Application Suitability Assessment
for Many-Core Targets

Chris J. Newburn, Jim Sukha®™)| Ilya Sharapov, Anthony D. Nguyen,
and Chyi-Chang Miao

Intel Corporation, Hudson, USA
{chris.newburn, jim.sukha,ilya.sharapov,anthony.d.nguyen,
chyi-chang.miao}@intel.com

Abstract. Many-core hardware platforms offer a tremendous opportu-
nity for scaling up performance, but not all codes that run on these
platforms have been modernized sufficiently to fully utilize the hard-
ware. Assessing whether a code will effectively utilize a given platform
can be challenging, particularly for new or potential future platforms
where native execution on real hardware is not possible. In this case,
one typically relies on architecture simulators and other workload char-
acterization tools, which are often not user-friendly for developers who
want to do a quick initial assessment of an application’s suitability for a
many-core architecture.

To help address this challenge, we present QMSprof, a tool and a set of
analyses for an initial assessment of the suitability of a set of applications
for a simulated extremely-parallel many-core target. QMSprof automates
the process of running a suite of workload binaries through Intel® Soft-
ware Development Emulator (SDE) and the Sniper multi-core simulator
and extracting high-level summary statistics. The tool generates compar-
ative plots summarizing key metrics across the workload suite, including
the mix of vector and nonvector instructions, scalability with increas-
ing thread count, memory bandwidth utilization, and statistics on cache
misses and working set size. These summary metrics are designed to aid
performance tuners in selecting promising codes for a many-core target
and in pinpointing opportunities for additional tuning. To illustrate the
utility of our tool, we also describe some sample results from character-
izing applications on a hypothetical many-core architecture.

Keywords: Many-core - Performance - Characterization - Code
modernization

1 Introduction

Not all applications are cut out for execution on extremely-parallel machines
like those of the Intel® Xeon Phi™ Processor Family [9], also known as the

This research was, in part, funded by the U.S. Government and DOE. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the
U.S. Government.

© Springer International Publishing AG 2016

M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 319-338, 2016.
DOI: 10.1007/978-3-319-46079-6_23

320 C.J. Newburn et al.

“Knights” family. Such machines offer high levels of thread parallelism, vector
parallelism and bandwidth. If an application fails to exploit these salient features,
its performance will fall far short of the capabilities of these machines.

Those who seek to characterize applications on new architectures often lack
the time for detailed analysis, or the expertise, or both. Application developers
today typically rely on profiling and analysis tools, such as Intel® VTune™
Amplifier (or VTune™ for short)[8] or Intel® Advisor [6] to understand appli-
cation behavior on existing hardware. When real hardware is not available how-
ever, e.g., because it is a future architecture under development, one typically
must resort to using a combination of workload characterization and simulation
tools. Unfortunately, since these tools are usually designed for hardware archi-
tects rather than application developers, they can overwhelm the uninitiated
user with raw statistics, and are not user-friendly for a developer who is looking
for a quick high-level profile of their application on a future architecture.

This paper describes QMSprof, a tool and set of analyses for assessing how
well-suited an application is for extremely-parallel many-core targets, such as the
Intel Xeon Phi product line. The name QMSprof stems from its implementa-
tion, because it derives its results from other Quick Multithreaded Simulation
and profiling tools. QMSprof runs a suite of workload binaries through two
underlying tools, Intel® Software Development Emulator (Intel® SDE) [7] and
the Sniper multi-core simulator [2,14], aggregates results, and produces high-
level analysis and summary plots. This analysis is designed to provide a high-level
summary of application characteristics, enabling users to more easily determine
which workloads may be more suitable than others for a many-core architecture.
The results produced from QMSprof are expected to be useful as part of an
initial triage of applications being brought into tuning sessions, highlighting key
characteristics that may warrant deeper analysis or additional optimization.

In this paper, we describe the application of QMSprof and analyses to regions
of interest (ROIs) that are marked as important, from eight workloads of general
interest to the HPC community, simulated on a hypothetical many-core archi-
tecture. The focus of the paper is to demonstrate the kinds of analyses supported
by QMSprof and what the results may look like, not the specific numbers for any
workload or architecture. Thus, one should not interpret any numerical results
on our simulated architectural model in this paper as corresponding to absolute
performance on any existing or future Intel silicon. However, we expect the tools
and methodology to be of interest to those porting their applications to current
and future Intel® Xeon Phi™ Processor many-core machines such as Knights
Landing (KNL), as well as wide Intel® Xeon Processor machines.

2 Overview of Tool and Analysis

QMSprof streamlines the process of running a suite of workloads through the
Intel Software Development Emulator (SDE) and the Sniper simulator, extract-
ing high-level summary statistics, and generating comparative plots. This section
describes the interface and operation of two components of QMSprof, namely

Application Suitability Assessment for Many-Core Targets 321

the data collector which generates raw SDE and Sniper data for a particular
experiment, and the data analyzer which extracts and summarizes the results.

2.1 Data Collector

The data collector is a Python module that generates run scripts for a set of SDE
and Sniper runs, sweeping across a suite of workloads, Sniper configurations, and
different thread counts. Users must provide the following inputs to the collector:

1. Workload binaries and run parameters: For each workload in the desired
suite, a binary compiled with a special begin and end markers around a single
region of interest, and any required input files and command-line arguments.

2. Sniper Models: Configuration files for different Sniper models to be run.

3. Environment Setup: Other configuration parameters specific to the user’s
desired run environment (e.g., paths to specific OpenMP runtime libraries or
configuration for job managers in a cluster environment).

4. Experiment Script: The description of the particular subset of workloads,
models, and thread counts to run in a particular experiment.

These four configuration inputs are separable and can be specified mostly inde-
pendently by different area experts. Workload binaries, input files, and run
parameters are typically provided by application experts who are familiar with
regions of interest to profile. Sniper models can be provided by hardware archi-
tects familiar with specifying relevant architecture parameters in the simulator.
The environment setup file can be specified by individuals familiar with details
of the installed run environment. Finally, the experiment script is specified by
the end user who wants to run particular experiments.

Users configure QMSprof by describing inputs as Python dictionaries and
lists, a user interface that is both relatively human-readable and suitable for
automation. A detailed example of the interface is illustrated in Appendix A.

Once all the inputs have been specified, the collector takes the list of runs
specified in the experiment script and generates a shell script for each Sniper
and/or SDE run. These shell scripts can be run directly at a command prompt,
or fed into a job manager in a distributed compute environment. QMSprof gen-
erates shell scripts, rather than invoking Sniper and SDE directly, because this
intermediate step facilitates debugging. When runs fail, one can simply manu-
ally edit a generated run script and debug an individual run, without trying to
repeat an entire sweep of experiments. In our prototype, we set up QMSprof
to run on Intel NetBatch, an internal distributed computing environment which
has been used for many years for simulations and other compute-intensive jobs
[1,13,21]. Tt is straightforward, however, to extend QMSprof to submit jobs to
other publicly available job managers such as SLURM [19].

QMSprof uses the following Intel SDE and Sniper execution modes to collect
raw statistics:

1. SDE Instruction Mix. SDE provides an instruction mix tool that produces
statistics on the numbers and types of instructions executed.

322 C.J. Newburn et al.

2. SDE Footprint Tool. SDE also provides a tool that estimates the mem-
ory footprint of a profiled region in a program, both at cache-line and page
granularity. More specifically, SDE tracks the distinct cache lines or pages
accessed in a region of interest, and can classify them as either data or code.

3. Sniper Simulation. Sniper is an execution-driven high-speed x86 simulator
which can be used to characterize a workload by executing the workload on
a generic many-core configuration.

Sniper runs slower than SDE, but it collects additional raw statistics that are
useful for our analysis. QMSprof adds two flags to each Sniper run to gather addi-
tional information: ——profile to collect information on function calls, including
a percentage breakdown of instructions and time spent inside and outside of the
OpenMP library, and --cheetah to profile the working set of threads execut-
ing in the region of interest, using a known technique for efficient simulation of
multiple cache sizes in a single run [15].

2.2 Data Analysis

The data analyzer in QMSprof is a set of scripts that extracts data from an
experiment run by the collector, and generates various output summary plots.
In particular, QMSprof can generate the following summary data:

1. Vector Instruction Mix: A breakdown of the types of vector instructions
executed by each run.

2. Thread Scalability: Running time of benchmarks variants in the experiment
as a function of thread count.

3. Memory bandwidth: A measure of the average memory bandwidth utiliza-
tion of the application.

4. Cache Miss Statistics: A plot of the miss rates and misses per 1 K instruc-
tions for the last-level cache.

5. Working set size: An analysis of the last-level cache sizes needed to achieve
a given miss rate.

6. OpenMP overhead: The fraction of total execution time spent in the
OpenMP runtime, which can indicate overheads from fork/join and dynamic
scheduling.

7. Memory footprint: A measure of the new number of distinct pages of mem-
ory required to execute each workload.

The analyzer produces two forms of output, namely (1) comma-separated value
files amenable to import into a spreadsheet, or (2) data and plot files for gnuplot,
version 4.6 [18]. In subsequent sections of this paper, we describe the summary
plots generated by the analyzer in greater detail and explain why they are use-
ful for understanding the suitability of a workload for a many-core architecture.
We also performed an analysis of the granularity of OpenMP parallel regions,
but since it is not fully automated, we do not show that here. Table 1 summa-
rizes the execution mode of Sniper or SDE used for each analysis, and identifies
comparable analyses from Advisor and VTune, if they exist.

Application Suitability Assessment for Many-Core Targets 323

In general, compared to Advisor and VTune, QMSprof is optimized for dif-
ferent purposes. Both Advisor and VTune are primarily designed for charac-
terization of full-scale workloads, running natively on existing hardware, while
QMSprof is designed to extract important high-level summary statistics from
slower but more detailed simulations of targeted regions of interest in a work-
load. Native execution has a few limitations compared to a simulation-based
approach, which include a lack of accurate FLOPS counting and a limited ability
to estimate performance on future hardware that may have different character-
istics. QMSprof is able to use Sniper to simulate models of hardware that do
not exist today, or even models that are impractical to build but can provide
interesting insights through limit studies and other hypothetical what-if scenar-
ios. Similarly, its use of SDE allows for more detailed accounting of dynamically
executed instructions which are difficult to do with current hardware. Addition-
ally, although running workloads through Sniper or SDE is slower than native
execution, the resulting statistics tend to be less affected by measurement noise
and thus more amenable to comparison across workloads.

Table 1. Execution modes from SDE and Sniper used by the analyses in QMSprof.
The table also indicates which analyses are supported by the Advisor and VTune tools.
A v and ~ indicate full and partial support, respectively.

Characterization SDE Sniper Advisor | VTune
Mode -mix | -footprint | Default | —profile | —cheetah

Vector Instruction Mix v ~ ~
Thread Scalability v v

Memory Bandwidth Utilization v v
Cache Miss Statistics v ~ ~
Working Set Size v v

OpenMP Runtime Fraction v v v
Memory Footprint v v

As indicated in Table 1, Advisor provides some analyses similar to QMSprof.
Intel® Advisor 2016/2017 offers vectorization, FLOPS and roofline analysis
capabilities, for both Xeon and Xeon Phi. These capabilities provide per-loop
and optionally per-program information on the following data ingredients in ways
that are similar to four of the numbered QMSprof features above: (1) static and
limited dynamic instruction mixes, (2) thread scalability, (4) memory bandwidth
and (7) memory footprint. Advisor analysis is targeted towards end-user complex
code modernization, offering insight at the loop/function granularity, with low
runtime overhead and multiple data representations and data sources, such as
compiler opt-reports, the access pattern profiler, or trip count/FLOPS analysis.
Unlike QMSprof, Advisor does not focus on contrasting aggregated program-
level characteristics across workloads or platforms. Also, with the exception of
Thread Scalability and AVX-512 codepath projection features, it does not model
platforms other than currently-available silicon. Instruction mix and footprint

324 C.J. Newburn et al.

data is currently not a first class citizen information in Advisor; it is not always
exposed in detail and is sometimes provided with lower accuracy to minimize
runtime overhead.

VTune supports many detailed analyses of a single workload, and is gen-
erally optimized for a deep dive into the behavior of a few workloads on real
silicon, rather than QMSprof which is optimized for a quick initial comparison
of select statistics across a large set of workloads. VTune provides information on
code performance through several predefined analysis types. For example, VTune
includes algorithmic analysis types, such as hotspot analysis and threading con-
currency analysis with locks and waits profiling to find synchronization bottle-
necks. It also includes microarchitecture analysis types, such as general explo-
ration analysis with a hierarchical organization of event-based metrics for iden-
tifying the dominant performance bottlenecks in an application, memory access
analysis showing processor stalls by memory hierarchy, memory bandwidth infor-
mation, and a correlation of memory objects with memory performance metrics.
VTune’s statistic collection methods include hardware performance monitoring,
binary instrumentation, instrumented threading runtimes, and static analysis.
VTune covers the following analyses in QMSprof listed above: (1) vector instruc-
tion mix based on KNL’s limited hardware profiling that are mitigated by static
analysis, (3) memory bandwidth including DRAM, MCDRAM and QPI band-
width types, (4) cache miss statistics, (6) OpenMP serial time, imbalance and
overhead with cause, and MPI time spent spinning in active waiting for hybrid
MPI 4 OpenMP applications. VTune is evolving to offer a combination of thread
scalability, memory and FPU utilization aspects in one analysis type called HPC
Performance Characterization.

2.3 Prototype Implementation

We have implemented a prototype of QMSprof that works with SDE and an
Intel-internal version of Sniper. We use an internal version of Sniper primarily
because it supports execution of binaries compiled for the AVX512 instruction
set, a feature currently not available in the public version of Sniper. Currently,
there exists a formal process for developers with appropriate restricted-secret
NDA approvals to access the Intel-internal version of Sniper, and our scripts
and configuration files can be made available to those who have access to the
Intel-internal version of Sniper.

For the empirical results presented in the rest of this paper, since SDE is
publicly available, the analyses in QMSprof that are based on SDE can be repro-
duced by all users. The analysis based on Sniper could also be repeated using the
public version of Sniper, using only AVX128 vectors, but this change in Sniper
versions would affect the instruction mix and potentially the interactions with
the memory system.

Application Suitability Assessment for Many-Core Targets 325

3 A Case Study

In the remainder of this paper, we demonstrate QMSprof by applying it to
a case study that evaluates 8 HPC workloads on a generic many-core micro-
architecture model. This section describes the workloads and the Sniper model
used for our case study. Although detailed simulation results are not the focus of
this paper, we describe our experimental methodology to provide some context
for understanding QMSprof’s output.

We tested regions of interest (ROIs) chosen from eight representative HPC
workloads: BlackScholes [10], Himeno [4], LULESH [3], miniFE [3], Simple-
MOC kernel [16], SNAP [3], SMC [17,20], and WSM5 [5]. We also tested two
microbenchmarks: PeakFLOPS, a synthetic kernel created to achieve near max-
imal performance on floating-point computations, and STREAM [11,12], a syn-
thetic kernel designed to achieve maximal memory bandwidth usage. BlackSc-
holes, Himeno, and SimpleMOC (kernel), are relatively simple kernels, while the
remaining codes are regions taken from more complex proxy apps. All codes are
strong-scaled with OpenMP.

We spent little or no effort tuning these workloads, instead taking the binaries
generated by the compiler mostly as-is. Frankly, scenarios with poorly-tuned
workloads are more common than those with extensive tuning and optimization.
The condition of the workloads and the actual conclusions based on the data are
not the focus of the paper; instead, the analysis methodology and tools are. This
usage model matches a typical work flow for a performance modeling expert or
an architecture expert, who can experiment with changes in architecture, but is
often not in a position to optimize workloads.

For each workload, we chose an ROI which executes on a scaled data set
for somewhere between 100 to 500 million instructions. This choice is driven in
part by the simulation speed of Sniper, which simulated on roughly 0.1 to 1
million instructions per second in our study. This speed is obviously too slow
to estimate the performance of a multicore applications on a full production-
size input. We believe it is sufficient, however, for understanding the impact of
changes in architectural parameters such as cache sizes, prefetchers, out-of-order
execution width, etc., provided that workload experts can provide representative
scaled-down inputs. The analyses that are based on SDE and Sniper share the
same binaries and hence have the same ROI markers. The binaries were compiled
with the -xMIC-AVX512 flag using version 16.0 of the Intel compiler.

The SDE-based analyses are target independent. For Sniper, we model a
many-core micro-architecture with 16 3-wide, out-of-order cores. Each core has
a 32K L1-D cache, a 32K LI1-I cache, and a vector unit capable of execut-
ing AVX512 instructions. Hardware prefetchers are enabled. Each pair of cores
share an 1 MB L2. Sixteen cores can access up to 512 MB of in-package memory
through a single memory controller, with a bandwidth limit of 48 GB/s. Note
that this configuration models only a fraction (e.g., 1/4) of a full many-core
die. Although this model does not capture any sharing or contention effects
that would exist in an application that requires shared-memory communication

326 C.J. Newburn et al.

between the fractions of the die, it is reasonable for modeling a single rank of an
MPI application that uses OpenMP threads to populate 16 cores.

Finally, although we believe our model has many of the salient features of
a many-core architecture and is useful for some relative comparisons between
workloads, it is important to note that its architectural parameters intention-
ally do not match any known product on the Intel Xeon Phi roadmap.
Thus, our model or results should not be used as estimate of absolute
performance on Knights Landing or any other Intel silicon.

4 Output from the Data Analyzer

In this section, we discuss each QMSprof output for the case study described
in Sect. 3, explaining how each analysis can be used to determine the relative
suitability of a workload for a many-core architecture.

4.1 Vector Instruction Mix

The first analysis one would typically run is an instruction mix, which shows the
vector instructions executed in a workload, expressed as a fraction of the total
instructions executed. To get maximal benefit from a many-core architecture
like Xeon Phi, we generally want the fraction of vector instructions to be as
close to 100 % as possible. Moreover, we ideally prefer to have full-length vector
instructions, i.e., AVX512 packed SIMD instructions, rather than shorter-vector
or SIMD scalar instructions. We also prefer fewer masked vector instructions,
since 0-valued mask bits imply unused vector lanes. If the fraction of vector
instructions is low, this is an alert that some vectorization enabling may be
required for compiler-generated code, or that vector-enabled libraries may not
be in use. If the ratio of scalar SIMD to packed SIMD is high, significant time may
being spent in unvectorized outer loops, suggesting a possible need for placing
vectorization directives on outer loops. Excessive masking may be mitigated by
eliminating conditionals, which is sometimes possible by inlining functions to
enable constant propagation by the compiler.

QMSprof automatically generates plots from SDE that reveal packed vs.
scalar SIMD, and non-scalar AVX type, as shown in Fig.1. This analysis is
run first because it runs faster on the SDE emulator than on the Sniper sim-
ulator. In our case study, we see that only BlackScholes and PeakFLOPS are
getting close to having 100% of vector instructions. Other workloads have a
noticeable fraction of shorter vectors (e.g., LULESH, at 70% short vectors),
or non-vector instructions, even though we compiled the workloads targeting
AVX512. Finally, there appears to be little use of masking (reported separately
from the plot shown) in these workloads, with the highest fraction of 14 % of all
instructions for WSM5. Reporting of data types, e.g. single-precision, double-
precision and bit-wise SIMD, has also been demonstrated, but is not shown
here. This instruction mix analysis is useful in correlating performance differ-
ences with and without vectorization (e.g., for the Intel compiler, code compiled

Application Suitability Assessment for Many-Core Targets 327

Vector Instruction Mix, 2 Threads

1 T T T T

g 09 | [avxS12
g ! EE=S3) avx256
2 . N avx128
8 0.7 == sse-packed
= 06 scalar_simd
g os &
2 oa 5
] 9%
pu 0.3 5
g 02 0% o
S oa 3 <
g 35 % 355

a o [|9) a w

[a) < 5 a) < E 8 w

¢ g Yy 9 v g u = £

° == O g g 2 £

< I 3 £ n o

3 o £

~ a (7]

]

i

©

Benchmark

Fig. 1. Instruction mix of workloads, classifying percentages of vector instructions
executed. This data was collected using SDE for runs with two OpenMP worker threads.

with the -no-simd -no-vec -no-openmp-simd flags). Since the direct evaluation of
that silicon performance is not part of QMSprof, we do not show those results.

4.2 Thread Scalability

Thread scalability analysis can provide guidance on how to balance parallelism
between MPI ranks and threads: more MPI ranks may be better when OpenMP
thread scaling trails off. Thread serialization may not be noticed, but it tends
to kill scalability. The thread scaling efficiency can be inferred from QMSprof’s
plot of Sniper-based parallel speedups as a function of thread count P.

Figure 2 shows a parallel speedup plot produced by QMSprof for our case
study. For our workloads, we see that SimpleMOC, SNAP, BlackScholes, and
WSMS5 are the 4 workloads (ignoring PeakFLOPS) that scale reasonably well by
adding more threads, while the others appear to have other limits to scalability.
QMSprof can be configured to test scalability on a few different Sniper models
with different parameters (e.g., different cache size, bandwidth, etc.). It also
produces additional summary plots which help users understand other scalability
limiters in greater detail.

Memory Bandwidth and Cache Behavior. Memory bandwidth and cache
misses can become bottlenecks that limit thread scaling, and QMSprof produces
summary plots for each, as shown in Fig. 3. The lack of thread scaling for Himeno,
STREAM and miniFE correlate with the high memory bandwidth that does not
scale with threads. High bandwidth is not necessarily an indication of high cache
miss rates. BlackScholes has a low cache miss rate, but bandwidth that scales
with threads; this is an indication of effective prefetching. We focus on last-level

328 C.J. Newburn et al.

Parallel Speedup vs. 1-Thread Run

16 ! j ! T) !) ! " 2zzz3 1 Thread
14 ! ! 1 &==3 2Threads
12) | I 4 Threads
E==3] 8 Threads
Q. 10 L
E C—3 12 Threads
® 8 g 16 Threads
& st
4 -
2 -
0 | i
o 2] (o)
8 ¢ 5 a 3 2T % o5 £ i
[€ w 3 0 % w s 0 £
s = O g £ o =z g
< I a = 7 aQ
(%] © £
4] o £
~ a 0
o
i
[11]
Benchmark

Fig. 2. Parallel speedup of workloads. This plot shows speedup for various numbers of
threads from P=1 to P=16, on a simulated 16-core architecture with each pair of cores
sharing an L2.

Memory Bandwidth (GB/s)

1 Thread

2 Threads
4 Threads
8 Threads
12 Threads
16 Threads

1010

i 1 Thread
\ 2 Threads
\ 4 Threads
\ 8 Threads
| 12 Threads
A d 16 Threads
\ \
| ol
s ~ il =
§ 88N rrm KL
0

a o T 0 8] a [e) 0 w

2 s 8§35 %35 ¢3¢t

@ £ =] %) =

5 = 5 g E =2 3 £

< I | 4 = a

S o AU

] 4 £

~ a 7]

S

o

©

Benchmark

Fig. 3. Average memory bandwidth (top) and demand L2 misses per 1K instructions
(bottom) for various thread counts, aligned to the same set of workloads.

Application Suitability Assessment for Many-Core Targets 329

cache misses per 1K instructions executed as a metric instead of absolute miss
rates, since it tends to be a better indicator of performance impact.

OpenMP Runtime Overheads. Another thread scaling inhibitor is overheads
in both serial and parallel sections in a program. Serial sections, which can come
from both an application or a parallel runtime such as OpenMP, do not speed up
as more threads are added, and thus naturally limit scalability. Similarly, other
OpenMP overheads in a parallel region will not be amortized away if there is too
little work within a parallel region and the number of threads is large. QMSprof
aggregates profiling data from Sniper to help users estimate such overheads.

Figure 4 shows that LULESH, miniFE, and SimpleMOC are the only work-
loads which spend more than 5% of their total execution time in the OpenMP
runtime. The implementations of LULESH and miniFE we used are known to
have many fine-grained parallel regions, which contribute to fork-join overheads.
SimpleMOC had many dynamically-scheduled loops, which contributes to the
runtime overhead. In particular, for SimpleMOC, Sniper’s profile output indi-
cated that most of the time spent in the OpenMP runtime was in methods for
lock acquisition, even for the single-thread runs. The current QMSprof prototype
does not distinguish between overheads in serial and parallel sections, although
we observed through other analysis that serial sections in the chosen ROIs of
these workloads were generally negligible.

Fraction of Time in OpenMP Runtime

0.25 T T T T T T T T T T 1Thread
02 | | e===3 2Threads
Em 4 Threads
0.15 1 E== 8Threads
5 f 2 12 Threads
g 01 f | 1 16 Threads
e (]
0 F __muﬂl‘l!] i mdﬂﬂﬂuﬂﬂ]].—u —_— 4
0.05 . . A . A . . A .)
a o n (9] o (0] w
5§ ¢ 5 & = %z g £ &
6 g w 9 » g w > 0O &
= £ 'a [=
=} - k3 ~ - €
< s |]) Q
@ o £
~ B (7]
O
L.
o
Benchmark

Fig. 4. Fraction of execution time that is overhead in the OpenMP runtime. A negative
fraction (e.g., for PeakFLOPS) indicates that OpenMP was not detected at all, which
usually means the workload was parallelized using some other approach.

330 C.J. Newburn et al.

4.3 Working Set Analysis

Thread scaling, analyzed in Sect. 4.2, is impacted by whether there is construc-
tive interference across threads, and what cache capacity is needed per thread
to keep cache miss rates low. Decisions about the number of threads to use per
core, or per L2, or per set of L2s, or per in-package memory, may be based on
the working set per thread and the kind of interference there is across threads.
We use Sniper’s ‘Cheetah’ functionality [15] to estimate the working set sizes for
the applications, providing a more direct measure of the effect of changing cache
sizes than the analysis in Sect.4.2. Sniper allows us to estimate the cache miss
rate for the outer-level cache as a function of cache size, at power-of-2 cache sizes,
using a single simulation run. We extracted the minimum cache sizes needed to
achieve a given cache miss rate (ranging from 1% to 20 %), as shown in Fig. 5.
This kind of exploratory analysis is not generally available with hardware-based
profiling.

Cache Size Required for Given Miss Rate, 16 Threads

262144 T
65536 [R
16384 |

4096
1024 |
256
64
16

4 +

EXZXX Miss Rate 0.01
EZZZE Miss Rate 0.05
I Miss Rate 0.1
[E===3 Miss Rate 0.2

Cache Size (KiB)

L
BlackScholesDP r

o I O U a O v w
S % & 3 2z 5 % &
Eu.:g(nzu.lzmc
= v x O c
= 5 g T 2 = E
r 3 % n o
£

@

a @

Benchmark

Fig. 5. Minimum cache size required to achieve a given cache miss rate (or less). This
plot is extracted from Sniper’s Cheetah data.

4.4 Memory Footprint Characterization

An analysis of the memory footprint may help determine how many MPI
ranks can share resources like in-package memory such as MCDRAM or high-
bandwidth memory (HBM). Large memory footprints cause a capacity issue,
which can turn into a performance issue. We use the footprint tool from SDE to
count the total number of pages accessed at a 2 MB page size in Fig. 6, regardless
of caching effects. From this data, we observe that most of the workloads in our
study access a total number of pages which is unlikely to fit into a typical L2
cache, and some would fit in a modest amount of in-package memory.

Application Suitability Assessment for Many-Core Targets 331

Memory Footprint

ZxZzZ3 1 Thread

1 &=3 2Threads
1 = 4 Threads
E===3] 8 Threads
3 12 Threads
16 Threads

Footprint (MB)

WSMS §

LULESH e,
SNAP
STREAM |

BlackScholesDP
Himeno ¢ \
PeakFLOPS ===
SMC
SimpleMOC

Benchmark

Fig. 6. Memory footprint of workloads, as measured by total memory covered (MB)
and estimated using SDE, for accesses at the granularity of 2 MB pages.

Although we observed some correlation between working sets size and mem-
ory footprint for the workloads in this study, in general a large memory foot-
print, as measured above by SDE, does not necessarily indicate a large working
set for the workload, since memory that is only accessed once still contributes
to the number of new pages. This analysis does not give any good measure of
data sharing between threads, since at any fixed value of memory footprint, the
partitioning of data between the threads could be arbitrary. For example, we
could have complete sharing, with all threads accessing all the data, or complete
partitioning, with each thread accessing its own private data.

5 Conclusions

Harvesting thread and vector parallelism are critical to reaching peak perfor-
mance on extreme-scale execution targets. Yet many applications do not app-
roach peak performance on many-core targets because they lack effective paral-
lelization for threaded and vector architectures, and they lack effective memory
tuning. The QMSprof infrastructure provides an initial but broad-ranging analy-
sis that give an indication of how well suited an application is for making good use
of a many-core target, how well it can be scaled within that target with respect
to memory capacity, MPI rank vs. OpenMP threading trade-offs, threads per
core and per L2, whether additional memory blocking may be required, and how
well vectorized it is.

While QMSprof does not offer all of the characterization that one could ever
ask for, we’ve demonstrated that it provides a useful beginning. Based on feed-
back on the perceived utility of this tool and on what additional characterizations

332 C.J. Newburn et al.

might provide the greatest benefit, more features may be added to QMSprof as
they are brought to a sufficient degree of automation. Since the primary motiva-
tion for QMSprof is for quick initial estimates rather than comprehensive studies,
however, some selectivity is desirable to avoid inundating users with too many
statistics.

This analysis of suitability could either be used to prioritize codes that are
already more suitable over others that are not (yet) suitable, and/or they can
be used to focus optimization efforts on making applications more suitable for
highly-parallel targets. While the absolute results presented here are not spe-
cific to a given target product, and are not intended to be representative of
Knights Landing or other such products, the trends and “shape of the curves” is
expected to provide some actionable insights to those assessing suitability and
doing optimization.

6 Future Work

One characterization that could form an interesting complement to what has
been done here is to analyze the effectiveness in trading off number of threads
for number of MPI ranks, especially with respect to its impact on the memory
system. Another, which is of particular interest for offload, is an analysis of the
volume of data that must be communicated between the sequential parts of the
program that might be executed on an Intel Xeon with low latency, and the
highly-parallel parts that might be executed on a high-throughput Intel Xeon
Phi Processor.

Workload statistics, like execution time and cache misses, could be reported
for each serial section and OpenMP parallel region by compiling some additional
instrumentation markers into the OpenMP runtime. This could help to highlight
the significant serial sections and their characteristics.

One might also add silicon-based data collection, and possibly automate the
correlation of simulation results with real silicon measurements. Runs on real
silicon may enable us to analyze larger problem sizes. One challenge however, is
that for the relatively small problems we typically run through simulation using
QMSprof, real silicon measurements may be much more noisy. One benefit of
using Sniper and SDE to collect raw data is that these tools have relatively little
to no sensitivity to the runtime environment, which tends to make their results
much more repeatable.

A Appendix: Interface for QMSprof

This appendix demonstrates the interface for QMSprof. We first present an
example of configuring the collector to run simulations, and then describe how
to run the analyzer to extract summary statistics and generate plots.

Application Suitability Assessment for Many-Core Targets 333

A.1 Collector Interface

The collector interface for QMSprof is divided into four major parts, namely
configuration for (1) workload binaries and run arguments, (2) Sniper models,
(3) environment setup, and (4) experiment script.

For part (1), binaries and run arguments are configured by specifying
a Benchmarks dictionary, which maps a key for each benchmark to a per-
benchmark dictionary with additional information. When running an experi-
ment, the collector uses information from a per-benchmark dictionary to stage
each simulation run, i.e., creating a separate run folder for each simulation run in
a staging area, and copying and/or renaming any necessary binaries and input
files into that folder. This staging step is needed because workloads are not
always built to support concurrent executions from the same run folder.

The per-benchmark dictionary is built to support benchmark wvariants, i.e.,
different versions of the same workload, with possibly different binaries or run
arguments. This dictionary has several expected fields:

1. bindir: This string lists the subdirectory of the root benchmark directory
containing the files for this benchmark. The root benchmark directory is a
global variable specified separately in the top-level of the configuration file.

2. files: This dictionary maps a variant of the benchmark to a list of files
needed to run each variant. Each file is itself a pair, with the first value being
the name of the file in the source binary directory, and the second value being
the name of the target file in the staging area. This pair allows an input file
to be renamed in the staging area before it is run.

3. runargs: This dictionary maps a variant of a benchmark to the command-line
arguments needed to run the variant.

4. gen_inputs: This dictionary maps a variant to a list of shell commands to
execute in bindir to generate any input files that are needed for a run.

5. requires MPI: This flag is set if this particular binary requires the use of an
MPI library to execute. Our current prototype assumes one MPI rank per
program, but in principle this assumption could be relaxed.

For the files, runargs, and gen_inputs dictionaries, if no exact match to
a particular variant name is found in the dictionary, QMSprof will map to the
key that matches the longest prefix.

As an example, Fig. 7 shows part of a configuration file specifying binaries and
arguments for two benchmarks: LULESH and SNAP. In this configuration, run-
ning the sim_vec variant of the LULESH, uses the source file lulesh2.0_vec from
the subdirectory LULESH/binaries. The staging process will copy and rename
(or link) to a file named LULESH sim _vec in a each simulation run directory. This
staging allows QMSprof to use a consistent naming convention for its implemen-
tation, without requiring users to duplicate or change input file names in the

334 C.J. Newburn et al.

source directory. To run the sim_vec variant of LULESH, QMSprof will use the
sim argument of -s 27 -i 6 -p, since sim is the longest matching prefix of
sim_vec.

SNAP has a slightly more complicated description, with a script command
list in its gen_inputs parameter. This command list indicates that before staging
any files in the files list, the collector should run the script genFile from the
SNAP/binaries directory to generate extra input files. The strings <P> is a
special pattern in arguments and commands that the collector replaces with the
thread count for a particular run. Similarly, <RunDir> is a special pattern that
gets represents the run directory used to store and run the binary.

Configuration of parts (2) and (3) are relatively straightforward, as illustrated
in Fig. 8. The SniperConfigs dictionary describes the Sniper models that can be
used in an experiment. The key 16C_2wide is a descriptive (usually short) string

Benchmarks = {

"LULESH" : {
"bindir" . "LULESH/binaries",
"files" : {
"test_vec" [("lulesh2.0_vec", "LULESH_test_vec") 1,
"test_novec" : [("lulesh2.0_novec", "LULESH_test_novec")],
"sim_vec" : [("lulesh2.0_vec", "LULESH_sim_vec") 1,
"sim_novec" [("lulesh2.0_novec", "LULESH_sim_novec") 1],
},
"runargs" : {
"test" ;o "-s 4 -i 1",
"sim" : "-s 27 -1 6 -p",
nfyulln : "-s 36 -i 4 -p",
}
},
"SNAP" : {
"bindir" : "SNAP/binaries",
"gen_inputs" : {
"test" : ["genFile 1 1 <P> 4 4 4 8 8 1 <RunDir> fin_test_P<P>" 1,
"sim" : ["genFile 1 1 <P> 4 4 4 8 64 3 <RunDir> fin_sim P<P>"],
},
"files" : {
"test_vec" : [("snap_test_vec", "SNAP_test_vec") 1,
"sim_vec" : [("snap_sim_vec", "SNAP_sim_vec") 1,
},
"runargs" : {
"test" : "fin_test_P<P> fout_test_P<P>",
"sim" : "fin_sim_P<P> fout_sim_P<P>",
},

requires_MPI = True

Fig. 7. Example Benchmarks dictionary for configuring workloads in QMSprof.

Application Suitability Assessment for Many-Core Targets 335

Sniper configurations

SniperConfigs = {
"16C_2wide" : "Manycore_16c_2wide.cfg",
"16C_3wide" : "Manycore_16c_3wide.cfg",

Environment setup
EnvFiles = {
"DefaultOpenMP" : "ICCDefaultOpenMP.sh"

Configure job manager

import collector.Netbatch

BatchJobModule = collector.NetBatch
BatchJobManager = BatchJobModule.JobManager ()

Fig. 8. Example configuration for QMSprof for Sniper configurations and environment
setup.

that the user provides for the Sniper configuration file Manycore_16c_2wide.cfg.
Similarly, in the EnvFiles dictionary, DefaultOpenMP is a description of the
environment file ICCDefaultOpenMP.sh. Each run script created by QMSprof
sources a particular environment file before each run, passing in the thread count
of the run as its argument. Thus, the user should use the environment file to
setup any necessary runtime libraries or tools (e.g., compiler libraries, Sniper and
SDE), and any other environment variables such as OMP_NUM_THREADS. Finally,
Fig. 8 also specifies the job manager (e.g., Intel NetBatch) to use to run jobs in
the desired compute environment.

Finally, for part (4), Fig. 9 shows an example experiment script that specifies
the runs in the experiment. Each run (e.g., Run0) is specified as a tuple with 5
entries:

1. Sniper configuration: The Sniper configuration for the run, as defined by
the keys in the input SniperConfigs dictionary. For example, Run0O runs the
16C_2_wide config.

2. Thread Set: The thread counts to run. For example, Run0O uses the thread
counts of 1, 2, 4, 8, 12, and 16.

3. Experiment File: The environment file for the run, as defined by the keys
in the input EnvFiles dictionary. For example, RunO uses the DefaultOpenMP
environment file.

4. Program list: The workload variants to run. The example in Fig. 9 executes
both the sim vec and sim novec variants of LULESH and SNAP.

5. Experiment Knobs: An object that captures all the other configuration
knobs for a particular run. This example uses default values for all the knobs,
but additional customization is possible.

336 C.J. Newburn et al.

import collector.config # Import collector module

import SampleConfig # Import user’s configuration file
Get default simulation knobs

knobs = collector.config.Knobs(SampleConfig)

my_prog_list = ["LULESH_sim_vec", "LULESH_sim_novec",
"SNAP_test_vec", "SNAP_sim_vec"]

experiment_map = {

"Run0" : ("16C_2wide",
[1, 2, 4, 8, 12, 16],
"DefaultOpenMP",
my_prog_list,
knobs) ,

"Runi" : ("16C_3wide",
[1, 2, 4, 8, 12, 16],
"DefaultOpenMP",
my_prog_list,
knobs),

Name of directory to store simulation output.

output_directory = "SimOutput"

collector.experiment.GenScripts ("ExperimentDescription",
experiment_map,
SampleConfig.BatchJobManager,
output_directory)

Fig. 9. Example experiment script for QMSprof.

A.2 Analyzer Interface

The analyzer for QMSprof is a separate script that takes a single input directory
as its argument, scans the input directory for SDE and Sniper simulation output,
parses the relevant raw statistics output files, and then generates summary plots.
Our prototype for QMSprof has the specific plots demonstrated in Sect. 4 hard-
coded as output, but in principle one could implement a more complex interface
that would allow for some customization in the generated plots. The analyzer
generates Gnuplot scripts and data files as output, which can be manually edited
(e.g., to change titles, labels, or legends), and rerun manually to recreate plots.

Our prototype analyzer assumes that simulation output for each simulation
run is placed in a separate folder, with the thread count appearing in the folder
name. The analyzer uses the names of output folders to group different thread
counts for a benchmark together in summary plots, and eliminates the common
suffix across all runs to shorten legends in generated plots. These assumptions
are designed for processing the output from the QMSprof collector, but one can
also use the analyzer to generate summary plots from other simulation runs if
the output directories follow a compatible naming convention.

Application Suitability Assessment for Many-Core Targets 337

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

Bentley, B.: Validating the Intel® Pentium@®) 4 microprocessor. In: Proceedings of
the 38th Annual Design Automation Conference, DAC 2001, pp. 244-248. ACM,
New York (2001). http://doi.acm.org/10.1145/378239.378473

Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: exploring the level of abstraction
for scalable and accurate parallel multi-core simulation. In: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (2011)
CORAL Collaboration: Oak Ridge, Argonne, Livermore. Benchmark codes.
https://asc.llnl.gov/CORAL-benchmarks/

Himeno, R.: Himeno benchmark (2016). http://accc.riken.jp/en/supercom/
himenobmt/

Hong, S.Y., Lim, J.O.J.: The WRF single-moment 6-class microphysics scheme
(WSM 2006). J. Korean Meteorol. Soc. 42(2), 129-151 (2006)

Intel® Advisor (2016). https://software.intel.com/en-us/intel-advisor-xe

Intel® Software Development Emulator (2016). https://software.intel.com/en-us/
articles/intel-software-development-emulator

Intel® VTune™ Amplifier (2016). https://software.intel.com/en-us/intel-vtune-
amplifier-xe

Intel® Xeon Phi™ Product Family (2016). http://www.intel.com/content /www/
us/en/processors/xeon/xeon-phi-detail.html

Li, S.: Case study: computing black-scholes with Intel® advanced vector extensions
(2012). https://software.intel.com/en-us/articles/case-study-computing-black-
scholes-with-intel-advanced- vector-extensions

McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Comput. Soc. Techn. Committee Comput. Archit. (TCCA)
Newsl. 19-25 (1995)

McCalpin, J.D.: STREAM: sustainable memory bandwidth in high performance
computers (2016). https://www.cs.virginia.edu/stream/

Shai, O., Shmueli, E., Feitelson, D.G.: Heuristics for resource matching in intel’s
compute farm. In: Desai, N., Cirne, W. (eds.) JSSPP 2013. LNCS, vol. 8429,
pp. 116-135. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43779-7_7

The Sniper Multi-Core Simulator (2016). http://snipersim.org

Sugumar, R.A., Abraham, S.G.: Efficient simulation of caches under opt replace-
ment with applications to miss characterization. In: Proceedings of the ACM SIG-
METRICS Conference (1993)

Tramm, J., Gunow, G.: SimpleMOC-kernel, version 2.0 (2015). https://github.
com/ANL-CESAR /SimpleMOC-kernel

Valles, A., Zhang, W.: Optimizing for reacting Navier-Stokes equations. In:
Reinders, J., Jeffers, J. (eds.) High Performance Parallelism Pearls, pp. 69-85.
Morgan Kaufmann, Boston (2015). http://www.sciencedirect.com/science/article/
pii/B9780128021187000042

Williams, T., Kelley, C.: gnuplot 4.6 (2014). http://www.gnuplot.info/docs_4.6/
gnuplot.pdf

Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44-60. Springer, Heidelberg (2003). doi:10.1007/10968987_3

http://doi.acm.org/10.1145/378239.378473
https://asc.llnl.gov/CORAL-benchmarks/
http://accc.riken.jp/en/supercom/himenobmt/
http://accc.riken.jp/en/supercom/himenobmt/
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://software.intel.com/en-us/articles/case-study-computing-black-scholes-with-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/case-study-computing-black-scholes-with-intel-advanced-vector-extensions
https://www.cs.virginia.edu/stream/
http://dx.doi.org/10.1007/978-3-662-43779-7_7
http://snipersim.org
https://github.com/ANL-CESAR/SimpleMOC-kernel
https://github.com/ANL-CESAR/SimpleMOC-kernel
http://www.sciencedirect.com/science/article/pii/B9780128021187000042
http://www.sciencedirect.com/science/article/pii/B9780128021187000042
http://www.gnuplot.info/docs_4.6/gnuplot.pdf
http://www.gnuplot.info/docs_4.6/gnuplot.pdf
http://dx.doi.org/10.1007/10968987_3

338

20.

21.

C.J. Newburn et al.

Zhang, W.: miniSMC Benchmark (2014). https://github.com/WeiqunZhang/
miniSMC

Zhang, Z., Phan, L.T.X., Tan, G., Jain, S., Duong, H., Loo, B.T., Lee, I.: On the
feasibility of dynamic rescheduling on the Intel distributed computing platform.
In: Proceedings of the 11th International Middleware Conference Industrial Track,
Middleware Industrial Track 2010, pp. 4-10. ACM, New York (2010). http://doi.
acm.org/10.1145/1891719.1891720

https://github.com/WeiqunZhang/miniSMC
https://github.com/WeiqunZhang/miniSMC
http://doi.acm.org/10.1145/1891719.1891720
http://doi.acm.org/10.1145/1891719.1891720

	Application Suitability Assessment for Many-Core Targets
	1 Introduction
	2 Overview of Tool and Analysis
	2.1 Data Collector
	2.2 Data Analysis
	2.3 Prototype Implementation

	3 A Case Study
	4 Output from the Data Analyzer
	4.1 Vector Instruction Mix
	4.2 Thread Scalability
	4.3 Working Set Analysis
	4.4 Memory Footprint Characterization

	5 Conclusions
	6 Future Work
	A Appendix: Interface for QMSprof
	A.1 Collector Interface
	A.2 Analyzer Interface

	References

