. 8). However, for portable image front-end
applications resolution more than 4–5 bits SAR ADC occupies huge area since
the MSB capacitance grows as 2N . Since there will be many column parallel
ADCs each will have capacitance of 2N . To alleviate this problem two-stage
SAR Pipeline ADCs are proposed [20,21]. SAR-Pipeline uses two stage SAR-
ADC and an amplifier which is used for amplifying residue generated by stage
1 SAR ADC (Fig. 9). Both the SAR ADC stages operates in parallel and each
stage has to resolve lesser number of bits (lesser DAC settling time & capacitance
(hence lesser area) as compared to traditional SAR). Therefore, SAR-Pipeline
ADCs can operate at much higher speeds with high area efficiency [21]. One of
the inherent advantage of SAR-Pipeline is residue voltage of Stage-1 SAR ADC
is generated within its DAC after conversion phase. Hence this avoids extra DAC
and clock phase to generate residue of Stage-1 unlike in traditional flash based
Pipelined ADCs [21].

Figure 9 illustrates the proposed ADC architecture. The design operates on
a block size of 16 ∗ 16 (256 elements in pixel array). We propose SAR-Pipeline
ADC consisting of 64-inputs Stage-1 SAR ADC resolving 4 bits (with 1 bit redun-
dancy) and Stage-2 SAR ADC resolving 5 bits. We propose time-interleaved DAC
sharing for Stage-1 SAR ADC which provides a linear measurement of 64-inputs
in a single conversion cycle. We also share the amplifier (used for residue ampli-
fication) between 2 neighboring column parallel ADCs to save power. 64 inputs
are simultaneously averaged and quantized using the SAR-Pipeline ADC. Post-
conversion, 4 consecutive samples are averaged using a 10 bit accumulator and
shift register. This allows us to average 256 samples in 4 ADC conversion cycles.
For m random measurements ADC takes m ∗ 4 conversion cycles.

Fig. 9. Proposed CS front-end architecture for CIS

Figure 10 shows a previously reported multi-input SAR ADC used for com-
pressed sensing (with 8 bit resolution). It uses charge sharing. The MSB capacitor

138 A. Amaravati et al.

is equally divided among the inputs. Because of charge sharing the inputs will get
averaged after the sampling cycle. [17] demonstrates a 4 input CS SAR ADC for
wireless applications. This technique requires (28+24 = 272C) number of capac-
itors for an 8 bit ADC and measures 256 inputs (C is the unit capacitor). One of
the main limitations of the proposed SAR ADC architecture for portable imag-
ing application is the area occupied by the sampling capacitors [18]. Dividing the
MSB capacitors to accommodate 256 inputs requires 256 switches. For portable
applications limited supply ≈1–1.3 V provides high RON . This provides us the
time constant (τconv) for conversion (min. sized capacitor of 50 fF) of ≈220 ns
(DAC settling time). This allows a maximum sampling frequency of 730 KHz.
Hence, for high speed cameras (with 30 frames/s) the proposed ADC architec-
ture will not be able to meet latency requirements. Further, [17] uses calibration
for capacitor mismatch, a requirement for more than 6-bits of resolution.

Fig. 10. Reported multi-input SAR-ADC [17]

Figure 11 is the proposed SAR-Pipeline with DAC sharing. We use 4 bit ADC
as the first stage. Since 4-bit ADC has 16 C capacitors, all the capacitors are
divided into equal value of C and 16 inputs are applied. We have 3 instances
of the same DAC which is used for accessing additional 48 inputs. Sampling is
done in two phases. During sampling phase (S1) all 4 DAC’s sample 16 inputs
each. During second phase of sampling charge is redistributed between them.
The averaged voltages across 4 DAC’s during S1 phase given by Eq. 2.

Vdac1 =
(v1 + v2 + + v16)

16
...

Vdac4 =
(v48 + v2 + + v64)

16

(2)

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 139

During the second sampling phase S2, averaging of Vdac1 to Vdac4 takes place.
Therefore, the final voltage across DAC is given by Eq. 3.

Vdacf =
(Vdac1 + + Vdac4)

4

Vdacf =
(v1 + + v64)

64

Vdacf =
(X[0].φ[0] + + X[63].φ[63])

64

(3)

We can observe form Eq. 3 that the final accumulated output represents the
dot-product of the input pixel vector X with the sampling matrix, φ. φ can be
random or programmed so that both random as well as structured compressed
measurements can be obtained. As soon as S2 is done 3 DAC’s are shared with
neighboring column parallel ADC. Once the conversion in 4-bit SAR ADC is
complete, we amplify the residue by 4× and pass it to a 5-bit fine ADC to
resolve the LSBs. Ideally a gain of 16 is required for residue amplification. We
use 1-bit digital redundancy in Stage 1 and half reference scaling for Stage 2 to
reduce the gain requirement which helps to reduce the power in the high-gain
op-amp [20].

Since all the capacitors we use are identical and of value C, calibration is
not required (more details in section III). As 3 DAC’s are shared with 4 ADC’s,
we need an additional capacitance of 12 C. With 12 C extra capacitance we can
acquire linear measurements of 64 inputs in each conversion cycle. This DAC
shared method significantly improves area efficiency and enables simultaneous
acquisition of multiple inputs. In this architecture, the conversion time-constant
(τconv) is determined by the 4-bit ADC settling time even tough we are sampling
64-inputs. This makes the architecture suitable for high speed sensing with large
number of inputs.

Figure 12 shows how the sampling schemes are time-interleaved for the entire
column parallel ADC architecture. Conversion cycle for ADC is 8 clock cycles.
During this period we share 3 DACs with 3 of the neighboring ADCs. S3 to S8
are sampling phases of ADC2 to ADC4. S3 to S8 phase operates during conver-
sion period of ADC1. Pipelining facilitates overlapping of Stage-1 and Stage-2
conversion phases. 1-bit redundancy is added in the first stage to accommodate
capacitor mismatch and offsets of the comparator, amplifiers [20]. We also share
residue amplifier between two neighboring ADCs to reduce the total power [21].
Accumulator (10 bit) used to average 4 consecutive ADC output samples. The
accumulator is reset after every 4 sampling cycles (Fs). The sampler operating
at quarter sampling rate is used to capture the averaged output. The averaged
output contains random measurement of 256 inputs. Figure 12 also shows the
control logic used for proposed CS front-end ADC architecture. Global reset
(RST) is used generate S1, S2 and conversion phase for ADC1. S2 phase of
ADC1 is used to trigger sampling phase for neighboring column parallel ADC.
This process is continued for all 4 ADCs. Falling edge of S2 phase triggers the
conversion phase of individual ADCs (Fig. 13).

140 A. Amaravati et al.

Fig. 11. Proposed multi-input DAC sharing SAR ADC

4 Design Components

In this section, the design details of the first and the second state of the ADC
are discussed.

4.1 Stage 1 ADC and Residue Amplification

Figure 14 shows the Stage 1 of the proposed SAR-Pipeline ADC. 64 inputs are
acquired from S1 and S2. Residue is fed into an amplifier with gain of 4. Stage
1 of the ADC has 4 bit resolution with 1 bit digital redundancy. 1 bit redun-
dancy is used to accommodate the residual offset of the comparator, op-amp
and capacitor mismatch errors.

The Op-amp open loop gain (AOL), unity gain frequency (fu) and swing
(V p − p) target based on the inter-stage gain is given in Table 1. The required
values are derived as per gain error, gain bandwidth (GBW) requirement of the
OTA to be within 1/2 LSB of the ADC error [21]. The worst case values across
process corners is mentioned in the Simulated values of the Table. We can observe
that, simulated values across process corners for gain, bandwidth are by a factor
of two larger than required values. Figure 15 shows the telescopic cascode OTA
used as interstate amplifier. It is well suited for two stage pipeline SAR since
the swing requirement is low and it has high gain bandwidth efficiency.

We use pre-amplifier with output offset compensation to limit the offset of
Stage 1 SAR ADC. The residual offset (Vos,res) is given by Eq. 4.

Vos,res =
Vos,pre−amp

Ap
+

Vos,latch

Ap
(4)

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 141

Fig. 12. Proposed SAR ADC with time-interleaved DAC sharing

Fig. 13. Timing for proposed SAR Pipeline Architecture

Table 1. Design requirement for amplifier and 2nd Stage offset

Inter-stage gain Op-amp 2nd stage SAR

AOL fu V p − p Offset

Required 42 dB 42MHz 250mV 16.125 mV

Simulated values 50 dB 80MHz 300mV 8 mV

142 A. Amaravati et al.

Fig. 14. Stage 1 and Stage 2 of the proposed ADC

where Vos,pre−amp and Vos,latch are the pre-amplifier offset and latch offset
respectively. Ap is the pre-amplifier gain. The 3σ Vos,pre−amp and Vos,latch are
5 mV and 30 mV respectively. The gain amplifier features a cross coupled load
which provides a high gain of 15. The residual offset is 2.33 mV which is 0.25 LSB
of the sub-ADC.

We use telescopic cascoded OTA in the proposed design for residue ampli-
fication. Telescopic cascoded OTA has high power efficiency for a given gain
bandwidth (GBW) [19]. Because of half gain and half reference implementation
of the ADC, the open loop gain of the OTA is reduced. The OTA achieves a
swing of 300 mVp−p.

4.2 Stage 2 ADC

Figure 16 shows the Stage 2 of the proposed SAR-Pipeline ADC. We use a split
capacitor architecture to reduce the area and power for the second ADC. Since
the non-linearity of this ADC will get divided by the gain of the amplifier, it can
be neglected. For the comparator in stage 2 of the proposed ADC, a pre-amplifier
with gain of 3 is used since the offset requirement from it is 15 mV. Hence, Stage 2

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 143

Fig. 15. Telescopic cascode OTA used as inter-stage amplifier

of the proposed ADC doesn’t require the output offset compensation. The total
capacitance from the second ADC is 11 C.

5 Analysis of Capacitor Mismatch

Systematic variations has no effect of capacitor matching since all the capaci-
tance in Stage 1 SAR ADC are equal to C. The capacitance mismatch standard
deviation for metal-insulator-metal (MiM) is given by Eq. 5.

σΔC/C =
AΔC/C√

WL
(5)

where AΔC/C is process constant which is 1%.µm for 0.13µm CMOS process
[22]. W &/ L are width and length of the capacitor. The minimum size allowed
in 0.13µm is 5µm ∗ 5µm. With minimum sized capacitor σΔC/C obtained will
be 0.002.

144 A. Amaravati et al.

Fig. 16. 6-bit split cap SAR-ADC for Stage 2

As per [23] maximum allowable capacitor mismatch for a resolution of n is
given by Eq. 6.

ΔC

Cmax
=

2n

22n − 2n + 1
(6)

For n = 9, ΔC/Cmax reaches close to 0.002. This shows the residue generated
by first ADC will fall within the range of 1/8 LSB of error. Hence the proposed
architecture is robust towards capacitor mismatch.

6 Simulation Results

Performance of the proposed SAR-Pipelined ADC is verified through design and
simulations in the 0.13µm Mixed-Mode CMOS.

Figure 17 shows the normalized output frequency spectrum of the proposed
ADC for input frequency (Fin) of 248.34 KHz at sampling rate (Fs) of 1 MSPS.
A 1024-point FFT shows SNDR of 49.5 dB which is equivalent to an ENOB
of 7.9.

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 145

Fig. 17. Frequency spectrum of the proposed ADC (Fin = 248.34 KHz & Fs = 2 MHz)

Figure 18 shows the 64 inputs applied to ADC at each sampling cycle. Each
64 inputs corresponds to CS multiplexor output (Product of input vector with
random number). Figure 19 shows the ADC and accumulator outputs at each
conversion cycles. For a particular case study, as shown in the figure, an ideal
averaging without quantization results in a output of 270.11 mV. The proposed
ADC after accumulated 4 samples each provides an output of 269.53 mV which
is less than 1 LSB of error.

Figure 20 shows the SNDR of the proposed ADC from input frequency range
of 0.2 MHz to to 0.98 MHz. The ENOB at Nyquist frequency is 7.56. This ENOB
achieves Walden FOM [19] of 85 fJ/conv. step.

Figure 21 shows the DNL and INL of the proposed ADC across 256 digital
codes. The worst case DNL is within 0.4 LSB. INL is within 1 LSB across all
digital codes.

7 Power Budget & Energy Efficiency

The power budget for the proposed ADC is given in Table 2. The power number is
w.r.to patch size of 16 ∗ 16 and a compression ration (CR) of 16. Even though the
total power consumed from the supply is 50µW, since the amplifier is shared
between two ADC, the power for individual ADC’s is 31µW. The number of
conversion cycles required for 16 ∗ 16 patch size with compression ratio of 16 is
(16 ∗ 16 ∗ 16)/64 = 64.

The energy per patch is given by Eq. 7.

EnergyPatch =
P ∗ Nc

Fs
(7)

146 A. Amaravati et al.

Fig. 18. 64 inputs for ADC for every 1 sampling cycle

Fig. 19. Output of ADC and accumulator for 4 conversion cycle

Fig. 20. Simulation result of SNDR vs. Input frequency at Fs = 2MHz

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 147

Fig. 21. DNL and INL of the proposed ADC across 256 codes

where, P is the power drawn by ADC for each conversion, Nc is the number
of conversion cycles & Fs is the sampling frequency. The energy per patch for
the proposed design is 0.9 nJ.

8 Comparison with Reported Works

Table 3 shows the comparison of the proposed design with state of the art CS
architecture. Proposed design is scalable and can handle a large number of inputs
at the same time. Due to parallelism achieved by sharing DACs between columns
parallel ADCs high energy efficiency per patch is achieved.

148 A. Amaravati et al.

Table 2. Power and capacitance contribution from individual blocks

Block Power/ Capacitance

SAR Stage 1 7µW 28C

Amplifier 41µW 4C

SAR Stage 1 2.5µW 10C

Accumulator 0.5µW Nil

Table 3. Comparison with reported works

Oike [5] Guo [17] Chen [10] This work

ADC type Σ − Δ SAR SAR SAR-Pipeline

Technology 0.15µm 0.13µm 0.09µm 0.13µm

Design Measured Simulated Measured Simulated

No. of inputs 1 4 1 64

Sampling cycles 256 1 256 4

Fs 1MHz 1 MHz 2KHz 2MHz

Capacitance NA 272 C 256C 40C

Power NA 50µW 5µW 31µW

Energy/Patch NA 51 nJ 640 nJ 0.9 nJ

9 Conclusion

Multiple techniques are proposed to achieve high throughput in column parallel
ADCs used for image sensors. Time interleaved sharing DAC technique reduces
the number of measurement required by a factor of 4. Sharing the amplifier
between neighboring column parallel ADCs reduces the power by 64 %. The
proposed architecture can be used for wearable devices with ultra-low power
requirements. Our design and simulation results show 87 fJ/conv. step with an
average power of 31µW.

References

1. Choi, J., Sin, J., Kang, D., Park, D.: A 45.5 µW 15 fps always-on CMOS image
sensor for mobile and wearable devices. In: IEEE International Solid-State Circuits
Conference (ISSCC) Digest of Technical Papers, pp. 114–117 (2015)

2. Deguchi, J., Tachibana, F., Morimoto, M., Chiba, M.: A 187.5 Vrms-read-noise 51
mW 1.4 Mpixel CMOS image sensor with PMOSCAP column CDS and 10 b self-
differential offset-cancelled pipeline SAR-ADC. In: IEEE ISSCC 2012, pp. 494–496
(2012)

3. Park, J., Aoyama, S., Watanabe, T., Isobe, K., Kawahito, S.: A high-speed low-
noise CMOS image sensor with 13-b column-parallel single-ended cyclic ADCs.
IEEE Trans. Electron Devices 56(11), 2414–2422 (2009)

A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing 149

4. Watabe, T., Kitamura, K., Sawamoto, T., Kosugi, T., Akahori, T., Iida, T., Isobe,
K., Watanabe, T.: A 33 Mpixel 120 fps CMOS image sensor using 12 b column-
parallel pipelined cyclic ADCs. In: IEEE ISSCC Digest of Technical Paper, pp.
388–389 (2012)

5. Oike, Y., Gamal, A.: CMOS image sensor with per-column ΣΔ ADC and program-
mable compressed sensing. IEEE J. Solid State Circuits 48(1), 318–328 (2013)

6. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
7. Gruev, V., Cummings, R.: Implementation of steerable spatiotemporal image filters

on the focal plane. IEEE TCAS-II 49(4), 233–244 (2002)
8. Robucci, R., et al.: Compressive sensing on a CMOS separable-transform image

sensor. Proc. IEEE 98(6), 1089–1101 (2010)
9. Slavinsky, J.P., et al.: The Compressive multiplexer for multi-channel compressive

sensing. In: Proceedings of IEEE ICASSP, pp. 3980–3983 (2011)
10. Chen, F., Chandrakasan, A., Stojanovic, V.M.: Design and analysis of a hardware-

efficient compressed sensing architecture for data compression in wireless sensors.
IEEE JSSC 47(3), 744–756 (2012)

11. Lee, E., Udell, M., Wong, S.: Factorization for Analog-to-Digital Matrix Multipli-
cation, Report. Standford University (2013)

12. Chae, Y., et al.: A 2.1 Mpixel 120 frame/s CMOS image sensor with column-parallel
ΣΔ ADC architecture. IEEE JSSC 46(1), 236–247 (2011)

13. Lee, E., H.: A 2.5 GHz 7.7 TOPS/W switched-capacitor matrix multiplier with
co-designed local memory in 40 nm. In: IEEE ISSCC, pp. 418–420 (2016)

14. Toyama, T: A 17.7 Mpixel 120 fps CMOS image sensor with 34.8 Gb/s readout. In:
IEEE International Solid-State Circuits Conference (ISSCC), pp. 420–422 (2011)

15. Murmann, B.: ADC Performance Survey 1997–2015. http://web.stanford.edu/
murmann/adcsurvey.html

16. Zhang, J., Wang, Z., Verma, N.: A matrix-multiplying ADC implementing a
machine-learning classifier directly with data conversion. In: ISSCC, pp. 1–3 (2015)

17. Guo, W.: A single SAR ADC converting multi-channel sparse signals. In: Proceed-
ings of IEEE ISCAS 2013 (2013)

18. Chen, D.: A 64 fJ/step 9-bit SAR ADC array with forward error correction and
mixed-signal CDS for CMOS image sensors. IEEE TCASI 61(1), 3085–3093 (2014)

19. Gustavsson, M., Wikner, J., Tan, N.: CMOS Data Converters for Communication.
Kluwer Academic Publishers, Norwell (2000)

20. Lee, C., Flynn, M.: A SAR-assisted two-stage pipeline ADC. IEEE JSSC 46(4),
859–869 (2011)

21. Zhu, Y.: A 50-fJ 10-b 160-MS/s pipelined-SAR ADC decoupled flip-around MDAC
and self-embedded offset cancellation. IEEE JSSC 47(11), 2614–2626 (2012)

22. Diaz, C., Tang, D., Sun, J.: CMOS technology for MS/RF SoC. IEEE Trans.
Electron Devices, 81–84 (2003)

23. Lin, Z.: Modeling of capacitor array mismatch effect in embedded CMOS CR
SAR ADC. In: Proceedings of 6th International Conference on ASICs, pp. 979–982
(2005)

http://web.stanford.edu/murmann/adcsurvey.html
http://web.stanford.edu/murmann/adcsurvey.html

Electromagnetic Transmission of Intellectual
Property Data to Protect FPGA Designs

Lilian Bossuet1(&), Pierre Bayon2, and Viktor Fischer1

1 Laboratoire Hubert Curien, CNRS UMR 5516,
Université Jean Monnet, 42000 Saint-Etienne, France

{lilian.bossuet,fischer}@univ-st-etienne.fr
2 Brightsight, Delft 2628, The Netherlands

bayon@brightsight.com

Abstract. Over the past 10 years, the designers of intellectual properties
(IP) have faced increasing threats including cloning, counterfeiting, and
reverse-engineering. This is now a critical issue for the microelectronics
industry. The design of a secure, efficient, lightweight protection scheme for
design data is a serious challenge for the hardware security community. In this
context, this chapter presents two ultra-lightweight transmitters using side
channel leakage based on electromagnetic emanation to send embedded IP
identity discreetly and quickly.

1 Introduction

The microelectronics industry is faced with increased costs of production of integrated
circuits (ICs). This increase is due to the costly technology refinement and the
increasing complexity of systems (e.g. the transition from 32 nm to 28 nm technology
has been accompanied by a 40 % increase in the manufacturing costs of wafers
300 mm in diameter and by a 30 % increase in the manufacturing costs of 450 mm
wafers). For several years, this led to a sharp increase in the number of companies that
do not have the means to produce IC (fabless companies) and to the relocation of
production. ICs manufactured today are produced with a high added value in a highly
competitive industry. In addition, the time-to-market is increasingly tight. This has
made expensive devices the target of counterfeiting, cloning, illegal copy, theft and
malicious hardware insertion (such as hardware Trojans) [1, 2].

1.1 The Threat Model of IC and IP

The counterfeiting of ICs has become a major problem in recent years [3]. For example,
the number of counterfeit electronic circuits seized by U.S. Customs between 2001 and
2011 has been multiplied by around 700 [4]. Between 2007 and 2010, U.S. Customs
confiscated 5.6 million counterfeit electronic products [5]. Overall, counterfeiting is
estimated to account for about 7 % of the semiconductor market [6], which represents a
loss of around US$ 22 billion in 2014 for the lawful industry.

Figure 1 is a simplified diagram of the life cycle of an IC from its design by a
fabless designer to its recycling. This cycle includes many threats to the designer’s
intellectual property: netlist theft, mask theft, chip over-production (overbuilding), theft

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 150–169, 2016.
DOI: 10.1007/978-3-319-46097-0_8

of the untested device, discarded device, reverse engineering, device counterfeiting,
cloning, relabeled-repackaged-falsified “like new device”, and hardware Trojan
insertion.

The threat model in Fig. 1 focuses on IC manufacturing and does not include the
specific case of IP design and licensing. Indeed, for digital circuit design the re-use of
IP is more and more important due to prohibitive cost of ASIC design, but the IP
business suffers from a lack a security due to the intrinsic form of IPs sales and
exchanges. Figure 2 presents a dedicated threat model focused on an IP life cycle.
Many dedicated threats target the IP life cycle and result to revenues losses for the IP
designers [1, 2]. The IP threat model includes illegal re-use, illegal sales, cloning
(illegal copy) of the IP. The extent of threats targeting IPs is linked to the type of IP:
soft IPs (typically hardware description language files), firm IPs (synthesized netlist),
and hard IPs (FPGA bitstream or physical layout).

We propose a way to counter theft, illegal copy, cloning and counterfeiting of ICs
and IPs by designing a salutary hardware (salware) [7]. The term salware is the
opposite of malware (malicious hardware). While salware can use the same techniques,
strategy and means as malware [7], salware uses an embedded piece of hardware that is

Fabless
Designer

Distribution

IC Netlist
GDSII

Wafer Chip Device

Overbulding
chip

Legal Fab (not trusted)

Illegal Fab

Theft of untested
device

Device

Lifespan

Device

Discarded
device

(scrapheap)

Illegal device copy/clone

Illegal Fab
Repakaging
Relabeling

Old-fashioned
device

Falsified
device

Illegal Fab
Refurbishing

Like-new device

End-of-life
device

Device

Counterfeit

Device

Netlist / IP
theft

Competitor designer + Fab
Reverse Engeenering

Device

Broker / Stockist

(not trusted)

Mask
theft

Hardware
Trojan

Designer

Hardware Trojan
Insertion Hardware Trojan

Insertion

Lifespan

Fig. 1. Simplified life cycle of an IC from a fabless designer to device recycling and the
associated threat model.

IP Designer Distribution
Legal
Sales

Layout /
FPGA Bitstream

Netlist

.HDL
Illegal Clone (Re-Use)

Illegal Copy (Piracy) Illegal Sales

Competitor IP Designer
Reverse Engeenering

IP Purchaser / SoC Integrator
(not trusted)

Hardware
Trojan

Designer

Hardware Trojan
Insertion

Fig. 2. Simplified life cycle of an IP with its threat model

Electromagnetic Transmission of Intellectual Property Data 151

barely detectable, hard to circumvent, and is inserted in an IC or an IP to provide
intellectual property information and/or to remotely activate the circuit or IP after its
manufacture and during its use. IP watermarking, physical unclonable function
(PUF) for IC authentication, remote activation, logic encryption, finite state machine
(FSM) encryption, memory encryption, bus encryption, hardware metering,
VHDL/Verilog obfuscation, bitstream encryption (for SRAM and Flash based FPGAs),
are examples of the well-known salwares.

One of the solutions for the IP designers to protect their intellectual property is to be
able to detect the presence of a copy of an IP embedded in a digital device by using IP
identification. Works on IP watermarking and IP fingerprinting try to provide the IP
identification service. But, most of the time the published solutions are not practical
mainly because of the complexity of the watermarking/fingerprinting verification
scheme [8, 9]. Efficient IP identification scheme needs to be contactless, rapid and
ultra-lightweight. Up to now, these three characteristics are not available in the
state-of-the-art. To meet these requirements, in this chapter we propose an
ultra-lightweight binary frequency shift keying (BFSK) transmitter to forward IP
identity (that could be generated for example by a feedback shift-register or a physical
unclonable function [10]) discreetly using an electromagnetic channel. Such circuit is
usually called “spy circuitry”. Using the electromagnetic channel, it is possible to
contactless check the presence of an IP inside a digital device. A preliminary version of
this work was presented during the conference VLSI-SOC 2015 [11].

1.2 Salware vs. Malware

In the area of security, the techniques used to attack and to defend have always been
similar and the means designed for attacks can sometimes be used for protection. Our
strategy in investigating the means of attack and malicious hardware is to develop new
efficient salware.

Small, barely detectable hardware Trojans can disable part of a device or allow
information leakage without degrading system performance [12, 13]. The same char-
acteristics are required to design efficient salware, which is our objective. Embedding a
Trojan inside an IP to protect the IP during its time-limited evaluation by the client was
recently proposed in [14]. This work modifies the FSM of the IP with the aim of
disrupting its normal behavior. In this way, the IP vendor can define the “expiry date”
of the FSM control and disable it. In fact, this application uses a Trojan like time-based
activation mechanism [12, 13]. Other activation mechanisms can be used to disrupt the
IP in the case of illegal use such as an expired hardware license or an illegal copy. For
example, a Trojan-like salware can use a PUF response to conditionally block an IP
execution. Such a physical-condition-based activation makes it possible to link an IP to
the hardware (hardware-linked license).

Another well-known threat in cryptographic engineering is side channel attacks
[15, 16]. Most of the dynamic characteristics of both hardware and software imple-
mentations of cryptographic primitives can be used for side channel analysis: com-
putation time, power consumption, electromagnetic radiation, optical radiation, even
the sound produced during computation. However, the techniques used for side channel

152 L. Bossuet et al.

analysis can be used to implement a salware block: e.g. for reading intellectual property
data from the device or for device authentication (watermark checking). Some pub-
lished works propose spy circuitry using side channels to identify the embedded
intellectual property. For example in [17], the thermal channel representing a con-
tactless communication was used to transfer information from an embedded tag to a
remote receiver. However the embedded thermal tag used in this commercial solution
requires a relatively large area (255 Spartan-3 slices). In [18], the authors propose using
two shift registers to generate a recognizable signature-dependent power consumption
pattern to reveal the IP signature. Power consumption was also used in [19] to com-
municate the IP watermark data using classical differential power analysis (DPA [15]).
To reinforce such work, the authors of [20] propose using the power supply signal of an
IP as a physical hash function for fingerprinting.

As we mentioned above, hardware Trojans can be designed to change the operation
of the infected device, but also to silently leak information. Hardware Trojans can use
side channels to forward secret information such as a symmetric cipher key [21] from
cryptographic hardware implementation [22, 23], even when secure key management is
used [24]. Hardware Trojan is also used to cause or amplify side-channel leakage of
cryptographic hardware [25]. Note that using side channels to detect a hardware Trojan
has also been the subject of several studies [26–28].

However, designing salware with a Trojan-like hardware could present a new
opportunity to protect IC and IP. In this paper, we propose a, Trojan-like, IC/IP
information provider that is discreet, contactless, ultra-lightweight, and with a high
bitrate. It uses an electromagnetic side channel to transmit useful information.

Except [17], all the related works use power consumption as a communication
channel which is not contactless. Unlike the proposed solution, all the related works are
not lightweight and rapid as the Sect. 5 of this chapter will show.

2 EM Communication of IP Data

2.1 Principle

Previous works on the electromagnetic attacks targeting true random number genera-
tors (TRNGs) showed that electromagnetic radiation can be used very efficiently for
both active (fault injection [29]) and passive (side channel analysis [30]) attacks.
Compared to power analysis, the attacker measuring the near-field electromagnetic
emissions can obtain additional partial information about the device, since, unlike
measurement of power consumption, electromagnetic radiation can be measured
locally. One of the main advantages of this side channel is that it is impossible to hide
the leak concerning electromagnetic radiation by using a global countermeasure.
Moreover the electromagnetic test bench is not expensive (less than US$ 10K without
an oscilloscope, which is the most expensive component). Last but not least, a spectral
analysis of the electromagnetic radiation provides information on the oscillating
structure such as a ring-oscillator [30]. For all these reasons, we use the electromagnetic
channel for our IC/IP identification scheme. To this end, we designed an ultra-
lightweight BFSK transmitter.

Electromagnetic Transmission of Intellectual Property Data 153

As mentioned above, salware and malware can be based on similar principles. The
same is true for the proposed BFSK principle, which can be used to design both
salware (i.e. IP identity transmitter) and malware (i.e. stolen data transmitter driven by
a hardware Trojan), as illustrated in Fig. 3. There are two differences between using the
BFSK as salware or malware. First, IP identification is activated outside the device by
an ID checker, while the Trojan is activated internally. For example, the Trojan can be
activated by a specific event (e.g. specific input sequence, internal data value, system
state) or by pre-defined timing (e.g. a specific number of clock cycles) [12, 13]. Second,
the enable signal of the BFSK transmitter is provided outside the salware: it is the same
signal as that used to activate the IP identification. For malware, the BFSK transmitter’s
enable signal is driven internally by the hardware Trojan control logic. In this case, the
Trojan activates the enable signal when it is ready to send the stolen data. Note that an
enable signal is required in both applications to reduce the power consumed by the ring
oscillator. Moreover, a permanently activated transmitter could be detected more easily
by a spectral analysis of electromagnetic emanations of the device and could also cause
local heating and premature aging of the chip.

2.2 Ultra-Lightweight Digital BFSK Transmitter

Electromagnetic radiation is an efficient side channel since, unlike measurement of
power consumption, electromagnetic radiation can be measured locally. For this rea-
son, we use the electromagnetic channel for our IP identification scheme. To this end,
we designed an ultra-lightweight BFSK transmitter which could be activated outside
the device by an ID checker or internally by a specific event (e.g. specific input
sequence, internal data value, system state). Note that an enable signal is required to
reduce the power consumed by the ring oscillator. Moreover, a permanently activated
transmitter could be detected more easily by a spectral analysis of electromagnetic
emanations of the device and could also cause local heating and premature aging of the
chip.

BFSK is one of the common modulation schemes used in digital communication.
The binary data are sent using a sinusoidal carrier at two frequency tones f0 and f1,
representing high (‘1’) and low (‘0’) logic levels. The binary data arriving at the
transmitter input at certain bitrates determine the commutation of the tones at the

Fig. 3. Electromagnetic transmission of data (i.e. IP identification data or stolen secret data by a
hardware Trojan such as the secret key for symmetric cipher).

154 L. Bossuet et al.

transmitter output. The proposed BFSK transmitter uses a dedicated configurable
ring-oscillator, as shown in Fig. 4. The configurable ring-oscillator is designed using
one multiplexor, N + K delay elements, and a feedback chain controlled by a NAND
gate for activation of transmission to reduce power consumption. Actually, the trans-
mitter is used only during a short time when the enable signal is high, and it consumes
power only during this small piece of time. The power consumption of this transmitter
is thus completely negligible.

Input data controls the multiplexor, as shown in Fig. 4. When input data is low, the
ring oscillator uses N delays and its oscillation frequency is f0. When input data is high,
the ring oscillator uses N + K delays and its oscillation frequency is f1. Since the ring
oscillator’s oscillation frequency decreases with an increase in the number of delay
elements, frequency f0 is higher than frequency f1. These two frequencies have to be
selected according to the bandwidth of the electromagnetic analysis platform, which is
used to acquire and measure the transmitted signal. The bandwidth of our test bench,
which is described in Sect. 3, was limited to 100 MHz and 1 GHz by the low-noise
amplifier.

The proposed BFSK transmitter was implemented in Microsemi FUSION flash
based FPGA (130 nm CMOS technology) containing 600K logic gates (M7AFS600).
The device contains 13 824 tiles, each tile can be used to implement one D-flip-flop or
one configurable multiplexor-based logic block implementing any 3-input logic
function.

The configurable number of delays in the ring oscillator of the proposed BFSK
transmitter makes it possible to select precisely the two frequencies f0 and f1 using
parameters N and K. Table 1 lists the ring oscillator frequencies and the number of
Fusion tiles used by the BFSK transmitter for five values of N and K, with N ranging
from 0 to 4, and K ranging from 1 to 5. According to Table 1, f0 can be chosen between
119 MHz (N = 4) and 385 MHz (N = 0) and f1 can be chosen between 70 MHz
(N = 4, K = 5) and 280 MHz (N = 0, K = 1). The exact value of f0 depends on the
number of delay elements, but also on the placement and routing of the transmitter. For
the values N and K listed in Table 1, the frequency variation was less than 1.7 % (the
maximum frequency deviation in Table 1 is 2 MHz when N = 4).

The number of tiles used by the BFSK transmitter is very low, i.e. from 3 tiles
(N = 0, K = 1) to 11 tiles (N = 4, K = 5). These values are equivalent to less than
0.022 % and less than 0.080 % of the total number of tiles included in the targeted

Fig. 4. Architecture of the ultra-lightweight digital BFSK transmitter based on a configurable
ring oscillator.

Electromagnetic Transmission of Intellectual Property Data 155

600K-gate FUSION FPGA, respectively. This very small number of tiles is very
promising for good dissimulation of the BFSK transmitter inside the sea of gates/tiles.
The number of FUSION tiles required by the BFSK transmitter is given by the fol-
lowing Eq. (1).

Number FTiles ¼ N þ K þ 2 ð1Þ

In order to estimate the number of resources needed for implementation with
Xilinx SRAM FPGA or Altera SRAM FPGA, Table 1 gives the number of 4-input
look-up-tables (LUT4) used by the BFSK transmitter with such FPGAs. The number of
LUT4 required by the BFSK transmitter is given by the following Eq. (2).

Number LUT4 ¼ N þ K þ 1 ð2Þ

To evaluate the logical resources needed by the BFSK transmitter in ASIC
implementations, the right hand column in Table 1 gives the number of equivalent

Table 1. Hardware implementation results of the BFSK Transmitter

N K f0 (MHz) f1 (MHz) Fusion Tiles LUT4 EG

0 1 385 280 3 2 4.67
2 383 210 4 3 5.34
3 384 151 5 4 6.01
4 385 130 6 5 6.68
5 381 111 7 6 7.35

1 1 272 189 4 3 5.34
2 272 156 5 4 6.01
3 270 120 6 5 6.68
4 271 106 7 6 7.35
5 269 93 8 7 8.02

2 1 168 144 5 4 6.01
2 169 124 6 5 6.68
3 169 100 7 6 7.35
4 168 91 8 7 8.02
5 168 79 9 8 8.69

3 1 146 128 6 5 6.68
2 147 112 7 4 7.35
3 146 92 8 5 8.02
4 145 84 9 6 8.69
5 144 74 10 7 9.36

4 1 123 110 7 6 7.35
2 121 98 8 7 8.02
3 122 83 9 8 8.69
4 121 77 10 9 9.36
5 119 70 11 10 10.03

156 L. Bossuet et al.

gates (EG) in the transmitter. The gate count was estimated using the Virtual Silicon
standard cell library based on the UMC L180 0.18 µm 1P6M Logic process
(UMCL18G212T3 [31]). The delay gates are replaced by more efficient standard NOT
gates. The gate count of a standard NOT gate is 0.67 EG, and that of the standard
multiplexor, 2.33 EG. The standard NAND gate uses 1 EG. So the number of gates of
the whole BFSK transmitter ranges from 4.67 EG (N = 0, K = 1) to 10.03 EG (N = 4,
K = 5). Note that one flip-flop requires between 5.33 EG and 12.33 EG to store a single
bit [31].

Such a transmitter is clearly ultra-lightweight in both FPGA and ASIC imple-
mentations. The small logical resources requirement of the proposed spy circuitry
makes reverse engineering it harder, although not impossible [32]. Even with recent
CMOS technologies, the attacker can reverse engineer ICs using a scanning electron
microscope and an automatic tool for circuitry extraction [32, 33]. Nevertheless, the
smaller the piece of hardware used for BFSK transmitter the harder it is to detect during
reverse engineering. Detection of the transmitter using standard Trojan detection
methods [34], [35] is not feasible because the transmitter does not change the data path
of the circuit and because of the ultra-low signal-to-noise ratio on the electromagnetic
channel, as shown in our experimental results below (Sect. 4).

3 Experimental Results

The electromagnetic radiation of the device was evaluated using the near-field elec-
tromagnetic analysis test bench described in [30]. The border between the far field and
the near field can be considered to be about 23 mm from the device, depending on the
hardware concerned. The most important part of the test bench is the acquisition chain.
It determines the signal to noise ratio and measurement precision.

The chain, as presented in Fig. 5, is composed of:

• A Langer magnetic probe with a frequency range of from 30 MHz to 3 GHz and a
spatial resolution of approximately 500 µm.

• A Miteq low-noise amplifier with a frequency range of from 100 MHz to 1 GHz.
• A Tektronix real time signal analyzers RSA5106B with a frequency range from

1 Hz to 6.2 GHz [36].

As presented in Fig. 5, the device to be tested (the board) is fixed to a XYZ table
with repeatability of movement of 1 µm. The test bench, including the acquisition
chain, XYZ table, FPGA configuration and power supply variations, is controlled by a
computer. This test bench was first developed for electromagnetic attacks of TRNGs
[29, 30].

The targeted FPGA for the experimental work is an Altera Cyclone III EP3C25 that
uses a 65 nm CMOS technology. It contains 24 624 four-inputs LUT and 608 256
RAM bits.

Electromagnetic analysis of IC is contactless, local, and can be spatial or/and
temporal. This last point makes it possible to perform frequency analysis of the elec-
tromagnetic emanation. In the your bench the spectral range is limited to 100 MHz and
1 GHz. Standard devices aimed at direct BFSK demodulation cannot be used for these

Electromagnetic Transmission of Intellectual Property Data 157

relatively high frequencies. Available integrated BFSK demodulators are limited to a
few dozen megahertz. For this reason, we developed a dedicated BFSK demodulation
scheme for our needs, in which a spectral analysis of the low noise amplifier output (a
component of the test bench) is performed to measure the f0 and f1 spectral contribu-
tion. The transmitted high (low) level is detected when f1 spectral contribution is higher
(lower) than that of f0.

For the coherent demodulation of the electromagnetic radiation, we propose a
slippery window spectral analysis. Indeed, overall spectral analysis masks the effects of
the no stationarity of the signal and therefore provides no information about its tem-
poral evolution. Slippery window spectral analysis is a three-dimensional representa-
tion of the signal: amplitude, frequency, and time. It requires two quantities Fw, the
width of the FFT window frame and the difference Ds between two frames. For our
experiment, we chose Fw equal to 16 384 points (214-point FFT) and Ds equal to 100
points. For each frame, the FFT provides the software demodulator with the amplitude
of signals f0 and f1 which enables the demodulator to distinguish between a transmitted
‘1’ or ‘0’.

To illustrate data transmission from the circuit via the EM channel, we used a shift
register that stored the following 16-bit sequence: “0101000111110011”. The clock
frequency of the shift register is 1 MHz. When the enable signal of the transmitter is
given, the sequence is sent cyclically to the BFSK transmitter, which transmits it via the
electromagnetic channel. The following gives the result of the coherent demodulation
obtained at a 1 Mbps bit rate, which served as a proof of concept.

Fig. 5. Near-field electromagnetic analysis test bench

158 L. Bossuet et al.

Figures 6 and 7 present the temporal evolution of the spectral analysis (amplitude)
of the BFSK transmitter’s electromagnetic emission when N = 6 and K = 10, which
corresponds to the following frequencies: f0 = 289 MHz (Fig. 6) and f1 = 119 MHz
(Fig. 7). Notice also that we placed a small antenna in the close vicinity of the ring.
With N = 6 and K = 10 the BFSK transmitter uses only 17 four-inputs LUT of the
FPGA that represents 0.065 % of the available logical resources of the used
Altera FPGA for theses experimental results.

For the direct coherent demodulation of the electromagnetic radiation, we propose
to use a slippery window spectral analysis in order to obtain a spectral cartography.
Indeed, overall spectral analysis masks the effects of the non-stationarity of the signal
and therefore provides no information about its temporal evolution. Slippery window
spectral analysis provides a three-dimensional representation of the signal (spectral
cartography): amplitude, frequency, and time. The used Tektronix real time signal
analyzers [36] allows us to obtain directly the spectral cartography with direct reading
of the patent that contains the transmitted data sequence. Figure 8 shows the spectral
cartographies obtained at f0 = 289 MHz and f1 = 119 MHz.

Without knowledge of the BFSK parameters, the electromagnetic transmission
cannot be easily detected because it cannot be distinguished from spectral noise. The
signal-to-noise ratio of the BFSK transmission is −135 dB for a 1 GHz bandwidth.
Such an ultra-low SNR represents efficient protection against unwanted BFSK trans-
mitter detection via a side channel. However, knowing the N and K parameters, the

0101000111110011

Fig. 6. Amplitude vs time evolution of the spectral analysis at f0 = 289 MHz.

Electromagnetic Transmission of Intellectual Property Data 159

BFSK designer can calibrate the demodulation (determine the two frequencies) by
electromagnetic analysis of the ring oscillators based on the differential spectral anal-
ysis as described in [30].

0101000111110011

Fig. 7. Amplitude vs time evolution of the spectral analysis at f0 = 119 MHz.

Fig. 8. Spectral cartographies center (red trace) on f0 = 289 MHz (left) and on f1 = 119 MHz
(right) with 1 Mbps data rate. (Color figure online)

160 L. Bossuet et al.

4 Second Version of the Ultra-Lightweight Digital EM
Transmitter

Now, based on the previous experimental results we propose an enhance EM trans-
mitter. Indeed, by using the Tektronix real time signal analyzers [36], we are able to
clearly distinguish the transmitter data sequence by analyzing the spectral cartography
at only one frequency. Originally, we use two frequencies in order to simplify the
demodulation [11].

The new version of the transmitter is based on the use of only one frequency with
an on-off controllable ring-oscillator. The binary data are sent using only one sinusoidal
carrier at f0 representing high (‘1’) logic level. A low (‘0’) logic level is obtained
without transmit sinusoidal carrier (i.e. the ring-oscillator is off). The proposed EM
transmitter uses an on-off controllable configurable ring-oscillator, as shown in Fig. 9.
The on-off controllable ring-oscillator is designed using one multiplexor and K delay
elements, and a feedback chain controlled by a two NAND gate for activation of
transmission. The logical resource required for this transmitter is really low because it
uses only K 4-inputs LUT with Altera and Xilinx FPGAs.

The previously presented (Fig. 5) experimental setup is used to test this transmitter.
The parameter K is fixed to 6 to set the frequency f0 to 309 MHz. The Fig. 10 presents
the measured spectral cartographies center to f0 with four data rates from 1 Mbps to
16 Mbps (we used the same data sequence that for the Fig. 8). This figure shows that it
is possible to demodulate the transmitted sequence for 1 Mbps and 2 Mbps data rates
without signal processing. It is harder to directly demodulate the data for 4 Mbps and
16 Mbps data rates, but they could be demodulated by using signal processing. These
results clearly validate the proof of concept of the proposed EM transmitter. Never-
theless, the provided results (Fig. 10) are given when the EM transmitter works alone
inside the FPGA.

In order to test the behavior of the EM transmitter when it is embedded in a larger
system we add two large IPs in the FPGA. These two IPs are an AES cipher and a AES
decipher [21]. These two IPs require 1 772 LUT4 (4.76 % of the targeted Altera
FPGA) when the EM transmitter requires only 6 LUT4 (0.025 % of the targeted Altera
FPGA). The transmitter ratio between the two IPs and the EM transmitter is equal to
295.3. Figure 11 presents the floorplan of the FPGA after configuration. Notice that we

Input data

K delays

Enable

Fig. 9. Architecture of the ultra-lightweight digital EM transmitter based on an on-off
controllable ring oscillator.

Electromagnetic Transmission of Intellectual Property Data 161

a) Data rate = 1Mbps b) Data rate = 2 Mbps

c) Data rate = 4 Mbps d) Data rate = 16 Mbps

Fig. 10. Spectral cartographies center (red trace) on f0 = 309 MHz with 1 Mbps data rate (a),
2 Mbps (b), 4 Mpbs (c) and 16 Mbps (d). (Color figure online)

EM Transmitter

Fig. 11. Floorplan of the test system with one AES cipher, one AES decipher and the EM
transmitter.

162 L. Bossuet et al.

have forced the placement of the EM transmitter in order to place it in the center of the
full system.

In this case, it is always possible to demodulate the data sequence with 1 Mbps data
rate. Nevertheless, it could be necessary to precisely place the EM probe over the
device under test. Figure 12 illustrates the modification of the spectral cartography at f0
function of the positions of the probe. Four positions, P#0, P#1, P#2 and P#3 are tested on
the same horizontal axis. The space between each position is a 3 mm gap. On Fig. 12,
it appears that the data sequence is always visible, but du to other spectral contributions
that come from the two other IPs inside the device, it is more difficult to directly
demodulate the sequence for the positions P#0 and P#1. The position P#2 gives the best
result. This research of the best position is really fast for the designer of the system
because he knows the precise position of the EM transmitter inside the chip.

5 Comparison with State of the Art Spy Circuitries Using
a Side-Channel

Table 2 compares the implementation of the proposed ultra-lightweight BFSK trans-
mitter with other recently published state of the art methods. Table 2 gives the spy
circuitry application (App.) for each reference; this may be IP protection (IPP) or
hardware Trojan (HT) or both (for the presented work, PW [11]). In addition, Table 2
gives the year of publication (YoP), the side channel used, the hardware resources
required only for the leakage generator (for example we do not take the hardware used
for IP watermark generation or the Trojan’s payload into account). Unfortunately, the
principles compared do not use the same amount of hardware resources. For the sake of
correctness, we give the implementation results as they are presented in the referenced
papers. Nevertheless, the implementation bitrate of these previously published works
can be roughly compared with our proposed solution. Based on published data, we
computed the bitrate of all the proposals by using the number of clock cycles needed to
send information via the side channel. For all the references presented in this table, the
bitrate was computed using a 1 MHz frequency for data synchronization (same fre-
quency is used during the experimental works presented previously).

As can be seen in Table 2, the proposed work reaches the highest bitrate. The reason
for such a good performance is first that we use a spectral analysis of the local electro-
magnetic leak based on a simple frequency modulation. Except for [17], all the other
solutions use a global measurement of power consumption, which reduces the signal-to-
noise ratio of the information leaked via the side channel. Our proposal is clearly the
smallest spy circuitry ever published. Although solutions based on circular shift-
registers are well adapted to last generation FPGA families, since the 16-bit shift registers
can be designed using only one look-up table, they are not suitable for ASIC technologies.
Currently, anASIC implementation of a 16-bit shift register requires 16flip-flopswhereas
the solution we propose occupies an area equivalent to only one D-flip-flop.

In this chapter, we present the proposed spy circuitry for IP protection, but it can
also be used for hardware Trojan. Most of the other proposals could also be used for
both applications. Note that in 2012, Kasper et al. proposed to use the work initiated in
[22] for hardware Trojan or IP watermarking implementation [37]. However, by using

Electromagnetic Transmission of Intellectual Property Data 163

Fig. 12. Spectral cartographies center (red trace) on f0 = 309 MHz with 1 Mbps data rate for
four different positions of the EM probe over the chip. (Color figure online)

164 L. Bossuet et al.

electromagnetic emanation and a configurable ring oscillator, the proposed solution is
the most convincing for industrial applications (e.g., those aimed at IP protection)
because of its very small area and high bitrate.

6 Industrial Scenarios Using the Proposed IP Protection

According to the previous section, in comparison with other works, our proposal goes
clearly towards using a spy circuit in an industrial context for IP protection. Two
industrial scenarios are presented in the following. The first scenario is the identifi-
cation of embedded IP in the supply chain. This identification is used in order to be sure
to don’t use counterfeiting (fake) devices.

It is therefore crucial and strategic to be able to detect counterfeit IC as soon as
possible in the supply chain (this is particularly crucial for military and space grad
devices). Figure 13 shows a possible framework to manage the device under test
(control the enable signal) and check the IP identification by using an EM probe, an
amplifier and a dedicated acquisition system including a spectral analysis and the
proposed demodulation method. Due to the high bit rate of the proposition solution the
identification of the ID requires less than 500 µs (with 1 Mbps bit rate). This coun-
terfeiting detection could be completed by other physical (invasive or not) and optical
inspection [38].

Table 2. Summary of characteristics of spy circuitries exploiting side-channels

App. Ref. YoP Side channel Hardware
resources

Target Bit rate @
1 MHz

IPP [17] 2008 Thermal
emanation

255 Spartan-3
slices

Xilinx
Spartan-
3

14.10−3

bps

[18] 2008 Power
consumption

16 * 16-bit
circular shift-
registers

Xilinx
Spartan-
3 and
Virtex-II

400 bps

[19] 2010 Power
consumption

16-bit circular
shift-register

Xilinx
Virtex-II
Pro

1 Kbps

HT [22] 2009 Power
consumption

8 parallel D-flip-
flops or 16-bit
circular shit
register

Xilinx
Spartan-
3E and
Virtex-II
Pro

970 bps

[23] 2013 Power
consumption

16-bit circular
shift-registers
per bit

Xilinx
Virtex-5

1.9 kbps

Both PW 2015 Electro-
magnetic
emanation

1 configurable
ring-oscillator
(like a D-flip-
flop in ASIC)

Altera
Cyclone
III

1 Mbps

Electromagnetic Transmission of Intellectual Property Data 165

The second scenario occurs when an IP designers would like to verify the illegal
presence of its IP inside a device (ASIC or FPGA). In this case the proposed transmitter
provides to the identification scheme a data like a PUF [39] or a watermarking.
Watermarking is a technique of steganography which provides the ownership of an IC
(or an IP) by checking for the presence of hidden information called the watermark [8, 9].
Most of the watermarking methods proposed in the literature need a complex verification
scheme. Nevertheless it is possible to use power consumption as proposed in [9] but it is
easy and cheap to use global countermeasure in order to mask the power consumption
due to the watermark [40]. Using electromagnetic emanation in this scenario is better
because as electromagnetic emanation is local it is really hard to mask it by using a global
countermeasure. Moreover, in this paper we have shown that due to the SNR of BFSK
signal, it is unrealistic to try to detect it without the precise knowledge of the used
frequencies for data transmission.

7 Conclusion

IP protection has become crucial topics for hardware security due to the lack of trust in
IP market. In this chapter, we have presented two ultra-lightweight transmitters of IP
identity using the electromagnetic side channel. Based on a configurable ring oscillator,
our first solution exploits a BFSK signal to transmit information by way of the elec-
tromagnetic channel. Our second version is simpler; it is based on an on-off ring
oscillator to transmit information with only one frequency. By performing a slippery
window spectral analysis of the near field electromagnetic emanations captured locally
over the transmitter circuitry, the proposed transmission achieves a high bitrate (ex-
perimentally at less 1 Mbps), which has not been achieved before. Moreover, the
transmitter occupies very small area less than the requirement of a small D-flip-flop.
Such a small requirement of logical resources makes reverse engineering of the chip
very difficult and detection of the transmitter using standard Trojan detection methods
is not feasible.

Acknowledgment. The work presented in this paper was realized in the frame of the SAL-
WARE project number ANR-13-JS03-0003 supported by the French “Agence Nationale de la
Recherche” and by the French “Fondation de Recherche pour l’Aéronautique et l’Espace”.

Fig. 13. Rapid and contactless IP identification in the supply chain by using EM transmission of
IP’ ID.

166 L. Bossuet et al.

References

1. Rostami, A., Koushanfar, F., Rajendran, J., Karri, R.: Hardware security: threat models and
metrics. In: Proceedings of the 32nd IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2013, pp. 819–823, November 2013

2. Colombier, B., Bossuet, L.: Survey of hardware protection of design data for integrated
circuits and intellectual properties. Comput. Digit. Tech. IET 8(6), 274–287 (2014)

3. Ke, H., Carulli, J.M., Makris, Y.: Counterfeit electronics: a rising threat in the semiconductor
manufacturing industry. In: Proceedings of the IEEE International Test Conference, ITC
2013, pp. 1–4, September 2013

4. Gorman, C.: Counterfeit chips on the rise. IEEE Spectr. 49(6), 16–17 (2012)
5. AGMA, Alliance for Gray Markets and Counterfeit Adatement. http://www.agmaglobal.org
6. Pecht, M., Tiku, S.: Bogus: electronic manufacturing and consumers confront a rising tide of

counterfeit electronics. IEEE Spectr. 43(5), 37–46 (2006)
7. Bossuet, L., Hely, D.: SALWARE: salutary hardware to design trusted IC. In: Workshop on

Trustworthy Manufacturing and Utilization of Secure Devices, TRUDEVICE 2013, May
2013

8. Legal, B., Bossuet, L.: Automatic low-cost IP watermarking technique based on output mark
insertion. J. Des. Autom. Embed. Syst. 16(2), 71–92 (2012). Springer

9. Marchand, C., Bossuet, L., Jung, E.: IP watermark verification based on power consumption
analysis. In: Proceedings of the 27th IEEE International System-on-Chip Conference, SOCC
2014, pp. 330–335 (2014)

10. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachsmann, C.:
PUFs: myth, fact or busted? A security evaluation of physically unclonable functions (PUFs)
cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 283–
301. Springer, Heidelberg (2012)

11. Bossuet, L., Bayon, P., Fischer, V.: Contactless transmission of intellectual property data to
protect FPGAs designs. In: Proceedings of the IFIP/IEEE International Conference on Very
Large Scale Integration, VLSI-SOC 2015, pp. 19–24 (2015)

12. Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy hardware: identifying
and classifying hardware trojans. Comput. IEEE 43(10), 39–46 (2010)

13. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection.
Des. Test Comput. IEEE 27(1), 10–25 (2010)

14. Narasimhan, S., Bhunia, S., Chakraborty, R.S.: Hardware IP protection during evaluation
using embedded sequential trojan. Des. Test Comput. IEEE 29(3), 70–79 (2012)

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Kamoun, N., Bossuet, L., Gazel, A.: Experimental implementation of 2ODPA attacks on
AES design with flash-based FPGA Technology. In: Proceedings of the 22nd IEEE
International Conference on Microelectronics, IMC 2010, pp. 407–410 (2010)

17. Marsh, C., Kean, T., Mclaren, D.: Protecting designs with a passive thermal tag. In:
Proceedings of the 15th IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2008, pp. 218–221, September 2008

18. Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. J. Signal
Process. Syst. 51, 123–136 (2008). Springer

19. Becker, G.T., Kasper, M., Moradi, A., Paar, C.: Side-channel based watermarks for
integrated circuits. In: Proceedings of the IEEE International Symposium on Hardware-
Oriented Security and Trust, HOST 2010, pp. 30–35, June 2010

Electromagnetic Transmission of Intellectual Property Data 167

http://www.agmaglobal.org

20. Kerckhof, S., Durvaux, F., Standaert, F.X., Gérard, B.: Intellectual property protection for
FPGA designs with soft physical hash functions: first experimental results. In: Proceedings
of the IEEE International Symposium on Hardware-Oriented Security and Trust, HOST
2013, pp. 7–12, June 2013

21. Bossuet, L., Grand, M., Gaspar, L., Fischer, V., Gogniat, G.: Architectures of flexible
symmetric key crypto engines – a survey: from hardware coprocessor to multi-crypto-
processor system on chip. ACM Comput. Surv. 45(4), 32 (2013). Article 41

22. Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels: lightweight
hardware trojans through side-channel engineering. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009)

23. Kutzner, S., Poschmann, A., Stöttinger, M.: TROJANUS: an ultra-lightweight side-channel
leakage generator for FPGAs. In: Proceedings of International Conference on Field-
Programmable Technology, ICFPT 2013, pp. 160–167, December 2013

24. Gaspar, L., Fischer, V., Bernard, F., Bossuet, L., Cotret, P.: HCrypt: a novel reconfigurable
crypto-processor with secured key management. In: Proceedings of the International
Conference on ReConFigurable Computing and FPGAs, ReConFig 2010, pp. 280–285
(2010)

25. Gallais, J.-F., Großschädl, J., Hanley, N., Kasper, M., Medwed, M., Regazzoni, F., Schmidt,
J.-M., Tillich, S., Wójcik, M.: Hardware trojans for inducing or amplifying side-channel
leakage of cryptographic software. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS,
vol. 6802, pp. 253–270. Springer, Heidelberg (2011)

26. Du, D., Narasimhan, S., Chakraborty, R.S., Bhunia, S.: Self-referencing: a scalable
side-channel approach for hardware Trojan detection. In: Mangard, S., Standaert, F.-X.
(eds.) CHES 2010. LNCS, vol. 6225, pp. 173–187. Springer, Heidelberg (2010)

27. Narasimhan, S., Dongdong, D., Chakraborty, R.S., Paul, S., Wolff, F.G., Papachristou, C.A.,
Roy, K., Bhunia, S.: Hardware Trojan detection by multiple-parameter side-channel
analysis. IEEE Trans. Comput. 62(11), 2183–2195 (2013)

28. Rad, R., Plusquellic, J., Tehranipoor, M.: A sensitivity analysis of power signal methods for
detecting hardware trojans under real process and environmental conditions. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 18(12), 1735–1744 (2010)

29. Bayon, P., Bossuet, L., Aubert, A., Fischer, V., Poucheret, F., Robisson, B., Maurine, P.:
Contactless electromagnetic active attack on ring oscillator based true random number
generator. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 151–
166. Springer, Heidelberg (2012)

30. Bayon, P., Bossuet, L., Aubert, A., Fischer, V.: EM leakage analysis on true random number
generator: frequency and localization retrieval method. In: Proceedings of the Asia Pacific
International Symposium and Exhibition on Electromagnetic Compatibility, APEMC 2013,
May 2013

31. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part Number:
UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology: 0.18 μm (2004)

32. Torrance, R., James, D.: The state-of-the-art in semiconductor reverse engineering. In:
Proceedings of the 48th Design Automation Conference, DAC 2011, ACM/EDAC/IEEE,
pp. 333–338 (2011)

33. Subramanyan, P., Tsiskaridze, N., Li, W., Gascon, A., Tan, W., Tiwari, A., Shankar, N.,
Seshia, S., Malik, S.: Reverse engineering digital circuits using structural and functional
analyses. IEEE Trans. Emerg. Top. Comput. 2(1), 63–80 (2013)

34. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC
fingerprinting. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 296–
310 (2007)

168 L. Bossuet et al.

35. Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In: IEEE
International Workshop on Hardware-Oriented Security and Trust, HOST 2008, pp. 51–57
(2008)

36. Tektronix, RSA5000 Series, Spectrum Analyzers Datasheet (2015). http://www.tek.com/
sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-
37W2627414_1.pdf

37. Kasper, M., Moradi, A., Becker, G.T., Mischke, O., Güneysu, T., Paar, C., Burleson, W.:
Side channels as building blocks. J. Cryptogr. Eng. 2(3), 143–159 (2012). Springer

38. Tehranipoor, M., Guin, U., Forte, D.: Counterfeit Integrated Circuits - Detection and
Avoidance. Springer, Heidelberg (2015)

39. Bossuet, L., Ngo, X.T., Cherif, Z., Fischer, V.: A PUF based on a transient effect ring
oscillator and insensitive to locking phenomenon. IEEE Trans. Emerg. Top. Comput. 2(1),
30–36 (2014)

40. Kamoun, N., Bossuet, L., Ghazel, A.: Correlated power noise generator as a low cost DPA
countermeasure to secure hardware AES cipher. In: Proceedings of the International
Conference on Signals, Circuits and Systems, SCS 2009, pp. 1–6 (2009)

Electromagnetic Transmission of Intellectual Property Data 169

http://www.tek.com/sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-37W2627414_1.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-37W2627414_1.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/RSA5000-Series-Spectrum-Analyzers-Datasheet-37W2627414_1.pdf

JAIP-MP: A Four-Core Java Application Processor
for Embedded Systems

Chun-Jen Tsai(✉), Tsung-Han Wu, Hung-Cheng Su, and Cheng-Yang Chen

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
cjtsai@cs.nctu.edu.tw

Abstract. In this chapter, we present a four-core Java application processor,
JAIP-MP. In addition to supporting multi-core coherent data accesses to shared
memory, each processor core in JAIP-MP is a hardwired Java core that is capable
of dynamic class loading, two-fold bytecode execution, object-oriented dynamic
resolution, method/object caching, Java exception handling, preemptive multi‐
threading, and memory management. Most of the essential OS kernel functions
are implemented in hardware. In particular, the preemptive multi-threading
performance is much higher than that of a software-based VM running on a tradi‐
tional OS kernel such as Linux. Currently, single-cycle context switching with a
time quantum as small as 20 μs can be achieved by each core. More importantly,
the Java language model itself makes it possible to maintain binary portability of
application software regardless of the hardwired OS kernel component. In
summary, JAIP-MP could be used to study the potential benefits of OS kernel
implementation in hardware.

Keywords: Java processors · Multi-core processors · Embedded SoC ·
Hardwired operating system kernel

1 Introduction

The Java programming language has been one of the most popular programming
languages for over a decade. There are many reasons for its popularity. For example, it
is a clean language designed with object-orientated paradigm from scratch, without
unnecessary features such as multiple inheritance or pointer arithmetic that can be easily
abused by programmers. Memory management in Java is implied by the object-oriented
model and requires no special treatment from the programmers. It maintains a great Job
on backward compatibility that application binaries written for very old version of Java
can usually be executed under the latest versions of Java Runtime Environment (JRE)
regardless of the underneath operating systems. One of the reasons that a Java program
can be portable across versions and platforms is that the Java language model defines
some interfaces, such as multi-thread programming and memory management, which
are usually defined by the operating systems.

There are many variations of JRE for embedded systems, including Sun’s CDC/PBP,
CLDC/MIDP and Google’s Android platform. Most existing implementations are

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 170–192, 2016.
DOI: 10.1007/978-3-319-46097-0_9

software-centric, which means they require a sophisticated operating system (OS) to
support the JRE (e.g., the reference implementations of the Java ME and the Android
platforms heavily depends on Linux or OS’s with similar capabilities). In general, oper‐
ating systems handle thread management, memory management, I/O interfaces, and
dynamic class loading from local and/or remote file systems for the JRE. However, most
Java middleware stacks of JREs have already included main functions of a typical OS
kernel. Therefore, adopting a complete OS underneath a JRE is a duplication of system
functions, which is not a good design philosophy for embedded devices with resource
constraints. A different design approach, the JavaOS model [1, 2], was proposed to
implement the Java application platform. In this approach, the OS itself is written in the
Java language as part of the JRE. The JavaOS system model uses a small microkernel
written in native codes to support low-level physical resource management.

In this chapter, we will present the design of a multi-core Java System-On-a-Chip
(SoC) that implements most of the OS kernel functions, as well as the bytecode execution
pipeline using hardware circuits. The key component of the Java SoC is the Java Appli‐
cation IP (JAIP). JAIP is a reusable processor IP that has hardwired support of the
following Java language features [3, 4]:

– Two-fold instruction folding
– Multithreading, synchronization, and exception handling
– Heap management and garbage collection
– Class inheritance and interface invocations
– Method and heap object caching
– Dynamic class loading and dynamic symbol resolution
– String operation acceleration for matching and copying

The remainder of this chapter is organized as follows. For the rest of Sect. 1, we will
first introduce some previous work on multi-core Java processor designs and discuss the
possible benefits of implementing a multi-core Java SoC with the major OS kernel
functions crafted in hardware. Section 2 presents the architecture of the JAIP core,
including the microarchitecture of the instruction execution pipeline, the stack archi‐
tecture, the preemptive thread manger, and the memory manager and garbage collector.
We also have a brief discussion on how the I/O subsystem interface can be merged into
the dynamic resolution module of a Java VM. Section 3 discusses the required glue
logics to integrate four JAIP cores into a single SoC, mainly, the inter-core communi‐
cation unit, the multi-core thread manager, and the data coherence controller. The
experimental results are presented in Sect. 4. Finally, some discussions are given in
Sect. 5.

1.1 Multi-core Java Processors

Although there are many hardware Java core designs [5], very few of them have been
synthesized in a real multi-core application processor [6]. One of the reasons may be
due to the fact that previous work shows that a Just-in-time (JIT) based VM running on
a high performance general-purpose processor can often outperform a hardwired Java
processor [7]. Therefore, it seems that there is no need to further pursuit the development

JAIP-MP: A Four-Core Java Application Processor 171

of hardwired Java processors. However, most of the JIT vs. hardwired VM comparisons
are conducted using benchmarks where the application class files are not optimized for
Java processors. For example, it has been shown that some popular benchmark class
files can run much faster on a Java processor if bytecode optimizations in the class files
are conducted [8]. Please note that an optimized Java class file still conforms to the Java
specification and is portable across different Java platforms. In addition, many bench‐
marking processes discard the impact of the JIT compilation overhead [3]. Although
ignoring the JIT overhead is reasonable for some applications, it is not valid for remote
invocations that are common for object-oriented distributed computing. Other reasons
why a hardwired VM could be useful for practical applications will be discussed in
Sect. 1.2.

Most Java processors support thread synchronization using software modules
[9–11]. However, the execution time of a software-based synchronization operation,
such as a mutex lock, can take more than a few hundred clock cycles since the lock
objects are often accessed in conventional trap routines. PicoJava [10] uses a few special-
purpose registers for the speedup of synchronization operations, but it still needs to use
the main memory to maintain the information of all waiting threads and lock objects.
Therefore, a high number of concurrent synchronized read/write operations can have
significant synchronization overheads. JOP-CMP [6] supports at most 8 processor cores
with a software-based thread scheduler and a hardwired synchronization unit [6, 12].
There is only one global lock register in the synchronization unit, which means that any
threads trying to acquire the lock must wait until the lock is released. In addition, JOP-
CMP does not have a coherent data cache. All data accesses will be directly issued to
the external memory, which can hinder the multi-thread performance significantly.

1.2 Potentials of Hardwired Virtual Machines

Traditionally, Java programs are executed using software-based virtual machines. To
improve the performance of bytecode execution, JIT or ahead-of-time (AOT) compila‐
tion techniques are often adopted in modern virtual machines. Previous work shows that
JIT or AOT techniques can arguably achieve better performance than a hardwired Java
processor. We have already presented some reasons that may lead to the bias of such
conclusions in Sect. 1.1. Another reason is that existing Java processors mainly focuses
on the architecture design of the bytecode execution pipeline. Things may be different
when the full JRE is considered as the target of hardware design.

For example, one of the most intriguing features of the Java programming model is
that all data accesses and code invocations must go through the dynamic resolution
mechanism. Although dynamic resolution is usually considered as a language feature
that hinders efficiency significantly, there are some benefits of dynamic resolution that
has not been investigated thoroughly, especially when the Java VM is implemented in
hardware. First of all, with dynamic resolution, there is no need to assume a large “flat”
memory model for a Java VM implementation. A Java VM may manage many concur‐
rently accessible memory blocks seamlessly to improve the performance of data
processing without the programmer knowing the physical layout of the memory
subsystem. Securities issues related to malicious pointer-based indirect data accesses

172 C.-J. Tsai et al.

can be handled more rigorously with the Java model since all data accesses must be
approved by the dynamic symbol resolution unit (DSRU). Finally, a method call can be
re-directed to hardware logics without going through memory-mapping process and
shared bus transactions, which may improve throughput significantly. The last point will
be explained further in Sect. 2.5.

In [4], we have presented the preemptive multi-threading efficiency of the JAIP core.
It is capable of single-cycle multi-thread context switching with a time quantum as small
as 20 μs. For a traditional OS kernel such as Linux, the time quantum for a thread is
usually around 10 ms. As a result, for single-core multithread applications, hardware-
based thread manager can achieve much smoother concurrent executions of all threads
of equal priorities than a software-based thread manager. This is a very strong reason
for the development of an efficient hardwired Java processor core. The Java language
specification defines standard programming interfaces for OS kernel services such as
process management and memory management. Other popular languages such as C and
C++ do not standardize these functions. For example, thread creation API’s are OS-
dependent for C programs. Therefore, it would be beneficial to investigate the potentials
of a fully hardwired OS kernel based on the Java programming model.

In short, a Java processor can be designed to implement the entire OS kernel system
services in hardware while maintaining application portability. This is particularly
important for embedded real-time applications where context-switching efficiency and
dynamic memory management overhead are the key performance factors of a system.
On the other hand, it is not so easy to “harden” the OS kernel for a traditional RISC
processor due to lack of “standard” system calls for C/C++ applications.

2 The Architecture of the JAIP Core

In this section, we present some design details of the JAIP core that is used as the key
component of the hardwired multi-core Java runtime environment (JRE). The design
target of the JAIP core is for FPGAs and thus dual-port SRAM blocks that are common
in FPGAs are used extensively to optimize the architecture for the object-oriented
language model that makes Java one of the most popular programming languages.

2.1 The Overview of JAIP Core

Figure 1 shows the overall block diagram of a single-core SoC based on the JAIP core.
The complete SoC is composed of a RISC core and a JAIP core. For the execution of a
Java program, the RISC core is only responsible for reading and parsing of the class
files stored in a JAR file on the Compact Flash (CF) card. The RISC parser will convert
the standard Java class files into runtime class images on-the-fly for direct execution by
the JAIP core. The converted class file images are stored in the second-level method
area in the main memory. The class file parser will maintain a symbol cross reference
table stored in the main memory for all loaded classes. The Java core is completely
responsible for the two-fold execution of bytecodes, dynamic loading of the class images

JAIP-MP: A Four-Core Java Application Processor 173

into the method area, dynamic resolution, memory management, and preemptive multi-
thread scheduling. In the future, we will remove the dependency of the JAIP core on the
RISC core for class file reading and parsing.

RISC Core
External memory

controller

system bus

Application Processor SoC

I/O
controller

irq

Main memory (DDR3-DRAM)
CF card

(Jar files for
system &

application
classes)

Class-parsing
table

2nd-level method
area (for loaded class

runtime images)

Heap space
for

Java objects
RISC ISRs

Synchronization
Logic

Java Application IP (JAIP)

Host service
interface
(only for
dynamic

class-loading)

Method area
manager

Bytecode
execution

engine

Dynamic
resolution
controller

Method image
circular buffer

Two-level
Ping-Pong
Java stack

Data cache
controller

Class symbol
circular buffer

Dynamic
resolution

tables

Exception
manager

Thread
manager Object cache

Fig. 1. The architecture of a Java application processor based on the JAIP core.

JAIP adopts a two-level method area design. All classes loaded at runtime will be
stored in the main memory (i.e., the second-level method area) using the late-resolution
policy. A Java method (and its related symbol information) must be loaded into the on-
chip method cache (the first-level method area) before it can be executed by the bytecode
execution engine. In short, the complete class images of the Java applications are stored
in the main memory while the most recently used methods and symbol information are
stored in the on-chip method area in a FIFO manner.

Since the Java VM is basically a stack machine, i.e., all the local variables and the
intermediate values of operations are stored in the runtime stack, fast accesses to the
most recent stack frames are essential to the performance of a Java processor. JAIP uses
a special-purpose on-chip memory and three top-of-stack registers to form a two-level
Java runtime stack. The special-purpose on-chip memory is a customized four-port
memory device custom-designed for the Java bytecode instruction set architecture. It is
composed of a pair of interleaving two-port memory blocks and four registers. The
design is a good tradeoff between performance and implementation cost as compared
to the Java processors with a large stack cache [10, 13, 14].

174 C.-J. Tsai et al.

The two-level Java stack allows JAIP to perform two-fold instruction folding for
frequent bytecode pairs [15] such as load-load, ALU-store, etc. However, to simplify
the microarchitecture, some folding patterns, e.g. ALU-ALU bytecode pairs, are not
allowed. According to our empirical studies, the instruction folding rate of JAIP ranges
from 10 % to 40 % for different benchmark applications.

2.2 The Bytecode Execution Engine and the Stack Memory

The bytecode execution pipeline of the JAIP core is shown in Fig. 2. The Java bytecodes
are translated into native JAIP instructions called j-codes before instruction decoding
and folding. The JAIP core performs two-fold instruction folding of stack-related Java
operations using a simple decision policy. In short, JAIP only supports the folding of
the following stack operation pairs: Load-Store, Store-Load, ALU-Load, Load-ALU,
Store-ALU, ALU-Store, Load-Load, and Store-Store. Note that in these stack opera‐
tions, ‘Load’ means loading a data item on to the operand stack. The source of the data
can be from the local variable area of the Java stack or a constant value. ‘Store’ means
removing a data item from the operand stack. The destination of the removed data can
be the local variable area or a null space (as in the ‘pop’ operation). Finally, ‘ALU’
means an arithmetic and logic operation. The fetch stage of the pipeline will guarantee
that, at any given cycle, the j-code information passed to the decode stage belongs to
one of the following three cases: a foldable j-code instruction pair, a single control
instruction (such as a conditional branch), or a special data-processing j-code (such as
the ‘swap’ operation). The two-level JAIP stack can encounter structure hazard when‐
ever the j-code instruction pairs try to transfer two local variables stored in the same
SRAM bank to the operand stack (or vice versa). This hazard can be removed by using
a general-purpose four-port memory for the second-level stack. However, since a
general-purpose four-port memory is often expensive, we use a special-purpose 4-port
memory customized to the Java ISA to reduce the occurrence of structure hazards while
maintaining low implementation cost [16].

Translate Stage

bytecodes/operands

Bytecode
classifier

Fetch Stage

Fetch controller
j-code
info.

j-code sequence
ROM

Decode Stage

IPC request
controller

Two-fold
j-code decoder

j-code(s)

Execute Stage

Two-level Java stack
(a customized

4-port memory)

Two-fold Execution
Datapath

ctrl.
signals,
operand

info

branch flag

IPC
request

Hazard detector

48-bit
Instruction

buffer

Lookup ROM

Dynamic
resolution
circuitry

operands IPC request
for dynamic
class loading

branch
dest.

en

Exception Manager

Fig. 2. The bytecode execution engine pipeline of JAIP.

JAIP-MP: A Four-Core Java Application Processor 175

According to the Java VM specification [17], the first four local variables should be
the most frequently used ones (which can be arranged by an optimized Java compiler).
Hence, some Java instructions (with no operands) are designed specifically for accessing
these variables. The second-level Java stack memory is constructed by using two on-
chip memory blocks organized in an interleaving structure to form a Java stack. In addi‐
tion, four 32-bit local variable (LV) registers are used as a small cache for the first four
local variables as shown in Fig. 3.

Dual customized
4-port memory

LV 0

LV 1

LV 2

LV 3

Java Stack 0

dual-port
SRAM

dual-port
SRAM

Java Stack 1

dual-port
SRAM

dual-port
SRAM

RA1

RA2

WA1

WA2

TSA

RD1

RD2

WD1

WD2

CurrSD

NextSD

TOS_A

TOS_B

TOS_C

DDR-SDRAM

TSA: Thread Stack Address
CurrSD: Current Stack Data
NextSD: Next Stack Data

Second-level stack First-level stack

Fig. 3. The architecture of the stacks in a JAIP core.

In Fig. 3, there are two Java stacks instead of one. These two stacks form a ping-
pong buffer to support fast context-switching operations for preemptive multi-threading.
At any given time, only one of the stacks will be used as the active Java stack. The other
stack will be used to load the stack frame of the next selected thread for the execution
in the next time quantum. The details of context switching will be discussed in Sect. 2.3.
Upon a method invocation, the first four local variables will be copied from the Java
stack to the LV registers. Before the method returns, the LV registers will be copied
back to the Java stack. The initialization/restoration of the LV registers only takes one
cycle (since each bank has two ports) and is performed in parallel with the dynamic
resolution process of method invocation/return such that they do not incur extra over‐
head. With this design, the folding of two stack operations of ‘Load’ and ‘Store’ of the
first four local variables do not cause structure hazard. However, accesses to the local
variables beyond the first four will not be folded by JAIP. This is a design choice to
simplify the control logic.

176 C.-J. Tsai et al.

2.3 Single-Core Preemptive Thread Management

For the execution of multi-thread Java programs, each thread must maintain its own
registers and runtime stack. Typically, the register file of a Java processor is only
composed of few special-purpose registers and can be swapped out to main memory
quite efficiently. On the other hand, the Java runtime stack is much larger than the register
file. If the runtime stack is stored in the main memory (e.g., DRAM), there is no need
to save the runtime stack. However, most high-performance Java processors, including
JAIP, use stack cache or on-chip memory to support instruction folding and to reduce
the access delay of operands. In either case, the time it takes to swap out the on-chip
stack would be non-negligible.

Saving/restoring the context of a JAIP thread involves transferring the stack frames
(each ranging from a few bytes to a few hundreds bytes) to/from the main memory. In
order for JAIP to support hardware-based multi-threading, we have designed a low-cost
thread manager unit to reduce the context-switching overhead. As a result, in most cases,
switching from the current thread to the next active thread only takes a single cycle. This
is much faster than any software-based preemptive multi-tasking operations where a
context-switching operation can take anywhere from a few hundreds to over a thousand
cycles.

Thread Control Block

thread_info_in

thread_info_out

Thread Queue

thread_id

Counter Unit

counter

Stack Manager

prepare_addr

access_addr

Thread Controller

thread_init
CS_flag

enable

new_flag

clk

to dual four-port
stack memory

to access
DDR-SARAM

to bytecode
execution engine

new
thread id

thread id

from bytecode
execution engine

Fig. 4. The thread manager unit.

JAIP-MP: A Four-Core Java Application Processor 177

The architecture of the thread manager unit is shown in Fig. 4. When a Java program
executes the start() method of an object derived from the Thread class, the JAIP execu‐
tion pipeline will send a signal to the thread manager unit, informing the controller to
initialize a new task in the on-chip thread control block (TCB) and enters the thread ID
into the thread queue. Note that the execution of the start() method via the ‘inovkevirtual’
bytecode goes through the dynamic resolution unit of JAIP, which trigger the controller
circuit of the thread management unit directly. More discussion on the direct invocation
of hardware logic or I/O devices through a standard Java method invocation mechanism
will be discussed in Sect. 2.5.

The structure of the TCB is shown in Fig. 5. In the current design, a fair round-robin
algorithm is used in the controller to select the next ready thread. The state of a thread
is stored in a TCB entry, which is composed of the following information:

1. The ID of the thread.
2. The Java class and method IDs of the thread.
3. The local variable pointer and the operand stack pointer.
4. The program counter and the number of local variables of the thread.
5. The first-level operand stack (the top-of-stack A, B, and C registers) of the thread.
6. The object reference (pointer) to the thread object in the Java heap.

Thread Control Block

Entry 0 Entry 15

Thread ID

Cls id & Mt id

VP & SP

LV0 ~ LV3 & JPC

TOS_A

TOS_B

TOS_C

Thread Object

…

thread_id

thread_init

thread_info.

Thread ID

Cls id & Mt id

VP & SP

LV0 ~ LV3 & JPC

TOS_A

TOS_B

TOS_C

Thread Object

info

CS_flag

Fig. 5. Structure of the on-chip thread control block.

Each TCB entry is composed of eight 32-bit values. In the current design, the thread
control block is implemented using an on-chip memory. We have set the maximal
number of threads to 16 to limit the size of the TCB to 512 byte. The maximal number
of threads can be extended easily at the cost of a larger on-chip memory. For thread
management, we use a circular queue to store the ID of each thread in the queue. Every
time a new thread is created by the Java application through the execution of the start()

178 C.-J. Tsai et al.

method of a Thread object, a new thread ID will be generated and entered into the end
of the thread queue. When the time slice of the current thread ends, its ID will be moved
to the end of the queue and the thread whose ID is pointed to by the ‘next’ pointer will
become the current thread.

The ping-pong stack architecture works as follows. As soon as a thread is selected
as the current thread and starts its execution, the multi-threading logic also picks the
next thread to be executed and, while the first thread is running, swaps in the runtime
stack of the second thread from the main memory. When the time slice of the first thread
is up, JAIP can be switched to the second thread within a cycle since its stack has already
been setup. In the rare case where the restoration of the runtime stack of the second
thread takes longer than the predetermined time quantum of the first thread, the time
quantum will be extended until the runtime stack of the second thread is in place. The
average time it takes to backup or restore a runtime stack to/from the backing store (the
main memory) for the target system used in this chapter (Xilinx ML 605) is less than
10 μs when the system clock is 83.3 MHz.

When the execution is switched to the second thread, the runtime stack of the first
thread will be saved to the main memory in parallel to the execution of the second thread.
As soon as the stack of the first thread is saved, the multi-thread control logic will proceed
to the setup of the third thread. With this design, the overhead of saving/restoring the
runtime stack can be overlapped with the execution of the current thread. According to
our experiments, the time slice of the proposed architecture can be as small as 20 μs and
the only overhead in context-switching is virtually the reset of the processor pipeline
(similar to a branch instruction). Smaller time slice means the distribution of the CPU
resources to each thread is more even. This level of multi-threading efficiency is very
difficult to achieve with a software-based preemptive multitasking operating system.

2.4 The Memory Manager and Garbage Collector

Garbage collection (GC) is an important feature of the Java programming model. It takes
the burden of memory management off the programmers and removes common memory-
related bugs in programs. However, runtime GC may induce high overhead and affect
the performance of an application [18, 19]. This is particular true for software-based
VM. Therefore, for embedded applications, programmers must be careful to avoid trig‐
gering GC unintentionally or the whole application may stall until the GC process is
finished.

On the other hand, for hardwired Java VM, the GC circuitry can run in parallel to
the bytecode execution pipeline, it is possible to design hardware based GC that does
not stall the execution of the Java applications [20]. Although hardware-based GC is an
active research direction [20–22], most designs are simply technical investigations and
have not been integrated into a complete Java system. For example, [20] presents a
synthesizable GC hardware, but the GC is exclusively evaluated on an FPGA using test
patterns that represent typical applications.

Although GC is a crucial component of a JVM, the JVM specification does not
enforce of any type of GCs for memory management. The memory manager hardware
in JAIP includes hardware controllers that handle memory allocation and object caching

JAIP-MP: A Four-Core Java Application Processor 179

(see Fig. 6). To perform garbage collection, the VM must carry out two types of oper‐
ations. First, the VM must be able to determine that an object on the heap is not pointed
to by any Java reference variables. Secondly, the GC mechanism must return the object
space to the unused memory block list and merging two consecutive unused memory
blocks if possible. In JAIP, we adopt the tracing garbage collector since it has low over‐
head and is suitable for hardware implementation. Furthermore, it can be a pluggable
component to existing memory manager of JAIP.

Heap
Allocation

Unit

Stack

de
m

ux

Object Cache
Controller

SRAM
block

allocSize

allocEn

current
heap

pointer

adder

array header array addr

array
reference

DSRU

objSize

array length

array type

External Memory
Controller

DDR3
SDRAM

System Bus

Heap Management Unit

Fig. 6. The memory manager architecture of JAIP without the GC.

In short, the tracing collector returns all the local references to the unused memory
block list unless the reference is a return value to the caller method. To achieve this goal,
we expand the heap allocation unit in Fig. 6 to the architecture in Fig. 7. The object
allocation controller is responsible for allocation of a new object on the heap and enters
the object into the on-chip GC table. The GC table can be accessed by the GC controller
for unused object collection upon the return of a method. Note that to hide the overhead
of the GC, the GC controller must be able to access the GC table concurrently to the
operation of the object allocation controller. Hence, we use a two-port memory for the
GC table. Another on-chip memory in Fig. 7 is the GC method stack memory. The GC
controller maintains this memory exclusively. During the execution of a method, this
memory records all objects allocated locally and whether they are assigned to references
outside the scope of this method. Upon the return of the method, the GC controller will
go through the list of objects and return the memory blocks to the unused memory list
if possible. Note that the collection process is executed in parallel to the normal bytecode
execution pipeline.

180 C.-J. Tsai et al.

GC
Controller

Object
Allocation
Controller

GC Mthd stack Mem

GC_addr

GC_write_en
GC_data_in

Mthd_addr

Mthd_write_en
Mthd_data_in

GC_data_out

Mthd_data_out

J-code

Two-Port GC table

Heap Request

Fetch Stage
Mthd ref 0

Mthd ref 0

Mthd ref 1

. . .

Fig. 7. The garbage collector of JAIP.

The GC controller will merges consecutive free memory block in the GC table into
a larger block. However, it does not move the occupied memory blocks to create larger
unused blocks because the cost would be too high for embedded applications. Note that
the GC algorithm used in JAIP is not a complete garbage collector. It only collects
unreferenced objects created by a method upon the return of the method to the caller.
The reason this algorithm is chosen is mainly because it has very low runtime overhead
and can be integrated into the existing memory manager of JAIP without major modi‐
fication to the overall microarchitecture.

2.5 Dynamic Symbol Resolution Unit and the I/O Subsystem

In Sect. 1.2, we mentioned that the DSRU can provide a direct interface to the I/O
subsystem of a hardwired Java VM. In this subsection, we use the JAIP DSRU as an
example to explain the details. Since most modern operating systems and processors
adopt the memory-mapped I/O model to manage I/O devices and accelerators, naturally,
accesses to I/O devices are achieved using memory read/write operations in the I/O
subsystem address space. Java uses the symbol space realized by the DSRU to replace
the concept of the address space. Therefore, for a hardwired Java VM, the I/O subsystem
can be integrated seamlessly into the DSRU logic. A method call in Java can be transform
directly by the DSRU into control signals wired to a hardware device through some
routing box (similar to the interconnect module of the ARM AXI bus protocols).
Figure 8 shows the state-diagram of the controller of the DSRU of JAIP. When a program
invokes a method, the controller begins at the ‘IDLE’ state and begins the symbol reso‐
lution process. When the DSRU determines that the target of the method invocation is

JAIP-MP: A Four-Core Java Application Processor 181

for a native method implemented in hardware, it will enter the state of ‘Invoke HW
Logic.’ This state will trigger the I/O subsystem manager to send appropriate hardware
signals to the target device. Currently, all the hardware native methods of JAIP are
determined at synthesis time. The string accelerators and the multi-thread managers of
JAIP are invoked using such facility.

Fig. 8. The state diagram of the dynamic resolution controller of JAIP. XRT stands for ‘cross-
reference table,’ MT stands for ‘method,’ IF stands for ‘interface,’ DRC stands for ‘dynamic
resolution controller,’ and FLD stands for ‘field.’

3 Multi-core Integration of JAIP

3.1 The Multi-core Thread Manager

In order to integrate multiple JAIP cores into one application processor, we must modify
the microarchitecture of JAIP. The multi-core capable JAIP core is shown in Fig. 9. The
new addition to the original JAIP core is the Inter-Core Communication Unit (ICCU).
The interactions between various components of the JAIP core and the ICCU are illus‐
trated in Fig. 10. In the Java programming language, an object belongs to the “Thread”
class can register its own execution context by invocation of the Thread.start() method.
At runtime, the Dynamic Symbol Resolution Unit (DSRU) of JAIP will resolve the
method invocation of start() and trigger a hardwired signal to the thread manager unit
of the local JAIP core that executes the start() method. Such direct invocation of a hard‐
wired logic through the dynamic resolution unit is called the Hardware Native Interface
(HNI). In the original single-core JAIP, the local thread manager will handle the thread

182 C.-J. Tsai et al.

creation requests by itself and register a new entry in its local task queue. However, for
a multi-core capable JAIP, the thread creation request cannot be handled locally. Instead,
the request will trigger the HNI invocation of the ICCU, and the request signal will be
passed to the Data Coherence Controller (DCC). The DCC then talks to a global thread
manager to request for the creation of a new thread. The global thread manager will
assign the new thread to a JAIP core based on the depth of its local task queue.

Java Acceleration IP (JAIP)

Host
service

interface

Method area
manager

Bytecode
execution

engine

Dynamic
resolution
controller

Two-level
ping-pong
Java stack

Method image
circular buffer

Class symbol
circular buffer

Dynamic
resolution

tables

Exception
manager

Thread
manager

Data cache
controller

Object cache

Data Coherence Controller

Inter-Core
Communication

Unit

Fig. 9. Modifications required to a JAIP core to enable multi-core integration.

Inter-Core
Communication

Unit

DSRU

JAIP
decode
stage

Thread
Manager

unit

D
ata C

oherence C
ontroller

Command
and Status
Adaptor

Request a
new thread

monitor_enter_req

monitor_exit_req

Data
Transferring
Controller

Execution
stage

Thread objref

TOS_A

Completion ack.

run_thread_ID

JAIP2DCC_info

DCC2JAIP_info

JAIP2DCC
command

DCC2JAIP
response_msg

Fig. 10. Signaling between ICCU and other components of JAIP.

JAIP-MP: A Four-Core Java Application Processor 183

In addition to thread creations, the Java language also defines standard ways for
synchronization. In short, each Java object contains a lock (similar to mutex in other
programming language). Synchronization can be achieved explicitly through the acquis‐
ition of the lock in an object, or implicitly through invocation of a synchronized method.
Similar to the thread creation problem, the acquisition of a lock cannot be handled locally
since two threads requesting the same lock may be running on different JAIP cores.
Therefore, such locking requests will also be passed to the ICCU for multi-core mutex
operations. However, this time, the ICCU is not activated by a HNI invocation from the
DSRU because the lock request is triggered by the execution of a “monitor” bytecode.
Therefore, the lock request is originated from the decode stage of the bytecode execution
engine, as shown in Fig. 10.

The integration of four JAIP cores into the multi-core application processor, JAIP-
MP, is shown in Fig. 11. In the SoC, we only need one copy of DCC and global thread
manager. The combination of these two hardware logic is referred to as the multicore
coordinator of the JAIP-MP. Each JAIP core has its own ICCU. The local cache
controller of each JAIP core will forward its cache block update status to the DCC so
that the DCC can inform other cache controller to update their cache blocks if necessary.
This is an efficient way to guarantee cache coherence when there are only few processor
cores. However, to simplify the implementation of the coherent object cache, each cache
controller adopts a write-through policy. This is different from the original single-core
JAIP presented in [3], where a write-back policy is used. The write-through cache policy
does hinder the single-core performance slightly. Nevertheless, the overall system
performance still scales up fairly well.

JAIP 0

Cache
controller

Object cache

JAIP 1 JAIP 2 JAIP 3

System bus

Multicore
coordinator

Global Thread
Manager

Data-Coherence
Controller

RISC core
(only for
dynamic

class-loading)

Memory
controller

DDR3
SDRAM

ICCU

Cache
controller

Object cache
ICCU

Cache
controller

Object cache
ICCU

Cache
controller

Object cache
ICCU

Fig. 11. Integration of four JAIP cores into a multi-core JAIP-MP SoC.

184 C.-J. Tsai et al.

3.2 The Data Coherence Controller Architecture

The detail architecture of the DCC is shown in Fig. 12. It is composed of four sub-
modules. The cache coherence controller maintains the data consistency across the
object heap controllers of each core. The heap controller adopts the least-recently used
policy and write-through strategy for caching of Java heap objects. The mutex controller
serially decodes requests sent by the JAIP cores and activates corresponding sub-
module. The thread assignment controller (TAC) is responsible for load balancing
among all JAIP cores. When a JAIP core invokes the Thread.start() method, the TAC
will forward its special-purpose registers to the JAIP cores with the least number of
ready threads. The Lock Object Accessing Controller (LOAC) shown in Fig. 13 main‐
tains the information of waiting threads associated with each occupied lock object.

JAIP A JAIP B JAIP C JAIP D

DCC2JAIP
response_msg

Data Coherence Controller

Cache
Coherence
Controller

Thread Assignment
Controller Lock Object Accessing Controller

Mutex Controller

arbiter_cmd_msg

arbiter_infonew_TH
to_coreID

lock_obj
_match_flag

nxtLock
Owner
Info

ICCU

Heap

ICCU

Heap

ICCU

Heap

ICCU

Heap

Fig. 12. The block diagram of the DCC.

When several JAIP cores try to request locks on the same mutex concurrently, the
mutex controller uses a fixed-priority policy to determine which core can lock the mutex.
Currently, the JAIP core with a smaller ID has a higher priority. The mutex controller
supports three types of requests: dispatching a new thread, acquiring a lock object, and
releasing a lock object. Either the TAC or the LOAC will be activated after the mutex
controller determines the type of the request.

When any of the JAIP cores issues a request for the dispatching of a new thread, the
TAC should determine a JAIP core to handle the new thread. In order to determine the

JAIP-MP: A Four-Core Java Application Processor 185

current number of active threads in each JAIP core, the TAC maintains a table. The table
indexed is the ID of the JAIP core, and its entries store the current number of active
threads of each core. The TAC will always assign the new thread to the lowest ID JAIP
core that has the fewest number of ready threads. The TAC will inform the MHC to send
a response signal to the chosen JAIP core with some essential information of the new
thread. The ICCU of the JAIP core may process the information by decoding the
response signal. Finally, the ICCU activates the thread manager unit of the JAIP core to
add the new thread into its local thread queue.

Figure 14 is an example of the link lists maintained by the LOAC, which consists of
a lock object table, a waiting thread table, and a few internal registers. Each occupied
lock object maintains a linked list in these two tables. The head node of the linked list
of a lock object begins at an entry in the lock object table, and the rest of the linked list
nodes are entries of the waiting thread list. Each entry in the link list (except for the head
node) represents a thread that is performing a lock operation on the object. The first
thread in the linked list is the link list is the current owner of the lock. As soon as any
thread in one of the JAIP cores tries to lock a Java object, the mutex controller will send
a lock object Ln to the LOAC. The LOAC will look for the object address of an entry
that matches Ln in the lock object table. Once the matched entry is found, the information
must be recorded in the waiting thread table. Each entry contains the IDs of the JAIP
core and the thread. The new entry is appended at the end of the link list. If the request
from a thread is to release the lock object Ln, the LOAC will remove the thread from the
link list. If any other thread is waiting for the same lock object Ln, the LOAC will make
the second thread in the link list become the current owner of the lock object.

Lock Object Accessing Controller

monEn_match
_cmplt

nxtLock
OwnerInfo

lastNode_
lockObj_flag

mutex_
state

monEn_
free_cmplt

monEx_
cmplt

Mutex Controller

List Accessing Controller

D
O

A

D
O

B

D
IA

D
IB

lockObj_
curCount

numLock
_checked

lockOwner

nxtEmpty
WaitLst

nxtEmpty
LockObjLs

t

BRAM

Lock Object
Table

Waiting
Thread
Table

the_owner_
acq_again

A
D

D
R

A

A
D

D
R

B

Fig. 13. The block diagram of the LOAC.

186 C.-J. Tsai et al.

Waiting Thread Table
Valid

bit
Core
ID

Thread
ID

Counter Reserved Next node
Address

1 01 0000100 000001 00…..00 0000100

1 11 0000001 000001 00…..00 0001000

0 xx xxxxxxx 000000 00…..00 1111111

1 00 0000010 000001 00…..00 1111111

1 00 0000011 000001 00…..00 1111111

1 10 0000000 000001 00…..00 0000000

1 00 0000001 000011 00…..00 1111111

0 xx xxxxxxx 000000 00…..00 1111111

.... …...
0 xx xxxxxxx 000000 00…..00 1111111

Head node

Valid
bit

Object reference
address

Next node
Address

1 Object reference L0 0000101

0 Unknown value 1111111

1 Object reference L1 0000001

1 Object reference L2 0000110

0 Unknown value 1111111

.... …....

0 Unknown value 1111111

Lock Object Table

A

B

C

A

C

C

Fig. 14. Data structures maintained by the LOAC.

4 Experimental Results

The proposed architecture has been implemented on a Xilinx ML605 platform with a
Xilinx Virtex6 XC6VLX240T FPGA. The RTL model of the JAIP core and the DCC
logic are written in VHDL. Four JAIP cores and one DCC logic are integrated into the
application processor using Xilinx XPS 13.4. The synthesis tool is Xilinx XST 13.4 and
the target clock is 83.3 MHz. According to the place-and-route timing report of the
Xilinx tools, the critical path of the system is currently at the execution stage of JAIP,
from the customized four-port stack memory to ALU and then back to the four-port
memory. The target frequency is chosen at 83.3 MHz due to some restrictions for DDR
DRAM support on the development boards. The FPGA resource usages of JAIP and
DCC are shown in Table 1.

JAIP-MP: A Four-Core Java Application Processor 187

Table 1. Logic usage of a JAIP core and DCC on a Virtex6 FPGA device.

FPGA logic units LUT6s Flip-flops BRAMs
JAIP (per core) 12,580 5,912 34
DCC 663 449 1

Note: LUT6 means a six-input lookup table in a logic cell of a Xilinx
device.

4.1 Single-Core Multithread Performance Evaluation

To evaluate the multi-threading performance of the proposed JAIP, we used the multi‐
threading benchmark programs from the JemBench suites [23]. These test programs are
explained as follows. The ‘Dummy’ test creates multiple threads to execute busy loops
for 5000 iterations. For the ‘Matrix’ test, each thread computes the multiplication of two
20-by-20 matrices. The ‘N-Queens’ test solves the N-Queens puzzle for N = 13 in each
thread. For each test programs, the test scores roughly stand for the number of iterations
each test program can execute per seconds by all threads. However, the scores are asso‐
ciated with quantization noises from the partition of subtasks across multiple threads
and from the synchronization operations. In short, the drop in scores from single-thread
test to multiple-thread tests is not entirely due to the context-switching overhead. Sun’s
CVM-JIT [24] running under Linux kernel 2.6.38 on an 83.3 MHz PowerPC 405
processor is used as the comparison point. JIT compilation is a very popular technique
for Java program acceleration. Since the standard Java compilers (from Sun/Oracle) do
not perform bytecode optimization on the compiled class files, a JIT-based VM could
achieve significant speedup at runtime.

0

50

100

150

200

250

300

350

sc
or

e

threads

JAIP
CVM-JIT

Dummy

Fig. 15. JemBench scores of the ‘Dummy’ test on a single JAIP core.

From Figs. 15 and 16, one can see that the performance of CVM-JIT is higher for
single-thread execution of the Dummy test and the Matrix test, JAIP has better perform‐
ance when the number of threads becomes larger. Since in these tests, both JAIP and
CVM-JIT executes using only one processor core, the scores drops naturally as the

188 C.-J. Tsai et al.

number of threads increases due to task division and synchronization overheads
explained before. However, from these plots, it is quite clear that a software-based
multithread mechanism such as the CVM-JIT has higher overhead in thread manage‐
ment. The performance drops significantly as the number of threads increases. For the
Dummy test, JAIP outperforms CVM-JIT when the thread number is larger or equal to
4. For the Matrix test, JAIP matches the performance of CVM-JIT when the thread
number is equal to 2 and outperforms CVM-JIT when the thread number is larger than
2. Finally, for the N-Queens test result shown in Fig. 17, JAIP outperforms CVM-JIT
even if there is only one thread. This is probably because the NQueens program leaves
little room for bytecode optimization by the JIT technique.

0

50

100

150

200

250

sc
or

e

threads

JAIP
CVM-JIT

Matrix

Fig. 16. JemBench scores of the ‘Matrix’ test on a single JAIP core.

0

20

40

60

80

100

120

140

sc
or

e

#threads

JAIP
CVM-JIT

N-Queens

Fig. 17. JemBench scores of the ‘N-Queens’ test on a single JAIP core.

JAIP-MP: A Four-Core Java Application Processor 189

4.2 Multi-core Multithread Performance Evaluation

For multi-core multi-thread performance evaluation, we do not use CVM-JIT as a
comparison point because the software platform does not support multi-core execution
of Java applications. Here, we focus on the evaluation of performance scalability of
JAIP-MP when the threads are distributed over multiple processor cores. As Table 2
shows, when the total number of threads is less than or equal to four, the JemBench score
scales up fairly well (up to 3.69 times faster for the N-Queens test). When the total
number of threads is more than four, the score of each benchmark naturally drops as the
preemptive multi-threading mechanism of each JAIP core kicks in and there are synchro‐
nization overheads due to the way the benchmarks are designed. This is especially true
for the N-Queens test.

Table 2. The multi-core JemBench scores of the parallel benchmarks.

threads Dummy Matrix N-Queens
1 151 167 116
2 298 240 225
3 374 395 330
4 491 498 428
5 410 425 311
6 373 412 251
8 362 399 262
12 359 366 212
16 340 327 195

Note: Larger number means better scores.

4.3 Synchronization Overhead

In the JemBench tests, context-switching overhead is not the only reason to cause the
performance drop. If several requests are sent concurrently to the DCC of JAIP-MP, it
takes several cycles for the mutex controller to decode the requests sequentially. In
addition, to maintain data cache coherency, as soon as each entry is updated in any of
the object heap controllers, the modified entry and its corresponding address are sent to
the cache coherence controller and the main memory controller for cache validation
among JAIP cores.

Tables 3 and 4 show the synchronization overhead of the proposed architecture under
the Matrix test. The average overhead of a synchronization operation can be as small as
tens of machine cycles.

Table 3. The execution time (in clock cycles) of acquiring a lock object.

threads 4 6 8 12 16
Average 23.1 25.4 25.4 28.9 28.9
Worst-case 43 89 108 108 110
Best-case 9 9 9 9 9

190 C.-J. Tsai et al.

Table 4. The execution time (in clock cycles) of releasing a lock object.

threads 4 6 8 12 16
Average 20.2 21.6 21.8 28.4 28.7
Worst-case 43 76 85 92 98
Best-case 10 10 10 10 10

5 Conclusions and Future Work

In this chapter, we have presented an four-core Java processor, JAIP-MP. The unique‐
ness of JAIP-MP is that the key functions of an operating system kernel are implemented
in hardware circuits. For thread management, the architecture supports arbitrary number
of threads (limited by the on-chip TCB memory size), low context-switching overhead,
small time quantum, and low synchronization overhead. The proposed architecture is
implemented and verified on an FPGA platform. Experimental results show that the
proposed design is very promising for embedded multi-thread applications.

For future work, we will look into the following directions. First of all, although the
ping-pong buffer for context-switching is efficient performance-wise, it does impose
heavy memory accesses. This may result in high power consumption. In the future, we
will try to design a new architecture that can reduce the number of memory access per
context-switch. Secondly, the coherent data cache in our current implementation only
adopts one-level of cache hierarchy. Most general purpose processors nowadays adopt
two or even three levels of cache hierarchy. It would be interesting to study the effects
of a multi-level cache on the object-oriented programming model of the Java language.

Finally, current thread management design only uses a round-robin policy to main‐
tain load balance. We will look into the design of a new architecture that can customize
the thread distribution policy at runtime and allow for thread migration across different
JAIP cores so that better runtime load balance can be achieved.

References

1. Ritchie, S.: Systems programming in Java. IEEE Micro 17(3), 30–35 (1997)
2. Montague, B.R.: JN: OS for an embedded Java network computer. IEEE Micro 17(3), 54–60

(1997)
3. Tsai, C.-J., Kuo, H.-W., Lin, Z., Guo, Z.-J., Wang, J.-F.: A Java processor IP design for

embedded SoC. ACM Trans. Embed. Comput. Syst. 14(2), Article 35 (2015)
4. Su, H.-C., Wu, T.-H., Tsai, C.-J.: Temporal multithreading architecture design for a Java

processor. In: Proceedings of the IEEE International Symposium on Circuit and Systems
(ISCAS 2014), Melbourne, Australia, June 2014

5. Schoeberl, M.: A Java processor architecture for embedded real-time systems. EUROMICRO
J. Syst. Architect. 54(1–2), 265–286 (2008)

6. Gruian, F., Schoeberl, M.: Hardware support for CSP on a Java chip multiprocessor.
Microprocess. Microsyst. 37(4), 472–481 (2013)

JAIP-MP: A Four-Core Java Application Processor 191

7. Brandner, F., Thorn, T., Schoeberl, M.: Embedded JIT compilation with CACAO on YARI.
In: Proceedings of the IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC 2009), Tokyo, 17–20 March, pp. 63–70
(2009)

8. Tyystjaervi, J., Saentti, T., Plosila, J.: Efficient bytecode optimizations for a multicore Java
co-processor system. In: Proceedings of the 12th Biennial Baltic Electronics Conference,
Tallinn, Estonia, 4–6 October 2010

9. Kreuzinger, J., Brinkschulte, U., Pfeffer, M., Uhrig, S., Ungerer, T.: Real-time event-handling
and scheduling on a multithreaded Java microcontroller. Microprocess. Microsyst. 27(1), 19–
31 (2003)

10. Sun Microsystems: picoJava-II Microarchitecture Guide (1999)
11. Uhrig, S., Wiese, J.: jamuth: an IP processor core for embedded Java real-time systems. In:

Proceedings of the 5th International Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2007), 26–28 September, Vienna, pp. 230–237 (2007)

12. Pitter, C., Schoeberl, M.: Towards a Java multiprocessor. In: Proceedings of the 5th ACM
International Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES
2007), 26–28 September, Vienna, pp. 144–151 (2007)

13. Yan, L., Liang, Z.: An accelerator design for speedup of Java execution in consumer mobile
devices. Comput. Electr. Eng. 35(6), 904–919 (2009)

14. Hardin, D.S.: Real-time objects on the bare metal: an efficient hardware realization of the
JavaTM virtual machine. In: Proceedings of the 4th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, 2–4 May, Magdeburg, pp. 53–59 (2001)

15. Vijaykrishnan, N., Ranganathan, N., Gadekarla, R.: Object-oriented architectural support for
a Java processor. In: Proceedings of the 12th European Conference on Object-Oriented
Programming, Brussels, Belgium, pp. 330–354 (1998)

16. Lin, Z.-G., Kuo, H.-W., Guo, Z.-J., Tsai, C.-J.: Stack memory design for a low-cost instruction
folding Java processor. In: Proceedings of the IEEE International Symposium on Circuit and
Systems, 20–23 May, Soeul, Korea, pp. 3326–3229 (2012)

17. Lindholm, T., Yelling, F.: The Java Virtual Machine Specification, 2nd edn. Addison-Wesley,
Longman Publishing Co., Inc., Boston (1999)

18. Chang, Y., Wellings, A.: Garbage collection for flexible hard real-time systems. IEEE Trans.
Comput. 59(8), 1063–1075 (2010)

19. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-the-fly garbage
collection: an exercise in cooperation. Commun. ACM 21(11), 965–975 (1978)

20. Bacon, D.F., Cheng, P., Shukla, S.: And then there were none: a stall-free real-time garbage
collector for reconfigurable hardware. Commun. ACM 56(12), 101–109 (2013)

21. Srisa-an, W., Lo, C.-T.D., Chang, J.M.: Active memory processor: a hardware garbage
collector for real-time Java embedded devices. IEEE Trans. Mobile Comput. 2(2), 89–101
(2003)

22. Gruian, F., Salcic, Z.A.: Designing a concurrent hardware garbage collector for small
embedded systems. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS,
vol. 3740, pp. 281–294. Springer, Heidelberg (2005)

23. Schoeberl, M., Preusser, T. B., Uhrig, S.: The embedded Java benchmark suite JemBench.
In: Proceedings of the JTRES 2010, 19–21 August, Prague, Czech Republic (2010)

24. Oracle: Phoneme project webpage. Accessed 27 Sept 2011. https://java.net/projects/phoneme

192 C.-J. Tsai et al.

https://java.net/projects/phoneme

Automatic Generation and Qualification
of Assertions on Control Signals: A Time

Window-Based Approach

Alessandro Danese(B), Francesca Filini, Tara Ghasempouri,
and Graziano Pravadelli(B)

Department of Computer Science, University of Verona, Verona, Italy
{alessandro.danese,tara.ghasempouri,graziano.pravadelli}@univr.it,

francesca.filini@studenti.univr.it

Abstract. Assertion-based verification (ABV) is a promising approach
for proving that the design implementation is consistent with the
designer’s intents. However, ABV effectiveness depends on the quality of
the assertions that are defined to capture the designer’s intents. Asser-
tions are generally defined by verification engineers that manually con-
vert informal specifications in logic formulas according to their expertise.
However, manual definition is a time-consuming and error-prone activ-
ity, which may fail to exhaustively cover either the intended specifica-
tion or the implemented behaviours. For this reason, different mining
approaches have been recently proposed for the automatic generation of
assertions. Unfortunately, in most cases, existing mining tools generate
a set of over-constrained assertions. As a consequence, each assertion in
the set is a long formula that describes a very specific behaviour of the
design under verification (DUV). Thus, in the effort of covering as much
DUV behaviours as possible, these approaches generate a huge amount
of assertions with a negative impact on the total time required for their
verification. To overcome this drawback, this paper introduces a dynamic
approach that incrementally analyses control signals on DUV execution
traces for mining more expressive temporal assertions that better cap-
ture the I/O communication protocol. Then, to evaluate the effectiveness
of the generated assertions in covering the intended behaviours, a tech-
nique is proposed to estimate assertion’s interestingness by ranking them
according to metrics typically adopted in the context of data mining.

Keywords: Assertion mining · Assertion qualification · Assertion-based
verification

1 Introduction

Despite the advancement in simulators and formal methods, the verification
result is only as good as the specifications defined to capture the designer’s

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
Y. Shin et al. (Eds.): VLSI-SoC 2015, IFIP AICT 483, pp. 193–221, 2016.
DOI: 10.1007/978-3-319-46097-0 10

194 A. Danese et al.

intent. Without a good set of specifications, designers can easily lose the con-
trol of the system design, and they cannot understand what behaviour of the
system is implemented in the reality. Unfortunately, even if everybody agrees
that the first and the most important step for a good development task is the
collection of all the intents and specifications, often this does not receive an
appropriate attention. In the last decade, assertion-based verification (ABV)
has arisen as one of the most popular solutions for electronic system level (ESL)
and Register Transfer Level (RTL) verification [1]. ABV relies on the definition
of assertions, i.e., logic formulas, generally written according to temporal logics,
like LTL and CTL [2], and property specification languages, like PSL [3], that
formalize the behaviours of the DUV by overcoming the ambiguity of natural
languages and providing the engineers with precise and well-defined specifica-
tions. However, manual definition of assertions requires high expertise and it is an
error-prone and time-consuming activity. Main problems are related to the risk
of defining assertion sets that are incomplete (i.e., unable to cover all expected
behaviours of the DUV), inconsistent (i.e., with contradicting assertions), redun-
dant (i.e., with assertions that are logical consequence of others), and including
vacuous assertions (i.e., assertions that are true independently from the DUV,
and thus irrelevant). As a result, a false sense of security is induced by an
ABV campaign conducted with a low-quality set of assertions. As a complemen-
tary approach to manual definition of assertions, several approaches and tools
have been proposed for automatically extracting safety assertions in the form
always(antecedent → consequent) from the implementation of the DUV [4–8].
These approaches either rely on static analysis of the DUV source code or they
dynamically mine assertions from execution traces of the DUV. The first are
accurate and provide assertions that are formally proved to be satisfied by the
DUV, but they do not scale well for complex DUVs. The second provide only
likely assertions, whose quality depends on the observed execution traces (i.e.,
likely assertions are guarantee to hold at least for the considered execution traces,
however a counter example could be finally found), but they do not require the
source code and guarantee a better scalability for complex DUVs. Independently
from the adopted techniques, mined assertions can be compared with design
intents to discover unexpected behaviours implemented in the DUV, to confirm
that relevant behaviours are actually implemented, and for documentation pur-
poses. Existing approaches generally extract a high number of long assertions,
but each of them covers a few specific behaviours of the DUV. This depends on
the fact that mined assertions are over-specified, i.e., their antecedents and/or
consequents include several atomic propositions that predicate almost on all pri-
mary inputs and outputs of the DUV. Moreover, mined assertions mix data and
control signals making difficult the characterization of the I/O communication
protocol of the DUV. Large sets of over-constrained assertions make impractical
the analysis of mined assertions by verification engineers and greatly increase
verification time. Furthermore, while vacuity and inconsistency in the set of
generated assertions are generally avoided by the mining approach itself, asser-
tion incompleteness and redundancy may still affect the outcome of assertion

Automatic Generation and Qualification of Assertions on Control Signals 195

mining. Thus, a qualification phase to identify the most interesting assertions
is necessary to focus designer’s attention on relevant assertions that capture
expected (or unexpected) behaviours implemented in the DUV. Unfortunately,
as the number of mined assertions can be very high, their manual qualification is
almost impractical, while current approaches for automatic evaluation are still
unsatisfactory from the point of view either of the effectiveness [5,6,9,10] or of
the efficiency [11–14].

In the previous context, the goal of this paper consists of overcoming the
drawbacks of existing works in assertion generation and assertion qualification
by proposing:

– First, a dynamic assertion generation approach that infers assertions by incre-
mentally analysing time windows of the DUV’s execution traces. The algo-
rithm searches for recurrent temporal patterns among atomic propositions
predicating on I/O control signals. Mined assertions are in average shorter,
more expressive from the point of view of the I/O communication protocol,
and then simpler to be understood by humans, compared, for example, to the
approach proposed in [5]. This reduces verification time, and increases the
effectiveness of verification engineers in discovering design errors by analysing
mined assertions.

– Secondly, an automatic qualification approach for evaluating the quality of
extracted assertions and rank them accordingly. The estimation of the inter-
estingness of assertions is achieved by ranking them according to probabilistic
metrics typically adopted in the context of data mining (i.e., support and
correlation coefficient) [15,16], which we adapt here for the specific case of
assertion mining. From the point of view of the general concept, data mining
and assertion mining share the same idea (extracting rules from data), but
they have several differences that make practically different how these metrics
are computed and interpreted for evaluating the interestingness of assertions.

The rest of the paper is organized as follows. Section 2 summarizes the related
works. Section 3 presents some preliminary definitions and concepts relevant
for understanding the technical details of our approach. Section 4 provides an
overview of the proposed methodology, which is then thoroughly described in
Sects. 5 and 6, respectively, for assertion mining and assertion qualification.
Finally, experimental results and concluding remarks are reported, respectively,
in Sects. 7 and 8.

2 Related Works

Different strategies have been proposed for assertion mining. Among the first
works in the software domain, scenario-based specification mining approaches
proposed in [17,18] require instrumenting the source code to store the sequence
of method calls among the components of the design in an execution trace. Data
mining methods are then applied to program execution traces in order to mine
strongly observed inter-component universal sequence diagrams in the form of

196 A. Danese et al.

live linear sequence charts (LSC). LSCs represent how the components coop-
erate to implement certain system features. However, these approaches are not
aimed at discovering the complete behaviour of the components but only the
collaboration among them. Other works mine the specifications of the design
in form of algebraic equation [19] or Hoare-style equations of pre and post-
conditions [20]. In particular, [20] automatically deducts arithmetic relation-
ships that predicate exclusively on values and data-structures, but the temporal
behaviours are not considered. Temporal assertion mining is described in [21],
where a mining tool, GoldMine, is proposed for extracting Boolean-level asser-
tions for HW components. On the contrary, [6,9,22] propose methodologies for
specification mining which are able to manage indistinctly HW and embedded
SW descriptions according to a set of pre-defined temporal patterns. They rely
on Daikon [23] to mine relevant arithmetic/logic relations among the variables
of the DUV from execution traces. In particular, [6,22] try to mine a set of
temporal assertions reporting how arithmetic/logic relations change during the
execution of the design. Even if these works introduce a novel approach in which
the extraction of temporal relations between arithmetic/logic expressions repre-
sents a good strategy to describe more closely the behaviours of the design, the
generated assertions are hard to be understood because they involve all primary
inputs and outputs of the DUV. As results, mined assertions cannot be easily
analysed from designers to detect unexpected behaviours. On the other hand, [9]
is focused only on catching simple arithmetic/logic relations on the assumption
that a behaviour of the DUV can be justified essentially through a comparison
between the set of verified arithmetic/logic relations in an execution instant and
the set of falsified arithmetic/logic relations in the closer next execution instants.
Finally, commercial tools are also available for automatic assertion generation,
e.g., Atrenta BugScope [24] and Jasper ActiveProp [7] that works on RTL mod-
els at Boolean level, but no arithmetic/logic expressions are considered among
more abstracted data types.

Concerning assertion qualification, current approaches are still unsatisfactory
to measure the quality and interestingness of assertions. In [6], a stressing phase is
proposed only to verify the likelihood that mined assertions are globally satisfied
(and not only for the execution traces analysed by the miner), but no strategy
is proposed to measure their interestingness in covering DUV behaviours. In [5],
interestingness estimation is based on the number of propositions included in the
antecedent of the assertion, according to the fact that an assertion with a lower
number of propositions in its antecedent has an higher input space coverage than
one with many propositions in its antecedent. However, the correlation between
the antecedent and the consequent of an assertion is not considered. To solve
this drawback, in [9] a ranking function is proposed that evaluates the quality
of the mined assertions in terms of cause-effect relationship between antecedent
and consequent of an assertion. Finally, in [10], mined assertions are said to be
generally ranked according to their frequency of occurrences and time of first
occurrence but no specific approach is presented.

Automatic Generation and Qualification of Assertions on Control Signals 197

As an opposite class of approaches, coverage metrics have been widely stud-
ied for qualification of assertions [11–14]. Most of these works relies on mutation
analysis, which requires perturbing the DUV implementation by injecting muta-
tions (faults) to check, either statically [12,13] or dynamically [14], whether they
change the truth values of the assertions; mutations that do not cause a change
are said to be not detected. Assertions that detect a few mutations are less inter-
esting than assertions detecting an higher number of mutations. Not detected
mutants generally highlight area/behaviours of the DUV that are not covered by
any of the defined assertions showing a hole on the coverage. Dynamic approaches
like [14] scale better with respect to static techniques, however, they still require
long simulation runs for checking each assertion for each mutation with a sig-
nificant set of testbenches. When the number of assertions is very high, as in
the case of assertions extracted automatically, evaluating their interestingness
through mutation analysis becomes a very time-consuming activity.

3 Background and Preliminaries

Before describing the proposed methodology, some definitions and concepts con-
cerning assertion generation and assertion qualification are reported to create
the necessary background.

3.1 Definitions

Definition 1 (Execution trace). Given a finite sequence of simulation
instants 〈t1,...,tn〉 and a model M working on a set of variables V , an execu-
tion trace of M is a finite sequence of pairs T = 〈(V1,t1),...,(Vn,tn)〉 where Vi =
eval(V,ti) is the evaluation of variables in V at simulation instant ti.

More informally, an execution trace describes for each simulation instant ti the
values assumed by each variable included in V during the evolution of the design

Fig. 1. Exemplification of execution trace, atomic proposition trace and time window.
(Color figure online)

198 A. Danese et al.

under verification M . In this paper, variables in V are primary inputs and pri-
mary outputs representing control signals of the DUV. An example of an exe-
cution trace is reported in Fig. 1 (left). By analysing an execution trace, we can
extract a set of atomic propositions that predicate on variables included in V .

Definition 2 (Atomic proposition). An atomic proposition is a formula that
does not contain any logical connective.

In our methodology, a set of atomic propositions is organized in an array
A = {a1, . . . , am} which is further divided in two sub-arrays: the array of input
atomic propositions AI = {a0, . . . , ai}, whose elements are atomic propositions
that predicate only on primary inputs of the DUV, and the array of output
atomic propositions AO = {ai+1, . . . , am}, whose elements predicate only on
primary outputs of the DUV. We do not consider any atomic proposition that
mixes primary inputs and primary outputs. Examples of atomic propositions are
reported in Fig. 1 (centre). From an execution trace and the corresponding set
of atomic propositions, we can generate an atomic proposition trace.

Definition 3 (Atomic proposition trace). Given an execution trace T and
an array of atomic propositions A, an atomic proposition trace is a finite
sequence of pairs ω = 〈(A0, t0), . . . , (An, tn)〉 where Ai = eval(A, ti) is an array
that represents the evaluation of atomic propositions in A at simulation instant
ti, i.e., Ai[j] = 0 if A[j] = false at time ti, Ai[j] = 1 otherwise.

The atomic proposition trace is the data structure we use to mine proposi-
tions.

Definition 4 (Proposition). A proposition is a composition of atomic propo-
sitions through logic connectives. An atomic proposition itself is a proposition.

It this paper, we consider propositions involving only the logic and (∧) as
connective, and we classify them in two different sets:

– The set of input propositions (PI): a proposition p belongs to PI if it is com-
posed only of input atomic propositions and ∧ connectives;

– The set of output propositions (PO): a proposition p belongs to PO if it is
composed only of output atomic propositions and ∧ connectives.

An example of an atomic proposition trace and a set of input/output propositions
that can be extracted from it are shown in Fig. 1 (right). To represent input
and output propositions in a compact and efficient way, we use an array-based
notation. Given an array of input (respectively, output) atomic propositions AI

(AO), an input (output) proposition is represented by an array of Boolean values
p such that p[i] = 0 if the input (output) atomic proposition AI [i] (AO[i]) is not
used in the proposition, p[i] = 1 otherwise. For example, the input proposition
p0 in Fig. 1 can be represented by the array {1, 0, 1}.

Definition 5 (Time window). Given an atomic proposition trace ω=〈(A0,t0),
. . . ,(An,tn)〉, and two simulation instants ti and tj such that 1 ≤ ti ≤ tj ≤ n,
a time window TW[i,j]=〈(Ai,ti),. . . ,(Aj,tj)〉 is the subsequence of contiguous
elements of ω included between instant ti and instant tj.

Automatic Generation and Qualification of Assertions on Control Signals 199

Given a time window TW[i,j], and a simulation instant tk such that ti ≤ tk ≤ tj ,
we can separate TW[i,j] in two parts:

– The input time window TW I
[i,k], which is composed of elements of TW[i,j]

included in the simulation instants between ti and tk, restricted to the input
atomic propositions.

– The ouptut time window TWO
[k,j], which is composed of elements of TW[i,j]

included in the simulation instants between tk and tj , restricted to the output
atomic propositions.

The input time window TW I
[i,k] and the corresponding output time window

TWO
[k,j] overlap for exactly one simulation instant (tk). Given a time window

TW[i,j], we can generate j − i + 1 different couples of input/output time win-
dows, one for each simulation instant tk ∈ [ti, tj]. For example, in the atomic
proposition trace of Fig. 1, the green box highlights a time window composed
of 3 simulation instants in the interval [t0, t2], the red box corresponds to an
input time window in the interval [t0, t1], and finally the blue box shows the
corresponding output time window in [t1, t2]. In the rest of the paper we will
represent an input (output) time window by the sequence of arrays correspond-
ing to the input (output) propositions it captures. For example, in Fig. 1, the
input time window corresponding to the interval [t0, t1] is represented by the
sequence of two arrays {{1, 0, 1}; {1, 0, 1}}.

By analysing input and output time windows in the atomic proposition trace
we can mine temporal assertions.

Definition 6 (Temporal assertion). A temporal assertion is a composition
of propositions through temporal operators and logic connectives.

In this paper, we consider Linear Temporal Logic (LTL) assertions in the
form G(antecedent → consequent), where G is the LTL always operator1, and
antecedent and consequent may involve only X, i.e., the LTL next operator2

and the ∧ connective. Moreover, antecedent is composed only of an arbitrary
number of propositions belonging to the set PI extracted by analysing an input
time window TW I

[i,k], while consequent includes a single proposition belonging
to the set PO extracted by analysing the corresponding output time window
TWO

[k,j]. We selected this specific form of assertion, since it is suited to describe
the behaviour of the I/O communication protocol of a DUV, which, as reported
in the introduction, represents the target for the current work. For example,
from the atomic proposition trace of Fig. 1 the following temporal assertion can
be mined: G((p0 ∧ X2(p1)) → X3(p5)).

In according to the above definitions and notations, we define hereafter a set
of operators working on propositions that will be used to illustrate the mining
methodology proposed in Sect. 5.
1 Given a formula α, G(α) means that α is always true.
2 Given a formula α, X(α) means that α is true at the next instant. As a short cut,

we will write Xn(α) to represent the application of n consecutive next operators to
the formula α.

200 A. Danese et al.

RemoveAtomicProp: Given an array of Boolean elements p corresponding to
a proposition, and an index i corresponding to the atomic proposition ai, which
represents the element at position i of p, RemoveAtomicProp(p, i) returns a new
array p′ where p′[j] = p[j] for all indexes j �= i and p′[i] = 0, i.e., the proposition
corresponding to p′ does not include ai.

AddAtomicProp: Given an array of Boolean elements p corresponding to a
proposition, and an index i corresponding to the atomic proposition ai, which
represents the element at position i of p, AddAtomicProp(p, i) returns a new
array p′ where p′[j] = p[j] for all indexes j �= i and p′[i] = 1, i.e., the proposition
corresponding to p′ includes ai.

Overlapping: Given two arrays of Boolean elements p and q corresponding
to two propositions predicating over the same array of atomic propositions,
Overlapping(p, q) returns true if q[i] = 1 for at least all indexes i such that
p[i] = 1, it returns false otherwise.

Complement: Given two arrays of Boolean elements p and q corresponding
to two propositions predicating over the same array of atomic propositions,
Complement(p, q) returns a new array p′ where p′[i] = false for all indexes
i such that q[i] = false, and p′[j] = p[j] for all indexes j such that q[i] = true.

For example, Fig. 2 shows the application of operators RemoveAtomicProp,
Complement and Overlapping to propositions. In a more general way, we apply
Complement and Overlapping also to sequences of propositions of the same
length. In this case, given two sequences of propositions s1 and s2, Complement
and Overlapping operate iteratively on each couple of corresponding elements
(pi, qi) such that pi ∈ s1 and qi ∈ s2.

Fig. 2. Examples of application of RemoveAtomicProp, Complement and Overlapping.

In addition to the previous definitions, which are necessary to understand
the assertion mining approach detailed in Sect. 5, the rest of this section sum-
marizes some concepts concerning data mining, such as itemsets, transactions
and association rules, which are necessary to present the assertion qualification
methodology proposed in Sect. 6.

Definition 7. Let I = {i1, i2, . . . , in} be a set of items. Let D = {d1, d2, . . . , dm}
be a data set, i.e., a set of observations, called transactions, with respect the set of
items I. Each element in D contains a subset of the items in I. An association

Automatic Generation and Qualification of Assertions on Control Signals 201

rule is defined as an implication of the form X → Y where X, Y ⊆ I and
X ∩ Y = ∅. X and Y are called itemsets.

Figure 3(a) shows an example of a data set which describes the behaviours
of customers in a supermarket with respect to a set of items (i.e., milk, bread,
..., coffee). Data mining approaches are generally intended to extract association
rules from data sets, which are then used to predict non trivial, implicit, previ-
ously unknown and potential useful information, like, for example,“when milk
is bought bread and coffee are generally bought too”, which is expressed by the
association rule Milk → Bread ∧ Coffee. Assertion mining deals instead with
executing traces and temporal assertion which are formalized in Definitions 1
and 6 respectively. An example of a temporal assertion in Linear Time Logic is
always(p1 → next(p2 ∧ p3)) which states it always happens that p2 and p3 are
satisfied one simulation instant later than p1 becomes true (Fig. 3(b)).

In this paper, without lack of generality, and to preserve the independence of
the proposed qualification methodology from specific temporal patterns instan-
tiated in the analysed assertions, we generically consider formulas in the form
A → C, where the antecedent A and the consequent C are composed by propo-
sitions, logic connectives, and temporal operators according to the selected tem-
poral logic. The initial hypothesis is that the analysed assertions are true on the
DUV.

Fig. 3. Similarities between data mining (a) and assertion mining (b).

202 A. Danese et al.

3.2 Comparing Data Mining and Assertion Mining

The overall goal of data mining is to extract information from a data set and
transform it into an understandable and useful structure. This structure allows
user analysing data from many different dimensions, categorizing them and sum-
marizing correlations between items in a database. For example, analysing data
from behaviours of different customers as reported in Fig. 3(a) leads to obtain
useful information and helps analysers to decide which trend is more interesting
for marketing. Association rules can also be extracted when data are referred
to time sequences. In this case, temporal data mining strategies are adopted,
whose goal is to discover hidden relations between sequences and sub sequences
of events [25]. In any case, the mined (temporal) association rules are a predic-
tion for future behaviours, which may be true or not. Metrics are thus used to
estimate the probability that rules extracted from past observations can be valid
also in the future. On the contrary, the main goal of assertion mining consists of
extracting formulas that exactly describe the functionality implemented in the
DUV, which is not ambiguous and does not vary in the future, except in the case
the implementation is changed. Assertion mining is thus not intended to predict
the future, but to formalize the actual set of DUV behaviours. Summarizing,
main similarities among data mining and assertion mining are the presence of a
set of data that represents observations with respect to past behaviours exposed
by the observed target (customers, DUV, ...), and the need of extracting asso-
ciation rules that formalize such observations. As shown in Fig. 3(a) and (b),
items, data sets, and association rules in data mining correspond, respectively,
to propositions, execution traces, and temporal assertions in assertion mining.
Meanwhile, the main difference between data mining and assertion mining is
represented by the concept of transaction (i.e., a row in a data set), which does
not have a direct correspondence with a row of an execution trace, because a
temporal assertion is composed by one antecedent and one consequent that are
true in different instants inside the execution trace. This difference impacts on
the way metrics typically adopted for evaluating association rules in data mining
can be reused for measuring the interestingness of assertions. Finally, another
difference is related to the final goal of the mining: in one case the prediction of
future behaviours, in the other the formalisation of actual (unmodifiable, except
in the case the DUV functionality is changed) behaviours.

4 Methodology

The proposed methodology (Fig. 4) starts from a set of execution traces obtained
by simulating the DUV, which represent the input for the assertion miner. The
miner first extracts atomic propositions representing the building blocks and
then compose them to generate temporal assertions. Finally, the generate asser-
tions are evaluated according to their degree of interestingness and a final ranked
set of assertions is provided.

Automatic Generation and Qualification of Assertions on Control Signals 203

Fig. 4. Methodology overview.

5 Assertion Mining

Given a DUV and a related set of execution traces, the proposed methodology
consists of two main phases: (i) mining of atomic propositions and generation
of the corresponding atomic proposition traces, and (ii) extraction of input and
output time windows and mining of temporal assertions. Since, the first phase
has been already faced in [6], this paper focuses only on the second phase.

The main procedure of the proposed approach is showed in Algorithm 1.
The function MAIN takes as parameters an atomic proposition trace ω and two
thresholds: tw len, and max len, with max len ≤ tw len. The first threshold
(tw len) advises how many clock cycles are required, at maximum, by the DUV
to compute its functionality. This parameter, which can generally be obtained
from the documentation or from simulation of the DUV, represents the length
of the time windows that will be analysed by the miner inside ω. The second
threshold (max len) is used to bound the maximum number of instants that will
be considered to mine the antecedent of a temporal assertion, i.e., it represents
the maximum length for an input time window. Several DUVs need a high num-
ber of clock cycles for completely computing their functionality, but only few of
them could be necessary to set control signals such that the computation phase
starts. For instance, to mine interesting antecedents for an encryption/decryp-
tion component, it is relevant catching what happens to control signals during
the initialization phase, before the computation proceeds without affecting con-
trol signals till outputs are ready. Similarly, in the case of a network component,
it is relevant to capture in the antecedent of an assertion how control signals
change during the phase that makes data transmission starting. The max len
threshold is then intended to guide the mining procedure such that, for mining
antecedents, it focusses on the initial part of the considered time windows when
the DUV is characterized, after an initialization phase, by a long elaboration
phase that does not involve control signals any more till results are ready. In
this case, generally max len is small with respect to tw len. On the contrary,
max len is set to be equal to tw len for DUVs where control signals can change
the functionality of the DUV at each simulation instant.

204 A. Danese et al.

1. function MAIN(ω, tw len, max len) return assertions set
2. len = 1
3. assertions set = ∅
4. while len ≤ max len do
5. behaviours = getBehaviours(ω, tw len, len)
6. pruningBehaviours(assertions set, behaviours)
7. candidates = getAssertions(ω, behaviours)
8. assertions set = getAssertions(ω, behaviours)
9. len = len + 1

10. end while
11. end function

Algorithm 1. Main procedure.

After initializing the assertions set to the empty set, the main loop of Algo-
rithm 1 cyclically calls the following three functions, by varying the length (len)
of the considered input time window at each iteration, while len ≤ max len.

1. getBehaviours(ω, tw len, len): it detects the behaviours exposed by the DUV
in the atomic proposition trace. Each behaviour is represented by a sequence
(with length between 1 and len) of input propositions associated to a unique
output proposition. For example, in the atomic proposition trace of Fig. 1,
each time the input proposition p0 = {1, 0, 1} (corresponding to a0∧a2) is true
at a simulation instant ti, the output proposition p5 = {0, 1} (corresponding
to a4) holds at simulation instant ti+1. Thus, a behaviour can be identified
that associates the input proposition p0 to the output proposition p5 with an
offset of one simulation instant.
The second behaviour associates p0 to the output proposition p5 = {0, 1},
because each time p0 holds, the output proposition a4 is satisfied in the next
simulation instant.

2. pruningBehaviours(assertion set, behaviours): it removes all the behav-
iours returned by getBehaviours that are already captured by assertions
mined in the previous iterations of the main procedure. For example, if the
assertion α = G(a2 → X(a4)) is already included in the assertion set, a
behaviour, which associates, with an offset of one simulation instant, the
input proposition p0 to the output proposition p5, can be discarded, since it
will create the assertion G(a0 ∧ a2 → X(a4)) that is a logical consequence of
α.

3. getAssertions(ω, behaviours): it is in charge of creating a set of candidate
temporal assertions, compliant with the form described in Subsect. 3, starting
from the behaviours survived after pruningBehaviour is called.

The next sections describe in details how the previous functions work to mine
temporal assertions.

5.1 Mining of Interesting Behaviors

The function getBehaviours is implemented as shown in Algorithm 2. It takes
as arguments an atomic proposition trace ω and the two thresholds tw len and
len. Its goal is to detect behaviours exposed in the execution traces of the DUV,

Automatic Generation and Qualification of Assertions on Control Signals 205

1. function getBehaviours(ω, tw len, len) return behaviours
2. behaviours = ∅
3. dictionary = ∅
4. ti = 0
5. while ti ≤ (length(ω) − tw len) do

6. in = propSeq(TW I
[ti,ti+len−1])

7. out = propSeq(TWO
[ti+len−1,ti+tw len−len+1])

8. 〈in, old out〉 = findInDictionary(dictionary, in)
9. if 〈in, old out〉 = NIL then

10. dictionary = dictionary ∪ 〈in, out〉
11. else
12. new out = Complement(old out, out)
13. dictionary = dictionary \ 〈in, old out〉
14. dictionary = dictionary ∪ 〈in, new out〉
15. end if
16. ti = ti + 1
17. end while
18. for all 〈in, out〉 ∈ dictionary do
19. offset = 0
20. for all p ∈ out do
21. if p
= NIL then
22. behaviours = behaviours ∪ 〈in, offset, p〉
23. end if
24. offset = offset + 1
25. end for
26. end for
27. end function

Algorithm 2. Extraction of DUV behaviours.

in the form of associations between a sequence of input propositions and a cor-
responding sequence of output propositions. In order to detect such associa-
tions, a time window TW[ti,ti+tw len−1] of length tw len is analysed for each
simulation instants ti (lines 5–17). Such a time window is decomposed in an
input time window of length len, and a corresponding output time window of
length tw len− len+1. Then, from the input time window, the function propSeq
extracts the corresponding sequence of input propositions (in) that hold in the
interval [ti, ti + len − 1] (line 6). Similarly, propSeq extracts from the output
time window the sequence of output propositions (out) that hold in the interval
[ti + len−1, ti +tw len− len+1] (line 7). For example, let us consider the atomic
proposition trace of Fig. 1 and let we fix tw len = 2 and len = 1. At time t0, we
have in = {1, 0, 1} while out is represented by the sequence {{1, 0}; {1, 1}}. The
function then searches if in is already present in the dictionary of the collected
input/output propositions pairs (line 8–9). If this is not the case (line 10), a
new association 〈in, out〉 is added to the dictionary. On the contrary, when in is
already present, the operator Complement is applied to return a new sequence of
output propositions new out, where atomic propositions excluded from elements
of out are excluded also from the corresponding elements of new out. Then,
the couple 〈in, old out〉 is replaced in the dictionary by 〈in, new out〉 (lines 12–
14). This replacement is necessary to refine the already collected behaviours by
removing from their output propositions the atomic propositions that become
false in the current output time window, such that only behaviours that are never
violated throughout the trace are finally collected. The replacement happens, for

206 A. Danese et al.

example, at simulation instant t1 of the atomic proposition trace of Fig. 1. In
fact, at t1, in = {1, 0, 1} is associated to out = {{1, 1}; {0, 1}}. However, in
was already associated to old out = {{1, 0}; {1, 1}} at t0. Thus, in the dictio-
nary 〈{1, 0, 1}, {{1, 0}; {1, 1}}〉 is replaced by 〈{1, 0, 1}, {{1, 0}; {0, 1}}〉 after the
application of Complement(old out, out). After the creation of the dictionary
that collects associations between sequences of input and output propositions,
the final loop (lines 18–26) creates a set of behaviours for each pair 〈in, out〉. In
particular, a behaviour, represented by a triplet 〈in, offset, p〉, is extracted for
each proposition p captured in the sequence of output propositions out, where
offset represents the distance, computed in simulation instants, between the last
element of in and p. For example, for the pair 〈{1, 0, 1}, {{1, 0}; {0, 1}}〉 the fol-
lowing two behaviours are extracted: 〈{1, 0, 1}, 0, {1, 0}〉 and 〈{1, 0, 1}, 1, {0, 1}〉
to represent respectively that the output proposition {1, 0} holds exactly at the
same time of input proposition 〈{1, 0, 1} (offset is 0), while the output proposi-
tion {0, 1} holds one simulation instant later (offset is 1).

5.2 Pruning of Behaviours

The function pruningBehaviours takes as arguments a set of assertions and a
set of triplets representing behaviours collected by getBehaviours in the form
〈in, offset, p〉. The goal of pruningBehaviours is to preserve only the triplets
that are not already covered by assertions collected in previous iteration of
Algorithm 1. A triplet is covered by an assertion α when the following conditions
are true concurrently:

1. All input atomic propositions included in the antecedent of α are also present
in in (i.e., values assigned to primary inputs of the DUV that satisfy the
atomic propositions included in in satisfy also the antecedent of α).

2. All output atomic propositions included in the consequent of α are also
present in p (i.e. the consequent of α is at least as detailed as p).

3. The distance, computed in simulation instants, between the last input atomic
proposition of the antecedent of α and the consequent of α equals offset.

Triplets that falsify at least one of the previous conditions are preserve, the
others are discarded.

5.3 Mining of Assertions

Given an atomic proposition trace ω and a set of triplets of the form
〈in, offset, p〉 representing behaviours preserved by the pruningBehaviours
function, the getAssertions function works as described in Algorithm 3. Its goal
is to extract an assertion of the form G(antecedent → consequent) from every
triplet, such that the input propositions {p0, . . . , pi} captured inside the sequence
in act as an antecedent of the form (p0 ∧ · · · ∧Xi(pi)), while Xi+offset(p) repre-
sents the consequent. This is performed by the makeAss function at line 5. After
an assertion is added to the set of candidates ass set, the pruningBehaviours

Automatic Generation and Qualification of Assertions on Control Signals 207

1. function getAssertions(ω, behaviours, len) return ass set
2. ass set = ∅
3. for all 〈in, offset, p〉 ∈ behaviours do
4. s in = simplify(〈in, offset, p〉)
5. ass set = ass set ∪ makeAss(s in, offset, p)
6. pruningBehaviours(ass set, behaviours)
7. end for
8. end function
9.

10. function simplify(ω, 〈in, offset, p〉)
11. len = length(in)
12. p off = len − 1 + offset
13. for all q ∈ in do
14. s q = q
15. i = 0
16. while i < length(q) do
17. s q = RemoveAtomicProp(s q, i)
18. new in = (in \ q) ∪ s q
19. ti = 0
20. while ti ≤ (length(ω) − p offset) do

21. temp = propSeq(TW I
[ti,ti+len−1])

22. if Overlapping(new in, temp) then

23. temp = propSeq(TWO
[p off,p off])

24. if !Overlapping(p, temp) then
25. s q = AddAtomicProp(s q, i)
26. break
27. end if
28. end if
29. ti = ti + 1
30. end while
31. end while
32. in = (in \ q) ∪ s q
33. end for
34. return in
35. end function

Algorithm 3. Generation of temporal assertions.

function is called to remove behaviours implicitly covered by the new assertion
(line 6).

In order to increase the DUV behaviours covered by the mined assertions,
before calling makeAss, the input proposition included in the sequence in is
first simplified by removing atomic propositions from the antecedent such that
the consequent can be verified by a higher number of simulation instants, thus
enforcing the final assertion (line 4). For instant, let us consider the triplet
〈in, offset, p〉 represented by 〈{{1, 1, 0}}, 0, {{0, 1}}〉. Looking at Fig. 1, we can
see that the output proposition {0, 1} is true at both simulation instants t2 and
t3, but the input proposition {1, 1, 0} is verified only at simulation instant t3.
However, if we set to false the first input atomic proposition of {1, 1, 0}, we
obtain the proposition {0, 1, 0}, which is true at both simulation instant t2 and
t3. Thus, in = {{1, 1, 0}} can be replaced by s in = {{0, 1, 0}} in the triplet
to cover a wider time window in the atomic proposition trace. In this way, the
assertion G(a1 → a4) can be extracted instead of G(a0 ∧ a1 → a4). The first
is preferred because it implies the second. The simplification of the sequence of
input propositions in is performed by the function SIMPLIFY (lines 10–33).
Given an input propositions q belonging to the sequence in, it makes a copy s q

208 A. Danese et al.

of q (line 14), and then it performs the following steps for each atomic proposition
ai included in s q (lines 16–31):

– remove ai from s q (line 17);
– create a new sequence of propositions new in from in by replacing the propo-

sition q with s q (line-18);
– check, for every simulation instant ti, if the new sequence new in is true on the

atomic proposition trace (line-22), but the output proposition p is false (line
24). In this case, a counter example is found that shows we cannot remove
the atomic proposition ai from s q, otherwise the association between s q and
p is not valid any more. Thus ai is restored inside s q (line 25). If a counter
example is not found, ai can be definitely removed.

6 Assertion Qualification

The degree of interestingness of assertions extracted by applying the methodol-
ogy described in the previous section is evaluated according to a re-adaptation of
metrics that are traditionally adopted in the context of data mining. Assertions
are then ranked according to such a metrics.

6.1 Metrics

Several metrics have been proposed in data mining for evaluating the interest-
ingness of association rules. The use of metrics allows analysers evaluating the
rules from different points of view [15,26]. For instance, odds ratio and entropy
are appropriate for estimating the probability of distribution of items, support
and confidence are able to calculate the interestingness of an association rule
based on the number of item’s occurrences; while the correlation coefficient is
suited to determine the dependency between set of items.

In the context of assertion qualification, metrics that provide information
about the degree of accuracy of a rules with respect to the probability it will hold
in the future (like for example, confidence, which estimates the joint probability
between occurrences of the antecedent and the consequent in the data set) are
not relevant, because we know that assertions under analysis are always true on
the DUV. We are instead interested in metrics that measure the interestingness
of an assertion with respect to covered behaviours, number of activations, and
correlation between antecedents and consequents. For this reason, we identified
support and correlation coefficient as the most interesting metrics for assertion
evaluation. Their definition in the context of data mining are hereafter reported
together with considerations related to how they can be adapted to be suited
for assertion evaluation.

Definition 8. Given a set of items I, and the corresponding set of transactions
D, a rule X → Y has support S if X and Y occur concurrently in S percent of
transactions in D.

Automatic Generation and Qualification of Assertions on Control Signals 209

In practice, to compute the support of an association rule, it is necessary to
count how many rows in the transaction set table contain both X and Y . In case
of temporal assertions, the support corresponds instead to the number of times a
temporal assertion occurs (i.e., its antecedent is fired and then its consequent is
satisfied) in the execution traces with respect to the total number of occurrences
corresponding to the other temporal assertions under analysis. This requires a
different computation approach with respect to data mining. For example, let us
consider a temporal assertion A → C that occurs 10 times in a set of execution
traces. If it belongs to a set of temporal assertions that globally occur 1000 times
in the same execution traces, the support of A → C is 10/1000 = 0.01.

Definition 9. Given a set of items I, and the corresponding set of transactions
D, the correlation coefficient of the rule X → Y is the covariance of X and Y
divided by the product of their individual standard deviations.

More informally, the correlation coefficient can determine if antecedent and
consequent are related or not by observing whether occurrences of the antecedent
depend on occurrences of the consequent and vice versa. For example, Fig. 5
graphically shows the meaning of the correlation coefficient with respect to the
association rule X → Y . On the left, X and Y has a positive correlation, i.e.,
an increment in occurrences of X corresponds to an increment in occurrences
of Y . In the middle, a negative correlation is shown. Finally, on the right, no
dependence between X and Y exists. Higher is the correlation coefficient higher
is the interestingness of the analysed rule.

Fig. 5. The correlation coefficient: positive correlation (on the left), negative correlation
(in the middle), no correlation (on the right).

6.2 Assertion Ranking

For estimating the interestingness of assertions, we implemented an assertion
ranker based on support and correlation coefficient. The work flow of the pro-
posed methodology is then divided in 3 main steps (Fig. 6):

1. Counting of occurrences: In this phase, the number of times an assertion is
verified in the execution traces is computed. Then, each assertion is decom-
posed in antecedent and consequent and their respective frequencies in the
execution traces are computed too.

210 A. Danese et al.

Fig. 6. Overview of qualification methodology.

2. Computation of contingency tables: the information collected in step 1 is then
organized in contingency tables (one per each assertion) that represent the
ingredients for the computation of the evaluation metrics in the final step.
Contingency tables make simpler the extraction of information like how many
times an antecedent and the corresponding consequent occur in the execution
trace, how many times an antecedent occurs but the corresponding consequent
does not, and how many times a consequent occurs but the corresponding
antecedent does not.

3. Evaluation of interestingness: The final step, starting from the contingency
tables, computes support, correlation coefficient, and their linear combination
to obtain a final metrics that considers both of them. Their combination is
necessary because support and correlation coefficient separately may provide
very different estimations, which only partially characterise the quality of
each assertion, as clarified later in this section.

In the following of this section the three steps of the proposed methodology
are described.

Counting of Occurrences. To count occurrences of assertions, antecedents
and consequents, we generate a checker for each assertion. A checker can be
considered an automaton that monitors the evolution of the DUV during simu-
lation and raises a failure when the corresponding assertion is violated [27]. To
perform such a verification, the checker exactly knows when the antecedent is
fired and when the consequent is then satisfied. Thus, it can be used for counting
of occurrences as required for our estimation.

For example, the automaton generated for counting occurrences for an asser-
tion like always(pa → next(pc)) is reported in Fig. 7. The automata starts in the

Automatic Generation and Qualification of Assertions on Control Signals 211

initial state ant. It remains in this state (corresponding to a vacuous satisfaction
of the assertion) till the antecedent pa is finally fired (transition T3). Then, it
moves to the state cons, where it stays by continuously traversing T4 at each
simulation instant while pa remains true and pc is also satisfied. This represents
the case in which the assertion is activated and satisfied (non vacuously) for
several consecutive simulation instants. The assertion is non vacuously satisfied
also when the automaton exits cons by traversing T7, which corresponds to the
case pc still holds but pa stops to be fired. Alternatively, the automaton exits
cons to reach the error state through T5 in case pc stops holding. In this case
the assertion is falsified, but according to our assumption (assertions are true in
the DUV) this never happens in our methodology. The number of occurrences
of the assertion corresponds to the number of traversals of transitions T4 and
T7. The number of times the antecedent is fired corresponds to the number of
traversals of T3 and T4. Finally, the number of times the consequent is fired
corresponds to the number of traversals of T1 and T4.

Fig. 7. Example of the checker for assertion always(pa → next(pc)).

Computation of Contingency Tables. Support and correlation coefficient
can be effectively computed by relying on a 2 × 2 frequency count matrix called
contingency table [28], whose computation derived from the counting of occur-
rences performed in the previous step. Given an assertion A → C, its contingency
table represents the relation between A and C. The cells of the table contain the
following information (Table 1):

– Cell f11 is the number of times where A is true and consequently C is true in
the execution traces;

– Cell f10 is the number of times where A is true but consequently C is false
and other consequents than C are true in the execution traces, i.e., it is the
sum of occurrences of assertions A → C ′ included in the considered assertion
set with C �= C ′. It is worth noting that A → C and A → C ′ are not incon-
sistent, because C and C ′ refer to different temporal instants. For example,
always(p1 → next(p2)) and always(p1 → next(next(p3))) can be both true
for the same DUV.

– Cell f01 is the dual of f10, i.e., it is the number of times where A is false
but A′ different from A is true and consequently C is true in the execution
traces, i.e., it is the sum of occurrences of assertions A′ → C included in

212 A. Danese et al.

the considered assertion set with A �= A′. In this case, A and A′ can also be
conflicting because this doest not represent an inconsistency for the assertion
set. For example, always(p1 → next(p2)) and always(p3 until p4 → next(p2))
can be both true for the same DUV.

– Cell f00 is the number of times an assertion is true, whose antecedent and
consequent are both different, respectively, from A and C, i.e., it is the sum
of occurrences of the other assertions included in the analysed set.

– Cell f1X is the sum of cells f11 and f10.
– Cell f0X is the sum of cells f01 and f00.
– Cell fX1 is the sum of cells f11 and f01.
– Cell fX0 is the sum of cells f10 and f00.
– Cell fXX is the grand total.

As an illustrative example, let us consider assertions reported in Table 2. For
sake of clearness, and without loss of generality, the table does not show the
atomic propositions composing antecedents and consequents of assertions, but
only the temporal relations between them in PSL syntax [3]. The corresponding
contingency tables are reported in Table 3. For example, for assertion A1, f11
correspond to the total number of occurrences of A1 in the analysed execution
traces; f10 is equal to 0, since antecedent A does not appear in none of the other
assertions; f01 is 0 since consequent A until F does not appear in none of the
other assertions; and finally, f00 is obtained by summing the occurrences of all
the other assertions except A1. Cells f10 for assertions A5, A6 and A7 are not
zero since they share the same antecedent E. Thus, f10 for A5, A6 and A7 are,
respectively, the sum of occurrences of A6 and A7, A5 and A7, and A5 and A6.
Similar considerations allow computing values for all the other cells of Table 3.

Table 1. Contingency table for A → C.

C C̄

A f11 f10 f1X

Ā f01 f00 f0X

fX1 fX0 fXX

Evaluation of Interestingness. Contingency tables provide basic ingredients
for the computation of support and correlation coefficient of a temporal assertion.
Concerning support, according to Definition 8, it is simply computed with the
following formula:

s =
f11
fXX

. (1)

The computation of the correlation coefficient for an assertion A → C, according
with Definition 9, is obtained instead by means of the following formula:

ρ =
cov(A,C)
σA · σC

(2)

Automatic Generation and Qualification of Assertions on Control Signals 213

Table 2. An assertion set with the corresponding number of occurrences in the exe-
cution traces.

Assertion ID Assertion Occurrence

A1 always(A → A until F) 468

A2 always(B → B until G) 436

A3 always(C → C until H) 481

A4 always(D → D until I) 361

A5 always(E → next(J)) 524

A6 always(E → next[2](J)) 516

A7 always(E → next[3](J)) 509

Table 3. Contingency tables of assertions reported in Table 2.

Assertion ID f11 f10 f01 f00

A1 468 0 0 2827

A2 436 0 0 2859

A3 481 0 0 2814

A4 361 0 0 2934

A5 524 1025 0 1746

A6 516 1033 0 1746

A7 509 1040 0 1746

where cov(A,C) is the covariance of A and C, while σA and σC are the
standard deviation, respectively, of A and C. Disregarding mathematical steps,
the correlation coefficient can be computed in terms of the cells of a contingency
table as follows:

ρ =
f11 · f00 − f10 · f01√
f1X · f0X · fX1 · fX0

(3)

According to Eq. (1) the support ranks in the highest positions assertions
that occur frequently in the execution traces. However, we can have very inter-
esting assertions that occur a few times because they refer to corner cases. On
the other hand, the correlation coefficient privileges assertions where the number
of occurrences of the antecedent better matches the number of occurrences of
the consequent, but assertions where these numbers are low could be extracted
by chance without representing a real behaviour of the DUV. For this reason
a combination of support and correlation coefficient provides a more accurate
estimation of assertion interestingness. Thus, we propose the measure the inter-
estingness of an assertion A through the following formula:

I(A) = α ∗ sn(A) + (1 − α) ∗ ρn(A) (4)

where, α ∈ [0, 1], and sn(A) and ρn(A) are the value obtained by normalizing,
respectively, the support s and the correlation coefficient ρ of A with respect to

214 A. Danese et al.

the whole set of analysed assertions. At varying of α the role of support becomes
more or less important with respect to the role of the correlation coefficient in
determining the final estimation of assertion interestingness. In our experiments
best results have been obtained with α = 0.4.

7 Experimental Results

Experimental results have been carried out on an Intel Xeon E5649 @2.53 Ghz
equipped with 8 GB of RAM and running Linux OS. The benchmarks consid-
ered for evaluating the proposed mining strategy belong to the Open-Source-
Test-Case (OSTC) platform developed as reference case study for the European
project SMAC [29]. In particular, we considered the RTL implementation of the
UART [30] and BUS-APB [31] components. These two benchmarks have been
selected because they present different characteristics from the input/output
latency point of view, i.e. the number of clock cycles required, at maximum, to
compute the component’s functionality. The I/O latency is an important para-
meter for mining approaches because longer is the I/O latency, higher is the
time spent by the miner to create an assertion that puts in relation values pro-
vided to primary inputs with values obtained on primary outputs. UART, which
is practically a parallel-to-serial/serial-to-parallel converter, requires 665 clock
cycles before the output bit stream is produced, once data are provided in input
for the conversion. On the contrary, the input/output latency of BUS-APB is 2
clock cycles.

Table 4 reports, for each component, the lines of code (Lines), the number
of bits corresponding to control signals belonging to the primary inputs (PIs)
and to the primary outputs (POs), and the input/output latency (I/O latency).
Execution traces composed of 10,000 clock cycles have been generated for the
two benchmarks by simulation.

The mining methodology proposed in this paper has been compared with a
state-of-the-art approach presented in [5], which mines assertions from execution
traces through an induction algorithm based on a decision tree [32]. The com-
parison between the two approaches is reported in Tables 5 and 6 concerning,
respectively the characteristics of the mined assertions and mining execution
times, and the quality of the mined assertions measured in terms of mutation
coverage [14].

Columns 2 and 3 of Table 5 report the configuration parameters, i.e., the
length of considered time windows (tw len) (which corresponds to the I/O
latency of the DUV), the maximum number of propositions allowed in the
antecedent of the mined assertions (max len) for the time window approach
(i.e., the maximum number of clock cycles that are observed in the antecedent),
and the maximum depth of the analysed decision tree (max depth) for the app-
roach proposed in [5]. The parameters max len has been selected according to
the characteristics of the DUVs. For example, max len = 1 for UART because
the values assigned to the input control signals to start the data elaboration are
provided in a single clock cycle, while max len = 2 for BUS-APB since input

Automatic Generation and Qualification of Assertions on Control Signals 215

Table 4. Characteristics of benchmarks.

DUV Lines PIs POs I/O latency

BUS-APB 390 6 12 2

UART 6819 10 9 665

control signals influence the bus functionality during the whole elaboration phase
that always embraces 2 clock cycles. On the contrary, for the decision-tree based
approach the maximum depth of analysed decision tree must be specified; we
tested different values and we saw that for values higher than 10 and 12, respec-
tively for UART and BUS-APB, the execution time of the algorithm increases
without improving the quality (measured in terms of mutation coverage) of the
mined assertions. Then, Columns 4–7 report the mining results, i.e., the number
of extracted assertions (# ass.), the average number of input atomic propositions
included in the antecedent of the extracted assertions (# ant.), the average num-
ber of output atomic propositions included in the consequent of the extracted
assertions (# cons.), and the total time required for the mining procedure (time).
Looking at the results, we see that the number of assertions generated by our
approach is smaller than the number of assertions generated by [5]. However our
assertions are composed of consequents with a higher number of atomic propo-
sitions, which reflects in a better description of the behaviours of the primary
outputs of the DUV when an antecedent is fired. On the contrary, antecedents
are generally compact (i.e., the number of involved atomic propositions is small),
thus assertions cover a large number of behaviours from the perspective of the
DUV’s primary inputs. Finally, concerning execution time, our approach out-
performs the decision tree-based algorithm when applied to mine assertions on
DUVs, whose I/O latency (which impacts on the offset between antecedent and
consequent) is very high, like in the case of UART .

Table 5. Number of assertions extraced by the time-window approach and the decision-
tree based approach.

DUV Configuration parameters Results

tw len max len # ass. # ant. # cons. Time

Time window-based approach

BUS-APB 2 2 24 3.3 11.1 1 s.

UART 655 1 21 2.94 6.47 720 s.

DUV Configuration parameters Results

tw len max depth # ass. # ant. # cons. Time

Decision tree-based approach [5]

BUS-APB 2 12 86 2.82 1 1 s.

UART 665 10 39 5.6 1 5820 s.

216 A. Danese et al.

Table 6. Comparison between the proposed approach and [5] based on mutant cover-
age.

DUV # observ. # covered Avg Time

Time window-based approach

BUS-APB 22 22 10.27 70 s.

UART 149 99 26.85 4208 s.

DUV # observ. # covered Avg Time

Decision tree-based approach [5]

BUS-APB 22 22 0.8 83 s

UART 149 58 9.08 46853 s

7.1 Assertion Qualification

Mined assertions by adopting our approach and the decision tree-based algo-
rithm have been then compared to evaluate their effectiveness in covering the
DUV behaviours. The comparison has been done in terms of mutant coverage,
which represent small alterations of the DUV’s source code that perturb its
functionality. A mutant is observable if, in comparison with a mutant-free DUV,
its effect is visible as an alteration in the DUV’s primary outputs. A mutant is
covered by an assertion if the assertion fails when the mutant is observed at pri-
mary outputs. The mutant coverage C is then the ratio between covered mutants
and observable mutants. Uncovered mutants highlight the incompleteness of the
assertions set [14]. The well-known bit coverage fault model have been selected
to inject mutants in the control signals of the DUVs [33]. Bit coverage alters, in
single fault mode, each bit of the affected signal by fixing its value to 0 (stuck-at
0) or to 1 (stuck-at 1). Table 6 reports the results of the mutation analysis by
showing the number of observable mutants (# observ.), the number of covered
mutants (# covered), the average number of mutants covered by each assertion
(avg), and finally the time required to simulate the OSTC platform connected
to the set of checkers3 corresponding to the assertions mined for UART and
BUS-APB in presence of one mutant (Time).

The mutant coverage achieved for BUS-APB is 100% for both approaches,
while the time window-based approach outperforms the decision-tree algorithm
concerning mutant coverage of UART. Moreover, the number of mutants covered
in average by each assertion mined with our approach is higher. Finally, concern-
ing the simulation time, we observe that checkers corresponding to assertions
mined by the decision tree algorithm require a longer simulation time, which
greatly increases for assertions that predicate on DUV with a long I/O latency,

3 A checker is an automaton that monitors the evolution of the DUV during simula-
tion and raises a failure when the corresponding assertion is violated. We generated
checkers for mined assertion by using IBM FoCs [34].

Automatic Generation and Qualification of Assertions on Control Signals 217

as in the case of UART. We observed in particular, that antecedents of assertions
generated according to [5] are composed of atomic propositions that could be
removed, since they do not affect the truth value of the assertions. This draw-
back is implicit in the use of a decision tree-based data structure, and it depends
on the fact that an assertion generated at a leaf node necessarily includes atomic
propositions predicating on variables involved in all previous levels of the tree.
This leads to create assertions with longer antecedents, whose checkers require
longer simulation times. Moreover, simulation times are affected by the total
number of assertions which is higher in the case of the decision tree-based algo-
rithm.

Finally, the accuracy of the interestingness estimation measured according to
mutant coverage C has been compared with the metrics I we defined in Sect. 6.
The hypothesis is that assertions with the highest mutant coverage are ranked
in the highest positions also according to the proposed metrics I.

Table 7. Comparison between assertion ranking based on metrics I and mutant cov-
erage C.

DUV # ass. # mut. Preserved mutants Loss mutants

Q4I Q4C Q4I ∪ Q3I Q4C ∪ Q3C Q2I ∪ Q1I Q2C ∪ Q1C Q1I Q1C

UART 21 99 76 73 97 97 2 2 1 2

BUS-APB 24 22 18 NA 22 21 0 1 0 0

To experimentally prove the previous hypothesis, after the computation of
the metrics I (with α = 0.4) and the mutant coverage C, we divided assertions
in 4 groups, respectively, Q1I , . . . , Q4I for I, and Q1C , . . . , Q4C for C. The
division in groups has been done according with quartiles computed on I and
C. In this way, the top 25%-ranked assertions with respect to I and C are
included, respectively, in Q4I and Q4C , while the worst 25%-ranked assertions
are included in Q1I and Q1C . Similarly, Q3I and Q3C include assertions between
the first and the second quartile, while Q2I and Q2C include assertions between
the second and the third quartile. Then, we analysed the impact of assertions
belonging to the different groups in covering mutants. Results are reported, for
assertions extracted according to our mining approach, in Table 7. After the
DUV name, the second and the third Columns report, respectively, the number
of analysed assertions (#ass.) and the number of mutants totally covered by
assertions (#mut.). Then, Columns under Preserved mutants show how many
mutants are still covered by preserving assertions belonging to only Q4I and
only Q4C , and to only Q4I ∪ Q3I and only Q4C ∪ Q3C . Finally, Columns under
Loss mutants show how many mutants remain uncovered by removing assertions
belonging to Q2I ∪ Q1I and Q2C ∪ Q1C , and to only Q1I and only Q1C . It is
evident from the results reported in Table 7 that measuring the interestingness
of assertions according to the metrics I proposed in this paper ranks in the
highest positions assertions that cover the most of mutants, while in the lowest
positions remain assertions that very rarely cover mutants not yet covered by

218 A. Danese et al.

better ranked assertions. In this context, the ranking provided by I is even better
than the ranking provided by C, since, for example, in the case of UART, 76
mutants are covered by assertions included in Q4I , while only 73 mutants are
covered by assertions included in Q4C ; on the opposite, only one mutant remains
uncovered by discarding assertions in Q1I , while 2 mutants remain uncovered
by discarding assertions in Q1C .

It is worth noting also that in the case of BUS-APB, the number of mutants
covered only by assertions belonging to group Q4C cannot be computed, because
due to a particular distribution of covered mutants among assertions, the third
quartile correspond exactly to the fourth (i.e., to the maximum number of
mutants covered by the assertions with the highest mutant coverage). In partic-
ular, this happens because, by chance, 8 assertions on 24 cover the same (high-
est) number of mutants. In this situation, due to the low variability of mutant
coverage among assertions there is no distinction between Q3C and Q4C . This
represents a drawback of the mutant-based analysis, which is instead outcome
by the approach proposed in this paper that can effectively distinguish between
Q3I and Q4I . A further analysis has been conducted by measuring the time
required for the computation of I and C.

Results are reported in Table 8. It is evident that measuring I (I time)
requires a few seconds, independently from the complexity of the DUV. On
the contrary, mutation analysis requires a longer verification time I (C time)
to simulate DUV and checkers for each mutant. This is particularly evident
for complex designs like UART, where assertions predicate on large time win-
dows (up to 665 clock cycles). For sake of clarity, the time reported for I does
not include the time spent for counting assertion occurrences in the execution
traces, since the result of such a counting is already available when assertions are
automatically generated through assertions mining. If this information was not
available, or assertions were manually defined, the time for computing I would
include the time spent for one simulation run to compute assertion occurrences
on the execution traces (I + sim time), while computation of C always requires
a number of simulation runs equal to the number of mutants.

Table 8. Execution time for computing I and C.

DUV I time I + sim time C Time

UART 2 s 4208 s 26400 s

BUS-APB 2 s 70 s 940 s

From previous considerations we derive that the evaluation of the assertions
according to the methodology proposed in Sect. 6 represents a faster and more
effective approach for assertion qualification with respect to measuring the qual-
ity of assertions by using a mutant coverage-based approach.

Automatic Generation and Qualification of Assertions on Control Signals 219

8 Conclusions

The paper presents a mining algorithm for automatic generation of LTL tem-
poral assertions and a qualification metric for the evaluation of the assertion
interestingness.

On one side, the assertions generation technique relies on a time window-
based analysis of execution traces that searches for behaviours that repeat peri-
odically capturing the relation between primary inputs and primary outputs of
the DUV. The approach is particularly suited for mining assertions that describe
the behaviour of the control signals of the DUV, which are used to implement
the I/O communication protocol surrounding the computation of the DUV core
functionality. In comparison with a state-of-the-art assertion miner proposed
in [5], experimental results show that our approach generates a more compact
set of assertions, which achieves a higher mutant coverage and requires shorter
times for the simulation of the corresponding checkers.

On the other hand, the qualification approach re-adapts metrics typically
adopted in data mining, i.e., support and correlation coefficient, to measure the
importance of an assertion on the basis of both its activation frequency dur-
ing simulation runs and the correlation between its antecedent and consequent.
Experimental results showed that, compared to traditional mutant coverage-
based techniques, our metrics provides a better estimation of assertion interest-
ingness by ranking in the top positions assertions that cover the major number of
mutants and in the lowest positions assertions that cover mutants detected also
by better ranked assertions. Finally, concerning estimation time, we outperform
the mutant coverage-based approach of one order of magnitude, by considering
also the time required for computing the frequency of assertions by simulation.
When such frequencies are already available (e.g., when provided by an assertion
mining tool) the computation of the proposed metrics is almost negligible (a few
seconds).

References

1. Gupta, A.: Assertion-based verification turns the corner. IEEE Des. Test Comput.
19(4), 131–132 (2002)

2. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer,
Heidelberg (1985). doi:10.1007/BFb0015727

3. Standard for property specification language (PSL), IEC 62531: 2012(E) (IEEE
Std 1850–2010), pp. 1–184 (2012)

4. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. ACM Sigplan Not.
37(1), 4–16 (2002)

5. Hertz, S., Sheridan, D., Vasudevan, S.: Mining hardware assertions with guidance
from static analysis. IEEE Trans. Comp. Aided Des. Integr. Cir. Syst. 32(6), 952–
965 (2013)

6. Danese, A., Ghasempouri, T., Pravadelli, G.: Automatic extraction of assertions
from execution traces of behavioural models. In: proceedings of ACM/IEEE DATE
(2015)

http://dx.doi.org/10.1007/BFb0015727

220 A. Danese et al.

7. Jasper Activeprop. http://www.jasper-da.com
8. http://www.atrenta.com/solutions/bugscope.htm5
9. Bertasi, M., Di Guglielmo, G., Pravadelli, G.: Automatic generation of compact

formal properties for effective error detection. In: Proceedings of ACM/IEEE
CODES+ISSS, pp. 1–10 (2013)

10. Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and
diagnosis. In: Proceedings of ACM/IEEE DAC (2010)

11. Katz, S., Grumberg, O., Geist, D.: “Have i written enough properties?” - a method
of comparison between specification and implementation. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 280–297. Springer, Heidelberg (1999)

12. Hoskote, H., Kam, T., Ho, P.H., Zao, X.: Coverage estimation for symbolic model
checking. In: Proceedings of ACM/IEEE DAC, pp. 300–305 (1999)

13. Jayakumar, N., Purandare, M., Somenzi, F.: Dos and don’ts of CTL state coverage
estimation. In: Proceedings of ACM/IEEE DAC, pp. 292–295 (2003)

14. Fedeli, A., Fummi, F., Pravadelli, G.: Properties incompleteness evaluation by
functional verification. IEEE Trans. Comput. 56(4), 528–544 (2007)

15. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In: Proceedings of ACM/SIGKDD KDD, pp. 32–41 (2002)

16. Tan, P.-N., Kumar, V.: Interestingness measures for association patterns: a per-
spective. In: Proceedings of Workshop on Postprocessing in Machine Learning and
Data Mining (2000)

17. Lo, D., Maoz, S.: Specification mining of symbolic scenario-based models. In: Pro-
ceedings of ACM PASTE, pp. 29–35 (2008)

18. Lo, D., Khoo, S.-C., Liu, C.: Efficient mining of iterative patterns for software
specification discovery. In: Proceedings of ACM KDD, pp. 460–469 (2007)

19. Henkel, J., Diwan, A.: Discovering algebraic specifications from java classes. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 431–456. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45070-2 19

20. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. IEEE Trans. Softw. Eng. 27(2),
99–123 (2001)

21. Sheridan, D., Liu, L., Kim, H., Vasudevan, S.: A coverage guided mining approach
for automatic generation of succinct assertions. In: Proceedings of IEEE VLSI
Design, pp. 68–73 (2014)

22. Bonato, M., Di Guglielmo, G., Fujita, M., Fummi, F., Pravadelli, G.: Dynamic
property mining for embedded software. In: Proceedings of ACM/IEEE
CODES+ISSS, pp. 187–196 (2012)

23. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007)

24. http://www.atrenta.com/about-bugscope.htm5
25. Antunes, C.M., Oliveira, A.L.: Temporal data mining: an overview. In: Proceedings

of Workshop on Temporal Data Mining (2001)
26. Bayardo Jr., R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings

of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 145–154. ACM (1999)

27. Boulé, M., Zilic, Z.: Generating Hardware Assertion Checkers: For Hardware Verifi-
cation, Emulation Post-Fabrication Debugging and On-Line Monitoring. Springer,
Netherlands (2008)

http://www.jasper-da.com
http://www.atrenta.com/solutions/bugscope.htm5
http://dx.doi.org/10.1007/978-3-540-45070-2_19
http://www.atrenta.com/about-bugscope.htm5

Automatic Generation and Qualification of Assertions on Control Signals 221

28. Pearson, K., Filon, L.N.G.: Mathematical contributions to the theory of evolution.
IV. on the probable errors of frequency constants and on the influence of random
selection on variation and correlation. Philos. Trans. 191, 229–311 (1898)

29. http://www.fp7-smac.org
30. http://opencores.org/project,a vhd 16550 uart
31. http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
32. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
33. Fin, A., Fummi, F., Pravadelli, G.: Amleto: a multi-language environment for func-

tional test generation. In: Proceedings of IEEE ITC, pp. 821–829 (2001)
34. https://www.research.ibm.com/haifa/projects/verification/focs/

http://www.fp7-smac.org
http://opencores.org/project,a_vhd_16550_uart
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
https://www.research.ibm.com/haifa/projects/verification/focs/

Author Index

Amaravati, Anvesha 131

Bayon, Pierre 150
Berisford, Daniel 1
Bilal, Muhammad 46
Bocca, Alberto 109
Bossuet, Lilian 150

Carlson, Robert 1
Chen, Cheng-Yang 170
Chugh, Manan 131

Danese, Alessandro 193

Filini, Francesca 193
Fischer, Viktor 150
Fujita, Masahiro 87

Ghasempouri, Tara 193

Hand, Kevin 1

Iturbe, Xabier 1

Jürimägi, Lembit 23

Keymeulen, Didier 1
Khan, Asim 46

Khan, Muhammad Umar Karim 46
Kyung, Chong-Min 46

Macii, Alberto 109
Macii, Enrico 109
Mani, Geetha 67

Orasson, Elmet 23
Ozer, Emre 1

Pandiyan, Manikandan 67
Poncino, Massimo 109
Pravadelli, Graziano 193

Raik, Jaan 23
Raychowdhury, Arijit 131

Sassone, Alessandro 109
Shin, Donghwa 109
Su, Hung-Cheng 170

Tsai, Chun-Jen 170

Ubar, Raimund 23

Wu, Tsung-Han 170

Yiu, Patrick 1

	Preface
	Organization
	Contents
	On the Use of System-on-Chip Technology in Next-Generation Instruments Avionics for Space Exploration
	1 Introduction
	2 System-on-Chip Technology and Its Use in Space Exploration Avionics
	3 The APEX-SoC Platform and Infrastructure
	3.1 ARM-Centric Processing System
	3.2 Data-Flow Infrastructure
	3.3 Fault-Tolerance Features
	3.4 Reliability Mode

	4 Case-Study: APEX-SoC-Based Controller of the JPL CIRIS Spectrometer
	4.1 The JPL CIRIS Spectrometer
	4.2 CIRIS Data Processing
	4.3 CIRIS Data Processing Integration into the APEX-SoC Infrastructure

	5 Results
	5.1 Implementation
	5.2 Performance
	5.3 Robustness Against Radiation

	6 Conclusions and Future Work
	References

	Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs
	Abstract
	1 Introduction
	2 Structurally Synthesized BDD
	3 Synthesis of SSBDDs
	4 Fault Equivalence and Fault Dominance on the SSBDD Model
	5 Fault Equivalence and Fault Dominance Fast Reasoning on the SSBDD Model
	6 Lower and Higher Bounds for Fault Collapsing
	7 Experimental Data
	8 Conclusions
	Acknowledgments
	References

	A Hardware Accelerator for Real Time Sliding Window Based Pedestrian Detection on High Resolution Images
	Abstract
	1 Introduction
	2 Literature Survey
	2.1 Sliding Window Based Pedestrian Detection
	2.2 Real Time Pedestrian Detection

	3 Overview of HOG
	4 Hardware Architecture
	4.1 Gradient Computation
	4.2 Cell Histogram Generation
	4.3 Block Histogram Normalization
	4.4 SVM Classification

	5 Results and Discussion
	5.1 Experimental Setup
	5.2 Accuracy Analysis
	5.3 Throughput and Power Consumption Analysis
	5.4 Choice of Parameters

	6 Conclusion
	Acknowledgments
	References

	Wearable ECG SoC for Wireless Body Area Networks: Implementation with Fuzzy Decision Making Chip
	Abstract
	1 Introduction
	2 Prior Art
	3 Wearable ECG System: With Decision Making
	3.1 System Overview
	3.2 ECG on Chip
	3.3 Fuzzy Decision Making Chip: Concepts, Design and Implementation

	4 Results and Discussion
	4.1 ECG Acquisition
	4.2 Fuzzy Decision Making
	4.3 Performance Evaluation

	5 Concluding Remarks
	Acknowledgement
	References

	Delay Testing Based on Multiple Faulty Behaviors
	1 Introduction
	2 Functional Faults Caused by Distributed Additional Delay
	3 Functional Delay Fault Models
	3.1 Functional Delay Fault Model with Two Time Frames, FDF2
	3.2 Functional Delay Fault Model with One Time Frame, FDF1

	4 ATPG Methods Based on Incremental SAT Formulation
	4.1 Application of Test Vectors

	5 Experimental Results
	6 Concluding Remarks
	References

	A Temperature-Aware Battery Cycle Life Model for Different Battery Chemistries
	1 Introduction
	2 Background and Motivations
	2.1 Battery Aging Issues
	2.2 Battery Aging Models
	2.3 Motivations for the Work

	3 Modeling Methodology
	3.1 Model Definition
	3.2 Analysis of the Mathematical Model
	3.3 Extraction of Model Parameters

	4 Model Validation
	4.1 VRLA Batteries
	4.2 Other Battery Chemistries

	5 Extension of the Basic Model
	5.1 Impact of the Temperature on Cycle Life
	5.2 Impact of the Current on Cycle Life
	5.3 Results

	6 Conclusion
	References

	A SAR Pipeline ADC Embedding Time Interleaved DAC Sharing for Ultra-low Power Camera Front Ends
	1 Introduction
	2 ADC Architectures for CS Image Acquisition
	3 SAR-Pipeline ADC Architecture for CS Measurements
	4 Design Components
	4.1 Stage 1 ADC and Residue Amplification
	4.2 Stage 2 ADC

	5 Analysis of Capacitor Mismatch
	6 Simulation Results
	7 Power Budget & Energy Efficiency
	8 Comparison with Reported Works
	9 Conclusion
	References

	Electromagnetic Transmission of Intellectual Property Data to Protect FPGA Designs
	Abstract
	1 Introduction
	1.1 The Threat Model of IC and IP
	1.2 Salware vs. Malware

	2 EM Communication of IP Data
	2.1 Principle
	2.2 Ultra-Lightweight Digital BFSK Transmitter

	3 Experimental Results
	4 Second Version of the Ultra-Lightweight Digital EM Transmitter
	5 Comparison with State of the Art Spy Circuitries Using a Side-Channel
	6 Industrial Scenarios Using the Proposed IP Protection
	7 Conclusion
	Acknowledgment
	References

	JAIP-MP: A Four-Core Java Application Processor for Embedded Systems
	Abstract
	1 Introduction
	1.1 Multi-core Java Processors
	1.2 Potentials of Hardwired Virtual Machines

	2 The Architecture of the JAIP Core
	2.1 The Overview of JAIP Core
	2.2 The Bytecode Execution Engine and the Stack Memory
	2.3 Single-Core Preemptive Thread Management
	2.4 The Memory Manager and Garbage Collector
	2.5 Dynamic Symbol Resolution Unit and the I/O Subsystem

	3 Multi-core Integration of JAIP
	3.1 The Multi-core Thread Manager
	3.2 The Data Coherence Controller Architecture

	4 Experimental Results
	4.1 Single-Core Multithread Performance Evaluation
	4.2 Multi-core Multithread Performance Evaluation
	4.3 Synchronization Overhead

	5 Conclusions and Future Work
	References

	Automatic Generation and Qualification of Assertions on Control Signals: A Time Window-Based Approach
	1 Introduction
	2 Related Works
	3 Background and Preliminaries
	3.1 Definitions
	3.2 Comparing Data Mining and Assertion Mining

	4 Methodology
	5 Assertion Mining
	5.1 Mining of Interesting Behaviors
	5.2 Pruning of Behaviours
	5.3 Mining of Assertions

	6 Assertion Qualification
	6.1 Metrics
	6.2 Assertion Ranking

	7 Experimental Results
	7.1 Assertion Qualification

	8 Conclusions
	References

	Author Index

