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Abstract. Future computing systems will need to operate within hard
power and energy constraints, this is particularly true for Exascale-class
systems. These constraints are hard for technical, economical and ecolog-
ical reasons, thus, such systems have to operate within given power and
energy budgets. Therefore, we anticipate the need for modeling tools that
help to predict power and energy consumption. In particular, such mod-
eling tools would allow for detailed explorations of various alternatives
when designing systems. While processing and memory already receives
a large amount of interest from the research community, power model-
ing of scalable interconnection networks is rather neglected. However,
analyses show that the network contributes about 20 % to the overall
power consumption of HPC systems. Considering the increasing energy
efficiency of other components, this fraction is likely to increase. While
models for processing and memory typically rely on performance coun-
ters to model power and energy, we observe that the distributed nature
of networks leads to significantly more complex metrics. Selecting the
right set of abstract metrics, which will be used as input for such a
prediction, is crucial for prediction performance.

In this work we introduce our tool called Simple Offline Network Ana-
lyzer (SONAR) to derive complex metrics from communication traces of
HPC applications. We explain the motivation behind choosing this con-
cept, the implementation, and the ability of the tool to easily support
the integration of new metrics. We also show exemplary explorations
using an initial set of metrics for a representative range of HPC applica-
tions, including contemporary as well as emerging Exascale workloads. In
particular, we use SONAR to characterize the communication of appli-
cations in terms of verbosity and network utilization, as we believe both
to be important metrics for power prediction.
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1 Introduction

Following the end of Dennard scaling, power and energy consumption turned into
hard constraints that limit a computing system’s computational power. Key to
a continuing performance scaling is improving energy efficiency, which means
more computations per Joule can be performed.

This is particularly true for Exascale systems, which will be severely lim-
ited by power consumption. Presently, it is estimated that a power dissipation
between 20 MW and 100 MW is anticipated for those systems. Since proces-
sors make up a large fraction of the overall power consumption, the majority
of current work focuses on understanding and optimizing their power efficiency.
Additionally, we believe the network component has historically received too lit-
tle attention. Analyses show that the network consumes up to 30 % of the overall
power [1]. This fraction increases if processors become more energy-proportional,
i.e. the actually consumed power is linked linearly to the component’s load.
Therefore, there is an urgent need to understand power consumption in scalable
interconnection networks in order to design optimizations.

In order to achieve an understanding of power consumption, we believe the
most suitable option is using power-aware network simulations and power mod-
els. The first method excels in an accurate prediction, the latter allows for much
faster predictions. Therefore, it enables explorations of topology, link configu-
ration and other abstract aspects. While our initial version of a power-aware
network simulator already exists [2], we are currently working on a network
power model. For such models it is crucial to select the right set of metrics that
describe the traffic in a way that is suitable for an abstracted power prediction.

Understanding the communication behavior of large scale HPC applications
is essential for our research regarding power consumption and possible optimiza-
tions. Therefore, it is mandatory to provide realistic input for simulators and
models. Traces of real HPC applications meet this demand and allow simula-
tions of different hardware configurations under realistic conditions. Addition-
ally, traces are examined post-run, which enables analysis for different metrics
without running the application again.

There are a variety of tools that generate traces for post-run examination.
Some popular examples are VampirTrace1, TAU2 and Score-P3. Once the traces
have been created, tools like Vampir or Jumpshot-4 take a look at the inner work-
ings of the applications. These tools are designed to discover and fix programming
weaknesses of applications such as waiting phases, bottlenecks, contention, etc.
to maximize the performance.

In this work we introduce our communication characterization tool called
SONAR (Simple Offline Network Analyzer), which allows us to easily derive

1 https://tu-dresden.de/die tu dresden/zentrale einrichtungen/zih/forschung/
projekte/vampirtrace/.

2 https://www.cs.uoregon.edu/research/tau/home.php.
3 https://www.vi-hps.org/Tools/Score-P.html.

https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace/
https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace/
https://www.cs.uoregon.edu/research/tau/home.php
https://www.vi-hps.org/Tools/Score-P.html
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complex metrics from communication traces. Furthermore, it is simple to intro-
duce new metrics based on these traces. In particular, we make the following
contributions:

– Introduce SONAR as an open-source tool to automatically generate complex
metrics of HPC communication traces

– Provide reasoning behind the methodology for our approach
– Exemplary characterization of a representative set of HPC workloads, includ-

ing metrics like verbosity and network load

The remainder of this work is structured as follows: We continue with provid-
ing background information including a brief review of related work. Then, we
detail our methodology, our analyzed metrics, and how we generate and examine
our traces. This is followed by short overview of SONAR’s tool-design. Finally,
the results of our first analysis of six different HPC application are shown, fol-
lowed by a conclusion in which we summerize our results and outline possible
future directions.

2 Background

Today, power consumption is one of the most important aspects when designing
and operating HPC systems. Analyses have shown that a large fraction of the
power consumption originates from data movements, and that associated costs
significantly increase with distance [3]. Predictions indicate that the gap between
energy costs for computation and data movement will actually widen in the
future [4].

Power saving strategies in the area of networks are based on reducing link
frequency or link width, both of which result in a decreased bandwidth. Since
transition times of several microseconds are common, it is important to know
when a link can operate with lower bandwidth without reducing performance.
Therefore it is essential to analyze and understand applications regarding their
communication behavior.

In order to examine the impact of different network configurations on power
consumption and performance simulations and models are essential. Synthetic
traffic is a commonly used for such simulators. This approach is a good first-order
approximation, but some peculiarities of real application are neglected. Therefore,
real application traces are mandatory for a deep understanding of certain commu-
nication patterns. Furthermore, traces can be used for post execution analyses.
This allows to examine new metrics without running applications again.

2.1 Communication Pattern

Applications in high performance computing exhibit various different commu-
nication patterns. Figure 1 depicts the injection pattern of one particular node
over the normalized run time. It is apparent that these different communication
pattern have differing suitability for various power saving strategies. While the
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(a) Linpack (b) Graph500 (c) AMG2013

(d) NAMD ApoA1 (e) NAMD STMV (f) LULESH

Fig. 1. P2P injection plots of exemplary workloads

Graph500 workload (b) has a very irregular and dense pattern, the network is
idling periodically for the AMG2013 (c) and NAMD (d, e) workload.

Analyzing communication patterns and other metrics is mandatory for future
interconnection network power models. These models are much faster than accu-
rate simulations of a complete cluster. This enables the possibility to test a vari-
ety of different parameters in a reasonable time. Since these models are not cycle
accurate, they are not taking full event-based traces as input data but simpler
metrics. Therefore, tools such as SONAR are used to derive different metrics
that affect power consumption directly from the traces.

2.2 Related Work

There is a large set of existing tools that gear to profile MPI applications.
The most important ones include TAU [5], HPCToolKit4, Intel VTune5, IPM6,
mpiP7, INAM [6] and INAM2 [7]. However, they rather focus on reporting and
visualizing MPI communication behavior for profiling purposes instead of gen-
erating aggregated metrics like SONAR. In fact, they can be seen as being one
level below SONAR, i.e. SONAR builds on top of such tools.

Tools that monitor and analyze MPI jobs also have a large history, such
as Lightweight Distributed Metric Service (LDMS) [8] by Sandia National Labs,
the HOlistic Performance System Analysis (HOPSA) [9], and TACC STATS [10].
Compared to SONAR, they tend to be more abstract and are geared towards
monitoring the behavior of complete MPI jobs.
4 http://hpctoolkit.org/.
5 https://software.intel.com/en-us/intel-vtune-amplifier-xe.
6 http://ipm-hpc.sourceforge.net/.
7 http://www.llnl.gov/CASC/mpip/.

http://hpctoolkit.org/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://ipm-hpc.sourceforge.net/
http://www.llnl.gov/CASC/mpip/
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The MPI forum recently proposed a new extension called MPIT8, which
allows profiling tools to access the internal states of MPI, enabling more detailed
profiling information. This feature is already used in recent work to provide tun-
ing hints to the user [11]. According to our knowledge MPI does not contribute
significantly to the overall power consumption, as most of the energy is spent
for core (floating point) computations and not memory-intensive tasks such as
queue management, tag matching, and similar. If this assumption turn out to be
wrong we would opt to extend SONAR with the possibilities offered by MPIT.

3 Methodology

Modern HPC network infrastructures are not energy proportional [2]. A first
step to improve energy-proportionality for HPC interconnects is understanding
how the interconnect behaves during runtime and what is a suitable approach
to minimize network power consumption.

To determine how an application utilizes the provided network resources, we
have postulated a set of metrics which give us a qualitative and quantitative
insight to the communication behavior of an HPC application. The following
metrics have been found to be important:

Network Activity Map: This metric visualizes all point-to-point and collective
messages by size and relation to the application runtime in a graph. Each data-
point in the plot indicates a particular event. Figure 2 (a) depicts the network
activity map of of an exemplary workload (AMG2013).

(a) Network Activity Map (b) Message Size Distribution Map

Fig. 2. Examples of the visual metrics SONAR derives from an application trace

MPI idle time: We determine the minimum, maximum and average times
during which a node does not have to handle any messages to or from the
interconnect. This values represent the white spots in the message activity map

8 http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/
2010-08-cscads-mpit.pdf.

http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
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in Fig. 2 (a). A good example in the plot can be seen in Fig. 2 (a) from second
50 to 100. In this region, the network is completely idle on this node.

Message Distribution: We use a cumulative distribution function graph
(CDF) to visualize the message sizes, which occur in a trace. This metric shows
the probability of a message having a size X or smaller. Figure 2 (b) shows the
CDF-graph of an exemplary workload (AMG2013).

Verbosity: This represents the ratio of work and the total amount of data
which has been consumed by the application. The work is quantified by the
number of floating point operations (Flops) issued, as many HPC applications
are depending on floating point arithmetic. The Flops are determined via the
hardware performance counters of the CPUs. For integer based workloads (such
as graph algorithms), the verbosity is defined by their number of integer opera-
tions instead of Flops.

Message Rate: The message rate indicates how many messages are sent by
one node in a given time period. This metric can be interpreted as a single-value
approximation of the network activity map.

All the described metrics are MPI process based. This means we get N × P
results for each metric, where N is the number of nodes and P is the number
of MPI processes launched per node. Derived from these metrics, we are able
to estimate how the application utilizes the cluster. Largely differing numbers
indicate an over- or under utilization of specific nodes in the cluster. Metrics
which can be quantified by a single number, such as the verbosity, will also be
reported as a global average value.

3.1 The Open Trace Format (OTF)

The open trace format (OTF) stores application activities as events. Each event
is associated with a time stamp and additional event-specific information. For
example, the MessageSent-event contains information such as source, destina-
tion and length of the message, whereas the FunctionEnter -event requires the
function’s signature and the ID of the concerning node. All non-numeric values,
e.g. the function signatures, are encoded as integer values to minimize the trace’s
size. To refer these encodings to their respective values, the OTF trace contains
a section with definitions. These definition provide the mapping of the encodings
to their actual meaning, e.g. the function with the ID 42 belongs to the function
with the signature void foo(int bar).

3.2 Trace Generation

The development of SONAR is motivated by the need to efficiently gather infor-
mation from application traces. Depending on the number of nodes, the com-
plexity of the underlying problem, the communication characteristics, and other
factors, these traces can become very large. The traces we have generated for
this paper require between 5 and 50 GBs of disk space each. In order to be able
to store such traces efficiently, an appropriate format is necessary.
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We have tested the Tuning and Analysis Utilities (TAU) and the Vampir-
Trace frameworks. In both cases, an application can be compiled with code
instrumentation to examine specific parts. They provide also the possibility to
run existing binaries without any modifications. With this black-box approach,
the traces contain only a reduced amount of information. Application-specific
functions are opaque in this case. The only data that can be gathered with this
method is the entry and exit point of the application’s main()-function as well
as the entry and exit points of the MPI library functions used by the application.

As mentioned before, instead of looking at specific parts of an application, we
want to examine the behavior of the whole application with special attention to
the communication aspects. Since all information regarding MPI and communi-
cation are retained when running an existing application with the run-wrappers,
this method is sufficient for our experiments.

For our purposes, the VampirTrace framework proved to be the better fit.
It stores traces directly in the compressed Open-Trace-Format (OTF), whereas
TAU requires an intermediate format. The collective records are stored in a
more convenient way with VampirTrace. TAU uses OTF counters to encode the
collective’s payload. The involved nodes have to be recovered with the functions’s
entry and exit points. VampirTrace utilizes the OTF collective handlers, so that
all information regarding collective events are available and accessible from a
single location.

Figure 3 shows the abstract steps needed to acquire metrics from an applica-
tion trace with SONAR.

Fig. 3. Schematic view of the workflow of acquiring metrics with SONAR

3.3 Trace Post-processing and Exploration

Once the trace has been obtained with VampirTrace, it contains, among others,
the following events:

1. Definitions: Nodes, Functions, Communicators
2. Function Enter/Leave Events
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3. Point-to-point Messages: Send/Receive Events
4. Collective Messages: Begin/End Events

All these events are associated with a time stamp and additional information
regarding this event, such as, the message length or type. VampirTrace stores
the time stamp as ticks and provides a trace-specific ticks-per-second value to
convert the time stamps into a reasonable unit. This should be considered when
handling the raw OTF data.

When viewing the trace with the otfprint tool of the OTF library, the infor-
mation looks like this:

$ otfprint mytrace.otf

// Functions:
(#38271) 5719742052 Enter: function 82, process 10, source 0
(#38272) 5719742504 Leave: function 0, process 9, source 0

// Point -to-point communication:
(#23768) 5708630907 SendMessage: sender 4, receiver 14, group

1000000004 , type 1375, length 80, source 0, KeyValue:
1:5709047177

(#23812) 5708664706 ReceiveMessage: receiver 14, sender 4, group
1000000004 , type 1375, length 80, source 0

// Collective communication:
(#2536) 5689898534 BeginCollective: process 13, collective 6, group

1000000004 , matchingId 5, root 0, sent 0, received 0, source 0
(#2567) 5691141019 EndCollective: process 4, matchingId 5

Listing 1.1. OTF Events

This textual representation of the trace can be used to get an overview of the
trace. Specific informations can be found and processed with the GNU tools grep,
sed, awk and alike. To characterize traces automatically with a set of multiple
metrics, this approach is not feasible, as the GNU tools tend to be very slow on
large amounts of data and cumbersome to use when implementing new metrics.
To be more efficient, we need to be able to process the trace’s data as-it-is
instead of the detour with the textual representation. SONAR uses the OTF
library functions to access the numerical values shown in Listing 1.1 directly as
their respective data type, e.g. integers.

4 Tool-Design

For SONAR, we used the C based OTF library9. It provides fast and convenient
interfaces to access OTF traces from C/C++ and Python applications. SONAR
itself has been implemented in C++.

9 https://tu-dresden.de/die tu dresden/zentrale einrichtungen/zih/forschung/
projekte/otf/.

https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/otf/
https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/otf/
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4.1 Implementation and Prerequisites

In order to access traces, the high-level OTF library functions expect one handler
function for each event. SONAR uses these handler functions as an interface to
acquire data from the traces. Since a trace usually contains more events than
needed, a selection of chosen events can be set up in the reader of the OTF
library.

We provide a script that downloads the OTF library, configures, builds, and
installs it to the current working directory. The OTF library has some depen-
dencies itself, such as the zlib for the trace’s compression. If this build process
fails, these dependencies have to be resolved manually. The same holds true for
the Boost C++ Libraries, which are used to handle the program options.

Gnuplot is used to generate the graphs. If gnuplot is not present on the
system, this part will be skipped and SONAR generates only data files. These
files are encoded as comma-separated values (CSV) to be (re-)used by any other
data processing tool.

4.2 Custom Metrics

SONAR can easily be extended with new metrics. To do so, we need to identify
the data which is required for the metric. For example, we want to count all
messages which are exactly 42 bytes in size. The data for this new metric is
located in the handler function which is called on every outgoing messages.

The class OTF Handler in the file “otf handler.h” contains stub implemen-
tations of all available OTF handlers. In his function the location of the data
of interest is handled. For a new metric, a new class must be derived from this
base class and re-implement the relevant functions.

static int
handleSendMsg(void* userData , uint64_t time , uint32_t sender ,

uint32_t receiver , uint32_t group , uint32_t type ,
uint32_t length , uint32_t source , OTF_KeyValueList *list)

{
if (length == 42)

*((int*) userData)++;
return OTF_RETURN_OK;

}

Listing 1.2. Example implementation to derive a new metric from
the OTF-trace

The code Listing 1.2 show the implementation of the new metric. The user-
Data-pointer is defined as an integer to be incremented at ever message which
is exactly 42 bytes in size. Metrics, which are more complex than this simple
example, are likely to depend on several values. In this case, it is advisable to
use a structure or class to organize the data.
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5 Results

In this section, we present results that are generated by SONAR after an analysis
of MPI traces of the following applications: HPL, Graph500, NAMD, LULESH,
and AMG2013.

5.1 Test System

We use an HPC system that consists of 8 nodes. Each node hosts two six-core
Intel Xeon E5-2630 v2 CPUs and 64 GBs of RAM and runs a standard Linux
distribution. The nodes are connected to each other with Gigabit Ethernet. All
the traces and measurements were acquired with this system.

5.2 Benchmarks and Workloads

We used a set of benchmarks to evaluate the output of SONAR. The workloads
represent the typical demands of an HPC environment. We chose the config-
uration of these applications in a way to keep the total runtime low and the
resulting traces small.

HPL (High-Performance Linpack) is the benchmark used to determine the
Top500-List10. It solves a dense N ×N system of linear equations. The perfor-
mance is reported in GFlops/s. In our test we used a dimension of N = 50000.

The Graph500 Benchmark is used to determine the Graph500-List. The
workload is a breadth-first search (BFS) graph traversal. Unlike HPL, the
Graph500 Benchmark relies more on the communication abilities of the cluster.
For our tests, we used the reference implementation11 with emulated one-sided
communication and a scale factor of 12.

NAMD (Nanoscale Molecular Dynamics program) is a molecular dynamics
simulation program12. Two widely known workloads are the Apolipoprotein A1
(ApoA1) and the Satellite Tobacco Mosaic Virus (STMV). These workloads are
publicly available and are commonly used to compare different systems against
each other. The number of computational steps was limited to 100 for each
workload to keep the traces small.

LULESH (Livermore Unstructured Lagrange Explicit Shock Hydrodynam-
ics) represents the field of hydrodynamic simulations13. LULESH uses a stencil
code to calculate the physical forces. The problem size parameter was set to 100,
which results in one million elements per node. The number of iterations was
limited to 500.

AMG2013 (Algebraic Multigrid Solver) solves linear systems of unstruc-
tured grids with the algebraic multigrid method14. For our tests we used the
10 http://www.netlib.org/benchmark/hpl/.
11 http://www.graph500.org/referencecode.
12 http://www.ks.uiuc.edu/Research/namd/.
13 https://codesign.llnl.gov/lulesh.php.
14 https://codesign.llnl.gov/amg2013.php.

http://www.netlib.org/benchmark/hpl/
http://www.graph500.org/referencecode
http://www.ks.uiuc.edu/Research/namd/
https://codesign.llnl.gov/lulesh.php
https://codesign.llnl.gov/amg2013.php
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default problem and adjusted the problem scaling parameter to prolong the run-
time of the application.

LULESH and AMG2013 are part of a collection of proxy applications15 which
represent current and future HPC workloads.

5.3 SONAR Measurements

In this section, we present the insights we have gathered with SONAR. We ran
the workloads described in Subsect. 5.2 on our cluster. The traces were acquired
using the vtrun wrapper of VampirTrace. The following metrics were selected
for first analyses.

Network activity: The graphics in Fig. 4 depict the network activity foot-
prints of the High-Performance Linpack, Graph500, LULESH and AMG2013
benchmarks.

(a) Linpack (b) Graph500

(c) LULESH (d) AMG2013

Fig. 4. Network activity of exemplary workloads (Color figure online)

Each data point in the graphs represents a distinct event in the network. The
position on the X and Y axis indicates the time of occurrence and respectively
the size of the message. The colors visualize point-to-point (red, green) and

15 https://codesign.llnl.gov/proxy-apps.php.

https://codesign.llnl.gov/proxy-apps.php
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(a) NAMD ApoA1 (b) NAMD STMV

Fig. 5. Network activity of the same application, but with different workloads

(a) P2P Message Size Distribution (b) Coll. Message Size Distribution

Fig. 6. Message distribution of different workloads for point-to-point (a) and collective
(b) messages

collectives messages (purple, blue). SONAR produces such one graph for each
node, recorded in the trace. Here, we selected only one graph per node, which
we think is representative.

It is apparent that the communication characteristics vary widely between the
different applications. This is not surprising for workloads, which are inherently
different from each other such as the ones shown in Fig. 4. Figure 5 depicts the
NAMD application with two different sets of input data. Although both show
periodic communication behavior, their network activity maps differ a lot.

The ApoA1 workload causes dense communication patterns in the first third
of the application’s runtime. There are also some white spots which indicate no
network activity at all. STMV communicates heavily from the middle to the end
of the application and has fewer idle gaps.

Message Distribution: Figure 6 shows the message distribution of our selected
workloads as a cumulative distribution function (CDF). SONAR reports one
CDF graph for each trace. For a better comparability, we merged them into one
graph.
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Table 1. Summary of aggregated SONAR metrics on the cluster level

Application MPI Verbosity Message Rate MPI Idle min. MPI Idle max. MPI Idle avg.

Processes [Bytes/Flop] [Messages/s] [Seconds] [Seconds] [Seconds]

Graph500 2 x 8 2.087e+01 4.795e+02 4.096e−06 1.256e+00 8.742e−04

Graph500 4 x 8 6.180e+00 5.924e+02 4.821e-06 2.849e+00 7.096e−04

Graph500 8 x 8 1.560e+00 8.697e+02 4.902e−06 3.411e+00 5.161e−04

HPL 2 x 12 9.597e−01 6.885e+01 2.528e−06 6.629e+00 7.160e−03

HPL 4 x 12 1.602e+00 3.729e+01 2.609e−06 6.250e+00 1.328e−02

HPL 8 x 12 1.478e+00 3.032e+01 2.654e−06 7.589e+00 1.638e−02

LULESH 8 9.398e−04 1.027e+01 4.132e−06 1.327e+00 4.695e−02

LULESH 27 1.236e−03 1.417e+01 3.764e−06 1.914e+00 3.825e−02

LULESH 64 1.409e−03 1.712e+01 3.536e−06 2.648e+00 3.210e−02

AMG2013 2 x 8 3.690e−03 1.598e+01 0.000e+00 8.757e+00 3.004e−02

AMG2013 4 x 8 1.009e−02 1.508e+01 0.000e+00 6.917e+01 3.290e−02

NAMD ApoA1 2 x 12 6.020e−03 8.501e+01 4.117e−06 4.317e+00 6.023e−03

NAMD ApoA1 4 x 12 8.651e−03 2.181e+01 4.453e−06 5.920e+00 2.356e−02

NAMD STMV 2 x 12 4.543e−03 6.861e+01 4.142e−06 1.375e+01 7.197e−03

NAMD STMV 4 x 12 6.274e−03 1.262e+01 4.389e−06 1.419e+01 3.951e−02

The most important insight is that point-to-point communication is preferred
over collective communication. Only AMG2013 and the Graph500 are using col-
lective messages to transfer data, which are larger than 10 Bytes. This sug-
gests that the other workloads use collective operations only for synchronization
purposes.

The second observation in Fig. 6 (a) is that about 80 % of all point-to-point
messages we gathered with our workloads are smaller than 20 kbyte. One excep-
tion is Graph500, in which most messages are smaller than one kbyte. The other
one is LULESH with most messages being smaller than 200 kbyte.

Aggregated Metrics: The results, which can be represented as numerical val-
ues, have been summarized in Table 1. The presented data are averaged values
of all nodes. This table provides an overview how an application utilizes the
cluster’s components such as processors and interconnection network.

The information about sending and receiving of messages is measured at
MPI level. Therefore, the MPI idle time represents the time period between two
successive MPI events. As we take the send, as well as the associated receive event
into account, these numbers give a reasonably accurate idea of the behavior of
the underlying network interface.

Node divergence: To show how evenly an application utilizes the different
nodes, SONAR produces also graphics that represent the data from Table 1 at
node level. The box plots in Figs. 7 and 8 show the variance of these metrics
spread over all nodes. Workloads with a low box and short whiskers indicate an
even utilization of each cluster node. This means the bigger the boxes the bigger
the larger variance between all nodes.
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(a) Verbosity

(b) Message Rate

Fig. 7. Verbosity and message rate variance of tested workloads for all nodes

Figure 7 depicts the variance of the metrics verbosity and message rate. The
high verbosity of the Linpack benchmark surprises, respectively reveals the huge
amounts of data this workload needs to transfer. Graph500 has the highest ver-
bosity, as this work does not rely on floating point operations. Otherwise, the
message rate is the largest of all tested workloads. This is because the Graph500
relies heavily on communication. NAMD, LULESH and AMG2013 show similar
behavior regarding the verbosity and the message rate. They seem to be more
efficient than Linpack, as they show a lower verbosity. This is in line with the
message rate, which for these workloads is lower than on HPL.

Figure 8 shows the distribution of idle times on the MPI layer. The minimum
idle time depends on the actual interconnect hardware. In our measurements,
we see gaps of a few microseconds for successive messages. This is within the
expected capabilities of the Gigabit Ethernet network we have used.

The average idle time between successive networks is between 20ms and
80ms. The Graph500 is the outlier with an average gap of about 80µs. Once
again, this shows the communication demands of this workload.

A hypothetical energy-proportional network must be able to switch its power
state much faster than the average message gap to save energy and retain the
application’s performance. The maximum idle time reveals, that many of the
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(a) MPI Idle Time: Minimum

(b) MPI Idle Time: Maximum

(c) MPI Idle Time: Average

Fig. 8. Idle time variance of tested workloads for all nodes

tested applications have at least one phase, where the network is not used at all
for more than five seconds (HPL, NAMD, AMG2013). The apparently missing
box of AMG2013’s minimum idle time is in fact zero seconds on each node. This
is likely caused by overlapping messages. AMG2013 shows a maximum idle time
of even more than one minute for each node. We assume this is the result of an
unfavorable configuration of the application. For a energy-proportional network,
this means, during this idle time the network can be set to the lowest energy
state or even be switched off completely.



SONAR: Automated Comm. Characterization for HPC Applications 113

6 Conclusion

With SONAR, we introduced a tool to derive advanced communication charac-
teristics from traces of common HPC applications. These traces were obtained
with VampirTrace, a well-known MPI trace generator.

Using these trace, we demonstrated the capabilities of SONAR by extracting
various metrics, which we believe are crucial to develop a power-aware network
model. For example, the generated network activity maps show a wide range
of different communication patterns. Energy-proportional networks show signifi-
cant power saving potential on workloads, such as NAMD or AMG2013. Various
opportunities exist to save power without any loss in performance by dynami-
cally reducing the link width or even by switching them off completely. Similar
potentials are seen with LULESH and its highly regular communication pattern
and fixed message sizes. Although links cannot be switched off completely, fine
tuning the network is sufficient to save power for this workload.

Our observations of the network activity maps are also proven by other met-
rics, such as MPI idle times of the single nodes. SONAR revealed that the gaps
between MPI events provide a possibility to put less active links into a reduced
power state for the duration of these inactivity periods.

Supporting all these scenarios, however, requires an energy-proportional net-
work infrastructure. Therefore, further research in this area is mandatory and
we believe SONAR to be a first and important step in this direction.
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