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Abstract. All-atom molecular dynamics simulations of biomolecules
provide a powerful tool for exploring the structure and dynamics of
large protein complexes within realistic cellular environments. Unfor-
tunately, such simulations are extremely demanding in terms of their
computational requirements, and they present many challenges in terms
of preparation, simulation methodology, and analysis and visualization of
results. We describe our early experiences porting the popular molecular
dynamics simulation program NAMD and the simulation preparation,
analysis, and visualization tool VMD to GPU-accelerated OpenPOWER
hardware platforms. We report our experiences with compiler-provided
autovectorization and compare with hand-coded vector intrinsics for the
POWER8 CPU. We explore the performance benefits obtained from
unique POWER8 architectural features such as 8-way SMT and its value
for particular molecular modeling tasks. Finally, we evaluate the perfor-
mance of several GPU-accelerated molecular modeling kernels and relate
them to other hardware platforms.

1 Introduction

Atomic-detail molecular dynamics (MD) simulation provides researchers with
a powerful computational microscope that permits the study of biomedically-
relevant processes that are too fast to observe first-hand, and that occur in
the crowded molecular environment of living cells, that cannot be seen with
even the most advanced experimental microscopes. Many societal challenges are
addressed by biomolecular modelers employing state-of-the-art parallel comput-
ing platforms, for example, treatment of viral infections [1,2] and addressing the
antibiotic resistance crisis [3]. The cellular processes of interest to biomedical
researchers take place in molecular assemblies made of millions to hundreds of
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millions of atoms. Such simulations are extremely demanding in terms of prepa-
ration, computation, storage, analysis, and visualization, and they continue to
push the limits of parallel computing.

State-of-the-art petascale supercomputing platforms such as Blue Waters [4]
and Titan [5] contend with significant challenges posed by constraints on space,
power, and cooling. To achieve higher application performance, future sys-
tems must directly address these challenges with performant and energy effi-
cient computing technologies that take maximal advantage of many-core CPUs,
GPU accelerators, non-volatile storage systems, and new intra- and inter-node
interconnects. One of the upcoming leadership-class computing systems for
open science will be Summit, a pre-exascale supercomputer to be composed of
roughly 3,400 GPU-accelerated compute nodes, fielded by the U.S. Department
of Energy, and housed at the Oak Ridge Leadership Computing Facility. While a
development environment directly comparable to the final Summit system is not
yet available, existing OpenPOWER platforms support GPU accelerators and
associated compilers and libraries, allowing application porting to begin today.

Below we describe the adaptation of representative and performance-critical
algorithms in the widely used molecular dynamics program NAMD [6,7], and
the molecular analysis and visualization tool VMD [8–10], on an IBM S822L
OpenPOWER hardware platform with NVIDIA Tesla K40m GPUs.

2 Overview of ORNL Crest Test System

Except where noted, the application porting and performance evaluation activi-
ties reported here were performed using the “Crest” development systems made
available through the Center for Accelerated Application Readiness (CAAR)
at the Oak Ridge National Laboratory (ORNL), in preparation for the next-
generation Summit supercomputer. The ORNL Crest system is currently com-
posed of four compute nodes and an associated login node for software develop-
ment and testing. The Crest compute nodes are IBM S822L servers configured
with two 3.7 GHz 10-core POWER8 dual-chip CPU modules (DCMs), 256 GB of
RAM among four NUMA nodes, four NVIDIA Tesla K40m GPUs, and two Mel-
lanox Connect-IB FDR InfiniBand (56 Gbit/s) NICs. Figure 1 shows a simplified
block diagram of the S822L hardware used in the Crest compute nodes.

The current software environment on Crest supports several compilers includ-
ing GCC 4.9.3 and IBM XLC 13.1.2, both supporting compile-time auto-
vectorization of performance critical loops using POWER8 VSX SIMD instruc-
tions. Although NAMD and VMD are both endianism-independent, the little-
endian byte ordering used by the Linux operating system for OpenPOWER is
beneficial for applications originally developed on popular little-endian platforms
such as Intel x86, and it is necessary for efficient use of GPU accelerators. The
NVIDIA Tesla K40m GPUs are supported by natively-hosted CUDA 7.5 com-
pilers, and an assortment of GPU-accelerated subroutine libraries. At the time
of writing, the CUDA 7.5 implementation for OpenPOWER does not yet sup-
port peer-to-peer GPU transfers. Below we discuss the use of specific compiler
optimization features in the context of NAMD and VMD algorithms.
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Fig. 1. Simplified block diagram of the IBM S822L compute nodes used in the ORNL
Crest development system. Two POWER8 dual-chip CPU modules (DCMs) are shown
with associated NUMA CPU and PCIe bus topology interconnecting the CPUs, PCIe
host bridge (PHB) I/O channels, NVIDIA Tesla K40m GPUs, and Mellanox Connect-
IB InfiniBand network adapters (IB NIC). The two DCMs contain two 5-core POWER8
processors, each with 8-way hardware simultaneous multithreading (SMT), for a total
of 20 CPU cores and 160 SMT threads. Each CPU contains its own memory controller
with a 96 GB/s bandwidth channel to a set of four CDIMMs (DIMMs paired with a
so-called “Centaur” DIMM controller), giving each DCM 192 GB/s DRAM bandwidth,
yielding a full system peak DRAM memory bandwidth of 384 GB/s. The two CPUs
on a DCM are linked by a 32 GB/s SMP “X” bus, and the two DCMs communicate
using four 12.8 GB/s SMP “A” bus links. Each of the four NVIDIA Tesla K40m GPUs
are directly connected to the on-chip PCIe 3.0x16 PCIe host bridge (PHB) channel on
a corresponding CPU. System components and peripherals less relevant to molecular
dynamics simulation and analysis workloads are not shown.

3 NAMD: Parallel Molecular Dynamics Simulation

For the current Titan system and the future Summit system the majority of arith-
metic performance is provided by GPU accelerators. NAMD currently exploits
GPU acceleration for the two most compute intensive parts of molecular dynam-
ics simulation: non-bonded force computation and Particle Mesh Ewald (PME)
reciprocal computation. The remaining computations, e.g., bonded forces, are per-
formed on the CPU. Continuing this existing GPU acceleration model, here we
focus on further optimization of the two GPU parts. The starting point for our
work is the NAMD CVS repository version 2015-04-23, which is essentially NAMD
2.10 with CUDA kernels modified to stream results incrementally to the CPU. In
the following discussion, all changes and comparisons are made with respect to
this version of NAMD. The algorithm changes described below are all new and
are planned for inclusion in the NAMD 2.12 release.
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3.1 Non-bonded Force Computation

Three major changes were made to the way non-bonded force computation is
performed in NAMD. First, we broke up the compute objects that used to be
on a single thread block, into “tile lists” that can be computed by any thread
block. Second, Newton’s third law was applied to eliminate duplicate calculation
of pairwise forces. Third, we removed synchronization from the thread blocks to
allow individual warps to perform the computation independently. We discuss
each of these changes in further detail below.

Non-bonded forces in NAMD are calculated in compute objects that define all
pairwise interactions between two sets of atoms. In the GPU-accelerated version
of NAMD, computes are further split into 32×32 tiles as illustrated in Fig. 2(a).
In Fig. 2(a), gray tiles do not have any atom pairs that interact and will be
skipped. In the previous version of NAMD, a single thread block was assigned
per compute. In the new version of the kernel, computes are broken into tile
lists as shown in Fig. 2(b). Tile lists from different computes can be mixed and
executed on any thread block. This gives rise to more flexible execution and a
better opportunity for load balancing within warps in the thread block.

Fig. 2. (a) A so-called compute object consists of 32 × 32 tiles. Gray tiles have no
interactions and are skipped. The previous version of the non-bonded force kernel
executed an entire compute on a single thread block. (b) The new non-bonded kernel
splits the compute into tile lists that can be executed on any thread block.

The total non-bonded force acting on atom i is given as a sum of all pairwise
forces f i =

∑
j f ij . Due to Newton’s third law, once f ij are known, the force

acting on atom j can be obtained from f j =
∑

i −f ij . In the previous version of
the non-bonded force kernel, forces f ij were computed on each thread of a warp
and then accumulated to form f i. This is illustrated in Fig. 3(a) for warp size 4,
where a warp of threads loops through the tile in horizontal lines starting at line
j = 1 and ending at j = 4. Trying to accumulate to f j during this loop would
give rise to a race condition since all threads in the warp are storing to the same
variable. Therefore, a second computation was necessary to compute forces f j
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Fig. 3. Pairwise force computation in a 4 × 4 tile (a) previously and (b) in the new
scheme. In (a) tile is looped in horizontal lines, while in (b) tile is looped in diagonal
lines. The looping index is indicated on the tile elements and elements with the same
index belong to the same warp.

by looping through the tile in vertical lines. In the new scheme illustrated in
Fig. 3(b), we can avoid this second computation by looping though the tile in
diagonal lines [11]. We start from the diagonal marked by “1”, and then proceed
to the sub-diagonal marked by “2”, etc. Note how the diagonals wrap around
the tile ensuring that all pairwise interactions are handled. In this scheme there
is no race condition since every thread stores to different f i and f j variables.
Within the 32 × 32 tile some pairwise forces are excluded based on the force
field definition (such as atoms sharing a bond or an angle), the end of the atom
list (when the patch has non-modulo 32 atoms), and the neighbor list cut-off
radius. In addition, one half of interactions are excluded on “self” tiles where
the two sets of atoms are the same. Exclusions tests are performed efficiently
using an array of 32× 32-bit unsigned int variables for each tile to keep track
of the exclusions, where a 0-bit means “exclude” and 1-bit means “compute”.
The exclusion bit masks are created during the neighbor list build using a com-
pressed lookup table [7]. For each of the 32 iterations through the tile, we must
shift the input (atom coordinates, charges, etc.) and output (force) variables
between threads within the warp. We use the shfl() instructions first intro-
duced in the Kepler GPU architecture to do this shifting with warp-synchronous
programming entirely in GPU registers, thereby eliminating the need for shared
memory and the additional synchronization operations it requires.

After the 32 × 32 tile is computed, forces f j are stored in a global memory
buffer using the atomicAdd() instruction and the kernel proceeds to the next
tile with different j atoms but the same i atoms. Keeping i atoms constant
reduces the number of memory accesses since for each tile only the j atoms must
be loaded from global memory. After the warp finishes all tiles it was assigned,
forces f i are stored in global memory using the atomicAdd() instruction.
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Rnl

Rbb

Fig. 4. Bounding boxes for two sets of eight atoms. Bounding box distance Rbb is well
within the neighbor list cut-off distance Rnl, however none of the atoms are within the
neighbor list cut-off.

In the previous version of NAMD, the neighbor list was built by the non-
bonded force kernel by checking all atom pair distances in every 32×32 tile. We
implemented a more efficient neighbor list builder that first builds an approxi-
mate neighbor list based on the bounding boxes of sets of 32 atoms, and then
using that approximate list as input, builds the atom-based neighbor list in the
non-bonded force kernel. The bounding-box approximation always overestimates
the true neighbor list, as is illustrated in Fig. 4 where, although the bounding
box distance Rbb is well within the neighbor list cut-off distance Rnl, none of the
atoms are actually within the neighbor list cut-off. In the situation illustrated
in Fig. 4, the bounding-box neighbor list would contain the two sets of atoms,
but this entry would be pruned away in the atom-based distance check in the
non-bonded force kernel.

We have also implemented the neighbor list for the Generalized Born implicit
solvent (GBIS) kernels. Since the GBIS method does not use force-field exclu-
sions and includes self-energies (explicit solvent calculations do not), a separate
GBIS version of the neighbor list must be created. The bounding-box neighbor
lists for both the GBIS and explicit solvent calculations are the same. During
the atom-based neighbor list build in the non-bonded force kernel, we keep track
of both the regular and the GBIS tile lists by assigning their indicators to the
lower and upper 16-bits of a 32-bit integer, respectively. The two lists are finally
separated in the neighbor list sorting step where the GBIS list is produced by
choosing the upper bits, and the regular list by choosing the lower bits.

Benchmarks of the non-bonded force kernel were performed on a single
Tesla K40m GPU of the Crest system for explicit solvent and GBIS systems.
The explicit solvent systems included DHFR with 23,588 atoms, ApoA1 with
92,224 atoms, and STMV with 1,066,628 atoms, while the implicit solvent sys-
tems included GP (rabbit muscle glycogen phosphorylase, PDB ID 2GJ4) with
13,340 atoms and an empty HIV capsid with 5,662,344 atoms. For the explicit
solvent cases, the benchmarks were performed using the non-streaming versions
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Fig. 5. Speedup of non-bonded force kernels vs. NAMD CVS version 2015-04-23 for
(a) explicit solvent regular and neighbor list versions and (b) Generalized Born implicit
solvent kernels.

of the kernels and we disabled the GPU PME reciprocal computation (NAMD
script command PMEOffload no) to ensure that it did not interfere with the
non-bonded force kernel timings. The kernel timings were obtained from the
average kernel run time reported by the CUDA nvprof profiler.

Figure 5 shows the speedup observed for both explicit and implicit solvent
cases. In the explicit solvent case shown in Fig. 5(a) we observe 1.4× to 1.6×
speedup for the regular non-bonded force kernel and 1.7× to 2.2× speedup for
the non-bonded neighbor list builder kernel. The neighbor list version gets a
larger speedup due to the use of the bounding box neighbor list approximation,
which reduces the number of tiles that must be checked at atom level.

In the case of explicit solvent, shown in Fig. 5(b), we observe much larger
speedups: 6× speedup for the smaller GP system and 3× speedup for the HIV
capsid system. Figure 5(b) also shows the breakdown of speedups for the three
phases of the GBIS computation as well as the Van der Waals (VdW) and
electrostatic parts.

3.2 PME Reciprocal Force Computation

NAMD uses the smooth particle mesh Ewald version [12] of the famous particle
mesh Ewald (PME) method [13]. The PME method consists of five main parts:
(1) spread charges on to grid, (2) 3-D Fast Fourier Transform (FFT) from direct
to reciprocal space, (3) solve Poisson equation on the grid in the reciprocal space,
(4) 3-D FFT back from reciprocal to direct space, and (5) gather atom forces from
the direct space grid. In the previous version of NAMD, only charge spreading
(1) and force gathering (5) were performed on the GPU while the 3-D FFT and
Poisson solve were performed on the host CPUs. In the new version, we moved all
of the PME computation to the GPU and changed the way the charge spreading
and force gathering is done, as detailed below. We implemented a multi-GPU
3-D FFT solver that uses a pencil, slab, or box decomposition depending on the
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Fig. 6. PME (a) pencil, (b) slab, and (c) box decompositions for the direct to reciprocal
space FFT. A single GPU is assigned to each pencil, slab, or box, respectively.

number of GPUs in use. These decompositions are illustrated in Fig. 6 for the
direct to reciprocal space FFT step. We assign a single GPU for each pencil, slab
or box. This means that we would use nine GPUs for the pencil decomposition
in Fig. 6(a), three GPUs for the slab decomposition in Fig. 6(b), and a single
GPU for the box decomposition in Fig. 6(c).

For the pencil decomposition in Fig. 6(a), we perform 1-D FFTs in x, y, and
z directions in order to compute the full 3-D FFT. After each 1-D FFT, we need
to 3-D transpose the grid such that the current FFT direction is contiguous
in memory. For example, after 1-D FFT in the x direction, we transpose the
grid to (y, z, x) order and then proceed with the 1-D FFT in the y direction.
For the slab decomposition in Fig. 6(b), we perform 2-D FFT in a xy slab, and
then 1-D FFT in the z direction. For the box decomposition in Fig. 6(c), we
simply perform a single 3-D FFT on the entire grid. The 1-D, 2-D, and 3-D
FFTs are computed using NVIDIA’s cuFFT library. For the reciprocal to direct
space FFT, we perform the same steps in reverse. For example in the case of
PME pencil decomposition, we would first perform 1-D FFT in the z direction,
then in the y direction, and finally in the x direction. The 3-D transposes are
now performed in the reverse order as well.

The 3-D transpose involves communication between GPUs and can therefore
become the most time consuming part of the PME reciprocal computation. For
communication within a Crest node, we use the CUDA cudaMemcpyPeerAsync()
function. We were not able to use direct GPU-to-GPU (known as peer-to-peer)
communication since this is not currently enabled on the IBM POWER8 plat-
form. We expect future NVLink GPU interconnect technology to enable direct
GPU-to-GPU transfers and to make communication between GPUs on the same
node much faster. For communication between nodes, we copy the GPU mem-
ory to a CPU buffer and then use the Charm++ communication layer to send
the buffer to the receiving node. On the receiving node, we then copy the CPU
buffer to the GPU. Future versions of Charm++ will hopefully enable direct
GPU-to-GPU communication between nodes on capable hardware.

As mentioned earlier, we also changed the way the charges are spread on
the grid. In the previous version of NAMD, charges on an atom patch were
spread into a sub-grid and then the sub-grids were communicated among the
PEs to form the PME pencils (with similar operation for PME slabs and boxes).
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Fig. 7. Speedup for PME force computation vs. NAMD CVS version 2015-04-23 for
DHFR system with 23,588 atoms and PME grid of size 64× 64× 64. Benchmarks were
run on a single node of the Titan supercomputer.

We changed the charge spreading such that instead of communicating grid
points, we communicate the charges to the GPU that needs them. The GPU
will then spread the charges and start working on the 3-D FFT. Note that since
atoms near neighboring PME pencils boundaries spread to multiple pencils, we
need to communicate a halo of atoms of the width of the PME interpolation
order to obtain correct results.

Similarly to charge spreading, force gathering was changed to communicate
forces instead of grid points. In detail, force gathering is now done on the GPU
for all atoms that are within its PME pencil. Since atoms share neighboring PME
pencils, some of the gathered forces will be partial at this stage. Therefore, after
force gathering, the GPU communicates the partial forces to the CPU, and then
the CPU combines the forces from multiple neighboring pencils to form the total
PME reciprocal force acting on each atom.

In particular for small systems, where there is only a single GPU performing
the PME reciprocal computation (i.e. box decomposition), the GPU can perform
the entire PME reciprocal force computation on its own. This greatly improves
PME reciprocal computation for single GPU runs, as is shown in Fig. 7.

3.3 NAMD Performance on Crest Versus Titan

In Fig. 8 we compare NAMD performance on a single node of Crest versus four
nodes of Titan. Based on the difference in the underlying GPU hardware perfor-
mance, K40m on Crest and K20X on Titan, one would expect about 7 % better
kernel performance on Crest (for K40m without GPU Boost since users are not
allowed to change the GPU settings on the Crest cluster). We see from Fig. 8
that the non-bonded force kernel performance on Crest is always somewhat less
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Fig. 8. Relative performance of a single Crest node vs. four nodes of Titan.

than the theoretical maximum, which is to be expected. We also see that Crest
runs some of the simulations up to 30 % faster than Titan, while others (GP)
actually have lower performance on Crest. Further work is necessary to see why
the performance on Crest sometimes dips below the performance on Titan.

4 VMD: Simulation Preparation and Analysis

VMD [8] is a popular tool for MD simulation preparation, analysis, and visu-
alization. In concert with a sophisticated atom selection language and a wide
variety of data structures and algorithms for visualization, analysis, and struc-
ture manipulation, VMD incorporates built-in Tcl and Python scripting that
can be used to perform large scale molecular modeling and analysis tasks in
parallel on clouds [14], clusters, and petascale computers [9,10,15–17]. VMD
provides a wide variety of tools for assembling large macromolecular complexes
from constituent proteins, and combining these with solvent and ions to replicate
biological conditions in vivo, and it can emit the completed system for simulation
with popular GPU-accelerated MD simulation tools such as NAMD [6,7,18] and
GROMACS [19,20]. The performance of VMD for a user’s molecular modeling
and visualization work is not well-characterized by any single kernel or time-
critical loop, so we report performance for a variety of algorithms that capture
key characteristics of VMD workloads.

4.1 Compiler Performance Comparisons

To evaluate the merits of GCC and XLC for POWER8 CPUs, we com-
pared the performance of exemplary performance-critical loops from internal
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Table 1. Performance of several inner loops associated with VMD analytical calcu-
lations, including atom selection array processing loops, a loop over 8-element inner
products associated with multilevel summation electrostatics, and 1-D and 3-D mini-
mum/maximum bounds loop. Each loop was compiled using GCC and XLC. We report
GCC performance data for the -mvsx VSX vectorization option, and hand-vectorized
loops written with VSX vector intrinsics, e.g. vec madd(), where applicable. All XLC
results were obtained with VSX instructions enabled since it did not harm performance.

Compiler Atomsel cnt Atomsel first MSM-dot8 1-D min-max 3-D min-max

GCC -mvsx 0.123 s 0.061 s 0.571 s 1.163 s 0.649 s

GCC intrinsics 0.123 s 0.101 s

XLC 0.082 s 0.038 s 0.548 s 0.094 s 0.106 s

XLC intrinsics 0.082 s 0.094 s

VMD algorithms. Table 1 summarizes results for the compiler tests. We note
that GCC exhibited surprisingly poor performance with -mvsx enabled for the
1-D min-max test case, but that when provided with hand-written vectorized
loops using VSX intrinsics, the generated code approached the performance of
XLC. We found that the code generated by XLC ran at the same speed as the
hand-coded VSX loops. Our general experience during porting of VMD was that
XLC provided higher overall performance on average, but particularly for cases
with significant opportunity to exploit VSX instructions. As such, all subsequent
VMD performance measurements were performed using XLC.

4.2 Tachyon Ray Tracing Engine

VMD incorporates the Tachyon ray tracing (RT) engine for high quality ren-
dering on all supported platforms, including clouds, clusters, and supercomput-
ers [9,21]. The rise of ray tracing for high-fidelity scientific visualization has led
to the development of hardware-optimized RT libraries and frameworks [22,23],
in combination with SPMD languages and compilers such as CUDA [24] and
ISPC [25] that generate highly-optimized code for wide SIMD vector units. VMD
contains a GPU-accelerated RT engine [10,15,26], however OptiX [22] is not yet
available for OpenPOWER platforms, so Tachyon is currently the highest per-
formance VMD RT engine on OpenPOWER. Figure 9 shows a visualization of
the HIV-1 capsid with host cell factor cyclophilin A (CypA) [2], docked with
a cryo-electron density map of the nuclear pore complex, which was used as a
representative test case for Tachyon on multi-core CPUs.

Tachyon is an interesting performance test case since it is widely used for
high quality VMD figure and movie renderings as a result of its speed and avail-
ability on all platforms supported by VMD. Even on platforms that support
the GPU-accelerated TachyonL-OptiX [10,15,26] RT engine, it is still occasion-
ally necessary to use the CPU-based Tachyon RT engine for scenes that greatly
exceed GPU physical memory capacity. Tachyon uses a variety of linked lists
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Fig. 9. Visualization of the HIV-1 capsid with pentamers highlighted in yellow, host cell
factor cyclophilin A (CypA) shown in blue [2], docked with a cryo-electron density map
of the nuclear pore complex shown in white. The scene, incorporating direct lighting,
ambient occlusion lighting, and depth of field with large sample counts, was used to
measure Tachyon ray tracing performance on the POWER8 CPU, as shown in Fig. 11.
(Color figure online)

and hierarchical data structures that share some performance characteristics
with molecular structure traversal algorithms in other areas of VMD. Tachyon
currently does not make explicit use of POWER8 VSX vector instructions, and
present-day compilers and languages are not capable of effectively autovectoriz-
ing RT algorithms, so effective use of SMT is of particular interest at present.

Tachyon CPU RT performance was measured for two very different test
scenes and execution conditions, with varying counts of SMT threads per core.
In the first case, shown in Fig. 10, a standalone Tachyon build was run on a sim-
ple scene containing a short DNA segment, but with very high stochastic sample
counts, thereby creating a workload that emphasized floating point arithmetic
and CPU cache performance. The DNA scene is small enough to expect that
all performance-critical Tachyon data structures would be cached entirely on
each CPU, and that NUMA-related performance effects would be minimized.
Figure 10 shows that for the small DNA scene, the use of SMT is beneficial for
performance all the way up to 8 threads per CPU core, or 160 threads in total,
yielding a peak speedup 2.2× the performance achieved using a single thread
per core.
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Fig. 10. Evaluation of the impact of varying per core SMT thread counts on Tachyon
small scene ray tracing performance on POWER8.

Fig. 11. Evaluation of the impact of varying per core SMT thread counts on
VMD/Tachyon ray tracing performance on POWER8, for the HIV-1 scene in Fig. 9.

In the second test case, shown in Figs. 9 and 11, the Tachyon engine built
into VMD was used to render a large scale geometrically complex scene of the
HIV-1 capsid and host cell factor cyclophilin A docked with a cryo-electron den-
sity map of the nuclear pore complex [2]. The HIV-1 scene is representative of
routine visualizations created from ongoing petascale molecular dynamics sim-
ulations. Due to the large size of the HIV-1 scene and the fact that Tachyon is
linked into VMD, the impact of NUMA locality and inter-processor SMP bus
bandwidth are much greater. Since Tachyon inherits the existing distribution
of VMD memory allocations among NUMA nodes and the HIV-1 scene size is
very large, Tachyon’s runtime memory allocations are less uniformly distributed
than when Tachyon is run standalone, and this also leads to increased run-to-run
performance variation. As a result of these effects, the maximum SMT perfor-
mance observed for the HIV-1 test case was roughly 1.3× that of using a single
thread per CPU core. Table 2 summarizes performance results obtained for vary-
ing degrees of SMT threading for the large HIV-1 test case with double-precision
floating point arithmetic on POWER8 and Intel Xeon E5-2660v3. The POWER8
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Table 2. VMD/Tachyon HIV-1 double precision CPU ray tracing performance for
varying numbers of SMT threads per core. The table shown here provides numeric
values for the plot in Fig. 11, and adds performance results for the Xeon E5-2660v3.

SMT Count POWER8 Xeon E5-2660v3

Threads DNA HIV-1 Threads DNA HIV-1

1 20 76.0 s 143.1 s 20 63.7 s 104.9 s

2 40 53.1 s 110.9 s 40 48.4 s 87.1 s

4 80 39.6 s 108.9 s

8 160 33.9 s 109.8 s

system outperformed the Xeon by 1.43× for the (cache-friendly, arithmetic
bound) DNA scene rendered standalone, the Xeon outperforms POWER8 by
1.26× for the large HIV-1 scene rendered by Tachyon within VMD.

4.3 Molecular Dynamics Flexible Fitting Cross Correlation

Molecular dynamics flexible fitting combines molecular structure data from cryo-
electron microscopy and X-ray crystallography with molecular dynamics simula-
tions, to determine all-atom structures of large biomolecular complexes such as
the HIV-1 capsid [1,2]. The calculation of quality-of-fit for structures obtained
from hybrid fitting approaches is computationally demanding, and particularly
when run on tens of thousands of MDFF trajectory frames and when multiple
structural conformations need to be evaluated. To address this challenge, VMD
implements fast algorithms for computing quality-of-fit between all-atom struc-
tures and experimental cryo-electron density maps using hand-coded CPU SIMD
vector instructions and data-parallel CUDA kernels on NVIDIA GPUs [16].

Table 3 reports cross correlation performance for a single trajectory frame from
a large rabbit hemorrhagic disease virus (RHDV) capsid test case [16,27]. The
reported cross correlation performance results were obtained using density map
simulation algorithms implemented using hand-coded POWER8 VSX and Intel
Xeon E5-2660v3 SSE vector intrinsics. The POWER8+Tesla K40m result demon-
strates performance closely approaching the Xeon E5-2687W+Quadro K6000
result previously reported [16]. The closely comparable GPU performance
results are expected since the two GPUs share the same architecture but the
Quadro K6000 has a core clock rate that is roughly 20 % higher.

4.4 Molecular Orbital Calculation

Calculation and display of molecular orbitals (MOs), electron densities, and
molecular electrostatic potentials are helpful steps in the analysis of quantum
chemistry calculations. The key challenge involved in the calculation and display
of MOs and related quantities is the rapid evaluation of complex wavefunctions
on a three-dimensional lattice; the resulting data can then be used for plotting
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Table 3. VMD molecular dynamics flexible fitting (MDFF) quality-of-fit cross corre-
lation analysis performance for the rabbit hemorrhagic disease virus (RHDV) capsid
solved with a 6.5 Å resolution density map [16,27]. On POWER8 platforms, hand-
coded VSX vector instructions are used, providing a 20 % overall performance gain
relative to xlC autovectorization. The use of SMT has negligible performance benefit
on POWER8. On the Intel platforms hand-coded SSE vector instructions are used,
yielding a 12 % performance gain compared to the best autovectorization achieved by
the Intel XE 2015 compiler. The difference between the GPU-accelerated performance
results is likely attributable solely to the higher Quadro K6000 GPU clock rate.

SMT POWER8 Xeon E5-2660v3 POWER8 + Xeon E5-2687W +
Count hand-coded VSX hand-coded SSE Tesla K40m Quadro K6000

Threads CC time Threads CC time GPUs CC time GPUs CC time

1 20 1.354 s 20 0.922 s 1 0.488 s 1 0.458 s

2 40 1.345 s 40 0.905 s

4 80 1.334 s

8 160 1.364 s

isocontours or isosurfaces as shown in Fig. 12, and for other analyses. VMD con-
tains data-parallel CPU and GPU kernels for computing MOs on Intel x86 CPUs
optionally paired with NVIDIA GPUs [28,29], and on a variety of ARM SoCs
and CPUs paired with integrated (on-chip) or discrete (add-in board) GPUs [30].

VMD evaluates MOs on a 3-D lattice by decomposing the lattice points
into 2-D planes which are computed independently by different CPU threads
or different GPUs. The workload is dynamically scheduled across the pool of
workers to balance load on hardware of varying capability and in the presence of
external load or operating system interference. Table 4 lists performance results
for the VMD CPU and GPU-accelerated molecular orbital kernels run on a
C60 test case. While the use of POWER8 SMT was beneficial for the plain

Fig. 12. VMD rendering of the atomic structure and molecular orbitals for a vibrating
C60 simulation produced by Terachem.
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Table 4. VMD C60 molecular orbital kernel performance for varying grid sizes, CPU
thread counts and SMT utilization, vectorization approach, and GPU counts. Execu-
tion times are reported in seconds. Speedups within each platform are shown normalized
to the base test case for each platform: vs. plain C++ on POWER8 CPU, vs. plain
C++ on Xeon CPU, and vs. a single Tesla K40m GPU. The 4-GPU run achieved per-
formance about 9× faster than the best POWER8 hand-coded VSX CPU results for
both tests, and 5× and 8× faster than the Xeon E5-2660v3 hand-coded SSE results for
medium and high resolution grid sizes, respectively. POWER8 SMT threading increases
performance by up to 1.85× for the non-vectorized plain C++ implementation, but it
had no measurable impact on the hand-coded VSX implementation.

C60 Grid Size POWER8 Xeon E5-2660v3 POWER8 +
160 Threads 40 Threads Tesla K40m GPUs

C++ VSX C++ SSE 1 2 4

172× 173× 169 1.09 s 0.52 s 2.42 s 0.301 s 0.190 s 0.099 s 0.058 s

1.0× 2.10× 1.0× 8.01× 1.0× 1.91× 3.27×
516× 519× 507 17.57 s 8.03 s 59.18 s 7.14 s 3.49 s 1.76 s 0.91 s

1.0× 2.18× 1.0× 8.28× 1.0× 1.98× 3.83×

C++ algorithm, the lack of impact on the hand-vectorized implementation likely
indicates that it already effectively utilizes all of the POWER8 arithmetic units
even with only 1 thread per core. The 4-way Tesla K40m performance result for
high resolution test case closely matches performance results obtained on the
same GPU hardware on Intel x86 systems. The 4-GPU result outperforms the
POWER8 CPU results using hand-coded VSX instructions by a factor of 9× and
it runs 5× to 8× faster than the Xeon E5-2660v3 CPU results using hand-coded
SSE instructions. The hand-coded VSX and SSE MO kernels for POWER8 and
Intel x86 hardware outperform the best autovectorized C++ loops in each case
by 2× and 8× respectively. We note that it may be possible to further increase
the performance of the hand-vectorized POWER8 VSX loop with additional
tuning work.

5 Conclusions and Future Work

We have presented the adaptation of NAMD and VMD to GPU-accelerated
POWER8 platforms and we have reported performance results for a variety of
algorithms and test cases, and we have provided results for relevent comparison
platforms. The CPU-focused test results presented here demonstrate the poten-
tial for POWER8 SMT to allow non-vectorized code to better utilize CPU func-
tional units. Conversely, we observe that fully-vectorized code does not appear
to benefit from SMT. Further developments that make use of explicit NUMA-
aware memory allocations from private memory arenas should improve VMD-
integrated Tachyon RT performance for large scenes such as HIV-1 by mitigating
the impact of pre-existing memory fragmentation and NUMA locality. We noted
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that the lack of horizontal-add and other vector instructions found on competing
CPUs made development of some VSX kernels more challenging than initially
expected, but that substantial performance gains were still possible relative to
the best compiler-generated code.

The ORNL Crest development system models key attributes of the future
Summit supercomputer. The future Summit system will provide larger mem-
ory capacity, faster POWER9 CPUs and Volta GPUs, and higher performance
intra-node communication paths between the CPUs and GPUs by virtue of the
future NVLink interconnect. While the Crest system provides a programming
environment representative of the future Summit system, not all of the desired
capabilities of Summit are available yet on Crest. At the time of writing, it was
not yet possible to evaluate the performance benefits associated with peer-to-
peer GPU transfers as they are not yet implemented by CUDA 7.5 for Open-
POWER. Several GPU-accelerated graphics-related features of VMD were simi-
larly unavailable for testing due to lack of OpenPOWER versions of the OpenGL
or Vulkan APIs for rasterization, and the associated GLX or EGL context man-
agement APIs [14], the OptiX GPU ray tracing framework [22], or the NVENC
GPU-accelerated video encoding library.
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