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Abstract. The Roofline Performance Model is a visually intuitive
method used to bound the sustained peak floating-point performance of
any given arithmetic kernel on any given processor architecture. In the
Roofline, performance is nominally measured in floating-point operations
per second as a function of arithmetic intensity (operations per byte of
data). In this study we determine the Roofline for the Intel Knights Land-
ing (KNL) processor, determining the sustained peak memory bandwidth
and floating-point performance for all levels of the memory hierarchy, in
all the different KNL cluster modes. We then determine arithmetic inten-
sity and performance for a suite of application kernels being targeted for
the KNL based supercomputer Cori, and make comparisons to current
Intel Xeon processors. Cori is the National Energy Research Scientific
Computing Center’s (NERSC) next generation supercomputer. Sched-
uled for deployment mid-2016, it will be one of the earliest and largest
KNL deployments in the world.

1 Introduction

Moving an application to a new architecture is a challenge, not only in porting of
the code, but in tuning and extracting maximum performance. This is especially
true with the introduction of the latest manycore and GPU-accelerated architec-
tures, as they expose much finer levels of parallelism that can be a challenge for
applications to exploit in their current form. To address this challenge, NERSC
has established a collaborative partnership with code teams porting their codes
to Cori and its Intel Knights Landing (KNL) processors. Called NESAP (NERSC
Exascale Science Applications Program), this collaborative will partner the code
teams with key personal from NERSC, Cray, and Intel [13,15].

One method being used within NESAP to identify and better understand
the fundamental architectural bottlenecks, and hence providing a path to better
understand where to focus optimization efforts, is to develop a Roofline Perfor-
mance Model (Roofline) for KNL [23]. We find that the roofline model provides
an important framework for the optimization conversation with code teams. The
KNL hardware provides many new features like dual 512-bit vector units, up to
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288 hardware threads and the addition of on-package high-bandwidth memory.
The roofline model enables a code team to determine which of these new hard-
ware features they should target. For example, in a memory bandwidth bound
code optimizations targeting better vectorization would be fruitless until other
optimizations targeting data-reuse are considered.

In this paper, we will present an overview of the Roofline Model, describe
the methodology and tools that were used to characterize code performance,
and briefly describe some of the optimizations that were made to improve per-
formance.

2 The Roofline Model and Arithmetic Intensity

Bottlenecks associated with in-core computation (as opposed to network commu-
nication or I/O) are often characterized by instruction- or data-level parallelism
within a loop nest as derived from instruction latencies, throughputs, and vector
widths of the target processor [3]. Unfortunately, today, it is far more common
that performance bottlenecks are associated with the movement of data through
the deep cache/memory hierarchy. In an ideal architecture, cache and mem-
ory latencies are effectively hidden through a variety of techniques (out-of-order
execution, prefetching, multithreading, DMA, etc.) leaving bandwidth as the
ultimate constraint. Thus, loop nest (kernel) execution time can be bound by
the volume of data movement and the bandwidth to the level of memory capa-
ble of containing that data. This bound can be refined by the instruction- and
data-level parallelism inherent in the kernel and demanded by the architecture.
Although this bound is specific to a particular problem size, one can transform
the relationship in order to bound the performance a processor can attain for a
given computation. The resultant Roofline Bound [21,22] is shown in Eq. 1 where
the Arithmetic Intensity (AI) represents the total number of floating-point oper-
ations performed by the kernel divided by the total resultant data movement
after being filtered by the cache.

GFLOP/s = min

{
Peak GFLOP/s
Peak GB/s × Arithmetic Intensity

(1)

Consider the canonical STREAM TRIAD kernel x[i] = a[i] + alpha * b[i];:
We observe each iteration of this kernel reads two doubles, performs one FMA,
write allocates one double, and writes back one double. This provides an arith-
metic intensity of 0.0625 FLOPs per byte. On a system with 10 GB/s of memory
bandwidth and 100 GFlop/s of peak performance, the Roofline model will bound
performance at 0.625 GFlop/s or less than 1 % of peak.

Although the STREAM TRIAD kernel has no data locality, stencils like a
canonical 7-point constant coefficient stencil do. Although such a kernel presents
7 reads and one write to the cache subsystem, in an ideal execution, all but one
read and one write allocate/writeback should be filtered by the cache. As such,
the ultimate arithmetic intensity for such a kernel is 0.291 FLOPs per byte.
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Failure to attain this arithmetic intensity (as measured by memory controller
performance counters) is indicative of a discrepancy between the cache require-
ments as presented by the code and the cache capacity provided by the processor,
and strongly motivates effective cache blocking (loop tiling).

Although the 7-point stencil performs 7 floating-point operations, they are
actually a mix of 6 adds and 1 multiply. For architectures that execute multiplies
and adds in different pipelines, peak performance may only be attained if the
dynamic instruction mix is balanced. In this example, the effective peak is only
58 % of the peak on a machine that implements FMA or separate multiple and
add pipelines. Although, the bandwidth-intensive nature of the 7-point stencil
precludes it from being compute-limited, other kernels may be sensitive to this
imbalance.

We may similarly refine the “Peak GFlop/s” of Eq. 1 into a function of the
instruction-, data-level parallelism within the kernel. Whereas the former is often
attributed to a lack of loop unrolling, the latter is often associated with an
inability to vectorize the kernel in order to target 128-, 256-, or 512-bit vector
instructions. Regardless, the penalty on the performance bounds can be severe —
up to 80× on an Intel Knights Landing processor.

Figure 1a presents a generic Roofline model in which performance is plotted
as a function of arithmetic intensity. Additional “ceilings” denote restricted per-
formance bounds derived from the lack of parallelism. For each kernel, a series
of “walls” can be constructed based on the difference in total data movement
(compulsory, capacity, conflict) and the theoretical data movement lower bound
(compulsory cache misses) [8]. For working sets that fit in main memory, per-
formance is initially bound by memory bandwidth. Cache blocking will increase
arithmetic intensity, but will require some degree of vectorization to improve
performance.

3 Target Hardware Architecture

Cori is a Cray XC40 [5] based supercomputer and is being deployed in two phases.
Phase 1 uses Intel Haswell multi-core processors and was deployed late-2015.

– Cray XC40 architecture with the Aries Dragonfly topology high speed network
– 1,630 compute nodes, where each node contains 2, 16-core, 2.3 GHz Haswell proces-

sors and 128 GB DDR4 2133 MHz memory
– 1.92 PFLOP/s (theoretical peak)
– 203 TB aggregate memory
– 30 PB scratch storage with a peak bandwidth of > 700 GB/sec

Phase 2, scheduled for deployment mid-2016, will be an expansion of Cori
and add over 9,300 Intel Knights Landing based nodes. Since Cori’s KNL based
partition is still to be deployed, the KNL results were collected using standalone
Intel white boxes with pre-production KNL processors.

– KNL preproduction, B0 stepping
– 64 cores @ 1.3 GHz with 4 hyper-threads per core (256 total threads)
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– 16 GB MCDRAM, >460 GB/sec peak bandwidth
– 96 GB (6× 16 GB) DDR4 @ 2133 GHz, 102 GB/sec peak

For this study, all results are collected with a single Cori Haswell based node
and then compared to a single KNL white box. Multi-node analysis will be the
subject of future studies. We used MPI and at least one rank per socket to
avoid NUMA effects in Cori’s dual-socket Haswell node. In addition, for most
applications we used the Linux numactl utility to control memory affinity on
the KNL, targeting MCDRAM only (numactl -m 1) or DDR4 only (numactl
-m 0, or without numactl) in our tests. All applications use double-precision
floating-point unless stated otherwise.

4 Tools and Methods

Using the Empirical Roofline Toolkit (ERT) [10,23], we measured the maximum
sustained bandwidth at each level of the cache hierarchy and the maximum
sustained floating-point rate for the KNL processor. We configured the toolkit
with the following parameters:

– ERT CC mpiicc
– ERT CFLAGS -O3 -xMIC-AVX512 -fno-alias -fno-fnalias -DERT INTEL
– ERT FLOPS 1,2,4,8,16,32,64,128
– ERT ALIGN 64
– ERT MPI PROCS 1,2,4,8,16
– ERT PROCS THREADS 256
– ERT OPENMP THREADS 1-256
– ERT NUM EXPERIMENTS 3
– ERT MEMORY MAX 8589934592

ERT performs a sweep of all the specified MPI rank combinations specified
by ERT MPI PROCS. For each MPI sweep it executes a computational kernel
with ERT FLOPS operations per loop iteration. ERT keeps the total concur-
rency (ERT PROCS THREADS) fixed for each sweep, so as the number of MPI
ranks increases, the number of threads per rank decreases an equal amount. We
used the toolkit’s nominal driver1 and kernel11. The toolkit then searches all
results and uses the maximum values found for the L1, L2 and DRAM inter-
faces. The results are shown in Fig. 1b. The Linux utility numactl was used to
target MCDRAM (flag -m 1) or DDR4 (flag -m 0) respectively.

The KNL is capable of being configured in multiple different MCDRAM
and sub-NUMA modes. An explanation of all the possible configurations is
beyond the scope of this paper, but can be found in Sodani’s Hot Chips pre-
sentation [18]. The ERT was applied using Quad-Cache, Quad-Flat, Sub-NUMA
Cluster 2 (SNC2) and Sub-NUMA Cluster 4 (SNC4) modes to determine if there
was a significant difference in performance. All four modes provided equivalent
floating-point performance, which is expected with the ERT as the peak floating-
point rates are achieved with a working set that fits in L1 cache. The MCDRAM
1 We added a #pragma unroll (8) around the inner loop to enable vectorization.
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Fig. 1. 1a) Generic Roofline representation showing the ultimate bounds on perfor-
mance, bandwidth, and arithmetic intensity, with ceilings to denote limitations from
a lack of various forms of parallelism. 1b) Applying the Roofline Toolkit, we estimate
KNL maximum sustained memory bandwidth for the L1 and L2 caches, the MCDRAM
and DDR4 bandwidth, and the maximum sustained performance in GFLOP/s.

Table 1. ERT performance for different KNL memory modes

Quad cache Quad flat Sub-NUMA
cluster 2

Sub-NUMA
cluster 4

GFLOP/s 2,205 2,199 2,224 2,212

MCDRAM GB/s 345 372 381 415

DDR4 GB/s - 77 77 77

performance does vary, with Quad-Cache mode giving the lowest performance,
Quad-Flat and SNC2 providing near equal bandwidths, and SNC4 giving the
best performance, 20 % higher than Quad-Cache. The results of the ERT are
used to form the roofline for the applications and kernels in Sect. 5 (Table 1).

Unless otherwise noted, all application results presented in the following sec-
tions are for Quad-Flat mode as at time of this study it was the most mature
from a software and firmware perspective. In addition, we did collect application
data for SNC2, SNC4 and in some cases Quad-Cache but did not see perfor-
mance differences greater than 20 % from that obtained with Quad-Flat and we
feel Quad-Flat is representative of all modes except Quad-Cache. We will do a
more extensive and detailed comparison in future studies.

We used Intel’s Software Development Emulator (SDE) [17,19] to count the
number of floating-point operations. SDE is capable of dynamic instruction
tracing, and we use this capability to obtain total instructions executed, the
instruction type (e.g. read, read width, single-precision, double-precision, fused
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multiply-add, SIMD width, etc.), and the instruction set architecture grouping
(e.g. SSE, AVX, etc.).

For this study, we use Intel’s VTune Amplifier XE performance analysis tool
to measure data movement at both the DDR and MCDRAM memory interfaces.
A tutorial for using SDE and VTune to calculate AI can be found on the NERSC
web site [7,14].

5 Applications and Kernels

5.1 WARP-PICSAR

WARP is an open-source particle-in-cell (PIC) code designed to simulate charged
particle beams and laser-matter interaction [9]. To aid in preparing for Cori, the
library PICSAR has been developed. This library contains a Fortran kernel based
on WARP with optimized subroutines. These high-performance subroutines are
interfaced with a python class that can be imported and used in WARP scripts.
It also contains a stand-alone Fortran code that is used as a test bed for optimiza-
tion and profiling. The typical PIC kernel is composed of a time loop with four
intermediate steps: the Maxwell solver, the field gathering, the particle pusher
and the current deposition [4]. For many cases, interpolation processes such as
the current deposition and the field gathering represents the most costly steps
and are weakly vectorized in their common form.

A first optimization is the implementation of a hybrid threaded paralleliza-
tion. PIC codes usually use a domain decomposition with one MPI process per
subdomain. OpenMP provides a second level of parallelization inside subdo-
mains. The subdomains are then divided into tiles, i.e. small portion of the
subdomain having their own particle property arrays. Tiling improves memory
locality and significantly diminishes RAM memory access (cache reuse). With
more tiles than OpenMP threads, tiles computation is automatically load bal-
anced with the OpenMP scheduler. On Haswell, field grid arrays can be fully
contained in L2 when tile dimension is sufficiently small (below 8× 8x8). On
KNL, tile field arrays can be in L2 (512 KB) whereas all the problem is con-
tained in the HBM.

Direct current deposition and field gathering interpolation steps were rewrit-
ten to enable more efficient vectorization than the classical form [20]. Vector-
ization is done by adding !$OMP SIMD directives. In addition, a particle cell
sorting process has been added. Performed on every given time step in each tile,
it further improves cache reuse and memory locality while accessing particle
properties, especially during the current deposition and field gathering.

As a test case, we consider a Maxwellian homogeneous plasma with initial
thermal velocity of 0.1c. The domain discretization is of 100× 100× 100 cells
with 20 super-particles per cell. The simulations are performed on a node of
Haswell with 2 MPI tasks and 16 OpenMP threads, and on Intel Xeon Phi KNL
with 4 MPI tasks and 32 OpenMP threads. Performance can be slightly better
when hyper-threading is used on KNL: we use 2 threads per core. Tile dimension
is of 8× 8x8 cells. The tile size is 250 KB for internal temporary current grids
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Table 2. PICSAR arithmetic intensity and performance

Optimization Haswell KNL MCDRAM KNL DDR KNL/HSW
speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

Original 0.57 16.7 0.13 5.6 0.13 5.4 0.34

Tiling 1.10 32.0 0.56 20.0 0.56 19.2 0.63

Tiling+Vectorization 1.50 67.5 0.81 60.4 0.81 49.4 0.89

Fig. 2. The tiling optimization increases AI and moves the data point to the right.
Applying the vectorization optimization allows PICSAR to take advantage of the addi-
tional effective memory bandwidth and increases the overall performance for both
architectures.

(used for vectorization), 31 KB for local current grid and 640 KB for particle
properties. On Haswell, the global field arrays (27 Mb) fit in L3 and the local
tile field arrays fit in L2. On KNL, the problem is fully contained in the HBM.
Local tile field arrays fit in L2. Memory management is still under study.

Arithmetic intensities for each of the optimization steps is shown in Table 2.
Figure 2 illustrates applying the results to the Roofline Model, demonstrating
how tiling and vectorization improve AI and increase overall performance, reach-
ing a higher memory bandwidth ceiling.

After tiling and vectorization optimizations, memory locality is improved,
resulting in an overall performance improvement for both architectures. Perfor-
mance relative to the original code improves by a factor of 4.0 for Haswell and
10.8 for KNL MCDRAM. Although final KNL performance is 0.89 times that
of Haswell, it is important to note that both architectures benefited from the
optimizations with KNL demonstrating the largest individual gain. For KNL,
the speedup seen by using MCDRAM vs. DDR is 1.2, demonstrating that to
some degree PICSAR is memory bandwidth bound.
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5.2 EMGeo

In geophysical-imaging, medium properties can be studied by performing scat-
tering experiments using electromagnetic or seismic waves. Quantities such as
densities, elasticities, stress etc. of the medium can be obtained from fitting
the observed measurements to the results predicted by a simulation. The code
EMGeo performs these simulations and solves the inverse scattering problem in
the Laplace-Fourier domain [16]. We focus only on the Seismic part and forward
step of the inverse scattering problem, which involves inverting a large sparse
matrix. For this purpose, EMGeo uses an Induced Dimensional Reduction (IDR)
Krylov subspace solver.

The Sparse Matrix Vector (SpMV) product is responsible for two thirds of
the total runtime. EMGeo performs SpMV operations using two low-bandwidth
matrices (with maximum of 12 nonzero per row). We use the larger matrix in our
benchmark. The production code evaluates about 256 independent right hand
sides (RHS) in column major format. All the arrays are stored in double-complex
data format.

We use Sliced ELLPack (SELL) sparse matrix format, Spatial Blocking (SB),
and multiple right hand sides (nRHS) cache blocking optimizations to increase
AI and thus the performance in the SpMV operations.

Table 3 summarizes our optimization improvements in the SpMV benchmark.
For EMGeo, we only used a single socket on the Cori Haswell node to avoid
NUMA issues and aid in analyzing the code characteristics. With full optimiza-
tion, the GFLOP/s rate increases by a factor of 4.1 on Haswell and 3.9 on KNL.
The KNL rate is 3.6× better than in a single Haswell socket, mainly due to the
high memory bandwidth in KNL, where the benchmark is memory bandwidth
bound. The SELLPack format reduces the FLOP count and data movement, so
the AI and GFLOP/s values do not reflect the actual improvement in execution
time where we see a 5.0× speedup in Haswell, a 4.8× speedup on KNL and a
3.6× speedup of KNL relative to Haswell.

Although the SB optimization improves the performance in Haswell, it
degrades the performance in KNL, even after tuning the cache blocks size. We
believe that the SB technique is effective when a large shared cache memory

Table 3. EMGeo arithmetic intensity and performance. “Best” referts to SB in Haswell
and loop reordering in KNL

Optimization Haswell (1 Sckt) KNL MCDRAM KNL DDR KNL/HSW
speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

Original 0.31 19.2 0.27 71.1 0.27 23.5 3.7

SELL 0.27 16.9 0.24 71.0 0.24 21.2 4.2

SB 0.34 20.2 0.28 62.3 0.28 20.9 3.1

SELL+SB 0.31 19.2 0.26 63.9 0.26 19.6 3.3

nRHS+SELL+Best 1.29 77.7 0.76 278.5 0.76 65.8 3.6
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Fig. 3. The EMGeo roofline analysis shows that on Haswell and KNL the code is
memory bound, and despite the optimizations performed on the code only modest
improvements in performance are made. However, adding multiple right hand sides
improves memory locality and hence improves AI, with a corresponding improvement
in performance.

is available, which is the case for Haswell, but not KNL. We replace the SB in
KNL’s code in the last row of Table 3 with loop reordering, which is equivalent
to SB of size one. Our roofline analysis shows that our optimizations improved
the arithmetic intensity from 0.3 to 1.3 in Haswell and from 0.3 to 0.8 in KNL,
as shown in Figure 3. The SpMV optimization translates into an overall speedup
of 1.8× in Haswell and 3.3× in KNL for the forward step of the full application,
using a grid of size 100× 50× 50. The Details of this study are available in [11].

5.3 MFDn

The Many-body Fermion Dynamics for nuclei (MFDn) code is a nuclear physics
code in which the lowest few eigenvalues and eigenvectors of a very large real
sparse symmetric matrix are found though iterative means [12]. Sparse matrix
vector and and sparse matrix transpose vector products are key kernels in the
iterative eigensolver. The sparse matrix is stored in a compressed sparse block
coordinate (CSB COO) [1,2] format which allows efficient linear algebra opera-
tions on the large sparse matrix. The sparse matrix elements and corresponding
indices account for 64 GB of the memory and the input/output vectors account
for up to 16 GB depending on the specific problem.

Improving data reuse, allowing vectorization and effectively using as much
aggregate bandwidth as possible are key challenges. We therefore replaced
sparse matrix vector (SpMV) with sparse matrix-matrix (SpMM) operations
on blocks of vectors. To better utilize memory bandwidth we explicitly place
the input/output vectors in MCDRAM and the rest of the code and data reside
in DDR4. Generally the larger the block of vector operations that can be done
simultaneously (the number of right hand sides (nRHS)) the better the perfor-
mance, however the number of vectors is limited by the available MCDRAM.

Our test problem consists of 2 protons and 6 neutrons. The sparsity struc-
ture is determined by the many body basis states and quantum selection rules
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resulting in a quasi-random distribution of nonzero matrix elements. That it
is, the matrix is not banded or well structured. The test problem for KNL is
designed to run on 4,560 nodes with a total nxn matrix with n = 3e11. Our sin-
gle node test case simulates the work of one node responsible for an mxm block
of the matrix with m = 1e10 with a local sparsity of 5e−7. This corresponds
to approximately 7.5e9 nonzero matrix elements. For consistency all of our tests
were done with a CSB block size, β = 16000.

The performance results are summarized in Table 4 and Fig. 4. Since both
MCDRAM and DDR4 are used in this implementation, arithmetic intensity
is calculated using the sum of the data movement for both of the memories.
All floating-point calculations are single precision and the Roofline model in
Fig. 4 is adjusted accordingly, although current performance is no where close
to GFLOP/s ceiling. Using 8 RHS improves performance by a factor of 2.9 for
Haswell and 6.4 for KNL. KNL performance is 1.6 times that of Haswell, and 3.6
times better than using DDR only, the latter demonstrating MFDn is memory
bandwidth bound.

Table 4. MFDn arithmetic intensity and performance

nRHS Haswell KNL MCDRAM KNL DDR KNL/HSW speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

1 0.23 23.2 0.13 17.1 0.13 13.5 0.74

4 0.62 56.8 0.25 62.4 0.25 27.8 1.1

8 0.80 67.5 0.30 109.1 0.30 30.7 1.6

Fig. 4. MFDn clearly meets the bandwidth bound portion of the roofline model (single
precision FP only). By increasing the number of simultaneous vectors (RHS), perfor-
mance improves as arithmetic intensity increases. However, the number of RHS is
limited by available MCDRAM capacity.
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5.4 BerkeleyGW

BerkeleyGW is a materials science application for computing excited state prop-
erties of materials - those associated with electrons populating orbitals beyond
the quantum ground state [6]. BerkeleyGW takes as input the ground-state data
computed from a number of DFT codes like Quantum ESPRESSO, SIESTA,
PARATEC. The code is dominated by dense linear algebra (Matrix Multiply
(GEMM), Diagonalization and Inversion), FFTs and hand tuned code repre-
senting tensor contraction like operations expressed as large array reductions.
We predominantly focus on the hand-tuned routines in our KNL preparation,
which in recent years has become a more significant amount of the runtime of a
GW calculations due to changing use cases. The performance of the FFTs and
linear algebra steps will be discussed in a separate article on BGW performance.

Following our optimization process, we show the following data points for
the baseline MPI-only code. in Table 5 and Fig. 5.

– We refactor primarily to support OpenMP threads and improved data-locality.
The code at this point has a three loop structure, with an outer loop targeted
at MPI, and nested inner-loops with large trip counts targeting threads and AVX
parallelization.

– We factor the code to support compiler auto-vectorization by moving a innermost
trip-count 3 loop outwards, remove cycle statements and conditionals.

– We add a layer of cache-blocking to effectively reuse the L2. We reordered loops to
improve vectorization (moving a loop of trip count 3 outwards), improving AI. We
introduce cache blocking around the trip-count 3 loop. On Haswell, we are able to
effectively use L3 and so no again in AI is seen.

– We replace the complex divide with a manual divide over the real absolute value of
the complex number in order to avoid x87 instruction generation.

– We put back in the explicitly complex divide but utilize the compiler flag -fp-model
fast= 2 which avoids x87 instructions by assuming there is no overflow concern.
Additionally, we run with 2 threads per core, which is where most of the speedup
occurs.

In summary, a few key lessons stand out from BerkeleyGW. For a code with
an AI between 1–10 (i.e. near the roofline cusp), good performance requires, good
data reuse out of L2 cache to reach the highest AI (KNL’s lack of L3 can make it
more punishing), placement of data in HBM, and good use of the vector process-
ing units are all essential for good performance. The current limiting factor is the
latency in the divides, lack of multiply add balance and remaining conditionals.
After all the optimizations, performance relative to the original code improves by
a factor of 11.8 for Haswell and 25.8 for KNL MCDRAM. The KNL demostrated
a 1.35 times improvement over Haswell. Comparing KNL MCDRAM to KNL
DDR, using MCDRAM allows for a performance improvement factor of 1.75.
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Table 5. BerkeleyGW arithmetic intensity and performance

Optimization Haswell KNL MCDRAM KNL DDR KNL/HSW
speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

Refactored 2.64 38.7 1.93 9.80 1.93 9.80 0.25

+Vectorized 3.68 100.3 0.66 143.4 0.66 55.1 1.43

+Blocked 3.77 100.3 1.79 153.2 1.79 140.8 1.53

+Improved Vect 3.78 142.6 1.80 178.4 1.80 142.1 1.25

+Hyperthreads 3.27 186.9 1.76 252.6 1.76 144.0 1.35

Fig. 5. BerkeleyGW is a good example of an application that benefited from blocking,
threading and vectorization improvements. For Haswell, +Blocked provides no further
improvement over +Vectorized, due to the fact that the working set fits within the
Haswell L3 cache. For KNL, +Vectorized performance is limited by MCDRAM BW (due
to its low AI) and +Blocked is necessary to see improvements in further optimizations.

5.5 Performance Summary and Observations

Table 6 shows the fully optimized performance for each application or kernel.
They all demonstrated significant performance gains over the baseline code for
both Haswell and KNL architectures. The KNL architecture showed overall bet-
ter performance than Haswell with the exception of PICSAR, however both
architectures benefited significantly from the optimization process.

Applying results to the Roofline Model, no application or kernel had an AI
that put it in the regime of being computational bound, all were in a region in
which memory bandwidth was the limiting factor to performance. EMGeo and
MFDn were clearly bandwidth bound, while PICSAR and BerkeleyGW showed
there is headroom for further optimization.

We observe that Haswell consistently attains a higher AI than KNL. As all
applications perform the same number of floating point operations, we conclude
that KNL generally moves more data to/from main memory than Haswell. As
a result, the theoretical performance benefits of higher MCDRAM bandwidth
are not fully realized. Exploration of the performance tradeoffs between larger
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Table 6. Performance summary

GFLOP/s Speedup

Haswell KNL MCDRAM KNL DDR KNL/HSW MCDRAM/DDR

PICSAR 67.5 60.4 49.4 0.89 1.2

EMGeo (SpMV) 77.7a 181.0 43.6 2.33a 4.2

MFDn 67.5 109.1 30.7 1.62 3.6

BerkeleyGW 186.9 252.6 144.0 1.35 1.75

a EMGeo Haswell performance is for a single socket.

on-chip L2/L3 caches (reduced data movement) and reduced computational per-
formance (fewer cores for constant chip area) are in order.

6 Conclusion and Outlook

In this study we have developed a Roofline Model for the Intel Knights Landing
processor and have estimated upper bounds for L1, L2, MCDRAM and DDR4.
We then measured the performance of a suite of NESAP applications (or proxy
kernels) and used the Roofline Model to determine to what degree they were
compute- or memory-bound. Each application developer then explored a variety
of optimizations to improve both arithmetic intensity and overall performance.
We then re-evaluated the impact of those optimizations relative to the Roofline
ceilings. All of the evaluated applications were able to substantially improve their
overall performance on both Haswell and KNL processors, often by increasing
the computational arithmetic intensity and improving memory bandwidth uti-
lization. Having a visual representation of the performance ceiling helps guide
application experts to appropriately focus their optimization efforts.
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