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Abstract. EPiGRAM is a European Commission funded project to
improve existing parallel programming models to run efficiently large
scale applications on exascale supercomputers. The EPiGRAM project
focuses on the two current dominant petascale programming models,
message-passing and PGAS, and on the improvement of two of their
associated programming systems, MPI and GASPI. In EPiGRAM, we
work on two major aspects of programming systems. First, we improve
the performance of communication operations by decreasing the memory
consumption, improving collective operations and introducing emerging
computing models. Second, we enhance the interoperability of message-
passing and PGAS by integrating them in one PGAS-based MPI imple-
mentation, called EMPI4Re, implementing MPI endpoints and improv-
ing GASPI interoperability with MPI. The new EPiGRAM concepts
are tested in two large-scale applications, iPIC3D, a Particle-in-Cell
code for space physics simulations, and Nek5000, a Computational Fluid
Dynamics code.

1 Introduction

Exascale supercomputers will deliver 1018 floating-point operations per sec-
ond (FLOPS) in double precision using the High Performance Linpack (HPL)
benchmark. Today, the two fastest supercomputers are the Chinese Sunway
TaihuLight and Tianhe-2 supercomputers delivering respectively 93 and 33.8
petaFLOPS. The next American supercomputers from the Corral initiative will
deliver between 100 and 200 petaFLOPS. Current projections of future super-
computers estimate the delivery of exascale machine in 2024.

While the race to exascale resulted in faster and larger supercomputers that
today are only a factor of ten far from exascale, the software stack to support
parallel applications on supercomputers has remained almost unchanged with
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respect to the software present on petascale machines. In fact, almost all appli-
cations use MPI as main library to support parallel communication. Some of
the applications use Partitioned Global Address Space (PGAS) languages, such
as Coarray Fortran and UPC, with MPI [19,22]. Several applications employ
OpenMP in combination with MPI for programming intra-node communica-
tion [13]. Despite the proposal of new disruptive programming models and sys-
tems [1,3,5], it is unlikely that such programming systems will reach a level
of maturity and reliability to be readily deployed on the full exascale machine.
The programming system dominating the exascale era will be MPI, possibly in
combination with PGAS and OpenMP. For this reason, it is important both to
improve the performance of these existing programming systems and to enhance
their interoperability.

The size of next exascale supercomputers and their hardware pose difficult
challenges to development of programming models. One of the main challenges
is to handle the amount of parallelism that an exascale supercomputer will pro-
vide. The current fastest supercomputer Sunway TaihuLight provides 10,649,600
cores for parallel computation. Extrapolating this value to future more powerful
supercomputers, it is reasonable to expect that an exascale machine will provide
an 100 million-way parallelism. While communication cost decreases as part
of communication operations is offloaded to the NIC and network technologies
improve, still a large amount of memory is needed for storing process and com-
municator information on 100 million processes and memory footprint becomes
a serious bottleneck [2]. In addition, collective operations and synchronization
of such a large amount of processes [24] require the development and implemen-
tation of more sophisticated collective algorithms. A second main challenge is
to guarantee that all the programming systems, such MPI, OpenMP and PGAS
approaches efficiently interoperate sharing fairly all the hardware resources. It
is therefore important to improve the performance of communication operations
on a very large number of process potentially in presence of a combination of
different programming systems.

Exascale ProGRAmming Models (EPiGRAM) is a European Commission
funded project with the goal of addressing these exascale challenges in program-
ming models. The EPiGRAM consortium consists of KTH Royal Institute of
Technology, Vienna University of Technology (TU Wien), Fraunhofer ITWM,
Cray UK, University of Edinburgh and University of Illinois (associate partner).

EPiGRAM focuses on the improvement of MPI and GASPI performance on
exascale systems. MPI is currently the most used approach for programming
parallel applications on supercomputers [11]. Global Address Space Program-
ming Interface (GASPI) is the standard [12] for a PGAS API. GASPI uses
one-sided Remote Direct Memory Access (RDMA) driven communication in
combination with remote completion in a PGAS environment. Global address
space Programming Interface (GPI) is a GASPI implementation, developed by
Fraunhofer ITWM. Since GPI-2, Fraunhofer ITWM provides an open-source
GPI implementation under GPL v3.
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Fig. 1. Overview of the EPiGRAM project.

Figure 1 provides an overview of the different topics that have been investi-
gated during the EPiGRAM project and the remaining part of the paper will
describe these topics more in detail.

The paper is organized as follows. The second section presents the EPiGRAM
work to address the challenge of exascale parallelism. In particular, we present
how MPI and GASPI are further developed to reduce the memory footprint,
to improve collective algorithms and implementations and to support emerg-
ing computing models. The third section describes the EPiGRAM research on
MPI and GASPI interoperability, presenting MPI endpoints, GPI interoperabil-
ity with MPI and the PGAS-based MPI implementation, called EMPI4Re, that
integrates message-passing and PGAS in one framework. The fourth section
presents the EPiGRAM applications. Finally, the fifth section concludes the
paper summarizing the work done in EPiGRAM.

2 The Exascale Parallelism Challenge

Some important issues and obstacles that might prevent an effective use of MPI
and GASPI programming systems on exascale machines are:

1. Memory-footprint and efficient memory usage. The available memory per core
or even per (heterogeneous) shared-memory node will not, as was the case to
a large extent in the past, scale linearly with the number of cores or nodes.
Thus, implementations and specifications of MPI and GASPI functionalities
must use sub-linear space per core or per node.

2. Algorithms and implementations for collective communication. Commonly
used implementations often assume a fully connected network, and have rel-
atively dense communication patterns. Better implementations, and in par-
ticular, new, space efficient algorithms for sparse collective communication
and for collective communication on sparse networks are needed. In addition,
current MPI interfaces for sparse collective communication are still limited.

3. Support for emerging computing models on massively parallel supercomput-
ers. Computing models, such streaming models, lack of a convenient interface
in MPI to run efficiently on large scale supercomputers. This might prevent
the use of emerging computing models on exascale supercomputers.
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2.1 Memory-Footprint and Efficient Memory Usage

The first issue EPiGRAM addresses is the memory consumption of MPI and
GPI at exascale. This is done by designing and implementing zero-copy MPI
collectives and GPI dynamic connections.

MPI Zero-Copy Collectives. The MPI datatype mechanism allows applica-
tion programmers to describe the structure of the data to be communicated in a
concise way [11]. In particular, non-consecutive layouts of data can be described
as vectors, indexed or structured types, allowing a compact representation of
complex layouts. The application programmer describes the layout of the data
to be communicated, and the MPI library implementation performs the actual
access of the data.

An efficient MPI implementation of data types can save memory copy oper-
ations. In fact, an explicit pack operation, implemented by the application pro-
grammer, copies data into some intermediate communication buffer, and then
the MPI library may entail another copy of this buffer. This extra copy can be
sometimes eliminated completely with datatypes, or in part for large data where
pipelining may be applied by the library. In particular, the MPI datatype mech-
anism permits so-called zero-copy implementations, in which no explicit data
movements are present in the application and all data access and manipulation
are carried out implicitly by the MPI library implementation.

In EPiGRAM, we studied the design and implementation of different zero-
copy collective operations, focusing on obstacles that might prevent the design
and implementation of such operations in an efficient way. We have investigated
the use of the derived datatype mechanism of MPI in the implementation of the
classic all-to-all communication algorithm of Bruck et al. [4]. Through a series
of improvements to the canonical implementation of the algorithm we gradually
eliminated initial and final processor-local data reorganizations, culminating in
a zero-copy version that contains no explicit, process-local data movement or
copy operations [35,37]. In this case, all necessary data movements are carried
out as part of the communication operations. We also showed how the improved
algorithm can be used to solve irregular all-to-all communication problems. In
particular, in EPiGRAM we used and implemented three new derived datatypes
(bounded vector, circular vector, and bucket) that are not in MPI. On two
supercomputers at the Vienna University of Technology, we experimentally com-
pared the algorithmic improvements to the Bruck et al. algorithm when imple-
mented on top of MPI, showing the zero-copy version to perform significantly
better than the initial, straight-forward implementation. One of our variants
has also been implemented inside mvapich, and we showed it to perform better
than the mvapich implementation of the Bruck et al. algorithm for the range
of processes and problem sizes where it is enabled. Details about this work are
provided in [35,37].

However, we showed in EPiGRAM that current collective interfaces can-
not support zero-copy implementations in all cases [36]. The problem is that
the regular collective interfaces use a receive datatype to specify a per-process
layout, whereas sometimes a different layout is needed for each process. Such



60 S. Markidis et al.

cases cannot be accounted for; only for applications using all-to-all communica-
tion, the required flexibility is provided in the form of the tedious, non-scalable
MPI Alltoallw operation. In [36] we show a simple, and in many cases back-
wards compatible and mostly non-intrusive solution to the problems in the form
of slightly changed collective interfaces (all other communication interfaces would
have to be reinterpreted in a similar way). The key to the solution is to sepa-
rate the number of elements to be communicated from the overall structure of
the data. The latter is described by a datatype; the former by an element count.
The current MPI specification mixes these two concerns, leading to the problems
discussed.

GPI Dynamic Connections. We have identified GPI memory consumption
as one of the main aspects to be improved for large scale execution of GPI
applications. The memory consumption is strongly related to the management
of the communication infrastructure in GPI. The GASPI specification, that GPI
implements, defines that the communication infrastructure should be either built
during initialization or performed explicitly by the application. This can be set
through a configuration parameter where the default value is TRUE. In this case,
the communication infrastructure is built at start-up by default. In fact, details
of the initialization of the GPI communication infrastructure are left to the
implementation.

Before EPiGRAM, communication infrastructure was built-up statically in
GPI. In this case, each computing node (a GPI rank) establishes a connection
to all the other computing nodes during initialization. This results in an all-
to-all communication topology. Despite this is acceptable on small scale and
typical executions, the problem becomes evident when running large-scale GPI
applications. For this reason, we have extended GPI to allow three modes of
topology building: GASPI TOPOLOGY NONE where the application explicitly han-
dles the infrastructure setup, GASPI TOPOLOGY STATIC where, as before, an all-
to-all connection is established and GASPI TOPOLOGY DYNAMIC where connections
are dynamically established as the first communication request between two
nodes is performed. We were able to verify and measure the effects of such GPI
extension during the Extreme Scale Workshop using the full SuperMUC iData-
Plex supercomputer, consisting of 3,072 nodes, at the Leibniz Supercomputing
Centre. The establishment of dynamic connections provides a much more effi-
cient and scalable resource consumption in terms of memory footprint. Panel a
of Fig. 2 presents the memory consumption (per rank) after initialization using
static and dynamic connections. The non-scalable behavior of the GPI all-to-all
connection is evident. We can now alleviate that using GPI dynamic connections.

2.2 Algorithms and Implementations for Collective Communication

The second issue EPiGRAM addresses is the performance of collective commu-
nication operations at exascale by investigating improved sparse collectives and
studying non-blocking collectives in GPI.
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MPI Isomorphic Sparse Collectives. The MPI specification has function-
ality for sparse collective communication where processes communicate with a
subset of other processes in a local neighborhood. Sparse neighborhoods can be
explicitly specified using the general graph topology functionalities or Carte-
sian topology [10]. However, both approaches have problems. In the first case,
this mechanism is cumbersome to use, and the necessary collective communi-
cation and computation to create the local neighborhoods as well as the cre-
ation of a new, possibly reordered communicator can be very expensive. Alter-
natively, neighborhoods can be given implicitly with a Cartesian communicator.
On Cartesian MPI communicators, neighborhood collective communication is
possible with these implicit neighborhoods. Although neighborhood collective
communication should be oblivious to how neighborhoods are set up, there are
some differences between explicit and implicit neighborhoods in the MPI stan-
dard. For instance, non-existing neighbors are possible for Cartesian neighbor-
hoods and buffer space needs to be calculated for such non-existing neighbors;
this is neither possible nor allowed for graph topologies. On the other hand, graph
topologies can associate weights with the graph edges (that may reflect commu-
nication costs in different ways and thus can permit better process mappings),
but this is not possible for Cartesian topologies.

EPiGRAM provides a middle ground between these two approaches: a mech-
anism for structured, sparse collective communication with a much smaller over-
head than the general graph topology mechanism but with more flexibility and
expressivity than the Cartesian neighborhoods. In EPiGRAM, we introduced the
concept of isomorphic sparse collective [33,34]: isomorphic sparse collective com-
munication is a form of collective communication in which all involved processes
communicate in small, identically structured neighborhoods of other processes.
Isomorphic sparse collective communication is useful for implementing stencil
and other regular, sparse distributed computations, where the assumption that
all processes behave symmetrically is justified. The concept of isomorphic neigh-
borhood extends and generalizes what is possible with the limited MPI Cartesian
topologies.

In EPiGRAM, a library for isomorphic sparse collective communication has
been implemented. The library supports the navigation and query functionality,
creation of isomorphic neighborhoods (by attaching the neighborhood informa-
tion to a Cartesian communicator), functions for using relative neighbor lists to
set up MPI graph communicators, and sparse isomorphic collective operations
of the allgather, alltoall and reduction types. The performance improve-
ments that can be achieved by using isomorphic sparse collectives are presented
in [33,34].

GPI Non-blocking Collectives. Non-blocking collectives have been recently
introduced in MPI-3 as a mean to overlap communication and computation
during collective operations [10,14]. In EPiGRAM, we have investigated the
development of non-blocking collectives in GPI. Currently there are only two
collective operations in GASPI: gaspi barrier and gaspi allreduce. Both
collective operations in GASPI have a timeout argument that specifies after
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Fig. 2. Panel a shows the memory consumption using GPI static all-to-all connec-
tion (green bars) and dynamic connections (red bars) when using different number of
computing nodes. Panel b shows the execution time for MPI blocking (red line), GPI
blocking (green line) and non-blocking (blue line) barriers increasing the number of
nodes. The tests have been performed on SuperMUC iDataPlex supercomputer at the
Leibniz Supercomputing Centre. (Color figure online)

which period of time the collective operation can be interrupted. This timeout
argument can be used as a form of non-blocking call. For instance, the time out
argument can be set to GASPI TEST. Each GPI process can call a collective func-
tion and when the function is interrupted as a consequence of the timeout other
work can be performed, effectively implementing a non-blocking collective. In
EPiGRAM, we added the support for this kind of non-blocking collectives and
we performed performance tests of blocking and non-blocking GPI barriers and
a comparison with MPI blocking barrier on the SuperMUC iDataPlex supercom-
puter up to 4,096 nodes (corresponding to a total of 65,536 cores) at the Leibniz
Supercomputing Centre. Panel b of Fig. 2 presents the execution time for the
different implementations of barriers, showing a reduced execution time for GPI
non-blocking barrier (blue line) with respect to the execution of blocking GPI
(green line) and MPI (red line) implementations.

2.3 MPI Support for Streaming Computing

EPiGRAM also investigated the support for emerging computing models that
will be likely used on massively parallel supercomputers in the future. An exam-
ple of such computing models is the data streaming computing model that is
an effective way to tackle challenges from data-intensive applications. However,
streaming computing is not naturally supported in MPI.

In EPiGRAM, we have designed and implemented a library called
MPIStream [25] that allows HPC applications to globally allocate data producers
and consumers on MPI processes, to stream data continuously or irregularly, to
receive and process data and to terminate the streaming operations. Use cases
of enabling HPC applications to carry out threshold collective operations, to
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monitor and control applications and to perform parallel I/O of irregular events
are illustrated in [25].

Our MPI streaming library targets the streaming model for distributed sys-
tems, where MPI is the dominant programming system. The MPIStream library
is written in C and built on the top of MPI. A stream is a continuous flow of
stream elements, which is the basic unit of transmission between data producer
and streamer. MPI data types are used to describe the memory layout of the
elements on data producers to achieve zero-copy streaming and consequently
saving memory consumption on large systems. MPI persistent communication is
used to reduce the overhead of repeatedly calling receive routines.

The performance of the MPIStream library has been evaluated using a par-
allel STREAM benchmark [25] on two supercomputers: Beskow Cray CX40 at
KTH and Mira BlueGene/Q at the Argonne National Laboratory. The perfor-
mance results show that the library can achieve acceptable performance (52 %–
65 % of the maximum available bandwidth) and demonstrate its potential by
reaching as high as 200 GB/s and 80 GB/s processing rate using 2,048 data pro-
ducers over 2,048 data consumers on the Blue Gene/Q and Cray XC40 super-
computers respectively. Additional performance results of the MPIStream library
are reported and discussed in [21,25].

3 The Interoperability Challenge

Interoperability of programming systems, such as MPI, OpenMP and PGAS, is a
key aspect in exascale computing as it is likely that exascale applications will use
a combination of programming systems to use efficiently different kind of com-
munications, i.e. inter-node and intra-node communications. In EPiGRAM, we
implemented a PGAS-based MPI to fully integrate message-passing and PGAS
programming models, we introduced MPI endpoints in this MPI implementation
and improved the GPI interoperability with MPI.

EMPI4Re: A PGAS-based MPI Implementation. EPiGRAM integrates
and combines message-passing and PGAS programming models in one MPI
implementation. The EPiGRAM MPI library for Research (EMPI4Re) is an
MPI-1 library created by EPCC at the University of Edinburgh as a vehicle for
research into new MPI functionality. The library adopts the conceptual model
of PGAS and assumes hardware support for RDMA operations. This conceptual
model enables efficient implementation of remotely accessible double buffered
first-in first-out (FIFO) queues, used for point-to-point operations, and distrib-
uted state control structures, used for collective operations.

The code-base for the EMPI4Re library currently consists of 55,495 lines of
C code (OpenMPI version 1.8.6 consists of 933,889 lines for comparison). The
current implementation of EMPI4Re is based on DMAPP (a Cray one-sided
communication API) [31] and there is an ongoing effort in EPiGRAM to replace
DMAPP with GPI. Overall, we found in EPiGRAM that the EMPI4Re library
is a useful research vehicle for rapidly prototyping and assessing code changes
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to MPI functionality without the complexity of managing a large code-base or
production MPI implementation.

MPI Endpoints. MPI is typically targeted at communication between dis-
tributed memory spaces. For a pure MPI programming approach, multi-core
nodes require an OS process per core in order to take advantage of the avail-
able compute capability. This requires multiple instances of the MPI library
per shared-memory node including communication buffers, topology informa-
tions and connection resources. Hybrid programming, commonly referred to as
MPI+X, where X is programming model that supports threads, only requires a
single instance of the MPI library per shared-memory node and so it should scale
with increasing per-node core-count better than pure MPI. However, there are
restrictions on how MPI can be used in multi-threaded OS processes that make
it difficult to efficiently achieve high performance with hybrid programming. In
particular, threads cannot be individually identified as the source or target of
MPI messages [15].

MPI endpoints have been designed to remove or alleviate threading
restrictions in MPI and facilitate high performance communication between
multi-threaded OS processes. MPI endpoints allow the programmer to create
additional ranks at each MPI process. Each endpoint rank can be then dis-
tributed to threads in system-level programming models enabling these threads
to act as MPI processes and interoperate with MPI directly [6]. For an initial
implementation study, see also [17,30].

The EPiGRAM project is implementing the MPI endpoints in EMPI4Re. The
initial approach taken in the EMPI4Re library is to create each communicator
handle as normal: generating a new structure for each one, including a full map-
ping of all ranks to their associated location. This is exactly what would happen
if each of the members of the new communicator were individual MPI processes
each in their own OS processes. EMPI4Re is already designed to be able to cope
with each member of a communicator using a different context identifier for a
particular communicator so this approach does not cause a conflict. The next
step is to de-duplicate the internal data-structures so that multiple MPI end-
points in the same OS process share a single copy of the mapping information
and share a reduced number of matching data-structures and communication
buffers. In EMPI4Re, various design choices, such as having a different context
identifier at each MPI process for a communicator thereby avoiding the use of a
distributed agreement algorithm, simplify the addition of new features.

GPI Interoperability with MPI. Large parallel applications that have been
developed over several years often reach several thousands or even millions of
lines of code. Moreover, there is a large set of available libraries and tools which
run with MPI. For this reason, it is important to enable GPI full cooperation
with MPI so that both can be used simultaneously in an efficient way. This inter-
operability allows an incremental porting of large applications to GPI and an
effective usage of existing MPI libraries and infrastructure. This tighter support
for MPI interoperability was integrated in GPI during the EPiGRAM project
(GPI release v1.1.0 in June 2014) by introducing the so-called mixed-mode.
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In this mode, GPI sets its environment reusing MPI instead of relying on its
own startup mechanism (gaspi run). The only constraint is that MPI must
be initialized (MPI Init) before GPI (gaspi proc init). In this mode, as MPI
and GPI both follow a Single Program Multiple Data (SPMD) model, there is
a direct match between the MPI the GPI ranks. This simplifies the reasoning
about the hybrid GPI-MPI application.

In addition, an interface allowing memory management interoperability has
been recently established in the GASPI standard [12]. GASPI handles memory
spaces in so-called segments, which are accessible from every thread of every
GASPI process. The GASPI standard has been extended to allow users to pro-
vide an already existing memory buffer as the memory space of a GASPI seg-
ment. This new function will allow future applications to communicate data from
memory that is not allocated by the GASPI runtime system but provided to it,
i.e. by MPI. If an MPI program calls GPI libraries, the GPI libraries need to
be isolated, so that the communication in a library does not interfere with the
communication in the main application, or any other library. This is required
to guarantee correct results. The GASPI interface has been extended to offer a
clear separation: a library is now able to create its own communication queues
and thus have an isolated communication channel. For all other resources, i.e.
segments, GPI already provides some mechanism to query their usage and to
select an unused resource.

4 EPiGRAM Applications

The effectiveness of concepts that have been developed in EPiGRAM have been
tested against two real-world open-source codes, iPIC3D [20,29] and Nek5000 [7].
iPIC3D is a massively parallel Particle-in-Cell code that is written in C++ and
using MPI. Nek5000 is a semi-spectral Computational Fluid Dynamics (CFD)
code for solving fluid dynamics problems, such as the study of turbulence arising
on the surface of airplane wings. Nek5000 is written in large part in Fortran and
in a small part in C and it uses MPI for parallel communication.

The EPiGRAM codes have been used for providing feedback to development
of the programming systems in EPiGRAM: they have been employed to test
new features in MPI and GASPI programming systems, to provide feedback
to the developers of EMPI4Re library, and to compare the performance of the
EPiGRAM programming system implementations in real-world applications [16].

The new EPiGRAM communication kernel of iPIC3D is now included in
the release version of the code [29] and enabled large scale simulations of magne-
tospheric physics [23,26,27,32]. Together with the improvement of the communi-
cation kernels of the applications, also OpenACC/OpenMP porting of the appli-
cations to GPU systems [8,9,13,18,28] and new algorithmic strategies [38,39]
have been implemented in EPiGRAM.
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5 Conclusions

In summary, EPiGRAM is a European Commission project with the goal of
improving the performance and the integration of existing parallel programming
models. The EPiGRAM project focuses on the two current dominant petascale
programming models, message-passing and PGAS, and on the improvement of
two of their associated programming systems, MPI and GASPI. In EPiGRAM,
we addressed two major exascale challenges: large-scale parallelism and interop-
erability of programming systems. First, we improve the performance of com-
munication operations on a very large number of processes by decreasing their
memory consumption, improving collective operations and introducing emerging
computing models. Second, we enhance the interoperability of MPI and GPI by
integrating message-passing and PGAS in one implementation, called EMPI4Re,
implementing MPI endpoints and improving GPI interoperability with MPI. The
new EPiGRAM concepts have been validated with experiments in two large-scale
applications, iPIC3D, a Particle-in-Cell code for space physics simulations, and
Nek5000, a CFD code.
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12. Grünewald, D., Simmendinger, C.: The GASPI API specification and its implemen-
tation GPI 2.0. In: 7th International Conference on PGAS Programming Models,
vol. 243 (2013)

13. Hart, A.: First experiences porting a parallel application to a hybrid supercomputer
with OpenMP4.0 device constructs. In: Terboven, C., Supinski, B.R., Reble, P.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 73–85.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24595-9 6

14. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analy-
sis of non-blocking collective operations for MPI. In: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, 2007, SC 2007, pp. 1–10. IEEE (2007)

15. Ibrahim, K.Z., Yelick, K.: On the conditions for efficient interoperability with
threads: an experience with PGAS languages using cray communication domains.
In: Proceedings of the 28th ACM International Conference on Supercomputing,
pp. 23–32. ACM (2014)

16. Ivanov, I., Gong, J., Akhmetova, D., Peng, I.B., Markidis, S., Laure, E., Machado, R.,
Rahn, M., Bartsch, V., Hart, A., et al.: Evaluation of parallel communication mod-
els in Nekbone, a Nek5000 mini-application. In: 2015 IEEE International Confer-
ence on Cluster Computing,. pp. 760–767. IEEE (2015)

17. Luo, M., Lu, X., Hamidouche, K., Kandalla, K., Panda, D.K.: Initial study of
multi-endpoint runtime for MPI+ OpenMP hybrid programming model on multi-
core systems. In: ACM SIGPLAN Notices, vol. 49, pp. 395–396. ACM (2014)

18. Markidis, S., Gong, J., Schliephake, M., Laure, E., Hart, A., Henty, D., Heisey, K.,
Fischer, P.: OpenACC acceleration of the Nek5000 spectral element code. Int. J.
High Perform. Comput. Appl. 29(3), 311–319 (2015)

19. Markidis, S., Lapenta, G.: Development and performance analysis of a UPC
particle-in-cell code. In: Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, p. 10. ACM (2010)

20. Markidis, S., Lapenta, G.: Rizwan-uddin: multi-scale simulations of plasma with
iPIC3D. Math. Comput. Simul. 80(7), 1509–1519 (2010)

21. Markidis, S., Peng, I.B., Iakymchuk, R., Laure, E., Kestor, G., Gioiosa, R.: A
performance characterization of streaming computing on supercomputers. Procedia
Comput. Sci. 80, 98–107 (2016)

22. Mozdzynski, G., Hamrud, M., Wedi, N., Doleschal, J., Richardson, H.: A PGAS
implementation by co-design of the ECMWF integrated forecasting system (IFS).
In: High Performance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion, pp. 652–661. IEEE (2012)

23. Olshevsky, V., Deca, J., Divin, A., Peng, I.B., Markidis, S., Innocenti, M.E.,
Cazzola, E., Lapenta, G.: Magnetic null points in kinetic simulations of space
plasmas. Astrophys. J. 819(1), 52 (2016)

24. Peng, I.B., Markidis, S., Laure, E.: The cost of synchronizing imbalanced processes
in message passing systems. In: 2015 IEEE International Conference on Cluster
Computing, pp. 408–417. IEEE (2015)

http://dx.doi.org/10.1007/978-3-319-15976-8_4
http://dx.doi.org/10.1007/978-3-319-24595-9_6


68 S. Markidis et al.

25. Peng, I.B., Markidis, S., Laure, E., Holmes, D., Bull, M.: A data streaming model
in MPI. In: Proceedings of the 3rd Workshop on Exascale MPI, p. 2. ACM (2015)

26. Peng, I.B., Markidis, S., Laure, E., Johlander, A., Vaivads, A., Khotyaintsev, Y.,
Henri, P., Lapenta, G.: Kinetic structures of quasi-perpendicular shocks in global
particle-in-cell simulations. Phys. Plasmas (1994-Present) 22(9), 092109 (2015)

27. Peng, I.B., Markidis, S., Vaivads, A., Vencels, J., Amaya, J., Divin, A., Laure,
E., Lapenta, G.: The formation of a magnetosphere with implicit particle-in-cell
simulations. Procedia Comput. Sci. 51, 1178–1187 (2015)

28. Peng, I.B., Markidis, S., Vaivads, A., Vencels, J., Deca, J., Lapenta, G., Hart,
A., Laure, E.: Acceleration of a particle-in-cell code for space plasma simulations
with OpenACC. In: EGU General Assembly Conference Abstracts, vol. 17, p. 1276
(2015)

29. Peng, I.B., Vencels, J., Lapenta, G., Divin, A., Vaivads, A., Laure, E., Markidis, S.:
Energetic particles in magnetotail reconnection. J. Plasma Phys. 81(02), 325810202
(2015)

30. Sridharan, S., Dinan, J., Kalamkar, D.D.: Enabling efficient multithreaded MPI
communication through a library-based implementation of MPI endpoints. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 487–498. IEEE Press (2014)

31. Ten Bruggencate, M., Roweth, D.: DMAPP - an API for one-sided program models
on Baker systems. In: Cray User Group Conference (2010)
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34. Träff, J.L., Lübbe, F.D., Rougier, A., Hunold, S.: Isomorphic, sparse MPI-like col-
lective communication operations for parallel stencil computations. In: Proceedings
of the 22nd European MPI Users’ Group Meeting, p. 10. ACM (2015)
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