
GPU-STREAM v2.0: Benchmarking
the Achievable Memory Bandwidth

of Many-Core Processors Across Diverse
Parallel Programming Models

Tom Deakin(B), James Price, Matt Martineau, and Simon McIntosh-Smith

Department of Computer Science, University of Bristol, Bristol, UK
tom.deakin@bristol.ac.uk

Abstract. Many scientific codes consist of memory bandwidth bound
kernels — the dominating factor of the runtime is the speed at which
data can be loaded from memory into the Arithmetic Logic Units, before
results are written back to memory. One major advantage of many-core
devices such as General Purpose Graphics Processing Units (GPGPUs)
and the Intel Xeon Phi is their focus on providing increased memory
bandwidth over traditional CPU architectures. However, as with CPUs,
this peak memory bandwidth is usually unachievable in practice and so
benchmarks are required to measure a practical upper bound on expected
performance.

The choice of one programming model over another should ideally not
limit the performance that can be achieved on a device. GPU-STREAM
has been updated to incorporate a wide variety of the latest parallel
programming models, all implementing the same parallel scheme. As
such this tool can be used as a kind of Rosetta Stone which provides
both a cross-platform and cross-programming model array of results of
achievable memory bandwidth.

1 Introduction

The number of programming models for parallel programming has grown rapidly
in recent years. Given that they in general aim to both achieve high performance
and run across a range of hardware (i.e. are portable), the programmer may hope
they are abstract enough that they enable some degree of performance portability.
In principle therefore, one might expect that, when writing or porting a new
code, the choice of parallel programming language should largely be a matter of
preference. In reality there are often significant differences between the results
delivered by different parallel programming models, and thus benchmarks play
an important role in objectively comparing across not just different hardware,
but also the programming models. This study aims to explore this space and
highlight these differences.

Many scientific codes are memory bandwidth bound, and thus are commonly
compared against the STREAM benchmark, itself a simple achievable memory
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 489–507, 2016.
DOI: 10.1007/978-3-319-46079-6 34



490 T. Deakin et al.

bandwidth measure [10]. In this work we implemented the STREAM benchmark
in a wide variety of parallel programming models and across a diverse range of
CPU and GPU devices, comparing the percentage of theoretical peak that was
achieved.

Specifically, we make the following contributions:

1. We port the STREAM memory bandwidth benchmark to seven parallel pro-
gramming models, all of which support many-core processors: Kokkos, RAJA,
OpenMP 4.x, OpenACC, SYCL, OpenCL and CUDA.

2. We present performance portability results for these seven parallel program-
ming models on a variety of GPUs from two vendors and on several genera-
tions of Intel CPU along with IBM’s Power 8 and Intel’s Xeon Phi (Knights
Landing).

3. We update the GPU-STREAM benchmark to provide a ‘Rosetta Stone’, a
simple example code which can assist in understanding how to program in
the different programming models. This will also enable testing of future
programming models in a simple way.

The paper is structured as follows: in Sect. 2 we introduce the STREAM
benchmark and explain the basic structure. In Sect. 3 we describe the key features
of the programmings models we use in this paper, before presenting performance
results in Sect. 4. Finally we conclude in Sect. 5.

2 Measuring Memory Bandwidth

The STREAM Benchmark [10] measures the time taken for each of four simple
operators (kernels) applied to three large arrays (a, b and c), where α is a scalar
constant:

1. Copy: c[i] = a[i]
2. Multiply: b[i] = αc[i]
3. Add: c[i] = a[i] + b[i]
4. Triad: a[i] = b[i] + αc[i]

These kernels have been demonstrated to be memory bandwidth bound. The
number of bytes read from and written to memory can be modelled by visual
inspection of the source code. We let β be the size in bytes of an element —
for double precision floating point β = 8. For an array containing N elements,
the copy and multiply kernels read Nβ bytes and write Nβ bytes, totalling
2Nβ bytes. The add and triad kernels both read 2Nβ bytes and write Nβ bytes,
totalling 3Nβ bytes. Running the kernels in the order enumerated above ensures
that any caches are invalidated between kernel calls; N is chosen to be large
enough to require the data to be moved from main memory — see [10] for the
rules of running STREAM. The achieved sustained memory bandwidth can be
found as the ratio of bytes moved and the execution time of the kernel. A typical
modern CPU can achieve a STREAM result equivalent to 80 % or more of its
peak memory bandwidth.



GPU-STREAM v2.0 491

GPU-STREAM is a complementary benchmark to the standard CPU version
of STREAM. GPU-STREAM enables the measurement of achievable memory
bandwidth across a wide range of multi- and many-core devices [4]. The first ver-
sion of GPU-STREAM implemented the four STREAM kernels in OpenCL and
CUDA, allowing the benchmark to be used across a diverse set of hardware from
a wide range of vendors. As a tool it allows an application developer to know how
well a memory bandwidth bound kernel is performing. GPU-STREAM is Open
Source and available on GitHub at github.com/UoB-HPC/GPU-STREAM. The
webpage maintains a repository of all our results and we encourage submission of
additional measurements. In this paper we expand GPU-STREAM to consider
a second dimension to this reference point, namely the programming model.

2.1 Related Work

The deviceMemory benchmark from the Scalable HeterOgeneous Computing
(SHOC) Benchmark Suite is an implementation of the triad STREAM kernel [3].
However, this also includes the PCIe transfer time in the bandwidth measure-
ment. Including this factor hides the bandwidth to device memory itself. In a
large scale application consisting of many kernels the transfer of memory to the
GPU would be performed upfront and data would not be transferred at each
kernel execution. As such comparing performance “relative to STREAM” is not
possible with the SHOC benchmark.

The clpeak benchmark, whilst measuring device memory bandwidth imple-
ments a reduction so is not a direct comparison to STREAM [1].

The Standard Parallel Evaluation Corporation (SPEC) ACCEL benchmark
suite whilst containing many memory bandwidth bound kernels does not include
a STREAM kernel [16].

To the authors knowledge, the only study that has compared the same simple
benchmark in all the programming models of interest across a wide range of
devices is one they themselves performed, where the TeaLeaf heat diffusion mini-
app from the Mantevo benchmark suite was used in a similar manner to measure
performance portability [6,9].

3 Programming Models

A parallel programming model along with an implementation of that model
provides programmers a way to write code to run on multiple physical execu-
tion units. A common way of providing this functionality is via an Application
Programming Interface (API) which may be through function calls, compiler
directives or an extension to a programming language.

We briefly introduce each of the programming models used in this paper.
Due to the simplicity of the STREAM kernels, we also include the triad kernel
in each model to enable the reader to make a look-and-feel comparison. A similar
approach was taken with the TeaLeaf mini-app in. This approach also helps to
demonstrate the similarities and differences between these parallel programming

https://github.com/UoB-HPC/GPU-STREAM


492 T. Deakin et al.

Fig. 1. STREAM triad baseline kernel in C++

models, exposing how intrusive or otherwise the models may be for existing
code. We take the standard STREAM triad kernel written in a baseline of C++
running on a CPU in serial, as shown in Fig. 1.

The update to the GPU-STREAM benchmark [4] presented in this paper has
been designed in a plug-and-play fashion; each programming model plugs into a
common framework by providing an implementation of an abstract C++ class.
This means that the “host code” is identical between different models. Note
that an independent binary is built per parallel programming model, avoiding
any possibility of interference between them. Further programming models are
simple to add using this approach.

In considering the memory bandwidth of kernels alone, the transfer of mem-
ory between the host and device is not included as in our previous work. There-
fore timings are of the kernel execution time and measure the movement of
memory on the device alone. The framework developed ensures that all data
transfer between host and device is completed before the timing of the kernels
are recorded. This therefore requires that each kernel call is blocking so that
the host may measure the total execution time of the kernels in turn. This is
consistent with the approach in the original STREAM benchmark.

Additionally our framework has memory movement routines to ensure that
data is valid on the device a priori to the kernel execution.

3.1 OpenCL

OpenCL is an open standard, royalty-free API specified by Khronos [11]. The
model is structured such that a host program co-ordinates one or more attached
accelerator devices; this is a fairly explicit approach as the API gives control over
selecting devices from a variety of vendors within a single host program. Because
OpenCL is designed to offload to generic devices, vendor support is widespread
from manufactures of CPUs, GPUs, FPGAs and DSPs.

Each OpenCL device has its own memory address space, which must be
explicitly controlled by the programmer; memory is not shared between the host
and device. OpenCL 2.0 introduced a Shared Virtual Memory concept which
allows the host and device to share an address space, although explicit syn-
chronisation for discrete devices is still required via the host to ensure memory
consistency.



GPU-STREAM v2.0 493

Kernels are typically stored as plain text and are compiled at run time. The
kernels are then run on the device by issuing them to a command queue. Data
movement between host and device is also coordinated via a command queue.

The host API is provided via C function calls, and a standard C++ interface
is also provided. Kernels are written in a subset of C99; OpenCL 2.2 provisionally
allows kernels to be written in C++. The GPU-STREAM triad kernel in OpenCL
C99 is shown in Fig. 2.

Fig. 2. OpenCL triad kernel

3.2 CUDA

CUDA is a proprietary API from NVIDIA for targeting their GPU devices [12].
CUDA kernels are written in a subset of C++ and are included as function calls
in the host source files. They are compiled offline.

The API is simplified so that no explicit code is required to acquire a GPU
device; additional routines are provided to allow greater control if required by
the programmer.

In the more recent versions of CUDA the memory address space is shared
between the host and the GPU so that pointers are valid on both. Synchroni-
sation of memory access is still left to the programmer. CUDA also introduces
Managed memory which allows a more automatic sharing of memory between



494 T. Deakin et al.

host and device. With upcoming Pascal GPUs, the GPU is allowed to cache data
accessed from the host memory; previously it was zero copy.

The GPU-STREAM triad kernel is shown in Fig. 3. Note that CUDA requires
specification of the number of threads per thread-block, therefore the size of the
arrays must be divisible by 1024 in our implementation.

Fig. 3. CUDA triad kernel

3.3 OpenACC

The OpenACC Committee, consisting of members including NVIDIA/PGI, Cray
and AMD, partitioned from the OpenMP standard to provide a directive-based
solution for offloading to accelerators [13]. The accelerator is programmed by
adding compiler directives (pragmas or sentinels) to standard CPU source code.
A few API calls are also provided to query the runtime and offer some basic
device control and selection.

There are two different options for specifying the parallelism in offloaded
code. The OpenACC parallel construct starts parallel execution on the device,
redundantly if no other clauses are present. The loop construct is applied to the
loop to describe that the loop iterations are to be shared amongst ‘workers’ on
the device. The kernels pragma indicates that the region will be offloaded to
the device as a series of ‘kernels’ and any loops encountered will be executed as a
kernel in parallel. The kernels construct allows the compiler to make decisions
about the parallelism, whereas the parallel construct gives the programmer
control to define the parallelism. The parts of the code which are run on the
accelerator are compiled offline, and can be tuned for particular accelerators via
compiler flags.

Current implementations of OpenACC can target devices including AMD and
NVIDIA GPUs, IBM Power CPUs and x86 multi-core CPUs. Current OpenACC
compilers that are available include GCC 6.1, Cray and PGI (NVIDIA).



GPU-STREAM v2.0 495

The GPU-STREAM triad kernel is shown in Fig. 4. Note that a wait clause
is required for the offload to be blocking as is required by our framework to
ensure timing is correct. The present clause specifies that the memory is already
available on the device and ensures a host/device copy is not initiated.

Fig. 4. OpenACC triad kernel

3.4 OpenMP

The OpenMP specification from the OpenMP Architecture Review Board
has traditionally allowed thread based parallelism in the fork-join model on
CPUs [14]. The parallelism is described using a directive approach (with prag-
mas or sentinels) defining regions of code to operate (redundantly) in parallel on
multiple threads. Work-sharing constructs allow loops in a parallel region to be
split across the threads. The shared memory model allows data to be accessed
by all threads. An OpenMP 3 version of the triad kernel, suitable for running
only on CPUs is shown in Fig. 5.

The OpenMP 4.0 specification introduced the ability to offload regions of
code to a target device. The approach has later been improved in the OpenMP
4.5 specification. Structured blocks of code marked with a target directive are
executed on the accelerator, whilst by default the host waits for completion of
the offloaded region before continuing. The usual work-sharing constructs allow
loops in the target region and further directives allow finer grained control of
work distribution.

Memory management in general (shallow copies) is automatically handled
by the implementation; the host memory is copied to the device on entry to the
offloaded region by natural extensions to the familiar implicit scoping rules in
the OpenMP model. Finer grained control of memory movement between the



496 T. Deakin et al.

Fig. 5. OpenMP triad kernel

Fig. 6. OpenMP v4 triad kernel

host and device is controlled via target data regions and memory movement
clauses; in particular arrays must be mapped explicitly.

The unstructured target data regions in OpenMP 4.5 allow simple integra-
tion with our framework. The scoping rules of OpenMP 4.0 require the memory
movement to the device must be written in our driver code, breaking the sepa-
ration of implementation from driver code in our testing framework; OpenMP
4.5 fixes this issue.

The OpenMP 4 version of the GPU-STREAM triad kernel is shown in Fig. 6.

3.5 Kokkos

Kokkos is an open source C++ abstraction layer developed by Sandia National
Laboratories that allows users to target multiple architectures using OpenMP,
Pthreads, and CUDA [5]. The programming model requires developers to wrap



GPU-STREAM v2.0 497

up application data structures in abstract data types called Views in order to
distinguish between host and device memory spaces. Developers have two options
when writing Kokkos kernels: (1) the functor approach, where a templated C++
class is written that has an overloaded function operator containing the kernel
logic; and (2) the lambda approach, where a simple parallel dispatch function
such as parallel for is combined with an anonymous function containing the
kernel logic. It is also possible to nest the parallel dispatch functions and achieve
nested parallelism, which can be used to express multiple levels of parallelism
within a kernel.

The Kokkos version of the GPU-STREAM triad kernel is shown in Fig. 7.

Fig. 7. Kokkos triad kernel

3.6 RAJA

RAJA is a recently released C++ abstraction layer developed by Lawrence Liv-
ermore National Laboratories that can target OpenMP and CUDA [7]. RAJA
adopts a novel approach of precomputing the iteration space for each kernel,
abstracting them into some number of Segments, which are aggregated into a
container called an IndexSet. By decoupling the kernel logic and iteration space
it is possible to optimise data access patterns, easily adjust domain decomposi-
tions and perform tiling. The developer is required to write a lambda function
containing each kernel’s logic that will be called by some parallel dispatch func-
tion, such as forall. The dispatch functions are driven by execution policies,
which describe how the iteration space will be executed on a particular target
architecture, for instance executing the elements of each Segment in parallel on
a GPU.

The RAJA version of the GPU-STREAM triad kernel is shown in Fig. 8.



498 T. Deakin et al.

Fig. 8. RAJA triad kernel

3.7 SYCL

SYCL is a royalty-free, cross-platform C++ abstraction layer from Khronos that
builds on the OpenCL programming model (see Sect. 3.1) [8]. It is designed to
be programmed as single-source C++, where code offloaded to the device is
expressed as a lambda function or functor; template functions are supported.

SYCL aims to be as close to standard C++14 as possible, in so far as a stan-
dard C++14 compiler can compile the SYCL source code and run on a CPU via

Fig. 9. SYCL triad kernel



GPU-STREAM v2.0 499

a header-only implementation. A SYCL device compiler has to be used to offload
the kernels onto an accelerator, typically via OpenCL. The approach taken in
SYCL 1.2 compilers available today is to generate SPIR, a portable intermediate
representation for OpenCL kernels. The provisional SYCL 2.2 specification will
require OpenCL 2.2 compatibility.

The SYCL version of the GPU-STREAM triad kernel is shown in Fig. 9.

4 Results

Table 1 lists the many-core devices that we used in our experiment. Given the
breadth of devices and programming models we had to use a number of platforms
and compilers to collect results. Intel do not formally publish peak MCDRAM
bandwidth results for the Xeon Phi, so the presented figure is based on published
claims that MCDRAM’s peak memory bandwidth is five times that of KNL’s
DDR.

The HPC GPUs from NVIDIA were attached to a Cray XC40 supercomputer
‘Swan’ (K20X) and a Cray CS cluster ‘Falcon’ (K40 and K80). We used the GNU
compilers (5.3 on Swan, 4.9 on Falcon) for Kokkos and RAJA results and the
Cray compiler (8.5 on Swan, 8.4 on Falcon) for OpenMP and OpenACC results.
The codes were built with CUDA 7.5.

The AMD GPUs were attached to an experimental cluster at the University
of Bristol. We used the ComputeCpp compiler (2016.05 pre-release) from Code-
play [2] along with the AMD-APP OpenCL 1.2 (1912.5) drivers for SYCL results.
We used the PGI Accelerator 16.4 for OpenACC on the AMD S9150 GPU.

The NVIDIA GTX 980 Ti is also attached to the University of Bristol exper-
imental cluster (the “Zoo”). We used the clang-ykt fork of Clang for OpenMP1;
note that the Clang OpenMP 4.x implementation is still under development and
is not a stable release. We used PGI Accelerator 16.4 for OpenACC. We used
CUDA 7.5 drivers for CUDA and OpenCL.

The Sandy Bridge CPUs are part of BlueCrystal Phase 3, part of the
Advanced Computing Research Centre at the University of Bristol. Here we used
the Intel 16.0 compiler for original STREAM and our C++ OpenMP implemen-
tation. RAJA and Kokkos were compiled using the GNU compilers. We used the
PGI Accelerator 16.4 compiler for OpenACC and CUDA-x86. We used the Intel
OpenCL Runtime 15.1 for OpenCL.

The Ivy Bridge CPUs are part of the experimental cluster at the University
of Bristol. We used the GNU 4.8 compilers for RAJA and Kokkos and the Intel
16.0 compiler for original STREAM and our C++ OpenMP version. We used
the ComputeCpp compiler from Codeplay along with the Intel OpenCL Runtime
15.1 for SYCL. We used the same OpenCL driver for OpenCL. We used the PGI
Accelerator 16.4 compiler for OpenACC and CUDA-x86.

1 https://github.com/clang-ykt.

https://github.com/clang-ykt


500 T. Deakin et al.

The Haswell and Broadwell CPUs are part of a Cray XC40 supercomputer.
We used the Cray compiler for original STREAM and our C++ OpenMP imple-
mentation. RAJA and Kokkos used the GNU compilers. We used the PGI 16.3
compiler for OpenACC for CUDA-x86.

The Intel Xeon Phi (Knights Landing) are part of the experimental cluster in
Bristol. We used the Intel 2016 compiler for all results except OpenACC where
we used the PGI compiler. Because the device in binary compatible with AVX2
architectures we specified Haswell as a target architecture for OpenACC.

We used the XL 13.1 compiler for all results on the Power 8.

Table 1. List of devices

Name Class Vendor Peak memory BW (GB/s)

K20X GPU NVIDIA 250

K40 GPU NVIDIA 288

K80 (1 GPU) GPU NVIDIA 240

GTX 980 Ti GPU NVIDIA 224

S9150 GPU AMD 320

Fury X GPU AMD 512

E5-2670 (Sandy Bridge) CPU Intel 2 × 51.2 = 102.4

E5-2697 v2 (Ivy Bridge) CPU Intel 2 × 59.7 = 119.4

E5-2698 v3 (Haswell) CPU Intel 2 × 68 = 136

E5-2699 v4 (Broadwell) CPU Intel 2 × 76.8 = 153.6

Xeon Phi (Knights Landing) 7210 MIC Intel ∼5 × 102 = 510

Power 8 CPU IBM 2 × 192 = 384

In the next few sections we describe our experiences in porting the GPU-
STREAM kernels to the seven different parallel programming models in our
study, before describing the performance we were able to achieve when running
these implementations on a diverse range of many-core devices.

4.1 Code Changes and Experiences

The C++ solutions of SYCL, RAJA and Kokkos all provide a similar syntax
for describing the parallel work. A for-loop is replaced by an equivalent state-
ment with the loop body expressed as a lambda function. The directive based
approaches of OpenMP and OpenACC both annotate for-loops with compiler
directives which describe the parallelism of the loop. OpenCL and CUDA require
the loop body to be written in a separate function which is then instantiated
on the device with an API call which defines the number of iterations; the iter-
ation is no longer is expressed as a loop. Table 2 gives an idea of how much
code was required to implement this benchmark in each of the programming



GPU-STREAM v2.0 501

models. The number of lines of code in the specific implementation in each of
the programming models of our virtual class was counted and is shown in the
first column. For each version we also include the change in the number of lines
of code compared to our baseline OpenMP version in C++ implemented in our
framework.

Table 2. Lines of code to implement class

Implementation Lines of code in class Difference

OpenMP 3 (baseline) 113 0

CUDA 183 +70

OpenCL 229 +116

OpenACC 138 +25

OpenMP 4.5 138 +25

Kokkos 150 +37

RAJA 144 +31

SYCL 145 +32

Whilst the authors found that writing this simple benchmark in each of the
programming models was a simple task, getting them to build on a variety of
platforms for a variety of devices was a significant challenge in many cases. Addi-
tionally, major changes to the code were required in order for specific platform
and compiler combinations to be performant, or in some cases to work at all.

The OpenMP 4.0 programming model does not allow for control of the data
on the target device in an unstructured way. The data on the device is con-
trolled by scoping rules in the code, and as such an OpenMP 4.0 implementation
required an invasive procedure to add this to our code, breaking our abstraction
of model from control and timing code. OpenMP 4.5 addresses this issue with
target data enter and exit regions, however OpenMP 4.5 compilers were not
available on all platforms at the time of writing so we had to use both 4.0 and
4.5 versions to collect the range of results.

We had to remove the simd clause from the OpenMP directives to achieve
good performance with Clang, and use a static schedule with a chunk size of
one (which can be specified via an environment variable). These changes render
the code non-portable, however once OpenMP offload support becomes mature
these will not be required.

Our experience of the disruption of OpenMP 4 is more related to availability
of tools over issues with the model itself.

OpenACC using the PGI compiler targeting host CPUs, the AMD GPUs
and the NVIDIA GTX 980 Ti, all required specifying the pointers as restrict
in order for the loop to be parallelised, although this is not standard C++.
Using parallel loop independent does parallelise the loop without specifying
restrict. This was a relatively simple change, in a simple benchmark case, but
there may be larger codes where the reason the automatic parallelism fails may



502 T. Deakin et al.

not be evident. This would result in the programmer changing the way they
express the same parallelism when using a particular programming model by
altering the code for a different architecture or compiler, the code itself is no
longer performance portable — you require one implementation per device.

However, all compilers supporting OpenMP 4 and OpenACC would not cor-
rectly offload the kernel without re-declaring the arrays as local scope variables.
These variables are declared inside the class, but the compilers were unable to
recognise them in the directives (Cray), or else crash at runtime (PGI targeting
GPUs). The authors have found this is also the case with using structure mem-
bers in C. It is the opinion of the authors that these local variables should not
be required for correct behaviour.

The PGI compiler has support for CUDA-x86 whereby CUDA code can tar-
get host CPUs. All kernel calls are considered blocking unlike the CUDA API
itself, and the cudaSynchronizeDevice() call is not supported; as such we had
to remove this from the code, reducing the portability of the CUDA code. Addi-
tionally the compiler failed to build the code with templated classes.

In SYCL, explicitly choosing the size of a work-group was required to achieve
good performance. As the programming model does not stipulate that this size
must be set, this requirement is likely to disappear with future updates to the
compiler. This is similar to OpenCL’s ability to leave the choice of work-group
size up to the run-time.

In addition to these code changes, despite trying to use a unified build system
(CMake), many of the data points required specific compiler invocations.

4.2 Performance

We display the fraction of peak memory bandwidth we were able to achieve for
a variety of devices against each programming model in Fig. 10. We used 100
iterations with an array size of 225 double precision elements (268 MB).

When writing code targeting NVIDIA GPUs, the results with all the pro-
gramming models are similar. Both the high-level models, such as RAJA and
Kokkos, and the directives based approaches, such as OpenMP and OpenACC,
demonstrate equivalent performance to CUDA and OpenCL on these devices,
which is a very encouraging result.

When targeting AMD GPUs however, we are unable to collect a full set
of data points because neither RAJA nor Kokkos provide GPU implementa-
tions of their model to run on non-NVIDIA GPUs. This is currently a weak-
ness of the RAJA and Kokkos implementations, which could be addressed when
proper OpenMP 4.5 support becomes more widely available; note that RAJA
and Kokkos use OpenMP for their CPU implementation and CUDA for the
NVIDIA GPU implementation. It should be noted that the data points that we
were able to collect for AMD’s GPUs achieved the highest fractions of peak for
all GPUs (83–86 %).

We use the original ‘McCalpin’ STREAM benchmark written in C and
OpenMP as a baseline comparison for the CPU results. Thread binding is used



GPU-STREAM v2.0 503

Fig. 10. Performance relative to theoretical peak of GPU-STREAM on 10 devices

via the OpenMP implementation selecting a compact affinity. We did not exper-
iment with streaming stores. Figure 10 shows that there is some loss of perfor-
mance when using C++ and OpenMP 3 for running on CPUs compared to the
much simpler C language version. For example, on Broadwell CPUs the C++
version achieves 64 % of peak memory bandwidth, compared to 83 % when using
the C version; both these codes use the standard OpenMP 3 programming model.

We used PGI’s implementation of OpenACC for multi-core CPUs. On the
Sandy Bridge and Ivy Bridge system we used the numactl tool for thread pinning
and specified the ACC NUM CORES environment variable to the total number of
cores in our dual-socket CPU systems. The Haswell and Broadwell CPUs are
in a Cray system so were required to use the options within aprun to run the
binary. Despite this however it does not demonstrate good peak performance on
the CPUs in general. For the Xeon Phi we needed to use MP BLIST to pin the
OpenACC threads as numactl did not pin these threads correctly.

Both RAJA and Kokkos use the OpenMP programming model to imple-
ment parallel execution on CPUs. The performance results on all four CPUs
tested show that RAJA and Kokkos performance matches that of hand-written
OpenMP for GPU-STREAM. This result shows that both RAJA and Kokkos
provide little overhead over writing OpenMP code directly, at least for GPU-
STREAM. As such they may provide a viable alternative to OpenMP for writ-
ing code in a parallel C++-style programming model compared to the directive
based approach in OpenMP. However as noted above, C++ compiler implemen-
tations of OpenMP may suffer from a performance loss compared to a C with
OpenMP implementation.



504 T. Deakin et al.

OpenCL is able to run on the CPU as well, and we tested using the Intel
OpenCL runtime. This is implemented on top of Intel’s Thread Building Blocks,
which results in non-deterministic thread placement. In a dual-socket system
the placement of threads based on memory allocations (first touch) is impor-
tant in achieving good bandwidth; as such this programming model suffers in
performance on Intel CPUs compared to the original STREAM code. The PGI
CUDA-x86 compiler gets similar performance to OpenCL, but they are both
lower than OpenMP.

Figure 11 shows the raw sustained memory bandwidth of the triad kernel in
each case. Many-core devices such as GPUs and Xeon Phi offer an increased
memory bandwidth over CPUs, although the latest CPU offerings are competi-
tive with GDDR memory GPUs. The AMD HPC GPU from AMD, the S9150,
provides an increased bandwidth over NVIDIA’s HPC offerings.

The Intel Xeon Phi (KNL) had the highest achieved memory bandwidth,
however this performance was not achieved in all programming models. In gen-
eral we ran one thread per core and this achieved the highest performance, but
Kokkos needed two threads per core to achieve comparable performance.

The Power 8 results were collected with one thread per core. The bandwidth
presented is using the same problem size as all the other results; a high band-
width is possible with a large problem. It has been previously observed that
performance can decrease with smaller problems [15].

Fig. 11. Sustained memory bandwidth of GPU-STREAM on 10 devices



GPU-STREAM v2.0 505

All of the parallel programming models explored in this paper are designed to
be portable; at the very least this should enable running on a variety of devices
across a variety of vendors. However, as can be seen in Figs. 10 and 11 there are a
surprising number of results that are not possible to obtain. We mark those that
are impossible to collect due to missing implementations from the vendors as
‘N/A’, and those we were unable to obtain due to difficulties with combinations
of installed libraries and platforms with an ‘X’. Note that the original STREAM
benchmark from McCalpin was written in C with OpenMP 3 and so cannot run
on GPUs.

For SYCL, ComputeCpp generates SPIR to be consumed by an OpenCL
runtime. NVIDIA’s OpenCL implementation does not currently support SPIR.
ComputeCpp is not currently compatible with the systems which housed the
Sandy Bridge, Haswell, and Broadwell CPUs.

OpenMP and OpenACC are supported by a variety of compilers to varying
degrees. It is therefore simpler to discuss the available options for devices. For
AMD GPUs, GCC 6.1 introduces OpenMP 4.5 support, but only for integrated
graphics in the APU devices, not for the discrete GPUs used in this paper. The
PGI Accelerator compiler supports AMD GPUs up to Hawaii so we used this
for the S9150, but the Fury X’s newer Fiji architecture is not yet supported.

The Cray compiler supports OpenMP targeting NVIDIA GPUs, with version
8.5 supporting OpenMP 4.5 and version 8.4 supporting OpenMP 4.0. We were
able to use version 8.5 to collect results for the NVIDIA K20X with OpenMP 4.5
code, and had to resort to our OpenMP 4.0 code with Cray compiler version 8.4
for the K40 and K80 GPUs. The GTX 980 Ti GPU was not on a Cray system
so we could not collect a result for it using the Cray compiler. However, Clang
supports OpenMP 4.5 targeting NVIDIA GPUs, and so the result was obtained
using this compiler.

The PGI CUDA-x86 compiler did compile the code for Broadwell and KNL
but failed at runtime due to the number of available threads being unsupported.
The PGI compiler was also unavailable on the Power 8 system so we were unable
to collect OpenACC and CUDA results.

5 Conclusion

What is evident from Fig. 10 is that, in general, the more mature of these pro-
gramming models provide better performance across the range of architectures.
None of the programming models is currently available to run a single code
across all devices that we tested. Whatever definition of ‘performance portability’
one might wish, a performance portable code must also at least be functionally
portable across different devices.

The directive based approaches of OpenMP and OpenACC look to provide
a good trade off between performance and code complexity. OpenACC demon-
strates good GPU performance on products from both NVIDIA and AMD, how-
ever the CPU performance is poor. This limits OpenACC’s relevance to CPUs
due to implementations of the model at the time of writing.



506 T. Deakin et al.

With the directive based approaches of OpenMP and OpenACC the number
of lines of code to add to an existing piece of C or Fortran code is minimal. If
code is already in C++, then SYCL, RAJA and Kokkos provided a similar level
of minimal disruption for performance.

Acknowledgements. We would like to thank Cray Inc. for providing access to the
Cray XC40 supercomputer, Swan, and the Cray CS cluster, Falcon. Our thanks to
Codeplay for access to the ComputeCpp SYCL compiler and to Douglas Miles at PGI
(NVIDIA) for access to the PGI compiler. We would also like to that the University
of Bristol Intel Parallel Computing Center (IPCC). This work was carried out using
the computational facilities of the Advanced Computing Research Centre, University
of Bristol - http://www.bris.ac.uk/acrc/. Thanks also go to the University of Oxford
for access to the Power 8 system.

References

1. Bhat, K.: clpeak (2015). https://github.com/krrishnarraj/clpeak
2. Codeplay: ComputeCpp. https://www.codeplay.com/products/computecpp
3. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-

paraju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) benchmark
suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU-3, pp. 63–74. ACM, New York (2010). http://
doi.acm.org/10.1145/1735688.1735702

4. Deakin, T., McIntosh-Smith, S.: GPU-STREAM: benchmarking the achievable
memory bandwidth of graphics processing units (poster). In: Supercomputing,
Austin, Texas (2015)

5. Edwards, H.C., Sunderland, D.: Kokkos array performance-portable manycore pro-
gramming model. In: Proceedings of the 2012 International Workshop on Program-
ming Models and Applications for Multicores and Manycores (PMAM 2012), pp.
1–10. ACM (2012)

6. Heroux, M., Doerfler, D., et al.: Improving performance via mini-applications.
Technical report, SAND2009-5574, Sandia National Laboratories (2009)

7. Hornung, R.D., Keasler, J.A.: The RAJA Portability Layer: Overview and Status
(2014)

8. Khronos OpenCL Working Group SYCL subgroup: SYCL Provisional Specification
(2016)

9. Martineau, M., McIntosh-Smith, S., Boulton, M., Gaudin, W.: An evaluation of
emerging many-core parallel programming models. In: Proceedings of the 7th Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycore, PMAM 2016, pp. 1–10. ACM, New York (2016). http://doi.acm.org/
10.1145/2883404.2883420

10. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Comput. Soc. Tech. Comm. Comput. Archit. (TCCA)
Newslett. 19–25 (1995)

11. Munshi, A.: The OpenCL Specification, Version 1.1 (2011)
12. NVIDIA: CUDA Toolkit 7.5
13. OpenACC-Standard.org: The OpenACC Application Programming Interface - Ver-

sion 2.5 (2015)

http://www.bris.ac.uk/acrc/
https://github.com/krrishnarraj/clpeak
https://www.codeplay.com/products/computecpp
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/2883404.2883420
http://doi.acm.org/10.1145/2883404.2883420


GPU-STREAM v2.0 507

14. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.5 (2015)

15. Reguly, I.Z., Keita, A.K., Giles, M.B.: Benchmarking the IBM Power8 processor.
In: Proceedings of the 25th Annual International Conference on Computer Science
and Software Engineering, pp. 61–69. IBM Corporation, Riverton (2015)

16. Standard Performance Evaluation Corporation: SPEC Accel (2016). https://www.
spec.org/accel/

https://www.spec.org/accel/
https://www.spec.org/accel/

	GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-Core Processors Across Diverse Parallel Programming Models
	1 Introduction
	2 Measuring Memory Bandwidth
	2.1 Related Work

	3 Programming Models
	3.1 OpenCL
	3.2 CUDA
	3.3 OpenACC
	3.4 OpenMP
	3.5 Kokkos
	3.6 RAJA
	3.7 SYCL

	4 Results
	4.1 Code Changes and Experiences
	4.2 Performance

	5 Conclusion
	References


