
Optimization of the Sparse Matrix-Vector
Products of an IDR Krylov Iterative
Solver in EMGeo for the Intel KNL

Manycore Processor

Tareq Malas(B), Thorsten Kurth, and Jack Deslippe

National Energy Research Scientific Computing Center,
Lawrence Berkeley National Laboratory, Berkeley, USA

tmalas@lbl.gov

Abstract. In geophysical-imaging, medium properties can be studied
by performing scattering experiments using electromagnetic or seis-
mic waves. Quantities such as densities, elasticities, stress etc. can be
obtained from fitting the observed measurements to the results predicted
by a simulation. The EMGeo software performs these simulations and
solves the inverse scattering problem in the Laplace-Fourier domain. In
this paper, we focus on the Seismic part and forward step of the inverse
scattering problem, which involves inverting a large sparse matrix. For
this purpose, EMGeo uses an Induced Dimensional Reduction (IDR)
Krylov subspace solver. The Sparse Matrix Vector (SpMV) product is
responsible for more than half of the total runtime. We demonstrate how
we use spatial and multiple Right Hand Side (RHS) blocking cache opti-
mizations to increase arithmetic intensity and thus the performance, as
SpMV product is memory bandwidth-bound. Our optimizations achieve
5.0× and 4.8× speedup in the SpMV product in Haswell and KNL proces-
sors, respectively. We also achieve 1.8× and 3.3× speedup in the overall
IDR solver in Haswell and KNL processors, respectively. We also give an
outlook over possible future optimizations.

Keywords: Intel knights landing optimization · Matrix vector product
optimization · IDR Krylov solver optimization · Multiple right-hand side
blocking · Spatial blocking

1 Introduction

Problem Description: EMGeo is a seismic tomography software which infers the
composition of the ground using electromagnetic (EM) and seismic scattering
information. It is a 3D full waveform inversion scheme for elastic wave propaga-
tion in the Fourier domain. The EM and seismic parts are very similar as the
system has the same number of unknowns. However, the latter is more involved
as the propagating waves have longitudinal as well as transversal polarized com-
ponents which are tightly coupled through properties of the medium. In this pre-
sentation, we are going to present improvements for the seismic problem in the
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 378–389, 2016.
DOI: 10.1007/978-3-319-46079-6 27



Optimization of Sparse Matrix-Vector Products for the Intel KNL Processor 379

forward step of the computation. This step requires solving large-scale implicit
linear systems in the frequency domain. EMGeo mitigates that by avoiding per-
forming a brute-force forward inversion of the transfer matrix which describes
the medium, but instead inverting on a set of representative vectors using Krylov
iterative solvers. The workflow is as follows: the general objective of EMGeo is
to minimize the cost functional

φ(m) =
1
2

∑

sk

∑

q

∥∥E
[
dobs

q (sk) − dsim
q (m, sk)

]∥∥2
+

λ

2
‖Wm‖2 . (1)

Here, dobs
q (sk),dsim

q (m, sk) are observed and predicted signals at position q, W
a regularization matrix, λ a Lagrange parameter to avoid overfitting, E is a
(diagonal) error matrix which includes uncertainties in the measured data and
m are the model parameters. Furthermore, sk denotes a ‘frequency’ along with
a dampening term, i.e. sk = σk + i ωk, used in the Laplace transformation of the
time-dependent fields dobs

q (t). The expensive part in expression (1) is the compu-
tation of the simulated response, i.e. dsim

q (m, sk). It is obtained by interpolating
the velocity field v of the seismic waves propagating through the medium, i.e.
dsim

q (m, sk) = Ĝvq(m, sk). The velocities are in turn computed by solving a
sparse linear system which can be discretized with finite differences (FD) on a
staggered grid (c.f. [8,9] for more details):

[
1 − 〈b〉Dτ · (〈kμ〉 ◦ Dv)

]
vq = fq, (2)

where ◦ denotes the Hadamard product, 〈kμ〉 and 〈b〉 are block matrices of
averaged elastic parameters which describe the medium and Dτ ,Dv are block-
matrices of FD operators. Furthermore, vq is the velocity vector of interest and
fq the source vector in the Laplace-Fourier domain. Both (super-)vectors are in
structure-of-array form, i.e. g = (gx,gy,gz)T for g = v or g = f respectively.
The components gi contain all i-components of the respective field for all grid
points in x, y, z-major order.
The matrices in (2) can then be written as follows [9]:

Dτ =

⎛

⎝
D̃x Dy Dz D̃x 0 D̃x

D̃y Dx 0 D̃y Dz D̃y

D̃z 0 Dx D̃z Dy D̃z

⎞

⎠
T

; Dv =

⎛

⎝
Dx D̃y D̃z 0 0 0
0 D̃x 0 Dy D̃z 0
0 0 D̃x 0 D̃y Dz

⎞

⎠. (3)

Here, Di and D̃i denote FD operators for direction i. In the following, we will
denote 〈b〉Dτ by Dτ and 〈kμ〉 ◦Dv) by Dv. This is just for brevity as multiplying
the medium dependent factors do not change the sparsity pattern of these matrices
as long as they are not zero (which is usually true). Figure 1 depicts the sparsity
pattern of these two matrices, where N is the number of total grid points.

Challenges: There are two challenging aspect in this calculations. First, the SpMV
product in (2) needs to be optimized, as it amounts to two thirds of the time spent
in the linear solver. However, SpMV operation is notoriously memory bandwidth-
bound as its arithmetic intensity is low. In Sect. 2, we explain how we address this



380 T. Malas et al.

Fig. 1. The sparsity pattern of Dv and Dτ matrices

issue with cache blocking. Second, global reductions and halo exchanges need to
be optimized in order to improve strong scaling of our code. This can in part be
done by solving (2) for multiple right hand sides and overlapping communication
and computation in a clever way, which is left for future work.

Hardware: We use two systems for our performance measurements. The first one
is the HPC system Cori Phase I at NERSC, which features 1630 nodes with
128GiB DDR memory, Cray Aries interconnect and two Xeon R© E5 CPUs per
node. The Intel Xeon R© E5, also termed Haswell, micro-architecture is a 22 nm
fabric with support for AVX2. The NERSC Cori Phase I system uses revision
E5-2698, which is comprised of 16 physical cores which can host up to 2 threads
per core. It achieves 2.3GHz in sustained and 3.6GHz in turbo mode. It is fur-
ther equipped with 3 cache levels, where L1 and L2 caches are of size 64 kiB
and 256 kiB respectively. The L3 cache is shared between all cores on a physi-
cal CPU and of 40MiB in size. The theoretical peak DDR memory bandwidth
of this architecture is 68GB/s per socket. The sockets are connected via Intel
Quickpath Interconnect R© with 9.6GT/s, which translates to an effective mem-
ory bandwidth of ∼19.6GB/s.

The second system we are considering is the new Intel Knights Landing
(KNL) CPU, which is a second generation processor from the Intel Xeon Phi R©
family. We are using B0 stepping in revision 7210, which features 64 improved
Silvermont R© cores with 1.3GHz clock rate, improved out-of-order processing
as well as up to four hyperthreads per core. The cores are connected in a two-
dimensional mesh of tiles, where each tile is comprised of two cores with 1MiB
L2 cache and two AVX512-enabled vector units each. Furthermore, KNL fea-
tures 16GiB MCDRAM, which is a high-bandwidth on-package memory with
transfer-rates of up to 430GB/s. The additional DDR memory, of which there
are 96GB in our setup, can be accessed at about 90GB/s. The KNL processor
mesh as well as the memory can be configured in different ways: the processor
can be partitioned into 1, 2 or 4 partitions referred to as Quadrant, SNC2 and
SNC4 mode respectively. The SNC2 and SNC4 abbreviations stand for sub-
NUMA clustering and allow for fine-grained control over thread binding and
thus possibly to a mitigation of memory access latency. The different memory
configuration options are referred to as Cache, flat and hybrid. In Cache mode,



Optimization of Sparse Matrix-Vector Products for the Intel KNL Processor 381

MCDRAM acts as a huge L3 cache and thus cannot be addressed manually by
the user. In the flat model case, MCDRAM and DDR work side by side and the
user has to manually allocate memory in either one. The hybrid mode allows for
mixing the first two options, i.e. by assigning 50 % or 75 % of the MCDRAM to
work as DDR cache, and the remaining fractions can be addressed manually by
the user.

2 Approach

We apply techniques to reduce the memory traffic and increase the in-cache data
reuse in the SpMV product of EMGeo code. We replace the ELLPack sparse
matrix format, which is used in EMGeo code, with Sliced ELLPack (SELLPack)
format to reduce the FLOPS and memory transfers. We also apply cache blocking
techniques to increase the SpMV product operation Arithmetic Intensity (AI).
Namely, we use Spatial Blocking (SB) and multiple Right Hand Side (mRHS)
cache blocking.

EMGeo uses ELLPack data format because the maximum number of Non-
Zero (NNZ) elements in each row is 12. ELLPack allocates a rectangular matrix,
setting the width to the largest row width and pads smaller rows with zeroes.
Most of the rows in Dτ matrix contain 12 NNZ/row, so the padding overhead of
the rows is minimal. However, half of the rows in Dv matrix contain 8 NNZ/row,
so we use the SELLPack format proposed in [6]. SELLPack format allows defining
different number of NNZ/row in different sections of the same matrix. We reorder
Dv matrix, as shown in Fig. 2a, to have 12 NNZ/row in the first half of the matrix
and 8 NNZ/row in the second half of the matrix. The reordering does not impact
the performance, as the code performs it once. This effectively saves 17 % of Dv

SpMV product operations.
We apply SB techniques [1,4] to reduce the main memory data traffic of the

multiplied vector. In the regular update order of the SpMV product, the elements
of the multiplied vector are accessed several times. As the vectors are larger than
the cache memory, the vector elements are brought from main memory several
times. SB changes the operation order in the matrix, such that blocks of matrix
rows touching the same vector elements are updated together, while these vector
elements are in the cache memory. This idea is illustrated in Fig. 2b. First the
SpMV product of the dark red rows of the matrix is performed, while keeping
the dark red part of the vector in the cache memory. Then the bright blue part
is updated similarly, etc. As long as the block size fits in the cache memory, each
element of the vector is brought once from the main memory. We show in Sect. 3
that combining SB and mRHS blocking can be inefficient in KNL due to the small
cache memory size. Therefore, we reorder the loop over the Matrix components
(i.e., row blocks of size N) with the loop over the rows of one component, which
effectively reduces the SB block size to one row. As a result, the first row of each
matrix component is evaluated first, then the next row, etc.

EMGeo solves Eq. (2) for multiple independent sources (RHS). In the RHS
cache blocking approach we perform the SpMV product over several RHS’s while



382 T. Malas et al.

Fig. 2. Showing the reordered Dv matrix for SELLPack format in (a). Also, showing
spatial (b) and RHS blocking (c) update order (Color figure online)

a block of the matrix is in the cache memory, which is relevant to [2,3]. RHS
blocking amortizes the cost of loading the matrix from main memory, which is
the dominant contributor of the main memory data traffic. We use row-major
ordering in the RHS matrix to provide contiguous and vectorization-friendly data
access pattern. The RHS blocking update order, combined with SB, is illustrated
in Fig. 2c. First, each dark red block of the matrix performs the SpMV product
over all the RHS, while the block is in the cache memory, then the bright blue
blocks are updated, etc.

3 Analysis and Modeling SpMV Product Optimization

We analyze the FLOPS and memory data transfer requirement of the base case
(i.e., the unoptimized code) and our improvements. Modeling the performance
provides bounds of the expected performance improvement. We use the cache
block size model to reduce the cache block size tuning parameter search space.
In the following, we analyze the matrix and vector requirements separately then
combine the total requirements together to estimate the AI of different setups.

Matrix data transfer and FLOPS requirement : The matrix is loaded once from
main memory per SpMV product. Each element of the matrix requires loading
16 Bytes for the double complex number and 4 Bytes for the index. Moreover,
the SpMV product requires 6 FLOPS to perform each complex number multipli-
cation as well as twice the matrix bandwidth minus one FLOPS per matrix row
for the reduction. Table 1.a. summarizes the total FLOPS and bytes requirement
of Dv and Dτ . We notice that SELLPack format saves 20 % and 21 % in the data
and the FLOPS compared to ELLPack data format, respectively.

Vectors data transfer requirement : In the “näıve” SpMV product update order,
the vectors are loaded multiple times from main memory because they cannot fit



Optimization of Sparse Matrix-Vector Products for the Intel KNL Processor 383

Table 1. Improvements of Dv and Dt (a,b) and their combined effects (c). N is the
number of total grid points

in the cache memory. Each nonzero N×N block of the matrix, requires loading
N numbers of the multiplied vector. Hence, Dv SpMV product requires loading
15 N numbers (loading the multiplied vector 5 times) and Dτ SpMV product
requires loading 9 N numbers (loading the multiplied vector 1.5 times). SB can
ideally load the multiplied vector once during the SpMV product by reusing
each vector element completely while in the cache memory. The results vector
requires two data transfers per number between the cache and the main memory,
assuming no streaming stores operations. In Table 1.b, we show the vectors data
transfer model of Dv and Dτ SpMV products using the näıve and SB approaches.
The total data transfer requirement of the vectors is insignificant compared to
the matrices in the SpMV products. However, the vector data transfer becomes
significant in the RHS cache blocking optimization.

Total data transfer and arithmetic intensity: We show the AI model, the total
FLOPS, and data transfer requirement of the SpMV product in Table 1.c, when
using SELLPack format and SB techniques. Although the SELLPack optimiza-
tion does not improve the AI, it reduces the total FLOPS and data transfer,
thus it improves the performance. We use the data transfer reduction factor as
an indication to the performance improvements, as the SpMV product is mem-
ory bound. We model the RHS blocking improvements factor by considering the
memory data transfer reduction as the ratio in the following equation:

Improvement factor =
MRHS × (Mb + Vb)
Mb + Vb × MRHS

(4)



384 T. Malas et al.

Fig. 3. Spatial and RHS blocking estimated data transfer improvement factor, as cal-
culated in Eq. (4)

where MRHS is the number of blocked RHS, Mb and Vb are the required matrix
and vector main memory loads, respectively. Here we divide the required data
transfer of separate SpMV products by the required data transfer of loading
the matrix once with MRHS vectors. In Fig. 3, we show the model data transfer
improvement factor of the RHS blocking with SELLPack and SB, using the näıve
implementation as the baseline. We observe significant improvement by the RHS
blocking compared to other techniques, as it amortizes the matrix data transfer,
which is the significant part. As the RHS block size increases we notice less
improvement, for example, from 32 to 64 RHS.

3.1 Cache Block Size Model

Increasing the RHS block size reduces the number of matrix rows that fit in the
cache memory. We construct a cache block size model to estimate the number
of rows that fit in the cache memory from the parameters setup. The number of
rows that fit in a given Cache memory is

C

/(
Ve

row
× MRHS × 16 + 2 × NNZ

row
× (16 + 4)

)
(5)

where C is the cache memory block size in bytes. Ve/row is the number of
loaded vector elements per matrix row, for example, Ve/row = 4 in Dv SpMV
product, as we need to store one element of the result vector and read three
elements of the multiplied vector. We show examples of the expected block size
of various RHS block sizes and relevant cache sizes for the Dv and Dτ SpMV
products in Fig. 4. Each core in Haswell has 2.5 MiB L3 cache memory per core.
We use the rule-of-thumb that half of this value is usable for blocking [5,10], i.e.,
1.25 MiB. Similarly we consider that KNL has 128 kiB L2 cache per thread when
using two-threads per core. We observe that the block size decreases significantly
in KNL when the RHS block is >16, which results in a significant control flow
overhead. Therefore, we replace the SB with loop reordering in KNL to reduce
the cache block size requirements.



Optimization of Sparse Matrix-Vector Products for the Intel KNL Processor 385

Fig. 4. RHS cache block size model at various setups. The legend refers to matrix–
“cache memory size”.

4 Performance Results

We study the impact of the Dv SpMV product optimization techniques in a
separate benchmark to understand their characteristics. We also observe the
impact of our OpenMP parallelization of the code and using our SpMV product
optimization techniques in the EMGeo application.

4.1 SpMV Product Benchmark

We use a benchmark code for the Dv SpMV product in the EMGeo application,
as the SpMV products consume significant portion of the code runtime, as we
show in Sect. 4.2. Table 2 shows the performance improvements and the trans-
ferred memory volumes improvements model prediction and measurement, using
different optimization combinations. We show results for a single socket Haswell
and KNL processors, using a grid of size 110 × 110 × 105. The results in the last
row in Table 2 use SB and loop reordering in Haswell and KNL, respectively,
in addition to the SELL and mRHS optimizations. We do not use SB in KNL
optimizations because it results in less performance than the näıve code. In the
RHS blocking optimization, we use 32 and 64 RHS block size in Haswell and
KNL, respectively. The SpMV operation is repeated 100 times, where every 10
repetitions are timed together. We report the median time of the experiments.

KNL results are reported in SNC2-flat mode using MCDRAM only, as the
data fits in the MCDRAM in the production code. We observe similar perfor-
mance in all KNL modes. Using the MCDRAM memory, compared to using
the DDR4, increases the performance in KNL by a factor of 3.0× and 4.2× in
the näıve and optimized codes, respectively. KNL is faster than a single socket
Haswell processor by over a factor of 3×, which is mainly attributed to the higher
memory bandwidth.

We make several observations regarding the transferred memory volume
improvement model and measurements in Table 2. The measurements are closer



386 T. Malas et al.

Table 2. Dv SpMV product benchmark measurements and model of different opti-
mizations in shared memory. “Best” in the last row refers to SB and loop reordering
in Haswell and KNL, respectively

Processor Haswell (1 socket) KNL KNL/

Perf. Mem vol. improv. Perf. Mem vol. improv. Haswell

Approach Speedup Measured Model Speedup Measured Model Speedup

Näıve - - - - - - 3.71

SELL 1.05 1.06 1.15 1.19 1.09 1.15 4.20

SB 1.05 1.11 1.11 0.88 1.06 1.11 3.08

SELL+SB 1.26 1.28 1.30 1.13 1.23 1.30 3.33

Best+SELL+mRHS 4.97 5.36 6.75 4.79 3.50 7.20 3.58

Fig. 5. The roofline results of different optimization techniques over the Dv SpMV
product benchmark

to the model in Haswell, especially the “SB” and “SELL+SB” results, which
may be attributed to its larger cache memory per core. The optimizations in the
last row result in large gap between the memory measurements and model. We
observed that the gap increases as we use larger RHS block size. Consequently,
the KNL result has larger gap as it uses double the RHS block size.

The roofline analysis [12–14] of the Dv benchmark results is shown in Fig. 5,
where we used the techniques described in [7] and using Intel Software Develop-
ment Emulator [11] to prepare these results. The roofline model shows that our
RHS blocking technique significantly improves the AI. The code is still memory
bandwidth-bound, so it cannot benefit from vectorization optimizations.

4.2 EMGeo Performace

We measure the time in the major components of EMGeo code. The time is
mainly dominated by the IDR solve, which is in turn is dominated by the SpMV
products and the MPI communication. Our experiments consist of single Cori
node, single KNL processor, and 16 Cori nodes results.



Optimization of Sparse Matrix-Vector Products for the Intel KNL Processor 387

Table 3. Single node (a) and multi-node performance (b) of EMGeo code. Note that
SpMV product and communication time are parts of the IDR solve time

We summarize the single node results in Table 3.a. The experiment evalu-
ates 32 RHS with 500 Krylov solver iterations, using a 100 × 50 × 50 grid size,
which is comparable to the subdomain size in productions scenarios. The original
code does not have shared memory parallelization, so it uses one MPI rank per
core. The optimized code uses 32 RHS block size and uses single MPI rank per
socket in Haswell experiment. We observe that the SpMV product takes over half
of the runtime in the original IDR solver implementation. Our SpMV product
optimizations result a speedup of 3.7× in Haswell and 4.1× in KNL, which is
different than Dv SpMV product improvements in the benchmark. In addition
to the difference in the grid size, Dτ SpMV product has less benefit from our
optimization because it does not utilize the SELLPack format. Moreover, sev-
eral SpMV product kernels in the application are fused with other kernels to
improve the data locality. The reduction in the MPI ranks by a factor of 16×
has significant impact in speeding up the code, as less ranks are involved in the
reductions and halo exchange operations.

We show results for KNL in Quad flat mode, as we obtain the same perfor-
mance in the other modes. The whole application data fits in the MCDRAM
memory, so we run the code using the MCDRAM only. The best performance
in KNL is observed at two threads per core. We tuned the MPI ranks vs. the
OpenMP threads manually in the optimized code. We observe 3.3× speedup
in the code, where the SpMV and communication operations run about 4.1×
and 3.8× faster, respectively. Using the MCDRAM memory, compared to using
the DDR4 only, increases the performance in KNL by a factor of 4.2× in the
optimized code.



388 T. Malas et al.

We summarize the results of a 16 Cori nodes experiment in Table 3.b. The
experiment evaluates 32 RHS with 2500 Krylov solver iterations limit, using a
grid of size 1003. The SpMV product optimizations result in less improvement in
this code, mostly, because smaller subdomains are evaluated in shared memory.
The MPI communication consumes about half the runtime due to the increased
surface-to-volume ratio of the subdomains. Again, by reducing the number of
MPI processes by a factor of 16×, our optimized version achieves about 3.4×
speedup in the communication time. We discuss further ideas to handle this issue
in the future work section.

5 Conclusion and Outlook

In this paper, we present optimization techniques in Intel Haswell and KNL
processors for EMGeo software. In particular, we optimize the SpMV product
in the IDR Krylov solver part, where most of the application time is spent. We
obtain performance improvements by reducing the data traffic to the main mem-
ory in the SpMV products and reducing the MPI communication time by using
hybrid MPI+OpenMP parallelization. We use SB, SELLPack sparse matrix for-
mat, and most importantly a RHS cache blocking technique. We deploy per-
formance modeling to identify relevant optimizations and to understand the
optimization quality and issues.

Our optimizations improved the performance of the Dv SpMV product by a
factor of 5.0× in Haswell and 4.8× in KNL. We improve the performance of the
forward step of EMGeo application by incorporating our SpMV optimizations
and using OpenMP parallelization. As a result, The application runs 1.8× and
3.3× faster in Haswell and KNL, respectively.

In general, KNL achieves better performance than Haswell due to the higher
available memory bandwidth. SB did not improve the KNL performance, but
we gained the desired improvement by reordering the loops to access the matrix
rows in an array-of-structures pattern.

RHS blocking provides significant performance improvements and prepares
the code to use block IDR algorithm and overlap computations with communi-
cation in the solver. We plan to implement and validate the Block IDR method,
which is expected to significantly reduce the required iteration count to conver-
gence. We also plan to overlap the computations and communication of inde-
pendent RHS to obtain better strong scaling performance.

Acknowledgments. This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.



Optimization of Sparse Matrix-Vector Products for the Intel KNL Processor 389

References

1. Datta, K.: Auto-tuning stencil codes for cache-based multicore platforms. Ph.D.
thesis, EECS Department, University of California, Berkeley. http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html

2. Gropp, W., Kaushik, D., Keyes, D., Smith, B.: Toward realistic performance
bounds for implicit CFD codes. In: Proceedings of parallel CFD, vol. 99, pp. 233–
240. Citeseer (1999)

3. Kreutzer, M., Thies, J., Röhrig-Zöllner, M., Pieper, A., Shahzad, F., Galgon, M.,
Basermann, A., Fehske, H., Hager, G., Wellein, G.: GHOST: building blocks for
high performance sparse linear algebra on heterogeneous systems abs/1507.08101
(2015). http://arxiv.org/abs/1507.08101

4. Malas, T., Hager, G., Ltaief, H., Stengel, H., Wellein, G., Keyes, D.: Multicore-
optimized wavefront diamond blocking for optimizing stencil updates. SIAM J. Sci.
Comput. 37(4), C439–C464 (2015). doi:10.1137/140991133

5. Malas, T.M.: Tiling and asynchronous communication optimizations for stencil
computations. Ph.D. thesis, King Abdullah University of Science and Technology,
December 2015

6. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In: Patt, Y.N., Foglia, P., Duesterwald,
E., Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp. 111–125.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-11515-8 10

7. NERSC: Measuring arithmetic intensity. https://www.nersc.gov/users/application-
performance/measuring-arithmetic-intensity

8. Petrov, P.V., Newman, G.A.: Three-dimensional inverse modelling of damped elas-
tic wave propagation in the fourier domain. Geophys. J. Int. 198(3), 1599–1617
(2014)

9. Petrov, P.V., Newman, G.A.: 3d finite-difference modeling of elastic wave propa-
gation in the laplace-fourier domain. Geophysics 77(4), T137–T155 (2012). doi:10.
1190/geo2011-0238.1

10. Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quantifying performance bottle-
necks of stencil computations using the execution-cache-memory model. In: Pro-
ceedings of the 29th ACM on International Conference on Supercomputing, pp.
207–216. ACM (2015)

11. Tal, A.: Intel software development emulator. https://software.intel.com/en-us/
articles/intel-software-development-emulator

12. Williams, S.: Auto-tuning performance on multicore computers. Ph.D. thesis,
EECS Department, University of California, Berkeley, December 2008

13. Williams, S., Watterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for floating-point programs and multicore architectures. Commun.
ACM. 52(4), 65–76 (2009)

14. Williams, S., Stralen, B.V., Ligocki, T., Oliker, L., Cordery, M., Lo, L.: Roofline
performance model. http://crd.lbl.gov/departments/computer-science/PAR/rese
arch/roofline/

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html
http://arxiv.org/abs/1507.08101
http://dx.doi.org/10.1137/140991133
http://dx.doi.org/10.1007/978-3-642-11515-8_10
https://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity
https://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity
http://dx.doi.org/10.1190/geo2011-0238.1
http://dx.doi.org/10.1190/geo2011-0238.1
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
http://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
http://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

	Optimization of the Sparse Matrix-Vector Products of an IDR Krylov Iterative Solver in EMGeo for the Intel KNL Manycore Processor
	1 Introduction
	2 Approach
	3 Analysis and Modeling SpMV Product Optimization
	3.1 Cache Block Size Model

	4 Performance Results
	4.1 SpMV Product Benchmark
	4.2 EMGeo Performace

	5 Conclusion and Outlook
	References


