
A Comparative Study of Application
Performance and Scalability on the Intel Knights

Landing Processor

Carlos Rosales(B), John Cazes, Kent Milfeld, Antonio Gómez-Iglesias,
Lars Koesterke, Lei Huang, and Jerome Vienne

Texas Advanced Computing Center, The University of Texas at Austin,
Austin, TX, USA

{carlos,cazes,milfeld,agomez,lars,huang,viennej}@tacc.utexas.edu

Abstract. Intel Knights Landing represents a qualitative change in the
Many Integrated Core architecture. It represents a self-hosted option and
includes a high speed integrated memory together with a two dimen-
sional mesh used to interconnect the cores. This leads to a number of
possible runtime configurations with different characteristics and impli-
cations in the performance of applications. This paper presents a study
of the performance differences observed when using the three MCDRAM
configurations available in combination with the three possible memory
access or cluster modes. We analyze the effects that memory affinity
and process pinning have on different applications. The Mantevo suite of
mini applications and NAS Parallel Benchmarks are used to analyze the
behavior of very different application kernels, from molecular dynamics
to CFD mini-applications. Two full applications, the Weather Research
and Forecast (WRF) application and a Lattice Boltzman Suite (LBS3D)
are also analyzed in detail to complete the study and present scalability
results of a variety of applications.

Keywords: KNL · MCDRAM · Scalability · MIC

1 Introduction

Over recent years one of the design criteria in HPC systems has been power
efficiency. Efforts to save power have been applied to all levels, from megawatt
savings in power conversion and cooling at the center level, to picojoule savings
in logical units and data transfers [17]. The new designs will certainly benefit
the effective carbon footprint of data centers; but moreover, these changes will
benefit the efforts to create an HPC exaflop machine with reasonable power
requirements.

A significant surge in Floating Point operation efficiency was realized when
GPUs, which already had a significant single precision performance, included a
CUDA paradigm [11] and microprocessor features for the HPC community to
use these GPGPUs as floating point accelerator devices.
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 307–318, 2016.
DOI: 10.1007/978-3-319-46079-6 22



308 C. Rosales et al.

Meanwhile, during the same period, core replication became the mode for
increasing workload capacity, as power restraints restricted further increases in
clock frequencies. Further parallelism was achieved by increasing the number of
Vector Processing Units (VPU) per core, widening the registers from 128b to
512b, and making them FMA capable.

Even with all the efforts in core and VPU units (also known as SIMD units),
Intel also directed their efforts into accelerator capabilities in a series of programs
(Larrabee [12]) that culminated in the Many Integrated Core (MIC) Architecture
[4]. The Phi product line of these many-core systems began with the Knights
Corner (KNC) as a coprocessor board attached to a host through a PCI-e bus.
The coprocessor interacts with the host through the PCI-e bus, similar to the
way a GPGPU does.

Because of the characteristics previously described, there are currently many
accelerated systems in the Top 5001. These systems present nodes with at least
one GPGPU or one MIC, although it is possible to find systems in which each
node has two or more accelerators. There are also systems that present both
types of accelerators in different nodes.

Most HPC programmers realize that a major bottleneck of accelerated com-
puting is in the speed of the PCI-e bus; and there is a limited memory capacity
on the device since only GDDR (Graphics DDR) memory is used. While some
applications perform well within these constrains, for other applications it is
difficult to shoehorn their algorithms into a remote device with limited memory.

The 2nd generation Intel R© Xeon Phi
TM

processor, code named Knights Land-
ing (KNL), has architectural features that are designed to solve the shortcoming
mentioned directly above, and address the power efficiency concerns at a micro-
processor level [14].

The microprocessor architecture has features (southside bus, etc.) that allow
the processor to run as a bonafide stand-alone system. Hence, there are no
execution offloads through a PCI-e bus, as is required when using multiple KNCs.
Also, chips with Omni-Path [2], the new Intel fabric, can bypass the PCI-e bus
for external communication. There are two different types of memory in KNL:
MCDRAM and DDR4. The on-module MCDRAM [14] provides the high-speed
memory that accelerated applications have become accustomed to; and the usual
DDR4 memory provides the capacity storage many HPC applications require.

KNL cores are organized as tiles, where each tile is comprised of two cores.
While L1 cache is implemented at the core level, L2 cache is shared at the tile
level. Tiles are interconnected using a mesh (as opposed to the bidirectional
ring in the KNC). All the cores on the chip are cache coherent, so that the tile
with a specific data can supply that data to another tile in the chip. This mesh
can be clustered to achieve a higher performance for specific memory access
patterns in applications. The three modes of operation are: All-to-All, Quadrant
and Sub-NUMA clustering [14].

There will always be an ongoing effort in the HPC community to adapt
to the new computing technologies that provide significant opportunities to

1 http://www.top500.org/.

http://www.top500.org/


Comparative Study of Performance on KNL 309

compute efficiently and faster. As stated, KNL systems provide new technolo-
gies in memory access, communication, and SIMD execution. In this article we
explore these technologies with applications and benchmarks, and report pro-
gramming concepts that will be useful in adapting applications to these new
features.

The rest of the paper is organized as follows: Sect. 2 introduces the different
applications that we use for our experiments as well as different configurations
of the hardware, while the results of those experiments are presented in Sect. 3.
Finally, Sect. 4 summarizes the paper and presents a set of ideas that will be
explored in the future.

2 Background

We have selected a set of applications and miniapps to study the different con-
figurations of Intel KNL regarding MCDRAM and cluster modes. The miniapps
are representative of popular applications in HPC environments.

2.1 Mantevo

The Mantevo suite [5] provides a set of application proxies or miniapps that
can be used to measure the performance of hardware. These are self-contained,
stand-alone applications. They represent some of the most common scenarios in
scientific computing and include numerical kernels that focus on specific aspects
of the hardware. We focus on the following miniapps for the experiments pre-
sented in this paper:

1. MiniFE: a finite elements application. It solves a nonlinear system of equa-
tions. Like most of the codes that solve these functions, a large portion of
the time is spent in a conjugate gradient solver. While it can be configured
to study the repercussions of, for example, load imbalance in the execution,
we will focus on well-balanced test cases. It is a memory-bound application,
which makes it an optimal candidate to study the impact of the different
memory configurations previously introduced. The operations performed by
the application greatly depend on memory throughput and, when many cores
are used within one processor, it often leads to CPU stalls. The application
has received a lot of attention in the past and it is possible to find diverse
implementations of MiniFE with different levels of optimization. It is a C++
code, parallelized with MPI and OpenMP. We use the reference OpenMP
version.

2. MiniMD: molecular dynamics code. This is a small version of the well-known
code LAMMPS. It implements spatial decomposition, where each processor
works on subsets of the simulation box. MiniMD computes atoms movements
in a 3D space using the Lennard-Jones pair interaction. It follows a stencil
communication pattern where neighbors exchange information about atoms in



310 C. Rosales et al.

boundary regions. Because of these characteristics, it provides good weak scal-
ing. It also presents different implementations in C++ (MPI+OpenMP, Open-
SHMEM,...), and we will focus on the MPI+OpenMP version in this paper. A
single MPI task was used for all the runs.

2.2 NAS Parallel Benchmarks

The well-documented NAS Parallel Benchmarks (NPB) [1,8,16] is a suite of
parallel workloads designed to evaluate performance of various hardware and
software components of a parallel computing system. These benchmarks span
different problem sizes, called classes in NPB terminology and in this paper we
use class C, which is standard for the analysis of single-node systems. Most of the
NAS benchmarks are computational kernels. IS performs sorting of integer keys
using a linear time Integer Sorting algorithm based on computation of the key
histogram. EP evaluates an integral by means of pseudorandom trials. FT con-
tains the computational kernel of a 3-D Fast Fourier Transform (FFT). CG uses
a Conjugate Gradient method to compute approximations to the smallest eigen-
values of a sparse unstructured matrix. MG uses a V-cycle Multi Grid method
to compute the solution of the 3-D scalar Poisson equation. LU, SP, and BT are
simulated CFD mini-applications that solve the discretized compressible Navier-
Stokes equations. BT and SP both apply variations of the Alternating Direction
Implicit (ADI) approximate factorization technique to decouple solution in the x,
y, and z-coordinate directions. The resulting systems are 5× 5 block-tridiagonal
and scalar pentadiagonal, respectively, which can be solved independently. LU
applies the symmetric successive over-relaxation (SSOR) technique to an approx-
imate factorization of the discretization matrix into block-lower and block-upper
triangular matrices. UA evaluates unstructured computation, parallel I/O, and
data movement using unstructured adaptive mesh with dynamic and irregular
memory accesses.

2.3 WRF

The Weather Research and Forecasting(WRF) Model [13] is a widely used
numerical weather prediction system used for both research and operational fore-
casts. WRF is primarily a Fortran code implemented using MPI and OpenMP
for distributed computing. The problem space on each process is divided into
tiles that are processed by OpenMP threads. Ideally, the best performance is
achieved when the size of the tile (in terms of the problem in WRF) fits into
the smallest cache. Having multiple application tiles allows WRF to obtain high
levels of memory bandwidth utilization.

A substantial effort was made to optimize WRF for the first generation Xeon
Phi, Knights Corner [7]. The current version of WRF, 3.7.1, supports a configu-
ration option for the KNC. This configuration was modified to compile the KNL
instruction set using the -xMIC-AVX512 option rather than the -mmic option.
The source code was not modified for this study.



Comparative Study of Performance on KNL 311

2.4 LBS3D

LBS3D is a multiphase Lattice Boltzmann Code based on the Free Energy
method of Zheng, Shu and Chew [18]. This code simulates the flow of two
immiscible, isothermal, incompressible fluids with great spatial and temporal
detail. For details on the model we refer the interested reader to [9,15]. LBS3D
is an optimized implementation of this model, originally developed for execu-
tion in the first generation Intel Xeon Phi [10]. While both OpenMP and hybrid
MPI+OpenMP versions of the code are available, the results reported in this
work are for the OpenMP version only.

2.5 MCDRAM Modes

The MCDRAM and the DDR4 can be configured in three different modes: Flat,
Cache and Hybrid. This section describes each of them briefly.

– Flat Mode MCDRAM memory appears to the programmer as a continuation
of the main memory. Allocation in the 16 GB MCDRAM area or the DDR4
area is determined by NUMA controls or specific allocation calls with the
memkind library [3]. This mode should be optimal for applications with high
memory bandwidth requirements but moderate memory footprint.

– Cache Mode MCDRAM is treated as an effective Level 3 cache between the
KNL tiles and the main DDR4 memory on the node. Memory allocation and
transfers are controlled automatically by the OS kernel. This mode should be
optimal for applications with very large memory footprint, significant memory
bandwidth requirements, and a regular memory access pattern.

– Hybrid Mode MCDRAM can be statically divided into 25/50/75 % blocks
to be used as cache or flat memory. This mode may be best for advanced users
wishing to fully optimize their code or workflow.

2.6 Memory Access Modes

On top of three basic configuration modes for MCDRAM, KNL offers multi-
ple ways to group coherency across the many cores/tiles in the processor. The
following access modes, among others that differ only slightly from these, are
available:

– All-to-All Cache tag directory is distributed across all tiles.
– Quadrant Cache tag directory located in the same quadrant as the corre-

sponding memory. Should improve latency with respect to All-to-All mode
when most accesses are local.

– Sub-NUMA Cluster 2/4 Each half or quadrant is exposed as a separate
NUMA node by subdividing the tiles into clusters. This configuration may be
of high interest to users of hybrid codes trying to balance the number of MPI
tasks and OpenMP threads used during execution. Currently this seems to
be available only for KNL processors with 36 active tiles, and we have been
unable to test this particular configuration.



312 C. Rosales et al.

3 Evaluations

All the results presented in this work were obtained on a Knights Landing pre-
production system, B0 stepping, 1.30 GHz, 64 cores (32 tiles), 16 GB MCDRAM,
96 GB DDR4 (16× 6 DDR4 2133 DIMMs), run with multiple clustering and
memory modes. At the time of submitting this paper we have been able to
complete experiments with the following memory configurations for KNL: Flat
Mode (All-to-All and Quadrant), Cache (All-to-All). In the case of the Flat
Mode we used NUMA memory policy to determine where memory should
reside (MCDRAM or main DDR4 memory). For example to run purely on the
MCDRAM we used numactl --membind=1 ./executable and to run purely on
the main memory we used numactl --membind=0 ./executable. No such con-
trol is available in Cache Mode, of course, since the MCDRAM is not exposed
as a NUMA node in that case.

3.1 Memory Access Scaling

To begin, we created a simple saxpy-loop program to mimic the triad bench-
mark in STREAM [6], so that we could quickly determine a profile showing how
the memory bandwidth scales with the thread count. The loop, consisting of
100,000,000 iterations with double precision data, is repeated 200 times (after
data was initialized), and compiled with only -O3 and -xMIC-AVX2 optimiza-
tions. We present these results first, so that the reader has a clear picture of the
bandwidth capability at different thread counts.

Four types of memory access are shown in Fig. 1. On a node configured with
FLAT mode memory and All-to-All Clustering, three experiments were per-
formed: scaling using DDR4 memory access, by simply invoking the executable;
scaling using MCDRAM, by accessing MCDRAM through a NUMA command
(MC-numa) at execution; and scaling using MCDRAM, through a memkind
library call to hbw malloc within the code (MC-hbw). The fourth experiment used
a node configured with Cache mode memory and All-to-All clustering (MC-cache).

The simple-saxpy results show that a maximum DDR4 bandwidth of 82 GB/s
is reached with 14 threads, while a maximum MCDRAM bandwidth of 419 GB/s
is reached with 64 thread (for MC-numa). These profiles match the triad
STREAM benchmarks that users can derive from the micprun -k stream com-
mand, preinstalled on the KNL. The micprun scan reports STREAM triad max-
imums of 82 GB/s and 428 GB/s for DDR4 and MCDRAM, respectively.

Note, the scaling profiles of MC-numa, MC-cache, and MC-hbw are all the
same, with the same performance ordering throughout the whole range. NUMA
controlled bandwidths are the highest, followed by cache accesses; and accesses
through hbw malloc have the worst performance. The difference between MC-
numa and MC-hbw is about 12 % for the first and last 10 thread counts, and
7 % throughout the middle of the curve. While it does seem reasonable that
MCDRAM access through cache (MC-cache) may have a performance hit (rel-
ative to a non-cached mode), one would expect no difference between the MC-
numa and MC-hbw experiments.



Comparative Study of Performance on KNL 313

Fig. 1. Bandwidth scaling for DDR4 and MCDRAM memory.

3.2 Memory Configuration Effect on MCDRAM Contained
Workloads

This section describes the effect of different memory configuration settings for
workloads that can be fitted inside the MCDRAM memory footprint (MiniFE:
problem size 256× 256× 256 (approximately 6 GB footprint); MiniMD: 500K
atoms and 1K iterations (300 MB); WRF: a standard CONUS 12 km bench-
mark case was used; LBS3D: size 256× 256× 256, with a footprint of approxi-
mately 6 GB; NAS Class C with a memory footprint of approximately 6 GB). All
results correspond to the average of multiple runs with no significant deviation
in runtimes across the sample.

Figures 2 and 3 show the effect of memory configuration on all the appli-
cations studied. Performance has been normalized to that of running in the
slower of the measured modes for each application individually, in order to be
able to show all results in a single graph. Notice how MiniMD, which is highly
insensitive to memory bandwidth, sees little difference from the change in con-
figuration, while LBS3D, MiniFE and NAS BT, EP, FT MG and SP see an
remarkable speedup when running inside MCDRAM. It can be explained by the
fact that these applications are sensitive to the bandwidth.

While the performance of WRF is strongly correlated with memory band-
width, it does have more computational overhead than LBS3D and MiniFE.
Hence, the performance improvements for WRF are slightly less than those for
the simpler LSB3D and MiniFE codes.

Keep in mind that all the workloads fit in MCDRAM in this case, which
explains how closely Cache and Flat/MCDRAM modes are in all cases. In the
Fig. 2, A2A refers to All-to-All mode, while Quad refers to Quadrant mode. NAS
benchmarks presented in Fig. 3 were only executed in All-to-All mode.



314 C. Rosales et al.

Fig. 2. Comparative effect of memory configuration on MCDRAM-contained
workloads.

Fig. 3. Comparative effect of memory configuration on MCDRAM-contained workloads
using NAS

3.3 Memory Configuration Effect on Non-MCDRAM Contained
Workloads

We have compared the performance of several large data sets, from 6 GB to
48 GB memory footprints, when running in Cache Mode, and when running in
Flat Mode and allocating to main DDR4 memory. Figure 4 shows that there is a
significant improvement in performance across all executions, with a minimum
improvement of almost 19 % for both LBS3D and miniFE. As expected, the
benefit of using cache mode decreases as the workload grows beyond the cache
size. The fact that an improvement of nearly 19 % is still present for workloads
with memory footprints that triple the MCDRAM cache size is a good indicator
of the benefit of running in this configuration mode.



Comparative Study of Performance on KNL 315

Fig. 4. Effect of Cache Mode for non-MCDRAM contained workload (LBS3D and
MiniFE).

Our tests show that the benefit from using cache mode is not independent of
the type of memory access and the number of threads used, which is expected.
More work will be necessary in this area to fully characterize the benefits of
using the cache mode, but the results obtained so far are encouraging.

3.4 Scalability and Memory Configuration

Performance for a fixed workload was measured for each of the applications in
each of the previously mentioned memory configuration modes.

Figure 5 shows excellent scalability for MiniFE when using MCDRAM, with
the code scaling very strongly throughout the range of 1 thread per core (up to
64 threads), and then speedup continues at a smaller rate beyond that. When
allocating to DDR4 memory the scalability stalls between 16 and 32 threads,
with the All-to-All clustering outperforming Quadrant cluster asymptotically.
This is because the available memory bandwidth to main memory has been
exhausted.

LBS3D behaves in a similar manner, as shown in Fig. 6, with very strong
scalability up to 128 threads. The main difference between the results for LBS3D
and MiniFE is that after 128 threads LBS3D actually starts to slow down even
when running in MCDRAM. This is most likely due to the sheer number of
streams in flight, which lowers prefetcher efficiency and increases the likelihood of
conflicts. The LBS3D performance also seems to stall earlier, around 16 threads,
when allocation is purposefully set in the main system DDR4 memory rather
than the MCDRAM.



316 C. Rosales et al.

Fig. 5. Scalability of MiniFE on a single KNL processor using different memory con-
figurations.

Fig. 6. Scalability of LBS3D on a single KNL processor using different memory con-
figurations.

In the case of MiniMD we observe relatively less scalability all the way through
the thread range, with no significant changes between different memory configu-
ration modes (see Fig. 7). The similarity of results from different configurations
is expected, since the code does not show a strong dependence on memory band-
width as is typical for Molecular Dynamics codes. The overall scalability seems
weak, but this could be a case where additional tests using multiple MPI tasks
are required in order to obtain a higher performance. That work is currently being
performed.



Comparative Study of Performance on KNL 317

Fig. 7. Scalability of MiniMD on a single KNL processor using different memory con-
figurations.

4 Conclusion and Outlook

This paper has presented a set of studies of the performance of representative
applications and miniapps on Intel KNL.

The results show that Cache Mode operates very efficiently for MCDRAM-
contained workloads, and that memory-bandwidth bound applications see a
performance improvement commensurate with the bandwidth ratio between
MCDRAM and main DDR4 memory. Initial scalability results show promise
for all the applications considered.

As future work we consider detailed studies of the effect of Cache Mode
in workloads that do not fit inside MCDRAM. We also plan on continuing
these studies to further understand the implications of pining the different
processes/threads to cores.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks. Int. J.
Supercomputer Appl. 5(3), 63–73 (1991)

2. Birrittella, M.S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T., Rimmer, T.,
Underwood, K.D., Zak, R.C.: Intel R© omni-path architecture: enabling scalable,
high performance fabrics. In: Hot Interconnects, pp. 1–9. IEEE (2015)

3. Cantalupo, C., Venkatesan, V., Hammond, J.R., Czury�lo, K., Hammond, S.: User
extensible heap manager for heterogeneous memory platforms and mixed memory
policies (2015)



318 C. Rosales et al.

4. Duran, A., Klemm, M.: The Intel many integrated core architecture. In: 2012 Inter-
national Conference on High Performance Computing and Simulation (HPCS), pp.
365–366, July 2012

5. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Technical report SAND2009-5574, Sandia
National Laboratories, 3 (2009)

6. McCalpin, J.: Stream benchmark (1995). www.cs.virginia.edu/stream/ref.html
#what

7. Michalakes, J.: Optimizing weather models for Intel Xeon Phi. Intel Theater Pre-
sentation SC 2013 (2013)

8. NASA Advanced Supercomputing Division: NAS parallel benchmarks (2016).
http://www.nas.nasa.gov/publications/npb.html. Accessed Jun 2016

9. Nourgaliev, R.R., Dinh, T.N., Theofanous, T., Joseph, D.: The lattice Boltzmann
equation method: theoretical interpretation, numerics and implications. Int. J.
Multiph. Flow 29(1), 117–169 (2003)

10. Rosales, C.: Porting to the Intel Xeon Phi: opportunities and challenges. In:
Extreme Scaling Workshop (XSW 2013), pp. 1–7. IEEE (2013)

11. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, Portable Documents. Addison-Wesley Professional, Reading
(2010)

12. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P.,
Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan,
T., Hanrahan, P.: Larrabee: A many-core x86 architecture for visual computing.
In: ACM SIGGRAPH 2008 Papers, SIGGRAPH 2008, pp. 18:1–18:15. ACM, New
York (2008). http://doi.acm.org/10.1145/1399504.1360617

13. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, M., Duda, K.G.,
Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced research WRF
version 3. Technical report, National Center for Atmospheric Research (2008)

14. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S.,
Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon
Phi product. IEEE Micro 36(2), 34–46 (2016)

15. Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond.
Oxford University Press, Oxford (2001)

16. Wong, F.C., Martin, R.P., Arpaci-Dusseau, R.H., Culler, D.E.: Architectural
Requirements and scalability of the NAS parallel benchmarks. In: Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing (1999)

17. Wong, P.C., Shen, H.W., Johnson, C.R., Chen, C., Ross, R.B.: The top 10 chal-
lenges in extreme-scale visual analytics. IEEE Comput. Graph. Appl. 32(4), 63
(2012)

18. Zheng, H., Shu, C., Chew, Y.T.: A lattice Boltzmann model for multiphase flows
with large density ratio. J. Comput. Phys. 218(1), 353–371 (2006)

http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html
http://www.nas.nasa.gov/publications/npb.html
http://doi.acm.org/10.1145/1399504.1360617

	A Comparative Study of Application Performance and Scalability on the Intel Knights Landing Processor
	1 Introduction
	2 Background
	2.1 Mantevo
	2.2 NAS Parallel Benchmarks
	2.3 WRF
	2.4 LBS3D
	2.5 MCDRAM Modes
	2.6 Memory Access Modes

	3 Evaluations
	3.1 Memory Access Scaling
	3.2 Memory Configuration Effect on MCDRAM Contained Workloads
	3.3 Memory Configuration Effect on Non-MCDRAM Contained Workloads
	3.4 Scalability and Memory Configuration

	4 Conclusion and Outlook
	References


