
First Experiences with ab initio Molecular
Dynamics on OpenPOWER: The Case of CPMD

Valéry Weber1, A. Cristiano I. Malossi1(B), Ivano Tavernelli1,
Teodoro Laino1, Costas Bekas1, Manish Modani2, Nina Wilner3,

Tom Heller3, and Alessandro Curioni1

1 IBM Research–Zurich, Zurich, Switzerland
{vwe,acm,ita,teo,bek,cur}@zurich.ibm.com

2 IBM India, Bengaluru, India
mamodani@in.ibm.com
3 IBM, Armonk, USA

{new nina,tjheller}@us.ibm.com

Abstract. In this article, we present the algorithmic adaptation and
code re-engineering required for porting highly successful and popular
planewave codes to next-generation heterogeneous OpenPOWER archi-
tectures that foster acceleration and high bandwidth links to GPUs. Here
we focus on CPMD as the most representative software for ab initio
molecular dynamics simulations. We have ported the construction of the
electronic density, the application of the potential to the wavefunctions
and the orthogonalization procedure to the GPU. The different GPU
kernels consist mainly of fast Fourier transforms (FFT) and basic linear
algebra operations (BLAS). The performance of the new implementa-
tion obtained on Firestone (POWER8/Tesla) is discussed. We show that
the communication between the host and the GPU contributes a large
fraction of the total run time. We expect a strong attenuation of the com-
munication bottleneck when the NVLink high-speed interconnect will be
available.

Keywords: CPMD · POWER8 · CUDA · NVlink · FFT ·
Gram–Schmidt

1 Introduction

Ab initio molecular dynamics (AIMD) is still one of the most commonly used
approaches for calculating the time evolution of molecular and solid state systems
under ambient conditions of temperature and pressure. Specifically, AIMD is
particularly suited for the simulation of complex molecular systems that undergo

IBM and POWER8 are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Linux is a registered trademark of Linus
Torvalds in the United States, other countries, or both. Other product or service
names might be trademarks of IBM or other companies.

c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 228–234, 2016.
DOI: 10.1007/978-3-319-46079-6 16

Ab initio Molecular Dynamics on OpenPOWER with CPMD 229

important reorganizations of their electronic structure (bond breaking and bond
forming), and for which the design of a classical force field is very cumbersome.
Essential to all AIMD techniques is the calculation of the molecular potential
and the corresponding forces obtained from the derivatives of the potential with
respect to the nuclear coordinates. These forces are then used to solve the Newton
equation of motion for calculating of the nuclear trajectories.

Within density functional theory (DFT), the molecular Hamiltonian is
mapped (in principle exactly) into a system of noninteracting particles sub-
ject to a compensating local external potential (the exchange-correlation (xc)
potential), for which we need approximations.

CPMD [1] uses a pseudopotential-based Kohn–Sham DFT description of the
electronic structure in which the Kohn–Sham orbital and the electronic density
are expanded in a plane-wave basis set. In addition, working with plane waves
has the important advantage of simplifying the calculation of energies and forces;
thus some parts of the total energy (such as the kinetic term) are efficiently
computed in the Fourier (reciprocal) space, whereas other parts, like the Hartree
energy and the interaction with external fields, are accurately evaluated in the
real (direct) space. The limiting steps in the plane-wave implementation of AIMD
codes consist in (a) the forward and backward Fourier transforms (FFT) [3]
(wavefunctions, potentials, and energy terms) and (b) the orthogonalization of
the wavefunctions.

The combined use of plane waves and pseudopotential together with highly
optimized algorithms for the computation of energies and forces made CPMD
one of the most efficient DFT-based AIMD codes, with a documented scaling
performance that extends to one million computing cores [5].

The advent of data-centric OpenPOWER systems based on the IBM,
NVIDIA and MELLANOX collaboration offers a new potential for scalability
and performance that leads to Exascale systems. Here, we present our strat-
egy plans in migrating CPMD to the data-centric systems and summarize our
progress so far.

2 Methodology

The basic task in Kohn–Sham based DFT is the minimization of the energy
density functional with respect to the Kohn–Sham orbitals {φi(r)}

Etot = min
{φi}

EKS [{φi(r)}] , (1)

where

E[{φi(r)}] = Ts[{φi(r)}] +
∫

drVext[{φi(r)}]ρ(r)

+
∫

drVH [{φi(r)}]ρ(r) + EXC[{φi(r)}],

and Ts[{φi(r)}] is the kinetic energy, Vext[{φi(r)}] is the external potential gen-
erated by the nuclei, VH [{φi(r)}] is the Hartree (Coulomb) term, EXC[{φi(r)}] is

230 V. Weber et al.

the exchange correlation energy, and ρ(r) =
∑N

i=1 |φi(r)|2 is the electronic den-
sity. Index i runs through the N states of the system. The minimization of (1)
leads to a self-consistent set of Kohn–Sham equations

[
−1

2
∇2

i + Veff[ρ]
]

φKS
i (r) = εiφi(r)KS ,

Veff[ρ] = Vext + VH [ρ] + Vxc[ρ],

Vxc[ρ] =
δExc[ρ(r)]

δρ(r)
.

(2)

Numerically, the solution of the Kohn–Sham equations (2) requires a direct
minimization algorithm that preserves the orthogonality among the Kohn–Sham
orbitals. To optimize this process, Bekas and Curioni [2] recently proposed a
block variant of Gram–Schmidt that ensures high processor performance and
excellent scaling. The new method exploits data locality to allow the best map-
ping on the cache-memory hierarchies of modern processors and also enable opti-
mal utilization of the memory subsystem of hardware accelerators such as GPUs.
Unlike the current state of the art, the simplicity of the new schemes, inherited
from the original Gram–Schmidt method, renders them ideal for enabling much
needed fault-tolerance properties when they are deployed on massively parallel
computing systems.

High efficiency and numerical scalability in CPMD are achieved thanks to
the use of the plane-wave basis set for the expansion of the Kohn–Sham orbitals

φi(r) =
1√
Ω

∑
G

φ̃i(G)eiG·r,

where Ω is the volume of the simulation box, and G is the index that runs
through the reciprocal space vectors. The Fourier coefficients φ̃i(G) are then
related to the Kohn–Sham orbital through the inverse FFT

φ̃i(G) =
1√
Ω

∑
r

φi(r)e−iG·r .

The number of operations required for the conversion of a general function f

f(r) FFT⇐⇒
invFFT

f̃(G),

using 3d FFT is approximately on the order of 5N log N , where N is the number
of grid points in the direct space.

3 GPU Implementation

Achieving overlap between data transfer and computation requires the use of
CUDA streams. A stream is a sequence of operations that are executed on the

Ab initio Molecular Dynamics on OpenPOWER with CPMD 231

GPU in the same order as they are launched from the host. Operations between
streams can be interleaved and potentially run concurrently. Below we summa-
rize the three main computational kernels that we have ported to CUDA so
far. In the following, on-GPU FFT transforms and BLAS operations kernels are
implemented in the cuFFT and cuBLAS libraries, respectively.

Construction of the Electronic Density. The reverse Fourier transform of
the N states φi(r) is distributed over the NS streams that work concurrently.
Each stream is assigned to a CPU thread and performs the sequence of operations
needed to transform a state φ̃i(G) to the corresponding state density ρi(r) =
|φi(r)|2 = |invFFT(φ̃i(G))2|. The summation over i of the N state densities
finally gives the desired electronic density ρ(r).

The computation of a state density starts with an asynchronous communi-
cation of a state φi(G) from the host to the device; the GPU performs an 1-D
FFT and then back copies the data to the host. The host proceeds to the inter-
process communication (MPI all-to-all) while taking care of packing/unpacking
operations. We note that a specific MPI communicator is assigned to each CPU
thread. In the last phase, the data is transferred to the GPU, which performs a
2d FFT before pushing the direct-space state to the host. The host finally adds
up the N contributions to the electronic density.

Applying the Potential to the Wavefunctions. The reverse and forward
Fourier transforms as well as the application of the potential Veff[ρ] to the N
states are distributed over NS streams that work concurrently. Each stream is
again assigned to a CPU thread and performs the sequence of operations needed
to apply the potential to a state V φi(G) = FFT(V invFFT(φ̃i(G))). Thus the
reverse FFT of a state from reciprocal to direct space is identical to the construc-
tion of the electronic density. The direct-space state is then copied to the host,
and the potential is applied. The forward transform takes place by performing
the 2d FFT (on the GPU), followed by the interprocess communication (on the
host) and the last 1d FFT (on the GPU).

Orthogonalization. We modified the block Gram–Schmidt scheme introduced
in [2] to make use of the GPU. Let us assume that only one MPI task is used
(generalization to multiple MPI tasks is trivial). The coefficient matrix (which
corresponds to the coefficients of the expansion of φi on the plane-wave basis)
is block-partitioned column-wise into n blocks of size b as C = [C1, C2, . . . , Cn].
We seek the orthogonalized coefficient matrix C̃ = ortho(C). The rows of the
coefficient matrix C are block distributed over CPU threads. Each CPU thread
is assigned three streams. The first stream, which we refer to as Scmp, is used
for computation, while the other two streams are in charge of host-to-device
(Sh2d) and device-to-host (Sd2h) asynchronous communications of the C and
C̃ matrices, respectively. The key idea of the block Gram–Schmidt scheme is
to loop over the n blocks Ci and to orthogonalize them one after the other.

232 V. Weber et al.

The orthogonalization is done by first projecting out the previously orthogonal-
ized blocks [C̃1, C̃2, . . . , C̃i−1] and then using a Cholesky (of size b × b) based
orthogonalization to produce the C̃i. In each iteration, intermediate reductions
among the threads (the row distribution of the matrix) are needed. The stream
Scmp is in charge of performing the BLAS operations as well as the intermediate
communication for reductions. The role of the stream Sh2d is to asynchronously
copy the block Ci+1 to the GPU for the next orthogonalization iteration. The
stream Sd2h is used to copy C̃i−1 back to the host.

4 Results

To illustrate the progress on porting CPMD to OpenPOWER systems, we show
the strong scaling of the construction of the density, the application of the poten-
tial to the wavefunctions and the orthogonalization process for a box of 128 water
molecules at normal liquid density and under periodic boundary conditions. We
use the GTH pseudopotential [4] and plane-wave and density cutoffs of 100 Ry
and 400 Ry, respectively.

The code is compiled using the IBM XL Fortran compiler for Linux 15.1.4
with optimization flags: -O3 -qhot -qstrict -qprefetch=aggressive:dscr=7
-qsimd=auto -qaltivec -qmaxmem=-1 -qsmp=omp. The C-code was compiled
with the GNU compiler collections 4.9.3. The runs are performed on two IBM
POWER8 systems: Tuleta and Firestone. Both servers are equipped with two
POWER8 processors. Each POWER8 core supports 8 hardware threads, has
64 kBytes L1 cache, 512 kBytes L2 cache, and 8 MBytes of shared L3 cache. Tuleta
runs 12 cores in total at 4.2 GHz, whereas Firestone equips 20 cores at 3.42 GHz.
Tuleta has one Nvidia Tesla K40, with 2880 CUDA cores; Firestone has two Nvidia
Tesla K80 GPUs, each composed of two devices with 2496 CUDA cores. All com-
putations are performed with CUDA compute capability 3.5 (on Tuleta) and 3.7
(on Firestone), both with driver version 7.5. On Firestone, our calculations use
only one device of one K80, i.e., 2496 CUDA cores.

The performance comparison for the three computational blocks described in
Sect. 3 is shown in Fig. 1. First, we observe that the Firestone CPU performance
is better than that of the earlier Tuleta processor for the two FFT computational
blocks. Concerning the GPU results, we observe a dependence on the number
of streams used. The PCI-E bandwidth in the two systems is equivalent; there-
fore once it is saturated, the K40 tends to run slightly faster than half-K80,
because of the slightly greater number of CUDA cores. The optimal number of
streams varies between 4 and 6, depending on the type of computational block.
Using more streams does not help, as memory bandwidth becomes the limiting
factor. By analyzing the output of NVprof, we summarize, in Table 1, the time
percentage spent in computation and memory copies for the construction of the
electronic density and applying the potential to the wavefunctions. Although
all operations are performed asynchronously, the time spent in memory copies
exceeds the computation time by far (about 1/3 of the total time), so that for
at least 2/3 of the total time the GPU cores are idle, waiting for data.

Ab initio Molecular Dynamics on OpenPOWER with CPMD 233

Threads/Streams
1 2 3 4 5 6 7 1012 15 20

N
or

m
al

iz
ed

 ti
m

e

0.1

0.2

0.3
0.4

0.6
0.8
1.0
1.2

Firestone
Tuleta
K80 on Firestone
K40 on Tuleta

(a)

Threads/Streams
1 2 3 4 5 6 7 1012 15 20

N
or

m
al

iz
ed

 ti
m

e

0.1

0.2

0.3
0.4

0.6
0.8
1.0
1.2

Firestone
Tuleta
K80 on Firestone
K40 on Tuleta

(b)

Threads/Streams
1 2 3 4 5 6 7 1012 15 20

N
or

m
al

iz
ed

 ti
m

e

0.1

0.2

0.3
0.4

0.6
0.8
1.0
1.2

Firestone
K80 on Firestone

(c)

Fig. 1. Log-scale performance comparison of three CPMD computational blocks run
on IBM Firestone (20-cores vs. 1-device K80) and IBM Tuleta (12-cores vs. K40). Time
is normalized w.r.t. one core CPU time on Firestone. All CPU runs are performed with
one thread per core. All GPU runs are performed with one stream per thread per core.
(a) Construction of the electronic density. (b) Applying the potential to wavefunctions.
(c) Orthogonalization (results on Tuleta are not available)

Table 1. Time percentage spent in computation and memory copy from device to host
(D2H) and host to device (H2D) for constructing the electronic density and applying
the potential to the wavefunctions. Computation and memory copies are performed
asynchronously.

Kernel Computation [%] D2H [%] H2D [%]

Electronic density 27 95 76

Applying potential 30 92 89

At the current state of development, maximum performance is achieved by
the 2-socket CPU of Firestone for the FFT computational kernels. We expect
that future improvements in the CUDA implementation, including the general-
ization to multi-GPUs, will change this picture in favor of the accelerators.

5 Future Works

Our initial porting phase of CPMD to OpenPOWER architectures highlights
the negative impact of a limited PCI-E bandwidth between the CPU and the
GPU. To alleviate this problem, we will tackle the issue from multiple directions:
at the implementation level, we will move the calculation of the electronic den-
sity and the application of the potential to the wavefunctions to the GPUs and,
more generally, we will minimize data transfer whenever possible. At the archi-
tecture level, we expect a significant improvement from the NVLink high-speed
interconnect equipped by next-generation Garrison POWER8’ systems. NVLink
will enable ultra-fast communication between the CPU and GPU, allowing data
transfer at rates more than 2.5 times faster than traditional PCI-E interconnects.
This should be tremendously beneficial for scenarios such as the one summarized
in Table 1, where multiple streams have overlapped operations, but communica-
tion time is left exposed. Garrison’s systems will be available in Q3–Q4 2016:

234 V. Weber et al.

the study and characterization of the performance gain obtained on such an
architecture will be subject of future work.

References

1. CPMD ver. 4.1: Copyright IBM Corp.1990–2016, Copyright MPI für
Festkörperforschung Stuttgart (1997–2001). http://www.cpmd.org

2. Bekas, C., Curioni, A.: Very large scale wavefunction orthogonalization in den-
sity functional theory electronic structure calculations. Comput. Phys. Commun.
181(6), 1057–1068 (2010)

3. Goedecker, S.: Fast radix 2, 3, 4, and 5 kernels for fast Fourier transformations on
computers with overlapping multiply-add instructions. SIAM J. Sci. Comput. 18(6),
1605–1611 (1997)

4. Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopoten-
tials. Phys. Rev. B 54, 1703–1710 (1996)

5. Weber, V., Bekas, C., Laino, T., Curioni, A., Bertsch, A., Futral, S.: Shedding light
on lithium/air batteries using millions of threads on the BG/Q supercomputer.
In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pp. 735–744 (2014)

http://www.cpmd.org

	First Experiences with ab initio Molecular Dynamics on OpenPOWER: The Case of CPMD
	1 Introduction
	2 Methodology
	3 GPU Implementation
	4 Results
	5 Future Works
	References

