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Abstract. Many high-end HPC systems support accelerators in their
compute nodes to target a variety of workloads including high-
performance computing simulations, big data / data analytics codes and
visualization. To program both the CPU cores and attached accelerators,
users now have multiple programming models available such as CUDA,
OpenMP 4, OpenACC, C++14, etc., but some of these models fall short
in their support for C++ on accelerators because they can have difficulty
supporting advanced C++ features e.g. templating, class members, loops
with iterators, lambdas, deep copy, etc. Usually, they either rely on uni-
fied memory, or the programming language is not aware of accelerators
(e.g. C++14). In this paper, we explore a base-language solution called
C++ Accelerated Massive Parallelism (AMP), which was developed by
Microsoft and implemented by the PathScale ENZO compiler to pro-
gram GPUs on a variety of HPC architectures including OpenPOWER
and Intel Xeon. We report some prelminary in-progress results using
C++ AMP to accelerate a matrix multiplication and quantum Monte
Carlo application kernel, examining its expressiveness and performance
using NVIDIA GPUs and the PathScale ENZO compiler. We hope that
this preliminary report will provide a data point that will inform the
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functionality needed for future C++ standards to support accelerators
with discrete memory spaces.

Keywords: HPC · C++ for Accelerators · C++ AMP · Accelerator
programming

1 Introduction and Background

With various accelerator architectures emerging in the HPC space, there have
been renewed concerns about available programming models and their abil-
ity to provide performance portability for applications across platforms. To
address these issues, there are a few efforts in development that, like C++
Accelerated Massive Parallelism (AMP), make heavy use of C++ language
features. Kokkos [1] and RAJA [2] are template-based library solutions that
attempt to hide low-level implementation details from the application developer
to achieve good performance on multiple architectures. Unlike Kokkos/RAJA,
AMP attempts to extend the C++ language directly to deal with accelera-
tor programming and non-contiguous memories. There is slow progress being
made in the C++ language standard as well, with a conservative proposal [3]
to include preliminary support for generic parallelism in the upcoming C++17
standard. However, the present proposal lacks sufficient expressiveness to deal
with the multiple memory address spaces and complex compute and memory
hierarchies found in today’s accelerator platforms. OpenMP [4,5] 4 and Ope-
nACC [6] provide directive-based approaches to program C++ on accelerators
but fall short on supporting many advanced C++ features (deep copy, STLs,
etc.) and alternative approaches need to be explored. Perhaps the most similar
programming model to AMP is NVIDIA’s CUDA. Both allow the programmer
to specify arbitrary compute kernels in the (slightly extended) native language,
as well as directly managing the data transfer between host and device or relying
on implicit transfer features of the runtime. The main differences are that CUDA
is a single-vendor defined model optimized for a specific architecture, while AMP
is an open standard that can be implemented by any compiler to target various
accelerators. AMP also hides the low-level details a little bit more by discarding
the concepts of threads, grid blocks, etc. that are usually specified in the CUDA
programming model.

While C++ AMP is not widely implemented at present, it does attempt
to offer a complete and open language-based solution for programming GPUs
with descrete memory spaces while allowing the application to continue to use
advanced features of C++. In this paper, we first give a brief overview of the main
syntactic and semantic features of C++ AMP which provide the context for a
preliminary evaluation of C++ AMP using both a well-understood and compute-
bound kernel, matrix-matrix multiplication (GEMM), as well as an “in-the-wild”
kernel from a quantum Monte Carlo application called QMCPACK. We then
show the code transformations involved when using this model for each kernel
and present some preliminary performance impressions using an experimental
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compiler-based implementation. Finally, we discuss our experiences with AMP
in the context of new and upcoming C++ language standards as they apply to
accelerator programming.

1.1 C++ AMP

C++ AMP is an open specification [7] based on a namespace that provides
accelerator programming extensions to the C++ programming language. It is
published by Microsoft Corporation, with input from PathScale Inc, NVIDIA
Corporation, and Advanced Micro Devices Inc. (AMD). It supports offload of
data-parallel algorithms to discrete accelerators like GPUs. The first implemen-
tation for C++ AMP was introduced in Microsoft Visual Studio 2012 [8], and
experimental support has emerged in the PathScale [9] and LLVM/Clang [10,11]
compilers as well.

When using C++ AMP, the programmer describes the computation to be
performed on the accelerator by specifying the iteration space and the kernel
to be applied over that space. The parallel for each() routine provides the
mechanism for iterating through a domain. The computational kernel to execute
on the accelerator is given by a lambda with the restrict(amp) keyword which
indicates that the kernel contains the restricted subset of the C++ language
that AMP is able to accelerate. The set of threads used for parallel execution on
the accelerator is specified by creating extent or tiled extent objects. Addi-
tionally, double-precision precise math and fast math libraries are provided for
use on the accelerator, as well as several common numerical libraries that have
been released for the C++ AMP programming model under the open-source
Apache License, including random number generation (RNG), fast Fourier trans-
form (FFT), basic linear algebra subroutines (BLAS), and linear algebra package
(LAPACK).

The primary way to transfer data to the accelerator is by using the C++
AMP array and/or array view objects. These objects need four pieces of infor-
mation to describe the data: the rank (logical shape) of the data and the datatype
of the elements are passed as type parameters, while the data itself and the phys-
ical shape of the array in memory are specified using constructor parameters.
The array class causes a deep copy of the data when the object is constructed
with a pointer to the original data set. The accelerator is able to access and mod-
ify its copy of the data, and after computation, the data must be copied out of
the object to the source data structure. array view objects can be constructed
and accessed similarly, but instead of explicit data transfer happening upon con-
struction, data is transferred implicitly to the accelerator on-demand at kernel
execution time. After kernel execution, the data can be directly accessed on the
host, and synchronization can be guaranteed using a provided method. For both
array and array view objects, shapes must be rectangular (in N dimensions),
and can either be specified manually for each dimension or by using the C++
AMP extent class.
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2 Preliminary Results

We have prototyped the use of C++ AMP for both a benchmark GEMM and a
QMCPACK application kernel using the Pathscale ENZO 6.0.9 compiler. This
work illustrates the use of the basic C++ AMP building blocks to parallelize the
execution of nested loops used in both GEMM and QMCPACK. For a prelimi-
nary evaluation, we used two HPC platforms that are of significant relevance to
the INCITE [12] and CORAL [13] programs of which QMCPACK is a part: one
based on a representative node of Titan [14] containing a 16-core AMD Opteron
6274 CPU attached to an NVIDIA Tesla K20X GPU via PCIe v2, and the sec-
ond a Summit [15] test node containing a Power8E CPU @ 2.61GHz processor
with a NVIDIA Tesla K40m connected via PCIe v3.

2.1 Benchmark Kernels

Matrix Multiplication. To evaluate C++ AMP functionality, programmability
and baseline performance, we wrote a simple matrix multiplication kernel. Below
is the code snippet [16] that was used:

Listing 1.1. Matrix Multiplication Kernel in C++ AMP

1 double ∗ha , ∗hb , ∗hc ;
// a l l o c a t e and i n i t i l i a z e hos t data
void MatrixMult iply (ha , hb , hc ) {

array view<double , 2> a (SIZE , SIZE , ha ) ;
6 array view<double , 2> b(SIZE , SIZE , hb ) ;

array view<double , 2> product (SIZE , SIZE , hc ) ;

p a r a l l e l f o r e a c h ( product . extent ,
[= ] ( index<2> idx ) r e s t r i c t (amp) {

11 int row = idx [ 0 ] ;
int c o l = idx [ 1 ] ;
for ( int i nne r = 0 ; inner < SIZE ; inner++) {

product [ idx ] += a ( row , inner ) ∗ b( inner , c o l ) ;
}

16 } ) ;
product . synchron ize ( ) ;

}
First, the 1-D host-memory arrays ha, hb, and hc are allocated and ini-

tialized to size SIZE*SIZE*sizeof(double). Then these arrays are associated
with the array view objects a, b, and product. The array view can only
be initialized with 1-D arrays or rectangular blocks of memory. Next, the
parallel for each() construct is used to parallelize the kernel over the row
and columns of the matrix multiplication. After the computation completes, the
array view object on the host and accelerator are synchronized to ensure data
coherency. We compiled and ran the C++ AMP matrix multiplication kernel
on the Titan and test Summit nodes using the Pathscale ENZO 6.0.9 compiler
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that supports C++ AMP on multiple GPUs. For comparing the results in Fig. 1,
we show the code listing for the tiled GEMM implementation in listing 1.2, but
omit detailed discussion as this is available in other materials [16]:

Listing 1.2. Matrix Multiplication Kernel in C++ AMP with Tiling

double ∗ha , ∗hb , ∗hc ;
2 // a l l o c a t e and i n i t i l i a z e hos t data
void MatrixMult iply (ha , hb , hc ) {

array view<double , 2> a (n , n , A) ;
array view<double , 2> b(n , n , B) ;

7 array view<double , 2> product (n , n , C) ;

// Ca l l p a r a l l e l f o r e a c h by us ing 2x2 t i l e s .
p a r a l l e l f o r e a c h ( product . extent . t i l e < TS, TS >() ,

[=] ( t i l e d i nd ex < TS, TS> t i d x ) r e s t r i c t (amp)
12 {

int row = t i dx . l o c a l [ 0 ] ;
int c o l = t i dx . l o c a l [ 1 ] ;
int rowGlobal = t i dx . g l oba l [ 0 ] ;
int co lGloba l = t i dx . g l oba l [ 1 ] ;

17 int sum = 0 ;

for ( int i = 0 ; i < n ; i += TS) {
t i l e s t a t i c int locA [TS ] [ TS ] ;
t i l e s t a t i c int locB [TS ] [ TS ] ;

22 locA [ row ] [ c o l ] = a ( rowGlobal , c o l + i ) ;
locB [ row ] [ c o l ] = b( row + i , co lGloba l ) ;
t i d x . b a r r i e r . wait ( ) ;

for ( int k = 0 ; k < TS; k++) {
27 sum += locA [ row ] [ k ] ∗ locB [ k ] [ c o l ] ;

}

t i d x . b a r r i e r . wait ( ) ;
}

32

product [ t i d x . g l oba l ] = sum ;
} ) ;
product . synchron ize ( ) ;

37 }
QMCPACK - three-body Jastrow factor QMCPACK [17,18] is an open-source

software package that enables quantum Monte Carlo (QMC) simulations of real-
istic materials on large parallel computers. It is implemented using C++ object-
oriented and generic programming design patterns, and achieves efficient paral-
lelism through the hybrid use of MPI/OpenMP and inlined specializations to use
SIMD intrinsics. Additionally, a port to CUDA for NVIDIA GPU acceleration
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was done, but some of the data structures and algorithms needed refactoring
for efficient execution on the accelerator. QMCPACK is one of the applications
participating in the CORAL [13] application readiness program (CAAR) for the
POWER-based Summit [15] system to be deployed as the next leadership-class
machine at Oak Ridge National Lab (ORNL).

Quantum Monte Carlo methods are a class of stochastic-based, ab initio elec-
tronic structure calculations to solve the time-independent Schrödinger equation
in quantum mechanics for the ground state energy and its corresponding physical
state, or the so-called wavefunction. Regardless of the algorithm employed, the
code takes a trial wavefunction as an initial input. It then employs an iterative
Monte Carlo procedure to optimize the wavefunction and obtains the ground
state.

One commonly used type of wavefunction is composed of a product of Slater
determinants and Jastrow factors. The Slater determinants encapsulate the elec-
trons’ distribution, whereas the Jastrow factors capture the Coulombic interac-
tions among the electrons or ions. The kernel that we are porting here to C++
AMP is a prototype of the evaluation of the three-body Jastrow factor, which
accounts for the interactions among any two electrons and an ion for the entire
system. Thus, there are three nested for loops in the kernel, two of which loop
over the number of electron-ion pairs, and one which loops over the number of
electron-electron pairs in the physical system. It is for this reason the calcula-
tion of the three-body Jastrow is computationally intensive, as the number of
electrons in a typical calculation could be few hundred up to thousands.

Listing 1.3 shows the original version of the QMCPACK Jastrow kernel. The
code uses several custom linear vector and tensor classes TinyVector, Tensor,
and MyVector. The result of the kernel is captured in the grad and hess argu-
ments.

Listing 1.3. Original QMCPACK Kernel

inl ine
r e a l t y p e eva luate ( r e a l t yp e r 12 , r e a l t y p e r 1 I ,

3 r e a l t y p e r 2 I , TinyVector<r ea l t ype ,3> &grad ,
Tensor<r ea l t ype ,3> &hess ,
MyVector &gamma){

r e a l t yp e va l = 0 . 0 ; grad = 0 . 0 ; hess = 0 . 0 ;
r e a l t yp e r 2 l ( 1 . 0 ) , r 2 l 1 ( 0 . 0 ) , r 2 l 2 ( 0 . 0 ) , l f ( 0 . 0 ) ;

8 for ( int l =0; l<=N eI ; l++) {
r e a l t yp e r2m ( 1 . 0 ) , r2m 1 ( 0 . 0 ) , r2m 2 ( 0 . 0 ) , mf ( 0 . 0 ) ;
for ( int m=0; m<=N eI ; m++) {

r e a l t yp e r2n ( 1 . 0 ) , r2n 1 ( 0 . 0 ) , r2n 2 ( 0 . 0 ) , n f ( 0 . 0 ) ;
for ( int n=0; n<=N ee ; n++) {

13 r e a l t yp e g = gamma( l ,m, n ) ;
va l += g∗ r 2 l ∗r2m∗ r2n ;
grad [ 0 ] += nf ∗ g ∗ r 2 l ∗ r2m ∗ r2n 1 ;
// Omit code f o r grd [ 1 ] and grd [ 2 ]
hess (0 , 0 ) += nf ∗( nf −1.0) ∗ g ∗ r 2 l ∗ r2m ∗ r2n 2 ;

18 // Omit code f o r c a l c u l a t i n g o ther hess ( ) e n t r i e s
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r2n 2 = r2n 1 ; r2n 1 = r2n ; r2n ∗= r 12 ; nf += 1 . 0 ;
}
r2m 2 = r2m 1 ; r2m 1 = r2m ; r2m ∗= r 2 I ; mf += 1 . 0 ;

}
23 r 2 l 2 = r 2 l 1 ; r 2 l 1 = r 2 l ; r 2 l ∗= r 1 I ; l f += 1 . 0 ;

}
for ( int i =0; i<C; i++){

hess (0 ,0)=( r 1 I − L)∗ ( r 2 I − L)∗ hess ( 0 , 0 ) ;
// Omit code f o r updat ing o ther hess ( ) e n t r i e s

28 grad [ 0 ] = ( r 1 I − L)∗ ( r 2 I − L)∗ grad [ 0 ] ;
// Omit code f o r updat ing o ther grad () e n t r i e s
va l ∗= ( r 1 I − L)∗ ( r 2 I − L ) ;

}
hess (1 , 0 ) = hess ( 0 , 1 ) ;

33 hess (2 , 0 ) = hess ( 0 , 2 ) ;
hess (2 , 1 ) = hess ( 1 , 2 ) ;
return va l ;

}
The motivation to explore the use of C++ AMP for this kernel came from

the fact that it had not been ported to CUDA yet, and initial attempts to use
directives for accelerator offload were not satisfactory, requiring reduced usage of
custom C++ classes and data structures needed in the application. Furthermore,
developer investment in CUDA is being reduced for this application for portabil-
ity reasons. Using C++ AMP to parallelize the two loops requires capturing the
main data structures into array<> objects for access on the accelerator inside
the parallel for each looping construct. Listing 1.4 shows the C++ AMP
code corresponding to the three nested for loops making up the first part of the
QMCPACK kernel. Note that we omit some of the common code elements and
present primarily the parts that illustrate the modifications needed to adapt the
kernel to the C++ AMP interface.

Listing 1.4. QMCPACK Kernel Using C++ AMP

r e a l t yp e grd acc [ 3 ] = {0 .0 , 0 . 0 , 0 . 0 } ;
r e a l t yp e he s s a c c [ 6 ] = {0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 } ;

4 // l o c a l for grad
r e a l t yp e grd0 , grd1 , grd2 ;
grd0 = grd1 = grd2 = 0 . 0 ;

// l o c a l for gamma (need to be changed to a 1D array )
int g s i z e = ( N eI+1) ∗ ( N eI+1) ∗ ( N ee+1);

9 r e a l t yp e gmm[ g s i z e ] ;
for ( int l =0; l<=N eI ; l++)

for ( int m=0; m<=N eI ; m++)
for ( int n=0; n<=N ee ; n++)

gmm[ l ∗N eI∗N eI + m∗N eI + n ] = 1 . 0 ;
14

r e a l t yp e r 2 l [ N eI ] , r 2 l 1 [ N eI ] , r 2 l 2 [ N eI ] ;
r 2 l [ 0 ] = 1 . 0 ; r 2 l 1 [ 0 ] = r 2 l 2 [ 0 ] = 0 . 0 ;

for ( int l =0; l<N eI −1; l++){
r 2 l 2 [ l ] = r 2 l 1 [ l −1] ;

19 r 2 l 1 [ l ] = r 2 l [ l −1] ;
r 2 l [ l ] = r 2 l [ l −1] ∗ r 1 I ;

}
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{
extent<2> e ( N eI , N eI ) ;

24 array view<r ea l type , 1> av gmm( g s i z e , gmm) ;
array view<r ea l type , 1> av r 2 l ( N eI , r 2 l ) ;
array view<r ea l type , 1> av r 2 l 1 ( N eI , r 2 l 1 ) ;
array view<r ea l type , 1> av r 2 l 2 ( N eI , r 2 l 2 ) ;
array<r ea l type , 2> value ( e ) ;

29 array<r e a l t yp e [ 3 ] , 2> grd ( e ) ;
array<r e a l t yp e [ 6 ] , 2> hss ( e ) ;
p a r a l l e l f o r e a c h ( e ,

[= , &value , &grd , &hss ] ( index<2> idx ) r e s t r i c t (amp) {
int l = idx [ 0 ] ; int m = idx [ 1 ] ;

34 r e a l t yp e r2n ( 1 . 0 ) , r2n 1 ( 0 . 0 ) , r2n 2 ( 0 . 0 ) , nf ( 0 . 0 ) ;
r e a l t yp e mf = ( r e a l t yp e )m; r e a l t yp e l f = ( r e a l t yp e ) l ;
r e a l t yp e r 2 l = av r 2 l [ l ] ; r e a l t yp e r 2 l 1 = av r 2 l 1 [ l ] ;
r e a l t yp e r 2 l 2 = av r 2 l 2 [ l ] ; r e a l t yp e r2m = av r 2 l [m] ;
r e a l t yp e r2m 1 = av r 2 l 1 [m] ; r e a l t yp e r2m 2 = av r 2 l 2 [m] ;

39 for ( int n=0; n<=N ee ; n++){
const r e a l t yp e g = av gmm [ l ∗N eI ∗ N eI + m ∗ N eI + n ] ;
va lue [ idx ] += g∗ r 2 l ∗r2m∗ r2n ;
grd [ idx ] [ 0 ] += nf ∗ g ∗ r 2 l ∗ r2m ∗ r2n 1 ;
// Omit code for other grd [ ] en t r i e s

44 hss [ idx ] [ 0 ] += nf ∗( nf −1.0) ∗ g ∗ r 2 l ∗ r2m ∗ r2n 2 ;
// Omit code for other hss [ ] en t r i e s
r2n 2 = r2n 1 ; r2n 1 = r2n ; r2n ∗= r 12 ;
nf += 1 . 0 ;

} // end for n
49 } // end p a r a l l e l f o r lambda funct ion

) ; //end p a r a l l e l f o r
}

The code illustrates the general approach for porting an existing application
to the C++ AMP programming model. Since the C++ AMP data model is
implemented primarily using the array<> and array view<> classes, existing
data generally needs to go through a copy-in/copy-out process to the corre-
sponding C++ AMP data structure. The overhead for creating and accessing
data through the C++ AMP data structures will depend on how compatible
the underlying memory layout is with the layout supported by C++ AMP
(array viewss can be created using raw pointers as shown in Listing 1.4).

The listing also shows an example of creating and using accelerator-only data
structures to control data movement into and out of an accelerator with disjoint
memory. The variables value, grd and hss are used in the listed part of the
kernel. Their lifetime extends to the rest of the kernel (not shown above) where
the reduction operation is performed. They are then explicitly copied over to
their host counterparts at the end of the kernel function execution.

2.2 Preliminary Performance Evaluation

The first panel of Fig. 1 shows the performance achieved using different matrix
sizes on the test Summit node, and second panel of Fig. 1 shows the performance
achieved using different matrix sizes on the Titan node. The execution times
shown include the data transfer time between host and device. Each GEMM
experiment uses double-precision data and compares the C++ AMP code rep-
resented by listing 1.1 to a more optimized C++ AMP implementation using a
tiled algorithm as well as the highly-tuned NVIDIA CUBLAS DGEMM routine.
While this kernel realizes the expected performance improvement when moving
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Fig. 1. Matrix multiplication Kernel in C++ AMP on a preliminary test Summit node
(Power8E CPU @ 2.61GHz processor with a NVIDIA Tesla K40 m connected via PCIe
v3) and a Titan node (16-core AMD Opteron 6274 CPU attached to an NVIDIA Tesla
K20X GPU via PCIe v2).

from the K20 to the K40, the relatively basic AMP implementations do not see
quite the amount of improvement of the hyper-tuned CUBLAS implementation.
Also, as this is a compute-bound kernel, we do not expect the improved PCIe
bandwidth of the POWER8 node to play a significant role in this case.

Figure 2 shows the performance speedup of the Jastrow QMC application ker-
nel on our two HPC node types as described in Sect. 2. These timings include the
time required for data transfer between host and device, as well as the manually-
implemented reduction operation as explained below. The performance gain for
large particle numbers is about an order of magnitude, and while the kernel
involves a triply-nested loop, the computation to memory bandwidth density
isn’t quite as high as the GEMM algorithm. While we were able to run the
kernel and accelerate it on the GPUs, C++ AMP currently lacks a reduction
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Fig. 2. QMC 3-body Jastrow kernel implemented in C++ AMP on a preliminary
test Summit node (Power8E CPU @ 2.61 GHz processor with a NVIDIA Tesla K40m
connected via PCIe v3) and a Titan node (16-core AMD Opteron 6274 CPU attached
to an NVIDIA Tesla K20X GPU via PCIe v2).

construct. This led us to implement the reduction manually in the application.
This is an area where C++ AMP needs improvement. The reduction was imple-
mented using local arrays of type tile static in order to share work among
compute elements during the reduction operation. Listing 1.5 shows the imple-
mentation for the reduction for the calculated value, gradient, and Hessian of
the Jastrow terms. We believe that the performance gain by moving from the
CPU implementation to the accelerated AMP implementation could be further
improved by having natively supported and well-optimized constructs for reduc-
tion operations. This would also increase the programmer productivity and code
brevity regarding this kernel.
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Listing 1.5. QMCPACK Kernel Using C++ AMP

extent<1> e2 ( ( N eI +1)∗( N eI +1)) ;
p a r a l l e l f o r e a c h ( e2 . t i l e <N eI+1>() ,

[& ] ( t i l e d i nd ex <1> idx ) r e s t r i c t (amp) {
4 int l = idx . t i l e [ 0 ] ;

int m = idx . l o c a l [ 0 ] ;
t i l e s t a t i c r e a l t yp e v [ N eI +1] ;

v [m] = value [ l ] [m] ;
9 idx . b a r r i e r . wait ( ) ;

i f (m == 0) {
for ( int i =1; i<=N eI ; ++i ) {

v [ 0 ] += v [ i ] ;
}

14 value [ l ] [ 0 ] = v [ 0 ] ;
}
for ( int i =0; i <3; ++i ) {

v [m] = grd [ l ] [m] [ i ] ;
idx . b a r r i e r . wait ( ) ;

19 i f (m == 0) {
for ( int j =1; j<=N eI ; ++j ) {

v [ 0 ] += v [ j ] ;
}
grd [ l ] [ 0 ] [ i ] = v [ 0 ] ;

24 }
}
for ( int i =0; i <6; ++i ) {

v [m] = hss [ l ] [m] [ i ] ;
idx . b a r r i e r . wait ( ) ;

29 i f (m == 0) {
for ( int j =1; j<=N eI ; ++j ) {

v [ 0 ] += v [ j ] ;
}
hss [ l ] [ 0 ] [ i ] = v [ 0 ] ;

34 }
}

} ) ;

for ( int i =0; i<=N eI ; ++i ) {
39 va l += value [ i ] [ 0 ] ;

for ( int j =0; j <3; ++j ) grd acc [ j ] += grd [ i ] [ 0 ] [ j ] ;
for ( int j =0; j <6; ++j ) he s s a c c [ j ] += hss [ i ] [ 0 ] [ j ] ;

}

3 Discussion

The C++ AMP programming model could be attractive for some C++ applica-
tion developers because it offers a language-based solution for discrete accelerator
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offload, yet works well with native language features. Ideally, HPC applications
would be well-supported by features in the C++ language standard itself, and
indeed progress is being made in this direction. NVIDIA, Microsoft, and Intel
independently proposed library approaches for standardized C++ parallelism,
and these authors were eventually asked to submit a joint proposal to the com-
mittee, which was then refined over two years and informed along the way by
experimental implementations. The result of this effort can be found in the par-
allelism technical specification (TS) N4507 which was subsequently included into
the C++17 standard.

The parallelism features that have been included in C++17 show some sim-
ilarities to the AMP model, defining execution policies and methods to specify
computational kernels. It even includes exception handling, which is not covered
by the AMP specification. However, the main feature set missing from C++17
that may prevent its wide adoption among HPC applications is the lack of data
handling facilities. For heterogeneous systems with accelerators that have dis-
crete memory address spaces, there is currently no way to specify which data
should be moved between memory spaces and when the movement should take
place. However, the concurrency and parallelism subgroup of the C++ language
committee is working on followups to both technical specifications that will fur-
ther augment the features that are included in the C++17 standard. Features are
being considered [19,20] from HPX [21] and OpenCL [22] because, even though
they include an HPC domain view-point, they are modeled after the existing
parallel and concurrency TSs and so retain appropriateness for the consumer
domain as well.

4 Early Conclusions and Future Work

In this paper we describe how C++ AMP works and can potentially be used on
different platforms including x86-64 and OpenPOWER systems with NVIDIA
GPUs. We describe the language constructs that C++ AMP provides to acceler-
ate applications written in C++. We were able to use C++ AMP to accelerate
a matrix multiplication kernel and important computational regions from the
QMCPACK application. The success from AMP is its ability to use parallel
primitives and data constructs that fit the native C++ programing model. Eval-
uating the C++ AMP programming model is a step toward a C++ solution to
program accelerators. One of the differences with C++ AMP and the upcom-
ing C++17 draft is that C++ AMP is aware of the different memory spaces
between the accelerator and host; the language provides namespaces and objects
to manage and synchronize shared data objects between the host and the accel-
erator. Upcoming explorations will include immediate concerns such as a more
generalized yet performant way to handle data reductions within AMP paral-
lel regions and exploring more target accelerator and multicore architectures.
Longer-term studies in which we are interested include more detailed compar-
isons with the newly released C++17 concurrency and parallelism features which
are only recently emerging in compiler implementations.
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