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Abstract. Modern servers provide different features for managing the
amount of energy that is needed to execute a given work-load. In this
article we focus on a new generation of GPU-accelerated servers with
POWER8 processors. For different scientific applications, which have in
common that they have been written for massively-parallel computers,
we measure energy-to-solution for different system configurations. By
combining earlier developed performance models and a simple power
model, we derive an energy model that can help to optimise for energy
efficiency.
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1 Introduction

The power consumption of supercomputers has become a major limiting factor
for further increases in performance. For particularly compute intensive work-
loads like the high-performance Linpack benchmark, currently a power efficiency
of 7 GFlop/s/W can be reached on (smaller) supercomputers [13].

With the goal of keeping the power consumption of an exascale system below
20 MW, an improvement in power efficiency of at least a factor seven is required.
Achieving this goal will require combining multiple strategies.

Leveraging existing system features that impact performance and power con-
sumption (and thus energy-to-solution) is one of them. We review some of these
features available on GPU-accelerated servers based on POWER8 processors.
This includes, e.g., the core clock frequencies of processor and accelerator. Higher
frequencies typically lead to a reduction in time-to-solution and (due to the
behaviour of CMOS technology) unavoidably to an increase in power consump-
tion. In line with previous observations, we observe a reduction of energy-to-
solution for increasing the clock speed, i.e. a “run to idle” clock tuning strat-
egy to be beneficial. For the considered system this effect is particularly large
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because of the high idle power consumption. The memory sub-system attached
to the POWER processor comprising a larger number of memory buffer chips
contributes significantly to that.

To identify the setting for which energy-to-solution becomes minimal perfor-
mance and power models can be helpful. Performance models enable prediction
of time-to-solution for different parts of a work-load, while the power model is
needed to predict the power that is consumed on average while executing a par-
ticular part of the work-load. Combining both multiplicatively allows to predict
energy-to-solution.

For this paper we consider three different applications that come from differ-
ent research areas. They have in common that they are used to target research
questions, for which significant HPC resources are required. Their performance
characteristics, however, differ significantly. B-CALM is an application for sim-
ulating electro-magnetic fields in dispersive media, which is relevant for devel-
oping photonic products. From the area of materials research we selected the
application KKRnano, which implements the Density Functional Theory (DFT)
method in a particularly scalable way. Finally, we also consider the molecular
dynamics package GROMACS.

With this article we make the following contributions:

1. An overview on opportunities for optimising energy-to-solution on GPU-
accelerated POWER8 servers is given.

2. Results for energy-to-solution measurements for kernels of several relevant
scientific applications and different system configurations are given.

3. A simple power model is derived and combined with available performance
models to model energy-to-solution.

After providing background on the relevant technologies in Sect. 2 we discuss
the considered applications in Sect. 3 and the options to tune for energy-efficiency
in Sect. 4. In Sect. 5 we present results from power measurements for different
configurations. Based on these results we derive power and energy models with
empirically determined parameters in Sect. 6. Before presenting our conclusions
in Sect. 8, we give an overview on related work in Sect. 7.

2 Technology Background

All results presented in this paper have been obtained on a single POWER8 8247-
42L Server [8]. This server, which comprises 2 POWER8 Dual-Chip Modules
(DCM), was the first to support acceleration by NVIDIA GPUs. The server
considered here is equipped with 2 Tesla K40m cards.

Each of the POWER8 modules comprises 5 cores, i.e. there are 20 cores
per node. Each core offers two sets of the following instruction pipelines: fixed
point (FXU), floating-point (VSU), pure load (LU) and a load-store unit (LSU).
Instructions are processed out-of-order to increase instruction level parallelism.
The cores feature 8-way Simultaneous Multi-threading. The two VSU support
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VSX (Vector-Scalar eXtensions) instructions, including two-way SIMD, double-
precision fused multiply-add instructions. This results in a theoretical peak per-
formance per node

B
(CPU)
fp = Ncore · fCPU · 8Flop ≤ 590GFlop/s, (1)

where Ncore denotes the number of cores (here Ncore = 20) and fCPU is the core
clock frequency.

Each POWER8 processor is connected to eight external memory buffer chips
(Centaur chips). Each of these 16 chips is connected with one link to one of the
POWER8 processors, which has a bandwidth of 16 GByte/s and 8 GByte/s for
reading and writing, respectively.

Each Tesla K40m hosts a GK110B GPU of the Kepler generation that com-
prises NSM = 15 streaming multi-processors. Each streaming multi-processors
has 64 double precision floating point pipelines capable of executing one fused
multiply-add instruction every clock. This results in a theoretical peak perfor-
mance per GPU

B
(GPU)
fp = NSM · fGPU · 128Flop ≤ 1622GFlop/s, (2)

where fGPU is the GPU’s clock frequency. The device memory is based on
GDDR5 memory technology and is directly attached to GK110B GPU with
a theoretical maximum bandwidth of 288 GByte/s.

The POWER8 processor provides an on-chip controller (OCC) to measure
a set of sensors in the hardware. The data is available out-of-band via a ser-
vice processor and can be read out by a tool called Amester [15,28], which
recently has been made available open-source.1 The power sensors considered
in this publication are sampled with an interval of 0.25 ms. The read-out gran-
ularity depends on the number of sensors, each requires an additional latency
of typically 200 ms. The data is, therefore, gathered in irregular intervals and
is re-sampled at evenly spaced intervals of Δτ = 0.1 s. To calculate the overall
energy consumption we have to aggregate the power consumption measurements
Pi and multiply this with the measurement interval Δτ . The sensor does not
allow for exactly attributing consumed power to individual server components.
For instance, the sensor for the 12 V domain includes different I/O devices, also
covering part of the power consumed by the GPUs. We combine the values of
these sensors when presenting power traces, thus overestimating the actual power
consumed by the GPU.2

As can be seen from Fig. 4, the read-out time interval can be large compared
to the time scale on which power consumption changes. We verified, however,
that energy-to-solution values determined from repeated measurements for the
same application kernel are consistent with a reasonable bound3, which we take
as an indication that the power sensor sampling rates are sufficiently fine.
1 https://github.com/open-power/amester.
2 Comparison with nvidia-smi indicates an overhead of roughly 40 W measured with

idle system.
3 Less than 15 % of the mean value in pathological cases.

https://github.com/open-power/amester
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3 Applications

KKRnano is an application from materials research and features a very high level
of scalability [39]. It is based on the Density Functional Theory (DFT) method
that enables an accurate description of the electronic properties of a material.
Instead of solving for the many-electron wave-function, an effective potential is
utilised, treating the problem as a single electron system via the Kohn-Sham
equation ĤΨ = EΨ . Here Ĥ denotes the Hamilton operator, E the energy and
Ψ the electron wave functions. KKRnano finds solutions to this equation in the
form of the Green function Ĝ(E) = (E − Ĥ)−1, as proposed by Korringa, Kohn
and Rostoker (KKR) [4,24,25].

In large systems, where the number of atoms Natom � 1000, the Green func-
tion formulation can be approximated by systematically truncating long-ranged
interactions between well-separated atoms. This reduces the overall complexity
of the method from cubic to linear and, hence, large systems with 100, 000 atoms
and more become feasible. The high level of exposed parallelism can be exploited
using MPI plus OpenMP or MPI plus compute accelerators, like GPUs.

Most of the computational efforts are spent on solving a linear system Λγ = ω
for each atom. The matrix Λ is block-sparse with a typical block size b = 16.
The inversion is done locally on a single node using the Quasi Minimal Resid-
ual (QMR) method, an iterative solver [16], modified to work over matrices and
vectors with block structure. For the following discussion, we focus on the appli-
cation of the operator to a block-structured dense vector as the central part of
the QMR solver. KKRnano utilises double-precision complex numbers, requir-
ing 16 Byte per element and 8 Flop to perform a complex multiply-accumulate
operation.

Our performance modelling approach is based on the information exchange
function concept [5,30], which captures as a function of the problem size the
amount of information that has to be exchanged within a computer architecture.
On a single node the most important factors are the number of floating-point
operations Ifp as well as the amount of data loaded and stored, namely Ild and
Ist. We further need to consider the data exchanged between the accelerator and
its host, Iacc. For the KKRnano kernel we previously derived these information
exchange functions:

Ifp = 2Niter · Natom

Nnode
· Ntr · Ncl · b3 · 8Flop , (3)

Ild = 2Niter · Natom

Nnode
· Ntr · Ncl · b2 · 16Byte , (4)

Ist = 2Niter · Natom

Nnode
· Ncl · b2 · 16Byte , (5)

Iacc =
Natom

Nnode
· (2 + Ncl) · Ntr · b2 · 16Byte . (6)

To construct a performance model, we follow a procedure described in [3],
where we made the assumption that latency depends linearly on the amount
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Table 1. Parameters used for all KKRnano benchmark runs.

Implementation Natom/Nnode Niter Ntr Ncl b

CPU 20 1000 1000 13 16

GPU 20 10000 1000 13 16

of exchanged information. When executing the application on the POWER8
processors, we expect it to be bound by floating-point operation throughput,
because of the relatively high memory bandwidth. On the GPU, however, we
expect the memory bandwidth to be the limiting factor. Additionally, we have
to take the time needed to exchange data between host and device into account.
We, therefore, make the following semi-empirical modelling ansatz:

ΔtCPU
solver = aCPU

0 + aCPU
1,fp Ifp (7)

ΔtGPU
solver = aGPU

0 + aGPU
1,mem(Ild + Ist) + aGPU

1,accIacc , (8)

where the coefficients have to be determined by fitting this ansatz to performance
measurements. As the constants offsets are sufficiently small, we set aCPU

0 = 0
and aGPU

0 = 0.

B-CALM (Belgium-California Light Machine) is a research application for
studying photonics or in general electromagnetic waves in media [41]. It imple-
ments the Finite-Difference Time-Domain (FDTD) numerical method for sim-
ulating classical electrodynamic interaction, that is to solve Maxwell’s equa-
tions in a medium [37]. The evolution of the discretised electromagnetic fields is
described by a first-order spatial and temporal difference equation, alternating
between magnetic and electrostatic components.

B-CALM exploits the inherently high level of parallelism in the FDTD algo-
rithm by making use of GPUs. Significant gains in performance compared to
CPU-only-implementations have been reported for FDTD in general [27,33,41].
Realistic problems require the use of multiple distributed GPUs due to the mem-
ory footprint.

We apply a similar semi-empirical performance modelling approach as for
KKRnano [3]. We consider a single node where the simulation domain is paral-
lelised over p = 2 GPUs in z-direction. The total time taken for an update step
Δt can be decomposed into three contributions: boundary update Δtbnd, update
of the interior domain Δtbulk and exchange of the boundary Δtcom between the
direct neighbours of the p processes, where the last two operations are over-
lapped. Our semi-empirical performance model ansatz is:

Δt = Δtbnd + max (Δtbulk,Δtcom) , (9)
Δtbulk = abulk + V · bbulk 168Byte, (10)
Δtcom = acom + S · bcom 48Byte, (11)
Δtbnd = abnd + S · bbnd 336Byte, (12)



212 T. Hater et al.

Table 2. Parameters used for all B-CALM benchmark runs.

p = Nproc/Nnode Lx Ly Lz

2 512 512 96

where V = (Lx/p − 2) · Ly · Lz is the local sub-domain’s volume excluding halo
layers and S = Ly ·Lz corresponding halo volume. For our benchmarks, we utilise
a one-dimensional domain decomposition with the parameters summarised in
Table 2.

GROMACS simulates Newtonian equations of motion to perform molecular
dynamics. It is primarily designed for biochemical molecules like proteins, lipids
and nucleic acids. A very important design goal of GROMACS is high perfor-
mance which is achieved through algorithmic optimisations and by exploiting all
available hardware resources. To achieve the latter it uses intrinsic functions for
SIMD vectorisation and supports MPI and OpenMP for parallelisation on CPUs.
CUDA C is used to accelerate the calculation of the non-bonded force compo-
nents on NVIDIA accelerators. GPU accelerated runs of GROMACS utilise task
parallelism between different force components to maximise resource utilisation,
i.e. overlap CPU and GPU work. GROMACS applies a dynamic CPU/GPU load
balancing, however, for optimal efficiency both parts – CPU and GPU – in the
system need to be balanced [1].

For all runs of GROMACS in this article a water box with 1 million water
molecules, i.e. 3 million particles, was simulated for 12000 time steps correspond-
ing to 24 pico seconds of simulation time. We selected the Particle Mesh Ewald
method for the long-range electrostatics and applied a domain decomposition
with 40 domains. Each domain is processed by one MPI rank with 4 OpenMP
threads and respectively 20 domains share a GPU.

4 Tuning for Energy Efficiency

The energy E required to execute a computational task is given by

E =
∫ t0+Δt

t0

dτ P (τ) , (13)

where t0 is the time when the computational task is started, Δt the time needed
to execute the task, and P (τ) the power consumed by the system at time τ . If
we assume the power consumption during execution of the kernel to be constant,
i.e. P (τ) = P then the relation simplifies to E = P · Δt.

For the given node architecture, we identify the following options for changing
the implementation or the execution environment such that Δt and P change:

1. Dynamic voltage and frequency scaling (DVFS) capabilities of the POWER8
processor.

2. Exploitation per POWER8 core DVFS settings and low-power states.
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3. Modification of the GPU’s clock frequency fGPU.
4. Change of GPU driver settings.
5. Use of algorithms optimised for energy-to-solution.

The frequency f a processing element is running at is exerting a signifi-
cant influence on its power drain as voltage has to be increased when f is
raised. The power consumption effectively scales as P ∝ fγ , with γ � 3.
On POWER8 the clock frequency can be managed by restricting the range
of frequencies used by the Linux4 kernel governor. The strategy employed by
the governor follows the on-demand setting and results in the highest avail-
able frequency being chosen during our kernel’s runtime and a power saving
state in between runs. The available frequencies are distributed almost uni-
formly between 2.061 GHz and 3.690 GHz in 50 steps, out of which we chose
fCPU ∈ {2.061, 2.294, 2.493, 2.693, 2.892, 3.092, 3.291, 3.491, 3.690} GHz.

The POWER8 processor comprises a PowerPC5-based On-Chip Controller
(OCC), which provides for real-time control of per-core clock frequency and
power states [17]. Additionally, cores can be switched off under control of the
operating system enabling software to reduce the number of active cores. Instead
of user selection of active cores, one may use thread pinning to move all work-
load to a subset of cores and rely on the OS to detect unused cores and adjust
frequency and power settings accordingly.

Recently, also GPUs became able to operate at different clock frequen-
cies. For the K40 GPU we considered 4 different clock states, namely fGPU ∈
{666, 745, 810, 845}MHz. Changing the GPU frequency of the K40 GPU is pos-
sible via application clock settings which are accessible from the NVIDIA Man-
agement Library (NVML) or the nvidia-smi command line tool [26].

The architecture considered here is best used from an energy-efficiency point-
of-view if significant parts of the application can be off-loaded to the GPUs. The
reason is that the GPU typically requires less energy per floating-point operation.
In many cases, there is no concurrent execution of tasks both, on CPU and GPU,
i.e. the CPU should be largely inactive while a kernel is executed on the GPU.
However, by default the GPU driver is polling on an active lock while waiting
for a kernel to complete. Alternatively, the driver can yield its thread to the
Linux kernel scheduler and thus avoid polling, which is achieved by changing
the device flags from cudaDeviceScheduleSpin to cudaDeviceScheduleYield.
This might come with a small cost penalty for the driver as notification through
the kernel may be delayed.

Recently, optimisation of algorithms for energy-efficiency attracted increasing
attention. In particular, in case of solving linear systems often a choice between
different algorithms exists (see, e.g., [22] for a recent investigation). We have not
pursued this option within the scope of this paper.

4 Linux is a registered trademark of Linus Torvalds in the United States, other coun-
tries, or both.

5 Trademark of IBM in USA and/or other countries.
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5 Measurements Results

Exploitation per POWER8 core DVFS settings and low-power states. In Fig. 1
we show power measurements for the KKRnano solver running either on 20 or
10 cores. We observe that the additional power consumed by the processor after
starting the execution of the kernel is reduced by almost a factor 2. At the same
time, the execution time Δt almost doubles. Given the high base power load for
the processors, memory and GPUs, the overall reduction in power consumption
is less than 15 % and thus energy-to-solution increases by more than 70 %.

Change of GPU driver settings. For the same application kernel, we analysed the
power consumption when off-loading this to the GPUs. While a kernel is running
on the GPU, there are no application tasks running on the CPU. Nevertheless, a
significant increase of the power consumption beyond what is consumed without
the user application running, as can be seen in Fig. 2. Between kernel launches
the CPU performs tasks for steering the solvers progress. We investigated the
effect of advising the CUDA driver to yield its thread to the operating system
scheduler when possible. No effect was observed, consistently for both KKRnano
and BCALM.

Modification of clock frequencies. Next we consider the power consumed by appli-
cations running on the POWER8 processor at different clock frequencies fCPU.
In Fig. 3 we show the power consumed by the processors, the memory subsys-
tem as well as the GPU (including the other I/O devices attached to the 12 V
power rail) during execution of the KKRnano solver on the CPU. As expected,
the power consumption increases with fCPU, while the execution time reduces.

Fig. 1. Power consumption for four invocations of the KKRnano solver running on the
CPU, only. 40 threads are distributed either over 20 (1st and 3rd invocation) or 10
cores (2nd and 4th).
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Fig. 2. Power consumption for two invocations of the KKRnano solver running on the
GPU with the GPU driver polling for completion of the kernel (Spin) or yielding its
thread to the operating system (Yield).

Table 3. Energy-to-solution for the KKRnano solver running on the CPU in units
of kJ.

fCPU (GHz) CPU Disk Fan GPU IO Memory Total

2.06 20.6 2.6 5.8 1.9 4.2 15.5 50.5

2.29 20.3 2.4 5.4 1.7 3.8 14.2 47.8

2.49 20.2 2.2 5.0 1.6 3.5 13.3 45.8

2.69 20.2 2.1 4.7 1.5 3.3 12.5 44.4

2.89 20.3 1.9 4.4 1.4 3.1 11.8 42.9

3.09 20.4 1.8 4.1 1.3 2.9 11.1 41.7

3.29 20.5 1.7 4.0 1.2 2.8 10.5 40.7

3.49 21.5 1.7 3.8 1.2 2.7 10.2 41.1

3.69 23.0 1.6 3.5 1.2 2.6 9.8 41.6

Results for energy-to-solution as a function of fCPU are documented in Table 3.
For small clock frequencies the increase in time-to-solution overcompensates the
reduction in power consumption, which causes energy-to-solution to increase. It
is thus beneficial to use a higher clock frequency.

As shown in Fig. 4, a similar effect is observed for B-CALM, where the kernels
are running on the GPU. Since the kernels are completely running on the GPU,
we consider here only the case where the processor clock is kept fixed at minimal
value and fGPU is varied. In Tables 4 and 5 we show our results for energy-to-
solution for B-CALM as well as the GPU-accelerated version of the KKRnano
solver when using different GPU clock settings. In both cases we observe that
larger fGPU result in smaller energy-to-solution.
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Fig. 3. Power consumption for multiple invocations of the KKRnano solver running
on the CPU for different settings of fCPU.

Table 4. Energy-to-solution for B-CALM in units of kJ.

fCPU (GHz) fGPU (MHz) CPU Disk Fan GPU IO Memory Total

2.06 666 4.1 0.8 1.8 3.8 2.9 4.5 17.8

2.06 745 4.0 0.8 1.8 3.8 2.8 4.5 17.7

2.06 810 3.5 0.7 1.7 3.7 2.5 3.9 15.9

2.06 875 3.2 0.6 1.5 4.0 2.5 3.5 15.2

Fig. 4. Example of a GPU power trace over multiple invocations of B-CALM. GPU
clocks are set to each of the available values.
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Table 5. Energy-to-solution for the KKRnano solver running on the GPU in units
of kJ.

fCPU (GHz) fGPU (MHz) CPU Disk Fan GPU IO Memory Total

2.06 666 7.1 1.1 2.5 6.3 4.0 5.9 26.8

2.06 745 6.0 1.0 2.2 6.4 3.8 5.4 24.8

2.06 810 5.9 0.9 2.0 6.6 3.6 5.0 24.0

2.06 875 5.6 0.8 1.9 7.1 3.5 4.7 23.7

As opposed to the other two codes, GROMACS has a task parallelisation
scheme that allows to execute tasks on CPU and GPU concurrently. Data is
exchanged at defined points in the algorithm [29]. As both, the CPU and the
GPU consume a significant amount of power even when not being in use, an
imperfect overlap of tasks running on any of the 4 processing devices will result
in a loss in energy efficiency. Table 6 shows the energy consumption and time to
solution for a single run as a function of fGPU for different processor frequencies
fCPU. We observe that changing the processor frequency fCPU has a much larger
effect on energy-to-solution than changing the frequency of the GPU fGPU. The
energy to solution is reduced by 8 % to 17 % when using the higher CPU fre-
quency, while variations of fGPU change the energy to solution by at maximum
7 %. While the energy consumed by the GPU increases for larger clock frequen-
cies (up to 40 % with low fCPU, up to 22 % for high fCPU), the energy consumed
by the remaining parts of the compute node is reduced (by up to 11 %) due to
the shorter time to solution (see Fig. 5). On the other hand, increasing fCPU

has a even more significant effect on time-to-solution (up to 32 %), which over-
compensates the increase in CPU power consumption (up to 20 %). The net
effect is a reduction of energy-to-solution at higher clock speed, ranging between
8 % and 20 %.

Finally, we give power measurements for the behaviour of the STREAM
benchmark at different clock settings in Table 7 and the corresponding power
trace in Fig. 6. Notably, the achieved performance does not depend on the core

Table 6. GROMACS energy to solution in kJ.

fCPU (GHz) fGPU (MHz) CPU Disk Fan GPU IO Memory Total Time (s)

2.06 666 365.6 44.6 101.3 203.0 181.4 303.2 1199.2 1395

2.06 745 363.6 45.1 103.2 247.2 191.1 304.4 1254.6 1410

2.06 810 352.1 43.4 98.7 259.7 187.1 293.4 1234.4 1359

2.06 875 349.8 43.0 97.6 284.0 188.7 290.9 1253.8 1344

3.69 666 457.2 33.1 75.4 168.5 139.7 234.0 1108.0 1041

3.69 745 426.3 30.2 69.0 170.1 130.1 215.1 1040.8 949

3.69 810 426.7 30.2 68.3 175.0 129.9 215.1 1045.2 949

3.69 875 403.3 28.9 65.3 205.6 130.7 203.5 1037.2 907
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Fig. 5. GROMACS power trace for different GPU clock settings.

Table 7. Performance of STREAM as a function of the CPU frequency.

fCPU (GHz) Add (GB/s) Copy (GB/s) Scale (GB/s) Triad (GB/s)

2.061 195.1 222.1 338.5 289.7

2.294 197.0 221.8 338.4 293.5

2.493 195.0 221.4 334.5 291.8

2.693 197.4 221.7 337.9 293.9

2.891 196.3 218.6 327.0 293.4

3.291 197.6 222.1 334.3 296.5

3.690 196.0 219.2 330.0 293.1

clock. This is explained by the fact that the serial link between CPU and off-
chip memory controller runs at a fixed speed. In line with previous observations
[12,31], one can conclude that for purely memory bandwidth bound operations
the clock speed can be reduced without impacting performance.

6 Power and Energy Modelling

Our strategy to derive an energy model is as follows. We only consider the case
where all options for tuning for energy efficiency except for changing clock speeds
of CPU and GPU are applied. Furthermore, we make the assumption that power
consumption during application kernel execution is constant. The challenge thus
reduces to the design of a performance model and a power model to determine
time-to-solution Δt and power consumption P , which we assume to be constant
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Fig. 6. Example of a CPU power trace over the four tasks in the STREAM micro-
benchmark. Three of used values for the CPU clock are shown.

during the time interval Δt, as a function of the CPU and GPU clock frequencies
fCPU and fGPU, respectively.

For deriving a power model we choose for a phenomenological approach,
which has the advantage of being sufficient simple to be of practical use. The
concerned compute devices are based on CMOS circuits, where power is typically
split in two components: A static power consumption due to leakage currents and
a dynamic contribution due to charging and de-charging the capacitive elements
of the circuit. The latter is assumed to depend linearly on the clock frequency
and quadratically on the supply voltage. Since the latter needs to be increased
for higher clock frequencies, we can in first approximation assume a cubic depen-
dency on the frequency. We therefore make the following generic ansatz in terms
of the frequency f :

P (f) = p0 + p3f
γ , (14)

with γ = 3 fixed.6 The parameters p0 and p3 will be determined through least-
square fits to experimental data.

In Fig. 7 we show results for power consumption of the KKRnano solver
as well as 4 different STREAM benchmarks, which are all executed on the
POWER8 processor, as a function of fCPU. Multiple measurements have been
obtained by executing the application kernels and benchmarks multiple times in
sequence. Active phases were selected based on thresholding the power for the
GPU halfway between minimum and maximum values. We observe that Eq. (14)
using f = fCPU parametrises the measurements very well.

The instruction mix for the KKRnano kernel is similar to the triad
micro-benchmark. However, the KKRnano kernel achieves a significantly
higher instruction throughput when compared to triad (instruction-per-cycle
IPC = 1.44 versus 0.24 when using 40 threads). The higher throughput is mainly

6 We also performed fits with γ as a free parameter, where we found γ � 3.
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Fig. 7. Power measurement results for different settings of fCPU for the KKRnano
kernel running on the CPU (left) and the STREAM benchmarks (right). The solid
lines show results from fits to Eq. (14).

Fig. 8. Fitting the model against KKRnano GPU (left) and B-CALM (right) experi-
mental results

due to the data reuse in the matrix-matrix multiplication and the resulting cache
efficiency. This is consistent with the observation that p3 is larger for KKRnano
than for the STREAM benchmarks.

We extended the analysis to the GPU-accelerated application kernels, where
we varied fGPU. Results for KKRnano and B-CALM are summarised in Fig. 8.
Again we observe that Eq. (14) provides a good parametrisation of the measured
power.

Next, we extend the performance model for KKRnano introduced in Eq. (7)
by considering the parameter aCPU

1,fp to be a function of the clock frequency fCPU.
We observe from Fig. 10 that the results for different fCPU can be parametrised
as follows:
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Fig. 9. Estimated distributions of power drain for fCPU = 3.69 GHz for the four
STREAM micro-benchmarks on the CPU level (left) and on the node level (right).

Fig. 10. KKRnano performance model results versus processor clock fCPU.

1
aCPU
1,fp (fCPU)

= bCPU
1,0,fp + bCPU

1,1,fp · fCPU (15)

with the empirical factors bCPU
1,0,fp = 0.28GFlop/s and bCPU

1,1,fp = 5.01GFlop.
Plugging this result into Eq. (7) gives us ΔtCPU

solver as a function of the processor
clock speed fCPU. We combine this with the power model of Eq. (14) to derive
the following energy model:

ECPU
solv = P (fCPU) · Δt(fCPU) = Ifp

p0 + p3 · f3
CPU

bCPU
1,0,fp + bCPU

1,1,fp · fCPU
. (16)
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Fig. 11. Modelled energy-to-solution metric for the KKRnano CPU solver as a function
of the processor core clock fCPU. In comparison the measured data from Table 5 is
shown.

In particular, if p0 is large compared to p3 · f3
CPU and if bCPU

1,0,fp is small
compared to bCPU

1,1,fp · fCPU the frequency dependence may be dominated by
the denominator. In this case we expect ECPU

solv ∝ f−1
CPU. Once fCPU becomes

large, the numerator will dominate such that ECPU
solv ∝ f2

CPU. In Fig. 11 we plot
model results for a wide range of processor clock frequencies. We observe initially
energy-to-solution to drop, until for large frequencies the numerator prevails.

Consistent with the results shown in Table 3 we determine an – in terms of
energy-efficiency – optimal clock setting, namely fCPU = 3.5GHz. We find our
model systematically underestimating the required energy by maximally around
7% over the range 2–4 GHz. KKRnano on the CPU achieves energy efficiencies
of around 45 J/GFlop or the equivalent of 22.2MFlop/J.

7 Related Work

Given the growing importance of power consumption of modern HPC systems,
there is a growing number of papers reporting on work related to power mea-
surements as well as power modelling.

An early framework for accurate and scalable power profiling is PowerPack
[18], which relies however on power data acquisition devices to be added to
all cluster nodes. Another framework is PowerScope, which was developed for
mobile compute platforms [14]. Some node architectures feature fine-grained
power measurements capabilities, which are often based on reconfigurable hard-
ware components for high-frequency read-out of power sensors (see, e.g., [20]).
Demmel and Gearhart proposed to use on-chip counters, more specifically Intel’s
Running Average Power Limit (RAPL) interface, for measuring energy consump-
tion at subroutine level [10]. Investigations about the use of the RAPL interface
for measuring memory power can be found in the literature [9]. Such kind of mea-
surements using counters that can be read-out from the processor have become
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easier with the integration into performance measurements frameworks like PAPI
[42]. An integration of the the node-level power measurement framework Amester
into Vampir has been reported by Knobloch and others [23]. Another approach
is taken, where power measurement capabilities are integrated into a Linux ker-
nel module [32]. Both, the PowerPack as well as the PAPI framework have been
used to explore the energy footprint of linear algebra algorithms [11].

Other work aims on modelling power consumption at processor level. For
instance, a power measurement and runtime power modeling framework for the
Intel Netburst architecture is presented [21]. Processor level power models have
also been proposed and used in the context of processor selection to identify,
e.g., processors that yield a certain frequency in a given power budget [45]. At a
time, when direct power measurement capabilities were largely non-existing, Van
Bui and others advocated using power models that used performance counters
as input, for estimating power consumed by applications [6]. Such approaches
can be exploited for dynamic profitability estimation of dynamic voltage and
frequency scaling (DVFS) [12,31].

With GPUs becoming more widely used as computational devices, research
was started on power models for GPUs. Statistical methods to model power and
energy consumption of common high performance kernels have been employed
successfully [19]. In a new approach hardware performance counter data is
combined with machine learning to model power and performance for modern
GPU-based systems [34]. Also Wu and others applied machine learning in their
work [44].

Other approaches to power modelling target numerical kernels. Statistical
methods like multi-variable regression are used to model the power and perfor-
mance of the High-Performance Linpack benchmark [36]. Model parameters are
application parameters like matrix size or block size. The same numerical ker-
nel is also considered [7]. Power models for another important numerical kernel,
namely Cholesky factorisation, are considered using a semi-analytical approach
[2]. Machine learning techniques are also employed to create application specific
power models [40]. Input parameters include application specific plus system
parameters, like clock frequency. For an extensive survey of power and energy
efficient techniques for high performance numerical linear algebra operations we
refer to the work of Tan and others [38].

Performance models for more complex applications are, e.g., considered in
[43]. Here Wittmann and others use models to explore energy efficiency of a com-
putational fluid-dynamics (CFD) application based on the Lattice Boltzmann
method on Intel Sandy Bridge multi-core processors. They combined an ana-
lytic performance model with a simple phenomenological power model. A semi-
analytical performance and power model for another CFD application, namely
a mini-application version of the spectral element method based code Nek5000,
is presented in [35].
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8 Summary and Conclusions

In this paper we investigated for several scientific applications, how energy effi-
ciency of currently available, GPU-accelerated POWER8 servers can be opti-
mised. We discussed several options for how to change application and/or sys-
tem configuration such that energy-to-solution for a given workload could be
reduced. We found that, in particular, adjusting processor or GPU clock have
major impact on energy-to-solution. Except for the STREAM benchmarks we
found that applications typically benefit from higher clock speeds. This behav-
iour can be explained by the relatively high base power consumption. Within
a certain range of clock frequencies it is thus more beneficial to reduce time-
to-solution by using higher clock frequencies. For applications running on the
processor only, this applies, however, only to applications that are limited by
instruction throughput.

Furthermore, we found that the measured power consumption can be
described by a simple phenomenological power model, which describes power
consumption as a function of the CPU or GPU clock frequency. For one of the
application kernels, the KKRnano solver, we extended a performance model to
include variations of the processor clock frequency. By combining the perfor-
mance and power model we derived a simple energy model. The curve shown in
Fig. 11 is based on four parameters, only, which are relatively easy to determine.
This can be used to tune the clock frequency. For KKRnano the model results
and measurements lead to a reasonably consistent results for the CPU clock
frequency fCPU that minimises energy-to-solution.

A significant fraction of the base power consumption, i.e. the power that is
consumed without an application running, is due to the memory subsystem. The
base power consumption on servers based on POWER8 processors with a smaller
number of memory buffer chips is lower and therefore the clock frequency, for
which power consumption is minimised, is likely to be smaller. The picture is
expect to change again for the recently announced POWER9-SO processors with
directly attached memory.
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Forschungszentrums Jülich, Reihe Schlüsseltechnologien, vol. 74 (2014)

31. Rountree, B., Lowenthal, D.K., Schulz, M., de Supinski, B.R.: Practical perfor-
mance prediction under dynamic voltage frequency scaling. In: 2011 International
Green Computing Conference and Workshops (IGCC), pp. 1–8, July 2011

32. Ryffel, S.: LEA2P: the Linux energy attribution and accounting platform. Master’s
thesis, Swiss Federal Institute of Technology (ETH) (2009). http://ftp.tik.ee.ethz.
ch/pub/students/2009-FS/MA-2009-04.pdf

33. Shahmansouri, A., Rashidian, B.: GPU implementation of split-field finite-
difference time-domain method for Drude-Lorentz dispersive media. Prog. Elec-
tromagnet. Res. 125, 55–77 (2012)

34. Song, S., Su, C., Rountree, B., Cameron, K.W.: A simplified and accurate model
of power-performance efficiency on emergent GPU architectures. In: 2013 IEEE
27th International Symposium on Parallel Distributed Processing (IPDPS), pp.
673–686, May 2013

http://dx.doi.org/10.1007/s00450-013-0245-5
http://dx.doi.org/10.1007/s00450-013-0245-5
https://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/
https://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/
http://on-demand.gputechconf.com/gtc/2013/webinar/gromacs-kepler-gpus-gtc-express-webinar.pdf
http://on-demand.gputechconf.com/gtc/2013/webinar/gromacs-kepler-gpus-gtc-express-webinar.pdf
http://ftp.tik.ee.ethz.ch/pub/students/2009-FS/MA-2009-04.pdf
http://ftp.tik.ee.ethz.ch/pub/students/2009-FS/MA-2009-04.pdf


IWOPH 2016: Exploring Energy Efficiency 227

35. Song, S.L., Barker, K., Kerbyson, D.: Unified performance and power modeling of
scientific workloads. In: Proceedings of the 1st International Workshop on Energy
Efficient Supercomputing, E2SC 2013, pp. 4:1–4:8. (2013). http://doi.acm.org/10.
1145/2536430.2536435

36. Subramaniam, B., Feng, W.C.: Statistical power and performance modeling for
optimizing the energy efficiency of scientific computing. In: Green Computing and
Communications (GreenCom), pp. 139–146, December 2010

37. Taflove, A., Hagness, S.C.: Others: Computational Electrodynamics: The Finite-
Difference Time-Domain Method. Artech House, Norwood (1995)

38. Tan, L., Kothapalli, S., Chen, L., Hussaini, O., Bissiri, R., Chen, Z.: A survey of
power and energy efficient techniques for high performance numerical linear algebra
operations. Parallel Comput. 40(10), 559–573 (2014)

39. Thiess, A., et al.: Massively parallel density functional calculations for thousands
of atoms: KKRnano. Phys. Rev. B 85, 235103 (2012)

40. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW), pp. 990–998,
May 2012

41. Wahl, P., Ly-Gagnon, D., Debaes, C., Miller, D., Thienpont, H.: B-CALM: an
open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics. In:
2011 11th International Conference on Numerical Simulation of Optoelectronic
Devices (NUSOD), pp. 11–12, September 2011

42. Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra,
D., Moore, S.: Measuring energy and power with PAPI. In: 2012 41st International
Conference on Parallel Processing Workshops (ICPPW), pp. 262–268, September
2012

43. Wittmann, M., Hager, G., Zeiser, T., Treibig, J., Wellein, G.: Chip-level and multi-
node analysis of energy-optimized lattice Boltzmann CFD simulations. Concur.
Comput. Pract. Exper. 28, 2295–2315 (2016). doi:10.1002/cpe.3489

44. Wu, G., Greathouse, J.L., Lyashevsky, A., Jayasena, N., Chiou, D.: GPGPU per-
formance and power estimation using machine learning. In: 2015 IEEE 21st Inter-
national Symposium on High Performance Computer Architecture (HPCA), pp.
564–576, February 2015

45. Zyuban, V., Taylor, S.A., Christensen, B., Hall, A.R., Gonzalez, C.J., Friedrich, J.,
Clougherty, F., Tetzloff, J., Rao, R.: IBM POWER7+ design for higher frequency
at fixed power. IBM J. Res. Dev. 57(6), 1:1–1:18 (2013)

http://doi.acm.org/10.1145/2536430.2536435
http://doi.acm.org/10.1145/2536430.2536435
http://dx.doi.org/10.1002/cpe.3489

	Exploring Energy Efficiency for GPU-Accelerated POWER Servers
	1 Introduction
	2 Technology Background
	3 Applications
	4 Tuning for Energy Efficiency
	5 Measurements Results
	6 Power and Energy Modelling
	7 Related Work
	8 Summary and Conclusions
	References


