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Abstract. The computational power of graphics processing units
(GPUs) and their availability on high performance computing (HPC)
systems is rapidly evolving. However, HPC applications need to be ported
to be executable on such hardware. This paper is a report on our expe-
rience of porting the MPI + OpenMP parallelized large-eddy simulation
model (PALM) to a multi-GPU environment using the directive based
high level programming paradigm OpenACC. PALM is a Fortran-based
computational fluid dynamics software package, used for the simulation
of atmospheric and oceanic boundary layers to answer questions linked
to fundamental atmospheric turbulence research, urban climate, wind
energy and cloud physics. Development on PALM started in 1997, the
project currently entails 140 kLOC and is used on HPC farms of up to
43200 cores. The porting took place during the GPU Hackathon TU
Dresden/Forschungszentrum Jülich in Dresden, Germany, in 2016. The
main challenges we faced are the legacy code base of PALM and its size.
We report the methods used to disentangle performance effects from log-
ical code defects as well as our experiences with state-of-the-art profiling
tools. We present detailed performance tests showing an overall perfor-
mance on one GPU that can easily compete with up to ten CPU cores.

Keywords: CFD · GPU · HPC · LES · MPI · OpenACC · PGI ·
Porting

1 Introduction

High performance computing (HPC) systems for scientific applications are
rapidly gaining size, complexity and adoption in various fields of academia and
industry. Recently, an increasing number of these systems provide access to
graphics processing units (GPU) [1], adding additional computational power
to the available CPU based system performance. Equipping small clusters or
even workstations with multiple GPUs enables access to considerable computa-
tional power, even for, e.g., small businesses without access to HPC installations.
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Applications running on such equipped systems need to be capable of dealing
with the GPU architecture in order to benefit. Examples of affected applications
are machine learning applications [11], molecular dynamics simulations [18] and
(besides many others) large-eddy simulation (LES) models. The LES method
is a computational fluid dynamics (CFD) simulation technique which is com-
putational expensive and thus its effective use is currently still limited to HPC
systems. However, GPUs are a potential enabler for the operational application
of this technique in smaller businesses and institutions e.g., for urban planning
or wind-energy site assessment. In order to exploit the power of GPUs with
existing LES models, they need to be ported to such a computer architecture.

This paper summarizes our experiences during the porting process of the
parallelized large-eddy simulation model (PALM) for atmospheric and oceanic
flows to a GPU environment. In order to minimize portability loss and port-
ing workload, the directive-based high-level programming model OpenACC [17]
was chosen. The porting took place during the one-week GPU Hackathon TU
Dresden/Forschungszentrum Jülich in Dresden, Germany, in 2016. During the
Hackathon, we were supported by three experienced mentors. With this report
we intend to provide aid and guidance for other GPU porting endeavors on code
bases similar to the LES technique.

The article itself is structured in four parts: First, PALM and its state-of-art
prior to the Hackathon is described. Second, a chronological report is given on
the efforts at the OpenACC Hackathon 2016 and afterwards. This is followed by
a detailed performance analysis and at the end, we reflect on the progress we
made during the Hackathon, discuss technical aspects and draw conclusions for
their influence on our future code development.

2 PALM

PALM is an atmospheric CFD application and in particular an LES model to
simulate the turbulent flows of atmosphere and ocean. PALM has been applied to
answer questions linked to a variety of topics including fundamental atmospheric
turbulence research (e.g., [8,14]), urban climate modeling (e.g., [5,12]), wind
energy [7] and cloud physics [6]. PALM solves the Boussinesq-approximated
Navier-Stokes equations on a discrete three-dimensional (3D) grid for a time
dependent flow. A detailed description of the physics used in PALM can be
found in [13].

PALM is written in Fortran95 [2] with some Fortran 2003 [20] extensions. It
is optimized for running on massively parallel computer architectures. In order
to distribute data and work across multiple cores and nodes the message pass-
ing interface (MPI) and the directive-based high level programming paradigm
OpenMP are used. Parallelization is realized by a two-dimensional (2D) domain
decomposition of the underlying Cartesian grid. The computational domain,
which consists of a large cuboid representing a portion of the atmosphere, is
divided into small vertical columns and each core solves the equations inside
one of these vertical columns. After each time step, data situated at the borders
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of the columns are exchanged with the neighboring cores using MPI. The work
flow of PALM is illustrated in Fig. 1 and can be paraphrased as follows: First,
the model is initialized by setting up all relevant 3D arrays and distributing
necessary data to each core (initialize). Second, the time dependent loop is exe-
cuted (time loop), in which the prognostic equations are solved for wind-velocity
components, temperature, kinetic energy, humidity and others. Following the
prognostic equations, a Poisson equation for the perturbation pressure needs to
be solved (pressure solver) during each iteration of the time loop. To do this,
the data arrays have to be transformed via a fast Fourier transformation (FFT),
which requires several calls of MPI routines due to the domain decomposition.
At the end of each loop cycle data output is done by calling the output routines.
After the time loop is finished the simulation gets finalized and additional output
is done.

PALM has basic integrated profiling capabilities that are helpful for analy-
sis during porting as well as for monitoring performance regressions between
releases. The compute time consumed by each individual routine is measured
using a built-in function named cpulog. It measures the execution time between
two positions in the code by using the intrinsic Fortran function SYSTEM CLOCK.
At the end of a simulation, a list of time measurements and calling counts con-
taining the most time-consuming routines is saved.

Fig. 1. Schematic work flow of PALM showing the most important parts of the model.

3 Porting PALM

3.1 Preparations

Optimizing an existing production-ready HPC source code base for performance
should not be underestimated with regard to a high number of influential para-
meters (social, technical and design based) and time-consuming subtasks. Thus,
automating a majority of the necessary steps to validate or falsify optimization
hypotheses is crucial. The common work flow for this can be modeled as:

1. compile,
2. run or profile,
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3. validate results,
4. interpret runtime,
5. update code and return to 1. If needed.

As the first three points do not require human intervention, automation of
compilation, execution and validation yields a high return-on-investment. The
automation does not only allow individual developers or developer groups to
move forward autonomously, but it also ensures that the application logic is
retained throughout the process. In order to achieve this, a set of shell scripts
was created for building PALM, executing it with predefined parameter sets,
and validating the results thereof.

To automate the compilation step, a build script was designed to flexibly
and transparently adapt to the HPC environment of Taurus at the Center for
Information Services and High Performance Computing (ZIH) Dresden, where
the porting work took place. It allows to switch compilers and their parameters,
switch between available MPI libraries and enable or disable profiling and debug-
ging tools. The actual translation of source code to the PALM binary (using GNU
make [21]) is performed in a setup-specific build directory to allow parallel test-
ing of different setups. All these customizing options are available through the
aforementioned build setup and each setup is labeled individually. The different
build setups can then be chosen by providing the label as an argument to the
build script, e.g.:

$ ./COMPILE palm_setup_pgi161_openmpi_scorep

where PALM is built using the PGI compiler [19] using the OpenMPI library
and instrumenting the code with Score-P [16] markers. While we are aware that
alternative multi-purpose build engines [3] are available, such as cmake [15] and
others, this lightweight and custom approach allowed us to rapidly adapt and
identify improvements to code translation and to be flexible in terms of the
profiling tool-chain to be used. Given the time constraints of the Hackathon, no
incentive urged us to invest resources in refactoring this build mechanism.

Our execution script is designed in a similar manner and based on the same
keywords as the build script. Execution setups can be defined and customized
for all possible steering parameters of the batch system. It is essential to have
an execution setup available that allows a rapid testing of all parts of the LES
model which are relevant to the profiling and code optimization process. The
build and run script provided a common reference for the team. These scripts
can be considered as an essential building block of the optimization process. Also,
the PALM integrated automatic runtime measurements of all time-consuming
routines (cpulog) are in line with this idea of receiving feedback quickly.

Further, a set of execution setups was created to test PALM regarding mem-
ory size and execution time. We found that a good execution setup during the
porting process should complete in a fairly small walltime envelope but has a
computational complexity that utilizes most of the available resources on the
targeted GPU in terms of memory usage and occupancy. In other words, a bal-
ance has to be maintained between obtaining a representative sample of profiling
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data and yet retain a quick turn-around of optimization feedback to all devel-
opers involved. We thus agreed on two setups: a small one that would complete
within one minute of walltime and yet force PALM to perform four iterations;
and a large configuration that would complete within 5 min of walltime to allow
a more global view on the impact of code optimization.

Finally, a lightweight automated testing process of the simulation results in
terms of their correctness was introduced. For convenience, the evaluation result
is summarized to check whether the execution was successful or not by textually
comparing the ASCII output files produced in a given PALM run. PALM is
neither equipped with a unit test suite nor are integration tests available so
far. Any ambitious performance tuning of PALM should consider providing a
comprehensive unit test suite commonly referred to as test harness [4]. This
does not only ensure correct simulation results after optimizations were applied,
but also exerts a high pressure to modularize the application even more, so that
autonomous code modules can be extracted from the code base and be optimized
independently.

3.2 Starting Position

The model PALM is optimized to run on computer architectures exposing a
multi-tier cache hierarchy as well as on vector-based hardware [13]. Depending
on the architecture used different branches of the code are executed to gain the
best performance.

Before joining the Hackathon, PALM already contained GPU targeted code
which based on the vector-optimized branch. This was mainly done by placing
a data region around the whole program and adding OpenACC directives to
single loops. GPU architectures are based on the parallelization paradigm “Sin-
gle instruction, multiple threads” (SIMT). In hardware, this relates to the GPU
executing one instruction by a group of threads at a single point in time (the
hardware used for the Hackathon exposed a minimum group size of 32 threads).
The more iterations a loop has, the more it benefits from SIMT architecture. In
nature, a GPU is therefore much closer to a vector computer architecture than
it is to a cache-optimized computer architecture. Hence, the GPU-optimized
branch of PALM based on the vector-optimized branch of PALM with some
slight changes to the vector-optimized branch. The GPU-optimized branch was
maintained in parallel to the two already existing CPU targeted branches. How-
ever, the OpenACC-enabled code was only able to run on a single core while
operating on a GPU. The goal for the Hackathon was to continue porting every
routine of the program and get a fully functional version of PALM running on
a multi-node multi-GPU system.

3.3 The First Unsuccessful Attempt

At the beginning of the Hackathon, it turned out that the GPU targeted rou-
tines did not produce the same results as the CPU-only routines. Therefore, dur-
ing the first two days, the GPU routines were searched for source code defects
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(bugs) related to the existing GPU code base. This was a very time-consuming
process, because the former porting turned out to be unstructured and poorly
documented. Having three separate code bases made code debugging even more
complicated. Also the size of PALM itself, with its 140 kLOC distributed over
472 routines made the debugging challenging. After two days trying to get the
correct results within the GPU branch using the former implemented OpenACC
directives, the results still differed from the CPU-only version.

Due to the difficulties regarding the partly ported code base mentioned above,
it was decided to do a fresh start. All existing OpenACC directives were com-
mented out to disable their functionality while still having them available during
the upcoming second porting attempt. This helped to avoid recoding of already
correctly ported parts of the code.

3.4 Starting a Structured Porting Attempt

Our porting effort from scratch focused on the GPU-optimized branch of PALM
with all former OpenACC directives commented out.

The first step in a successful porting attempt is an extensive application run-
time analysis using a sophisticated profiling tool. During the porting of PALM
we used the Score-P measurement infrastructure, which is a highly scalable tool
suite for profiling, event tracing, and online analysis of HPC applications [10].
We started several runs with different setups on multiple CPU cores using MPI
in order to identify the top subroutines that consumed the most run time dur-
ing the simulation. Score-P instrumentation and Vampir visualization [9] were
applied. In Fig. 2, a Vampir visualization of the evolution of the PALM call stack
during one cycle of the time loop is shown. It enables an easy identification of
the hot-spot subroutines (marked in blue). The visualized run was performed on
a single CPU core. The time integration subroutine contains the whole time
loop and is called directly from the main routine palm. During a time-loop cycle
time integration calls the subroutines prognostic equations and pres. The
subroutine prognostic equations (marked in red) contains calls to several sub-
routines dealing with different terms of all required prognostic equations and the
subroutine pres calls the pressure solver of choice. The chosen pressure solver,
which is poisfft (marked in yellow) in our case, contains multiple FFT calls
(fft x and fft y) and 3D array transpositions with heavy MPI communication.
At the end of a time-loop cycle, the data output and other optional parts of the
model, e.g., a soil model, are called.

We started this porting attempt by adding !$acc kernels directives to the
hot-spot subroutines and kept profiling to see how the performance of the code
evolved. We quickly realized that this work-flow cycle is quite time-consuming
as some of the traces took 5–10 min to load in Vampir. This was mostly due to
the fact that the hot-spot subroutines were called at a very high frequency on
the used CPU cores and thus the number of traces exceeded an acceptable size
for an undisturbed execution of Vampir.

The PGI compiler translates the OpenACC code to CUDA internally and
emits CUDA PTX binary objects, which allows us to use the CUDA profiler as
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Fig. 2. Vampir screen-shot with the call-stack analysis of one cycle of the time loop in
the PALM simulation. The prognostic equations (red) with their most time consuming
subroutines (blue) are followed by the pressure solver (yellow). (Color figure online)

an alternative profiling tool. To realize this, the code was compiled using the
options -acc and -ta=tesla to allow OpenACC interpretation, -Minfo=acc for
OpenACC related compiler logging and -fastsse to enable fast SSE instructions
for CPU based code.

Before profiling the application, the environment needs to be equipped with
the following variables:

$ export COMPUTE_PROFILE=1 # 1 is on, 0 is off
$ export PGI_ACC_TIME=0 # 1 is on, 0 is off
$ export CUDA_PROFILE_LOG=./cuda_profile_out
$ export CUDA_PROFILE_CONFIG=${HOME}/cuda_prof.config

where COMPUTE PROFILE enables the profiling (setting PGI ACC TIME would print
a sum of the time needed for data movement between CPU and GPU and the
time needed for computation on the GPU to the terminal). Once the application
runs, it will store all relevant profiling output in cuda profile out inside the
current working directory. The variable CUDA PROFILE CONFIG points to a con-
figuration file that controls what metric is to be included in the profiling output
(for more options see the online CUDA profiler documentation1). In our case,
we added regperthread to the configuration file to extend the default output
by the number of registers used per kernel.

For our large execution setup, which ran for 60 s on one node with one rank
and one GPU, this produced a 210 MB ASCII text file. Amongst others, it
contains the following information:

method=[ advec_u_ws_acc_2234_gpu ]
gputime=[ 1557.472 ]
regperthread=[ 160 ]
occupancy=[ 0.375 ]

The metrics in the above list give information about the name of the kernel which
was profiled (method) and the time measured in microseconds spent on the GPU
device during execution (gputime). Also the number of registers required by a
kernel is given by regperthread, and occupancy gives the occupancy of the

1 http://docs.nvidia.com/cuda/profiler-users-guide/#command-line-profiler-control.

http://docs.nvidia.com/cuda/profiler-users-guide/#command-line-profiler-control
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GPU, which is used to determine how much of the computational capacity of
the GPU is used by this single kernel. All of this information helped us to have
a rapid turn-around frequency while doing GPU dedicated optimizations. So,
rather than applying a sophisticated profiler like Score-P and Vampir, we had
a very quick feedback to the changes we just made to our code. However, as
the command-line based CUDA profiler can be difficult to use, one has to know
exactly how to extract the needed information. Otherwise, using the NVIDIA
Visual Profiler is inevitable as it contains very helpful visualizations, occupancy
calculation, automatic kernel runtime analysis, etc.

Our porting approach was to add OpenACC directives to the hot-spot sub-
routines and wrap them into data regions. Inside a data region data are kept on
the GPU and data transfer is limited to the beginning and the end of the data
region as long as it is not explicitly initiated by, e.g., !$acc update. As porting
progressed, the data regions grew and were pushed upward in the call stack, and
as soon as the boundaries of two data regions collided, they were joined into
one bigger data region. The code parts containing the OpenACC directives look
mostly as follows:

!$acc data copyin( temp, u, v, w )
[...]
!$acc kernels present( temp, u, v, w )
DO i = i_left, i_right

DO j = j_south, j_north
DO k = 1, nzt
temp(k,j,i) = u(k,j,i) + v(k,j,i) + w(k,j,i) !some work

ENDDO
ENDDO

ENDDO
!$acc end kernels

CALL completely_ported_subroutine
[...]
!$acc end data

where !$acc data copyin( temp, u, v, w ) initiates the data region and
copies the arrays temp, u, v, and w onto the GPU. The loops are surrounded by
a kernel construct using !$acc kernels and !$acc end kernels. This enables
the compiler to optimize the loop for the GPU. Additionally, present( temp,
u, v, w) informs the compiler which variables are already present on the GPU
to avoid unnecessary data transfer from the CPU to the GPU.

Organizing the data regions efficiently is essential to gain additional speedup,
as the data transfer between the CPU and the GPU can impose a bottleneck.
This means that data transfer should be limited to a minimum and as much data
as possible should be kept on the GPU. This, however, is not always feasible.
Especially data output or MPI communication requires some sort of data transfer
between CPU and GPU. Therefore, particular attention was needed as the data
regions arrived at the MPI calls. In order to utilize GPUs on a multiple-node
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setup while minimizing performance loss due to the data-transfer bottleneck,
it was necessary to implement CUDA-aware MPI. CUDA-aware MPI can be
realized by employing the OpenACC directive !$acc host data. It essentially
makes the address of data located on the GPU available on the CPU. For a
MPI SENDRECV call the directive can be used as follows:

!$acc host_data use_device( ar )
CALL MPI_SENDRECV( ar, size, MPI_REAL, left, 0, &

ar, size, MPI_REAL, right, 0, &
comm2d, status, ierr )

!$acc end host_data

The directive !$acc host data use device( ar ) followed by an MPI call
involving the array ar enables data transfer of ar directly between GPUs with-
out a detour via their related host CPUs. The MPI call shown above, however, is
a fairly simple example. PALM utilizes many different MPI functions in several
parts of the code. MPI derived data types are heavily used in order to trans-
fer slices of 2D and 3D arrays. These data types usually represent data that is
non-contiguous in memory. We found that current MPI implementation releases
like Open MPI v1.10.3 are showing a severe loss of performance as soon as non-
contiguous derived data types are used in CUDA aware MPI calls. In case of
3D array slices this even resulted in a termination of the program due to a seg-
mentation fault. Therefore we were not able to port these MPI calls to become
CUDA aware. Instead we were forced to employ the OpenACC directive !$acc
update in order to transfer the respective data to the CPU in advance of the
MPI calls and back to the GPU thereafter.

!$acc update host( ar )
CALL MPI_SENDRECV( &

ar(nzb,nys-nbgp_local,nxl), 1, type_yz(grid_level), &
pleft, 0, &

ar(nzb,nys-nbgp_local,nxr+1), 1, type_yz(grid_level), &
pright, 0, &

comm2d, status, ierr )
!$acc update device( ar )

The penalty imposed by the data-transfer bottleneck greatly reduced our
expected final speedup.

Finally, the FFT operations had to be ported to utilize the CUDA FFT
library (cuFFT). As cuFFT functions are not available in Fortran, a C inter-
face is required. We used the Fortran 2003 bind feature and the intrinsic mod-
ule ISO C BINDING to make the cuFFT library available. After that work was
limited to calling the cufftPlan1D routine to generate all required cuFFT
plans which were then used in the subsequent calls of cufftExecD2Z and
cufftExecZ2D for forward and backward transformation, respectively. At the
end, the cufftDestroy function is called to release the resources allocated for
the plans.
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As soon as a routine was running entirely on a GPU, replacing the directives
!$acc kernels with proper !$acc loop constructs enabled advanced loop tun-
ing options. Assigning and varying the gang and vector size, we quickly realized
that most of the times a simple !$acc kernels directive does the porting job
quite well. On occasion, the data independency of loops was not detected cor-
rectly by the compiler. This is shown by the output, which is generated by using
the $ -Minfo=acc flag of the PGI Fortran compiler. Adding some !$acc loop
independent directives quickly solved this issue.

4 Performance Tests

With every check-in, PALM was getting faster on the GPU. In the end, the code
ran and produced correct results. Within one week, we were able to port almost
all the major routines of PALM to the GPU. Unfortunately, we were not able to
finish all the porting work during the Hackathon. Back home we had to invest
another couple of days in order to push the data region out of the main time
loop.

Fig. 3. The speedup factor (OpenACC-disabled runtime divided by OpenACC-enabled
runtime) depending on the number of CPU cores (MPI ranks). The total speedup, the
individual speedup of the tree most time consuming PALM routines and the combined
speedup of the rest of the PALM routines are shown. Values greater than one (dashed
line) indicate a performance gain and values smaller than one indicate a performance
loss.

Finally we conducted performance tests based on a setup that filled most of
the GPU memory and required a runtime of about 300 s on twenty-four CPU
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cores. We performed tests with the number of CPU cores ranging from four
to twenty-four. Four is the minimum number of CPU cores required for the
ported MPI code parts and twenty-four is the maximum allowed number of
CPU cores for the setup, which still fits on one node. Each test is repeated with
one GPU (OpenACC enabled) and without GPU (OpenACC disabled). The
tests were conducted on a Cray XC30 at the North-German Supercomputing
Alliance (HLRN). The compute node was a symmetric multiprocessing (SMP)
node with four Intel Xeon 8-core SandyBridge Processors and one NVidia Tesla
K40 attached. The node was exclusively used for the test and each test was
repeated ten times in order to level out performance fluctuation. The tests were
performed using the double precision floating point format. The results are pre-
sented in Fig. 3. The speedup factor calculated by comparing the runtime of the
OpenACC-enabled tests and the OpenACC-disabled tests is shown depending
on the number of CPU cores (MPI ranks). In total a solid advantage of the
OpenACC-enabled runs on up to ten CPU cores can be observed. Increasing
the number of CPU cores further resulted in a speedup factor of less than one
which is a performance loss induced by utilizing the GPU. Using twenty-four
CPU cores resulted in an OpenACC-enabled runtime that was almost doubled
compared to the OpenACC-disabled runtime. In order to find the cause for this
limited performance gain, a more detailed analysis is required. Figure 3 also
provide individual speedup factors of the three most time consuming parts of
PALM. Additionally Fig. 4 provides an overview of the individual runtime share
each of these routines contribute to the total. This information is provided sep-
arately for OpenACC-disabled and OpenACC-enabled runs and has negligible
dependency on the number of CPU cores used. The prognostic equations rou-
tines have the biggest share of the total runtime and they perform much better
with a solid advantage of the OpenACC-enabled runs on up to twenty CPU
cores. Theses routines largely consist of 3 nested loops working heavily on the
big 3D data arrays and the good performance of this part of PALM is also due
to the absence of MPI calls. The pressure solver on the other hand is performing
very poorly on the GPU. Running on more than six MPI ranks already results in
a performance loss if OpenACC is enabled. The heavy use of the MPI ALLTOALL
function in order to transpose 3D arrays across the 2D domain decomposition
could be an explanation but in this case the profiling shows that CUDA-aware
MPI is working. About three quarters of the pressure solver runtime is dedicated
to the transpositioning and one quarter is dedicated to the cuFFT calls. As the
runtime share of the pressure solver gradually increases with high numbers of
MPI ranks, the impact of the observed performance loss with OpenACC enabled
could be lethal in production runs (more than thousand MPI ranks). By far the
worst performance loss, however, can be observed during the exchange of the hor-
izontal boundaries between the MPI ranks. This routine only consists of a series
of MPI calls that utilize non-contiguous derived data types with 3D arrays (see
previous section). As we were not able to make these MPI calls CUDA aware,
the loss can completely be blamed to the data-transfer bottleneck between host
and device. We are aware that this issue could potentially be solved by wrapping
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the data array slices into separate buffers and unrolling the complex MPI calls
into a series of simple MPI calls with MPI derived data types that are contiguous
in memory. The complex data types however are deeply integrated into the soft-
ware and any unrolling or change related to them entails a lot of effort. We
therefore refrained from investing time into this approach. As MPI implementa-
tions gain capability in handling non-contiguous derived data types, we hope to
see further speed improvements on the GPU. Finally it should be noted that the
runtime of the OpenACC-enabled tests were not depending on the number of
CPU cores used. The runtime variations between four CPU cores and one GPU
versus twenty-four CPU cores and one GPU was around one percent. This shows
that nearly the entire program is executed on the GPU. Brief tests comparing
one node using twenty-four CPU cores and one GPU to two nodes using twelve
CPU cores and one GPU on each node were conducted as well. As expected the
runtime of the OpenACC-enabled tests were nearly cut in half as available GPU
resources are doubled.

Fig. 4. Pie chart of the share the three most time consuming parts of PALM contribute
to the total runtime for OpenACC-disabled tests (left) and openAcc-enabled tests
(right). The share of all other routine runtimes is combined under “Others”.

5 Summary

5.1 Porting Experience

We started our porting endeavor at the GPU Hackathon in Dresden with a
partly and not correctly ported version of the computational fluid dynamics
model PALM. During the Hackathon, which lasted for one week, we were able
to port most of the routines of PALM to the GPU. We learned to use advanced
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profiling tools as a guide through such a porting process and we highly recom-
mend their use for this purpose. The problems we faced taught us an important
lesson about the significance of sophisticated testing capabilities in any soft-
ware project similar in size and complexity to PALM. Also maintaining several
mostly redundant branches of a code base in order to port or optimize for dif-
ferent computer architectures significantly reduced our productivity. Due to the
difficulties we faced, we were unable to finish all the porting work during the
Hackathon. However, the extensive and very helpful mentoring during the entire
week gave us all the necessary knowledge and tooling to finish the leftover action
items within a short time frame. The practical orientation of the Hackathon was
responsible for an effective and valuable first-hand knowledge transfer. A deeper
understanding of the OpenACC based porting concept and the architecture of
GPUs in general was our reward.

5.2 Technical Conclusions

The absence of a sophisticated unit and integration test suite was a major draw-
back for our porting productivity. Although we tried to compensate by preparing
testing scripts and setups, we still spent much time struggling with unguided bug
hunting. After the end of the Hachathon we started a discussion inside the PALM
developer community whether to adapt the unit test approach. On the one hand
we learned how difficult it can be to extend untested code. Not changing this
situation will only result in accumulation of more technological debt over time.
On the other hand the development of a test suite for PALM is a very large
work package for a team that largely consists of people whose primary task is
the science and PALM is the tool they apply. We are aware that this is a com-
mon conundrum in projects with large code bases in an academic context (like
PALM) and the discussion on how to solve it continues to the day. So far, we
refrained from investing work into a solution to this problem even though we
know that it will make future improvements to the code even harder and on
top, decrease the return-on-investment of our time at the Hackathon. We highly
recommend the introduction of unit tests to projects that consider porting their
code-base to GPUs.

Our suggestion to institutions that are aiming to provide help for code-
development teams like us would be to increase funding for manpower espe-
cially dedicated to code development and training therein. We suggest more
research on how to make the introduction of unit and integration testing easier
for existing scientific code bases especially in an academic and/or performance
critical context (e.g., [4]). Additionally, a more detailed documentation of all the
available OpenACC features could improve the effectiveness of any GPU port-
ing work (e.g., online documentation including simple examples similar to the
C++ reference2). With such a documentation at hand our first porting attempt
might have been successful and reduced the time-expensive bug hunting. Espe-
cially the latest status of compiler implementation(s) and current limitations

2 The C++ reference is available online at http://en.cppreference.com/w/.

http://en.cppreference.com/w/
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are a valuable information and should be provided on a central website. For us
this shortcoming, however, was greatly reduced by the extensive mentoring at
the Hackathon. Therefore, we would like to encourage all involved institutions
to continue organizing similar events. Their potential for first-hand knowledge
transfer should not be underestimated.

5.3 Performance

The completely ported code was tested regarding its performance on one GPU
and showed a solid speed improvement compared to the performance on up to
ten CPU cores. Even though parts of the code are showing solid speed improve-
ments compared to up to twenty CPU cores, the MPI heavy routines consume
this advantage. We would like to emphasize our strong demand for a MPI imple-
mentation that is capable of handling non-contiguous derived data types in
CUDA-aware MPI calls correctly and efficiently. Without such a capability the
utilization of GPUs for large production runs of PALM and probably many other
similar CFD applications will not be profitable.
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