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Preface

A separate workshop day attached to the ISC High Performance, formerly known as the
International Supercomputing Conference, was first added to the technical program in
2015 under the leadership of Bernd Mohr (Forschungszentrum Jülich GmbH). Sup-
ported by the success of the last year, ISC High Performance renewed and further
extended the workshop program in 2016. This year Michela Taufer (University of
Delaware, USA) joined Bernd Mohr to co-lead the workshop organization. Julian
Kunkel (German Climate Computing Center) joined the team as the proceedings chair
and managed the organization of proceedings for the workshops.

As in 2015, the 21 workshops at ISC High Performance provided a focused, in-
depth platform with presentations, discussions, and interaction on topics related to all
aspects of research, development, and application of large-scale, high-performance
experimental and commercial systems. Workshop topics included: HPC computer
architecture and hardware; programming models, system software, and applications;
solutions for heterogeneity, reliability, power efficiency of systems; virtualization and
containerized environments; big data and cloud computing; as well as international
collaborations. Workshops were selected via a peer-review process by an international
committee of 10 experts in the field from Europe, the USA, and Asia.

For the first time, ISC High Performance provided a platform for workshops with
their own call for papers and individual peer-review process through an early deadline
in December 2015. In all, 13 workshop proposals were submitted before this deadline
from organizers all over the world; the committee accepted 10 workshops (seven full-
day and two half-day workshops) after a rigorous review process in which each pro-
posal received three reviews. Additionally, each reviewer was given the possibility to
discuss all the submissions.

Workshops without a call for papers were invited to submit their proposals in
February 2016. For this second deadline, 13 workshop proposals were submitted and 11
workshops (two full-day and nine half-day workshops) were accepted by the committee
with the same rigorous peer-review process as for workshops with proceedings.

The 21 workshops were held on Thursday, June 26, 2016, at the Frankfurt Marriott
Hotel with over 600 registered attendees, about 170 presentations, and over a dozen
panel discussions. Workshop organizers were asked to collect the slides of all pre-
sentations at their workshops. PDF versions of the presentation slides were included in
the ISC 2016 online proceedings, which were made available online to conference
attendees a few days after the conference.

The workshop proceedings volume collects all the accepted papers of the workshops
with a call for papers. Each chapter of the book contains the accepted and revised
papers for one of the workshops. For some workshops, an additional preface describes
the review process for the workshop and provides a summary of the outcome.

June 2016 Michela Taufer
Bernd Mohr

Julian M. Kunkel
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Abstract. This paper presents a simulation methodology called Behav-
ioral Emulation (BE) for scalable design-space exploration of algorithms
and architectures. By design, BE is independent of simulation vehicle
(e.g., simulation in software or emulation in hardware) and addresses
system-simulation complexity with a coarse-grained, multi-scale app-
roach. We describe the BE methodology, component models, and simula-
tion workflow from calibration to validation of applications simulated on
existing architectures and present a device-level case study with roughly
10 % relative error. Finally, we discuss the extension of validated models
to predict application performance on notional architectures.

Keywords: Behavioral Emulation · Performance modeling ·
Coarse-grained simulation · Design space exploration

1 Introduction

Large-scale simulations are vital scientific tools, especially when direct experi-
mentation is expensive or infeasible [1–3]. Over several decades, these simulations
have required constant growth in high-performance computing (HPC) to sim-
ulate more complex phenomena, with emerging applications [4] now requiring
Exascale performance. In a rapidly evolving landscape of HPC systems [5], it
is increasingly difficult for application developers to optimize code across sys-
tem generations, a fact worsened by the trend towards many-core architectures
and hardware accelerators (e.g., Intel Xeon Phi and Nvidia GPUs) [6]. Efficient
optimization will require co-design, where application developers work with com-
puter scientists and engineers to explore the design space to better design and
optimize algorithms on different architectures and systems [7,8].

For design-space exploration (DSE) to be effective, it is important that
turnaround between application performance analysis and code development be
timely [9]. Architectural simulation/emulation plays a key role in design trade-off
evaluation, but traditional approaches face several challenges, key among them
optimizing the delicate balance between simulation speed, model accuracy, and
design scalability. Unfortunately, traditional cycle-accurate simulators [10–12]
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 5–17, 2016.
DOI: 10.1007/978-3-319-46079-6 1
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and even functional simulators [13,14], while highly accurate, lack scalability
for DSE at extreme scales [15]. At the other extreme, purely analytical models
[16–18] can provide quick performance estimates, but limit one’s ability to gain
detailed insight into the behavior of individual system components. As existing
simulation methods do not provide an appropriate combination of fast turn-
around time, scalability, and accuracy for large-scale system simulation, there is
a need for a simulation framework that can fulfill these requirements.

In this paper, we present a novel multi-scale and coarse-grained methodology
for large-scale system simulation called Behavioral Emulation (BE). The term
emulation often refers to pre-fabrication simulation of architecture designs in
hardware, but we use it to mean mimicking (i.e., emulating) behavior of the sys-
tem under study. BE handles the complexity of extreme-scale system modeling
and simulation by reducing it to a problem of modeling system components and
their interactions at different levels of system organization—micro, meso, and
macro—and by abstracting away low-level operational details at each of these
levels. After a brief discussion of related research (Sect. 2), we expand our discus-
sion of BE with more details on the approach (Sect. 3), modeling workflow and
underlying BE component models (BE Objects or BEOs) (Sect. 4). Although our
ultimate goal is prediction on large-scale systems, in this paper we limit our focus
to establishing the BE methodology by presenting proof-of-concept design, cali-
bration, and validation results for device-level experiments. In Sect. 5, we discuss
our application (Spectral Element Solver kernel from CMT-nek) and architec-
ture (mesh-based Tile-Gx36 many-core processor) case studies used in Sect. 6.1
to showcase validated BE simulation results with roughly 10 % relative error
for an existing system. Additionally, to demonstrate the applicability of BE for
architecture DSE, in Sect. 6.2 we expand our “library” of BEOs by modeling
additional devices, then mix, match, and modify components to model more
notional architectures. Finally, in Sect. 7, we present conclusions and our future
work towards realizing Exascale application and architecture DSE with BE.

2 Related Research

Various modeling and simulation approaches, varying greatly in their accuracy
and scalability, have been developed and used for design space exploration.
Cycle-accurate simulation approaches (e.g., Gem5 [10], SimpleScalar [12], Sim-
ics [11] etc.) offer high accuracy but are prohibitively slow for simulating com-
plex systems. Cycle-accurate emulation in hardware (e.g., Palladium [19], Veloce
[20]) is a faster alternative, but it requires more resources, effort, and exper-
tise that can be impractical for study of entire extreme-scale systems. While
these approaches are impractical for use in isolation, they are complementary
to Behavioral Emulation. Results of high-fidelity simulations of some system
components can be used to calibrate models that be used in BE.

In addition to the cycle-accurate and analytical simulators already men-
tioned, functional simulation attempts to balance the tradeoff between simu-
lation time and accuracy by modeling systems at a higher level of granular-
ity. Manifold [14,21], an execution-based simulator, follows a component-based
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approach, allowing users to piece together in-built (cycle-level models) or user-
generated components and tools to perform system performance, power, thermal,
and reliability analysis. BigSim [13], a trace-driven simulator, analyzes the per-
formance of sequential code-segments with variable-resolution architecture mod-
els that can be swapped to tune simulation speed/accuracy. FASE [22], another
trace-driven simulator, characterizes the behavior of performance-critical com-
ponents and allows users to build virtual system prototypes for analysis. BE uses
a component-based approach similar to these simulators, but further decomposes
the simulation into device-, node-, and system-level while using coarser-grained
models for system components and a minimal application representation (as
opposed to traces or application source). The fine-grained simulation approaches
mentioned above can complement BE by providing data for calibrating BE com-
ponent models.

SST (Structural Simulation Toolkit) [23,24] is a popular component-based
simulation framework, with a parallel discrete-event simulation back-end and a
standardized front-end used to interface various models (component simulators)
to build a larger system. While high-fidelity models for system components are
frequently used (e.g., gem5 [10]) within the SST framework, it is not a require-
ment. Because of the “plug-and-play” infrastructure and the freedom to model
components at different granularities, we have adopted SST as the platform
(backend) for our BE simulations.

3 Behavioral Emulation: Overview and Approach

Behavioral Emulation (BE) is a coarse-grained modeling and simulation app-
roach that aims to provide timely, flexible, and scalable estimates of application
performance on existing and future system architectures. In BE, the complex-
ity of large-scale system simulation is handled by simultaneously dividing the
simulation into different levels of system abstraction (e.g., device, node, rack,
system) and abstracting the behavior of the components at each of these levels.
The coarse-grained component models mimic or emulate the observed execution
behavior of the component instead of its cycle-accurate operation. Key features
present within the BE approach (Fig. 1) are summarized below:

Coarse-grained. Coarse-grained application and architecture models allow BE
to tradeoff acceptable accuracy for speed to enable fast DSE. High-level appli-
cation models enable rapid prototyping of candidate algorithms and negate the
need for working code. In addition, because BE coarse-grained performance mod-
els are pre-trained from samples of actual execution, they provide sufficiently
accurate analysis in a short amount of time.

Multi-scale. Rather than simulate the entire HPC system, simulation is divided
into separate levels of system organization such that the lower levels appear as
a black box to the higher levels. We define device-, node-, and system-level
simulations as micro-, meso-, and macro-scale simulations. Decomposing the
problem in this manner allows us to prune the design space independently at
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Fig. 1. Key features of Behavioral Emulation

lower scales (i.e., micro- and meso-) and evaluate only promising configurations
at the macro-scale.

Component-based. In BE simulations, a system is modeled as a collection
of interacting component models called Behavioral Emulation Objects (BEOs)
(detailed in Sect. 4). For example, a micro-scale device simulation can be modeled
as a combination of several parallel processing cores each able to communicate
with their local L1 cache, the shared L2 and L3 caches, and memory all modeled
as separate BEOs. At macro-scale, a simulation may consist of interacting devices
or nodes, network switches, routers, and storage BEO models.

Multi-objective. The BE approach chiefly deals with various ways of reducing
system simulation complexity and can be applied to study any aspect of system
behavior such as performance, power, and reliability concerns.

In this paper, we focus on demonstrating the component-based and coarse-
grained modeling aspects of BE by limiting ourselves to performance (execution
time) modeling and simulation at micro-scale (device-level), while our ultimate
goal remains to scale beyond device-level and study performance, power, and
reliability tradeoffs.

4 BE Modeling and Workflow

Figure 2 illustrates three key steps of the BE workflow: (1) design and calibration
of application and architecture component models (i.e., BEOs), (2) validation of
simulation (architecture and application model interactions) results against test-
bed measurements, and (3) using the verified models for performance prediction
and HW/SW co-design. Each BEO from step (1) models the observed high-
level behavior of the component it represents, interacts with other BEOs in the
simulation via event tokens, and gathers metrics of interest for post-simulation
analysis. We classify these BEOs in two groups—Application BEOs (AppBEO)
and Architecture BEOs (ArchBEOs).

AppBEOs are high-level, architecture-agnostic representations for the com-
putation and communication blocks in a target application provided by the user
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Fig. 2. BE workflow outlining major steps: (1) BEO design and calibration, (2) Vali-
dation of BE simulations, and (3) BE predictions for HW/SW co-design

(Fig. 3(c)). They are described in a simple, extensible, platform-independent,
high-level API and compiled into events for ArchBEOs to interpret and process.
By doing so, algorithms of interest can be easily prototyped at the expense of
exact execution details which, in some cases, may be of interest to the user.

ArchBEOs are coarse-grained models crafted to mimic the behavior of var-
ious systems components such as processors (ProcBEO), network switches and
routers (CommBEO), memory (MemBEOs), processing nodes (NodeBEO), stor-
age (DiskBEO) etc. ArchBEOs have two functions—emulation and management.
Emulation tasks include processing event queues, handling and creating events,
updating simulation timestamps, and interacting with other BEOs in the simu-
lation. Management tasks include tracking results and statistics for run-time or
post-simulation analysis.

In a BE simulation, operations defined in the AppBEO (e.g., matrix multiply,
fast fourier transform) are compiled into events (e.g., update timestamp, wait,
generate event token) to be handled by ArchBEOs. The events are processed and
simulation clocks are updated based on multi-dimensional performance mod-
els (surrogates [25]) when an event is processed. Data collected from micro-
benchmarked testbeds (or external fine-grained architecture simulation tools) is
used to calibrate surrogates for existing systems. By tweaking ArchBEO simula-
tion parameters (e.g., network bandwidths, latencies, or topology) or replacing
BEO models with other validated BEO models, it becomes possible to simu-
late notional architectures. These BEOs use a parallel discrete-event simulation
back-end for event handling and synchronization. We use Lamport clocks [26] to
maintain event ordering.



10 N. Kumar et al.

5 Application and Architecture Case Study

In this section, we describe the application (Sect. 5.1) and architecture (Sect. 5.2)
case-studies used in Sect. 6 experiments.

5.1 Application Case Study: Spectral Element Solver

In this Section, we discuss the Spectral Element Solver (SES) [27] within
CMT-nek [4], a large-scale simulation code under development by the PSAAP
II Center for Compressible Multiphase Turbulence (CCMT) at University of
Florida. Although CMT-nek will leverage several aspects of the petascale code
Nek5000 [1] (e.g., optimized linear algebra operations, element topology, approx-
imation polynomials, MPI strategies), one significant contribution will be the
extension of NavierStokes equations within the SES to their compressible forms.
With many possible implementations, early algorithm DSE for target systems
(current and future) will help to maximize application performance and minimize
wasted effort.

The majority of CMT-nek execution time is spent computing the flux diver-
gence terms within the SES (Fig. 3(a)). Flux divergence is essentially a dot prod-
uct of the gradient operator and the flux vector implemented as the multiplication
of the derivative operator matrix (N, N) and the element matrix (N, N, N, E)

Fig. 3. (a) Pseudo-code for the partial derivative calculation for estimating the flux-
divergence term, (b) Pairwise exchange communication between the neighboring ele-
ments located on processes in X, Y and Z directions, and (c) Partial AppBEO for the
spectral element solver
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to calculate the partial derivatives along the three Cartesian coordinate dimen-
sions (r, s, t). Here N ∈ [5, 25] is the number of grid points along a direction
in a cubic reference element and E is the total number of elements in the com-
putational domain. For our case study, we use a straightforward implementation
of this operation where explicit optimizations, such as loop fusion or loop unroll,
are not applied. Numerical flux is evaluated to ensure continuity on the element
boundaries and requires exchanging surface data between neighboring elements.
Currently, CMT-nek uses a pairwise exchange communication strategy, a simple
implementation of which is used for crafting our AppBEOs (Fig. 3(b) and (c)).

5.2 Architecture Case Study: Mesh-Based Many-Core Device

As previously mentioned, in this paper we limit our focus to the design, calibra-
tion, and validation of device-level models. For our experiments we use TILE-
Gx36, a 36-core many-core processor [28] from Mellanox (Tilera corporation
before acquisition). The 36 cores, or tiles, are arranged as a 6× 6 2D mesh. Each
tile contains a 64-bit SIMD processor core, L1 and L2 cache, and a non-blocking
switch for connection to the iMesh network. The iMesh interconnect has five
independent low-latency mesh networks for memory, I/O, and user communica-
tion. Of these, explicit transfer of data between tiles occurs via packets on the
User Dynamic Network (UDN). The packets are routed in dimension-order and
cut-through switching with each hop taking a single clock cycle.

The BE description of TILE-Gx36 consists of 36 ProcBEOs (model for
a single tile) and 36 CommBEOs (model for a single iMesh switch) con-
nected as a 2D mesh. The ProcBEO is responsible for sequentially processing

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching Time

Hop Time: 1ns

Topology: 2D mesh (6x6)
Routing policy: dim-order
Routing policy: cut-through
X-dir latency: testbed data
Y-dir latency: testbed data
Arbitration: round-robin

... 

Topology: 2D mesh (6x6)
Routing policy: dim-order
Routing policy: cut-through
X-dir latency: testbed data
Y-dir latency: testbed data
Arbitration: round-robin

... 

Network configura on parameters 
for TILE-Gx36 iMesh

if (input_buffer!=empty) {
read_event;
if(output_buffer !=full) {

forward(x_dir, y_dir);
}

}
... 

if (input_buffer!=empty) {
read_event;
if(output_buffer !=full) {

forward(x_dir, y_dir);
}

}
... 

Pseudo-code for CommBEO

Time (ns) Throughput 
(Mbps)

Neighbors 20.5 3,117.355

Side-to-Side 24.5 2,608.717

Corners 30 2,129.44

One-way latencies and throughput

Fig. 4. Pseudo-code for CommBEO and data obtained from the TILE-Gx36 testbed
to calibrate iMesh model for BE simulation
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AppBEO instructions (events), estimating the performance of computation
events, sending/receiving communication events to/from CommBEOs, updating
local simulation clocks, and logging of event outcomes for future analysis or visual-
ization. Each ProcBEO has models calibrated for setup times, overheads, and the
time taken for several computation operations (e.g., addition, multiplication, dot-
product). CommBEOs interface with each other to model communication over the
mesh network. Each CommBEO is calibrated with tile-to-tile one-way transfer
latencies, hop times, and routing procedures as shown in Fig. 4.

6 Experiments: BE Validation and Prediction

In this Section, we evaluate the BE approach by validating simulations of SES
(Sect. 5.1) executed on TILE-Gx36 by comparing the simulation results with
device benchmarking measurements. We then extend our architecture models to
predict the performance of the same kernel on notional device architectures.

6.1 Simulation Validation

We compare BE simulations of SES on TILE-GX36 against benchmarking data
collected by running the same SES configurations on the TILE-Gx36 platform.
For processor loads of E = 10 and E = 100 elements, BE predicted the execution
times for varied element sizes (i.e., gridpoints) from N = 5 to 20. This setup is
representative of experiments used to identify the optimal N value for SES on a
particular architecture (i.e., algorithm and architecture DSE). Figure 5(a) shows
the relative error between predicted and actual execution times. From the plot
we can see that number of elements has almost no influence on relative error and
element size has little influence on simulation accuracy. Within the simulation
range, error is approximately 10 %, which is acceptable for DSE where the goal
is to find design alternatives which offer significant performance improvement.
BE simulations of SES take considerably less time than running the actual code
on the testbed (microseconds for a second of real execution), which enables us
to quickly simulate a large number of design options, ultimately supporting our
argument for using BE for fast DSE.

To better understand these results, we need to look more closely at our net-
work and processor models. Figure 5(b-d) shows simulations of different collective
operations (implemented using P2P transfers) on Tile iMesh. We observe that in
all cases BE under-predicts execution time, and as the message size increases (to
transfer sizes common in SES), the modeling accuracy improves considerably.
From these plots we can conclude that while BE models accurately capture the
underlying bandwidth behavior, we need more accurate latency models for the
smaller transfer sizes to increase overall simulation accuracy.

Processor models estimate the execution time for basic computation blocks,
where the definition of what constitutes a basic block is left to the user. For
example, a parallel matrix multiplication can be thought of as each processor
computing several smaller matrix multiplies (coarse-grain decomposition) or as
computing several dot products (fine-grained decomposition). While BE gives
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the flexibility of using either decomposition, we observed using coarse-grained
models can improve simulation accuracy as shown in Fig. 6 and improve simu-
lation speed by reducing the total number of processed events. The SES App-
BEO used for simulation in Fig. 5(a) followed the coarse-grained decomposition
approach.
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6.2 Performance Prediction on Notional Architectures

The same modeling procedure from Sect. 5.2 was used to generate ArchBEOs for
the following devices: Applied Micro X-Gene (64-bit ARMv8), IBM Power7, and
Intel Xeon Phi (5110P). With a “library” of calibrated BEOs, it becomes possible
to mix and match components from different devices as well as configure those
components in different ways. Such a library, in combination with the ability
to incorporate altered BEOs (e.g., an iMesh topology with 2x bandwidth or 3x
shorter link-to-link transfer latency) into system simulations, allows for relatively
quick architectural DSE, most notably for notional architectures. As mentioned
earlier, in this paper we limit our focus to device-level exploration of many-core
processors.

Figure 7(a) shows simulated weak-scaling performance of SES with E = 100
and varied element size for several notional many-core devices. First, we extended
the TILE-Gx36 simulation setup from Sect. 6.1 to describe a notional 9× 8 mesh
rather than 6× 6, increasing the total number of Proc and CommBEOs from 36
each to 72 (Tile curve). Keeping the CommBEO constant, we replaced the TILE-
Gx36 ProcBEO model with calibrated BEOs for other processor types. Ignoring
the technical challenges of actual device implementation, as one would expect,
more complex core architectures are predicted to perform better when placed in
a many-core configuration with communication behavior held constant.

Figure 7(b) shows simulated weak-scaling performance of SES with varied
processor load and element size for two notional Xeon-Phi-based 9 × 8 many-
core devices. One device is configured with the same link-to-link transfer latency
from Fig. 7(a) experiments and the other with half of that latency. We observed
that, for these application configurations, reducing the link-to-link latency by
half increased the overall application performance between 28 and 78 percent
depending upon the exact computation to communication ratios. While we used
50 % latency reduction for illustrative purposes, it would be advantageous to
insert actual numbers from existing product data sheets or upcoming product
press releases.
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7 Conclusions and Future Work

In this paper, we introduced Behavioral Emulation, a coarse-grained, component-
based, multi-scale simulation methodology for fast and scalable DSE of algo-
rithms and architectures. We demonstrated the value of such an approach for
kernel optimization by modeling the SES used within CMT-nek and predict-
ing its performance for an existing many-core device (TILE-Gx36). We then
extended the models for performance prediction to notional mesh-based many-
core devices and demonstrated the ease and utility of BE methodology for DSE.

Although this paper was limited to device-level experiments, we discussed
the extensibility of our methods to node- and system-levels. Working towards
this goal, we are modeling a larger portion of the current CMT-nek implemen-
tation (than described in this paper) and its execution on contemporary HPC
systems (e.g., Vulcan [29], CAB [30]). Furthermore, we are beginning to model
several candidate implementations of certain CMT-nek kernels and exploring
their performance on HPC systems utilizing accelerators such as GPUs. In the
future, we plan to model additional metrics (e.g., reliability, power) to enable
multi-objective DSE.

Determining the optimal degree of behavioral abstraction becomes more diffi-
cult at the system-level prompting us to employ more robust uncertainty quan-
tification and analysis techniques when evaluating new design decisions (e.g.,
sophistication of performance interpolation techniques, detail of network conges-
tion models). We have incorporated mechanisms for Monte-Carlo-based (MC)
uncertainty propagation [31] into the BE framework, greatly improving model
development and simulation accuracy. The increased computation required for
MC-based simulations may limit the practical scale of BE simulations in soft-
ware; we are currently investigating the use of FPGA acceleration techniques to
alleviate this issue. Our early functioning prototype running on Novo-G [32,33] is
capable of performing simulations in Sect. 6 about 100x faster than our software
simulator and we are currently integrating functionality for random distribution
sampling to enable MC simulations in hardware.
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Abstract. On the way to Exascale, programmers face the increasing
challenge of having to support multiple hardware architectures from the
same code base. At the same time, portability of code and performance
are increasingly difficult to achieve as hardware architectures are becom-
ing more and more diverse. Today’s heterogeneous systems often include
two or more completely distinct and incompatible hardware execution
models, such as GPGPU’s, SIMD vector units, and general purpose cores
which conventionally have to be programmed using separate tool chains
representing non-overlapping programming models. The recent revival
of interest in the industry and the wider community for the C++ lan-
guage has spurred a remarkable amount of standardization proposals and
technical specifications in the arena of concurrency and parallelism. This
recently includes an increasing amount of discussion around the need
for a uniform, higher-level abstraction and programming model for par-
allelism in the C++ standard targeting heterogeneous and distributed
computing. Such an abstraction should perfectly blend with existing,
already standardized language and library features, but should also be
generic enough to support future hardware developments. In this paper,
we present the results from developing such a higher-level programming
abstraction for parallelism in C++ which aims at enabling code and per-
formance portability over a wide range of architectures and for various
types of parallelism. We present and compare performance data obtained
from running the well-known STREAM benchmark ported to our higher
level C++ abstraction with the corresponding results from running it
natively. We show that our abstractions enable performance at least as
good as the comparable base-line benchmarks while providing a uniform
programming API on all compared target architectures.
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1 Introduction

The massive local parallelism available on today’s and tomorrow’s systems
poses one of the biggest challenges to programmers, especially on heterogeneous
architectures, where conventional techniques require to develop and tune indepen-
dent code bases for each of the separate parts of the machine. This paper focuses
on how to address portability in terms of code and performance when developing
applications targeting heterogeneous systems. More and more systems come on-
line which consist of more than one hardware architecture, all of it made available
to the developers through often independent and orthogonal tool-chains.

With the recently growing interest in the community in C++ and the
increased activity towards making all of the available parallelism of the machine
available through native C++ language features and library facilities, we see an
increasing necessity in developing higher level C++ APIs which ensure a high
level of portability of code while providing the best possible performance. At the
same time, such APIs have to provide a sufficient amount of generality and flex-
ibility to provide a solid foundation for a wide variety of application use cases.
GPGPU vendors have started to make their C++ tool chains more conforming
with the newest C++11/C++14 Standards [17], as demonstrated for instance
by recent versions of NVidia’s CUDA [6] or the newer HCC compiler [3] as pro-
vided by AMD. Unfortunately, there are no usable standards-conforming library
solution available yet which would help in writing C++ code which is portable
across heterogeneous architectures.

One of the key problems to solve while developing such higher level library
abstractions is to provide facilities to control and coordinate the placement of data
in conjunction with the location of the execution of the work on this data. We
describe the result of our research in this direction, provide a proof of concept opti-
mization, and present performance results gathered from comparing native imple-
mentations of the STREAM benchmark for OpenMP [16] and CUDA [9] with an
equivalent application written based on our design. We show that there is essen-
tially no performance difference between the original benchmarks and our results.

Our presented implementation of C++ algorithms is fully conforming to the
specification to be published as part of the C++17 Standard [18]. It is based
on HPX [13], a parallel runtime system for applications of any scale. For our
comparisons with the native OpenMP and CUDA benchmarks we use the same
sources demonstrating a high degree of portability of code and performance. The
used parallel algorithms are conforming to the latest C++17 Standard and are
designed to be generic, extensible and composable.

In the remaining part of this paper we describe related work (Sect. 2), talk
about locality of data and work (Sect. 3), describe our implementations (Sect. 4),
show the results (Sect. 5), and summarize our findings (Sect. 6).

2 Related Work

The existing solutions for programming accelerators mostly have in common
that they are based either on OpenCL [5] or on CUDA [6] as their backends.
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Table 1 shows an overview of the different approaches existing today. The most
prominent in that regard are pragma based language extensions such as OpenMP
and OpenACC [4]. The pragma solutions naturally don’t offer good support for
C++ abstractions. In order to get better C++ language integration, software
has to directly rely on newer toolchains directly supporting C++, such as recent
versions of CUDA, the newer HCC compiler [3], or SYCL [2].

Generic higher level abstractions are also provided by various library based
solutions such as Kokkos [10], raja [12], Thrust [11], and Bolt [1]. Those attempt
to offer higher level interfaces similar but not conforming to the parallel algo-
rithms specified in the upcoming C++17-Standard [19]. One of the contributions
of this paper is to provide standards-conforming implementations of those paral-
lel algorithms combined with truly heterogeneous solutions enabling transparent
locality control, a feature not available from the listed existing libraries.

In addition, we aim to provide a solution for all existing accelerator architec-
tures, that is not limited to either OpenCL or CUDA based products providing
a modern C++ programming interface.

Table 1. overview of different approaches: pragma based solutions, low level compiler
and libraries to leverage different architectures.

Name Type Hardware support

OpenMP pragmas cpu, accelerators [5]

OpenACC pragmas accelerators [4]

HCC compiler OpenCL, HSA [3]

CUDA compiler CUDA [6]

SYCL compiler OpenCL [2]

Kokkos library OpenMP, CUDA [10]

Raja library OpenMP, CUDA [12]

Thrust library CUDA, TBB, OpenMP [11]

Bolt library C++Amp, OpenCL, CPU [1]

3 Locality of Work and Data

Modern computing architectures are composed of various different levels of
processing units and memory locations. Figure 1 shows an example for such
architectures that are a common in today’s nodes for GPU accelerated super-
computers. Tomorrow’s systems will be composed of even more complex mem-
ory architectures. In addition, when for instance looking at autonomous driving
applications requiring a huge amount of processing power, the diversity of dif-
ferent processing units as well as different memory locations will increase.

In order to program these architectures efficiently it is important to place
the data as close as possible to the site where the execution has to take
place. As such, we need APIs that are able to effectively and transparently
express the data placement on and data movement to concrete memory locations
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Fig. 1. This Figure shows an example of a typical heterogeneous architecture that is
composed of multiple CPUs containing different physical blocks of memory as well as
Accelerators and Network Interfaces with their own discrete memory locations, which
are connected through a common bus.

Fig. 2. This figure shows the relation between targets, memory allocation and work
execution; A target is the link between co-locating memory allocation and execution
of tasks close to the memory location. It is used to transparently express the notion of
a ‘place’ in the system to both, allocation and execution.

(or places) in a system. We also need APIs allowing to coordinate the desired
data placement with fine control over defining the execution site from where the
code will access the data.

This paper proposes concepts and APIs that are rooted within the C++ lan-
guage and Standard Library to create an expressive, performant, and extensible
way to control locality of work and data by refining the allocator concept already
defined in the C++ standard as well as using the proposed executor concept.
These are tied together by defining targets, which represent places in a system,
to properly co-locate placement of data and execution of work (see Fig. 2).

3.1 Defining Places in a System

In order to define a place in a system, or a target, we first need to evaluate
the landscape of all available different targets. Examples for targets are: Sets
of CPU cores, which can be used to solve NUMA related problems; Different
memory areas, such as scratch pads, used to access high bandwidth or other
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special purpose memory; Accelerator devices, such as GPUs, which can be used
to offload compute intensive tasks; Remote Processes in a distributed application;
Other types of special purpose hardware, like FPGAs; etc.

Since all the examples for different targets given above have distinct use cases
in terms of their ability to execute different tasks (data parallelism, code with
many control structures) and different properties such as different address spaces
or mechanisms to allocate memory as well as executing code, it becomes obvious
that the definition of a target should be in the form of an concept that doesn’t
define the behavior directly, but rather is a handle to an opaque implementation
defined place in the system. This does not require any additional constraints or
specification for the concept itself, since an implementation is directly operating
on target properties specific to a in place memory and to execute work. By not
having those artificially imposed limitations, we allow for maximal flexibility by
defining the required customization points wherever appropriate.

For supporting the richer functionality to dispatch memory placement and
work execution, the implementation is based on the interfaces described in
Sects. 3.2 and 3.3.

3.2 Controlling Memory Placement

After creating a concept for targets (see Sect. 3.1), we discuss the actual place-
ment of memory. Placement of memory in general needs to first and foremost
handle the allocation of data, but should also cover the transparent migration
(movement) of data to different places of a given target family. For memory allo-
cation purposes, we leverage the already widely used concept of the Allocator.

template <typename Allocator >

struct allocator_traits

: std:: allocator_traits <Allocator >

{

typedef unspecified reference;

typedef unspecified const_reference;

typedef unspecified access_target;

typedef typename access_target :: target_type target_type;

static target_type target(Allocator const& alloc);

template <typename ...Ts>

static void bulk_con struct(Allocator& alloc , pointer p,

size_type count , Ts &&... vs);

static void bulk_destroy(Allocator& alloc , pointer p,

size_type count) noexcept;

};

Listing 1.1. Extensions to std::allocator_traits to support efficient memory
allocation and construction operations for targets as described in Sect. 3.1.



Closing the Performance Gap with Modern C++ 23

Allocators are already widely used within the C++ standard library (for
example with containers or smart pointers) with the main purpose of encap-
sulating memory allocation. This allows for great reuse of the defined con-
cepts in already existing code and serves our purpose of hiding memory allo-
cation on opaque targets perfectly. For the sake of making memory alloca-
tions efficient on various targets, such as for discrete GPU memory or remote
processes, we introduced backwards compatibly extensions. Listing 1.1 outlines
the traits class which supports our extensions, the remaining interface follows
std::allocator traits. The extensions are optional, and fall back to the require-
ments for C++ standard allocators. The extensions introduced, serve the pur-
pose to perform bulk construction and destruction of C++ objects. This is nec-
essary to either avoid overheads of offloading the constructor or destructor code
or to support first-touch policies (as used for ccNUMA architectures) efficiently.

The topic of transparent data migration is not covered within this paper and
does not fall within the realm of memory allocation. Another mechanism would
need to be created with appropriate customization points to support different
target use cases. One example within the HPX runtime system is the migration
of objects between different localities (where a locality is a HPX specific target).

3.3 Controlling Execution Locality

The previous sections described the mechanisms to define targets (Sect. 3.1) and
memory allocation (Sect. 3.2). The missing piece, execution of work close to
targets, is based on the Executor concept. Executors are an abstraction which
define where, how, and when work should be executed, in a possibly architecture
specific way (see also [7]).

template <typename Executor >

struct executor_traits

{

typedef Executor executor_type;

template <typename T>

struct future { typedef unspecified type; };

template <typename Executor_ , typename F, typename ... Ts>

static void apply_execute(Executor_ && exec , F && f,

Ts &&... ts);

template <typename Executor_ , typename F, typename ... Ts>

static auto async_execute(Executor_ && exec , F && f,

Ts &&... ts);

template <typename Executor_ , typename F, typename ... Ts>

static auto execute(Executor_ && exec , F && f,

Ts &&... ts);
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template <typename Executor_ , typename F, typename Shape ,

typename ... Ts >

static auto

bulk_async_execute(Executor_ && exec , F && f,

Shape const& shape , Ts &&... ts);

template <typename Executor_ , typename F, typename Shape ,

typename ... Ts >

static auto

bulk_execute(Executor_ && exec , F && f,

Shape const& shape , Ts &&... ts);

};

Listing 1.2. std::executor_traits to support efficient execution on targets as
described in Sect. 3.1

Executors follow the same principle as Allocators in such that they are acces-
sible through the trait executor traits (see Listing 1.2), in a similar fashion to
allocator traits. It is important to note that an implementation for a given
executor is not required to implement all functions as outlined but the traits are
able to infer missing implementations. The only mandatory function an execu-
tor needs to be implement is async execute. The remaining facilities are, if not
provided otherwise, automatically deduced from that. However, it is important
to note that architectures like GPGPUs benefit tremendously by implementing
the bulk execution features.

Specific executor types are then specialized, architecture dependent imple-
mentations of the executor concept which use this architecture dependent knowl-
edge to provide the target specific mechanisms necessary to launch asynchronous
tasks. We introduce a selection of special purpose executors in Sect. 4.

3.4 Parallel Algorithms and Distributed Data Structures

Now that we have all the necessary ingredients to co-locate work and data,
we are going to make it usable by providing a specialized implementation of a
vector. This vector is exposing the same high level interface as std::vector<T>.
This data structure encapsulates an array of elements of the same type and
enables accessing the stored data element-wise, through iterators, and using
other supporting facilities like resizing data, giving the user an abstraction over
contiguous data using the API as described in Sect. 3.2.

The exposed iterators can be used directly with the parallel algorithms [14]
already existing in HPX. Additionally, HPX’s parallel algorithms allow us to
pass executors (see Sect. 3.3) which will in turn execute the algorithm on the
designated resources. By using compatible targets for both, the executor and
the allocator, the co-location of tasks and data is guaranteed.

Listing 1.3 is providing an example that transforms the string “hello world”
to all uppercase. Note that this example is omitting actual targets and specific
allocators/executors which will be introduced in Sect. 4.
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auto target = ...;

target_allocator <char > alloc(target);

vector <char , target_allocator <char >> s(

{’h’, ’e’, ’l’, ’l’, ’o’, ’w’, ’o’, ’r’, ’l’, ’d’},

alloc);

target_executor exec(target);

transform(par.on(exec), s.begin(), s.end(),

[]( char c){ return to_upper(c); });

Listing 1.3. Hello world example using the introduced concepts Target, Allocator
and Executor

4 Implementation

This Section describes specific implementations for the concepts we defined in
Sect. 3 to demonstrate the feasibility of our claims. As a proof of concept we
implemented special allocators and executors to support NUMA architectures
as well as an allocator and various executors for CUDA devices.

4.1 Support for NUMA Aware Programming

Contemporary compute nodes nowadays usually consist of two or more sockets.
Within this architecture, co-locating work and data is an important ingredient
to leverage the full memory bandwidth within the whole system to avoid NUMA
related bottlenecks and to reduce cross-NUMA-domain (cross-socket) memory
accesses.

For this purpose of identifying cores, the target (see Sect. 3.1) is a numeric
identifier for a specific CPU (see Fig. 3). To identify the various cores in the sys-
tem we use hwloc [8]. This allows us to use bit-masks to define multiple CPUs
as one single target, making up a convenient way to build targets for whole
NUMA domains. For convenience, two functions are provided: get targets()

which returns a vector containing all processing units found in the system and
get numa domains() which is returning a vector with targets, where each ele-
ment in that vector represents the cpuset (bit-mask) identifying the respective
NUMA domain. The targets returned from those functions can then easily be
transformed as necssary, for instance to construct finer grained sets.

After having the targets defined to support our CPU based architecture we
need a target specific allocator to support a vector of separate targets. As a
proof of concept we chose to implement a block allocation scheme by dividing
the number of bytes to be allocated evenly across the passed elements in the
target vector.

The same scheme as described above is used to implement the executor. This
ensures that work that is to be executed on data using the block allocator is



26 T. Heller et al.

Fig. 3. Graphical output from hwloc-ls showing a two-socket Ivy Bridge system. The
Figure shows the different identifiers for the different processing units and groups them
in their respective NUMA domain.

co-located with the data. The cpusets in the associated targets are used as an
affinity mask to pin the executed tasks to the cores accordingly.

4.2 Leveraging CUDA Based GPGPUs

Since more and more supercomputers are equipped with NVIDIA based GPG-
PUs as accelerators, this section will cover a prototypical solution based on
CUDA.

Within the CUDA based implementation, the choice for how to define a tar-
get is determined by the underlying programming model. The devices are repre-
sented by numerical identifiers and in order to support asynchronous operations
such as kernel invocations and memory copies, CUDA streams are used. That
means a CUDA target is implemented as a wrapper for an integer representing
the device and a CUDA stream attached to that device.

For memory placement, an Allocator (see Listing 1.1) are specialized to allo-
cate memory on the given device and the (bulk) construct/destruct functions
offload directly to the GPU. In terms of transparent memory access via refer-
ences to a given object we introduce a special proxy object that allows to hide
the implementation specific details on how to read and write memory and as
such seamlessly supports the interfaces described in Sect. 3.4. For copying data
between host and device, we extended the parallel copy algorithm to provide a
internal specialization that is able to directly call the respective CUDA memcpy
functions for maximum efficiency.

The executor support (see Sect. 3.3) is exploiting the dual compilation mode
of CUDA’s nvcc compiler and is therefore able to execute any callable that is
marked with the CUDA specific device attribute. This gives great flexibility
since code that is supposed to be offloaded needs to be, in theory, only marked
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with the device (in addition to host ) attribute and can be used immedi-
ately with the new executor.

The executor itself implements all functions as outlined in Listing 1.2. For
one, the implemented bulk execution facility ensures best-possible performance
for executing kernels on an array of data-elements. Secondly, we implemented
both, the synchronous and asynchronous versions of the executor interfaces as
the synchronous versions can be implemented more efficiently than they could
be generated by the traits class. The asynchronous versions additionally need to
attach a callback to the stream in order to notify the returned future about the
completion of the operation on the GPU.

In practice however, this way of programming leads to unforeseen problems
during compilation since not all features of C++ are supported on devices and
the need to mark up every function does not scale well especially for third party
code. Newer compiler technologies such as hcc are more promising in this regard
and a truly single source solution without additional mark up can be imple-
mented there in the near future.

5 Results

For the sake of giving a first evaluation of our abstractions defined in the previous
sections, we are using the STREAM Benchmark [16]. As a proof of concept, the
presented APIs have been implemented with the HPX parallel runtime system,
and have been ported to the parallel algorithms as defined in the newest C++
Standard [19] (see Listing 1.4).

template <typename Executor , typename Vector >

void stream(Executor& e, Vector const& as, Vector const& bs,

Vector const& cs)

{

double scalar = 3.0

// Copy

copy(e, as.begin (), as.end(), cs.begin ());

// Scale

transform(e, cs.begin(), cs.end(), bs.begin(),

[scalar ]( double c){ return c * scalar ;});

// Add

transform(e, as.begin(), as.end(), bs.begin(), cs.begin (),

[]( double a, double b){ return a + b;});

// Triad

transform(e, bs.begin(), bs.end(), cs.begin(), as.begin (),

[scalar ]( double b, double c){ return b + c*scalar ;});

}

Listing 1.4. Generic implementation of the STREAM benchmark using HPX and
C++ standards conforming parallel algorithms.
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It is important to note that the benchmark is parameterized on the allocaor
used for the arrays (vectors) and the given executor, which allows to design an
portable implementation of the benchmark ensuring best possible performance
across heterogeneous architecturs in plain C++. For any of the tested architec-
tures, the used Executor and Vector is are using the same target. In our case, we
use the NUMA target as defined in Sect. 4.1 and a CUDA target as described in
Sect. 4.2. The test platform we use is a dual socket Intel Xeon CPU E5-2650v2
with 2.60 GHz together with a NVIDIA Tesla K40m GPU. As a reference imple-
mentation for the NUMA based benchmark, we used the original STREAM
benchmark [15], The GPU version was compared with the CUDA based GPU-
STREAM [9]. For the CPU based experiments, we used two sockets and 6 cores
per socket, that is a total of 12 CPU Cores, which has been determined to deliver
the maximal performance for the benchmark

Fig. 4. Results for STREAM Benchmark on the host and GPU. The figure shows
the resulting bandwidth achieved with the native implementations and the HPX port
showed in Listing 1.4. The achieved performance for all tests is approximately the same
for the respective architectures. The benchmark on the CPU used 2 NUMA domains
with 6 cores each, the GPU version ran on a single Tesla K40m.

The results we obtained from running our benchmark show that the uti-
lized memory bandwidth is essentially equivalent to that achieved by the native
benchmarks. Figure 4 is showing results comparing to the respective reference
implementations. What can be seen is that our CPU based implementation
is about 1.1% slower than the reference and our CUDA implementation are
about 0.4% slower. Figure 5 is giving an impression on the overheads involved
with the parallel algorithms abstractions. For small array sizes, the overhead is
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Fig. 5. Results for STREAM Benchmark on the host and GPU. This graph shows the
average performance of the entire benchmark suite with varying input sizes, from 10
to 400MB. While the native implementations provide lower overhead for small input
sizes, all implementations converge to the same maximum. The benchmark on the CPU
used 2 NUMA domains with 6 cores each, the GPU version ran on a single Tesla K40m.

noticeable within the HPX implementation, however, for reasonable large extents
of the array, the implementations are almost similar again.

6 Conclusion

This paper presented a coherent design and implementation based on the foun-
dation of the upcoming C++17 Standard and provided extensions to ensure
locality of work and data. We showed that the performance of the introduced
higher-level parallelism framework is does not significantly reduced compared to
the performance of today’s prevalent programming environments. The benefit
of our presented solution is to provide a single source, generic, and extensible
abstraction for expressing parallelism, together with no loss in performance.

For future work, we are going to extend the number of targets to include more
support for different memory hierarchies (e.g. Intel Knights Landing High Band-
witdth Memory) as well as improving the support for GPGPU based solutions
by implementing other back ends such as HCC and SYCL.
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Abstract. Building an Exascale computer that solves scientific prob-
lems by three orders of magnitude faster as the current Petascale systems
is harder than just making it huge. Towards the first Exascale computer,
energy consumption has been emerged to a crucial factor. Every compo-
nent will have to change to create an Exascale syestem, which capable of
a million trillion of computing per second. To run efficiently on these
huge systems and to take advantages of every computational power,
software and underlying algorithms should be rewritten. While many
computing intensive applications are designed to use Message Passing
Interface (MPI) with two-sided communication semantics, a Partitioned
Global Address Space (PGAS) is being designed, through providing an
abstraction of the global address space, to treat a distributed system as
if the memory were shared. The data locality and communication could
be optimized through the one sided communication offered by PGAS.
In this paper we present an energy aware runtime framework, which is
PGAS based and offers MPI as a substrate communication layer.

Keywords: Exascale · Energy efficiency · Data locality · PGAS ·
Runtime system · MPI

1 Introduction

Most performance studies of large-scale HPC systems and their workloads have
focused primarily on flops, bandwidth, and latency. However, moving forward
Exascale computing, energy consumption is expected to be the most crucial fac-
tor. In order to achieve the Exascale challenges, as presented in Table 1, power
consumption should be increased by only an integer factor. The U.S Department
of Energy targets 20 MW as the ceiling for power consumption for an exaflop
system. So energy efficiency is being the most crucial factor for Exascale com-
puting. As today’s applications are being more data driven as compute driven,
and to achieve the Exascale goals [9] for the energy efficiency, only changing the
hardware architecture is not sufficient. Also a radical programming rethinking is
needed here. To support the future Exascale systems a wide range of scientific
data intensive applications are being designed. Most of them are written with
the de facto Message Passing Interface (MPI) [2]. Because Exascale systems will
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 32–44, 2016.
DOI: 10.1007/978-3-319-46079-6 3
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Table 1. Exascale challenges

HPC systems Petascale Exascale

Peak flops 100–200 Peta 1 Exa

Memory 5PB 10 PB

Node performance 400GF 1–10 TF

Node memomry BW 100GB/s 200–400 GB/s

Interconnect BW 25GB/s 50 GB/s

Node concurrency O(100) O(1000)

System size (nodes) 500000 O(Million)

Total concurrency 50 Million O(Billion)

Storage 150PB 300 PB

I/O 10TB/s 20 TB/s

Power 10MW 20 MW

be more hierarchical [6] and data locality is being an important deal, Partitioned
Global Address Space (PGAS) [16] will be more fitting for these domains. In the
context of the DASH [10] project, we have developed a runtime system interface
for supporting shared memory style programming on distributed memory sys-
tems called DART [23] (the DASH runtime). In an earlier paper [23], we have
described DART-MPI, a portable implementation of the DASH runtime, that
uses MPI-3 as low-level communication substrate. In this work, we extend DART
and we propose an optimized version toward energy efficiency as a new feature
of the DART runtime framework. We also explore the different mechanisms for
energy efficiency and integrate them in the DART runtime. We will also show
how PGAS approaches are well suitable for the Exascale systems.

The remainder of the paper is organized as follows: In Sect. 2, we present
the background and the relevant related works, followed by the proposing of our
thermal and power aware runtime system DART in Sect. 3. Section 4 describes
the implementation using MPI-3. In Sect. 5 benchmark results are shown and
discussed. Finally, the paper concludes with a short summary and future work
in Sect. 6.

2 Related Work

Energy consumption on Exascale systems has been a hot topic in various research
domains. As a result, a lot of research works have been performed for investi-
gating the mechanisms of the energy efficiency with traditional features like
Dynamic Voltage and Frequency Scaling (DVFS) [14], load-balancing. Other
runtime systems, which are supporting PGAS and energy efficiency, have been
proposed in the literature. The work described in [5] presents a runtime frame-
work for HPC systems without any knowledge of applications. In this paper, the
authors propose and implement an online methodology for phase detection and
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identification in HPC systems. Moreover they introduce a partial phase recogni-
tion technique that guides the usage of green capabilities. The green capability is
here defined as any action that can save energy in an HPC system, such as: CPU
frequency scaling, spinning down disks, scaling the speed of network intercon-
nections, and task migration. An important feature of this work is that it does
not require prior knowledge of the applications running on the system. The work
described in [20] presents a design for Power Aware One-Sided Communication
Library. The proposed design detects communication slack, leverage of DVFS
and interrupt driven execution to exploit the detected slack for energy efficiency.
Besides PGAS languages there are also approaches that implement PGAS in
the form of an API and a library. An example is SHMEM, a library API that
allows its participating processes to view a partitioned global address space. It
was started by Cray Inc. in 1993 and adopted by other vendors later. Currently,
the OpenSHMEM community project is building a new and open specification
to consolidate the various existing SHMEM [17] versions into a widely accepted
standard. Global Arrays (GA) [7] has originally been developed over 20 years
ago and provides one-sided global data access for regularly structured one- or
multi-dimensional arrays. Many of PGAS languages, which are an extension of
C like UPC [8] or Fortran like CAF [21], are designed and proposed in the last
years.

2.1 One Sided Communication

In this section, we introduce the various features of MPI and different power
conservation approaches which influence our design decisions. The most com-
mon use of MPI calls is for two-sided communication [2]. In this communication
models, both sender and receiver have to participate in data exchange operations
explicitly, which requires synchronization between the processes. For example,

Fig. 1. MPI one- and two-sided communication send/receive
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on the sender’s side, it is common to use MPI Send() or MPI Isend() calls. On
the receiver’s side, it is common to use MPI Recv() or MPI Irecv() calls. An
MPI Sendrecv() call specifies both a send and a receive. Even collective calls,
such as MPI broadcasting, require that every process that contributes or receives
data must explicitly do so with the correct MPI call. To overcome this drawback,
the MPI-2 standard introduces one-sided communication. In these communica-
tion model MPI Put and MPI Get allow a direct access to a process without
any explicit system synchronization. So that one-sided communication has more
advantages like reducing synchronization to improve performance, reducing the
data movement and the simplicity of programming. The Fig. 1 demonstrate the
difference between one and two sided communication mechanisms.

3 Energy Efficiency in DART

3.1 DASH: Data Structures and Algorithms with Support for
Hierarchical Locality

The DASH project funded by the German research foundation (DFG) in the con-
text of the priority program Software for Exascale SPPEXA [18]. It consists of four
German partner institutions (LMU Munich, KIT Karlsruhe, HLRS Stuttgart, and
TU Dresden) and an associated partner at CEODE in Beijing, China. DASH is a
data-structure oriented C++ template library based on PGAS languages. Figure 2
shows the big picture of the structure of the DASH library.

Fig. 2. DASH architecture
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The DASH applications are enabled to use the provided data structures that
is given in the from of a C++ library. One of the most important features of
DASH is making irregular data, stored in memories at several nodes, accessi-
ble as if it were a regular data structure. In the context of the DASH project,
we have developed a runtime system interface for supporting shared memory
style programming on distributed memory systems called DART (the DASH
runtime). DASH is a C++ template library to efficiently work with distrib-
uted data structures. DASH implements PGAS semantics [10] through operator
overloading, supports the allocation over large data sets and provides means of
achieving multilevel hierarchical data locality. DART provides the C++ library
DASH with services and abstracts from a variety of underlying communication
substrates. For our scalable DART runtime implementation we chose MPI, more
specifically MPI-3, as the underlying communication mechanism and we call
this implementation DART-MPI, while DART-SHMEM and DART-CUDA [22]
are other implementations currently under development at the authors’ orga-
nizations. We chose MPI because it is a standard, well-developed communica-
tion substrate, with support for different network technologies. In general, MPI
implementations, in particular those provided by system vendors, are highly
optimized for their particular network fabric. MPI introduced the concept of
one-sided communication, called RMA (Remote Memory Access), in the second
version of its specification. The RMA features were improved in the third ver-
sion (MPI-3). Our PGAS runtime benefits from the optimized implementations
of MPI-3 on different architectures as well as its support for one-sided non-
blocking inter-node communications. In the context of the DASH project, we
have developed a runtime framework for supporting shared memory style pro-
gramming on distributed memory systems called DART (the DASH runtime).
In this section, we propose the design of an energy efficient one-sided commu-
nication runtime framework. We explore the different mechanisms for energy
efficiency and integrate them in the DART runtime to make it energy aware.
As in the paper [23], in which DART is described, a portable implementation of
the DASH runtime which uses MPI-3 as low-level communication substrate. To
make the DART-MPI runtime more efficient, we integrate DVFS [13] and inter-
rupt based execution. To make DART an energy efficient runtime system, we
combine both of DVFS and interrupt based mechanisms. If transitioning over-
head between frequency and voltage is negligible in front of the communication
slack, reducing the frequency and the voltage of a processor, an energy efficiency
would be improved. On the other side, as an alternative to polling specially by
exploiting enough communication slack, interrupt based execution [20] mecha-
nism has been the most used for high performance computing and allows the
minimal CPU utilization. In this section we present the implementation of an
energy efficient one-sided communication runtime system. In this case we clas-
sify data-types as contiguous and non-contiguous and we present the different
scenarios for one-sided communication.
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3.2 Data Locality in DART

As today’s applications are being more data driven as compute driven, and
as the future Exascale systems will be multi-hierarchical as the today’s Petas-
cale systems, the data locality is expected to be the most important factor to
achieve the design of an energy efficient system. Due to the increasing complex-
ity of HPC server architectures and networks topology- and affinity-awareness
has become a critical component of HPC application optimization. The most
important abstraction provided by DART is that of a virtual global memory
space and a mechanism to refer to data items residing in this space (a global
pointer). A global pointer in DART is a structure of 128 bits, it has a 32 bit
field for identifying the unit owning the memory, a 64 bit offset or address field
and 32 bits for flags and segment identifiers. Crucially, the global pointer on the
DART level has no phase information associated with it, its only purpose on the
DART level is to name and refer to memory in the global address space abstrac-
tion provided by DART. DASH provides its own global memory class which does
contain appropriate phase information needed to decide when to switch between
units.

4 Thermal- and Power-Aware Management

DART group, as shown in Fig. 3, should be maintained in an ascending order
based on the absolute unit ID. The DART global memory is composed of the
memory segments contributed by the units of an application. Visibility and acces-
sibility to memory is based on the team concept in DART. The team-collective
operation dart team memalloc aligned allocates n bytes in each unit’s memory.

Fig. 3. DART group creation
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Fig. 4. Thermal aware scheme for temperature check
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This memory is accessible only by the members of team t and this particu-
lar function allocates team-aligned and symmetric memory. Symmetric refers to
the property that all units allocate the same amount of memory, while team-
aligned denotes to the property that any unit can compute the global pointer
to any location in the global memory chunk by simple arithmetic. The second
memory allocation function supported at the moment is dart memalloc, a local
(global) memory allocation that allocates n bytes accessibly memory by any
unit (the memory has implicit associativity with DART TEAM ALL, but the
call is local). Our energy-aware scheduling concept is based on several existing
strategies, which are applied for the requirement of different scheduling scenar-
ios. These strategies are individually integrated in our framework at the run-time
based on the current load and temperature state.

In this section, we propose a novel approach that reduces the power con-
sumption of a large scale system. It is based on reducing the core temperature
[15] using DVFS, task migration and data locality awareness. We choose here
DASH and DART as our framework for the parallel programming as it allows
a data locality awareness with low overhead. The design of our thermal aware
scheme is based on the following strategies, which are individually integrated
in our framework at the runtime based on the current load and temperature
state. The main tasks of this scheme can be summarized as shown in Fig. 4.
The first purpose is to schedule tasks with respect to the temperature of the
processors. Such scheduling strategy needs temperature values of the node that
describes the changes of this parameter as applications are running. We use here
the HOTSPOT tool described at [1] to get temperature values. By an incoming
of a task request our temperature check scheme starts first with an initial task
of allocating the task’s data to one of the nodes that meets the requirement
described in the request. In the following, it performs the runtime tuning with
respect to load and temperature. The first step for runtime tuning is to detect
the critical hosts with either higher temperature or workloads. The pseudo-code
in Algorithm 1 illustrates how the scheduler performs this task. In the second
step, described by line 11–23, the list of critical nodes, which has been created
by the scheduler in the first step, is processed again for finding the tasks running
on them. These tasks are the concrete candidates for migration. The candidate
tasks are then sorted by their CPU usage and those with minimal CPU usage
are marked with a higher priority of migration for the reason of not to bring high
workload on the target node, thus to avoid possible further migrations. For the
same reason the scheduler must also ensure that the temperature on the target
node does not exceed the threshold with a maximal possible frequency. At the
end of processing, this scheduling step creates a task list that contains all tasks,
which are the actual migration objects.

The third and last step, described by lines 24–40 is to find an appropriate
target node for allocation of the migration objects in the list created in the
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second step. Here, the workload requirements (e.g., needed resources) have to be
taken into account. The proposal scheme first observes the temperature on the
destination. If this temperature is between the maximal and minimal threshold
values (temperature threshold) and the requirement of the task is fulfilled, the
observed node is selected as the target node. In case that several target nodes
are found, the one with the minimal energy consumption will be chosen.

Since the power consumption depends on the CPU usage, this metric has to
be measured periodically, before each task scheduling step in the whole execution
process in order to calculate the current consumed energy by the CPU. And
since the temperature of each core depends of his dynamic power, we apply
here the DVFS technique for maintaining all cores working at their maximum
frequency [12] as long as their temperature is between the minimal and the
maximal allowed temperature values (temperature thresholds). To verify the
concept and to validate the functionality of the proposed scheduling strategies,
we extend the implementation of DART with a scheduling Interface.

5 Energy and Performance Evaluation of DART

In this section, we evaluate the performance of DART-MPI using a set of bench-
marks which includes low-level communication and application benchmarks. We
describe also the evaluation methodology and experimental setup that we use to
evaluate the effectiveness of our runtime scheduling algorithm.

5.1 Experimental Test Bed

We performed all experiments on BwUniCluster [4], a 512-node Intel Xeon E5-
2670 cluster at Steinbuch Centre for Computing (KIT) with an InfiniBand 4X
FDR interconnect. Each cab node is composed of 2 Octa-Core processors and
64 GB of DRAM. To study the impact of the approaches proposed in Sect. 4,
we use a designed MPI communication benchmarks available at [3]. This bench-
mark was selected because it exhibits performance and scaling behaviour typical
for a wide range of HPC applications. There are two different evaluation met-
rics used for the evaluation of DART to compare the performance of various
approaches presented above, and we compare them with the polling approach,
which is the default methodology for most one-sided communication runtime sys-
tems. The fundamental metric is the latency observed by each of the approaches.
Another metric of interest is the power consumption of the approaches. We
specifically focus on the thresholds beyond which the power and energy/mbyte
may be improved without an increase in latency. To estimate the potential power
benefits, we use the power consumption data gathered from the benchmark
results.
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Algorithm 1. Algorithm for detecting critical nodes
Input: nodes, tasks

Output: CriticalNodes
1: for each node in nodes do
2: if isNodeOverThresholdTemperature (node) then

3: overThresholdTempNodes ← addnode
4: else

5: if isNodeUnderThresholdTemperature (node) then

6: underThresholdTempNodes ← addnode
7: end if

8: end if
9: overunderNodes ← overThresholdTempNodes+ underThresholdTempNodes

10: CriticalNodes ← overunderNodes

11: for each node in CriticalNodes do

12: while true do
13: vm ← getTasks(node)
14: if thentask = Null

15: break

16: end if

17: TaskstoMigrateList ← addtask
18: node ← deallocatetask

19: if thenisNodeOverThresTemp(node) AndisNodeUnderThresTemp(node)
20: break

21: end if
22: end while

23: end for

24: for each task in TasksToMigrateList do
25: allocatednode ← null
26: minPower ← Max
27: for each node not in CriticalNodes do

28: if node has enough resources for task then
29: power ← estimatePower(node, task)

30: end if
31: if thenpower < minPower

32: allocatedNode ← node

33: minPower ← power
34: end if

35: if thenallocatedNode! = NULL
36: allocate task to allocatedNode

37: end if

38: end for
39: MigrationMap ← add(task, allocatedNode)

40: end for
41: end for

5.2 Experimental Results

In this section, we present the evaluation of DART for each of the communication
primitives using the metrics presented above, while comparing the performance
of the approaches using native DART and thermal-aware, which is combined
with DVFS. Figures 5 and 6 show latency and power consumption for the shift
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Fig. 5. Alltoall performance (64 processors)

Fig. 6. Power consumption (64 processors)

communication benchmark using the Alltoall on 64 processes, respectively. All
benchmarks are averaged over multiple executions and the measurement errors
are estimated from the statistical standard deviation. In Fig. 5, we compare
the performance of our proposed thermal-aware algorithm with DART Alltoall
algorithm for data locality. We observe that there is a little bit latency difference
between the default algorithm, DVFS and our proposed algorithm. In the Fig. 6
we compare the power consumption characteristics of the proposed algorithm
with the primitive DART. In the native DART algorithm, each node consumes
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circa 2.4 KW. However, our thermal-aware algorithm allows a minimizing of a
power consumption to circa 1.6 KW for big size of messages.

6 Conclusion

In this paper we have designed a Power and Thermal Aware One-sided Com-
munication Runtime Framework, based on PGAS, that utilises DVFS and the
temperature threshold to maintain the system working with his peak frequency.
The main challenge of our approach is to minimize the power amount being con-
sumed without any remarkable performance degradation. We have demonstrated
through an application benchmark that our proposed algorithm outperforms the
native DART runtime algorithm and can deliver better power saving results. We
plan to continue development of energy-efficient runtime and we also plan to
evaluate it with a real DASH application on a bigger system like JUQUEEN [11]
and SuperMUC [19].

Acknowledgement. We gratefully acknowledge funding by the German Research
Foundation (DFG) through the German Priority Programme 1648 Software for Exas-
cale Computing (SPPEXA).
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Abstract. Extracting and analyzing detailed information from large
simulations is of crucial importance for science. However, with the
increasing problem size of current simulations, the process of visualizing
and understanding big simulation raw data becomes more difficult and
needs additional effort. More precisely, the gap between compute and I/O
performance is widening with current supercomputers. Thus, the classi-
cal approach of visualizing simulation results in a post-processing step
is limited or even impossible for extreme-scale scenarios. One promising
technique to overcome this issue is in situ visualization, which visualizes
and analyzes simulation data during simulation runtime. Within this
work, in situ visualization using VisIt/Libsim has been added to the
CIAO code framework for interactive- and batch-mode visualization on
JUQUEEN, an IBM Blue Gene/Q system with 458 752 cores. Full-system
runs are demonstrated and early results of performance measurements
of an extreme-scale multiphase case are discussed.

Keywords: In-Situ visualization · VisIt/Libsim · Blue Gene/Q ·
Scalasca

1 Introduction

Storing simulation results on disk and post-processing them after the simulation
has finished is still the dominant processing paradigm for analysis and visual-
ization on supercomputers. However, with each generation of supercomputers,
available memory and FLOPs increase resulting in simulations of higher fidelity
and larger data, while I/O bandwidth and storage do not keep up. Hence, from
an energy point of view, FLOPs are cheap, but moving data is expensive. This
trend hampers the traditional offline post-processing paradigm as the time to
compute relevant simulation results decrease much faster than the time required
to dump the data to disk. Consequently, extreme-scale simulations often have to
reduce the amount of stored data and subsequent processing algorithms have to
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 45–55, 2016.
DOI: 10.1007/978-3-319-46079-6 4
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reduce the amount of read data from storage devices as file I/O performance is
a critical scalability constraint.

The “slow I/O” issue has been addressed through a variety of techniques
encountered in highly optimized I/O frameworks [1,2] or just by reducing the
data size through coarse-grained temporal resolution, data subsetting, or simply
fewer dumps of simulation results to disk. However, as the exascale-computing
era approaches, transferring of raw simulation data is increasingly cumbersome.
Scientists are most often forced to limit the time for I/O and abstain from
meaningful intermediate results of their simulations, when they are preparing
their simulations for extreme-scale.

One way to reduce the need for I/O is sparing some supercomputing time to
process, structure, reduce, or visualize the data in real-time (in situ/in transit
processing) during the simulation [3]. In particular, when data reduction becomes
inevitable, only during the simulation all relevant data about the simulated fields
and any embedded geometry is readily available at the highest resolution and
fidelity for critical decision making. The key aspect of real-time processing on
the same machine (in situ processing) is that data is used while it is still in
memory. By transforming the data in situ, analysis can extract and preserve all
salient features in the raw data that would be lost as a result of aggressive data
reduction or much fewer file dumps. It can characterize the full extent of data to
enable runtime monitoring, steering, analyzing, and visualizing of the simulation
on-the-fly as it does not require to transfer large quantities of raw data to the
storage devices.

Especially visualization benefits from in situ methods as I/O performance
limits are a major bottleneck in extreme-scale scenarios and makes post-
processing of high fidelity simulations impractical. Different tools are avail-
able to add in situ visualization to simulation codes. For example, two wide-
spread open-source tools for in situ visualization are ParaView/Catalyst [4,5]
and VisIt/Libsim [6–8].

Motivated by the I/O bottleneck of current extreme-scale cases, the CIAO
code framework developed at the Institute for Combustion Technology, RWTH
Aachen University, for multiscale, multiphysics simulations has been coupled
with VisIt/Libsim within this work. An extreme-scale multiphase case was cho-
sen for demonstrating successful in situ visualization in batch and interactive
mode on all racks of the IBM Blue Gene/Q JUQUEEN. Early results of perfor-
mance measurements using Scalasca will be shown and discussed for the remain-
ing part of this paper.

2 Motivation

The efficiency of direct injection combustion engines is strongly affected by the
corresponding fuel injection processes. Thus, a more detailed understanding of
the fuel injection, especially the droplet formation, would help to improve the
design and performance of current engines in order to reduce their emission
and pollutant formation. However, studying these processes is very difficult due
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(a) Visualization of the extracted mesh
from contour filter upon a distance field
scalar.

(b) Final image raytraced from the ex-
tracted mesh in a post-processing step
using Blender [9].

a

Fig. 1. Zoomed view on a droplet forming from a ligament in a primary breakup
simulation of a multiphase jet using CIAO [14].

to the overall complexity and the involved small length and time scales. Espe-
cially the primary breakup, which happens immediately after the liquid exits
the nozzle, is experimentally hardly accessible, but a clear understanding of it is
particularly important, because it is the first process to be modeled and impacts
all other physical processes [10]. Therefore high-fidelity Direct Numerical Simu-
lation (DNS) of two phase flows providing detailed information about temporal
and spatial evolution of multiphase mixing is of crucial importance.

Studying the breakup of ligaments over time (Fig. 1) is one example for high-
fidelity multiphase simulations [11–13]. Due to the required resolution, classical
post-processing is impossible since the size of a data set representing only a
single breaking ligament would already reach ∼850.0 TiB assuming a spatial jet
case with 25603 grid and a breaking time of 100 time steps. Because many data
sets would be required for computing converged statistics, the overall amount of
data would be not manageable with conventional post-processing techniques. In
order to overcome this issue, in situ visualization is an essential method [14,15]
for reducing the amount of data tremendously by focusing only on relevant
spatial locations while locally preserving the full temporal resolution.

3 System Setup

JUQUEEN [17] is an IBM Blue Gene/Q system consisting of 28 racks each
with two midplanes comprising 512 compute nodes with 1.6 GHz PowerPC A2
processors and 16 GB RAM, connected via a custom five-dimensional torus net-
work. Compute node processors provide 16 cores to applications, each capable
of running four hardware threads. Consequently, JUQUEEN offers a total of
458 752 cores and can concurrently run 1 835 008 processes or threads. Addi-
tional 248 I/O nodes are connected via Cisco network switches to the JUST
GPFS filesystem. A lightweight Linux-based Compute-Node Kernel (CNK) runs
on each compute node along with an optimized MPI library.



48 J.H. Göbbert et al.

4 Application Setup

CIAO (Compressible/Incompressible Advanced reactive turbulent simulations
with Overset) is a multiphysics, multiscale Navier-Stokes solver for turbulent
reacting flows in complex geometries. It is a member of the High-Q Club [18],
a collection of the highest scaling codes on JUQUEEN. CIAO performs Direct
Numerical Simulations (DNS) as well as Large-Eddy Simulations (LES) based on
the Navier-Stokes equations along with multiphysics effects (multiphase, com-
bustion, soot, spark, ...). It is a structured, finite difference code, which enables
the coupling of multiple domains and their simultaneous computation. Moving
meshes are supported and overset meshes can be used for local mesh refinement.

A fully compressible (called arts cf ) as well as an incompressible/low-Mach
solver (called arts) are available within the code framework. Spatial and tem-
poral staggering of flow variables are used in order to increase the accuracy of
stencils. The sub-filter model for the momentum equations is an eddy viscosity
concept in form of the dynamic Smagorinsky model with Lagrangian averag-
ing along fluid particle trajectories. The fully compressible solver uses equation
of states or tabulated fluid properties, a transport equation for internal/total
energy, and a low-storage five-stage, explicit Runge-Kutta method for time inte-
gration. The incompressible/low-Mach solver uses Crank-Nicolson time advance-
ment and an iterative predictor corrector scheme. The resulting Poisson equation
for pressure is solved by HYPRE’s [19] highly-scalable multi-grid solver (AMG)
or a BiCGStab method. The momentum equations are spatially discretized with
central schemes of arbitrary order and various different schemes are available for
the scalar equations (WENO, HOUC, QUICK, BQUICK).

The code is written in Fortran90 and parallelized with MPI. The code has
been used for production on multiple supercomputers (eg. JUQUEEN, Super-
MUC, MareNostrum III). It shows good scaling (Fig. 2 left) up to the full
JUQUEEN with all 28 racks and 458 752 cores as long as the limit of about
25 000 cells per core is not undershot, which is a quite common behavior for
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Fig. 2. Scaling and timing of the compressible solver ‘arts cf’ of CIAO on JUQUEEN
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compressible flow solvers. Direct MPI I/O and HDF5 is implemented in CIAO.
For performance reasons direct MPI I/O is used for writing the simulation state
to the file system. But for large-scale simulations with high-frequency file dumps
the I/O performance becomes a major bottleneck.

In Fig. 2(right) the wall time of the major components of the solver are
shown exemplary for a setup with 10243 grid cells. Here, writing a the raw
simulation data file every 100 iterations (as required) dramatically increases the
compute time. The simulation becomes even slower for the job size of 262 144
MPI processes. This is related to the small problem size, but at the same time
the I/O wall time is rising the wall time for the parts of the compute kernel
of the code is still dropping. Hence, the code scales very well on JUQUEEN as
long as the I/O is not considered. To get a deeper understanding of the I/O
bottleneck performance measurement of CIAO/arts cf execution performance
on JUQUEEN was done with Scalasca using the community-developed Score-P
instrumentation and measurement infrastructure [22].

Scalasca, the open-source toolset for scalable performance analysis of large-
scale parallel applications [21] is widely deployed on HPC systems including
some of the largest in the world. Its runtime summarization and event trace
analyses of MPI and OpenMP primarily focus on locating and quantifying com-
munication and synchronization inefficiencies in C/C++/Fortran applications.
While most analyses are adequate at modest scales (e.g., a single BGQ rack with
64 k processes/threads), occassionally it is necessary to investigate performance
issues that only manifest at larger scales.

All sources were instrumented with the IBM XLF compiler directed to instru-
ment application routines and interposing on the MPI library. Initial profiles col-
lected from executions of the instrumented executable were scored to identify an
appropriate routine filter for subsequent measurements, both reducing measure-
ment overheads and generating a more compact profile. Post-processing derived
a rich hierarchy of metrics, and also allowed extraction of sub-profiles. One such
Scalasca profile of CIAO/arts cf execution on the 28 racks of JUQUEEN with
458 752 MPI ranks is shown in Fig. 3.

The strong scaling graph in Fig. 2(b) shows the overall execution time of
CIAO/arts cf and its major components for a fixed problem size (10243 grid, 10
scalars, 100 iterations) with different numbers of MPI ranks (16 ranks per com-
pute node). Overall execution time decreases with up to 262 144 MPI ranks
before becoming slower again with the largest configuration of 458 752 MPI
ranks. While advance iter with the WENO5 solver continues to scale well, it is
a breakdown in performance of the stop routine dumping the final simulation
state that is responsible.

But only 19 % of total CPU time is local computation and 70 % of which is
for advancing 100 iterations. The remaining CPU time is used for MPI, of which
77 % is stopping the simulation and dumping the final output with collective file
writes. Focusing the profile examination on the stop routine (Fig. 3) reveals
that 99 % of its total CPU time is spent in MPI File write all calls, with two
of these in the write sd data v003 routine constituting over 94 %. While MPI
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Fig. 3. Scalasca profile of CIAO arts cf execution on the 28 racks of JUQUEEN
Blue Gene/Q with 458 752 MPI ranks. 19% of total CPU time is local computation,
70 % of which is for advancing 100 iterations. The remaining CPU time is used for
MPI, of which 77% is stopping the simulation and dumping the final output with col-
lective file writes. Within the arts cf stop routine, 99% of total CPU time is spent in
MPI File write all calls, with two of them in write sd data v003 constituting over
94 %. (Display hiding callpaths with less than 0.5 % of time.)

collective file I/O routines are much more efficient than associated individual file
writes, they remain constrained by the bandwidth achievable when all ranks are
writing to a single shared file. Libraries such as SIONlib [1] which are optimised
for scalable native file I/O achieve significantly higher performance by writing
separate files from each BG/Q IONode which serves 2048 cores.

But even with optimized I/O the required high frequency of file dumps would
significantly slow down the simulation for extreme-scale scenarios. Therefore,
VisIt/Libsim was coupled to CIAO in the step.

Coupling VisIt/Libsim

It takes considerable effort to couple a parallel simulation code like CIAO with a
real-time processing code. In general there are two primary coupling strategies:
loose coupling using a general purpose approach or close coupling of simulation
and processing code via dedicated custom code. For close coupling simulation
and visualization codes are sharing the same compute and memory resources
and run as a single process for each MPI rank.
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Fig. 4. Coupling mechanism between simulation CIAO and visualization VisIt/Libsim
for interactive mode after connection to the VisIt client has been established. The blue
line represents the code path for a simulation iteration. The orange line represents the
code path to process a visualization command. (Color figure online)

In this case a coupling layer (Fig. 4) for close coupling has been developed to
add the parallel in situ VisIt/Libsim to the simulation code CIAO. This layer is
independent of CIAO and already in use by two other simulations codes of the
High-Q club (ZFS and psOpen) for in situ visualization. It has been developed as
a separate module and is linked to the application as VisIt/Libsim only supports
static linkage on Blue Gene/Q. Coupling methods for in situ visualization in
interactive- and batch-mode have been integrated to CIAO.

If the desired visualization is known before the simulation starts the visu-
alization commands can be batched and an interactive session is not required.
This batch mode is often preferable as it is in general not known in advance
when a job will start on the supercomputer. Batch mode has been added to
CIAO+VisIt/Libsim and used partly for the measurements.

In contrast the interactive mode allows to control the visualization while the
simulation is running. In Fig. 4 the coupling mechanism is sketched for interactive
mode after connection to the VisIt client running on a local workstation has been
established. Here the blue line (simulation loop) represents the code path for a
simulation iteration and the orange line (visualization loop) the code path to
process a visualization command. After each CIAO iteration it can be checked
if new visualization commands have been send from a connected VisIt client.
If new input is detected the visualization loop cycles until all commands are
processed.

Although in situ processing reduces the amount of time required for I/O,
there is a slight overhead which has to be discussed. The VisIt client commu-
nicates to MPI rank 0 which broadcasts the information to all other ranks. To
limit this overhead in each iteration, the frequency for executing checks (and the
MPI broadcast) can be reduced at runtime. Hence, the overhead is negligible.
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The current strategy of close coupling can easily result in load imbalance for
the parallel visualization algorithms as the numerical grid is distributed over all
MPI ranks concerning the requirements of the simulation algorithms in the first
place. While the compute time required per cell to advance the simulation can
often be estimated in advance this is not the case for interactive visualization.
Therefore load imbalances are expected.

5 Measurements

Two measurement campaigns of CIAO+VisIt/Libsim have been conducted for
visualization in interactive- and batch mode up to the full JUQUEEN with
458 752 cores. Since CIAO is not hybrid-parallelized one MPI process was exe-
cuted per core.

VisIt/Libsim version 2.10.0 has been used for the first measurement campaign
and 2.10.1 for the second. Required patches, e.g. for the JUQUEEN specific
network configuration, have been added to enable the communication between a
VisIt client running on an external workstation and VisIt/Libsim on rank 0. All
required source code modifications to compile and run VisIt on JUQUEEN have
been added to the official branch of VisIt and are contained in version 2.10.2
[16] released March 2016.

With one MPI process per core the available main memory is limited to
1 GiB on JUQUEEN less the memory required by the system. For the setup
the binary size increases from 84 MiB without VisIt/Libsim to 167 MiB with
statically linked VisIt/Libsim. As the binary is loaded only once per node to the
main memory (16 GiB) the additional 83 MiB huge but acceptable. Even though
the simulation data could be zero-copied between simulation and visualization
engine, it was copied as this ensures that no modification is done accidentally by
VisIt. This is a requirement by the developers and users of CIAO and increases
the memory footprint additionally.

A turbulent channel setup with droplets and Reynolds number 13760 with two
periodic directions as the target case has been used and iteratively simulated using
the compressible CIAO solver. In more detail, Large-Eddy Simulation (LES) with
Lagrangian averaging, 4th order velocity scheme, WENO5 scalar scheme, and 5
time step subiterations was performed. A Cartesian grid was used, which was uni-
formly distributed over all MPI ranks and shared between simulation and in situ
visualization. Three different test cases from small to production size (Table 1)
using CIAO’s compressible flow solver have been tested. As well as the flow field,
one additional active scalar has been transported. In each case plots with ten iso-
contours and pseudo-color plots on the pressure field are computed and visualized
in addition to volume rendering for the interactive mode.

Interactive Visualization

In the first measurement campaign the interactive in situ visualization on the
full system has been tested. The required runs have been conducted during the
JUQUEEN Extreme Scaling Workshop 2016 [20].
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Table 1. The different CIAO test cases running with VisIt or Scalasca on the full
JUQUEEN.

Case Grid In situ visualization Score-P

Grid size Cells per rank Interactive Batch

1 6403 571 x x

2 10243 2340 x x

3 25603 36571 x

Fig. 5. Interactive in situ visualization of a CIAO+VisIt/Libsim simulation with
458 752 MPI processes. The figure shows the VisIt client on a workstation connected
to the simulation running on the full JUQUEEN.

Figure 5 shows a screenshot of the full JUQUEEN run. It visualizes the simu-
lation state after running for 9 units of simulation time. Beside the VisIt overview
window (on the left), Window 1 showing a histogram of the pressure, Window 2
visualizing the turbulent kinetic energy within the channel, the compute engines
window giving information about the simulation on JUQUEEN and the simula-
tion window allowing to give instructions to the simulation are visible.

The additional memory of ∼440 MiB required on rank 0 for interactive in
situ visualization limited the problem size to 6403 grid cells.

Batch Visualization

In the second measurement campaign the visualization was processed in batch
mode. Again all tests have been conducted on 28 racks. The additional memory
allocated on rank 0 was at any time less than 100 MiB. Hence, the contour
filter could be executed on larger problem sizes up to 25603 grid. The rendering
performance required to generate an image from the resulting contour mesh was
not scaling in contrast to the interactive mode. The contour mesh had to be
saved to the storage device and rendered in a post-processing step.
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6 Conclusions and Future Work

Many extreme-scale applications are facing an I/O bottleneck, which limits their
overall performance or the accuracy of the resulting data. One way to deal with
this issue is to use in situ visualization benefiting from full memory access during
simulation runtime. By coupling VisIt/Libsim and the CIAO code framework it
was possible to realize in situ visualization of a turbulent channel flow simulation
on 28 racks of JUQUEEN in fully-interactive and batch modes. This setup avoids
the need for I/O completely.

The coupling interface implementation was analyzed with the help of Scalasca
and promising results presented. Furthermore, the implementation was used to
study the breakup of a liquid spatial round jet in a gaseous environment during
the Big Blue Gene Week 2016 on the full JUQUEEN. This simulation featured
6144 grid cells in streamwise and 4096 cells in each crosswise direction in order
to resolve even finest liquid structures.

Even though the successful application of extreme-scale in situ visualization
was demonstrated, issues with respect to memory and scaling were found, which
will be addressed in future work. Currently, memory shortage on MPI rank 0
is limiting the grid size for the interactive mode. Work has started to overcome
this issue adding hybrid parallelization to CIAO using OpenMP. In batch mode
the scaling of the visualization engine has to be analyzed in more detail in order
to further improve the communication patterns.

The introduced coupling interface has been generalized in order to simply
couple arbitrary code frameworks and visualization libraries like VisIt/Libsim.
It is part of the JUSITU library for in situ visualization and available from the
authors.
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17. Jülich Supercomputing Centre. JUQUEEN: IBM Blue Gene/Q Supercomputer
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21. Geimer, G., et al.: The Scalasca performance toolset architecture. Concurrency
Comput. Pract. Experience 22(6), 702–719 (2010). http://www.scalasca.org/
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Abstract. EPiGRAM is a European Commission funded project to
improve existing parallel programming models to run efficiently large
scale applications on exascale supercomputers. The EPiGRAM project
focuses on the two current dominant petascale programming models,
message-passing and PGAS, and on the improvement of two of their
associated programming systems, MPI and GASPI. In EPiGRAM, we
work on two major aspects of programming systems. First, we improve
the performance of communication operations by decreasing the memory
consumption, improving collective operations and introducing emerging
computing models. Second, we enhance the interoperability of message-
passing and PGAS by integrating them in one PGAS-based MPI imple-
mentation, called EMPI4Re, implementing MPI endpoints and improv-
ing GASPI interoperability with MPI. The new EPiGRAM concepts
are tested in two large-scale applications, iPIC3D, a Particle-in-Cell
code for space physics simulations, and Nek5000, a Computational Fluid
Dynamics code.

1 Introduction

Exascale supercomputers will deliver 1018 floating-point operations per sec-
ond (FLOPS) in double precision using the High Performance Linpack (HPL)
benchmark. Today, the two fastest supercomputers are the Chinese Sunway
TaihuLight and Tianhe-2 supercomputers delivering respectively 93 and 33.8
petaFLOPS. The next American supercomputers from the Corral initiative will
deliver between 100 and 200 petaFLOPS. Current projections of future super-
computers estimate the delivery of exascale machine in 2024.

While the race to exascale resulted in faster and larger supercomputers that
today are only a factor of ten far from exascale, the software stack to support
parallel applications on supercomputers has remained almost unchanged with
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respect to the software present on petascale machines. In fact, almost all appli-
cations use MPI as main library to support parallel communication. Some of
the applications use Partitioned Global Address Space (PGAS) languages, such
as Coarray Fortran and UPC, with MPI [19,22]. Several applications employ
OpenMP in combination with MPI for programming intra-node communica-
tion [13]. Despite the proposal of new disruptive programming models and sys-
tems [1,3,5], it is unlikely that such programming systems will reach a level
of maturity and reliability to be readily deployed on the full exascale machine.
The programming system dominating the exascale era will be MPI, possibly in
combination with PGAS and OpenMP. For this reason, it is important both to
improve the performance of these existing programming systems and to enhance
their interoperability.

The size of next exascale supercomputers and their hardware pose difficult
challenges to development of programming models. One of the main challenges
is to handle the amount of parallelism that an exascale supercomputer will pro-
vide. The current fastest supercomputer Sunway TaihuLight provides 10,649,600
cores for parallel computation. Extrapolating this value to future more powerful
supercomputers, it is reasonable to expect that an exascale machine will provide
an 100 million-way parallelism. While communication cost decreases as part
of communication operations is offloaded to the NIC and network technologies
improve, still a large amount of memory is needed for storing process and com-
municator information on 100 million processes and memory footprint becomes
a serious bottleneck [2]. In addition, collective operations and synchronization
of such a large amount of processes [24] require the development and implemen-
tation of more sophisticated collective algorithms. A second main challenge is
to guarantee that all the programming systems, such MPI, OpenMP and PGAS
approaches efficiently interoperate sharing fairly all the hardware resources. It
is therefore important to improve the performance of communication operations
on a very large number of process potentially in presence of a combination of
different programming systems.

Exascale ProGRAmming Models (EPiGRAM) is a European Commission
funded project with the goal of addressing these exascale challenges in program-
ming models. The EPiGRAM consortium consists of KTH Royal Institute of
Technology, Vienna University of Technology (TU Wien), Fraunhofer ITWM,
Cray UK, University of Edinburgh and University of Illinois (associate partner).

EPiGRAM focuses on the improvement of MPI and GASPI performance on
exascale systems. MPI is currently the most used approach for programming
parallel applications on supercomputers [11]. Global Address Space Program-
ming Interface (GASPI) is the standard [12] for a PGAS API. GASPI uses
one-sided Remote Direct Memory Access (RDMA) driven communication in
combination with remote completion in a PGAS environment. Global address
space Programming Interface (GPI) is a GASPI implementation, developed by
Fraunhofer ITWM. Since GPI-2, Fraunhofer ITWM provides an open-source
GPI implementation under GPL v3.
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Fig. 1. Overview of the EPiGRAM project.

Figure 1 provides an overview of the different topics that have been investi-
gated during the EPiGRAM project and the remaining part of the paper will
describe these topics more in detail.

The paper is organized as follows. The second section presents the EPiGRAM
work to address the challenge of exascale parallelism. In particular, we present
how MPI and GASPI are further developed to reduce the memory footprint,
to improve collective algorithms and implementations and to support emerg-
ing computing models. The third section describes the EPiGRAM research on
MPI and GASPI interoperability, presenting MPI endpoints, GPI interoperabil-
ity with MPI and the PGAS-based MPI implementation, called EMPI4Re, that
integrates message-passing and PGAS in one framework. The fourth section
presents the EPiGRAM applications. Finally, the fifth section concludes the
paper summarizing the work done in EPiGRAM.

2 The Exascale Parallelism Challenge

Some important issues and obstacles that might prevent an effective use of MPI
and GASPI programming systems on exascale machines are:

1. Memory-footprint and efficient memory usage. The available memory per core
or even per (heterogeneous) shared-memory node will not, as was the case to
a large extent in the past, scale linearly with the number of cores or nodes.
Thus, implementations and specifications of MPI and GASPI functionalities
must use sub-linear space per core or per node.

2. Algorithms and implementations for collective communication. Commonly
used implementations often assume a fully connected network, and have rel-
atively dense communication patterns. Better implementations, and in par-
ticular, new, space efficient algorithms for sparse collective communication
and for collective communication on sparse networks are needed. In addition,
current MPI interfaces for sparse collective communication are still limited.

3. Support for emerging computing models on massively parallel supercomput-
ers. Computing models, such streaming models, lack of a convenient interface
in MPI to run efficiently on large scale supercomputers. This might prevent
the use of emerging computing models on exascale supercomputers.
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2.1 Memory-Footprint and Efficient Memory Usage

The first issue EPiGRAM addresses is the memory consumption of MPI and
GPI at exascale. This is done by designing and implementing zero-copy MPI
collectives and GPI dynamic connections.

MPI Zero-Copy Collectives. The MPI datatype mechanism allows applica-
tion programmers to describe the structure of the data to be communicated in a
concise way [11]. In particular, non-consecutive layouts of data can be described
as vectors, indexed or structured types, allowing a compact representation of
complex layouts. The application programmer describes the layout of the data
to be communicated, and the MPI library implementation performs the actual
access of the data.

An efficient MPI implementation of data types can save memory copy oper-
ations. In fact, an explicit pack operation, implemented by the application pro-
grammer, copies data into some intermediate communication buffer, and then
the MPI library may entail another copy of this buffer. This extra copy can be
sometimes eliminated completely with datatypes, or in part for large data where
pipelining may be applied by the library. In particular, the MPI datatype mech-
anism permits so-called zero-copy implementations, in which no explicit data
movements are present in the application and all data access and manipulation
are carried out implicitly by the MPI library implementation.

In EPiGRAM, we studied the design and implementation of different zero-
copy collective operations, focusing on obstacles that might prevent the design
and implementation of such operations in an efficient way. We have investigated
the use of the derived datatype mechanism of MPI in the implementation of the
classic all-to-all communication algorithm of Bruck et al. [4]. Through a series
of improvements to the canonical implementation of the algorithm we gradually
eliminated initial and final processor-local data reorganizations, culminating in
a zero-copy version that contains no explicit, process-local data movement or
copy operations [35,37]. In this case, all necessary data movements are carried
out as part of the communication operations. We also showed how the improved
algorithm can be used to solve irregular all-to-all communication problems. In
particular, in EPiGRAM we used and implemented three new derived datatypes
(bounded vector, circular vector, and bucket) that are not in MPI. On two
supercomputers at the Vienna University of Technology, we experimentally com-
pared the algorithmic improvements to the Bruck et al. algorithm when imple-
mented on top of MPI, showing the zero-copy version to perform significantly
better than the initial, straight-forward implementation. One of our variants
has also been implemented inside mvapich, and we showed it to perform better
than the mvapich implementation of the Bruck et al. algorithm for the range
of processes and problem sizes where it is enabled. Details about this work are
provided in [35,37].

However, we showed in EPiGRAM that current collective interfaces can-
not support zero-copy implementations in all cases [36]. The problem is that
the regular collective interfaces use a receive datatype to specify a per-process
layout, whereas sometimes a different layout is needed for each process. Such
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cases cannot be accounted for; only for applications using all-to-all communica-
tion, the required flexibility is provided in the form of the tedious, non-scalable
MPI Alltoallw operation. In [36] we show a simple, and in many cases back-
wards compatible and mostly non-intrusive solution to the problems in the form
of slightly changed collective interfaces (all other communication interfaces would
have to be reinterpreted in a similar way). The key to the solution is to sepa-
rate the number of elements to be communicated from the overall structure of
the data. The latter is described by a datatype; the former by an element count.
The current MPI specification mixes these two concerns, leading to the problems
discussed.

GPI Dynamic Connections. We have identified GPI memory consumption
as one of the main aspects to be improved for large scale execution of GPI
applications. The memory consumption is strongly related to the management
of the communication infrastructure in GPI. The GASPI specification, that GPI
implements, defines that the communication infrastructure should be either built
during initialization or performed explicitly by the application. This can be set
through a configuration parameter where the default value is TRUE. In this case,
the communication infrastructure is built at start-up by default. In fact, details
of the initialization of the GPI communication infrastructure are left to the
implementation.

Before EPiGRAM, communication infrastructure was built-up statically in
GPI. In this case, each computing node (a GPI rank) establishes a connection
to all the other computing nodes during initialization. This results in an all-
to-all communication topology. Despite this is acceptable on small scale and
typical executions, the problem becomes evident when running large-scale GPI
applications. For this reason, we have extended GPI to allow three modes of
topology building: GASPI TOPOLOGY NONE where the application explicitly han-
dles the infrastructure setup, GASPI TOPOLOGY STATIC where, as before, an all-
to-all connection is established and GASPI TOPOLOGY DYNAMIC where connections
are dynamically established as the first communication request between two
nodes is performed. We were able to verify and measure the effects of such GPI
extension during the Extreme Scale Workshop using the full SuperMUC iData-
Plex supercomputer, consisting of 3,072 nodes, at the Leibniz Supercomputing
Centre. The establishment of dynamic connections provides a much more effi-
cient and scalable resource consumption in terms of memory footprint. Panel a
of Fig. 2 presents the memory consumption (per rank) after initialization using
static and dynamic connections. The non-scalable behavior of the GPI all-to-all
connection is evident. We can now alleviate that using GPI dynamic connections.

2.2 Algorithms and Implementations for Collective Communication

The second issue EPiGRAM addresses is the performance of collective commu-
nication operations at exascale by investigating improved sparse collectives and
studying non-blocking collectives in GPI.
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MPI Isomorphic Sparse Collectives. The MPI specification has function-
ality for sparse collective communication where processes communicate with a
subset of other processes in a local neighborhood. Sparse neighborhoods can be
explicitly specified using the general graph topology functionalities or Carte-
sian topology [10]. However, both approaches have problems. In the first case,
this mechanism is cumbersome to use, and the necessary collective communi-
cation and computation to create the local neighborhoods as well as the cre-
ation of a new, possibly reordered communicator can be very expensive. Alter-
natively, neighborhoods can be given implicitly with a Cartesian communicator.
On Cartesian MPI communicators, neighborhood collective communication is
possible with these implicit neighborhoods. Although neighborhood collective
communication should be oblivious to how neighborhoods are set up, there are
some differences between explicit and implicit neighborhoods in the MPI stan-
dard. For instance, non-existing neighbors are possible for Cartesian neighbor-
hoods and buffer space needs to be calculated for such non-existing neighbors;
this is neither possible nor allowed for graph topologies. On the other hand, graph
topologies can associate weights with the graph edges (that may reflect commu-
nication costs in different ways and thus can permit better process mappings),
but this is not possible for Cartesian topologies.

EPiGRAM provides a middle ground between these two approaches: a mech-
anism for structured, sparse collective communication with a much smaller over-
head than the general graph topology mechanism but with more flexibility and
expressivity than the Cartesian neighborhoods. In EPiGRAM, we introduced the
concept of isomorphic sparse collective [33,34]: isomorphic sparse collective com-
munication is a form of collective communication in which all involved processes
communicate in small, identically structured neighborhoods of other processes.
Isomorphic sparse collective communication is useful for implementing stencil
and other regular, sparse distributed computations, where the assumption that
all processes behave symmetrically is justified. The concept of isomorphic neigh-
borhood extends and generalizes what is possible with the limited MPI Cartesian
topologies.

In EPiGRAM, a library for isomorphic sparse collective communication has
been implemented. The library supports the navigation and query functionality,
creation of isomorphic neighborhoods (by attaching the neighborhood informa-
tion to a Cartesian communicator), functions for using relative neighbor lists to
set up MPI graph communicators, and sparse isomorphic collective operations
of the allgather, alltoall and reduction types. The performance improve-
ments that can be achieved by using isomorphic sparse collectives are presented
in [33,34].

GPI Non-blocking Collectives. Non-blocking collectives have been recently
introduced in MPI-3 as a mean to overlap communication and computation
during collective operations [10,14]. In EPiGRAM, we have investigated the
development of non-blocking collectives in GPI. Currently there are only two
collective operations in GASPI: gaspi barrier and gaspi allreduce. Both
collective operations in GASPI have a timeout argument that specifies after
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Fig. 2. Panel a shows the memory consumption using GPI static all-to-all connec-
tion (green bars) and dynamic connections (red bars) when using different number of
computing nodes. Panel b shows the execution time for MPI blocking (red line), GPI
blocking (green line) and non-blocking (blue line) barriers increasing the number of
nodes. The tests have been performed on SuperMUC iDataPlex supercomputer at the
Leibniz Supercomputing Centre. (Color figure online)

which period of time the collective operation can be interrupted. This timeout
argument can be used as a form of non-blocking call. For instance, the time out
argument can be set to GASPI TEST. Each GPI process can call a collective func-
tion and when the function is interrupted as a consequence of the timeout other
work can be performed, effectively implementing a non-blocking collective. In
EPiGRAM, we added the support for this kind of non-blocking collectives and
we performed performance tests of blocking and non-blocking GPI barriers and
a comparison with MPI blocking barrier on the SuperMUC iDataPlex supercom-
puter up to 4,096 nodes (corresponding to a total of 65,536 cores) at the Leibniz
Supercomputing Centre. Panel b of Fig. 2 presents the execution time for the
different implementations of barriers, showing a reduced execution time for GPI
non-blocking barrier (blue line) with respect to the execution of blocking GPI
(green line) and MPI (red line) implementations.

2.3 MPI Support for Streaming Computing

EPiGRAM also investigated the support for emerging computing models that
will be likely used on massively parallel supercomputers in the future. An exam-
ple of such computing models is the data streaming computing model that is
an effective way to tackle challenges from data-intensive applications. However,
streaming computing is not naturally supported in MPI.

In EPiGRAM, we have designed and implemented a library called
MPIStream [25] that allows HPC applications to globally allocate data producers
and consumers on MPI processes, to stream data continuously or irregularly, to
receive and process data and to terminate the streaming operations. Use cases
of enabling HPC applications to carry out threshold collective operations, to
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monitor and control applications and to perform parallel I/O of irregular events
are illustrated in [25].

Our MPI streaming library targets the streaming model for distributed sys-
tems, where MPI is the dominant programming system. The MPIStream library
is written in C and built on the top of MPI. A stream is a continuous flow of
stream elements, which is the basic unit of transmission between data producer
and streamer. MPI data types are used to describe the memory layout of the
elements on data producers to achieve zero-copy streaming and consequently
saving memory consumption on large systems. MPI persistent communication is
used to reduce the overhead of repeatedly calling receive routines.

The performance of the MPIStream library has been evaluated using a par-
allel STREAM benchmark [25] on two supercomputers: Beskow Cray CX40 at
KTH and Mira BlueGene/Q at the Argonne National Laboratory. The perfor-
mance results show that the library can achieve acceptable performance (52 %–
65 % of the maximum available bandwidth) and demonstrate its potential by
reaching as high as 200 GB/s and 80 GB/s processing rate using 2,048 data pro-
ducers over 2,048 data consumers on the Blue Gene/Q and Cray XC40 super-
computers respectively. Additional performance results of the MPIStream library
are reported and discussed in [21,25].

3 The Interoperability Challenge

Interoperability of programming systems, such as MPI, OpenMP and PGAS, is a
key aspect in exascale computing as it is likely that exascale applications will use
a combination of programming systems to use efficiently different kind of com-
munications, i.e. inter-node and intra-node communications. In EPiGRAM, we
implemented a PGAS-based MPI to fully integrate message-passing and PGAS
programming models, we introduced MPI endpoints in this MPI implementation
and improved the GPI interoperability with MPI.

EMPI4Re: A PGAS-based MPI Implementation. EPiGRAM integrates
and combines message-passing and PGAS programming models in one MPI
implementation. The EPiGRAM MPI library for Research (EMPI4Re) is an
MPI-1 library created by EPCC at the University of Edinburgh as a vehicle for
research into new MPI functionality. The library adopts the conceptual model
of PGAS and assumes hardware support for RDMA operations. This conceptual
model enables efficient implementation of remotely accessible double buffered
first-in first-out (FIFO) queues, used for point-to-point operations, and distrib-
uted state control structures, used for collective operations.

The code-base for the EMPI4Re library currently consists of 55,495 lines of
C code (OpenMPI version 1.8.6 consists of 933,889 lines for comparison). The
current implementation of EMPI4Re is based on DMAPP (a Cray one-sided
communication API) [31] and there is an ongoing effort in EPiGRAM to replace
DMAPP with GPI. Overall, we found in EPiGRAM that the EMPI4Re library
is a useful research vehicle for rapidly prototyping and assessing code changes
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to MPI functionality without the complexity of managing a large code-base or
production MPI implementation.

MPI Endpoints. MPI is typically targeted at communication between dis-
tributed memory spaces. For a pure MPI programming approach, multi-core
nodes require an OS process per core in order to take advantage of the avail-
able compute capability. This requires multiple instances of the MPI library
per shared-memory node including communication buffers, topology informa-
tions and connection resources. Hybrid programming, commonly referred to as
MPI+X, where X is programming model that supports threads, only requires a
single instance of the MPI library per shared-memory node and so it should scale
with increasing per-node core-count better than pure MPI. However, there are
restrictions on how MPI can be used in multi-threaded OS processes that make
it difficult to efficiently achieve high performance with hybrid programming. In
particular, threads cannot be individually identified as the source or target of
MPI messages [15].

MPI endpoints have been designed to remove or alleviate threading
restrictions in MPI and facilitate high performance communication between
multi-threaded OS processes. MPI endpoints allow the programmer to create
additional ranks at each MPI process. Each endpoint rank can be then dis-
tributed to threads in system-level programming models enabling these threads
to act as MPI processes and interoperate with MPI directly [6]. For an initial
implementation study, see also [17,30].

The EPiGRAM project is implementing the MPI endpoints in EMPI4Re. The
initial approach taken in the EMPI4Re library is to create each communicator
handle as normal: generating a new structure for each one, including a full map-
ping of all ranks to their associated location. This is exactly what would happen
if each of the members of the new communicator were individual MPI processes
each in their own OS processes. EMPI4Re is already designed to be able to cope
with each member of a communicator using a different context identifier for a
particular communicator so this approach does not cause a conflict. The next
step is to de-duplicate the internal data-structures so that multiple MPI end-
points in the same OS process share a single copy of the mapping information
and share a reduced number of matching data-structures and communication
buffers. In EMPI4Re, various design choices, such as having a different context
identifier at each MPI process for a communicator thereby avoiding the use of a
distributed agreement algorithm, simplify the addition of new features.

GPI Interoperability with MPI. Large parallel applications that have been
developed over several years often reach several thousands or even millions of
lines of code. Moreover, there is a large set of available libraries and tools which
run with MPI. For this reason, it is important to enable GPI full cooperation
with MPI so that both can be used simultaneously in an efficient way. This inter-
operability allows an incremental porting of large applications to GPI and an
effective usage of existing MPI libraries and infrastructure. This tighter support
for MPI interoperability was integrated in GPI during the EPiGRAM project
(GPI release v1.1.0 in June 2014) by introducing the so-called mixed-mode.
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In this mode, GPI sets its environment reusing MPI instead of relying on its
own startup mechanism (gaspi run). The only constraint is that MPI must
be initialized (MPI Init) before GPI (gaspi proc init). In this mode, as MPI
and GPI both follow a Single Program Multiple Data (SPMD) model, there is
a direct match between the MPI the GPI ranks. This simplifies the reasoning
about the hybrid GPI-MPI application.

In addition, an interface allowing memory management interoperability has
been recently established in the GASPI standard [12]. GASPI handles memory
spaces in so-called segments, which are accessible from every thread of every
GASPI process. The GASPI standard has been extended to allow users to pro-
vide an already existing memory buffer as the memory space of a GASPI seg-
ment. This new function will allow future applications to communicate data from
memory that is not allocated by the GASPI runtime system but provided to it,
i.e. by MPI. If an MPI program calls GPI libraries, the GPI libraries need to
be isolated, so that the communication in a library does not interfere with the
communication in the main application, or any other library. This is required
to guarantee correct results. The GASPI interface has been extended to offer a
clear separation: a library is now able to create its own communication queues
and thus have an isolated communication channel. For all other resources, i.e.
segments, GPI already provides some mechanism to query their usage and to
select an unused resource.

4 EPiGRAM Applications

The effectiveness of concepts that have been developed in EPiGRAM have been
tested against two real-world open-source codes, iPIC3D [20,29] and Nek5000 [7].
iPIC3D is a massively parallel Particle-in-Cell code that is written in C++ and
using MPI. Nek5000 is a semi-spectral Computational Fluid Dynamics (CFD)
code for solving fluid dynamics problems, such as the study of turbulence arising
on the surface of airplane wings. Nek5000 is written in large part in Fortran and
in a small part in C and it uses MPI for parallel communication.

The EPiGRAM codes have been used for providing feedback to development
of the programming systems in EPiGRAM: they have been employed to test
new features in MPI and GASPI programming systems, to provide feedback
to the developers of EMPI4Re library, and to compare the performance of the
EPiGRAM programming system implementations in real-world applications [16].

The new EPiGRAM communication kernel of iPIC3D is now included in
the release version of the code [29] and enabled large scale simulations of magne-
tospheric physics [23,26,27,32]. Together with the improvement of the communi-
cation kernels of the applications, also OpenACC/OpenMP porting of the appli-
cations to GPU systems [8,9,13,18,28] and new algorithmic strategies [38,39]
have been implemented in EPiGRAM.



66 S. Markidis et al.

5 Conclusions

In summary, EPiGRAM is a European Commission project with the goal of
improving the performance and the integration of existing parallel programming
models. The EPiGRAM project focuses on the two current dominant petascale
programming models, message-passing and PGAS, and on the improvement of
two of their associated programming systems, MPI and GASPI. In EPiGRAM,
we addressed two major exascale challenges: large-scale parallelism and interop-
erability of programming systems. First, we improve the performance of com-
munication operations on a very large number of processes by decreasing their
memory consumption, improving collective operations and introducing emerging
computing models. Second, we enhance the interoperability of MPI and GPI by
integrating message-passing and PGAS in one implementation, called EMPI4Re,
implementing MPI endpoints and improving GPI interoperability with MPI. The
new EPiGRAM concepts have been validated with experiments in two large-scale
applications, iPIC3D, a Particle-in-Cell code for space physics simulations, and
Nek5000, a CFD code.

Acknowledgments. This work was funded by the European Commission through
the EPiGRAM (grant agreement no. 610598, www.epigram-project.eu) project.
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Abstract. Heterogeneous computing systems offer high peak perfor-
mance and energy efficiency, and utilizing this potential is essential to
achieve extreme-scale performance. However, optimal sharing of the work
among processing elements in heterogeneous systems is not straightfor-
ward. In this paper, we propose an approach that uses combinatorial opti-
mization to search for optimal system configuration in a given parame-
ter space. The optimization goal is to determine the number of threads,
thread affinities, and workload partitioning, such that the overall exe-
cution time is minimized. For combinatorial optimization we use the
Simulated Annealing. We evaluate our approach with a DNA sequence
analysis application on a heterogeneous platform that comprises two
Intel Xeon E5 processors and an Intel Xeon Phi 7120P co-processor. The
obtained results demonstrate that using the near-optimal system config-
uration, determined by our algorithm based on the simulated annealing,
application performance is improved.

1 Introduction

Heterogeneous computing systems consist of general-purpose CPUs and accel-
erators – such as, graphical processing units (GPUs) or Intel Xeon Phi – which
offer high performance and energy efficiency. Some of the most powerful super-
computers in the TOP500 [1] list are heterogeneous at their node level. For
example, Tianhe-2 nodes consist of two Intel IvyBridge CPUs and three Intel
Xeon Phi co-processors, whereas a node of Titan contains one AMD Opteron
CPU and one Nvidia Tesla GPU. Mapping computations to processing elements
of the heterogeneous node in an optimal way is an important step to efficiently
utilize the large-scale computing systems [2,24].

Due to the different performance characteristics of heterogeneous processing
elements, distributing the workload across such elements to utilize the aggre-
gate power of heterogeneous systems depends on many parameters and is a
non-trivial task. Using enumeration of all possible parameters to determine the
optimal system configuration is prohibitively time-consuming. Equation 1 shows
the product function of the parameter value ranges that determines the number
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of all possible configurations, where C = {c1, c2, . . . , cm} is a set of parameters
and each parameter ci has a value range Rci .

m∏

i=1

Rci = Rc1 × Rc2 × . . . × Rcm (1)

Various techniques have been proposed for utilization of heterogeneous com-
puting systems. CoreTSAR [27] is an adaptive work-sharing library for schedul-
ing computations across multiple devices. Qilin [17] is an off-line based profiling
technique for automatic mapping of computations to processing elements. Grewe
and O’Boyle [11] use a static partitioning approach based on machine learning
methods to distribute OpenCL programs on heterogeneous computing systems.
A task splitting and distribution dynamic scheduling technique was proposed by
Ravi and Agrawal [26]. Albayrak et al. [3] use the Greedy Algorithm to determine
the near-optimal mapping for applications designed as sequence of kernels.

So far not much research has addressed combinatorial optimization
approaches for workload distribution across resources of heterogeneous systems.
Furthermore, related research focuses on heterogeneous systems that are accel-
erated with GPUs. Platforms accelerated with the Intel Xeon Phi deserve our
attention because of their capability to deliver high performance, energy effi-
ciency, and the ease of programmability and portability [6,8,12].

In this paper we propose an optimization approach that uses combinato-
rial optimization to determine near-optimal system configuration parameters
(including the number of threads, thread affinity, and the workload distribution
ratio) of a heterogeneous systems. To search for the optimal system configuration
in the given large discrete search space we use Simulated Annealing [25]. The
optimization goal is to minimize the application’s execution time. For empirical
evaluation we use a parallel application for DNA sequence analysis of real world
DNA sequences of various animals. We perform our experiments on a hetero-
geneous platform that comprises two Intel Xeon E5 CPUs and an Intel Xeon
Phi7120P co-processor.

Results demonstrate that by running only about 5 % of all the possible exper-
iments we can determine a near-optimal system configuration, which yields with
1.74× speedup and 2.2× compared to the case when only the cores of host or
device are used.

The major contributions of this paper include:

1. a heuristic based optimization approach to determine the near-optimal system
configuration (such as, workload distribution ratio between host and device,
number of threads and thread allocations),

2. a parallel algorithm for matching patterns in DNA sequences that efficiently
utilizes the resources of the host and device in heterogeneous systems,

3. an experimental evaluation of our approach for DNA sequence analysis using
real-world DNA sequences.

The rest of the paper is organized as follows. Section 2 provides background
information with respect to meta-heuristics and heterogeneous computing sys-
tems. In Sect. 3.2 we describe the methodology, including the heuristic-guided
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approach for optimization of workload distribution in heterogeneous systems,
and our algorithm for DNA sequence analysis. Section 4 presents the experi-
mentation environment and discusses the experimental evaluation results. The
related work will be discussed in Sect. 5. Section 6 provides a conclusion and
discusses the future work.

2 Background

In this section we provide background information on the meta-heuristics and a
heterogeneous computing platform that is accelerated with the Intel Xeon Phi
co-processor.

2.1 Meta Heuristics

Meta-heuristics are designed for finding, generating or selecting the global opti-
mum on some class of problems with less computation effort, which in general
is a very difficult problem. A well known problem that can be solved using
meta-heuristics is the Traveling Salesman Problem (TSP) where the search-space
grows exponentially as the problem size increases. Brute-force (or enumeration)
approaches are infeasible to deal with such complex problems.

As there are many different heuristic-based optimization methods, such as
Genetic Algorithms, Ant Colony Optimization, Simulated Annealing, Local
Search, and Tabu Search, which differ substantially in their underlying con-
cepts, choosing the most convenient requires to consider different characteristics
[7]. Such characteristics include: generation of new solutions, treatment of the
new solutions, number of search agents, limitations of the search space, prior
knowledge, flexibility for specific constraints, ease of implementation, computa-
tional complexity, convergence speed, reliability, type of optimization problem
and search space, the available computational time, or the demanded solution
quality [25].

2.2 Heterogeneous Systems – Intel Xeon Phi

A typical heterogeneous node that uses the Intel Xeon Phi as accelerator may
consist of one or two CPUs on the host, and one to eight accelerators. Our Emil
system that is used for experimentation in this paper comprises two Intel Xeon
E5 2695 v2 and one Intel Xeon Phi 7120P co-processor. The E5 CPUs comprise
12 Ivy Bridge cores. These cores are connected using a ring topology, which
features low latency and high throughput. The L3 cache size is 30 MB. The
CPUs are connected to the memory using the Quad channel memory controller.
The two host CPUs are linked through the QuickPath Interconnect, which offers
up to 8.0 GT/s.

The Intel Xeon Phi is a many-core share memory processor. The lightweights
Linux Operating System running on the card enables communicating with it
over ssh. In the current version (Knights Landing, used in this paper) there are
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61 cores, each of them has four hardware threads. The base core’s frequency is
1.2 GHz, and 1.3 GHz max turbo frequency [8]. A 30.5 MB unified L2 cache is
formed through a bidirectional ring bus interconnect that connects these cores.
The 16 memory channels offer a theoretical maximum memory bandwidth of
352 GB/s.

The Intel Xeon Phi supports 512-bit wide Single Instruction Multiple Data
(SIMD) registers that can perform 16 single precision floating point operations,
or eight double precision floating point operations per cycle. The theoretical
single and double performance capability of the Intel Xeon Phi is one and two
teraFLOP/s, respectively. The practical performance capabilities of the Intel
Xeon Phi, and its accessibility from the programmability point of view have
been investigated in different articles [9,16,28].

3 Methodology

This section describes our heuristic-guided approach for optimization of workload
distribution on heterogeneous computing systems. Furthermore, it describes our
parallel algorithm for DNA sequence analysis that is able to utilize the aggregate
power of host CPUs and accelerators in heterogeneous computing systems.

3.1 Using Simulated Annealing for Optimization of Heterogeneous
Systems

Simulated Annealing (SA) is an optimization technique used to approximate
global optimization in large discrete search space. A fundamental property of
SA is its ability to accept worse solutions that allows a more extensive search of
the optimal space.

The method and its name is inspired by the process of material cooling
and annealing, where the slow cooling is interpreted as a slow decrease in the
probability of accepting worse solutions.

While the temperature T is higher, it is more likely to accept new solutions.
Therefore, there is a corresponding chance to get out of a local minimum, in
favor of searching for a global optimum. The lower the temperature, less likely
it accepts new solutions [25].

In the context of optimizing the workload distribution on heterogeneous sys-
tems, the configuration space is as follows:

– workload fraction is a discrete value from 0–100
– number of threads used for the host (1–48) and device (1–244);
– thread allocation strategy for the host (none, compact, scatter) and device

(balanced, compact, scatter).

The objective function E (analog of energy) that we are trying to minimize
is the total execution time of the application running on the host and the device,
which basically is determined by the maximum of the thost and tdevice:

E = max(thost, tdevice) (2)
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Fig. 1. The major steps of the simulated annealing based algorithm.

Figure 1 shows the major steps of the simulated annealing algorithm. First,
we set the initial value of T (temperature) and generate a random initial solution
(step 1). Thereafter, we generate a new solution (step 2), and evaluate it (step 3).
If the newly generated solution is better than the current one, or the probability
distribution is close to 1 (step 4) we update the current and best solution (step
5), otherwise we decrease the temperature (step 6). Unless the temperature has
cooled down, the steps 2–6 will be repeated.

The annealing schedule coolingRate is defined as follows:

T = T ∗ (1 − coolingRate); (3)

Equation 4 shows the Boltzmann probability distribution [25] (acceptance
function) used to decide whether or not to accept a worse solution. If the energy
of the newly generated solution E′ is lower than the energy of the current solution
E, then we accept it unconditionally, otherwise we consider temperature and
the time difference between the two solutions being compared. The higher the
temperature, it is more likely that the system accepts worse solutions.

p = exp((E − E′)/T ) (4)

3.2 DNA Sequence Analysis on Heterogeneous Computing Nodes

The current version of Intel Xeon Phi co-processor (Knights Corner) offers two
programming models:

– offload - where parts of the code are offloaded to the co-processor
– native - where the code is compiled specifically for running natively on the

co-processor. The code and dependent libraries are transferred to the device.
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Fig. 2. Using resources of the host and device for DNA sequence analysis.

Our approach for parallel DNA Sequence analysis is based on the offload
programming model, which allows using the resources of the host and the device
at the same time. Figure 2 depicts workload distribution (that is partitioning)
strategy of the DNA Sequences to be analyzed in heterogeneous systems. In the
preprocessing phase the input DNA sequence I is split based on the fraction ratio
F (selected by SA) into the part I ′ = (F/100) ∗ I that will be processed on host
CPUs, and I ′′ = I − I ′ processed on device. During this phase the construction
of the State Transition Table (STT) takes place. When ready, both I ′′ and the
STT are transferred to the device.

Our application takes advantage of the double advantage of transforming-
and-tunning [8] of the Intel Xeon Phi, which means that with not much invest-
ment we can use the same algorithm for matching patterns in both host and
device. When the process of matching I ′′ on the device is completed, we trans-
fers the result (the total number and the location of matched patterns) to the
host memory, and a merge of the results is performed.

4 Evaluation

In this section we empirically evaluate our heuristic-guided approach for opti-
mization of DNA sequence analysis on heterogeneous platforms. We describe the
following,

– the experimentation environment,
– performance comparison of our heuristic-guided approach with the enumera-

tion approach (also known as brute force),
– the performance improvement when using the selected solution by our app-

roach (that uses both resources of host and device) compared to host-only
(48-threads) and device-only (244-threads) executions.

4.1 Experimentation Environment

In this section we provide information related to the experimentation environ-
ment including: (1) system configuration, (2) benchmark application, (3) data
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sets used for evaluation of our approach, and (4) parameter values that define
the system configuration space.

System Configuration. The heterogeneous system used for the performed
experiments consists of two Intel Xeon E5 processors and one Intel Xeon Phi
7120P co-processor.

Benchmark Application. We used a DNA sequence analysis application with
real-world DNA sequences. The major features of our Emil system at the Lin-
naeus University and implementation details of our algorithm for DNA sequence
analysis are described in [19,20].

Data Sets. Real world DNA sequences of human (3.17 GB), mouse (2.77 GB),
cat (2.43 GB), and dog (2.38 GB) extracted from the GenBank sequence database
of the National Center for Biological Information [22]. We use patterns from the
regex-dna benchmark for matching and extracting specific k-mers from a DNA
sequence. The PaREM [18] tool is used to generate the STT for the used patterns.

System Configuration Space. The parameters and their value ranges that
define the system configuration for our combinatorial optimization approach are
shown in Table 1.

Table 1. The parameters that define the system configuration

Parameter Name Type Value range

Host Device

Number of threads Discrete {2, 6, 12, 24, 36, 48} {2, 4, 8, 16, 30, 60, 120, 180, 240}
Thread affinity Discrete {none, compact, scatter} {balanced, compact, scatter}
DNA sequence fraction Discrete {0,. . . ,100} 100 - (Host sequence fraction)

4.2 Performance Comparison of Our Heuristic-Guided Optimization
Approach with Enumeration

The enumeration approach certainly determines the optimal system parame-
ter values, which results with the best performance by trying all the possible
parameter values. However, for large search space of real-world problems, this
approach is prohibitively time consuming. For example, despite the fact that we
tested only what we considered reasonable parameter values (see Table 1), a total
of 19926 experiments were required by enumeration to determine the optimal
system configuration. We have achieved comparatively good performance results
by using our heuristic-guided approach based on Simulated Annealing by trying
only a relatively small subset of the total experiments involved in enumeration.

For performance comparison, we use the absolute difference |tEM − tSA|
and the percent difference 100 · absolute difference/tEM , where tEM indicates
the best execution time determined using enumeration, and tSA indicates the
execution time of our algorithm with a system configuration suggested by the
simulated annealing approach.
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Fig. 3. Performance comparison between the best system configuration determined by
the enumeration [EM] approach and the near to optimal one determined by the Simu-
lated Annealing [SA]. The labels at the top of each bar depicts the percent difference
[%] and absolute difference [s].

The results in Fig. 3 show the execution time of our algorithm when using
the system configuration suggested by SA for various iterations (experiments
performed by SA) compared to the best performance achieved using the system
configuration determined by enumeration. The labels on top of each bar indicate
the percent difference and absolute difference. The horizontal line indicates the
execution time of the system configuration determined with enumeration.

By running about 1000 experiments (that is 100 × 1000/19926 = 5% of the
total experiments required by enumeration) SA suggests system configuration
that yields with a performance that is close to the optimal one determined
by enumeration. Please note that SA is a global optimization approach and to
avoid ending at a local optima during the space exploration, sometimes it accepts
worse system configuration that results with a higher execution time compared
to previous iterations.

The percent difference is shown in the labels on top of the bars (row 1) of
Fig. 3. While the average percent difference of SA with 250 iterations is high
(20.6 %) compared to enumeration, it decreases significantly by increasing the
number of iterations. For example by increasing the number of iterations to
500, 750 and 1000 the percent difference decreases to 14.3 %, 11.9 % and 9.9 %
respectively.

The second row of the labels on top of the bars of Fig. 3 shows the absolute
difference of SA compared to enumeration. The average absolute difference for
250 iterations is 0.078 s, whereas for 500, 750 and 1000 iterations it is only 0.055,
0.045, and 0.038 s, respectively.



Work Distribution of Data-Parallel Applications on Heterogeneous Systems 77

4.3 Performance Improvement

This section presents the performance improvement achieved in case all avail-
able resources of the host and device are used for the DNA sequence analysis
compared to host- and device-only.

The results in Fig. 4 expose the accomplished performance improvement
(speedup) when the system configuration determined by the simulated anneal-
ing algorithm or the enumeration approach is used for DNA sequence analysis
compared only to the host. We may observe that as we increase the number of
iterations the speedup of simulated annealing approaches the maximal speedup
determined by enumeration. The average speedup achieved for 250, 500, and 1000

Fig. 4. Speedup achieved when host and device are used for the DNA sequence analysis
compared with the host only. We consider 19926 system configurations determined by
enumeration (EM) and by Simulated Annealing after 250, 500, 750, 1000, 1250, 1500,
1750, 2000 iterations.

Fig. 5. Speedup achieved when host and device are used for the DNA sequence analy-
sis compared with the device only. We consider system configurations determined by
enumeration (EM) and by Simulated Annealing after 250, 500, 750, 1000, 1250, 1500,
1750, 2000 iterations.eps
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iterations is 1.46×, 1.54, and 1.63× whereas the maximal achieved speedup with
enumeration is 1.77×.

Figure 5 depicts the achieved speedup when the system configuration deter-
mined by the simulated annealing algorithm or the enumeration approach is
used for the DNA sequence analysis compared only to the device. The aver-
age speedup achieved for 250, 500, and 1000 iterations is 1.82×, 1.92, and 2.0×
whereas the maximal achieved speedup with enumeration is 2.2×.

5 Related Work

Utilizing the combined computation power of multi-core CPUs and many-core
accelerators in heterogeneous systems is important to achieve high performance.
Various approaches to distribute the workload across different devices in hetero-
geneous systems have been proposed.

Scogland et al. [27] proposed an adaptive worksharing library to schedule
computational load across devices. Their extension of accelerated OpenMP eval-
uates the speed of each device statically, then use these indicators to automati-
cally split the workload across different devices.

Similarly Ayguadé et al. [5] investigated the extension of OpenMP to allow
workload distribution on future iterations based on the results of first static ones.

While Scogland et al. [27] and Ayguadé et al. [5] tend to offer solutions that
require minimal changes to the original source code, task block models, such as
StarPU [4] and OmpSs [10] require the user to determine workload distribution
manually and may require significant structural changes to the original serial
code.

Odajima et al. [23] proposed an approach that combines the pragma-based
XcalableMP (XMP) [21] programming language with the runtime system by
StarPU to utilize both GPU and CPU resources on each node for work dis-
tribution of the loop executions. They use the XMP for data distribution and
synchronization purposes, whereas the StarPU is used for scheduling the tasks
among host CPUs and accelerating devices.

Qilin [17] is a programming system that is based on a regression model to
predict the execution time of kernels. It uses off-line learning that is thereafter
used in compile time to predict the execution time for different input sizes and
system configurations.

Ravi and Agrawal [26] proposed their dynamic scheduling framework that
divides tasks into smaller ones that later on are distributed across different
processing elements in a task-farm way.

Dokulili et al. [9] proposed a C++ framework for dynamic distribution of the
work among the host CPUs and co-processor devices. The workload is distributed
using a priority queue technique, where one core of the host is responsible for
the queue management.

Grewe and O’Boyle [11] proposed a static partitioning approach to distribute
OpenCL programs on heterogeneous systems. Their approach is based on static
analysis to extract code features from OpenCL programs. These features are
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then used to determine the best partitioning across the different devices. Their
approach relies on the architectural characteristics of a system.

In comparison to the aforementioned approaches, we use combinatorial opti-
mization to determine the near-optimal system configuration.

Albayrak et al. [3] propose a profiling-based approach for mapping ker-
nel computations to heterogeneous platforms. Their approach extracts profiling
information by running each application on each device (including host CPUs
and accelerators), to collect information such as execution time and data trans-
fer time. This information is then passed to solvers such as Greedy Algorithm
to select the optimal mapping for a specific kernel.

In contrast to Albayrak et al. [3] we use Simulated Annealing to minimize the
overall execution cost. Furthermore, they work focuses on applications that are
designed as sequence of kernels, whereas we target data-parallel applications.

In the context of Grid computing environments, Ko�lodziej et al. [15] have
studied the use of meta-heuristics for efficient data scheduling. Khan et al. [14]
address parameter sensitivity [13] of workflows and propose to use the Ant-
Colony Optimization to identify parameters of workflow activities that affect
more the overall result of the workflow.

6 Conclusion and Future Work

In this paper we have presented a combinatorial optimization approach to deter-
mine the system configuration (the number of threads, thread affinity, and the
DNA sequence fraction for the host and device) such that the overall execution
time is minimized. Furthermore, we presented an approach for DNA sequence
analysis that is designed to efficiently utilize the available resources of heteroge-
neous systems accelerated with Intel Xeon Phi.

Determining the best system configuration using enumeration is prohibitively
time consuming because it requires many experiments. Using our approach we
were able to determine a near optimal system configuration by executing only
about 5 % of experiments, which results with comparable performance to the
one determined with enumeration. When using the near-optimal system con-
figuration selected by our approach we achieved a maximal speedup of 1.74×
compared to host-only execution, and up to 2.2× speedup compared to device-
only execution.

Future work will study multi-objective optimization (energy consumption
and performance efficiency) of DNA sequence analysis using platforms acceler-
ated with the second generation of the Intel Xeon Phi (Knights Landing).
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Abstract. The Advanced Communication Primitives (ACP) is a communication
library which provides the PGAS programming model to existing programming
languages. The communication primitives of ACP include remote-to-remote data
transfer and atomic operations. The reference implementation of communication
primitives of ACP uses connectionless sockets over UDP and agent threads. The
remote-to-remote data transfer is implemented as a protocol. The ACP data library
(ACPdl) is a utility library using the communication primitives that include
interfaces to create and manipulate several types of remote and distributed data
structures. In the current implementation of ACP, there is a performance issue in
the erase and insert functions of vector-type data structures due to the in-place
data movement algorithm. This paper proposes a new technique called ‘remote
ordering’ for the remote-to-remote data transfer protocol. The remote ordering
technique overlaps the progresses of the protocol for the data movement simul-
taneously. The evaluation results show that the average execution times of the
functions were reduced to about one seventh.

Keywords: Communication library � Partitioned global address space � Data
structure

1 Introduction

The Partitioned Global Address Space (PGAS) programming model provides the
shared global address space of which each portion has an affinity for a particular
process. The global address space provides an appropriate mean to describe irregular
data transfer to manipulate unstructured data, and the affinity for a particular process
provides the capability to exploit the locality of inter-process data placement. In the
PGAS model, inter-node data transfer is described as a memory access to the global
address space, and both the source and destination addresses are determined before the
data transfer. This approach not only eliminates the destination-side communication
buffer to store data until determination of the destination address, which is required in
the message passing and active message models, but also allows communication
primitives to be implemented in hardware. In actual fact, the remote direct memory
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access (RDMA) protocol implemented in hardware is the basis of almost all existing
PGAS languages and communication libraries.

The Advanced Communication Primitives (ACP) is a PGAS communication library
which is being developed to provide the PGAS programming model to existing pro-
gramming languages. [1] The communication primitives of ACP allow remote-to-remote
data transfer, which is nearly the same abstraction level as the PGAS languages, and a
higher level than local-to-remote and remote-to-local data transfer of the existing RDMA
protocols. However, there is a drawback for the higher abstraction level that even
inefficient algorithms would be written easily. To make matters worse, no compiler
optimizations would be available, because the ACP is a library. Therefore, optimizations
for each communication primitive are vitally important to the ACP.

The ACP provides not only the communication primitives, but also utility libraries
using the communication primitives. [2, 3] For example, the ACP data library (ACPdl)
is a utility library that includes interfaces to create and manipulate several types of
remote and distributed data structures. The implementations of utility libraries are
device independent and portable, although those of the communication primitives are
device dependent. In the development phase, the utility libraries are also important as
the common test sets to optimize each implementation of communication primitives.

In this paper, a new technique for the implementation of remote-to-remote data
transfer protocol is proposed. The specifications of the ACP library corresponding to the
new method are summarized in Sect. 2, and the issue to address is described in Sect. 3.
The new technique is proposed in Sect. 3, and the evaluation results are shown in Sect. 4.
Future work, related work, and a summary are presented in Sects. 5, 6, and 7,
respectively.

2 Advanced Communication Primitives

The ACP is a communication library which provides the PGAS programming model to
existing programming languages. The global address space is partitioned into memory
regions. Each memory region is exposed by a particular process, and accessed from
other processes. Each process dynamically and independently registers and unregisters
memory regions to the global address space. A pre-allocated and zero-cleared global
memory region is provided for each process that is intended to be used to place static
shared variables.

The communication primitives of ACP include data transfer and atomic operations.
The remote-to-remote data transfer function is ‘acp_copy’ and the atomic operation
functions include ‘acp_cas8’ and ‘acp_add4.’ Each function name of ACP starts with
prefix ‘acp_’, and the atomic operation functions end with a postfix digit ‘4’ or ‘8’
which represents the data size of the value. The communication primitive functions
have arguments to specify source and destination global addresses; therefore, any
process can transfer data from a remote process to another remote process without
involving both source- and destination-side processes.

The ACPdl provides a global memory allocator and data structure interfaces. The
global memory allocation function is ‘acp_malloc’ and the data structure functions
include ‘acp_create_vector’ and ‘acp_destroy_list.’ The data structure functions end
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with a postfix that represents the type of data structure, which includes vector, deque,
list, set, and map; vector is a dynamic array, deque is a bidirectional queue, list is a
bidirectional linked-list, set is a dictionary, and map is an associative array.

The following subsections describe the remote-to-remote data transfer and the
vector-type data structure.

2.1 Data Transfer and Ordering

The acp_copy function transfers data from source global address to destination global
address. For the acp_copy function, remote-to-remote, remote-to-local, local-to-remote,
and even local-to-local data transfers do not differ in terms of syntax. The left image of
Fig. 1 shows a conceptual model of remote-to-remote transfer. Process 1 initiates a data
transfer from the memory of process 2 to that of process n, while neither process 2 nor
n calls an ACP function. Because existing protocol stack or interconnect hardware does
not support remote-to-remote data transfer, the typical implementation of the
remote-to-remote data transfer is that each process has an agent thread to process the
protocol of the remote-to-remote data transfer.

If an ordinary RDMA protocol is supported by the underlying interconnect hard-
ware, the remote-to-remote data transfer protocol can be simplified by executing the
local-to-remote data transfer on the source process. Even an implementation without
agent threads is possible. The right image of Fig. 1 shows an example of the imple-
mentation without agent threads. The initiator process executes the remote-to-local
RDMA transfer from the source process to a local buffer, and then executes the
local-to-remote RDMA transfer from the local buffer to the destination process.

The implementation without agent threads requires less computing resources.
However, transferring data twice consumes more bandwidth and electrical power. The
difference between implementation with and without agent threads gets larger when
both the source and destination addresses are in the same process. Figure 2 shows
images of the case. No inter-process data transfer is required for the typical imple-
mentation with agent threads, because the agent thread on the source or destination
process can copy the data locally.

The acp_copy is a non-blocking function that returns immediately, before the data
transfer starts or completes. The ‘acp_complete’ function waits for the completion of a
data transfer. The acp_complete function requires an argument of handle type
‘acp_handle_t’ to instruct the data transfer to wait, and acp_copy function returns a

Remote-to-local and local-to-remote transferRemote-to-remote transfer

P1 P2 Pn P1 P2 Pn

Fig. 1. Images of a conceptual model and an example implementation of the remote-to-remote
data transfer.
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value of the acp_handle_t type handle. For an implementation without agent threads, it
is another disadvantage that the acp_copy function is blocked until the completion of
the former remote-to-local data transfer.

Moreover, the acp_copy function also has an argument of acp_handle_t type
handle itself, although that is used for a different functionality than that of the acp_-
complete function. The start of the data transfer is delayed until after the completion of
the indicated data transfer. If a data transfer is executed out of order, the acp_copy call
should indicate the pre-defined handle ACP_HANDLE_NULL. If multiple data
transfers are required to be executed in sequential order, each acp_copy call should
indicate the pre-defined handle ACP_HANDLE_ALL, or the handle returned by the
previous call. This non-blocking ordering feature is also difficult to be implemented
without agent threads, and an implementation without agent threads might fall down to
execute all data transfers in sequential order, regardless of the indicated handles.

The reference implementation of the device dependent layer of ACP uses con-
nectionless sockets over UDP/IP [4] and agent threads. The other implementations,
including InfiniBand, [5] Tofu interconnect, [6, 7] and Tofu interconnect 2 [8, 9]
versions, also use agent threads implemented similarly to the UDP version. At the
initiator process of the remote-to-remote data transfer, the main thread enqueues a
command which includes arguments of a data transfer to the command queue of the
process. The agent thread of the initiator process transfers the command from the
command queue to the source process or the destination process. The agent thread that
received a command enqueues the command to the delegation queue of the process.
The agent thread dequeues a command from the delegation queue and starts the
communication protocol between the source and the destination processes. When the
protocol is done, the agent thread transfers a notification of the completion of the data
transfer to the initiator process. The order of the remote-to-remote transfer is controlled
by the agent thread. At the initiator process, the agent thread receives a notification and
checks whether the top command on the command queue can be started or not.

2.2 Vector-Type Data Structure

The vector type interfaces of ACP provide the data structure and algorithms of dynamic
array. The acp_create_vector function creates a management data structure on the
specified process, and returns acp_vector_t type reference of vector. The vector
manipulation functions such as acp_push_back_vector store data to it. The vector is

Remote-to-local and local-to-remote transferRemote-to-remote transfer

P1 P2 Pn P1 P2 Pn

Fig. 2. Images of implementations of the remote-to-remote data transfer when both the source
and the destination addresses are in the same process.
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created as empty and it has no data storage. The memory for data storage is dynami-
cally allocated on the same process as the management data structure. Figure 3 shows
images of creation and data storage of a vector. Process 1 creates an empty vector on
process 2 in the left image. In the right image, process n stores data to the vector. If the
memory for data storage is not allocated, it is allocated before storing data. The
management data structure is also updated.

The vector iterator acp_vector_it_t consists of the reference of the corresponding
vector and an offset value which indicates a relative address from the start of the stored
data in the vector. The acp_begin_vector function returns a vector iterator including an
offset value zero. The offset value can be changed by the acp_advance_vector_it
function. The acp_dereference_vector_it function returns the global address of the
data specified by the indicated vector iterator.

The acp_push_back_vector function inserts data at the end, and the
acp_pop_back_vector function erases data at the end. Inserting or erasing data at the end
of the data of a vector is a low overhead manipulation, because the size of the storage is
maintained to keep a reserved area. The size of the storage is rounded up to a particular
value according to the required size, and it is not truncated when a part of the data is
removed.

The acp_erase_vector function erases data at an arbitrary offset indicated by a
vector iterator. The latter part of the remained data is moved forward to the erasure
point to keep the data continual. Because the original and the new placement of the
remained data may be overlapped, the remained data are moved by an in-place algo-
rithm. The data are divided into chunks of the same size as the size of erasing data, and
the chunks are moved sequentially in order ascending from the erasure point to the end.
The acp_insert_vector function inserts data at an arbitrary offset indicated by a vector
iterator. The existing data after the insertion point is moved backward by the size of
insertion data to concatenate the insertion data with the existing data. The data to move
is also divided into chunks of the same size as the insertion size, and the chunks are
moved sequentially in order descending from the end to the insertion point.

3 Issue

The in-place data movement algorithm described in the previous section is memory
efficient. However, the algorithm causes a performance issue when the size of a data
element is small and the number of elements in a vector increases. The execution time

P1 P2 Pn

acp_push_back_vector(v, …);

P1 P2 Pn

v = acp_create_vector( … , 2);

gav
null

v

Fig. 3. Images of creation and data storage of a vector
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of the function may be dominated by the sequential movement of small chunks of data.
As preliminary experiments, the execution times of the acp_push_back_vector,
acp_pop_back_vector, acp_insert_vector, and acp_erase_vector functions are
measured using the UDP version of the device-dependent layer. Table 1 presents the
evaluation environments. The size of elements is assumed to be as small as four bytes,
and the number of elements in the input vector varies. The average execution time is
measured by executing the function 100 times. In the evaluations of the acp_in-
sert_vector and acp_erase_vector functions, the input iterator marks the start of the
data.

Figure 4 shows the results. When the number of elements is the minimum, the
average execution times of the acp_pop_back_vector and acp_erase_vector func-
tions are nearly the same, and those of the acp_push_back_vector and acp_in-
sert_vector functions are also nearly the same. As the number of elements increases,
the average execution times of the acp_erase_vector and acp_insert_vector functions
increase proportionally to the number of elements in the input vector at a rate of about
0.1 ms per element.

A data movement algorithm that copies the data twice via a temporal buffer, may
address the performance issue. Figure 5 shows the results of preliminary experiments
that measured the execution time of erasing the first element from a vector by three
different algorithms. The first used the acp_erase_vector function. The second copies
the data to a temporary vector on the remote process which is a process in which the
target vector is placed, then copies back the remained portion of the data to the target
vector. The third copies the data to a temporary vector on the local process which is a
process that executes the erasure, then copies back the remained portion of the data to
the target vector.

The results of the two-copy algorithms are almost constant regardless of the number
of elements in the input vector. When the number of elements in the input vector is four
or below, the two-copy algorithms are slower than the in-place algorithm due to the
overhead of the two copies. However, if the number of elements in the input vector is
seven or above, the two-copy algorithms are faster than the in-place algorithm. The
difference between the two-copy algorithms using a remote temporal buffer and a local
temporal buffer mainly derives from the difference of the overhead of the protocol. If
the total size of the input vector exceeds the maximum size of a UDP datagram, the
average execution times of the two-copy algorithm using a local temporal buffer may
get longer compared with that of the two-copy algorithm using a remote temporal
buffer to copy the data locally by the agent thread on the remote process.

Figure 6 shows the results of preliminary experiments that measured the execution
time of inserting an element at the start of a vector by the in-place two-copy algorithms
using a remote buffer and a local buffer. When the number of elements in the input

Table 1. Evaluation environment

Node Fujitsu PRIMERGY RX200 S5
CPU Intel Xeon E5520 (4 cores, 2.27 GHz), 2 sockets
Memory DDR3 SDRAM 48 GB, 51.2 GB/s
Network Gigabit Ethernet (125 Mbyte/sec)

90 Y. Ajima et al.



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30

Av
er

ag
e 

ex
ce

cu
tio

n 
tim

e 
(m

se
c)

Number of elements in target vector

insert at begin iterator
erase at begin iterator
push_back
pop_back

Fig. 4. Average execution times of the vector insertion, erasure, push_back and pop_back
functions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30

Av
er

ag
e 

ex
ce

cu
tio

n 
tim

e 
(m

se
c)

Number of elements in target vector

erase at begin iterator
two copy erase via remote buffer
two copy erase via local buffer

Fig. 5. Average execution times of the vector erasure function and two-copy erasure algorithms

Reducing Manipulation Overhead of Remote Data-Structure 91



vector is twelve or above, the two-copy algorithms are faster than the in-place algo-
rithm. The average execution times of the two-copy algorithms got longer compared
with the experiments of erasing, because the insertion algorithms required more
complex manipulation to concatenate data.

The in-place algorithm is memory efficient, but it is a bad trade-off with the
two-copy algorithms in terms of the big disadvantage of the performance, because a
vector is usually expected to contain tens or hundreds of elements. The execution time
of the in-place data movement algorithm increased at the rate around 0.1 ms per
element which seems to correspond to the round-trip latency of the underlying UDP
communication layer. The currently implemented protocol controls the dependency
between the data transfer at the initiator process; therefore, each movement of a chunk
on the remote process takes a whole round-trip latency. This means the performance
issue cannot be addressed by using low-latency interconnect devices such as InfiniBand
and Tofu interconnect. The low-latency interconnect devices reduce the execution
times of the two-copy algorithms as well as that of the in-place algorithm.

4 Proposal

This section proposes a new technique called ‘remote ordering’ for the remote-
to-remote data transfer protocol. The remote ordering technique reduces the execution
time by overlapping the progresses of the protocol for the movement of each chunk
simultaneously. The command transferred from the initiator process to the source or the
destination process contains the dependency information, and the agent thread that
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received the command controls the order of execution of commands. The detail
algorithm to implement the remote ordering differs for each device dependent layer of
ACP. In this paper, a remote ordering algorithm is introduced to the remote-to-remote
data transfer protocol of the UDP version of ACP.

The agent thread at the initiator process memorizes the source and the destination
processes of the last transferred command. When the next command indicates the
sequential execution order, and the source and the destination processes identical to the
previous command, the agent thread at the initiator process sets ‘remote fence flag’ to
the command and transfers it right after the previous command is successfully trans-
ferred, instead of waiting for the notification of the completion of the data transfer of
the previous command. The agent thread at the source or the destination process delays
the execution of a command with the remote fence flag until all preceding commands in
the delegation queue are completed.

5 Evaluation

In this section, the average execution times of the acp_erase_vector and acp_in-
sert_vector functions improved by the remote ordering feature are evaluated. The
evaluation environment and the experimental method are as described in Sect. 3.
Figure 7 shows the results. The average execution times still increase proportionally to
the number of elements in the input vector, but the rate of increase is reduced from
about 0.1 ms per element to about 0.015-ms per element.

Figure 8 shows the average execution times of erasing data at the start of data using
two-copy algorithms. The results are almost identical to those of the preliminary
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experiments, because the two-copy algorithms do not include the sequence of data
transfer that can be overlapped by the remote ordering feature. The in-place algorithm
is faster than the two-copy algorithm using a remote buffer when the number of
elements in the input vector is 42 or below, and is faster than the two-copy algorithm
using a local buffer when the number of elements in the input vector is 27 or below.

Figure 9 shows the average execution times of inserting data at the start of data
using two-copy algorithms. The results are also almost identical to those of the pre-
liminary experiments. The in-place algorithm is faster than the two-copy algorithm
using a remote buffer when the number of elements in the input vector is 90 or below,
and is faster than the two-copy algorithm using a local buffer when the number of
elements in the input vector is 79 or below.

The remote ordering feature introduced to the remote-to-remote data transfer pro-
tocol of the UDP version of ACP device dependent layer reduces the average execution
time of the acp_erase_vector and the acp_insert_vector functions which use the
in-place data movement algorithm to about one seventh. The improved execution times
are faster or comparable to those using two-copy algorithms when the input vector
contains elements of tens or below.

6 Future Work

The acp_erase_vector and the acp_insert_vector functions still cause the perfor-
mance issue if the input vector contains hundreds or above elements. Therefore, more
sophisticated and adaptive algorithms should be investigated, such as a semi-in-place
partial two-copy algorithm.

Protocols for the remote-to-remote data transfer also need further investigation to
exploit the locality and to hide the latency.

7 Related Work

A number of communication libraries to underlie PGAS programming language run-
times have been developed. The Aggregate Remote Memory Copy Interface (ARMCI)
[10] is a low-level communication library designed to be used by the Global Arrays
Toolkit. The Global-Address Space Networking (GASNet) [11] is a low-level com-
munication interface intended for use in implementing the runtime system for global
address space languages such as UPC [12]. OpenFabrics Interface (OFI) [13] is a
collection of communication functions to underlie applications and middleware such as
MPI, SHMEM, PGAS and Database Management System. Unified Communication X
(UCX) [14] is a collection of communication interfaces for multiple middleware
domains, including MPI, PGAS, Task-based and I/O. These communication libraries
do not support remote-to-remote data transfer such as the acp_copy function and
employ a one-sided communication model that reflects the RDMA protocol directly.
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8 Summary

The ACP is a communication library which provides the PGAS programming model to
existing programming languages. The communication primitives of ACP include
remote-to-remote data transfer and atomic operations. The reference implementation of
communication primitives of ACP uses connectionless sockets over UDP and agent
threads. The remote-to-remote data transfer is implemented as a protocol. The ACPdl is
a utility library using the communication primitives that include interfaces to create and
manipulate several types of remote and distributed data structures. In the current
implementation of ACP, there is a performance issue in the erase and insert functions
of vector-type data structures due to the in-place data movement algorithm. This paper
proposes a new technique called ‘remote ordering’ for the remote-to-remote data
transfer protocol. The remote ordering technique overlaps the progresses of the pro-
tocol for the data movement simultaneously. The evaluation results show that the
average execution times still increase proportionally to the number of elements in the
input vector, but the rate of increase is reduced from about 0.1 ms per element to about
0.015-ms per element.

Acknowledgement. The development of the ACP library is a part of the Advanced Commu-
nication for Exa (ACE) project, [15] which is a research theme in the CREST research area
‘Development of System Software Technologies for post-Peta Scale High Performance Com-
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Abstract. Future computing systems will need to operate within hard
power and energy constraints, this is particularly true for Exascale-class
systems. These constraints are hard for technical, economical and ecolog-
ical reasons, thus, such systems have to operate within given power and
energy budgets. Therefore, we anticipate the need for modeling tools that
help to predict power and energy consumption. In particular, such mod-
eling tools would allow for detailed explorations of various alternatives
when designing systems. While processing and memory already receives
a large amount of interest from the research community, power model-
ing of scalable interconnection networks is rather neglected. However,
analyses show that the network contributes about 20 % to the overall
power consumption of HPC systems. Considering the increasing energy
efficiency of other components, this fraction is likely to increase. While
models for processing and memory typically rely on performance coun-
ters to model power and energy, we observe that the distributed nature
of networks leads to significantly more complex metrics. Selecting the
right set of abstract metrics, which will be used as input for such a
prediction, is crucial for prediction performance.

In this work we introduce our tool called Simple Offline Network Ana-
lyzer (SONAR) to derive complex metrics from communication traces of
HPC applications. We explain the motivation behind choosing this con-
cept, the implementation, and the ability of the tool to easily support
the integration of new metrics. We also show exemplary explorations
using an initial set of metrics for a representative range of HPC applica-
tions, including contemporary as well as emerging Exascale workloads. In
particular, we use SONAR to characterize the communication of appli-
cations in terms of verbosity and network utilization, as we believe both
to be important metrics for power prediction.
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1 Introduction

Following the end of Dennard scaling, power and energy consumption turned into
hard constraints that limit a computing system’s computational power. Key to
a continuing performance scaling is improving energy efficiency, which means
more computations per Joule can be performed.

This is particularly true for Exascale systems, which will be severely lim-
ited by power consumption. Presently, it is estimated that a power dissipation
between 20 MW and 100 MW is anticipated for those systems. Since proces-
sors make up a large fraction of the overall power consumption, the majority
of current work focuses on understanding and optimizing their power efficiency.
Additionally, we believe the network component has historically received too lit-
tle attention. Analyses show that the network consumes up to 30 % of the overall
power [1]. This fraction increases if processors become more energy-proportional,
i.e. the actually consumed power is linked linearly to the component’s load.
Therefore, there is an urgent need to understand power consumption in scalable
interconnection networks in order to design optimizations.

In order to achieve an understanding of power consumption, we believe the
most suitable option is using power-aware network simulations and power mod-
els. The first method excels in an accurate prediction, the latter allows for much
faster predictions. Therefore, it enables explorations of topology, link configu-
ration and other abstract aspects. While our initial version of a power-aware
network simulator already exists [2], we are currently working on a network
power model. For such models it is crucial to select the right set of metrics that
describe the traffic in a way that is suitable for an abstracted power prediction.

Understanding the communication behavior of large scale HPC applications
is essential for our research regarding power consumption and possible optimiza-
tions. Therefore, it is mandatory to provide realistic input for simulators and
models. Traces of real HPC applications meet this demand and allow simula-
tions of different hardware configurations under realistic conditions. Addition-
ally, traces are examined post-run, which enables analysis for different metrics
without running the application again.

There are a variety of tools that generate traces for post-run examination.
Some popular examples are VampirTrace1, TAU2 and Score-P3. Once the traces
have been created, tools like Vampir or Jumpshot-4 take a look at the inner work-
ings of the applications. These tools are designed to discover and fix programming
weaknesses of applications such as waiting phases, bottlenecks, contention, etc.
to maximize the performance.

In this work we introduce our communication characterization tool called
SONAR (Simple Offline Network Analyzer), which allows us to easily derive

1 https://tu-dresden.de/die tu dresden/zentrale einrichtungen/zih/forschung/
projekte/vampirtrace/.

2 https://www.cs.uoregon.edu/research/tau/home.php.
3 https://www.vi-hps.org/Tools/Score-P.html.

https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace/
https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace/
https://www.cs.uoregon.edu/research/tau/home.php
https://www.vi-hps.org/Tools/Score-P.html
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complex metrics from communication traces. Furthermore, it is simple to intro-
duce new metrics based on these traces. In particular, we make the following
contributions:

– Introduce SONAR as an open-source tool to automatically generate complex
metrics of HPC communication traces

– Provide reasoning behind the methodology for our approach
– Exemplary characterization of a representative set of HPC workloads, includ-

ing metrics like verbosity and network load

The remainder of this work is structured as follows: We continue with provid-
ing background information including a brief review of related work. Then, we
detail our methodology, our analyzed metrics, and how we generate and examine
our traces. This is followed by short overview of SONAR’s tool-design. Finally,
the results of our first analysis of six different HPC application are shown, fol-
lowed by a conclusion in which we summerize our results and outline possible
future directions.

2 Background

Today, power consumption is one of the most important aspects when designing
and operating HPC systems. Analyses have shown that a large fraction of the
power consumption originates from data movements, and that associated costs
significantly increase with distance [3]. Predictions indicate that the gap between
energy costs for computation and data movement will actually widen in the
future [4].

Power saving strategies in the area of networks are based on reducing link
frequency or link width, both of which result in a decreased bandwidth. Since
transition times of several microseconds are common, it is important to know
when a link can operate with lower bandwidth without reducing performance.
Therefore it is essential to analyze and understand applications regarding their
communication behavior.

In order to examine the impact of different network configurations on power
consumption and performance simulations and models are essential. Synthetic
traffic is a commonly used for such simulators. This approach is a good first-order
approximation, but some peculiarities of real application are neglected. Therefore,
real application traces are mandatory for a deep understanding of certain commu-
nication patterns. Furthermore, traces can be used for post execution analyses.
This allows to examine new metrics without running applications again.

2.1 Communication Pattern

Applications in high performance computing exhibit various different commu-
nication patterns. Figure 1 depicts the injection pattern of one particular node
over the normalized run time. It is apparent that these different communication
pattern have differing suitability for various power saving strategies. While the
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(a) Linpack (b) Graph500 (c) AMG2013

(d) NAMD ApoA1 (e) NAMD STMV (f) LULESH

Fig. 1. P2P injection plots of exemplary workloads

Graph500 workload (b) has a very irregular and dense pattern, the network is
idling periodically for the AMG2013 (c) and NAMD (d, e) workload.

Analyzing communication patterns and other metrics is mandatory for future
interconnection network power models. These models are much faster than accu-
rate simulations of a complete cluster. This enables the possibility to test a vari-
ety of different parameters in a reasonable time. Since these models are not cycle
accurate, they are not taking full event-based traces as input data but simpler
metrics. Therefore, tools such as SONAR are used to derive different metrics
that affect power consumption directly from the traces.

2.2 Related Work

There is a large set of existing tools that gear to profile MPI applications.
The most important ones include TAU [5], HPCToolKit4, Intel VTune5, IPM6,
mpiP7, INAM [6] and INAM2 [7]. However, they rather focus on reporting and
visualizing MPI communication behavior for profiling purposes instead of gen-
erating aggregated metrics like SONAR. In fact, they can be seen as being one
level below SONAR, i.e. SONAR builds on top of such tools.

Tools that monitor and analyze MPI jobs also have a large history, such
as Lightweight Distributed Metric Service (LDMS) [8] by Sandia National Labs,
the HOlistic Performance System Analysis (HOPSA) [9], and TACC STATS [10].
Compared to SONAR, they tend to be more abstract and are geared towards
monitoring the behavior of complete MPI jobs.
4 http://hpctoolkit.org/.
5 https://software.intel.com/en-us/intel-vtune-amplifier-xe.
6 http://ipm-hpc.sourceforge.net/.
7 http://www.llnl.gov/CASC/mpip/.

http://hpctoolkit.org/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://ipm-hpc.sourceforge.net/
http://www.llnl.gov/CASC/mpip/
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The MPI forum recently proposed a new extension called MPIT8, which
allows profiling tools to access the internal states of MPI, enabling more detailed
profiling information. This feature is already used in recent work to provide tun-
ing hints to the user [11]. According to our knowledge MPI does not contribute
significantly to the overall power consumption, as most of the energy is spent
for core (floating point) computations and not memory-intensive tasks such as
queue management, tag matching, and similar. If this assumption turn out to be
wrong we would opt to extend SONAR with the possibilities offered by MPIT.

3 Methodology

Modern HPC network infrastructures are not energy proportional [2]. A first
step to improve energy-proportionality for HPC interconnects is understanding
how the interconnect behaves during runtime and what is a suitable approach
to minimize network power consumption.

To determine how an application utilizes the provided network resources, we
have postulated a set of metrics which give us a qualitative and quantitative
insight to the communication behavior of an HPC application. The following
metrics have been found to be important:

Network Activity Map: This metric visualizes all point-to-point and collective
messages by size and relation to the application runtime in a graph. Each data-
point in the plot indicates a particular event. Figure 2 (a) depicts the network
activity map of of an exemplary workload (AMG2013).

(a) Network Activity Map (b) Message Size Distribution Map

Fig. 2. Examples of the visual metrics SONAR derives from an application trace

MPI idle time: We determine the minimum, maximum and average times
during which a node does not have to handle any messages to or from the
interconnect. This values represent the white spots in the message activity map

8 http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/
2010-08-cscads-mpit.pdf.

http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
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in Fig. 2 (a). A good example in the plot can be seen in Fig. 2 (a) from second
50 to 100. In this region, the network is completely idle on this node.

Message Distribution: We use a cumulative distribution function graph
(CDF) to visualize the message sizes, which occur in a trace. This metric shows
the probability of a message having a size X or smaller. Figure 2 (b) shows the
CDF-graph of an exemplary workload (AMG2013).

Verbosity: This represents the ratio of work and the total amount of data
which has been consumed by the application. The work is quantified by the
number of floating point operations (Flops) issued, as many HPC applications
are depending on floating point arithmetic. The Flops are determined via the
hardware performance counters of the CPUs. For integer based workloads (such
as graph algorithms), the verbosity is defined by their number of integer opera-
tions instead of Flops.

Message Rate: The message rate indicates how many messages are sent by
one node in a given time period. This metric can be interpreted as a single-value
approximation of the network activity map.

All the described metrics are MPI process based. This means we get N × P
results for each metric, where N is the number of nodes and P is the number
of MPI processes launched per node. Derived from these metrics, we are able
to estimate how the application utilizes the cluster. Largely differing numbers
indicate an over- or under utilization of specific nodes in the cluster. Metrics
which can be quantified by a single number, such as the verbosity, will also be
reported as a global average value.

3.1 The Open Trace Format (OTF)

The open trace format (OTF) stores application activities as events. Each event
is associated with a time stamp and additional event-specific information. For
example, the MessageSent-event contains information such as source, destina-
tion and length of the message, whereas the FunctionEnter -event requires the
function’s signature and the ID of the concerning node. All non-numeric values,
e.g. the function signatures, are encoded as integer values to minimize the trace’s
size. To refer these encodings to their respective values, the OTF trace contains
a section with definitions. These definition provide the mapping of the encodings
to their actual meaning, e.g. the function with the ID 42 belongs to the function
with the signature void foo(int bar).

3.2 Trace Generation

The development of SONAR is motivated by the need to efficiently gather infor-
mation from application traces. Depending on the number of nodes, the com-
plexity of the underlying problem, the communication characteristics, and other
factors, these traces can become very large. The traces we have generated for
this paper require between 5 and 50 GBs of disk space each. In order to be able
to store such traces efficiently, an appropriate format is necessary.
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We have tested the Tuning and Analysis Utilities (TAU) and the Vampir-
Trace frameworks. In both cases, an application can be compiled with code
instrumentation to examine specific parts. They provide also the possibility to
run existing binaries without any modifications. With this black-box approach,
the traces contain only a reduced amount of information. Application-specific
functions are opaque in this case. The only data that can be gathered with this
method is the entry and exit point of the application’s main()-function as well
as the entry and exit points of the MPI library functions used by the application.

As mentioned before, instead of looking at specific parts of an application, we
want to examine the behavior of the whole application with special attention to
the communication aspects. Since all information regarding MPI and communi-
cation are retained when running an existing application with the run-wrappers,
this method is sufficient for our experiments.

For our purposes, the VampirTrace framework proved to be the better fit.
It stores traces directly in the compressed Open-Trace-Format (OTF), whereas
TAU requires an intermediate format. The collective records are stored in a
more convenient way with VampirTrace. TAU uses OTF counters to encode the
collective’s payload. The involved nodes have to be recovered with the functions’s
entry and exit points. VampirTrace utilizes the OTF collective handlers, so that
all information regarding collective events are available and accessible from a
single location.

Figure 3 shows the abstract steps needed to acquire metrics from an applica-
tion trace with SONAR.

Fig. 3. Schematic view of the workflow of acquiring metrics with SONAR

3.3 Trace Post-processing and Exploration

Once the trace has been obtained with VampirTrace, it contains, among others,
the following events:

1. Definitions: Nodes, Functions, Communicators
2. Function Enter/Leave Events



SONAR: Automated Comm. Characterization for HPC Applications 105

3. Point-to-point Messages: Send/Receive Events
4. Collective Messages: Begin/End Events

All these events are associated with a time stamp and additional information
regarding this event, such as, the message length or type. VampirTrace stores
the time stamp as ticks and provides a trace-specific ticks-per-second value to
convert the time stamps into a reasonable unit. This should be considered when
handling the raw OTF data.

When viewing the trace with the otfprint tool of the OTF library, the infor-
mation looks like this:

$ otfprint mytrace.otf

// Functions:
(#38271) 5719742052 Enter: function 82, process 10, source 0
(#38272) 5719742504 Leave: function 0, process 9, source 0

// Point -to-point communication:
(#23768) 5708630907 SendMessage: sender 4, receiver 14, group

1000000004 , type 1375, length 80, source 0, KeyValue:
1:5709047177

(#23812) 5708664706 ReceiveMessage: receiver 14, sender 4, group
1000000004 , type 1375, length 80, source 0

// Collective communication:
(#2536) 5689898534 BeginCollective: process 13, collective 6, group

1000000004 , matchingId 5, root 0, sent 0, received 0, source 0
(#2567) 5691141019 EndCollective: process 4, matchingId 5

Listing 1.1. OTF Events

This textual representation of the trace can be used to get an overview of the
trace. Specific informations can be found and processed with the GNU tools grep,
sed, awk and alike. To characterize traces automatically with a set of multiple
metrics, this approach is not feasible, as the GNU tools tend to be very slow on
large amounts of data and cumbersome to use when implementing new metrics.
To be more efficient, we need to be able to process the trace’s data as-it-is
instead of the detour with the textual representation. SONAR uses the OTF
library functions to access the numerical values shown in Listing 1.1 directly as
their respective data type, e.g. integers.

4 Tool-Design

For SONAR, we used the C based OTF library9. It provides fast and convenient
interfaces to access OTF traces from C/C++ and Python applications. SONAR
itself has been implemented in C++.

9 https://tu-dresden.de/die tu dresden/zentrale einrichtungen/zih/forschung/
projekte/otf/.

https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/otf/
https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/otf/
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4.1 Implementation and Prerequisites

In order to access traces, the high-level OTF library functions expect one handler
function for each event. SONAR uses these handler functions as an interface to
acquire data from the traces. Since a trace usually contains more events than
needed, a selection of chosen events can be set up in the reader of the OTF
library.

We provide a script that downloads the OTF library, configures, builds, and
installs it to the current working directory. The OTF library has some depen-
dencies itself, such as the zlib for the trace’s compression. If this build process
fails, these dependencies have to be resolved manually. The same holds true for
the Boost C++ Libraries, which are used to handle the program options.

Gnuplot is used to generate the graphs. If gnuplot is not present on the
system, this part will be skipped and SONAR generates only data files. These
files are encoded as comma-separated values (CSV) to be (re-)used by any other
data processing tool.

4.2 Custom Metrics

SONAR can easily be extended with new metrics. To do so, we need to identify
the data which is required for the metric. For example, we want to count all
messages which are exactly 42 bytes in size. The data for this new metric is
located in the handler function which is called on every outgoing messages.

The class OTF Handler in the file “otf handler.h” contains stub implemen-
tations of all available OTF handlers. In his function the location of the data
of interest is handled. For a new metric, a new class must be derived from this
base class and re-implement the relevant functions.

static int
handleSendMsg(void* userData , uint64_t time , uint32_t sender ,

uint32_t receiver , uint32_t group , uint32_t type ,
uint32_t length , uint32_t source , OTF_KeyValueList *list)

{
if (length == 42)

*((int*) userData)++;
return OTF_RETURN_OK;

}

Listing 1.2. Example implementation to derive a new metric from
the OTF-trace

The code Listing 1.2 show the implementation of the new metric. The user-
Data-pointer is defined as an integer to be incremented at ever message which
is exactly 42 bytes in size. Metrics, which are more complex than this simple
example, are likely to depend on several values. In this case, it is advisable to
use a structure or class to organize the data.
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5 Results

In this section, we present results that are generated by SONAR after an analysis
of MPI traces of the following applications: HPL, Graph500, NAMD, LULESH,
and AMG2013.

5.1 Test System

We use an HPC system that consists of 8 nodes. Each node hosts two six-core
Intel Xeon E5-2630 v2 CPUs and 64 GBs of RAM and runs a standard Linux
distribution. The nodes are connected to each other with Gigabit Ethernet. All
the traces and measurements were acquired with this system.

5.2 Benchmarks and Workloads

We used a set of benchmarks to evaluate the output of SONAR. The workloads
represent the typical demands of an HPC environment. We chose the config-
uration of these applications in a way to keep the total runtime low and the
resulting traces small.

HPL (High-Performance Linpack) is the benchmark used to determine the
Top500-List10. It solves a dense N ×N system of linear equations. The perfor-
mance is reported in GFlops/s. In our test we used a dimension of N = 50000.

The Graph500 Benchmark is used to determine the Graph500-List. The
workload is a breadth-first search (BFS) graph traversal. Unlike HPL, the
Graph500 Benchmark relies more on the communication abilities of the cluster.
For our tests, we used the reference implementation11 with emulated one-sided
communication and a scale factor of 12.

NAMD (Nanoscale Molecular Dynamics program) is a molecular dynamics
simulation program12. Two widely known workloads are the Apolipoprotein A1
(ApoA1) and the Satellite Tobacco Mosaic Virus (STMV). These workloads are
publicly available and are commonly used to compare different systems against
each other. The number of computational steps was limited to 100 for each
workload to keep the traces small.

LULESH (Livermore Unstructured Lagrange Explicit Shock Hydrodynam-
ics) represents the field of hydrodynamic simulations13. LULESH uses a stencil
code to calculate the physical forces. The problem size parameter was set to 100,
which results in one million elements per node. The number of iterations was
limited to 500.

AMG2013 (Algebraic Multigrid Solver) solves linear systems of unstruc-
tured grids with the algebraic multigrid method14. For our tests we used the
10 http://www.netlib.org/benchmark/hpl/.
11 http://www.graph500.org/referencecode.
12 http://www.ks.uiuc.edu/Research/namd/.
13 https://codesign.llnl.gov/lulesh.php.
14 https://codesign.llnl.gov/amg2013.php.

http://www.netlib.org/benchmark/hpl/
http://www.graph500.org/referencecode
http://www.ks.uiuc.edu/Research/namd/
https://codesign.llnl.gov/lulesh.php
https://codesign.llnl.gov/amg2013.php
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default problem and adjusted the problem scaling parameter to prolong the run-
time of the application.

LULESH and AMG2013 are part of a collection of proxy applications15 which
represent current and future HPC workloads.

5.3 SONAR Measurements

In this section, we present the insights we have gathered with SONAR. We ran
the workloads described in Subsect. 5.2 on our cluster. The traces were acquired
using the vtrun wrapper of VampirTrace. The following metrics were selected
for first analyses.

Network activity: The graphics in Fig. 4 depict the network activity foot-
prints of the High-Performance Linpack, Graph500, LULESH and AMG2013
benchmarks.

(a) Linpack (b) Graph500

(c) LULESH (d) AMG2013

Fig. 4. Network activity of exemplary workloads (Color figure online)

Each data point in the graphs represents a distinct event in the network. The
position on the X and Y axis indicates the time of occurrence and respectively
the size of the message. The colors visualize point-to-point (red, green) and

15 https://codesign.llnl.gov/proxy-apps.php.

https://codesign.llnl.gov/proxy-apps.php
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(a) NAMD ApoA1 (b) NAMD STMV

Fig. 5. Network activity of the same application, but with different workloads

(a) P2P Message Size Distribution (b) Coll. Message Size Distribution

Fig. 6. Message distribution of different workloads for point-to-point (a) and collective
(b) messages

collectives messages (purple, blue). SONAR produces such one graph for each
node, recorded in the trace. Here, we selected only one graph per node, which
we think is representative.

It is apparent that the communication characteristics vary widely between the
different applications. This is not surprising for workloads, which are inherently
different from each other such as the ones shown in Fig. 4. Figure 5 depicts the
NAMD application with two different sets of input data. Although both show
periodic communication behavior, their network activity maps differ a lot.

The ApoA1 workload causes dense communication patterns in the first third
of the application’s runtime. There are also some white spots which indicate no
network activity at all. STMV communicates heavily from the middle to the end
of the application and has fewer idle gaps.

Message Distribution: Figure 6 shows the message distribution of our selected
workloads as a cumulative distribution function (CDF). SONAR reports one
CDF graph for each trace. For a better comparability, we merged them into one
graph.
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Table 1. Summary of aggregated SONAR metrics on the cluster level

Application MPI Verbosity Message Rate MPI Idle min. MPI Idle max. MPI Idle avg.

Processes [Bytes/Flop] [Messages/s] [Seconds] [Seconds] [Seconds]

Graph500 2 x 8 2.087e+01 4.795e+02 4.096e−06 1.256e+00 8.742e−04

Graph500 4 x 8 6.180e+00 5.924e+02 4.821e-06 2.849e+00 7.096e−04

Graph500 8 x 8 1.560e+00 8.697e+02 4.902e−06 3.411e+00 5.161e−04

HPL 2 x 12 9.597e−01 6.885e+01 2.528e−06 6.629e+00 7.160e−03

HPL 4 x 12 1.602e+00 3.729e+01 2.609e−06 6.250e+00 1.328e−02

HPL 8 x 12 1.478e+00 3.032e+01 2.654e−06 7.589e+00 1.638e−02

LULESH 8 9.398e−04 1.027e+01 4.132e−06 1.327e+00 4.695e−02

LULESH 27 1.236e−03 1.417e+01 3.764e−06 1.914e+00 3.825e−02

LULESH 64 1.409e−03 1.712e+01 3.536e−06 2.648e+00 3.210e−02

AMG2013 2 x 8 3.690e−03 1.598e+01 0.000e+00 8.757e+00 3.004e−02

AMG2013 4 x 8 1.009e−02 1.508e+01 0.000e+00 6.917e+01 3.290e−02

NAMD ApoA1 2 x 12 6.020e−03 8.501e+01 4.117e−06 4.317e+00 6.023e−03

NAMD ApoA1 4 x 12 8.651e−03 2.181e+01 4.453e−06 5.920e+00 2.356e−02

NAMD STMV 2 x 12 4.543e−03 6.861e+01 4.142e−06 1.375e+01 7.197e−03

NAMD STMV 4 x 12 6.274e−03 1.262e+01 4.389e−06 1.419e+01 3.951e−02

The most important insight is that point-to-point communication is preferred
over collective communication. Only AMG2013 and the Graph500 are using col-
lective messages to transfer data, which are larger than 10 Bytes. This sug-
gests that the other workloads use collective operations only for synchronization
purposes.

The second observation in Fig. 6 (a) is that about 80 % of all point-to-point
messages we gathered with our workloads are smaller than 20 kbyte. One excep-
tion is Graph500, in which most messages are smaller than one kbyte. The other
one is LULESH with most messages being smaller than 200 kbyte.

Aggregated Metrics: The results, which can be represented as numerical val-
ues, have been summarized in Table 1. The presented data are averaged values
of all nodes. This table provides an overview how an application utilizes the
cluster’s components such as processors and interconnection network.

The information about sending and receiving of messages is measured at
MPI level. Therefore, the MPI idle time represents the time period between two
successive MPI events. As we take the send, as well as the associated receive event
into account, these numbers give a reasonably accurate idea of the behavior of
the underlying network interface.

Node divergence: To show how evenly an application utilizes the different
nodes, SONAR produces also graphics that represent the data from Table 1 at
node level. The box plots in Figs. 7 and 8 show the variance of these metrics
spread over all nodes. Workloads with a low box and short whiskers indicate an
even utilization of each cluster node. This means the bigger the boxes the bigger
the larger variance between all nodes.
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(a) Verbosity

(b) Message Rate

Fig. 7. Verbosity and message rate variance of tested workloads for all nodes

Figure 7 depicts the variance of the metrics verbosity and message rate. The
high verbosity of the Linpack benchmark surprises, respectively reveals the huge
amounts of data this workload needs to transfer. Graph500 has the highest ver-
bosity, as this work does not rely on floating point operations. Otherwise, the
message rate is the largest of all tested workloads. This is because the Graph500
relies heavily on communication. NAMD, LULESH and AMG2013 show similar
behavior regarding the verbosity and the message rate. They seem to be more
efficient than Linpack, as they show a lower verbosity. This is in line with the
message rate, which for these workloads is lower than on HPL.

Figure 8 shows the distribution of idle times on the MPI layer. The minimum
idle time depends on the actual interconnect hardware. In our measurements,
we see gaps of a few microseconds for successive messages. This is within the
expected capabilities of the Gigabit Ethernet network we have used.

The average idle time between successive networks is between 20ms and
80ms. The Graph500 is the outlier with an average gap of about 80µs. Once
again, this shows the communication demands of this workload.

A hypothetical energy-proportional network must be able to switch its power
state much faster than the average message gap to save energy and retain the
application’s performance. The maximum idle time reveals, that many of the
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(a) MPI Idle Time: Minimum

(b) MPI Idle Time: Maximum

(c) MPI Idle Time: Average

Fig. 8. Idle time variance of tested workloads for all nodes

tested applications have at least one phase, where the network is not used at all
for more than five seconds (HPL, NAMD, AMG2013). The apparently missing
box of AMG2013’s minimum idle time is in fact zero seconds on each node. This
is likely caused by overlapping messages. AMG2013 shows a maximum idle time
of even more than one minute for each node. We assume this is the result of an
unfavorable configuration of the application. For a energy-proportional network,
this means, during this idle time the network can be set to the lowest energy
state or even be switched off completely.
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6 Conclusion

With SONAR, we introduced a tool to derive advanced communication charac-
teristics from traces of common HPC applications. These traces were obtained
with VampirTrace, a well-known MPI trace generator.

Using these trace, we demonstrated the capabilities of SONAR by extracting
various metrics, which we believe are crucial to develop a power-aware network
model. For example, the generated network activity maps show a wide range
of different communication patterns. Energy-proportional networks show signifi-
cant power saving potential on workloads, such as NAMD or AMG2013. Various
opportunities exist to save power without any loss in performance by dynami-
cally reducing the link width or even by switching them off completely. Similar
potentials are seen with LULESH and its highly regular communication pattern
and fixed message sizes. Although links cannot be switched off completely, fine
tuning the network is sufficient to save power for this workload.

Our observations of the network activity maps are also proven by other met-
rics, such as MPI idle times of the single nodes. SONAR revealed that the gaps
between MPI events provide a possibility to put less active links into a reduced
power state for the duration of these inactivity periods.

Supporting all these scenarios, however, requires an energy-proportional net-
work infrastructure. Therefore, further research in this area is mandatory and
we believe SONAR to be a first and important step in this direction.
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1 Introduction

Many public and privately funded data centers host supercomputers for running large
scale simulations and analyzing experimental and observational data. These super-
computers run usually tightly coupled parallel applications that require hardware
components that deliver the best performance. In contrast, commercial data centers,
such as Facebook and Google, execute loosely coupled workloads with a broad
assumption of regular failures. The dimension of the data centers is enormous. A 2013
article summarizes commercial data centers’ dimensions [1]. It estimates, for example,
that Facebook hosts around 100PB of storage and Google and Microsoft manage
around 1 million servers each – although the hardware is split among several physical
data centers – a modus operandi not suitable for HPC centers. With the hunger for
information, the globally installed storage capacity increases exponentially and is
expected to hit 7,235 exabytes by 2017 [2]. This trend is visible in the sales reports of
companies such as the disk drive manufacturer Seagate. Within 5 years, they shipped 1
billion HDDs, which means 700.000 units every day [3]. With state-of-the-art 8TB
disks, this would already account for 5.5 exabyte of capacity by day.

Management of the huge amount of data is vital for effective use of the contained
information. However, with limited budgets, it is a daunting task for data center
operators, especially as design and storage system required hardware depends heavily
on the executed workloads. A co-factor of the increasing difficulty is the increase in
complexity of the storage hierarchy with the adoption of SSD and memory class
storage technology. The US Department of Energy recognizes the importance of data
management, listing it among the top 10 research challenges for Exascale [4].

There are several initiatives, consortia and special tracks in conferences that target
RD&E audiences. Examples are the Storage Networking Industry Association (SNIA)
for enterprises, the Big Data and Extreme-Scale Computing (BDEC) initiative1, the
Exascale10 workgroup [5], the Parallel Data Storage Workshop (PDSW) and the
HEC FSIO workshop [6].

1 http://www.exascale.org/bdec/.

http://www.exascale.org/bdec/


There are many I/O workloads studies and performance analysis reports for parallel
I/O available. Additionally, many surveys of enterprise technology usage include
predictions of analysis for future storage technology and the storage market such as [7].
However, analysis conducted for HPC typically focuses on applications and not on the
data center perspective. Information about data center operational aspects is usually
described in file system specific user groups and meetings or described partially in
research papers as part of the evaluation environment.

In this workshop, we bring together I/O experts from data centers and application
workflows to share current practices for scientific workflows, issues and obstacles for
both hardware and the software stack, and R&D to overcome these issues.

2 Organization of the Workshop

The workshop content was built on three tracks:

– Research paper presentations – authors needed to submit a paper regarding rel-
evant research for I/O in the datacenter.

– Talks from I/O experts – authors needed to submit a rough outline for the talk
related to the operational aspects of the data center.

– Invited track for a keynote and two moderated discussion slots.

The CFP has been issued beginning of January. Important deadlines were:

– Submission deadline: 28-02-2016 AoE
– Author notification: 23-03-2016
– Workshop: 23-05-2016
– Camera-ready papers: 23-06-2016

From all submissions, the programm committee selected four talks from I/O experts
and four research papers for presentation during the workshop.

2.1 Programm Committee

Wolfgang Frings Jülich Supercomputing Center, Germany
Javier Garcia Blas University Carlos III of Madrid, Spain
Rob Ross Argonne National Laboratory, USA
Carlos Maltzahn University of California, Santa Cruz, USA
Kathryn Mohror Lawrence Livermore National Laboratory, USA
Xiaosong Ma North Carolina State University, Oak Ridge National Laboratory,

USA
Julian Kunkel DKRZ, Germany
Jay Lofstead Sandia National Laboratory, USA
Colin McMurtrie CSCS, Switzerland
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3 Workshop Summary

Throughout the day, on average 33 participants attended the workshop. We had a good
mix of talks from I/O experts, data center relevant research and also discussions.
A short summary of the presentations is given in the following. The slides of the
presentations are available on the workshop’s webpage: http://wr.informatik.uni-
hamburg.de/events/2016/iodc.

The keynote from Rob Ross advocated the use of tools to study I/O actities from the
data center perspective. He presented results from I/O monitoring using Darshan, that
point out the benefit of centralized monitoring and the continuing challenge to accurately
monitor all I/O activity. Application authors use a much more extensive set of I/O
interfances than expected making the job of understanding how to address I/O challenges
even harder. Also, he presented some studies with the I/O simulation tool Codes for
understanding object storage and the dragon fly network topology. Finally, the recently
started Tokio project is introduced that will lift I/O monitoring to a next level.

3.1 Research Papers

In the research paper “Delta: Data Reduction for Integrated Application Workflows and
Data Storage”, the ADIOS middleware is extended with a compression method. It
compresses a time series of data with delta encoding by comparing data to the initial
values. A result of the study is that already this approach reduces the data volume for
in-situ analysis significantly for applications.

In the second research paper “The Effect of Python and NetCDF on the Read
Performance when using HPC Parallel Filesystems”, evaluates various aspects of
NetCDF performance on several storage systems. It is shown that there are some issues
in the Python libraries which reduce performance significantly.

Next, in the paper “Analyzing Data Properties using Statistical Sampling Tech-
niques”, a method is presented to evaluate data characteristics such as scientific file
formats and compression ratio on a subset of data to estimate the value for the full
system. It turns out, that a small subset of data is sufficient to predict the true value of
characteristics that are computed by file numbers or storage capacity accurately.

The last paper, “An Overview of the Sirocco Parallel Storage System”, introduces the
Sirocco distributed object storage. In contrast to parallelfile systems, the consistencymodel
is relaxed and there is a-priori no explicit central index for the data. This allows writers to
proceed independetly and even adjust their storage targets based on system utilization.

3.2 Talks from Experts

The four talks from experts included information about the site and typical application
profiles but also contained information regarding I/O tools and strategies. In the first
talk, we heard about LRZ’s storage system and strategy. Utilizing file system moni-
toring and the Persyst tool an overview of the bottleneck for an application is gained.
Additionally, Darshan, Scalasca and VampirTrace is used for I/O characterisation and
analysis. An emphasis was made to present and demonstrate a methodology to identify
I/O bottlenecks that is applied in the data center with success.
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Then, we heard an update of HLRS data management plans. It was demonstrated,
that the storage system’s peak performance is barely utilized from typical applications.
Additionally, potential strategies and architectures for a future system has been sket-
ched relying on NVRAM.

The third talk described work on the SIRIUS US DOE funded storage stack and I/O
research project. This project is relatively new and is seeking community feedback
about the research plans. The current strategy is to spread a single data set across all
available storage resources, organized by data utility. This will optimize the desired
information density within the scare resources, such as NVM, while still offering full
datasets. The audience seemed accepting of the approach and did not have any sig-
nificant input to offer.

The next talk described I/O monitoring at Jülich Supercomputing Center. The
LLview tool provides a good overview of ongoing jobs but also a history. This includes
system statistics and I/O activity and can be used to analyze the overall system behavior
and utilization. Next, SIONlib has been introduced, which manages shared files for
task-local data. Finally, the activities in the DEEP-ER project where described, in
which SIONlib manages buddy checkpoints.

Our final talk covered CSCS storage system and ... TODO: Colin....

3.3 Discussion rounds

The major distinguishing feature for this workshop compared to other venues is the
discussion rounds. The opportunity for themed, open discussions about issues both
pressing and relevant to the data center community facilitates sharing experiences,
solutions, and problems. The forum has lively discussion with few reservations about
maintaining secrecy.

The first discussion starter is based on the community effort of the Virtual Institute for
I/O (VI4IO)2. VI4IO aims to provide a community hub containing research groups,
relevant tools to monitor and benchmark HPC storage behavior, events. Finally it hosts
and manages the High-Performance Storage List (HPSL), which currently contains 30
high-performance storage systems including their characteristics. In contrast to existing
lists, operators of a data center can create and manage the list themselves and can provide
additional prosa text describing site, system and storage. Since it is very difficult to find
detailed information about existing storage systems, there are still a lot of characteristics
missing, still the first analysis of storage capacity have been made and presented during
the talk. The discussion with the attendees revealed optimization potential in the pre-
sentation of the characteristics that are already resolved in the current list.

The second discussion was on the impact of Non-Volatile Memory (NVM) on
storage activities. The current set of machines being deployed at supercomputing
centers in the USA all have such a layer in the form of flash-based devices. The
discussion centered around sereral topics: (1) the opportunity to pre-empt a running job
on a node via swapping memory contents to a node local SSD to support urgent
computation requirements is seen as a priority. There are serveral issues, such as

2 http://vi4io.org.
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security, that still need to be considered for this to be a viable idea. (2) The audidence
agreed that NVM resources are most useful when they can be treated as either slow
memory or fast storage, depending on application needs. Ideally, this will be supported
on an application-by-application basis rather than requiring any system configuration
changes. (3) The audidence agreed that because of the performance characteristics, it is
important to have explicit use options. Some participants suggested that they would
rather support invisible use, such as for a TLB swap space or have the software stack be
able to predict which pages are no longer imminently needed and swap them for those
that are. How to do this effectively was unknown. (4) The concept of the burst buffer
offering the fast cache for the file system was universally acknowledged to not be able to
address the I/O performance issues. The key issue is that, as last year’s workshop
revealed, the major concern is the use of I/O libraries like NetCDF and HDF5 and the
very low I/O performance they obtain in their default configuration. Multiple other pieces
of research have shown that the overheads involved in the data rearrangement phase of
two-phase collective I/O with data sieving can completely dominate, on the order of
99 % of the I/O time. Until this issue is solved, accelerating the bandwidth to the storage
array will not address the performance issues. (5) Having NVM in multiple locations,
such as compute area as well as on every node, is seen as critical for performance.
Interference effects that plague our current storage arrays will still exist for NVM sources
making only having centralized resources problematic. And (6) Because the hardware is
evolving so rapidly and how and where the NVM is deployed in machines, the software
interface is largely undefineable. Until the locations and hardware interfaces settle down,
the best we can hope to do is to have solutions to address a single platform generation
with the expectation it may have to be completely rethought for the next generation.
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Abstract. Sirocco is a massively parallel, high performance storage sys-
tem that breaks from the classical Zebra-style file system design para-
digm. Its architecture is inspired by peer-to-peer and victim-cache archi-
tectures, and emphasizes client-to-client coordination, low server-side
coupling, and free data movement and placement. By leveraging these
ideas, Sirocco natively supports automatic migration between several
media types, including RAM, flash, disk, and archival storage.

Sirocco provides advanced storage interfaces, enabling clients to effi-
ciently use key-value storage or block-based storage through a single
interface. It also provides several levels of transactional data updates,
up to and including ACID-compliant updates across several objects.
Further support is provided for concurrency control, enabling greater
performance during safe concurrent modification.

By pioneering these and other techniques, Sirocco is well-poised to
fulfill a need for a massively scalable, write-optimized storage system.
This paper provides an overview of Sirocco’s current system design.

Keywords: Parallel file systems · High performance computing · I/O

1 Introduction

Existing parallel file systems, such as Lustre, GPFS, Panasas, and PVFS, all
offer storage for very large files with high performance by striping data across
devices. Each of these systems have been optimized in different ways, but are
at their cores inspired by the Zebra file system [1], which also statically stripes
data across servers. For upcoming large scale systems, the explosion of devices
(in number and type) presents a challenge to the inherently flat nature of striped
organizations.

The aim of the Sirocco project is to completely rethink storage system design,
moving away from the current status quo. Instead of offering a rigid striping
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model with a separate metadata service, Sirocco provides a storage fabric with
the assumption that resources are transient and data is fluid. This fundamental
rethinking is being done with a nod to backwards compatibility by offering a
POSIX client that can work with Sirocco, allowing legacy and next-generation
APIs to coexist. The native interface, a low-level I/O API that is designed to be
used by both POSIX and non-POSIX clients, is object-based: Containers hold
objects, objects hold data forks, and each fork has a key-value store accessed
through a 64-bit address space. These four abstract levels offer flexibility to
address HPC, cloud, and large scale data analytics needs.

This paper describes the mechanisms and facilities provided by the Sirocco
storage system. We begin with a discussion of Sirocco’s origin and design prin-
ciples. We then compare and contrast Sirocco with its inspiration, unstructured
peer-to-peer (P2P) file sharing systems. We then discuss reading under free place-
ment. Finally, we describe concurrency control mechanisms in Sirocco.

2 Sirocco’s Design Principles

Sirocco’s design is focused on fast checkpoints, so the overall philosophy is based
on enabling clients to write data into Sirocco quickly. One way to accomplish
that is to eschew system-global views of storage. Instead, clients view Sirocco
as a federated group of storage servers offering a symmetric API, but different
performance and resilience characteristics. Each client is likely to see a different
set of servers than other clients, but can discover other servers in the system to
improve quality of service. Figure 1 demonstrates how and why data can move
from clients through the Sirocco storage system. Based on visibility, durability,
and performance, clients can choose the best target for its writes.

The roots of Sirocco originate from the Lightweight File Systems (LWFS)
project [2]. LWFS sought to strip down a file system to the bare, required com-
ponents and allow users to add additional capabilities as needed. This philosophy
allows some compute jobs to opt-in to services that are considered a burden to
others. The LWFS core consists of an object store with authentication and autho-
rization services only. Other features, such as naming and consistency control,
are left to separate services. Sirocco follows this philosophy as well.

To maximize scalability and generality, there are a small number of guiding
principles for Sirocco’s design.

1. There is no central index that determines where a piece of data must be (or
is currently) stored. Clients of the storage system are allowed to place data
within any server they can reach. As a consequence, the location of a required
piece of data may not be known at the time it is needed.

2. Data will be continually moving within the system to ensure longevity,
integrity, and system health. Replicas will be created and destroyed, and
servers will eject data into more durable or less burdened stores. Clients will
not be notified of these events. Consequently, growing and shrinking a Sirocco
store is trivial.
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Fig. 1. Data moves from clients through Sirocco based on load, capacity, and desired
safety. Note that these behaviors are based on local decisions; there are no explicit
tiers, but tiered behavior follows from safety-motivated victim caching.

3. Sirocco’s design emphasizes scalability over legacy concerns. Support for
legacy storage system semantics, like POSIX, are required; however, scala-
bility should not be harmed by POSIX considerations. A client implementing
more scalable semantics than POSIX should see better scalability on Sirocco.

4. Heterogeneous media (including temporary RAM-based stores, flash-based
burst buffers, disk, tape, and others as they become available) should be
supported transparently, with symmetric APIs for data access.

5. All data are not created equal, and some need more resilience. Clients should
be able to define the level at which Sirocco protects specific data.

6. Server-side operations should be as scalable as possible, particularly when
running on faulty hardware. Servers should not couple during any operation.

3 Comparison with Unstructured P2P Systems

The simplest way to illustrate how Sirocco works is by contrasting it with an
architecture it was inspired by, unstructured P2P systems. Unstructured P2P
systems are well-regarded for their ability to handle web-scale file sharing [3].
While Sirocco is P2P-inspired, it must function in a completely different envi-
ronment with different requirements. This creates some significant similarities
and differences between the two types of system.

Note that this comparison is specifically with unstructured P2P systems.
Structured P2P systems, such as those based on distributed hash tables [4], have
a different set of constraints that do not conform to all points in the following
discussion. Note that this discussion uses the term “servers” instead of “seeds”
in the P2P context, to draw a more direct comparison.
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3.1 Similarities

Both systems support ephemeral servers (i.e., churn). P2P systems have
to support ephemeral servers because servers are not typically under the system’s
administrative control. Therefore, servers may go offline for any reason (including
whim). This capability provides two benefits to Sirocco: Low-level fault tolerance,
and elastic allocation of resources (e.g., compute nodes as RAM-based caches)
by the storage system based on demand.

Both systems decouple data from location - Any data can exist any-
where, at any time. The reasons each architecture follows this principle are
different: P2P servers localize and remove data based on local demand, while
Sirocco hosts can migrate or evict data to manage space and resilience.

Both systems use greedy approaches to optimize quality of service.
Both systems tend toward this approach for the same reason: Central coordi-
nation for performance management does not work at all scales, and may cost
more than they gain. For very large scale systems, it can be better to make local,
sub-optimal decisions than to coordinate and make a globally optimal decision.

Both systems use popularity to drive copy creation, enhancing per-
formance. Here, the motivation is the same, but the mechanism is different.
In P2P systems, popularity automatically drives copy creation, as servers cre-
ate local copies upon user request. In contrast, Sirocco servers reactively create
copies on other nodes in response to high demand from clients.

3.2 Differences

P2P systems publish constant data. Sirocco allows data to be modi-
fied. This embodies the distinction between a content addressable store, as most
P2P systems implement, and a general-purpose storage system like Sirocco. This
implies that different revisions of the same data may exist in multiple locations,
requiring some effort to determine which portions of data are current.

P2P systems disseminate data with pulling. Sirocco relies on pushing.
A client will store data within a P2P system by simply publishing its presence,
allowing other clients download it as they wish. Sirocco enables clients to push
data into the system, while also specifying a resilience level for the data. This
causes servers within the system to further push data to other stores to attain
and maintain resilience.

P2P systems use centralized directories or structured subnetworks to
find servers and files [5]. Sirocco relies on searching. BitTorrent employs
trackers to enable a system to quickly find seeds holding a particular file. Sirocco
does not include these types of facilities, as they can harm ultimate write scala-
bility of the system.

P2P systems do not function well with excessive numbers of leeches.
Sirocco must support large numbers of leeches (i.e., clients). Significant
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research in the P2P community focuses on thwarting leeches, also known as free-
riders [6]. Leeches do not contribute resources to the system, but instead act in
selfish ways, imposing load. In contrast, a parallel file system client does not
typically have storage to offer, so nearly any interaction it has with the system
is considered to be leeching. As parallel file system clients tend to outnumber
servers at a ratio of at least 10-to-1, Sirocco must effectively cope.

P2P systems are not concerned with the lifetime of a file. Sirocco
must actively preserve data. P2P systems are not considered archival, and
are not designed to preserve unpopular data. Sirocco is intended for data that
is to be kept indefinitely, so space management is crucial.

4 Logical Structure of Storage

Sirocco’s logical storage organization is based on the Advanced Storage Group
(ASG) interface [7], which was partially developed for and motivated by Sirocco.
The address space is made up of four 64-bit values. These values denote a
container ID, object ID, fork ID, and record ID, which can be expressed as
〈container, object, fork, record〉 (Fig. 2). Loosely, container IDs usually map to
file systems within the storage system, object IDs map to files, and fork IDs
map to data forks within a file. The hierarchy and relationships are static; forks
cannot move between objects, for example. A record is a variable length atomic
unit of up to 264 bytes, and represents an “atom” of storage. This may be a
single byte of a flat file, a floating point number, a text string, etc.

Sirocco reserves forks within the name space for security information. Each
container x such that x �= 0 has security information recorded in the KV store
located in 〈0, 0, 0〉, record x. Each object y in container x has security information
stored in the KV store 〈x, 0, 0〉, record y. Each fork z in object y in container
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Fig. 2. An illustration of address space organization



126 M.L. Curry et al.

x has security information stored in record z of 〈x, y, 0〉. Access to the records
within a fork is protected by the security attributes of the fork. If not present,
attributes are inherited from the object or container.

Each record has an update ID, a 64-bit user-modifiable attribute. It is a
logical clock that is expected to increase by at least one after each write, and
is used to determine the most recently written instance of a particular record.
Specifically, Sirocco will use the update ID to reconcile two instances of a record
during migration from one server to another, or when multiple copies of data
are located for reading. If the update IDs are different, the largest update ID
determines which record is used. The client is expected to know (or determine)
an appropriate update ID to use for a record for each write.

4.1 Data Interfaces

Sirocco provides the following types of operations:

Write: Given a data buffer, container ID, extent (i.e., range of records), record
length, and update ID, the range will be overwritten on the server transactionally
(i.e., all data is written to the record range, or none of it is). Optionally, one
can provide an update condition (see Sect. 6) and an update ID to use with it.
A user can omit the update ID, and instead use an automatically incremented
update ID on that store.

Read: Sirocco supports sparse data within forks, creating a need for obtaining a
map that describes the data present. Such a map describes the extents returned.
The read operation allows for the user to obtain the map, the data within the
requested range, or both. The map will, for all extents present, indicate the size
and update ID of each record. Optionally, one can provide an update condition
and an update ID to use with it. One can provide special IDs for the fork, object,
and/or container ID to obtain a map of an object, a container, or containers,
respectively. Another optional flag, the location flag, can specify that the server
should invoke location protocols to find the most recently written copies of the
record. This can be an expensive operation, but its expense can be mitigated.
See Sect. 5 for more information.

To increase network efficiency, it is possible to send several commands to a
server at once in a batch. These can be used to implement list I/O [8] or other
non-contiguous I/O operations, even across different objects. Sirocco also allows
batches to be specified as transactional, enabling fully ACID updates to records.
Paired with concurrency control (see Sect. 6), transactional batches can be an
extremely powerful construct.

An interesting feature of this API is that there are no “create” or “delete”
operations. One way to think about this is to reason that all objects exist at all
times, they just do not have any data within them. Likewise, a deletion of data
is logically punching the extent, which is procedurally accomplished by writing
zero-length records over a range.
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5 Where Is the Data?

One side effect of the free placement enabled by the Sirocco model is that data
can be initially written to a location that is not ultimately considered safe enough
to hold the data. This is a typical behavior in a write-back caching model. For
instance, in a local POSIX file system, bulk I/O contents can be temporarily
held in memory. The user is only guaranteed that I/O requests will reach full
durability if she calls “sync.” Sirocco enables a similar technique. However, the
location of data written in this way is not predictable, and makes reads chal-
lenging. We do not consider read-heavy workloads a solved problem. However,
Sirocco provides two facilities to make reads possible.

The first facility enables reading data that the client did not predict it would
need, i.e. a random, one-off read. Such a read requires an extensive search over
the population of storage servers, which Sirocco servers will perform on behalf
of the client. We are conducting research on how best to reduce the expense of
such searches [9], improving the efficiency over exhaustive broadcast searches.

The second facility, proxying, enables efficient reading in the case of data
that we can predict will be read, especially by multiple clients. Data like file
system structures and metadata can be quite efficiently supported through this
mechanism. Another potential application is to use proxying to pre-locate data
that will be required for a job to launch (e.g., input decks).

Each server, when initially started, considers itself non-authoritative for all
records in the store. “Non-authoritative” simply means that the server can make
no assumptions about the freshness or location of any data. Therefore, if the
client is requesting data, the full location process must be executed to provide
a guarantee of up-to-date data. However, in cooperation with other clients, a
server may be deemed authoritative for ranges of records. Once authoritative,
clients must direct all write requests for that range to that server. This enables
the server to cache data and/or other metadata, including location.

6 Concurrency Control

Concurrency control is the ability to ensure a correct outcome to concurrent
updates to shared data by multiple clients. There are two well-known meth-
ods for accomplishing concurrency control. Pessimistic concurrency control (i.e.,
locking) is the most common form found in storage systems. Other systems,
including database management systems, employ optimistic concurrency con-
trol, where operations can be attempted, then rolled back in the event of an
invalid concurrent modification [10]. Optimistic concurrency control is beneficial
in cases where the likelihood of conflicting operations is low, and locking would
incur a significant overhead on the operation. An example is a read-modify-
write operation on a remote store. Taking and releasing a lock would double the
number of network round trips to complete the operation.

Sirocco implements optimistic concurrency control for a more general work-
load. Instead of inspecting data, the server executing the operations compare the
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incoming update IDs with those already present. If the transaction contains a
conditional operation, the server will ensure that the stored update ID conforms
to the expectations specified by the conditional operation. Conditional opera-
tions work within transactional batches, extending their applicability to more
complex workloads. If a conditional write fails, the enclosing transaction is also
failed, rolling back any changes. More information on uses and performance of
conditional updates are available [11].

Sirocco also provides a mechanism that a client can leverage to implement
pessimistic concurrency control via traditional leased locks, the trigger. Triggers
are similar to conditional operations, but with three important differences. First,
a trigger is only able to be registered on a single record. Second, a trigger does
not modify data, but is instead associated with a batch that is executed when the
trigger is activated. Third, a trigger does not fail when its condition is not true.
Instead, the operation is placed on a per-record queue. Operations are removed
from the head of the queue and executed when that operation’s trigger becomes
true. This happens when another non-triggered write operation modifies the
update ID of the record.

A few additional considerations are allowed for triggers to enable failure
recovery if a client fails to release a lock. During a triggered operation, the client
is notified of progress: First when the operation is deferred for later execution,
and then when the queued operation is next in line to be executed. This allows
the client with an operation at the head of a trigger queue to detect when
progress is not made in a timely manner, which can be interpreted as a lease
expiration in a locking protocol.

Triggered operations allow clients implement locking protocols against stor-
age servers without requiring discrete lock services. Further, a variety of lock-
ing schemes can be implemented in clients and libraries without increasing the
complexity of the lock service itself. In the current prototype, migration and rec-
onciliation can potentially cause unwelcome changes to the update ID that can
obviate its utility for locking. We are investigating a variety of ways to overcome
this limitation.

7 Conclusions

Sirocco is a fundamental departure from traditional storage system designs for
high end computing environments. By rejecting the current Zebra model for a
P2P-style model, resilience features can be incorporated more easily. While some
of the limitations of this approach may complicate the file system interaction
built on top of Sirocco, the flexibility and features make considerations worth
the trouble.

Future materials will be made available at http://www.cs.sandia.gov/Scal
able IO/sirocco.

http://www.cs.sandia.gov/Scalable_IO/sirocco
http://www.cs.sandia.gov/Scalable_IO/sirocco
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Abstract. Understanding the characteristics of data stored in data cen-
ters helps computer scientists in identifying the most suitable storage
infrastructure to deal with these workloads. For example, knowing the
relevance of file formats allows optimizing the relevant formats but also
helps in a procurement to define benchmarks that cover these formats.
Existing studies that investigate performance improvements and tech-
niques for data reduction such as deduplication and compression operate
on a small set of data. Some of those studies claim the selected data is
representative and scale their result to the scale of the data center. One
hurdle of running novel schemes on the complete data is the vast amount
of data stored and, thus, the resources required to analyze the complete
data set. Even if this would be feasible, the costs for running many of
those experiments must be justified.

This paper investigates stochastic sampling methods to compute and
analyze quantities of interest on file numbers but also on the occupied
storage space. It will be demonstrated that on our production system,
scanning 1% of files and data volume is sufficient to deduct conclusions.
This speeds up the analysis process and reduces costs of such studies
significantly. The contributions of this paper are: (1) the systematic
investigation of the inherent analysis error when operating only on a
subset of data, (2) the demonstration of methods that help future stud-
ies to mitigate this error, (3) the illustration of the approach on a study
for scientific file types and compression for a data center.

Keywords: Scientific data · Compression · Analyzing data properties

1 Introduction

Understanding the characteristics of data stored in the data center helps com-
puter scientists optimizing the storage. The quantities of interest could cover
proportions, i.e. the percentage of files with a certain property, or means of cer-
tain metrics such as achievable read/write performance, compression speed and
ratio. For example, knowing the relevance of file formats may shift the effort
towards the most represented formats. When 80 % of the capacity is utilized by
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NetCDF4 files, performance analysis and optimization should target this file for-
mat first. Understanding the achievable compression ratio of available compres-
sion schemes helps in choosing not only the best one for user-specific compression
but also for file system compression as provided by ZFS.

Assessing the benefit of any modification in production systems requires to
either deploy those system-wide, or to evaluate its potential in advance on a
small data set. For data centers with storage capacity of tens of Petabytes and
file numbers in the order of hundreds of millions, it is not feasible to change the
production system frequently. Thus, prototyping and evaluation on small scale
is necessary. However, as a scientist involved in such prototyping, how can we
estimate the benefit from small scale to large scale? Usually, this is done by
picking a representative or relevant set of data for the evaluation and assuming
those values can be scaled up to the full system.

In the literature, studies can be found that investigate compression ratio, de-
duplication factor or improve performance of scientific middleware. Due to the
long running time to apply any improvement on large amounts of data, many
studies assume the benefit measured on a small data sample can be transferred
to the scale on the data center. However, usually these studies do not pay atten-
tion if the data set is actually representative, with other words, they do not
take into account the fraction of the workload that can actually benefit from
the advancement. In statistics, the big field of sampling theory addresses this
issue. Due to the law of large numbers, there are methods to draw instances
appropriately and deduce properties from the sample set to the population with
high confidence. However, this process is non-trivial and a research discipline in
statistics by itself [1,2].

This paper investigates statistical sampling to estimate file properties on
the scale of data centers using small data sets and statistical simulation. The
computation time used for this project was 517 core days. With 24 cores per
node, a complete system scan of DKRZ’s system would have needed about 475
node days which would have cost at least about 4000e1 – while not revealing
additional insight. Instead with 1 % of scanned files or capacity, similar results
are achievable.

The paper is structured as follows: an excerpt to related studies analyzing
scientific data is given in Sect. 2. The method to create test data for this research
is described in Sect. 3. To show the variability of data and importance of proper
sampling, the data is explored in Sect. 4. It also describes some interesting prop-
erties of DKRZ’s scientific data. The strategies to pick appropriate samples for
studies analyzing data by file count and by occupied space is given in Sect. 5.
Finally, the paper is concluded.

1 The value is an estimate based on the TCO of the system for 5 years. It is conservative
and does not include secondary costs such as jitter introduced to other models by
the caused I/O.
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2 State of the Art

Existing research that analyzes properties of scientific data can be classified into
performance analysis, compression ratio and data deduplication. Effort that inves-
tigates and optimizes performance usually picks a certain workload to demon-
strate that the new approach is superior than existing strategies. A few studies
analytically analyze typical patterns and optimize for a large range of access pat-
terns. An example is the study in [3], which analyzes the access pattern for sev-
eral workloads and discusses general implications. Research for optimization tech-
niques, as far as known to the author, do not check how many people actually
benefit from these optimizations and the implications on system level.

In the field of compression, many studies have been conducted on pre-selected
workloads, for example, see [4–7]. Some of those studies are used to estimate
the benefit of the compression on the data center level, for example, Hübbe
et al. investigate the cost-benefit for long-term archival. Similarly in [6], the
compression ratio is investigated. However, in this case the selected data is a
particular volume from a small system.

Modern file systems such as BTRFS and ZFS offer compression on system-
side [8]. It is also considered to embed compression into storage devices such
as SSDs [9] and evaluate it for OLTP workloads. In [10], Jin et al. investigate
the benefit for compressing and de-duplicating data for virtual machines. They
created a diverse pool of 52 virtual images and analyze the impact.

The de-duplication study for data centers in [11], analyzes a larger fraction
of scientific data on different sites, but due to the long run-time did not manage
to analyze the full data set. When looking at all these studies, one may ask the
question how would those techniques behave on a full system?

3 Sampling of Test Data

To assess and demonstrate the impact of statistical sampling, firstly, a subset of
data of DKRZ’s supercomputer Mistral is scanned and relevant data properties
about data compression and scientific file types are extracted. The goal of the
following strategy was not to gain a completely representative sample, since this
is to be developed within this paper. Since the global Lustre file system hosts
about 320 million files and 12 Petabytes of space is occupied, only a subset is
scanned: 380 k (0.12 %) accounting for an (aggregated size) of 53.1 TiB of data
(0.44 %). Note that the mean file size scanned is about 145 MiB but on our
single file system it is 38.8 MiB. The discrepancy is due to the fact that project
directories contain usually larger files compared to home directories that were
not scanned. To prevent data loss and ensure data privacy, the scanning process
is performed using a regular user account and, thus, it cannot access all files.
There are still 58 million files and 160 out of 270 project directories accessible.

The scanning process used as baseline in the paper works as follows:

1. Run a parallel scan for accessible files of each project directory independently
using find; store them in individual file lists.
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2. Select 10.000 files from each project directory randomly (or all, if less files
exist in a project directory) and merge them into a single file list.

3. Create a random permutation of the file list and partition the result into one
process list for each thread that shall be used.

4. Distribute the threads across different nodes, each thread processes its fixed
file list sequentially and writes an individual output file.

5. After 300 k files have been scanned, the threads are prematurely terminated
and the resulting data from all threads is ingested into a SQLlite database.

The strategy increases the likelihood, that a representative sample of files is
chosen from accessible projects2. It is to be expected that projects differ in their
file characteristics as they may use different scientific simulations and analysis
workflows. From perspective of statisticians, this process creates a simple ran-
dom sample [1] but incorporates a systematic stratified sampling approach to
balance between projects. The limitations of this sampling strategy to investigate
properties based on occupied file size, will be shown later.

Processing of the threads: a few threads are started concurrently on the system,
to prevent overwhelming the file system and exploit compute time on interac-
tive nodes that is not utilized by users. Since the file list is created only once,
but the threads are executed over the course of several weeks, the processing
ignores non-existing files. A thread iterates through the file list, for each file it
first copies it to a temporary location – this prevents concurrent file modifica-
tions, then it runs: (1) the CDO [12] command to identify the scientific file type,
(2) the file command to identify file types checking the file header, and (3)
each compressor under investigation (LZMA, GZIP, BZIP2, ZIP) in compres-
sion and de-compression mode. The time command is used to capture runtime
information of each step. To assess compression speed, user time is extracted –
this covers the actual computing time and ignores system and I/O times as well
as competing jobs.

4 Exploring Analyzed Data

In this section, we investigate several quantities of interest on the complete data
set, they are computed either on file count, i.e. each file is weighted identically,
or by weighting each file with its occupied size. This section will show that both
types of analyses lead to different results.

In Fig. 1, the distribution of file sizes is shown. Figure 1(a) shows a histogram
with logarithmic file sizes. In Fig. 1(b) the relation between file size and file count
is illustrated; to construct the figure, files have been sorted by size in ascending
order and then the cumulative sum is computed. While the histogram suggests
similarities between size distribution and a normal distribution, this is due to

2 Obviously, if those 160 projects are not representative, deducing properties for the
full data is not valid. Still the introduced analysis and approaches are correct. The
number of 10 k files was choosen as it would ensure to scan at most 0.5 % of the files.
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(a) Histogram (b) Cumulative file sizes (y-axis in log scale)

Fig. 1. Distribution of file sizes

the logarithmic x-axis. In the cumulative view, it can be seen that aggregated
20 % of files consume one millionth of storage space and 90 % still consume less
than 10 % space (these files are below 100 MiB in size). If a study takes small
files as representatives, those fail to represent the storage capacity. Similar large
files fail to represent the typical (small) file that must be handled by the storage.

4.1 Scientific File Formats

The usage of file formats is shown in Fig. 2. The figure shows the relative rele-
vance in terms of occupied space and number of files of each file format. About
60 % of the number of files and 47 % of aggregated file size is non-scientific
and cannot be resolved with the CDO tool. The dominant scientific formats
are NetCDF3, GRIB1 and NetCDF2. The file command cannot identify and
distinguish scientific formats as reliable as CDO but can shed light over the dis-
tribution of the 60 %. Looking at its output, the 60 % of capacity seems to be
dominated by TAR (7 %) and GZIP compressed files (5 %)3 – it classifies 43 %
of capacity as “data” and 40 % as NetCDF (no version information provided).
Looking at the proportions in terms of file count, roughly 30 % are classified as
data, 30 % as text (e.g., code), 24 % as NetCDF files, 4 % as HDF5 and 3.5 % as
images. Other file types are negligible.

4.2 Compression Ratio

To evaluate compression ratio, files with a size below 4 KiB (about 15 % of all
files) are not taken into consideration, as compressing them is not expected to
be beneficial because of the additional header and file system block size. As
metric we will use the inverse of the compression ratio that is the fraction the
compressed file occupies in comparison to the original, e.g., after compressing
a file might be down to 10 % of its original size. For simplicity, we label this
metric as compressed %; it is computed as c%(f) = compressed size(f)

file size(f) . The
mean compression can be determined as the arithmetic mean ratio all files cfiles

3 From the GZIP files, the extension tar.gz is observed on 9 % of files, representing
53 % of GZIP data overall size. Thus most GZIP files are also TAR files.
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(a) CDO types (b) File types

Fig. 2. Relative usage of file formats determined using CDO and file.

Fig. 3. Arithmetic mean compression of the full data set for each scientific file format
computed on file number. The column “all” shows the mean values for the whole data
set. Yellow diamonds show compress % computed by file size. (Color figure online)

(Eq. 1), i.e. averaging it by file number; or, by file size, i.e. considering the total
space saved csize (Eq. 2).

cfiles =

∑files
f=1

comp. size(f)
file size(f)

file count
(1)

csize =

∑
f compr. size(f)
∑

f file size(f)
(2)

In Fig. 3, both, the mean relative compression by count and by size is shown
for each compression scheme and file format. The column “all” shows the reduc-
tion when compressing the full data set. In average, the compressors except
LZMA achieve similar results – but a compression scheme can be slightly better
than another on individual file sets. LZMA, performs much better on all data
except GRIB2. While overall the computation by file and by size is similar, there
are differences in details. For example, in average LZMA packs each file down to
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40 % of its size, but in terms of overall storage space only 50 % is saved. Thus,
smaller files typically compress better with LZMA than the larger files. This is
mainly caused by the fraction of non-scientific file formats (the unknowns) that
compress much worse in terms of capacity. For example, GZIP compressed files
occupy a significant portion of space.

4.3 Performance of Compression Algorithms

Fast compression and decompression speed and, thus, required computation
time, is crucial for embedding compression schemes into existing workflows with-
out delaying them. The performance spectrum across the files is shown in Fig. 4.
The boxplots show the median as black line; the box indicates the limits of quar-
tile 1 and quartile 3, whiskers can go up to 1.5 interquartile range. Many outliers
with faster performance are not visualized. While on average, BZIP2 does not
perform much better than the other schemes on the data set, it is much slower.
LZMA achieved the best compression ratio but is much slower than gzip. Again,
the compression ratio by file count differs from the mean speed computed by
size. For LZMA, the mean is 38.4 and 21.7 MiB/s, computed by count and by
size, respectively. Thus the difference in decompression is roughly 50 % as bigger
files need more time to compress and decompress.

4.4 Variance Between Different Projects

It is expected that scientific projects exhibit different data characteristics, for
example, they may utilize file formats differently. This makes it difficult to pick
a random sample from just a few projects. To investigate this issue, all projects
for which more than 1,000 files have been scanned were analyzed individually.
A few characteristics across the projects are shown in the boxplot in Fig. 5:
The file count indicates how many files have been scanned for each project, how
much storage is occupied by the files, the compression % of LZMA, proportion of
NetCDF and GRIB files in terms of the projects overall file count and occupied
size. It can be seen that while between 2,000 and 3,000 files have been scanned
due to random file selection, other metrics vary significantly. For example, some
projects have nearly 100 % of NetCDF files while others use other formats. Thus,
it is very important to sample properly across projects.

(a) Compression (b) Decompression

Fig. 4. Boxplots showing compression/decompression speed per file, the arithmetic
means are shown as text under the plot.
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Fig. 5. Several quantities of interest, this barchart covers 125 individual projects. Each
point represents the arithmetic mean value computed on one project.

5 Stochastic Sampling of Data

The way the quantities of interest are computed are either by file count, i.e. we
predict properties of the population based on individual files, or by weighting
the individual files with their size. From the perspective of statistics, we ana-
lyze variables for quantities that are continuous values or proportions, i.e. the
fraction of samples for which a certain property holds. To select the number of
observations that allows inference about the population, statistics knows meth-
ods for determining sample size. These methods require that we can make certain
assumptions about the distribution of values such as normally distributed data.
To determine the number of samples needed, the tolerable error between predic-
tion and real value must be chosen, it depends on the used analysis method and
distribution of values. Usually the error is defined by the size of an interval with
the predicted value as center in which is extremely likely (e.g., 95 %), that the
true value resides. The interval is called confidence interval and the probability
is the confidence level.

For estimating proportions there are easy approaches – that work regardless
of probability distribution: With Cochran’s sample size formula, to achieve an
error bound of ±5% and ±1%, roughly 400 and 10000 samples are needed,
respectively [1]. Note that the sample number does not increase even for large
population sizes.

Estimating a continuous variable, e.g., the arithmetic mean compression ratio
or performance, is more complex as sampling ratio is based on the expected dis-
tribution of values. But we do not know it a-priori, and not necessarily the
property we are looking for is normally distributed. All these methods have in
common that they determine the mean value, i.e., the proportion in all files and
not weight them by occupied storage size. As the size is a-priori is unbounded,
it is not unlikely that file size distribution follows heavy-tailed distributions,
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Fig. 6. Evaluating various metrics (proportions and compressed %) for an increasing
number of samples. Only one simulation is done for each count.
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Fig. 7. Simulation of sampling by file count to compute compr. % by file count.

increasing the analysis of sample size determinination [13,14]. The detailed
analysis is out of scope of this paper, but we will show that the means are
converging for typical use cases. The methods to obtain a representative sample
are as follows.

Sampling method to compute by file count. When computing the proportion or
the mean of a variable for files, a strategy is to enumerate all files on the storage
system and then create a simple random sample, i.e., choose a number of files
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Fig. 8. Simulation of sampling to compute proportions of types by size.

for which the property is computed. For proportion variables, Cochran’s sample
size formula is applicable and the number of files can be easily deducted.

Sampling method to compute by file size. Estimating values and weighting them
based on file size requires to enumerate all files and determine their size, then
pick a random sample from the file list based on the probability defined by
filesize/totalsize. Draws from the list must be done with replacement, i.e., we
never remove any picked file. Once all chosen files are determined, the quantities
of interest are computed once for each unique file. Then, each time we have
chosen a file, we add our quantity of interest without weighting the file size, e.g.,
the arithmetic mean can be computed just across all samples. Thus large files
are more likely to be picked but each time their property is accounted identically
as for small files.

Evaluation for mean compressed file size and proportions of file types. To demon-
strate this approach, a simulation has been done by drawing a variable number
of samples from the data. The result is shown in Fig. 6. It can be seen that this
quickly converges to the correct mean value of the full data. With 4096 samples,
that are slightly more than 1 % of files, the value is close to the correct mean.

Robustness. To illustrate the stability of the approach, the simulation is repeated
100 times and a boxplot is rendered with the deviations. Naturally, the repeats
of a robust method should have little variance and converge towards the correct
mean value. The result for the proportion of GRIB files are given as an example
but the results for all variables behave similar. In Fig. 7, it can be clearly seen
that the error becomes smaller but Cochran’s approximation is yield.

The sampling strategy to compute quantities on file size is shown in Fig. 8(b).
Similarly, to the correct method for sampling by file count it converges quickly.
However, if we would simply use a file scanner to compute the metrics on size but
it would choose files randomly without considering file sizes, we would achieve
highly unstable results (Fig. 8a). Indeed the error margin with even one fifth
of all files (64 k) is comparable to the correct sampling strategy with only 1024
samples. Thus, it is vital to apply the right sampling method, and, therefore, the
initial approach used to gather the test data as described in Sect. 3 is suboptimal.
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6 Summary and Conclusions

In this paper, sampling techniques from statistics are applied to estimate data
properties. These techniques are demonstrated to be useful approximate the
proportions of scientific file types, the compressed % and speed. The paper also
highlighted some interesting data properties of DKRZ’s data. It has been demon-
strated that a random file scanner is not efficient to estimate quantities that are
computed on file size. Instead, sampling with replacement and a probability
equal to the proportion of file size leads to stable results. Tools using such tech-
niques can estimate properties of data robust without the need to analyze the
huge data volumes of data centers. We will be working on such tools to evaluate
the benefit of optimization strategies.

Acknowledgements. I thank Charlotte Jentzsch for the fruitful discussions.
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7. Hübbe, N., Kunkel, J.: Reducing the HPC-datastorage footprint with MAFISC -
multidimensional adaptive filtering improved scientific data compression. Comput.
Sci. Res. Dev. 28, 231–239 (2013)

8. Legesse, S.D.: Performance Evaluation of File Systems Compression Features. Mas-
ter’s thesis, University of Oslo (2014)

9. Zuck, A., Toledo, S., Sotnikov, D., Harnik, D.: Compression and SSDs: where and
how? In: 2nd Workshop on Interactions of NVM/Flash with Operating Systems
and Workloads (INFLOW 2014), Broomfield, CO. USENIX Association, October
2014

10. Jin, K., Miller, E.L.: The effectiveness of deduplication on virtual machine disk
images. In: Proceedings of SYSTOR 2009: The Israeli Experimental Systems Con-
ference, 7. ACM (2009)

11. Meister, D., Kaiser, J., Brinkmann, A., Kuhn, M., Kunkel, J., Cortes, T.: A
study on data deduplication in HPC storage systems. In: Proceedings of the
ACM/IEEE Conference on High Performance Computing (SC). IEEE Computer
Society, November 2012



Analyzing Data Properties Using Statistical Sampling Techniques 141

12. Schulzweida, U., Kornblueh, L., Quast, R.: CDO Users guide: Climate Data Oper-
ators Version 1.6. 1 (2006)

13. Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.
Springer Science & Business Media, New York (2007)

14. Tursunalieva, A., Silvapulle, P.: Estimation of Confidence Intervals for the Mean of
Heavy Tailed Loss Distributions: A Comparative Study Using a Simulation Method
(2009)



Delta: Data Reduction for Integrated
Application Workflows and Data Storage

Jay Lofstead1(B), Gregory Jean-Baptiste2, and Ron Oldfield1

1 Sandia National Laboratories, Albuquerque, NM, USA
{gflofst,raoldfi}@sandia.gov

2 Florida International University, Miami, FL, USA
gjean011@fiu.edu

Abstract. Data sizes are growing far faster than storage bandwidth.
To address this growing gap, Integrated Application Workflows (IAWs)
are being investigated as a potential to replace using a centralized stor-
age array for storing intermediate data. IAWs run multiple simulation
workflow components concurrently on an HPC resource connecting these
components using compute area resources. These IAWs require high fre-
quency and high volume data transfers between compute nodes and stag-
ing area nodes during the lifetime of a large parallel computation. The
available network bandwidth between the two areas may not be enough to
efficiently support the data movement. As the processing power available
to compute resources increases, the requirements for this data transfer
will become more difficult to satisfy and perhaps will not be satisfiable
at all since network capabilities are not expanding at a comparable rate.
It is necessary to reduce the volume of data without reducing the qual-
ity of data when it is being processed and analyzed. Delta resolves the
issue by addressing the lifetime data transfer operations. Delta removes
subsequent identical copies of already transmitted data prior to transfer
and restores those pieces once the data has reached the destination using
previously transmitted data. Delta is able to identify duplicated informa-
tion and determine the most space efficient way to represent it. Initial
tests show about 50 % reduction in data movement while maintaining
the same data quality and transmission frequency. Given the simplicity
of the approach and the log-based format employed by ADIOS, the app-
roach can also be used to write less data to the storage array outside of
IAW considerations.

1 Introduction

Addressing limited storage bandwidths requires considering required data qual-
ity, alternative storage locations for intermediate data, and distributed process-
ing to avoid bottlenecks. One approach is moving offline workflows online as
Integrated Application Workflows (IAWs). Ideally, any data management tech-
nique would also be usable for data storage to a central storage array rather
than just from node to node. Delta offers such a system. First, consider IAWs.
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The concept of an IAW is striaghtforward. Traditional scientific simulation
workflows all use the centralized scratch storage to stage intermediate data
between workflow components. An IAW potentially uses the same components,
but uses in compute area storage of some sort, such as another node’s RAM
or in compute area NVM on compute nodes, in a different configuration, such
as per rack, or both. By using this in compute area storage, bandwidth limita-
tions rise to near or at network bandwidths enabling moving vastly larger data
in the same time period. With this concept, consider how scientific simulation
workflows could work.

Scientific simulation workflows are becoming increasingly complex as the data
size and the computation speed accelerate. With disk-based storage array per-
formance falling behind these trends and faster alternatives, such as SSDs, still
too expensive as a general solution, a move to using IAWs instead is starting.
An illustration of such an IAW is in Fig. 1. The general idea for the staging
area, or burst buffer as they are sometimes called, is to offer a place to tem-
porarily store intermediate data between IAW components. Data analytics or
visualization components can retrieve this data both when it becomes available
and when they have capacity. Current trends in extreme scale OS design suggest
that this is better thought of as a logical rather than physical model as node par-
titioning is expected to offer a loosely coupled, nearly in-place data movement
environment. This offers a degree of asynchrony while keeping data movement
at interconnect speeds, or faster, rather than being limited by the storage array
bandwidth. While shifting data movement online reduces the IO bottleneck, it
is not a panacea.

The amount of relevant data produced during the run of such an application
is large and is getting larger as the simulation ensembles use finer resolutions
and more complex physics. Given the presence of unchanged data from previous
transmission(s), it is possible to remove this data and restore it at the destination
using prior transmission data. Transferring such a high data volume repeatedly
during runtime can have a severely negative impact on the network, where the
improvement in bandwidth cannot match the growing data size, or on data
storage due to a performance mismatch between data generators and consumers.
The resulting backlog could affect performance on both the compute area and
the staging area. Compounding the issue is the amount of energy consumed
over the course of such an application including the cost of transferring data.
Currently, computation is the single largest contributor to energy usage [7] but
if the data volume grows at the same rate, the cost of moving data can easily
become the limiting factor. Not only is writing to a storage array problematic,
but also is moving data to other places within the compute resource. This energy
cap prompts new work into managing various energy use sources throughout the
scientific simulation workflow process.

Since data transmission from node to node is little different from writing to
a storage array on an energy use perspective, an ideal technique would offer the
ability to reduce data sizes with low computational overhead while offering the
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flexibility use an IAW or to the storage array for offline processing. This paper
examines one such project focusing on managing data movement.

Fig. 1. Overall IAW architecture

For at least two different scientific simulation application classes, there are
opportunities to reduce data movement with little to no negative IAW impact.
For molecular dynamics and finite element codes, the data proportion that
changes with each calculation iteration is significantly smaller than the entire
working set size. Our measurements showed that only 40 % to 75 % of the data
changed from iteration to iteration. Usually, the same type of data is produced
every timestep (e.g., temperature, velocity, position), but the value may or may
not change from timestep to timestep offering opportunities to avoid data move-
ment and the associated energy costs.

Using this observation, an application developer could adjust the application
such that if a particular element does not change between timesteps, it is not
sent to any downstream consumer. When the analysis software receives a “no
change” or even no value at all instead of the element, it can assume that it
has not changed from the previous value and use the old value instead. An even
better and easier approach for application developers would be for an underlying
system that did this for any application running on top of it. We developed such
a system to effectively eliminate any data unchanged between output steps and
yielded approximately a 50 % reduction in aggregate data movement over the
simulation lifetime.

The ADIOS IO API [8] offers an ideal vehicle for such a system. The replace-
able transport methods offers a flexibile way to incorporate new ways to move
data without requiring any application changes. For reading, it does not matter
other than a small data sourcing difference, where the data comes from. Given
the simpler in memory operation option of using an IAW rather than writing
to the storage array, we investigate this aspect of the Delta approach. There is
nothing that prevents using the Delta encoded ADIOS BP format from being
written to the storage array and later read and decoded just as it is done for the
IAW approach.

The rest of the paper is organized as follows. First is a short discussion
of related work in Sect. 2. Next is a design overview in Sect. 3. An evaluation
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follows in Sect. 4. Section 5 has a short discussion of the evaluation implications
and future work.

2 Related Work

General workflow systems such as Pegasus [12], Kepler [9], and DAGMan [10]
manage the inter-component scheduling for an effective workflow. In general,
they assume that each component is a separate application and typically disk is
used to store intermediate data. These facts makes these systems less useful for
constructing an online workflow system. Hand-coded systems using a language
like Python generally suffer the same limitations.

Data transmission or storage related solutions are infesible for this environ-
ment. Many other older approaches towards using deduplication-like techniques
have been investigated in conjuction with networking protocols [15] or more
specifically web browsing. WebExpress [4] is similar in that it offers differencing
between the same transmission between two end-points, however, it is optimized
for web traffic and requires extra software and storage space installed. Delta is
part of a client linked library on both the client and server and requires at most
O(n) overhead on the server since it is focused on a single dataset. The other
consideraiton is the data sizes we are addressing. If a multi-TB output is pushed
into a staging area, there must be sufficient storage across a sufficient number of
nodes to handle the data load. The inherent data replication is also undesirable.
Further, each record is treated as a separate or full replacement entity. While
Delta’s concepts could be incorporated into such a system, it would require more
semantic changes because an update can come from any source eliminating the
ability to effectively determine on the client side what data has changed since
the last update.

More directly related work includes the ConCORD [16] project. This work
observed that data in memory could be better thought of based on the accesses
made against it affording opportunities to reduce data duplication. While this
works well in the target virtual machine environment, it does not address data
moving off a node.

AI-Ckpt [13] evaluated memory changes for scientific simulations to only
move data pages that change between output steps. While this is an admirable
first step in this direction, our observations showed that far greater data move-
ment reductions could be achieved by making decisions on an element-by-element
basis because portions of every simulation variable generally changed every iter-
ation while certain portions did not. With these static and dynamic elements
intermixed, data pages are generally all moved even though only a portion of
the data has changed.

On a post-processing basis, a climate science team evaluated lossy data com-
pression techniques to determine how much a data set could be compressed while
still maintaining sufficient validity to keep application scientists confident [1].
This project yielded good results, but is intended for long-term archival rather
than the immediacy required by IAWs. The additional steps for data compres-
sion may be appropriate as an alternative to this approach, but would require
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considerably more computation, but at a lesser local storage cost. Further inves-
tigation would be required to determine which solution is preferable for which
situations and if this globally optimized compression could be done on a node-
by-node basis.

Isabella [6] provides lossy compression after data sorting. This time overhead
is at least O(nlogn) and introduces errors. Delta seeks to offer an O(n) time over-
head and be lossless. Sif [11] offered deduplication for general Unix files rather
than the uncompressible and frequently randomly changed scientific data sets.
Burns and Long [3] proposed using version chains for efficient version storage
at a cost of data reconstruction time. With Delta, we need rapid reconstruction
since all compressed objects are needed uncompressed at the destination. While
wavelet compression [5] can match the O(n) overhead, it introduces errors we
seek to avoid.

3 Design

One of the simplest way to examine the potential impact for this approach is to
adapt an existing IO library to automatically handle both the data compression
and expansion. The easiest library in which to add these sorts of data processing
techniques is ADIOS [8]. The ability to install a new transport method that
receives raw data with full name and type information makes it easy to replace
any IO operation with data processing and then IO. ADIOS’ BP file format is
flexible enough to support writing to the storage array of the Delta modified
format. With the index blocks at the end of the BP file, direct access can still be
offered to variables by linking to each instance in the BP file. If a variable has
not changed since the last output, there is no index entry. While this requires
a smarter index processing engine, it is a small increment over the existing
reading system. Alternatively, the HDF5 Virtual Object Layer (VOL) offers
similar functionality, but with potentially more rigid programming semantics.

Delta is a prototype ADIOS transport method that caches the last whole
data set transferred for each output group and creates and expands compressed
data sets only transferring the reduced data between the source and destination.
As far as the end user is concerned, the IAW writes and reads data normally,
but using the Delta transport method instead. The architecture is illustrated in
Fig. 2. The ADIOS transport is currently undergoing internal copyright review
and will be released as open source on github once these reviews are completed.

In order to reduce data transferred over the network, Delta must determine
how much data is changed between every computation output. Each node in the
system keeps track of the local full output from the previous full output from
which it generates the difference. When the current round completes, the new
output is compared to the cached full output. During the first round, there is
no comparison because there is no old output with which to compare. Every
subsequent round compares each variable element against its matching prede-
cessor including both scalars and vectors. Delta calculates the difference between
the rounds. Anything that has not changed is not included in the new payload
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Fig. 2. A diagram of the IAW architecture, including ADIOS and Delta

and is instead replaced by metadata to describe what is left out. Once the pay-
load arrives at its destination, the full, current data set can be recreated. The
unchanged elements can be found in a previous payload. If the number of changed
elements is too large, then the cost of the metadata summed with the changed
data will be greater than the cost of just sending the data plainly. Therefore, if
the amount of change is above a certain threshold, all the data is sent as is.

Packing the data for transport requires several steps. At top of each payload,
certain pieces of information are required. Some of these data items are artifacts
of how ADIOS encodes data. For example, because ADIOS uses a log-based
format by default that annotates every log entry with information about the
source process rank, this additional data is required. Using HDF5 VOL instead
would eliminate some of these values, but would require more communication
to coordinate among the participating processes to determine what has changed
with each output step.

To keep the complexity low, the payload construction is largely driven by the
ADIOS BP format and uses some of this information to encode the differences.
Delta attempts to address the entire output, including the header overheads,
rather than just the variables.

In the BP format overhead, some of the values can be sent once while others
must be sent with each output. An ADIOS Group ID is assigned as the XML file
is processed and is used to determine which cached full dataset should be used
for the difference operation. This allows multiple variables of the same name to
be used in different output operations without worrying about name collisions
causing poor data differencing. Fields like Epoch change with every output and
are sent each during each output setup. Other fields like Group Name Length,
and Group Name are almost exclusively static and only need to be sent once.
Since some variables may be static between output steps, the Variable Count
cannot be sent a single time.

After the header section, the individual variables for the designated group
are added. Each variable has two required components:

First is a variable status. The status has a value of NONE, SOME or NEW.
If the status is SOME, there was a change in the variable between the rounds.
If the status is NONE, there was no change and no data should be sent besides
the required metadata. If the status is NEW, that means that the variable in
question is being written for the first time and all the necessary metadata will
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be sent along with it. The second is a variable id. This id number is used to
identify the variable once it is delivered by the receiver.

If the status is NONE, then only these two fields are sent as metadata for a
particular variable. The actual data is exactly the same as the previous round.
If the status is SOME, then more data is required, but since this variable was
previously written, some pieces of information can be left out. Otherwise, the
variable is new and will be padded accordingly.

On the first, full output, a few fields for each variable are sent. These include
Name Length, Name, Dim Count, Dim Sizes, Global (distributed vs. local only
variable), Type, and Type Size. Should a variable change over time by expanding
the dimensions or shrinking or growing from a single node to multi-nodes (or
vice-versa), corresponding values would be sent again.

(a) Full Payload (b) Difference Payload

Fig. 3. Payload descriptions

Next, it must be determined whether all of the data should be sent or if a
portion should be left out with some metadata that describes it. If there are
no copies of the variable, then all of the information is sent. If the variable is
a scalar, this is not an issue. If a scalar changed, it must be sent. If it did not
change, it is not sent. Vectors present a challenge. Delta represents a vector
variable using a bit vector. The bit vector is set to the size of the full output
from the round. For example, if the variable is question was an array with 100
elements, the bit vector would consist of 100 bits. Each element in the output
is compared to an element in the same position in the previous round. If it is
the same as before, the value of the matching bit is set to 0 and the element is
excluded from the payload. Otherwise, the bit is set to 1 and the data remains in
the payload. If the new output vector is larger than the last, then the overflow is
all represented by ‘1’s. All of the extra new data is included in the payload. The
output from the last round is then replaced by the current output. Next, the
size of the current rounds output is compared to the size of the reduced payload
plus the bit vector. If the reduction summed with the bit vector is larger than
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the original output size, then the bit vector is discarded and all of the data is
sent. Otherwise, the reduction and the bit vector are prepared for transport.

There are a few remaining fields in the BP format, including some new pieces
custom to the Delta transport method. Total Size and Data correspond to the
payload of the full and/or compressed variable encoded. The new fields are a Bit
Count and Bit Vector for cases where a difference is being output.

This is the format for every variable in every output group. When complete,
the buffer is written to whatever the destination is. Figure 3(a) illustrates a full
data set with all of the associated metadata included. Figure 3(b) shows the
same data set in the following epoch. Some of its data values have changed, so
a bit vector has been added to describe the change. Much of the metadata is
no longer necessary at that point since it is unchanging and has already been
written previously.

In order to unpack the payload, there are a set of data structures to manage
the parts of the payload. At the top is the Delta Data Struct, which keeps track
of two different types of information: The information that can change from
epoch to epoch and the information that stays the same.

For the changing information, The Delta Data Struct (or DDS) keeps a linked
list of Group Struct structures. Each Group Struct represents a different group
and contains a linked list of Epoch structures. An Epoch structure represents
a single timestep in the associated group’s lifespan. It also keeps track of the
process (rank) that submitted the group data during that timestep. Finally,
each Epoch has a vector of Var Struct structures that hold the state of each
variable during that particular epoch such as its value and size (if it is a vector,
for example).

For the unchanging information, the DDS has a linked list of Group Record
structures that hold the group name and the number of variables for that group
since those don’t change. Also, each contains a vector of Variable Record struc-
tures that hold information such as the variable name, data type, and whether
or not it is global.

The data could be stored as the difference or reconstituted into the full data
set. For this first test case, we simply regenerated the whole data set each time
removing complexity from read operations.

4 Evaluation

The evaluation is performed on the Chama capacity cluster at Sandia National
Laboratories. It consists of 1232 nodes each with 2 2.6 GHz Intel Sandy-Bridge
CPUs with 8 cores/socket. Each node has 64 GB of DDR3 RAM and connects
with a 4X QDR InfiniBand network configured in a fat tree. The file system is
the site shared Lustre offering 1 PB of storage. There are also 8 login nodes each
with the same hardware as the compute nodes. All nodes run RHEL 6.

To evaluate this approach’s potential, two separate scientific applications
were modified to measure the change of output between timesteps. The first is
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Fig. 4. A graph showing the pattern of reduced writes in LAMMPS for the “Crack”
example. Aggregate Potential Output is uncompressed size; Aggregate Output is Delta
compressed size

the molecular dynamics code LAMMPS [14]. It can simulate a number of inter-
actions and events at a fine level by applying physics to atom positions based
on the simulation setup. The user can define the interaction in an application
specific manner and let it run over a number of timesteps. Here, the modified
code was run with and example called “crack”, which simulates a crack propa-
gating through some solid. Roughly 40 % of the data changed between output
timesteps, getting as high as 60 % at times. Figure 4 displays the changes aggre-
gated over time. Another example, which simulated a melting solid had 60 % of
its variables changing between output timesteps, getting as high as 75 %. Sim-
ilar results were found when running an example built using the DEAL.II [2]
finite element library. It is easy to see that this strategy will work better with
some simulations that others. Simulations that have some form of propagation
(such as a crack or melting) would have many of its parts remain static for some
period of time. Other simulations even have parts that don’t change at all (such
as the ground over which a liquid is flowing). These kinds of simulations would
benefit the most from applying Delta or an application specific version. Since
ADIOS can be used to support such applications, Delta aims to be an application
independent version.

5 Conclusion

As supercomputers continue gaining ground on the road to exascale, many of
the currently acceptable practices when it comes to managing data will become
obsolete because of the resulting bottlenecks and the associated energy consump-
tion. One of these practices involves taking up bandwidth to transfer information
that was already previously transmitted and already exists at the destination.
Delta makes an attempt to prevent that by keeping track of changes between
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timesteps in a computation in order to detect stagnant data. By blocking the
transfer of such data, the extra bandwidth that would have been consumed is
now available to the rest of the application or not used at all. In that process,
no data is lost to the staging area for IAWs. The reader in Delta can rebuild the
reduced data using previously obtained information, giving a complete picture
of the output produced during computation. With the demonstrated advantages
for IAWs, offering a full ADIOS transport method that writes to the storage
array in the Delta format should be addressed. Since it would only change where
the data comes from and have a slightly more complicated index processing step
to find the full data, this is a relatively small effort.

There are many avenues to continue this work. First, ADIOS has an inherent
assumption that the variables represented in an output can change. The current
design does not take this into account. There are also considerations related
to static metadata. For example, global or local array dimensions for structure
meshes may not change over the simulation lifetime. Retransmitting these values
each time could be eliminated further reducing data sizes.

Different data encoding techniques, such as using a sparse map when few
elements change could also be incorporated along with a flag identifying which
encoding technique is employed.

Maintaining a fixed “full” data copy is sufficient for a prototype, but not an
optimal solution. Ideally, this “full” data copy would update with each output
step reducing the frequency of full data set transfers.

Other higher computational cost techniques such as lossless or lossy data
compression could be used instead. The performance, space, and energy tradeoffs
must be investigated to see when these more complex approaches would be supe-
rior to this simple approach. There are some indications that lossy approaches
may be sufficient for at least some scientific simulations, such as was demon-
strated for the climate simulation. Other low overhead techniques should be
investigated.
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Abstract. New methods need to be developed to handle the increasing
size of data sets in atmospheric science - traditional analysis scripts often
inefficiently read and process the data. NetCDF4 is a common file for-
mat used in atmospheric and ocean sciences, and Python is widely used
in atmospheric and ocean science data analysis. The aim of this work is
to provide insight into which read patterns and sizes are most effective
when using the netCDF4-python library. Quantitative information on
these would be useful information for scientists, library developers, and
data managers.

Three different read patterns were compared to simulate different
types of reads: sequential, strided, and random, with each tested across
three file systems - Panasas, Lustre, and GPFS. Read rate and stan-
dard deviation were measured using Python and C, reading from plain
binary files and NetCDF4 files. Read performance for netCDF4-python
was compared with the performance of native Python, the C NetCDF
library, and the C Posix library.

As expected, comparison between the different read modes shows that
access pattern and read size significantly affect achieved performance.
The results also show read performance profiles that are similar for the
C, C NetCDF, and Python tests, however netCDF4-python performs less
efficiently.

1 Introduction

The efficiency of atmospheric data analysis scripts can be affected by many
different factors in the software-hardware stack. Understanding these factors is
paramount when designing efficient analysis scripts. This paper quantifies the
effect of some of these elements. The remainder of this section describes these
elements and provides motivation for this work.

As the resolution of atmospheric numerical models increase, so does the
amount of data to be processed. This will become particularly prevalent with the
sixth community model inter-comparison project (CMIP6 [4]) expected to pro-
duce 10–20 PB of data [14]. This volume of data means that high performance
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 153–168, 2016.
DOI: 10.1007/978-3-319-46079-6 12



154 M. Jones et al.

I/O is a critical requirement for efficient analysis code, and therefore productive
scientific workflows [15].

The size of data sets means that traditional, serial data processing is a sub-
optimal solution; parallel processing data analysis methods are a solution to this.
In order for parallel analysis scripts to be efficient, a scientist needs to be able to
assess how best to decompose the reading of the data in terms of looping, and
access patterns, without necessarily having the computer science background to
know how the these would theoretically effect the read rate.

To understand how to efficiently implement a parallel analysis script one
needs an appreciation of the bottlenecks that will affect each individual parallel
process - from our experience of data analysis scripts in atmospheric science,
most can be implemented in a pleasingly parallel way (easily paralellisable into
non communicating jobs), so each concurrent job is independent. Therefore it is
paramount to understand the I/O performance of each task. The initial step for
this is to consider only the serial read performance with netCDF4-python on a
parallel file system.

For data intensive algorithms, the slowest part of the algorithm is typically
the I/O, so the read rate of the data from disk into memory becomes very
important. File type, IO bandwidth, and the type of file system can all affect
the read performance. Typically however, scientists do not have control over the
hardware they run on, therefore performance benefits come from optimisation of
the analysis code and carefully determining the layout of the data on the storage
devices.

For many large data sets in atmospheric science, a file is generally written
once and read from many times, so the work in this paper focusses on data
reading. Since the structure of files can greatly affect the efficiency of analysis,
it may be useful for data managers to know whether it is worth the extra initial
overhead to organise the file in a way that will enable faster analysis; by chunking,
compression, array order, file size and how the data is split into files.

The software contributions to the performance that need to be understood are
depicted in Fig. 1. In order to understand the performance of the user application,
the contribution of each layer needs to be accounted for.

One of the most widely used data formats in atmospheric science is the Net-
work Common Data Format (NetCDF) [11] (for example two thirds of the data
at the Centre for Environmental Data Analysis, CEDA [2] is in NetCDF format),
and Python is often used to implement data analysis using scientific libraries in
atmospheric science. NetCDF4 is used because it is a self describing, platform
independent binary file format. NetCDF4 uses HDF5 (Hierarchical Data Format
version 5). NetCDF3 is an older format of NetCDF but is not built on HDF5,
so we have not tested NetCDF3.

HDF5 is a versatile, portable data format which can be used to store large
data sets [6]. It allows NetCDF files to be chunked and compressed [20]. Chunking
allows files to be reorganised on disk for different access patterns [24]. These
chunks can be compressed to reduce the size of data on disk. Chunking and
compression can have a large effect on the read rate [10].
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Fig. 1. The left image shows the software stack for applications built on NetCDF4-
python. The netCDF4-python library relies on Python (some of which is written in
C) and the C NetCDF library. C interfaces with the operating system (OS) which
interfaces with the parallel file system to access the NetCDF4 data files. The right
image depicts the NetCDF4 data format. NetCDF is built on HDF5, which is a type
of binary file. Areas shaded in black are being tested in this paper, and areas shaded
in grey will be covered in future work.

Data can be split across multiple disk in a parallel file system by striping. This
can increase the access rate by exploiting all the disks the file is split across [21].

Scientists working with large data sets often have to decide what subsections
of data to analyse and how their code will read, and possibly stream (here mean-
ing reading a section at a time in ‘buffers’), the data from disk using libraries. The
libraries then determine how the file is read from the raw bytes, often employing
a buffer to read the data into memory. The data managers have also decided the
structure and organisation of the data on disk. All of these factors can effect the
read rate, so it would be useful to know where in this workflow inefficiencies in
performance lie.

Since analysis is often over part of the data set, it is useful to know what
read sizes offer best performance. Bartz et al. [10] show that the read size has
a significant effect on the read rate. Quantitative information about what read
buffer sizes work well would also be useful in the future when exploiting tiered
memory.

Accessing slices in two dimensional or higher data may require non-sequential
access which can significantly affect the read rate, although this can be reduced
by using a sensible read pattern strategy [11]. Figure 2 shows two potential read
patterns. The read pattern which is sequential on disk is expected to have have
a much higher read rate than the one which strides through the file.

To provide a broader more widely relevant testing base, more than a single
platform is used in this study. The focus of this paper is on the extent that
different layers in the software-hardware stack affect the read rate, rather than
a rigorous comparison between the platforms. The aim of this work is to under-
stand the read performance of netCDF4-python in different realistic situations,
on multiple analysis platforms, so that environmental big data can be analysed
more efficiently.
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Fig. 2. Examples of a sequential read (left) and a strided read (right). The top images
show what the read would look like in two-dimensional array space, and the bottom
images show how the read corresponds to the read pattern through the one-dimensional
file space. The grey shows the first read and the black shows the second read.

Tests were run on three analysis platforms which are available to the UK
atmospheric science research community: JASMIN which uses the Panasas file
system [19], the UK Research Data Facility (RDF) which uses the GPFS file
system, and ARCHER which uses the Lustre file system [1]. JASMIN and RDF
are specialised data analysis systems and ARCHER is a general purpose high
performance computer. The methodology of the tests and architectures of the
analysis platforms is discussed in Sect. 2. The initial stage of the investigation
to determine the baseline performance of each of the platforms is detailed in
Sect. 3, Python and NetCDF on JASMIN are evaluated in Sect. 4. Related work
is covered in Sect. 5 and finally, overall conclusions are drawn in Sect. 6.

2 Methodology

Performance can be lost at different layers of the software stack, so the contri-
butions of software layers thought to be key to the performance were evaluated.
Firstly the baseline read performance of each system was measured by reading
a plain binary file using a C program. This was compared to a plain binary
file read from Python, and reads of a NetCDF file from C and Python. The
netCDF4-python library is built on the NetCDF4 C library (as shown in Fig. 1)
so understanding what contribution the C library has is paramount in complet-
ing the picture.

Three read methods were evaluated: sequential reads, strided reads (also
known as striding reads), and random reads. Examples of the sequential and
strided reads are shown in Fig. 2. The sequential reads access the whole file
sequentially, reading sections of a given read buffer size until the whole file
is read. The buffer sizes used started at 512 b and doubled up to the largest
block size of 1 GiB - a complete file read for each buffer size composed a single
experiment. Strided reads read one buffer size then a new read offset is calculated
to skip the amount of data equal to three times the buffer size, this process is
repeated for the entire file, i.e. reading one buffer then skipping three. For the
random reads, a set of uniformly distributed numbers were generated for the read
offsets, the read is then for the required buffer size. 100 reads are completed for
the random reads to keep the chance of re-reading a section of the file from cache
low (reading from cache would artificially decrease the read time from disk). The
random reads differ from the other reads in that the direction of the read is not
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always forward and the size of the strides through the file vary. A summary of
the tests performed is included in Table 1. Below is a pseudo code example of
each read.

# Sequent i a l read
f = open ( f i l ename )
f o r number o f b u f f e r s :

data = f . read ( b u f f e r s i z e )

# Str ided read
f = open ( f i l ename )
r e a d o f f s e t = 0
f o r number o f b u f f e r s :

f . seek ( r e a d o f f s e t )
data = f . read ( b u f f e r s i z e )
r e a d o f f s e t = r e a d o f f s e t + 4∗ b u f f e r s i z e

# Random read
f = open ( f i l ename )
r e a d o f f s e t s = gen r ando f f s e t s ( l ength =100)
f o r o f f s e t in r e a d o f f s e t s :

f . seek ( o f f s e t )
data = f . read ( b u f f e r s i z e )

The reads from ‘plain’ binary files include the seek shown. For the NetCDF4
files the buffer size is converted into a number of floats, as is the read offset, so
that each read is described by start and stop indices.

Table 1. Variables which compose each test in this paper. The tests using C and
Python read from plain binary files, and the tests using NetCDF C and netCDF4-
python read from NetCDF4 files. Not all the combinations possible here were done on
all platforms - Python plain binary tests and NetCDF tests were only done on JASMIN
due to resource constraints.

Filesystem Language and library Read mode Read block size

Panasas C sequential 512 b

Lustre NetCDF C strided doubling

GPFS Python random to 1 GiB

netCDF4-python

The sequential reads were designed to simulate a best case scenario where
the read from the file is contiguous - a read where the bytes in the file are stored
next to each other. The strided reads are designed to simulate a read which is
not contiguous in the file with a regular stride pattern through the file. This is
representative of a slice through a dimension which is not stored contiguously in
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the file (where there are two or more dimensions). The random reads simulate
a worst case scenario, where the direction of the reads through the file are not
consistent, and neither is the size of the hop.

For the binary tests using C and Python, a plain binary file was created on
each system using the Linux dd command. To avoid disk buffering as much as
possible, the file size was set to be over twice the size of the RAM of the system.
The file size on all platforms was 256 GiB (275 GB). The plain binary file was
read using fseek() and fread() in C and f.seek() and f.read() in Python.

The netCDF4-python library was used to create the NetCDF4 files for test-
ing. The file, as with the binary files, was created to be over twice the size of
the RAM on the compute nodes. The file size on each platform was 257 GiB,
and the file contained a single 1D contiguous (not chunked) variable consisting
of 8 byte floating point numbers. Each read size was converted into a number of
elements to stream from the file on each read.

2.1 Testing Platforms

A parallel (or distributed) file system differs from a non-parallel file system in
that the data can be distributed across multiple storage devices which can be
accessed simultaneously to increase the bandwidth to the file system [21].

JASMIN (Panasas Platform). The JASMIN system at the Science and
Technology Facilities Council (STFC) uses a Panasas storage system [19]. The
Panasas sub-system is composed of bladesets, composed of shelves, that in turn
contain blades, that are each made up of two disks. The blades are connected
to the shelf via 1 Gb/s ports, and the shelves are connected to the local area
network via one 10 Gb/s port (newer options have two 10 Gb/s connections).
The compute cluster is composed of nodes, with each connected to the storage
system and to each other via a non blocking 10 Gb/s network. The Panasas file
system handles how to physically store the objects on disk and the most efficient
way to access them, i.e. giving the shortest possible access time [24]. This gives
a theoretical maximum bandwidth to a single processing node of 1.25 GB/s. The
compute nodes used here have 128 GB RAM. In Panasas, files can be striped
using the RAID6 method, in which a large file is split across multiple blades
(small files are copied) with included redundancy [21]. This means that the file
can be read from multiple different blades increasing the read performance, the-
oretically, by a factor of the number of blades and bladesets. The manager nodes
have the metadata describing where and how the files are stored [24].

RDF (GPFS Platform). The UK Research Data Facility (UK-RDF) HPC
platform uses GPFS (General Parallel File System), with Infiniband connections
between the storage and compute nodes. The compute nodes used have 128 GB
RAM. Filesystem metadata is stored on solid state drives (SSDs), with the data
stored on hard disk drives (HDDs) on four storage arrays [1]. GPFS is a parallel
file system that can increase bandwidth by exploiting multiple network shared
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disks [17]. The storage for GPFS is connected to network shared disk servers,
which are connected to the local area network which is in turn connected to the
processing nodes [17].

ARCHER (Lustre Platform). The ARCHER platform (a Cray XC30) uses
a high performance Lustre file system. The compute nodes used have 64 GB
RAM, and are connected by Cray Aries interconnect [1]. Lustre is an open source
parallel file system which uses many object storage servers with metadata servers
to store data [9]. The object storage targets are connected to object storage
servers which are all connected to the local area network, and there is a manager
node which is connected to all the object storage severs. Metadata servers are
connected directly to the local area network, and to the object storage serves
via the manager node [9].

3 Baseline Performance

3.1 JASMIN (Panasas)

Figure 3 shows the plain binary read performance using C and Python on JAS-
MIN. The Python rate is lower at higher read block size than the C results pos-
sibly because Python has to convert the raw bytes into a native Python type, a
string in this case, indicated by more time spent in CPU than IO compared to
the C case.

(a) (b)

(c)

Fig. 3. Average read rate (diamonds) and one standard deviation (error bars) for the
tests reading from a binary file on JASMIN. Grey lines show the results using C and
black lines show the results using Python. (a) shows the sequential reads, (b) shows
strided reads, and (c) shows random reads.
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Strace [7] was used to look at reads in more detail. For the C sequential
reads, there is one slow read of about 100 MB/s followed by read of around
460 MB/s and then 6 fast reads of about 3 GB/s, repeating throughout the file.
This behaviour was not seen on the strided or random reads, each read following
a seek and being slow.

The profiles of the strided read with C and Python are very similar through-
out the whole range of read block sizes starting with very low read rates, increas-
ing to around 400 MB/s at 512 MiB. The variability for the remaining read block
sizes for each remains low.

The random read profile increases in a similar way to the strided reads,
although with much higher variability when using C. It is not clear what has
caused this variability.

The Python tests were not run on the other platforms because of the simi-
larity between the C read rate and the Python read rate on JASMIN.

3.2 RDF (GPFS)

The results for the C plain binary reads on RDF are shown in Fig. 4. The profile
for the sequential reads is similar to the JASMIN results, albeit at higher band-
width because of the Infiniband used on RDF compared to 10 Gb/s Ethernet
in JASMIN. The variability for the strided reads is high which makes the pro-
file more difficult to interpret. It is interesting however that the average strided
reads are consistently higher than the random reads.

(a) (b)

(c)

Fig. 4. Average read rate (diamonds) and one standard deviation (error bars) for the
tests reading from a binary file on RDF using the C script. (a) shows the sequential
reads, (b) shows the strided reads, and (c) shows the random reads.
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3.3 ARCHER (Lustre)

The results for the binary read on ARCHER are shown in Fig. 5. The results are
similar to the JASMIN results.

(a) (b)

(c)

Fig. 5. Average read rate (diamonds) and one standard deviation (error bars) for the
tests reading from a binary file on ARCHER using the C script. (a) shows the sequential
reads, (b) shows the strided reads, and (c) shows the random reads.

3.4 Discussion

The JASMIN and ARCHER results have similar characteristics. All the results
show the same increase at the start of the sequential results at low buffer size.
This is likely to be due to the reads being smaller than disk sector size, although
we have not verified this. For all platforms the sequential reads are the fastest.
The random reads and strided reads have similar profiles and have a lower read
rate partly because of having to seek through the file. The effect of this is reduced
at large buffer size due to larger read sizes.

The strace results also explain some of the difference between the read
rate. The 3 GB/s read could not have come from disk (1.25 GB/s bandwidth
to processing nodes) so the 3 GB/s read is due to a read from memory on the
processing node; the filesystem is anticipating what data is needed ahead of time.
This behaviour is not seen for the strided or random reads, so could explain the
reduced read rate, because the file system not being able to anticipate the loca-
tion of the next required sections of data.

The RDF results, however, show a different relationship between the sequen-
tial, strided and random reads, with the sequential reads being a similar profile
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to the other results but with a much larger magnitude, due to the Inifiniband
LAN. The strided read rate is much lower than the sequential read rate and the
random reads are of even lower magnitude. It is unclear why the relationship
between the read rates is not more similar to the other platforms. The sequential
reads are around four times faster than the strided reads, the same proportion
of the file that was skipped. This could mean that the whole file is being read
unnecessarily, reducing the read rate.

In the random read results, some variability may be introduced by inadver-
tent system file buffer hits because only one hundred reads were involve in each
case, and some could have been from very close to previous reads in file space.
This interpretation is supported by evidence from additional constant seed tests,
some of which resulted in data rates that were so high (3 GiB/s) that they must
have been reads from memory.

Our results confirm that of others: the profile shape for the sequential reads
for all platforms agrees with the results from Bartz et al. [10], and the expected
bandwidth on ARCHER is around 500 MB/s [16] which agrees with our results.

The main conclusions from this section are as follows:

– The different read patterns have a very large effect on the read rate, with a
lesser effect at larger buffer sizes. The cause of this is likely to be because of a
read from memory due to the parallel file system anticipating where the next
reads will be in the sequential reads. This does not happen in the strided and
random reads, which are also slower due to having to seek through the file
much more frequently.

– Read rate drops significantly at very small buffer size which agrees with results
from Bartz et al. [10].

– There is very little difference between C and Python when reading plain binary
files.

– Read rate profiles between the different platforms were similar, but different
in magnitude.

4 NetCDF Performance

To investigate the effect of NetCDF, the experiment from Sect. 3.1 was repeated
using the C NetCDF library and the netCDF4-python library (on JASMIN only
due to resource constraints). Figure 6 shows the results. The C results look sim-
ilar to the results when reading from a plain binary file, but the Python perfor-
mance is reduced. A reduction in performance is seen in the Python profile for
read block sizes less than 64 KiB.

The drop in read rate above 1 MiB buffer size could be caused by Numpy
arrays - netCDF4-python uses them. To eliminate Numpy as a factor in the
performance drop a test was run using Numpy to read the plain binary files.
This gave similar results to the Python profile in Fig. 3, indicating that the
significantly lower read rate seen in the netCDF4-python results was not caused
by Numpy.
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(a) (b)

(c)

Fig. 6. Average read rate (diamonds) and one standard deviation (error bars) for the
tests reading from a NetCDF4 file on JASMIN. Grey lines show the results using C and
black lines show the results using Python. (a) shows the sequential reads, (b) shows
strided reads, and (c) shows random reads.

To further investigate the reasons for the drop in performance of netCDF4-
python, the CPU time was measured using the POSIX clock [3] function in C
and the equivalent function from the Python time library [8]. Figure 7 shows the
comparison between wall time and CPU time for the sequential read tests on
JASMIN. The results for the C tests reading from plain binary files and NetCDF4
files show a very similar pattern, with the CPU time decreasing as the buffer size
increases, the CPU time not being a limiting factor after 4 KiB. For the Python
test reading from a plain binary file the pattern is similar, but the CPU increases
after 16 MiB (also seen in the Numpy tests previously mentioned), but not to be
a limiting factor. The netCDF4-python results, however, show that the CPU is
the limiting factor for the reads, causing the performance reduction.

The strided reads with netCDF4-python follow a similar profile to the sequen-
tial reads, albeit with much higher variability and are similar to the C strided
read until 16 MiB where the CPU overhead has a more significant effect. The
similarity between the netCDF4-python strided reads and the sequential reads is
due to the CPU limited behaviour of both read types. The random C profile looks
similar to the Python, and the other JASMIN results, with the netCDF4-python
results performing worse, especially at large buffer size.

The CPU limited behaviour explains the significantly reduction in the read
rate for netCDF4-python compared to the other tests (being I/O limited).

Brief testing with another Python library reading from NetCDF4 files using
the HDF5 library h5netcdf [5], shown in Fig. 8, indicate that this extra CPU use
is not needed; when using h5py the read rate is I/O limited, not CPU limited.



164 M. Jones et al.

(a) C binary (b) Python binary

(c) C NetCDF4 (d) NetCDF4-python

Fig. 7. Comparison between average wall time and CPU time for the different sequen-
tial read tests on JASMIN. Black bars show wall time, and grey bars show CPU time.
(Note: bars overlap, and CPU time in these tests will not be greater than wall time)

(a) Read rate (b) CPU balance

Fig. 8. Comparison between sequential rates for C binary read (grey), netCDF4-python
read (black diamonds), and read using h5py Python library (black squares); and CPU
wall time balance for reads using h5netcdf; black bars show wall time, and grey bars
show CPU time.

The balance between CPU use and wall time show that this is I/O bound rather
than CPU bound.

The Linux utility strace was also used to retrieve some more information
about the I/O calls when using the netCDF4-python library. The pattern for
the read types is similar to the plain binary test; the difference between read
types is caused by read ahead for the sequential reads. The read sizes below
64 KiB have a reduction in performance because a read below this is always at
least 64 KiB, i.e. even a for a 4 KiB read, the netCDF4-python library sends a
read I/O call for 64 KiB, therefore reducing the effective read rate for low read
sizes.
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The main conclusions from this section are as follows:

– The C NetCDF4 read performance is very similar to read performance when
reading plain binary files using C and Python.

– Using netCDF4-python the performance is lower generally, but is significantly
reduced at buffer sizes of 8 MiB and higher.

– The results from the HDF5 Python library and CPU balance indicate that the
performance of netCDF4-python could be improved by making more efficient
use of CPU.

– Peak read rate using netCDF4-python is at around 1 MiB buffer size.
– The performance below 64 KiB for Python reading from NetCDF4 files is due

to the library always reading at least 64 KiB.

5 Related Work

A solution for high speed, efficient I/O is to use a parallel data model, such
as parallel-netcdf [15], or MPI-IO. The focus here is on what effect the non-
parallel libraries have on the performance on a parallel HPC file system, so as to
advise scientists on better read sizes and patterns to improve design of parallel
data analysis code, therefore the parallel libraries were not used. Also here we
have concentrated on a single processing node, with intent to extend this to
multiple nodes in future work. The parallel I/O library approach would mean
that scientists would have to rewrite much of their analysis script, which may
not mean an efficient development workflow.

Compression can reduce the amount of data stored and reduce the size of data
being transferred from disk, therefore increasing read performance. Compression
can also reduce the cost of storing data [18].

In theory an object store (such as CEPH, [23]) might be able to provide high
performance I/O, since if the file were chunked those chunks could be stored in
an object store and retrieved in parallel in an arbitrary order - meaning that
no particular order would be preferential. However, we are not aware of any
practical instances of NetCDF files being stored in this manner - although we
are involved in building a test bed to investigate this possibility.

A Hadoop framework could also be used to increase the I/O performance -
the compute nodes have the data locally on the node rather than stored sepa-
rately. Data being on the processing node is an efficient solution if the analysis
always requires the same data layout. In atmospheric science, however, differ-
ent analysis may have very different dimensional dependencies so the possible
need for repeated transfer of data for Hadoop-type processing on different data
layouts might lead to significant inefficiency.

Hadoop and MapReduce grew out of the need to analyse large volumes of
data whereas in HPC the focus was on processing speed. However now that
scientific datasets are getting so large a link between these two paradigms would
be useful [13]. There are groups working on using Hadoop and MapReduce for
scientific problems (for example [12,22]), but the focus in our work is on advising
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end users about effective analysis of large data sets on HPC-type architectures
with parallel file systems. Also, there are large conceptual differences between
HPC-type analysis and Hadoop-type analysis, namely that in Hadoop the data
is on the processing nodes, and in HPC the data is not.

6 Conclusions

We identified the performance loss in the NetCDF4 performance stack by run-
ning tests using C and Python when reading from plain binary files and NetCDF4
files. The drop in read rate performance was found to be in the netCDF4-python
library, and not due to either Python or the NetCDF4 file format. The main con-
clusions from this work are:

– The netCDF4-python library performs less efficiently than the other tests,
giving a lower read rate, which was especially prevalent at small (less than
64 KiB) and large (greater than 8 MiB) buffer size, with peak performance
at a buffer size of about 1 MiB. This drop in read rate could have a signifi-
cant performance impact on analysis scripts which use netCDF4-python. This
decrease in performance is caused by the netCDF4-python library reads being
CPU bound so not utilising the bandwidth of the node.

– There is little difference between the performance of C reading from plain
binary files, Python reading from plain binary files, and C reading from
NetCDF4 files.

– The read pattern has a large effect on the performance of a read, meaning that
any seeking done in an analysis script is very expensive. Therefore, keeping as
many reads as possible contiguous on disk is very important.

These results could have implications in the design of analysis scripts, and
choices made when deciding what sized chunks to use in NetCDF4. The buffer
size of around 1 MiB may be the most efficient size for reads and chunk sizes,
but the compromise between more efficient reads and higher quantity of reads
needs discerning. Also, avoiding any reads of less than 64 KiB would benefit
performance.

The results showing that sequential reads are significantly more efficient
means that for analysis script to be most efficient as much of the reading done
from a file should be contiguous. This could be taken advantage of in strided
reads by splitting the read into parallel threads.

Another important implication is that NetCDF4 is read at the same rate
as plain binary files. This means that there is no disadvantage to reading from
NetCDF4 files.

The effects of chunking, compression, and multithreading will be investigated
in future work. This would then mean that a quantitative cost model could be
built to estimate how much time would be spent doing I/O tasks, which could
potentially be overlapped with CPU tasks. Knowledge of all of these things
would then inform the end user designing parallel data analysis code enabling
more efficient code to be written with less trial and error, hence optimising the
development workflow.
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Other interesting results which could come from this are from the perspective
of data managers. They would need to decide if having chunked and compressed
files benefit scientists enough to justify the overhead of implementation when
formatting large multi-user datasets.
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Abstract. The InternationalWorkshop on OpenPOWER for HPC Proceedings
provided a venue for broader community to explore OpenPOWER technologies
for their research and development activities. It allowed both application
experts and experts on different technologies to exchange experiences with
using technologies from this new ecosystem.
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The OpenPOWER Foundation was established as a non-profit consortium to give its
members the ability to innovate on software and hardware solutions based on the
POWER architecture. About half of the members are from academia. One of the
Foundation’s goals is for OpenPOWER technologies to drive innovation within HPC.
As scientific workloads and demands increase, advances are being enabled by Open-
POWER member collaborations throughout the HPC software stack from the low-level
hardware architecture up through application and next generation programming model
designs. The goal of this workshop was to provide a venue for the broader HPC
community to further understand OpenPOWER technologies and discuss how they can
be harnessed for HPC applications needs.

Most of the contributions reported on experiences made during porting to and
optimization for POWER8-based architectures with or without GPU acceleration.
Furthermore, insight was provided on the obtained performance. In several papers the
results are compared to other architectures, namely Intel E5-2600 v3 processors.
Application portfolios, which have been analysed, range from a set of skeleton,
financial and CFD benchmarks [5], CFD applications based on the Lattice Boltzmann
method and FFT benchmarks [1] to 3-dimensional combustion simulation codes [2].
A significant amount of efforts have already been invested into bringing molecular
dynamics applications to the new architecture, e.g. CPMD [8] as well as NAMD and
VMD [7].

Another topic addressed during this workshop was the use of programming models
for enabling portability, as well as programming frameworks for data analytics appli-
cations. The heterogeneous OpenPOWER platform is used to demonstrate the



effectiveness of the porting interface ‘cupla’ for the particle-in-cell code PIConGPU [9].
To address graph-based applications using OpenPOWER hardware, Spark/GraphX has
been evaluated as a processing framework for several important graph kernels [4].

For any new HPC architecture, the ability to measure power and determine energy
efficiency characteristics are of keen interest. The AMESTER framework, which has
recently been open-sourced, is capable of performing such measurements [6]. This
technology was also the basis for the energy efficiency analysis and modeling results
that have been presented for different applications for designing optical elements as
well as explore materials [3].

Within an overall view, the contributions give a good overview on the status of
exploitation of OpenPOWER architectures and technologies for both, scientific com-
puting as well as industrial applications. Sharing a common background given by the
technology ecosystem facilitated fruitful interactions, which extended far beyond what
could be documented in these proceedings.
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Abstract. The Hartree Centre has been established as a UK focus for indus-
trial engagement. STFC has acquired a new IBM system based on the Open-
POWER architecture, comprising 32 nodes with POWER8 CPUs and NVIDIA
Kepler K80 GPUs. We report early evaluation of the system using some real
applications based on the Lattice Boltzmann Method, Direct Numerical Sim-
ulation of Turbulence and using FFTs. No optimisation has been carried out
yet, but results are encouraging with performance comparable or better on a per
core basis to Intel IvyBridge CPUs. Use of the GPUs for suitable algorithms
such as Lattice Boltzmann kernels and for FFTs provides further performance
enhancements.

1 The Hartree Centre

STFC’s Hartree Centre was established in 2012 located at STFC Daresbury Laboratory,
near Warrington, United Kingdom. Initial funding for the centre came from the UK
Government department for Business Innovation and Skills (BIS) as a result of rec-
ommendations for increased funding for e-infrastructure made in the Tildesley report
[13]. The Hartree Centre was established with a focus on industrial engagement, using
modelling and simulation capabilities accelerated by high-performance computing to
deliver economic impact.

In 2013 there was a further injection of funding focusing on energy efficiency and
data analytics. A major announcement followed in 2015 with significant further UK
Government investment in extended industrial and scientific reach through the
exploitation of data centric and cognitive computing technologies. This latest devel-
opment of the Hartree Centre is underpinned by a five-year agreement with IBM
establishing a significant presence of IBM Research staff on the Daresbury site.

The Hartree Centre is enabling companies of all sizes to tackle diverse challenges
using the latest developments in high-performance and data-intensive computing, with
many returning customers bringing new projects. The value and insight provided to

© Springer International Publishing AG 2016
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businesses is demonstrated by a set of case studies which are available at the Hartree
Centre website1.

The Hartree Centre has a mission to bring the benefits of high-performance com-
puting and data science to industry and commerce, using hardware and software
capabilities exploited by skilled and experienced staff. The centre works in tandem with
STFC’s Scientific Computing Department, which has about 180 staff roughly equally
divided between STFC’s Daresbury Laboratory and the Rutherford Appleton Labo-
ratory. Key areas of specialisation include applications expertise in a wide range of
science areas such as computational chemistry, CFD and engineering, materials sci-
ence, life sciences and environmental modelling, underpinned by technical expertise in
data management, energy efficient computing, numerical analysis, performance opti-
misation, software engineering, and visualisation.

We provide services to clients from across industry, government and academia
based upon a service model comprising:

• access to HPC platforms
• consultancy & professional services
• software development
• collaborative R&D
• training & education

This instruction file for Word users (there is a separate instruction file for LaTeX
users) may be used as a template. Kindly send the final and checked Word and PDF
files of your paper to the Contact Volume Editor. This is usually one of the organizers
of the conference. You should make sure that the Word and the PDF files are identical
and correct and that only one version of your paper is sent. It is not possible to update
files at a later stage. Please note that we do not need the printed paper.

2 POWER Application Design Centre

STFC is a member of the OpenPOWER Foundation2. On 22 October 2015 the Hartree
Centre was announced as the UK’s first POWER Acceleration and Design Centre
(PADC). The aim of the PADC is to improve modelling, simulation and big data
analytical capabilities on IBM’s OpenPOWER systems.

The STFC PADC is working on the design and optimisation of applications across
a range of HPC and data intensive workloads for modelling and simulation and data
analytics. Simulations cover almost the full range of length and time scales from
sub-atomic processes to environmental modelling at global scales, with a strong focus
on bridging length and time scales through coupled multi-scale and multi-physics
capabilities.

1 Hartree Centre Case Studies http://www.stfc.ac.uk/about-us/our-impacts-achievements/case-studies/
hartree-centre-case-studies/.

2 OpenPOWER Foundation http://openpowerfoundation.org/.
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3 The POWER8 System ‘Panther’

STFC has recently taken delivery of an IBM compute platform ‘Panther’ using the
OpenPOWER architecture, comprising POWER8 CPUs and NVIDIA K80 GPUs
supported by InfiniBand interconnect and disk and flash storage (Fig. 1). The speci-
fication of the system is as follows:

• 32 compute nodes
• 2 sockets × 8 cores @ 3.32 GHz
• 28 nodes with 512 GB RAM
• 4 nodes with 1 TB RAM
• 2 × NVIDIA K80 GPU
• 2 × 1 TB HDD
• InfiniBand (FDR)
• 2 × IBM ESS GS4 storage arrays,
• 96 × 800 GB SSD
• IBM FlashStorage 900 57 TB (InfiniBand QDR attached)
• IBM FlashStorage 900 57 TB (CAPI attached)

Fig. 1. The Panther system shortly after delivery to STFC Daresbury Laboratory; ribbons and
bows courtesy of OCF plc.
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Some results presented were obtained using an earlier pre-production system
‘Palmerston’. In this system there are four 8-core sockets giving 24 POWER8 physical
cores per node running at 3.32 GHz and two NVIDIA Tesla K40 GPU accelerators.
For the POWER8 system, we use the IBM XL C/C++ V13.1.2 compiler for the
POWER8 CPU and the NVIDIA CUDA 7.0 SDK for the K40 GPU on Palmerston and
CUDA 7.5 for the K80 on Panther. OpenMPI 1.10.1 is used for message passing of
both multiple-CPU and multiple-GPU calculations.

Comparisons are made with performance of the Hartree Centre IBM iDataPlex
cluster which is equipped with Intel Ivy Bridge E5-2697v2 2.7 GHz CPUs, each node
comprising two 12-core processors. Software included the Intel C/C++ version
15.2.164 compiler, Intel Fortran 16.0.0 and Intel MPI 5.03.

4 The DL_MESO Lattice Boltzmann Code

DL_MESO is a C++ general purpose mesoscopic simulation package which comes
with two different simulation methods: Dissipative Particle Dynamics (DPD) and
Lattice Boltzmann equations (LBE) [1, 11]. The current work is concerned with a
simplified version of the LBE method exclusively.

The LBE is a computational fluid dynamics method which has emerged from the
lattice-gas automata and is used to simulate a multitude of flow problems. In LBE a
fluid can be represented by using the probability of finding one of its particles at a given
position in space and time with a given momentum, described by a density distribution
function, f(x,p,t), depending on the position, x, the momentum, p, and time, t. Over a
single time-step Δt the distribution function at each lattice point x evolves initially by
collisions and then by propagation between neighbouring lattice sites.

The advantage of DL_MESO over other packages implementing the Lattice
Boltzmann equation is that it allows computing multiple components and/or fluid
phases and coupling them with other physics like the heat transfer function or solute
diffusion equations. This flexibility to plug in different physics makes DL_MESO LBE
ideal to simulate applications such as the cavity flow problem [4], or subjecting an
initially stationary fluid to a temperature difference between two solid boundaries [2].

The Lattice Boltzmann method is generally suitable for parallel computing and it is
easy to code, however, the aforementioned flexibility in the physics comes with some
performance constraints. The necessity for computing the pseudo-potentials in each
time step and therefore having non-local collision computations complicates the
algorithm compared to other LBE implementations. The simplified version of LBE
code [12] has the main advantage that the algorithm can be expressed in just two loops,
one for the pre-computation of the pseudo-potentials and another for the collision and
streaming steps. Consequently, the data-structure is only traversed twice leading to
high data re-use and a high ratio of computation to data movement.
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4.1 Porting to POWER8

To port DL_MESO to the POWER8 platform we used the IBM XL compiler set.
DL_MESO uses OpenMP capabilities to distribute the work between different threads
using static scheduling and among the vector lanes using the SIMD directive available
since OpenMP 4.0 [6]. However, the XL Compiler only has partial support for
OpenMP 4.0 and the pragmas regarding the SIMD vectorisation of the code were not
recognized. Other strategies like setting the –qsimd = auto flag and the IBM #pragma
simd_level() statements were introduced, but this produced incorrect output results for
DL_MESO. Similarly, setting the optimisation flags to high levels also produced
incorrect results. The best times with correct outputs were obtained using the –O2
optimisation flag.

4.2 Performance Results

Figure 2 shows a comparison of the performance of DL_MESO on several platforms.
On the Intel platforms DL_MESO was compiler using Intel Compiler Suite with the –
fopenmp, –Ofast and –xHost and -mmic flags. On the POWER8 the executable was
produced with the IBM xlc++ compiler version 13.1, in this case with the –O2 -
qsmp = omp -qsimd = noauto -qarch = auto flags.

Fig. 2. Speedup of the DL_MESO LBM code on POWER8, SandyBridge, IvyBridge and Xeon
Phi systems compared to the serial SandyBridge execution time.
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Performance is compared against the serial time of the Intel SandyBridge. The chart
shows how, the POWER8 execution without vectorisation is slightly better than the
Intel IvyBridge Platform with SIMD (x16.5 vs x15.7), however, it still stands far below
an accelerated architecture such as the Xeon Phi (x16.5 vs x26.8).

Figure 3 shows the thread scalability on the POWER8. We can observe that the
scalability is almost linear until 8 threads (number of cores in one processor), however,
when going to out of the processor or utilizing Symmetric Multi-Threading capabilities
the gains are moderate, obtaining a speedup of 20x when utilizing the full socket (128
threads) in comparison to the single-threaded version.

5 Lattice Boltzmann Simulation Using OPS High-Level
Abstraction

Nowadays, the clock speed of processors has approached such a limit that is harder to
be further increased. To gain high performance in computing, the new trend is to utilise
multi-core and many-core processors including both mainstream CPUs and add-on
accelerators, such as the present “Panther” system equipped with high-performance
CPUs and GPUs. However, this presents a great challenge for scientific software
development. To harness the computing power, the code has to be parallelised, which
requires significant more efforts than increasing the clock speed. Moreover, there are
often heterogeneous hardware systems and associated competing software frameworks,
which greatly increase the complexity and risk.

The high-level abstraction approach provides a potential way of overcoming this
difficulty. In this way, the computations are decoupled from their parallel implemen-
tation, and an application may then have the flexibility of easily adapting to different
system. The Oxford Parallel Library for Structured-mesh solvers (OPS) implements
this idea for developing block-structured applications [6]. Through careful design, the

Fig. 3. Speedup of the DL_MESO LBM code on a single POWER8 node with 16 physical
cores. Beyond 16 cores Symmetric Multithreading is used.
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library provides concise but sufficient abstraction to hide the complexity of both par-
allelisation and managing multi-block meshes, which is very attractive for an appli-
cation point of view.

Here we test the two-dimensional OPS based lattice Boltzmann code using a single
node of the “Panther” for both multiple-CPU and multiple-GPU calculations. For the
CPU calculations with a 4096 × 4096 mesh, the code is compiled using the IBM XL
C/C++ V13.1.3 compiler and OpenMPI 1.10.2 is used for message passing. As shown
in Fig. 4, we observe nearly linear scalability and nice speedup when using up to 16
physical cores. For larger thread counts Symmetric Multi-Threading (SMT) is used,
delivering a significant performance boost to attain a speedup of 24x on 16 physical
cores with eight-way multi-threading (SMT = 8). This appears to be consistent with the
fact that a LBM code tends to be memory bound [5].

For the multiple-GPU calculations, we carried out a weak-scaling test. Although
there are only two K80 boards on a single-node, we use a 2048 × 4096 mesh for “a
half” of K80 (one of the two GPUs in a K80 board), a 4096 × 4096 mesh for 1 K80
and a 8192 × 4096 mesh for 2 K80 s. The code is compiled with the above mentioned
IBM compiler and the NVIDIA CUDA 7.5 SDK. For reference, we also present the
computation time measured for a K40 calculation on the “Palmerston” system using a
4096 × 4096 mesh, for which the code is compiled with the tool sets are the IBM XL
C/C++ V13.1.2, the NVIDIA CUDA 7.0 SDK, and OpenMPI 1.10.1. From Fig. 5, we
see nearly optimal weak scaling behaviour across the K80 s. One K80 board
can achieve twice the performance of one K40 GPU, which is consistent with the
specifications of two cards.

Fig. 4. Speedup of the OPS-based LBM code on a single node of the POWER8 Panther system.
There are 16 physical cores. Larger numbers of threads use Symmetric Multi-Threading (SMT),
with 2, 4 and 8 threads per core.
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6 Fast Fourier Transforms

FFTW3 is a widely used, free software library for computing the discrete Fourier
transform (DFT) in one or more dimensions of real or complex data [2], with C and
Fortran interfaces, and supporting single-threaded (sequential), multi-threaded, and
multi-process execution configurations.

The multi-threaded support is realized by POSIX threading or OpenMP, and the
user can choose among them. The multi-process support is based on MPI. In the
following the focus will be on sequential and POSIX-threaded implementations. FFTW
supports float (single-precision), double, and long double floating-point datatypes;
forward and backward (non-normalized inverse) DFT, and various other transforms
similar and related to DFT.

FFTW is usually employed in two phases; the first one is planning, i.e., creating an
execution plan for the given transform, input dimensions, datatype, and the actual
machine and thread count in question. An execution plan is a recipe for decomposing a
large transform into combination of the smaller, efficiently implemented ones. The
planning can take a huge amount of time, but for a fixed machine and a set of transform
parameters it needs to be done only once; any further request for a transform with the
same parameters on the same machine can re-use the plan already available or stored in
a so-called “wisdom” file.

The second phase consists of executing the plan over the data, i.e., computing the
transform.

Fig. 5. Execution time of the OPS-based LBM code with different grid sizes on IBM POWER8
systems with NVIDIA K40 and K80 GPUs.

3 FFTW Home Page http://www.fftw.org .
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The source code distribution comes with a benchmarking tool, which enables
measuring of time required for particular phases of a computation, calculates the FLOP
rate (see [2] for details), and can check for accuracy of the results.

6.1 Porting to POWER8

The porting and testing platform consists of a single node with 16 physical POWER8
cores running on 3857 MHz, with 8-way SMT per core. The software environment is
Red Hat Enterprise Linux 7.2 with IBM XL C compiler version 13.1.3.

FFTW can be compiled from source without any code modifications, but the
binaries obtained by specifying various levels of optimisation, at least in the sin-
gle-precision case, cannot sustain the post-build accuracy self-checking by the
benchmarking tool, invoked by the make check command. The similar is true for
GNU C compiler version 4.8.5 with the library’s default settings for the compiler flags.
Therefore, our choice of was to omit any optimisation flags for IBM XL compiler, save
for “-qtune = pwr8:smt8”, bearing in mind that suboptimal code might be produced.

6.2 Performance Results

We have measured running time and FLOP rate for the 2D single-precision DFT,
forward and backward, real and complex, in-place (overwriting the input) and
out-of-place transforms, with 1, 2, 4, 8, and 16 POSIX threads, over 10 runs for each
transform. In order to distribute the workload evenly across the cores, the taskset
command was used to limit the number of available virtual processors to one per a
physical core.

Out-of-place transforms are generally faster than the in-place ones, and forward
transforms perform better than their backward counterparts. Therefore, only the results
for out-of-place forward transforms are presented herein.

Fig. 6. Performance in MFLOPS on the POWER8 system of the FFTW real 2D transform.
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Figure 6 shows the raw performance of FFTW real 2D transforms in terms of the
best achieved MFLOPS rate per a given number of threads, while Fig. 7 demonstrates
reasonable scalability achieved for 8 and 16 threads. Figures 8 and 9 depict similar
measurements for the complex 2D transforms.

The planning time, using the recommended “patient” method, can be huge, and
increases with the number of threads. For example, planning for 9216 × 9216 complex
DFT for 1 thread takes 2693.25 s, for 4 threads 11519.70 s, and for 16 threads
12866.52 s. The transform itself runs in 2.39 s sequentially, or in 289.19 ms with 16
threads available.

Fig. 7. Scalability on the POWER8 system of the FFTW multi-threaded real 2D transform.

Fig. 8. Performance in MFLOPS on the POWER8 system for the FFTW complex 2D transform.
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6.3 GPU FFT

The POWER architecture supports NVIDIA CUDA technology for general-purpose
computation on the graphics processors (GPUs). As a part of CUDA software distri-
bution, cuFFT – a library for computing FFT on the GPUs – is provided. With an
interface similar to FFTW, cuFFT offers a massively parallel counterpart of the
CPU-based DFT libraries, which is especially well tuned for the transforms of data
sizes that factorize as a product of powers of small primes.

We have compared cuFFT and FFTW with 16 threads on 2D complex datasets, and
obtained 5 to 15-fold speedup, as shown in Fig. 10, using NVIDIA Tesla K80 GPU
and CUDA 7.5.

Fig. 9. Performance in MFLOPS on the POWER8 system for the FFTW complex 2D transform.

Fig. 10. Speedup of cuFFT on the Kepler K80 GPU compared with FFTW running on the
POWER8 CPUs.
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Such significant performance increase indicates that cuFFT is a viable alternative
for FFTW for data sizes that are large enough to warrant an overhead of data transfer to
and from a GPU, but that are also small enough to fit into RAM of the available
accelerators.

7 The Shock-Boundary Layer Interaction CFD Code

For this study we have used the SBLI code, a finite difference formulation of Direct
Numerical Simulation of Turbulence from the University of Southampton, United
Kingdom which has been widely used for research into turbulent flows, see e.g. [9] and
references contained therein.

Fluid flows encountered in real applications are invariably turbulent. There is,
therefore, an ever-increasing need to understand turbulence and, more importantly, to
be able to model turbulent flows with improved predictive capabilities. As computing
technology continues to improve, it is becoming more feasible to solve the governing
equations of motion, the Navier-Stokes equations, from first principles. The direct
solution of the equations of motion for a fluid, however, remains a formidable task and
simulations are only possible for flows with small to modest Reynolds numbers.

Within the United Kingdom, the UK Turbulence Consortium (UKTC) has been at
the forefront of simulating turbulent flows by direct numerical simulation (DNS).
UKTC has developed a parallel version of a code to solve problems associated with
shock/boundary-layer interaction.

The SBLI code was originally developed for the Cray T3E and is a sophisticated
DNS code that incorporates a number of advanced features: namely high-order central
differencing; a shock-preserving advection scheme from the total variation diminishing
(TVD) family; entropy splitting of the Euler terms and the stable boundary scheme.
The code has been written using standard Fortran 90 code together with MPI in order to
be efficient, scalable and portable across a wide range of high-performance platforms.
The PDNS3D benchmark is a simple turbulent channel flow benchmark using the SBLI
code.

The most important communications structure within SBLI is a halo-exchange
between adjacent computational sub-domains. Providing the problem size is large
enough to give a small surface area to volume ratio for each sub-domain, the com-
munications costs are small relative to computation and do not constitute a bottleneck.
We see almost linear scaling from all systems out to very large numbers of cores for
sufficiently large datasets, e.g. to 168,000 cores on the ORNL Jaguar system [8].
Hardware profiling studies of this code [M. Ashworth, private communication] have
shown that its absolute performance is highly dependent on the cache utilisation and
bandwidth to main memory.

The SBLI code is pure Fortran plus MPI and does not yet have the facility to benefit
from hybrid MPI-OpenMP or from the use of GPUs. It was compiled with the IBM XL
Fortran compiler version 15.1.3, linked with the IBM MPI library and run using the
IBM Parallel Environment.

We compare performance on the Panther system with the Ivy Bridge NextScale
system using a turbulent channel flow benchmark case which has a mesh of 120 cubed

184 M. Ashworth et al.



points run for 100 timesteps. This is a relatively small problem size and so tends to
stress the communications network.

Execution times were measured using the standard Fortran 90 system clock pro-
cedure system_clock. A performance metric is shown which is computed by dividing
the execution time in seconds into a constant of 1000. As an inverse time metric this
means that ideal performance increases linearly with the number of cores and devia-
tions from ideal performance are easily visible.

Figure 11 shows performance on a single node from 1 to 16 cores. For small core
counts, the POWER8’s faster clock and memory delivers superior performance, but by
the time the node is fully populated, performance is equivalent. Using Symmetric
Multi-Threading (SMT) of 2, 4 and 8 threads per core gives an advantage due to the
ability to mask memory latency. SMT with eight threads on 16 cores delivers a 1.5x
speed-up.

In Fig. 12 we see the performance across multiple-nodes out to 256 cores. Per-
formance is limited by communications and there is little dependence on processor
type. Again SMT was tried: 2-way multi-threading gave some speed-up, four-way was
better but eight-way was much worse; therefore only performance for SMT = 4 is
shown, delivering a 25 % speed-up on 256 cores. One disadvantage of using SMT for a
pure MPI code is that it results in a large increase in the number of MPI tasks, e.g. on
256 cores with SMT = 8 there are 2048 MPI tasks with resulting increase in com-
munications albeit much of it within a node. We believe that a hybrid OpenMP-MPI
approach would improve the speedup obtained from SMT.

Fig. 11. Performance of the SBLI CFD code on POWER8 and NextScale systems for a
turbulent channel benchmark: single node 1 to 16 cores.
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8 Conclusions

We have shown early performance results for some applications and for some FFT
kernels on the OpenPOWER architecture with POWER8 CPUs and NVIDIA Kepler
K80 GPUs.

No optimisation has been carried out yet, but results are encouraging with per-
formance comparable or better on a per core basis to Intel IvyBridge CPUs. Use of the
GPUs for suitable algorithms such as Lattice Boltzmann kernels and for FFTs provides
further performance enhancements.
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Abstract. All-atom molecular dynamics simulations of biomolecules
provide a powerful tool for exploring the structure and dynamics of
large protein complexes within realistic cellular environments. Unfor-
tunately, such simulations are extremely demanding in terms of their
computational requirements, and they present many challenges in terms
of preparation, simulation methodology, and analysis and visualization of
results. We describe our early experiences porting the popular molecular
dynamics simulation program NAMD and the simulation preparation,
analysis, and visualization tool VMD to GPU-accelerated OpenPOWER
hardware platforms. We report our experiences with compiler-provided
autovectorization and compare with hand-coded vector intrinsics for the
POWER8 CPU. We explore the performance benefits obtained from
unique POWER8 architectural features such as 8-way SMT and its value
for particular molecular modeling tasks. Finally, we evaluate the perfor-
mance of several GPU-accelerated molecular modeling kernels and relate
them to other hardware platforms.

1 Introduction

Atomic-detail molecular dynamics (MD) simulation provides researchers with
a powerful computational microscope that permits the study of biomedically-
relevant processes that are too fast to observe first-hand, and that occur in
the crowded molecular environment of living cells, that cannot be seen with
even the most advanced experimental microscopes. Many societal challenges are
addressed by biomolecular modelers employing state-of-the-art parallel comput-
ing platforms, for example, treatment of viral infections [1,2] and addressing the
antibiotic resistance crisis [3]. The cellular processes of interest to biomedical
researchers take place in molecular assemblies made of millions to hundreds of
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millions of atoms. Such simulations are extremely demanding in terms of prepa-
ration, computation, storage, analysis, and visualization, and they continue to
push the limits of parallel computing.

State-of-the-art petascale supercomputing platforms such as Blue Waters [4]
and Titan [5] contend with significant challenges posed by constraints on space,
power, and cooling. To achieve higher application performance, future sys-
tems must directly address these challenges with performant and energy effi-
cient computing technologies that take maximal advantage of many-core CPUs,
GPU accelerators, non-volatile storage systems, and new intra- and inter-node
interconnects. One of the upcoming leadership-class computing systems for
open science will be Summit, a pre-exascale supercomputer to be composed of
roughly 3,400 GPU-accelerated compute nodes, fielded by the U.S. Department
of Energy, and housed at the Oak Ridge Leadership Computing Facility. While a
development environment directly comparable to the final Summit system is not
yet available, existing OpenPOWER platforms support GPU accelerators and
associated compilers and libraries, allowing application porting to begin today.

Below we describe the adaptation of representative and performance-critical
algorithms in the widely used molecular dynamics program NAMD [6,7], and
the molecular analysis and visualization tool VMD [8–10], on an IBM S822L
OpenPOWER hardware platform with NVIDIA Tesla K40m GPUs.

2 Overview of ORNL Crest Test System

Except where noted, the application porting and performance evaluation activi-
ties reported here were performed using the “Crest” development systems made
available through the Center for Accelerated Application Readiness (CAAR)
at the Oak Ridge National Laboratory (ORNL), in preparation for the next-
generation Summit supercomputer. The ORNL Crest system is currently com-
posed of four compute nodes and an associated login node for software develop-
ment and testing. The Crest compute nodes are IBM S822L servers configured
with two 3.7 GHz 10-core POWER8 dual-chip CPU modules (DCMs), 256 GB of
RAM among four NUMA nodes, four NVIDIA Tesla K40m GPUs, and two Mel-
lanox Connect-IB FDR InfiniBand (56 Gbit/s) NICs. Figure 1 shows a simplified
block diagram of the S822L hardware used in the Crest compute nodes.

The current software environment on Crest supports several compilers includ-
ing GCC 4.9.3 and IBM XLC 13.1.2, both supporting compile-time auto-
vectorization of performance critical loops using POWER8 VSX SIMD instruc-
tions. Although NAMD and VMD are both endianism-independent, the little-
endian byte ordering used by the Linux operating system for OpenPOWER is
beneficial for applications originally developed on popular little-endian platforms
such as Intel x86, and it is necessary for efficient use of GPU accelerators. The
NVIDIA Tesla K40m GPUs are supported by natively-hosted CUDA 7.5 com-
pilers, and an assortment of GPU-accelerated subroutine libraries. At the time
of writing, the CUDA 7.5 implementation for OpenPOWER does not yet sup-
port peer-to-peer GPU transfers. Below we discuss the use of specific compiler
optimization features in the context of NAMD and VMD algorithms.
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Fig. 1. Simplified block diagram of the IBM S822L compute nodes used in the ORNL
Crest development system. Two POWER8 dual-chip CPU modules (DCMs) are shown
with associated NUMA CPU and PCIe bus topology interconnecting the CPUs, PCIe
host bridge (PHB) I/O channels, NVIDIA Tesla K40m GPUs, and Mellanox Connect-
IB InfiniBand network adapters (IB NIC). The two DCMs contain two 5-core POWER8
processors, each with 8-way hardware simultaneous multithreading (SMT), for a total
of 20 CPU cores and 160 SMT threads. Each CPU contains its own memory controller
with a 96 GB/s bandwidth channel to a set of four CDIMMs (DIMMs paired with a
so-called “Centaur” DIMM controller), giving each DCM 192 GB/s DRAM bandwidth,
yielding a full system peak DRAM memory bandwidth of 384 GB/s. The two CPUs
on a DCM are linked by a 32 GB/s SMP “X” bus, and the two DCMs communicate
using four 12.8 GB/s SMP “A” bus links. Each of the four NVIDIA Tesla K40m GPUs
are directly connected to the on-chip PCIe 3.0x16 PCIe host bridge (PHB) channel on
a corresponding CPU. System components and peripherals less relevant to molecular
dynamics simulation and analysis workloads are not shown.

3 NAMD: Parallel Molecular Dynamics Simulation

For the current Titan system and the future Summit system the majority of arith-
metic performance is provided by GPU accelerators. NAMD currently exploits
GPU acceleration for the two most compute intensive parts of molecular dynam-
ics simulation: non-bonded force computation and Particle Mesh Ewald (PME)
reciprocal computation. The remaining computations, e.g., bonded forces, are per-
formed on the CPU. Continuing this existing GPU acceleration model, here we
focus on further optimization of the two GPU parts. The starting point for our
work is the NAMD CVS repository version 2015-04-23, which is essentially NAMD
2.10 with CUDA kernels modified to stream results incrementally to the CPU. In
the following discussion, all changes and comparisons are made with respect to
this version of NAMD. The algorithm changes described below are all new and
are planned for inclusion in the NAMD 2.12 release.
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3.1 Non-bonded Force Computation

Three major changes were made to the way non-bonded force computation is
performed in NAMD. First, we broke up the compute objects that used to be
on a single thread block, into “tile lists” that can be computed by any thread
block. Second, Newton’s third law was applied to eliminate duplicate calculation
of pairwise forces. Third, we removed synchronization from the thread blocks to
allow individual warps to perform the computation independently. We discuss
each of these changes in further detail below.

Non-bonded forces in NAMD are calculated in compute objects that define all
pairwise interactions between two sets of atoms. In the GPU-accelerated version
of NAMD, computes are further split into 32×32 tiles as illustrated in Fig. 2(a).
In Fig. 2(a), gray tiles do not have any atom pairs that interact and will be
skipped. In the previous version of NAMD, a single thread block was assigned
per compute. In the new version of the kernel, computes are broken into tile
lists as shown in Fig. 2(b). Tile lists from different computes can be mixed and
executed on any thread block. This gives rise to more flexible execution and a
better opportunity for load balancing within warps in the thread block.

Fig. 2. (a) A so-called compute object consists of 32 × 32 tiles. Gray tiles have no
interactions and are skipped. The previous version of the non-bonded force kernel
executed an entire compute on a single thread block. (b) The new non-bonded kernel
splits the compute into tile lists that can be executed on any thread block.

The total non-bonded force acting on atom i is given as a sum of all pairwise
forces f i =

∑
j f ij . Due to Newton’s third law, once f ij are known, the force

acting on atom j can be obtained from f j =
∑

i −f ij . In the previous version of
the non-bonded force kernel, forces f ij were computed on each thread of a warp
and then accumulated to form f i. This is illustrated in Fig. 3(a) for warp size 4,
where a warp of threads loops through the tile in horizontal lines starting at line
j = 1 and ending at j = 4. Trying to accumulate to f j during this loop would
give rise to a race condition since all threads in the warp are storing to the same
variable. Therefore, a second computation was necessary to compute forces f j



192 J.E. Stone et al.

Fig. 3. Pairwise force computation in a 4 × 4 tile (a) previously and (b) in the new
scheme. In (a) tile is looped in horizontal lines, while in (b) tile is looped in diagonal
lines. The looping index is indicated on the tile elements and elements with the same
index belong to the same warp.

by looping through the tile in vertical lines. In the new scheme illustrated in
Fig. 3(b), we can avoid this second computation by looping though the tile in
diagonal lines [11]. We start from the diagonal marked by “1”, and then proceed
to the sub-diagonal marked by “2”, etc. Note how the diagonals wrap around
the tile ensuring that all pairwise interactions are handled. In this scheme there
is no race condition since every thread stores to different f i and f j variables.
Within the 32 × 32 tile some pairwise forces are excluded based on the force
field definition (such as atoms sharing a bond or an angle), the end of the atom
list (when the patch has non-modulo 32 atoms), and the neighbor list cut-off
radius. In addition, one half of interactions are excluded on “self” tiles where
the two sets of atoms are the same. Exclusions tests are performed efficiently
using an array of 32× 32-bit unsigned int variables for each tile to keep track
of the exclusions, where a 0-bit means “exclude” and 1-bit means “compute”.
The exclusion bit masks are created during the neighbor list build using a com-
pressed lookup table [7]. For each of the 32 iterations through the tile, we must
shift the input (atom coordinates, charges, etc.) and output (force) variables
between threads within the warp. We use the shfl() instructions first intro-
duced in the Kepler GPU architecture to do this shifting with warp-synchronous
programming entirely in GPU registers, thereby eliminating the need for shared
memory and the additional synchronization operations it requires.

After the 32 × 32 tile is computed, forces f j are stored in a global memory
buffer using the atomicAdd() instruction and the kernel proceeds to the next
tile with different j atoms but the same i atoms. Keeping i atoms constant
reduces the number of memory accesses since for each tile only the j atoms must
be loaded from global memory. After the warp finishes all tiles it was assigned,
forces f i are stored in global memory using the atomicAdd() instruction.
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Rnl

Rbb

Fig. 4. Bounding boxes for two sets of eight atoms. Bounding box distance Rbb is well
within the neighbor list cut-off distance Rnl, however none of the atoms are within the
neighbor list cut-off.

In the previous version of NAMD, the neighbor list was built by the non-
bonded force kernel by checking all atom pair distances in every 32×32 tile. We
implemented a more efficient neighbor list builder that first builds an approxi-
mate neighbor list based on the bounding boxes of sets of 32 atoms, and then
using that approximate list as input, builds the atom-based neighbor list in the
non-bonded force kernel. The bounding-box approximation always overestimates
the true neighbor list, as is illustrated in Fig. 4 where, although the bounding
box distance Rbb is well within the neighbor list cut-off distance Rnl, none of the
atoms are actually within the neighbor list cut-off. In the situation illustrated
in Fig. 4, the bounding-box neighbor list would contain the two sets of atoms,
but this entry would be pruned away in the atom-based distance check in the
non-bonded force kernel.

We have also implemented the neighbor list for the Generalized Born implicit
solvent (GBIS) kernels. Since the GBIS method does not use force-field exclu-
sions and includes self-energies (explicit solvent calculations do not), a separate
GBIS version of the neighbor list must be created. The bounding-box neighbor
lists for both the GBIS and explicit solvent calculations are the same. During
the atom-based neighbor list build in the non-bonded force kernel, we keep track
of both the regular and the GBIS tile lists by assigning their indicators to the
lower and upper 16-bits of a 32-bit integer, respectively. The two lists are finally
separated in the neighbor list sorting step where the GBIS list is produced by
choosing the upper bits, and the regular list by choosing the lower bits.

Benchmarks of the non-bonded force kernel were performed on a single
Tesla K40m GPU of the Crest system for explicit solvent and GBIS systems.
The explicit solvent systems included DHFR with 23,588 atoms, ApoA1 with
92,224 atoms, and STMV with 1,066,628 atoms, while the implicit solvent sys-
tems included GP (rabbit muscle glycogen phosphorylase, PDB ID 2GJ4) with
13,340 atoms and an empty HIV capsid with 5,662,344 atoms. For the explicit
solvent cases, the benchmarks were performed using the non-streaming versions
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Fig. 5. Speedup of non-bonded force kernels vs. NAMD CVS version 2015-04-23 for
(a) explicit solvent regular and neighbor list versions and (b) Generalized Born implicit
solvent kernels.

of the kernels and we disabled the GPU PME reciprocal computation (NAMD
script command PMEOffload no) to ensure that it did not interfere with the
non-bonded force kernel timings. The kernel timings were obtained from the
average kernel run time reported by the CUDA nvprof profiler.

Figure 5 shows the speedup observed for both explicit and implicit solvent
cases. In the explicit solvent case shown in Fig. 5(a) we observe 1.4× to 1.6×
speedup for the regular non-bonded force kernel and 1.7× to 2.2× speedup for
the non-bonded neighbor list builder kernel. The neighbor list version gets a
larger speedup due to the use of the bounding box neighbor list approximation,
which reduces the number of tiles that must be checked at atom level.

In the case of explicit solvent, shown in Fig. 5(b), we observe much larger
speedups: 6× speedup for the smaller GP system and 3× speedup for the HIV
capsid system. Figure 5(b) also shows the breakdown of speedups for the three
phases of the GBIS computation as well as the Van der Waals (VdW) and
electrostatic parts.

3.2 PME Reciprocal Force Computation

NAMD uses the smooth particle mesh Ewald version [12] of the famous particle
mesh Ewald (PME) method [13]. The PME method consists of five main parts:
(1) spread charges on to grid, (2) 3-D Fast Fourier Transform (FFT) from direct
to reciprocal space, (3) solve Poisson equation on the grid in the reciprocal space,
(4) 3-D FFT back from reciprocal to direct space, and (5) gather atom forces from
the direct space grid. In the previous version of NAMD, only charge spreading
(1) and force gathering (5) were performed on the GPU while the 3-D FFT and
Poisson solve were performed on the host CPUs. In the new version, we moved all
of the PME computation to the GPU and changed the way the charge spreading
and force gathering is done, as detailed below. We implemented a multi-GPU
3-D FFT solver that uses a pencil, slab, or box decomposition depending on the
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Fig. 6. PME (a) pencil, (b) slab, and (c) box decompositions for the direct to reciprocal
space FFT. A single GPU is assigned to each pencil, slab, or box, respectively.

number of GPUs in use. These decompositions are illustrated in Fig. 6 for the
direct to reciprocal space FFT step. We assign a single GPU for each pencil, slab
or box. This means that we would use nine GPUs for the pencil decomposition
in Fig. 6(a), three GPUs for the slab decomposition in Fig. 6(b), and a single
GPU for the box decomposition in Fig. 6(c).

For the pencil decomposition in Fig. 6(a), we perform 1-D FFTs in x, y, and
z directions in order to compute the full 3-D FFT. After each 1-D FFT, we need
to 3-D transpose the grid such that the current FFT direction is contiguous
in memory. For example, after 1-D FFT in the x direction, we transpose the
grid to (y, z, x) order and then proceed with the 1-D FFT in the y direction.
For the slab decomposition in Fig. 6(b), we perform 2-D FFT in a xy slab, and
then 1-D FFT in the z direction. For the box decomposition in Fig. 6(c), we
simply perform a single 3-D FFT on the entire grid. The 1-D, 2-D, and 3-D
FFTs are computed using NVIDIA’s cuFFT library. For the reciprocal to direct
space FFT, we perform the same steps in reverse. For example in the case of
PME pencil decomposition, we would first perform 1-D FFT in the z direction,
then in the y direction, and finally in the x direction. The 3-D transposes are
now performed in the reverse order as well.

The 3-D transpose involves communication between GPUs and can therefore
become the most time consuming part of the PME reciprocal computation. For
communication within a Crest node, we use the CUDA cudaMemcpyPeerAsync()
function. We were not able to use direct GPU-to-GPU (known as peer-to-peer)
communication since this is not currently enabled on the IBM POWER8 plat-
form. We expect future NVLink GPU interconnect technology to enable direct
GPU-to-GPU transfers and to make communication between GPUs on the same
node much faster. For communication between nodes, we copy the GPU mem-
ory to a CPU buffer and then use the Charm++ communication layer to send
the buffer to the receiving node. On the receiving node, we then copy the CPU
buffer to the GPU. Future versions of Charm++ will hopefully enable direct
GPU-to-GPU communication between nodes on capable hardware.

As mentioned earlier, we also changed the way the charges are spread on
the grid. In the previous version of NAMD, charges on an atom patch were
spread into a sub-grid and then the sub-grids were communicated among the
PEs to form the PME pencils (with similar operation for PME slabs and boxes).
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Fig. 7. Speedup for PME force computation vs. NAMD CVS version 2015-04-23 for
DHFR system with 23,588 atoms and PME grid of size 64× 64× 64. Benchmarks were
run on a single node of the Titan supercomputer.

We changed the charge spreading such that instead of communicating grid
points, we communicate the charges to the GPU that needs them. The GPU
will then spread the charges and start working on the 3-D FFT. Note that since
atoms near neighboring PME pencils boundaries spread to multiple pencils, we
need to communicate a halo of atoms of the width of the PME interpolation
order to obtain correct results.

Similarly to charge spreading, force gathering was changed to communicate
forces instead of grid points. In detail, force gathering is now done on the GPU
for all atoms that are within its PME pencil. Since atoms share neighboring PME
pencils, some of the gathered forces will be partial at this stage. Therefore, after
force gathering, the GPU communicates the partial forces to the CPU, and then
the CPU combines the forces from multiple neighboring pencils to form the total
PME reciprocal force acting on each atom.

In particular for small systems, where there is only a single GPU performing
the PME reciprocal computation (i.e. box decomposition), the GPU can perform
the entire PME reciprocal force computation on its own. This greatly improves
PME reciprocal computation for single GPU runs, as is shown in Fig. 7.

3.3 NAMD Performance on Crest Versus Titan

In Fig. 8 we compare NAMD performance on a single node of Crest versus four
nodes of Titan. Based on the difference in the underlying GPU hardware perfor-
mance, K40m on Crest and K20X on Titan, one would expect about 7 % better
kernel performance on Crest (for K40m without GPU Boost since users are not
allowed to change the GPU settings on the Crest cluster). We see from Fig. 8
that the non-bonded force kernel performance on Crest is always somewhat less
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Fig. 8. Relative performance of a single Crest node vs. four nodes of Titan.

than the theoretical maximum, which is to be expected. We also see that Crest
runs some of the simulations up to 30 % faster than Titan, while others (GP)
actually have lower performance on Crest. Further work is necessary to see why
the performance on Crest sometimes dips below the performance on Titan.

4 VMD: Simulation Preparation and Analysis

VMD [8] is a popular tool for MD simulation preparation, analysis, and visu-
alization. In concert with a sophisticated atom selection language and a wide
variety of data structures and algorithms for visualization, analysis, and struc-
ture manipulation, VMD incorporates built-in Tcl and Python scripting that
can be used to perform large scale molecular modeling and analysis tasks in
parallel on clouds [14], clusters, and petascale computers [9,10,15–17]. VMD
provides a wide variety of tools for assembling large macromolecular complexes
from constituent proteins, and combining these with solvent and ions to replicate
biological conditions in vivo, and it can emit the completed system for simulation
with popular GPU-accelerated MD simulation tools such as NAMD [6,7,18] and
GROMACS [19,20]. The performance of VMD for a user’s molecular modeling
and visualization work is not well-characterized by any single kernel or time-
critical loop, so we report performance for a variety of algorithms that capture
key characteristics of VMD workloads.

4.1 Compiler Performance Comparisons

To evaluate the merits of GCC and XLC for POWER8 CPUs, we com-
pared the performance of exemplary performance-critical loops from internal
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Table 1. Performance of several inner loops associated with VMD analytical calcu-
lations, including atom selection array processing loops, a loop over 8-element inner
products associated with multilevel summation electrostatics, and 1-D and 3-D mini-
mum/maximum bounds loop. Each loop was compiled using GCC and XLC. We report
GCC performance data for the -mvsx VSX vectorization option, and hand-vectorized
loops written with VSX vector intrinsics, e.g. vec madd(), where applicable. All XLC
results were obtained with VSX instructions enabled since it did not harm performance.

Compiler Atomsel cnt Atomsel first MSM-dot8 1-D min-max 3-D min-max

GCC -mvsx 0.123 s 0.061 s 0.571 s 1.163 s 0.649 s

GCC intrinsics 0.123 s 0.101 s

XLC 0.082 s 0.038 s 0.548 s 0.094 s 0.106 s

XLC intrinsics 0.082 s 0.094 s

VMD algorithms. Table 1 summarizes results for the compiler tests. We note
that GCC exhibited surprisingly poor performance with -mvsx enabled for the
1-D min-max test case, but that when provided with hand-written vectorized
loops using VSX intrinsics, the generated code approached the performance of
XLC. We found that the code generated by XLC ran at the same speed as the
hand-coded VSX loops. Our general experience during porting of VMD was that
XLC provided higher overall performance on average, but particularly for cases
with significant opportunity to exploit VSX instructions. As such, all subsequent
VMD performance measurements were performed using XLC.

4.2 Tachyon Ray Tracing Engine

VMD incorporates the Tachyon ray tracing (RT) engine for high quality ren-
dering on all supported platforms, including clouds, clusters, and supercomput-
ers [9,21]. The rise of ray tracing for high-fidelity scientific visualization has led
to the development of hardware-optimized RT libraries and frameworks [22,23],
in combination with SPMD languages and compilers such as CUDA [24] and
ISPC [25] that generate highly-optimized code for wide SIMD vector units. VMD
contains a GPU-accelerated RT engine [10,15,26], however OptiX [22] is not yet
available for OpenPOWER platforms, so Tachyon is currently the highest per-
formance VMD RT engine on OpenPOWER. Figure 9 shows a visualization of
the HIV-1 capsid with host cell factor cyclophilin A (CypA) [2], docked with
a cryo-electron density map of the nuclear pore complex, which was used as a
representative test case for Tachyon on multi-core CPUs.

Tachyon is an interesting performance test case since it is widely used for
high quality VMD figure and movie renderings as a result of its speed and avail-
ability on all platforms supported by VMD. Even on platforms that support
the GPU-accelerated TachyonL-OptiX [10,15,26] RT engine, it is still occasion-
ally necessary to use the CPU-based Tachyon RT engine for scenes that greatly
exceed GPU physical memory capacity. Tachyon uses a variety of linked lists
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Fig. 9. Visualization of the HIV-1 capsid with pentamers highlighted in yellow, host cell
factor cyclophilin A (CypA) shown in blue [2], docked with a cryo-electron density map
of the nuclear pore complex shown in white. The scene, incorporating direct lighting,
ambient occlusion lighting, and depth of field with large sample counts, was used to
measure Tachyon ray tracing performance on the POWER8 CPU, as shown in Fig. 11.
(Color figure online)

and hierarchical data structures that share some performance characteristics
with molecular structure traversal algorithms in other areas of VMD. Tachyon
currently does not make explicit use of POWER8 VSX vector instructions, and
present-day compilers and languages are not capable of effectively autovectoriz-
ing RT algorithms, so effective use of SMT is of particular interest at present.

Tachyon CPU RT performance was measured for two very different test
scenes and execution conditions, with varying counts of SMT threads per core.
In the first case, shown in Fig. 10, a standalone Tachyon build was run on a sim-
ple scene containing a short DNA segment, but with very high stochastic sample
counts, thereby creating a workload that emphasized floating point arithmetic
and CPU cache performance. The DNA scene is small enough to expect that
all performance-critical Tachyon data structures would be cached entirely on
each CPU, and that NUMA-related performance effects would be minimized.
Figure 10 shows that for the small DNA scene, the use of SMT is beneficial for
performance all the way up to 8 threads per CPU core, or 160 threads in total,
yielding a peak speedup 2.2× the performance achieved using a single thread
per core.
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Fig. 10. Evaluation of the impact of varying per core SMT thread counts on Tachyon
small scene ray tracing performance on POWER8.

Fig. 11. Evaluation of the impact of varying per core SMT thread counts on
VMD/Tachyon ray tracing performance on POWER8, for the HIV-1 scene in Fig. 9.

In the second test case, shown in Figs. 9 and 11, the Tachyon engine built
into VMD was used to render a large scale geometrically complex scene of the
HIV-1 capsid and host cell factor cyclophilin A docked with a cryo-electron den-
sity map of the nuclear pore complex [2]. The HIV-1 scene is representative of
routine visualizations created from ongoing petascale molecular dynamics sim-
ulations. Due to the large size of the HIV-1 scene and the fact that Tachyon is
linked into VMD, the impact of NUMA locality and inter-processor SMP bus
bandwidth are much greater. Since Tachyon inherits the existing distribution
of VMD memory allocations among NUMA nodes and the HIV-1 scene size is
very large, Tachyon’s runtime memory allocations are less uniformly distributed
than when Tachyon is run standalone, and this also leads to increased run-to-run
performance variation. As a result of these effects, the maximum SMT perfor-
mance observed for the HIV-1 test case was roughly 1.3× that of using a single
thread per CPU core. Table 2 summarizes performance results obtained for vary-
ing degrees of SMT threading for the large HIV-1 test case with double-precision
floating point arithmetic on POWER8 and Intel Xeon E5-2660v3. The POWER8
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Table 2. VMD/Tachyon HIV-1 double precision CPU ray tracing performance for
varying numbers of SMT threads per core. The table shown here provides numeric
values for the plot in Fig. 11, and adds performance results for the Xeon E5-2660v3.

SMT Count POWER8 Xeon E5-2660v3

Threads DNA HIV-1 Threads DNA HIV-1

1 20 76.0 s 143.1 s 20 63.7 s 104.9 s

2 40 53.1 s 110.9 s 40 48.4 s 87.1 s

4 80 39.6 s 108.9 s

8 160 33.9 s 109.8 s

system outperformed the Xeon by 1.43× for the (cache-friendly, arithmetic
bound) DNA scene rendered standalone, the Xeon outperforms POWER8 by
1.26× for the large HIV-1 scene rendered by Tachyon within VMD.

4.3 Molecular Dynamics Flexible Fitting Cross Correlation

Molecular dynamics flexible fitting combines molecular structure data from cryo-
electron microscopy and X-ray crystallography with molecular dynamics simula-
tions, to determine all-atom structures of large biomolecular complexes such as
the HIV-1 capsid [1,2]. The calculation of quality-of-fit for structures obtained
from hybrid fitting approaches is computationally demanding, and particularly
when run on tens of thousands of MDFF trajectory frames and when multiple
structural conformations need to be evaluated. To address this challenge, VMD
implements fast algorithms for computing quality-of-fit between all-atom struc-
tures and experimental cryo-electron density maps using hand-coded CPU SIMD
vector instructions and data-parallel CUDA kernels on NVIDIA GPUs [16].

Table 3 reports cross correlation performance for a single trajectory frame from
a large rabbit hemorrhagic disease virus (RHDV) capsid test case [16,27]. The
reported cross correlation performance results were obtained using density map
simulation algorithms implemented using hand-coded POWER8 VSX and Intel
Xeon E5-2660v3 SSE vector intrinsics. The POWER8+Tesla K40m result demon-
strates performance closely approaching the Xeon E5-2687W+Quadro K6000
result previously reported [16]. The closely comparable GPU performance
results are expected since the two GPUs share the same architecture but the
Quadro K6000 has a core clock rate that is roughly 20 % higher.

4.4 Molecular Orbital Calculation

Calculation and display of molecular orbitals (MOs), electron densities, and
molecular electrostatic potentials are helpful steps in the analysis of quantum
chemistry calculations. The key challenge involved in the calculation and display
of MOs and related quantities is the rapid evaluation of complex wavefunctions
on a three-dimensional lattice; the resulting data can then be used for plotting
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Table 3. VMD molecular dynamics flexible fitting (MDFF) quality-of-fit cross corre-
lation analysis performance for the rabbit hemorrhagic disease virus (RHDV) capsid
solved with a 6.5 Å resolution density map [16,27]. On POWER8 platforms, hand-
coded VSX vector instructions are used, providing a 20 % overall performance gain
relative to xlC autovectorization. The use of SMT has negligible performance benefit
on POWER8. On the Intel platforms hand-coded SSE vector instructions are used,
yielding a 12% performance gain compared to the best autovectorization achieved by
the Intel XE 2015 compiler. The difference between the GPU-accelerated performance
results is likely attributable solely to the higher Quadro K6000 GPU clock rate.

SMT POWER8 Xeon E5-2660v3 POWER8 + Xeon E5-2687W +
Count hand-coded VSX hand-coded SSE Tesla K40m Quadro K6000

Threads CC time Threads CC time GPUs CC time GPUs CC time

1 20 1.354 s 20 0.922 s 1 0.488 s 1 0.458 s

2 40 1.345 s 40 0.905 s

4 80 1.334 s

8 160 1.364 s

isocontours or isosurfaces as shown in Fig. 12, and for other analyses. VMD con-
tains data-parallel CPU and GPU kernels for computing MOs on Intel x86 CPUs
optionally paired with NVIDIA GPUs [28,29], and on a variety of ARM SoCs
and CPUs paired with integrated (on-chip) or discrete (add-in board) GPUs [30].

VMD evaluates MOs on a 3-D lattice by decomposing the lattice points
into 2-D planes which are computed independently by different CPU threads
or different GPUs. The workload is dynamically scheduled across the pool of
workers to balance load on hardware of varying capability and in the presence of
external load or operating system interference. Table 4 lists performance results
for the VMD CPU and GPU-accelerated molecular orbital kernels run on a
C60 test case. While the use of POWER8 SMT was beneficial for the plain

Fig. 12. VMD rendering of the atomic structure and molecular orbitals for a vibrating
C60 simulation produced by Terachem.
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Table 4. VMD C60 molecular orbital kernel performance for varying grid sizes, CPU
thread counts and SMT utilization, vectorization approach, and GPU counts. Execu-
tion times are reported in seconds. Speedups within each platform are shown normalized
to the base test case for each platform: vs. plain C++ on POWER8 CPU, vs. plain
C++ on Xeon CPU, and vs. a single Tesla K40m GPU. The 4-GPU run achieved per-
formance about 9× faster than the best POWER8 hand-coded VSX CPU results for
both tests, and 5× and 8× faster than the Xeon E5-2660v3 hand-coded SSE results for
medium and high resolution grid sizes, respectively. POWER8 SMT threading increases
performance by up to 1.85× for the non-vectorized plain C++ implementation, but it
had no measurable impact on the hand-coded VSX implementation.

C60 Grid Size POWER8 Xeon E5-2660v3 POWER8 +
160 Threads 40 Threads Tesla K40m GPUs

C++ VSX C++ SSE 1 2 4

172× 173× 169 1.09 s 0.52 s 2.42 s 0.301 s 0.190 s 0.099 s 0.058 s

1.0× 2.10× 1.0× 8.01× 1.0× 1.91× 3.27×
516× 519× 507 17.57 s 8.03 s 59.18 s 7.14 s 3.49 s 1.76 s 0.91 s

1.0× 2.18× 1.0× 8.28× 1.0× 1.98× 3.83×

C++ algorithm, the lack of impact on the hand-vectorized implementation likely
indicates that it already effectively utilizes all of the POWER8 arithmetic units
even with only 1 thread per core. The 4-way Tesla K40m performance result for
high resolution test case closely matches performance results obtained on the
same GPU hardware on Intel x86 systems. The 4-GPU result outperforms the
POWER8 CPU results using hand-coded VSX instructions by a factor of 9× and
it runs 5× to 8× faster than the Xeon E5-2660v3 CPU results using hand-coded
SSE instructions. The hand-coded VSX and SSE MO kernels for POWER8 and
Intel x86 hardware outperform the best autovectorized C++ loops in each case
by 2× and 8× respectively. We note that it may be possible to further increase
the performance of the hand-vectorized POWER8 VSX loop with additional
tuning work.

5 Conclusions and Future Work

We have presented the adaptation of NAMD and VMD to GPU-accelerated
POWER8 platforms and we have reported performance results for a variety of
algorithms and test cases, and we have provided results for relevent comparison
platforms. The CPU-focused test results presented here demonstrate the poten-
tial for POWER8 SMT to allow non-vectorized code to better utilize CPU func-
tional units. Conversely, we observe that fully-vectorized code does not appear
to benefit from SMT. Further developments that make use of explicit NUMA-
aware memory allocations from private memory arenas should improve VMD-
integrated Tachyon RT performance for large scenes such as HIV-1 by mitigating
the impact of pre-existing memory fragmentation and NUMA locality. We noted
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that the lack of horizontal-add and other vector instructions found on competing
CPUs made development of some VSX kernels more challenging than initially
expected, but that substantial performance gains were still possible relative to
the best compiler-generated code.

The ORNL Crest development system models key attributes of the future
Summit supercomputer. The future Summit system will provide larger mem-
ory capacity, faster POWER9 CPUs and Volta GPUs, and higher performance
intra-node communication paths between the CPUs and GPUs by virtue of the
future NVLink interconnect. While the Crest system provides a programming
environment representative of the future Summit system, not all of the desired
capabilities of Summit are available yet on Crest. At the time of writing, it was
not yet possible to evaluate the performance benefits associated with peer-to-
peer GPU transfers as they are not yet implemented by CUDA 7.5 for Open-
POWER. Several GPU-accelerated graphics-related features of VMD were simi-
larly unavailable for testing due to lack of OpenPOWER versions of the OpenGL
or Vulkan APIs for rasterization, and the associated GLX or EGL context man-
agement APIs [14], the OptiX GPU ray tracing framework [22], or the NVENC
GPU-accelerated video encoding library.
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{t.hater,p.baumeister,d.pleiter}@fz-juelich.de

2 IBM Deutschland Research and Development GmbH, 71032 Böblingen, Germany
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Abstract. Modern servers provide different features for managing the
amount of energy that is needed to execute a given work-load. In this
article we focus on a new generation of GPU-accelerated servers with
POWER8 processors. For different scientific applications, which have in
common that they have been written for massively-parallel computers,
we measure energy-to-solution for different system configurations. By
combining earlier developed performance models and a simple power
model, we derive an energy model that can help to optimise for energy
efficiency.

Keywords: POWER8 · GPU acceleration · Power measurements ·
Power modelling · Energy efficiency

1 Introduction

The power consumption of supercomputers has become a major limiting factor
for further increases in performance. For particularly compute intensive work-
loads like the high-performance Linpack benchmark, currently a power efficiency
of 7 GFlop/s/W can be reached on (smaller) supercomputers [13].

With the goal of keeping the power consumption of an exascale system below
20 MW, an improvement in power efficiency of at least a factor seven is required.
Achieving this goal will require combining multiple strategies.

Leveraging existing system features that impact performance and power con-
sumption (and thus energy-to-solution) is one of them. We review some of these
features available on GPU-accelerated servers based on POWER8 processors.
This includes, e.g., the core clock frequencies of processor and accelerator. Higher
frequencies typically lead to a reduction in time-to-solution and (due to the
behaviour of CMOS technology) unavoidably to an increase in power consump-
tion. In line with previous observations, we observe a reduction of energy-to-
solution for increasing the clock speed, i.e. a “run to idle” clock tuning strat-
egy to be beneficial. For the considered system this effect is particularly large
c© Springer International Publishing AG 2016
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because of the high idle power consumption. The memory sub-system attached
to the POWER processor comprising a larger number of memory buffer chips
contributes significantly to that.

To identify the setting for which energy-to-solution becomes minimal perfor-
mance and power models can be helpful. Performance models enable prediction
of time-to-solution for different parts of a work-load, while the power model is
needed to predict the power that is consumed on average while executing a par-
ticular part of the work-load. Combining both multiplicatively allows to predict
energy-to-solution.

For this paper we consider three different applications that come from differ-
ent research areas. They have in common that they are used to target research
questions, for which significant HPC resources are required. Their performance
characteristics, however, differ significantly. B-CALM is an application for sim-
ulating electro-magnetic fields in dispersive media, which is relevant for devel-
oping photonic products. From the area of materials research we selected the
application KKRnano, which implements the Density Functional Theory (DFT)
method in a particularly scalable way. Finally, we also consider the molecular
dynamics package GROMACS.

With this article we make the following contributions:

1. An overview on opportunities for optimising energy-to-solution on GPU-
accelerated POWER8 servers is given.

2. Results for energy-to-solution measurements for kernels of several relevant
scientific applications and different system configurations are given.

3. A simple power model is derived and combined with available performance
models to model energy-to-solution.

After providing background on the relevant technologies in Sect. 2 we discuss
the considered applications in Sect. 3 and the options to tune for energy-efficiency
in Sect. 4. In Sect. 5 we present results from power measurements for different
configurations. Based on these results we derive power and energy models with
empirically determined parameters in Sect. 6. Before presenting our conclusions
in Sect. 8, we give an overview on related work in Sect. 7.

2 Technology Background

All results presented in this paper have been obtained on a single POWER8 8247-
42L Server [8]. This server, which comprises 2 POWER8 Dual-Chip Modules
(DCM), was the first to support acceleration by NVIDIA GPUs. The server
considered here is equipped with 2 Tesla K40m cards.

Each of the POWER8 modules comprises 5 cores, i.e. there are 20 cores
per node. Each core offers two sets of the following instruction pipelines: fixed
point (FXU), floating-point (VSU), pure load (LU) and a load-store unit (LSU).
Instructions are processed out-of-order to increase instruction level parallelism.
The cores feature 8-way Simultaneous Multi-threading. The two VSU support
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VSX (Vector-Scalar eXtensions) instructions, including two-way SIMD, double-
precision fused multiply-add instructions. This results in a theoretical peak per-
formance per node

B
(CPU)
fp = Ncore · fCPU · 8Flop ≤ 590GFlop/s, (1)

where Ncore denotes the number of cores (here Ncore = 20) and fCPU is the core
clock frequency.

Each POWER8 processor is connected to eight external memory buffer chips
(Centaur chips). Each of these 16 chips is connected with one link to one of the
POWER8 processors, which has a bandwidth of 16 GByte/s and 8 GByte/s for
reading and writing, respectively.

Each Tesla K40m hosts a GK110B GPU of the Kepler generation that com-
prises NSM = 15 streaming multi-processors. Each streaming multi-processors
has 64 double precision floating point pipelines capable of executing one fused
multiply-add instruction every clock. This results in a theoretical peak perfor-
mance per GPU

B
(GPU)
fp = NSM · fGPU · 128Flop ≤ 1622GFlop/s, (2)

where fGPU is the GPU’s clock frequency. The device memory is based on
GDDR5 memory technology and is directly attached to GK110B GPU with
a theoretical maximum bandwidth of 288 GByte/s.

The POWER8 processor provides an on-chip controller (OCC) to measure
a set of sensors in the hardware. The data is available out-of-band via a ser-
vice processor and can be read out by a tool called Amester [15,28], which
recently has been made available open-source.1 The power sensors considered
in this publication are sampled with an interval of 0.25 ms. The read-out gran-
ularity depends on the number of sensors, each requires an additional latency
of typically 200 ms. The data is, therefore, gathered in irregular intervals and
is re-sampled at evenly spaced intervals of Δτ = 0.1 s. To calculate the overall
energy consumption we have to aggregate the power consumption measurements
Pi and multiply this with the measurement interval Δτ . The sensor does not
allow for exactly attributing consumed power to individual server components.
For instance, the sensor for the 12 V domain includes different I/O devices, also
covering part of the power consumed by the GPUs. We combine the values of
these sensors when presenting power traces, thus overestimating the actual power
consumed by the GPU.2

As can be seen from Fig. 4, the read-out time interval can be large compared
to the time scale on which power consumption changes. We verified, however,
that energy-to-solution values determined from repeated measurements for the
same application kernel are consistent with a reasonable bound3, which we take
as an indication that the power sensor sampling rates are sufficiently fine.
1 https://github.com/open-power/amester.
2 Comparison with nvidia-smi indicates an overhead of roughly 40W measured with

idle system.
3 Less than 15 % of the mean value in pathological cases.

https://github.com/open-power/amester
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3 Applications

KKRnano is an application from materials research and features a very high level
of scalability [39]. It is based on the Density Functional Theory (DFT) method
that enables an accurate description of the electronic properties of a material.
Instead of solving for the many-electron wave-function, an effective potential is
utilised, treating the problem as a single electron system via the Kohn-Sham
equation ĤΨ = EΨ . Here Ĥ denotes the Hamilton operator, E the energy and
Ψ the electron wave functions. KKRnano finds solutions to this equation in the
form of the Green function Ĝ(E) = (E − Ĥ)−1, as proposed by Korringa, Kohn
and Rostoker (KKR) [4,24,25].

In large systems, where the number of atoms Natom � 1000, the Green func-
tion formulation can be approximated by systematically truncating long-ranged
interactions between well-separated atoms. This reduces the overall complexity
of the method from cubic to linear and, hence, large systems with 100, 000 atoms
and more become feasible. The high level of exposed parallelism can be exploited
using MPI plus OpenMP or MPI plus compute accelerators, like GPUs.

Most of the computational efforts are spent on solving a linear system Λγ = ω
for each atom. The matrix Λ is block-sparse with a typical block size b = 16.
The inversion is done locally on a single node using the Quasi Minimal Resid-
ual (QMR) method, an iterative solver [16], modified to work over matrices and
vectors with block structure. For the following discussion, we focus on the appli-
cation of the operator to a block-structured dense vector as the central part of
the QMR solver. KKRnano utilises double-precision complex numbers, requir-
ing 16 Byte per element and 8 Flop to perform a complex multiply-accumulate
operation.

Our performance modelling approach is based on the information exchange
function concept [5,30], which captures as a function of the problem size the
amount of information that has to be exchanged within a computer architecture.
On a single node the most important factors are the number of floating-point
operations Ifp as well as the amount of data loaded and stored, namely Ild and
Ist. We further need to consider the data exchanged between the accelerator and
its host, Iacc. For the KKRnano kernel we previously derived these information
exchange functions:

Ifp = 2Niter · Natom

Nnode
· Ntr · Ncl · b3 · 8Flop , (3)

Ild = 2Niter · Natom

Nnode
· Ntr · Ncl · b2 · 16Byte , (4)

Ist = 2Niter · Natom

Nnode
· Ncl · b2 · 16Byte , (5)

Iacc =
Natom

Nnode
· (2 + Ncl) · Ntr · b2 · 16Byte . (6)

To construct a performance model, we follow a procedure described in [3],
where we made the assumption that latency depends linearly on the amount
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Table 1. Parameters used for all KKRnano benchmark runs.

Implementation Natom/Nnode Niter Ntr Ncl b

CPU 20 1000 1000 13 16

GPU 20 10000 1000 13 16

of exchanged information. When executing the application on the POWER8
processors, we expect it to be bound by floating-point operation throughput,
because of the relatively high memory bandwidth. On the GPU, however, we
expect the memory bandwidth to be the limiting factor. Additionally, we have
to take the time needed to exchange data between host and device into account.
We, therefore, make the following semi-empirical modelling ansatz:

ΔtCPU
solver = aCPU

0 + aCPU
1,fp Ifp (7)

ΔtGPU
solver = aGPU

0 + aGPU
1,mem(Ild + Ist) + aGPU

1,accIacc , (8)

where the coefficients have to be determined by fitting this ansatz to performance
measurements. As the constants offsets are sufficiently small, we set aCPU

0 = 0
and aGPU

0 = 0.

B-CALM (Belgium-California Light Machine) is a research application for
studying photonics or in general electromagnetic waves in media [41]. It imple-
ments the Finite-Difference Time-Domain (FDTD) numerical method for sim-
ulating classical electrodynamic interaction, that is to solve Maxwell’s equa-
tions in a medium [37]. The evolution of the discretised electromagnetic fields is
described by a first-order spatial and temporal difference equation, alternating
between magnetic and electrostatic components.

B-CALM exploits the inherently high level of parallelism in the FDTD algo-
rithm by making use of GPUs. Significant gains in performance compared to
CPU-only-implementations have been reported for FDTD in general [27,33,41].
Realistic problems require the use of multiple distributed GPUs due to the mem-
ory footprint.

We apply a similar semi-empirical performance modelling approach as for
KKRnano [3]. We consider a single node where the simulation domain is paral-
lelised over p = 2 GPUs in z-direction. The total time taken for an update step
Δt can be decomposed into three contributions: boundary update Δtbnd, update
of the interior domain Δtbulk and exchange of the boundary Δtcom between the
direct neighbours of the p processes, where the last two operations are over-
lapped. Our semi-empirical performance model ansatz is:

Δt = Δtbnd + max (Δtbulk,Δtcom) , (9)
Δtbulk = abulk + V · bbulk 168Byte, (10)
Δtcom = acom + S · bcom 48Byte, (11)
Δtbnd = abnd + S · bbnd 336Byte, (12)
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Table 2. Parameters used for all B-CALM benchmark runs.

p = Nproc/Nnode Lx Ly Lz

2 512 512 96

where V = (Lx/p − 2) · Ly · Lz is the local sub-domain’s volume excluding halo
layers and S = Ly ·Lz corresponding halo volume. For our benchmarks, we utilise
a one-dimensional domain decomposition with the parameters summarised in
Table 2.

GROMACS simulates Newtonian equations of motion to perform molecular
dynamics. It is primarily designed for biochemical molecules like proteins, lipids
and nucleic acids. A very important design goal of GROMACS is high perfor-
mance which is achieved through algorithmic optimisations and by exploiting all
available hardware resources. To achieve the latter it uses intrinsic functions for
SIMD vectorisation and supports MPI and OpenMP for parallelisation on CPUs.
CUDA C is used to accelerate the calculation of the non-bonded force compo-
nents on NVIDIA accelerators. GPU accelerated runs of GROMACS utilise task
parallelism between different force components to maximise resource utilisation,
i.e. overlap CPU and GPU work. GROMACS applies a dynamic CPU/GPU load
balancing, however, for optimal efficiency both parts – CPU and GPU – in the
system need to be balanced [1].

For all runs of GROMACS in this article a water box with 1 million water
molecules, i.e. 3 million particles, was simulated for 12000 time steps correspond-
ing to 24 pico seconds of simulation time. We selected the Particle Mesh Ewald
method for the long-range electrostatics and applied a domain decomposition
with 40 domains. Each domain is processed by one MPI rank with 4 OpenMP
threads and respectively 20 domains share a GPU.

4 Tuning for Energy Efficiency

The energy E required to execute a computational task is given by

E =
∫ t0+Δt

t0

dτ P (τ) , (13)

where t0 is the time when the computational task is started, Δt the time needed
to execute the task, and P (τ) the power consumed by the system at time τ . If
we assume the power consumption during execution of the kernel to be constant,
i.e. P (τ) = P then the relation simplifies to E = P · Δt.

For the given node architecture, we identify the following options for changing
the implementation or the execution environment such that Δt and P change:

1. Dynamic voltage and frequency scaling (DVFS) capabilities of the POWER8
processor.

2. Exploitation per POWER8 core DVFS settings and low-power states.
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3. Modification of the GPU’s clock frequency fGPU.
4. Change of GPU driver settings.
5. Use of algorithms optimised for energy-to-solution.

The frequency f a processing element is running at is exerting a signifi-
cant influence on its power drain as voltage has to be increased when f is
raised. The power consumption effectively scales as P ∝ fγ , with γ � 3.
On POWER8 the clock frequency can be managed by restricting the range
of frequencies used by the Linux4 kernel governor. The strategy employed by
the governor follows the on-demand setting and results in the highest avail-
able frequency being chosen during our kernel’s runtime and a power saving
state in between runs. The available frequencies are distributed almost uni-
formly between 2.061 GHz and 3.690 GHz in 50 steps, out of which we chose
fCPU ∈ {2.061, 2.294, 2.493, 2.693, 2.892, 3.092, 3.291, 3.491, 3.690} GHz.

The POWER8 processor comprises a PowerPC5-based On-Chip Controller
(OCC), which provides for real-time control of per-core clock frequency and
power states [17]. Additionally, cores can be switched off under control of the
operating system enabling software to reduce the number of active cores. Instead
of user selection of active cores, one may use thread pinning to move all work-
load to a subset of cores and rely on the OS to detect unused cores and adjust
frequency and power settings accordingly.

Recently, also GPUs became able to operate at different clock frequen-
cies. For the K40 GPU we considered 4 different clock states, namely fGPU ∈
{666, 745, 810, 845}MHz. Changing the GPU frequency of the K40 GPU is pos-
sible via application clock settings which are accessible from the NVIDIA Man-
agement Library (NVML) or the nvidia-smi command line tool [26].

The architecture considered here is best used from an energy-efficiency point-
of-view if significant parts of the application can be off-loaded to the GPUs. The
reason is that the GPU typically requires less energy per floating-point operation.
In many cases, there is no concurrent execution of tasks both, on CPU and GPU,
i.e. the CPU should be largely inactive while a kernel is executed on the GPU.
However, by default the GPU driver is polling on an active lock while waiting
for a kernel to complete. Alternatively, the driver can yield its thread to the
Linux kernel scheduler and thus avoid polling, which is achieved by changing
the device flags from cudaDeviceScheduleSpin to cudaDeviceScheduleYield.
This might come with a small cost penalty for the driver as notification through
the kernel may be delayed.

Recently, optimisation of algorithms for energy-efficiency attracted increasing
attention. In particular, in case of solving linear systems often a choice between
different algorithms exists (see, e.g., [22] for a recent investigation). We have not
pursued this option within the scope of this paper.

4 Linux is a registered trademark of Linus Torvalds in the United States, other coun-
tries, or both.

5 Trademark of IBM in USA and/or other countries.
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5 Measurements Results

Exploitation per POWER8 core DVFS settings and low-power states. In Fig. 1
we show power measurements for the KKRnano solver running either on 20 or
10 cores. We observe that the additional power consumed by the processor after
starting the execution of the kernel is reduced by almost a factor 2. At the same
time, the execution time Δt almost doubles. Given the high base power load for
the processors, memory and GPUs, the overall reduction in power consumption
is less than 15 % and thus energy-to-solution increases by more than 70 %.

Change of GPU driver settings. For the same application kernel, we analysed the
power consumption when off-loading this to the GPUs. While a kernel is running
on the GPU, there are no application tasks running on the CPU. Nevertheless, a
significant increase of the power consumption beyond what is consumed without
the user application running, as can be seen in Fig. 2. Between kernel launches
the CPU performs tasks for steering the solvers progress. We investigated the
effect of advising the CUDA driver to yield its thread to the operating system
scheduler when possible. No effect was observed, consistently for both KKRnano
and BCALM.

Modification of clock frequencies. Next we consider the power consumed by appli-
cations running on the POWER8 processor at different clock frequencies fCPU.
In Fig. 3 we show the power consumed by the processors, the memory subsys-
tem as well as the GPU (including the other I/O devices attached to the 12 V
power rail) during execution of the KKRnano solver on the CPU. As expected,
the power consumption increases with fCPU, while the execution time reduces.

Fig. 1. Power consumption for four invocations of the KKRnano solver running on the
CPU, only. 40 threads are distributed either over 20 (1st and 3rd invocation) or 10
cores (2nd and 4th).
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Fig. 2. Power consumption for two invocations of the KKRnano solver running on the
GPU with the GPU driver polling for completion of the kernel (Spin) or yielding its
thread to the operating system (Yield).

Table 3. Energy-to-solution for the KKRnano solver running on the CPU in units
of kJ.

fCPU (GHz) CPU Disk Fan GPU IO Memory Total

2.06 20.6 2.6 5.8 1.9 4.2 15.5 50.5

2.29 20.3 2.4 5.4 1.7 3.8 14.2 47.8

2.49 20.2 2.2 5.0 1.6 3.5 13.3 45.8

2.69 20.2 2.1 4.7 1.5 3.3 12.5 44.4

2.89 20.3 1.9 4.4 1.4 3.1 11.8 42.9

3.09 20.4 1.8 4.1 1.3 2.9 11.1 41.7

3.29 20.5 1.7 4.0 1.2 2.8 10.5 40.7

3.49 21.5 1.7 3.8 1.2 2.7 10.2 41.1

3.69 23.0 1.6 3.5 1.2 2.6 9.8 41.6

Results for energy-to-solution as a function of fCPU are documented in Table 3.
For small clock frequencies the increase in time-to-solution overcompensates the
reduction in power consumption, which causes energy-to-solution to increase. It
is thus beneficial to use a higher clock frequency.

As shown in Fig. 4, a similar effect is observed for B-CALM, where the kernels
are running on the GPU. Since the kernels are completely running on the GPU,
we consider here only the case where the processor clock is kept fixed at minimal
value and fGPU is varied. In Tables 4 and 5 we show our results for energy-to-
solution for B-CALM as well as the GPU-accelerated version of the KKRnano
solver when using different GPU clock settings. In both cases we observe that
larger fGPU result in smaller energy-to-solution.
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Fig. 3. Power consumption for multiple invocations of the KKRnano solver running
on the CPU for different settings of fCPU.

Table 4. Energy-to-solution for B-CALM in units of kJ.

fCPU (GHz) fGPU (MHz) CPU Disk Fan GPU IO Memory Total

2.06 666 4.1 0.8 1.8 3.8 2.9 4.5 17.8

2.06 745 4.0 0.8 1.8 3.8 2.8 4.5 17.7

2.06 810 3.5 0.7 1.7 3.7 2.5 3.9 15.9

2.06 875 3.2 0.6 1.5 4.0 2.5 3.5 15.2

Fig. 4. Example of a GPU power trace over multiple invocations of B-CALM. GPU
clocks are set to each of the available values.
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Table 5. Energy-to-solution for the KKRnano solver running on the GPU in units
of kJ.

fCPU (GHz) fGPU (MHz) CPU Disk Fan GPU IO Memory Total

2.06 666 7.1 1.1 2.5 6.3 4.0 5.9 26.8

2.06 745 6.0 1.0 2.2 6.4 3.8 5.4 24.8

2.06 810 5.9 0.9 2.0 6.6 3.6 5.0 24.0

2.06 875 5.6 0.8 1.9 7.1 3.5 4.7 23.7

As opposed to the other two codes, GROMACS has a task parallelisation
scheme that allows to execute tasks on CPU and GPU concurrently. Data is
exchanged at defined points in the algorithm [29]. As both, the CPU and the
GPU consume a significant amount of power even when not being in use, an
imperfect overlap of tasks running on any of the 4 processing devices will result
in a loss in energy efficiency. Table 6 shows the energy consumption and time to
solution for a single run as a function of fGPU for different processor frequencies
fCPU. We observe that changing the processor frequency fCPU has a much larger
effect on energy-to-solution than changing the frequency of the GPU fGPU. The
energy to solution is reduced by 8 % to 17 % when using the higher CPU fre-
quency, while variations of fGPU change the energy to solution by at maximum
7 %. While the energy consumed by the GPU increases for larger clock frequen-
cies (up to 40 % with low fCPU, up to 22 % for high fCPU), the energy consumed
by the remaining parts of the compute node is reduced (by up to 11 %) due to
the shorter time to solution (see Fig. 5). On the other hand, increasing fCPU

has a even more significant effect on time-to-solution (up to 32 %), which over-
compensates the increase in CPU power consumption (up to 20 %). The net
effect is a reduction of energy-to-solution at higher clock speed, ranging between
8 % and 20 %.

Finally, we give power measurements for the behaviour of the STREAM
benchmark at different clock settings in Table 7 and the corresponding power
trace in Fig. 6. Notably, the achieved performance does not depend on the core

Table 6. GROMACS energy to solution in kJ.

fCPU (GHz) fGPU (MHz) CPU Disk Fan GPU IO Memory Total Time (s)

2.06 666 365.6 44.6 101.3 203.0 181.4 303.2 1199.2 1395

2.06 745 363.6 45.1 103.2 247.2 191.1 304.4 1254.6 1410

2.06 810 352.1 43.4 98.7 259.7 187.1 293.4 1234.4 1359

2.06 875 349.8 43.0 97.6 284.0 188.7 290.9 1253.8 1344

3.69 666 457.2 33.1 75.4 168.5 139.7 234.0 1108.0 1041

3.69 745 426.3 30.2 69.0 170.1 130.1 215.1 1040.8 949

3.69 810 426.7 30.2 68.3 175.0 129.9 215.1 1045.2 949

3.69 875 403.3 28.9 65.3 205.6 130.7 203.5 1037.2 907
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Fig. 5. GROMACS power trace for different GPU clock settings.

Table 7. Performance of STREAM as a function of the CPU frequency.

fCPU (GHz) Add (GB/s) Copy (GB/s) Scale (GB/s) Triad (GB/s)

2.061 195.1 222.1 338.5 289.7

2.294 197.0 221.8 338.4 293.5

2.493 195.0 221.4 334.5 291.8

2.693 197.4 221.7 337.9 293.9

2.891 196.3 218.6 327.0 293.4

3.291 197.6 222.1 334.3 296.5

3.690 196.0 219.2 330.0 293.1

clock. This is explained by the fact that the serial link between CPU and off-
chip memory controller runs at a fixed speed. In line with previous observations
[12,31], one can conclude that for purely memory bandwidth bound operations
the clock speed can be reduced without impacting performance.

6 Power and Energy Modelling

Our strategy to derive an energy model is as follows. We only consider the case
where all options for tuning for energy efficiency except for changing clock speeds
of CPU and GPU are applied. Furthermore, we make the assumption that power
consumption during application kernel execution is constant. The challenge thus
reduces to the design of a performance model and a power model to determine
time-to-solution Δt and power consumption P , which we assume to be constant
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Fig. 6. Example of a CPU power trace over the four tasks in the STREAM micro-
benchmark. Three of used values for the CPU clock are shown.

during the time interval Δt, as a function of the CPU and GPU clock frequencies
fCPU and fGPU, respectively.

For deriving a power model we choose for a phenomenological approach,
which has the advantage of being sufficient simple to be of practical use. The
concerned compute devices are based on CMOS circuits, where power is typically
split in two components: A static power consumption due to leakage currents and
a dynamic contribution due to charging and de-charging the capacitive elements
of the circuit. The latter is assumed to depend linearly on the clock frequency
and quadratically on the supply voltage. Since the latter needs to be increased
for higher clock frequencies, we can in first approximation assume a cubic depen-
dency on the frequency. We therefore make the following generic ansatz in terms
of the frequency f :

P (f) = p0 + p3f
γ , (14)

with γ = 3 fixed.6 The parameters p0 and p3 will be determined through least-
square fits to experimental data.

In Fig. 7 we show results for power consumption of the KKRnano solver
as well as 4 different STREAM benchmarks, which are all executed on the
POWER8 processor, as a function of fCPU. Multiple measurements have been
obtained by executing the application kernels and benchmarks multiple times in
sequence. Active phases were selected based on thresholding the power for the
GPU halfway between minimum and maximum values. We observe that Eq. (14)
using f = fCPU parametrises the measurements very well.

The instruction mix for the KKRnano kernel is similar to the triad
micro-benchmark. However, the KKRnano kernel achieves a significantly
higher instruction throughput when compared to triad (instruction-per-cycle
IPC = 1.44 versus 0.24 when using 40 threads). The higher throughput is mainly

6 We also performed fits with γ as a free parameter, where we found γ � 3.
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Fig. 7. Power measurement results for different settings of fCPU for the KKRnano
kernel running on the CPU (left) and the STREAM benchmarks (right). The solid
lines show results from fits to Eq. (14).

Fig. 8. Fitting the model against KKRnano GPU (left) and B-CALM (right) experi-
mental results

due to the data reuse in the matrix-matrix multiplication and the resulting cache
efficiency. This is consistent with the observation that p3 is larger for KKRnano
than for the STREAM benchmarks.

We extended the analysis to the GPU-accelerated application kernels, where
we varied fGPU. Results for KKRnano and B-CALM are summarised in Fig. 8.
Again we observe that Eq. (14) provides a good parametrisation of the measured
power.

Next, we extend the performance model for KKRnano introduced in Eq. (7)
by considering the parameter aCPU

1,fp to be a function of the clock frequency fCPU.
We observe from Fig. 10 that the results for different fCPU can be parametrised
as follows:
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Fig. 9. Estimated distributions of power drain for fCPU = 3.69 GHz for the four
STREAM micro-benchmarks on the CPU level (left) and on the node level (right).

Fig. 10. KKRnano performance model results versus processor clock fCPU.

1
aCPU
1,fp (fCPU)

= bCPU
1,0,fp + bCPU

1,1,fp · fCPU (15)

with the empirical factors bCPU
1,0,fp = 0.28GFlop/s and bCPU

1,1,fp = 5.01GFlop.
Plugging this result into Eq. (7) gives us ΔtCPU

solver as a function of the processor
clock speed fCPU. We combine this with the power model of Eq. (14) to derive
the following energy model:

ECPU
solv = P (fCPU) · Δt(fCPU) = Ifp

p0 + p3 · f3
CPU

bCPU
1,0,fp + bCPU

1,1,fp · fCPU
. (16)
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Fig. 11. Modelled energy-to-solution metric for the KKRnano CPU solver as a function
of the processor core clock fCPU. In comparison the measured data from Table 5 is
shown.

In particular, if p0 is large compared to p3 · f3
CPU and if bCPU

1,0,fp is small
compared to bCPU

1,1,fp · fCPU the frequency dependence may be dominated by
the denominator. In this case we expect ECPU

solv ∝ f−1
CPU. Once fCPU becomes

large, the numerator will dominate such that ECPU
solv ∝ f2

CPU. In Fig. 11 we plot
model results for a wide range of processor clock frequencies. We observe initially
energy-to-solution to drop, until for large frequencies the numerator prevails.

Consistent with the results shown in Table 3 we determine an – in terms of
energy-efficiency – optimal clock setting, namely fCPU = 3.5GHz. We find our
model systematically underestimating the required energy by maximally around
7% over the range 2–4 GHz. KKRnano on the CPU achieves energy efficiencies
of around 45 J/GFlop or the equivalent of 22.2MFlop/J.

7 Related Work

Given the growing importance of power consumption of modern HPC systems,
there is a growing number of papers reporting on work related to power mea-
surements as well as power modelling.

An early framework for accurate and scalable power profiling is PowerPack
[18], which relies however on power data acquisition devices to be added to
all cluster nodes. Another framework is PowerScope, which was developed for
mobile compute platforms [14]. Some node architectures feature fine-grained
power measurements capabilities, which are often based on reconfigurable hard-
ware components for high-frequency read-out of power sensors (see, e.g., [20]).
Demmel and Gearhart proposed to use on-chip counters, more specifically Intel’s
Running Average Power Limit (RAPL) interface, for measuring energy consump-
tion at subroutine level [10]. Investigations about the use of the RAPL interface
for measuring memory power can be found in the literature [9]. Such kind of mea-
surements using counters that can be read-out from the processor have become
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easier with the integration into performance measurements frameworks like PAPI
[42]. An integration of the the node-level power measurement framework Amester
into Vampir has been reported by Knobloch and others [23]. Another approach
is taken, where power measurement capabilities are integrated into a Linux ker-
nel module [32]. Both, the PowerPack as well as the PAPI framework have been
used to explore the energy footprint of linear algebra algorithms [11].

Other work aims on modelling power consumption at processor level. For
instance, a power measurement and runtime power modeling framework for the
Intel Netburst architecture is presented [21]. Processor level power models have
also been proposed and used in the context of processor selection to identify,
e.g., processors that yield a certain frequency in a given power budget [45]. At a
time, when direct power measurement capabilities were largely non-existing, Van
Bui and others advocated using power models that used performance counters
as input, for estimating power consumed by applications [6]. Such approaches
can be exploited for dynamic profitability estimation of dynamic voltage and
frequency scaling (DVFS) [12,31].

With GPUs becoming more widely used as computational devices, research
was started on power models for GPUs. Statistical methods to model power and
energy consumption of common high performance kernels have been employed
successfully [19]. In a new approach hardware performance counter data is
combined with machine learning to model power and performance for modern
GPU-based systems [34]. Also Wu and others applied machine learning in their
work [44].

Other approaches to power modelling target numerical kernels. Statistical
methods like multi-variable regression are used to model the power and perfor-
mance of the High-Performance Linpack benchmark [36]. Model parameters are
application parameters like matrix size or block size. The same numerical ker-
nel is also considered [7]. Power models for another important numerical kernel,
namely Cholesky factorisation, are considered using a semi-analytical approach
[2]. Machine learning techniques are also employed to create application specific
power models [40]. Input parameters include application specific plus system
parameters, like clock frequency. For an extensive survey of power and energy
efficient techniques for high performance numerical linear algebra operations we
refer to the work of Tan and others [38].

Performance models for more complex applications are, e.g., considered in
[43]. Here Wittmann and others use models to explore energy efficiency of a com-
putational fluid-dynamics (CFD) application based on the Lattice Boltzmann
method on Intel Sandy Bridge multi-core processors. They combined an ana-
lytic performance model with a simple phenomenological power model. A semi-
analytical performance and power model for another CFD application, namely
a mini-application version of the spectral element method based code Nek5000,
is presented in [35].
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8 Summary and Conclusions

In this paper we investigated for several scientific applications, how energy effi-
ciency of currently available, GPU-accelerated POWER8 servers can be opti-
mised. We discussed several options for how to change application and/or sys-
tem configuration such that energy-to-solution for a given workload could be
reduced. We found that, in particular, adjusting processor or GPU clock have
major impact on energy-to-solution. Except for the STREAM benchmarks we
found that applications typically benefit from higher clock speeds. This behav-
iour can be explained by the relatively high base power consumption. Within
a certain range of clock frequencies it is thus more beneficial to reduce time-
to-solution by using higher clock frequencies. For applications running on the
processor only, this applies, however, only to applications that are limited by
instruction throughput.

Furthermore, we found that the measured power consumption can be
described by a simple phenomenological power model, which describes power
consumption as a function of the CPU or GPU clock frequency. For one of the
application kernels, the KKRnano solver, we extended a performance model to
include variations of the processor clock frequency. By combining the perfor-
mance and power model we derived a simple energy model. The curve shown in
Fig. 11 is based on four parameters, only, which are relatively easy to determine.
This can be used to tune the clock frequency. For KKRnano the model results
and measurements lead to a reasonably consistent results for the CPU clock
frequency fCPU that minimises energy-to-solution.

A significant fraction of the base power consumption, i.e. the power that is
consumed without an application running, is due to the memory subsystem. The
base power consumption on servers based on POWER8 processors with a smaller
number of memory buffer chips is lower and therefore the clock frequency, for
which power consumption is minimised, is likely to be smaller. The picture is
expect to change again for the recently announced POWER9-SO processors with
directly attached memory.
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Georgiou, Y.: HDEEM: high definition energy efficiency monitoring. In: Energy
Efficient Supercomputing Workshop, E2SC 2014, pp. 1–10, November 2014

21. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: method-
ology and empirical data. In: 2003 Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-36, pp. 93–104, Decem-
ber 2003

22. Klav́ık, P., Malossi, A.C.I., Bekas, C., Curioni, A.: Changing computing paradigms
towards power efficiency. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci.
372(2018), 20130278 (2014)

23. Knobloch, M., Foszczynski, M., Homberg, W., Pleiter, D., Böttiger, H.: Map-
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Abstract. In this article, we present the algorithmic adaptation and
code re-engineering required for porting highly successful and popular
planewave codes to next-generation heterogeneous OpenPOWER archi-
tectures that foster acceleration and high bandwidth links to GPUs. Here
we focus on CPMD as the most representative software for ab initio
molecular dynamics simulations. We have ported the construction of the
electronic density, the application of the potential to the wavefunctions
and the orthogonalization procedure to the GPU. The different GPU
kernels consist mainly of fast Fourier transforms (FFT) and basic linear
algebra operations (BLAS). The performance of the new implementa-
tion obtained on Firestone (POWER8/Tesla) is discussed. We show that
the communication between the host and the GPU contributes a large
fraction of the total run time. We expect a strong attenuation of the com-
munication bottleneck when the NVLink high-speed interconnect will be
available.

Keywords: CPMD · POWER8 · CUDA · NVlink · FFT ·
Gram–Schmidt

1 Introduction

Ab initio molecular dynamics (AIMD) is still one of the most commonly used
approaches for calculating the time evolution of molecular and solid state systems
under ambient conditions of temperature and pressure. Specifically, AIMD is
particularly suited for the simulation of complex molecular systems that undergo
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important reorganizations of their electronic structure (bond breaking and bond
forming), and for which the design of a classical force field is very cumbersome.
Essential to all AIMD techniques is the calculation of the molecular potential
and the corresponding forces obtained from the derivatives of the potential with
respect to the nuclear coordinates. These forces are then used to solve the Newton
equation of motion for calculating of the nuclear trajectories.

Within density functional theory (DFT), the molecular Hamiltonian is
mapped (in principle exactly) into a system of noninteracting particles sub-
ject to a compensating local external potential (the exchange-correlation (xc)
potential), for which we need approximations.

CPMD [1] uses a pseudopotential-based Kohn–Sham DFT description of the
electronic structure in which the Kohn–Sham orbital and the electronic density
are expanded in a plane-wave basis set. In addition, working with plane waves
has the important advantage of simplifying the calculation of energies and forces;
thus some parts of the total energy (such as the kinetic term) are efficiently
computed in the Fourier (reciprocal) space, whereas other parts, like the Hartree
energy and the interaction with external fields, are accurately evaluated in the
real (direct) space. The limiting steps in the plane-wave implementation of AIMD
codes consist in (a) the forward and backward Fourier transforms (FFT) [3]
(wavefunctions, potentials, and energy terms) and (b) the orthogonalization of
the wavefunctions.

The combined use of plane waves and pseudopotential together with highly
optimized algorithms for the computation of energies and forces made CPMD
one of the most efficient DFT-based AIMD codes, with a documented scaling
performance that extends to one million computing cores [5].

The advent of data-centric OpenPOWER systems based on the IBM,
NVIDIA and MELLANOX collaboration offers a new potential for scalability
and performance that leads to Exascale systems. Here, we present our strat-
egy plans in migrating CPMD to the data-centric systems and summarize our
progress so far.

2 Methodology

The basic task in Kohn–Sham based DFT is the minimization of the energy
density functional with respect to the Kohn–Sham orbitals {φi(r)}

Etot = min
{φi}

EKS [{φi(r)}] , (1)

where

E[{φi(r)}] = Ts[{φi(r)}] +
∫

drVext[{φi(r)}]ρ(r)

+
∫

drVH [{φi(r)}]ρ(r) + EXC[{φi(r)}],

and Ts[{φi(r)}] is the kinetic energy, Vext[{φi(r)}] is the external potential gen-
erated by the nuclei, VH [{φi(r)}] is the Hartree (Coulomb) term, EXC[{φi(r)}] is
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the exchange correlation energy, and ρ(r) =
∑N

i=1 |φi(r)|2 is the electronic den-
sity. Index i runs through the N states of the system. The minimization of (1)
leads to a self-consistent set of Kohn–Sham equations

[
−1

2
∇2

i + Veff[ρ]
]

φKS
i (r) = εiφi(r)KS ,

Veff[ρ] = Vext + VH [ρ] + Vxc[ρ],

Vxc[ρ] =
δExc[ρ(r)]

δρ(r)
.

(2)

Numerically, the solution of the Kohn–Sham equations (2) requires a direct
minimization algorithm that preserves the orthogonality among the Kohn–Sham
orbitals. To optimize this process, Bekas and Curioni [2] recently proposed a
block variant of Gram–Schmidt that ensures high processor performance and
excellent scaling. The new method exploits data locality to allow the best map-
ping on the cache-memory hierarchies of modern processors and also enable opti-
mal utilization of the memory subsystem of hardware accelerators such as GPUs.
Unlike the current state of the art, the simplicity of the new schemes, inherited
from the original Gram–Schmidt method, renders them ideal for enabling much
needed fault-tolerance properties when they are deployed on massively parallel
computing systems.

High efficiency and numerical scalability in CPMD are achieved thanks to
the use of the plane-wave basis set for the expansion of the Kohn–Sham orbitals

φi(r) =
1√
Ω

∑

G

φ̃i(G)eiG·r,

where Ω is the volume of the simulation box, and G is the index that runs
through the reciprocal space vectors. The Fourier coefficients φ̃i(G) are then
related to the Kohn–Sham orbital through the inverse FFT

φ̃i(G) =
1√
Ω

∑

r

φi(r)e−iG·r .

The number of operations required for the conversion of a general function f

f(r) FFT⇐⇒
invFFT

f̃(G),

using 3d FFT is approximately on the order of 5N log N , where N is the number
of grid points in the direct space.

3 GPU Implementation

Achieving overlap between data transfer and computation requires the use of
CUDA streams. A stream is a sequence of operations that are executed on the
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GPU in the same order as they are launched from the host. Operations between
streams can be interleaved and potentially run concurrently. Below we summa-
rize the three main computational kernels that we have ported to CUDA so
far. In the following, on-GPU FFT transforms and BLAS operations kernels are
implemented in the cuFFT and cuBLAS libraries, respectively.

Construction of the Electronic Density. The reverse Fourier transform of
the N states φi(r) is distributed over the NS streams that work concurrently.
Each stream is assigned to a CPU thread and performs the sequence of operations
needed to transform a state φ̃i(G) to the corresponding state density ρi(r) =
|φi(r)|2 = |invFFT(φ̃i(G))2|. The summation over i of the N state densities
finally gives the desired electronic density ρ(r).

The computation of a state density starts with an asynchronous communi-
cation of a state φi(G) from the host to the device; the GPU performs an 1-D
FFT and then back copies the data to the host. The host proceeds to the inter-
process communication (MPI all-to-all) while taking care of packing/unpacking
operations. We note that a specific MPI communicator is assigned to each CPU
thread. In the last phase, the data is transferred to the GPU, which performs a
2d FFT before pushing the direct-space state to the host. The host finally adds
up the N contributions to the electronic density.

Applying the Potential to the Wavefunctions. The reverse and forward
Fourier transforms as well as the application of the potential Veff[ρ] to the N
states are distributed over NS streams that work concurrently. Each stream is
again assigned to a CPU thread and performs the sequence of operations needed
to apply the potential to a state V φi(G) = FFT(V invFFT(φ̃i(G))). Thus the
reverse FFT of a state from reciprocal to direct space is identical to the construc-
tion of the electronic density. The direct-space state is then copied to the host,
and the potential is applied. The forward transform takes place by performing
the 2d FFT (on the GPU), followed by the interprocess communication (on the
host) and the last 1d FFT (on the GPU).

Orthogonalization. We modified the block Gram–Schmidt scheme introduced
in [2] to make use of the GPU. Let us assume that only one MPI task is used
(generalization to multiple MPI tasks is trivial). The coefficient matrix (which
corresponds to the coefficients of the expansion of φi on the plane-wave basis)
is block-partitioned column-wise into n blocks of size b as C = [C1, C2, . . . , Cn].
We seek the orthogonalized coefficient matrix C̃ = ortho(C). The rows of the
coefficient matrix C are block distributed over CPU threads. Each CPU thread
is assigned three streams. The first stream, which we refer to as Scmp, is used
for computation, while the other two streams are in charge of host-to-device
(Sh2d) and device-to-host (Sd2h) asynchronous communications of the C and
C̃ matrices, respectively. The key idea of the block Gram–Schmidt scheme is
to loop over the n blocks Ci and to orthogonalize them one after the other.
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The orthogonalization is done by first projecting out the previously orthogonal-
ized blocks [C̃1, C̃2, . . . , C̃i−1] and then using a Cholesky (of size b × b) based
orthogonalization to produce the C̃i. In each iteration, intermediate reductions
among the threads (the row distribution of the matrix) are needed. The stream
Scmp is in charge of performing the BLAS operations as well as the intermediate
communication for reductions. The role of the stream Sh2d is to asynchronously
copy the block Ci+1 to the GPU for the next orthogonalization iteration. The
stream Sd2h is used to copy C̃i−1 back to the host.

4 Results

To illustrate the progress on porting CPMD to OpenPOWER systems, we show
the strong scaling of the construction of the density, the application of the poten-
tial to the wavefunctions and the orthogonalization process for a box of 128 water
molecules at normal liquid density and under periodic boundary conditions. We
use the GTH pseudopotential [4] and plane-wave and density cutoffs of 100 Ry
and 400 Ry, respectively.

The code is compiled using the IBM XL Fortran compiler for Linux 15.1.4
with optimization flags: -O3 -qhot -qstrict -qprefetch=aggressive:dscr=7
-qsimd=auto -qaltivec -qmaxmem=-1 -qsmp=omp. The C-code was compiled
with the GNU compiler collections 4.9.3. The runs are performed on two IBM
POWER8 systems: Tuleta and Firestone. Both servers are equipped with two
POWER8 processors. Each POWER8 core supports 8 hardware threads, has
64 kBytes L1 cache, 512 kBytes L2 cache, and 8 MBytes of shared L3 cache. Tuleta
runs 12 cores in total at 4.2 GHz, whereas Firestone equips 20 cores at 3.42 GHz.
Tuleta has one Nvidia Tesla K40, with 2880 CUDA cores; Firestone has two Nvidia
Tesla K80 GPUs, each composed of two devices with 2496 CUDA cores. All com-
putations are performed with CUDA compute capability 3.5 (on Tuleta) and 3.7
(on Firestone), both with driver version 7.5. On Firestone, our calculations use
only one device of one K80, i.e., 2496 CUDA cores.

The performance comparison for the three computational blocks described in
Sect. 3 is shown in Fig. 1. First, we observe that the Firestone CPU performance
is better than that of the earlier Tuleta processor for the two FFT computational
blocks. Concerning the GPU results, we observe a dependence on the number
of streams used. The PCI-E bandwidth in the two systems is equivalent; there-
fore once it is saturated, the K40 tends to run slightly faster than half-K80,
because of the slightly greater number of CUDA cores. The optimal number of
streams varies between 4 and 6, depending on the type of computational block.
Using more streams does not help, as memory bandwidth becomes the limiting
factor. By analyzing the output of NVprof, we summarize, in Table 1, the time
percentage spent in computation and memory copies for the construction of the
electronic density and applying the potential to the wavefunctions. Although
all operations are performed asynchronously, the time spent in memory copies
exceeds the computation time by far (about 1/3 of the total time), so that for
at least 2/3 of the total time the GPU cores are idle, waiting for data.
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Fig. 1. Log-scale performance comparison of three CPMD computational blocks run
on IBM Firestone (20-cores vs. 1-device K80) and IBM Tuleta (12-cores vs. K40). Time
is normalized w.r.t. one core CPU time on Firestone. All CPU runs are performed with
one thread per core. All GPU runs are performed with one stream per thread per core.
(a) Construction of the electronic density. (b) Applying the potential to wavefunctions.
(c) Orthogonalization (results on Tuleta are not available)

Table 1. Time percentage spent in computation and memory copy from device to host
(D2H) and host to device (H2D) for constructing the electronic density and applying
the potential to the wavefunctions. Computation and memory copies are performed
asynchronously.

Kernel Computation [%] D2H [%] H2D [%]

Electronic density 27 95 76

Applying potential 30 92 89

At the current state of development, maximum performance is achieved by
the 2-socket CPU of Firestone for the FFT computational kernels. We expect
that future improvements in the CUDA implementation, including the general-
ization to multi-GPUs, will change this picture in favor of the accelerators.

5 Future Works

Our initial porting phase of CPMD to OpenPOWER architectures highlights
the negative impact of a limited PCI-E bandwidth between the CPU and the
GPU. To alleviate this problem, we will tackle the issue from multiple directions:
at the implementation level, we will move the calculation of the electronic den-
sity and the application of the potential to the wavefunctions to the GPUs and,
more generally, we will minimize data transfer whenever possible. At the archi-
tecture level, we expect a significant improvement from the NVLink high-speed
interconnect equipped by next-generation Garrison POWER8’ systems. NVLink
will enable ultra-fast communication between the CPU and GPU, allowing data
transfer at rates more than 2.5 times faster than traditional PCI-E interconnects.
This should be tremendously beneficial for scenarios such as the one summarized
in Table 1, where multiple streams have overlapped operations, but communica-
tion time is left exposed. Garrison’s systems will be available in Q3–Q4 2016:
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the study and characterization of the performance gain obtained on such an
architecture will be subject of future work.
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Pázmány Péter Catholic University, Budapest, Hungary

reguly.istvan@itk.ppke.hu
2 IBM Toronto Lab, Toronto, Canada

{akkeita,rzurob}@ca.ibm.com
3 Mathematics Institute, University of Oxford, Oxford, UK

mike.giles@maths.ox.ac.uk

Abstract. This paper discusses the performance of IBM’s Power8
CPUs, on a number of skeleton, financial and CFD benchmarks and
applications. Implicitly, the performance of the software toolchain is also
tested - the bare-bones Little-Endian Ubuntu, the GNU 5.3 and the XL
14.1.3 compilers and OpenMP runtimes. First, we aim to establish some
roofline numbers on bandwidth and compute throughput, then move
on to benchmark explicit and implicit one-/three-factor Black-Scholes
computations, and CFD applications based on the OP2 and OPS frame-
works, such as the Airfoil and BookLeaf unstructured-mesh codes, and
the CloverLeaf 2D/3D structured mesh simulations. These applications
all exhibit different characteristics in terms of computations, commu-
nications, memory access patterns, etc. Finally we briefly discuss per-
formance of an industrial CFD code, Rolls-Royce Hydra, and we show
initial results from IBM’s CUDA Fortran compiler. Both absolute and
relative performance metrics are computed and compared to NVIDIA
GPUs and Intel Xeon CPUs.

1 Introduction

So far, only a few reports have discussed the performance of the Power8 on
scientific workloads [2,6], and there is very little know-how available about how
to configure, compile and execute such applications in order to maximise the
achieved performance. Indeed, the software stack is still fairly new, generally
compilers are still very much in development for little-endian configurations -
the primary configuration type for future systems (e.g. CORAL).

In this paper, we investigate the performance of the hardware, the software
stack and various programming approaches in order to determine the strong
and weak points for a variety of computational patterns and to offer suggestions
about best practices to application developers.

The skeleton benchmarks tested serve to establish a roofline performance
model, both in terms of computational throughput and memory bandwidth,
c© Springer International Publishing AG 2016
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that is practically achievable. Using the STREAM benchmark, we determine the
maximum achievable bandwidth on the platform, at different SMT settings and
data chunks - this will give an upper limit for performance on later benchmarks
that are bandwidth-limited. Similarly, we test realistically achievable computa-
tional throughput with the single and double precision general matrix-matrix
multiply operations in the IBM ESSL library.

The one-factor Black-Scholes benchmark evaluates computational through-
put and bandwidth to L1/L2 cache, the three-factor Black-Scholes benchmark
stresses both the computational and the memory sub-systems; it uses a 13-point
stencil, therefore it has good data reuse. The unstructured mesh applications,
based on the OP2 framework – Airfoil and BookLeaf – are finite-volume/element
codes that are primarily bandwidth-bound, and have irregular memory access
patterns. The structured mesh applications are based on the OPS framework
(CloverLeaf 2D/3D), these perform stencil computations and have highly regu-
lar memory access patterns and relatively few computations per grid point, thus
they are also primarily bandwidth-limited, but also affected by the efficiency of
domain-decomposition and MPI messaging. Several benchmarks have implemen-
tations available both in C and Fortran, which helps in comparing performance
of different compilers.

All tests were evaluated five times and the results were averaged. Aside from
the STREAM benchmark at relatively low NTIMES values, the results had low
variance (less than 5 % different from the mean), therefore for most figures we
do not show the variance.

2 The Power8 Architecture

The Power8 is the latest RISC CPU from IBM, it uses a 22 nm manufacturing
process and supports up to 12 cores per chip. Each core has support for up to
8 hardware threads, and has 64 KB L1, 512 KB L2 and 8 MB L3 cache. Each
core has 16 execution pipelines, two fixed-point, two load/store, two load, four
floating-point, two vector pipelines, one cryptographic, one branch execution,
one condition register logical and one decimal floating-point pipeline. Each of the
four floating-point pipelines are capable of executing a multiply-add operation
per clock cycle, which corresponds to 8 double precision or 16 single precision
floating point operations per cycle.

A processor core can perform two load operations and two load or store
operations in the load and the load/store pipelines. The bandwidth to L2 cache
is up to 256 GB/s read and 64 GB/s write, and 128/128 GB/s to the L3 cache,
at 4 GHz. Each chip has 8 high-speed channels to off-chip memory, and the
bandwidth per socket is 128 GB/s read and 64 GB/s write.

The core supports dynamic Simultaneous Multithreading (SMT) for up to 8
hardware threads - a software thread can execute in any hardware thread posi-
tion, even in Single Thread (ST) mode, the SMT mode can therefore dynam-
ically be switched. There are two Unified Issue Queues (UniQueues) per core,
each with a dedicated set of general-purpose and vector-scalar registers. Exe-
cution pipelines (fixed-point, floating-point, etc.) are also associated to one of
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Table 1. Characteristics of the POWER8 and the Intel system. Base characteristics
are described per socket

POWER8 Intel E52650 v3

Cores 10 10

Clock 3.69GHz 2.3(3.0)GHz

L1/L2 64/512KB 64/256KB

L3 80MB 25MB

Bandwidth to DRAM 128+64GB/s 68GB/s

SP/DP flop/core/cycle 16/8 32/16

Threads/core 8 2

Sockets 2 2

Release date Q2’14 Q3’14

Compilers XL 14.1.3, GNU 5.0 Intel 2016 SP1

Compiler options xl: -O5 -qarch=pwr8 -qtune=pwr8
gnu: -Ofast -march=power8
-mtune=power8

icc: -O3 -xCORE AVX2
-fno-alias

the UniQueues. In ST, both halves can dispatch instructions to any execution
pipeline, but in SMT modes, threads will be associated with either half, and the
UniQueues can only dispatch instructions to the execution pipelines associated
with them.

The machine being tested has 20 cores at 3.69 GHz and 256 GB of memory,
in 16 16GB modules. The machine is running bare-bones little-endian Ubuntu
14.10.

Throughout the paper, we test performance against an Intel E5-2650 v3
(Haswell) CPU, using the 2016 Intel compilers. A summary of the two architec-
tures is described in Table 1.

2.1 Compilers

On the POWER8, we use the IBM XL C/C++ 14.1.3 and Fortran 16.1.3 com-
pilers (as well as the 16.1.4 beta for CUDA Fortran), and the GNU 5.0 compilers
with the options listed in Table 1. The flags used enable platform-specific optimi-
sations, the use of fused multiply-adds and re-ordering of code considered unsafe
from the IEEE floating-point perspective, this however had insignificant impact
on the end results. Additional flags used with the XL compilers include -qaltivec
when vector intrinsics are used, and -qsmp=omp -qthreaded when OpenMP is
enabled. The flag -qlist can be used to get optimisation reports from the com-
piler.

On the Intel platform, we use the Intel 2016 SP1 compilers, enabling the
AVX2 instruction set.
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3 STREAM

The STREAM benchmark [5] measures bandwidth between the CPU and mem-
ory; depending on the data set size to on-chip cache or off-chip DRAM. There
are four kinds of tests: (1) copy moves all data from one array to an other,
(2) scale moves all data from one array to an other while multiplying all ele-
ments by a given value, (3) add adds the contents of two arrays and puts the
results in a third array, and (4) triad adds the values of one array to the scaled
values of an other and puts the results in a third array.

The key difference between the first two and the last two benchmarks is
that the first two read and write the same amount of data, while the last two
read twice as much as they write. This is key in understanding performance
of the Power8; each core has two symmetric load pipelines and two symmetric
load/store pipelines, and the interface to off-chip memory supports twice the
number of load requests than store requests; therefore the achievable bandwidth
on the last two benchmarks is 50 % higher. Each Power8 chip has 8 memory
channels, with up to 128 GB/s read and 64 GB/s write aggregated bandwidth,
thus a full two-socket machine is theoretically capable of delivering 384 GB/s
bandwidth to off-chip memory.

Figure 1 shows the bandwidth measured by the triad benchmark; as long as
data is read from off-chip DRAM memory, the best performance is achieved at a
low number of threads: 1 thread per code (SMT1 or ST), there seem to be bottle-
necks at higher levels when using more threads. The other important observation
is the amount of data required to saturate the available bandwidth; the highest
achieved is just below 300 GB/s, when each of the three arrays are 1.5 GB is size,
and as the array size goes down, there is a clear reduction in achieved bandwidth,
and an increasing level of noise in the measurements (up to 30 %).

When the dataset can be fully contained in the cache however, the trend
reverses; more threads are required to saturate bandwidth. This suggests that
the previously discussed bottleneck is in managing requests to off-chip memory.
A total bandwidth of up to 1080GB/s is achieved to the L3 cache at SMT4,

Fig. 1. STREAM Triad bandwidth on different size arrays and different number of
threads
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regardless of which of the four benchmarks is used; the two-to-one ratio of load
and store requests only applies to requests to DRAM.

Execution with OMP NUM THREADS=XX OMP PROC BIND=TRUE ./stream, with
XX set to 20/40/80/160, depending on the desired SMT setting. Thread/process
binding is key to achieving performance on this system, there is an up to five-
fold decrease in performance if threads are allowed to migrate between cores and
sockets. Between cores on the same socket the penalty is less, only up to 70 %.

In comparison, an Intel Xeon E5-2650 v3 (Haswell) CPU has a theoretical
maximum bandwidth of 136 GB/s and achieves 95 GB/s, using 256-bit AVX2.

4 Balance of Computations and Data Movement

One of the key machine parameters when determining the theoretical maxi-
mum performance is the balance of computations and data movement. As we
have seen in the previous section, the Power8 can deliver up to 300 GB/s band-
width. The 20-core machine, running at 3.69 GHz can do 16 single or 8 double
precision floating point operations per core per clock cycle, when the vector
units are utilised and multiply-add operations are used. This reduces to 2 oper-
ations when multiply is used on scalars (either single or double precision). This
translates to 1180 GFLOPS/s vectorised single, 590 GFLOPS/s vectorised dou-
ble precision throughput with multiply-adds, and 147 GFLOPS/s non-vectorised
single operations. For computations and data movement to be in balance, 3.93,
1.96 or 0.49 FLOPS/Byte have to be carried out respectively. However, these
are only theoretical peak values; Fig. 2a shows actually achieved computational
throughput on a general dense matrix-matrix multiplication kernel (using the
IBM ESSL library); these kernels are commonly used to evaluate the practi-
cally achievable peak computational performance. In single precision, SGEMM
achieves 931 GFLOPS, or 78 % of the theoretical peak, and in double precision
DGEMM achieves 501 GFLOPS, or 85 % of theoretical peak, on 40962 matri-
ces. It is important to note however, that this is only achieved at SMT1 (ST)

Fig. 2. Computational performance
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or SMT2 settings, at a higher number of threads per core, performance drops
rapidly, by up to 50 % at SMT8.

Following this logic, for the single precision scalar case, the balance should be
around 6 FLOPS per 3 values moved, up to which point full bandwidth should
be utilised, and beyond which computations would dominate, reducing achieved
bandwidth. This value for scalar double precision values is near 12 FLOPS per 3
values moved. Figure 2b shows bandwidth numbers when the number and type
of operations is varied: using just 1 FMA, adding further MUL instructions and
finally testing more expensive division and square root operations. These are also
evaluated when compiler auto-vectorization is disabled or enabled, and there is
a variant which uses Altivec vector types. In order to achieve auto-vectorization,
the loops were outlined and all pointer arguments were decorated with restrict
and const where applicable. Previous compiler versions failed to vectorize these
loops when OpenMP was enabled, but the latest one does vectorize the loops.
Performance when increasing the number of multiply operations holds steady as
expected for most variants except for the non-vectorized single precision case -
it is currently not clear why. The figure also shows some inconsistency in the
behaviour of the square root and division operations between single and double
precision; hand-vectorized and auto-vectorized double precision performance is
almost the same, but it’s very different for single precision.

The figure highlights the importance of vectorization especially when com-
putationally expensive operations are used; it is easy to become compute-bound
on this architecture.

In comparison the Intel E5-2650 v3 (using 256-bit AVX2) achieves
1280/523 GFLOPS in single/double precision on the general matrix-matrix mul-
tiply benchmark using 40962 matrices.

5 Black-Scholes

This section discusses the performance of one-factor and three-factor PDE mod-
els, after [3]. Both explicit and implicit time-marching methods are considered,
with the latter requiring the solution of multiple tridiagonal systems of equations.

Because of the small amount of data involved, one-factor models are primar-
ily compute-limited, with a very good fraction of the peak compute capability
being achieved. The three-factor problems involve much more data, and hence
their execution is more evenly balanced between computation and data commu-
nication to/from off-chip memory.

5.1 One-Factor

A standard approximation of a 1D PDE, such as the Black-Scholes PDE, leads
to an explicit finite difference equation of the form

un+1
j = un

j + aj u
n
j−1 + bj u

n
j + cj u

n
j+1, j = 0, 1, . . . J − 1
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with u−1 = uJ = 0. Here n is the timestep index which increases as the compu-
tation progresses, so un+1

j is a simple combination of the values at the nearest
neighbours at the previous timestep, a common stencil computation pattern. All
of the numerical results are for a grid of size J = 256 which corresponds to
a fairly high resolution grid in financial applications. Additional parallelism is
achieved by solving multiple one-factor problems at the same time, with each
one having different model constants, or a different financial option payoff.

A standard implicit time-marching approximation leads to a tridiagonal set
of equations of the form

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = un

j , j = 0, 1, . . . J − 1

with u−1 = uJ = 0. This is then solved using the Thomas algorithm, a sequential
algorithm for each option at each timestep.

The baseline implementations for both explicit and implicit algorithms have
an outermost loop over all options, and then after initialising the a,b, and c coef-
ficient arrays, iterate for a number of timesteps (50000 explicit 2500 implicit, due
to the latter converging faster) updating the values of all 256 grid points - this is
the explicit1/implicit1 implementation. Various compilers may or may not vec-
torise over either the outer loop, in which case different lanes of the vector rep-
resent different options, or in the explicit case, over the finite-difference update
of grid points, with each lane representing a different gridpoint. Hand-written
vectorisations are created for all of these, using vector intrinsics on Intel and
the Altivec types on the Power8. Scalar and vectorised versions (over different
options) are named explicit1, implicit1, explicit vectorisation over the iterations
of the inner loop for a single option is named explicit2.

Evaluating single-threaded performance using both XL and GNU compilers
yields results shown in Fig. 3; for scalar versions, both compilers report having

Fig. 3. One-factor Black-Scholes performance on a single core of the Power8. The
timings are for 50000 (explicit) or 2500 (implicit) timesteps, for 6144 options each on
a grid of size 256.
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Fig. 4. One-factor hand-vectorised Black-Scholes performance on the Power8. The tim-
ings are for 50000 (explicit) or 2500 (implicit) timesteps, for 6144 options each on a
grid of size 256.

Table 2. One-factor hand-vectorised Black-Scholes performance on the Power8 and
Intel. The timings are for 50000 (explicit) or 2500 (implicit) timesteps, for 6144 options
each on a grid of size 256.

POWER8 Intel E5-2650 v3

Single prec. Double prec. Single prec. Double prec.

ms GFlop/s ms GFlop/s ms GFlop/s ms GFlop/s

explicit1 scalar 1923 244 2704 173 942 499 1593 293

explicit1 vector 666 706 1468 319 1512 311 2805 167

explicit2 vector 1229 381 2373 198 756 620 1359 346

implicit1 scalar 1098 71 993 67 1191 65 1524 44

implicit1 vector 243 320 465 145 288 270 756 89

vectorised the inner stencil loops of the explicit1 version (for which the hand-
vectorised variant is explicit2). Performance on scalar (including auto-vectorised)
versions is very similar for the two compilers, however on manually vectorised
(Alitvec) variants GCC shows significantly poorer performance on the explicit
computations, and similar on the implicit computations; likely due to differences
in instruction scheduling, since for the explicit case subsequent iterations are
independent, whereas for the implicit one they are dependent.

Figure 4 shows the performance of the one-factor benchmarks using OpenMP
in single precision (left figure) and double precision (right figure), both scalar
and hand-vectorised versions are shown. As these are primarily compute-bound
benchmarks, we compute throughput metrics metrics shown in Table 2; around
60–65% of practical peak compute (930 GFLOPS/s in single, 500 GFLOPS/s
in double) is achieved with the hand-vectorised explicit1 benchmarks. Hand-
vectorised code gives significant improvements in all cases; up to four times in
both single and double precision. The performance difference between single and
double precisions for both implicit and explicit hand-vectorised versions is close
to 2×. In the implicit case, during the Thomas algorithm a reciprocal value has
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to be computed at each grid point, here the fast approximate reciprocal is used
(vec re), which gives a 15 % improvement in overall performance. Overall, GCC
gives very similar performance in most cases, except for the manually vectorised
explicit versions as seen in the case of the single-threaded test.

In comparison, on Intel Xeon E5-2950 v3 (Haswell) the Intel compiler does
auto-vectorize the explicit1, although it is less performant than the hand-
vectorised variant. Overall, it achieves about 50 % of the benchmarked peak,
slightly outperforming the POWER8 on the explicit benchmark, but it is
20–60% slower on the implicit benchmark.

5.2 Three-Factor

The three-factor test application uses the Black-Scholes PDE for 3 underlying
assets, each corresponding to Geometric Brownian Motion and with positive
correlation between the 3 driving Brownian motions. This leads to a parabolic
PDE which spatial cross-derivative terms with positive coefficients. The spa-
tial approximation of this leads to a 13-point stencil involving offsets ±(1, 0, 0),
±(0, 1, 0), ±(0, 0, 1), ±(1, 1, 0), ±(0, 1, 1) and ±(1, 0, 1), relative to a point with
3D indices (i, j, k). The test case uses a grid of size 2563, with all data stored in
the main memory in 1D arrays.

The implementation of the explicit solution is very similar to the one-factor
implementation; a nested loop over the different dimensions (explicit1: z-y-
x, explicit2: y-x-z, explicit3: z-x-y), applying the 13-point stencil. The hand-
vectorised implementation vectorises over adjacent grid points in the x dimen-
sion. The implicit version has to use the Alternating Direction Implicit (ADI)
method to solve the system of linear equation, which means solving along the x,
y, or z dimensions using the Thomas algorithm.

In the three-factor benchmarks, the one of the primary concerns is data
locality, especially with respect to NUMA regions; during initialisation, different
threads initialise different z-slices of the 2563 domain, which means that accord-
ing to the first-touch allocation policy, these are allocated on pages and DRAM
closest to where the thread is running. This does not pose major problems in
the explicit case, because during computations threads compute on the same
grid points that they initialised, the only time they may have to access memory
allocated to a different NUMA regions is when accessing adjacent grid points for
the 13-point stencil. However, in the implicit case threads iterate over different
dimensions, therefore during the y and z solves a large chunk of data is allocated
on different NUMA regions (on the Power 8, which has 4 regions, 3/4).

Figure 5 shows the performance of the full Power8 machine, with both scalar
and hand-vectorised code in either single or double precision. The first thing
to note is that the scalar code performs very similarly in both precisions, and
the code does not auto-vectorize - with the sole exception of the single precision
explicit1 version with the GCC compiler. This suggests that performance is
limited by computations (for which the throughput is the almost the same in
single and double precision). With the hand-vectorised code the performance
difference between the two precisions is close to 2× as expected, because the
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Fig. 5. Three-factor hand-vectorised Black-Scholes performance on the Power8. The
timings are for 500 (explicit) or 100 (implicit) timesteps, for one three-factor option on
a grid of size 2563.

vectors hold twice as many values in single precision, and half as much memory
has to be transferred. Nevertheless, vector code is still very inefficient in utilizing
the system’s resources, and only achieves a fraction of the peak bandiwdth.

There were several steps taken to achieve this performance using altivec
instructions however, which were not needed in previous tests. Firstly, we needed
to use the vec xlw4 instruction for loading, instead of the vec ld instruction,
which improved performance by up to 2× with the XL compiler (this intrinsic is
not available in the GCC compiler). Furthermore, we had to move some iteration-
independent code out of the innermost for loop, because it was not done by the
compiler automatically. Lastly, in some cases it was advantageous to manually

Table 3. Three-factor performance on the Power8 and Intel. The timings are for 500
(explicit) or 100 (implicit) timesteps, for one three-factor option on a grid of size 2563.
Comp - GFlops/s, BW - GB/s

POWER8 Intel E5-2650 v3

Single prec. Double prec. Single prec. Double prec.

ms Comp BW ms Comp BW ms Comp BW ms Comp BW

explicit1

scalar

1342 322 45 3643 121 35 1746 248 35 3482 127 37

explicit1

altivec

1684 263 38 3476 127 37 - - - - - -

implicit1

scalar

3204 65 19 3632 57 31 1397 149 43 2722 76 41

implicit1

altivec

1582 132 38 3566 58 32 - - - - - -
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inline the main body of computations into main(), which were otherwise placed
in separate functions of their own. The latter two optimizations, when applied
to scalar code, had no effect on performance.

Overall, it is not clear what the limiting factors for performance are; as shown
in Table 3 the achieved computational throughput in the explicit testcase is a
fourth of the theoretical and a half of the results achieved by the one-factor
model, and the achieved bandwidth in all testcases is between 10–20% of the
maximum, measured by the STREAM benchmark.

In comparison, on Intel Xeon E5-2650 v3 (Haswell) CPU, the Intel compiler
does auto-vectorize the explicit benchmark. Due to the issues described above,
it does slightly outperform the POWER8 platform, despite the latter’s much
higher bandwidth.

6 Structured Meshes - OPS

OPS [9] is a framework and active library developed at the University of Oxford
that is targeting structured mesh stencil-based computations. It uses a high-level
approach to enable application developers to describe their computational prob-
lems at a high level and then, using a combination of code generation and back-
end logic, it enables efficient parallel execution on a range of modern hardware,
such as multicore CPUs or GPUs, using the MPI, OpenMP, CUDA, OpenACC
and OpenCL parallelisation techniques. The two key benchmarks are CloverLeaf
2D and CloverLeaf 3D, structured hydrodynamics codes, also available sepa-
rately, with vanilla Fortran and C implementations. CloverLeaf is open source
software and forms part of Sandia National Laboratory’s Mantevo project [4].
Both codes move a lot of data and perform relatively few computations per grid
point, therefore we expect performance to be bound by bandwidth to off-chip
memory, as well as the efficiency of the software stack: the compiler translat-
ing different parallelisation approaches to machine code, and then the runtime
managing it.

6.1 CloverLeaf 2D

Here, we benchmark the pure MPI and MPI+ OpenMP versions of the 2D
and the 3D applications, using the reference implementation (denoted as ref)
with computational kernels implemented in C or Fortran (denoted as Fortran
or C) with both the XL and the GNU compilers (denoted as XL or GNU). We
also evaluate performance using the OPS framework (denoted as OPS), with
both compilers. Corresponding to different SMT settings we have two times
four results with each: 20/40/80/160 MPI processes for pure MPI and 20 MPI
processes and 1/2/4/8 OpenMP threads each for hybrid MPI+OpenMP.

The reference implementations use straightforward nested for loops in C and
DO loops in Fortran, they have not been optimised specifically for the Power8
platform. The OPS implementation generates C code specifically optimised to
enable auto-vectorisation by the XL compiler. Due to the large number of loops,
a manually-vectorised (with altivec) version was not developed.
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Fig. 6. Performance of the Power8 on CloverLeaf 2D: 38402 grid, 87 iterations.

The code is available at:
https://github.com/gihanmudalige/OPS/tree/feature/power8 in the apps/c/
CloverLeaf directory.

Figure 6 shows the performance of the 2D version on a 38402 mesh (with a
total footprint of 2914 MB); when running on the full machine, pure MPI execu-
tion performs the best, and the amount of time spent in MPI communications is
less than 10 %. In case of pure MPI execution, the performance of Fortran and
C code are very similar (at most 10 % difference), and on the reference imple-
mentation, the GNU version is up to 25 % slower than XL, but only 12 % slower
on the OPS implementation, showing that optimisations introduced by the OPS
library are beneficial for both compilers. The best performance in all cases is
achieved at an SMT4 setting.

Moving to hybrid MPI+OpenMP changes the relative performance of differ-
ent implementations significantly; there is now an up to 50 % difference between
Fortran and C versions, particularly in case of the XL compilers - clearly some
optimisations are disabled in C when OpenMP is enabled; all C OpenMP versions
slow down compared to their pure MPI counterparts, whereas Fortran versions
speed up in most cases. The overheads likely come from the process of outlining
code within the OpenMP region to a function, and the reduced number of loops
SIMD vectorised, as reported by the compiler. The optimal SMT setting in some
cases is also shifted to SMT8 - using 8 OpenMP threads per MPI process.

The total bandwidth averaged through the whole of the execution, but
excluding time spent in MPI communications, is 160 GB/s, for some compu-
tational phases it reaches 250–270 GB/s (revert, fluxes, reset), but on some it
is only 70–110 GB/s (update halo, timestep, ideal gas, viscosity), most of which
are more computationally intensive, except for update halo, which updates the

https://github.com/gihanmudalige/OPS/tree/feature/power8
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boundaries, therefore has poor memory access patterns. These results confirm
that the application is primarily bound by bandwidth to main memory, however
there is an overhead in C+OpenMP and in MPI communications. Furthermore,
computationally heavier kernels are also significantly slower; the compiler does
not auto-vectorise over different grid points.

In comparison, an Intel Xeon E5-2650 v3 (Haswell) CPU, completes execution
in 32 s, about 3× slower, however, the difference between MPI and MPI+OpenMP
execution is less than 1 %. An NVIDIA K20 GPU completes execution in 15 s, 40 %
slower than the best performance on the Power8.

6.2 CloverLeaf 3D

The 3D application is essentially the straightforward extension of the 2D appli-
cation, with a very similar code structure. The total memory footprint on the
1923 mesh is 1624 MB. MPI runs show a significant amount of time spent in
MPI communications - around 20–25% of total for the best performing cases.
This is however not unreasonable, considering that the relative number of grid
points on the interfaces of the domain decomposition to the total number of
grid points is almost 10 times more than in 2D. Average bandwidth over the
total execution, excluding the time spent in MPI, is 267 GB/s, with different
computational phases behaving similar to the 2D version.

For the 3D version, there was no reference implementation in C, but as Fig. 7
shows, in case of pure MPI, performance is very close for both compilers and both
reference (Fortran) and OPS (C) implementations, with the best performance
achieved at SMT4. Moving to a hybrid MPI+OpenMP version changes relative
performance once again, with Fortran versions slightly improving over pure MPI,
but C versions slowing down significantly.

Fig. 7. Performance of the Power8 on CloverLeaf 3D: 1923 grid.
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In comparison, an Intel Xeon E5-2650 v3 CPU, completes execution of the
1923 problem in 34.5 s, 2.3× slower. An NVIDIA K20 GPU completes execution
in 17.2 s, slightly lower overall performance as the Power8.

7 Unstructured Mesh Computations - OP2

OP2 is a framework and active library developed at the University of Oxford that
targets the domain of unstructured meshes. In a similar way to OPS, it defines a
high-level abstraction and then uses code generation and backend logic to enable
execution on a variety of platforms. OP2 was initially aimed at replacing OPlus -
the parallel library running under Rolls-Royce Hydra. There are currently several
codes utilising OP2: the Airfoil benchmark, the Volna tsunami simulation code
and Rolls-Royce Hydra. These applications tend to be data-movement heavy,
however in many phases of computations indirect memory accesses are used
to either read or update data. Thus this class of applications will test caching
behaviour and the performance of random memory access patterns.

Here, we benchmark the MPI, OpenMP and hybrid MPI+OpenMP perfor-
mance, and compare it to the performance achieved on Intel CPUs.

7.1 Airfoil

Airfoil is the best understood testcase under OP2: it consists of five kernels,
two direct ones (save soln, update), one over the boundary (bres), one that is
computationally intensive (2 reciprocals, 5 sqrt ops) and reads data indirectly
(adt), and one that both reads and writes data indirectly (res).

Figure 8 shows the overall performance of the Power8 running the Airfoil
benchmark on a 2.8 million cell problem. The memory footprint of this problem
is fairly small (373 MB in double precision), but tests on a 24 million cell problem

Fig. 8. Performance of the Power8 on Airfoil: 2.8m cell problem for 1000 iteration, on
the full machine.
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Table 4. Useful bandwidth (BW - GB/s) and computational (Comp - GFops/s)

throughput of baseline implementations on Airfoil

Kernel POWER8 Intel E5-2650 v3

Double precision Single precision Double precision Single precision

Time BW Comp Time BW Comp Time BW Comp Time BW Comp

save soln 0.61 301 18.6 0.14 641 80 2.86 64 4.1 1.44 64 8.0

adt calc 8.39 38 38.4 7.49 22 49 5.89 55 62.6 6.44 25 57.2

res calc 8.94 77 93.9 8.29 42 101 11.92 58 60.5 10.95 32 76.7

bres calc 0.02 133 41.3 0.01 57 56 0.05 53 16.3 0.03 27 27.2

update 4.55 172 21.5 3.39 115 29 9.52 82 10.3 4.49 87 21.8

give the same performance. The best performance in double precision is achieved
at SMT8, 20.28 s with the pure MPI backend and Fortran, with 1.83 s spent in
MPI (9 %). The best performance achieved in both precisions is almost exactly
the same, which suggests that performance is not limited by bandwidth, rather
latency. Performance with the two compilers is again similar, with XL narrowly
outperforming GCC, and Fortran being faster than C.

Per-loop breakdowns are shown in Table 4; the Power8’s advantage is clear on
the two direct loops, and a high bandwidth is achieved, especially in single preci-
sion, where data is in cache for save soln. The indirect read/write loop (res) runs
in the same time in both precisions, this kernel is likely to be bound by caching,
branching and serialisation overheads. Finally, the computationally intensive ker-
nel (adt) again runs in the same time in both precisions, suggesting a lower effi-
ciency when executing division and square root operations. It is also worth noting
that neither of the two kernels that define overall performance (adt and res) seem
to be limited by bandwidth, and that significantly more time is spent in MPI,
10−15 %, likely due to load imbalance, compared to Intel platforms (3–5%).

The airfoil benchmark has sufficiently few kernels so that a one-off hand-
written vectorisation is possible, extending our work presented in [7], where we
discuss the pros and cons of our vectorisation approach, including our choice
of data layouts. Converting all the kernels to use vectors doesn’t make all of
them faster, due to the need for of packing vectors and then unpacking them,

Table 5. Useful bandwidth (BW - GB/s) and computational (Comp - GFLOPS/s)
throughput of hand-vectorised implementations on Airfoil

Kernel Double precision Single precision

Time BW Comp Time BW Comp

save soln 0.57 323 20.2 0.14 641 80

adt calc 3.66 88 100.7 2.63 61 140

res calc 16.04 43 52.4 11.1 31 75

bres calc 0.02 132 41.1 0.01 57 56

update 5.74 136 17.1 3.06 128 32
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Table 5 shows the breakdowns for each kernel when vectorised. Clearly, the
save soln kernel did not benefit, it only moves data, however the performance of
adt calc increased 2.29× in double and 2.84× in single precision - this kernel was
clearly compute-bound in the scalar case. In the hand-vectorised case, reciprocals
and square root operations use the fast estimates provided by the instruction
set, and are corrected using one Newton-Raphson step. Unlike the first two ker-
nels, res calc is actually negatively affected by vectorisation, due to the overhead
of packing and unpacking of vector registers and the relatively few number of
operations. Finally, vectorisation only helps update in the single precision case,
where the benefits of fast reciprocals outweigh vector packing/unpacking. For the
overall best performance, where only those kernels are vectorised where there is
a performance increase; the performance ratio between the single and double
precision versions, 1.22×, is still far from the ideal 2×, mainly due to res calc
being latency limited.

In comparison, runtime on a pair of Xeon E5-2650 v3 CPUs with the Intel
compiler, the adt calc kernel does vectorize automatically, and the full bench-
mark takes 23.38 s in single and 30.27 s in double precision (a ratio of 1.3×). On
a K40 GPU it runs in 10.5 s in single and 17.6 s in double precision.

7.2 BookLeaf and Hydra

BookLeaf is an unstructured mesh benchmark application from the Mantevo
Suite - it solves a small hydrodynamics problem with a low order finite element
method, and uses the arbitrary Lagrangian-Eulerian method. It is entirely writ-
ten in Fortran 90, and is available at [1], and it has been converted to use the
OP2 library (Fortran API) as well. BookLeaf has a large number of computa-
tional loops (51), structured across a number of different source files, with 12
indirect loops that have gather-scatter access patterns and 39 direct loops that
only access data directly on the iteration set. We evaluate the SOD testcase on
a 4 million element mesh with ALE enabled.

BookLeaf, with a large number of direct loops, exploits the large amount of
bandwidth available on the Power8 platform, however, even so, in all testcases,
over 60 % of time is spent in these critical indirect loops. Figure 9 shows perfor-
mance of the two different implementations compiled with either GNU or XL:
on the reference implementation, XL slightly outperforms GNU, and on the OP2
version, GNU is faster - particularly in the case of MPI+OpenMP (the reference
version does not have an OpenMP implementation), and on kernels that have
significant amounts of branching. Overall, a sustained bandwidth of 131 GB/s is
achieved; while most computational loops achieve a bandwidth that is well over
200 GB/s, a handful of computationally expensive loops pull down the average.
Best performance is achieved with the GNU compiler at an SMT4 setting (9.7 s).

In comparison, runtime on an Intel E5-2650 v3(Haswell) CPU with the intel
compiler is 19.01 s (a ratio of 1.9×), and on a K80 GPU it is 5.3 s (a ratio of 0.49×).

Hydra is a production CFD application used at Rolls-Royce plc. for the sim-
ulation of design of turbomachinery, it is a highly complex code that can simu-
late various aspects of the design, including steady and unsteady flows that occur
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Fig. 9. Performance of the Power8 on BookLeaf and Hydra with different compilers
and implementations.

around adjacent rows of rotating and stationary blades in the engine, the opera-
tion of compressors and turbines, and many others. Hydra solves the Reynolds-
Averaged Navier-Stokes (RANS) equations, with a 5-step Runge-Kutta method
for time-marching, accelerated by multi-grid and Jacobi preconditioning. Hydra
has previously beed converted to use OP2 and tested on Intel CPUs and GPUs [8].

Benchmarking on a 2.4 million edge NASA Rotor 37 testcase gives results
shown in Fig. 9; similarly to BookLeaf, best performance (6.48 s) is achieved at
an SMT4 setting; the average bandwidth is 47 GB/s, with a few highly complex
loops pulling down the average, while the rest achieve 150–250 GB/s. In com-
parison, runtime on the Intel E5-2650 v3 (Haswell) CPU is 9.2 s (1.4×) and on
a K80 GPU runtime is 5.1 s (0.78×).

8 XL CUDA Fortran

Finally, we give some early results from the IBM XL CUDA Fortran compiler,
currently in the 15.1.4 alpha version. Syntax is identical to the one used in
the PGI CUDA Fortran compilers, although in the pre-release version only a
restricted set of features are supported. Otherwise, using the compiler is simple;
one either has to use the xlcuf compiler, or the regular xlf compiler with the
-qcuda option. It uses the XL compiler’s optimisations passes to apply transfor-
mations to both device and host code, before passing NVVM IR to the NVIDIA
compiler.

We have managed to compile a version of the Airfoil CUDA Fortran code
and show results here running on a K40 GPU in our Power8 system, comparing
performance to CUDA C code compiled with nvcc on the same system and the
CUDA Fortran code compiled with the PGI compilers on an x86 system, running
on a different K40 card. Breakdowns are shown in Table 6; the XL compilers
deliver very good performance, likely thanks to the optimisation passes done
before passing the NVVM IR to the NVIDIA compilers. Scatter-gather type
computations affect the performance of res calc significantly. The number of
registers used by the PGI and XL compilers are very close (31/79/63/48/61
for save soln,adt calc,res calc,bres calc,update respectively with XL), but still
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Table 6. Useful bandwidth (BW - GB/s) and computational (Comp - GFLOPS/s)
throughput of Airfoil CUDA versions in double precision running on a K40 GPU

Kernel XL CUDA Fortran PGI CUDA Fortran CUDA C

Time BW Comp Time BW Comp Time BW Comp

save soln 0.28 164 10.3 0.28 164 10.3 0.27 170 10.6

adt calc 0.83 97 111 0.93 87 99 0.83 97 111

res calc 4.31 40 48.7 4.4 39 47.7 3.64 48 57

bres calc 0.06 33 6.8 0.08 25 5.1 0.07 29 5.8

update 1.28 152 19.1 1.38 142 17.7 1.19 164 20.6

total 6.75 7.07 6.0

significantly more than for the C version (24/62/52/37/29). Notably, the XL
version performs the same number of non-coherent cache loads for each kernel
as the C version, whereas PGI’s version uses less. This shows a good match
between what performance one might expect from the Fortran variant and the
C variant.

9 Conclusions

The POWER8 platform has very good computational power (900 GFLOPS/s in
single and 500 GFLOPS/s in double precision) and exceptional bandwidth (up to
300 GB/s) available as clearly shown by the synthetic benchmarks; although it
is crucial that thread pinning is used at every stage.

On more real-world benchmarks we can exploit the potential throughput
to varying degree. On the computationally intensive one-factor Black-Scholes
benchmark up to 50 % of the theoretical peak is achieved, albeit only with
a manually vectorized (altivec) implementation, as the compiler does not yet
auto-vectorize the loop being used. Performance is competitive with current
Intel architectures. The three-factor Black-Scholes benchmark poses some fur-
ther challenges to the compiler; manual vectorization with altivec is again nec-
essary, but even then suboptimal code is generated when OpenMP is enabled,
therefore we cannot achieve performance anywhere near the theoretical peak.
This issue is currently under further investigation.

The structured mesh application, CloverLeaf 2D/3D, built on a domain spe-
cific active library (OPS) is a good test of the compiler’s auto-vectorization
capabilities; after examining the best way of organizing the loop nest, vector-
ization is achieved on most loops. Given this, a very high fraction of the peak
bandwidth is achieved on most computational loops, save for a couple of compu-
tationally intensive ones, and overall performance is excellent, up to four times
faster than on Intel CPUs, and 40 % faster than an NVIDIA K40 GPU.

In case of the unstructured mesh applications, such as Airfoil, BookLeaf, and
Hydra, built on the OP2 domain specific library, the irregular scatter/gather
memory access patterns introduce a lot of latency, and in some cases manual
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vectorization impedes overall performance. Even so performance is up to 1.9×
higher than on Intel Xeon (Haswell) CPU, with most loops achieving a high
fraction of peak memory bandwidth.

Tests show that the XL compilers outperform the GNU compilers in most
cases, by up to 20 %, particularly when altivec vectors are used. Code vectorisa-
tion is still a challenge for both compilers, but we have shown that with appropri-
ate loop structures and pointer decorations many structured-mesh computations
do vectorise. MPI+OpenMP performance in Fortran matches pure MPI perfor-
mance for both compilers, however, with C variants there is still a significant
performance degradation.

As early results show, the XL compilers are extending support for hybrid
CPU-GPU architectures, with CUDA Fortran support available in June 2016
and OpenMP 4 (device) subsequently. PGI is also releasing its compilers for the
platform (currently in beta). Overall, the POWER8 platform is a very promising
target for High Performance Computing applications, especially in bandwidth-
intensive cases. It is already delivering good performance, which we expect to
get even better with evolving compilers.
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1 Overview

The energy required to power and cool computers can be a significant cost to a business –
reducing profit margins and consuming resources. In addition, the cost of creating power
and cooling infrastructure can be prohibitive to business growth. In response to these
challenges, IBM developed EnergyScaleTM [5] technology for IBM Power systems.

Power8 systems implement EnergyScale in both hardware and firmware with a new
device called the On-Chip Controller (OCC). The OCC firmware provides detailed
measurement and management of component power and thermals. This enables better
facility planning, provides energy and cost savings, enables peak energy usage control,
and increases system availability. Administrators may leverage these capabilities to
control the power consumption and performance of POWER processor-based systems
to meet their particular data center needs.

Additionally, as part of the OpenPOWER initiative, IBM has released the OCC
power management firmware as open source [1]. The first section of this paper describes
the OCC hardware and firmware and how it provides system power/thermal management
and measurement. With the open source code, system developers and researchers are free
to create their own solutions to complicated power/performance issues.

In the second half of this paper, a tool called AMESTER [2] will be described.
AMESTER, in conjunction with the OCC, provides deep performance/power profiling
by enabling access to a rich set of sensor information as well as a set of controls.
AMESTER also has been released as open source and now system developer and
researchers have an additional power measurement tool at their disposal. In this paper,
sample results using AMESTER will be shown including a new result that shows the
power savings benefit of using Internal Voltage Regulator Modules on a per core basis.
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2 OCC Overview

The OCC is designed to measure and manage performance and energy consumption. It
provides access to detailed chip temperature, power, and utilization data, as well as
complete control of processor frequency and memory bandwidth. This enables cus-
tomization for performance and energy management, or for maintaining system reli-
ability and availability. Partners now have the flexibility to create innovative power,
thermal, and performance solutions on POWER systems.

The OCC is a PowerPC 405 processor that is embedded directly on the POWER8
chip along with the main POWER processor cores. It has its own dedicated 512 K
SRAM, access to main memory, and 2 dedicated General Purpose off-load Engines
(called GPEs). Figure 1 shows how the OCC interacts with other hardware and firm-
ware in Power8. The main OCC firmware runs a 250 µs loop that utilizes the GPEs to
continuously collect system power data by domain, processor temperatures, memory
temperatures, and processor utilization data. The firmware communicates with the open
source OpenPOWER Abstraction Layer (OPAL) stack via main memory. In con-
junction with the operating system, it uses the data collected to determine the proper
processor frequency and memory bandwidth to enable the following functions.

Fig. 1. On-chip controller overview
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2.1 Functional Overview

Performance Boost. The POWER processors can be set to frequencies above nomi-
nal. The OCC monitors the system and controls the processor frequency and memory
bandwidth to keep the system thermally safe and within acceptable power limits.

Power Capping. A system power limit can be set. The OCC will continually monitor
the power consumption and will reduce the allowed processor frequency to maintain
that power limit.

Energy Saving. When the system utilization is low, the OCC infrastructure can be
used to put the system into a low power state. This function can be used to comply with
various government idle power regulations and standards.

System Availability. OCC supports a Quick Power Drop signal that can be used to
respond to power supply failures or other system events that require a rapid power
reduction. This function enables systems to run through component or data center
power and thermal failures without crashing.

System Reliability. The OCC can be used to keep component temperatures within
reliability limits, extending device lifetime and limiting service costs.

Fig. 2. Out-of-band measurement
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Performance per Watt Tuning. As the system utilization varies, the OCC can pro-
vide monitoring information and frequency control that maximizes system performance
per watt metrics.

Data Collection. There are a number of ways to get the data out from the system as
shown in Fig. 2. Standard IPMI sensors are used to provide power readings from
various power rails within the system. Processor and memory temperatures are also
presented as IPMI sensors.

Additionally, there is a pass-through interface that provides direct access to the
OCC. This has advantages over in-band collection as it does not use any system
resources.

2.2 OCC Details

The OCC works in conjunction with the operating system to provide customized
energy management solutions. The standard Linux governors allow users to select
power management modes that made specific performance and power consumption
trade-offs. For example, the “on demand” governor adjusts core clock frequency
maintain a high level of core utilization for the running workload. The role of OCC is
to keep the system within specified power/thermal limits. It does this by running power

Fig. 3. OCC voting box
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and thermal control loops that monitor the following: node power, socket powers,
DIMM temperature, processor core temperatures. When the operating system requests
a frequency, this gets translate to a PSTATE by an open source software layer called
OPAL (Open Power Abstraction Layer). OPAL uses data presented by the OCC via a
shared main memory region (Shown by HOMER in Fig. 4) in order to translate from
frequency to PSTATE. If the PSTATE selected by the OS will cause the system to
exceed a power or thermal limit, the OCC complex will clip the frequency and only
allow the PSTATE in the “maximum PSTATE” register to be realized in the hardware.

See Figs. 3 and 4 for details on the hardware/firmware paths and loop timings.

3 AMESTER

AMESTER (Automated Measurement of Systems for Temperature and Energy
Reporting) is a tool for monitoring power consumption and performance metrics in
IBM systems. Within IBM, AMESTER has been used since 2005 to develop and test
the energy management features in EnergyScale. Several academic, government
research labs, and IBM clients have used AMESTER to collect data for research
publications and better understand IBM system power consumption. It has proven to be
valuable for visualizing power measurements and prototyping new power management
policies. In 2016, AMESTER became an open source project to make it broadly
available to the OpenPOWER community.

Fig. 4. PSTATE control details
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AMESTER provides both a GUI for interactive use and a non-interactive mode for
unattended data collection. AMESTER is written completely in Tcl/Tk. Users can write
scripts for AMESTER in Tcl to direct its operation. Additionally, scripts may load
dynamically linked libraries that are written in other languages, such as C. Every aspect
of AMESTER may be modified and controlled from a script. This is useful for building
rapid prototypes of power management policies and custom visual demonstrations
based on AMESTER’s graphing capability.

3.1 Operation

The primary way to use AMESTER is to run it on a local system, such as a laptop, and
connect remotely over the Internet to the server that is to be measured. Figure 2
provides an overview of this process. AMESTER connects to OpenPOWER servers
through the BMC using the IPMI protocol. The BMC routes AMESTER commands to
OCCs. Within each OCC is a firmware component called AMEC (Autonomic Man-
agement of Energy Component). It supports the AMESTER API and is the unique
endpoint with which AMESTER communicates. Since the AMESTER API is available
in the base system firmware, there is no software installation required by the system
administrator to use AMESTER. These commands allow sensor data to be gathered
out-of-band and not affect the performance of the workload running on the server.
The AMESTER API can be used directly, without AMESTER, to develop custom data
collection programs for other environments [3].

Here is an example of using a script to attach AMESTER to an OpenPOWER
system using a privileged IPMI account:

openpower myserver -addr 9.3.29.165
-ipmi_user ADMIN -ipmi_passwd admin

This creates an object named myserver that represents the OpenPOWER system,
as shown in Fig. 5. Screenshot of sensor data collection. AMESTER will automatically
discover all available sensors and parameters available from the firmware and create
corresponding objects for use by the user scripts. Objects are supported by the Itcl
package for Tcl. Table 1 shows the object naming convention for POWER8 and
provides example object names. The objects provide methods to invoke sensor data
collection and return data values.

Table 1. Object name convention

Component Object name convention Example

System host myserver
OCC
AMEC

host_node#_ame# myserver_node0_ame0

Sensor host_node#_ame#_sname myserver_node0_ame0_PWR250US (System
power consumption)

Parameter host_node#_ame#_pname myserver_node0_ame0_freq_or (Core
frequency override)
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The node designation in the object name is to support prior multi-node (multi-planar)
POWER servers. AMESTER can attach to many servers simultaneously, which makes it
useful for studying power management of clusters.

3.2 Sensors

The principal function of AMESTER is to collect power and performance metrics from
the firmware. The user specifies a list of sensors for AMESTER to gather in the
background as quickly as possible. As sensors arrive the GUI is updated and user
provided callbacks are processed. Figure 5 shows a screenshot of data collection. An
example of requesting sensor collection for the system power consumption (updated
250 ms) and average chip temperature (updated every 2 ms) follows:

myserver_node0_ame0 set_sensor_list
{PWR250US TEMP2MSP0}

myserver_node0_ame0 sensor_window_raise

Sensor Description. In addition to the actual sensor value (e.g. CPU socket power),
each sensor also has metadata fields, shown in Table 2, that are queried once from the

Fig. 5. Screenshot of sensor data collection
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OCC during the initial connection phase. These fields, which are constants for a
particular level of OCC firmware, describe how often the data is collected, the data
units, etc. and are needed in order to use the data correctly.

Some sensors are updated on the shortest real-time control interval of the OCC,
which is 250 microseconds in POWER8. Other sensors are updated at a slower rate.
This internal update rate is reflected in the sensor’s sensorname and freq fields.

Sensors may take on real values, even though the OCC does not support
floating-point math. This is implemented by programming the OCC sensor with a
scalefactor. The scalefactor is a floating-point value with a 48-bit signed mantissa and
8-bit signed exponent. It is used as a multiplier to interpret the raw sensor bits sent from
the OCC. The equation for the scalefactor is:

scalefactor ¼ mantissa� 10exponent

Data Collection. Each sensor in OCC has data fields, shown in Table 3, which are
returned each time AMESTER reads a sensor. AMESTER interprets the value, min,
max, and value_acc fields from the OCC by multiplying them by the sensors’s
scalefactor field. This allows sensors to have fractional values, such as 0.1 W. The
value_acc field accumulates every update to the sensor and the updates field incre-
ments by 1 on each update. The timestamp field is in units of the fundamental OCC
real-time loop (250 ms).

The value field reflects samples of the actual sensor value inside the OCC. This is
because the AMESTER command round-trip time is typically 100–200 ms and the
value within the OCC may have updated hundreds of times between read commands.
Still the user can get true minimum, maximum, and average values that include all
sensor value updates within the OCC.

Most studies using AMESTER focus on average sensor values since subsampling
the value field may not reflect the true system behavior. AMESTER reads each sensor
atomically (in a single command/response) so that all fields of a sensor are synchro-
nized in time. This allows the value_acc and updates fields to be used together to
compute precise averages between any two reads of the sensor.

average ¼ value acc2  value acc1
updates2  updates1

Table 2. Sensor metadata fields.

Field Description

sensornum The numeric sensor ID used in OCC commands
sensorname A string name for use in AMESTER GUI and TCL commands
u_value A string describing the sensor unit. For example, “W” for Watts
freq The update rate (Hz) of the sensor in the OCC.
scalefactor A floating-point multiplier used to interpret the 16-bit value field sent by the

OCC
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Furthermore, multiple AMESTER instances simultaneously attached to a system
can use this method to compute averages over timescales of interest without
interference.

It is possible to tightly time-synchronize values across sensors, since read com-
mands typically complete within 1 OCC control interval. In POWER8 OCC, up to 10
sensors may be received in one read command. This is limited only by the buffer size in
the firmware implementation.

Triggers. A user-supplied callback procedure can be registered to run whenever
sensor data is received. The callback is registered by setting the global variable
new_data_callback with the procedure name. The callback receives the updated sensor
object as an argument. The callback can inspect the updated sensor object and take
appropriate action, such as writing a trace to a file. An example printing all sensor
updates to the console is shown below:

proc my_callback {sensorobj} {

puts “[$sensorobj cget -sensorname] =
[$sensorobj cget -value]”

} 

set ::new_data_callback my_callback

3.3 Trace Buffers

The AMESTER trace buffer interface makes it possible to study system behavior at
small timescales. Since the sensor interface can take 100 s of milliseconds to poll
sensor values, it is not sufficient for studying and debugging OCC control loops which
often operate quicker than 1 ms. The trace buffers are implemented by reserving some
of the OCC SRAM memory to capture runs of sensor values. Every sensor value
change can be captured until the buffer fills. The AMESTER API provides a way to
specify which sensors and parameters (described later) compose the trace record
written into the trace buffer.

In POWER8, there are two trace buffers. One buffer, called trace250us, operates on
a 250 µs period and the other buffer, called trace2 ms, operates on a 2 ms period. The
periods correspond to real-time control intervals within the OCC. When the AME-
STER command to begin recording is sent to the system, the primary OCC signals all

Table 3. Sensor data fields

Field Description Size in OCC (bits)

value The sensor’s value 16
min, max Minimum and maximum values since last reset 16
value_acc Accumulates every write to value field 64
updates Counts number of writes to value field 32
timestamp OCC time of last update 32
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OCCs to begin tracing. This synchronizes both trace buffers across all POWER8 chips.
During each trace interval, the OCC snapshots the programmed sensors and parameters
into a trace record. Once the trace buffer is filled, AMESTER reads the raw buffer data,
parses the trace records, and writes them to a file. The trace buffers are 8 KB each.
Therefore, a single 16-bit sensor value can be recorded for 1024 ms into trace250us
and for 8192 ms into trace2 ms.

3.4 Parameters

AMESTER’s parameter interface was developed to allow OCC developers to debug
new features. It gives the developer the ability to specify a section of the OCC SRAM
memory, such as a global variable, and then read or write it from AMESTER to affect
the behavior of the running system. Parameter values types include signed and
unsigned integers of various sizes as well as hexadecimal strings for raw data. Addi-
tionally, parameters may be an array of values to simplify reading and writing from
scripts. The parameter window, shown in Fig. 6, provides an easy way to inspect and
change the parameter values.

Parameters speed the debug-compile-test cycle by allowing specific tests to be run
without re-compiling the OCC firmware and loading it into the system. For example, it
has been used to provide setpoints and thresholds for algorithm tuning. We have used
the parameter feature in conjunction with trace buffers to observe the input and output
of power capping and thermal feedback controllers over each control interval.

An OCC developer can create a new parameter simply by specifying a global
variable and adding an entry to the parameter table in the OCC firmware. For example,
the setpoint for the thermal controller resides in variable g_amec_sys.thermalproc.
setpoint and the value is in units of 0.1 degrees Celsius. This is added to the parameter
table in 1 line of code using a macro:

AMEC_PARM_UINT16(PARM_SYS_THRM_SP,"sys_thrm_sp",&g_am
ec_sys.thermalproc.setpoint)

The macro specifies the type and size of the parameter. The developer only needs to
supply a unique number to identify the parameter (PARM_SYS_THRM_SP) in the
low-level AMESTER API commands, a nice name for AMESTER to display, and the
pointer to the value. From AMESTER, the parameter may be read into a variable by a
user script:

set tempC [myserver_node0_ame0_sys_thrm_sp read]

It may also be written to control the OCC to use 85.0 degrees Celsius:

myserver_node0_ame0_sys_thrm_sp write 850 
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3.5 Use Case

In this section we show how AMESTER can be used to measure the reduction in power
due to the POWER8 internal voltage regulators. On POWER8, each core can be set to
an independent voltage and frequency [4]. We consider the case where all 12 cores are
running a heavy workload. The first 6 cores are running at the lowest frequency of
2066 MHz to represent a workload that is memory bounded and cannot use extra
frequency to improve performance. The other 6 cores represent a CPU-bound workload
running at the highest frequency of 3233 MHz. Previously, on POWER7, the voltage
of all cores was driven by an external regulator that was set based on the highest
frequency cores. In POWER8, each core has an internal voltage regulator module
(iVRM) that sets the core voltage independently from other cores. In this case, the cores
with lower clock frequency use the iVRM at a lower voltage, while the cores at higher
clock frequency remain on the external voltage regulator at the usual high voltage. This
reduces the overall power footprint of the chip.

To explore this particular power management strategy, we use the on demand linux
governor to set a maximum frequency for the fast cores, but override the frequency for
the slower cores using the freq_or AMESTER parameter, shown in Fig. 6. Then we
use the watchsensor.tcl script provided with AMESTER to select the power sensors and
voltage sensors for tracing to a CSV file.

The results for our scenario are shown in Fig. 7. When iVRM is disabled, all cores
use external voltage regulation and the external voltage regulator is set to 1.1375 V.
When iVRMs are enabled, the 6 low-frequency cores use a lower voltage of 0.850 V
and the 6 high-frequency cores still run from the external regulator at 1.1375 V. With
iVRMs enabled, the chip power reduces by 25 % (39 W) and the overall system power
reduces by 13 % compared to no iVRMs enabled. The sensor data shows the entire
power reduction is due to the POWER8 chip Vdd voltage rail alone and other sub-
systems are not affected. Additionally, AMESTER collected performance data for each
core using the instruction-per-second sensors (not shown) to show that performance
was not affected.

Fig. 6. Screenshot of parameter window
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4 Related Work

Industry-standard protocols for reporting power in computers have been previously
available. The IPMI protocol, which runs on the BMC, includes a Sensor Data
Repository function that allows out-of-band measurements to be collected [6]. Today,
IPMI is limited to reading 1 sensor record per read command and has 1 timestamp for
the entire sensor repository. BMC firmware populates the IPMI sensors using I2C-bus
[7] and PMBus [9] protocols to gather measurements from system devices. Manu-
facturer specific command extensions to IPMI, such as Intel’s Node Manager [9] and
DCMI [10] also report power consumption metrics.

In contrast to the prior work, AMESTER commands were designed to allow a more
flexible, user-specified set of sensors to be returned by a single read command in near
real time (under 1 s). The AMESTER interface exposes the true sensor update rate for
each sensor and allows each sensor to have a timestamp for its last update. This allows
for measurements to be correctly time-aligned with respect to each other. AMESTER
tracks an accumulator for each sensor, allowing precise averages to be calculated over
arbitrary periods by multiple users. Furthermore, AMESTER’s tracing capability
allows it to keep up with sensor measurement generation for in-depth study over short
time periods. Limitations of AMESTER today are that it cannot collect every sensor
update for sub-second sensors due to bandwidth limitations of the BMC and network.
Similar limitations exist for IPMI.

5 Conclusion

The POWER8 OCC delivers real-time power management features that improve the
performance and reliability of OpenPOWER systems. The AMESTER tool provides
insights on the power consumption and performance behavior of the system through

Fig. 7. Power consumption by subsystem
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time-synchronized visualization. Together, OCC and AMESTER provide the Open-
POWER community with strong foundation for prototyping new power management
capabilities.
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Abstract. POWER8, the latest RISC (Reduced Instruction Set Com-
puter) microprocessor of the IBM Power architecture family, was
designed to significantly benefit emerging workloads, including Business
Analytics, Cloud Computing and High Performance Computing. In this
paper, we provide a thorough performance evaluation on a widely used
large-scale graph processing framework, Spark/GraphX, on a POWER8
cluster. Note that we use Spark and Java versions out of the box without
any optimization. We examine the performance with several important
graph kernels such as Breadth-First Search, Connected Components, and
PageRank using both large real-world social graphs and synthetic graphs
of billions of edges. We study the Spark/GraphX performance against
some architectural aspects and perform the first Spark/GraphX scala-
bility test with up to 16 POWER 8 nodes.

Keywords: POWER8 · Spark/GraphX · Graph algorithm

1 Introduction

As the amount of data generated and collected continues to grow at an expo-
nential rate, large-scale graph processing frameworks, such as Pregel [22], Pow-
erGraph [12], GraphX [13], and many others [25–27,29], have been developed.
These frameworks are used to extract the desired information from Big Data for
business and daily life as graphs are a natural representation for unstructured
data.

GraphX is becoming more and more popular because it is a library that
comes with Spark, a now widely used cluster computing engine for big data ana-
lytics. It is similar to Hadoop MapReduce [1]. While it performs several orders
of magnitude faster than Hadoop MapReduce in many applications [35], Spark
differentiates itself from MapReduce in several aspects which are important to
GraphX. This includes novel in-memory storage abstractions, the Resilient Dis-
tributed Datasets (RDDs), support for general computation of Directed Acyclic
Graphs (DAGs), lineage-based fault tolerance, and many more. These novelties
allow Spark to support a wide range of big data analytics such as graph process-
ing and machine learning, which normally require iterative steps and multiple
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 268–285, 2016.
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data join operations. GraphX extends the Spark operators by introducing a few
of it is own, specific to graph processing.

POWER 8 [4,30] is the first processor supporting OpenPOWER [2]. It is
designed with high memory capacity and bandwidth, low latency access, and
high thread density to deliver unprecedented performance for emerging work-
loads. It shows a great impact on the performance of SparkBench [3,19], a Spark
benchmark developed by IBM Research, which covers a comprehensive set of
applications such as machine learning and SQL queries as well as a diverse set
of high performance computing applications [8,11,21]. Moreover, all the afore-
mentioned research was conducted either on commodity X86 cluster or a single
POWER 8 node. In this paper, we provide a comprehensive performance evalu-
ation of Spark/GraphX from a system perspective on a POWER 8 cluster with
17 nodes (1 master + 16 slave nodes). While there’s literature about Spark on
previous generations of the POWER architecture [23], to the best of our knowl-
edge, these are the first Spark/GraphX scalability results on a POWER 8 cluster
in the literature.

Our main contributions are as follows:

1. We analyze the performance of Spark/GraphX on a set of graph kernels with
both real-world graphs, such as Twitter [16] and Friendster [34], and synthetic
RMAT graphs [10,10,18,28].

2. We provide a fresh look on performance of Spark/GraphX by targeting
some POWER 8 architectural aspects such as Non-Uniform Memory Access
(NUMA) and Simultaneous Multithreading (SMT)

3. We perform comprehensive scalability tests of Spark/GraphX on POWER 8
cluster from 2 nodes to 16 nodes.

The rest of the paper is organized as follows. Section 2 reviews the related
work on POWER 8 and Spark/GraphX. After that, Sect. 3 provides a brief
description of three important graph kernels we used in this research. Section 4
presents the comprehensive performance evaluation of the Spark/GraphX on
POWER 8 cluster. Finally, Sect. 5 concludes our work.

2 Related Work

In this section we review the literature related to POWER 8 and Spark/GraphX
performance analysis.

In [8], Brock, Liu, and Rajamani report record-setting performance for the
STAC-A2 benchmark, a well-rounded HPC benchmark that stresses a system
at scale. The paper presents solutions for a POWER 8 S824 server with differ-
ent algorithmic optimizations. In [11], the performance of POWER 8 is evalu-
ated in the context of a widely-used computational neuroscientific application
modeling large-scale neuronal network using detailed morphologies. [9] describes
a new methodology to design SpMV algorithms for POWER 8 systems which
shows quasi-optimal scaling performance. [21] provides insight into the relevant
characteristics of POWER 8 using both a set of microbenchmarks and a wide
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range of applications which are difficult to optimize on other processors and
accelerators. [3] studies Spark performance on a single POWER 8 S882L system
using SparkBench. All this valuable research is focused on a single POWER 8
machine. We provide a first look to Spark/GraphX performance on a cluster
with 17 POWER 8 nodes.

Lim et al. [20] present an extensive empirical evaluation of three graph
processing platforms including Pegasus, Spark/GraphX and Urika. The experi-
ments with GraphX running on a 65 node cluster in a public Cloud environment
show that GraphX outperforms Urika and Pegasus on iterative operations like
connected components and PageRank. [7] addresses the problem of parallelizing
the de Bruijn graph-based de novo genome sequence assembly on distributed
memory systems by proposing a new tool, Spaler, based on Spark using the
GraphX API, which scales better than existing tools. [14] proposes building a
scalable hypergraph analysis framework based on GraphX and examines the
programmability with two real-world datasets on a 6-node cluster. [17] ana-
lyzes Maximum Flow Algorithm on GraphX. The author finds that limiting the
active set results in insignificant gains of performance. Caching of RDD results
is reported to speed up performance by factors of 1.2 to 1.4 with the claim that
the factor correlates with the runtime and/or number of iterations. While earlier
studies on GraphX focus on different angles, none of them provides a thorough
performance study of GraphX by considering architecture characteristics such
as NUMA, and SMT.

3 Graph Analytics Building Blocks in GraphX

In this section, we describe a set of representative graph kernels, including
Breadth-First Search (BFS), Page Rank (PR) and Connected Components (CC),
which are heavily used as building blocks for big data analytics. We also present
code snippets of these graph kernels within the GraphX implementation of
Pregel. Our evaluation in Sect. 4 is based on these kernels.

3.1 Breadth-First Search

Graph traversals are often used as basic components of more sophisticated meth-
ods for big data analytics. For example, algorithms to calculate centrality mea-
sures, or heuristic search algorithms, such as A* [31,36] use graph traversal as
a building block. Because of its importance, BFS has been chosen by Graph
500 (http://www.graph.500.org/) to rank supercomputer performance on data-
intensive applications. Recursive MATrix (RMAT) scale-free graphs [10,18,28]
have been chosen as the input data because of their similarity to graphs occurring
in many real-world applications.

http://www.graph.500.org/
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Our BFS implementation in Listing 1.1. is performed in 2 stages. The first
stage uses the Pregel API to annotate the graph in a similar way a shortest
path algorithm would do. The second stage extracts the actual BFS result sets
for each root. Listing 1.2 shows the 2 stages. Note that the measured times in
Sect. 4 include the extraction and printing (not shown) of the size of the result
to make Spark actually instantiate the result and force Spark to perform the
operations. Otherwise, Spark might defer or skip the processing entirely and
the measurements wouldn’t represent the actual processing time due to lazy
evaluation1 [6,35].

1 All transformations in Spark are lazy, in that they do not compute their results right
away. Instead, they just remember the transformations applied to some base dataset
(e.g. a file). The transformations are only computed when an action requires a result
to be returned to the driver program.
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3.2 Page Rank

PageRank is a very popular graph algorithm and is also frequently used for
benchmarking and comparison. It ranks the importance for the vertices in a
graph and the computation is performed in a iterative manner to update the
ranking scores of each vertex [24]. GraphX comes with two implementations of
PageRank, running with a fixed number of iterations and running until con-
vergence. For simplicity, we are measuring the static page rank version using 5
iterations. Same as with the BFS result, we are adding another operation that
touches the result to cause Spark to perform the requested activity within the
measurement frame. In this case we just count the vertices in the result. Alter-
natively, retrieving the max or the average page rank result would work too.
Since those operations may involve additional computation, we decided to stick
to the counting.

3.3 Connected Components

For an undirected graph, this algorithm computes the connected component
membership of each vertex. That is, within each connected component, all the
vertices are reachable from each other. The parallel algorithms to find connected
components is based on label propagation [15]. The algorithm initializes each
vertex with an id and then iteratively updates minimum reachable vertex id
of each vertex until it converges. At convergence, the vertices that belong to
the same component have the same smallest id for each component. Similar to
PageRank, we also use the GraphX implementations of Connected Components.
Here too, we are counting the number of components in the result to instantiate
the computation.

4 Experimental Results

In this section, we present the experimental analysis of the Spark/GraphX on
a 17 nodes POWER 8 cluster. We begin by introducing the experimental envi-
ronment and the input graphs. Then we present the results of the performance,
scaling, and the profiling analysis.
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4.1 Experimental Environment

The cluster used in this experimental evaluation is a 17 nodes POWER 8 cluster
at IBM T.J. Watson Research Center. Each node is an IBM POWER 8 non-
virtualized (PowerNV) S822LC server, an instantiation of POWER 8 Firestone
architecture, which has a two-socket POWER 8 processor running at 3491 MHz
clock. Each socket has 10 physical cores with 8-way simultaneous multithreading
(SMT) per core. The node runs RedHat Enterprise Linux (RHEL) 7.2 with
512 GB physical memory and 1.2 TB Hitachi 10K RPM hard drive. All nodes
are equipped with Mellanox ConnectX-4 EDR Host Channel Adapters.

We use Spark version 1.6.0 and IBM Java version ibm-java-ppc64le-80. Unless
stated otherwise, we configure Spark with SPARK WORKER CORES = 8 to
take advantage of SMT, and SPARK WORKER MEMORY=24GB. One node
is designated as the master node and the slave nodes are launched with the
configuration that utilizes the numactl to control Non-Uniform Memory Access
(NUMA) policies for processes and shared memory allocation. In our experi-
ments, we change the number of workers/executors via spark.default.parallelism
so that it’s adjusted to match the total number of cores on all executor nodes [5].

4.2 Benchmarks and Metrics

In our evaluation, we used both real-world and synthetic graphs, as listed in
Table 1. The real-world social graphs include Twitter follower links and Friend-
ster online social network with over a billion edges. The synthetic RMAT graph
is a popular family of scale-free graphs that has been adopted by many bench-
marks. Note that for detailed profiling in Sects. 4.3 and 4.4 we use only RMAT
graphs in this paper. All 3 graphs from Table 1 are used for scaling tests in
Sect. 4.5.

Table 1. Graphs Used for Evaluation

Category Name Description # Vertices # Edges Diameter References

Real-world Twitter The entire

Twitter

follower links

(Jul ’09)

41.7M 1,470M 18 [16]

Friendster Friendster online

social

network

65.6M 1,806M 32 [34]

Synthetic RMAT Conforming to

Graph500

Specifications

2SCALE 2SCALE+4 ≈ 13 [10,10,18,28]

4.3 Effects of Non-Uniform Memory Access (NUMA)

We started the experiments by examining the Non-Uniform Memory Access
(NUMA) effect on the graph kernels. We compared two Spark configurations,
namely “With Numactl” and “No Numactl”. For the “With Numactl” case, we
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bind the SPARK WORKER to a set of specific CPU cores and have the worker
always allocate memory on the local memory controller. On the contrary, “No
Numactl” does not set an arbitrary CPU and memory affinity. We run Breadth-
First Search (BFS), PageRank (PR), and Connected Components (CC) using 4
slave nodes and we use RMAT graph scale 25 and edge factor 16, ≈ 33 million
vertices and 1 billion directed edges.

Figure 1 reports the execution time of BFS, Connected Components, and
PageRank on Spark with and without Numactl configured. Note that we use the
same number of Spark Worker, Spark Executor and Executor memory for both
cases. As shown in the figure, in general, using Numactl shows significant perfor-
mance improvements compared to the cases not using Numactl. To be specific,
we observed a 13.9 % performance improvement for BFS, 25.7 % performance
improvement for CC, and 36.7 % performance improvement for PR.
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Fig. 4. CPU utilization profiling without Numactl.

To further understand the benefits of Numactl, we monitored the resource
consumption using Linux System Activity Report (SAR2). Figures 3, 4, 5, 6,
7, 8, 9 and 10 report the CPU, memory, disk, and network utilization for each
algorithm on all the slave nodes. In general, we observed well balanced resource
activities across all the slave nodes.

For CPU utilization in Figs. 3 and 4, we report idle, iowait, system, and
user (Spark tasks). Different algorithms have different demands of the CPU
resource. Using Numactl achieves higher average CPU utilization with up to
11 % compared to not using Numactl. Breadth-First Search results show an
average of 49 % and 48 % CPU utilization for With Numactl and No Numactl
cases respectively. With Numactl, Connected Components has an average of 50 %
CPU utilization, 10 % higher than the case without Numactl. For PageRank, the
average CPU utilization is 61 % with Numactl and 50 % without Numactl.

In Figs. 5 and 6, we report the memory utilization of Spark tasks
(kbmemused), memory used to cache data by the kernels (kbcached), and the
amount of memory swapped (kbswpused). In GraphX, the graph algorithm is
executed in a sequence of iterations which normally cache the vertex and edge
RDDs in memory. And we observed a stable usage of memory for all these algo-
rithms. Different algorithms show different memory usage. This is due to the
different number of iterations and behaviors (e.g. communication pattern) in
each iteration. The average memory usage is shown in Table 2

Figures 7 and 8 show disk activity including the blocks per second read from
the devices (bread/s) and the blocks per second written to the devices (bwrite/s).
Different algorithms shows different disk access behaviors. Breadth-First Search
demands fewer disk access compared to Connected Components and PageR-
ank. With Numactl, we observed an average of 50 MB/Second write for BFS,

2 A system monitor command used to report on various system loads.
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Fig. 5. Memory profiling with Numactl.
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Fig. 6. Memory profiling without Numactl.

135 MB/Second write for CC, and 128 MB/Second write for PageRank. For the
cases not using Numactl, the average write is lower than cases with Numactl,
44 MB/Second for BFS, 92 MB/Second for CC, and 101 MB/Second for PageR-
ank. This mirrors the differences in CPU utilization in Figs. 3 and 4. Note that
there are no disk read operations monitored by SAR. This is because the oper-
ating systems uses a lot of memory to cache the disk reads as we noticed in
Figs. 5 and 6.

We also profiled the network IO activities for each slave node. As shown in
Figs. 9 and 10, the total number of packets received per second (rxpck/s) and the
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Fig. 7. Disk profiling with Numactl.

Table 2. Memory usage of graph kernels. Numbers in GB.

With Numactl No Numactl

Kernel kbcached kbmemused kbcached kbmemused

BFS 12 210 13 212

CC 38 242 29 233

PR 44 248 26 229

total number of packets transmitted per second (txpck/s) are reported for dif-
ferent algorithms. The network activities reflect the iterations of the algorithms.
Each iteration involves at least one sendMessage phase which is an all to all com-
munication. In general, the average rxpck/s is similar to txpck/s. Similar to the
disk activities, Numactl results in higher network rxpck/s or txpck/s for all the
algorithms compared to the case not using Numactl. We observed an average of
≈ 2100 rxpck/s(txpck/s) for BFS, ≈ 2133 rxpck/s(txpck/s) for CC and ≈ 1400
rxpck/s(txpck/s) for PageRank with Numactl. For the case not using Numactl,
≈ 1800 rxpck/s(txpck/s) for BFS, ≈ 1770 rxpck/s(txpck/s) for CC, and ≈ 995
rxpck/s(txpck/s) for PageRank have been monitored.

4.4 Effects of Simultaneous Multithreading (SMT)

As we discussed earlier, the POWER 8 processor chip supports eight hardware
threads per core. Applications normally gain benefits by using all the SMT
threads of the processor cores [21]. In this experiment, we examine how SMT
affects the GraphX applications. Spark is launched on 4 slave nodes and config-
ured with SPARK WORKER INSTANCES=20, which will launch 20 JVMs per
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Fig. 8. Disk profiling without Numactl.
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Fig. 9. Network profiling with Numactl.

node. We vary the SPARK WORKER CORES to 1, 2, 4, and 8 to allow each
worker to use different number of hardware threads. Similar to the NUMA effect
experiments, we use the same graph as the input and run Breadth-First Search,
Connected Components, and PageRank on different SMT configurations. Note
that Numactl has been used in all those configurations.

Figure 2 shows the performance comparison of using different values for
SPARK WORKER CORES. Clearly using more hardware threads per core
improves the performance for all these algorithms. We observed significant
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Fig. 10. Network profiling without Numactl.

improvement when increasing the number of used hardware threads from 1
to 8: 59 % performance improvement for Bread-First Search, 27 % performance
improvement for Connected Components, and 32 % performance improvement
for PageRank, which is a good indication that increasing the number of threads
allows for better utilization of the bandwidth, thereby gaining benefits for the
application performance.

4.5 Scalability Analysis

For the scalability experiments, we consider two cases, scaling with different
number of SPARK WORKER INSTANCES and scaling with different number
of slave nodes. The graphs used include both very large social graphs such as
Twitter and Friendster and an RMAT graph with 226 vertices and 230 undirected
edges. Note that in the scalability test we have Numactl configured for all the
experiments and also configure each worker to use 8 hardware threads to take
the advantage of the SMT.

Scalability with Different Number of Spark Workers. In this scal-
ability test, we run Spark on 8 slave nodes but with different numbers of
SPARK WORKER INSTANCES including 5, 10, and 20. As shown in Fig. 11,
significant performance improvement is observed when increasing the number of
SPARK WORKER INSTANCES for all the cases. We observed an average of
2–3X with up to 5.21X speedup of using 20 workers compared to using only 5
workers. This is mainly due to the more effective usage of the memory band-
width. In addition, different algorithms seem to be sensitive to the different
graphs because of the difference in the topology. RMAT graph shows a speedup
of 4.36X for Breadth-First Search, 2.28X for PageRank, and 2.22X for Connected
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Fig. 11. Strong scaling with different spark workers.

Components. Twitter social graph demonstrates a speedup of 5.21X for Breadth-
First Search, 2.2X for PageRank, 1.96X for Connected Components. Finally, the
Friendster social graph exhibits a speedup of 2.07X for Breadth-First Search,
2.65X for PageRank, and 1.7X for Connected Components.

Scalability with Different Number of Slave Nodes. In order to analyze
scalability with different numbers of slave nodes, we fix the number of workers
per slave node and scale from 2 slave nodes all the way to 16 slave nodes running
different algorithms with different graphs. In general, as shown in Fig. 12 (a), (c)
and (e), noticeable performance improvement has been achieved when increasing
the number of slave nodes. While different graphs behave differently, we observed
up to 3.3X speedup for RMAT graph, 4.1X speedup for Twitter graph, and 5.2X
speedup for Friendship graph when increasing the number of slave nodes from 2
to 16. However, the scaling tends to be sub-linear. For example, the PageRank
algorithm on Friendster graph shows a speedup of 1.8X when moving from 2
slave nodes to 4 slave nodes (a factor of 2), and a speedup of 5.2X when moving
from 2 slave nodes to 16 slave nodes (a factor of 8). Such sub-linear scaling
behavior has also been observed by [13,32]. In addition, among those graph
kernels, Breadth-First Search seems to be more vulnerable to the performance
degradation, showing the worst scaling behavior, 2.9X speedup for RMAT, 2.5X
speedup for Twitter, and 1.5X speedup for Friendster from 2 slave nodes to 16
slave nodes.
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Fig. 12. Strong scaling with different nodes.

While the relative poor scaling performance of graph algorithms could be
partially attributed to high communication overhead relative to computation
characteristics [12,13], we provide a different angle to looking into the causes of
the different scaling behavior of different graphs. Figure 12 (b), (d), and (f) shows
the histogram of the average execution time per task of the executors for different
graphs on different numbers of slave nodes. Note that these tasks include a full
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run of three algorithms. The figures give both the histogram (dots) and the hinges
(first quartile, median, and third quartile) of the average task time. We noticed
that in general the executors somehow show a certain degree of imbalance in
terms of the average task time with a ratio (shortest task/longest task) ranging
from 0.41 to 0.77 for different algorithms on different numbers of slave nodes.
Figure 12 (d) is the only case where the mean, median, first and third quartile of
the average task time are monotonically decreasing when moving from 4 nodes to
16 nodes, which in return gives the best scaling behavior among three graphs as
shown in Fig. 12 (c). While, in Fig. 12 (b) and (e), the average task time of 4 slave
nodes case is surprisingly higher than 8 slave nodes cases or 16 slave nodes cases,
which may be an indication that the default partition strategy, vertex-cut (edges
are partitioned evenly across a cluster and vertices are replicated to machines
with adjacent edges) though it is claimed to minimize communication [12,33],
can still incur imbalance, thus impacting the overall scaling performance.

5 Conclusions

In this paper, we present a comprehensive performance evaluation of Spark/-
GraphX on a POWER 8 cluster with 17 nodes. We use a set of important graph
kernels such as Breadth-First Search, Connected Components, and PageRank
and examine the GraphX performance with both large real-world social graphs
and synthetic graphs of up to a billion edges. We provide a fresh look at perfor-
mance of Spark/GraphX on POWER 8, with focus on the impact of architectural
aspects such as Non-Uniform Memory Access (NUMA) and Simultaneous Mul-
tithreading (SMT). Results show that configuring for architectural features such
as NUMA and using all the SMT threads, helps to improve performance by up to
25.7 % and 58 % respectively, for the examined graph kernels.

We believe that the results we present and the methodology we show will
provide guidance and insight to the practitioners working on the development
and deployment of graph solutions based on Spark on POWER 8. The scala-
bility study reveals that processing imbalance can have a huge impact on the
performance, which might indicate future directions for Spark/GraphX study.

In this study, we limited ourselves to unmodified, non-optimized versions of
Spark and Java. Applying and comparing optimized versions of Spark and Java
is subject to future work.
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Abstract. The IBM POWER8 CPU is a high-performance multi-core hardware
which targets the usage with computational intense numerical codes. Combus-
tion modeling is among the most computational demanding mathematical
problems. Therefore, in this paper we present a performance analysis of the
3D-combustion modeling software RECOM-AIOLOS on a POWER8 node. The
analysis reveals the strengths of the POWER8 hardware being a NUMA system,
but also the importance of a proper memory allocation when using OpenMP or a
hybrid (OpenMP + MPI) parallelization approach on such a system.

1 Introduction

The 3D-combustion modeling software RECOM-AIOLOS [1, 2] is a tailored application
for the mathematical modeling of industrial firing systems ranging from several hundred
kW to more than 1000 MW. In-depth validation using measurements from industrial
power plants, the extension of chemical reaction models and the rapid development of
computer technology have made RECOM-AIOLOS a well proven and reliable tool for
the prediction of industrial furnace efficiency. The software solves approx. 100 conser-
vation equations (mass, momentum, energy, species concentrations, radiation) on a
20-30 million cells finite volume grid, leading to high computational demands. Origi-
nally being designed for high-performance computing on parallel vector-computers and
massively parallel systems, the software has been ported to x86-based multi-core sys-
tems to expand the hardware base [3]. In the present work the software was further ported
to IBMs POWER8 based multi-core systems. The performance achieved on the IBM
POWER8 architecture was compared to the performance achieved on the latest Intel
architecture.
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2 Hardware

The following hardware was used in the present work:

2.1 IBM POWER8 Node

The POWER8 benchmarks were carried out on a two-socket IBM S824L [4] node of
the PADC (POWER Acceleration and Design Center) Böblingen. The nodes consist of
two 10-core POWER8 CPUs with a speed of 3.4 GHz and 230 GB/s memory band-
width. The software was compiled using the IBM xlf Fortran compiler version 15.1.4
beta using the MPI library openmpi version 1.6.5.

2.2 Intel Haswell Node

The performance tests on the Intel architecture were performed on a two-socket Intel
Haswell node using two 12-core Intel® Xeon® CPU E5-2680 v3 (30 M Cache,
2.50 GHz, 68 GB/s memory bandwidth). The software was compiled with the Cray
Fortran Compiler version 8.4.3 using the MPI library craympich version 7.3.3.

3 Application Performance Achieved on IBM POWER8

The performance tests were performed with a 3D model of an existing combustion
chamber. The total size of the numerical grid used for the tests is approx. 20 mio. cells.
Due to the use of a domain decomposition method, the loop lengths vary between
75000 and 8.4 mio. elements. To evaluate the performance of the 3D combustion
simulation code RECOM-AIOLOS the wall-clock time of 20 iterations was measured
and averaged. Speedup was calculated in relation to the execution time of one process
with 1 thread. The 3D combustion simulation code RECOM-AIOLOS uses a hybrid
parallelization approach which allows the simultaneous use of OpenMP and MPI.

Figure 1 shows the performance achieved by the RECOM-AIOLOS code on the
IBM POWER8 architecture for different parallelization settings (number of OpenMP
threads and number of MPI ranks on a single node).

With pure OpenMP parallelization, a speedup of 10.1 was achieved when using 20
threads (SMT1) on the available 20 cores. No or only little performance gain was
achieved when using more than 20 threads (SMT2, SMT4 or SMT8). Increasing the
number of MPI processes and reducing the number of OpenMP threads showed a
significant improvement of the performance, giving the best SMT1 speedup of 15.1
with 4 MPI processes and 5 threads per process.

Using 2 (SMT2) or 4 (SMT4) threads per core showed a further performance gain.
The best performance with a speedup of 22.7 was achieved with 8 MPI processes and
10 threads per process (SMT4). No performance gain could be observed for SMT8.

The low OpenMP performance could be attributed to the small loop lengths in the
test case. On NUMA systems, memory is allocated by a so-called first-touch policy,
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where the physical memory is allocated by the first thread/core using the memory. As
with the first touch not only single elements, but a whole memory page is allocated, it is
likely, that many of the data elements of the small loops fit into one 64 kB memory
page and are allocated by the first thread/core on the first NUMA node. Therefore the
probability of a low performing distant memory access is high for the other OpenMP
threads/cores.

In order to verify the performance dependence on the memory access pattern, an
idealized test case with a loop size of 10 mio. elements was created. For this case a
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proper memory allocation was possible and the OpenMP threads were able to access
local memory. The now achieved maximum performance with pure OpenMP (Speedup
21.9 on 80 Threads – SMT4, see Fig. 2) was very similar to the performance achieved
with the best hybrid approach (Speedup 22.7 on 8 processes with 20 threads each –

SMT4).

4 Application Performance on POWER8 Compared
to Haswell

In Fig. 3 the performance achieved on an Intel Haswell node is shown. The speedup for
the test case was significantly lower compared to the POWER8 node. But the speedup
was much less dependent on the parallelization setting on Haswell. The ratio of the best
hybrid performance compared to the best OpenMP performance was 1.12 for Haswell
and 2.0 for POWER8. The best speedup achieved on Haswell was only 11.1 with 2
MPI processes and 12 OpenMP threads each and no performance gain was achieved
with HyperThreading.

The higher sensitivity on the parallelization setting on the POWER8 system could
be attributed to the higher number of NUMA nodes (4 instead of 2 on the Haswell
node). Therefore more care is necessary on the POWER8 system to achieve a proper
memory allocation, e.g. making it necessary to use hybrid parallelization with at least 4
MPI processes (one on each NUMA node).

We haven’t yet fully investigated the root causes for the better scalability of
POWER8 compared to Haswell on RECOM-AIOLOS. An obvious contributor is
Haswell’s throttling. It reduces the processors clock frequency when it gets too hot. An
issue that is much as more likely the more cores are in use, such reducing the speedup.
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Investigations of other memory bound codes, mainly from the CFD space, indicate
that, as expected, further reasons are to be found in the memory subsystem.

We noticed, for instance, that the number of load and store LLC (last level cache)
misses increase by factors of 6.5x and 650x on Haswell, respectively, while increasing
only in the 20 % range on POWER8, when going from one core to 10 cores per socket.

This means, it is not only the raw memory bandwidth, but also the larger and
partitioned L3 caches that support a better use of the cores. The buffering and
prefetching capabilities of POWER8’s L4 cache does also help to hide memory
latencies and such improve scalability.

Figure 4 shows the average computing time for one iteration of the test case on a
single core and on a single node respectively. For the tested application, the single core
performance of a POWER8 core is approx. 2 times slower compared to a Haswell core.
But the (more important) performance of a single node is similar on both systems.

For a complete run approx. 40.000–100.000 iterations are required leading to a
computing time of up to 78 h when using only one node.

5 Potential Performance Improvement on IBM POWER8

The overall performance achieved is similar on the Haswell and POWER8 systems, but
due to the higher memory bandwidth a better performance for the POWER8 system
was expected.

The analysis of the computational performance on subroutine level, which is shown
in Fig. 5, revealed, that memory intense subroutines are up to about 1.8 times faster on
the POWER8 systems. On the other hand, subroutines with a high computational load
are significantly slower on POWER8, being the possible reason for the much lower
single core performance of the POWER8 core.
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Further analysis (e.g. of compiler output) showed that the major loops in the
compute intense routines are not vectorized being the reason for the low performance
of these routines. The problem was addressed to the IBM compiler team, which was
able to identify the reason for the missing vectorization. The team is currently working
on a better vectorization support, which should be released with the next compiler
version of the IBM xlf compiler.

Under the assumption that the compute-intense subroutines achieve the same
computational speed as on Haswell, the performance on one POWER8 node should be
approx. 30 % better compared to one Haswell node. This could be verified by manually
vectorizing one of the most important kernels.

6 Summary

The 3D-combustion modeling software RECOM-AIOLOS was ported to the POWER8
hardware. With a proper NUMA memory allocation an excellent speedup on the
available 20 cores was achieved when using OpenMP, MPI or a hybrid parallelization
approach and a further significant performance gain was observed when using 4 threads
per core (SMT4). At the time, the overall performance achieved on one 2-socket IBM
POWER8 node was similar to the performance on a 2-socket Intel Haswell node. The
lack of vectorization for the compute intense subroutines was identified as the major
bottleneck that slowed down the performance on the POWER8 hardware. With an
improved vectorization, a further performance gain could be expected on the POWER8
system.
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Abstract. With the appearance of the heterogeneous platform Open-
Power, many-core accelerator devices have been coupled with Power host
processors for the first time. Towards utilizing their full potential, it is
worth investigating performance portable algorithms that allow to choose
the best-fitting hardware for each domain-specific compute task. Suiting
even the high level of parallelism on modern GPGPUs, our presented
approach relies heavily on abstract meta-programming techniques, which
are essential to focus on fine-grained tuning rather than code porting.
With this in mind, the CUDA-based open-source plasma simulation code
PIConGPU is currently being abstracted to support the heterogeneous
OpenPower platform using our fast porting interface cupla, which wraps
the abstract parallel C++11 kernel acceleration library Alpaka.

We demonstrate how PIConGPU can benefit from the tunable ker-
nel execution strategies of the Alpaka library, achieving portability and
performance with single-source kernels on conventional CPUs, Power8
CPUs and NVIDIA GPUs.

Keywords: OpenPower · Heterogeneous computing · HPC · C++11 ·
CUDA · OpenMP · Particle-in-cell · Platform portability · Performance
portability

1 Introduction

PIConGPU [2] is a fully-relativistic, multi-GPU, 3D3V particle-in-cell (PIC) code.
As such it allows to model the mutual interaction between electromagnetic fields
and charged particles, including effects of retardation in special relativity (SRT)
and the collective motion of collisionless plasmas, by solving Maxwell’s equa-
tions self-consistently for charged particles and electromagnetic fields. Besides the
satisfied demand for large scales and high resolutions by computing the whole
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PIC cycle on GPUs, simulations of laser-ion acceleration from overdense tar-
gets [19] induce a further complexity in the dynamics of the plasma from colli-
sional excitation and ionization processes. As the free electron density from ion-
ization processes determines intrinsic observables such as the plasma wavelength,
the modeling of underlying quantum processes needs to be taken into account and
is not yet covered in the plain electrodynamics provided by PIC. Our approach to
enhance the PIC algorithm is therefore to add a Monte Carlo step in the simula-
tion with 0-D atom physics from SCFLY [4]. This method requires to calculate
the transition rate matrix, representing the likelihood of change of the atomic
configuration of each ion from one time step to the next. Each of the quantum
processes has its own individual models, calibrated with experimental and the-
oretical estimates. Even when considering the reduction of possible transitions
by using an effective number of states, removing physically forbidden and very
unlikely transitions, the total number of transitions can grow quadratically with
the number of considered configurations. In combination with the dependency
of the transition matrix elements on local quantities, such as the energy distrib-
ution of neighboring electrons and photons of each individual ion in the plasma,
the required amount of memory can easily grow into the size of several dozen
gigabytes for a non-equilibrium system.

None of the accelerators that are currently available or announced for the near
future fulfill these memory requirements. However, the accelerator’s host system
provides access to fast and large main memories and file systems. The host’s
CPUs are used as a first computing stage to reduce the full transition matrix
to smaller lookup tables. CPUs excel at this task, since they typically provide
better performance on trigonometric functions and implicit solvers. Accordingly,
only relevant data needs to be streamed to the GPU.

The OpenPower platform couples various advanced hardware technologies on
the same system [11] such as Power CPUs, NVIDIA GPUs, and fast CPU–GPU
interconnect technology [7]. To fully utilize the compute power of this platform,
it is currently necessary to use various programming models such as CUDA for
GPU and OpenMP for CPU. However, this style of programming has the disad-
vantage that the code is difficult to maintain and it requires more work to switch
algorithms between GPU and CPU implementations. A uniform programming
model allows to selectively determine the kernel execution hardware depending
on the algorithmic requirements. These requirements depend on the models of
the individual physical process: some are memory bound, some compute bound,
and the user chooses, based on domain knowledge and the relevance, on which
hardware these processes should be executed.

Currently, widely utilized uniform parallel programming models such as
OpenCL [17] do not fulfill all our requirements of a sustainable, open, main-
tainable, testable, optimizable, and single-source programming model. Loop and
container based approaches such as RAJA [9], Kokkos [5], and OpenMP 4.0 [15]
would require a complete redesign of the CUDA based PIConGPU code. With
Alpaka [20], there exists an interface for parallel kernel acceleration which
enables the programmer to compile single-source C++ kernels to various archi-
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tectures, while providing all the requirements mentioned above. As a first step to
selective kernel acceleration on the OpenPower platform, PIConGPU has been
ported with the CUDA-like interface cupla [16] to Alpaka, which currently
allows for an execution either on the CPU or on the GPU.

This paper is structured as follows. In Sect. 2, we give a brief overview on
PIConGPU, Alpaka, and cupla. In Sect. 3, we provide our experiences on porting
PIConGPU with cupla from CUDA to Alpaka. Finally, the ported prototype is
evaluated on various architectures in Sect. 4.

2 Preliminaries

2.1 PIConGPU

PIConGPU is a multi-GPU particle-in-cell (PIC) code for three-dimensional
field–particle interaction with high spatial resolution. The code decomposes its
global simulation domains into a grid of cells. Cells are grouped into a cuboid
volume called super cell, and multiple of these super cells are again grouped into
a cuboid volume which defines the local simulation domain of a single GPU.

Additionally, there is a second, spatially continuous domain for finite size
macro particles such as ions and electrons. They are able to move through the
cells and interact with them, making PIC a particle mesh algorithm [3]. Macro
particles are grouped in frames, where each frame contains as many macro par-
ticles as there are cells in a super cell. Frames are stored in a doubly linked list
and correspond to a particular super cell.

Most of the operations on the cells are local stencils which include only a few
neighboring cells and are therefore well suited to CUDA programming model of
a multidimensional grid. PIConGPU is mapped to this model as follows: The
local simulation domain is mapped to the grid of a single GPU. A super cell is
mapped to a block that contains as many threads as there are cells — in our
simulation this amounts usually to 256 cells. A thread calculates the field of a
cell and its proportion of particles of its super cell.

2.2 Alpaka and cupla

Alpaka provides a uniform, abstract C++ interface to a range of parallel pro-
gramming models. It can express multiple levels of parallelism and allows for
generic programming of kernels either for a single accelerator device or a single
address space with multiple CPU cores. The Alpaka abstraction of paralleliza-
tion is influenced by and based on the groundbreaking CUDA abstraction of
a multidimensional grid of blocks of threads. The four main execution hierar-
chies introduced by Alpaka are called grid, block, thread, and element level. The
element level denotes an amount of work a thread needs to process sequen-
tially. These levels describe an index space which is called work division. Other
programming models call these levels differently e.g. OpenCL work-groups of
work-items, OpenMP teams of threads, and OpenACC gang, worker, and vector.
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Separating parallelization abstraction from specific hardware capabilities
allows for an explicit mapping of these levels to hardware. The current imple-
mentation includes mappings to programming models, called back-ends, such
as OpenMP, CUDA, C++ threads, and boost fibers [14]. Nevertheless, mapping
implementations are not limited to these choices and can be extended or adapted
for application-specific optimizations. Which back-end and work division to uti-
lize is parameterized per kernel within the user code.

A fast approach to port CUDA code to Alpaka is provided by the CUDA-
like Alpaka interface cupla [qχap ′la?]. Cupla leaves most CUDA API calls
unchanged, yet performs Alpaka calls in the background. Thus, cupla provides a
simple and fast porting approach by reducing the number of lines of the original
CUDA code a programmer needs to modify.

3 Porting with cupla

In this section we discuss the steps necessary to port the CUDA accelerated code
of PIConGPU from GPU to CPU hardware. Our approach is to replace CUDA
by the CUDA-like interface cupla. Afterwards, we can utilize Alpaka’s CUDA
and OpenMP 2.0 back-ends to execute our kernels on both GPUs and CPUs.

Cupla leaves most parts of the CUDA code unchanged such as memory allo-
cations, memory copies, stream handling, device handling, and index queries.
The programmer is still required to handle three porting steps. Firstly, the
cuda runtime.hpp include has to be replaced by cuda to cupla.hpp and all
.cu files renamed to .cpp. Secondly, The host , device , and global
keywords need to be replaced by equivalent cupla macros and CUDA global
functions rewritten into parenthesis operators of C++ functors. The accelerator
object of the accelerator template type has to be passed to these operators and
the underlying device functions. Finally, each shared memory allocation has to
be replaced by an equivalent cupla macro. Figure 1 shows equivalent CUDA and
cupla code snippets of a kernel function initializing an array by a constant value.
In contrast to the CUDA kernel, each thread of the cupla kernel loops over the
x dimension of the element level.

The native PIC code consists of about forty thousand lines of code. This
code is a mixture C++11 and platform-dependent CUDA code. R. Widera pro-
grammed about two days, applied the cupla porting steps mentioned above,
touched most of our nine hundred device functions, forty kernels, amounting
to two thousand lines of code, to provide the first Alpaka based prototype.
Although this prototype did not utilize the element level, it was already exe-
cutable on both a Power8 device using the OpenMP 2.0 back-end and on an
NVIDIA device using the CUDA back-end. The number of threads in a block
was left unchanged. Accordingly, the domain of a super cell is processed by a
block consisting of 256 threads.

This block-size leads to inefficient communication between threads on the
Power8 when the element level is omitted, resulting in more frequent cache misses
and a decrease in performance. Accordingly, the integration of the element level
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1 // CUDA Kernel
2 __global__ void kernel ( int * data )

3 {

4 int id = blockDim.x * blockIdx.x

5 + threadIdx.x;

6 data[ id ] = 42;

7 }

1 // Alpaka Kernel
2 struct void kernel {

3 template < typename Acc >

4 ALPAKA_FN_ACC void operator () (

5 Acc const & acc ,

6 int * data

7 ) const

8 {

9 int id = blockDim.x * blockIdx.x * elemDim.x

10 + threadIdx.x * elemDim.x;

11 for( int elem = 0; elem < elemDim.x; ++elem)

12 data[ id + elem ] = 42

13 }

14 };

Fig. 1. CUDA and cupla kernels which initialize each element in the input array data

by the value 42. The cupla kernel on the bottom was created through wrapping the
CUDA kernel on the top within a C++ functor. Each thread of the cupla kernel
processes multiple elements through looping over the dimensions of the additional
element level. In the cupla kernel blockDim, blockIdx, threadIdx, and elemDim are
pre-processor macros accessing the acc variable.

enables for a work division of blocks with a single thread and multiple elements
to calculate the entire domain of a super cell. This provides a more efficient
mapping of Alpaka-threads to hardware threads and, therefore, an improved
vectorization and cache utilization by the compiler. The integration of the ele-
ment level required to loop over the fixed-size element index space for each
sequential kernel part. These sequential parts were wrapped in lambda func-
tions. Furthermore, single element variables were expanded to multidimensional
fixed-size arrays. This change, on three thousand lines of code, took our devel-
oper about ten days.

To sum up, our developer modified about five thousand lines of code in a
matter of two weeks, after which the entire forty thousand lines PIConGPU
code could be compiled and run efficiently on CPU and GPU devices. It was not
necessary to modify the core data structures or algorithms of PIConGPU. The
element level has been added to enable a single thread to process the domain
of a super cell. In the following section we will evaluate the performance of our
Alpaka-based PIC simulation on both architectures.
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4 Evaluation

This section provides the evaluation of the PIConGPU code [18] that was ported
to various compute architectures (see Table 1). We measured the runtime and
performance of the memory-bound PIC algorithm as implemented in PICon-
GPU with a simulation of the Kelvin-Helmholtz instability [3] for one thousand
time steps in double and single precision and compared these results between the
various architectures. The simulation was parameterized with the Boris pusher,
Esirkepov current solver, Yee field solver, trilinear interpolation in field gather-
ing, three spatial dimensions (3D3V), 128 cells in each dimension, electron and
ion species with each sixteen particles per cell, and quadratic-spline interpolation
(TSC) [8]. On all CPU devices the OpenMP 2.0 back-end was used with a block
consisting of a single thread with 256 elements. On NVIDIA GPUs the CUDA
back-end is used with a block consisting of 256 threads with a single element.
All GPU evaluations are compiled with nvcc1 7.0 and all CPU evaluations with
gcc2 4.9.2.

Table 1. Compute nodes for evaluation (core counts in braces are HW threads).

Vendor AMD Intel IBM NVIDIA

Architecture Interlagos [1] Haswell [10] Power8 [6] Kepler [12]

Model Opteron 6276 Xeon E5-2698v3 Power8 8247-42L K80 GK210

Used devices per node 4 2 2 1

Cores per device 16 16 (32) 10 (80) 2496

Base clock frequency 2.3GHz 2.3GHz 2.1GHz 0.56GHz

Release date Q4/2011 Q3/2014 Q1/2014 Q4/2014

Peak performance(sp) 960 GFLOPS 2354 GFLOPS 1120 GFLOPS 4350 GFLOPS

Peak performance(dp) 480 GFLOPS 1177 GFLOPS 560 GFLOPS 1450 GFLOPS

Figure 2 displays the measured runtime and efficiency of the evaluated sim-
ulation. On the NVIDIA K80, the differences in runtime between the native
and the ported PIC code are about one percent for single precision. For dou-
ble precision, the Alpaka based code is even faster, because Alpaka emulates
double atomicAdd using atomicCAS instead of the slower atomicExch used
by the native PIConGPU implementation. Nevertheless, this small optimiza-
tion could have been introduced easily into the native PIConGPU code to
achieve the same runtime results. According to these measurements, Alpaka
can keep its promise of zero-overhead abstraction on the same architecture even
for rather complex applications such as PIConGPU. The runtime between GPU
and CPU implementations differ in one order of magnitude for single precision.

1 --use fast math --ftz=false -g0 -O3 -m64.
2 -g0 -O3 -m64 -funroll-loops -march=native --param max-unroll-times=512

-ffast-math.
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Fig. 2. As an example to evaluate a memory-bound PIC code, runtime and floating
point efficiency of the PIConGPU Kelvin-Helmholtz instability simulation for single
precision and for double precision was measured on various architectures (see Table 1).

However, the results need to be evaluated in relation to the theoretical peak per-
formance of the particular architecture. This metric is denoted as floating point
efficiency in Fig. 2. Regarding floating point efficiency, CPU and GPU vary by a
factor of three to four on single precision and by a factor of two on double pre-
cision. Thus, Alpaka provides not just portability between GPU and CPU, but
decent performance on both. All evaluated CPU architectures show similar run-
time and efficiency characteristics. Nevertheless, the Intel architecture offers the
lowest runtime and highest (theoretical) peak performance of all evaluated CPU
devices. However, there still exists some potential to increase performance, as
it only provides five percent floating point efficiency on double precision. While
the IBM and AMD architectures fare slightly better with about eight percent
double precision efficiency, there is still a lot of potential compared to the GPU
efficiency. By refining the Alpaka back-ends and tuning the work division, this
potential can be utilized to increase the performance of the CPU architectures
even more.

5 Conclusion

We have presented the current progress in porting the particle-in-cell simula-
tion PIConGPU onto the OpenPower platform through utilizing the CUDA-like
Alpaka interface cupla . The core routines of the forty thousand lines mixed
C++ and CUDA code have been ported from CUDA to Alpaka within two
weeks. Through this abstraction, the ported PIConGPU implementation is exe-
cutable on AMD, IBM, Intel, and NVIDIA architectures. The code was not just
ported, but has been moved to a generic single-source multi-platform program-
ming model. Thus, PIConGPU never needs to be ported again.

The native CUDA version and the Alpaka version show no significant differ-
ences in runtime or performance on the NVIDIA hardware, which demonstrates
zero overhead abstraction capabilities of Alpaka. GPU and CPU devices dif-
fer in a factor of about two in efficiency on double precision, providing decent
performance among the evaluated architectures.

Future work will focus on the evaluation of each kernel on CPU and GPU
hardware separately. Based on these measurements, we want to provide a static
mapping of kernels to heterogeneous hardware to achieve the best possible overall
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performance on the particular HPC system. Furthermore, we want to complete
the porting of the remaining simulation plugins within PIConGPU and add a
more fine-grain element level implementation.

The code is ready for the upcoming Power9 and NVIDIA Volta-based het-
erogeneous systems such as Summit [13] at the Oak Ridge National Laboratory.
By using Alpaka we have the possibility to optimize and adapt our back-ends to
these systems once they are fully specified and available for evaluation.
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The ISC16 workshop “Application Performance on Intel Xeon Phi – Being Prepared
for KNL and Beyond” brought together about 100 members of a world-wide com-
munity of application developers and technology experts working to prepare scientific
application codes to run at high performance on high performance computing systems
powered by the Intel Xeon Phi processor. Intel released details of the Xeon Phi pro-
cessor codenamed “Knight’s Landing” or “KNL” at ISC16 and this workshop featured
the first public KNL application performance results, delivered through a series of
peer-reviewed presentations, lightening talks, and keynotes from Intel’s Chief Architect
for KNL, Avinash Sodani, and John McCaplin from the Texas Advanced Computing
Center (TACC). The first KNL-based supercomputers are arriving this year at the
National Energy Research Scientific Computing Center at Lawrence Berkeley National
Laboratory, Argonne National Laboratory, TACC, and Los Alamos National Labora-
tory. Smaller KNL-based systems will be available this year at other places, e.g. a
Cray KNL evaluation system at the Zuse Institute Berlin.

The Intel Xeon Phi Users Group (IXPUG) organized the workshop, which followed
a similar event at ISC15 and built upon recent longer workshops in Berkeley, CA;
Ostrava, Czech Republic, and St. Petersburg, Russia and Birds of a Feather sessions at
ISC15 and SC15. The next IXPUG event, IXPUG 2016, is scheduled to be held at
Argonne National Laboratory outside Chicago in September 2016. IXPUG is an
independent organization working to build an international community to share chal-
lenges, experiences and best-practice methods for the optimization of HPC workloads
on the Intel Xeon Phi. IXPUG workshops cover topics in application performance and
scalability challenges at all levels - from single processor, to moderately-scaled cluster,
up to large HPC configurations with many Xeon Phi devices. IXPUG also provides an
effective conduit for application developers to interact directly with Intel engineers and
other experts. Further information about IXPUG can be found at the IXPUG website
(http://ixpug.org).

The Xeon Phi has a number of architectural features that provide opportunities for
large gains in performance using the manycore, power efficient processing cores But
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taking advantage of these features can present a number of challenges for programmers
used to coding for traditional Xeon-type processors. Many if not most existing codes
have to be refactored to take advantage of the Xeon Phi’s on-chip High Bandwidth
Memory (HBM), longer 512-bit vector units, and up to 72 cores on a single socket. The
papers in this workshop cover optimization and scalability topics in real-world HPC
applications, e.g. data layouts and code restructuring for efficient SIMD operation,
work distribution and thread management. Aspects related to KNL features have
considerable weight in the studies. The versatility and value of tools for development,
debugging and performance analysis is also covered. The keynotes presented recent
information about the KNL processor, and trends in HPC system performance; and
Lightning Talks provide late-breaking work and experiences on Intel Xeon Phi sys-
tems. Keynotes and Lightning Talks are available at https://www.ixpug.org.

Call for Papers

Papers presented at the workshop were selected from submissions solicited from the
community through a call for submissions issued in March 2016. Submissions were
reviewed by the program committee (listed below) and accepted papers are scheduled
to be published by Springer in post-workshop ISC’16 Workshop Proceedings.

A summary of the call follows:
The IXPUG workshop is about sharing ideas, implementations, and experiences that

will help users take advantage of new technologies such as AVX512 operations,
high-bandwidth memory (HBM) and OmniPath. These architectural advances in Vec-
torization, Memory, and Communications on the Intel Xeon Phi platform will help boost
adoption of many-core architecture in HPC as well as other computational spaces.

In the workshop you will experience an open forum with fellow application pro-
grammers, Intel Phi architecture designers, and compiler and tool experts. In addition to
the technical paper presentations, the program will include a morning keynote on Intel
microprocessors and an afternoon presentation on HPC performance trends. There will
also be two Lightning Talks sessions and the workshop will conclude with a discussion.

IXPUG welcomes paper submissions on innovative work from KNC and KNL
users in academia, industry and government labs, describing original discoveries and
experiences that will promote and prescribe efficient use of many-core and multicore
systems.

Topics of interest are (but not limited to):

– Vectorization: Data layout in cache for efficient SIMD operations, SIMD
directives and operations, and 2-core tiling with 2D interconnected mesh

– Memory: Data layout in memory for efficient access (data preconditioning),
access latency concerns (prefetch, streams, costs for HBM), partitioning of DDR
and HBM for applications (memory policies)

– Communication: including early experiences with OmniPath
– Thread and Process Management: Process and thread affinity issues, SMT (si-

multaneous multi-threading, in core), balancing processes and threads
– Programming Models: OpenMP 4.x, hStreams, using MPI 3 on Xeon Phi,

hybrid programming (MPI/OpenMP, others)
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– Algorithms and Methods: including scalable and vectorizable algorithms
– Software Environments and Tools
– Benchmarking & Profiling Tools
– Visualization

Program Committee

Damian Alvarez-Mallon Forschungszentrum Jülich
Ryan Coleman Sandia National Lab
Douglas Doerfler NERSC/Berkeley Lab
Richard Gerber NERSC/Berkeley Lab
Antonio Gomez TACC
Simon Hammond Sandia National Lab
Rahul Hardikar Indian Institute of Science
Helen He NERSC/Berkeley Lab
Dave M. Hiatt big denominator
Michael Klemm Intel Corp.
Lars Koesterke TACC
Rakesh Krishnaiyer Intel Corp.
Olli-Pekka Lehto CSC - IT Center for Science Ltd.
John Linford ParaTools, Inc.
Simon McIntosh-Smith Bristol Univ.
John Michalakes NREL
Kent Milfeld TACC
Chris J. Newburn Intel Corp.
Dmitry Prohorov Intel Corp.
Karthik Raman Intel Corp.
Carlos Rosales TACC
Hideki Saito Intel Corp.
Abhinav Sarje Berkeley Lab
Thomas Steinke Zuse Institute Berlin
Estela Suarez Forschungszentrum Jülich
Srinath Vadlamani Paratools, Inc.
Jerome Vienne TACC

Workshop Organizers

Richard A. Gerber National Energy Research Scientific Computing Center
at Lawrence Berkeley National Lab. (NERSC)

Kent Milfeld Texas Advanced Computing Center (TACC)
Chris J. Newburn Intel Corporation
Thomas Steinke Zuse Institute Berlin (ZIB)

306 R.A. Gerber et al.



A Comparative Study of Application
Performance and Scalability on the Intel Knights

Landing Processor

Carlos Rosales(B), John Cazes, Kent Milfeld, Antonio Gómez-Iglesias,
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Abstract. Intel Knights Landing represents a qualitative change in the
Many Integrated Core architecture. It represents a self-hosted option and
includes a high speed integrated memory together with a two dimen-
sional mesh used to interconnect the cores. This leads to a number of
possible runtime configurations with different characteristics and impli-
cations in the performance of applications. This paper presents a study
of the performance differences observed when using the three MCDRAM
configurations available in combination with the three possible memory
access or cluster modes. We analyze the effects that memory affinity
and process pinning have on different applications. The Mantevo suite of
mini applications and NAS Parallel Benchmarks are used to analyze the
behavior of very different application kernels, from molecular dynamics
to CFD mini-applications. Two full applications, the Weather Research
and Forecast (WRF) application and a Lattice Boltzman Suite (LBS3D)
are also analyzed in detail to complete the study and present scalability
results of a variety of applications.

Keywords: KNL · MCDRAM · Scalability · MIC

1 Introduction

Over recent years one of the design criteria in HPC systems has been power
efficiency. Efforts to save power have been applied to all levels, from megawatt
savings in power conversion and cooling at the center level, to picojoule savings
in logical units and data transfers [17]. The new designs will certainly benefit
the effective carbon footprint of data centers; but moreover, these changes will
benefit the efforts to create an HPC exaflop machine with reasonable power
requirements.

A significant surge in Floating Point operation efficiency was realized when
GPUs, which already had a significant single precision performance, included a
CUDA paradigm [11] and microprocessor features for the HPC community to
use these GPGPUs as floating point accelerator devices.
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 307–318, 2016.
DOI: 10.1007/978-3-319-46079-6 22
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Meanwhile, during the same period, core replication became the mode for
increasing workload capacity, as power restraints restricted further increases in
clock frequencies. Further parallelism was achieved by increasing the number of
Vector Processing Units (VPU) per core, widening the registers from 128b to
512b, and making them FMA capable.

Even with all the efforts in core and VPU units (also known as SIMD units),
Intel also directed their efforts into accelerator capabilities in a series of programs
(Larrabee [12]) that culminated in the Many Integrated Core (MIC) Architecture
[4]. The Phi product line of these many-core systems began with the Knights
Corner (KNC) as a coprocessor board attached to a host through a PCI-e bus.
The coprocessor interacts with the host through the PCI-e bus, similar to the
way a GPGPU does.

Because of the characteristics previously described, there are currently many
accelerated systems in the Top 5001. These systems present nodes with at least
one GPGPU or one MIC, although it is possible to find systems in which each
node has two or more accelerators. There are also systems that present both
types of accelerators in different nodes.

Most HPC programmers realize that a major bottleneck of accelerated com-
puting is in the speed of the PCI-e bus; and there is a limited memory capacity
on the device since only GDDR (Graphics DDR) memory is used. While some
applications perform well within these constrains, for other applications it is
difficult to shoehorn their algorithms into a remote device with limited memory.

The 2nd generation Intel R© Xeon Phi
TM

processor, code named Knights Land-
ing (KNL), has architectural features that are designed to solve the shortcoming
mentioned directly above, and address the power efficiency concerns at a micro-
processor level [14].

The microprocessor architecture has features (southside bus, etc.) that allow
the processor to run as a bonafide stand-alone system. Hence, there are no
execution offloads through a PCI-e bus, as is required when using multiple KNCs.
Also, chips with Omni-Path [2], the new Intel fabric, can bypass the PCI-e bus
for external communication. There are two different types of memory in KNL:
MCDRAM and DDR4. The on-module MCDRAM [14] provides the high-speed
memory that accelerated applications have become accustomed to; and the usual
DDR4 memory provides the capacity storage many HPC applications require.

KNL cores are organized as tiles, where each tile is comprised of two cores.
While L1 cache is implemented at the core level, L2 cache is shared at the tile
level. Tiles are interconnected using a mesh (as opposed to the bidirectional
ring in the KNC). All the cores on the chip are cache coherent, so that the tile
with a specific data can supply that data to another tile in the chip. This mesh
can be clustered to achieve a higher performance for specific memory access
patterns in applications. The three modes of operation are: All-to-All, Quadrant
and Sub-NUMA clustering [14].

There will always be an ongoing effort in the HPC community to adapt
to the new computing technologies that provide significant opportunities to

1 http://www.top500.org/.

http://www.top500.org/
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compute efficiently and faster. As stated, KNL systems provide new technolo-
gies in memory access, communication, and SIMD execution. In this article we
explore these technologies with applications and benchmarks, and report pro-
gramming concepts that will be useful in adapting applications to these new
features.

The rest of the paper is organized as follows: Sect. 2 introduces the different
applications that we use for our experiments as well as different configurations
of the hardware, while the results of those experiments are presented in Sect. 3.
Finally, Sect. 4 summarizes the paper and presents a set of ideas that will be
explored in the future.

2 Background

We have selected a set of applications and miniapps to study the different con-
figurations of Intel KNL regarding MCDRAM and cluster modes. The miniapps
are representative of popular applications in HPC environments.

2.1 Mantevo

The Mantevo suite [5] provides a set of application proxies or miniapps that
can be used to measure the performance of hardware. These are self-contained,
stand-alone applications. They represent some of the most common scenarios in
scientific computing and include numerical kernels that focus on specific aspects
of the hardware. We focus on the following miniapps for the experiments pre-
sented in this paper:

1. MiniFE: a finite elements application. It solves a nonlinear system of equa-
tions. Like most of the codes that solve these functions, a large portion of
the time is spent in a conjugate gradient solver. While it can be configured
to study the repercussions of, for example, load imbalance in the execution,
we will focus on well-balanced test cases. It is a memory-bound application,
which makes it an optimal candidate to study the impact of the different
memory configurations previously introduced. The operations performed by
the application greatly depend on memory throughput and, when many cores
are used within one processor, it often leads to CPU stalls. The application
has received a lot of attention in the past and it is possible to find diverse
implementations of MiniFE with different levels of optimization. It is a C++
code, parallelized with MPI and OpenMP. We use the reference OpenMP
version.

2. MiniMD: molecular dynamics code. This is a small version of the well-known
code LAMMPS. It implements spatial decomposition, where each processor
works on subsets of the simulation box. MiniMD computes atoms movements
in a 3D space using the Lennard-Jones pair interaction. It follows a stencil
communication pattern where neighbors exchange information about atoms in
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boundary regions. Because of these characteristics, it provides good weak scal-
ing. It also presents different implementations in C++ (MPI+OpenMP, Open-
SHMEM,...), and we will focus on the MPI+OpenMP version in this paper. A
single MPI task was used for all the runs.

2.2 NAS Parallel Benchmarks

The well-documented NAS Parallel Benchmarks (NPB) [1,8,16] is a suite of
parallel workloads designed to evaluate performance of various hardware and
software components of a parallel computing system. These benchmarks span
different problem sizes, called classes in NPB terminology and in this paper we
use class C, which is standard for the analysis of single-node systems. Most of the
NAS benchmarks are computational kernels. IS performs sorting of integer keys
using a linear time Integer Sorting algorithm based on computation of the key
histogram. EP evaluates an integral by means of pseudorandom trials. FT con-
tains the computational kernel of a 3-D Fast Fourier Transform (FFT). CG uses
a Conjugate Gradient method to compute approximations to the smallest eigen-
values of a sparse unstructured matrix. MG uses a V-cycle Multi Grid method
to compute the solution of the 3-D scalar Poisson equation. LU, SP, and BT are
simulated CFD mini-applications that solve the discretized compressible Navier-
Stokes equations. BT and SP both apply variations of the Alternating Direction
Implicit (ADI) approximate factorization technique to decouple solution in the x,
y, and z-coordinate directions. The resulting systems are 5× 5 block-tridiagonal
and scalar pentadiagonal, respectively, which can be solved independently. LU
applies the symmetric successive over-relaxation (SSOR) technique to an approx-
imate factorization of the discretization matrix into block-lower and block-upper
triangular matrices. UA evaluates unstructured computation, parallel I/O, and
data movement using unstructured adaptive mesh with dynamic and irregular
memory accesses.

2.3 WRF

The Weather Research and Forecasting(WRF) Model [13] is a widely used
numerical weather prediction system used for both research and operational fore-
casts. WRF is primarily a Fortran code implemented using MPI and OpenMP
for distributed computing. The problem space on each process is divided into
tiles that are processed by OpenMP threads. Ideally, the best performance is
achieved when the size of the tile (in terms of the problem in WRF) fits into
the smallest cache. Having multiple application tiles allows WRF to obtain high
levels of memory bandwidth utilization.

A substantial effort was made to optimize WRF for the first generation Xeon
Phi, Knights Corner [7]. The current version of WRF, 3.7.1, supports a configu-
ration option for the KNC. This configuration was modified to compile the KNL
instruction set using the -xMIC-AVX512 option rather than the -mmic option.
The source code was not modified for this study.
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2.4 LBS3D

LBS3D is a multiphase Lattice Boltzmann Code based on the Free Energy
method of Zheng, Shu and Chew [18]. This code simulates the flow of two
immiscible, isothermal, incompressible fluids with great spatial and temporal
detail. For details on the model we refer the interested reader to [9,15]. LBS3D
is an optimized implementation of this model, originally developed for execu-
tion in the first generation Intel Xeon Phi [10]. While both OpenMP and hybrid
MPI+OpenMP versions of the code are available, the results reported in this
work are for the OpenMP version only.

2.5 MCDRAM Modes

The MCDRAM and the DDR4 can be configured in three different modes: Flat,
Cache and Hybrid. This section describes each of them briefly.

– Flat Mode MCDRAM memory appears to the programmer as a continuation
of the main memory. Allocation in the 16 GB MCDRAM area or the DDR4
area is determined by NUMA controls or specific allocation calls with the
memkind library [3]. This mode should be optimal for applications with high
memory bandwidth requirements but moderate memory footprint.

– Cache Mode MCDRAM is treated as an effective Level 3 cache between the
KNL tiles and the main DDR4 memory on the node. Memory allocation and
transfers are controlled automatically by the OS kernel. This mode should be
optimal for applications with very large memory footprint, significant memory
bandwidth requirements, and a regular memory access pattern.

– Hybrid Mode MCDRAM can be statically divided into 25/50/75 % blocks
to be used as cache or flat memory. This mode may be best for advanced users
wishing to fully optimize their code or workflow.

2.6 Memory Access Modes

On top of three basic configuration modes for MCDRAM, KNL offers multi-
ple ways to group coherency across the many cores/tiles in the processor. The
following access modes, among others that differ only slightly from these, are
available:

– All-to-All Cache tag directory is distributed across all tiles.
– Quadrant Cache tag directory located in the same quadrant as the corre-

sponding memory. Should improve latency with respect to All-to-All mode
when most accesses are local.

– Sub-NUMA Cluster 2/4 Each half or quadrant is exposed as a separate
NUMA node by subdividing the tiles into clusters. This configuration may be
of high interest to users of hybrid codes trying to balance the number of MPI
tasks and OpenMP threads used during execution. Currently this seems to
be available only for KNL processors with 36 active tiles, and we have been
unable to test this particular configuration.
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3 Evaluations

All the results presented in this work were obtained on a Knights Landing pre-
production system, B0 stepping, 1.30 GHz, 64 cores (32 tiles), 16 GB MCDRAM,
96 GB DDR4 (16× 6 DDR4 2133 DIMMs), run with multiple clustering and
memory modes. At the time of submitting this paper we have been able to
complete experiments with the following memory configurations for KNL: Flat
Mode (All-to-All and Quadrant), Cache (All-to-All). In the case of the Flat
Mode we used NUMA memory policy to determine where memory should
reside (MCDRAM or main DDR4 memory). For example to run purely on the
MCDRAM we used numactl --membind=1 ./executable and to run purely on
the main memory we used numactl --membind=0 ./executable. No such con-
trol is available in Cache Mode, of course, since the MCDRAM is not exposed
as a NUMA node in that case.

3.1 Memory Access Scaling

To begin, we created a simple saxpy-loop program to mimic the triad bench-
mark in STREAM [6], so that we could quickly determine a profile showing how
the memory bandwidth scales with the thread count. The loop, consisting of
100,000,000 iterations with double precision data, is repeated 200 times (after
data was initialized), and compiled with only -O3 and -xMIC-AVX2 optimiza-
tions. We present these results first, so that the reader has a clear picture of the
bandwidth capability at different thread counts.

Four types of memory access are shown in Fig. 1. On a node configured with
FLAT mode memory and All-to-All Clustering, three experiments were per-
formed: scaling using DDR4 memory access, by simply invoking the executable;
scaling using MCDRAM, by accessing MCDRAM through a NUMA command
(MC-numa) at execution; and scaling using MCDRAM, through a memkind
library call to hbw malloc within the code (MC-hbw). The fourth experiment used
a node configured with Cache mode memory and All-to-All clustering (MC-cache).

The simple-saxpy results show that a maximum DDR4 bandwidth of 82 GB/s
is reached with 14 threads, while a maximum MCDRAM bandwidth of 419 GB/s
is reached with 64 thread (for MC-numa). These profiles match the triad
STREAM benchmarks that users can derive from the micprun -k stream com-
mand, preinstalled on the KNL. The micprun scan reports STREAM triad max-
imums of 82 GB/s and 428 GB/s for DDR4 and MCDRAM, respectively.

Note, the scaling profiles of MC-numa, MC-cache, and MC-hbw are all the
same, with the same performance ordering throughout the whole range. NUMA
controlled bandwidths are the highest, followed by cache accesses; and accesses
through hbw malloc have the worst performance. The difference between MC-
numa and MC-hbw is about 12 % for the first and last 10 thread counts, and
7 % throughout the middle of the curve. While it does seem reasonable that
MCDRAM access through cache (MC-cache) may have a performance hit (rel-
ative to a non-cached mode), one would expect no difference between the MC-
numa and MC-hbw experiments.
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Fig. 1. Bandwidth scaling for DDR4 and MCDRAM memory.

3.2 Memory Configuration Effect on MCDRAM Contained
Workloads

This section describes the effect of different memory configuration settings for
workloads that can be fitted inside the MCDRAM memory footprint (MiniFE:
problem size 256× 256× 256 (approximately 6 GB footprint); MiniMD: 500K
atoms and 1K iterations (300 MB); WRF: a standard CONUS 12 km bench-
mark case was used; LBS3D: size 256× 256× 256, with a footprint of approxi-
mately 6 GB; NAS Class C with a memory footprint of approximately 6 GB). All
results correspond to the average of multiple runs with no significant deviation
in runtimes across the sample.

Figures 2 and 3 show the effect of memory configuration on all the appli-
cations studied. Performance has been normalized to that of running in the
slower of the measured modes for each application individually, in order to be
able to show all results in a single graph. Notice how MiniMD, which is highly
insensitive to memory bandwidth, sees little difference from the change in con-
figuration, while LBS3D, MiniFE and NAS BT, EP, FT MG and SP see an
remarkable speedup when running inside MCDRAM. It can be explained by the
fact that these applications are sensitive to the bandwidth.

While the performance of WRF is strongly correlated with memory band-
width, it does have more computational overhead than LBS3D and MiniFE.
Hence, the performance improvements for WRF are slightly less than those for
the simpler LSB3D and MiniFE codes.

Keep in mind that all the workloads fit in MCDRAM in this case, which
explains how closely Cache and Flat/MCDRAM modes are in all cases. In the
Fig. 2, A2A refers to All-to-All mode, while Quad refers to Quadrant mode. NAS
benchmarks presented in Fig. 3 were only executed in All-to-All mode.
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Fig. 2. Comparative effect of memory configuration on MCDRAM-contained
workloads.

Fig. 3. Comparative effect of memory configuration on MCDRAM-contained workloads
using NAS

3.3 Memory Configuration Effect on Non-MCDRAM Contained
Workloads

We have compared the performance of several large data sets, from 6 GB to
48 GB memory footprints, when running in Cache Mode, and when running in
Flat Mode and allocating to main DDR4 memory. Figure 4 shows that there is a
significant improvement in performance across all executions, with a minimum
improvement of almost 19 % for both LBS3D and miniFE. As expected, the
benefit of using cache mode decreases as the workload grows beyond the cache
size. The fact that an improvement of nearly 19 % is still present for workloads
with memory footprints that triple the MCDRAM cache size is a good indicator
of the benefit of running in this configuration mode.
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Fig. 4. Effect of Cache Mode for non-MCDRAM contained workload (LBS3D and
MiniFE).

Our tests show that the benefit from using cache mode is not independent of
the type of memory access and the number of threads used, which is expected.
More work will be necessary in this area to fully characterize the benefits of
using the cache mode, but the results obtained so far are encouraging.

3.4 Scalability and Memory Configuration

Performance for a fixed workload was measured for each of the applications in
each of the previously mentioned memory configuration modes.

Figure 5 shows excellent scalability for MiniFE when using MCDRAM, with
the code scaling very strongly throughout the range of 1 thread per core (up to
64 threads), and then speedup continues at a smaller rate beyond that. When
allocating to DDR4 memory the scalability stalls between 16 and 32 threads,
with the All-to-All clustering outperforming Quadrant cluster asymptotically.
This is because the available memory bandwidth to main memory has been
exhausted.

LBS3D behaves in a similar manner, as shown in Fig. 6, with very strong
scalability up to 128 threads. The main difference between the results for LBS3D
and MiniFE is that after 128 threads LBS3D actually starts to slow down even
when running in MCDRAM. This is most likely due to the sheer number of
streams in flight, which lowers prefetcher efficiency and increases the likelihood of
conflicts. The LBS3D performance also seems to stall earlier, around 16 threads,
when allocation is purposefully set in the main system DDR4 memory rather
than the MCDRAM.
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Fig. 5. Scalability of MiniFE on a single KNL processor using different memory con-
figurations.

Fig. 6. Scalability of LBS3D on a single KNL processor using different memory con-
figurations.

In the case of MiniMD we observe relatively less scalability all the way through
the thread range, with no significant changes between different memory configu-
ration modes (see Fig. 7). The similarity of results from different configurations
is expected, since the code does not show a strong dependence on memory band-
width as is typical for Molecular Dynamics codes. The overall scalability seems
weak, but this could be a case where additional tests using multiple MPI tasks
are required in order to obtain a higher performance. That work is currently being
performed.
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Fig. 7. Scalability of MiniMD on a single KNL processor using different memory con-
figurations.

4 Conclusion and Outlook

This paper has presented a set of studies of the performance of representative
applications and miniapps on Intel KNL.

The results show that Cache Mode operates very efficiently for MCDRAM-
contained workloads, and that memory-bandwidth bound applications see a
performance improvement commensurate with the bandwidth ratio between
MCDRAM and main DDR4 memory. Initial scalability results show promise
for all the applications considered.

As future work we consider detailed studies of the effect of Cache Mode
in workloads that do not fit inside MCDRAM. We also plan on continuing
these studies to further understand the implications of pining the different
processes/threads to cores.
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Abstract. Many-core hardware platforms offer a tremendous opportu-
nity for scaling up performance, but not all codes that run on these
platforms have been modernized sufficiently to fully utilize the hard-
ware. Assessing whether a code will effectively utilize a given platform
can be challenging, particularly for new or potential future platforms
where native execution on real hardware is not possible. In this case,
one typically relies on architecture simulators and other workload char-
acterization tools, which are often not user-friendly for developers who
want to do a quick initial assessment of an application’s suitability for a
many-core architecture.

To help address this challenge, we present QMSprof, a tool and a set of
analyses for an initial assessment of the suitability of a set of applications
for a simulated extremely-parallel many-core target. QMSprof automates
the process of running a suite of workload binaries through Intel R© Soft-
ware Development Emulator (SDE) and the Sniper multi-core simulator
and extracting high-level summary statistics. The tool generates compar-
ative plots summarizing key metrics across the workload suite, including
the mix of vector and nonvector instructions, scalability with increas-
ing thread count, memory bandwidth utilization, and statistics on cache
misses and working set size. These summary metrics are designed to aid
performance tuners in selecting promising codes for a many-core target
and in pinpointing opportunities for additional tuning. To illustrate the
utility of our tool, we also describe some sample results from character-
izing applications on a hypothetical many-core architecture.

Keywords: Many-core · Performance · Characterization · Code
modernization

1 Introduction

Not all applications are cut out for execution on extremely-parallel machines
like those of the Intel R© Xeon PhiTM Processor Family [9], also known as the
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“Knights” family. Such machines offer high levels of thread parallelism, vector
parallelism and bandwidth. If an application fails to exploit these salient features,
its performance will fall far short of the capabilities of these machines.

Those who seek to characterize applications on new architectures often lack
the time for detailed analysis, or the expertise, or both. Application developers
today typically rely on profiling and analysis tools, such as Intel R© VTuneTM

Amplifier (or VTuneTM for short)[8] or Intel R© Advisor [6] to understand appli-
cation behavior on existing hardware. When real hardware is not available how-
ever, e.g., because it is a future architecture under development, one typically
must resort to using a combination of workload characterization and simulation
tools. Unfortunately, since these tools are usually designed for hardware archi-
tects rather than application developers, they can overwhelm the uninitiated
user with raw statistics, and are not user-friendly for a developer who is looking
for a quick high-level profile of their application on a future architecture.

This paper describes QMSprof , a tool and set of analyses for assessing how
well-suited an application is for extremely-parallel many-core targets, such as the
Intel Xeon Phi product line. The name QMSprof stems from its implementa-
tion, because it derives its results from other Quick Multithreaded Simulation
and prof iling tools. QMSprof runs a suite of workload binaries through two
underlying tools, Intel R© Software Development Emulator (Intel R© SDE) [7] and
the Sniper multi-core simulator [2,14], aggregates results, and produces high-
level analysis and summary plots. This analysis is designed to provide a high-level
summary of application characteristics, enabling users to more easily determine
which workloads may be more suitable than others for a many-core architecture.
The results produced from QMSprof are expected to be useful as part of an
initial triage of applications being brought into tuning sessions, highlighting key
characteristics that may warrant deeper analysis or additional optimization.

In this paper, we describe the application of QMSprof and analyses to regions
of interest (ROIs) that are marked as important, from eight workloads of general
interest to the HPC community, simulated on a hypothetical many-core archi-
tecture. The focus of the paper is to demonstrate the kinds of analyses supported
by QMSprof and what the results may look like, not the specific numbers for any
workload or architecture. Thus, one should not interpret any numerical results
on our simulated architectural model in this paper as corresponding to absolute
performance on any existing or future Intel silicon. However, we expect the tools
and methodology to be of interest to those porting their applications to current
and future Intel R© Xeon PhiTM Processor many-core machines such as Knights
Landing (KNL), as well as wide Intel R© Xeon Processor machines.

2 Overview of Tool and Analysis

QMSprof streamlines the process of running a suite of workloads through the
Intel Software Development Emulator (SDE) and the Sniper simulator, extract-
ing high-level summary statistics, and generating comparative plots. This section
describes the interface and operation of two components of QMSprof, namely
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the data collector which generates raw SDE and Sniper data for a particular
experiment, and the data analyzer which extracts and summarizes the results.

2.1 Data Collector

The data collector is a Python module that generates run scripts for a set of SDE
and Sniper runs, sweeping across a suite of workloads, Sniper configurations, and
different thread counts. Users must provide the following inputs to the collector:

1. Workload binaries and run parameters: For each workload in the desired
suite, a binary compiled with a special begin and end markers around a single
region of interest, and any required input files and command-line arguments.

2. Sniper Models: Configuration files for different Sniper models to be run.
3. Environment Setup: Other configuration parameters specific to the user’s

desired run environment (e.g., paths to specific OpenMP runtime libraries or
configuration for job managers in a cluster environment).

4. Experiment Script: The description of the particular subset of workloads,
models, and thread counts to run in a particular experiment.

These four configuration inputs are separable and can be specified mostly inde-
pendently by different area experts. Workload binaries, input files, and run
parameters are typically provided by application experts who are familiar with
regions of interest to profile. Sniper models can be provided by hardware archi-
tects familiar with specifying relevant architecture parameters in the simulator.
The environment setup file can be specified by individuals familiar with details
of the installed run environment. Finally, the experiment script is specified by
the end user who wants to run particular experiments.

Users configure QMSprof by describing inputs as Python dictionaries and
lists, a user interface that is both relatively human-readable and suitable for
automation. A detailed example of the interface is illustrated in AppendixA.

Once all the inputs have been specified, the collector takes the list of runs
specified in the experiment script and generates a shell script for each Sniper
and/or SDE run. These shell scripts can be run directly at a command prompt,
or fed into a job manager in a distributed compute environment. QMSprof gen-
erates shell scripts, rather than invoking Sniper and SDE directly, because this
intermediate step facilitates debugging. When runs fail, one can simply manu-
ally edit a generated run script and debug an individual run, without trying to
repeat an entire sweep of experiments. In our prototype, we set up QMSprof
to run on Intel NetBatch, an internal distributed computing environment which
has been used for many years for simulations and other compute-intensive jobs
[1,13,21]. It is straightforward, however, to extend QMSprof to submit jobs to
other publicly available job managers such as SLURM [19].

QMSprof uses the following Intel SDE and Sniper execution modes to collect
raw statistics:

1. SDE Instruction Mix. SDE provides an instruction mix tool that produces
statistics on the numbers and types of instructions executed.
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2. SDE Footprint Tool. SDE also provides a tool that estimates the mem-
ory footprint of a profiled region in a program, both at cache-line and page
granularity. More specifically, SDE tracks the distinct cache lines or pages
accessed in a region of interest, and can classify them as either data or code.

3. Sniper Simulation. Sniper is an execution-driven high-speed x86 simulator
which can be used to characterize a workload by executing the workload on
a generic many-core configuration.

Sniper runs slower than SDE, but it collects additional raw statistics that are
useful for our analysis. QMSprof adds two flags to each Sniper run to gather addi-
tional information: --profile to collect information on function calls, including
a percentage breakdown of instructions and time spent inside and outside of the
OpenMP library, and --cheetah to profile the working set of threads execut-
ing in the region of interest, using a known technique for efficient simulation of
multiple cache sizes in a single run [15].

2.2 Data Analysis

The data analyzer in QMSprof is a set of scripts that extracts data from an
experiment run by the collector, and generates various output summary plots.
In particular, QMSprof can generate the following summary data:

1. Vector Instruction Mix: A breakdown of the types of vector instructions
executed by each run.

2. Thread Scalability: Running time of benchmarks variants in the experiment
as a function of thread count.

3. Memory bandwidth: A measure of the average memory bandwidth utiliza-
tion of the application.

4. Cache Miss Statistics: A plot of the miss rates and misses per 1 K instruc-
tions for the last-level cache.

5. Working set size: An analysis of the last-level cache sizes needed to achieve
a given miss rate.

6. OpenMP overhead: The fraction of total execution time spent in the
OpenMP runtime, which can indicate overheads from fork/join and dynamic
scheduling.

7. Memory footprint: A measure of the new number of distinct pages of mem-
ory required to execute each workload.

The analyzer produces two forms of output, namely (1) comma-separated value
files amenable to import into a spreadsheet, or (2) data and plot files for gnuplot,
version 4.6 [18]. In subsequent sections of this paper, we describe the summary
plots generated by the analyzer in greater detail and explain why they are use-
ful for understanding the suitability of a workload for a many-core architecture.
We also performed an analysis of the granularity of OpenMP parallel regions,
but since it is not fully automated, we do not show that here. Table 1 summa-
rizes the execution mode of Sniper or SDE used for each analysis, and identifies
comparable analyses from Advisor and VTune, if they exist.
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In general, compared to Advisor and VTune, QMSprof is optimized for dif-
ferent purposes. Both Advisor and VTune are primarily designed for charac-
terization of full-scale workloads, running natively on existing hardware, while
QMSprof is designed to extract important high-level summary statistics from
slower but more detailed simulations of targeted regions of interest in a work-
load. Native execution has a few limitations compared to a simulation-based
approach, which include a lack of accurate FLOPS counting and a limited ability
to estimate performance on future hardware that may have different character-
istics. QMSprof is able to use Sniper to simulate models of hardware that do
not exist today, or even models that are impractical to build but can provide
interesting insights through limit studies and other hypothetical what-if scenar-
ios. Similarly, its use of SDE allows for more detailed accounting of dynamically
executed instructions which are difficult to do with current hardware. Addition-
ally, although running workloads through Sniper or SDE is slower than native
execution, the resulting statistics tend to be less affected by measurement noise
and thus more amenable to comparison across workloads.

Table 1. Execution modes from SDE and Sniper used by the analyses in QMSprof.
The table also indicates which analyses are supported by the Advisor and VTune tools.
A � and ∼ indicate full and partial support, respectively.

Characterization SDE Sniper Advisor VTune

Mode -mix -footprint Default –profile –cheetah

Vector Instruction Mix � ∼ ∼
Thread Scalability � �
Memory Bandwidth Utilization � �
Cache Miss Statistics � ∼ ∼
Working Set Size � �
OpenMP Runtime Fraction � � �
Memory Footprint � �

As indicated in Table 1, Advisor provides some analyses similar to QMSprof.
Intel R© Advisor 2016/2017 offers vectorization, FLOPS and roofline analysis
capabilities, for both Xeon and Xeon Phi. These capabilities provide per-loop
and optionally per-program information on the following data ingredients in ways
that are similar to four of the numbered QMSprof features above: (1) static and
limited dynamic instruction mixes, (2) thread scalability, (4) memory bandwidth
and (7) memory footprint. Advisor analysis is targeted towards end-user complex
code modernization, offering insight at the loop/function granularity, with low
runtime overhead and multiple data representations and data sources, such as
compiler opt-reports, the access pattern profiler, or trip count/FLOPS analysis.
Unlike QMSprof, Advisor does not focus on contrasting aggregated program-
level characteristics across workloads or platforms. Also, with the exception of
Thread Scalability and AVX-512 codepath projection features, it does not model
platforms other than currently-available silicon. Instruction mix and footprint
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data is currently not a first class citizen information in Advisor; it is not always
exposed in detail and is sometimes provided with lower accuracy to minimize
runtime overhead.

VTune supports many detailed analyses of a single workload, and is gen-
erally optimized for a deep dive into the behavior of a few workloads on real
silicon, rather than QMSprof which is optimized for a quick initial comparison
of select statistics across a large set of workloads. VTune provides information on
code performance through several predefined analysis types. For example, VTune
includes algorithmic analysis types, such as hotspot analysis and threading con-
currency analysis with locks and waits profiling to find synchronization bottle-
necks. It also includes microarchitecture analysis types, such as general explo-
ration analysis with a hierarchical organization of event-based metrics for iden-
tifying the dominant performance bottlenecks in an application, memory access
analysis showing processor stalls by memory hierarchy, memory bandwidth infor-
mation, and a correlation of memory objects with memory performance metrics.
VTune’s statistic collection methods include hardware performance monitoring,
binary instrumentation, instrumented threading runtimes, and static analysis.
VTune covers the following analyses in QMSprof listed above: (1) vector instruc-
tion mix based on KNL’s limited hardware profiling that are mitigated by static
analysis, (3) memory bandwidth including DRAM, MCDRAM and QPI band-
width types, (4) cache miss statistics, (6) OpenMP serial time, imbalance and
overhead with cause, and MPI time spent spinning in active waiting for hybrid
MPI + OpenMP applications. VTune is evolving to offer a combination of thread
scalability, memory and FPU utilization aspects in one analysis type called HPC
Performance Characterization.

2.3 Prototype Implementation

We have implemented a prototype of QMSprof that works with SDE and an
Intel-internal version of Sniper. We use an internal version of Sniper primarily
because it supports execution of binaries compiled for the AVX512 instruction
set, a feature currently not available in the public version of Sniper. Currently,
there exists a formal process for developers with appropriate restricted-secret
NDA approvals to access the Intel-internal version of Sniper, and our scripts
and configuration files can be made available to those who have access to the
Intel-internal version of Sniper.

For the empirical results presented in the rest of this paper, since SDE is
publicly available, the analyses in QMSprof that are based on SDE can be repro-
duced by all users. The analysis based on Sniper could also be repeated using the
public version of Sniper, using only AVX128 vectors, but this change in Sniper
versions would affect the instruction mix and potentially the interactions with
the memory system.
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3 A Case Study

In the remainder of this paper, we demonstrate QMSprof by applying it to
a case study that evaluates 8 HPC workloads on a generic many-core micro-
architecture model. This section describes the workloads and the Sniper model
used for our case study. Although detailed simulation results are not the focus of
this paper, we describe our experimental methodology to provide some context
for understanding QMSprof’s output.

We tested regions of interest (ROIs) chosen from eight representative HPC
workloads: BlackScholes [10], Himeno [4], LULESH [3], miniFE [3], Simple-
MOC kernel [16], SNAP [3], SMC [17,20], and WSM5 [5]. We also tested two
microbenchmarks: PeakFLOPS, a synthetic kernel created to achieve near max-
imal performance on floating-point computations, and STREAM [11,12], a syn-
thetic kernel designed to achieve maximal memory bandwidth usage. BlackSc-
holes, Himeno, and SimpleMOC (kernel), are relatively simple kernels, while the
remaining codes are regions taken from more complex proxy apps. All codes are
strong-scaled with OpenMP.

We spent little or no effort tuning these workloads, instead taking the binaries
generated by the compiler mostly as-is. Frankly, scenarios with poorly-tuned
workloads are more common than those with extensive tuning and optimization.
The condition of the workloads and the actual conclusions based on the data are
not the focus of the paper; instead, the analysis methodology and tools are. This
usage model matches a typical work flow for a performance modeling expert or
an architecture expert, who can experiment with changes in architecture, but is
often not in a position to optimize workloads.

For each workload, we chose an ROI which executes on a scaled data set
for somewhere between 100 to 500 million instructions. This choice is driven in
part by the simulation speed of Sniper, which simulated on roughly 0.1 to 1
million instructions per second in our study. This speed is obviously too slow
to estimate the performance of a multicore applications on a full production-
size input. We believe it is sufficient, however, for understanding the impact of
changes in architectural parameters such as cache sizes, prefetchers, out-of-order
execution width, etc., provided that workload experts can provide representative
scaled-down inputs. The analyses that are based on SDE and Sniper share the
same binaries and hence have the same ROI markers. The binaries were compiled
with the -xMIC-AVX512 flag using version 16.0 of the Intel compiler.

The SDE-based analyses are target independent. For Sniper, we model a
many-core micro-architecture with 16 3-wide, out-of-order cores. Each core has
a 32 K L1-D cache, a 32 K L1-I cache, and a vector unit capable of execut-
ing AVX512 instructions. Hardware prefetchers are enabled. Each pair of cores
share an 1 MB L2. Sixteen cores can access up to 512 MB of in-package memory
through a single memory controller, with a bandwidth limit of 48 GB/s. Note
that this configuration models only a fraction (e.g., 1/4) of a full many-core
die. Although this model does not capture any sharing or contention effects
that would exist in an application that requires shared-memory communication
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between the fractions of the die, it is reasonable for modeling a single rank of an
MPI application that uses OpenMP threads to populate 16 cores.

Finally, although we believe our model has many of the salient features of
a many-core architecture and is useful for some relative comparisons between
workloads, it is important to note that its architectural parameters intention-
ally do not match any known product on the Intel Xeon Phi roadmap.
Thus, our model or results should not be used as estimate of absolute
performance on Knights Landing or any other Intel silicon.

4 Output from the Data Analyzer

In this section, we discuss each QMSprof output for the case study described
in Sect. 3, explaining how each analysis can be used to determine the relative
suitability of a workload for a many-core architecture.

4.1 Vector Instruction Mix

The first analysis one would typically run is an instruction mix, which shows the
vector instructions executed in a workload, expressed as a fraction of the total
instructions executed. To get maximal benefit from a many-core architecture
like Xeon Phi, we generally want the fraction of vector instructions to be as
close to 100 % as possible. Moreover, we ideally prefer to have full-length vector
instructions, i.e., AVX512 packed SIMD instructions, rather than shorter-vector
or SIMD scalar instructions. We also prefer fewer masked vector instructions,
since 0-valued mask bits imply unused vector lanes. If the fraction of vector
instructions is low, this is an alert that some vectorization enabling may be
required for compiler-generated code, or that vector-enabled libraries may not
be in use. If the ratio of scalar SIMD to packed SIMD is high, significant time may
being spent in unvectorized outer loops, suggesting a possible need for placing
vectorization directives on outer loops. Excessive masking may be mitigated by
eliminating conditionals, which is sometimes possible by inlining functions to
enable constant propagation by the compiler.

QMSprof automatically generates plots from SDE that reveal packed vs.
scalar SIMD, and non-scalar AVX type, as shown in Fig. 1. This analysis is
run first because it runs faster on the SDE emulator than on the Sniper sim-
ulator. In our case study, we see that only BlackScholes and PeakFLOPS are
getting close to having 100 % of vector instructions. Other workloads have a
noticeable fraction of shorter vectors (e.g., LULESH, at 70 % short vectors),
or non-vector instructions, even though we compiled the workloads targeting
AVX512. Finally, there appears to be little use of masking (reported separately
from the plot shown) in these workloads, with the highest fraction of 14 % of all
instructions for WSM5. Reporting of data types, e.g. single-precision, double-
precision and bit-wise SIMD, has also been demonstrated, but is not shown
here. This instruction mix analysis is useful in correlating performance differ-
ences with and without vectorization (e.g., for the Intel compiler, code compiled
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Fig. 1. Instruction mix of workloads, classifying percentages of vector instructions
executed. This data was collected using SDE for runs with two OpenMP worker threads.

with the -no-simd -no-vec -no-openmp-simd flags). Since the direct evaluation of
that silicon performance is not part of QMSprof, we do not show those results.

4.2 Thread Scalability

Thread scalability analysis can provide guidance on how to balance parallelism
between MPI ranks and threads: more MPI ranks may be better when OpenMP
thread scaling trails off. Thread serialization may not be noticed, but it tends
to kill scalability. The thread scaling efficiency can be inferred from QMSprof’s
plot of Sniper-based parallel speedups as a function of thread count P .

Figure 2 shows a parallel speedup plot produced by QMSprof for our case
study. For our workloads, we see that SimpleMOC, SNAP, BlackScholes, and
WSM5 are the 4 workloads (ignoring PeakFLOPS) that scale reasonably well by
adding more threads, while the others appear to have other limits to scalability.
QMSprof can be configured to test scalability on a few different Sniper models
with different parameters (e.g., different cache size, bandwidth, etc.). It also
produces additional summary plots which help users understand other scalability
limiters in greater detail.

Memory Bandwidth and Cache Behavior. Memory bandwidth and cache
misses can become bottlenecks that limit thread scaling, and QMSprof produces
summary plots for each, as shown in Fig. 3. The lack of thread scaling for Himeno,
STREAM and miniFE correlate with the high memory bandwidth that does not
scale with threads. High bandwidth is not necessarily an indication of high cache
miss rates. BlackScholes has a low cache miss rate, but bandwidth that scales
with threads; this is an indication of effective prefetching. We focus on last-level
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Fig. 2. Parallel speedup of workloads. This plot shows speedup for various numbers of
threads from P=1 to P=16, on a simulated 16-core architecture with each pair of cores
sharing an L2.

Fig. 3. Average memory bandwidth (top) and demand L2 misses per 1K instructions
(bottom) for various thread counts, aligned to the same set of workloads.
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cache misses per 1 K instructions executed as a metric instead of absolute miss
rates, since it tends to be a better indicator of performance impact.

OpenMP Runtime Overheads. Another thread scaling inhibitor is overheads
in both serial and parallel sections in a program. Serial sections, which can come
from both an application or a parallel runtime such as OpenMP, do not speed up
as more threads are added, and thus naturally limit scalability. Similarly, other
OpenMP overheads in a parallel region will not be amortized away if there is too
little work within a parallel region and the number of threads is large. QMSprof
aggregates profiling data from Sniper to help users estimate such overheads.

Figure 4 shows that LULESH, miniFE, and SimpleMOC are the only work-
loads which spend more than 5 % of their total execution time in the OpenMP
runtime. The implementations of LULESH and miniFE we used are known to
have many fine-grained parallel regions, which contribute to fork-join overheads.
SimpleMOC had many dynamically-scheduled loops, which contributes to the
runtime overhead. In particular, for SimpleMOC, Sniper’s profile output indi-
cated that most of the time spent in the OpenMP runtime was in methods for
lock acquisition, even for the single-thread runs. The current QMSprof prototype
does not distinguish between overheads in serial and parallel sections, although
we observed through other analysis that serial sections in the chosen ROIs of
these workloads were generally negligible.

Fig. 4. Fraction of execution time that is overhead in the OpenMP runtime. A negative
fraction (e.g., for PeakFLOPS) indicates that OpenMP was not detected at all, which
usually means the workload was parallelized using some other approach.



330 C.J. Newburn et al.

4.3 Working Set Analysis

Thread scaling, analyzed in Sect. 4.2, is impacted by whether there is construc-
tive interference across threads, and what cache capacity is needed per thread
to keep cache miss rates low. Decisions about the number of threads to use per
core, or per L2, or per set of L2s, or per in-package memory, may be based on
the working set per thread and the kind of interference there is across threads.
We use Sniper’s ‘Cheetah’ functionality [15] to estimate the working set sizes for
the applications, providing a more direct measure of the effect of changing cache
sizes than the analysis in Sect. 4.2. Sniper allows us to estimate the cache miss
rate for the outer-level cache as a function of cache size, at power-of-2 cache sizes,
using a single simulation run. We extracted the minimum cache sizes needed to
achieve a given cache miss rate (ranging from 1 % to 20 %), as shown in Fig. 5.
This kind of exploratory analysis is not generally available with hardware-based
profiling.

Fig. 5. Minimum cache size required to achieve a given cache miss rate (or less). This
plot is extracted from Sniper’s Cheetah data.

4.4 Memory Footprint Characterization

An analysis of the memory footprint may help determine how many MPI
ranks can share resources like in-package memory such as MCDRAM or high-
bandwidth memory (HBM). Large memory footprints cause a capacity issue,
which can turn into a performance issue. We use the footprint tool from SDE to
count the total number of pages accessed at a 2 MB page size in Fig. 6, regardless
of caching effects. From this data, we observe that most of the workloads in our
study access a total number of pages which is unlikely to fit into a typical L2
cache, and some would fit in a modest amount of in-package memory.
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Fig. 6. Memory footprint of workloads, as measured by total memory covered (MB)
and estimated using SDE, for accesses at the granularity of 2 MB pages.

Although we observed some correlation between working sets size and mem-
ory footprint for the workloads in this study, in general a large memory foot-
print, as measured above by SDE, does not necessarily indicate a large working
set for the workload, since memory that is only accessed once still contributes
to the number of new pages. This analysis does not give any good measure of
data sharing between threads, since at any fixed value of memory footprint, the
partitioning of data between the threads could be arbitrary. For example, we
could have complete sharing, with all threads accessing all the data, or complete
partitioning, with each thread accessing its own private data.

5 Conclusions

Harvesting thread and vector parallelism are critical to reaching peak perfor-
mance on extreme-scale execution targets. Yet many applications do not app-
roach peak performance on many-core targets because they lack effective paral-
lelization for threaded and vector architectures, and they lack effective memory
tuning. The QMSprof infrastructure provides an initial but broad-ranging analy-
sis that give an indication of how well suited an application is for making good use
of a many-core target, how well it can be scaled within that target with respect
to memory capacity, MPI rank vs. OpenMP threading trade-offs, threads per
core and per L2, whether additional memory blocking may be required, and how
well vectorized it is.

While QMSprof does not offer all of the characterization that one could ever
ask for, we’ve demonstrated that it provides a useful beginning. Based on feed-
back on the perceived utility of this tool and on what additional characterizations
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might provide the greatest benefit, more features may be added to QMSprof as
they are brought to a sufficient degree of automation. Since the primary motiva-
tion for QMSprof is for quick initial estimates rather than comprehensive studies,
however, some selectivity is desirable to avoid inundating users with too many
statistics.

This analysis of suitability could either be used to prioritize codes that are
already more suitable over others that are not (yet) suitable, and/or they can
be used to focus optimization efforts on making applications more suitable for
highly-parallel targets. While the absolute results presented here are not spe-
cific to a given target product, and are not intended to be representative of
Knights Landing or other such products, the trends and “shape of the curves” is
expected to provide some actionable insights to those assessing suitability and
doing optimization.

6 Future Work

One characterization that could form an interesting complement to what has
been done here is to analyze the effectiveness in trading off number of threads
for number of MPI ranks, especially with respect to its impact on the memory
system. Another, which is of particular interest for offload, is an analysis of the
volume of data that must be communicated between the sequential parts of the
program that might be executed on an Intel Xeon with low latency, and the
highly-parallel parts that might be executed on a high-throughput Intel Xeon
Phi Processor.

Workload statistics, like execution time and cache misses, could be reported
for each serial section and OpenMP parallel region by compiling some additional
instrumentation markers into the OpenMP runtime. This could help to highlight
the significant serial sections and their characteristics.

One might also add silicon-based data collection, and possibly automate the
correlation of simulation results with real silicon measurements. Runs on real
silicon may enable us to analyze larger problem sizes. One challenge however, is
that for the relatively small problems we typically run through simulation using
QMSprof, real silicon measurements may be much more noisy. One benefit of
using Sniper and SDE to collect raw data is that these tools have relatively little
to no sensitivity to the runtime environment, which tends to make their results
much more repeatable.

A Appendix: Interface for QMSprof

This appendix demonstrates the interface for QMSprof. We first present an
example of configuring the collector to run simulations, and then describe how
to run the analyzer to extract summary statistics and generate plots.
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A.1 Collector Interface

The collector interface for QMSprof is divided into four major parts, namely
configuration for (1) workload binaries and run arguments, (2) Sniper models,
(3) environment setup, and (4) experiment script.

For part (1), binaries and run arguments are configured by specifying
a Benchmarks dictionary, which maps a key for each benchmark to a per-
benchmark dictionary with additional information. When running an experi-
ment, the collector uses information from a per-benchmark dictionary to stage
each simulation run, i.e., creating a separate run folder for each simulation run in
a staging area, and copying and/or renaming any necessary binaries and input
files into that folder. This staging step is needed because workloads are not
always built to support concurrent executions from the same run folder.

The per-benchmark dictionary is built to support benchmark variants, i.e.,
different versions of the same workload, with possibly different binaries or run
arguments. This dictionary has several expected fields:

1. bindir: This string lists the subdirectory of the root benchmark directory
containing the files for this benchmark. The root benchmark directory is a
global variable specified separately in the top-level of the configuration file.

2. files: This dictionary maps a variant of the benchmark to a list of files
needed to run each variant. Each file is itself a pair, with the first value being
the name of the file in the source binary directory, and the second value being
the name of the target file in the staging area. This pair allows an input file
to be renamed in the staging area before it is run.

3. runargs: This dictionary maps a variant of a benchmark to the command-line
arguments needed to run the variant.

4. gen inputs: This dictionary maps a variant to a list of shell commands to
execute in bindir to generate any input files that are needed for a run.

5. requires MPI: This flag is set if this particular binary requires the use of an
MPI library to execute. Our current prototype assumes one MPI rank per
program, but in principle this assumption could be relaxed.

For the files, runargs, and gen inputs dictionaries, if no exact match to
a particular variant name is found in the dictionary, QMSprof will map to the
key that matches the longest prefix.

As an example, Fig. 7 shows part of a configuration file specifying binaries and
arguments for two benchmarks: LULESH and SNAP. In this configuration, run-
ning the sim vec variant of the LULESH, uses the source file lulesh2.0 vec from
the subdirectory LULESH/binaries. The staging process will copy and rename
(or link) to a file named LULESH sim vec in a each simulation run directory. This
staging allows QMSprof to use a consistent naming convention for its implemen-
tation, without requiring users to duplicate or change input file names in the
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source directory. To run the sim vec variant of LULESH, QMSprof will use the
sim argument of -s 27 -i 6 -p, since sim is the longest matching prefix of
sim vec.

SNAP has a slightly more complicated description, with a script command
list in its gen inputs parameter. This command list indicates that before staging
any files in the files list, the collector should run the script genFile from the
SNAP/binaries directory to generate extra input files. The strings <P> is a
special pattern in arguments and commands that the collector replaces with the
thread count for a particular run. Similarly, <RunDir> is a special pattern that
gets represents the run directory used to store and run the binary.

Configuration of parts (2) and (3) are relatively straightforward, as illustrated
in Fig. 8. The SniperConfigs dictionary describes the Sniper models that can be
used in an experiment. The key 16C 2wide is a descriptive (usually short) string

Benchmarks = {

"LULESH" : {

"bindir" : "LULESH/binaries",

"files" : {

"test_vec" : [ ("lulesh2.0_vec", "LULESH_test_vec") ],

"test_novec" : [ ("lulesh2.0_novec", "LULESH_test_novec")],

"sim_vec" : [ ("lulesh2.0_vec", "LULESH_sim_vec") ],

"sim_novec" : [ ("lulesh2.0_novec", "LULESH_sim_novec") ],

},

"runargs" : {

"test" : "-s 4 -i 1",

"sim" : "-s 27 -i 6 -p",

"full" : "-s 36 -i 4 -p",

}

},

"SNAP" : {

"bindir" : "SNAP/binaries",

"gen_inputs" : {

"test" : [ "genFile 1 1 <P> 4 4 4 8 8 1 <RunDir> fin_test_P<P>" ],

"sim" : [ "genFile 1 1 <P> 4 4 4 8 64 3 <RunDir> fin_sim_P<P>" ],

},

"files" : {

"test_vec" : [ ("snap_test_vec", "SNAP_test_vec") ],

"sim_vec" : [ ("snap_sim_vec", "SNAP_sim_vec") ],

},

"runargs" : {

"test" : "fin_test_P<P> fout_test_P<P>",

"sim" : "fin_sim_P<P> fout_sim_P<P>",

},

requires_MPI = True

}

Fig. 7. Example Benchmarks dictionary for configuring workloads in QMSprof.
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# Sniper configurations

SniperConfigs = {

"16C_2wide" : "Manycore_16c_2wide.cfg",

"16C_3wide" : "Manycore_16c_3wide.cfg",

}

# Environment setup

EnvFiles = {

"DefaultOpenMP" : "ICCDefaultOpenMP.sh"

}

# Configure job manager

import collector.Netbatch

BatchJobModule = collector.NetBatch

BatchJobManager = BatchJobModule.JobManager()

Fig. 8. Example configuration for QMSprof for Sniper configurations and environment
setup.

that the user provides for the Sniper configuration file Manycore 16c 2wide.cfg.
Similarly, in the EnvFiles dictionary, DefaultOpenMP is a description of the
environment file ICCDefaultOpenMP.sh. Each run script created by QMSprof
sources a particular environment file before each run, passing in the thread count
of the run as its argument. Thus, the user should use the environment file to
setup any necessary runtime libraries or tools (e.g., compiler libraries, Sniper and
SDE), and any other environment variables such as OMP NUM THREADS. Finally,
Fig. 8 also specifies the job manager (e.g., Intel NetBatch) to use to run jobs in
the desired compute environment.

Finally, for part (4), Fig. 9 shows an example experiment script that specifies
the runs in the experiment. Each run (e.g., Run0) is specified as a tuple with 5
entries:

1. Sniper configuration: The Sniper configuration for the run, as defined by
the keys in the input SniperConfigs dictionary. For example, Run0 runs the
16C 2 wide config.

2. Thread Set: The thread counts to run. For example, Run0 uses the thread
counts of 1, 2, 4, 8, 12, and 16.

3. Experiment File: The environment file for the run, as defined by the keys
in the input EnvFiles dictionary. For example, Run0 uses the DefaultOpenMP
environment file.

4. Program list: The workload variants to run. The example in Fig. 9 executes
both the sim vec and sim novec variants of LULESH and SNAP.

5. Experiment Knobs: An object that captures all the other configuration
knobs for a particular run. This example uses default values for all the knobs,
but additional customization is possible.
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import collector.config # Import collector module

import SampleConfig # Import user’s configuration file

# Get default simulation knobs

knobs = collector.config.Knobs(SampleConfig)

my_prog_list = ["LULESH_sim_vec", "LULESH_sim_novec",

"SNAP_test_vec", "SNAP_sim_vec"]

experiment_map = {

"Run0" : ("16C_2wide",

[1, 2, 4, 8, 12, 16],

"DefaultOpenMP",

my_prog_list,

knobs),

"Run1" : ("16C_3wide",

[1, 2, 4, 8, 12, 16],

"DefaultOpenMP",

my_prog_list,

knobs),

}

# Name of directory to store simulation output.

output_directory = "SimOutput"

collector.experiment.GenScripts("ExperimentDescription",

experiment_map,

SampleConfig.BatchJobManager,

output_directory)

Fig. 9. Example experiment script for QMSprof.

A.2 Analyzer Interface

The analyzer for QMSprof is a separate script that takes a single input directory
as its argument, scans the input directory for SDE and Sniper simulation output,
parses the relevant raw statistics output files, and then generates summary plots.
Our prototype for QMSprof has the specific plots demonstrated in Sect. 4 hard-
coded as output, but in principle one could implement a more complex interface
that would allow for some customization in the generated plots. The analyzer
generates Gnuplot scripts and data files as output, which can be manually edited
(e.g., to change titles, labels, or legends), and rerun manually to recreate plots.

Our prototype analyzer assumes that simulation output for each simulation
run is placed in a separate folder, with the thread count appearing in the folder
name. The analyzer uses the names of output folders to group different thread
counts for a benchmark together in summary plots, and eliminates the common
suffix across all runs to shorten legends in generated plots. These assumptions
are designed for processing the output from the QMSprof collector, but one can
also use the analyzer to generate summary plots from other simulation runs if
the output directories follow a compatible naming convention.
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Abstract. The Roofline Performance Model is a visually intuitive
method used to bound the sustained peak floating-point performance of
any given arithmetic kernel on any given processor architecture. In the
Roofline, performance is nominally measured in floating-point operations
per second as a function of arithmetic intensity (operations per byte of
data). In this study we determine the Roofline for the Intel Knights Land-
ing (KNL) processor, determining the sustained peak memory bandwidth
and floating-point performance for all levels of the memory hierarchy, in
all the different KNL cluster modes. We then determine arithmetic inten-
sity and performance for a suite of application kernels being targeted for
the KNL based supercomputer Cori, and make comparisons to current
Intel Xeon processors. Cori is the National Energy Research Scientific
Computing Center’s (NERSC) next generation supercomputer. Sched-
uled for deployment mid-2016, it will be one of the earliest and largest
KNL deployments in the world.

1 Introduction

Moving an application to a new architecture is a challenge, not only in porting of
the code, but in tuning and extracting maximum performance. This is especially
true with the introduction of the latest manycore and GPU-accelerated architec-
tures, as they expose much finer levels of parallelism that can be a challenge for
applications to exploit in their current form. To address this challenge, NERSC
has established a collaborative partnership with code teams porting their codes
to Cori and its Intel Knights Landing (KNL) processors. Called NESAP (NERSC
Exascale Science Applications Program), this collaborative will partner the code
teams with key personal from NERSC, Cray, and Intel [13,15].

One method being used within NESAP to identify and better understand
the fundamental architectural bottlenecks, and hence providing a path to better
understand where to focus optimization efforts, is to develop a Roofline Perfor-
mance Model (Roofline) for KNL [23]. We find that the roofline model provides
an important framework for the optimization conversation with code teams. The
KNL hardware provides many new features like dual 512-bit vector units, up to
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 339–353, 2016.
DOI: 10.1007/978-3-319-46079-6 24
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288 hardware threads and the addition of on-package high-bandwidth memory.
The roofline model enables a code team to determine which of these new hard-
ware features they should target. For example, in a memory bandwidth bound
code optimizations targeting better vectorization would be fruitless until other
optimizations targeting data-reuse are considered.

In this paper, we will present an overview of the Roofline Model, describe
the methodology and tools that were used to characterize code performance,
and briefly describe some of the optimizations that were made to improve per-
formance.

2 The Roofline Model and Arithmetic Intensity

Bottlenecks associated with in-core computation (as opposed to network commu-
nication or I/O) are often characterized by instruction- or data-level parallelism
within a loop nest as derived from instruction latencies, throughputs, and vector
widths of the target processor [3]. Unfortunately, today, it is far more common
that performance bottlenecks are associated with the movement of data through
the deep cache/memory hierarchy. In an ideal architecture, cache and mem-
ory latencies are effectively hidden through a variety of techniques (out-of-order
execution, prefetching, multithreading, DMA, etc.) leaving bandwidth as the
ultimate constraint. Thus, loop nest (kernel) execution time can be bound by
the volume of data movement and the bandwidth to the level of memory capa-
ble of containing that data. This bound can be refined by the instruction- and
data-level parallelism inherent in the kernel and demanded by the architecture.
Although this bound is specific to a particular problem size, one can transform
the relationship in order to bound the performance a processor can attain for a
given computation. The resultant Roofline Bound [21,22] is shown in Eq. 1 where
the Arithmetic Intensity (AI) represents the total number of floating-point oper-
ations performed by the kernel divided by the total resultant data movement
after being filtered by the cache.

GFLOP/s = min

{
Peak GFLOP/s
Peak GB/s × Arithmetic Intensity

(1)

Consider the canonical STREAM TRIAD kernel x[i] = a[i] + alpha * b[i];:
We observe each iteration of this kernel reads two doubles, performs one FMA,
write allocates one double, and writes back one double. This provides an arith-
metic intensity of 0.0625 FLOPs per byte. On a system with 10 GB/s of memory
bandwidth and 100 GFlop/s of peak performance, the Roofline model will bound
performance at 0.625 GFlop/s or less than 1 % of peak.

Although the STREAM TRIAD kernel has no data locality, stencils like a
canonical 7-point constant coefficient stencil do. Although such a kernel presents
7 reads and one write to the cache subsystem, in an ideal execution, all but one
read and one write allocate/writeback should be filtered by the cache. As such,
the ultimate arithmetic intensity for such a kernel is 0.291 FLOPs per byte.
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Failure to attain this arithmetic intensity (as measured by memory controller
performance counters) is indicative of a discrepancy between the cache require-
ments as presented by the code and the cache capacity provided by the processor,
and strongly motivates effective cache blocking (loop tiling).

Although the 7-point stencil performs 7 floating-point operations, they are
actually a mix of 6 adds and 1 multiply. For architectures that execute multiplies
and adds in different pipelines, peak performance may only be attained if the
dynamic instruction mix is balanced. In this example, the effective peak is only
58 % of the peak on a machine that implements FMA or separate multiple and
add pipelines. Although, the bandwidth-intensive nature of the 7-point stencil
precludes it from being compute-limited, other kernels may be sensitive to this
imbalance.

We may similarly refine the “Peak GFlop/s” of Eq. 1 into a function of the
instruction-, data-level parallelism within the kernel. Whereas the former is often
attributed to a lack of loop unrolling, the latter is often associated with an
inability to vectorize the kernel in order to target 128-, 256-, or 512-bit vector
instructions. Regardless, the penalty on the performance bounds can be severe —
up to 80× on an Intel Knights Landing processor.

Figure 1a presents a generic Roofline model in which performance is plotted
as a function of arithmetic intensity. Additional “ceilings” denote restricted per-
formance bounds derived from the lack of parallelism. For each kernel, a series
of “walls” can be constructed based on the difference in total data movement
(compulsory, capacity, conflict) and the theoretical data movement lower bound
(compulsory cache misses) [8]. For working sets that fit in main memory, per-
formance is initially bound by memory bandwidth. Cache blocking will increase
arithmetic intensity, but will require some degree of vectorization to improve
performance.

3 Target Hardware Architecture

Cori is a Cray XC40 [5] based supercomputer and is being deployed in two phases.
Phase 1 uses Intel Haswell multi-core processors and was deployed late-2015.

– Cray XC40 architecture with the Aries Dragonfly topology high speed network
– 1,630 compute nodes, where each node contains 2, 16-core, 2.3 GHz Haswell proces-

sors and 128 GB DDR4 2133MHz memory
– 1.92 PFLOP/s (theoretical peak)
– 203 TB aggregate memory
– 30 PB scratch storage with a peak bandwidth of > 700 GB/sec

Phase 2, scheduled for deployment mid-2016, will be an expansion of Cori
and add over 9,300 Intel Knights Landing based nodes. Since Cori’s KNL based
partition is still to be deployed, the KNL results were collected using standalone
Intel white boxes with pre-production KNL processors.

– KNL preproduction, B0 stepping
– 64 cores @ 1.3 GHz with 4 hyper-threads per core (256 total threads)
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– 16GB MCDRAM, >460 GB/sec peak bandwidth
– 96GB (6× 16 GB) DDR4 @ 2133GHz, 102 GB/sec peak

For this study, all results are collected with a single Cori Haswell based node
and then compared to a single KNL white box. Multi-node analysis will be the
subject of future studies. We used MPI and at least one rank per socket to
avoid NUMA effects in Cori’s dual-socket Haswell node. In addition, for most
applications we used the Linux numactl utility to control memory affinity on
the KNL, targeting MCDRAM only (numactl -m 1) or DDR4 only (numactl
-m 0, or without numactl) in our tests. All applications use double-precision
floating-point unless stated otherwise.

4 Tools and Methods

Using the Empirical Roofline Toolkit (ERT) [10,23], we measured the maximum
sustained bandwidth at each level of the cache hierarchy and the maximum
sustained floating-point rate for the KNL processor. We configured the toolkit
with the following parameters:

– ERT CC mpiicc
– ERT CFLAGS -O3 -xMIC-AVX512 -fno-alias -fno-fnalias -DERT INTEL
– ERT FLOPS 1,2,4,8,16,32,64,128
– ERT ALIGN 64
– ERT MPI PROCS 1,2,4,8,16
– ERT PROCS THREADS 256
– ERT OPENMP THREADS 1-256
– ERT NUM EXPERIMENTS 3
– ERT MEMORY MAX 8589934592

ERT performs a sweep of all the specified MPI rank combinations specified
by ERT MPI PROCS. For each MPI sweep it executes a computational kernel
with ERT FLOPS operations per loop iteration. ERT keeps the total concur-
rency (ERT PROCS THREADS) fixed for each sweep, so as the number of MPI
ranks increases, the number of threads per rank decreases an equal amount. We
used the toolkit’s nominal driver1 and kernel11. The toolkit then searches all
results and uses the maximum values found for the L1, L2 and DRAM inter-
faces. The results are shown in Fig. 1b. The Linux utility numactl was used to
target MCDRAM (flag -m 1) or DDR4 (flag -m 0) respectively.

The KNL is capable of being configured in multiple different MCDRAM
and sub-NUMA modes. An explanation of all the possible configurations is
beyond the scope of this paper, but can be found in Sodani’s Hot Chips pre-
sentation [18]. The ERT was applied using Quad-Cache, Quad-Flat, Sub-NUMA
Cluster 2 (SNC2) and Sub-NUMA Cluster 4 (SNC4) modes to determine if there
was a significant difference in performance. All four modes provided equivalent
floating-point performance, which is expected with the ERT as the peak floating-
point rates are achieved with a working set that fits in L1 cache. The MCDRAM
1 We added a #pragma unroll (8) around the inner loop to enable vectorization.
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Fig. 1. 1a) Generic Roofline representation showing the ultimate bounds on perfor-
mance, bandwidth, and arithmetic intensity, with ceilings to denote limitations from
a lack of various forms of parallelism. 1b) Applying the Roofline Toolkit, we estimate
KNL maximum sustained memory bandwidth for the L1 and L2 caches, the MCDRAM
and DDR4 bandwidth, and the maximum sustained performance in GFLOP/s.

Table 1. ERT performance for different KNL memory modes

Quad cache Quad flat Sub-NUMA
cluster 2

Sub-NUMA
cluster 4

GFLOP/s 2,205 2,199 2,224 2,212

MCDRAM GB/s 345 372 381 415

DDR4 GB/s - 77 77 77

performance does vary, with Quad-Cache mode giving the lowest performance,
Quad-Flat and SNC2 providing near equal bandwidths, and SNC4 giving the
best performance, 20 % higher than Quad-Cache. The results of the ERT are
used to form the roofline for the applications and kernels in Sect. 5 (Table 1).

Unless otherwise noted, all application results presented in the following sec-
tions are for Quad-Flat mode as at time of this study it was the most mature
from a software and firmware perspective. In addition, we did collect application
data for SNC2, SNC4 and in some cases Quad-Cache but did not see perfor-
mance differences greater than 20 % from that obtained with Quad-Flat and we
feel Quad-Flat is representative of all modes except Quad-Cache. We will do a
more extensive and detailed comparison in future studies.

We used Intel’s Software Development Emulator (SDE) [17,19] to count the
number of floating-point operations. SDE is capable of dynamic instruction
tracing, and we use this capability to obtain total instructions executed, the
instruction type (e.g. read, read width, single-precision, double-precision, fused
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multiply-add, SIMD width, etc.), and the instruction set architecture grouping
(e.g. SSE, AVX, etc.).

For this study, we use Intel’s VTune Amplifier XE performance analysis tool
to measure data movement at both the DDR and MCDRAM memory interfaces.
A tutorial for using SDE and VTune to calculate AI can be found on the NERSC
web site [7,14].

5 Applications and Kernels

5.1 WARP-PICSAR

WARP is an open-source particle-in-cell (PIC) code designed to simulate charged
particle beams and laser-matter interaction [9]. To aid in preparing for Cori, the
library PICSAR has been developed. This library contains a Fortran kernel based
on WARP with optimized subroutines. These high-performance subroutines are
interfaced with a python class that can be imported and used in WARP scripts.
It also contains a stand-alone Fortran code that is used as a test bed for optimiza-
tion and profiling. The typical PIC kernel is composed of a time loop with four
intermediate steps: the Maxwell solver, the field gathering, the particle pusher
and the current deposition [4]. For many cases, interpolation processes such as
the current deposition and the field gathering represents the most costly steps
and are weakly vectorized in their common form.

A first optimization is the implementation of a hybrid threaded paralleliza-
tion. PIC codes usually use a domain decomposition with one MPI process per
subdomain. OpenMP provides a second level of parallelization inside subdo-
mains. The subdomains are then divided into tiles, i.e. small portion of the
subdomain having their own particle property arrays. Tiling improves memory
locality and significantly diminishes RAM memory access (cache reuse). With
more tiles than OpenMP threads, tiles computation is automatically load bal-
anced with the OpenMP scheduler. On Haswell, field grid arrays can be fully
contained in L2 when tile dimension is sufficiently small (below 8× 8x8). On
KNL, tile field arrays can be in L2 (512 KB) whereas all the problem is con-
tained in the HBM.

Direct current deposition and field gathering interpolation steps were rewrit-
ten to enable more efficient vectorization than the classical form [20]. Vector-
ization is done by adding !$OMP SIMD directives. In addition, a particle cell
sorting process has been added. Performed on every given time step in each tile,
it further improves cache reuse and memory locality while accessing particle
properties, especially during the current deposition and field gathering.

As a test case, we consider a Maxwellian homogeneous plasma with initial
thermal velocity of 0.1c. The domain discretization is of 100× 100× 100 cells
with 20 super-particles per cell. The simulations are performed on a node of
Haswell with 2 MPI tasks and 16 OpenMP threads, and on Intel Xeon Phi KNL
with 4 MPI tasks and 32 OpenMP threads. Performance can be slightly better
when hyper-threading is used on KNL: we use 2 threads per core. Tile dimension
is of 8× 8x8 cells. The tile size is 250 KB for internal temporary current grids
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Table 2. PICSAR arithmetic intensity and performance

Optimization Haswell KNL MCDRAM KNL DDR KNL/HSW
speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

Original 0.57 16.7 0.13 5.6 0.13 5.4 0.34

Tiling 1.10 32.0 0.56 20.0 0.56 19.2 0.63

Tiling+Vectorization 1.50 67.5 0.81 60.4 0.81 49.4 0.89

Fig. 2. The tiling optimization increases AI and moves the data point to the right.
Applying the vectorization optimization allows PICSAR to take advantage of the addi-
tional effective memory bandwidth and increases the overall performance for both
architectures.

(used for vectorization), 31 KB for local current grid and 640 KB for particle
properties. On Haswell, the global field arrays (27 Mb) fit in L3 and the local
tile field arrays fit in L2. On KNL, the problem is fully contained in the HBM.
Local tile field arrays fit in L2. Memory management is still under study.

Arithmetic intensities for each of the optimization steps is shown in Table 2.
Figure 2 illustrates applying the results to the Roofline Model, demonstrating
how tiling and vectorization improve AI and increase overall performance, reach-
ing a higher memory bandwidth ceiling.

After tiling and vectorization optimizations, memory locality is improved,
resulting in an overall performance improvement for both architectures. Perfor-
mance relative to the original code improves by a factor of 4.0 for Haswell and
10.8 for KNL MCDRAM. Although final KNL performance is 0.89 times that
of Haswell, it is important to note that both architectures benefited from the
optimizations with KNL demonstrating the largest individual gain. For KNL,
the speedup seen by using MCDRAM vs. DDR is 1.2, demonstrating that to
some degree PICSAR is memory bandwidth bound.
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5.2 EMGeo

In geophysical-imaging, medium properties can be studied by performing scat-
tering experiments using electromagnetic or seismic waves. Quantities such as
densities, elasticities, stress etc. of the medium can be obtained from fitting
the observed measurements to the results predicted by a simulation. The code
EMGeo performs these simulations and solves the inverse scattering problem in
the Laplace-Fourier domain [16]. We focus only on the Seismic part and forward
step of the inverse scattering problem, which involves inverting a large sparse
matrix. For this purpose, EMGeo uses an Induced Dimensional Reduction (IDR)
Krylov subspace solver.

The Sparse Matrix Vector (SpMV) product is responsible for two thirds of
the total runtime. EMGeo performs SpMV operations using two low-bandwidth
matrices (with maximum of 12 nonzero per row). We use the larger matrix in our
benchmark. The production code evaluates about 256 independent right hand
sides (RHS) in column major format. All the arrays are stored in double-complex
data format.

We use Sliced ELLPack (SELL) sparse matrix format, Spatial Blocking (SB),
and multiple right hand sides (nRHS) cache blocking optimizations to increase
AI and thus the performance in the SpMV operations.

Table 3 summarizes our optimization improvements in the SpMV benchmark.
For EMGeo, we only used a single socket on the Cori Haswell node to avoid
NUMA issues and aid in analyzing the code characteristics. With full optimiza-
tion, the GFLOP/s rate increases by a factor of 4.1 on Haswell and 3.9 on KNL.
The KNL rate is 3.6× better than in a single Haswell socket, mainly due to the
high memory bandwidth in KNL, where the benchmark is memory bandwidth
bound. The SELLPack format reduces the FLOP count and data movement, so
the AI and GFLOP/s values do not reflect the actual improvement in execution
time where we see a 5.0× speedup in Haswell, a 4.8× speedup on KNL and a
3.6× speedup of KNL relative to Haswell.

Although the SB optimization improves the performance in Haswell, it
degrades the performance in KNL, even after tuning the cache blocks size. We
believe that the SB technique is effective when a large shared cache memory

Table 3. EMGeo arithmetic intensity and performance. “Best” referts to SB in Haswell
and loop reordering in KNL

Optimization Haswell (1 Sckt) KNL MCDRAM KNL DDR KNL/HSW
speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

Original 0.31 19.2 0.27 71.1 0.27 23.5 3.7

SELL 0.27 16.9 0.24 71.0 0.24 21.2 4.2

SB 0.34 20.2 0.28 62.3 0.28 20.9 3.1

SELL+SB 0.31 19.2 0.26 63.9 0.26 19.6 3.3

nRHS+SELL+Best 1.29 77.7 0.76 278.5 0.76 65.8 3.6
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Fig. 3. The EMGeo roofline analysis shows that on Haswell and KNL the code is
memory bound, and despite the optimizations performed on the code only modest
improvements in performance are made. However, adding multiple right hand sides
improves memory locality and hence improves AI, with a corresponding improvement
in performance.

is available, which is the case for Haswell, but not KNL. We replace the SB in
KNL’s code in the last row of Table 3 with loop reordering, which is equivalent
to SB of size one. Our roofline analysis shows that our optimizations improved
the arithmetic intensity from 0.3 to 1.3 in Haswell and from 0.3 to 0.8 in KNL,
as shown in Figure 3. The SpMV optimization translates into an overall speedup
of 1.8× in Haswell and 3.3× in KNL for the forward step of the full application,
using a grid of size 100× 50× 50. The Details of this study are available in [11].

5.3 MFDn

The Many-body Fermion Dynamics for nuclei (MFDn) code is a nuclear physics
code in which the lowest few eigenvalues and eigenvectors of a very large real
sparse symmetric matrix are found though iterative means [12]. Sparse matrix
vector and and sparse matrix transpose vector products are key kernels in the
iterative eigensolver. The sparse matrix is stored in a compressed sparse block
coordinate (CSB COO) [1,2] format which allows efficient linear algebra opera-
tions on the large sparse matrix. The sparse matrix elements and corresponding
indices account for 64 GB of the memory and the input/output vectors account
for up to 16 GB depending on the specific problem.

Improving data reuse, allowing vectorization and effectively using as much
aggregate bandwidth as possible are key challenges. We therefore replaced
sparse matrix vector (SpMV) with sparse matrix-matrix (SpMM) operations
on blocks of vectors. To better utilize memory bandwidth we explicitly place
the input/output vectors in MCDRAM and the rest of the code and data reside
in DDR4. Generally the larger the block of vector operations that can be done
simultaneously (the number of right hand sides (nRHS)) the better the perfor-
mance, however the number of vectors is limited by the available MCDRAM.

Our test problem consists of 2 protons and 6 neutrons. The sparsity struc-
ture is determined by the many body basis states and quantum selection rules
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resulting in a quasi-random distribution of nonzero matrix elements. That it
is, the matrix is not banded or well structured. The test problem for KNL is
designed to run on 4,560 nodes with a total nxn matrix with n = 3e11. Our sin-
gle node test case simulates the work of one node responsible for an mxm block
of the matrix with m = 1e10 with a local sparsity of 5e−7. This corresponds
to approximately 7.5e9 nonzero matrix elements. For consistency all of our tests
were done with a CSB block size, β = 16000.

The performance results are summarized in Table 4 and Fig. 4. Since both
MCDRAM and DDR4 are used in this implementation, arithmetic intensity
is calculated using the sum of the data movement for both of the memories.
All floating-point calculations are single precision and the Roofline model in
Fig. 4 is adjusted accordingly, although current performance is no where close
to GFLOP/s ceiling. Using 8 RHS improves performance by a factor of 2.9 for
Haswell and 6.4 for KNL. KNL performance is 1.6 times that of Haswell, and 3.6
times better than using DDR only, the latter demonstrating MFDn is memory
bandwidth bound.

Table 4. MFDn arithmetic intensity and performance

nRHS Haswell KNL MCDRAM KNL DDR KNL/HSW speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

1 0.23 23.2 0.13 17.1 0.13 13.5 0.74

4 0.62 56.8 0.25 62.4 0.25 27.8 1.1

8 0.80 67.5 0.30 109.1 0.30 30.7 1.6

Fig. 4. MFDn clearly meets the bandwidth bound portion of the roofline model (single
precision FP only). By increasing the number of simultaneous vectors (RHS), perfor-
mance improves as arithmetic intensity increases. However, the number of RHS is
limited by available MCDRAM capacity.
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5.4 BerkeleyGW

BerkeleyGW is a materials science application for computing excited state prop-
erties of materials - those associated with electrons populating orbitals beyond
the quantum ground state [6]. BerkeleyGW takes as input the ground-state data
computed from a number of DFT codes like Quantum ESPRESSO, SIESTA,
PARATEC. The code is dominated by dense linear algebra (Matrix Multiply
(GEMM), Diagonalization and Inversion), FFTs and hand tuned code repre-
senting tensor contraction like operations expressed as large array reductions.
We predominantly focus on the hand-tuned routines in our KNL preparation,
which in recent years has become a more significant amount of the runtime of a
GW calculations due to changing use cases. The performance of the FFTs and
linear algebra steps will be discussed in a separate article on BGW performance.

Following our optimization process, we show the following data points for
the baseline MPI-only code. in Table 5 and Fig. 5.

– We refactor primarily to support OpenMP threads and improved data-locality.
The code at this point has a three loop structure, with an outer loop targeted
at MPI, and nested inner-loops with large trip counts targeting threads and AVX
parallelization.

– We factor the code to support compiler auto-vectorization by moving a innermost
trip-count 3 loop outwards, remove cycle statements and conditionals.

– We add a layer of cache-blocking to effectively reuse the L2. We reordered loops to
improve vectorization (moving a loop of trip count 3 outwards), improving AI. We
introduce cache blocking around the trip-count 3 loop. On Haswell, we are able to
effectively use L3 and so no again in AI is seen.

– We replace the complex divide with a manual divide over the real absolute value of
the complex number in order to avoid x87 instruction generation.

– We put back in the explicitly complex divide but utilize the compiler flag -fp-model
fast= 2 which avoids x87 instructions by assuming there is no overflow concern.
Additionally, we run with 2 threads per core, which is where most of the speedup
occurs.

In summary, a few key lessons stand out from BerkeleyGW. For a code with
an AI between 1–10 (i.e. near the roofline cusp), good performance requires, good
data reuse out of L2 cache to reach the highest AI (KNL’s lack of L3 can make it
more punishing), placement of data in HBM, and good use of the vector process-
ing units are all essential for good performance. The current limiting factor is the
latency in the divides, lack of multiply add balance and remaining conditionals.
After all the optimizations, performance relative to the original code improves by
a factor of 11.8 for Haswell and 25.8 for KNL MCDRAM. The KNL demostrated
a 1.35 times improvement over Haswell. Comparing KNL MCDRAM to KNL
DDR, using MCDRAM allows for a performance improvement factor of 1.75.
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Table 5. BerkeleyGW arithmetic intensity and performance

Optimization Haswell KNL MCDRAM KNL DDR KNL/HSW
speedup

AI GFLOP/s AI GFLOP/s AI GFLOP/s

Refactored 2.64 38.7 1.93 9.80 1.93 9.80 0.25

+Vectorized 3.68 100.3 0.66 143.4 0.66 55.1 1.43

+Blocked 3.77 100.3 1.79 153.2 1.79 140.8 1.53

+Improved Vect 3.78 142.6 1.80 178.4 1.80 142.1 1.25

+Hyperthreads 3.27 186.9 1.76 252.6 1.76 144.0 1.35

Fig. 5. BerkeleyGW is a good example of an application that benefited from blocking,
threading and vectorization improvements. For Haswell, +Blocked provides no further
improvement over +Vectorized, due to the fact that the working set fits within the
Haswell L3 cache. For KNL, +Vectorized performance is limited by MCDRAM BW (due
to its low AI) and +Blocked is necessary to see improvements in further optimizations.

5.5 Performance Summary and Observations

Table 6 shows the fully optimized performance for each application or kernel.
They all demonstrated significant performance gains over the baseline code for
both Haswell and KNL architectures. The KNL architecture showed overall bet-
ter performance than Haswell with the exception of PICSAR, however both
architectures benefited significantly from the optimization process.

Applying results to the Roofline Model, no application or kernel had an AI
that put it in the regime of being computational bound, all were in a region in
which memory bandwidth was the limiting factor to performance. EMGeo and
MFDn were clearly bandwidth bound, while PICSAR and BerkeleyGW showed
there is headroom for further optimization.

We observe that Haswell consistently attains a higher AI than KNL. As all
applications perform the same number of floating point operations, we conclude
that KNL generally moves more data to/from main memory than Haswell. As
a result, the theoretical performance benefits of higher MCDRAM bandwidth
are not fully realized. Exploration of the performance tradeoffs between larger
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Table 6. Performance summary

GFLOP/s Speedup

Haswell KNL MCDRAM KNL DDR KNL/HSW MCDRAM/DDR

PICSAR 67.5 60.4 49.4 0.89 1.2

EMGeo (SpMV) 77.7a 181.0 43.6 2.33a 4.2

MFDn 67.5 109.1 30.7 1.62 3.6

BerkeleyGW 186.9 252.6 144.0 1.35 1.75

a EMGeo Haswell performance is for a single socket.

on-chip L2/L3 caches (reduced data movement) and reduced computational per-
formance (fewer cores for constant chip area) are in order.

6 Conclusion and Outlook

In this study we have developed a Roofline Model for the Intel Knights Landing
processor and have estimated upper bounds for L1, L2, MCDRAM and DDR4.
We then measured the performance of a suite of NESAP applications (or proxy
kernels) and used the Roofline Model to determine to what degree they were
compute- or memory-bound. Each application developer then explored a variety
of optimizations to improve both arithmetic intensity and overall performance.
We then re-evaluated the impact of those optimizations relative to the Roofline
ceilings. All of the evaluated applications were able to substantially improve their
overall performance on both Haswell and KNL processors, often by increasing
the computational arithmetic intensity and improving memory bandwidth uti-
lization. Having a visual representation of the performance ceiling helps guide
application experts to appropriately focus their optimization efforts.
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Abstract. A classical technique to vectorize code that contains control
flow is a control-flow to data-flow conversion. In that approach state-
ments are augmented with masks that denote whether a given vector
lane participates in the statement’s execution or idles. If the schedul-
ing of work to vector lanes is performed statically, then some of the
vector lanes will run idle in case of control flow divergences or varying
work intensities across the loop iterations. With an increasing number
of vector lanes, the likelihood of divergences or heavily unbalanced work
assignments increases and static scheduling leads to a poor resource uti-
lization. In this paper, we investigate different approaches to dynamic
SIMD vector lane scheduling using the Mandelbrot set algorithm as a
test case. To overcome the limitations of static scheduling, idle vector
lanes are assigned work items dynamically, thereby minimizing per-lane
idle cycles. Our evaluation on the Knights Corner and Knights Land-
ing platform shows, that our approaches can lead to considerable per-
formance gains over a static work assignment. By using the AVX-512
vector compress and expand instruction, we are able to further improve
the scheduling.

Keywords: SIMD vectorization · Dynamic scheduling · Intel Xeon Phi

1 Introduction

Programming for modern manycore processors, like Intel’s Xeon Phi Knights
Corner and upcoming Knights Landing, involves SIMD parallelism as a key
mechanism to performance. Unlike multi-processing and -threading, the Single-
Instruction Multiple-Data execution model poses the difficulty to orchestrate
an increasingly large number of tightly coupled execution streams for which
there is only one program state. The latter means that the achievable (overall)
performance gain with VL SIMD vector lanes can be close to VL if the program
contains only simple loop structures with no control flow divergences—which for
many scientific codes is not the case. Straightforward single loop vectorization
with a static assignment of loop iterations to SIMD lanes hence will not work
when aiming at an efficient utilization of the respective compute resources.
c© Springer International Publishing AG 2016
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Recent compiler development as well as the introduction of the OpenMP
4.x SIMD constructs constitute massive improvements in compiler vectorization
capabilities. While irregular control flow and function call hierarchy within SIMD
contexts can be handled effectively by current compilers, they do not handle the
inherent issue of idle vector lanes when loads are unbalanced, yet.

Dynamic SIMD vector lane scheduling approaches this issue by scheduling
loop iterations to SIMD lanes at runtime, depending on load imbalances across
the lanes. The goal is that all SIMD lanes consistently perform meaningful cal-
culations instead of—in the case of static scheduling—waiting for a single lane
to complete before moving on to the next set of iterations. As a non-trivial user-
level optimization, dynamic scheduling, however, is code invasive and requires
user assistance that is beyond the capability of current compiler directives.

The Mandelbrot algorithm is a well known representative of unbalanced
workloads. In this paper, we describe different ways to implement dynamic SIMD
vector lane scheduling for the Mandelbrot algorithm. Particularly, we

– contrast using low-level SIMD intrinsics coding with high-level approaches
using either OpenMP 4.x compiler directives or array notation.

– discuss for the different implementations their portability with respect to code
adaptations and performance on different target platforms.

– host our SIMD versions of the Mandelbrot algorithm as open source code [2].

Related Work: On GPUs, under-utilization of available SIMD resources has
already been identified as an performance issue for some time. Consequently,
dynamic scheduling has been explored on such architectures [4,6]. For tradi-
tional SIMD machines the problem of under-utilization has only recently shifted
into focus due to increases in vector width and the necessity to exploit it [10].
Some automatic tools have explored the possibility for dynamic scheduling [7,8]
for a limited selection of loop patterns.

2 Mandelbrot Set

The Mandelbrot set is the set of complex numbers c, such that the sequence z0 =
0, zk+1 = z2k+c, stays bounded. In practice, this condition is checked by iterating
through the sequence, until |zk| exceeds a certain bound, or “sufficiently many”
elements in the sequence have been considered. For visualization purposes, the
index k, at which one of these conditions is fulfilled, is used. This is known as
the escape time algorithm, given in Listing 1. In the images that it computes,
each pixel corresponds to a value c, and the pixel value is the escape time.

Figure 1 visualizes the kind of images produced by Listing 1. Each image has
a resolution of 1920 by 1200 pixels, each pixel being colored according to the
escape time k. The first setup (full) produces the most popular image of the
Mandelbrot set by varying c between −2 − 1i and 1 + 1i with an iteration limit
of 100. The second setup (zoomed) magnifies a section of the Mandelbrot set
from c = −0.74544 − 0.113225i to c = −0.74514 − 0.112925i with an iteration
limit 10000. As the picture is zoomed in, the iteration limit has to be increased
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(a) full image. (b) zoomed image.

Fig. 1. Images of the Mandelbrot set used for assessing the algorithm performance.

in order to visualize details. Consequently, the potential for load unbalance is
higher in the second image, as evident by the large, noisy sections within it.

SIMD Vectorization: Computing an image of the Mandelbrot set using the escape
time algorithm is a typical example of an embarrassingly parallel problem. Every
pixel of the image can be computed independently. A vectorization of the pixel
loop requires a transformation of the control flow to a data flow model, where
a block of VL pixels is processed at once. Listing 1 demonstrates a possible app-
roach using wrapper classes for Intel Cilk Plus Array Notation [3,9]. The app-
roach exploits the fact, that once a complex number meets the escape criteria
(|z| ≥ 2), then also all following numbers will meet that criteria. Thus a vec-
torized iteration is executed for all vector lanes until either all numbers have
escaped or the maximum iteration count is reached. The number of iterations
needed to compute a block of pixels is equal to the pixel requiring the largest
number of iterations.

1 void Mandelbrot(float c_re,
2 float c_im,
3 int maxIter,
4 int& out){
5 complex<float>
6 c(c_re,c_im),
7 z(0.0f,0.0f);
8 int n=0;
9

10 for(n=0; n<maxIter; n++){
11
12 if(norm(z)>=2.0f)
13 break;
14 z=z∗z+c;
15
16 }
17 out=n;
18 }

void Mandelbrot_SIMD(float c_re[VL],
float c_im[VL],
int maxIter,
int out[VL]){

complex<float_array>
c(c_re[0:VL],c_im[0:VL]),
z(0.0f,0.0f);

int n=0;
int_array n_array(0),mask;
for(n=0; n<maxIter; n++){

mask=(norm(z)<2.0f);
if(all_zero(mask))

break;
z=z∗z+c;
n_array+=mask;

}
out[0:VL]=n_array[0:VL];

}

Listing 1. Scalar and SIMD version of the Mandelbrot set escape time algorithm.

Figure 2 depicts this execution scheme for two blocks of 4 pixels on V L = 4
SIMD lanes. Solid gray boxes represent per-vector-lane iterations for which the
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Fig. 2. A sample workload distribution across vector lanes.

escape criteria is not met, whereas for unfilled boxes it is. The first block of 4
pixels needs 3, and the second block 5 iterations, respectively. Computing all 8
pixels thus requires a total of 8 iterations, giving a speedup of 2.5 over executing
all 20 pixels one after another in scalar fashion. Since some computation slots
(unfilled boxes) are not used for meaningful computation, the parallel efficiency
for V L = 4 is at most 0.625. Executing the same distribution of iterations on
V L = 8 SIMD lanes requires 5 iterations, and gives a maximum parallel efficiency
of 0.5, and even lower values for VL larger than 8.

Table 1 confirms this observation for the two Mandelbrot images shown in
Fig. 1. We have calculated the expected maximum Speedups and parallel Effi-
ciencies based on the count distribution in the images. For this purpose, we have
summed up the maximum iteration counts for V L = 4, 8, 16. The column Itera-
tions represents the number of times the statement z=z*z+c is executed. As one
can see, V L = 4 gives always reasonable speedups. However, for an architecture
providing 16 SIMD vector lanes, the insufficient utilization of computation slots
becomes the major performance road block for compute intense images.

Table 1. Achievable speedups using static vector lane scheduling.

Image VL Iterations Speedup Efficiency

full scalar 69877898

maxIter = 100 4 17898739 3.9 0.98

x = −0.5 ± 1.5 8 9129166 7.65 0.96

y = 0 ± 1 16 4692441 14.89 0.93

zoomed scalar 370027284

maxIter = 10000 4 119251980 3.1 0.78

x = −0.74529 ± 1.5e−4 8 71485539 5.18 0.65

y = 0.113075 ± 1.5e−4 16 43958870 8.42 0.53

3 Array as Value (AAV)

We have solved the problem of under-utilized SIMD vector lanes by scheduling
the computation of pixels to SIMD vector lanes as soon as they finish their
current computation. We have investigated two scheduling schemes that differ
in their efficiency and programmability.
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The program given in Listing 2 uses a blocked scheme. The vector pixel

contains the indices of pixels being computed. The loop condition at line 5
checks whether at least one pixel needs to be computed. The condition inside the
loop checks the escape criteria. Only for those vector lanes matching the escape
criteria the condition body is executed. Inside the condition body the results of
just escaped vector lanes are stored. Then these vector lanes are immediately
initialized with the indices of the next pixels to be computed (line 9) and the start
values for the actual computation (lines 10–12). Pixels are statically assigned
to vector lanes—the index of a pixel modulo the vector length is the vector
lane. Figure 3a depicts this scheduling scheme for the distribution of iterations
from Fig. 2 across 4 vector lanes. This approach does not need any horizontal
vector operations and is easily programmable using array notation. Due to the
immediate reinitialization of escaped vector lanes the computation at line 15
nearly always utilizes all vector lanes. Only at the end of the computation some
computation slots will remain unused. A vector lane might run out of work, even
if there is still work left for other vector lanes.

1 void Mandelbrot(float c_re[N],float c_im[N],int maxIter,int out[N]){
2 complex<float_array> c(c_re[0:VL],c_im[0:VL]),z(0, 0);
3 int_array pixel(0,1,..,VL);
4 int_array count_array(0);
5 while(reduce_min(pixel)<N) {
6 int_array mask=(norm(z)<2.0f);
7 if((mask[:]==0 || count_array[:]==maxIter) && pixel[:]<N){
8 out[pixel[:]]=count_array[:];
9 pixel[:]+=VL;

10 count_array[:]=0; z.real[:]=z.imag[:]=0.0f;
11 if(pixel[:]<N){
12 c.real[:]=c_re[pixel[:]]; c.imag[:]=c_im[pixel[:]];
13 } }
14 count_array+=1;
15 z=z∗z+c;
16 } }

Listing 2. Mandelbrot kernel using dynamic blocked SIMD vector lane scheduling.

1 __m512i next={VL,VL+1,..,2∗VL−1};
2 while(..){
3 __mmask16 mask=.. // test escape condition
4 if(escape_mask!=0){
5 _mm512_mask_i32scatter_epi32(image,mask,pixel,count_array,4);
6 pixel=_mm512_mask_expand_epi32(pixel,mask,next);
7 next=_mm512_add_epi32(next,_mm512_set1_epi32(_popcnt32(mask)));
8 // reinitialize masked lanes according to p ixel
9 } }

Listing 3. Condition body using smoothed dynamic vector lane scheduling.

Therefore we have also investigated a smoothed scheme. In this scheme pixels
are sequentially assigned to just finished vector lanes (Fig. 3b). This reduces the
number of unused computation slots even further. The scheduling of the pixel
numbers to vector lanes can be done using the expand instruction, which is avail-
able in the AVX-512 instruction set [1]. Since this instruction currently cannot
be expressed using array notation, Listing 3 shows a possible implementation of
the condition body using intrinsics: lines 6 and 7 replace the line 9 of Listing 2.
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(a) blocked (b) smoothed

Fig. 3. Dynamic scheduling of a workload distribution across SIMD vector lanes.

Table 2. Achievable speedups using blocked/smoothed dyn. vector lane scheduling.

Blocked dynamic Smoothed dynamic

Image VL Iterations Speedup Efficiency Iterations Speedup Efficiency

full scalar 69877898 69877898

4 17548608 3.98 0.99 17470398 3.9997 1

8 8828655 7.91 0.99 8735818 7.999 1

16 4467240 15.64 0.98 4368581 15.996 1

zoomed scalar 370027284 370027284

4 94491326 3.92 0.98 92609380 3.995 0.999

8 48393462 7.65 0.96 46411004 7.97 0.996

16 25215795 14.67 0.92 23385660 15.82 0.989

Table 2 presents the effectiveness of dynamic vector lane scheduling using the
same method as for Table 1. It should be noted that the efficiency numbers in
these tables consider only the inner loop computation. For the static scheduling
approach SIMD vector lanes in the outer loop computations are fully utilized,
whereas for dynamic scheduling approaches vector lanes in the inner loop com-
putations are fully utilized. The outer loop of the Mandelbrot algorithm contains
only the initialization of z and c. Additionally, the inner loop body will be exe-
cuted much more often. Thus, the under-utilization in the outer loop becomes
negligible, as confirmed by our experimental results in Sect. 6.

4 Enhanced Explicit Vectorization (EEV)

The “enhanced explicit vectorization” coding scheme is based on a combination
of loop blocking with high-level vectors and compiler directives to process these
vectors. We propose for the Mandelbrot kernel the following code transformation:

Step 1: Operate on blocks of pixels of size VL, and replace scalar data types by
high-level vector data types, e.g. (#defineV L = 16 for Xeon Phi):
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typedef struct{ float x[VL]; } vec_f32;
typedef struct{ int x[VL]; } vec_i32;
typedef struct{ bool x[VL]; } mask_x32;

Furthermore, separate the while-loop from the remaining code blocks in the
kernel body, and introduce an inter-lane status word lane_alife_any as exit
condition for the while-loops:

1 void Mandelbrot(float c_re[N],float c_im[N],int maxIter,int out[N]){
2 for(int i=0; i<N; i+=VL){
3 for(int ii=0; ii<VL; ii++){ // data initialization
4 z_re.x[ii]=0.0f; z_im.x[ii]=0.0f; count.x[ii]=0;
5 lane_alife.x[ii]=((i+ii)<N ? true : false);
6 }
7 bool lane_alife_any=true;
8 while(lane_alife_any){ // compute: moved the innermost loop into the while loop
9 for(int ii=0; ii<VL; ii++){

10 if(lane_alife.x[ii]){
11 if(count.x[ii]<maxIter && (z_re.x[ii]∗..)<4.0f){
12 count.x[ii]++; z_im.x[ii]=..; z_re.x[ii]=..;
13 } else lane_alife.x[ii]=false; // this lane is done
14 } }
15 lane_alife_any=false;
16 for(int ii=0; ii<VL; ii++)
17 if(lane_alife.x[ii]) // exit condition: does any lane continue the loop execution?
18 lane_alife_any=true;
19 }
20 for(int ii=0; ii<VL; ii++)
21 if((i+ii)<N) out[i+ii]=count.x[ii]; // unpack results into the output array
22 } }

Each SIMD lane stores its activity status in the vector lane_alife. Only
if for none of the active lanes the predicate count.x[ii]<maxIter&&..<4.0f

evaluates to true, the while-loop stop.

Step 2: Replace the “for(int i=0;..)”-loop by an index vector vi which
for each SIMD lane holds the loop iteration that is currently processed. Every
time the current iteration is done, the index is moved forward (by VL in the
code below). In addition to the lane_alife status vector, we introduce a vector
lane_acquire_work to signal the lanes’ idle state:

1 void Mandelbrot(float c_re[N],float c_im[N],int maxIter,int out[N]){
2 for(int ii=0; ii<VL; ii++){ // Prologue: data initialization
3 ............ // same as in step 2
4 vi.x[ii]=ii; lane_alife.x[ii]=(vi.x[ii]<N ? true : false);
5 lane_acquire_work.x[ii]=false;
6 }
7 bool lane_alife_any=true;
8 while(lane_alife_any){ // Compute: process current loop iterations
9 for(int ii=0; ii<VL; ii++){

10 if(lane_alife.x[ii]){
11 if(count.x[ii]<maxIter && (z_re.x[ii]∗..)<4.0f){
12 ............ // same as in step 2
13 } else lane_acquire_work.x[ii]=true; // replaces lane_alife.x[ii]=false
14 } }
15 lane_alife_any=false;
16 for(int ii=0; ii<VL; ii++){ // pre-scheduling of loop iterations
17 if(lane_acquire_work.x[ii]){
18 out[vi.x[ii]]=count.x[ii]; // store result of current iteration
19 vi.x[ii]+=VL; // move to the next set of loop iteration
20 ............ // initialize c_re, z_re, z_im, count as above
21 if(vi.x[ii]>=N) lane_alife.x[ii]=false; // this lane is done
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22 lane_acquire_work.x[ii]=false;
23 }
24 if(lane_alife.x[ii]) // exit condition: are there lanes that continue the loop execution?
25 lane_alife_any=true;
26 } } }

All for-loops in Step 2 are candidates for vectorization, e.g., via the OpenMP
4.x compiler directive #pragmaompsimdsimdlen(VL). In this way, the code is
portable across different platforms (see Table 3) and compilers. However, the
EEV approach is code invasive in that it might require to not just apply the
scalar-to-vector replacement, but additionally to introduce some control logic
around the code blocks to allow for efficient SIMD code generation.

The dynamic scheduling in Step 2 uses the block scheme where the index vi

is moved forward by VL, thereby partitioning the total number N of loop iter-
ations into disjoint sets Is = {i = s + n VL |n = 0, . . . , N/VL − 1}, s=0,. . . ,VL-1.
The implicit assumption is that |Is| ≈ |Is′ | for all s, s′. The latter, however, is not
always satisfied. Alternatively, we implement the smoothed scheduling scheme as
described in Sect. 3. For that purpose, we initialize vi as above, and introduce
a scalar variable current_i=VL. When pre-scheduling loop iterations, we create
a vector vi_next whose entries on SIMD lanes that need to acquire new work
follow from incrementing current_i serially. The respective loop is separated
from the subsequent assignment vi.x[ii]=vi_next.x[ii] in line 20.

Optimization 1: Execute the pre-scheduling loop just if at least one SIMD lane
needs to acquire new work. For that purpose we introduce an additional status
word lane_acquire_work_any, which is initialized to false at the beginning
of the while-loop body, and is set to true if any of the lanes sets its lane_

acquire work status flag. The pre-scheduling loop then is placed within a condi-
tional block if(lane_acquire_work_any){<pre-scheduling loop>}.

Optimization 2: Kernels that are not compute-intensive can benefit from not pre-
scheduling successive loop iterations immediately when a SIMD lane becomes
idle, but after a fixed number of while-loop iterations at earliest.

5 Low-Level Optimizations Using SIMD (INTR)insics

The previous techniques relied on the compiler’s vectorization capabilities. With-
out changing the fundamental approach, the implementation can be formulated
in terms of SIMD intrinsics. Such an implementation eliminates the majority
of overheads that arise when mandating vectorization. While an intrinsics app-
roach provides some cross-compiler portability, it is fundamentally hardware
dependent—in our case targeting IMCI and AVX-512 devices. In contrast, other
implementation techniques can run on CPUs as well. Vector classes [5] might
lead to more maintainable and portable code while preserving low overheads.

The implementation using intrinsics (INTR) follows the same principles as
the EEV implementation. Particular, it also supports the various optimizations
that were applied there. For example, the intrinsics algorithm can be “widened”
to compute any multiple of VL pixels at once, and can be “unrolled” to perform
multiple iterations before checking if more work needs to be acquired.
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One common source of overhead is spilling data from registers into memory
where not necessary. Both the AAV and EEV approaches are prone to this issue,
as the compiler needs to optimize out loads and stores in them. This issue does
not arise when directly operating on register values with intrinsics. Intel SDE,
an emulator that can target KNL, reports the number of reads and writes to
stack memory: According to these counts, the EEV code accesses the stack six
times more frequently than the intrinsics variant.

The intrinsics code also has a different instruction mix, where more fused-
multiple-add (FMA) operations are generated by the compiler during optimiza-
tion. According to SDE, the number of executed math vector instructions is
roughly equal among EEV and INTR, but INTR executes three times as many
FMAs. This might be due to the lower spilling rate of the intrinsics code, leaving
more intermediate values in registers to be incorporated into FMAs.

Additional, but less impactful differences include manual unrolling, aiding
the branch prediction using __builtin_expect and explicitly taking advantage
of the expand instruction. However, the compiler seems to be keen on applying
some of these tricks itself in the EEV version, too.

6 Measurements

We have conducted the experimental evaluation on three Intel systems:

– Xeon E5-2680v3, Haswell generation, 2.5GHz, 12 cores.
– Xeon Phi 5110P, Knights Corner generation, 1.053 GHz, 60 cores.
– Knights Landing preproduction system, B0 stepping, 1.3 GHz, 64 cores.

The programs were compiled using the Intel compiler version 16.0.2. The com-
pilation option set used was: icc-O3-std=c++11[-mmic,-AVX512] Our per-
formance metric is cycles (taken with rdtsc). Other than in the listings given
in this paper the values for the complex variable c are computed on the fly.

Table 3 presents a collection of performance data for the presented
approaches. For the full image, dynamic scheduling decreases performance. In
that case, the iteration limit is low, and the image has large, uniform regions,
resulting in little opportunity to exploit dynamic scheduling, and the overhead
associated with it can not be amortized. Nevertheless, it is apparent that the
three variants AAV, EEVS and INTS, which fundamentally use the same app-
roach, all attain similar performance across all platforms. The additional opti-
mizations in EEV and INTR lead to another significant speedup. Indeed, the
performance gap between EEV and INTR decreases to just 20 % as optimiza-
tions are applied.

In the zoom image, the advantage of dynamic scheduling becomes apparent,
being roughly 50 % faster (as opposed to 30 % slower) as the static scheduling
for the AAV, EEVS and INTR, and leading to even higher speedups for EEV
and INTR. Note that again the intrinsics and the portable solutions are close-by
in terms of performance.
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Table 3. Experimental comparison of scheduling vectorization approaches.
C = 106 cycles, S= Speedup w.r.t. scalar, E = Efficiency = S/VL. EEVS= EEV without
unrolling or widening, INTS= Intrinsics without unrolling or widening.

Knights landing Knights corner Haswell

Image Method C S E C S E C S E

full scalar 1273 1908 748

AAV (static) 113 11.2 0.70 265 7.2 0.45 126 5.9 0.74

INTS (static) 75 17.0 1.06 121 15.8 0.99 −
EEV (static) 64 19.9 1.24 139 13.7 0.86 82 9.1 1.14

AAV (block) 191 6.7 0.42 289 6.6 0.41 241 3.1 0.39

EEVS (block) 205 6.2 0.39 268 7.1 0.44 218 3.4 0.42

EEVS (smooth) 200 6.4 0.40 290 6.6 0.41 225 3.3 0.41

INTS (block) 141 9.1 0.57 204 9.3 0.58 −
INTS (smooth) 135 9.4 0.59 196 9.7 0.61 −
EEV (block) 61 21.0 1.31 161 11.8 0.74 137 5.5 0.69

EEV (smooth) 63 20.1 1.26 161 11.8 0.74 144 5.2 0.65

INTR (block) 51 24.8 1.55 140 13.6 0.85 −
INTR (smooth) 47 26.9 1.68 130 14.6 0.91 −

zoomed scalar 6824 9666 4310

AAV (static) 1021 6.7 0.42 2514 3.8 0.24 1021 4.2 0.53

INTS (static) 662 10.3 0.64 1020 9.5 0.59 −
EEV (static) 666 10.2 0.64 1198 8.1 0.51 857 5.0 0.63

AAV (block) 849 8.0 0.50 1305 7.4 0.46 1110 3.9 0.49

EEVS (block) 884 7.7 0.48 1164 8.3 0.52 843 5.1 0.64

EEVS (smooth) 833 8.2 0.51 1152 8.4 0.53 830 5.2 0.65

INTS (block) 664 10.3 0.64 949 10.2 0.64 −
INTS (smooth) 609 11.2 0.70 881 11.0 0.69 −
EEV (block) 304 22.4 1.40 753 12.8 0.80 653 6.6 0.82

EEV (smooth) 294 23.2 1.45 697 13.9 0.87 671 6.4 0.80

INTR (block) 287 23.8 1.49 724 13.3 0.83 −
INTR (smooth) 241 28.3 1.77 612 15.8 0.99 −

7 Conclusion

The investigation in this paper has shown, that traditional vectorization tech-
niques like control-flow to data-flow conversion need to be conceptually recon-
sidered for contemporary SIMD architectures with their wide vector registers.
Under-utilization of SIMD vector lanes can cause a severe efficiency degrada-
tion. Our concept of dynamic vector lane scheduling breaks with the paradigm,
that a block of iterations is executed synchronously in a vectorized loop. In our
approach, loop iterations are assigned to vector lanes on the fly, leading to a
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much better utilization of available compute resources. By refining the Mandel-
brot algorithm accordingly, we are able to double the computation speed for
compute-intense images.

We have developed two different scheduling schemes. The blocked scheme is
easily programmable and can be expressed using existing high-level language
constructs like Cilk Plus array notation. The more elaborated smoothed scheme
leads to an even better utilization of vector lanes. We have implemented these
schemes using three different programming approaches (AAV, EEV and INTR).
Both AAV and EEV use high-level SIMD vector operations to enable code porta-
bility, whereas INTR draws on low-level vector coding with SIMD intrinsics.
Our implementations of the Mandelbrot algorithm show that with EEV code
and performance portability can be achieved at the same time. However, the
portable methods could further profit from additional compiler improvements
that simplify and support the implementation of dynamic scheduling.

We believe that dynamic vector lane scheduling will become an important
vectorization technique for a wide range of algorithms. Loops with diverging
control flows as well as loops containing inner loops with a varying number of
iterations can benefit from our approach. E.g. the transformation of the Man-
delbrot algorithm can be generalized as shown in Listing 4. The for-loop on the
left side shall be vectorized. The condition terminating the inner loop is variant
to the enclosing loop. A traditional vectorization would utilize all vector lanes in
the initialization and in the store result steps. The computation step would be
masked depending on which vector lanes already have met condition. The vector-
ized code outlined on the right side uses dynamic vector lane scheduling. There
the utilization of vector lanes is interchanged: initialization and store result
are masked, while computation now utilize all vector lanes. Our results suggest
that such an interchange should be considered as a part of the SIMD vector opti-
mization strategy. However, while further research is needed in order to obtain
an automatic transformation of such codes, it remains a programmer task to
rate the meaningfulness of that transformation.

1
2
3 for(n=0;n<maxIter;n++) {
4 initialization
5 while(!condition)
6 {
7 computation
8 }
9 store result

10 }

schedule first n[vect]

initialization[vect]

while(n[any]<maxIter) {
if(condition[vect]) {

store result[masked]

schedule next n[masked]

initialization[masked]

}
computation[vect]

}

Listing 4. Generalized transformation scheme.
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Abstract. Initial optimization strategies and results on MFDn, a large-
scale nuclear physics application code, running on a single KNL node are
presented. This code consists of the construction of a very large sparse
real symmetric matrix and computing a few lowest eigenvalues and eigen-
vectors of this matrix through iterative methods. Challenges addressed
include effectively utilizing MCDRAM with representative input data for
production runs on 5,000 KNL nodes that require over 80 GB of memory
per node, using OpenMP 4 to parallelize functions in the construction
phase of the sparse matrices, and vectorizing those functions in spite
of while-loops, conditionals, and lookup tables with indirect indexing.
Moreover, hybrid MPI/OpenMP is employed not only to maximize the
total problem size that can be solved per node, but also to eventually
minimize parallel scaling overhead through the best scaling combination
of MPI ranks per node with OpenMP threads. We describe a vectorized
version of a popcount operation to avoid serialization on intrinsic popcnt

which only operates on scalar registers. Additionally we leverage SSE 4.2
string comparison instructions to determine nonzero matrix elements. By
utilizing MCDRAM, we achieve excellent Sparse Matrix–Matrix multi-
plication performance; in particular, using blocks of 8 vectors lead to a
speedup of 6.4× on KNL and 2.9× on Haswell compared to the perfor-
mance of repeated SpMV’s. This optimization was essential in achieving
a 1.6× improvement on KNL over Haswell.

Keywords: Vectorization · MCDRAM · KNL · MFDn · Sparse matrix ·
SpMV

1 Introduction

Many-Fermion Dynamics—nuclear, or MFDn, is a configuration interaction (CI)
code for nuclear structure calculations. It is a platform independent Fortran 90
code using a hybrid MPI/OpenMP programming model, and is being used on
c© Springer International Publishing AG 2016
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current supercomputers such as Edison at NERSC, Mira at ALCF, and Titan at
OLCF for ab initio calculations of atomic nuclei using realistic nucleon–nucleon
and three-nucleon forces [3,7–9]. A calculation consists of generating a many-
body basis space, constructing the many-body Hamiltonian matrix in this basis,
obtaining the lowest eigenpairs, and calculating a set of observables from those
eigenpairs. Key computational challenges for MFDn include effectively using the
available aggregate memory, efficient construction of the matrix, and efficient
sparse matrix–vector products used in the solution of the eigenvalue problem.

In principle an infinite-dimensional basis space is needed for an exact repre-
sentation of the many-body wavefuctions. However, in practice the basis space
is truncated and observables are studied as a function of the truncation para-
meters. Typical basis space dimensions for large-scale production runs are of
the order of several billion. The corresponding many-body matrix is extremely
sparse, with tens of trillion nonzero matrix elements, which are stored in core.
This defines one of the key computational challenges for this code—effectively
using the aggregate memory available in a cluster.

To accurately capture this need we developed a test code which uses represen-
tative data for production calculations on 5,000 Knights Landing (KNL) nodes
(approximately half the size of Cori at NERSC) using over 80 GB of memory
per node. In such a production run, half of the symmetric matrix is distributed
in a two-dimensional fashion over the available MPI ranks. Each MPI rank con-
structs and stores its own sparse submatrix. The test code performs nearly all
the computational work a single node would do in the production run but with
the communication removed.

2 Target Architecture

The optimizations on MFDn presented in this work target the Cori supercom-
puter at the National Energy Research Scientific Computing Center (NERSC).
Cori is a Cray XC40 based supercomputer deployed in two phases.

Phase 1

– 1,630 compute nodes with 128 GB DDR4@2133 MHz per node and 2 16-core
2.3 GHz Intel Haswell processors

– 1.92 PFLOPs theoretical peak
– 203 TB aggregate memory
– Aries Dragonfly topology network
– Deployed late-2015

Phase 2

– Scheduled deployment mid-2016
– Over 9,300 self-hosted Knights Landing (KNL) compute nodes
– Over 1 PB aggregate memory (DDR4 and MCDRAM combined)
– Aries Dragonfly topology network
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Fig. 1. OpenMP thread scaling of kernels on KNL B0 with 64 physical cores and up to
4 logical threads per core. Speedup is measured against wall time with 8 threads.

As Cori Phase 2 is not available at the time of writing, we perform our tests
using the following platform:

– B0 stepping KNL preproduction white boxes
– 64-cores @ 1.3 GHz and 4 logical threads per core
– 16 GB MCDRAM
– 96 GB DDR4 @ 2133 MHz

On Haswell we achieved the best performance with one MPI rank per socket
(i.e., two MPI ranks per node, and avoiding NUMA issues) and 16 threads per
rank resulting in one thread per physical core. Our initial tests on KNL showed
that hyperthreading was beneficial and that 4 threads per core was best, see
Fig. 1. Furthermore, one MPI rank with 256 threads was more efficient than two
MPI ranks with 128 threads or four MPI ranks with 64 threads. In addition
to being most efficient, using one MPI rank per node avoids memory overhead
from data replicated across MPI ranks and facilitates addressing large blocks of
MCDRAM. Hence, unless otherwise noted, all tests reported below on KNL were
done in quadrant+flat mode with one MPI rank and 256 threads. For allocations
to MCDRAM we used the memkind [4] library and FASTMEM directives.

3 Optimization of SpMV/SpMM Kernel

The lowest few eigenvalues and eigenvectors of the very large real sparse sym-
metric Hamiltonian matrix are found with iterative solvers Lanczos [6] or
LOBPCG [5]. The key kernels in the iterative eigensolver are Sparse Matrix–
Vector (SpMV) and Sparse transposed Matrix–Vector (SpMVT) products, as
only half of the symmetric matrix is stored in order to save memory. The sparse
matrix is stored in a CSB Coo format [1,2], which allows for efficient linear
algebra operations on very sparse matrices, improved cache reuse on multicore
architectures and thread scaling even when the same structure is used for both
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Fig. 2. Wall time for SpMM kernel on Haswell and KNL. KNL (DDR) means no
MCDRAM was utilized. KNL (cache) indicates that cache mode was used. KNL
(memkind) indicates that input/output vectors were explicitly kept in MCDRAM using
directives.

SpMV and SpMVT (as is the case in this application). The thread scalability of
this kernel is shown in Fig. 1; it scales ideally with the number of physical cores
and additional hyperthreads provide some small additional benefit. The figure
was generated with 8 simultaneous vectors allocated to MCDRAM and different
numbers of vectors (not shown) display the same behavior.

In a production run on 5,000 KNL nodes over 80 GB of memory per node
is required for a calculation. The nonzero matrix elements and corresponding
indices account for 64 GB of the memory and the input/output vectors account
for up to 16 GB depending on the specific problem and on the eigensolver that
is used. Improving data reuse, utilizing vectorization, and effectively using as
much aggregate bandwidth as possible are key challenges for computing sparse
matrix-vector products in MFDn. To improve data reuse and allow for vector-
ization, in LOBPCG we replace SpMV with SpMM (i.e., SpMV operations on
a block of vectors). To fully utilize AVX-512 instructions on KNL up to 16
single-precision vectors could be used, but we limit our study to 8 vectors due
to memory requirements and the need to balance simultaneous data use from
each memory system. To access more memory bandwidth we explicitly place the
input/output vectors in MCDRAM using the memkind [4] library and FASTMEM
directives.

To analyze the performance we measure the arithmetic intensity (AI, the
ratio of FLOPs to data movement) of the SpMM operation. We used the dynamic
instruction tracing capabilities of Intel’s Software Development Emulator (SDE)
to count the number of floating point operations. Due to the size of the matrices
and vectors the most relevant measure for data movement are the main memory
counters. To access the data movement at DDR and MCDRAM controllers we
use Intel’s VTune Amplifier XE. In our experiments we used a fixed CSB Coo
block size β = 16,000 to maintain consistency, though this value should be
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Table 1. Performance data for SpMM on m vectors for 2 socket Haswell with 2 MPI
ranks and 16 OpenMP threads.

m AI GFLOPs DDR GB/s

1 0.23 23.2 122–125

4 0.62 56.8 125

8 0.80 67.5 122–125

Table 2. Performance data for SpMM on m vectors for B0 KNL with 64 cores with
256 OpenMP threads.

m AIDDR AIMCDRAM AItotal GFLOPs DDR GB/s MCDRAM GB/s

1 0.20 0.33 0.13 17.1 83 55

4 0.80 0.36 0.25 62.4 80 170–190

8 1.57 0.37 0.30 109.1 71 290–310

adjusted to match the cache sizes of the current hardware and matrix sparsity
of a given Hamiltonian.

On Haswell operating on blocks of vectors with SPMM operations resulted in
a speedup of 2.9× over operating on a single vector at a time. Due to the low value
of AI for SPMM operations memory bandwidth is the limiting factor in perfor-
mance. Sustained memory bandwidth on Haswell was measured to be BHSW

DDR =
128 GB/s. Performance measurements are summarized in Tables 1 and 2. The
theoretical peak performance in GFLOP/s is P (m) = BHSW

DDR ·AI(m), where B is
bandwidth and AI is arithmetic intensity. Our measurements show we achieve
a large fraction of theoretical maximum performance and that we are utiliz-
ing nearly all of the available memory bandwidth. However, as m increases we
achieve a lower fraction of theoretical peak performance. This is a result of the
larger working set resulting in increased cache pressure. Tuning of the CSB Coo
block size, β, could mitigate this effect, but is outside the scope of this work as
the optimal choice depends on the specific hardware and the specific sparsity
structure and physics of each problem.

On KNL we will use data from both DDR and MCDRAM. In this case two
factors, the total data movement and the ratio of data movement on MCDRAM
to DDR, are important. The measured peak sustained bandwidth was BKNL

DDR =
83 GB/s for DRR and BKNL

MCDRAM =390 GB/s for MCDRAM on our KNL white
boxes. For optimal performance the ratio of data moved on each controller should
match the ratio of available bandwidth (Rmax = BKNL

MCDRAM/BKNL
DDR ≈ 4.7) in

order to fully utilize each memory system. For m = 1, 4, 8 the ratio of data
moved on each controller is R = 0.6, 2.2, 4.2, respectively. We estimate that if
enough MCDRAM was available the ratio for m = 16 would be R ≈ 8, which
would result in the DDR being under-utilized. Increasing m reduces the traf-
fic on DDR and reduces the total data moved on both controllers, resulting in
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Fig. 3. Performance model for utilizing data from MCDRAM and DDR simultaneously
on KNL. The dots are measurements taken with 256 threads on B0.

increased total arithmetic intensity. Assuming that it is possible to simultane-
ously utilize both memory systems fully the expected performance in GFLOP/s
is given by P (m) = min

{
BKNL

DDR · AIDDR(m), BKNL
MCDRAM · AIMCDRAM(m)

}
. The

peak performance predicted by this model (the curve) and measured data points
(the dots) for m = 1, 4, 8 are shown in Fig. 3. In this model the data movement on
DDR is inversely proportional to the m since we reduce the number of times the
full matrix must be read by m. However, the data movement on the MCDRAM
is nearly constant as the same amount of matrix vector products must be com-
puted. At low values of m the DDR bandwidth is the limiting factor, but as more
traffic is shifted to MCDRAM it becomes the limiting factor, where the crossover
point is defined by the ratio of data movement on each set of controllers in the
kernel.

On Haswell and KNL machines we find m = 8 simultaneous vectors to be
the most efficient given constraints on memory capacity and bandwidth. Analysis
suggests that further improvements in performance for m > 8 are not likely on
KNL given the ratio of available DRR and MCDRAM bandwidth. In the case
of m = 8 we achieve a 1.6× increase in performance over a dual socket Haswell
node with a single KNL. We also find that increasing m from 1 to 8 increases
performance by 6.4× on KNL and 2.9× on Haswell. For completeness we also
include timing data from a KNL configured in quadrant+cache mode in Fig. 2.
We omit detailed analysis as this mode consistently has lower performance than
explicitly managing the memory and reduces the total addressable memory of a
node. The SNC modes were not analyzed due to the memory overhead associated
with additional MPI ranks, lower efficiency, and complications of allocating the
large vectors across NUMA domains.
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4 Optimization of Matrix Construction

In MFDn, there are four steps in the construction phase:

1. Count nonzero tiles in the Hamiltonian;
2. Construct the nonzero tile structure (roughly speaking, block structure);
3. Count nonzero matrix elements in each tile;
4. Construct the Hamiltonian in CSB Coo format.

The first three steps in this matrix construction phase involves only integer
arithmetic, such as bit manipulation and integer comparison; the actual con-
struction (step 4) involves both integer arithmetic and floating point operations.
The matrix construction phase is naturally parallelizable, and is performed with-
out any MPI communication (even for a production run). However, efficient
implementation of the construction phase is challenging due to conditionals and
use of lookup tables with indirect indexing. The matrix construction phase is
not bound by memory bandwidth and is primarily sensitive to integer compute
performance and random indirect access to lookup tables. In our tests cache
mode had no benefit for the construction. In the following we discuss several
optimization techniques we have applied to the matrix construction phase.

Typical Loop Structure. The (i, j)th entry of the many-body Hamiltonian with
a d-body interaction, H(i, j) = 〈Φi|H|Φj〉, is nonzero only when the many-body
basis states Φi and Φj differ by at most d single particle states. A typical loop
structure in the matrix construction phase (steps 3–4) is shown in Fig. 4.

Fig. 4. A typical loop structure in the matrix construction phase (steps 3–4).

In MFDn a many-body basis state Φi can be represented by a sequence of
integers, denoted by BIN(Φi). Each binary bit of BIN(Φi) indicates whether a
single particle state is occupied (each single particle state can either be occupied
or not occupied). Information regarding all differently-occupied single particle
states between Φi and Φj is encoded by BIN(Φi)⊕ BIN(Φj), where ⊕ denotes the
bitwise exclusive or operation. The number of differently-occupied single particle
states is then obtained by counting the number of 1’s in BIN(Φi)⊕ BIN(Φj), i. e.,
the popcount of BIN(Φi)⊕ BIN(Φj). In the 3rd line of the loop above, we only
compute the popcount of the first integer of BIN(Φi)⊕ BIN(Φj), representing
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Fig. 5. Timings on B0 KNL for the four matrix construction phases.

the lowest 32 single particle states, to quickly identify most of the zero entries.
The 4th and 5th lines of the loop are more complicated, and are accomplished
by subroutine calls.

Promoting 32-bit Integers to 64-bit. The first optimization we made is to use
64-bit integers to encode BIN(Φi) instead of 32-bit integers. Consequently, com-
puting the popcount of the first integer of BIN(Φi) now checks the lowest 64
single particle states. Compared to the original 32-bit version, the 64-bit version
quickly identifies more zero entries and reduces the subsequent calls to expensive
subroutines (4th line in Fig. 4), while the additional cost in popcount is negligi-
ble. Such a change leads to about 15 % improvement in the first three steps in
the construction phase; see Fig. 5.

Loop Unrolling. To optimize the loop in Fig. 4 we manually unroll the inner
loop, for instance, by a step size 16.1 Then lines 3–5 in the loop becomes three
independent loops of size 16, as shown in Fig. 6.

The first innermost loop (lines 3–5) in Fig. 6 can potentially be vectorized.
The subroutine calls in lines 7 and 10 can also be adjusted so that the subroutines
accepts arrays of inputs and outputs. By doing so increases data reuse, and allows
the compiler to generate vectorized instructions.

Vectorizing Popcount. Unfortunately, the Fortran intrinsic popcnt does not vec-
torize, preventing any loop involving popcnt from being vectorized. This is due
the hardware instruction only operating on integer registers. To bypass this
obstacle, we replace popcnt by a hand coded popcount implementation. A simple
implementation of popcount shown in Fig. 7 already vectorizes. Another imple-
mentation shown in Fig. 8 also vectorizes and is in general faster than that in
Fig. 7 by a small margin. Table 3 shows timing results of step 3 in the construc-
tion phase on KNL.

1 The optimal choice of this number is certainly architecture dependent.
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Fig. 6. Unroll the inner loop in Fig. 4 by a step size 16.

Fig. 7. A simple implementation of popcount for 64-bit integers.

Fig. 8. An optimized implementation of popcount for 64-bit integers.

Table 3. Timings (sec) for different versions of popcount.

ifort v. 16.0.2 ifort v. 17 beta

Fortran intrinsic popcnt 34.05 34.01

popcount in Fig. 7 34.26 103.43

popcount in Fig. 8 33.90 32.46
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Fig. 9. An implementation of detailed state comparison using SSE 4.2 intrinsics.

State Comparison with SSE 4.2 Intrinsics. In MFDn, in addition to the bit
representation, there is also an index-based representation of the occupied single
particle states in Φi. This representation is used in the detailed tests for the states
(4th line Fig. 4). The detailed test counts the number of differently occupied
states, or the symmetric difference of the two sets of indices describing which
states are occupied. Depending on the number of different states occupied and
the n-body interactions a quantum selection rule is then applied.

On machines which support the SSE 4.2 instruction set the cmpistrm intrin-
sic function can be used to perform an all-to-all comparison of eight 16-bit inte-
gers in a single instruction. In this function a and b are m128i and can hold
eight 16-bit integers. By appropriately setting the control bits with mode the
result will be a bit mask which is 1 if the element in that position in a does
not have a matching value in b. The count of differences is obtained by extract-
ing the relevant part of the resulting mask and calculating the popcount. Our
implementation is shown in Fig. 9. In our test case the number of occupied sin-
gle particle states is 8 which perfectly matches the register size. For cases with
less than 8 one can pad the integer representation with zeros. Additional logic
is required for cases with more than 8 occupied states, but the generalization
is straightforward. Unfortunately there are not corresponding AVX-512 instruc-
tions, but techniques based on rotations, shuffles and comparisons are interesting
possibilities for future work.

The efficiency of the SSE 4.2 approach is shown in Fig. 10. For comparison
we show the timings for the 32-bit and 64-bit popcount tests (using the machine
instructions) followed by the original scalar detailed comparison test. In addition
we include the timing for when only the detailed comparisons were done. The
SSE 4.2 approach demonstrates very promising efficiency over the popcount ones,
though completely skipping quick tests does not seem wise. This suggests that
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Fig. 10. Timings for the 3rd matrix construction phases where the number of nonzero
matrix elements are counted. Timings taken with 256 threads on B0 KNL with 64 cores
in quadrant+flat mode and on 2 Haswell sockets with 16 threads each.

a well-tuned implementation on the target architecture should identify a good
balance between quick tests and detailed comparisons.

5 Conclusion and Outlook

We found that improved data reuse and vectorization were essential for improv-
ing the performance of MFDn on KNL over Haswell. Especially in the SpMM
kernel where we achieved a 1.6× speedup over Haswell by operating on m = 8
simultaneously. In this kernel we also show that by utilizing directives and the
memkind library effective use of both DDR and MCDRAM memories can be
achieved at the same time, along with the importance of balancing the load on
each memory system. Our optimizations for the matrix construction benefit both
Haswell and KNL architectures, by reducing branching and enabling use of vector
registers. OpenMP 4 directives we used to implement vectorized popcount func-
tions and simd intrinsic functions are shown to provide excellent performance
in detailed comparisons of quantum many-body states. Future efforts to explore
the application of AVX-512 instructions in the matrix construction phases will
prove key in obtaining further improvements in the matrix construction phases
of MFDn.
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Abstract. In geophysical-imaging, medium properties can be studied
by performing scattering experiments using electromagnetic or seis-
mic waves. Quantities such as densities, elasticities, stress etc. can be
obtained from fitting the observed measurements to the results predicted
by a simulation. The EMGeo software performs these simulations and
solves the inverse scattering problem in the Laplace-Fourier domain. In
this paper, we focus on the Seismic part and forward step of the inverse
scattering problem, which involves inverting a large sparse matrix. For
this purpose, EMGeo uses an Induced Dimensional Reduction (IDR)
Krylov subspace solver. The Sparse Matrix Vector (SpMV) product is
responsible for more than half of the total runtime. We demonstrate how
we use spatial and multiple Right Hand Side (RHS) blocking cache opti-
mizations to increase arithmetic intensity and thus the performance, as
SpMV product is memory bandwidth-bound. Our optimizations achieve
5.0× and 4.8× speedup in the SpMV product in Haswell and KNL proces-
sors, respectively. We also achieve 1.8× and 3.3× speedup in the overall
IDR solver in Haswell and KNL processors, respectively. We also give an
outlook over possible future optimizations.

Keywords: Intel knights landing optimization · Matrix vector product
optimization · IDR Krylov solver optimization · Multiple right-hand side
blocking · Spatial blocking

1 Introduction

Problem Description: EMGeo is a seismic tomography software which infers the
composition of the ground using electromagnetic (EM) and seismic scattering
information. It is a 3D full waveform inversion scheme for elastic wave propaga-
tion in the Fourier domain. The EM and seismic parts are very similar as the
system has the same number of unknowns. However, the latter is more involved
as the propagating waves have longitudinal as well as transversal polarized com-
ponents which are tightly coupled through properties of the medium. In this pre-
sentation, we are going to present improvements for the seismic problem in the
c© Springer International Publishing AG 2016
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forward step of the computation. This step requires solving large-scale implicit
linear systems in the frequency domain. EMGeo mitigates that by avoiding per-
forming a brute-force forward inversion of the transfer matrix which describes
the medium, but instead inverting on a set of representative vectors using Krylov
iterative solvers. The workflow is as follows: the general objective of EMGeo is
to minimize the cost functional

φ(m) =
1
2

∑

sk

∑

q

∥∥E
[
dobs

q (sk) − dsim
q (m, sk)

]∥∥2
+

λ

2
‖Wm‖2 . (1)

Here, dobs
q (sk),dsim

q (m, sk) are observed and predicted signals at position q, W
a regularization matrix, λ a Lagrange parameter to avoid overfitting, E is a
(diagonal) error matrix which includes uncertainties in the measured data and
m are the model parameters. Furthermore, sk denotes a ‘frequency’ along with
a dampening term, i.e. sk = σk + i ωk, used in the Laplace transformation of the
time-dependent fields dobs

q (t). The expensive part in expression (1) is the compu-
tation of the simulated response, i.e. dsim

q (m, sk). It is obtained by interpolating
the velocity field v of the seismic waves propagating through the medium, i.e.
dsim

q (m, sk) = Ĝvq(m, sk). The velocities are in turn computed by solving a
sparse linear system which can be discretized with finite differences (FD) on a
staggered grid (c.f. [8,9] for more details):

[
1 − 〈b〉Dτ · (〈kμ〉 ◦ Dv)

]
vq = fq, (2)

where ◦ denotes the Hadamard product, 〈kμ〉 and 〈b〉 are block matrices of
averaged elastic parameters which describe the medium and Dτ ,Dv are block-
matrices of FD operators. Furthermore, vq is the velocity vector of interest and
fq the source vector in the Laplace-Fourier domain. Both (super-)vectors are in
structure-of-array form, i.e. g = (gx,gy,gz)T for g = v or g = f respectively.
The components gi contain all i-components of the respective field for all grid
points in x, y, z-major order.
The matrices in (2) can then be written as follows [9]:

Dτ =

⎛

⎝
D̃x Dy Dz D̃x 0 D̃x

D̃y Dx 0 D̃y Dz D̃y

D̃z 0 Dx D̃z Dy D̃z

⎞

⎠
T

; Dv =

⎛

⎝
Dx D̃y D̃z 0 0 0
0 D̃x 0 Dy D̃z 0
0 0 D̃x 0 D̃y Dz

⎞

⎠. (3)

Here, Di and D̃i denote FD operators for direction i. In the following, we will
denote 〈b〉Dτ by Dτ and 〈kμ〉 ◦Dv) by Dv. This is just for brevity as multiplying
the medium dependent factors do not change the sparsity pattern of these matrices
as long as they are not zero (which is usually true). Figure 1 depicts the sparsity
pattern of these two matrices, where N is the number of total grid points.

Challenges: There are two challenging aspect in this calculations. First, the SpMV
product in (2) needs to be optimized, as it amounts to two thirds of the time spent
in the linear solver. However, SpMV operation is notoriously memory bandwidth-
bound as its arithmetic intensity is low. In Sect. 2, we explain how we address this
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Fig. 1. The sparsity pattern of Dv and Dτ matrices

issue with cache blocking. Second, global reductions and halo exchanges need to
be optimized in order to improve strong scaling of our code. This can in part be
done by solving (2) for multiple right hand sides and overlapping communication
and computation in a clever way, which is left for future work.

Hardware: We use two systems for our performance measurements. The first one
is the HPC system Cori Phase I at NERSC, which features 1630 nodes with
128GiB DDR memory, Cray Aries interconnect and two Xeon R© E5 CPUs per
node. The Intel Xeon R© E5, also termed Haswell, micro-architecture is a 22 nm
fabric with support for AVX2. The NERSC Cori Phase I system uses revision
E5-2698, which is comprised of 16 physical cores which can host up to 2 threads
per core. It achieves 2.3GHz in sustained and 3.6GHz in turbo mode. It is fur-
ther equipped with 3 cache levels, where L1 and L2 caches are of size 64 kiB
and 256 kiB respectively. The L3 cache is shared between all cores on a physi-
cal CPU and of 40MiB in size. The theoretical peak DDR memory bandwidth
of this architecture is 68GB/s per socket. The sockets are connected via Intel
Quickpath Interconnect R© with 9.6GT/s, which translates to an effective mem-
ory bandwidth of ∼19.6GB/s.

The second system we are considering is the new Intel Knights Landing
(KNL) CPU, which is a second generation processor from the Intel Xeon Phi R©
family. We are using B0 stepping in revision 7210, which features 64 improved
Silvermont R© cores with 1.3GHz clock rate, improved out-of-order processing
as well as up to four hyperthreads per core. The cores are connected in a two-
dimensional mesh of tiles, where each tile is comprised of two cores with 1MiB
L2 cache and two AVX512-enabled vector units each. Furthermore, KNL fea-
tures 16GiB MCDRAM, which is a high-bandwidth on-package memory with
transfer-rates of up to 430GB/s. The additional DDR memory, of which there
are 96GB in our setup, can be accessed at about 90GB/s. The KNL processor
mesh as well as the memory can be configured in different ways: the processor
can be partitioned into 1, 2 or 4 partitions referred to as Quadrant, SNC2 and
SNC4 mode respectively. The SNC2 and SNC4 abbreviations stand for sub-
NUMA clustering and allow for fine-grained control over thread binding and
thus possibly to a mitigation of memory access latency. The different memory
configuration options are referred to as Cache, flat and hybrid. In Cache mode,
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MCDRAM acts as a huge L3 cache and thus cannot be addressed manually by
the user. In the flat model case, MCDRAM and DDR work side by side and the
user has to manually allocate memory in either one. The hybrid mode allows for
mixing the first two options, i.e. by assigning 50 % or 75 % of the MCDRAM to
work as DDR cache, and the remaining fractions can be addressed manually by
the user.

2 Approach

We apply techniques to reduce the memory traffic and increase the in-cache data
reuse in the SpMV product of EMGeo code. We replace the ELLPack sparse
matrix format, which is used in EMGeo code, with Sliced ELLPack (SELLPack)
format to reduce the FLOPS and memory transfers. We also apply cache blocking
techniques to increase the SpMV product operation Arithmetic Intensity (AI).
Namely, we use Spatial Blocking (SB) and multiple Right Hand Side (mRHS)
cache blocking.

EMGeo uses ELLPack data format because the maximum number of Non-
Zero (NNZ) elements in each row is 12. ELLPack allocates a rectangular matrix,
setting the width to the largest row width and pads smaller rows with zeroes.
Most of the rows in Dτ matrix contain 12 NNZ/row, so the padding overhead of
the rows is minimal. However, half of the rows in Dv matrix contain 8 NNZ/row,
so we use the SELLPack format proposed in [6]. SELLPack format allows defining
different number of NNZ/row in different sections of the same matrix. We reorder
Dv matrix, as shown in Fig. 2a, to have 12 NNZ/row in the first half of the matrix
and 8 NNZ/row in the second half of the matrix. The reordering does not impact
the performance, as the code performs it once. This effectively saves 17 % of Dv

SpMV product operations.
We apply SB techniques [1,4] to reduce the main memory data traffic of the

multiplied vector. In the regular update order of the SpMV product, the elements
of the multiplied vector are accessed several times. As the vectors are larger than
the cache memory, the vector elements are brought from main memory several
times. SB changes the operation order in the matrix, such that blocks of matrix
rows touching the same vector elements are updated together, while these vector
elements are in the cache memory. This idea is illustrated in Fig. 2b. First the
SpMV product of the dark red rows of the matrix is performed, while keeping
the dark red part of the vector in the cache memory. Then the bright blue part
is updated similarly, etc. As long as the block size fits in the cache memory, each
element of the vector is brought once from the main memory. We show in Sect. 3
that combining SB and mRHS blocking can be inefficient in KNL due to the small
cache memory size. Therefore, we reorder the loop over the Matrix components
(i.e., row blocks of size N) with the loop over the rows of one component, which
effectively reduces the SB block size to one row. As a result, the first row of each
matrix component is evaluated first, then the next row, etc.

EMGeo solves Eq. (2) for multiple independent sources (RHS). In the RHS
cache blocking approach we perform the SpMV product over several RHS’s while
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Fig. 2. Showing the reordered Dv matrix for SELLPack format in (a). Also, showing
spatial (b) and RHS blocking (c) update order (Color figure online)

a block of the matrix is in the cache memory, which is relevant to [2,3]. RHS
blocking amortizes the cost of loading the matrix from main memory, which is
the dominant contributor of the main memory data traffic. We use row-major
ordering in the RHS matrix to provide contiguous and vectorization-friendly data
access pattern. The RHS blocking update order, combined with SB, is illustrated
in Fig. 2c. First, each dark red block of the matrix performs the SpMV product
over all the RHS, while the block is in the cache memory, then the bright blue
blocks are updated, etc.

3 Analysis and Modeling SpMV Product Optimization

We analyze the FLOPS and memory data transfer requirement of the base case
(i.e., the unoptimized code) and our improvements. Modeling the performance
provides bounds of the expected performance improvement. We use the cache
block size model to reduce the cache block size tuning parameter search space.
In the following, we analyze the matrix and vector requirements separately then
combine the total requirements together to estimate the AI of different setups.

Matrix data transfer and FLOPS requirement : The matrix is loaded once from
main memory per SpMV product. Each element of the matrix requires loading
16 Bytes for the double complex number and 4 Bytes for the index. Moreover,
the SpMV product requires 6 FLOPS to perform each complex number multipli-
cation as well as twice the matrix bandwidth minus one FLOPS per matrix row
for the reduction. Table 1.a. summarizes the total FLOPS and bytes requirement
of Dv and Dτ . We notice that SELLPack format saves 20 % and 21 % in the data
and the FLOPS compared to ELLPack data format, respectively.

Vectors data transfer requirement : In the “näıve” SpMV product update order,
the vectors are loaded multiple times from main memory because they cannot fit
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Table 1. Improvements of Dv and Dt (a,b) and their combined effects (c). N is the
number of total grid points

in the cache memory. Each nonzero N×N block of the matrix, requires loading
N numbers of the multiplied vector. Hence, Dv SpMV product requires loading
15 N numbers (loading the multiplied vector 5 times) and Dτ SpMV product
requires loading 9 N numbers (loading the multiplied vector 1.5 times). SB can
ideally load the multiplied vector once during the SpMV product by reusing
each vector element completely while in the cache memory. The results vector
requires two data transfers per number between the cache and the main memory,
assuming no streaming stores operations. In Table 1.b, we show the vectors data
transfer model of Dv and Dτ SpMV products using the näıve and SB approaches.
The total data transfer requirement of the vectors is insignificant compared to
the matrices in the SpMV products. However, the vector data transfer becomes
significant in the RHS cache blocking optimization.

Total data transfer and arithmetic intensity: We show the AI model, the total
FLOPS, and data transfer requirement of the SpMV product in Table 1.c, when
using SELLPack format and SB techniques. Although the SELLPack optimiza-
tion does not improve the AI, it reduces the total FLOPS and data transfer,
thus it improves the performance. We use the data transfer reduction factor as
an indication to the performance improvements, as the SpMV product is mem-
ory bound. We model the RHS blocking improvements factor by considering the
memory data transfer reduction as the ratio in the following equation:

Improvement factor =
MRHS × (Mb + Vb)
Mb + Vb × MRHS

(4)
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Fig. 3. Spatial and RHS blocking estimated data transfer improvement factor, as cal-
culated in Eq. (4)

where MRHS is the number of blocked RHS, Mb and Vb are the required matrix
and vector main memory loads, respectively. Here we divide the required data
transfer of separate SpMV products by the required data transfer of loading
the matrix once with MRHS vectors. In Fig. 3, we show the model data transfer
improvement factor of the RHS blocking with SELLPack and SB, using the näıve
implementation as the baseline. We observe significant improvement by the RHS
blocking compared to other techniques, as it amortizes the matrix data transfer,
which is the significant part. As the RHS block size increases we notice less
improvement, for example, from 32 to 64 RHS.

3.1 Cache Block Size Model

Increasing the RHS block size reduces the number of matrix rows that fit in the
cache memory. We construct a cache block size model to estimate the number
of rows that fit in the cache memory from the parameters setup. The number of
rows that fit in a given Cache memory is

C

/(
Ve

row
× MRHS × 16 + 2 × NNZ

row
× (16 + 4)

)
(5)

where C is the cache memory block size in bytes. Ve/row is the number of
loaded vector elements per matrix row, for example, Ve/row = 4 in Dv SpMV
product, as we need to store one element of the result vector and read three
elements of the multiplied vector. We show examples of the expected block size
of various RHS block sizes and relevant cache sizes for the Dv and Dτ SpMV
products in Fig. 4. Each core in Haswell has 2.5 MiB L3 cache memory per core.
We use the rule-of-thumb that half of this value is usable for blocking [5,10], i.e.,
1.25 MiB. Similarly we consider that KNL has 128 kiB L2 cache per thread when
using two-threads per core. We observe that the block size decreases significantly
in KNL when the RHS block is >16, which results in a significant control flow
overhead. Therefore, we replace the SB with loop reordering in KNL to reduce
the cache block size requirements.
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Fig. 4. RHS cache block size model at various setups. The legend refers to matrix–
“cache memory size”.

4 Performance Results

We study the impact of the Dv SpMV product optimization techniques in a
separate benchmark to understand their characteristics. We also observe the
impact of our OpenMP parallelization of the code and using our SpMV product
optimization techniques in the EMGeo application.

4.1 SpMV Product Benchmark

We use a benchmark code for the Dv SpMV product in the EMGeo application,
as the SpMV products consume significant portion of the code runtime, as we
show in Sect. 4.2. Table 2 shows the performance improvements and the trans-
ferred memory volumes improvements model prediction and measurement, using
different optimization combinations. We show results for a single socket Haswell
and KNL processors, using a grid of size 110 × 110 × 105. The results in the last
row in Table 2 use SB and loop reordering in Haswell and KNL, respectively,
in addition to the SELL and mRHS optimizations. We do not use SB in KNL
optimizations because it results in less performance than the näıve code. In the
RHS blocking optimization, we use 32 and 64 RHS block size in Haswell and
KNL, respectively. The SpMV operation is repeated 100 times, where every 10
repetitions are timed together. We report the median time of the experiments.

KNL results are reported in SNC2-flat mode using MCDRAM only, as the
data fits in the MCDRAM in the production code. We observe similar perfor-
mance in all KNL modes. Using the MCDRAM memory, compared to using
the DDR4, increases the performance in KNL by a factor of 3.0× and 4.2× in
the näıve and optimized codes, respectively. KNL is faster than a single socket
Haswell processor by over a factor of 3×, which is mainly attributed to the higher
memory bandwidth.

We make several observations regarding the transferred memory volume
improvement model and measurements in Table 2. The measurements are closer
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Table 2. Dv SpMV product benchmark measurements and model of different opti-
mizations in shared memory. “Best” in the last row refers to SB and loop reordering
in Haswell and KNL, respectively

Processor Haswell (1 socket) KNL KNL/

Perf. Mem vol. improv. Perf. Mem vol. improv. Haswell

Approach Speedup Measured Model Speedup Measured Model Speedup

Näıve - - - - - - 3.71

SELL 1.05 1.06 1.15 1.19 1.09 1.15 4.20

SB 1.05 1.11 1.11 0.88 1.06 1.11 3.08

SELL+SB 1.26 1.28 1.30 1.13 1.23 1.30 3.33

Best+SELL+mRHS 4.97 5.36 6.75 4.79 3.50 7.20 3.58

Fig. 5. The roofline results of different optimization techniques over the Dv SpMV
product benchmark

to the model in Haswell, especially the “SB” and “SELL+SB” results, which
may be attributed to its larger cache memory per core. The optimizations in the
last row result in large gap between the memory measurements and model. We
observed that the gap increases as we use larger RHS block size. Consequently,
the KNL result has larger gap as it uses double the RHS block size.

The roofline analysis [12–14] of the Dv benchmark results is shown in Fig. 5,
where we used the techniques described in [7] and using Intel Software Develop-
ment Emulator [11] to prepare these results. The roofline model shows that our
RHS blocking technique significantly improves the AI. The code is still memory
bandwidth-bound, so it cannot benefit from vectorization optimizations.

4.2 EMGeo Performace

We measure the time in the major components of EMGeo code. The time is
mainly dominated by the IDR solve, which is in turn is dominated by the SpMV
products and the MPI communication. Our experiments consist of single Cori
node, single KNL processor, and 16 Cori nodes results.
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Table 3. Single node (a) and multi-node performance (b) of EMGeo code. Note that
SpMV product and communication time are parts of the IDR solve time

We summarize the single node results in Table 3.a. The experiment evalu-
ates 32 RHS with 500 Krylov solver iterations, using a 100 × 50 × 50 grid size,
which is comparable to the subdomain size in productions scenarios. The original
code does not have shared memory parallelization, so it uses one MPI rank per
core. The optimized code uses 32 RHS block size and uses single MPI rank per
socket in Haswell experiment. We observe that the SpMV product takes over half
of the runtime in the original IDR solver implementation. Our SpMV product
optimizations result a speedup of 3.7× in Haswell and 4.1× in KNL, which is
different than Dv SpMV product improvements in the benchmark. In addition
to the difference in the grid size, Dτ SpMV product has less benefit from our
optimization because it does not utilize the SELLPack format. Moreover, sev-
eral SpMV product kernels in the application are fused with other kernels to
improve the data locality. The reduction in the MPI ranks by a factor of 16×
has significant impact in speeding up the code, as less ranks are involved in the
reductions and halo exchange operations.

We show results for KNL in Quad flat mode, as we obtain the same perfor-
mance in the other modes. The whole application data fits in the MCDRAM
memory, so we run the code using the MCDRAM only. The best performance
in KNL is observed at two threads per core. We tuned the MPI ranks vs. the
OpenMP threads manually in the optimized code. We observe 3.3× speedup
in the code, where the SpMV and communication operations run about 4.1×
and 3.8× faster, respectively. Using the MCDRAM memory, compared to using
the DDR4 only, increases the performance in KNL by a factor of 4.2× in the
optimized code.
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We summarize the results of a 16 Cori nodes experiment in Table 3.b. The
experiment evaluates 32 RHS with 2500 Krylov solver iterations limit, using a
grid of size 1003. The SpMV product optimizations result in less improvement in
this code, mostly, because smaller subdomains are evaluated in shared memory.
The MPI communication consumes about half the runtime due to the increased
surface-to-volume ratio of the subdomains. Again, by reducing the number of
MPI processes by a factor of 16×, our optimized version achieves about 3.4×
speedup in the communication time. We discuss further ideas to handle this issue
in the future work section.

5 Conclusion and Outlook

In this paper, we present optimization techniques in Intel Haswell and KNL
processors for EMGeo software. In particular, we optimize the SpMV product
in the IDR Krylov solver part, where most of the application time is spent. We
obtain performance improvements by reducing the data traffic to the main mem-
ory in the SpMV products and reducing the MPI communication time by using
hybrid MPI+OpenMP parallelization. We use SB, SELLPack sparse matrix for-
mat, and most importantly a RHS cache blocking technique. We deploy per-
formance modeling to identify relevant optimizations and to understand the
optimization quality and issues.

Our optimizations improved the performance of the Dv SpMV product by a
factor of 5.0× in Haswell and 4.8× in KNL. We improve the performance of the
forward step of EMGeo application by incorporating our SpMV optimizations
and using OpenMP parallelization. As a result, The application runs 1.8× and
3.3× faster in Haswell and KNL, respectively.

In general, KNL achieves better performance than Haswell due to the higher
available memory bandwidth. SB did not improve the KNL performance, but
we gained the desired improvement by reordering the loops to access the matrix
rows in an array-of-structures pattern.

RHS blocking provides significant performance improvements and prepares
the code to use block IDR algorithm and overlap computations with communi-
cation in the solver. We plan to implement and validate the Block IDR method,
which is expected to significantly reduce the required iteration count to conver-
gence. We also plan to overlap the computations and communication of inde-
pendent RHS to obtain better strong scaling performance.
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Abstract. There is a significant interest in the computational physics
community to perform lattice quantum chromodynamics (LQCD) sim-
ulations, which can run into the trillions of operations. LQCD com-
putations solve a sparse linear system using a Wilson Dslash kernel,
which has an arithmetic intensity of 0.88–2.29. This makes Dslash mem-
ory bandwidth-bound on most architectures, including Intel Xeon Phi
Knights Corner (KNC). Most research optimizing the Dslash operator
has been focused on single right-hand side (SRHS) linear solvers. There is
a class of LQCD computations which aims to solve systems with multiple
right-hand sides (MRHS), presenting additional opportunities for data
reuse and vectorization. We present two approaches to MRHS Dslash:
a vector register blocking approach and one using the software package
QPhiX with a custom code generator for low-level intrinsics. We observed
significant speedups using our approaches, with sustained performance of
over 700 GFLOPS (single precision) in one instance. We achieved up to
29% of theoretical peak performance compared to a maximum of 13%
obtained by the previous SRHS method using QPhiX.

Keywords: LQCD · Optimization · Performance · Wilson-Dslash ·
Code generator · Parallel programming · Vectorization · Xeon Phi
Knights Corner

1 Introduction

Lattice quantum chromodynamics (LQCD) is a uniquely important computa-
tional technique for the simulation of the strong nuclear force, which governs
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quark and gluon interaction in the nucleon. LQCD is to date the only non-
perturbative, model-independent, quantum field theory in use for the calcula-
tion of quark-gluon interactions. LQCD simulations are thus needed for areas of
research at the frontiers of physics, including understanding of the allowed states
and structure of hadronic and nuclear matter. To facilitate numerical compu-
tation, LQCD discretizes space-time as a 4-dimensional hypercubic lattice. To
simulate larger lattices with shorter lattice spacing, ever-increasing computing
power is required. The computational core of LQCD with Wilson fermions is the
Wilson Dslash operator (henceforth Dslash), a nearest neighbor stencil operator
summing matrix-vector multiplications over lattice points, whose performance
is bandwidth-bound on most architectures [7]. Reportedly, up to 90 % of LQCD
running time may be spent applying Dslash [6]. Clearly, optimization of Dslash
is paramount in the performance of LQCD simulations.

We approach the optimization of Dslash by designing two different ker-
nels for Intel Xeon Phi Knights Corner (KNC). Significant research has been
devoted to exploring KNC’s potential to drive LQCD simulations [5,7,8,10,14].
The bulk of this research in the area of Dslash has involved single right-hand
side (SRHS) solvers, though [10,12] use multiple right-hand sides (MRHS). We
describe Dslash kernels applied to MRHS in parallel on a single node. For our
approaches, we have written kernels which use 8 and 16 right-hand sides (RHS).
The intuition behind a MRHS approach is that each RHS can make use of the
same gauge field configuration (see Sect. 2.1), which can increase the arithmetic
intensity of the Dslash operator from 0.92 (SRHS) to 1.47 (16 RHS) in an oth-
erwise unoptimized scenario.

In the first of our two approaches, we hand code a kernel using KNC vector
intrinsics (see Sect. 2.2) which uses a register blocking (RegBlk) technique to
minimize the pressure register spills would put on the L1 cache. We reduce reg-
ister pressure by specifying a certain order to the matrix-vector multiplications
and by holding accumulated sums in vector registers. This is straightforward in
a kernel with 8 RHS, but requires some tricks to eliminate spills in a 16 RHS ker-
nel, due to the limited number of vector registers. We also explain our approach
to vectorization for KNC’s powerful vector processing unit (VPU). In contrast
to RegBlk, vectorization is simple for 16 RHS and challenging for 8 RHS.

Our second approach optimizes a kernel using the QPhiX LQCD framework
[4] and its custom code generator [3], which generates SIMD intrinsics for mod-
ern architectures. The goal of QPhiX is to provide a high level module which
handles threading, cache-blocking, and MPI communication and a module which
provides an abstraction into which the code generator can plug SIMD intrinsics
for various architectures. QPhiX and its code generator also provide multiple
configurations (blocking, vector length, precision) and approaches to vectoriza-
tion. We modified the code generator to provide a new configuration option for
16 RHS and to support prefetching on KNC. We also modified QPhiX to sup-
port MRHS (for example, a new memory layout is necessary) and our own site
traversal strategies (see Sect. 6). To implement 8 RHS, we modified the 16 RHS
code produced by the code generator.
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The remainder of this paper is structured as follows. In Sect. 2 we describe
the Dslash operator at a high level as well as the target hardware, KNC. In
Sect. 3 we detail our RegBlk implementations. In Sect. 4 we describe the QPhiX
and code generator (QPhiX-CoGen) approach. Finally, we discuss our results
and compare them to a SRHS QPhiX-CoGen kernel.

2 Background

2.1 Dslash

LQCD’s Dslash operator is applied over a finite space-time discretized as a 4-
dimensional hypercubic lattice. One may imagine the lattice as a set of linked
points. In LQCD, quark fields are represented by lattice points and gluon fields
by the links. The lattice has some length in a direction μ ∈ {x, y, z, t}, Lµ. The
number of sites on a lattice is given by V OL = Lx × Ly × Lz × Lt. Each site
(with coordinates <x, y, z, t>) has 2 neighbors for each direction, forward and
backward, which correspond to the positive and negative directions on that axis.
For neighbor site determination, the lattice has periodic boundary conditions.

We can think of Ψ and U as the input to Dslash. Ψ defines ψ for every site,
a 4 × 3 matrix of complex numbers called a spinor. U defines U for every site, a
3×3 matrix of complex numbers called a gauge field or gauge matrix. Since U are
members of the group SU(3), they can be stored in several representations. A
particular trick is to store only two rows of a 3×3 unitary matrix representation,
and to reconstruct the 3rd row by appealing to unitarity (i.e. that det(U) = 1)
from the complex conjugate of the vector product of the first two rows.

Dslash computes χ for all of the even or odd (based on sum of coordinates)
sites on the lattice. χ is also a spinor of the same dimensions as ψ, and in a full
solver will be used as the input to another iteration of the computation.

We can employ a spin projection trick, reducing ψ ∈ C
4×3 to ψ′ ∈ C

2×3,
which increases the arithmetic intensity of the operator. Applying Dslash to a
site will calculate χ by summing Uψ′ for each neighbor of the site in question
into what we’ll call χu, the upper sum. Simultaneously, the lower sum χl will be
computed as a permutation of the result of Uψ′ for each neighbor. These two
sums together form χ. For more information about Dslash, please see [9].

2.2 Intel Xeon Phi Knights Corner

Knights Corner is a line of many-core PCIe coprocessor cards in the Intel Xeon
Phi family. KNC cards are massively parallel chips with high memory bandwidth
suited for scientific computing applications. They feature up to 61 cores running
at up to 1.238 GHz. A key feature of KNC is its VPU. KNC boasts 512-bit
vector registers, capable of SIMD operations on 16 single precision numbers
simultaneously. Individual cores can support up to 4 hardware threads, each
with a full context of registers, including vector registers, of which there are 32.
Intel provides a set of C-style functions called intrinsics, which act directly on
vector registers in an assembly-like way. For further KNC details, please see [1].
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3 Multiple Right-hand Side Performance Model

The approach of solving for MRHS is an established technique in LQCD research
[10,13]. We create a new operator with lower bandwidth needs than N applica-
tions of the original operator. Application of Dslash to a single site performs 1320
FLOPs. Because we assume the operator is bandwidth-bound [7], we can ana-
lyze the expected speedup for different numbers of right-hand sides if we take the
performance to be equal to: FLOPs

byte × bandwidth. Then, we need only divide the
MRHS FLOPs/byte by the SRHS FLOPs/byte to compute speedup. We begin
by defining variables. N is the number of right hand sides. Let G be the number
of components in a gauge matrix and let F = sizeof(float). In this model, we
will not consider architectural details like cache line size. For each site’s Dslash
computation, we need to load 8GF bytes. Let S be the number of components
in a spinor (24). Let us define a SRHS neighbor spinor reuse factor R1 and sim-
ilarly RN for MRHS. This is the number of neighbor spinors already present in
cache when processed. For each site in SRHS, then, we need to load (8 − R1)
neighbor spinors plus one unavoidable spinor to write the output. In total, this is
SF ((8−R1)+ 1) bytes in spinors. For MRHS, we replace R1 with RN and mul-
tiply the neighbor spinors and FLOPs by N . That gives us MRHS FLOPs/byte
of 1320N

8GF+NSF ((8−RN )+1) and SRHS FLOPs/byte of 1320
8GF+SF ((8−R1)+1) . Then, to

compute speedup, we divide MRHS by SRHS:

speedup =
8NGF + NSF (9 − R1)
8GF + NSF (9 − RN )

Fig. 1. MRHS scaling for values of N and RN .
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To visualize our speedup as values of N and RN vary, we can assume values of
the other variables. We can take R1 to be 7, which is borne out in practice for at
least lattices up to 324, though it requires substantial effort to achieve [14]. Single
precision (F = 4), a spinor size of S = 24, and 12-compression of U meaning
G = 12 (see Sect. 6), yields the graph of speedup versus N shown in Fig. 1. A
separate curve is shown for each value of parameter RN ∈ {0, 1, . . . , 7}, which is
not necessarily restricted to integers. Notice we require RN > 3 to achieve any
speedup, which will limit our performance gains for lattices of medium to large
size, as spinor data scales by N and cache size remains fixed.

4 Register Blocking Approaches

8 RHS. We must compute Uψ′ for a single U and 8 different ψ′. This suggests
a simple vectorization – broadcast a component of U to fill a register then fill
another register with whatever will be multiplied by that component of U . That
will be a row of ψ′. Happily, because there are 2 (real or imaginary) components
in a row of ψ′ and 8 RHS, we can fill a vector register with a row of ψ′ by
treating the real and imaginary components separately. We cannot store rows of
ψ′ in memory directly, however, as they are a projection (see Sect. 2.1) of some
ψ, meaning the components of ψ′ are formed by computing the sum or difference
of two components of ψ. Thus, we must store components of ψ in pairs of 8 (for
each RHS) which interact with other pairs to form a row of the projected ψ′.
With such a layout, we fully vectorize both the projections and the matrix-vector
multiplications.

In the projection of ψ, when row 0 interacts with row 2, row 1 interacts with row
3. For a given μ, real components always interact with real or imaginary compo-
nents and vice versa. All interactions occur intra-column. The direction of μ only
changes signs. Bearing in mind these restrictions and the fact that KNC allows
permutation across 256-bit lanes, it is clear we can pair components by column
and realness, and these pairs and the general data layout are given in Fig. 2.

For 8 RHS, the upper and lower sums occupy 12 vector registers (24 com-
ponents, 2 components per register). The projected matrix occupies 6 registers.
We can project a single component of U at a time, multiplying by the rows of ψ′

Fig. 2. Layout of 8 RHS RegBlk in memory.
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and storing the result in two accumulator registers, one for the real and imagi-
nary components of the row of the result. We then proceed across a row of U ,
computing the dot product of the first row and column of U and ψ′, respectively.
Once a component of Uψ′ has been computed, it can be added directly to the
upper sum and some component of the lower sum. his requires only an additional
3 registers, bringing the total to 21, well short of the limit of 32.

16 RHS. KNC’s vector length is 64 bytes or 16 4-byte floats. This simplifies the
vectorization scheme for 16 RHS. Each component of ψ fills one vector register,
so there is no need to worry about how different components will interact during
projection and multiplication. Thus, all of the difficulties of the 8 RHS scheme
vanish, and we simply place each component of ψ in its own register.

16 RHS register blocking requires a different approach than the one we use
for 8 RHS. We must necessarily keep the upper and lower sums in registers (to
avoid spills) and this requires 24, leaving only 8 for calculations. Since our 8 RHS
algorithm requires loading all projections, that would require 24 + 12 registers
for 16 RHS, so we must use a different approach.

The problem lies in the temporary accumulation of sums. What we can do
to solve this is propagate the sign changes required by the lower sum down
to the lower level multiplies, changing fmadds to fnmadds where appropriate.
Then we no longer require any intermediate accumulation registers. We can add
directly to the upper and lower sums when computing Uψ′. We offer a practical
example to aid in understanding. For each direction, we add to χu

00r (upper sum,
component 00r) the real part of the complex dot product of the first row and
column of U and ψ′, respectively.

χu
00r ← χu

00r + u00rψ
′
00r − u00iψ

′
00i + u01rψ

′
10r − u01iψ

′
10i + u02rψ

′
20r − u02iψ

′
20i

This is straightforward. Let us assume we are computing for the first direction
backward. Then, we subtract the same dot product used to add to χu

00r from 01i
of the lower:

χl
01i ← χl

01i +−(u00rψ
′
00r −u00iψ

′
00i +u01rψ

′
10r −u01iψ

′
10i +u02rψ

′
20r −u02iψ

′
20i)

This is how we go about unrolling the multiplication to eschew intermediate
sums. We simply compute the dot product twice, using fmadd and fnmadd where
appropriate to account for the sign changes. Unrolling allows us to carry out the
computation using only 5 registers (a row of ψ′ and a component of U) in addition
to the sums.

This approach results in approximately 23 % more cycles spent on vector
arithmetic instructions compared to the 8 RHS approach, but these may be
hidden behind load latencies.

5 QPhiX and Code Generator Based Approach

QPhiX and its code generator provide an approach to vectorization over multiple
sites, but no MRHS option. We have modified both QPhiX and its code generator
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to compute the Dslash operator using 16 RHS. To do so, we modified QPhiX’s
memory layout to add an extra dimension for each site, over which we vectorize.
We also customized the threaded loop over sites in order to experiment with our
own site traversal strategies (see Sect. 6).

In typical SRHS Wilson Dslash, vectorization is done over sites. Thus, each
vector register holds multiple sites’ worth of data. The unmodified code generator
generates intrinsics according to this requirement. We have modified the code
generator for our MRHS implementation to generate intrinsics to vectorize our
code on the number of RHS. We also modified the broadcast of elements of U to
only broadcast from a single site’s U . Finally, we modified the code generator to
produce prefetch instructions of gauge field data for the current site and spinor
data for the current and next sites.

For 8 RHS, the approach (pairing, memory layout, etc.) is the same as Reg-
Blk, the only difference is that the code generator based approach lacks register
blocking.

6 Results

Experimental Setup. To optimize our different approaches to Dslash imple-
mentation, we test every combination of the following options: number of RHS
(8/16), lattice size (84/164/244/324), software prefetching (L1/L2/both/none),
thread interleaving (interleaving/default), gauge compression (12/16/default),
and cache-controlling traversal (CCT/default).

We discuss additional optimization experiments in [2]. In total, we experiment
with over 192 different parameter combinations. In this section we will briefly
describe the novel experimental techniques. Please see the referenced thesis for
full details.

Thread interleaving divides a chunk of sites among the threads of a single
core instead of allocating 1

threads−per−core of that chunk of contiguous sites to
a single thread (the default allocation). In the former chunk, threads step over
one another in an interleaved pattern. For example, with 4 threads per core,
thread 0 would process sites 0, 4, etc., thread 1 would process sites 1, 5, and
so on. See Fig. 3. Compression refers to the size of stored gauge matrices, as
mentioned in Sect. 2.1. Cache-controlling traversal (CCT) is a method of lattice
traversal (order sites are processed by threads) that aims to increase the effective
size of L2 by performing controlled evictions using the mm clevict intrinsic. By
traversing slices of the t dimension one a time, we can use controlled evictions
to make room for new data by explicitly evicting data which we know will not
be reused. LRU evictions may result in eviction of data which could be reused
by Dslash. Our t slice traversal makes it possible to perform controlled evictions
in this way.

All kernels were compiled by the Intel C++ compiler version 16.0.0 and run
in native mode on a Xeon Phi 7120P card using 60 cores and 4 threads per core.
All experiments were run in single precision. Unless otherwise noted, results are
given in GFLOPS.



MRHS Dslash for KNC 397

Fig. 3. (a) Default chunking. Threads process their chunks lexicographically. (b) Inter-
leaved traversal. Threads in a core alternate sites in a lexicographical manner. To divide
the sites thusly, take the plane shown to be the entire lattice.

6.1 Optimization Results

We begin by discussing the results of our optimization experiments on our kernel
implementations. For a full treatment of these results for RegBlk, please see [2].

Prefetching. As expected, both L1 and L2 prefetching increase performance in
almost all cases. L1 prefetches increase speeds by roughly 20 %. L2 prefetches
increase speeds by 40–60 % with higher increases for larger lattices. The excep-
tion is that L2 prefetches decrease speed by 15 % in the case of lattices of volume
84 for both 8 and 16 RHS, but only for our RegBlk approach and only when 2
MB memory pages are enabled. At 84, for a given core, all processed sites fit in
L2, eliminating the need for these prefetches. Why there is no such performance
change for QPhiX+CoGen is unknown.

Interleaving. Thread interleaving results show consistency for number of RHS
but are inconsistent across lattice volumes. Results show a strong increase for
84, strong decrease for 164, little change for 244, and strong increase for 324. The
number of RHS does not strongly influence this pattern. Results are amplified
for our RegBlk approach. We hypothesize that interleaving results are sensitive
to the access pattern of site data, which is consistent for a given lattice volume.

Compression. Gauge compression results are as expected. In most cases, com-
pression to 16 numbers gives superior performance due to increased arithmetic
intensity. The reason that 12-compression fails is that backward U are not stored
contiguously. U are associated with the forward links of one site and those matri-
ces are stored contiguously in memory, indexed by the linearized index of the site.
Backward U are loaded as the (Hermitian conjugate of the) forward link of the
backward neighbor. These U are thus stored in 4 noncontiguous locations. Because
12 floats is smaller than the cache line size of KNC (64B), an unused 16B are loaded
for every backward 12-compressed U . This results in the same amount of data
being loaded for 12 and 16 compression, but 12-compression performs extra inte-
ger operations. For very small lattices (8 RHS 84), the default (uncompressed)
option is superior because there is an excess of memory bandwidth.
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Cache-controlling traversal. Explicit evictions were of no use in either app-
roach. However, for our RegBlk kernel, CCT without evictions (essentially the
blocking scheme of [11]) increases speeds for lattices of volumes 244 and 324

for both 8 and 16 RHS. A stronger result is observed for 324. For smaller lat-
tices, the increased number of thread synchronization barriers overshadows any
gains from CCT. We observe a synergistic increase in speed for 324 when also
employing interleaved traversal. CCT combined with interleaving increases speed
by 32 % higher than CCT and interleaving if we consider their effects addi-
tively. This makes intuitive sense when considering that the access pattern for
CCT+interleaving differs from using either alone. Though we observe improve-
ment using CCT for 244, a different combination of results is superior. We do
not observe the synergistic effect of interleaving and CCT for 244, which is con-
sistent with interleaving’s ineffectiveness for 244. Again, in the QPhiX+CoGen
approach, we see a similar pattern of results but they are dampened.

Table 1 shows the (condensed) results of our optimization experiments on our
kernels. For the full results of all 192+ combinations of experimental parameters,
see [2]. The relative difference in performance for 8 RHS versus 16 RHS is what
we would expect due to the higher arithmetic intensity of 16 RHS.

Table 1. Optimization results (GFLOPS). Highest results in bold. Def refers to the
unoptimized base RegBlk or QPhiX+CoGen MRHS implementation. Opt refers to the
highest result achieved using some combination of our optimization techniques.

RegBlk QPhiX+CoGen

8 RHS 16 RHS 8 RHS 16 RHS

VOL Def Opt Def Opt Def Opt Def Opt

84 579 651 640 708 306 343 385 411

164 405 419 463 473 399 440 392 425

244 300 337 326 375 302 346 289 320

324 255 346 235 387 263 301 243 304

We should note here that we performed an additional experiment to verify the
soundness of our 16 RHS RegBlk approach. We compared our unrolled approach
to a modification using accumulator registers in place of extra dot products,
ignoring spills. Our unrolled approach performed some 25 % better or more in
all test cases.

6.2 Results Comparison

RegBlk vs. QPhiX+CoGen. In all cases, the best results are obtained by
our 16 RHS RegBlk approach. For lattices of size 84 and 164, QPhiX+CoGen
16 RHS performs nearly as well as the RegBlk approach, if we discount several
factors. In the RegBlk approach, the OpenMP thread spawn is placed outside
of the iteration loop, but QPhiX+CoGen pays the cost of spawning threads
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Table 2. Comparison of highest results by lattice size, MRHS vs. SRHS (GFLOPS).

VOL MRHS SRHS Speedup

84 708 – –

164 473 251 1.88

244 375 255 1.47

324 387 315 1.23

on every iteration, which accounts for approximately 150 GFLOPS lost at 84.
The remaining difference is accounted for by the L2 prefetching issue from the
previous section. For 324, RegBlk gains a significant amount of performance
from thread interleaving and cache-controlling traversal. QPhiX+CoGen does
not show nearly the same level of performance gain from these options. Because
the implementations only differ meaningfully in the inclusion of register blocking,
we surmise the differences observed, especially in situations with higher cache
use (CCT+interleaving at 324), are due to increased cache pressure caused by
register spilling, which is avoided by RegBlk.

MRHS vs. SRHS. In Table 2 we compare the best results from our MRHS ker-
nels to the results of a SRHS kernel using unmodified QPhiX+CoGen which has
been tested on the same hardware setup. We observe a set of speedups consistent
with the performance model we introduced in Sect. 3. In this model, speedup is
dependent on the parameter RN , the MRHS spinor reuse factor, which is not
possible to measure directly. We note that at maximum reuse (which we estimate
to be 7 out of 8 neighbors reused), the achievable speedup is approximately 2.8.
Though we do not have a result for SRHS 84, if we estimate that number at 251,
the speedup for MRHS at 84 would be 2.8. This follows from the lattice size:
at this size, RN is very high because nearly the entire lattice fits into L2. For
further evidence validating our model, consider 16 RHS 164, which has neighbor
(read) data equal to SRHS 324. Considering that the write data also scales with
N , we would expect a somewhat smaller reuse factor for 16 RHS 164. Given the
speedup of 1.88, we calculate a reuse factor of approximately 6 for 16 RHS 164,
which is very close to the 7 we assume for SRHS 324.

As the amount of MRHS spinor data scales with N , the reuse factor and
speedup drop quickly. Looking at Table 1, we see that without optimization,
speedup for 16 RHS 324 is below 1.0. Measuring bandwidth at 140 GB/s, we
can calculate, using our model, that our optimizations for RegBlk 16 RHS 324

must have increased RN by a factor of 3.8 in order to achieve the speedup we
did over the default RegBlk 16 RHS implementation.

7 Conclusions and Future Work

We have presented the optimization of a single precision Dslash kernel for KNC
using a dual approach which included a register blocking hand-coded kernel and a
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kernel customized from QPhiX and its code generator. We achieved 29 % of peak
performance on our target architecture, KNC, compared to 13 % achieved by the
previous SRHS kernel. We observed speedups of 23 % and greater in all tested
regimes, showing that our kernel is effective on real world problem sizes. We have
shown with a direct comparison that register blocking for KNC’s VPU may be
a critical component of high-performance kernels, as the non-blocked approach
showed dampened ability to gain speedup from advanced cache-blocking tech-
niques that are required to achieve the kind of spinor reuse necessary for MRHS
implementations to be worthwhile [2].

In our future work, we will continue to optimize our highest performing
kernel. We plan to investigate controlled spilling of registers to test the feasibility
of implementing a RegBlk approach similar to that of 8 RHS for 16 RHS by
using strategic stores to L1 to avoid having to compute extra dot products.
We will attempt to increase data reuse in our kernel by testing more advanced
lattice traversal techniques. In the area of QPhiX+CoGen, we will give the code
generator the ability to generate 8 RHS code as it currently does 16 RHS. After
optimization is complete, we will integrate our kernel into a full multi-node
LQCD solver.
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Abstract. We profile and optimize calculations performed with the
BerkeleyGW [2,3] code on the Xeon-Phi architecture. BerkeleyGW
depends both on hand-tuned critical kernels as well as on BLAS and
FFT libraries. We describe the optimization process and performance
improvements achieved. We discuss a layered parallelization strategy to
take advantage of vector, thread and node-level parallelism. We discuss
locality changes (including the consequence of the lack of L3 cache) and
effective use of the on-package high-bandwidth memory. We show pre-
liminary results on Knights-Landing including a roofline study of code
performance before and after a number of optimizations. We find that
the GW method is particularly well-suited for many-core architectures
due to the ability to exploit a large amount of parallelism over plane-wave
components, band-pairs, and frequencies.

1 Introduction to GW

The ab initio GW approximation is a theoretical framework that allows one to
compute excited-state properties of materials without any adjustable parame-
ters. Properties such as bandstructures and the optical absorption spectra of a
variety of systems can be computed with this approach, which are of great impor-
tance in energy applications like solar cells, batteries, LEDs etc. The GW name
derives from the approximation to the electron-electron interaction in materi-
als where the electron self-energy (similar to correlation energy) is written as
Σ = iGW , where G stands for the electron Green’s function and W for the elec-
trically screened Coulomb interaction. GW calculations are based on the frame-
work of many-body perturbation theory; so they require approximate electron
c© Springer International Publishing AG 2016
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orbitals and energies produced at a mean-field level as input, which are com-
monly generated with density-functional theory (DFT) codes such as PARSEC
[9], PARATEC [13], Quantum ESPRESSO [5], and SIESTA [15].

The GW approximation can be cast into a Schrödinger-like equation with
the form [6,7] [

−1
2
∇2 + Vloc + Σ(En)

]
φn = Enφn, (1)

where Vloc is the combined electron-ion and electron-electron electrostatic attrac-
tion, Σ is the electron self-energy operator within the GW approximation (which
depends on the DFT orbitals and energies), and En and φn are the electron
energies and orbitals. The orbitals can be described in real space as φn(r) or in
Fourier space as φn(G), and are represented by complex double precision arrays
in the most general case.

GW applications are becoming increasingly used at US Department of Energy
(DOE) HPC facilities such as NERSC [10] – the production HPC center in Berke-
ley. In the summer of 2016, NERSC will field a new HPC system, named Cori,
with more than 9000 nodes powered by Intel’s Knights Landing (KNL) processors,
which are based on Intel’s new Many Integrated Core (MIC) architecture. The
GW methodology is particularly primed for many-core systems like this because
it has many layers of parallelism available to exploit, which include k/q-point,
band/orbital-pair, basis-set, and energy parallelism. This is typically multiple
orders of magnitude more parallelism than is available in a DFT calculation.

GW calculations can be quite efficiently computed with the BerkeleyGW
[2,3] software package, which is able to efficiently take advantage of all the levels
of parallelization mentioned. BerkeleyGW is a production GW code written in
FORTRAN 2003 and originally optimized for massive distributed-memory HPC
systems via MPI parallelization. It is natural to extend the parallelization and
optimization in BerkeleyGW to target new MIC architectures.

A typical calculation with BerkeleyGW contains several distinguishable time-
consuming steps. In order to optimize these steps on the KNL architecture, we
create representative kernels that represent each step, which are described at
the end of this section. In Sect. 2, we discuss the performance and optimization
strategy for these kernels, as well as work to optimize the Quantum ESPRESSO
[5] DFT package (commonly used as input to BerkeleyGW).

1.1 Kernel A Description: Computation of Orbital Transition
Probabilities

In this kernel, we construct transition probabilities (referred to as “matrix ele-
ments”) between electron orbitals under a plane-wave-like perturbation as

Mnn′(G) = 〈n ∣∣eiG·r∣∣ n′〉. (2)

Here, G is a plane-wave coefficient in Fourier space, and 〈n| are the input mean-
field electronic orbitals, which can also be denoted by φn. These matrix elements
are computed in BerkeleyGW by performing many FFTs:
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Mnn′({G}) = FFT−1 (φn(r)φ∗
n′(r)) . (3)

One can see that a 3D (complex double precision) FFT needs to be performed
for each pair of orbitals. Since the number of orbitals scales with the number of
atoms, N , the complexity of this calculation is O(N3 log N).

1.2 Kernel B Description: Construction of the Electronic
Polarizability

In this kernel, the previously-computed “matrix elements” are combined to com-
pute the polarizability of the system, one of the main ingredients of the self-
energy

χGG′(E) =
occ∑

n

emp∑

n′
M∗

nn′(G)Mnn′(G′)
1

En −En′ − E
, (4)

where En are the mean-field electronic energies and E is the response energy
typically computed on a grid of around 50 values. This expressions has a com-
putational complexity of O(N4) with number of atoms N , and it is evaluated as
a large parallel (complex double precision) matrix-matrix multiplication

χGG′(E) = M∗(G, (n, n′), E) · MT(G′, (n, n′), E), (5)

for each E, where (n, n′) represents a single composite index that is summed
over as the inner dimension in the matrix-matrix product. The matrices M can
be expressed in terms of the matrix elements M as

M(G, (n, n′), E) = Mnn′(G) · 1√
En −En′ − E

. (6)

1.3 Kernel C Description: Computation of Electron Self-Energy

We often approximate the self-energy operator, Σ, to be diagonal in the DFT
orbital basis, and also often employ the Hybertsen-Louie generalized plasmon-
pole (GPP) approximation [6,7], which models the energy dependence of χ and
simplifies the energy integrals needed to compute Σ. Then, Σ takes the form

Σn =
∑

n′

∑

GG′
M∗

n′n(−G)Mn′n(−G′)
Ω2

GG′

ω̃GG′ (E − En′−ω̃GG′)
v(G′), (7)

where Ω and ω̃ are precomputed complex double-precision arrays derived from
χGG′(0), v = 1/G2 is the electronic Coulomb interaction, and E is a parameter
which sets the desired energy at which to evaluate the material response. The
above represents an array reduction (tensor contraction) type of operation, which
typically relies on high memory-bandwidth for performance. However, as we will
see below, some data reuse is possible if we consider multiple E values (by default
we consider 3). For each orbital n computed, the complexity of evaluating Σ is
therefore O(N3). If all n orbitals are considered, the complexity is O(N4).
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2 Optimization Process for KNL

We now describe the optimization of the 3 BerkeleyGW micro kernels described
in Sect. 1 for KNL, and also present an optimization for the prerequisite DFT
step, illustrated with the Quantum ESPRESSO software. Each kernel has unique
challenges, varying arithmetic intensity, [12] and relies either on effective use of
the KNL VPUs, MCDRAM, or both. Kernels A and B rely on math libraries
(FFT and BLAS) while kernel C is hand-tuned.

Unless otherwise stated, KNL results in this paper are based on the KNL 7210
(64 core, bin 3) part with 16 GB on-package high-bandwidth memory (HBM)
MCDRAM and 96 GB of traditional DDR memory. We run with the KNL in the
“quadrant” NUMA mode with MCDRAM configured as a flat memory except
with specified. In most cases, we assume the ability to strong scale to a sufficient
number of nodes to run entirely out of MCDRAM - however, we discuss the
use of fastmem directives where appropriate, and find equivalent performance
can be generally achieved by targeting only a few arrays for MCDRAM. Intel
Haswell architecture numbers are based on a single node of the Cori-Phase 1
system with dual-socket 16 core Xeon E5-2698 processors per node, Ivy Bridge
numbers are based on a NERSC Edison node with dual socket 12 core E5-2695
processors per node, and Sandy Bridge numbers are based on a dual socket 8
core E5-2670 processor node. Comparisons are based on the highest SSE or AVX
level supported by each architecture. Finally, we use the 2016 update 2 suite of
Intel compilers and MKL unless otherwise specified.

2.1 Kernel A Optimization

The O(N2) FFTs are distributed over the MPI tasks in BerkeleyGW such that
each MPI task owns a subset of the FFTs to perform, however each individual
FFT is done on a single MPI rank. This distribution of work is favorable for
many-core systems, KNL in particular, because it reduces inter-node communi-
cation while maintaining a large amount of on-node work left to exploit with
on-node parallelization (threads and vectors). Contrast this to a typical DFT
calculation where a fewer amount of FFTs are each typically performed in par-
allel across the MPI tasks in the calculations – leaving a challenge to exploit
more parallelism on node.

Targeting KNL, we maintained the MPI distribution of the O(N2) 3D FFTs
but utilize threaded FFT library implementations to handle the thread and
vector level performance. To test performance on KNL, we created a kernel that
performs a threaded fftw many [4] call on complex double-precision arrays. We
tested this on various architectures using the MKL fftw backend. In Fig. 1 (left),
we show the limit of a single very large (6 GB) complex 3D FFT - on the dual-
socket Xeon-System we estimate throughput by computing two such FFTs (one
on each socket). In Fig. 1 (right), we show many (400) 1353 FFTs. In this case,
on both Xeon and Xeon-Phi we use use both MPI and OpenMP to distribute
out the work - 2 MPI tasks on the dual-socket Xeon nodes and 4 MPI tasks
on the Xeon-Phi nodes. For the larger FFT, one can clearly see a 2x advantage
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Fig. 1. (Left) Thread scaling (including hyperthreads) of the large complex 3D FFT
limit on different architectures. (Right) Thread scaling for 400 1353 FFTs on various
architectures. We compare one Xeon-Phi processor to 2 sockets of Xeon, with threads
spread across 2 MPI ranks. DDR/HBM refer to running the calculation out of DDR
or MCDRAM with the MCDRAM configured as a flat memory.

streaming data out of MCDRAM vs DDR; however, this advantage is mostly lost
when performing many small FFTs – where we likely see more reuse out of cache.
The larger FFTs on the bin 3 KNL outperform Haswell by about 20 % while the
many smaller FFTs perform at near the same performance between Haswell and
bin 3 KNL. Note, if we force the dual-socket Xeon systems to perform a single
FFT across both sockets (instead of 1 each), the KNL performance advantage
nearly doubles - significant if MPI rank reduction is desirable.

Hybrid Functional Optimization in Quantum ESPRESSO. Quantum
ESPRESSO calculations are often used as the mean-field starting point for
BerkeleyGW, and often employ exact-exchange based functionals. In analogy
to the BerkeleyGW Kernel A problem, exact-exchange requires the computation
of O(N2) FFTs, with a minimum of two FFTs per band/orbital pair. However,
unlike BerkeleyGW, Quantum ESPRESSO by default parallelizes these O(N2)
FFTs individually over the MPI tasks in the calculations. A level of band paral-
lelism was previously implemented, but with a number of limitations: (1) it par-
allelized over only one of the band indices; and (2) if the band parallelization was
utilized (i.e., multiple FFTs were performed at once), the parallelization of the
remainder of the calculation would be negatively impacted. Both of these issues
limit performance on many-core systems. In order to improve the FLOP density
on node, we add an additional level of MPI parallelism for band-pairs inspired by
the band-pair parallelization in BerkeleyGW, and we enable simultaneous par-
allelism of the O(N2) FFT problem and the remainder of the computation. The
FFTs can then be done on-node with the expected performance above on KNL.
As illustrated by Fig. 2, these modifications substantially improve the overall
strong scaling of the code through both on-node and inter-node improvements.
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Fig. 2. Strong-scaling of an exact-exchange calculation on a simulation of 64 water
molecules on the NERSC Edison (dual-socket Ivy-Bridge) system. The blue curve cor-
responds to the timings of Quantum ESPRESSO version 5.2.0, while the red curve
provides the results of the improvements described in text. (Color figure online)

2.2 Kernel B Optimization

Kernel B contains two computationally intensive steps. The first is the evaluation
of Eq. 6 which involves multiplying every element of array M by a pre-computed
energy denominator. This is a stream like operation. The second major step is
the matrix-matrix multiply itself performed in parallel via many ZGEMMs. Our
runs emulate periodic systems with 4000 planewaves, 2000 bands/orbitals and
20 energies (simulated across 50 nodes) leading to matrices of size (565 × 4800).

We found initially that the performance on KNL suffered due to poor thread
scaling of array initialization and the stream-like step described above. For exam-
ple, the code contained FORTRAN vector statements like:

myarray(:,:) = 0D0

which are vectorized but not threaded by the compiler. The relatively low band-
width driven by a single thread, leads such statements to particularly suffer.
Secondly we found significantly worse performance on KNL for the stream step
described above. This was due to poor data reuse by explicitly calculating the
arrays M for each energy E. By instead computing this on the fly immediately
before the ZGEMM for each E, we can reuse data efficiently out of L2 cache
across the tiles. In Fig. 3, you can see that the optimal performance on bin 3
KNL is about 33 % better than our dual-socket Haswell node. About 80 % of the
runtime is ZGEMM - a ratio that increases with problem size.

It is additionally interesting to note that this kernel performs best when
run in pure OpenMP mode on the Xeon-Phi. The performance is roughly 30 %
slower when using 2 MPI tasks and spreading the OpenMP threads between
them, and the separation worsen as more MPI tasks are added. The difference
stems primarily from the ZGEMM step, suggesting it is optimal to have a single
large threaded ZGEMM on the node rather than multiple simultaneous MPI driven
ZGEMMs. The behavior is similar in both quadrant and SNC4 NUMA modes.
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Fig. 3. Thread scaling (including hyperthreads) of optimized kernel B on various archi-
tectures. Threads are spread across 2 MPI tasks (one per socket) on Xeon. We run
with pure OpenMP on Xeon-Phi in quadrant mode with MCDRAM configured as flat
memory.

The performance also does not benefit from hyperthreading on KNL as evident
by the sharp upturn in walltime in Fig. 3.

2.3 Kernel C Optimization

As described in Sect. 1, Kernel C is comprised of hand-tuned array reduction-
like operations. Since this kernel doesn’t rely on math libraries like kernels A
and B, a greater amount of work was required to tune this kernel. In recent
years, this kernel has represented a growing fraction of the BerkeleyGW run-
time, primarily due to use-cases where solutions for many electronic states are
required. We describe the multi-step optimization process below:

1. The original code was an MPI-only application where little effort had been
spent to analyze or optimize the performance.

2. We refactor the code to have a multi-loop structure appropriate for expressing
layered parallelism in terms of MPI, OpenMP and vectors.

Fig. 4. Code changes to enable compiler auto-vectorization and efficient use of VPU
lanes. See description in the text.



BerkeleyGW on KNL 409

3. We refactor the code to enable compiler auto-vectorization. Figure 4 illus-
trates some of the code changes made to enable vectorization. In particular,
we remove cycle statements originally intended to save unnecessary work
when thinking serially, we move an inner loop with a trip count of 3 outwards
and replace it with a new inner loop with a trip count on the order 1000 or
greater. This large inner loop enables us to ignore impacts of alignment and
peel/remainder loops.

4. From VTune [8], we determine that we have poor reuse of L2 on both Xeon
and Xeon-Phi because accessed rows of arrays wtilde array, aqsntemp, eps
combine to require 1.5 MB (3-5x larger than L2 per core). However, we do
get good reuse of the shared 40 MB L3 on Xeon. To improve the situation
on Xeon-Phi, we add a level of cache blocking for effective reuse of the L2
cache on both Xeon and Xeon-Phi architectures. In particular, we modify the
following (simplified) block of code from

do my_igp = 1, ngpown ! OpenMP
do iw = 1 , 3

do ig = 1, igmax
load wtilde_array(ig,my_igp) !512KB per row
load aqsntemp(ig,n1) !512KB per row
load eps(ig,my_igp) !512KB per row

to

do my_igp = 1, ngpown ! OpenMP
do igbeg = 1, igmax, igblk

do iw = 1 , 3
do ig = 1, igmax

do ig = igbeg, min(igbeg + igblk,igmax)
load wtilde_array(ig,my_igp) !512KB per row
load aqsntemp(ig,n1) !512KB per row
load eps(ig,my_igp) !512KB per row

While this only improves reuse by a factor of 3, it is enough to prevent the code
from being bandwidth-bound on KNL when using MCDRAM (see roofline
figure). The speedup is significantly greater on the Xeon-Phi architecture due
the lack of L3. We see negligible speedup on Haswell.

5. We eliminate some conditionals in vector regions to improve vector perfor-
mance.

6. We utilize > 1 thread per physical core - up to 2 threads per core on Haswell
and 4 threads per core on KNL.

Figure 5 shows the optimization process plotted on a roofline [1,19] curve
where the x-axis is the arithmetic-intensity (FLOP/bytes-from-memory) com-
puted with Intel’s VTune (bytes from memory read) [8] and SDE tools
(FLOP/s) [16]. On Haswell, one can see an overall trend towards higher arith-
metic intensity and higher performance. We have a final peak performance of
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Fig. 5. Optimization process of kernel C on the roofline [17–19] model for Haswell and
KNL. The two slopes on the KNL roofline represent running out of DDR or MCDRAM
in flat mode. The three ceilings correspond to peak, peak minus Instruction Level
Parallelism from FMA and dual VPUs, and the additional loss of vector parallelism (a
factor of 4 for Haswell and a factor of 8 for KNL). Arithmetic intensity is measured as
the FLOP per byte read+written to memory. See text for more details.

170 GFLOP/s from a final arithmetic intensity of around 3. The performance
doesn’t quite hit the roofline due to a number of limitations: there is a divide
in the final loop that has a multi-cycle latency, there is not a perfect balance
between multiplies and adds – a complex multiply involves 4 multiplies and 2
adds, for example – and there are additional conditionals left in the code:

do ig = igbeg, min(igend,igmax)
wdiff = wxt - wtilde_array(ig,my_igp)
delw = wtilde_array(ig,my_igp) / wdiff
...
scha(ig) = aqsntemp(ig,n1) * delw * eps(ig,my_igp)
if (wdiffr.gt.limittwo .and. delwr.lt.limitone) then

scht = scht + scha(ig)
...

On KNL, the optimization path is not as straightforward: the vectorization
step 3, while improving the performance, actually reduces the arithmetic inten-
sity. This is due to the fact that we moved the iw loop (trip count 3) outwards
to enable compiler auto-vectorization. This loop provided a reuse factor of 3
for streamed arrays. The issue is rectified by the cache-blocking enabled in step
4. A take-home lesson is that the lack of L3 cache on KNL makes data locality
even more important in some situations, as the MCDRAM on KNL is generally
out-performed by L3 on Xeon.

The overall walltime for the example problem considered is shown in Fig. 6.
For the optimized case, we obtained runtimes of 11.5 s, 21.8 s, and 18.6 s on KNL
(MCDRAM), KNL (DDR) and dual-socket Haswell respectively. We observe that
vectorization and cache blocking improve the performance on KNL significantly
more than on Haswell. Additionally, the performance on KNL with DDR is worse
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Fig. 6. Walltime for example runs of kernel C used in Fig. 5 for different optimization
steps described in the text. Here one Xeon-Phi processor is compared against 2 Xeon
sockets. Optimal MPI/OpenMP ratios are used.

than MCDRAM due to fact we are bandwidth limited in the DDR case – points
3,4,5,6 are pinned to the DDR roofline in Fig. 5.

From Figs. 5 and 6, we observe as high as 30 % speedups with hyperthreads
on Haswell and KNL utilizing MCDRAM. We see no speedups on KNL when
running out of DDR since we have already saturated the available memory band-
width. This stems from both the ability of multiple threads to drive more band-
width on KNL and the likelihood of latency hiding in the divides.

We show in Fig. 7 a comparison of pure thread scaling for the optimized code
on various Xeon and Xeon-Phi architectures. For low concurrencies, we observe
that performance out of DDR and MCDRAM on the KNL is similar. However,

Fig. 7. Thread scaling (including hyperthreads) of optimized kernel C on various archi-
tectures. Comparison shows one Xeon-Phi processor against 2 sockets of Xeon. Threads
are spread across 2 MPI tasks in the Xeon case.
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performance quickly saturates on DDR when increasing the number of threads
beyond 40. KNL performance continues to scale well up to and beyond the phys-
ical core count when running out of MCDRAM. The bin 3 KNL (when running
out MCDRAM) performance is nearly 60 % greater than we what achieve on
two sockets of Haswell.

We find a slight advantage to running with 4 MPI tasks (in either SNC4 mode
or quadrant mode) of 1̃0% over a pure threaded run. Additionally, we explicitly
add FASTMEM directives to the FORTRAN source and link with memkind and
find we can obtain the same performance (marginally better) as running the
entire problem out of the MCDRAM by placing the three arrays (wtilde array,
aqsntemp, and eps) in MCDRAM.

Kernel C shows that, for a hand-tuned code with an arithmetic intensity near
the roofline vertex (between 1–10), a rich optimization arena exists for improving
performance on KNL.

3 Conclusions and Outlook

We have optimized several kernels in BerkeleyGW as well as in the Quantum
ESPRESSO DFT code (used as input to BerkeleyGW) targeting the NERSC
Cori system. In some cases, math libraries provide an efficient path towards
optimal code. However, in some cases, for example kernel C, it took a signifi-
cant effort to produce optimized code. Performant runs on KNL require effective
use of the dual VPUs, MCDRAM, and L2 caches, and efficient thread scaling.
For codes with arithmetic intensities near the roofline vertex (∼5 for KNL with
MCDRAM), one must essentially consider all optimization avenues on the hard-
ware. One clear trend when optimizing this material science workload for KNL
is that optimizations originally targeting the Xeon-Phi architecture improve the
code significantly on Xeon architectures as well.

Kernel B and Kernel C represent the most significant bottlenecks in a GW
calculations (both scaling with the number of atoms as O(N4)). Both see signif-
icant performance advantage on bin 3 KNL over Haswell, 33 %–60 %. For Kernel
A, dominated by FFTS, we see advantages for bin 3 KNL in the extremely large
limit but near parity with Haswell in the small limit. It is important to note
that we expect about a 10 % increase in performance on bin 1 KNL (which will
power Cori) compared to the bin 3 numbers reported in this paper due to an
addition of 4 cores and an approximately 10 % increase in frequency.

Finally, our work shows that GW applications are particularly well-suited
for many-core architectures like that in the Cori system at NERSC because of
the many layers of parallelism that can be exploited both on-node and between
nodes.
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Abstract. Lattice Quantumchromodynamics (QCD) is a powerful tool
to numerically access the low energy regime of QCD in a straightforward
way with quantifyable uncertainties. In this approach, QCD is discretized
on a four dimensional, Euclidean space-time grid with millions of degrees
of freedom. In modern lattice calculations, most of the work is still spent
in solving large, sparse linear systems. This part has two challenges, i.e.
optimizing the sparse matrix application as well as BLAS-like kernels
used in the linear solver. We are going to present performance optimiza-
tions of the Dirac operator (dslash) with and without clover term for
recent IntelR© architectures, i.e. Haswell and Knights Landing (KNL).
We were able to achieve a good fraction of peak performance for the
Wilson-Dslash kernel, and Conjugate Gradients and Stabilized BiConju-
gate Gradients solvers. We will also present a series of experiments we
performed on KNL, i.e. running MCDRAM in different modes, enabling
or disabling hardware prefetching as well as using different SoA lengths.
Furthermore, we will present a weak scaling study up to 16 KNL nodes.

1 Introduction

Quantum Chromodynamics (QCD) is the theory of the strong nuclear force and
interactions, and is responsible for binding quarks into protons and neutrons
through the exchange of gluons. Further, residual strong force interactions are
responsible for binding protons and neutrons into nuclei which make up atoms
and ultimately most of the visible matter in the universe. QCD is also one of the
theories making up the Standard Model of elementary particles and interactions.
Lattice QCD (LQCD) [4,14,16] is a discretized version of QCD where Euclidean
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space time is replaced by a 4-dimensional hypercubic lattice. LQCD is itself
a fully renormalizable quantum field theory, where the quark matter fields of
QCD (so called spinors) are ascribed to lattice sites and gluons fields (so called
gauge fields) are ascribed to the lattice links. As LQCD is the only known, model
independent, methodology to carry out QCD calculations in the non-perturbative
regime, it is of vital importance to Nuclear and High Energy physics research and
is a major user of supercomputing cycles at HPC centers around the world. A key
component of LQCD calculations is the solution of the lattice Dirac equation
which encodes the interactions of the quarks and gluons. For reasons, which
are beyond the scope of this contribution, various formulations of the Dirac
equation exist. In this contribution we will focus on the so called Wilson [21] and
Sheikholeslami-Wohlert [17] (colloquially known as Wilson-Clover) formulations.

Intel R© Xeon Phi Knights Landing (KNL) is the second generation of the
Intel R© Xeon Phi architecture products. The CPU studied in this paper is B0
hardware in two configurations: 7250 parts which feature 68 cores (referred to as
configuration A) and 7210 parts which feature 64 cores (referred to as configura-
tion B). In both cases, the cores are connected in a 2-dimensional mesh of tiles,
with each tile containing 2 cores. The cores are based on the Intel R© Silvermont
architecture running at 1.4Ghz and augmented by two 512-bit vector units. The
cores on a tile share 32Kb L1 and 1Mb L2 data cache. The KNL chip also
features up to 16Gb of on package High Speed memory (known as MCDRAM),
with a STREAMS bandwidth of ∼450Gb/sec. KNL processors can be parti-
tioned in several ways, for example as a flat mesh, or in quadrant mode with
or without sub-NUMA clustering (SNC). In quadrant more, the chip is logically
split into 4 quadrants and in SNC mode, each quadrant constitutes a separate
NUMA domain, with each quadrant containing one memory controller. Thus
the SNC mode enables slightly reduced latencies when communicating between
cores, due to restricting coherency traffic to a quadrant.1 The MCDRAM can
be configured in three different ways: in flat-mode used as directly addressable
memory, in a cache mode, where it appears as a transparent cache and in a
hybrid mode, where one portion is used as cache, and the remainder is used as
directly addressable memory.

In this paper we report on the performance of the Wilson and Wilson Clover
components on Knight’s Landing. We use the publicly available QPhiX code [9–11]
which implements the techniques reported in [8] for the Wilson dslash operator. In
addition we have also implemented various forms of the Clover operator and Con-
jugate Gradients [6] and BiCGStab [18]. The code supports multi-node decompo-
sition and we illustrate weak scaling results in this contribution.

2 Background and Implementation Details

We now turn to discuss the Dirac operator and some implementation details that
are relevant to the discussion of our performance results. Most of these details
1 Due to the page limitation, we can not include numbers from SNC studies in this

presentation.
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are discussed in great detail in [8,9] and we will restrict ourselves to the salient
points here.

The Wilson Dirac Operator and Clover Term: Our fields are defined on a hyper-
cubic 4-dimensional lattice of dimensions Lx, Ly, Lz and Lt in the X, Y , Z
and T spacetime dimensions respectively. We also label our sites as even or odd,
depending on whether the sum of their 4-dimensional space-time coordinates, is
even or odd. This implements a checkerboarding of the sites and we store the
data for even and odd sites in separate arrays. Each such array has dimensions
(Lx/2) × Ly × Lz × Lt sites. Our gauge fields are SU(3) matrices ascribed to
directed lattice links, which are 3 × 3 complex matrices. In our implementation
we can employ 2-row compression [3], reducing the data to a 2×3 complex matrix
where the third row can be reconstructed on the fly. For each site, we keep the
link matrices pointing in the forward and backward directions (to enable unit
stride access) resulting in the gauge field being stored as 8 link matrices ema-
nating from each site. Our spinor data is comprised of 12 complex numbers per
lattice site, corresponding to 4 spin components, each of which is a 3-vector of
complex numbers, where the factor 3 is the number of colors.

The Wilson Dslash operator is defined as

Dx,y =
3∑

μ=0

U2μ(x) (1 − γμ) δx+μ,y + U†
2μ+1(x − μ) (1 + γμ) δx−μ,y (1)

where μ ∈ [0..3] is the dimension index, U2μ(x) (U†
2μ+1) are the forward (back-

ward) pointing gauge links emanating from site x respectively. The Kronecker
factors δx±μ,y couple neighboring spinors in forward/backward ±μ-direction.
Finally the γ-matrices are generators of the Clifford algebra C�1,3(R). They can
be represented by sparse 4×4 complex matrices acting only on spin components.
To apply the Wilson Clover operator, we also need to store the so called clover
term A for each site. In our case, this term is defined as:

A = (Nd + m) − i
1
8
cswσμνFμν (2)

where Nd is the number of dimensions, m is the quark mass and σμ,ν ≡ [γμ, γν ].
The coefficient csw is the so called clover coefficient and Fμν is the QCD field
strength tensor. In general, A is a 12× 12 complex matrix. With an appropriate
choice of γ matrices however, it reduces to a block diagonal form comprised of
2 blocks of 6 × 6 complex numbers. Furthermore, each block is hermitian and
allows for an L†dL decomposition into a diagonal matrix of 6 real numbers d
and L being a strictly lower triangular matrix of 15 complex components. The
total storage per site thus reduces to 12 real and 30 complex numbers. We also
need the inverse clover term A−1 which has a similar structure. Both A and A−1

are precomputed and supplied by the users to QPhiX.
Our solvers employ the even-odd Schur-complement preconditioned Dirac

operators, which are generically of the form: Moo = Aoo − DoeA
−1
ee Deo, where

the indices e and o refer to even and odd lattice sites. Since D is a nearest
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neighbor stencil, it takes even sites to odd sites or vice versa. A is local, hence
it takes sites even sites to even and odd sites to odd. In the case of csw = 0
we recover an operator known as the preconditioned Wilson Dirac operator,
whereas for csw �= 0 we call the operator preconditioned Clover-Dirac operator.
We implement the operators with two kernels: for the Clover case, one evaluates
ye = A−1

ee Deoxo and the second one computes zo = Aooxo − bDoeye. In the
Wilson case we specialize these as ye = Deoxo and zo = axo − bDye where a and
b are user supplied real values.

Data Layout in QPhiX : We rearrange the degrees of freedom described above to
target vectorization. We adopt an array of structures of arrays (AOSOA) layout
where we split the lattice site dimension of our arrays into chunks of SOA sites
and make this our fastest running dimension. We notionally split the X and Y
plane into tiles. These tiles have dimensions SOA in the X direction and ngy in
the Y direction. The constraint is that SOA × ngy = V , with V the hardware
vector length. The idea is that we fill vector registers with data from SOA sites
along the X dimension, drawn from ngy separate values of the coordinate in
the Y direction. For Xeon Phi architectures, convenient values of SOA in single
precision are 4, 8 and 16. The case of SOA = V = 16 allows straightforward
load/stores with aligned packed loads/stores. In the cases of SOA = 4, 8 we use
load-unpack and pack store, which is faster on this architecture than general
gathers. For Xeon systems with V = 8 good choices for SOA are 4, and 8. Hence
our spinor data is stored as float spinor[ nvec ][3][4][2][ SOA ] where
nvec is the number of SOA length blocks nvec = (Lx/2) × Ly × Lz × Lt/SOA.
For our gauge and clover fields which are read only data to facilitate single stride
reading we can pregather the the ngy strips resulting in an array of the shape
float gauge[ nvec/ ngy ][8][3][3][2][ SOA*ngy ]. Finally our nvec vec-
tors are laid out with the X dimension going fastest. If the X dimension can
be split into Nxvec SOA length chunks (Nxvec = (Lx/2)/SOA), then indexing
notionally runs as vec = xv + Nxvec(y + Ly(z + Lzt)). In practice this may be
complicated slightly by padding in the XY and XY Z dimensions, please see [8]
for details.

Cache Blocking And Load Balancing : QPhiX implements the 3.5D blocking
strategy of [15]. This involves, vectorizing over the X and Y directions, blocking
in the Y and Z dimensions and streaming through the T dimensions. In practice
this is done by specifying block sizes By and Bz in the Y and Z dimensions.
The lattice is then split into strips of size Lx

2 × Ly

By
× Lz

Bz
× Lt. These blocks

are assigned to cores and are processed concurrently by the SIMT threads on
that core. Further, to cope with multiple NUMA domains, the T direction can
be split by the number of NUMA domains. One needs to arrange that the cores
processing a chunk of strips belonging to a particular domain, are actually in that
domain physically so that first touch after allocation is effective. This is done
by core affinity mechanisms outside of QPhiX, e.g. using the KMP AFFINITY and
KMP PLACE THREADS, mechanisms for the Intel Compiler. Generally this process
can result in a number of strips in a NUMA domain which may not be divided
equally by the number of cores in that domain. To cope with this the T dimension
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can be split further, to increase the number of strips. An algorithm for doing
so while taking advantage of all cores is discussed in detail in [8]. The initial
split factor for NUMA domains is denoted by the parameter minct. In our tests
when running on dual socket Haswell systems we used minct = 2 when running
a single executable on both sockets. When running one task per socket, and on
KNL in quadrant/flat mode or in multi-node runs with 1 process per socket, we
used minct = 1.

Code Generator and Prefetching : The kernels for performing the calculations
on a block of SOA × ngy sites, are generated by a small code-generator. This
code generator allows us to abstract our vector operations, and can generate
intrinsics code for SSE, AVX, AVX2-FMA, AVX512, KNC and BlueGene/Q
QPX architectures. Further it allowed us to insert software prefetching, both
for L1 and L2 caches. This was very important for the Knight’s Corner (KNC)
architecture. For KNL, preceding work in [13] suggested that software prefetching
may be less effective and actually lead to slight performance loss in the presence
of the hardware prefetcher, and work in a microbenchmark suggested that it
may be beneficial to turn off hardware prefetching and use software prefetching
only. The code generator allowed us to easily check this in QPhiX, and we report
results in Sect. 4.2.

BLAS Like Kernel fusion: Linear solvers like Conjugate Gradients (CG) and
BiCGStab rely on Level 1 BLAS like vector vector routines. These have a low
arithmetic intensity individually, and occasionally it is possible to reuse fields
temporally amongst successive kernels, for example when computing residua.
The kernels here are: r = b−t where t = Mx, followed immediately by n2 = ||r||2.
In other words one can reuse r immediately. In QPhiX we fuse such kernels to
increase arithmetic intensity due to reduced memory traffic. Our implementation
relies on combining a generic parallel loop over spinors with C++ functors (also
known as function objects) implementing the BLAS operation over a block of
SOA spinors, similar in style to Kokkos kernels [5].

3 Related Work

The majority of the techniques behind the Wilson-Dslash operator in QPhiX
have been discussed in [8] and a thorough description of QPhiX is given in [9],
however, these papers discussed Xeon and KNC results. In this contribution we
consider KNL which has several different features from KNC that are relevant
from a performance point of view including improved hardware prefetching, out
of order execution, three different modes for the MCDRAM and a variety of on
chip clustering modes. Using code generators to write high performance code is
relatively common, a classic example being the BAGEL [2] code generator. There
are alternatives to the tiled data layout that we have used in QPhiX for vector-
ization, examples are the ’virtual node layout’ described in [1] and for a case of
domain decomposition with fixed sized domains one can use the techiques in [7].
The techniques for utilizing compression for SU(3) matrices; both the 2-row for-
mat used in QPhiX, and also an 8-real number compression; were first discussed
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in the context of reducing memory bandwidth pressure in QCD kernels in [3],
for GPUs. There are also different techniques in the community for registerizing
complex numbers for vectorization, for example, in [12]. The QPhiX infrastruc-
ture has been retargeted also to applying Wilson Dslash to multiple vectors at
the same time, and to the highly improved staggered quark formulation, with
results presented at this workshop [19].

4 Single Node Performance Measurements

We now discuss performance numbers we obtained from running QPhiX on a
single KNL node. We focus on memory bandwidth measurements and sustained
Gflops.

4.1 Setup

Hardware: We performed our tests on a single node of the Endeavor clus-
ter, where every node is equipped with one KNL B0 chip of configuration A
(c.f. Sect. 1). Furthermore, each node has 96Gb of DDR memory with peak
bandwidth of 90Gb/s. We have tested our code in quadrant mode chip config-
uration and in both, flat and cache mode MCDRAM configurations. Since our
code fits entirely into MCDRAM, we can just use numactl to bind the executable
to MCDRAM or DDR respectively. Therefore, we can use MCDRAM without
code changes.

Software Environment: For compiling our QPhiX test code, we used the Intel R©

C++ compiler 2016, update 2.2 This compiler supports OpenMP 4.5 and we
make heavy use of the OpenMP SIMD directives.

QPhiX parameters: We test problems with a local volume of size 324 with a block
sizes of By = Bz = 4 on KNL, and applied padding factors of 1 in both the XY
plane and the XYZ volume, to reduce associativity misses. We time the appli-
cation of the Wilson Dslash operator as well as the CG and BiCGStab solvers.
To determine floating point operation rates (FLOPS) we counted the number of
useful floating point operations executed in our benchmarks, and divided them
by measured wallclock time. We did not include any operations resulting from
overhead such as recreation of the 3rd row of our gauge fields.

4.2 Results and Discussion

We ran performance measurements on configuration A. For all our tests, we
employed 64 cores and ran 1,2 or 4 threads on each of these cores. This
was achieved by setting KMP AFFINITY=compact,granularity=threads, and
KMP PLACE THREADS=1s,Cc,Nt with C the number of cores and N = 1, 2 or 4. The
2 we have also tested a beta of ICC 2017, but we found no significant differences in

performance.
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number of OMP threads was set during runtime using omp set num threads()
based on the number of cores and SMT threads chosen via command line para-
meters. Since our code is mostly memory bandwidth bound, we aimed at estimat-
ing the possible gains by using MCDRAM over DDR. For that purpose, we ran
QPhiX solely in DDR and then solely in MCDRAM mode. Assuming an arith-
metic complexity of 2.29 (based on optimal cache reuse), we can estimate the
effective bandwidth using the roofline model [20]. Using a measured maximum
performance of 191GFLOPS/s for DDR and 505GFLOPS/s for MCDRAM, we
obtain effective bandwidths of 83Gb/s and 221Gb/s for DDR and MCDRAM
respectively. We do not see a significant difference when running in cache mode
compared to running from MCDRAM in flat mode. This is expected, as our
problem fits into the total available MCDRAM. We note that these effective
bandwidths suggest that we close to saturating the bandwidth of DDR, but are
less effective at exhausting the bandwidth of MCDRAM with Dslash. The reason
for this is still under investigation. We observe however, that the streaming-like
kernels in our code do better, i.e. the STREAM-like aypx obtains 393Gb/s,
which is ∼87 % of the total available bandwidth when running from MCDRAM.
Nonetheless, we do not yet hit the STREAMS bandwidths in our code.3 In order
to test if this is attributed to hardware prefetching deficiencies, we assisted the
compiler by adding prefetch statements to our code. We tested three differ-
ent modes, i.e. full hardware prefetching, software assisted hardware prefetch-
ing (denoted by +Sfw+HW in Fig. 1) and pure software prefetching (denoted
by +Sfw-HW in Fig. 1). The chart in Fig. 1 shows that there are no consistent
and significant differences between these different prefetching modes. We further
observe that there is a significant difference between one, two or four threads
per core in terms of total performance. When running from MCDRAM, the per-
formance is always better when running with two or 4 threads, than a single
thread, as a single thread cannot saturate the MCDRAM bandwidth. In case of
DDR however, single thread performance is highest. This might be attributed to
lower DDR latency and the fact that a single thread is able to saturate the DDR
bandwidth. We can also see that for the more memory bound kernels (BiCGStab
and also CG, not shown), a dual socket Haswell systems performs better than a
KNL run from DDR. This is mainly because of the memory bandwidth differ-
ences: a dual socket Haswell system provides about 130Gb/s peak, whereas the
KNL only provides 90Gb/s peak from DDR. Comparing SOA lengths, we find
that 4 performs consistently worse than 8 and 16, whereas we do not observe a
huge performance gain switching from 8 to 16. The pattern an SOA length of
half the vector length seems to perform best is in line with earlier findings of [8]
on the KNC architecture.

In terms of thread scaling, DDR performance is best for one, whereas
MCDRAM performance is best for 2 threads. This might be explained by
bandwidth and latency: for MCDRAM, two threads are needed to saturate

3 Similar measurements for DDR yield a similar result, i.e. ∼70 GB/s which corre-
sponds to about 77 % of DDR bandwidth peak performance. Remarkably, this value
is lower as the computed effective bandwidth for the Dslash kernel.
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bandwidth, whereas for runs from DDR, latency might be the most limiting
factor and thus one thread does not overwhelm the prefetcher.

We further inspected the performance benefit of using AVX512 in favor of
AVX2 by compiling QPhiX with either set of intrinsics and SOA 8 and measured
the best performance in either case. Figure 2 demonstrates that the performance
improvements from AVX512 are consistently around 20 %.

5 Multi-node Scaling Study

We now turn to weak scaling experiments of QPhiX on multiple Haswell and
KNL nodes. We applied some small scaling improvements to the code, i.e. the
use of message queues which allow for out-of-order receives. Weak scaling is the
relevant metric for high capacity, e.g. for data post-processing workflows.

5.1 Setup

Hardware: We performed the Haswell scaling study on the NERSC Cori Phase I
system. This is a Cray XC system comprised of 1630 compute nodes. The nodes
are equipped with two 2.3Ghz 16-core Intel R© Haswell CPUs with L1 and L2
caches sizes of 64Kb, 256Kb per core respectively as well as a shared 40Mb
L3 cache per socket. Each node has 128Gb of DDR. For communication, the
high-bandwidth, low-latency Cray Aries interconnect with dragonfly topology
is used. The KNL study was performed on up to 16 single socket configuration
B KNL nodes, equipped with Intel R© Omni-Path Architecture featuring Intel R©

OPA Host Fabric Interface, Series 100 ASIC (B0 silicon). The network switches
used are Intel R© OPA Switch: Series 100 Edge Switch - 48 port (B0 silicon).

Software Environment: For the Haswell study We use Intel R© ICC in version 2016,
update 2 for compiling the code. We further use the MPI provided by Cray, i.e.
cray-mpich v7.3.1, which is a proprietary implementation of MPICH2. Since
Haswell does not support AVX512, the maximal SOA length we can use is 8, and
to generate our kernels we used AVX2 including FMA instructions, generated
by our code-generator. We performed a single socket test run and observed that
SOA length 8 performed about 11% better than SOA 4, so we used the former
for the scaling study. For the KNL runs, we have used Intel R© ICC 2016 with
AVX512 optimizations and SOA 16 as well as Intel R© MPI 5.1.2.

QPhiX Parameters: As mentioned above, we are going to target capacity work-
loads and thus maximize the local volume. Local means in this context, that we
ran one MPI rank per socket and the volume local to the socket was set to 324

for both architectures. Note that the optimal size for Haswell is 164, whereas
the optimal size for KNL is about 324 but larger local volumes are preferable
and more important for (pre-)exa-scale applications. We use cache block sizes
of 82 and 42 for Haswell and KNL respectively. In the former case, we employ
two hyperthreads in z-direction and one in y-direction, whereas in the latter one
we employ 4 hyperthreads in z and one in y-direction. In these tests we did not
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Fig. 1. Single node KNL performance for Wilson Dslash operator (top), BiCGStab
solver (bottom). We compare the performance of our kernels for SOA-lengths of 4,8
and 16, various memories and prefetching modes. The different colored bars denote
runs with one, two and four hyperthreads respectively.

use any array padding. In our weak scaling runs, we increased our global volume
along with the number of ranks, by a factor of two at every step. Our strategy
was to first increase the t-direction up to a global size of 256, then to continue
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Fig. 2. Relative speedup of our various kernels obtained by using AVX512 intrinsics
instead of AVX2 intrinsics.

Fig. 3. Weak scaling of the Dslash kernels and solvers on Cori Phase 1 (squares) and
KNL+Omni-Path (triangles) for a local volume of 324 lattice sites.

with doubling the z-direction up to the same value, then we scale in y-s and
then in x. Note that a global size of 2564 is a reasonable size for (pre-)exa-scale
lattice calculations and thus it is reasonable to stop doubling a dimension once
it’s extent has reached that value. We time the Wilson Dslash and Clover oper-
ators for application to a vector and the runtime of CG and BiCGStab solvers
using these kernels. The FLOPs are estimated as described in Sect. 4.1.

5.2 Results and Discussion

The results of our weak scaling runs are displayed in Fig. 3. The square and
triangular markers and lines correspond to Haswell and KNL respectively.
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The panels on the top show the plain Wilson operator, whereas the results on the
bottom include the clover term. Note that for 16 sockets, another communication
direction is introduced and the corresponding overhead can explain the dip after
8 sockets for KNL. Similar things can be observed for the smaller local volume
of 164 sites on Haswell as well, but it is not significant for the large volume used
in this study. The results in Fig. 3 exhibit good weak scaling performance for all
the kernels we have investigated. The scaling is better for KNL, reaching 3.5-4
Teraflops on 16 sockets, which is a factor 4 better than Haswell.

6 Conclusions

We have discussed performance results for the Wilson-Dslash operator, Conju-
gate Gradients, and BiCGStab solvers on Knight’s Landing and have compared
them with the performances seen on Haswell nodes on Cori. We have chosen rel-
atively large problem sizes per node as in this initial exploration we are focused
on the capacity/throughput regime of calculations. We achieve sustained per-
formance of about 500GFLOPS/s for Wilson-Dslash, and slightly lower values
of 417GFLOPS/s and 387GFLOPS/s for CG and BiCGStab respectively. The
latter two kernels are significantly more memory bound and we do not fully uti-
lize the available bandwidth yet. We are investigating restructuring the code to
sustain more bandwidth in the future. The weak scaling study shows good scal-
ing up to 16 sockets of Haswell using the Cray Aries fabric, and 16 KNL nodes
using an Intel OmniPath architecture fabric, where, where scaling on KNL is
significantly better, reaching a factor of 3.5-4 speedup compared to Haswell at
16 sockets.
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7. Heybrock, S., Joó, B., Kalamkar, D.D., Smelyanskiy, M., Vaidyanathan, K., Wet-
tig, T., Dubey, P.: Lattice QCD with domain decomposition on intel&reg; xeon
phi&trade; co-processors. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2014, pp. 69–80.
IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/SC.2014.11
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Summary of the Workshop’s CFP Process

First International Workshop on Performance Portable Programming Models for
Accelerators (P^3MA) co-located with ISC 2016 was held at Frankfurt, Germany on
June 23. The workshop solicited papers on topics covering feature sets of programming
models (including but not limited to directives-based programming models), their
implementations, and experiences with their deployment in HPC applications on
multiple architectures, performance modeling and evaluation tools, asynchronous task
and event-driven execution/scheduling. We received 13 submissions in total. All
submitted manuscripts were peer reviewed. The review process was not double blind,
i.e., authors were known to reviewers. Submissions were judged on correctness,
originality, technical strength, and significance, quality of presentation, and interest and
relevance to the conference scope. We chose 8 papers to be published in the workshop
proceedings, Springer-Verlag Lecture Notes in Computer Science (LNCS) volumes.

Workshop Summary

The workshop was held on June 23 at ISC and brought together researchers, vendors,
users and developers to brainstorm aspects of heterogeneous computing and its various
tools and techniques. Around 50 attendees were present to see Dr. Si Hammond from
Sandia National Laboratories, USA, give a keynote on Balancing Productivity,
Portability and Performance - The Challenge for Programming Models at Exascale. All
of the 8 accepted papers were presented at the workshop with topics ranging from using
low-level to high-level programming models for heterogeneous systems, experiences
porting legacy code to accelerators, addressing memory requirements, and creating
translations from one standard to the other.

Prof. Haohuan Fu, Deputy Head of the National Supercomputing Center in Wuxi
and Associate Professor at the Center for Earth System Science, Tsinghua University,
China, gave an invited talk on preparing the Community Atmospheric Model climate
application to run and scale on Sunway TaihuLight, announced at ISC’16 as the new
number one HPC system on the Top500 list. His talk included their experiences with
custom loop transformation tools for code refactoring, using OpenACC to program the
heterogeneous architecture of TaihuLight, and extensions to the OpenACC standard
that were implemented to enable various optimizations in the application.
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Abstract. This paper describes a shared-source programming model
and compiler for Heterogeneous System Architecture, based on C++14.

Heterogeneous System Architecture provides hardware specifications,
a runtime API and a virtual instruction set to enable heterogeneous
processors to interoperate through a unified virtual address space. How-
ever, it does not define a high-level kernel language such as OpenCL C
or CUDA. This lack of a high-level kernel language presents a barrier to
the exploitation of the capabilities of these heterogeneous systems.

Through the use of automatic call-graph duplication in the com-
piler, we enable code reuse and sharing of data structures between host
processor and accelerator devices with fewer annotations than CUDA or
C++AMP. We utilize the unified virtual address space to enable sharing
data between devices via pointers, rather than requiring copies. We show
that through the use of address space inference, existing standard C++
code such as the standard template library can be utilized with minimal
modifications on accelerators.

Keywords: C++ · Programming models · Heterogeneous system archi-
tecture · GPU

1 Introduction

Heterogeneous System Architecture (HSA) is an architecture that integrates
heterogeneous processors such as CPUs, GPUs and DSPs via a shared memory
system. The HSA specifications [1–3] define hardware requirements, a runtime
API and virtual instruction set. Unlike other standards for programming hetero-
geneous accelerators, such as OpenCL [4], CUDA [5] or C++AMP [6], HSA does
not provide a high-level kernel language. Instead, it provides HSAIL, a virtual
instruction set for targeting HSA-compliant devices. This makes it impractical to
develop non-trivial applications targeting this architecture without a compiler.

Little work has been published exploring the properties of HSA-based sys-
tems. We believe this is in part due to the limited availability of languages and
tools. Other authors have opted to target existing programming languages and

c© Springer International Publishing AG 2016
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models, such as OpenMP1, C++AMP2 and OpenCL3 at HSA. We opted for
a different approach, choosing to develop a shared-source C++ programming
model for HSA that closely mirrors the underlying capabilities of HSA.

Previous approaches to C++ on heterogeneous devices have typically
wrapped pointers to memory allocations in some form of additional data struc-
ture, such as the array and array view classes in C++AMP, or the buffer and
accessor classes in SYCL [7]. These container types cannot be trivially inte-
grated with existing code without modification. Due to HSA’s unified virtual
address space we are able to relax this constraint. In our model, we are able
to share pointers directly between host and accelerator code without the need
for container classes. CUDA also supports unified virtual memory, but requires
additional annotations on all device functions. By eliminating this restriction
and minimizing the use of non-standard keywords within our model, we are able
to compile and execute a wide variety of existing C++ code without the need
for intrusive modifications.

Our contributions are:

– A shared-source C++ programming model for Heterogeneous System Archi-
tecture. We map the complex segmented virtual address space of HSA onto
the single address space model of C++.

– We demonstrate that this can be achieved by using only minor annotations,
which can often be hidden by the API. This enables the programmer to compile
complex, pre-existing code, such as code using the C++ standard template
library without modification.

// A multi-producer, multi-consumer ring buffer on the host processor.

mpmc_ring_buffer<float> buf;

// A C++11 atomic, shared by both the host processor and the kernel agent.

std::atomic<bool> run = true;

// Start the kernel on a throughput processor (GPU, DSP) to continually

// dequeue items from the buffer and process.

auto future = queue->parallel_for<class dequeue>(SIZE, [&](){

// Poll the std::atomic for termination status.

while (run) {

// If the ring buffer is not empty, dequeue an item and process.

float entry;

if (buf.try_dequeue(entry))

...;

}

});

// On host CPU: loop continually, pushing items into the buffer.

1 https://github.com/HSAFoundation/HSA-OpenMP-GCC-AMD.
2 https://bitbucket.org/multicoreware/cppamp-driver-ng-35.
3 https://github.com/HSAFoundation/CLOC.

https://github.com/HSAFoundation/HSA-OpenMP-GCC-AMD
https://bitbucket.org/multicoreware/cppamp-driver-ng-35
https://github.com/HSAFoundation/CLOC
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while (run) {

float entry = ...;

buf.enqueue(entry);

}

// Wait for kernel completion.

future.wait();

Listing 1. Shared Ring Buffer.

We motivate this paper with an example that cannot presently be achieved in
OpenCL, SYCL, CUDA, or C++AMP. Listing 1 demonstrates a multi-producer,
multi-consumer ring buffer that is simultaneously accessed by both a host proces-
sor and a throughput coprocessor such as a graphics processing unit (GPU) or
digital signal processor (DSP). This ring buffer is implemented entirely in stan-
dard C++14, utilizing std::atomic to provide synchronization. A number of
issues arise when attempting to implement this example using existing program-
ming models. OpenCL 1.2, SYCL and C++AMP lack the capability for concur-
rent access to a shared data structure from the host processor and an accelerator,
completely preventing the implementation of this example. OpenCL 2.0 devices
may optionally provide the required hardware features to enable the utiliza-
tion of atomic operations to ensure a consistent view of shared virtual memory.
However, OpenCL has a C-based kernel language, requiring separate implemen-
tations of the mpmc ring buffer class for host and accelerator devices. CUDA
uses a C++ dialect for both host and kernel languages, but requires the explicit
annotation of accelerator functions ( device ) and the use of differing data
types and synchronization primitives between host and accelerator, effectively
requiring two separate implementations.

2 Heterogeneous System Architecture

A HSA system consists of a number of agents communicating through a unified
virtual memory system. An agent may be either a hardware or software compo-
nent which interacts with the HSA memory model. Agents schedule work to be
processed by other agents in a system by writing Architected Queuing Language
(AQL) packets into a queue associated with the target agent. A subset of agents
are able to consume kernel dispatch packets. We refer to these agents as kernel
agents. These agents are capable of executing kernels lowered from HSA’s virtual
instruction set.

For example, an AMD Kaveri CPU exposes two HSA agents, one for the
CPU, and one for the integrated GPU. However, only the integrated GPU is
currently capable of consuming kernel dispatch packets.

HSAIL and BRIG

As discussed previously, the HSA specifications do not define a high-level kernel
language. Instead HSA defines an intermediate language, Heterogeneous Sys-
tem Architecture Intermediate Language (HSAIL) and a binary representation,
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BRIG. HSA uses a split compilation model, where high-level languages such as
C++ or Java can be compiled to HSAIL or BRIG offline. At run-time, a finalizer
provided as part of a HSA implementation can be used to lower this HSAIL to
target machine code for a specific kernel agent. For the remainder of this paper,
any references to HSAIL can be assumed to apply equally to both HSAIL and
BRIG, while explicit references to BRIG will refer to the binary form.

HSAIL supports two machine models, referred to as large and small. These
machine models define the size of certain data types, most notably pointer types,
and the size of operands for certain instructions, e.g. the small machine model
does not support 64-bit atomics.

Listing 2 illustrates a simple vector addition kernel expressed in OpenCL C,
while Listing 3 demonstrates a translation of the corresponding kernel to HSAIL.

kernel void vec\_add(global float* a, global float* b, global float* c) {

int i = get\_global\_id(0);

a[i] = b[i] + c[i];

}

Listing 2. OpenCL vector addition kernel.

Memory Model

Agents within a HSA system access shared system memory through a unified
virtual address space. This unified address space ensures that an address passed
between agents will remain valid, subject to some constraints that will be dis-
cussed later in this section. Enabling agents to exchange data by passing point-
ers, rather than requiring copies, can greatly reduce memory bandwidth require-
ments when transferring work between agents when compared to models such
as OpenCL 1.2, which lacks similar guarantees.

prog kernel &vector_add(kernarg_u64 %a, kernarg_u64 %b, kernarg_u64 %c)

{

ld_kernarg_align(8)_width(all)_u64 $d1, [%a]; // Load pointer args.

ld_kernarg_align(8)_width(all)_u64 $d2, [%b];

ld_kernarg_align(8)_width(all)_u64 $d3, [%c];

workitemabsid_u32 $s0, 0; // Get the 1D work-item index.

cvt_u64_u32 $d0, $s0; // Convert index to byte-offset.

shl_u64 $d0, $d0, 2;

add_u64 $d1, $d1, $d0; // Add offset to base pointers.

add_u64 $d2, $d2, $d0;

add_u64 $d3, $d3, $d0;

ld_global_align(4)_f32 $s0, [$d2]; // Load floating point inputs.

ld_global_align(4)_f32 $s1, [$d3];

add_ftz_f32 $s0, $s1, $s0; // Add inputs.

st_global_align(4)_f32 $s0, [$d1]; // Store the result.

ret;

};

Listing 3. HSAIL vector addition kernel.



A C++ Programming Model for HSA 437

Table 1. Characteristics of HSA memory segments

Segment Granularity Persistence Host Pointer size Flat

Access Small/Large Addressable

Private Work-Item Work-Item None 32-bit Yes

Group Work-Group Work-Group None 32-bit Yes

Global System/Agent Application Read/Write 32/64-bit Yes

Read-Only Agent Application API 32/64-bit No

Kernarg Grid Kernel Dispatch Write 32/64-bit No

Arg Work-Item Arg Block None 32-bit No

Spill Work-Item Work-Item None 32-bit No

The unified virtual address space is further subdivided into segments. HSA
defines 7 segments which have differing lifetimes, addressability, access rights and
visibility of updates. These segments are disjoint regions of the virtual address
space.

The private segment holds variables that are local to a single work-item while
the group segment provides storage for variables shared by work-items within
a single work-group. The global segment represents shared system memory and
is used to hold data that is accessible to all agents in the system. Addresses in
the global segment may be read from or written to by all agents in the system,
including the host processor. On systems implementing the full HSA profile, the
stack and heap used by the host processor fall within the global segment. The
readonly segment can be used to hold variables that remain constant during the
duration of a kernel execution. The kernarg segment holds kernel arguments,
and is read-only only from within a kernel dispatch (Table 1).

The arg segment is used to pass arguments to and from functions. Unlike the
kernarg segment, variables is the arg segment are non-uniform across work-items
and are only visible from the work-item with which they are associated. HSAIL
defines a finite number of virtual registers. The spill segment can be used where
necessary to handle register spills.

Instructions which transfer data between registers and memory, such as loads,
stores and atomic instructions, encode the segment of their operands within
the instruction. For example, ld global u32 is a load of a 32-bit integer from
an address in the global segment. We can see this in Listing 3, where loading
the kernel arguments from the kernarg segment into registers requires the use
of ld kernarg instructions, while loading the floating point operands for the
addition from the global segment requires the use of ld global.

Addresses may be associated with a particular segment, or they may be flat
addresses. A flat address can be considered an address in a virtual segment
that encompasses the private, group and global segments. Unfortunately, flat
addresses cannot address data in the readonly segment. A model that operates
entirely on flat addresses would therefore have to choose to eliminate the use of
the readonly segment, which has potential performance implications.
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Secondly, flat addresses require a 64-bit representation under HSA’s large
machine model, increasing register pressure and potentially decreasing compute
density compared to the 32-bit private and group segment addresses. Finally,
using explicitly specified segment addresses provides the HSAIL finalizer with
additional information which may enable further optimization or more efficient
scheduling.

The visibility of writes to shared virtual memory allocations in HSA is modi-
fied by a property referred to as granularity. HSA does not guarantee a consistent
view of memory for every load or store instruction. Instead, the HSA memory
model guarantees that each work-item or agent receives a consistent view with
respect to a set of synchronization points. Memory allocated through the use
of system allocators such as malloc or new is fine-grained. For these alloca-
tions, memory fences, atomic or signal operations, and kernel boundaries may
all act as synchronization points. Some regions of the virtual address space may
only support coarse-grained allocation. Memory from these regions is allocated
through the hsa memory allocate API function. At any point in time, only a
single agent may hold ownership of a coarse-grained allocation, and ownership
is transferred via the hsa assign agent API function. HSA guarantees that the
virtual address of a coarse-grained allocation remains constant when ownership is
transferred between agents. However, the physical location backing an allocation
may change in this case.

3 Programming Model

We adopt a shared-source model, where code for execution on both the host
processor and kernel agents may be contained in the same translation unit.
Each translation unit that contains code for execution on a HSA kernel agent
is compiled twice. One compilation pass generates host code, emitting an ELF
object in the ISA of the host processor (typically x86 64). A second compilation
pass selectively identifies and compiles the subset of functions that are required
for execution on the kernel agents. These functions are compiled into BRIG, and
the BRIG binary is embedded into specially named section of an ELF object.
These object files can then be linked into a final executable. The BRIG objects
are loaded from the executable at runtime, linked to resolve cross translation
unit function calls, and then finalized into the native ISA of each kernel agent
in the system.

This shared-source model is similar to that adopted by existing C++-based
programming models for GPUs and other accelerators such as CUDA, SYCL
and C++AMP. The unified virtual memory system in HSA allows our approach
to relax some of the constraints that we find in models intended for use with
discrete accelerators and disjoint address spaces. Most notably, we are able to
pass data structures between agents by address, rather than relying on container
types such as OpenCL’s buffers. Addresses in the global segment will remain
valid and consistent across agents, allowing us to make use of data structures
that contain pointers as members. This enables the implementation of important
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data structures such as trees and linked lists without the need to make intrusive
changes to accommodate API specific container types.

In general we only require kernel functions to be annotated with an attribute
[[hsa::kernel]] analogous to CUDA requiring the global attribute.
Unlike CUDA though, which requires device functions to be annotated with
device , or C++AMP which requires the restrict(amp) clause for them,

we do not require annotations of device functions, enabling standard C++ code
to be called from a kernel. However, an [[hsa::function]] attribute is provided
to explicitly declare/define (non-kernel) device functions to enable linking them
from device code in other translation units. Like the C++AMP restrict(amp)
the [[hsa::function]] attribute also enables explicit overloading of host func-
tions with device functions that have the same signatures.

[[hsa::kernel]]

void vec_add(float* a, float* b, float* c) {

uint32_t i = rt::builtin::workitemabsid(0);

a[i] = b[i] + c[i];

}

Listing 4. A minimal kernel.

Listing 4 demonstrates a minimal vector addition kernel under our model.
The segment-unqualified pointer arguments are treated as global segment
addresses. This example is equivalent to the OpenCL implementation shown
in Listing 2 and the HSAIL implementation in Listing 3.

The programming models adopted by OpenCL 1.2, SYCL and C++AMP
typically require that data required for processing on an accelerator be copied
into some form of device accessible buffer.

In contrast to this, the unified virtual address space in HSA allows us to
reason that a valid CPU pointer is equivalent to a pointer in the global segment.
This enables us to pass host pointers directly as kernel arguments and dereference
them on kernel agent without the need for an intermediate copy. This allows us
to eliminate the overhead of populating device buffers and copying them from
host to device. CUDA and OpenCL 2 also support shared virtual memory, albeit
requiring specialized allocators in some cases.

float* a, b, c;

auto future = queue->parallel_for(grid_size, vec_add, a, b, c);

future.wait();

Listing 5. Enqueuing a kernel.

Listing 5 demonstrates enqueuing a kernel function using our model. The
parallel for method enqueues a kernel by writing an AQL packet to the cor-
responding queue. The arguments are the grid extents, a function pointer cor-
responding to the kernel function, and a variadic set of arguments to be passed
as kernel arguments. The parallel for function returns a future. The future
is returned immediately after a kernel has been enqueued, and before kernel
execution has completed. Calling the wait member function on the future will
cause execution to block until the kernel has completed execution.
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Lambda functions may also be used to represent kernels, as shown in
Listing 6. When using lambdas to represent kernels, we require the use of an
additional template parameter to provide a name for the kernel. This require-
ment is due to the need for consistent name mangling between host and kernel
compilation.

std::vector<float> a{count};

std::vector<float> b{count};

std::vector<float> c{count};

queue->parallel_for<class vector_add>(count, [&](){

uint32_t i = rt::builtin::workitemabsid(0);

a[i] = b[i] + c[i];

});

Listing 6. Using lambda functions as kernels.

Memory Segments

As discussed in Sect. 2, HSA subdivides its virtual address space into a number
of segments. The arg, kernarg and spill segments can be entirely handled by the
compiler backend without the need to express them in the programming model.

We map segment-unqualified pointers and references to the global segment.
This encompasses the majority of addresses, including stack and heap variables
on the host CPU, and unannotated global variables. This is motivated by the
desire to share unmodified data structures containing pointers between the host
and kernel agents.

Automatic variables declared within the scope of a kernel function, or any
function within the call-graph of a kernel function are implicitly treated as
part of the private segment. As such, it is not necessary to annotate decla-
rations of private variables. Despite this, we provide a generalized attribute,
[[hsa::private]], to enable the annotation of pointers and references to vari-
ables in the private address space. Call-graph duplication and auto/decltype
make this rarely necessary in our experiments.

For group and readonly segments, we provide generalized attributes to anno-
tate allocations, pointers and references.

Variables in the group segment can be allocated as either program scope
global variables, or as static storage duration variables. Unlike OpenCL, we allow
the declaration of group segment variables in any function within the call-graph
of a kernel function, rather than restricting declarations to kernel function scope.
Variables in the group segment are uninitialized by default, and constructors for
class variables will not be called. Where the calling of constructors is required,
it can be accomplished through the use of placement new.

Call-graph Duplication

The memory segment on which load, store and atomic instructions operate is
encoded as part of the instruction representation in HSAIL. Consequently sev-
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eral different implementations of a function may be required for any function
with pointer or reference arguments. One approach to this is to require the
programmer to manually define such alternative implementations. Indeed, our
model allows for this approach. A programmer may choose to overload a function
based on the segment to which any pointer or reference argument belongs.

However, this approach rapidly becomes onerous. Given a function with N
pointer or reference declarations in its parameters, and M possible segments, an
upper-bound of MN additional implementations of a function may be required.
These pointer or reference parameters may be explicit, or implicit, e.g. the this
pointer on non-static member functions, or the implicit pointer added to return
structures. Furthermore, we cannot resolve this issue simply through the use of
flat addresses throughout the application. Whilst the flat segment is defined as
a superset of the private, group and global segments, it does not encompass the
readonly segment, and so the issue persists4.

We resolve these issues through the use of automatic call-graph duplication,
as described by Cooper et al. [8] This triggers in cases where a function call
cannot be resolved due solely to a mismatch between the segments of the para-
meters declared in the callee signature and the arguments of the call expression.
In this case, the callee function is duplicated and its parameters are modified to
correspond to the segments of the arguments of the triggering call expression.
The compiler-internal representation of the duplicated function is then traversed
and updated in order to correctly propagate the modified parameters throughout
the duplicated function. This may require the recursive application of call-graph
duplication to function calls located within the duplicated function.

// A standard C++ function accepting a pointer argument.

void f(int *i) { *i = 0; }

// An integer allocated in the group segment.

[[hsa::group]] int g;

[[hsa::kernel]] void k() {

// An integer implicitly allocated in the private

// segment.

int p;

// Neither call matches the declaration:

// void f(int *)

// Our compiler creates duplicates:

// void f(int[[hsa::private]] *)

// void f(int[[hsa::group]] *)

f(&p);

f(&g);

}

Listing 7. Call-graph duplication.

4 The HSA 1.0.3 runtime for AMD devices also lacks support for flat addresses on the
private segment.
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Listing 7 provides an example of this duplication process. Here we define
a function, f, with a single unqualified integer pointer parameter. Within the
kernel function, k, we find 2 calls to f. The argument to the first function call
is the address of a local variable within the scope of a kernel function (&p), and
is implicitly a member of the private segment. The argument for the second
function call (&g) is the address of a variable allocated in the group segment.
Due to the segments of the pointer arguments, neither call expression matches
the original declaration of f. Therefore, our compiler creates 2 duplicates of f
and modifies the signature of each duplicate to match the arguments found in
the call expression. It will then rebuild the body of each duplicate taking into
account the modified signature to ensure correctness. Finally, the call expressions
are updated to reference the duplicated functions.

Sharing Data-Structures

The strength of our model comes from combining the features previously
described. The combination of HSA’s cache-coherent virtual memory, call-graph
duplication within the compiler and the mapping of segment-unqualified point-
ers to the global segment allows fine-grained coherent sharing of data structures
between the host processor and kernel agents in a manner that is not possible
under existing GPGPU programming models due to either language or hardware
limitations.

// Declare an unordered map and populate it with data.

std::unordered_map<uint32_t, float> map;

populate_map(map);

// Declare a vector to receive results.

std::vector<float> output(SIZE);

// Run a kernel to perform the map lookup in parallel.

auto future = queue->parallel_for<class parallel_map>(SIZE, [&](){

// For simplicity, we use the work-item ID as the search key.

uint32_t i = rt::builtin::workitemabsid(0);

// Perform lookup on map, captured by reference from outer scope.

auto iter = map.find(i);

output[i] = iter->second;

});

future.wait();

// output is now populated with the results of the lookup.

Listing 8. Standard template library classes used within a kernel lambda function.

Listing 8 illustrates this using a parallel map lookup as an example. A kernel
is defined using a lambda function which captures a std::unordered map object
(map) and a std::vector (output) by reference. Each work-item then queries
its unique ID, and uses that ID as a key to perform a lookup on the map and
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storing the result into the vector, output. We made no modifications to the
implementations of std::vector or std::unordered map to accomplish this.

The references to map and output within the lambda function correspond to
addresses in the global segment. Our compiler will then create duplicates of any
functions called directly or indirectly from the kernel, in this case the find mem-
ber function of std::unordered map, the subscript operator of std::vector
and any further functions referenced by them.

This sharing of unmodified standard C++ classes between the host processor
and kernel agents is one of the strengths of our approach. This is only possible
due to the ability of our model to operate directly on pointers without container
types and only minimal need for non-standard attributes, which can often be
hidden by the API. Indeed, all of the user code in Listing 8 is standard C++.

Dynamic memory allocation cannot be performed within a kernel dispatch.
However, kernels are able to submit AQL packets to queues serviced by other
agents, including the CPU. malloc and free can therefore be implemented by
submitting an AQL agent dispatch packet to the CPU and blocking the kernel
until the packet has been processed. This enables the implementation of func-
tionality requiring dynamic memory allocation, such as vector resizing, albeit at
high synchronization cost.

There are some limitations to what we can currently accomplish. We do
not currently support virtual function calls or exception handling. Whilst the
HSA specifications define support for indirect function calls through a function
pointer, the only HSA runtime implementation currently available does not sup-
port this feature.

4 Compiler Implementation

We implement the functionality described within this section as extensions to
Clang [9] and LLVM [10]. The compiler backend used in this work is derived from
the HSAIL LLVM backend published by the HSA Foundation5, with additional
modifications to support the functionality described in the paper.

Clang has been extended with new targets to support both 32 and 64-bit
HSAIL. HSA-specific functionality such as querying work-item IDs is exposed
through the addition of target specific built-in functions.

Only a subset of the complete program source needs to be compiled for
HSA. In order to extract this subset, we identify functions marked with the
[[hsa::kernel]] and [[hsa::functions]] attributes. We then recursively tra-
verse the internal representation of these functions, identifying any function call
expressions and marking these functions as also requiring code generation for
HSA. This same traversal is used to provide the automatic call-graph duplica-
tion described in the preceding section.

These manipulations could be performed at a later stage within the com-
piler through LLVM IR transformations. However, performing them as abstract

5 https://github.com/HSAFoundation/HLC-HSAIL-Development-LLVM.

https://github.com/HSAFoundation/HLC-HSAIL-Development-LLVM
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syntax tree manipulations enables interaction with the C++ type system, in par-
ticular the template system, enabling developers to utilize function overloading
and template specialization based on memory segments.

5 Evaluation

We evaluate the performance of a number of benchmarks on OpenCL and our
HSA-based model. Due to a lack of existing benchmarks for either our model
or HSA, we port a number of OpenCL samples for use as benchmarks. All of
the following benchmarks ran on an AMD A10-7850K processor, with 16 GB of
DDR3-1600 RAM. We measure execution time in terms of synchronous execution
as observed by the host processor. This means that queueing overhead is included
in all results for both OpenCL and our model. All results are the mean of 1000
iterations unless otherwise noted.

Fig. 1. GPU-STREAM: Memory bandwidth

Stream

In order to illustrate the performance characteristics of the memory on our test
system, we use a modified implementation of the STREAM benchmark [11].
The STREAM benchmarks measure sustained memory bandwidth over 4 simple
kernels. We extend GPU-STREAM6 to make use of our compiler and runtime.
GPU-STREAM measures the time required to enqueue a kernel and synchronize
back to the host processor. The cost of copying the input and output arrays
between the host processor and the GPU are excluded from the measurements.
6 https://github.com/UoB-HPC/GPU-STREAM.

https://github.com/UoB-HPC/GPU-STREAM
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From Fig. 1 we observe that coarse-grained memory in HSA and OpenCL
buffers produce similar performance for the Copy, Mul and Add kernels, although
coarse-grained memory produces a more predictable performance curve. We also
observe that using fine-grained system memory appears to have a lower overhead
when dispatching kernels, and so results in improved performance for buffers
below approximately 64 KB. However, fine-grained memory results in signifi-
cantly reduced bandwidth on larger data sets. The OpenCL and HSA runtimes
have a maximum size of 256 MB for OpenCL buffers and coarse-grained alloca-
tions respectively, while fine-grained allocations are only constrained by available
RAM.

The coarse and fine-grained measurements were performed using the same
kernel. The only difference in these cases is the manner in which the memory
was allocated. As such, it is unclear why the performance of coarse-grained allo-
cations in the Triad example differs from the pattern observed in the preceding
examples. In this case, coarse-grained memory fails to achieve the throughput
of fine-grained system memory, and performs significantly worse than OpenCL
buffers.

Bitonic Sort

We evaluated an implementation of Batcher’s bitonic mergesort [12] from the
AMD APP SDK, and provide a comparison across a range of array sizes. Addi-
tionally, we provide results for std::sort from the C++ standard library.
Bitonic sorting requires multiple kernel executions to completely sort a dataset,
and so we reduce our sample size to 100 iterations of the full sorting algorithm.
The results can be found in Fig. 2. None of the results include the initial cost of
populating the input buffer. We also note that the bitonic sort sample found in
the AMD APP SDK, and consequently our port, is implemented for clarity and
not optimized for maximum performance.

Fig. 2. Bitonic sort

For small array sizes, both HSA implementations outperform the OpenCL
implementation. However, these small workloads are the least appropriate to
processing on the GPU, and the throughput of the CPU implementation out-
classes all three GPU variants. For larger datasets(> 105 elements), we observe
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that a GPU-based sort using our HSA-based model and coarse-grained mem-
ory becomes competitive with std::sort. The coarse-grained HSA-based sort
outperforms the OpenCL sort both in terms of throughput and consistency.
However, we note that in the majority of cases, it appears that simply using
std::sort may be both the simplest and more performant option here.

Black-Scholes

We provide a comparison of the Black-Scholes sample from the AMD APP SDK
to a version ported to run on our HSA-based compiler and runtime. The Black-
Scholes kernel relies upon the OpenCL built-in functions for exponential and
logarithmic functions. Whilst HSAIL does provide equivalent instructions to
many of the OpenCL built-in functions, it does not provide base e exponentials
or logarithms. In order to resolve this, we provided our own implementations of
exp and log, adhering to the same precision requirements as described in the
OpenCL specification (� 4 ULP). Beyond providing the necessary implementa-
tions of exp and log, the port makes no algorithmic changes to the kernel being
profiled.

Fig. 3. Black-Scholes

We measure execution time, both inclusive and exclusive of memory copies.
Our results can be seen in Fig. 3. Ignoring the cost of memory transfers, the
OpenCL kernel achieves higher peak performance on large datasets. We attribute
this to a more mature compiler in the AMD OpenCL implementation, when
compared to the combination of our compiler and the finalizer in the HSA run-
time. Our HSA-based runtime benefits from faster kernel dispatchs resulting in
improved performance for small datasets, and also demonstrates a more stable
and predictable performance curve throughout.

When the cost of memory transfers is considered, the fine-grained results are
unchanged due to not requiring copies. However, throughput for both OpenCL
and coarse-grained allocations is reduced. The net result is that whilst fine-
grained allocations produce the highest kernel execution times, the elimination
of copying still leads to the greatest total throughput.
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SVM Binary Tree Search

The SVMBinaryTreeSearch sample from the AMD APP SDK serves to highlight
one of the key advantages of our approach. This sample uses the support for
coarse-grained shared virtual memory introduced in OpenCL 2.0 to implement
a binary tree that is manipulated on both the CPU and GPU. Due to differing
languages used for host code (C++) and device code (OpenCL C) in the sample,
the data structures for representing the tree nodes and representing search keys
are defined twice, in two different source files, but must maintain compatible
binary layouts. Under our model, a single-source language and a single definition
of data types can be used.

For the evaluation, a set of 64 K random numbers are generated and a binary
search tree is constructed from them. We then generate 1 million random search
keys, and perform a parallel search, matching nodes to corresponding search
keys. The results of this evaluation can be found in Fig. 4 and Table 2.

Fine-grained (system allocated) memory performs poorly for this use case.
The fine-grained allocation results in low cache hit rates (34 %) coupled with
a smaller quantity of data fetched from memory. The coarse-grained alloca-
tion achieves much a higher hit rate (80 %), along with a greater quantity of
data fetched. These two examples execute identical kernels, and so we can con-
clude that these performance discrepancies are attributable to differing cache
and memory management strategies for coarse and fine-grained allocations. The
OpenCL implementation results in similar behaviour to the coarse-grained exam-
ple, with our HSA-based runtime achieving a modest speedup whilst also demon-
strating reduced performance variance.

Fig. 4. SVM binary tree search

Table 2. SVM binary tree search

Runtime Execution Std. Fetch size Cache Hit

Time (ms) Dev. (KB) Rate (%)

OpenCL 19.13 0.34 276000 79.8 %

HSA (System) 69.84 0.82 12000 33.6 %

HSA (Coarse) 17.32 0.17 278000 79.5 %
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6 Related Work

Research into high-level programming of parallel and heterogeneous hardware is
expanding rapidly. Given that HSA is relatively new, however, only a small por-
tion of research has targeted it. Initial support for programming HSA platforms
came in the form of tools such as CLOC [13] that do not provide a cohesive pro-
gramming model but rather provide a method to compile and run code on HSA
platforms. In the case of CLOC it gives the programmer the tools to compile
OpenCL kernels to HSAIL offline, and a library to allow the programmer to exe-
cute the kernels. POCL [14] is an open-source OpenCL implementation that has
been used for HSA development [15]. However, the results on HSA were generally
poor compared to native OpenCL, and the publicly available code only supports
OpenCL 1.2. Others have also started to exploit the benefits of HSA to enable
more advanced functionality. The HCC compiler [16] can compile C++AMP
to HSA. This compiler also provides support for a more compact, C++ AMP
derived, model: HC. HC removes some of the limitations of C++AMP while
providing a simpler syntax. More traditionally, the directive-based OpenMP 4.0
allows the programmer to mark regions of code to “offload”, although the pro-
grammer must also provide a description of how to map data to the device.
The GCC compiler has support for targeting HSA devices with these “offload”
regions.

Generic C++AMP can use OpenCL to provide heterogeneous functionality,
but loses the benefits of HSA. There have been various other proposals for C++
models to wrap OpenCL functionality. A version of OpenCL C++ [17] has been
proposed. This still requires separate host and device languages, and although
a unified pointer type is provided it is separate from native pointers and thus
does not allow interoperability with existing libraries. Distinct from this, an
official OpenCL C++ [18] kernel language has been proposed by the Khronos
group. Although this provides many of the benefits of C++, such as classes and
templates it still requires separate host and device languages. To address this
the Khronos group has also released SYCL [7], a C++ shared-source OpenCL
programming model. SYCL’s primary limitation is that it is based on OpenCL
1.2 and thus cannot provide many of the HSA derived benefits of our model.
CUDA [5], a primary competitor to OpenCL, also provides a C++ shared-source
programming model, including a concept of unified memory. It is, however, ven-
dor specific and requires custom keywords and syntax to exploit heterogeneous
functionality. CUDA is API driven, similarly to OpenCL, and thus programs
written in CUDA tend to be far more verbose than in our model.

Finally, there are several library-based solutions for heterogeneous program-
ming, most prominently the Parallel STL and Boost.Compute. The Parallel
STL [19] is strongly influenced by a variety of vendor-specific C++ implemen-
tation efforts. It describes parallel execution policies for STL algorithms, such
as std::sort or std::for each. This provides the programmer with seamless
high-level access to standard parallel functionality, and the ability to compose
their own functionality. Boost.Compute [20] provides a wider range of function-
ality than the Parallel STL, but it is explicitly built on OpenCL concepts and
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thus exposes details such as buffers and queues to the programmer – some-
thing that neither the Parallel STL nor the environment described in this paper
require. The primary limitation of all library-based approaches is what can be
constructed out of the provided building blocks. Language-based approaches,
such as the one described in this paper, allow the programmer more freedom in
what they construct, at the cost of requiring compiler functionality to implement
some features.

7 Conclusions and Future Work

We have described a shared-source C++14 based programming model for HSA,
supported by an enhanced compiler and runtime, mapping the highly segmented
memory model onto the single-address space memory model found in C++. We
do this whilst requiring only limited source code annotations. This enables the
rapid reuse of existing standard C++ code on heterogeneous accelerators. We
demonstrate the fine-grained sharing of data structures between the host proces-
sor and kernel agents, without the need for copies or container types. We have
demonstrated similar performance to OpenCL across a range of benchmarks.

Limitations with the current HSA runtime prevent the implementation of a
number of C++ features. Most notably, the runtime lacks support for indirect
function calls and exceptions. Future work will include support for calling func-
tions through pointers (which also enables calls to virtual methods), the compiler
support for this is described in previous work [8].
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Abstract. A barrier to efficient array programming, for example in
Python/NumPy, is that algorithms written as pure array operations
completely without loops, while most efficient on small input, can lead
to explosions in memory use. The present paper presents a solution to
this problem using array streaming, implemented in the automatic paral-
lelization high-performance framework Bohrium. This makes it possible
to use array programming in Python/NumPy code directly, even when
the apparent memory requirement exceeds the machine capacity, since
the automatic streaming eliminates the temporary memory overhead by
performing calculations in per-thread registers.

Using Bohrium, we automatically fuse, JIT-compile, and execute
NumPy array operations on GPGPUs without modification to the user
programs. We present performance evaluations of three benchmarks, all
of which show dramatic reductions in memory use from streaming, yield-
ing corresponding improvements in speed and utilization of GPGPU-
cores. The streaming-enabled Bohrium effortlessly runs programs on
input sizes much beyond sizes that crash on pure NumPy due to exhaust-
ing system memory.

1 Introduction

High-productivity programming languages are very popular in the scientific com-
munity. They enable rapid prototyping of new ideas, which is essential for timely
scientific discovery; and the shorter, clearer code makes it much easier to verify
correctness. The Python programming language is an example of such a lan-
guage. It provides rapid prototyping [2,30], it can act as glue between library
calls [8,14,33], and it can stand alone with good scalable performance [19,20].
The performance of Python itself1, can be hundreds of times slower than equiv-
alent programs in C, but when NumPy [32] is programmed idiomatically using
array programming, it is possible to achieve reasonable performance. In array
programming, loops are not written explicitly, but instead expressed as opera-
tions on arrays. The Bohrium project [18] takes Python/NumPy performance to
1 The standard interpreter, CPython, implemented in C.
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Fig. 1. Monte Carlo Pi implemented in Python 2.7 and NumPy 1.8 using: (a) for-loop,
(b) array-programming, and (c) Bohrium bytecode (simplified).

the next level and through JIT-compilation provides sequential performance on
par with hand tuned C code and parallel performance on par with hand tuned
OpenMP (SMP), OpenCL (GPU), and MPI (cluster) code. The only require-
ment of the user is that she use the array programming model.

But while array programming is both convenient and facilitates efficient
execution, it introduces its own problems compared to the otherwise low-
performance loops in high-productivity languages such as Python/NumPy, Mat-
lab [24], and R [11]. Consider Fig. 1, which shows two Python/NumPy programs
that approximate π using the Monte Carlo method. In Fig. 1a, a for-loop cal-
culates a single random coordinate in each iteration whereas in Fig. 1b, all N
random coordinates are calculated independently. The Fig. 1b version is how
every teacher and every book will tell you to use array programming in order
to achieve good performance in Python. Indeed, the Fig. 1b version will in most
cases outperform Fig. 1a with two orders of magnitude. However, the memory
requirement of Fig. 1b grows linearly in N. Thus, for large N, the Fig. 1b version
will run out of memory, in contrast to Fig. 1a, which has a constant memory
use. For programs that are written fully as array programs, i.e. when all loops
are formulated as array operations, memory consumption is often asymptoti-
cally the same as its time complexity. In the example of Monte Carlo Pi, this
is manageable as the time complexity is only linear but, as we shall see later,
array programming can quickly lead to high polynomial memory requirements,
causing memory to run out even for small problem sizes.
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The present work uses automatic array streaming to address the explosion
in memory requirements of array programming in Python/NumPy programs.
For the example of Monte Carlo π, instead of allocating the random value
arrays in memory, the idea is to stream the arrays such that only one ele-
ment per computing thread is instantiated at any given time. This streaming
technique is only applicable to temporary arrays, requiring us to detect tempo-
rary NumPy arrays at runtime and stream them. Furthermore, since the whole
point of Python/NumPy is high-productivity, we have to apply this streaming
technique seamlessly so that no change to the original Python/NumPy code is
needed.

In compiler terminology, array streaming is also known as loop fusion when
combined with array contraction (or scalar replacement). It is a well-studied
optimization technique that both improves cache utilization and memory use.
It is NP-hard to do optimally [7], but with the theoretical fusion framework of
[15], it is possible to find solutions that are good enough in practice.

The present work brings this compiler optimization technique to the Python
language by combining three projects: the fusion framework of [15], the OpenCL
kernel generations of [5], and the Bohrium runtime system [18].

2 Array Programming

As an example illustrating the methods used in array programming, consider the
following different implementations of matrix multiplication in Python/NumPy.

Fig. 2. Three matrix multiplication implementations in Python/NumPy. Inputs A and
B are NumPy arrays of same size and compatible shape.
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Fig. 3. An illustration of the NumPy broadcast technique, which we use to implement
matrix multiplication (Fig. 2c).

For the sake of the example, assume that matrix multiplication did not exist in
NumPy and we had to implement it using basic Python/NumPy primitives.

A straightforward approach is to use three nested for-loops (Fig. 2a), which
has a time complexity of O(n3) and requires no extra memory beyond the n×n
input and output matrices, for a total space complexity of O(n2) (for simplicity,
we assume square matrices). However, the implementation is verbose and the
performance is horrible: multiplying two arrays of size 2002 has an execution
time of 5.0 s (Sect. 6 for hardware specifics). This is because all calculations are
done in pure Python.

We can improve performance by implementing the loop over k as an array
operation and a sum (Fig. 2b). The implementation now uses a temporary vector
of length n that it sums over (line 8) but the space complexity is still O(n2).
The code is more readable and outperforms the previous version by an order
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of magnitude: an execution of 0.3 s. Since the multiplication and sum are now
NumPy array operations, a for-loop within the C implementation of NumPy
does the calculation. Still, the implementation calls the NumPy array operations
n2 times, which incurs a significant CPython overhead.

In order to improve the performance even further, we can replace all three
loops with array operations (Fig. 2c). Now, the implementation calculates all
scalar multiplications in one operation and writes the result to the temporary
array T of size n3. It uses a NumPy technique known as broadcast, which basically
means to increase the number of an array’s dimensions by repeating the data of
the original array into the this new dimension (Fig. 3). Due to this broadcast,
the space complexity is now O(n3). However, with a small problem size of 2002

this implementation improves the performance by another order of magnitude:
an execution of 0.02 s. This is the preferred implementation approach in array
programming languages such as Python/NumPy but it is often not possible
because of the memory usage, a simple 10, 000 × 10, 000 matrix multiplication
would require more than 7 TB of memory with this approach.

3 Related Work

The primary contribution of the present work is automatic, seamless streaming
of array operations on parallel hardware. Although numerous projects strive to
improve the efficiency of Python applications, the streaming introduced in this
paper is to the authors knowledge new.

Efforts such as Cython [3], IronPython [9], Jython [29], and Pythran [10]
facilitate static source-to-source translation to C, .NET, Java, and C++, respec-
tively. These projects provide interoperability features with the respective lan-
guages and runtimes. Dynamic approaches based on JIT-compilation is demon-
strated by Weave [12], Numexpr [6], and Numba [28]. Weave lets the user inline
C and C++ code, Numexpr compiles strings containing Python expressions, and
Python code is delegated to Numba by annotating functions.

Compiling Python programs, either statically or dynamically, to representa-
tions closer to the hardware, and thereby bypassing the standard Python inter-
preter upon execution, effectively improves application throughput. However,
none of these approaches fully exploit array semantics for optimization which is
the focus of the work described in this paper.

Several projects target parallel hardware from Python, such as GPG-
PUs, via a multi-dimensional array abstraction. Projects include CudaN-
darray/Theano [4], GPUArray/PyOpenCL/PyCUDA [13], Cudamat [25], and
Gnumpy [31]. However, these are either explicit in the sense that the user must
control data movement and write OpenCL [26]/CUDA [27] kernels or limited
in their support for array notation. None address the issue of maintaining the
array programming abstraction and the associated memory requirements.

The work presented in this paper is in contrast compatible with the NumPy
array abstraction and manages all concerns of mapping array operations to the
hardware.
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A key distinguishing feature of the work described in this paper, in con-
trast to the projects mentioned above, is the focus on treating Python as an
array language. That is, maintaining the high-level abstractions and exploiting
array semantics to extract data-parallelism, analyze dependencies between array
operations to stream operations and utilize the parallel hardware.

Domain specific programming languages and libraries exist for tensor contrac-
tion that make use of array streaming (called loop fusion and memory minimiza-
tion) [1,21] but they are very domain specific. Other projects expose the stream-
ing model explicitly to the user in languages such as NESL [23] and Haskell [22].

4 The Bohrium Runtime System

The open-source project Bohrium2 is a runtime system for high-performance
high-productivity development [17,18]. Bohrium provides the mechanics to cou-
ple an array-programming language or library with an architecture-specific
implementation seamlessly. Bohrium lazily records array operations, such as
NumPy array operations, compiles them into architecture-specific binaries, e.g.
GPGPU kernels, and executes them.

Bohrium consists of a number of components that operate on a hardware
agnostic array bytecode. Components can be architecture-specific but they all
use the same bytecode and communication protocol and can be interchanged.
This design makes it possible to combine components in a setup that match a
specific execution environment without changing the user applications.

Frontend. Figure 4 illustrates the different components that make up the
Bohrium runtime system and how they are connected. At the highest level, we
have the frontend programming language; Bohrium supports Python/NumPy,
C++, and Microsoft .NET. For the examples in this paper, we will only use the
Python/NumPy frontend, but the mechanics of array streaming is unaffected by
the choice of frontend language.

Bridge. Connected to the frontend is a Bridge component, whose job is to
translate the frontend language into Bohrium array bytecode. In the case of
Python/NumPy, the Python array operations and the Bohrium array bytecode
are almost in one-to-one correspondence. Figure 1c shows the list of array byte-
code that the bridge generates when given the Python code in Fig. 1b. The first
bytecode operand is the output array and the remaining operands are either
input arrays or input literals. Since there is no scope in the bytecode, Bohrium
uses DEL to destroy arrays and SYNC to move array data into the address space
of the frontend language – in this case triggered by the Python print statement
(Fig. 1c, line 7). There is no explicit bytecode for constructing arrays; on first
encounter, Bohrium constructs them implicitly.

Note that Bohrium needs no modifications to the Python code – with the
Python command line option python -m bohrium, it is possible to use Bohrium
2 Available at http://www.bh107.org.

http://www.bh107.org
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Fig. 4. Component overview

Fig. 5. The C++/OpenCL source code of the Monte Carlo Pi example (Fig. 1c) that
the GPU backend generates (simplified).
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without changing a single line of the user code. For an in-depth description of
the Python/NumPy bridge, we refer to [16].

Bytecode Optimization. Between the bridge and the execution backend, Bohrium
supports a number of components that make bytecode-to-bytecode transforma-
tions. The specific component setup will vary depending on which optimizations
and fuse strategies one wants to apply. For the purpose of this paper, the goal
of both the optimization and fuse component is to maximize array streaming for
the GPU backend.

The bytecode optimization layers perform a number of useful tasks, the most
important of which are common to the CPU-, GPU-, and cluster vector engines,
such as eliminating temporary arrays.

Optimization-layers can also be backend-specific. For example, an obstacle for
streaming on the GPU is that the standard O(log2 n)-method for 1D reduction3

performs poorly due to the overhead incurred by communication. For GPU, a
faster method is to partition the array into approximately equally sized chunks,
one for each GPU thread. Each thread reduces its own chunk, after which the
usual O(log2 n)-reduction is performed by the CPU(s). This is handled by trans-
forming each 1D-reduction bytecode to two instructions, a reduction over one
axis on a 2D reshaped array, and a second reduction over the resulting vector.
If the shape of the 2D arrays is such that the size of first dimension equals the
number of GPU hardware threads, the first reduction on the GPU will have per-
fect utilization and the second reduction on the CPU will be small, improving
the performance of the overall reduction.

Looking at the Monte Carlo Pi example (Fig. 1c), the change to the byte-
code is straightforward. We represent the arrays, a1, . . . , a8, with two dimensions
instead of one, where the size of the first dimension approximates the number of
GPU hardware threads, and add another SUM after line 12 that will reduce the
now 1D output from the SUM from line 12 to a scalar.

Connected to the optimization component, we have the fuser component,
which fuses array operations that can be executed in a single kernel. The par-
tition of operations into kernels of fused operations is determined by (approxi-
mately) optimizing a cost function designed to maximize the number of streamed
arrays. In the next section, we will describe this process, but for now just assume
that the fuse component fuses array operations into kernels that the GPU back-
end can execute as is.

GPU Backend. After the bytecode has been fused into kernels, the GPU backend
is ready to execute them4.

For each fused bytecode kernel, the GPU backend generates OpenCL source
code, compiles the code, and executes it. For an in-depth discussion of this
3 A reduction performs an associative binary operation on all elements along an axis.

The prototypical reductions are sum and product, but any associative binary opera-
tion can be used.

4 When no GPU is available, the bytecode kernels will be send directly to the CPU
backend.
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code generation, we refer to [5]. Here, we will simply show how the generated
C/OpenCL implementation of the Monte Carlo example (Fig. 5). The mapping
from the bytecode to the OpenCL code is straightforward: each hardware thread
generates some random numbers, apply some arithmetic, and accumulates the
result into v9. Finally, each thread writes the result into an index of the output
array a9, making it possible for the CPU backend to reduce v9 into the final
scalar. Note that beside v9, all the variables are scalars rather than arrays,
streaming the arrays v1–v8.

The GPU backend uses a cache to store previously generated OpenCL ker-
nels, amortizing the compilation overhead.

5 Streaming of Arrays

Streaming of array operations can improve cache utilization and reduce the mem-
ory requirement of the overall program. It is possible to stream an array when
only a single operation reads or writes to that said array – we say that the array
is a temporary array. In order to maximize the number of temporary arrays in
a program, we will combine (or fuse) individual array operation to be executed
together in a single kernel, increasing the number of streamable arrays.

Consider the two for-loops in Fig. 6a, which are fused into one for-loop,
Fig. 6c, with the result of much improved cache utilization since array T and
A are only traversed once instead of two times. For the next level of improve-
ment, the for-loop in Fig. 6d does not allocate the array T at all. Instead, it uses
the scalar t to stream the intermediate result of B[i] * A[i], which is possible
because T is only used within the for-loop – it is a temporary array local to the
for-loop.

Not all fusion of array operations are allowed. Consider the two loops in
Fig. 6b: the second loop traverses the result from the first loop in reverse, we
must compute the complete result of the first loop before continuing to the
second loop. This prevents fusion of the two for-loops and streaming of T, since
it is not temporary to any one for-loop. Additional analysis sometimes allows
transforming the program into a form that is amenable to fusion and streaming,
but this is outside the scope of the present paper. In the remainder of the text,
we will assume that any such transformation has already been performed.

5.1 Fusibility

Array streaming depend on fusing array operations, so it is necessary to deter-
mine which operations we can legally fuse, and which we can profit from fusing.
Generally, it is useful to fuse two array operations when the result of each out-
put array element can be calculated independently without any communication
between threads or processors:

Definition 1 (Fusibility). A Bohrium array operation, f , is data-parallel,
i.e., each output element can be calculated independently, when the following
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Fig. 6. Loop fusion and array contraction in C.

holds: If an input and an output or two output arrays overlap, they must be
identical. We define fusible operations to be those that can be executed together
without losing data-parallelism.

5.2 Fusion of Array Operations

Reference [15] describes methods for finding a partition of operations such that a
cost function is optimized, or near-optimized using a fast approximation heuris-
tic. In the present work, we apply the methods from Ref. [15] to generate kernels
that optimize for array streaming. For completeness, we summarize the method
in this subsection, and a streamlined greedy algorithm is given in Sect. 5.3.

The problem of finding the optimal operation partitions is called the Fusion
of Array Operations Problem (FAO problem), and is defined as follows:

Definition 2. Given a set of array operations, A, equipped with a strict partial
order imposed by the data dependencies between them, (A,

d
<), find a partition,

P , of A for which:

1. All operations within a block in P are fusible (Definition 1).
2. For all blocks, B ∈ P , if a1

d
< a2

d
< a3 and a1, a3 ∈ B then a2 ∈ B. (I.e. the

partition obeys dependency order).
3. The cost of the partition is minimal.

A key feature of the FAO problem is the ability to specify an arbitrary cost
function that defines the cost of a partition. The only requirement is that the
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cost must be monotonic decreasing on fusion, i.e. fusing two array operations
must not increase the cost. In our case, the object is to maximize the number of
streamed arrays thus an appropriate cost is the number of Bohrium arrays that
are not streamed, but could have been.

A partition of the operations is represented by a WSP-state (“Weighted Sub-
routine Partition” [15], Sect. 6), which makes it possible to solve the problem of
finding an optimal partition using graph methods.

Definition 3 (WSP-state). Given a sequence of array operations, a WSP-
state is a quadruple G = (V,Ed, Ef , Ew) that describes a partition of the
operations.

Blocks Each vertex in V represent a sequence of fused array operations that the
Bohrium backend will execute as one binary kernel.

Dependency Edges (V,Ed) is a directed acyclic graph describing dependency
order between blocks i.e. there is an edge (u, v) ∈ Ed if and only if an array
operation in u must precede an array operations in v.

Fuse-preventing Edges (V,Ef ) is a undirected graph describing non-fusibility
between blocks, i.e. there is an edge (u, v) ∈ Ef if and only if an array oper-
ation in u is non-fusible with an array operation in v.

Weight Edges (V,Ew) is a weighted graph such that the weight of edge (u, v)
is the difference in cost from the present partition to the one where u and v
are merged.

To optimize for streaming, the present work uses the Max Contract cost function
from [15], for which the weight of an edge (u, v) ∈ Ew is the number of arrays
created in u and at the same time destroyed in v.

Not all WSP-states are legal:

Definition 4 (Legality). A WSP-state, G = (V,Ed, Ef , Ew), is legal if and
only if:

1. The digraph (V,Ed) is acyclic (i.e. no cyclic dependency between operations).
2. All array operations represented by a vertex, v ∈ V , must be fusible.

It follows directly from Definitions 3 and 4 that any topological ordering of the
vertices in a WSP-state is a correct execution order of the fused array operations.

A WSP-state supports edge contraction:

Merge(G, e)
Given a WSP-state, G = (V,Ed, Ef , Ew), and an edge e ∈ Ed, the function
G′ ← Merge(G, e) contracts the edge e, i.e. the endpoint vertices, (u, v), of
e, are merged into one new vertex x ∈ G′. We avoid parallel edges in Ew by
collapsing them into one and accumulate their weights.

Bottom and top WSP states correspond to the bottom and top partition, where
all instructions are in separate, respectively, the same kernel. Given a sequence of
array operations, we start from the bottom WSP-state in which each array oper-
ation is a vertex, and the edges in Ed, Ef , and Ew are the pair-wise dependencies,
fusibility, and streaming potential between all vertices. The bottom WSP-state
is trivially legal (Definition 4).
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Fig. 7. Function to determine transitive redundancy.

Fig. 8. Function to merge vertices greedily.

5.3 Greedy Algorithm

The Reachability through legal merges proposition (proof in [15]) states that
there exist a sequence of legal merges, starting from the bottom WSP-state, and
ending with a WSP-state that optimizes the cost function.

However, it turns out that finding an optimal WSP-state is NP-hard, hence
not practical. Instead, we will use a greedy approximation algorithm, which
repeatedly fuses the two vertices connected by the heaviest streaming edge while
maintaining legality of the WSP-state.

Let us define some functions from [15]:

Transitive(G, e) (see pseudo code Fig. 7)
Given a digraph, G = (V,Ed), and an edge e ∈ Ed, the function
Transitive(G, e) returns true if and only if e is redundant by transitivity.
An edge, (u, v) ∈ Ed, is redundant when there exist an alternative path in
(V,Ed) from u to v. This is important since merging over a redundant edge
introduces cycles.

Heaviest(Ew)
Given set of edges, Ew, the function e ← Heaviest(Ew) returns the edge
e ∈ Ew with the heaviest weight. The implemention is a simply linear search
through the set with a complexity of O (Ew).

Greedy((V,Ed, Ef , Ew))
Given a WSP-state, G=(V,Ed, Ef , Ew), the function G′ ← Greedy(G)
repeatedly merges over edges, (u, v) ∈ Ew, with the heaviest weight.
Figure 8 shows the implementation that uses the function Heaviest to find
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the edge in (u, v) ∈ Ew with the greatest weight. If (u, v) is redundant by tran-
sitivity, we cannot merge over it since it will introduce cycles and make the
WSP-state illegal (Definition 4(1)). However, since (u, v) is redundant we can
remove it without changing the dependency order between vertices. Similarly,
if (u, v) is in Ef , a merge will fuse non-fusible array operations and make the
WSP-state illegal (Definition 4(2)). Because of these conditions, each merger
returns a new legal WSP-state, which makes the final returned WSP-state,
G′, legal as well.
The number of iterations in the while loop (line 2) is bounded by O (Ew)
since at least one edge, e ∈ Ew, is removed in each iteration either explicitly
(line 5) or implicitly by Merge (line 7).

The Bohrium fuse component uses the greedy algorithm to find a legal par-
tition of the array operations that comes close to maximizing the number of
arrays streamed. It can be shown that the complexity of the greedy algorithm
is O (Ew(V + Ed + Ew)).

6 Evaluation

In this section, we will evaluate the performance of the streaming ability of
Bohrium by comparing it with Native NumPy. We run three different scien-
tific Python programs and report their execution time, which is the mean of
5 identical executions. We also include an error bar that shows two standard
deviations from the mean in the results. Before each execution, we remove any
cache files written by Bohrium or Nvidia/CUDA, so as to make sure we measure
the overhead of compilation. We run on an Intel Core i7-4790k machine with
8 CPU-cores, 8 GB DDR3 of main memory and a Nvidia GeForce GTX 980
GPU with 4 GB DDR5 of memory. It is a standard installation of Ubuntu Linux
14.04.2 with GCC v4.8.4, Python v2.7.10, NumPy 1.8.2, and OpenCL v1.1.

The three scientific Python program is part of an open source benchmark
tool and suite named Benchpress5:

Fig. 9. The X-ray simulation in vectorized form traces all rays from the detector pixels
through the model to the source and calculates the total absorption from the source
to the detector.

5 Available at http://benchpress.readthedocs.org/.

http://benchpress.readthedocs.org/.
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Monte Carlo Pi. A calculation of π using the Monte Carlo method (Fig. 1b).
The time complexity is O(n) where n is the number of random samples, which
we vary from 108 to 1011 throughout the benchmark. The execution uses six
one dimensional arrays of length n. As previously discussed, it is possible for
Bohrium to stream these six arrays such that only an element per GPU-core
is instantiated at a given time.

X-ray simulator. Given a 3D scene represented as voxels, which specifies an
X-ray source, an X-ray detector, and an object, the X-ray simulator cal-
culates the resulting image on the sensor (Fig. 9). The algorithm uses the
AxisAlignedBoundingBox algorithm to calculate distances traveled within a
voxel of each ray. The simulation calculates the distance from the X-ray source
to each voxel, as well as the distance from each detector pixel to each voxel.
Where both distances are not infinite, i.e. the ray intersects the voxel, the
absorption coefficient of the voxel is then added to an absorption tensor.
Finally, a reduction of the absorption tensor, which reduces it down to a 2D
array, sums all absorptions along an X-ray, which is the final simulated image.
The algorithm uses a 5-fold product of 3D scene resolutions and 2D detector
resolutions. The time complexity is O(m3n2) where m3 is the number of grid
points in the model and n2 is the number of pixels in the detector. We fixed
the size of the scene to 503 but varied the detector size from 202 to 6332 in
the benchmark.

Magnetic Field Extrapolation. This program performs a reconstruction of
the Sun’s magnetic field in 3D extrapolated from 2D data. The time com-
plexity is O(n5) where n2 is the number of pixels in the input data, which we
varied from 402 to 1592 in the benchmark.

All three benchmarks exclusively use array programming. Thus, when not
streaming any arrays, the space complexity equals the time complexity.

We perform two kinds of benchmarks – one where we compare Bohrium
with itself and one where we compare Bohrium with Native NumPy. When
comparing Bohrium against itself, we run two executions for each benchmark:
one with streaming enabled and one with streaming disabled thus we evaluate
the direct effect of array streaming. We use the largest possible data sizes that
no streaming permits.

When comparing Bohrium against Native NumPy, we run for a range of input
data sizes. We have chosen the sizes such that the size of the first execution
can fit in memory without any array streaming, i.e. using Native NumPy. In
each following runs, we increase the input data size such that the number of
processed elements increases with an order of magnitude. E.g., in Fig. 11 the
first run processes 3 GB of elements and the second run processes 30 GB etc.
Since Native NumPy runs on the CPU and the Bohrium runs on the GPU, we
do not evaluate the streaming performance in isolation. However, it indicates the
performance boost a user can expect when using Bohrium on a GPU-enabled
system.
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Fig. 10. Speedup of Bohrium with array streaming compared to Bohrium without
array streaming. Both executions runs on the GPU.

Fig. 11. Execution time of the Monte Carlo Pi program.

Finally, we point out that we do not change a single line of NumPy code
before using Bohrium. For example, in order to use Bohrium when running the
Monte Carlo Pi code in Fig. 1b, we simply run the command python -m bohrium
MonteCarloPi.py.

Discussion. Figure 10 shows the performance benefit of array streaming – all
three benchmarks achieve significant speedup when using array streaming.

Figures 11, 12, and 13 show the result of the three benchmarks. In all three
benchmarks, the Bohrium execution outperforms the Native NumPy execution
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Fig. 12. Execution time of the X-ray simulator program.

Fig. 13. Execution of the Magnetic Field Extrapolation program.

significantly – Bohrium with GPU target handles a problem size of two orders of
magnitude greater than Native NumPy, which is restricted to CPU, in approxi-
mately the same time. Array streaming in Bohrium not only enables much larger
problems, it also significantly improves the performance.

In the Monte Carlo Pi benchmark (Fig. 11), the execution time increases
close to linearly with the memory use. This is because the initial problem size
is large enough to utilize most of the GPU-cores, hide the memory latency, and
amortize the JIT compilation overhead.

This is not the case in the X-ray simulator (Fig. 12) and the Magnetic Field
Extrapolation (Fig. 13) benchmark where the execution time between the first
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and the second execution is very small. Here, the initial problem size is not large
enough to utilize the GPU fully, so we see faster-than-linear scaling early on.
The GPU only reaches full utilization (and linear scaling) at around 300 GB
processed elements. This indicates that streaming is absolutely necessary for
making proper use of the GPU in array programming.

7 Conclusion

In this paper, we demonstrate that by combining the theoretical work of array
operation fusion [15] and the automatic parallelization framework Bohrium [18],
it is possible to automatically stream temporary arrays in Python/NumPy pro-
grams without any modification to the code.

Array streaming solves the counterintuitive problem, that fully utilization of
array programming, which improves productivity and performance, also makes
it impossible to run on a machine with a realistic amount of memory. With
our work, we can keep encouraging the scientific community to use array pro-
gramming in Python/NumPy without having to insert for-loops just to avoid an
explosion in memory usage.
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Abstract. Current and next generation HPC systems will exploit accel-
erators and self-hosting devices within their compute nodes to accelerate
applications. This comes at a time when programmer productivity and
the ability to produce portable code has been recognized as a major con-
cern. One of the goals of OpenMP and OpenACC is to allow the user to
specify parallelism via directives so that compilers can generate device
specific code and optimizations. However, the challenge of porting codes
becomes more complex because of the different types of parallelism and
memory hierarchies available on different architectures. In this paper we
discuss our experience with porting the SPEC ACCEL benchmarks from
OpenACC to OpenMP 4.5 using a performance portable style that lets
the compiler make platform-specific optimizations to achieve good per-
formance on a variety of systems. The ported SPEC ACCEL OpenMP
benchmarks were validated on different platforms including Xeon Phi,
GPUs and CPUs. We believe that this experience can help the commu-
nity and compiler vendors understand how users plan to write OpenMP
4.5 applications in a performance portable style.
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1 Introduction

Architecture-specific programming is not an option for performance portabil-
ity, specially for a large scientific application with hundreds of functions and
hundreds of thousands to millions of lines of code. It is often unrealistic to use
these approaches to port the whole application to GPUs, Intel Xeon Phis and
CPUs since this may require a substantial rewrite of the code base in the tar-
get APIs. Although currently over 20 % of supercomputers on the TOP500 list
(based on the number of systems or over 30 % based on the achieved FLOPs)
[26] are equipped with GPUs, Intel Xeon Phis and multicore accelerators, many
users and applications on these systems have not yet taken advantage of their
performance benefits on account of these programming challenges. An effective
higher-level programming model is desperately needed for applications to take
advantage of the power of these accelerators.

One of the goals of directive-based programming is to allow the user to specify
parallelism via directives so that compilers can generate device specific code and
optimizations. However, the task of porting codes with directives is still challeng-
ing because it relies on compilers and users to map different types of parallelism
and memory hierarchies available on different architectures. The programmer
faces the trade-off of tuning their code for a specific platform versus keeping the
code at a higher abstraction with patterns that a compiler can understand and
optimize.

OpenACC is a relatively new directive based solution to program an accelera-
tor which describes the parallelism of an application and relies on the compiler
to generate efficient code. This gives the compiler the flexibility to generate opti-
mized code that works on multiple platforms. It works well on GPUs and mul-
ticore architectures, however, OpenACC is relatively young and not supported
on all platforms. Having a descriptive model is good, but there is no guarantee
that the compiler can generate the most efficient code for a given architecture
because of its limited analysis.

OpenMP, on the other hand, is a more mature and widely used approach for
shared-memory programming. It has been widely supported by industry and
academia. Traditionally, OpenMP uses a prescriptive approach where the user
explicitly specifies the parallel execution strategy and maps it to the underlying
architecture. This is good for performance, as the programmer has more control
over the optimizations, but it affects performance portability across heteroge-
neous architectures (e.g. GPUs, FPGAS). Starting with OpenMP 4.0, the spec-
ification provides new features to make it possible to run codes on both general-
purpose multicore CPUs and accelerators in a work-sharing fashion under a
single programming paradigm. These capabilities have been further improved in
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the progress towards the latest release of the specification, namely, OpenMP 4.5.
Despite the prescriptive nature of OpenMP, by using a “performance portable”
programming style it is possible to provide the compiler the necessary flexibility
to generate efficient code for a variety of underlying target architectures.

The SPEC ACCEL Benchmark [12] is developed by the SPEC High Per-
formance Group (HPG). It is targeted to measure the performance of applica-
tions using hardware accelerated offloading and, thus, complements the existing
SPEC MPI2007 [18] and SPEC OMP2012 [17] benchmarks. The latest release of
SPEC ACCEL is version 1.1 which contains an OpenCL and an OpenACC suite.
The OpenACC suite consists of 15 applications written in C or Fortran. Since
OpenACC implementations cannot (yet) cover all acceleration platforms and to
contrast it with the newly available OpenMP target offloading, the SPEC HPG
members decided to translate this suite to OpenMP. The group aimed at the
most direct translation possible in order provide a semantic equivalence which
enables researchers to compare both platforms. It must be noted that the SPEC
Fair Use Policy forbids a direct comparison of a result from one suite with a
result from another suite, especially using SPEC metrics.1 Nevertheless, it is
obvious that such a comparison is of academic interest which is allowed when
meeting certain requirements.2 The primary goal of this paper is, however, not
to compare the two programming models, but rather report on the difficulties of
the porting process and to provide guidance on how to translate between them or
implement parallelism with them. Unfortunately, we cannot (yet) report actual
performance results since a number of OpenMP compilers and runtimes used by
the various vendors are still in development.

This paper first presents previous work on comparing OpenACC and
OpenMP in Sect. 2. Afterwards the current version of the OpenACC standard
and the OpenMP specification are compared side by side in Sect. 3 to derive
a translation strategy from one to the other. SPEC HPG decided on a fixed
OpenMP “style” for tightly and loosely nested loops based on the feedback from
the OpenMP language committee which is shown in Sect. 4. Section 5 explains
why and how special attention needs to be paid to team synchronization in order
to prevent race conditions. In Sect. 6 the challenges of different interpretations
of the specification by the OpenMP runtime implementors, which can lead to
dramatically different program behavior, are discussed. Finally, Sect. 7 provides
a summary and an outlook into the release plans for the final suite.

2 Related Work

Since the release of the OpenMP 4.0 specification in 2013 [20], compiler imple-
mentations of the incorporated OpenMP Accelerator Model finally get more
mature and support more accelerator architectures. Today, Intel provides offload

1 https://www.spec.org/fairuse.html#Comparisons.
2 https://www.spec.org/fairuse.html#Academic.

https://www.spec.org/fairuse.html#Comparisons
https://www.spec.org/fairuse.html#Academic
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capabilities for its Xeon Phis [10,19] and Cray for NVIDIA GPUs [6]. Oracle also
understands OpenMP 4.0, but runs device constructs on the host [22]. GCC sup-
ports OpenMP 4.0 since its version 4.9.1, but has ignored the offloading features
until April 2015. Its version 5 introduces firstly offloading to Intel’s Xeon Phi
Knights Landing architectures [8] and version 6 adds support for AMD’s Hetero-
geneous System Architectures (HSA) [7]. The clang/ LLVM community is also
actively working on implementing OpenMP offload capabilities for x86, PowerPC
and NVIDIA GPUs [3,4] and they actually planned to add support in its 3.8
release [28]. Instead, current corresponding patches [1] are still reviewed and inte-
grated into Clang’s trunk. PathScale recently introduced OpenMP 4.0 support
for CPUs, AMD and NVIDIA GPUs [23]. Texas Instruments (TI) implements
the OpenMP Accelerator Model for its TI Keystone II architecture compris-
ing of ARMs and DSPs [16]. Finally, two research compilers have been devel-
oped: HOMP builds upon the ROSE OpenMP implementation and generates
CUDA code for NVIDIA GPUs [13], whereas Agathos et al. [2] build upon the
OMPI OpenMP compiler and target boards that contain ARM processors and
an embedded accelerator called Epiphany.

The growing compiler support of the OpenMP Accelerator Model raises the
question on the performance portability across vendors and architectures. While
performance portability across accelerators has been already discussed in the
context of OpenCL [5,24] and OpenACC [9,25], little work has covered it with
respect to the OpenMP Accelerator Model. Wienke et al. [27] compare the offload
capabilities of OpenACC and OpenMP 4.0 using structured patterns but do not
include any performance evaluations. Juckeland et al. [11] present challenges
from porting SPEC ACCEL OpenACC benchmarks to OpenMP 4.0. However,
they specifically target their OpenMP offload code at Intel Xeon Phi architec-
tures and do not discuss design choices across different vendors and architectures.
A broader coverage of architectures and programming models is investigated by
Martineau et al. [15]. They only focus on one application, i.e. the mini-app
TeaLeaf, and compare performance of code versions written in Kokkos, RAJA,
OpenACC, OpenMP 4.0, CUDA and OpenCL across a CPU architecture, an
NVIDIA Kepler GPU and an Intel Xeon Phi (where applicable). Although they
discuss the tradeoff of having a low vs. high number of OpenMP 4.0 target
regions, they do not elaborate on further issues that impact performance porta-
bility of OpenMP 4.0 codes. Lin et al. [14] port two stencil applications using
the OpenMP Accelerator Model. They concentrate on NVIDIA GPUs using the
HOMP compiler and describe arising challenges like complex data types, col-
lapsing, third-party libraries and usage of caches.

In contrast to previous work, this paper covers a comprehensive discussion
of design choices for performance-portable code using the OpenMP Accelerator
Model across 15 different applications. Since SPEC believes in one code for all
compiler vendors and architectures, this is of particular importance.
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3 Porting OpenACC 2.5 to OpenMP 4.5

Since OpenMP 4.5 and OpenACC 2.5 are differing standards, it is important for
users to understand their differences to be able to make informed decisions about
use of each API for a given application to be deployed to attached accelerators.

OpenACC provides constructs that are used to perform computations on an
accelerator device. The acc parallel construct is used to create a parallel region.
Code within this region is offloaded to an attached device for computation. The
similar acc kernels construct creates a program region to be compiled into a
sequence of kernels for execution on the device.

The directive clauses copy, copyin and copyout control the data movement
between host and attached device. To optimize data traffic between host and
device, OpenACC also allows users to create a data region containing one or
more parallel regions, enabling the parallel regions to share the data while it is
resident in device memory.

OpenACC expresses the levels of parallelism via gang, worker and vector
constructs. Each gang contains one or more workers. Users specify the size of
gangs, workers and vectors or allow the compiler to select them automatically.

To support heterogeneous computer architectures, the OpenMP 4.0/4.5 pro-
gramming model changed substantially from previous versions of the API.
The OpenMP “fork-join” model was extended with the introduction of device
constructs for programming accelerators. These allow compute-intensive code
regions to be offloaded to accelerator devices. OpenMP 4.5 uses the target con-
struct to create a data environment on the device and then execute the code
region on that device. Users specify device(device id) to select which accelerator
to use if multiple accelerators are attached to the host.

In OpenMP 4.5, the map clause associates the current data environment on
the host with the device data environment. Data attributes to, from, tofrom and
alloc control data creation and movement for a targeted device. To minimize
unneeded data movement between device and host, OpenMP 4.0 provides the
target data construct for creating a device data environment that is persistent
across multiple contained target execution regions.

To specify the execution configuration for parallel computation on the device,
OpenMP 4.5 uses the teams construct to create a league of thread teams, with
the master thread of each team beginning execution at the onset of the region.
The distribute construct specifies that the workload of one or more loops will be
distributed to thread teams, for which each team will be assigned a chunk of the
workload. The chunk size is determined by current runtime settings. Vectoriza-
tion can be enabled by use of the simd construct.

Side by Side Comparison

What follows is a comparison of OpenMP 4.5 and OpenACC 2.5 constructs. We
assume that the C language is used; comparisons for Fortran are similar. In each
comparison, code fragments are given which have similar or identical behavior
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Table 1. OpenACC 2.5 and OpenMP 4.5 accelerator programming comparison

OpenMP 4.5 OpenACC 2.5

target data data

target {enter, exit} data {enter, exit} data

use_device_ptr() host data

target update update

target parallel

teams gang

- kernels

distribute / parallel for / simd loop [gang / worker / vector]

declare target routine & declare

- cache

atomic atomic

taskwait wait

task -

target nowait async

target depend -

is_device_ptr device_ptr

private / firstprivate private / firstprivate

declare target link declare link

Table 2. Directives to specify execution on accelerator device

OpenMP 4.5 OpenACC 2.5

acc_set_device_num(n)

#pragma omp target device(n) #pragma acc parallel

{ {

... ...

} }

in OpenMP and OpenACC. Since the relationship between the two APIs is not
entirely isomorphic, comments on differences are given when appropriate.

Table 1 presents in summary form a comparison of OpenMP 4.5 and Ope-
nACC 2.5 syntax. Specifics regarding how corresponding constructs compare are
detailed below.

Executing on the Device. In OpenMP, the target directive begins a region of
code to be executed on the accelerator device. In OpenACC, the parallel directive
opens a device execution region (Table 2). In either case, optional syntax can be
used to specify the desired device if multiple devices are present. Both forms allow
optional clauses to specify data transfers to support device code execution; data
regions can also be specified independently, as will be described later.
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Table 3. OpenACC and OpenMP clauses that specify gangs and teams

OpenMP 4.5 OpenACC 2.5

#pragma omp target teams \ #pragma acc parallel \

num\_teams(n) num\_gangs(n) ...—
{ {

... ...

} }

It should be noted that OpenACC also has a kernels directive which can be
used to specify multiple device kernels in sequence, whereas the parallel directive
specifies only a single kernel that runs on the device. OpenACC currently allows
asynchronous device operations which are supported in OpenMP 4.5 via the
target nowait clause.

Specifying Teams/Gangs. In OpenACC and OpenMP, the concept of gangs
or teams denotes a collection of thread groups satisfying certain properties: for
example, it is not possible to synchronize across different gangs or teams over
the lifetime of their existence.

In OpenMP, the teams directive creates a league of thread teams that execute
in the region. For convenience, this directive can be combined with the target
construct; adjacent directives can also be combined for convenience in some
other contexts in OpenMP and OpenACC. In OpenACC, a num gangs clause
for a parallel directive specifies a number of work units that is equivalent to the
OpenMP teams concept.

Table 3 shows how to specify teams and gangs in OpenMP and OpenACC.
In OpenMP a single master thread from each team is active in the structured
block, whereas in OpenACC in the absence of further directives the structured
block executes in “gang-redundant” mode. These directives are generally not
used in this manner in isolation but are combined with additional parallelism at
the thread and vector level.

Similarly to teams and gangs, other levels exist in OpenMP and OpenACC
which we describe on the following sections.

Distributing Loop Iterations to Teams/Gangs. The OpenMP distribute
directive specifies that the iterations of one or more loops will be executed by
the active thread teams. In the absence of further specifications, elements of the
iteration space are each assigned to the master thread of each team and only
these master threads are deployed. The equivalent construct in OpenACC is a
loop directive with distribution of iterations to gangs while still in worker-single
and vector-single mode (Table 4).

For OpenACC and OpenMP, it is possible in some cases to apply loop direc-
tives to multiple nested loops via flattening the iteration space by use of the
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Table 4. Loop directives for distributing loops iterations to teams/gangs

OpenMP 4.5 OpenACC 2.5

#pragma omp distribute #pragma acc loop gang

for (i=0; i<N; ++i) for (i=0; i<N; ++i)

{ {

... ...

} }

Table 5. Loop directives for distributing to teams/gangs and threads

OpenMP 4.5 OpenACC 2.5

#pragma omp target teams \ #pragma acc parallel \

num_teams(n) \ num_gangs(n) num_workers(m) \

thread_limit(m) vector_length(1)

{ {

#pragma omp distribute \ #pragma acc loop \

parallel for gang worker

for (i=0; i<N; ++i) { for (i=0; i<N; ++i) {

... ...

} }

} }

collapse clause. Also, the OpenMP dist schedule clause and the OpenACC tile
clause can be used to control how loop indices are mapped to teams or gangs.

Distributing Loop Iterations to Teams/Gangs and Threads. The dis-
tribute parallel loop directive instructs OpenMP to distribute iterations of a loop
to threads and teams. The corresponding OpenACC loop directive that activates
gang and worker parallelism has similar effects.

Distributing Loop Indices to Teams/Gangs, Threads and Vector
Lanes. In OpenMP the simd directive indicates that a loop should be vec-
torized for the targeted platform. When used in conjunction with the distribute
and parallel loop directive, this has behavior similar to the OpenACC loop direc-
tive with gang, worker and vector parallelism activated. As pointed out in [29],
for OpenACC in some situations it may be possible to specify only gang and vec-
tor parallelism and obtain equivalent behavior, based on optimization decisions
made by the compiler (Tables 5 and 6).

Setting Function Attributes. In OpenACC and OpenMP, a function can
be given attributes to enable it to be executed on an accelerator device. In
OpenMP, the declare target directive specifies that the function can be executed
on the default accelerator device. Similarly, In OpenACC the routine directive



478 G. Juckeland et al.

Table 6. Loop directives for distributing to teams/gangs, threads and vector lanes

OpenMP 4.5 OpenACC 2.5

#pragma omp target teams \ #pragma acc parallel \

num_teams(n) \ num_gangs(n) num_workers(m) \

thread_limit(m) vector_length(k)

{ {

#pragma omp distribute \ #pragma acc loop \

parallel for simd simdlen(k) gang worker vector

for (i=0; i<N; ++i) { for (i=0; i<N; ++i) {

... ...

} }

} }

Table 7. Directives to set function attributes

OpenMP 4.5 OpenACC 2.5

#pragma omp declare target #pragma acc routine

void sub(...) {...} void sub(...) {...}

#pragma omp end declare target

allows the function to be called in a parallel execution region, with an optional
device type clause used to specify the device(s) allowed. See Table 7

To support nested levels of parallelism spanning multiple layers of subroutine
calls, OpenACC also permits the gang, worker and vector clauses. The gang
clause, for example, denotes that the function or one of its callees can contain a
loop with gang, worker or vector parallelism; likewise, worker for worker or vector
parallelism and vector for vector parallelism. Use of the seq clause indicates that
the function and callees do not specify any parallelism and thus can be called at
any parallelism level.

The OpenMP declare simd directive specifies that a function, when called in
a simd region, will execute by using simd instructions when appropriate.

Creating a Data Region. OpenMP and OpenACC also have a mechanism
for specifying a data region, which is a period of execution time with distinct
beginning and end for which the residence of a data object on the device can be
defined. This region can be identical to the parallel execution region or can be
specified independently as described here. The relevant operations that can be
selected are to allocate memory for the object on the device and copy the host
data object to the device on region entry and to copy the data object back to
the host and delete the device object on exit.

The OpenMP target data directive is used to specify data transfers between
host and accelerator within a code region. The same behavior in OpenACC can
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Table 8. Directives for specifying a data region

OpenMP 4.5 OpenACC 2.5

acc_set_device_num(n)

#pragma omp target data device(n) \ #pragma acc data \

if(expr) \ if(expr) \

map(to:a[0:n]) \ copyin(a[0:n] \

map(tofrom:b[0:n]) \ copy(b[0:n]) \

map(from:c[0:n]) \ copyout(c[0:n]) \

map(alloc:d[0:n]) create(d[0:n])

{ {

... ...

} }

be effected using the data directive. Table 8 shows the corresponding clauses for
the two directives. The same effects can be obtained for a parallel execution
region by using these clauses to control data behavior on entry to and exit from
the parallel region. It should be noted that OpenACC also provides the enter
data and exit data clauses which allow more flexible specification of data regions
not associated with a single code block.

Updating Data Objects. Within the data region it may be necessary to
refresh the host data object with the corresponding data on the device or vice
versa (Table 9). The OpenMP target update directive is an executable directive
which performs a refresh of a host data item from the device copy of the item
with the from clause or vice versa with the to clause. In OpenACC this is
accomplished with the update directive using the host clause or device clause,
respectively. It should be pointed out that in OpenMP the device keyword has
a different meaning from OpenACC: it specifies which of multiple devices to use
for a device operation.

Defining Device Data Objects. In OpenACC and OpenMP it is possible
to specify that a data item is associated with an implicit data region for the
lifetime of the item (Table 10). This can be done with the OpenMP declare
target directive or the OpenACC declare directive. The OpenACC version allows
greater control over the data region by allowing the transfer clauses such as
“copy”, and “copyin” to specify transfers.

Table 9. Directives for updating a data object

OpenMP 4.5 OpenACC 2.5

double a[n], b[n]; double a[n], b[n];

#pragma omp target update from(a[0:n]) #pragma acc update host(a[0:n])

#pragma omp target update to(b[0:n]) #pragma acc update device(b[0:n])
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Table 10. Directives for defining device data objects

OpenMP 4.5 OpenACC 2.5

#pragma omp declare target

double target[n]; double target[n];

#pragma omp end declare target #pragma acc declare copy(z[0:n])

4 Translating the Parallelization of Nested Loops

Nested loops, i.e. two or more loops can be grouped into tightly or loosely nested
loops. Their parallelization strategy is similar and discussed in the following.

Tightly Nested Loops are two or more loop constructs that have no interme-
diate program statements. They are common when iterating over the elements of
a multi-dimensional data structures where each loop represents a running index
for one dimension. Such loops also offer a number of code optimization options,
e.g. loop fusion or blocking. At the same time they can also be parallelized—at
least for all loops that have no loop carried data dependencies.

The OpenACC suite of the SPEC ACCEL uses both the parallel loop and
the kernels construct to parallelize tightly nested loops as shown in the exem-
plary code below. The main difference between the two is that the parallel loop
guarantees a parallizable loop while the kernels construct places the burden of
identifying parallelism by data dependency analysis on the compiler.

1 #pragma acc parallel loop \

collapse (3)

3 for (i=0;i<L;i++) {

for (j=0;j<M;j++) {

5 for (k=0;k<N;k++) {

a[i][j][k]=...

7 }

}

9 }

1 #pragma acc kernels

for (i=0;i<L;i++) {

3 for (j=0;j<M;j++) {

for (k=0;k<N;k++) {

5 a[i][j][k]=...

}

7 }

}

The OpenACC compiler can map both statements in the same fashion to
the underlying parallelization target using both block and thread level paral-
lelism as well as vectorization. Translating such a construct to OpenMP target
directives requires a manual mapping of these two different strategies due to
the prescriptive nature of OpenMP. The following translation was applied to all
tightly nested loops to maintain the “spirit” of the OpenACC version and to
allow for the largest possible platform portable parallelization. It must be noted
that the collapse level was reduced by one in order to make room for the simd
clause on the innermost loop to enable vectorization of this loop level. The inner-
most loop was not collapsed with the rest to avoid the performance penalties
that the simd directive can experience due to array index recalculation.
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#pragma omp target teams

2 #pragma omp distribute parallel for collapse (2)

for (i=0;i<L;i++) {

4 for (j=0;j<M;j++) {

#pragma omp simd

6 for (k=0;k<N;k++) {

a[i][j][k]=...

8 }

}

10 }

Loops with data dependencies are moved to the innermost level to prevent
unnecessary thread synchronization.

Loosely Nested Loops are two or more loops constructs that have intermedi-
ate code in between. They typically occur when one outer (or inner) loop is used
to iterate over something other than the elements of the current data structure,
e.g. an outer loop the counts the overall simulation time steps of the iteration. An
example OpenACC implementation of such a construct could be as shown below
(left side). The OpenMP implementation (right side) uses a similar approach as
previously: It moves the target team region as far outside as possible and then
creates distribute parallel for and simd regions for each inner loop construct.

#pragma acc kernels

2 for (i=0;i<L;i++) {

// initialization
4 #pragma acc loop

for (j=0;j<M;j++) {

6 b[j]=...

}

8 // some more stuff
#pragma acc loop \

10 collapse (2)

for (j=0;j<M;j++) {

12 for (k=0;k<N;k++) {

a[j][k]=...

14 }

}

16 }

#pragma omp target teams

2 for (i=0;i<L;i++) {

// initialization
4 #pragma omp distribute \

parallel for simd

6 for (j=0;j<M;j++) {

b[j]=...

8 }

// some more stuff
10 #pragma omp distribute \

parallel for

12 for (j=0;j<M;j++) {

#pragma omp simd

14 for (k=0;k<N;k++) {

a[j][k]=...

16 }

}

18 }
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This approach is, however, only valid when there is no data dependency
between the inner parallel regions, as is discussed in the following section.

5 Multiple Parallel Regions and Team Synchronization

A team in OpenMP is a group of one or more threads that cooperatively execute
a region. To fully exploit hardware resources of an accelerator it is often necessary
to distribute work across a league of teams. For instance, on a CUDA-enabled
GPU a team is equivalent to a block, and a league of teams is simply a grid;
executing a CUDA kernel with only a single block generally does not make
effective use of the GPU hardware.

Consider the following example:

#pragma omp target teams

2 {

#pragma omp distribute

4 #pragma omp parallel for

for (i = 0; i <= gp21; i++) {

6 a[i] = ...

}

8 }

Iterations of the parallel loop are chunked and distributed across teams. Each
team, in turn, partitions its chunk of iterations across its threads.

The teams in a league may run concurrently, though not all teams in the
league are required to do so. For instance, a conforming implementation is free
to have a subset of the teams running concurrently to completion while the
remainder of the teams in the league wait their turn to be scheduled for execu-
tion. This flexibility in implementation means that OpenMP can be implemented
on many accelerators architectures, but also that it is not possible to synchronize
the teams in a league with each other while they are running. Thus, barriers only
synchronize the threads within a team, and do not synchronize across teams in
a league.

While the OpenMP standard defines an implicit barrier across all threads
within a team after the parallel construct, there can be no such barrier across
teams after the distribute directive. This may lead to race conditions if the user
incorrectly assumes an implied barrier after the distribute directive.

Consider the following code snippet where the iterations of two consecutive
loops are distributed across one or more teams and then parallelized across
threads in a team. Elements of array ‘a’ are modified in the first loop and read
from in the second.
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#pragma omp target teams

2 {

#pragma omp distribute parallel for

4 for (i = 0; i <= gp21; i++) {

a[i] = ...

6 }

#pragma omp distribute parallel for

8 for (i = 0; i <= gp21; i++) {

... = a[i+1]

10 }

}

Suppose only one team is launched at runtime. Due to the implied barrier at
the end of the parallel construct of the first loop, all threads in the team wait
until all elements of array ‘a’ are flushed to storage before proceeding to the
second.

If, instead, two or more teams are launched at runtime, it is possible for some
teams to be executing the first loop while other teams have proceeded to the
second, or even for some teams to have fully completed the entire target region
before others have started. Since there is no implied barrier after the distribute
construct, a thread in one team executing the first loop may be in a data race
with a thread in another team executing the second.

The only way to synchronize work distributed across a team is through the
implicit synchronization point at the end of the target construct; execution of
a target region is not considered complete until all teams in the league that is
executing the region have completed. Thus, to avoid a data race we must split
the above into two separate target constructs as shown below:

1 #pragma omp target teams distribute parallel for

for (i = 0; i <= gp21; i++) {

3 a[i] = ...

}

5 #pragma omp target teams distribute parallel for

for (i = 0; i <= gp21; i++) {

7 ... = a[i+1]

}

6 OpenMP 4.5 and the Different Implementations

The OpenMP 4.0 specification [20] released in July 2013 introduced the OpenMP
Accelerator Model. In the specification, the OpenMP API was extended to sup-
port accelerator and SIMD programming, allowing the user to specify regions of
code that can be offloaded to one or more target devices. More recently, with
the release of the OpenMP 4.5 specification [21], support for the Accelerator
Model was further extended. Several major changes in OpenMP 4.5 affect the
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accelerator model including: new default data-mapping attributes, unstructured
data mapping support and asynchronous execution, as well as runtime routines
for memory management, extended attributes for SIMD loops, among others.

New Default Data-Mapping Attributes. Scalar and pointers variables now
are firstprivate by default. In the previous version of the specification, these vari-
ables were implicitly map(tofrom:). Variables other than scalars are by default
declared as map(tofrom:), such as arrays or the contents of shaped pointers.
As a result, scalar variables in reduction clauses must be explicitly scoped with
map(tofrom:), otherwise the final value is not propagated from the device to the
host. This new default behavior improves the performance to the target region
as it avoids unnecessary data transfers from the accelerator.

Unstructured Data Mapping. The changes to default data-mapping
attributes, in combination with the newly introduced target enter data and tar-
get exit data constructs, provide better support for unstructured data mapping
on devices. The programmer now has greater flexibility to specify target data
regions with dynamic extents that may go over several call chains or across files.

Asynchronous Execution. The nowait and depend clauses are added as
options to the target construct and improve support for asynchronous execu-
tion of target tasks on accelerator devices. These two clauses provide a greater
degree of flexibility for task execution. The nowait clause, for example, allows
for execution of the target region to be asynchronous, and the depend clause
specifies the data flow dependences of the implicit task of target region.

Device Memory Management. Several runtime routines are introduced
to better manage memory on target devices, including routines to allocate,
copy, and free device memory via omp target alloc, omp target memcpy, and
omp target free, respectively. In addition, routines to control the mapping of
device pointers to host pointers are added via the omp target associate ptr and
omp target disassociate ptr constructs. Furthermore, the omp target is present
routine can be used to determine if a pointer in the host is associated with an
allocated area on the device.

SIMD Width. The simd clause is extended to allow the programmer to spec-
ify the preferred number of concurrent iterations to execute per SIMD chunk
via the simdlen clause. The actual number of iterations executed, however, is
implementation dependent.

Certain behaviors of the OpenMP 4.5 accelerator model execution are imple-
mentation defined, and as such, are left for compiler implementors to optimize
for specific architectures. For example, when a teams construct is executed, a
league of threads is created, where the total number of teams is implementation
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defined but must be less than or equal to the number of teams specified by the
num teams clause. If the user does not specify the num teams clause, then the
number of teams is left completely to the implementation.

Similarly, the maximum number of threads created per team is implementa-
tion defined. The user has the option to specify a thread limit clause that gives
an upper bound to the implementation defined value for the number of threads
per team. The purpose of this implementation defined behavior is to allow the
compiler or runtime to pick the best value for a given target region on a given
architecture. If a parallel region is nested within a teams construct, the number
of threads in a parallel region will be determined based on Algorithm 2.1 of the
OpenMP 4.5 specification [21]. A user can request a given number of threads for
a parallel region via the num threads clause.

For work-sharing constructs such as distribute and parallel for/do, if no
dist schedule or schedule clauses are specified, the schedule type is implementa-
tion defined. For a SIMD loop, the number of iterations executed concurrently
at any given time is implementation defined, as well. The preferred number of
iterations to be executed concurrently and/or its safe values for SIMD can be
specified via the simdlen and safelen clauses, respectively.

The Intel 16.2 compiler, for example, sets the default value for num teams to
one and attempts to use all the number of threads available on the host. When
using an Intel Xeon Phi as an accelerator in offload mode, the Intel compiler
reserves one core on the coprocessor to manage the offloading, and uses all the
remaining threads available on the Intel Xeon Phi (Knights Corner) for execu-
tion. On the other hand, the Cray 8.4.2 compiler, by default, uses one team
and one thread when running on the host. When running on the GPU, how-
ever, if there is a nested parallel region within a team, it defaults to one thread
per parallel region. Another example of an implementation dependent behavior
can be observed in the LLVM compiler, which defaults to schedule(static,1) for
the parallel loops when executed inside a target region that is offloaded to a
GPU. Due to the slightly different interpretations of the OpenMP specification,
it is crucial to understand how the specific compiler being used implements a
particular feature.

7 Summary and Outlook

Moving from one directive based offloading scheme to another proved more chal-
lenging than anticipated—and suggested by initial publications comparing Ope-
nACC and OpenMP 4.0. Finding a way of translating the described parallelism
of the SPEC ACCEL OpenACC applications in a platform and performance
portable way to the prescriptive format of OpenMP 4.5 required multiple iter-
ations as well as feedback from all HPG members that had (early) access to
various OpenMP 4.5 compilers and runtimes. In the end, the group decided on
the rather straightforward mapping for trivial conversions as described in Sect. 3
and chose the approach from Sect. 4 to translate nested loops. Using this app-
roach, we were able to write OpenMP 4.5 in a “performance portable” style,
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that is, the group was able to produce a version of the OpenMP target suite
that runs on all tested platforms without any significant performance penalties.
We believe that this style of OpenMP programming gives the compiler and run-
time significant amount of flexibility to optimize OpenMP 4.5 to a variety of
platforms.

SPEC HPG acknowledges that, while the group tried for the most platform
compatible style for OpenMP directives, different targets can achieve an even
better performance with platform specific optimizations to the OpenMP direc-
tives. These optimizations could include a specific thread scheduling, workload
distribution, different collapse levels, or even the removal of directives. In order
to allow targets and platforms to showcase this “better” use of directives, SPEC
HPG intends to allow code modifications to all directives for submissions using
the peak metric.

The SPEC High Performance Group is currently reviewing all benchmark
suite applications with the goal of freezing their code one after another. Once
this is accomplished, the suite will go into the release cycle which includes a
blind submissions phase to populate first officially published results. It is the
declared goal to release the suite well within 2016.
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Abstract. Many scientific codes consist of memory bandwidth bound
kernels — the dominating factor of the runtime is the speed at which
data can be loaded from memory into the Arithmetic Logic Units, before
results are written back to memory. One major advantage of many-core
devices such as General Purpose Graphics Processing Units (GPGPUs)
and the Intel Xeon Phi is their focus on providing increased memory
bandwidth over traditional CPU architectures. However, as with CPUs,
this peak memory bandwidth is usually unachievable in practice and so
benchmarks are required to measure a practical upper bound on expected
performance.

The choice of one programming model over another should ideally not
limit the performance that can be achieved on a device. GPU-STREAM
has been updated to incorporate a wide variety of the latest parallel
programming models, all implementing the same parallel scheme. As
such this tool can be used as a kind of Rosetta Stone which provides
both a cross-platform and cross-programming model array of results of
achievable memory bandwidth.

1 Introduction

The number of programming models for parallel programming has grown rapidly
in recent years. Given that they in general aim to both achieve high performance
and run across a range of hardware (i.e. are portable), the programmer may hope
they are abstract enough that they enable some degree of performance portability.
In principle therefore, one might expect that, when writing or porting a new
code, the choice of parallel programming language should largely be a matter of
preference. In reality there are often significant differences between the results
delivered by different parallel programming models, and thus benchmarks play
an important role in objectively comparing across not just different hardware,
but also the programming models. This study aims to explore this space and
highlight these differences.

Many scientific codes are memory bandwidth bound, and thus are commonly
compared against the STREAM benchmark, itself a simple achievable memory
c© Springer International Publishing AG 2016
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bandwidth measure [10]. In this work we implemented the STREAM benchmark
in a wide variety of parallel programming models and across a diverse range of
CPU and GPU devices, comparing the percentage of theoretical peak that was
achieved.

Specifically, we make the following contributions:

1. We port the STREAM memory bandwidth benchmark to seven parallel pro-
gramming models, all of which support many-core processors: Kokkos, RAJA,
OpenMP 4.x, OpenACC, SYCL, OpenCL and CUDA.

2. We present performance portability results for these seven parallel program-
ming models on a variety of GPUs from two vendors and on several genera-
tions of Intel CPU along with IBM’s Power 8 and Intel’s Xeon Phi (Knights
Landing).

3. We update the GPU-STREAM benchmark to provide a ‘Rosetta Stone’, a
simple example code which can assist in understanding how to program in
the different programming models. This will also enable testing of future
programming models in a simple way.

The paper is structured as follows: in Sect. 2 we introduce the STREAM
benchmark and explain the basic structure. In Sect. 3 we describe the key features
of the programmings models we use in this paper, before presenting performance
results in Sect. 4. Finally we conclude in Sect. 5.

2 Measuring Memory Bandwidth

The STREAM Benchmark [10] measures the time taken for each of four simple
operators (kernels) applied to three large arrays (a, b and c), where α is a scalar
constant:

1. Copy: c[i] = a[i]
2. Multiply: b[i] = αc[i]
3. Add: c[i] = a[i] + b[i]
4. Triad: a[i] = b[i] + αc[i]

These kernels have been demonstrated to be memory bandwidth bound. The
number of bytes read from and written to memory can be modelled by visual
inspection of the source code. We let β be the size in bytes of an element —
for double precision floating point β = 8. For an array containing N elements,
the copy and multiply kernels read Nβ bytes and write Nβ bytes, totalling
2Nβ bytes. The add and triad kernels both read 2Nβ bytes and write Nβ bytes,
totalling 3Nβ bytes. Running the kernels in the order enumerated above ensures
that any caches are invalidated between kernel calls; N is chosen to be large
enough to require the data to be moved from main memory — see [10] for the
rules of running STREAM. The achieved sustained memory bandwidth can be
found as the ratio of bytes moved and the execution time of the kernel. A typical
modern CPU can achieve a STREAM result equivalent to 80 % or more of its
peak memory bandwidth.
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GPU-STREAM is a complementary benchmark to the standard CPU version
of STREAM. GPU-STREAM enables the measurement of achievable memory
bandwidth across a wide range of multi- and many-core devices [4]. The first ver-
sion of GPU-STREAM implemented the four STREAM kernels in OpenCL and
CUDA, allowing the benchmark to be used across a diverse set of hardware from
a wide range of vendors. As a tool it allows an application developer to know how
well a memory bandwidth bound kernel is performing. GPU-STREAM is Open
Source and available on GitHub at github.com/UoB-HPC/GPU-STREAM. The
webpage maintains a repository of all our results and we encourage submission of
additional measurements. In this paper we expand GPU-STREAM to consider
a second dimension to this reference point, namely the programming model.

2.1 Related Work

The deviceMemory benchmark from the Scalable HeterOgeneous Computing
(SHOC) Benchmark Suite is an implementation of the triad STREAM kernel [3].
However, this also includes the PCIe transfer time in the bandwidth measure-
ment. Including this factor hides the bandwidth to device memory itself. In a
large scale application consisting of many kernels the transfer of memory to the
GPU would be performed upfront and data would not be transferred at each
kernel execution. As such comparing performance “relative to STREAM” is not
possible with the SHOC benchmark.

The clpeak benchmark, whilst measuring device memory bandwidth imple-
ments a reduction so is not a direct comparison to STREAM [1].

The Standard Parallel Evaluation Corporation (SPEC) ACCEL benchmark
suite whilst containing many memory bandwidth bound kernels does not include
a STREAM kernel [16].

To the authors knowledge, the only study that has compared the same simple
benchmark in all the programming models of interest across a wide range of
devices is one they themselves performed, where the TeaLeaf heat diffusion mini-
app from the Mantevo benchmark suite was used in a similar manner to measure
performance portability [6,9].

3 Programming Models

A parallel programming model along with an implementation of that model
provides programmers a way to write code to run on multiple physical execu-
tion units. A common way of providing this functionality is via an Application
Programming Interface (API) which may be through function calls, compiler
directives or an extension to a programming language.

We briefly introduce each of the programming models used in this paper.
Due to the simplicity of the STREAM kernels, we also include the triad kernel
in each model to enable the reader to make a look-and-feel comparison. A similar
approach was taken with the TeaLeaf mini-app in. This approach also helps to
demonstrate the similarities and differences between these parallel programming

https://github.com/UoB-HPC/GPU-STREAM
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Fig. 1. STREAM triad baseline kernel in C++

models, exposing how intrusive or otherwise the models may be for existing
code. We take the standard STREAM triad kernel written in a baseline of C++
running on a CPU in serial, as shown in Fig. 1.

The update to the GPU-STREAM benchmark [4] presented in this paper has
been designed in a plug-and-play fashion; each programming model plugs into a
common framework by providing an implementation of an abstract C++ class.
This means that the “host code” is identical between different models. Note
that an independent binary is built per parallel programming model, avoiding
any possibility of interference between them. Further programming models are
simple to add using this approach.

In considering the memory bandwidth of kernels alone, the transfer of mem-
ory between the host and device is not included as in our previous work. There-
fore timings are of the kernel execution time and measure the movement of
memory on the device alone. The framework developed ensures that all data
transfer between host and device is completed before the timing of the kernels
are recorded. This therefore requires that each kernel call is blocking so that
the host may measure the total execution time of the kernels in turn. This is
consistent with the approach in the original STREAM benchmark.

Additionally our framework has memory movement routines to ensure that
data is valid on the device a priori to the kernel execution.

3.1 OpenCL

OpenCL is an open standard, royalty-free API specified by Khronos [11]. The
model is structured such that a host program co-ordinates one or more attached
accelerator devices; this is a fairly explicit approach as the API gives control over
selecting devices from a variety of vendors within a single host program. Because
OpenCL is designed to offload to generic devices, vendor support is widespread
from manufactures of CPUs, GPUs, FPGAs and DSPs.

Each OpenCL device has its own memory address space, which must be
explicitly controlled by the programmer; memory is not shared between the host
and device. OpenCL 2.0 introduced a Shared Virtual Memory concept which
allows the host and device to share an address space, although explicit syn-
chronisation for discrete devices is still required via the host to ensure memory
consistency.
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Kernels are typically stored as plain text and are compiled at run time. The
kernels are then run on the device by issuing them to a command queue. Data
movement between host and device is also coordinated via a command queue.

The host API is provided via C function calls, and a standard C++ interface
is also provided. Kernels are written in a subset of C99; OpenCL 2.2 provisionally
allows kernels to be written in C++. The GPU-STREAM triad kernel in OpenCL
C99 is shown in Fig. 2.

Fig. 2. OpenCL triad kernel

3.2 CUDA

CUDA is a proprietary API from NVIDIA for targeting their GPU devices [12].
CUDA kernels are written in a subset of C++ and are included as function calls
in the host source files. They are compiled offline.

The API is simplified so that no explicit code is required to acquire a GPU
device; additional routines are provided to allow greater control if required by
the programmer.

In the more recent versions of CUDA the memory address space is shared
between the host and the GPU so that pointers are valid on both. Synchroni-
sation of memory access is still left to the programmer. CUDA also introduces
Managed memory which allows a more automatic sharing of memory between
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host and device. With upcoming Pascal GPUs, the GPU is allowed to cache data
accessed from the host memory; previously it was zero copy.

The GPU-STREAM triad kernel is shown in Fig. 3. Note that CUDA requires
specification of the number of threads per thread-block, therefore the size of the
arrays must be divisible by 1024 in our implementation.

Fig. 3. CUDA triad kernel

3.3 OpenACC

The OpenACC Committee, consisting of members including NVIDIA/PGI, Cray
and AMD, partitioned from the OpenMP standard to provide a directive-based
solution for offloading to accelerators [13]. The accelerator is programmed by
adding compiler directives (pragmas or sentinels) to standard CPU source code.
A few API calls are also provided to query the runtime and offer some basic
device control and selection.

There are two different options for specifying the parallelism in offloaded
code. The OpenACC parallel construct starts parallel execution on the device,
redundantly if no other clauses are present. The loop construct is applied to the
loop to describe that the loop iterations are to be shared amongst ‘workers’ on
the device. The kernels pragma indicates that the region will be offloaded to
the device as a series of ‘kernels’ and any loops encountered will be executed as a
kernel in parallel. The kernels construct allows the compiler to make decisions
about the parallelism, whereas the parallel construct gives the programmer
control to define the parallelism. The parts of the code which are run on the
accelerator are compiled offline, and can be tuned for particular accelerators via
compiler flags.

Current implementations of OpenACC can target devices including AMD and
NVIDIA GPUs, IBM Power CPUs and x86 multi-core CPUs. Current OpenACC
compilers that are available include GCC 6.1, Cray and PGI (NVIDIA).
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The GPU-STREAM triad kernel is shown in Fig. 4. Note that a wait clause
is required for the offload to be blocking as is required by our framework to
ensure timing is correct. The present clause specifies that the memory is already
available on the device and ensures a host/device copy is not initiated.

Fig. 4. OpenACC triad kernel

3.4 OpenMP

The OpenMP specification from the OpenMP Architecture Review Board
has traditionally allowed thread based parallelism in the fork-join model on
CPUs [14]. The parallelism is described using a directive approach (with prag-
mas or sentinels) defining regions of code to operate (redundantly) in parallel on
multiple threads. Work-sharing constructs allow loops in a parallel region to be
split across the threads. The shared memory model allows data to be accessed
by all threads. An OpenMP 3 version of the triad kernel, suitable for running
only on CPUs is shown in Fig. 5.

The OpenMP 4.0 specification introduced the ability to offload regions of
code to a target device. The approach has later been improved in the OpenMP
4.5 specification. Structured blocks of code marked with a target directive are
executed on the accelerator, whilst by default the host waits for completion of
the offloaded region before continuing. The usual work-sharing constructs allow
loops in the target region and further directives allow finer grained control of
work distribution.

Memory management in general (shallow copies) is automatically handled
by the implementation; the host memory is copied to the device on entry to the
offloaded region by natural extensions to the familiar implicit scoping rules in
the OpenMP model. Finer grained control of memory movement between the
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Fig. 5. OpenMP triad kernel

Fig. 6. OpenMP v4 triad kernel

host and device is controlled via target data regions and memory movement
clauses; in particular arrays must be mapped explicitly.

The unstructured target data regions in OpenMP 4.5 allow simple integra-
tion with our framework. The scoping rules of OpenMP 4.0 require the memory
movement to the device must be written in our driver code, breaking the sepa-
ration of implementation from driver code in our testing framework; OpenMP
4.5 fixes this issue.

The OpenMP 4 version of the GPU-STREAM triad kernel is shown in Fig. 6.

3.5 Kokkos

Kokkos is an open source C++ abstraction layer developed by Sandia National
Laboratories that allows users to target multiple architectures using OpenMP,
Pthreads, and CUDA [5]. The programming model requires developers to wrap
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up application data structures in abstract data types called Views in order to
distinguish between host and device memory spaces. Developers have two options
when writing Kokkos kernels: (1) the functor approach, where a templated C++
class is written that has an overloaded function operator containing the kernel
logic; and (2) the lambda approach, where a simple parallel dispatch function
such as parallel for is combined with an anonymous function containing the
kernel logic. It is also possible to nest the parallel dispatch functions and achieve
nested parallelism, which can be used to express multiple levels of parallelism
within a kernel.

The Kokkos version of the GPU-STREAM triad kernel is shown in Fig. 7.

Fig. 7. Kokkos triad kernel

3.6 RAJA

RAJA is a recently released C++ abstraction layer developed by Lawrence Liv-
ermore National Laboratories that can target OpenMP and CUDA [7]. RAJA
adopts a novel approach of precomputing the iteration space for each kernel,
abstracting them into some number of Segments, which are aggregated into a
container called an IndexSet. By decoupling the kernel logic and iteration space
it is possible to optimise data access patterns, easily adjust domain decomposi-
tions and perform tiling. The developer is required to write a lambda function
containing each kernel’s logic that will be called by some parallel dispatch func-
tion, such as forall. The dispatch functions are driven by execution policies,
which describe how the iteration space will be executed on a particular target
architecture, for instance executing the elements of each Segment in parallel on
a GPU.

The RAJA version of the GPU-STREAM triad kernel is shown in Fig. 8.
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Fig. 8. RAJA triad kernel

3.7 SYCL

SYCL is a royalty-free, cross-platform C++ abstraction layer from Khronos that
builds on the OpenCL programming model (see Sect. 3.1) [8]. It is designed to
be programmed as single-source C++, where code offloaded to the device is
expressed as a lambda function or functor; template functions are supported.

SYCL aims to be as close to standard C++14 as possible, in so far as a stan-
dard C++14 compiler can compile the SYCL source code and run on a CPU via

Fig. 9. SYCL triad kernel
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a header-only implementation. A SYCL device compiler has to be used to offload
the kernels onto an accelerator, typically via OpenCL. The approach taken in
SYCL 1.2 compilers available today is to generate SPIR, a portable intermediate
representation for OpenCL kernels. The provisional SYCL 2.2 specification will
require OpenCL 2.2 compatibility.

The SYCL version of the GPU-STREAM triad kernel is shown in Fig. 9.

4 Results

Table 1 lists the many-core devices that we used in our experiment. Given the
breadth of devices and programming models we had to use a number of platforms
and compilers to collect results. Intel do not formally publish peak MCDRAM
bandwidth results for the Xeon Phi, so the presented figure is based on published
claims that MCDRAM’s peak memory bandwidth is five times that of KNL’s
DDR.

The HPC GPUs from NVIDIA were attached to a Cray XC40 supercomputer
‘Swan’ (K20X) and a Cray CS cluster ‘Falcon’ (K40 and K80). We used the GNU
compilers (5.3 on Swan, 4.9 on Falcon) for Kokkos and RAJA results and the
Cray compiler (8.5 on Swan, 8.4 on Falcon) for OpenMP and OpenACC results.
The codes were built with CUDA 7.5.

The AMD GPUs were attached to an experimental cluster at the University
of Bristol. We used the ComputeCpp compiler (2016.05 pre-release) from Code-
play [2] along with the AMD-APP OpenCL 1.2 (1912.5) drivers for SYCL results.
We used the PGI Accelerator 16.4 for OpenACC on the AMD S9150 GPU.

The NVIDIA GTX 980 Ti is also attached to the University of Bristol exper-
imental cluster (the “Zoo”). We used the clang-ykt fork of Clang for OpenMP1;
note that the Clang OpenMP 4.x implementation is still under development and
is not a stable release. We used PGI Accelerator 16.4 for OpenACC. We used
CUDA 7.5 drivers for CUDA and OpenCL.

The Sandy Bridge CPUs are part of BlueCrystal Phase 3, part of the
Advanced Computing Research Centre at the University of Bristol. Here we used
the Intel 16.0 compiler for original STREAM and our C++ OpenMP implemen-
tation. RAJA and Kokkos were compiled using the GNU compilers. We used the
PGI Accelerator 16.4 compiler for OpenACC and CUDA-x86. We used the Intel
OpenCL Runtime 15.1 for OpenCL.

The Ivy Bridge CPUs are part of the experimental cluster at the University
of Bristol. We used the GNU 4.8 compilers for RAJA and Kokkos and the Intel
16.0 compiler for original STREAM and our C++ OpenMP version. We used
the ComputeCpp compiler from Codeplay along with the Intel OpenCL Runtime
15.1 for SYCL. We used the same OpenCL driver for OpenCL. We used the PGI
Accelerator 16.4 compiler for OpenACC and CUDA-x86.

1 https://github.com/clang-ykt.

https://github.com/clang-ykt
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The Haswell and Broadwell CPUs are part of a Cray XC40 supercomputer.
We used the Cray compiler for original STREAM and our C++ OpenMP imple-
mentation. RAJA and Kokkos used the GNU compilers. We used the PGI 16.3
compiler for OpenACC for CUDA-x86.

The Intel Xeon Phi (Knights Landing) are part of the experimental cluster in
Bristol. We used the Intel 2016 compiler for all results except OpenACC where
we used the PGI compiler. Because the device in binary compatible with AVX2
architectures we specified Haswell as a target architecture for OpenACC.

We used the XL 13.1 compiler for all results on the Power 8.

Table 1. List of devices

Name Class Vendor Peak memory BW (GB/s)

K20X GPU NVIDIA 250

K40 GPU NVIDIA 288

K80 (1 GPU) GPU NVIDIA 240

GTX 980 Ti GPU NVIDIA 224

S9150 GPU AMD 320

Fury X GPU AMD 512

E5-2670 (Sandy Bridge) CPU Intel 2 × 51.2 = 102.4

E5-2697 v2 (Ivy Bridge) CPU Intel 2 × 59.7 = 119.4

E5-2698 v3 (Haswell) CPU Intel 2 × 68 = 136

E5-2699 v4 (Broadwell) CPU Intel 2 × 76.8 = 153.6

Xeon Phi (Knights Landing) 7210 MIC Intel ∼5 × 102 = 510

Power 8 CPU IBM 2 × 192 = 384

In the next few sections we describe our experiences in porting the GPU-
STREAM kernels to the seven different parallel programming models in our
study, before describing the performance we were able to achieve when running
these implementations on a diverse range of many-core devices.

4.1 Code Changes and Experiences

The C++ solutions of SYCL, RAJA and Kokkos all provide a similar syntax
for describing the parallel work. A for-loop is replaced by an equivalent state-
ment with the loop body expressed as a lambda function. The directive based
approaches of OpenMP and OpenACC both annotate for-loops with compiler
directives which describe the parallelism of the loop. OpenCL and CUDA require
the loop body to be written in a separate function which is then instantiated
on the device with an API call which defines the number of iterations; the iter-
ation is no longer is expressed as a loop. Table 2 gives an idea of how much
code was required to implement this benchmark in each of the programming
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models. The number of lines of code in the specific implementation in each of
the programming models of our virtual class was counted and is shown in the
first column. For each version we also include the change in the number of lines
of code compared to our baseline OpenMP version in C++ implemented in our
framework.

Table 2. Lines of code to implement class

Implementation Lines of code in class Difference

OpenMP 3 (baseline) 113 0

CUDA 183 +70

OpenCL 229 +116

OpenACC 138 +25

OpenMP 4.5 138 +25

Kokkos 150 +37

RAJA 144 +31

SYCL 145 +32

Whilst the authors found that writing this simple benchmark in each of the
programming models was a simple task, getting them to build on a variety of
platforms for a variety of devices was a significant challenge in many cases. Addi-
tionally, major changes to the code were required in order for specific platform
and compiler combinations to be performant, or in some cases to work at all.

The OpenMP 4.0 programming model does not allow for control of the data
on the target device in an unstructured way. The data on the device is con-
trolled by scoping rules in the code, and as such an OpenMP 4.0 implementation
required an invasive procedure to add this to our code, breaking our abstraction
of model from control and timing code. OpenMP 4.5 addresses this issue with
target data enter and exit regions, however OpenMP 4.5 compilers were not
available on all platforms at the time of writing so we had to use both 4.0 and
4.5 versions to collect the range of results.

We had to remove the simd clause from the OpenMP directives to achieve
good performance with Clang, and use a static schedule with a chunk size of
one (which can be specified via an environment variable). These changes render
the code non-portable, however once OpenMP offload support becomes mature
these will not be required.

Our experience of the disruption of OpenMP 4 is more related to availability
of tools over issues with the model itself.

OpenACC using the PGI compiler targeting host CPUs, the AMD GPUs
and the NVIDIA GTX 980 Ti, all required specifying the pointers as restrict
in order for the loop to be parallelised, although this is not standard C++.
Using parallel loop independent does parallelise the loop without specifying
restrict. This was a relatively simple change, in a simple benchmark case, but
there may be larger codes where the reason the automatic parallelism fails may
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not be evident. This would result in the programmer changing the way they
express the same parallelism when using a particular programming model by
altering the code for a different architecture or compiler, the code itself is no
longer performance portable — you require one implementation per device.

However, all compilers supporting OpenMP 4 and OpenACC would not cor-
rectly offload the kernel without re-declaring the arrays as local scope variables.
These variables are declared inside the class, but the compilers were unable to
recognise them in the directives (Cray), or else crash at runtime (PGI targeting
GPUs). The authors have found this is also the case with using structure mem-
bers in C. It is the opinion of the authors that these local variables should not
be required for correct behaviour.

The PGI compiler has support for CUDA-x86 whereby CUDA code can tar-
get host CPUs. All kernel calls are considered blocking unlike the CUDA API
itself, and the cudaSynchronizeDevice() call is not supported; as such we had
to remove this from the code, reducing the portability of the CUDA code. Addi-
tionally the compiler failed to build the code with templated classes.

In SYCL, explicitly choosing the size of a work-group was required to achieve
good performance. As the programming model does not stipulate that this size
must be set, this requirement is likely to disappear with future updates to the
compiler. This is similar to OpenCL’s ability to leave the choice of work-group
size up to the run-time.

In addition to these code changes, despite trying to use a unified build system
(CMake), many of the data points required specific compiler invocations.

4.2 Performance

We display the fraction of peak memory bandwidth we were able to achieve for
a variety of devices against each programming model in Fig. 10. We used 100
iterations with an array size of 225 double precision elements (268 MB).

When writing code targeting NVIDIA GPUs, the results with all the pro-
gramming models are similar. Both the high-level models, such as RAJA and
Kokkos, and the directives based approaches, such as OpenMP and OpenACC,
demonstrate equivalent performance to CUDA and OpenCL on these devices,
which is a very encouraging result.

When targeting AMD GPUs however, we are unable to collect a full set
of data points because neither RAJA nor Kokkos provide GPU implementa-
tions of their model to run on non-NVIDIA GPUs. This is currently a weak-
ness of the RAJA and Kokkos implementations, which could be addressed when
proper OpenMP 4.5 support becomes more widely available; note that RAJA
and Kokkos use OpenMP for their CPU implementation and CUDA for the
NVIDIA GPU implementation. It should be noted that the data points that we
were able to collect for AMD’s GPUs achieved the highest fractions of peak for
all GPUs (83–86 %).

We use the original ‘McCalpin’ STREAM benchmark written in C and
OpenMP as a baseline comparison for the CPU results. Thread binding is used
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Fig. 10. Performance relative to theoretical peak of GPU-STREAM on 10 devices

via the OpenMP implementation selecting a compact affinity. We did not exper-
iment with streaming stores. Figure 10 shows that there is some loss of perfor-
mance when using C++ and OpenMP 3 for running on CPUs compared to the
much simpler C language version. For example, on Broadwell CPUs the C++
version achieves 64 % of peak memory bandwidth, compared to 83 % when using
the C version; both these codes use the standard OpenMP 3 programming model.

We used PGI’s implementation of OpenACC for multi-core CPUs. On the
Sandy Bridge and Ivy Bridge system we used the numactl tool for thread pinning
and specified the ACC NUM CORES environment variable to the total number of
cores in our dual-socket CPU systems. The Haswell and Broadwell CPUs are
in a Cray system so were required to use the options within aprun to run the
binary. Despite this however it does not demonstrate good peak performance on
the CPUs in general. For the Xeon Phi we needed to use MP BLIST to pin the
OpenACC threads as numactl did not pin these threads correctly.

Both RAJA and Kokkos use the OpenMP programming model to imple-
ment parallel execution on CPUs. The performance results on all four CPUs
tested show that RAJA and Kokkos performance matches that of hand-written
OpenMP for GPU-STREAM. This result shows that both RAJA and Kokkos
provide little overhead over writing OpenMP code directly, at least for GPU-
STREAM. As such they may provide a viable alternative to OpenMP for writ-
ing code in a parallel C++-style programming model compared to the directive
based approach in OpenMP. However as noted above, C++ compiler implemen-
tations of OpenMP may suffer from a performance loss compared to a C with
OpenMP implementation.
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OpenCL is able to run on the CPU as well, and we tested using the Intel
OpenCL runtime. This is implemented on top of Intel’s Thread Building Blocks,
which results in non-deterministic thread placement. In a dual-socket system
the placement of threads based on memory allocations (first touch) is impor-
tant in achieving good bandwidth; as such this programming model suffers in
performance on Intel CPUs compared to the original STREAM code. The PGI
CUDA-x86 compiler gets similar performance to OpenCL, but they are both
lower than OpenMP.

Figure 11 shows the raw sustained memory bandwidth of the triad kernel in
each case. Many-core devices such as GPUs and Xeon Phi offer an increased
memory bandwidth over CPUs, although the latest CPU offerings are competi-
tive with GDDR memory GPUs. The AMD HPC GPU from AMD, the S9150,
provides an increased bandwidth over NVIDIA’s HPC offerings.

The Intel Xeon Phi (KNL) had the highest achieved memory bandwidth,
however this performance was not achieved in all programming models. In gen-
eral we ran one thread per core and this achieved the highest performance, but
Kokkos needed two threads per core to achieve comparable performance.

The Power 8 results were collected with one thread per core. The bandwidth
presented is using the same problem size as all the other results; a high band-
width is possible with a large problem. It has been previously observed that
performance can decrease with smaller problems [15].

Fig. 11. Sustained memory bandwidth of GPU-STREAM on 10 devices
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All of the parallel programming models explored in this paper are designed to
be portable; at the very least this should enable running on a variety of devices
across a variety of vendors. However, as can be seen in Figs. 10 and 11 there are a
surprising number of results that are not possible to obtain. We mark those that
are impossible to collect due to missing implementations from the vendors as
‘N/A’, and those we were unable to obtain due to difficulties with combinations
of installed libraries and platforms with an ‘X’. Note that the original STREAM
benchmark from McCalpin was written in C with OpenMP 3 and so cannot run
on GPUs.

For SYCL, ComputeCpp generates SPIR to be consumed by an OpenCL
runtime. NVIDIA’s OpenCL implementation does not currently support SPIR.
ComputeCpp is not currently compatible with the systems which housed the
Sandy Bridge, Haswell, and Broadwell CPUs.

OpenMP and OpenACC are supported by a variety of compilers to varying
degrees. It is therefore simpler to discuss the available options for devices. For
AMD GPUs, GCC 6.1 introduces OpenMP 4.5 support, but only for integrated
graphics in the APU devices, not for the discrete GPUs used in this paper. The
PGI Accelerator compiler supports AMD GPUs up to Hawaii so we used this
for the S9150, but the Fury X’s newer Fiji architecture is not yet supported.

The Cray compiler supports OpenMP targeting NVIDIA GPUs, with version
8.5 supporting OpenMP 4.5 and version 8.4 supporting OpenMP 4.0. We were
able to use version 8.5 to collect results for the NVIDIA K20X with OpenMP 4.5
code, and had to resort to our OpenMP 4.0 code with Cray compiler version 8.4
for the K40 and K80 GPUs. The GTX 980 Ti GPU was not on a Cray system
so we could not collect a result for it using the Cray compiler. However, Clang
supports OpenMP 4.5 targeting NVIDIA GPUs, and so the result was obtained
using this compiler.

The PGI CUDA-x86 compiler did compile the code for Broadwell and KNL
but failed at runtime due to the number of available threads being unsupported.
The PGI compiler was also unavailable on the Power 8 system so we were unable
to collect OpenACC and CUDA results.

5 Conclusion

What is evident from Fig. 10 is that, in general, the more mature of these pro-
gramming models provide better performance across the range of architectures.
None of the programming models is currently available to run a single code
across all devices that we tested. Whatever definition of ‘performance portability’
one might wish, a performance portable code must also at least be functionally
portable across different devices.

The directive based approaches of OpenMP and OpenACC look to provide
a good trade off between performance and code complexity. OpenACC demon-
strates good GPU performance on products from both NVIDIA and AMD, how-
ever the CPU performance is poor. This limits OpenACC’s relevance to CPUs
due to implementations of the model at the time of writing.
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With the directive based approaches of OpenMP and OpenACC the number
of lines of code to add to an existing piece of C or Fortran code is minimal. If
code is already in C++, then SYCL, RAJA and Kokkos provided a similar level
of minimal disruption for performance.
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Abstract. The computational power of graphics processing units
(GPUs) and their availability on high performance computing (HPC)
systems is rapidly evolving. However, HPC applications need to be ported
to be executable on such hardware. This paper is a report on our expe-
rience of porting the MPI+ OpenMP parallelized large-eddy simulation
model (PALM) to a multi-GPU environment using the directive based
high level programming paradigm OpenACC. PALM is a Fortran-based
computational fluid dynamics software package, used for the simulation
of atmospheric and oceanic boundary layers to answer questions linked
to fundamental atmospheric turbulence research, urban climate, wind
energy and cloud physics. Development on PALM started in 1997, the
project currently entails 140 kLOC and is used on HPC farms of up to
43200 cores. The porting took place during the GPU Hackathon TU
Dresden/Forschungszentrum Jülich in Dresden, Germany, in 2016. The
main challenges we faced are the legacy code base of PALM and its size.
We report the methods used to disentangle performance effects from log-
ical code defects as well as our experiences with state-of-the-art profiling
tools. We present detailed performance tests showing an overall perfor-
mance on one GPU that can easily compete with up to ten CPU cores.

Keywords: CFD · GPU · HPC · LES · MPI · OpenACC · PGI ·
Porting

1 Introduction

High performance computing (HPC) systems for scientific applications are
rapidly gaining size, complexity and adoption in various fields of academia and
industry. Recently, an increasing number of these systems provide access to
graphics processing units (GPU) [1], adding additional computational power
to the available CPU based system performance. Equipping small clusters or
even workstations with multiple GPUs enables access to considerable computa-
tional power, even for, e.g., small businesses without access to HPC installations.
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M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 508–523, 2016.
DOI: 10.1007/978-3-319-46079-6 35



Porting PALM to Multi-GPU Systems 509

Applications running on such equipped systems need to be capable of dealing
with the GPU architecture in order to benefit. Examples of affected applications
are machine learning applications [11], molecular dynamics simulations [18] and
(besides many others) large-eddy simulation (LES) models. The LES method
is a computational fluid dynamics (CFD) simulation technique which is com-
putational expensive and thus its effective use is currently still limited to HPC
systems. However, GPUs are a potential enabler for the operational application
of this technique in smaller businesses and institutions e.g., for urban planning
or wind-energy site assessment. In order to exploit the power of GPUs with
existing LES models, they need to be ported to such a computer architecture.

This paper summarizes our experiences during the porting process of the
parallelized large-eddy simulation model (PALM) for atmospheric and oceanic
flows to a GPU environment. In order to minimize portability loss and port-
ing workload, the directive-based high-level programming model OpenACC [17]
was chosen. The porting took place during the one-week GPU Hackathon TU
Dresden/Forschungszentrum Jülich in Dresden, Germany, in 2016. During the
Hackathon, we were supported by three experienced mentors. With this report
we intend to provide aid and guidance for other GPU porting endeavors on code
bases similar to the LES technique.

The article itself is structured in four parts: First, PALM and its state-of-art
prior to the Hackathon is described. Second, a chronological report is given on
the efforts at the OpenACC Hackathon 2016 and afterwards. This is followed by
a detailed performance analysis and at the end, we reflect on the progress we
made during the Hackathon, discuss technical aspects and draw conclusions for
their influence on our future code development.

2 PALM

PALM is an atmospheric CFD application and in particular an LES model to
simulate the turbulent flows of atmosphere and ocean. PALM has been applied to
answer questions linked to a variety of topics including fundamental atmospheric
turbulence research (e.g., [8,14]), urban climate modeling (e.g., [5,12]), wind
energy [7] and cloud physics [6]. PALM solves the Boussinesq-approximated
Navier-Stokes equations on a discrete three-dimensional (3D) grid for a time
dependent flow. A detailed description of the physics used in PALM can be
found in [13].

PALM is written in Fortran95 [2] with some Fortran 2003 [20] extensions. It
is optimized for running on massively parallel computer architectures. In order
to distribute data and work across multiple cores and nodes the message pass-
ing interface (MPI) and the directive-based high level programming paradigm
OpenMP are used. Parallelization is realized by a two-dimensional (2D) domain
decomposition of the underlying Cartesian grid. The computational domain,
which consists of a large cuboid representing a portion of the atmosphere, is
divided into small vertical columns and each core solves the equations inside
one of these vertical columns. After each time step, data situated at the borders
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of the columns are exchanged with the neighboring cores using MPI. The work
flow of PALM is illustrated in Fig. 1 and can be paraphrased as follows: First,
the model is initialized by setting up all relevant 3D arrays and distributing
necessary data to each core (initialize). Second, the time dependent loop is exe-
cuted (time loop), in which the prognostic equations are solved for wind-velocity
components, temperature, kinetic energy, humidity and others. Following the
prognostic equations, a Poisson equation for the perturbation pressure needs to
be solved (pressure solver) during each iteration of the time loop. To do this,
the data arrays have to be transformed via a fast Fourier transformation (FFT),
which requires several calls of MPI routines due to the domain decomposition.
At the end of each loop cycle data output is done by calling the output routines.
After the time loop is finished the simulation gets finalized and additional output
is done.

PALM has basic integrated profiling capabilities that are helpful for analy-
sis during porting as well as for monitoring performance regressions between
releases. The compute time consumed by each individual routine is measured
using a built-in function named cpulog. It measures the execution time between
two positions in the code by using the intrinsic Fortran function SYSTEM CLOCK.
At the end of a simulation, a list of time measurements and calling counts con-
taining the most time-consuming routines is saved.

Fig. 1. Schematic work flow of PALM showing the most important parts of the model.

3 Porting PALM

3.1 Preparations

Optimizing an existing production-ready HPC source code base for performance
should not be underestimated with regard to a high number of influential para-
meters (social, technical and design based) and time-consuming subtasks. Thus,
automating a majority of the necessary steps to validate or falsify optimization
hypotheses is crucial. The common work flow for this can be modeled as:

1. compile,
2. run or profile,
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3. validate results,
4. interpret runtime,
5. update code and return to 1. If needed.

As the first three points do not require human intervention, automation of
compilation, execution and validation yields a high return-on-investment. The
automation does not only allow individual developers or developer groups to
move forward autonomously, but it also ensures that the application logic is
retained throughout the process. In order to achieve this, a set of shell scripts
was created for building PALM, executing it with predefined parameter sets,
and validating the results thereof.

To automate the compilation step, a build script was designed to flexibly
and transparently adapt to the HPC environment of Taurus at the Center for
Information Services and High Performance Computing (ZIH) Dresden, where
the porting work took place. It allows to switch compilers and their parameters,
switch between available MPI libraries and enable or disable profiling and debug-
ging tools. The actual translation of source code to the PALM binary (using GNU
make [21]) is performed in a setup-specific build directory to allow parallel test-
ing of different setups. All these customizing options are available through the
aforementioned build setup and each setup is labeled individually. The different
build setups can then be chosen by providing the label as an argument to the
build script, e.g.:

$ ./COMPILE palm_setup_pgi161_openmpi_scorep

where PALM is built using the PGI compiler [19] using the OpenMPI library
and instrumenting the code with Score-P [16] markers. While we are aware that
alternative multi-purpose build engines [3] are available, such as cmake [15] and
others, this lightweight and custom approach allowed us to rapidly adapt and
identify improvements to code translation and to be flexible in terms of the
profiling tool-chain to be used. Given the time constraints of the Hackathon, no
incentive urged us to invest resources in refactoring this build mechanism.

Our execution script is designed in a similar manner and based on the same
keywords as the build script. Execution setups can be defined and customized
for all possible steering parameters of the batch system. It is essential to have
an execution setup available that allows a rapid testing of all parts of the LES
model which are relevant to the profiling and code optimization process. The
build and run script provided a common reference for the team. These scripts
can be considered as an essential building block of the optimization process. Also,
the PALM integrated automatic runtime measurements of all time-consuming
routines (cpulog) are in line with this idea of receiving feedback quickly.

Further, a set of execution setups was created to test PALM regarding mem-
ory size and execution time. We found that a good execution setup during the
porting process should complete in a fairly small walltime envelope but has a
computational complexity that utilizes most of the available resources on the
targeted GPU in terms of memory usage and occupancy. In other words, a bal-
ance has to be maintained between obtaining a representative sample of profiling
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data and yet retain a quick turn-around of optimization feedback to all devel-
opers involved. We thus agreed on two setups: a small one that would complete
within one minute of walltime and yet force PALM to perform four iterations;
and a large configuration that would complete within 5 min of walltime to allow
a more global view on the impact of code optimization.

Finally, a lightweight automated testing process of the simulation results in
terms of their correctness was introduced. For convenience, the evaluation result
is summarized to check whether the execution was successful or not by textually
comparing the ASCII output files produced in a given PALM run. PALM is
neither equipped with a unit test suite nor are integration tests available so
far. Any ambitious performance tuning of PALM should consider providing a
comprehensive unit test suite commonly referred to as test harness [4]. This
does not only ensure correct simulation results after optimizations were applied,
but also exerts a high pressure to modularize the application even more, so that
autonomous code modules can be extracted from the code base and be optimized
independently.

3.2 Starting Position

The model PALM is optimized to run on computer architectures exposing a
multi-tier cache hierarchy as well as on vector-based hardware [13]. Depending
on the architecture used different branches of the code are executed to gain the
best performance.

Before joining the Hackathon, PALM already contained GPU targeted code
which based on the vector-optimized branch. This was mainly done by placing
a data region around the whole program and adding OpenACC directives to
single loops. GPU architectures are based on the parallelization paradigm “Sin-
gle instruction, multiple threads” (SIMT). In hardware, this relates to the GPU
executing one instruction by a group of threads at a single point in time (the
hardware used for the Hackathon exposed a minimum group size of 32 threads).
The more iterations a loop has, the more it benefits from SIMT architecture. In
nature, a GPU is therefore much closer to a vector computer architecture than
it is to a cache-optimized computer architecture. Hence, the GPU-optimized
branch of PALM based on the vector-optimized branch of PALM with some
slight changes to the vector-optimized branch. The GPU-optimized branch was
maintained in parallel to the two already existing CPU targeted branches. How-
ever, the OpenACC-enabled code was only able to run on a single core while
operating on a GPU. The goal for the Hackathon was to continue porting every
routine of the program and get a fully functional version of PALM running on
a multi-node multi-GPU system.

3.3 The First Unsuccessful Attempt

At the beginning of the Hackathon, it turned out that the GPU targeted rou-
tines did not produce the same results as the CPU-only routines. Therefore, dur-
ing the first two days, the GPU routines were searched for source code defects
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(bugs) related to the existing GPU code base. This was a very time-consuming
process, because the former porting turned out to be unstructured and poorly
documented. Having three separate code bases made code debugging even more
complicated. Also the size of PALM itself, with its 140 kLOC distributed over
472 routines made the debugging challenging. After two days trying to get the
correct results within the GPU branch using the former implemented OpenACC
directives, the results still differed from the CPU-only version.

Due to the difficulties regarding the partly ported code base mentioned above,
it was decided to do a fresh start. All existing OpenACC directives were com-
mented out to disable their functionality while still having them available during
the upcoming second porting attempt. This helped to avoid recoding of already
correctly ported parts of the code.

3.4 Starting a Structured Porting Attempt

Our porting effort from scratch focused on the GPU-optimized branch of PALM
with all former OpenACC directives commented out.

The first step in a successful porting attempt is an extensive application run-
time analysis using a sophisticated profiling tool. During the porting of PALM
we used the Score-P measurement infrastructure, which is a highly scalable tool
suite for profiling, event tracing, and online analysis of HPC applications [10].
We started several runs with different setups on multiple CPU cores using MPI
in order to identify the top subroutines that consumed the most run time dur-
ing the simulation. Score-P instrumentation and Vampir visualization [9] were
applied. In Fig. 2, a Vampir visualization of the evolution of the PALM call stack
during one cycle of the time loop is shown. It enables an easy identification of
the hot-spot subroutines (marked in blue). The visualized run was performed on
a single CPU core. The time integration subroutine contains the whole time
loop and is called directly from the main routine palm. During a time-loop cycle
time integration calls the subroutines prognostic equations and pres. The
subroutine prognostic equations (marked in red) contains calls to several sub-
routines dealing with different terms of all required prognostic equations and the
subroutine pres calls the pressure solver of choice. The chosen pressure solver,
which is poisfft (marked in yellow) in our case, contains multiple FFT calls
(fft x and fft y) and 3D array transpositions with heavy MPI communication.
At the end of a time-loop cycle, the data output and other optional parts of the
model, e.g., a soil model, are called.

We started this porting attempt by adding !$acc kernels directives to the
hot-spot subroutines and kept profiling to see how the performance of the code
evolved. We quickly realized that this work-flow cycle is quite time-consuming
as some of the traces took 5–10 min to load in Vampir. This was mostly due to
the fact that the hot-spot subroutines were called at a very high frequency on
the used CPU cores and thus the number of traces exceeded an acceptable size
for an undisturbed execution of Vampir.

The PGI compiler translates the OpenACC code to CUDA internally and
emits CUDA PTX binary objects, which allows us to use the CUDA profiler as
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Fig. 2. Vampir screen-shot with the call-stack analysis of one cycle of the time loop in
the PALM simulation. The prognostic equations (red) with their most time consuming
subroutines (blue) are followed by the pressure solver (yellow). (Color figure online)

an alternative profiling tool. To realize this, the code was compiled using the
options -acc and -ta=tesla to allow OpenACC interpretation, -Minfo=acc for
OpenACC related compiler logging and -fastsse to enable fast SSE instructions
for CPU based code.

Before profiling the application, the environment needs to be equipped with
the following variables:

$ export COMPUTE_PROFILE=1 # 1 is on, 0 is off
$ export PGI_ACC_TIME=0 # 1 is on, 0 is off
$ export CUDA_PROFILE_LOG=./cuda_profile_out
$ export CUDA_PROFILE_CONFIG=${HOME}/cuda_prof.config

where COMPUTE PROFILE enables the profiling (setting PGI ACC TIME would print
a sum of the time needed for data movement between CPU and GPU and the
time needed for computation on the GPU to the terminal). Once the application
runs, it will store all relevant profiling output in cuda profile out inside the
current working directory. The variable CUDA PROFILE CONFIG points to a con-
figuration file that controls what metric is to be included in the profiling output
(for more options see the online CUDA profiler documentation1). In our case,
we added regperthread to the configuration file to extend the default output
by the number of registers used per kernel.

For our large execution setup, which ran for 60 s on one node with one rank
and one GPU, this produced a 210 MB ASCII text file. Amongst others, it
contains the following information:

method=[ advec_u_ws_acc_2234_gpu ]
gputime=[ 1557.472 ]
regperthread=[ 160 ]
occupancy=[ 0.375 ]

The metrics in the above list give information about the name of the kernel which
was profiled (method) and the time measured in microseconds spent on the GPU
device during execution (gputime). Also the number of registers required by a
kernel is given by regperthread, and occupancy gives the occupancy of the

1 http://docs.nvidia.com/cuda/profiler-users-guide/#command-line-profiler-control.

http://docs.nvidia.com/cuda/profiler-users-guide/#command-line-profiler-control
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GPU, which is used to determine how much of the computational capacity of
the GPU is used by this single kernel. All of this information helped us to have
a rapid turn-around frequency while doing GPU dedicated optimizations. So,
rather than applying a sophisticated profiler like Score-P and Vampir, we had
a very quick feedback to the changes we just made to our code. However, as
the command-line based CUDA profiler can be difficult to use, one has to know
exactly how to extract the needed information. Otherwise, using the NVIDIA
Visual Profiler is inevitable as it contains very helpful visualizations, occupancy
calculation, automatic kernel runtime analysis, etc.

Our porting approach was to add OpenACC directives to the hot-spot sub-
routines and wrap them into data regions. Inside a data region data are kept on
the GPU and data transfer is limited to the beginning and the end of the data
region as long as it is not explicitly initiated by, e.g., !$acc update. As porting
progressed, the data regions grew and were pushed upward in the call stack, and
as soon as the boundaries of two data regions collided, they were joined into
one bigger data region. The code parts containing the OpenACC directives look
mostly as follows:

!$acc data copyin( temp, u, v, w )
[...]
!$acc kernels present( temp, u, v, w )
DO i = i_left, i_right

DO j = j_south, j_north
DO k = 1, nzt
temp(k,j,i) = u(k,j,i) + v(k,j,i) + w(k,j,i) !some work

ENDDO
ENDDO

ENDDO
!$acc end kernels

CALL completely_ported_subroutine
[...]
!$acc end data

where !$acc data copyin( temp, u, v, w ) initiates the data region and
copies the arrays temp, u, v, and w onto the GPU. The loops are surrounded by
a kernel construct using !$acc kernels and !$acc end kernels. This enables
the compiler to optimize the loop for the GPU. Additionally, present( temp,
u, v, w) informs the compiler which variables are already present on the GPU
to avoid unnecessary data transfer from the CPU to the GPU.

Organizing the data regions efficiently is essential to gain additional speedup,
as the data transfer between the CPU and the GPU can impose a bottleneck.
This means that data transfer should be limited to a minimum and as much data
as possible should be kept on the GPU. This, however, is not always feasible.
Especially data output or MPI communication requires some sort of data transfer
between CPU and GPU. Therefore, particular attention was needed as the data
regions arrived at the MPI calls. In order to utilize GPUs on a multiple-node
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setup while minimizing performance loss due to the data-transfer bottleneck,
it was necessary to implement CUDA-aware MPI. CUDA-aware MPI can be
realized by employing the OpenACC directive !$acc host data. It essentially
makes the address of data located on the GPU available on the CPU. For a
MPI SENDRECV call the directive can be used as follows:

!$acc host_data use_device( ar )
CALL MPI_SENDRECV( ar, size, MPI_REAL, left, 0, &

ar, size, MPI_REAL, right, 0, &
comm2d, status, ierr )

!$acc end host_data

The directive !$acc host data use device( ar ) followed by an MPI call
involving the array ar enables data transfer of ar directly between GPUs with-
out a detour via their related host CPUs. The MPI call shown above, however, is
a fairly simple example. PALM utilizes many different MPI functions in several
parts of the code. MPI derived data types are heavily used in order to trans-
fer slices of 2D and 3D arrays. These data types usually represent data that is
non-contiguous in memory. We found that current MPI implementation releases
like Open MPI v1.10.3 are showing a severe loss of performance as soon as non-
contiguous derived data types are used in CUDA aware MPI calls. In case of
3D array slices this even resulted in a termination of the program due to a seg-
mentation fault. Therefore we were not able to port these MPI calls to become
CUDA aware. Instead we were forced to employ the OpenACC directive !$acc
update in order to transfer the respective data to the CPU in advance of the
MPI calls and back to the GPU thereafter.

!$acc update host( ar )
CALL MPI_SENDRECV( &

ar(nzb,nys-nbgp_local,nxl), 1, type_yz(grid_level), &
pleft, 0, &

ar(nzb,nys-nbgp_local,nxr+1), 1, type_yz(grid_level), &
pright, 0, &

comm2d, status, ierr )
!$acc update device( ar )

The penalty imposed by the data-transfer bottleneck greatly reduced our
expected final speedup.

Finally, the FFT operations had to be ported to utilize the CUDA FFT
library (cuFFT). As cuFFT functions are not available in Fortran, a C inter-
face is required. We used the Fortran 2003 bind feature and the intrinsic mod-
ule ISO C BINDING to make the cuFFT library available. After that work was
limited to calling the cufftPlan1D routine to generate all required cuFFT
plans which were then used in the subsequent calls of cufftExecD2Z and
cufftExecZ2D for forward and backward transformation, respectively. At the
end, the cufftDestroy function is called to release the resources allocated for
the plans.
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As soon as a routine was running entirely on a GPU, replacing the directives
!$acc kernels with proper !$acc loop constructs enabled advanced loop tun-
ing options. Assigning and varying the gang and vector size, we quickly realized
that most of the times a simple !$acc kernels directive does the porting job
quite well. On occasion, the data independency of loops was not detected cor-
rectly by the compiler. This is shown by the output, which is generated by using
the $ -Minfo=acc flag of the PGI Fortran compiler. Adding some !$acc loop
independent directives quickly solved this issue.

4 Performance Tests

With every check-in, PALM was getting faster on the GPU. In the end, the code
ran and produced correct results. Within one week, we were able to port almost
all the major routines of PALM to the GPU. Unfortunately, we were not able to
finish all the porting work during the Hackathon. Back home we had to invest
another couple of days in order to push the data region out of the main time
loop.

Fig. 3. The speedup factor (OpenACC-disabled runtime divided by OpenACC-enabled
runtime) depending on the number of CPU cores (MPI ranks). The total speedup, the
individual speedup of the tree most time consuming PALM routines and the combined
speedup of the rest of the PALM routines are shown. Values greater than one (dashed
line) indicate a performance gain and values smaller than one indicate a performance
loss.

Finally we conducted performance tests based on a setup that filled most of
the GPU memory and required a runtime of about 300 s on twenty-four CPU
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cores. We performed tests with the number of CPU cores ranging from four
to twenty-four. Four is the minimum number of CPU cores required for the
ported MPI code parts and twenty-four is the maximum allowed number of
CPU cores for the setup, which still fits on one node. Each test is repeated with
one GPU (OpenACC enabled) and without GPU (OpenACC disabled). The
tests were conducted on a Cray XC30 at the North-German Supercomputing
Alliance (HLRN). The compute node was a symmetric multiprocessing (SMP)
node with four Intel Xeon 8-core SandyBridge Processors and one NVidia Tesla
K40 attached. The node was exclusively used for the test and each test was
repeated ten times in order to level out performance fluctuation. The tests were
performed using the double precision floating point format. The results are pre-
sented in Fig. 3. The speedup factor calculated by comparing the runtime of the
OpenACC-enabled tests and the OpenACC-disabled tests is shown depending
on the number of CPU cores (MPI ranks). In total a solid advantage of the
OpenACC-enabled runs on up to ten CPU cores can be observed. Increasing
the number of CPU cores further resulted in a speedup factor of less than one
which is a performance loss induced by utilizing the GPU. Using twenty-four
CPU cores resulted in an OpenACC-enabled runtime that was almost doubled
compared to the OpenACC-disabled runtime. In order to find the cause for this
limited performance gain, a more detailed analysis is required. Figure 3 also
provide individual speedup factors of the three most time consuming parts of
PALM. Additionally Fig. 4 provides an overview of the individual runtime share
each of these routines contribute to the total. This information is provided sep-
arately for OpenACC-disabled and OpenACC-enabled runs and has negligible
dependency on the number of CPU cores used. The prognostic equations rou-
tines have the biggest share of the total runtime and they perform much better
with a solid advantage of the OpenACC-enabled runs on up to twenty CPU
cores. Theses routines largely consist of 3 nested loops working heavily on the
big 3D data arrays and the good performance of this part of PALM is also due
to the absence of MPI calls. The pressure solver on the other hand is performing
very poorly on the GPU. Running on more than six MPI ranks already results in
a performance loss if OpenACC is enabled. The heavy use of the MPI ALLTOALL
function in order to transpose 3D arrays across the 2D domain decomposition
could be an explanation but in this case the profiling shows that CUDA-aware
MPI is working. About three quarters of the pressure solver runtime is dedicated
to the transpositioning and one quarter is dedicated to the cuFFT calls. As the
runtime share of the pressure solver gradually increases with high numbers of
MPI ranks, the impact of the observed performance loss with OpenACC enabled
could be lethal in production runs (more than thousand MPI ranks). By far the
worst performance loss, however, can be observed during the exchange of the hor-
izontal boundaries between the MPI ranks. This routine only consists of a series
of MPI calls that utilize non-contiguous derived data types with 3D arrays (see
previous section). As we were not able to make these MPI calls CUDA aware,
the loss can completely be blamed to the data-transfer bottleneck between host
and device. We are aware that this issue could potentially be solved by wrapping



Porting PALM to Multi-GPU Systems 519

the data array slices into separate buffers and unrolling the complex MPI calls
into a series of simple MPI calls with MPI derived data types that are contiguous
in memory. The complex data types however are deeply integrated into the soft-
ware and any unrolling or change related to them entails a lot of effort. We
therefore refrained from investing time into this approach. As MPI implementa-
tions gain capability in handling non-contiguous derived data types, we hope to
see further speed improvements on the GPU. Finally it should be noted that the
runtime of the OpenACC-enabled tests were not depending on the number of
CPU cores used. The runtime variations between four CPU cores and one GPU
versus twenty-four CPU cores and one GPU was around one percent. This shows
that nearly the entire program is executed on the GPU. Brief tests comparing
one node using twenty-four CPU cores and one GPU to two nodes using twelve
CPU cores and one GPU on each node were conducted as well. As expected the
runtime of the OpenACC-enabled tests were nearly cut in half as available GPU
resources are doubled.

Fig. 4. Pie chart of the share the three most time consuming parts of PALM contribute
to the total runtime for OpenACC-disabled tests (left) and openAcc-enabled tests
(right). The share of all other routine runtimes is combined under “Others”.

5 Summary

5.1 Porting Experience

We started our porting endeavor at the GPU Hackathon in Dresden with a
partly and not correctly ported version of the computational fluid dynamics
model PALM. During the Hackathon, which lasted for one week, we were able
to port most of the routines of PALM to the GPU. We learned to use advanced
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profiling tools as a guide through such a porting process and we highly recom-
mend their use for this purpose. The problems we faced taught us an important
lesson about the significance of sophisticated testing capabilities in any soft-
ware project similar in size and complexity to PALM. Also maintaining several
mostly redundant branches of a code base in order to port or optimize for dif-
ferent computer architectures significantly reduced our productivity. Due to the
difficulties we faced, we were unable to finish all the porting work during the
Hackathon. However, the extensive and very helpful mentoring during the entire
week gave us all the necessary knowledge and tooling to finish the leftover action
items within a short time frame. The practical orientation of the Hackathon was
responsible for an effective and valuable first-hand knowledge transfer. A deeper
understanding of the OpenACC based porting concept and the architecture of
GPUs in general was our reward.

5.2 Technical Conclusions

The absence of a sophisticated unit and integration test suite was a major draw-
back for our porting productivity. Although we tried to compensate by preparing
testing scripts and setups, we still spent much time struggling with unguided bug
hunting. After the end of the Hachathon we started a discussion inside the PALM
developer community whether to adapt the unit test approach. On the one hand
we learned how difficult it can be to extend untested code. Not changing this
situation will only result in accumulation of more technological debt over time.
On the other hand the development of a test suite for PALM is a very large
work package for a team that largely consists of people whose primary task is
the science and PALM is the tool they apply. We are aware that this is a com-
mon conundrum in projects with large code bases in an academic context (like
PALM) and the discussion on how to solve it continues to the day. So far, we
refrained from investing work into a solution to this problem even though we
know that it will make future improvements to the code even harder and on
top, decrease the return-on-investment of our time at the Hackathon. We highly
recommend the introduction of unit tests to projects that consider porting their
code-base to GPUs.

Our suggestion to institutions that are aiming to provide help for code-
development teams like us would be to increase funding for manpower espe-
cially dedicated to code development and training therein. We suggest more
research on how to make the introduction of unit and integration testing easier
for existing scientific code bases especially in an academic and/or performance
critical context (e.g., [4]). Additionally, a more detailed documentation of all the
available OpenACC features could improve the effectiveness of any GPU port-
ing work (e.g., online documentation including simple examples similar to the
C++ reference2). With such a documentation at hand our first porting attempt
might have been successful and reduced the time-expensive bug hunting. Espe-
cially the latest status of compiler implementation(s) and current limitations

2 The C++ reference is available online at http://en.cppreference.com/w/.

http://en.cppreference.com/w/
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are a valuable information and should be provided on a central website. For us
this shortcoming, however, was greatly reduced by the extensive mentoring at
the Hackathon. Therefore, we would like to encourage all involved institutions
to continue organizing similar events. Their potential for first-hand knowledge
transfer should not be underestimated.

5.3 Performance

The completely ported code was tested regarding its performance on one GPU
and showed a solid speed improvement compared to the performance on up to
ten CPU cores. Even though parts of the code are showing solid speed improve-
ments compared to up to twenty CPU cores, the MPI heavy routines consume
this advantage. We would like to emphasize our strong demand for a MPI imple-
mentation that is capable of handling non-contiguous derived data types in
CUDA-aware MPI calls correctly and efficiently. Without such a capability the
utilization of GPUs for large production runs of PALM and probably many other
similar CFD applications will not be profitable.
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Abstract. Aeroacoustics simulations leverage the tremendous compu-
tational power of today’s supercomputers, e.g., to predict the noise emis-
sions of airplanes. The emergence of GPUs that are usable through
directive-based programming models like OpenACC promises a cost-
efficient solution for flow-induced noise simulations with respect to hard-
ware expenditure and development time. However, OpenACC’s capabil-
ities for real-world C++ codes have been scarcely investigated so far and
software costs are rarely evaluated and modeled for this kind of high-
performance projects. In this paper, we present our OpenACC paral-
lelization of ZFS, an aeroacoustics simulation framework written in C++,
and its early performance results. From our implementation work, we
derive common pitfalls and lessons-learned for real-world C++ codes using
OpenACC. Furthermore, we borrow software cost estimation techniques
from software engineering to evaluate the development efforts needed in
a directive-based HPC environment. We discuss applicability and chal-
lenges of the popular COCOMO II model applied to the parallelization
of ZFS.

1 Introduction

Aeroacoustics simulations play an important role in today’s aircraft development
to meet the challenge of reduced noise emissions. The C++ multiphysics frame-
work ZFS [23,27,29] simulates aeroacoustics phenomena by typically leveraging
up to 30,000 cores of traditional HPC systems for several days. Adding GPU sup-
port to ZFS promises an improved performance per Watt ratio [31]. However,
low-level GPU integration for large frameworks like ZFS is tedious and requires
considerable effort. The directive-based programming model OpenACC offers a
cost-efficient solution while also enabling an incremental acceleration process.
OpenACC has been applied to accelerate numerous Fortran and C codes in the
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last years [22,35,39], however, its C++ capabilities have been rarely evaluated
for real-world applications.

In this paper, we investigate the interaction of OpenACC and C++ through
our parallelization of the discontinuous Galerkin (DG) solver for aeroacoustics
problems in ZFS. From our implementation, we derive major challenges and
lessons-learned for real-world C++ frameworks. Furthermore, the application of
the incremental acceleration process allows us to present performance results
from the current development status. These performance results do not only
include execution times on NVIDIA Kepler GPUs, but also show PGI’s new
feature to run OpenACC code in parallel on host CPUs [37].

While OpenACC’s ease-of-use is often highlighted [24,39], the analysis of its
actual software costs is outside the scope of most works. In software engineering
(SE), software cost analysis and estimation is a widely-used technique, but only
few studies also consider this technique for HPC environments. Here, we also
analyze the software costs of our OpenACC parallelization by examining the
popular COCOMO II model from SE. We discuss applicability and challenges
of COCOMO II for directive-based HPC programming by comparing modeled
human efforts with actual efforts as recorded in a developer diary.

For both the OpenACC parallelization and the software cost analysis, we
build upon a typical use case in HPC: domain scientists, here engineers, have
developed a code base comprising the algorithmic functionality. HPC experts
then port this application to OpenACC by parallelizing time-consuming kernels
and data structures. We will concentrate on this additional HPC implementation
work and the corresponding effort needed.

This paper is structured as follows: Sect. 2 covers related work. In Sect. 3,
the multiphysics framework ZFS is introduced. We describe our OpenACC par-
allelization, performance results and lessons-learned in Sect. 4. The software cost
analysis of this parallelization using COCOMO II is carried out in Sect. 5 and is
compared to real development efforts in HPC. Finally, we conclude in Sect. 6.

2 Related Work

Directive-based accelerator programming models like OpenACC have become
more popular for GPU programming in the last years. Lee and Vetter [21] review
some of them. Accelerating traditional C or Fortran codes with OpenACC is
well investigated [22,35,39]. In comparison, OpenACC offloading of C++ codes
to a GPU is less researched and Hwu et al. [16] even state that approaches like
OpenACC are not well-suited for object-oriented programming. Peng et al. [25]
parallelize a C++ Particle-in-Cell simulation code (iPIC3D) with OpenACC. They
found manual deep copies and non-working atomic capture directives in an early
PGI compiler version as main issues. The MPI Lattice Boltzmann code Numeric
Fluid Channel (NFC) is ported to OpenACC by Blair et al. [1]. They see diffi-
culties in class data members or anything behind the hidden C++ this pointer
used within parallel regions and apply copies to local scope to fix these problems.
We present lessons-learned from a DG parallelization with C++ and OpenACC.
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Similar to our work, Xia et al. [38] parallelize a DG method with OpenACC. How-
ever, they base their study on a Fortran code with unstructured grid topology, and
present two contention-free vectorization strategies to avoid corresponding race
conditions. Finally, the C++ finite-volume solver of ZFS has already been success-
fully accelerated with OpenACC in a previous work by Kraus et al. [20].

Advances for exascale computing yield more complex large-scale hardware
environments. Thus, effort required for developing and maintaining codes for
this hardware is continuously increasing. An estimation of these implementa-
tion efforts enables increasingly-important cost evaluations and strategic project
management beforehand. For SE projects, a variety of methods to estimate the
needed effort has been studied and extensively applied [4,17,30]. However, only
few works cover software cost and productivity analysis in HPC in general [11].
Most of these methods were evaluated during DARPA’s HPCS program [8] from
2002 to 2006. Kepner [19] provide a corresponding overview of HPC produc-
tivity and differentiate common HPC workflows to the ones found in general
SE. Wienke et al. [33] cover HPC productivity as costs per program run of
OpenACC and other parallel real-world code versions. Here, we focus on the
Constructive Cost Model II (COCOMO II) [6] that is widely-accepted in SE but
little researched for HPC cost estimations. In our previous work [32], we linked
an adapted COCOMO II to a Pareto distribution for modeling development
efforts. Kepner [18] also looked at an HPC effort estimation with COCOMO II
for a comparison of effort for OpenMP and MPI. In this work, we analyze all
COCOMO II parameters for our case study and compare the estimated effort
to real effort needed for a first parallel OpenACC version. In contrast to other
works that evaluate efforts in classroom experiments [9,14,40], we investigate
software cost for parallelizing ZFS for an HPC expert while keeping the user’s
perspective.

3 Aeroacoustics Simulation Application ZFS

ZFS is a multiphysics framework developed by the Institute of Aerodynamics
of RWTH Aachen University [23,27,29]. We apply OpenACC parallelization to
its aeroacoustics simulation component, which solves the acoustic perturbation
equations (APE) [10,28] with a DG method. By solving the APE, the acoustic
pressure field for flow-induced noise is predicted, e.g., the noise produced by
an airplane. The DG solver has been parallelized using a hybrid parallelization
scheme (MPI and OpenMP) and scales efficiently to more than 400,000 cores1.

The DG method used in ZFS is presented in detail by Schlottke et al. [28] and
is based on the discontinuous Galerkin spectral element method (DGSEM) [13].
First, the computational domain is hierarchically split into disjoint elements that
contain, e.g., integration node coordinates and conservative variables in underly-
ing flat data arrays that are accessed by pointers. Then, the elements are mapped
to a reference element and the weak formulation of the system of equations is
1 The High-Q Club, http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/

ZFS/ node.html.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ZFS/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ZFS/_node.html
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Table 1. Sequence of events for the DG implementation in ZFS including the top 5
hotspots with their absolute runtime t and their relative runtime p compared to the
main loop.

developed. Within each element, the solution and the fluxes are approximated
by Lagrange polynomials, which may be discontinuous across element interfaces.
For the fluxes on the element surfaces, a numerical flux formulation based on a
Riemann solver is used. The integrals of the weak formulation are approximated
using Gauss quadrature, yielding the time derivative at each node inside the ele-
ments. A five-stage fourth-order Runge-Kutta method [7] finally calculates the
solution state at the next time step. Table 1 gives an overview of the sequence of
events for the DG implementation in ZFS. Most kernels, such as the prolong step
(line 5), the flux calculation (line 7), and the integral evaluations (lines 6 and 10),
consist of a loop over all elements or surfaces. Simulation size and accuracy are
controlled by the maximum grid refinement level, i.e., the number of hierarchical
cell refinements, and the polynomial degree of the DG approximation.

To test our implementation during the development phase, a convergence test
based on a manufactured solution was used. Since it is very sensitive to errors,
even small inaccuracies have a large impact on selected integral error indicators.
In addition, a more realistic setup with a pressure pulse reflected at a wall is
used. The corresponding computational domain is a cube with a solid wall at the
face in z-direction, and it is initialized with a single, Gaussian-shaped pressure
pulse in close proximity to the wall. It is then simulated how the pulse spreads
through the domain. By changing the grid resolution, the runtime for each setup
can vary from a few seconds to several minutes on one CPU node.

Program-internal timers in ZFS measure the execution time for the differ-
ent parts of the algorithm. They create an event-driven profile that summarizes
the runtime behavior of ZFS for the respective simulation. We use these pro-
files to identify the compute-intensive kernels before we start offloading them
to the GPU. For the hotspot analysis, the solid wall case was simulated with
a maximum grid refinement level lmax = 4 and polynomial degree p = 3. We
use GCC ’s g++ 4.9.2 for the best-effort performance results compared to other
tested compilers (Clang, Intel, and PGI). The hotspot simulation runs serially
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Table 2. Excerpt from the development diary.

Duration Kernel Description

5 h calcVolumeIntegral parallelized outer loop over all elements [...]

3 h calcVolumeIntegral calculate flux on GPU [...]

13 h calcVolumeIntegral fix the data movement [...]

10 min resetRHS fully offloaded, data movement [...]

8 h prolongToSurface offloaded kernel and subroutine prolongToFaceGauss

on a Sandy Bridge EP E5-2650 at 2 GHz. Section 4.2 reveals more information
about hardware and compilers test setups. Table 1 shows the five most compute-
intensive kernels (hotspots) in the main loop. In total, 93.5 % of the main loop
runtime is spent in these hotspots.

Information about the needed development time for parallelizing a specific
kernel of ZFS’s DG solver is logged with a manual diary (see excerpt in Table 2)
and extended with a descriptive text on applied changes. Other development
efforts like understanding the code base, arranging the development environment,
tuning and benchmarking are excluded from the diary.

4 OpenACC and C++

Until now, OpenACC has been mostly used to parallelize C and Fortran codes
and rarely in the context of C++. Offloading C++ code with OpenACC raises addi-
tional complexity due to its object-oriented nature. In the following, we describe
our challenges encountered during the implementation of the C++ DG solver of
ZFS with OpenACC for GPUs and present lessons-learned. Our intermediate
performance results are compared to the existing CPU-parallel implementation.

Using OpenACC allows to incrementally offload compute-intensive kernels
to the GPU. We reflect this approach by parallelizing the kernels independently.
We started with the top hotspots from Table 1, added parallel loop directives
to the corresponding loops over ZFS elements or surfaces, and optimized the
data transfer for each kernel using various OpenACC data clauses.

The next step was to transform the code, such that the program compiles
and the test result remains correct. While we follow a straightforward app-
roach for parallelization with OpenACC in general, such code transformations
for OpenACC with C++ were especially challenging. A detailed description of
these transformations can be found in the following section. After all kernels in
the main loop were successfully offloaded to the GPU, we minimized the overall
data movement. During the whole implementation, we ensured that the simula-
tion produces correct results for our test cases.
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Listing 1.1. Code snippet of the calcVolumeIntegral kernel used on the CPU.

1 // Create temporary storage for flux values
2 const ZFSId noNodesXD = ipow(noNodes1D, nDim);
3 vector<ZFSFloat> flux(noNodesXD * noVars * nDim);
4 for (ZFSId elementId = 0; elementId < noElements; elementId++) {
5 ...
6 // Calculate flux
7 m_sysEqn.calcFlux(elements[elementId].m_variables, polyDeg, &flux[0]);
8 // Copy flux to time derivative
9 ZFSFloatTensor f(&flux[0], noNodes1D, noNodes1D, nDim, noVars);

10 ZFSFloat* ut = m_rightHandSide[elementId];
11 for (ZFSId i = 0; i < noNodes1D; i++) {
12 ...
13 ut[index] += dhat[i * noNodes1D + l] * f(l, j, 0, n)
14 + dhat[j * noNodes1D + l] * f(i, l, 1, n);
15 ...
16 }
17 }

Listing 1.2. Working directly on the underlying flat data arrays.

1 // Get chunk size and pointers for variables and right hand side
2 const ZFSId noVariables = maxNoNodesXD*noVars;
3 ZFSFloat* restrict variables = elements[0].m_variables;
4 ZFSFloat* restrict rightHandSide = m_rightHandSide[0];
5 #pragma acc parallel loop present(variables,rightHandSide,...)
6 for (ZFSId elementId = 0; elementId < noElements; elementId++) {
7 ...
8 // Calculate flux; compute pointer to first variable for this element
9 m_sysEqn.calcFlux(&variables[elementId*noVariables], polyDeg, &flux[0]);

10 ...
11 // Compute pointer to correct subarray of the right hand side
12 ZFSFloat* ut = &rightHandSide[elementId*noVariables];
13 ...
14 }

4.1 Challenges and Lessons-Learned

The major challenges and implementation efforts of the ZFS port cover code
transformations needed to apply OpenACC to C++ code. We present these code
transformations and lessons learned during this parallelization.

Numerous of the following code transformations are necessary to offload the
calcVolumeIntegral kernel to the GPU. We present them as examples and in
the order they were encountered. Listing 1.1 summarizes the relevant parts of
the original code for calculating the volume integral on the CPU.

Data Structures. Parallelization of the outer loop in Listing 1.1 (line 4) by
adding parallel loop raises the problem of preventing the compiler from cre-
ating accelerator code for this kernel because it cannot resolve the pointers from
the element class (line 7) to the underlying data array in this compute region.
Instead, we had to work directly on the underlying flat data arrays to port this
kernel to the GPU. Our corresponding solution is shown in Listing 1.2 in lines 3
and 9 and requires the following data structure of the underlying array: Storage
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Listing 1.3. Access the system of equations by reference to avoid calling its copy
constructor.

1 SysEqn* sysEqn = &m_sysEqn; // Create reference to m_sysEqn
2 #pragma acc parallel loop present(variables,sysEqn,...)
3 for (ZFSId elementId = 0; elementId < noElements; elementId++) {
4 ...
5 // Calculate flux; use reference to system of equations
6 sysEqn->calcFlux(&variables[elementId*noVariables], polyDeg, &flux[0]);
7 ...
8 }

order, access pattern and size of the variable sub-arrays must be the same as
for the parent element array. Data structures in ZFS already fulfilled these con-
straints and no further changes were necessary. Thus, we used this approach for
all occurrences of element or surface data in OpenACC kernels. However, having
to transform the code in this way results in less readability of the code and thus
in higher complexity to detect errors.

Two-Dimensional Arrays. The volume integral calculation further accesses the
member variable rightHandSide (Listing 1.1, line 10), which stores the DG solu-
tion that is later used for the integration of the Runge-Kutta method. This
variable is represented as two-dimensional array with the element index as first
dimension and the variable index as second. Two-dimensional arrays typically
consist of an array of pointers to an underlying flat array that holds the data.
However, this data layout hinders the compiler to resolve the pointers in the
outer array to the underlying data. Again, direct access to the array data solves
this issue (see lines 4 and 12 in Listing 1.2).

Copy Constructors. Due to persisting errors in line 7 of Listing 1.1, the compiler
is still not able to generate GPU code. The function call to calcFlux seems to be
the obvious problem. However, detailed investigations show that the object for
the system of equations (m sysEqn) in the compute region prevents the offload-
ing. As typical C++ feature, the compiler implicitly calls the copy constructor of
SysEqn – or its inheriting classes – to create a copy of the object for the GPU
memory. The compiler further implicitly tries to generate GPU code for the copy
constructor function and may encounter code that is not easily portable. In our
case, calls to a system function in the copy constructor prevent the offloading
and we recommend to move the object explicitly to GPU memory without call-
ing the constructor. Listing 1.3 shows how we use a reference to the object in
the compute region and copy it as one-element array to the GPU.

Data Races in Compute Regions. The flux for each element that is calculated
by the function calcFlux of the system of equations in line 7 of Listing 1.1 is
temporarily stored in array flux. The serial ZFS version uses the same memory
for the flux of all elements in the loop. To avoid data races, the MPI version has
a copy of this array for each rank. For the OpenMP version, the array is marked
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Listing 1.4. Large array for the flux of all elements.

1 // Create temporary storage for flux values
2 const ZFSId noNodesXD = ipow(noNodes1D, nDim);
3 // Get sub-array size and pointer to array for temporary data
4 const ZFSId noFlux = noNodesXD * noVars * nDim;
5 ZFSFloat* fluxAll = m_temp; // array size: noElements * noFlux
6 #pragma acc parallel loop present(variables,sysEqn,fluxAll,...)
7 for (ZFSId elementId = 0; elementId < noElements; elementId++) {
8 ...
9 // Get pointer to flux sub-array of this element

10 ZFSFloat* restrict flux = &fluxAll[elementId*noFlux];
11 // Calculate flux
12 sysEqn->calcFlux(&variables[elementId*noVariables], polyDeg, &flux[0]);
13 ...
14 }

Listing 1.5. Indexing multi-dimensional tensors

1 #pragma acc parallel loop present(fluxAll,sysEqn,variables,rightHandSide,dhat)

2 for (ZFSId elementId = 0; elementId < noElements; elementId++) {

3 ...

4 for (ZFSId i = 0; i < noNodes1D; i++) {

5 ...

6 // do no use tensor class, compute indices instead

7 ut[index] += dhat[i * noNodes1D + l]

8 * flux[l*noNodes1D*nDim*noVars + j*nDim*noVars + n]

9 + dhat[j * noNodes1D + l]

10 * flux[i*noNodes1D*nDim*noVars + l*nDim*noVars + noVars + n];

11 ...

12 }

13 }

as firstprivate, such that each thread has its own copy. For the OpenACC
implementation, we created an array that can hold the flux for all elements (see
Listing 1.4). We preferred working on this large array over privatization of the
data due to the reduced cost of creating it only once as class member instead of
creating local copies at each kernel start.

Indexing Multi-dimensional Tensors. The ZFS conservative variables for one
element are multi-dimensional tensors and must be accessed like that. A dedi-
cated class simplifies the tensor-like access to the data. It stores the pointer to
the underlying flat array and the dimension sizes. Lines 9 and 13f. in Listing 1.1
show the usage of this class. However, this tensor class is limited in use for
OpenACC offloading because the compiler automatically shares the variable,
i.e., the object and pointer to the data array, among threads inside a compute
region. Thus, the volume integral calculation uses incorrectly the conservative
variables of a single element for calculating all elements’ volume integral. To
tackle this problem, we directly index the flux data array (cf. Listing 1.5, lines
8 and 10). Unfortunately, with that, we lose the tensor class’ ease of use and the
redundant code for the index calculation is more difficult to maintain.
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Summarizing, using C++ classes did not raise any unsolvable problems itself.
However, calling constructors and destructors in compute regions must be taken
special care of. For some use cases, calling the copy constructor should be avoided
by calling the constructor outside the compute region and moving the object
explicitly to the GPU. Furthermore, deep copies of dynamically-allocated object
data must be performed manually by the programmer. Sometimes it is better
to work directly on the data arrays instead of using the object for referencing
this array. Template classes and functions as used in ZFS did not lead to any
problems.

4.2 Performance Results

We present early performance results of the OpenACC code version described
above. Note that performance tuning has not yet been focus of our porting
activities and will be tackled in the near future. We compare our OpenACC
version to the already existing CPU-parallel implementations with MPI and
OpenMP. In addition, we test the new PGI OpenACC multicore feature [37]
that enables running OpenACC accelerator code in parallel on host CPUs.

We run all CPU performance tests on a single node that contains two Sandy
Bridge EP E5-2650 @ 2 GHz with combined 16 cores and 64 GB main memory.
We activate process/thread binding and use 16 ranks for MPI and 16 threads
for OpenMP and OpenACC multicore. We compile all CPU-parallel versions
with GCC’s g++ 5.3 and PGI’s pgc++ 16.4. The GPU version is tested on the
same host node with an attached NVIDIA Kepler K20x GPU containing 6 GB
memory. The OpenACC GPU version is also compiled with PGI’s pgc++ 16.4
and -01 flag. Higher optimization levels introduced instability in compilation
and, thus, could not be employed. The test simulates the solid wall setup (see
Sect. 3) with a maximum grid refinement level lmax = 4 to 6 and polynomial
degree p = 3 and 5. We omit the combination lmax = 6 and p = 5 because
the size of the GPU memory is insufficient to run this simulation setup. We will
tackle handling bigger data sets in future. The performance results are illustrated
in Fig. 1. They present the average runtime over ten runs on a logarithmic scale.
Standard deviation is below 6.9 % for most test runs, except for the GCC MPI
version on the smallest test setup (with 23.9 %) and for the PGI OpenMP version
on the smallest grid with higher polynomial degree (with 12.0 %).

Meeting our expectations, the performance of the MPI and OpenMP versions
is roughly comparable since they both exploit parallelism on the level of elements
and surfaces. In contrast, results do not meet our expectations for the PGI’s
OpenMP and OpenACC multicore version: Their performance is not supposed
to differ greatly (here a factor of 2.0 to 2.8) since both rely on the same threading
implementation. A detailed analysis reveals that our manual code transforma-
tions in the OpenACC version, which were necessary for the GPU offloading
as mentioned above, improves the CPU performance as well. The performance
difference is especially noticeable for the modified indexing of multi-dimensional
tensors (see Sect. 4.1) in the calcVolumeIntegral kernel. Instead, the original
and base OpenMP code uses a tensor class whose constructor and destructor
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Fig. 1. Performance results and standard deviation of the parallel version runs of the
ZFS DG solver.

are called for each element inside the loop (about 250 thousand times per kernel
call for our largest test setup) and whose indexing operator [] is called multi-
ple times for each element (up to 15 thousand times per element). Eliminating
solely these expensive calls in the OpenMP version decreases the runtime differ-
ence of PGI’s OpenMP and OpenACC multicore version to a factor of 1.7 to 2.2.
The remaining performance difference is due to further transformations in the
OpenACC version of the code. Comparing PGI’s and GCC’s OpenMP runtimes,
we see a difference of 1.7× up to 2.2×. One reason are better C++ compiler
optimizations with GCC. For example, interprocedural optimizations could be
applied (in contrast to PGI) that seemingly resulted in similar code transforma-
tions as explained above. Finally, our current non-tuned OpenACC GPU-parallel
version is 2.9× to 5.3× slower than PGI’s OpenMP version. In comparison to
the best-effort GCC versions, it is 7.1× to 10.2× slower than the MPI version
and 4.7× to 11.5× slower than the OpenMP version. The runtime distribution
across the two main GPU kernels is represented by the differently-colored bar
shares in Fig. 1 (remember logarithmic scale). In comparison to Table 1, we see
that the share for the fluxCalculation (C in Fig. 1) decreases from 46.7 % to
between 17.0 % and 26.0 % while the calcVolumeIntegral kernel share (V in
Fig. 1) increases from 19.3 % to between 37.3 % and 48.8 %.

Overall, our current OpenACC GPU version cannot yet compete with the
highly-tuned MPI version of ZFS’s DG solver, but tuning activities to lever-
age the full potential of GPUs are examined in the future. These optimizations
include improvements to the data access patterns to better fit GPU architec-
tures and further exploit potential parallelism. Nevertheless, we can see that an
OpenACC-parallel code can also easily be tested in parallel on the CPU.
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Table 3. Effort Multipliers (EM) and Scale Factors (SF) used in COCOMO II.

EM: Product Factors Our rating

Required Software Reliability (RELY) very low (0.81)

Data Base Size (DATA) low (0.90)

Product Complexity (CPLX) high (1.17)

Developed for Reusability (RUSE) low (0.95)

Documentation Match to Life-Cycle Needs (DOCU) very low (0.81)

EM: Platform Factors

Execution Time Constraint (TIME) nominal (1.00)

Main Storage Constraint (STOR) nominal (1.00)

Platform Volatility (PVOL) not applicable (1.00)

EM: Personnel Factors

Analyst Capability (ACAP) not applicable (1.00)

Programmer Capability (PCAP) not applicable (1.00)

Applications Experience (APEX) nominal (1.00)

Platform Experience (PLEX) nominal (1.00)

Language & Tool Experience (LTEX) high (0.91)

Personnel Continuity (PCON) very high (0.81)

EM: Project Factors

Use of Software Tools (TOOL) very low (1.17)

Multisite Development (SITE) nominal (1.00)

Required Development Schedule (SCED) high (1.00)

Scale Factors Our rating

Precedentedness (PREC) norm (3.72)

Development Flexibility (FLEX) high (2.03)

Architecture/Risk Resolution (RESL) norm (4.24)

Team Cohesion (TEAM) extra high (0.00)

Process Maturity (PMAT) norm (4.68)

5 Software Cost Analysis

COCOMO II guides investment decisions for software projects in SE by estimat-
ing their needed development effort [6]. This effort estimate and corresponding
development costs can be incorporated, e.g., into a total cost of ownership calcu-
lation (compare [33]) for HPC projects or centers. In the following, we summarize
COCOMO II’s Post-Architecture Model and how we apply it to the OpenACC-
parallelization of ZFS. For that, we include a parameter analysis and highlight
those with particular meaning in an HPC context. We compare our results of
the cost estimation to the manual HPC developer logs of ZFS.
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5.1 Overview of COCOMO II

COCOMO II is a parametric model [6] that is based on a regression analysis
of historical software projects and measures the size of projects in thousands of
source lines of code (KSLOC). The size of a software is estimated at the begin-
ning of a project and is then refined with ratings of various factors influencing the
cost of a project. These are, e.g., the quantity of reused code or documentation
and they are rated from very low to extra high. These parameters are grouped
into two categories: Effort multipliers (EM) are cost drivers which influence the
size of a project in a linear way, whereas scale factors (SF ) describe “the relative
economies or diseconomies of scale encountered for software projects of different
sizes” [3] (Table 3).

The effort model is divided into two main models depending on the state
of the project. In the beginning of a project, the Early Design model pro-
vides an initial estimate. When reaching the Life Cycle Architecture (LCA)
milestone [2], the Post-Architecture Model is applied instead. Key features for
the LCA milestone are the identification of architecture drivers, like the required
software reliability, which lead to the “definition of the software and architec-
ture itself” [2]. Since ZFS’ life-cycle architecture (cf. [5]) has been developed,
the Post-Architecture model is used for all cost estimations. The main focus of
this model is on the development and maintenance of a product and features the
most detailed effort estimation.

COCOMO II estimates effort by

PM = A · SIZEB ·
17∏

i=1

EMi with B = β0 + β1 ·
5∑

j=1

SFj , (1)

where PM is the resulting effort estimate in person months (1 PM =̂ 152 h), A is
a calibration constant of 2.94, and SIZE is the estimated size of the software in
KSLOC with two calibration constants β0 = 0.91 and β1 = 0.01 [6].

An additional reuse model takes an existing code base into account. It models
the effort for adapting the code base (re-engineering) to be reused for the current
project at hand. It is calculated by

PMreuse =
ASLOC · AT

100

ATPROD
, (2)

where PMreuse is the effort estimate for the re-engineering in person months,
ASLOC is the estimated SLOC which need to be adapted, AT is the percent-
age of code which is automatically re-engineered, and ATPROD is the auto-
matic translation productivity in ASLOC per person month. The total estimated
development cost of a project is the sum of PM and PMreuse.

5.2 Methodology

COCOMO II estimates development time through SLOC, whose counting rules
are defined by the COCOMO II Model Definition Manual [3]. The count of
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SLOC for ZFS was obtained by evaluating the relevant changes committed in
a version control system. All SLOC deleted to re-write the kernels (cf. Table 1)
for the GPU are assumed to be adapted code (ASLOC).

The second type of input for COCOMO II are the parameters grouped in
EM and SF . These are rated on a six-step scale from very low to extra high. In
contrast to the well-defined rules of counting SLOC, the scaling parameters are
subjective for many factors. Only about one fourth of the questions are defined by
numerical values and almost all of the SF are based on the assessment of a person
very familiar with the project. One example would be the required software
reliability denoting “slight inconveniences” in case of a software failure as low
values whereas “risk to human life” is rated high. COCOMO II parameters with
particular meaning for the ZFS parallelization are discussed in the next section.
All remaining or inapplicable parameters are set to the nominal value, which is
1.0 for all EM and between 3.04 and 4.68 for the SF [3]. To gather sufficient
data for this rating, we conducted a detailed interview according to [12] with
the OpenACC developer of ZFS, who is one of the authors. We then matched
the answers to the rating scale from very low to extra high. After translating
these ratings to numerical values as intended by the model, the total effort was
calculated by (1).

In the next step, the estimation from COCOMO II was compared to data col-
lected during the development. This data was obtained with a manual developer
diary (cf. Table 2) and acts as the reference cost of the project.

We compute two estimations using the model: The estimation for counting
all added SLOC and a lower estimate for the added directives only. The latter
accounts for an ideal case of a directive-only parallelization. This is, however, a
theoretical approach since there were other changes needed to the base code for
a numerically-correct execution on a GPU. Moreover, the effort is also estimated
by setting all EM and SF to their respective nominal values. This nominal esti-
mation is for comparison of this HPC project with an average software project.

5.3 Parameter Analysis for ZFS

At the beginning of the analysis, we focus on the model’s complexity metric
SLOC and the different ways to count it for ZFS. First, the base code of ZFS
according to COCOMO II is the total number of SLOC of ZFS right before
starting the OpenACC parallelization and accounts for 265 KSLOC. The effort
needed to develop this base code is not evaluated since we are interested in the
parallelization effort only. Second, the actual number of SLOC of the porting
to OpenACC was 563 added and 191 adapted SLOC. Third, we added only 54
SLOC of pure OpenACC directives, i.e., about 10 % of all needed changes like
code transformations.

Next, we analyze noticeable parameters of COCOMO II regarding the par-
allelization of ZFS. Refer to [3] to get a full description of these parameters.
Our ratings can be found in Table 3. The required reliability (RELY ) of ZFS
is very low since a worst-case failure in the simulation software would require
only a re-computation with a correct version of the software. Further, ZFS does
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not make use of a database (DATA) resulting also in our rating of very low.
Product Complexity (CPLX) is a subjective rating of five distinct parameters
which are combined in a weighted average: (1) Control Operations are rated
very high due to the highly parallel nature of ZFS. (2) Computational Opera-
tions are rated extra high due the ZFS’s complex numerical development. (3)
We rate Device-dependent Operations high since ZFS executes operations at
physical I/O level. (4) Data Management Operations is rated high because ZFS
utilizes complex data restructuring and grid refinement methods. (5) ZFS uses
very simple input forms and hard-coded output to log files which leads to the
lowest rating (very low) for User Interface Management Operations. Combining
the numerical values of all five ratings yields a total rating of high for CPLX.
Documentation match to life-cycle needs (DOCU) is set to very low since the
OpenACC parallelization of ZFS was not documented. The aim in HPC is to
leverage all available resources, i.e., an extra-high rating of 95 % of the available
resources for the Execution Time Constraint (TIME). As we did not tune the
parallelization of ZFS yet, we use the GPU occupancy of the five hotspots of
ZFS (cf. Table 1) as indicator for this parameter. A profiler reveals an averaged
occupancy of approx. 15.5 %. Therefore, we set TIME to the nominal rating
(50 % or less usage of the available resources). Another method for estimating
TIME is the roofline model [36]. Further, we rate PCON very high since this
project had no changes in personnel. The Use of Software Tools (TOOL) is rated
very low since we used a repeating sequence of editing, coding and debugging.
We delayed the deadline of the project by four weeks, i.e., roughly 25 % of the
initial schedule, due to various obstacles in the set-up of the development envi-
ronment for ZFS so that the Required Development Schedule (SCED) is rated
high.

COCOMO II’s reuse model bases its effort estimation on ASLOC and on
two parameters describing the automation of the adaption. The percentage of
automatic translated (AT ) code is set to 50 % since we adapted all code inter-
actively. Automatic translation productivity (ATPROD) denotes the ratio of
automatic translated source statements per person month. Since we did not use
any form of automatic translation, ATPROD is discarded from the calculations
which yields a value of 1.

We also found several parameters to be not applicable to this project (see
Table 3). For example, due to the small size of the parallelization, no analysts
(ACAP ) and teams of developers (PCAP ) were involved.

5.4 Results and Discussion

The reference effort obtained through the developer’s diary adds up to 65 h of
porting time. It is split up into 22 distinct entries ranging from 10 min of porting
to 13 h. The porting effort of each kernel was logged after successfully porting
the respective kernel. However, this approach introduced inaccuracies of the
development time due to the wide range in the time resolution.

Using the setup described above, the effort estimated by COCOMO II for
parallelization and optimization of all SLOC and ASLOC is about 150 h of
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Table 4. Results of the COCOMO II cost estimation.

Abbr Settings SIZE ASLOC Development time [hours]

RF Reference cost 563 191 65.5

AC All changes 563 191 150.4

DI Directives only 54 – 10.2

NV Nominal values of EM and SF 563 191 252.1

TU Tuned (TIME > 95%) 563 191 235.9

development (listed as AC in Table 4). Looking at the reuse model (2) only, the
effort for adapting the 191 ASLOC is estimated to about 14 h out of the total
150.4 h. The model’s estimation is about 3× higher than the reference value
(listed as RF in Table 4). One reason for the high estimation with COCOMO II
may lay in the reference data of a manual development diary that can intro-
duce inconsistent or incomplete data [15,26]. Assuming a self-overestimation
in productivity of 13 % (taken from [15]), i.e., the actual effort is 13 % higher
than the logged effort, would raise the reference cost to 74 h. Additionally, the
diary excluded several development activities like tuning and set-up and focused
instead on the main porting effort of ZFS’s computational kernels and ended at
a first parallel version. COCOMO, in contrast, accounts for the whole life cycle
of a software project, which includes set-up and tuning efforts. In retrospec-
tive, we estimate the effort for our set-up in a new HPC environment to 20 h.
Further, minimal tuning activities like data transfer optimizations have already
been conducted and account for 6.5 h in the developer diary. Adding these two
efforts would lead to a reference cost of 85 h (97 h with 13 % difference in the
logging).

The estimation of COCOMO II’s reuse model for adapting code shows to
be inaccurate in terms of estimated effort for adapting SLOC. Our experience
shows that a lot of the needed code changes were due to incompatible data struc-
tures on the GPU and could be reused only at parts of the code. Each unique
adaption for the GPU required time for understanding the underlying problem.
This development time is estimated very low compared to the total effort. One
reason for the low estimate is COCOMO being based on large software projects
with a lot of automatic translation of code with very little effort. Moreover,
COCOMO’s reuse model accounts for various techniques in object-oriented pro-
gramming, like modularization and encapsulation, which ease the re-engineering
process. In contrast, our adapted code parts were mostly specific to a kernel on
the GPU. The low effort estimate for automated re-engineering can be observed
in COCOMO II when applying the proposed default value of ATPROD = 2400
(cf. [3]). The reuse model is then almost omitted with an estimated effort of less
than a minute.

Another estimation relies on counting the added OpenACC directives and
statements only. This would be an ideal case, where no changes to the base code
are needed except for OpenACC statements, and acts as the lowest estimation.
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The size of 54 SLOC and the above settings result in an effort of only 10 h
for parallelization (see DI in Table 4). This estimation of a directive-only paral-
lelization is by a factor of six lower than the actual parallelization effort (RF)
and by an order of magnitude smaller than the estimation of all SLOC and
ASLOC (AC). This estimation is unrealistic for ZFS since the added directives
and statements account for only approx. 10 % of the total size of the project.
Moreover, COCOMO II was calibrated with large projects (several KSLOC)
and might be inaccurate for small projects such as the porting of the DG part
of ZFS to GPUs, especially for the directives-only estimation. This is, however,
only an assumption since we could not record the effort for the directives without
recording the majority of other changes as well.

For comparison, a nominal effort estimation was conducted by setting all
EM and SF parameters to their respective nominal values. The result of this
average software project estimate was even higher than the first estimate of
our HPC project with about 238 h of development time (cf. NV in Table 4).
This is especially surprising considering our initial assumption of HPC projects
being more complex than general software projects because of high efforts of
performance optimizations.

In the future, the parallel version of ZFS will be tuned to fully leverage the
computational performance of GPUs. Since we only developed a first parallel ver-
sion, the needed tuning effort can only be estimated by applying COCOMO II
with a higher rating of TIME. When aiming for an close-to-optimal parallel
version with an usage of more than 95 % of the available resources (TIME =
extra high), the estimated development effort is raised to 236 h (additional 85 h
for tuning) (listed as TU in Table 4). However, several HPC projects experience
a tuning effort according to a Pareto distribution [32]. The distribution describes
the effort needed to reach a percentage of the theoretical maximum performance
of the underlying hardware. Accordingly, to reach the last 20 % of the maxi-
mal performance, 80 % of the total tuning effort is needed. This would result
in approx. 54.4 h of tuning compared to the 6.5 h for this first-parallel-version.
COCOMO II’s estimation is therefore similar to the 80-20-rule mentioned above.

In conclusion, COCOMO II is not directly applicable to our ZFS case study.
COCOMO II’s complexity metric of SLOC did not fit our parallelization well
and would have been infeasible or inaccurate to predict at the starting point of
the project: We had only few added directives, but each required considerable
time for analyzing and debugging, and numerous other complex code transforma-
tions on the base code were needed. Furthermore, the difference in effort varied
across added and adapted SLOC: Correct parallelization needs usually a lot of
development effort, other SLOC could be reused or can optimized with little
effort through, e.g., compiler optimizations. This inaccuracy could be improved
if more HPC projects similar in its size, programming model (OpenACC/C++),
and use case were documented and analyzed according to the needed develop-
ment effort. Additionally, an alternative base metric to SLOC could improve the
accuracy of the cost model. A method for adapting COCOMO II to better fit the
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HPC domain is proposed in Wienke et al. [34], which is based on a performance
life-cycle instead of SLOC.

Finally, we also experienced several missing factors in COCOMO II that
might be added to a cost model to better fit HPC projects: In general, adding
directive-based parallelization to existing projects requires additional effort to
understand the base code, to think about parallelism and to communicate with
the domain scientist which is not captured by COCOMO II. Efforts to set-up
the development environment, such as compilers, tools and needed libraries, can
be very high and are also not included in COCOMO II. Further parameters of
influence in HPC projects are delays due to scheduling processes and possible
energy savings.

6 Conclusion

In this paper, we present the OpenACC parallelization of the aeroacoustics sim-
ulation software ZFS on a GPU and its software cost analysis with COCOMO II.
We describe the incremental offloading of compute-intensive kernels and high-
light code transformations needed to integrate OpenACC into a real-world C++
code. Lessons-learned include dealing with calls to constructors in compute
regions, object-oriented data accesses, and data races. A comparison of early
performance results of the OpenACC-parallelized code with PGI OpenMP sim-
ulations on the CPU shows 2.9× to 5.3× performance slowdowns. However,
applied code transformations to OpenACC GPU code also pay off on the CPU:
PGI’s OpenACC multicore runs are up to 2.8× faster than respective OpenMP
runs with PGI. Nevertheless, the performance of the highly-tuned CPU-only
version built with GCC could not yet be reached.

Furthermore, we carried out a detailed parameter analysis for the cost model
COCOMO II applied to the parallelization of ZFS and identified parameters not
well-fitting or missing for HPC environments. We estimate lower and upper cost
limits by investigating different parallelization scenarios and compare these with
manually-tracked development efforts. Our analysis shows that COCOMO II is
not suitable for our HPC project by overestimating the needed effort of the
parallelization by a factor of 2.3.

In the future, we will tune the first parallel OpenACC version of ZFS and
integrate a hybrid MPI/OpenACC parallelization to scale to large GPU clusters.
We will also continue to log parallelization efforts for these activities to further
investigate software cost estimation models in the HPC domain. In addition, we
will extend our software cost analysis of COCOMO II by examining its sensitivity
to inaccuracies in the input parameters.
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Abstract. The growing popularity of the Intel Xeon Phi coprocessors
and the continued development of this new many-core architecture have
created the need for an open-source, scalable, and cross-platform task-
based dense linear algebra package that can efficiently use this type of
hardware. In this paper, we examined the design modifications neces-
sary when porting PLASMA, a task-based dense linear algebra library,
to run effectively on Intel’s Knights Corner Xeon Phi coprocessor. First,
we modified PLASMA’s tiled Cholesky decomposition to use OpenMP
for its scheduling mechanism to enable Xeon Phi compatibility. We then
compared the performance of our modified code to that of the origi-
nal dynamic scheduler running on an Intel Xeon Sandy Bridge CPU.
Finally, we looked at the performance of the new OpenMP tiled Cholesky
decomposition on a Knights Corner coprocessor. We found that desirable
performance for this architecture was attainable with the right code opti-
mizations; these changes were necessary to account for differences in the
runtimes and in the hardware itself.

Keywords: Cholesky decomposition · Linear algebra · OpenMP ·
PLASMA · Task-based programming · Tile algorithms · Xeon Phi

1 Introduction

Linear systems of equations and eigenvalue problems are integral parts of many
different scientific and engineering applications. These codes can be very compu-
tationally intensive and much effort has been dedicated to increasing the speed
and efficiency of these codes. New accelerator and coprocessor architectures such
as GPUs and the Intel Xeon Phi offer the potential for increased performance,
but due to major architecture design differences (traditional CPU vs. accel-
erator), accelerators/coprocessors also have substantial overhead in terms of
optimizing old code to achieve the potential performance benefit of the new
architecture.

Developers of linear algebra libraries who want to utilize the Xeon Phi have
previously used techniques that offloaded the specific Basic Linear Algebra Sub-
program (BLAS) routines to the Xeon Phi, or used a hybrid approach that
offloaded some of the work, such as in Matrix Algebra on GPU and Multicore
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 544–562, 2016.
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Architectures (MAGMA) [8]. This approach is designed based on the assump-
tion that the controlling thread needs to be run on a separate primary processor
such as is required for a GPU. However, the Xeon Phi architecture differs from
a GPU in that it allows more complex threads than GPUs, which makes it more
similar to a traditional CPU. This architecture, which has been referred to as
“many-core,” seems to be reverting back to a traditional multi-core lineage, and
Intel announced that the next generation architecture (Intel Knights Landing)
will work as a primary processor [17].

There are fewer options available for dense linear algebra when using the cur-
rently available Xeon Phi (Knights Corner) as a primary processor. Intel’s Math
Kernel Library (MKL) provides dense linear algebra routines on Intel archi-
tectures including the Xeon Phi. However, it is not open-source. Open-source
software would allow developers to better understand the execution behavior of
these routines and have the ability to customize parameters to tailor to their
specific application. Also, MKL is not available for other non-Intel architectures
that require effective and scalable dense linear algebra libraries.

One method for performing dense linear algebra on multi-core architectures
is to use a task-based model for computations. This is the approach taken by
PLASMA (Parallel Linear Algebra Software for Multicore Architectures), which
has shown good performance on many different machines [1,4], but has yet to
target the Xeon Phi due to differences in architectures. However, the implemen-
tation of task-dependencies in OpenMP 4.0 provides an opportunity to port this
library to the Xeon Phi as well as decrease the size of the code base.

1.1 Contributions

The contributions of this paper are:

– We implemented a task-based tile Cholesky decomposition using OpenMP 4.0
directives based on the PLASMA linear algebra library.

– We compared the performance of using OpenMP’s tasking dependencies with
the previous dynamic scheduling mechanism.

– We measured the performance of this task-based tile Cholesky algorithm on
Knights Corner.

– We investigated the execution behavior of this algorithm and discovered var-
ious ways of improving performance.

These contributions show the viability of task-based algorithms on the Xeon Phi
architecture.

2 Background

2.1 Intel Xeon Phi Coprocessor

Intel developed the Xeon Phi coprocessor in response to the growing demand
for accelerators to provide high performance and efficiency. The Xeon Phi’s high
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performance is obtained by using a large number of cores, wide vector units, and
multiple threads per core [10]. While code can be compiled for this architecture
without major changes, reaching peak performance still depends on careful dis-
tribution of work across the threads and cores, as well as consideration of the
vector units. Also, the Xeon Phi relies heavily on effective usage of the caches,
and it can be difficult to use the caches in a way that does not incur cache
consistency penalties with this many cores.

The most recent model of Xeon Phi is called Knights Corner (KNC) and has
61 cores operating at 1.238 GHz. Knights Corner has a 512-bit instruction set and
8 double precision wide vector processing units. It also supports fused multiply
add, so it is capable of 16 double precision floating point operations per cycle [5].
This gives Knights Corner a theoretical double precision peak performance of
1,208.29 GFLOPS.

Knights Corner acts as a coprocessor. It is connected to a primary processor
through a PCI Express bus and has its own embedded Linux operating system
that handles all of the scheduling functionality and process and thread manage-
ment. The operating system stack allows for a secure shell interface, through
which code can be executed natively; heterogeneous code is also possible using
the compiler offload capabilities [10].

Threads. The main difference between the Xeon Phi and other Intel multi-core
architectures is its use of up to 4 hardware threads on each core with a short
in-order pipeline. These are different from hyperthreads, which can be found
on a Xeon CPU, in that hyperthreads are hardware threads on an out-of-order
execution engine. In a Xeon CPU, the full floating point potential can be reached
using a single thread and the out-of-order execution allows it to tolerate latency.
Additional threads are only helpful for more latency tolerance, but often put
more pressure on the memory. For this reason, typically only 1 thread is used
per core for dense linear algebra codes on CPUs.

The Xeon Phi, on the other hand, schedules using a simple round-robin
scheme with its 4 threads, and is able to execute 2 vector instructions in par-
allel, but they must come from different threads [15]. This means that peak
performance is likely only possible with at least 2 threads per core. However,
providing 4 threads per core provides more latency tolerance and is what is typi-
cally recommended. Drawbacks to adding additional threads can occur, however,
in that they can negatively affect caching behaviors which could be especially
detrimental in codes that are not compute bound.

2.2 PLASMA

The Parallel Linear Algebra Software for Multicore Architectures (PLASMA)
project was developed at the Innovative Computing Laboratory (ICL) starting
in 2007 to provide high performance dense linear algebra routines for multiple
socket and multiple core architectures [4]. PLASMA contains many different
linear algebra algorithms and supports single, double, single complex, and double
complex precision. PLASMA is able to efficiently use the hardware by leveraging
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algorithms that can distribute the workload, and a system of dynamic scheduling
in which work is assigned based on data and core availability. Thus, this is a
system of asynchronous, out-of-order scheduling of task-structured operations.

Tiling. The benefit of PLASMA comes from its ability to effectively distribute
the computation to multiple cores that can operate simultaneously on their con-
tiguous memory blocks. This maximizes the operations performed on the data
cached by each core prior to eviction, while also limiting synchronization issues.
It accomplishes this feat using tiling algorithms.

Tile algorithms work by first separating the matrix into memory contiguous
tiles. Thus, a matrix of size N by N will be divided into tiles of size NB by
NB, producing (N/NB)2 tiles of the matrix. Operations are performed between
individual tiles and then combined to produce the overall desired computation.
The tile operations can then be performed in parallel, when there are no depen-
dencies between them, with minimized synchronization points and without the
risk of cache consistency problems.

Deciding tile size is necessary to obtain good performance, since overall per-
formance is affected by tile size and number of tiles, but the process is not
always straightforward. Because of factors like memory latency and through-
put of a given architecture, tiles can become increasingly memory-bound with
smaller tiles, and thus can have reduced performance. However, if the tiles are
too large then there may not be enough parallel work to be effectively distributed
to all cores.

All of the separate tile operations are self-contained tasks that have memory
dependencies associated with the data to be operated on, and some dependency-
based order of operations specified by the tiled algorithm. This can be viewed as
a graph where nodes represent tasks and edges represent dependencies between
them. This forms a directed acyclic graph (DAG), and a DAG representation can
help discover work that can be run in parallel because there are no remaining
dependencies. Ideally, a scheduler would be able to identify some of this parallel
work and distribute the work in a way that would allow for the fastest computa-
tion. The ability to transform linear algebra algorithms into a task-based model
provides a representation that helps simplify parallelization.

Scheduling. PLASMA has two types of scheduling available: static and dynamic.
The static scheduling mechanism will assign tasks to cores before execution
and the tasks will wait to begin execution until all of their dependencies are
met. Task dependencies and completions are then tracked by a global progress
table. Performance then depends on using the static pipeline [12]. However, this
method lacks the ability to schedule all tasks whose dependencies have been
met as quickly as possibly because the scheduling is performed beforehand and
will not be able to account for variations in task execution times. Artificial
synchronization points expose serial sections of code, and this can leave some
cores idle. Static scheduling also cannot distribute the tasks as well across a large
number of cores, and lacks generality in that the pipeline must be considered
when designing the algorithm.
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PLASMA is designed to achieve the best performance when using a dynamic
scheduling mechanism. This is different from static scheduling in that as cores
finish tasks they can be assigned any tasks whose dependencies have been met
at runtime. This is considered “data-driven” scheduling. This allows better work
distribution and less idle time on all cores.

The dynamic scheduling was previously controlled by an internal runtime
called QUARK (Queueing And Runtime for Kernels). This scheduler was shown
to perform very well for previous PLASMA work distribution on other architec-
tures. However, when we compiled PLASMA using QUARK on the Xeon Phi,
initial tests showed that QUARK did not produce sufficient performance because
multiple Xeon Phi threads were necessary per core. While only slight modifica-
tions to the code could have fixed this problem, another solution presented itself
when the PLASMA project decided to transition to a new dynamic scheduling
mechanism... OpenMP.

2.3 OpenMP

OpenMP [6] was created in October 1997 to provide an easy method for exploit-
ing shared memory parallelism. OpenMP is an API that uses a collection of com-
piler directives, library routines, and environment variables to control underlying
implementation. It is now an option provided by most compilers including Intel,
which allows it be a viable option for parallel programming on the Xeon Phi. It
was designed in a way that focused on ease of use but still allows a wide variety
of features. It has continued to add to this list of features over the years, one of
the most recent being tasking.

In 2009, the release of OpenMP 3.0 added support for the tasking model
of parallelism which added the ability for parallelization of irregular problems,
which have recursive, unbounded loops. In 2013, the release of OpenMP 4.0
added new capabilities to allow tasks to specify data dependencies. This provides
support for a task-based model for programs in which each task can depend on
data which may be manipulated by earlier tasks. The program can then be
represented as a DAG of tasks, and these tasks are made to execute on available
hardware as their dependencies are met.

GNU and Intel currently support OpenMP 4.0. This new support for tasks
with dependencies provides the necessary abstraction to allow PLASMA to easily
replace its internal dynamic scheduler with OpenMP task directives, and thus
be able to run on a Xeon Phi coprocessor.

2.4 Cholesky Decomposition

Algorithm. Cholesky decomposition is the decomposition of a symmetric positive
definite matrix A into a lower triangular matrix and its conjugate transpose
(Eq. 2). Cholesky decomposition is used for solving linear systems of equations,
which is common in many science and engineering applications. The formula for
calculating each matrix entry can be seen in Eqs. 4 and 5. As the matrix grows in
size, this algorithm for solving the matrix will depend on accessing increasingly
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distant memory locations which can make the work difficult to parallelize and
lead to memory thrashing.

A =

⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ (1)

A = LLT =
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Tiled Cholesky Decomposition. PLASMA uses a tiled version of Cholesky decom-
position. The premise of this method is to separate the operations that are taking
place in the above algorithm to allow effective parallelization. The creation of
this algorithm can be seen in the LAPACK User’s Guide [2]. It is composed of
the BLAS tile operations: matrix-matrix multiplications (GEMM), solving the
triangular matrix equation (TRSM), symmetric rank-k update (SYRK), and
Cholesky decomposition (POTRF). All of these are Level 3 BLAS, which means
that they are no longer memory bound and the peak theoretical performance
will increase as the tile size increases.

There are three common variations for scheduling the tile operations nec-
essary to complete the whole computation. They all have the same tasks and
dependencies, as they are performing the same computation. However, the order
in which these operations are scheduled can vary, and these variations can dras-
tically affect the view of the tasks presented to the scheduler, and thus the order
of completion of tasks.

Scheduling Variations. The three variations of tiled Cholesky decomposition are:
right-looking (Fig. 1), left-looking (Fig. 2), and top-looking (Fig. 3). The avail-
ability of work as seen by the scheduler can be seen in the task dependency
DAGs in Fig. 4.

The right-looking version can be considered the most aggressive and offers
the most parallelization with its breadth first task exploration. This is why
right-looking was previously selected for PLASMA dynamic scheduling. The
top-looking version can then be described as the “lazy” version because it is
using depth first exploration of the task graph, which limits the number of tasks
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Fig. 1. Right-looking variation of the tiled Cholesky decomposition (green = GEMM,
red= POTRF, orange= TRSM, and purple= SYRK) (Color figure online)

that are immediately able to be run. The PLASMA static scheduler uses left-
looking Cholesky decomposition because it was determined to be the best for
the static pipeline [12].

3 Related Work

This paper is building off of previous work that took place to create PLASMA
at the Innovative Computing Laboratory [4] in order to broaden the scope of
the library to include Xeon Phi coprocessors. Virouleau et al. [18] evaluated
replacing QUARK calls with OpenMP tasks with dependencies on Intel and
AMD multi-core machines, but they did not measure performance on the Intel
Xeon Phi and also did not compare to the performance when using the Intel
OpenMP runtime.

LibFLAME [14] is a dense linear algebra library developed at the University
of Texas at Austin. Dolz et al. [7] tested running libFLAME on a Xeon Phi while
attempting to balance task and data parallelism to maximize performance and
energy efficiency. However, they did not consider algorithm specific effects or
the possibility of different BLAS routines being optimal with varying numbers
of threads (to be discussed later). OmpSs [9] and XKaapi [13] provide OpenMP
tasking-like alternatives for task implementations of Cholesky decomposition on
a Xeon Phi.

Knights Corner has been available since 2012, allowing ample time for analy-
sis. Schmidl et al. [16] studied the performance of OpenMP programs as com-
pared to an Intel Xeon Sandy Bridge in terms of memory bandwidth and over-
head of OpenMP constructs when utilizing the dynamic scheduler. However, the
authors were not looking at tasks with dependencies and the degraded perfor-
mance with a large number of tasks (likely because it was written before tasks
with dependencies were implemented). Fang et al. [11] studied the Xeon Phi
Architecture and performance, but was not focused on optimizations to increase
performance.
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Fig. 2. Left-looking variation of the tiled Cholesky decomposition (green = GEMM,
red= POTRF, orange= TRSM, and purple = SYRK) (Color figure online)

Fig. 3. Top-looking variation of the tiled Cholesky decomposition (green = GEMM,
red= POTRF, orange= TRSM, and purple = SYRK) (Color figure online)
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Fig. 4. DAGs for 3 variations of tiled Cholesky decomposition (from left to right):
right-looking, left-looking, and top-looking. These show how the order in which tasks
are presented to the scheduler affect the available parallelization (green = GEMM,
red= POTRF, orange= TRSM, and purple = SYRK). (Color figure online)
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4 OpenMP Task-Based Cholesky Decomposition

To transition the PLASMA tiled Cholesky decomposition to run on the Xeon
Phi, we wrote the three different tiled versions in C, replacing the previous
QUARK calls with OpenMP 4.0 tasking directives (right-looking in Fig. 5). This
implementation starts a pool of threads with “#pragma omp parallel,” and
then uses a master thread to sequentially create all of the tasks and specify
their dependencies. After the tasks are created, the scheduler can assign them
to available threads/cores for execution.

OpenMP allows for specifying whether the task only needs to read data (in:),
write data (out:), or both (inout:). The scheduler will then be able to use this
information to safely start tasks when data dependencies are met. Specifying
the dependencies is straightforward with the tile layout because each tile is
contiguous in memory so they can be specified by the start of the tile and the
size of the tiles.

This method can be applied to all the linear algebra routines that are included
in PLASMA. By removing the internal scheduler, it would make the software
more minimalist and standardized, as well as allow PLASMA to gain all of the
customization and support of OpenMP.

Performance of Task-Based Runtimes on Xeon Sandy Bridge. We tested the
OpenMP double precision right-looking tiled Cholesky decomposition perfor-
mance on an Intel Xeon Sandy Bridge with QUARK, GCC OpenMP, and Intel
OpenMP. This processor has 16 cores, a clock frequency of 2.6 GHz, and 8 dou-
ble precision FLOPS/clock to give a theoretical peak of 332.8 GFLOPS. We set
the outer blocking size to be 128 and varied N from 128 to 14080 to see how the
scheduling mechanisms behaved as the number of tasks increased. The results
can be seen in Fig. 6.

Fig. 5. Right-looking tiled Cholesky decomposition with OpenMP tasks. This code
segment shows how PLASMA-style tile algorithms can be expressed using OpenMP
pragmas.
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Fig. 6. Performance of double precision, right-looking, tiled Cholesky decomposition
with different scheduler implementations on Xeon Sandy Bridge (QUARK runtime,
GCC OpenMP, Intel OpenMP)

Based on the results, we can see that the GCC OpenMP implementation
behaves similarly to the internally developed task-based runtime QUARK, which
shows that OpenMP has the potential to be a complete replacement for our
dynamic scheduler. However, the Intel OpenMP implementation has severely
decreased performance when the matrix size N exceeds 4000, likely due to the
large number of tasks. The Intel implementation of the OpenMP runtime is
the only option available to the Xeon Phi, so this must be considered when
optimizing for performance.

5 Task-Based Cholesky Decomposition on a Xeon Phi

5.1 Experimental Setup

Hardware. We ran all tests on a 61 core MIC 7120 (Knights Corner). We com-
piled our proof of concept code for this architecture using the Intel compiler
and the “-mmic” flag. We launched every run using “micnativeloadex” which
required 1 core for operating system functions and communication, leaving the
other 60 cores available for the Cholesky decomposition. This left a theoretical
maximum of 1,188.48 double precision GFLOPS, assuming each core was able
to make full use of its vector instructions, use fused multiply add, and properly
use multiple threads to perform 16 double precision FLOPS per cycle.

MKL Performance. To give a baseline for the possible performance of Cholesky
decomposition on Knights Corner, we ran the MKL version 11.3.1 double pre-
cision Cholesky decomposition (DPOTRF) on matrices of varying sizes. The
points tested for MKL performance were multiples of 200 and multiples of 256
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up to 16000. The goal of this project was not to outperform MKL but rather
to show the application of task-based algorithms on the Xeon Phi architecture.
However, if the task-based method for Cholesky decomposition can be shown to
have reasonable performance, it provides evidence that tile-based linear algebra
algorithms from PLASMA can provide benefits over MKL for some of its other
routines, including tall-and-skinny QR, SVD, and EVP as it has done on other
architectures.

Tile Size. Measuring performance for a tile-based algorithm required consid-
ering various tile sizes. This was necessary because the optimal tile size varies
depending on the size of the matrix on which the user intends to operate. A cer-
tain number of tiles will be necessary to successfully distribute the computation
across the large number of cores on Knights Corner. However, smaller tiles will
have lower performance due to being more memory bound and thus will limit
the theoretical peak of the whole computation. This creates a need to find a tile
size that balances these two considerations optimally for the overall matrix size.
PLASMA intends to have desirable performance for all ranges of matrix sizes,
so extensive testing on a wide range of tile sizes was required.

BLAS Library. We used the Intel multi-threaded MKL math library for the
individual tile kernels (GEMM, POTRF, TRSM, and SYRK), which is opti-
mized for Xeon Phi cores. This means that the computation used nested levels
of threading. The top level distributed the work across the many cores and the
second level provided multiple hardware threads for MKL. MKL could easily be
replaced with other libraries as they become available or if they are necessary
for another architecture.

Warmup. The first time we run an MKL routine, we incur some overhead from
loading the libraries. When used in practice, it is likely that many calls will be
made to these linear algebra routines, so this overhead can be ignored when
timing for performance measurement. To account for this extra overhead, the
PLASMA library timing examples provide a command line option to do a dry
run of the algorithm once before running a computation for timing. This option
must be used for all timings, and a warmup method was also used before the
MKL performance measurement in Fig. 16.

Traces. To help understand the flow of execution and the scheduling of work
on cores, traces were used (Figs. 7, 8, 13, and 14). These are figures that show
the compute cores on the y axis and time along the x axis. This is a helpful
tool for viewing how the computation progresses and how tasks are scheduled
on the cores. These figures can also provide insight into factors that affect per-
formance. Creating this visualization involved keeping track of which core the
kernels ran on and the start and completion times for each. We recompiled the
code separately with these function calls when tracing, and these runs were
not used for measuring performance. The colored blocks on the trace represent
the kernel that is running: green = GEMM, red = POTRF, orange = TRSM, and
purple = SYRK.
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Fig. 7. PLASMA OpenMP Cholesky decomposition trace: all kernels use 4 threads
(incomplete) (Color figure online)

Fig. 8. PLASMA OpenMP Cholesky decomposition trace: DGEMM, DSYRK, and
DTRSM use 4 threads, and DPOTRF uses 1 thread (Color figure online)

5.2 Execution Environment

Running a program using OpenMP on a Xeon Phi can be controlled by a large
number of environment variables. These variables communicate to the Xeon Phi
operating system and OpenMP about what hardware to use, how to schedule
work on that hardware, the available threads, and many other customizations.
We discovered, through investigation and testing, that the desired behavior of
tiled OpenMP Cholesky required setting the following variables:

– KMP PLACE THREADS = 60t, 4c - use 60 cores and 4 hardware threads on
each

– KMP HOT TEAMS MODE= 1 - allows OpenMP threads to stay alive
– KMP HOT TEAMS MAX LEVEL = 2 - keeps nested level OpenMP threads

alive
– OMP NESTED = TRUE - allows multiple levels of parallelism
– OMP NUM THREADS = 60, 4 - a hierarchy of 60 threads and 4 subthreads
– OMP PROC BIND = spread, close - specifies how threads are bound to

resources
– MKL DYNAMIC = FALSE - disable MKL dynamic adjustment of threads
– MKL DOMAIN NUM THREADS = MKL DOMAIN BLAS = 4 - suggests

number of threads for a particular function domain

After we set these environment variables, we created an initial trace for the
right-looking Cholesky decomposition on the Xeon Phi to discover what fac-
tors affected performance, and to gain insight into how the performance of the



556 J. Dorris et al.

Cholesky decomposition can be improved. A trace for a matrix of size N = 5120
and with a tile size NB = 256 is shown in Fig. 7.

5.3 Individual Kernel Performance

When examining the initial trace, the DPOTRF kernel, which consists of the
fewest FLOPS of all of the kernels [3], is taking considerably longer to execute than
all the other kernels. One can also see that in the task dependency DAG represen-
tation the DPOTRF kernels are a common path and a bottleneck for execution.
These two observations make this kernel a prime target for optimization.

As a test, we decided to vary the number of threads used per core by the
individual kernels to determine which number of threads would be best for the
performance of each kernel. Tiles sizes of 64, 128, 192, 256, 384, and 512 were
tested, and the performance was calculated based on the median runtime for
each kernel and configuration.

Figure 9 shows that on average GEMM, TRSM, and SYRK performed best
with 4 threads, but POTRF performed best with 1 thread. The MKL library
allows runtime switching the number of threads used for a kernel, so it can be

Fig. 9. MKL v11.3.1 kernel performance on a single Knights Corner core
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switched to 1 thread whenever the core is going to perform a POTRF, and then
set back to 4 when the POTRF is completed to allow maximum performance
for the other kernels. This decreased runtime and its effect on the trace can be
seen in Fig. 8. The DPOTRF kernels complete much more quickly and therefore
do not stall the execution of the other tasks to the same extent, which leads to
increased overall performance.

This was an unexpected result, as it is commonly suggested to use 2–4 threads
for peak performance. It was also very poor performance even with the best
configuration which becomes obvious when one realizes that this scenario results
in performance of less than 10 % of peak for a single core, with a tile of size 512
by 512. This result seems to suggest that an improved implementation of this
kernel might be possible for small tile sizes, which would drastically improve
performance of this algorithm, but is beyond the scope of this paper.

5.4 Scheduling Variations

The next test was to see which variations of tiled Cholesky decomposition (right-
looking, left-looking, and top-looking) would perform the best on Knights Cor-
ner. Tiles of size 128, 256, and 512 were tested to observe the behavior of the
different algorithms at different granularities.

The results are shown in Figs. 10, 11, and 12. For all tile sizes, the top-looking
Cholesky implementation performed the best or equal to the other variations.
While the right-looking implementation seemed to offer the most parallelism, and
hence the hypothesized best performance on Knights Corner, this was not the
case. Also, it can be seen that even when switching to the top-looking algorithm,
using a tile size of 128 does not benefit from using a dynamic scheduler because
of the immense load on the scheduler to manage the increased number of very
small tasks.

The fact that the top-looking implementation, which was supposed to be
the least aggressive, performed the best raised some questions as to why this
was occurring. We obtained traces of a right-looking and a top-looking Cholesky
decomposition at N= 5120, NB = 128 when the performance of each had diverged

Fig. 10. Tiled Cholesky decomposition variations, NB = 256
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Fig. 11. Tiled Cholesky decomposition variations, NB = 128

Fig. 12. Tiled Cholesky decomposition variations, NB = 512

Fig. 13. OpenMP right-looking Cholesky decomposition-N = 5120, NB = 128 (incom-
plete)

(Figs. 13 and 14, respectively). There is considerable idle time on the right-
looking implementation when there is a large number of GEMMs that need to be
completed. Their dependencies have been met according to DAG representation
for right-looking Cholesky, yet there is delay in scheduling them.

The Intel runtime is proprietary software, so we were unable to investigate
further. We believe that the Intel implementation of the OpenMP runtime does
not handle a large number of tasks well because of its method of maintaining the
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Fig. 14. OpenMP top-looking Cholesky decomposition-N = 5120, NB = 128

Fig. 15. OpenMP Cholesky decomposition incremental performance improvement
(NB = 256)

tasks and the overhead associated with them. The top-looking version unrolls
the DAG slower, so the runtime has less work when updating dependencies after
the completion of tasks, and is better able to handle it.

5.5 Comparison and Final Performance

The combination of correctly setting environment variables, modifying the num-
ber of threads for DPOTRF, and using top-looking Cholesky decomposition—as
opposed to the original right-looking Cholesky—offered the best performance.
The incremental benefits of each modification, while using tiles of size 256, are
shown in Fig. 15.

After these optimizations, the curves for different tile sizes can be compared
to a standard LAPACK-style implementation in MKL. Tile sizes of 192, 256, and
384 are shown in Fig. 16 as they were found to have the best performance curves
after sweeping through various tile sizes with all of the combined optimizations.
In fact, as matrix size increases, the optimal tile size will also increase. This
is caused by balancing individual kernel performance and work distribution.
However, if set correctly by the user, tiled Cholesky decomposition can obtain
performance comparable to MKL and can reach around 50 % of peak.
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Fig. 16. Final OpenMP task-based double precision Cholesky decomposition perfor-
mance

6 Conclusion

The architectural differences between the Xeon Phi and previous multi-core
processors provided many challenges that had to be addressed to achieve good
performance. This performance was only possible with multiple threads per core,
which created hierarchical levels of parallelism that were not previously consid-
ered with PLASMA. Additionally, the optimal number of threads in this par-
allelism was not consistent between different kernels. This created issues like
having to dynamically set the number of threads for MKL calls depending on
the kernel.

The Intel OpenMP runtime had difficulty handling a large number of tasks,
which added to the challenge. The improved performance of GCC OpenMP
runtime implementation on a traditional CPU gives credence to the idea that
this method of runtime could also provide improved performance on the Xeon
Phi. However, until the Intel implementation is improved, we demonstrated that
a method for mitigating these runtime issues is to use algorithms that limit the
parallelism presented to the scheduler.

The PLASMA OpenMP framework can produce good performance for
Cholesky decomposition on a Knights Corner after making only minor modi-
fications. This proved that a port of PLASMA to the Xeon Phi will be straight-
forward and has potential for high performance.

7 Future Work

Many of the parameter configurations for optimal performance, such as using one
thread for POTRF and choosing top-looking tiled Cholesky decomposition as
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opposed to right-looking, were based on underlying kernel and scheduler imple-
mentation issues that we believe may be changed in the future. The process
outlined in this paper will need to be repeated for the Knights Landing proces-
sor to see if these decisions are still applicable. Also, PLASMA contains many
other routines. Extensive testing is required for the other remaining algorithms
to determine if any other kernels perform better with one thread, or if there are
other factors that affect the performance. There is more work to be done before
a Xeon Phi PLASMA release, but the applicability of this task-based approach
to an order of magnitude more cores and the next generation of architectures is
becoming evident.
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Abstract. Many high-end HPC systems support accelerators in their
compute nodes to target a variety of workloads including high-
performance computing simulations, big data / data analytics codes and
visualization. To program both the CPU cores and attached accelerators,
users now have multiple programming models available such as CUDA,
OpenMP 4, OpenACC, C++14, etc., but some of these models fall short
in their support for C++ on accelerators because they can have difficulty
supporting advanced C++ features e.g. templating, class members, loops
with iterators, lambdas, deep copy, etc. Usually, they either rely on uni-
fied memory, or the programming language is not aware of accelerators
(e.g. C++14). In this paper, we explore a base-language solution called
C++ Accelerated Massive Parallelism (AMP), which was developed by
Microsoft and implemented by the PathScale ENZO compiler to pro-
gram GPUs on a variety of HPC architectures including OpenPOWER
and Intel Xeon. We report some prelminary in-progress results using
C++ AMP to accelerate a matrix multiplication and quantum Monte
Carlo application kernel, examining its expressiveness and performance
using NVIDIA GPUs and the PathScale ENZO compiler. We hope that
this preliminary report will provide a data point that will inform the
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functionality needed for future C++ standards to support accelerators
with discrete memory spaces.

Keywords: HPC · C++ for Accelerators · C++ AMP · Accelerator
programming

1 Introduction and Background

With various accelerator architectures emerging in the HPC space, there have
been renewed concerns about available programming models and their abil-
ity to provide performance portability for applications across platforms. To
address these issues, there are a few efforts in development that, like C++
Accelerated Massive Parallelism (AMP), make heavy use of C++ language
features. Kokkos [1] and RAJA [2] are template-based library solutions that
attempt to hide low-level implementation details from the application developer
to achieve good performance on multiple architectures. Unlike Kokkos/RAJA,
AMP attempts to extend the C++ language directly to deal with accelera-
tor programming and non-contiguous memories. There is slow progress being
made in the C++ language standard as well, with a conservative proposal [3]
to include preliminary support for generic parallelism in the upcoming C++17
standard. However, the present proposal lacks sufficient expressiveness to deal
with the multiple memory address spaces and complex compute and memory
hierarchies found in today’s accelerator platforms. OpenMP [4,5] 4 and Ope-
nACC [6] provide directive-based approaches to program C++ on accelerators
but fall short on supporting many advanced C++ features (deep copy, STLs,
etc.) and alternative approaches need to be explored. Perhaps the most similar
programming model to AMP is NVIDIA’s CUDA. Both allow the programmer
to specify arbitrary compute kernels in the (slightly extended) native language,
as well as directly managing the data transfer between host and device or relying
on implicit transfer features of the runtime. The main differences are that CUDA
is a single-vendor defined model optimized for a specific architecture, while AMP
is an open standard that can be implemented by any compiler to target various
accelerators. AMP also hides the low-level details a little bit more by discarding
the concepts of threads, grid blocks, etc. that are usually specified in the CUDA
programming model.

While C++ AMP is not widely implemented at present, it does attempt
to offer a complete and open language-based solution for programming GPUs
with descrete memory spaces while allowing the application to continue to use
advanced features of C++. In this paper, we first give a brief overview of the main
syntactic and semantic features of C++ AMP which provide the context for a
preliminary evaluation of C++ AMP using both a well-understood and compute-
bound kernel, matrix-matrix multiplication (GEMM), as well as an “in-the-wild”
kernel from a quantum Monte Carlo application called QMCPACK. We then
show the code transformations involved when using this model for each kernel
and present some preliminary performance impressions using an experimental
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compiler-based implementation. Finally, we discuss our experiences with AMP
in the context of new and upcoming C++ language standards as they apply to
accelerator programming.

1.1 C++ AMP

C++ AMP is an open specification [7] based on a namespace that provides
accelerator programming extensions to the C++ programming language. It is
published by Microsoft Corporation, with input from PathScale Inc, NVIDIA
Corporation, and Advanced Micro Devices Inc. (AMD). It supports offload of
data-parallel algorithms to discrete accelerators like GPUs. The first implemen-
tation for C++ AMP was introduced in Microsoft Visual Studio 2012 [8], and
experimental support has emerged in the PathScale [9] and LLVM/Clang [10,11]
compilers as well.

When using C++ AMP, the programmer describes the computation to be
performed on the accelerator by specifying the iteration space and the kernel
to be applied over that space. The parallel for each() routine provides the
mechanism for iterating through a domain. The computational kernel to execute
on the accelerator is given by a lambda with the restrict(amp) keyword which
indicates that the kernel contains the restricted subset of the C++ language
that AMP is able to accelerate. The set of threads used for parallel execution on
the accelerator is specified by creating extent or tiled extent objects. Addi-
tionally, double-precision precise math and fast math libraries are provided for
use on the accelerator, as well as several common numerical libraries that have
been released for the C++ AMP programming model under the open-source
Apache License, including random number generation (RNG), fast Fourier trans-
form (FFT), basic linear algebra subroutines (BLAS), and linear algebra package
(LAPACK).

The primary way to transfer data to the accelerator is by using the C++
AMP array and/or array view objects. These objects need four pieces of infor-
mation to describe the data: the rank (logical shape) of the data and the datatype
of the elements are passed as type parameters, while the data itself and the phys-
ical shape of the array in memory are specified using constructor parameters.
The array class causes a deep copy of the data when the object is constructed
with a pointer to the original data set. The accelerator is able to access and mod-
ify its copy of the data, and after computation, the data must be copied out of
the object to the source data structure. array view objects can be constructed
and accessed similarly, but instead of explicit data transfer happening upon con-
struction, data is transferred implicitly to the accelerator on-demand at kernel
execution time. After kernel execution, the data can be directly accessed on the
host, and synchronization can be guaranteed using a provided method. For both
array and array view objects, shapes must be rectangular (in N dimensions),
and can either be specified manually for each dimension or by using the C++
AMP extent class.
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2 Preliminary Results

We have prototyped the use of C++ AMP for both a benchmark GEMM and a
QMCPACK application kernel using the Pathscale ENZO 6.0.9 compiler. This
work illustrates the use of the basic C++ AMP building blocks to parallelize the
execution of nested loops used in both GEMM and QMCPACK. For a prelimi-
nary evaluation, we used two HPC platforms that are of significant relevance to
the INCITE [12] and CORAL [13] programs of which QMCPACK is a part: one
based on a representative node of Titan [14] containing a 16-core AMD Opteron
6274 CPU attached to an NVIDIA Tesla K20X GPU via PCIe v2, and the sec-
ond a Summit [15] test node containing a Power8E CPU @ 2.61GHz processor
with a NVIDIA Tesla K40m connected via PCIe v3.

2.1 Benchmark Kernels

Matrix Multiplication. To evaluate C++ AMP functionality, programmability
and baseline performance, we wrote a simple matrix multiplication kernel. Below
is the code snippet [16] that was used:

Listing 1.1. Matrix Multiplication Kernel in C++ AMP

1 double ∗ha , ∗hb , ∗hc ;
// a l l o c a t e and i n i t i l i a z e hos t data
void MatrixMult iply (ha , hb , hc ) {

array view<double , 2> a (SIZE , SIZE , ha ) ;
6 array view<double , 2> b(SIZE , SIZE , hb ) ;

array view<double , 2> product (SIZE , SIZE , hc ) ;

p a r a l l e l f o r e a c h ( product . extent ,
[= ] ( index<2> idx ) r e s t r i c t (amp) {

11 int row = idx [ 0 ] ;
int c o l = idx [ 1 ] ;
for ( int i nne r = 0 ; inner < SIZE ; inner++) {

product [ idx ] += a ( row , inner ) ∗ b( inner , c o l ) ;
}

16 } ) ;
product . synchron ize ( ) ;

}
First, the 1-D host-memory arrays ha, hb, and hc are allocated and ini-

tialized to size SIZE*SIZE*sizeof(double). Then these arrays are associated
with the array view objects a, b, and product. The array view can only
be initialized with 1-D arrays or rectangular blocks of memory. Next, the
parallel for each() construct is used to parallelize the kernel over the row
and columns of the matrix multiplication. After the computation completes, the
array view object on the host and accelerator are synchronized to ensure data
coherency. We compiled and ran the C++ AMP matrix multiplication kernel
on the Titan and test Summit nodes using the Pathscale ENZO 6.0.9 compiler
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that supports C++ AMP on multiple GPUs. For comparing the results in Fig. 1,
we show the code listing for the tiled GEMM implementation in listing 1.2, but
omit detailed discussion as this is available in other materials [16]:

Listing 1.2. Matrix Multiplication Kernel in C++ AMP with Tiling

double ∗ha , ∗hb , ∗hc ;
2 // a l l o c a t e and i n i t i l i a z e hos t data
void MatrixMult iply (ha , hb , hc ) {

array view<double , 2> a (n , n , A) ;
array view<double , 2> b(n , n , B) ;

7 array view<double , 2> product (n , n , C) ;

// Ca l l p a r a l l e l f o r e a c h by us ing 2x2 t i l e s .
p a r a l l e l f o r e a c h ( product . extent . t i l e < TS, TS >() ,

[=] ( t i l e d i nd ex < TS, TS> t i d x ) r e s t r i c t (amp)
12 {

int row = t i dx . l o c a l [ 0 ] ;
int c o l = t i dx . l o c a l [ 1 ] ;
int rowGlobal = t i dx . g l oba l [ 0 ] ;
int co lGloba l = t i dx . g l oba l [ 1 ] ;

17 int sum = 0 ;

for ( int i = 0 ; i < n ; i += TS) {
t i l e s t a t i c int locA [TS ] [ TS ] ;
t i l e s t a t i c int locB [TS ] [ TS ] ;

22 locA [ row ] [ c o l ] = a ( rowGlobal , c o l + i ) ;
locB [ row ] [ c o l ] = b( row + i , co lGloba l ) ;
t i d x . b a r r i e r . wait ( ) ;

for ( int k = 0 ; k < TS; k++) {
27 sum += locA [ row ] [ k ] ∗ locB [ k ] [ c o l ] ;

}

t i d x . b a r r i e r . wait ( ) ;
}

32

product [ t i d x . g l oba l ] = sum ;
} ) ;
product . synchron ize ( ) ;

37 }
QMCPACK - three-body Jastrow factor QMCPACK [17,18] is an open-source

software package that enables quantum Monte Carlo (QMC) simulations of real-
istic materials on large parallel computers. It is implemented using C++ object-
oriented and generic programming design patterns, and achieves efficient paral-
lelism through the hybrid use of MPI/OpenMP and inlined specializations to use
SIMD intrinsics. Additionally, a port to CUDA for NVIDIA GPU acceleration
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was done, but some of the data structures and algorithms needed refactoring
for efficient execution on the accelerator. QMCPACK is one of the applications
participating in the CORAL [13] application readiness program (CAAR) for the
POWER-based Summit [15] system to be deployed as the next leadership-class
machine at Oak Ridge National Lab (ORNL).

Quantum Monte Carlo methods are a class of stochastic-based, ab initio elec-
tronic structure calculations to solve the time-independent Schrödinger equation
in quantum mechanics for the ground state energy and its corresponding physical
state, or the so-called wavefunction. Regardless of the algorithm employed, the
code takes a trial wavefunction as an initial input. It then employs an iterative
Monte Carlo procedure to optimize the wavefunction and obtains the ground
state.

One commonly used type of wavefunction is composed of a product of Slater
determinants and Jastrow factors. The Slater determinants encapsulate the elec-
trons’ distribution, whereas the Jastrow factors capture the Coulombic interac-
tions among the electrons or ions. The kernel that we are porting here to C++
AMP is a prototype of the evaluation of the three-body Jastrow factor, which
accounts for the interactions among any two electrons and an ion for the entire
system. Thus, there are three nested for loops in the kernel, two of which loop
over the number of electron-ion pairs, and one which loops over the number of
electron-electron pairs in the physical system. It is for this reason the calcula-
tion of the three-body Jastrow is computationally intensive, as the number of
electrons in a typical calculation could be few hundred up to thousands.

Listing 1.3 shows the original version of the QMCPACK Jastrow kernel. The
code uses several custom linear vector and tensor classes TinyVector, Tensor,
and MyVector. The result of the kernel is captured in the grad and hess argu-
ments.

Listing 1.3. Original QMCPACK Kernel

inl ine
r e a l t y p e eva luate ( r e a l t yp e r 12 , r e a l t y p e r 1 I ,

3 r e a l t y p e r 2 I , TinyVector<r ea l t ype ,3> &grad ,
Tensor<r ea l t ype ,3> &hess ,
MyVector &gamma){

r e a l t yp e va l = 0 . 0 ; grad = 0 . 0 ; hess = 0 . 0 ;
r e a l t yp e r 2 l ( 1 . 0 ) , r 2 l 1 ( 0 . 0 ) , r 2 l 2 ( 0 . 0 ) , l f ( 0 . 0 ) ;

8 for ( int l =0; l<=N eI ; l++) {
r e a l t yp e r2m ( 1 . 0 ) , r2m 1 ( 0 . 0 ) , r2m 2 ( 0 . 0 ) , mf ( 0 . 0 ) ;
for ( int m=0; m<=N eI ; m++) {

r e a l t yp e r2n ( 1 . 0 ) , r2n 1 ( 0 . 0 ) , r2n 2 ( 0 . 0 ) , n f ( 0 . 0 ) ;
for ( int n=0; n<=N ee ; n++) {

13 r e a l t yp e g = gamma( l ,m, n ) ;
va l += g∗ r 2 l ∗r2m∗ r2n ;
grad [ 0 ] += nf ∗ g ∗ r 2 l ∗ r2m ∗ r2n 1 ;
// Omit code f o r grd [ 1 ] and grd [ 2 ]
hess (0 , 0 ) += nf ∗( nf −1.0) ∗ g ∗ r 2 l ∗ r2m ∗ r2n 2 ;

18 // Omit code f o r c a l c u l a t i n g o ther hess ( ) e n t r i e s
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r2n 2 = r2n 1 ; r2n 1 = r2n ; r2n ∗= r 12 ; nf += 1 . 0 ;
}
r2m 2 = r2m 1 ; r2m 1 = r2m ; r2m ∗= r 2 I ; mf += 1 . 0 ;

}
23 r 2 l 2 = r 2 l 1 ; r 2 l 1 = r 2 l ; r 2 l ∗= r 1 I ; l f += 1 . 0 ;

}
for ( int i =0; i<C; i++){

hess (0 ,0)=( r 1 I − L)∗ ( r 2 I − L)∗ hess ( 0 , 0 ) ;
// Omit code f o r updat ing o ther hess ( ) e n t r i e s

28 grad [ 0 ] = ( r 1 I − L)∗ ( r 2 I − L)∗ grad [ 0 ] ;
// Omit code f o r updat ing o ther grad () e n t r i e s
va l ∗= ( r 1 I − L)∗ ( r 2 I − L ) ;

}
hess (1 , 0 ) = hess ( 0 , 1 ) ;

33 hess (2 , 0 ) = hess ( 0 , 2 ) ;
hess (2 , 1 ) = hess ( 1 , 2 ) ;
return va l ;

}
The motivation to explore the use of C++ AMP for this kernel came from

the fact that it had not been ported to CUDA yet, and initial attempts to use
directives for accelerator offload were not satisfactory, requiring reduced usage of
custom C++ classes and data structures needed in the application. Furthermore,
developer investment in CUDA is being reduced for this application for portabil-
ity reasons. Using C++ AMP to parallelize the two loops requires capturing the
main data structures into array<> objects for access on the accelerator inside
the parallel for each looping construct. Listing 1.4 shows the C++ AMP
code corresponding to the three nested for loops making up the first part of the
QMCPACK kernel. Note that we omit some of the common code elements and
present primarily the parts that illustrate the modifications needed to adapt the
kernel to the C++ AMP interface.

Listing 1.4. QMCPACK Kernel Using C++ AMP

r e a l t yp e grd acc [ 3 ] = {0 .0 , 0 . 0 , 0 . 0 } ;
r e a l t yp e he s s a c c [ 6 ] = {0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 } ;

4 // l o c a l for grad
r e a l t yp e grd0 , grd1 , grd2 ;
grd0 = grd1 = grd2 = 0 . 0 ;

// l o c a l for gamma (need to be changed to a 1D array )
int g s i z e = ( N eI+1) ∗ ( N eI+1) ∗ ( N ee+1);

9 r e a l t yp e gmm[ g s i z e ] ;
for ( int l =0; l<=N eI ; l++)

for ( int m=0; m<=N eI ; m++)
for ( int n=0; n<=N ee ; n++)

gmm[ l ∗N eI∗N eI + m∗N eI + n ] = 1 . 0 ;
14

r e a l t yp e r 2 l [ N eI ] , r 2 l 1 [ N eI ] , r 2 l 2 [ N eI ] ;
r 2 l [ 0 ] = 1 . 0 ; r 2 l 1 [ 0 ] = r 2 l 2 [ 0 ] = 0 . 0 ;

for ( int l =0; l<N eI −1; l++){
r 2 l 2 [ l ] = r 2 l 1 [ l −1] ;

19 r 2 l 1 [ l ] = r 2 l [ l −1] ;
r 2 l [ l ] = r 2 l [ l −1] ∗ r 1 I ;

}



570 M. Graham Lopez et al.

{
extent<2> e ( N eI , N eI ) ;

24 array view<r ea l type , 1> av gmm( g s i z e , gmm) ;
array view<r ea l type , 1> av r 2 l ( N eI , r 2 l ) ;
array view<r ea l type , 1> av r 2 l 1 ( N eI , r 2 l 1 ) ;
array view<r ea l type , 1> av r 2 l 2 ( N eI , r 2 l 2 ) ;
array<r ea l type , 2> value ( e ) ;

29 array<r e a l t yp e [ 3 ] , 2> grd ( e ) ;
array<r e a l t yp e [ 6 ] , 2> hss ( e ) ;
p a r a l l e l f o r e a c h ( e ,

[= , &value , &grd , &hss ] ( index<2> idx ) r e s t r i c t (amp) {
int l = idx [ 0 ] ; int m = idx [ 1 ] ;

34 r e a l t yp e r2n ( 1 . 0 ) , r2n 1 ( 0 . 0 ) , r2n 2 ( 0 . 0 ) , nf ( 0 . 0 ) ;
r e a l t yp e mf = ( r e a l t yp e )m; r e a l t yp e l f = ( r e a l t yp e ) l ;
r e a l t yp e r 2 l = av r 2 l [ l ] ; r e a l t yp e r 2 l 1 = av r 2 l 1 [ l ] ;
r e a l t yp e r 2 l 2 = av r 2 l 2 [ l ] ; r e a l t yp e r2m = av r 2 l [m] ;
r e a l t yp e r2m 1 = av r 2 l 1 [m] ; r e a l t yp e r2m 2 = av r 2 l 2 [m] ;

39 for ( int n=0; n<=N ee ; n++){
const r e a l t yp e g = av gmm [ l ∗N eI ∗ N eI + m ∗ N eI + n ] ;
va lue [ idx ] += g∗ r 2 l ∗r2m∗ r2n ;
grd [ idx ] [ 0 ] += nf ∗ g ∗ r 2 l ∗ r2m ∗ r2n 1 ;
// Omit code for other grd [ ] en t r i e s

44 hss [ idx ] [ 0 ] += nf ∗( nf −1.0) ∗ g ∗ r 2 l ∗ r2m ∗ r2n 2 ;
// Omit code for other hss [ ] en t r i e s
r2n 2 = r2n 1 ; r2n 1 = r2n ; r2n ∗= r 12 ;
nf += 1 . 0 ;

} // end for n
49 } // end p a r a l l e l f o r lambda funct ion

) ; //end p a r a l l e l f o r
}

The code illustrates the general approach for porting an existing application
to the C++ AMP programming model. Since the C++ AMP data model is
implemented primarily using the array<> and array view<> classes, existing
data generally needs to go through a copy-in/copy-out process to the corre-
sponding C++ AMP data structure. The overhead for creating and accessing
data through the C++ AMP data structures will depend on how compatible
the underlying memory layout is with the layout supported by C++ AMP
(array viewss can be created using raw pointers as shown in Listing 1.4).

The listing also shows an example of creating and using accelerator-only data
structures to control data movement into and out of an accelerator with disjoint
memory. The variables value, grd and hss are used in the listed part of the
kernel. Their lifetime extends to the rest of the kernel (not shown above) where
the reduction operation is performed. They are then explicitly copied over to
their host counterparts at the end of the kernel function execution.

2.2 Preliminary Performance Evaluation

The first panel of Fig. 1 shows the performance achieved using different matrix
sizes on the test Summit node, and second panel of Fig. 1 shows the performance
achieved using different matrix sizes on the Titan node. The execution times
shown include the data transfer time between host and device. Each GEMM
experiment uses double-precision data and compares the C++ AMP code rep-
resented by listing 1.1 to a more optimized C++ AMP implementation using a
tiled algorithm as well as the highly-tuned NVIDIA CUBLAS DGEMM routine.
While this kernel realizes the expected performance improvement when moving
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Fig. 1. Matrix multiplication Kernel in C++ AMP on a preliminary test Summit node
(Power8E CPU @ 2.61GHz processor with a NVIDIA Tesla K40 m connected via PCIe
v3) and a Titan node (16-core AMD Opteron 6274 CPU attached to an NVIDIA Tesla
K20X GPU via PCIe v2).

from the K20 to the K40, the relatively basic AMP implementations do not see
quite the amount of improvement of the hyper-tuned CUBLAS implementation.
Also, as this is a compute-bound kernel, we do not expect the improved PCIe
bandwidth of the POWER8 node to play a significant role in this case.

Figure 2 shows the performance speedup of the Jastrow QMC application ker-
nel on our two HPC node types as described in Sect. 2. These timings include the
time required for data transfer between host and device, as well as the manually-
implemented reduction operation as explained below. The performance gain for
large particle numbers is about an order of magnitude, and while the kernel
involves a triply-nested loop, the computation to memory bandwidth density
isn’t quite as high as the GEMM algorithm. While we were able to run the
kernel and accelerate it on the GPUs, C++ AMP currently lacks a reduction
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Fig. 2. QMC 3-body Jastrow kernel implemented in C++ AMP on a preliminary
test Summit node (Power8E CPU @ 2.61 GHz processor with a NVIDIA Tesla K40m
connected via PCIe v3) and a Titan node (16-core AMD Opteron 6274 CPU attached
to an NVIDIA Tesla K20X GPU via PCIe v2).

construct. This led us to implement the reduction manually in the application.
This is an area where C++ AMP needs improvement. The reduction was imple-
mented using local arrays of type tile static in order to share work among
compute elements during the reduction operation. Listing 1.5 shows the imple-
mentation for the reduction for the calculated value, gradient, and Hessian of
the Jastrow terms. We believe that the performance gain by moving from the
CPU implementation to the accelerated AMP implementation could be further
improved by having natively supported and well-optimized constructs for reduc-
tion operations. This would also increase the programmer productivity and code
brevity regarding this kernel.
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Listing 1.5. QMCPACK Kernel Using C++ AMP

extent<1> e2 ( ( N eI +1)∗( N eI +1)) ;
p a r a l l e l f o r e a c h ( e2 . t i l e <N eI+1>() ,

[& ] ( t i l e d i nd ex <1> idx ) r e s t r i c t (amp) {
4 int l = idx . t i l e [ 0 ] ;

int m = idx . l o c a l [ 0 ] ;
t i l e s t a t i c r e a l t yp e v [ N eI +1] ;

v [m] = value [ l ] [m] ;
9 idx . b a r r i e r . wait ( ) ;

i f (m == 0) {
for ( int i =1; i<=N eI ; ++i ) {

v [ 0 ] += v [ i ] ;
}

14 value [ l ] [ 0 ] = v [ 0 ] ;
}
for ( int i =0; i <3; ++i ) {

v [m] = grd [ l ] [m] [ i ] ;
idx . b a r r i e r . wait ( ) ;

19 i f (m == 0) {
for ( int j =1; j<=N eI ; ++j ) {

v [ 0 ] += v [ j ] ;
}
grd [ l ] [ 0 ] [ i ] = v [ 0 ] ;

24 }
}
for ( int i =0; i <6; ++i ) {

v [m] = hss [ l ] [m] [ i ] ;
idx . b a r r i e r . wait ( ) ;

29 i f (m == 0) {
for ( int j =1; j<=N eI ; ++j ) {

v [ 0 ] += v [ j ] ;
}
hss [ l ] [ 0 ] [ i ] = v [ 0 ] ;

34 }
}

} ) ;

for ( int i =0; i<=N eI ; ++i ) {
39 va l += value [ i ] [ 0 ] ;

for ( int j =0; j <3; ++j ) grd acc [ j ] += grd [ i ] [ 0 ] [ j ] ;
for ( int j =0; j <6; ++j ) he s s a c c [ j ] += hss [ i ] [ 0 ] [ j ] ;

}

3 Discussion

The C++ AMP programming model could be attractive for some C++ applica-
tion developers because it offers a language-based solution for discrete accelerator
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offload, yet works well with native language features. Ideally, HPC applications
would be well-supported by features in the C++ language standard itself, and
indeed progress is being made in this direction. NVIDIA, Microsoft, and Intel
independently proposed library approaches for standardized C++ parallelism,
and these authors were eventually asked to submit a joint proposal to the com-
mittee, which was then refined over two years and informed along the way by
experimental implementations. The result of this effort can be found in the par-
allelism technical specification (TS) N4507 which was subsequently included into
the C++17 standard.

The parallelism features that have been included in C++17 show some sim-
ilarities to the AMP model, defining execution policies and methods to specify
computational kernels. It even includes exception handling, which is not covered
by the AMP specification. However, the main feature set missing from C++17
that may prevent its wide adoption among HPC applications is the lack of data
handling facilities. For heterogeneous systems with accelerators that have dis-
crete memory address spaces, there is currently no way to specify which data
should be moved between memory spaces and when the movement should take
place. However, the concurrency and parallelism subgroup of the C++ language
committee is working on followups to both technical specifications that will fur-
ther augment the features that are included in the C++17 standard. Features are
being considered [19,20] from HPX [21] and OpenCL [22] because, even though
they include an HPC domain view-point, they are modeled after the existing
parallel and concurrency TSs and so retain appropriateness for the consumer
domain as well.

4 Early Conclusions and Future Work

In this paper we describe how C++ AMP works and can potentially be used on
different platforms including x86-64 and OpenPOWER systems with NVIDIA
GPUs. We describe the language constructs that C++ AMP provides to acceler-
ate applications written in C++. We were able to use C++ AMP to accelerate
a matrix multiplication kernel and important computational regions from the
QMCPACK application. The success from AMP is its ability to use parallel
primitives and data constructs that fit the native C++ programing model. Eval-
uating the C++ AMP programming model is a step toward a C++ solution to
program accelerators. One of the differences with C++ AMP and the upcom-
ing C++17 draft is that C++ AMP is aware of the different memory spaces
between the accelerator and host; the language provides namespaces and objects
to manage and synchronize shared data objects between the host and the accel-
erator. Upcoming explorations will include immediate concerns such as a more
generalized yet performant way to handle data reductions within AMP paral-
lel regions and exploring more target accelerator and multicore architectures.
Longer-term studies in which we are interested include more detailed compar-
isons with the newly released C++17 concurrency and parallelism features which
are only recently emerging in compiler implementations.
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Abstract. The two primary measurements for performance in storage and
memory systems are latency and throughput. It is interesting to see how the
memory DIMMs are populated on the server board impact performance. The
system bus speed is important when communicating over the Quick Path
Interconnect (QPI) to the other CPU local memory resources. This is a crucial
part of the performance of systems with a Non-Uniform Memory Access
(NUMA). This paper investigates the best practice approaches to optimize
performance which have applied to the last few CPU and chipset generations.

1 Introduction

The modern evolution of CPU and memory showcase that Moore’s law is still appli-
cable to this day. The transistor count has been increasing every year, however, due to
thermal and/or power constraints, the frequency or speed has not enjoyed the same
growth and has barely doubled in the last decade. From 2000 to 2009, the CPU speed
went from 1.3 GHz to 2.8 GHz. Transistor-count on the other hand increased from
37.5 million in 2000 to 904 million in 2009. This means that transistor count does not
automatically translate in raw CPU speed increase. CPU frequency slowly but regularly
increased until around 2004 when the heat build-up in the chips caused Intel to
abandon the consistent speed improvement and move towards a design with multiple
processors (cores) on the same CPU chip. The industry followed soon after. For
memory subsystems, Moore’s Law originally applied only to random access memory
(RAM). It has been generalized to apply to the CPU and to disk storage capacity as
well. Indeed, disk capacity has been improving by leaps and bounds; it has improved
100 fold over the last decade. Disks spin three times faster now, and are also 5 times
smaller than they were 15 years ago; while the data rate has improved only 30 fold in
the same timeframe.

Processor speed and core counts are important factors when designing a new server
platform. However with virtualization platforms the memory subsystem can have an
equal or sometimes even greater impact on application performance than the processor
speed. The application performance is also linked to the Quick Path Interconnect
(QPI) speed [1] as well as a Non-Uniform Memory Access (NUMA) [2].
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Memory configuration, or memory population, has a direct impact on server and
application performance. The CPU type and generation impact the type of memory
configuration and performance so when deciding on new server configurations there are
a wide variety of options. Memory Channels, Memory bus frequency, and rank of
DIMMs are just a selection of options you encounter. The number of DIMMs used and
how the DIMMs are populated on the server board impact performance and the
maximum supported memory capacities. All of which are taken into consideration
when evaluating system or application performance.

Diagnosing and troubleshooting memory issues [3] in enterprise server configu-
rations is an important process that can help prevent unnecessary replacement of
hardware components. Having a troubleshooting methodology helps to accurately
diagnose good from bad components as well as determine component mismatches that
may boot but not run optimally. For example, frequency mismatches down clock to the
lower frequency thus stranding performance on the faster DIMM. Standard diagnostic
tools usually help in troubleshooting memory problems by successfully isolating the
specific DIMMs causing the problem, which prevents replacement of unaffected
DIMMs, or in some cases, entire banks of memory. In addition, systematic trou-
bleshooting can help determine if a firmware or other software download can resolve a
problem without replacing hardware.

Many server manufacturers do provide a diagram on how to populate DIMMs in
the proper order to ensure the system will run Power On Self Test (POST) and have
optimal performance across the memory controller but it does not make note of the
performance degradations that occur when mixing DIMMs of different Ranks or
Frequency. Since this mismatched state leads to performance differences across the
same model server within a given application cluster we wanted to evaluate what those
differences are so we can more accurately detect them in the larger Data Center
Environment. While optimal memory placement is recommended dealing with the
upgrades and reconfigurations that results in mismatches are common in a real world
environment.

In this paper, through our testing and observation of several models of servers with
several CPU generations running in Yahoo datacenters, we evaluate the performance of
different DIMM use cases of single, dual, and a mix of both Ranks. The objective is to
validate the best server configurations and performance for our applications and to
identify performance deltas of systems that are using mismatched or unbalanced
memory configurations.

For memory upgrades we validated a few best practices to optimize performance
which have applied to the last few CPU and chipset generations: Upgrade to a balanced
memory configuration that fits capacity needs, also lower Rank provides slightly lower
latency due to rank access cycles, and finally frequency will down-clock to the slowest
DIMM. We are going to explain all the previous approaches farther in this paper.

In Sect. 2 we give background and related work about memory architecture.
Experimentation is covered in Sect. 3. In Sect. 4 we conclude and give some future
work perspectives.
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2 Background and Related Work

Today’s CPU micro-architectures contain integrated memory controllers. The memory
controller connects through multiple channels to the DIMMs. DIMM stands for Dual
Inline Memory Module and contains the memory modules (DRAM chips) that provide
4 or 8 bits of data. Dual Inline refers to pins on both side of the module. Chips on the
DIMM are arranged in groups called ranks that can be accessed simultaneously by the
memory controller. Within a single memory cycle 64 bits of data will be accessed.
These 64 bits may come from the 8 or 16 DRAM chips depending on how the DIMM
is organized.

In this paper, we are evaluating the bandwidth of memory configurations that mix
1Rx4 and 2Rx8 DIMMs and also compare Single and Dual Ranked DIMMs. In the
next section we go over the performance results of the Independent Memory mode
while increase the number of DIMMs per channel (DPC). To measure memory latency
and bandwidth, we used Intel Memory Latency Checker1.

In this section, we are giving a background about the memory architecture, ranking,
different types, frequency, generations and DIMM populations:

2.1 Ranked DIMMs

SR or Single ranked DIMMs [8] are typically least expensive DIMMs that are avail-
able. Intel generally recommends against using them in one DIMM per channel (1
DPC) configurations. When scheduling reads and writes to memory, one must observe
large turnaround times between reads and writes on a given rank. If a channel only has
a single rank, these turnarounds result in a significant decrease in peak throughput.
When used on a 2 DPC setup, it is possible to hide these turnarounds (by using the
other DIMM) and therefore achieve strong bandwidth (Fig. 1).

DR or Dual ranked DIMMs are highly recommended. They typically can achieve
high frequencies and also avoid the turnaround problems that are possible with single
rank DIMMs. Dual rank DIMMs work well in just about any topology. Using 2 DR
DIMMs instead of 2 SR DIMMs will have additional rank turnaround time delays
which reduces the bus efficiency at high utilizations. On the other hand, DR DIMMs
provide more bank resources (and therefore high page hit rates). In general, 2 DR
DIMMs should slightly outperform 2 SR DIMMs across a range of workloads. DR
DIMMs are usually the best bet for most systems (with the exception of high capacity
systems). They have great performance, high frequency, and tend to not cost too much.
They can be used in 1DPC, 2DPC and 3 DPC setups.

QRDIMMs (Quad Ranked DIMMs) are generally not recommended for best per-
formance. They have traditionally been used for high memory capacity workloads.
Because of electrical issues, these DIMMS tend to run at relatively low frequencies.

1 https://software.intel.com/en-us/articles/intelr-memory-latency-checker.
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2.2 Types of DIMMs

Manufacturers of DDR-3 SDRAM DIMMs [9] produce two types of DIMMs:
Unbuffered DIMMs (UDIMM) [10] and Registered DIMMs (RDIMM). Unbuffered
DIMMs represent the most basic type of memory module and offer lower latency and
(relatively) low power consumption but are limited in capacity. Unbuffered DIMMs are
applicable for systems with low DIMM counts and where low power is required and
large memory capacities are not required. RDIMMs offer larger capacities than
UDIMMs and include address parity protection.

2.3 DIMM Population

“It is important to ensure that DIMMs with appropriate number of ranks are populated
in each channel for optimal performance. Whenever possible, it is recommended to use
dual-rank DIMMs in the system. Dual-rank DIMMs offer better interleaving hence
better performance than single-rank DIMMs.

For instance, a system populated with six 8 GB dual-rank DIMMs outperforms a
system populated with six 8 GB single-rank DIMMs by 7 % for SPECjbb2005.
Dual-rank DIMMs are also better than quad-rank DIMMs because quad-rank DIMMs
will cause the memory speed to be down-clocked.

Another important guideline is to populate equivalent ranks per channel. For
instance, mixing one single-rank DIMM and one dual-rank DIMM in a channel should
be avoided.”2

2.4 Independent Mode DIMM Population

The Romley-EP platform implements a 4 channel memory controller that allows up to
4 DIMMs per channel on each CPU socket. Dual CPU socket systems can access each
other’s memory controller through the Intel QPI (Quick Path Interface) [1] at speeds up

Fig. 1. Single or dual rank memory (Dell server (http://en.community.dell.com/support-forums/)).

2 http://en.community.dell.com/support-forums/desktop/f/3514/t/19513761.
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to 8.0 GT/s. While there are no compatibility restrictions on how DDR3 memory is
populated there are guidelines3 on how to populate for optimal performance in Inde-
pendent mode. These guidelines were validated from the test methodology we used as
explained in Sect. 3.1:

• For one DIMM per channel (1DPC) configurations, the Romley-EP platform
requires DIMMs within a channel to be populated starting with the DIMMs farthest
from the processor in a “fill-farthest” approach.

• For two DIMM per channel (2DPC) configurations, the Romley-EP platform
requires DIMMs within a channel to be populated starting with the DIMMs farthest
from the processor in a “fill-farthest” approach. Also pay attention when populating
a Quad-rank DIMM with a Single- or Dual-rank DIMM in the same channel, the
higher-rank DIMM must be populated farthest from the processor.

• When single, dual and quad rank DIMMs are populated for 2DPC, always populate
the higher number rank DIMM first (starting from the farthest slot), for example,
first quad rank, then dual rank, and last single rank DIMM.

2.5 Related Work

Much of the state-of-the-art work in this field has focused on simulation-based per-
formance evaluations of DRAM and how to these concepts in the enterprise envi-
ronment [4]. One study tried comparing differences between Bandwidth and Latency
Row Hit Buffer Rates (RHBR) with memory level parallelism in multi and many cores
architecture [5]; basically expanding performance by increasing memory channels in a
virtual layer. Another interesting study was done creating a model (ANATOMY) [6],
which has a queuing module helping to capture technological impact in memory
system. These studies take a deep dive on modeling memory performance based on
differences in the memory architecture but have been mostly theoretical. We expand on
some of these research topics by testing on the actual memory controllers and
micro-architectures currently in use in the Enterprise Data Center environment.

3 Experimentations

Since the introduction of the Intel Nehalem CPU architecture [11], memory has been
managed by multiple controller channels, each channel containing the same number of
banks. We were first introduced to this memory system in the Romley-EP chipset.
During testing of different memory configurations on this chipset we noticed perfor-
mance mismatches at the SpecInt level and diving further into the individual Spec
benchmarks we could see that the memory intensive benchmarks were the main culprits
of the low Spec rate. This led us to evaluate the effects of memory population as well as
memory Rank and Frequency on bandwidth and latency performance. We will be

3 http://www.intel.com/content/www/us/en/intelligent-systems/romley/embedded-intel-xeon-e5-2600-
processor-series-with-intel-c604-c602-j-chipset.html.
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experimenting with the Romley-EP and Haswell-EP microarchitectures since we know
CPU has an impact on memory performance.

3.1 Experimental Methodology

Intel has been releasing new CPU architectures and updates to those architectures about
every 18 months. During the Harpertown (E5420) generation, Intel had skipped an
update cycle so the industry had been standardizing performance on DDR2 and the
Penryn microarchitecture with its single memory channel controller. The single con-
troller DIMMs slots could be filled in almost any order with no need to “balance”
across CPU sockets. This resulted in a lower SpecInt performance index delta between
different memory configurations and capacities.

We started this performance analysis on the Romley-EP microarchitecture since it
brought such a big change to the memory platform. As our business units started
deploying more Nehalem/Westmere CPU servers in production they started to notice
some performance mismatches. Under further analysis we found that many of the
performance differences were due to slight variations in the memory DIMM popula-
tion. We started by booting the system with a single DIMM and testing the memory
transactions performances. We then increased the memory by a DIMM at a time to
evaluate how the performance scales and what population conditions give performance
degradation as we scale DIMMs. Once we could find a trend in the performance scaling
we started looking at how DIMM rank and frequency combinations affect performance
(see Sect. 2.4 for Guidelines).

We expanded this benchmarking process to the Haswell-EP microarchitecture to
see how moving to a 4 memory channel controller platform affects performance. Much
like the previous generation the performance of the memory platform is very sensitive
to the DIMM population and many of the same rules for matching rank and frequency
carried over. Seeing as Memory will be changing to keep up with CPU advances will
expect new advances to the memory platform in the near future that we will continue to
evaluate for performance.

We used the stream_omp [13] benchmark since it performs predictable multi-core
memory transactions that we could run standalone to exercise the memory platform.
Stream_omp measures the bandwidth (in MB per second) for 4 of the main memory
transactions:

The multi-core memory access was not optimized so as to give a representation of a
general application adding and moving data across the capacity of our memory space.
From there, we just run the same benchmark script parameters while changing the
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memory configurations and capacities. This is how we derived the best practices for
memory usage in a multi-controller platform using the Stream-scaling4 performance
tool.

3.2 Romley-EP Microarchitecture

The Romley-EP platform supports four different memory RAS (Row Access Select)
modes [12]: Independent Channel Mode, Rank Sparing Mode, Mirrored Channel
Mode, and Lockstep Channel Mode.

The rules on channel population and channel matching vary by the RAS mode
used.

DIMM timings (RAS and CAS latencies) do not have to match but timings will be
set to support all DIMMs populated (i.e., DIMMs with slower timings will force faster
DIMMs to the slower common timing modes).

Independent Mode Memory Configuration. While there are performance and
redundancy benefits of using Rank Sparing, Mirrored Channel, and Lockstep Channel
Modes for specific applications, a majority of the enterprise applications are using the
Independent Mode to get the largest memory capacity and most predictable perfor-
mance due to having uniform CPU to memory locality. Since we use the memory
controller in Independent Mode there should be no compatibility restriction on how
memory is populated but there are guidelines on how to populate for best performance.
This analysis will take a look at mixed rank DIMM population in the same channel and
across sockets to validate the optimal configurations and communicate those guidelines
to our procurement teams for HW orders and our site-ops teams that will ultimately be
performing the memory upgrades.

Mixed Rank Performance. We have noticed from the Romley-EP server POST
(Power On Self Test) that the memory controller accepts these mixed and non-mixed
configurations. The fact that the server POSTs does not mean the DIMMs is populated
for optimal performance so the DIMM population guidelines must still be followed.

The memory configurations performances are generated using an Open Source
multi-threaded memory transaction benchmark: stream_omp [13].

Performance Analysis. With the memory populated for optimal performance the
stream_omp benchmark generated the data in Table 1. The results for each metric of
the stream_omp benchmark were plotted (see Fig. 2) to give a visual comparison. From
the data we can see that the overall performance is not majorly affected by mixing
different rank memory of the same frequency. If they are different frequencies then the
memory controller will down-clock all DIMMs to match the lowest frequency DIMM.

The performance delta between non-mixed rank configurations (1Rx4 vs. 2Rx8) is
*9 % in favor of the dual rank 2Rx8. Although the single rank 1Rx4 should have a

4 Automate memory bandwidth testing with STREAM using varying core counts https://github.com/
gregs1104/stream-scaling.
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lower latency (meaning that it can access all the modules during the same access
transaction as opposed to needing 2 transactions to read all modules on dual rank or 4
transactions to access quad rank modules).

We start to see more comparable performance when we start evaluating the mixed
rank configurations. Moving from 25 % to 75 % mixed rank configurations shows
roughly*4 % performance delta and a*10 % lower bandwidth compared to the max
non-mixed performance. 10 % may seem noticeable but that is on the highest end of
the performance spectrum and many application may not be able to attain that memory
bandwidth due to other resource contention (i.e. CPU needs to be shared for compute as
well as memory transactions). For applications that are memory latency or bandwidth
sensitive you may notice the performance loss in application SLA or QPS so a proper
application analysis should be performed to determine if that performance loss can be
balanced against the overall performance gain your application should receive from
increasing memory capacity whether that increase results in a mixed rank configuration
or not.

Table 1. 1Rx4, 2Rx8 - 1600 MHz DDR3 mixed rank memory bandwidth

Memory configuration Copy (MB/s) Scale (MB/s) Add (MB/s) Triad (MB/s)

8x 1Rx4 32932.0169 32719.2726 28525.4034 34951.9265
6x 1Rx4, 2x 2Rx8 32398.6115 32673.0758 32526.5917 36919.6589
4x 1Rx4,4x 2Rx8 32238.3033 32686.6027 36584.8795 36297.9522
2x 1Rx4,6x 2Rx8 33246.0747 32394.7017 37166.3852 36439.4605
8x 2Rx8 36182.1615 35802.851 39649.1703 39479.6729

Fig. 2. Memory transaction bandwidth (mixed and non-mixed rank 1600 MHz DDR3 DIMM
configurations)
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3.3 Haswell-EP Micro-Architecture

Performance Tool and Hardware Configuration. In this evaluation we used
Stream-scaling5 performance tool as it automates running the STREAM memory
bandwidth test on Linux systems. It detects the number of CPUs and the size of each of
their caches. The program then downloads STREAM, compiles it, and runs it with an
array size large enough to not fit into cache. The number of threads is varied from 1 to
the total number of cores in the server, so that you can see how memory speed scales as
cores involved increase.

For the single and dual ranked tests we used a dual socket Intel Haswell CPU - Xeon
E5-2680 v3 2.50 GHz (HT enabled, 24 cores, 48 threads) with 64 GB 2133 MHz of
8 × 8 GB and RHEL Server 6.5 Operating System in 1U form factor server. Figure 3
shows the memory population diagram on the test servers. We have been working with
8 GB memory DIMM in our experimentation study.

Performance Results

One DIMM-Per-Channel Configuration. In a one DIMM-per-channel configuration,
dual-rank performs better than single-rank as we can see in Fig. 4. The dual rank

Fig. 3. One DIMM-per-channel configuration

Fig. 4. One DIMM per channel performance

5 Automate memory bandwidth testing with STREAM using varying core counts https://github.com/
gregs1104/stream-scaling.
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configuration is performing 11 % better. Where the dual-rank configuration in one
DIMM-per-Channel is hitting almost 90K MB/s compared to only 80K for the
single-rank configuration. In Fig. 3 we are presenting the memory population on the
server for one DIMM-Per-Channel configuration.

Two DIMMs-Per-Channel Configuration. In a two DIMM-per-channel configuration,
the performance of single and dual-rank will be almost identical (within the accuracy of
the measurement) as you can see in Fig. 6. For the mixed ranked test, we found that
bandwidth scales with DPC and were interested in tracking how it scales (Fig. 5).

The single-rank DIMM will be lower power than the dual-rank DIMM. Long-term,
the single-rank DIMM will end up being lower cost and having better availability than
the dual-rank DIMM. Typically it results in a better improvement of latency. However
the performance difference between single ranking and dual ranking is minute and
comes only into play when squeezing out the very last ounce of performance. The
number of DIMM slots does not always mean that you can scale up to a certain
capacity configuration. DDR3 LRDIMMs provide a great way to maximize capacity
while retaining bandwidth. Beginning 2014, DDR4 was released, providing higher
density, better performance and decreased drop off rates when using multi DPC
configurations.

Fig. 5. One DIMM per channel configuration

Fig. 6. Two DIMMs per channel performance
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4 Conclusions and Future Works

This paper is meant to provide guidelines for evaluation of memory performance as
affected by different factors such as microarchitecture, DIMM type, and DIMM pop-
ulation. Through this study we have provided the following recommendations to
achieve optimal memory performance in the Romley-EP and Haswell-EP microar-
chitectures: (1) Upgrade to a balanced memory configuration that fits capacity
needs: This requires being aware of your memory system and number of controller
channels. Since the Intel Nehalem CPU architecture [11], memory has been managed
by multiple controller channels and each channel will have the same number of banks.
To “balance” memory we must populated the same number of channels and banks
within the channels across each CPU socket. (2) Lower Rank provides slightly lower
latency: Memory DIMMs have the same socket interface and their capacity is deter-
mined by the amount of DRAM chips connected through Ranks. A Rank is the series
of DRAM chips connected to the same chip select and therefore accessible simulta-
neously. Dual Rank means that there must be 2 chip selects to access the entire capacity
of the memory. Quad Rank requires 4 chip selects and each select incurs extra latency
therefore single Ranks would have the lower latency of DIMMs of the same capacity
and frequency. (3) Frequency will downclock to the lowest DIMM: Memory Fre-
quency is another factor that affects latency and overall application performance. The
frequency determines how fast the data can be accessed on the chip and since the OS
allocates Virtual memory pages that stride across multiple physical DIMMs the access
times need to be the same. That is why the BIOS of the server will down-clock all
DIMMs to the Speed of the slowest DIMM. So even if you are upgrading from 2 to 8
DIMMs and bought the latest fastest memory for your server they will only run as fast
as the 2 original DIMMs in the system. If latency is a concern then upgrade all the
DIMM’s to the same RANK and frequency.

Combining DRAM and NAND [14] at the system-level architecture provides the
best of both worlds, which is why modern servers use DRAM as a memory/cache and
NAND for storage. There is still a latency and capacity gap between DRAM and
NAND, so the question arises: how do we combine the best of DRAM and NAND at
the silicon level? The industry is developing a new type of memory that provides low
latency and high endurance while offering a small and scalable cell size. Theoretically,
NVDIMMs with 3D XPoint memory could provide similar bandwidth. Updates
revealed at the Intel Developer Forum trade-show last year claim 3D XPoint
NVDIMMs will only offer around 6 GB/s of bandwidth, hardly considered a break-
through, the new Intel DIMMs based on 3D XPoint [17] will significantly improve
performance of server-class storage sub-systems.
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Abstract. This article presents an extension of the IaaS Cloud simula-
tor CloudSim. Our CloudSim extension takes into account the processing
of i/o workload generated by virtual machines within a Data Center and
evaluates the overall performance and energy consumption. Indeed, stor-
age systems energy consumption may represent up to 40% of the total
energy consumed in a Data Center. Then, we propose three contribu-
tions. First, we modified the time computation model of CloudSim to
consider i/o operations. Second, we designed several models of storage
system devices including Hard Disk Drives and Solid-State Drives, and
finally, we considered the cpu and ram used for i/o request processing.
Our extensions have been evaluated using video encoding traces. First
simulation results showed that a significant amount of energy, around
17 %, is consumed due to I/O workload execution, which shows the
soundness of our CloudSim extensions.

Keywords: Cloud computing · CloudSim · Storage · Energy consump-
tion

1 Introduction

IaaS Cloud Computing is an emerging technology supporting a new way of using
hardware infrastructures. Cloud providers offer these infrastructures as virtual-
ized hardware (i.e. cpu, storage, and network), managed by suitable software
(i.e. virtualization technologies). They propose their services under the form of
Virtual Machines (vms), ready to be used on demand by Cloud customers.

Mastering the utilization costs of Cloud infrastructure represents a real chal-
lenge for Cloud providers. Power consumption cost is one of the main costs for
a data center [9]. Several approaches have been proposed in order to minimize
data center energy consumption. One of the most commonly used is vm place-
ment optimization which aims to find the optimal allocation of physical machines
of a data center (i.e. host servers) to customers’ virtual machines. Most state-
of-art vm placement optimization methods are based on cpu utilization [15].
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They consider that power consumption of a given host depends exclusively on
its cpu load. However, several studies [4] have shown that other system com-
ponents may greatly contribute to the overall host power consumption while
others [12] emphasize that the power consumed by a storage system may rep-
resent up to 40 % of the overall data center power consumption. Therefore, we
believe that it is necessary to consider storage systems and associated workload
in vm placement optimization.

The work presented in this article is part of an energy-aware vm placement
optimization project that considers storage systems and i/o workload execution.
For performance evaluation sake, we used one of the most popular approach [3]
as a comparison baseline. In this work [3], authors used the Cloud simulator
CloudSim [5]. Unfortunately, CloudSim does not consider i/o processing related
time and energy consumption.

Even if CloudSim considers transfer time of Cloud customer binary files to
the Cloud storage system, it does not take into account i/os related to vm
image creation and i/o workload execution. Many state-of-the-art studies aimed
to provide storage systems support in CloudSim [7,13,14,21]. To the best of our
knowledge, none considered i/o workload processing.

This article presents an extension of the CloudSim storage system model.
The proposed extension aims to take into account i/o workload processing in
the overall simulation results. We then extended CloudSim as follows: (1) first,
we modeled the vm i/o workload execution in the time computation model of
CloudSim, (2) We extended the storage device entities of CloudSim to express
both Hard Disk Drive (hdd) and Solid State Drive (ssd) devices performance
and energy models, (3) We took into account cpu and memory i/o processing
related time and energy consumption.

The remainder of this article is organized as follows. Section 2 presents
the related works. Section 3 describes the contribution of this paper. Section 4
presents the extension evaluation and Sect. 5 concludes the article.

2 Related Work

In this section, we summarize state-of-the-art work for i/o and storage integra-
tion inside CloudSim. There are other work that aim to consider storage capa-
bilities in other simulators used in Cloud context such as SimGrid in [11] but as
they do not target VM-based concepts nor storage system energy consumption,
they fall out of the scope of this paper.

CloudSim is a discrete event simulator that enables modeling and simula-
tion of Cloud computing systems and application provisioning environments [5].
To the best of our knowledge, there are four state-of-the-art work that dealt
with storage in CloudSim. In [14], the authors implemented CloudSimDisk, a
CloudSim extension based on an analytical energy consumption model for three
hard drives. This extension considers only transaction time and energy consump-
tion related to adding and retrieving binary files executed by vms. In [21], Sturm
et al. target the simulation of a STaaS Cloud (STorage as a Service). This app-
roach focuses on a pricing model of object storage in CloudSim [16], and gets
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around the usual use vm execution concept in CloudSim. The closest work to
ours introduced several extensions for CloudSim in order to overcome resource
over-utilization, and then to minimize costs [7]. For such a purpose, Grozev et al.
focused on load balancing algorithms by considering all resources, including the
storage parts. Finally, Long and Zhao [13] proposed an extension for CloudSim
storage system in order to maximize system performance. This approach targets
the integration of file replication over storage devices and data centers.

Approaches in [7,13,14,21] exhibit three main drawbacks:

– vm i/o workload processing is not considered in the time and energy models
of CloudSim.

– the existing models do not consider time and energy generated by storage
system devices’ activities,

– when used in CloudSim, the storage system is limited to a shared san which
relies only on one model of hdd.

In this work, we answer each of the three above mentioned issues. We propose
an extension to simulate more accurate and realistic scenarios by considering i/o
workloads and storage system performances. The next section details our exten-
sion for CloudSim. First, we present the concept of vm i/o workload execution
and its related time and energy consumption. Second, we give an overview of
our modeling of different classes of storage device in CloudSim storage system.

3 CloudSim I/O Processing and Storage System Support

3.1 Storage in CloudSim

CloudSim is a discrete event IaaS Cloud simulator developed in Java. It is com-
posed of a set of entities: Datacenter, DatacenterBroker, CloudInformationS-
ervice and CloudsimShutdown. Those entities model the main architecture
elementof aData center.Theycommunicateusingpredefinedevents (e.g.VM CREA-
TE, VM MIGRATE, VM DESTROY, etc.). Events can be external (i.e. between different
entities) or internal (i.e. sent and received by the same entity). When received by an
entity, each event is handled by the receiving entity before sending a acknowledg-
ment (e.g. VM CREATE ACK, VM MIGRATE ACK, VM DESTROY ACK, etc.). A CloudSim
simulation is based on the execution of a set of Cloudlets. A Cloudlet models a
process with a cpu workload ran by a vm.

CloudSim allows users to simulate IaaS Cloud scenarios with different
infrastructure architectures. It is usually used to experiment vm placement opti-
mization strategies with a focus on energy efficiency or load balancing. From
the storage system perspective, the latest CloudSim version uses a shared san
(Storage Area Network), which is a set of similar hard drives [6], connected
by a lan (Local Area Network). From the i/o workload perspective, CloudSim
mainly considers the time to store an input Cloudlet file during its submis-
sion. This time is obtained using hard drives performance metrics (latency and
throughput), and the lan throughput, but the related energy consumption is
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not accounted. In addition, the vm image and its i/o workload management are
not considered.

The main objective of our contribution is to consider i/o workload execution
of vm in an IaaS Cloud context. i/o workload impact on performance and energy
consumption can be decomposed in two main elements, (1) the execution of the
i/o workload on the storage devices containing the requested data, and (2) the
execution of the i/o software stack for workload processing on host’s cpu and
ram. Thus, executing i/o workload induces time and energy latencies on storage
system devices, and also cpu and ram. Our contribution can be summarized as
follows:

Time and energy computations for I/O processing: In order to consider
i/o workload execution, we have updated both vm time and energy computa-
tion models to take into account i/o processing. We have chosen to define i/o
workload at the vm level. Indeed, on one hand defining workloads at the vm
granularity corresponds to the targeted objective (placement of vm), and on the
other hand, it is more convenient as in real platforms, tracing is achieved at the
hypervisor level [10].

Storage device support: Our extension updates the model of storage system
devices already used in Cloudsim, especially the Storage interface and the class
HardDriveStorage. The additional material targets mainly performance and
power characteristics.

I/O workload and CPU correlation: As discussed earlier, when executing an
i/o workload, a given vm does not only solicit the storage system, but also uses
the cpu and ram for i/o requests processing. In CloudSim, ram utilization is
driven by cpu usage. Based on performance measurement, we developed empir-
ical correlation models in order to evaluate cpu usage according to i/os. The
developed models mainly depend on i/o size, i/o access pattern, and storage
device type.

3.2 Time and Energy Computations for I/O Processing

Time Computation. Simulated execution time in CloudSim depends on the
time between sending an event by an entity and receiving the acknowledgment.
Among the events that impact simulation time, we distinguish Cloudlets and vms
processing events (create, move, pause, resume, etc.). Figure 1 shows a simple
scenario for the execution of a Cloudlet on a vm. The first phase is the cre-
ation of a Cloudlet on the storage device (CLOUDLET SUBMIT event). This event
is produced once for each Cloudlet in the beginning of the simulation. Its dura-
tion depends on Cloudlet file size and storage system performance. The second
phase is to execute Cloudlet instruction. Its duration depends on the Cloudlet
length (i.e. number of instructions), and cpu performances of both vm and
host. There is another event that implies i/o which is the Cloudlet relocation
(CLOUDLET MOVE event). Figure 2 shows event sequence that affects simulation
time after our extension integration.
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Fig. 1. Time model before the extension

Fig. 2. Time model after the extension

Our contribution related to i/o time can be outlined as follows:

– vmimage creation:vm creation is a data center internal event. We extended
vm creation time by storing vm image on the storage device. This time varies
depending on vm image size and storage device characteristics.

– i/o execution:we have introduced this concept in order to simulate i/o work-
load execution on the storage device and related energy consumption. vm i/o
execution is a data center internal event. i/o execution time depends on char-
acteristics of the vm i/o workload and the storage device on which the vm
image is stored. An i/o workload is characterized by: (1) read rate, (2) sequen-
tial rate, (3) i/o request size, (4) i/o request arrival rate, and (5) the total
amount of processed data. This characterization is widely used in state-of-art
work, and specially in virtualized environment [8].

Energy Consumption. i/o workload execution does not affect only execu-
tion time, but also the system energy consumption. On the previous version of
CloudSim, energy consumption depended solely on hosts cpu load. Equation 1
shows how CloudSim gets the host power consumption P (u), depending on its
cpu utilization u:

P (u) = k · Pmax + (1 − k) · Pmax · u (1)

Pmax denotes the maximum power of the host machine (i.e. when cpu uti-
lization is equal to 100 %). k denotes the ratio between the maximum power and
the idle power (i.e. when cpu utilization is equal to 0 %). In [3], the authors con-
sider that a host machine consumes 70 % of the maximum power in idle mode,
which means that k = 0.7.

The cpu utilization of a given host depends on vm cpu workload and the host
cpu performance. The cpu workload of a given vm is the sum of all Cloudlets
cpu workloads given in MI (Million Instructions). CloudSim uses the MIPS
(Million Instructions Per Second) as the only cpu performance metric.
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Figure 3 is an illustrative figure that shows the power consumption with and
without considering the storage system. The left timeline is obtained by the
initial power model used in CloudSim that computes the host power consumption
(cpu and ram) only from the cpu utilization. Pmax and k values are obtained
from experimentations presented in [3]. This diagram illustrates three power
phases for a given host. The first and the last phase show the power consumption
during idle mode which represents here 0 % of cpu utilization. During the second
phase, the host executes vms cpu workload.

Our model completes the initial power consumption model in CloudSim, by
adding the energy consumption related to vms i/o workload execution.

The right time-line in Fig. 3 shows an illustration for the result after this
update. Notice that a storage device in idle mode can consume power (e.g. up to
60 % of the power during operational mode [20]), and as consequence, the power
in idle mode is also increased. During the second phase, the host alternates
between i/o and cpu workloads execution. Storage system and i/o workload
affect the consumed energy in terms of time and power.

 150

 175

 200

 225

 250

 275

 300

 0  60  120  180  240  300  360  420  480  540  600  660  720

Idle mode power
(0% CPU)

Operating mode power
(CPU+RAM)

CPU Utilization

P
o

w
er

 (
w

at
t)

Time (second)

Power (watt) Pmax (100% CPU) Pidle (0% CPU)

 150

 175

 200

 225

 250

 275

 300

 0  60  120  180  240  300  360  420  480  540  600  660  720  780  840

Idle mode power
(0% CPU+Storage)

Operating mode power
(CPU+RAM+Storage)

I/O Activity

CPU Utilization

P
o

w
er

 (
w

at
t)

Time (second)

Power (watt)
Pmax (100% CPU)
Pidle (0% CPU)

Pmax (With storage)
Pidle (With storage)

Fig. 3. Power model before and after the extension for HDD and SSD (with idle and
operational power values variation but a similar behavior).

3.3 Storage Device Support

We extended the storage system of CloudSim by implementing two storage
devices types: hdd and ssd (see Appendix Fig. 7). We classified the added
attributes and methods in two main classes: (1) performance-related, and (2)
power-related ones. For each storage device, performances depends on i/o work-
load characteristics (e.g. read/write, sequential/random, i/o size, etc.), and
device performances properties: latency, average seek time, data transfer rate
(for sequential access), and IOPS (for random access). The energy consumed
by a storage device depends on: its performances, i/o workload characteristics,
and power properties (i.e. power for random/sequential and read/write opera-
tions, idle power, standby power). We also implemented a storage system energy
consumption model that we have already presented in previous work [18].
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3.4 I/O Workload and CPU Correlation

Simulating i/o workload execution does not only imply storage system activities,
but also cpu utilization due to i/o software stack execution. In order to quantify
and implement the cpu involvement in i/o processing, we have established a
correlation model that gives cpu time depending on i/o workload characteristics.
Our experiments have shown that cpu time related to synchronous i/o execution
depends on four parameters: (1) storage device type (hdd and ssd), (2) i/o
operation type (read or write), (3) i/o access pattern (random or sequential),
and (4) i/o request size.

In order to design the cpu correlation model, we developed an i/o micro-
benchmark that measures cpu time according to the total workload execution
time. Fig. 4 shows results obtained for our hardware platform. Left and right
charts represent obtained results for read and write operations respectively. For
each experiment, we varied: (1) the storage device type (hdd, ssd), (2) the access
pattern (sequential, random), and (3) the I/O size (x axis). We can observe
that the cpu is more impacted in read operations as compared to writes. As ssd
performance is higher than hdd, more i/o requests are processed by time unit
making the cpu utilization higher. A linear regression was used to obtain the
cpu correlation model. For example, the following equation gives the cpu time
related to random writes on hdd:

TimeCPU = TimeIO · [(7 · 10−8 · IOsize) + 9.7 · 10−3] (2)

As noted earlier, our vm i/o workload characterization includes a parameter
representing the sequential rate [18]. Based on this parameter, an i/o workload
may include interleaved random and sequential access. Therefore, random cpu
correlation models are applied to the random parts, and sequential models are
applied to the sequential parts.

4 Evaluation

This section presents the evaluation of our extension in two parts. The first one
aims to validate the claim that i/o workload processing contributes highly in
the energy budget while the second part validates the cpu correlation model.

Fig. 4. CPU time for i/o execution
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4.1 CPU, Memory and I/O Traces Simulation

This first evaluation assesses the storage system energy consumption of a real use
case. To do so we proceeded in two main steps, Fig. 5 summarizes the methodology:

1. Real workload execution: we ran experiments in a real environment and we
collected a set of measures on the cpu, memory load, and i/o requests.

2. Workload simulation: from the collected measures and traces, we replayed
the same scenario in CloudSim by turning ON and OFF the storage system.

In this evaluation step, as the cpu utilization is obtained from traces, the
cpu correlation models were not be used.

Real Workload Execution Phase: As mentioned above, the first evaluation
phase includes two steps: (a) workload execution, and (b) measures collection.

(a) Workload execution: this step consists of running a workload in vms (step
1 in Fig. 5). We chose an encoding video benchmark as a real use case of vms in
the Cloud as this is an ongoing project our institute. Virtual machines encode
video from mov format [2] to several videos in TS (Transport Stream) format
[19]. This process is used for video streaming using HLS (HTTP Live Streaming)
protocol [1]. We used H264 for video encoding and HE-AAC for audio encoding.
Eight vms were used in this experiment, four of which were stored in hdd and
four in ssd. We performed 4 experiments in which we varied the number of vms
running on (hdd, ssd) as follows: (1, 1), (2, 2), (3, 3), and (4, 4). Each vm has
a 20GB image and all vms have the same configuration.

(b) Trace collection: during workload execution, cpu and memory utilization
were monitored, in the addition to i/o traces. cpu and memory traces were
aggregated to an average value related to one unit of time (defined to 5 mn in

Fig. 5. Evaluation methodology. The four steps are: (1) run benchmarks, (2) collect
measures, (3) collect simulation results with and w/o storage system effects, (4) com-
pare the results.
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CloudSim). Concerning i/o traces, each vm had its own i/o trace file gathered
from i/o block level [17]. Each i/o trace file line includes five fields formatted
as follows:
< data amount >,< read rate >,< random rate >,< io size >,< io arrival rate >.

First filed (i.e. < data amount >) represents the total read and writ-
ten amount of data. Second and third fields (i.e. < read rate > and
< random rate >) denote rates of read requests and access pattern random-
ness respectively. Fourth field represents i/o request size in bytes. The last field
denotes request arrival rate during sample interval.

Workload Simulation Phase. Simulation phase includes two main steps: (a)
scenario simulation using cpu, memory, and i/o traces, and (b) comparing sim-
ulation results by activating and deactivating storage system.

(a) Simulation using real traces: in this step we used traces obtained from
real workload execution phase. cpu and memory utilization are attached to hosts,
while i/o traces are attached to vms. Simulations were executed by varying the
following parameter: (1) number of vms per host, (2) storage system ON/OFF,
and (3) storage device hdd/sdd (when storage system is ON). Configurations
about the number of vms were the same as for the real workload execution phase
and we varied the number of hosts. The total number of vms was set to 290 vms
as in [3]. The number of active hosts depends on the number of vms per host
(i.e. unused hosts are shutdown).

(b) Simulation results comparison: Storage energy consumption is used in
order to show and quantify the impact of the storage system. Section 4.3 shows
the obtained results from the evaluation.

4.2 CPU Correlation Model Validation

In order to validate the cpu correlation model, we used the same i/o traces used
in the previous part. The objective of this step is to assess i/o workload process-
ing energy consumption only with i/o traces, using the cpu correlation model
(without using the cpu and ram traces). Results obtained from this step were
compared with the previous step (using cpu and ram traces) in order to evalu-
ate the correlation model accuracy. We used the same simulation configuration
as the previous section. Results are presented in Sect. 4.3.

4.3 Evaluation Results

This section shows the obtained results from the two parts of the evaluation.
Two metrics are shown, first, the energy consumption related to i/o workload
processing which validates the impact of i/os on the overall energy consump-
tion. This metric is used for the simulation part that uses real cpu, memory
and i/o traces. Second, the difference between simulations using real traces and
the ones using the correlation model which validates the accuracy of the cor-
relation model. Figure 6 shows the percentage of the energy consumed during
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Fig. 6. Storage system energy consumption: traces vs correlation model

i/o processing, using all traces (i.e. cpu, memory, and i/o), and using our cor-
relation model (i.e. using only i/o traces). In both cases, we keep the same
Cloudlet length, in order to maintain the same simulation and real workload
execution time. We can see that the energy consumption when processing i/os
grows according to the number of VMs per host, except for the last value (i.e. 8
vms per host). This trend is due to the growth of i/o workload execution time
(e.g. ∼10 min for 2 vms and ∼13 min for 4 vms) and host cpu utilization (e.g.
∼23 % for 2 vms and ∼49 % for 4 vms). The last value is due to the hardware
experimental platform, where the host has an 8 cpu cores, each core is allocated
to a vm (i.e. one vcpu per core). During the workload execution, all cpu cores
are fully utilized, which implies less cpu time for the i/o processing (e.g. on
hdd, ∼335 io/second for 6 vms/host and ∼260 io/second for 8 vms/host), and
then less energy consumption due to i/o processing. The other observation is
the difference between energy consumed in the hdd case and the ssd case. This
is due to the difference between their respective performance (e.g. in 6 vms/host
case, 335 io/second for hdd and 1607 io/second for ssd) and their power con-
sumption in operation mode (5 Watts fort hdd and 3.5 Watts for ssd). Figure 6
shows that our very basic correlation model gives good results. For example, in
the case of hdd we have ∼20 % of maximum error rate, ∼6 % of minimum error
rate, and the average error is ∼12 %. The higher the number of vms, the better
the accuracy of our model (e.g. ∼9 % error rate in the case of 8 vms per host
using ssd).

5 Conclusion

This paper presents an extension of CloudSim to take into account I/O workload
processing. Our extension considers i/o workload execution time and energy con-
sumption by: (1) updating the time and energy computation model of CloudSim,
(2) taking into account different classes of storage systems (i.e. hdd and ssd),
and (3) including a cpu correlation model that depends on i/o workload charac-
teristics and storage device type in order to represent cpu and ram i/o process-
ing time and energy. Simulations with video encoding applications validated the
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impact of I/O processing on energy consumption to up to 17 % of total energy
consumption. As a perspective, this implementation will be used in a vm place-
ment optimization approach that takes into account i/o processing cost. We also
plan to study and integrate the problem of interference between vms sharing the
same storage device.

Acknowledgment. This work has been achieved within the Institute of Research
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Appendix

Fig. 7. UML Class diagram of the main added and modified elements in CloudSim.
The diagram present only added or modified classes that impact storage system and
i/o execution. All classes and interfaces with the green color have been added in our
extension. Methods and attributes presented in this diagram (from the initial imple-
mentation) have been overridden by our extension. (Color figure online)
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{s.el.sayed.mohamed,w.homberg,d.pleiter}@fz-juelich.de

Abstract. Hierarchical storage architectures are required to meet both,
capacity and bandwidth requirements for future high-end storage archi-
tectures. In this paper we present the results of an evaluation of an emerg-
ing technology, DataDirect Networks’ (DDN) Infinite Memory Engine
(IME). IME allows to realize a fast buffer in front of a large capacity
storage system. We collected benchmarking data with IOR and with the
HPC application NEST. The IOR bandwidth results show how well net-
work bandwidth towards such fast buffer can be exploited compared to
the external storage system. The NEST benchmarks clearly demonstrate
that IME can reduce I/O-induced load imbalance between MPI ranks to
a minimum while speeding up I/O as a whole by a considerable factor.

Keywords: Burst buffer · Storage · Infinite Memory Engine (IME) ·
GPFS · NEST · IOR · Performance analysis

1 Introduction

Design of any future supercomputing systems face the challenge of maintaining
a reasonable balance of compute performance versus performance of the I/O
sub-system. In practice, this gap is growing and systems are moving away from
Amdahl’s rule of thumb for a balanced performance ratio, namely a bit of I/O
per second for each instruction per second (see [1] for an updated version).
Systems providing O(1016) Flop/s compute performance typically feature an I/O
bandwidth well below 1012 Byte/s.

The growing gap between compute and I/O performance is even more crit-
ical as the need for the latter is growing. This is partially due to new, more
data-intensive application areas with need for scalable compute resources. A
possibly even larger demand for I/O capabilities results from the emerging need
for continuous check-pointing since the complexity of supercomputing systems
is growing and they are becoming more likely to fail.

Today, disk drives are the predominant technology in modern high-
performance storage systems. This technology has been showing impressive
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 604–615, 2016.
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Fig. 1. Schematic overview of the integration of the IME servers at Jülich Supercom-
puting Centre (JSC).

capacity growth rates, but only moderate speed improvements. For this reason
there is the need to move forward using other technologies, i.e. non-volatile mem-
ory (NVM) technologies. This technology allows for significantly higher band-
width, however at significantly higher costs per unit capacity. Therefore, there is
a growing interest in hierarchical approaches, where NVM-based storage devices
and large capacity disk drives are combined to provide both, high bandwidth as
well as large capacity.

Burst buffers [2] are such an architectural concept. It is based on the observa-
tion that HPC applications often do not exhibit a continuous but rather a bursty
I/O pattern, i.e. short periods which are followed by longer periods without I/O.
Adding a fast buffer which is able to store a full burst, one in principle could
relax the bandwidth towards the large capacity storage system. An implementa-
tion of such a burst buffer has been developed by DDN under the name Infinite
Memory Engine (IME). It is designed as an intermediate storage layer between
a compute system and an external storage system and uses NVM-based storage
devices as shown in Fig. 1. Burst buffers like IME are in principle especially ben-
eficial for scientific applications which cause large amounts of I/O traffic during
operation. In this regard, three main patterns can be identified:

– Dominant read: A large class of parallel scientific applications are concerned
with processing data retrieved by experiments or collected by observatories,
e.g. large-scale radio-astronomy facilities. Burst buffers can be used for pre-
staging this data.

– Dominant write: A much broader class of scientific applications faces the
opposite challenge: It generates a large amount of data which need to be
written to storage for long-term archiving or later post-processing.

– Transient write/read: Furthermore, workflows exist where one application
produces a significant amount of data which is consumed by the same or
another application running on the same system. Often this data is transient
in nature, i.e. does not have to be archived. Burst buffers would allow to keep
this data within the system.
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The goal of our study is to assess by systematic testing with real hardware
how well IME performs in practice, and if it is able to speed up scientific appli-
cations by its underlying burst buffer technology. For this evaluation we ran a
series of IOR benchmarks to assess overall performance. Furthermore, we carried
out extensive tests with NEST, an application from the “dominant write” class.
NEST is used in the field of computational neuroscience to simulate large net-
works of spiking point neurons. It is optimized for scalability, resulting in a huge
number of processes writing local data in a burst-like fashion. In the evaluation
of IME we consider the following questions:

– What performance can be achieved using IME and what is the potential for
overall application performance improvement?

– What efforts are required to adapt applications?
– What features are missing at the current development stage of IME?

In the next section we highlight some of the related work. In Sect. 3 we
describe the test setup we have been using. Our results are then presented in
Sects. 4 (IOR) and 5 (NEST). Finally, we summarize our findings and draw our
conclusions in Sect. 6.

2 Related Work

The term “burst buffers” has first been used in [2]. The authors do not claim hav-
ing invented the concept of an intermediate storage layer, but rather claim having
presented a concept for incorporating such buffers into the existing HPC stor-
age software stacks. They proposed to use a combination of the check-pointing
framework SCR [3] and the checkpoint file system PLFS [4].

An evaluation on how the parallel file system GPFS could be used for staging
files in an intermediate, NVM-based storage layer or for flushing these to an
external storage system was presented in [5]. GPFS comprises a policy engine
which can be used to manage the available storage and handle data movement
between different storage pools.

In [6] an attempt was made to explore the potential for burst buffers for a
large-scale Blue Gene/P system under the assumption that it could be equipped
with burst buffers. The resulting hypothetical architecture was modeled by an
event simulator. The main benefit that had been identified for burst buffers was
the opportunity to use a much less capable external storage system with no
major impact on the I/O rates. This simulation-based approach was enabled by
extensive analysis of I/O data collected during production runs [7], which was
used as input for these simulations.

With the emergence of suitable NVM-based storage devices, a large number
of papers have been published on how to integrate these technologies into HPC
architectures in general and I/O architectures in particular. In [8] the use of
NVM instead of DRAM for data staging is advocated. A prototype for the
later realized Gordon architecture, which had been optimized for data-intensive
applications by integrating SSDs, is presented in [9]. Several concepts have been
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Table 1. Parameters used for IOR.

I/O API POSIX

Number of MPI ranks per compute node NPROC = 2, 4, 8

Transfer size TSIZE = 4 MiByte

Overall amount of data BSIZE = 24, 12, 6 GiByte
(depending on NPROC)

Number of repetitions 5

developed for managing data staging within an HPC system, e.g. in an NVM
layer. Examples are DataStager [10] and DART [11].

3 Test Setup

The IME test-setup (Fig. 1) at the Jülich Supercomputing Centre (JSC) com-
prised 2 IME scalable servers with 24 SSDs each. Each IME SU SSD has a
capacity of 200 GiByte. Each IME server was connected via 2 IB-QDR links to
the IB fabric of the JUDGE cluster. Additionally, each server was connected via
a single 10-GE link to JSC’s 10-GE fabric, which provided the connectivity to
the central storage facility JUST. As parallel file system GPFS is used.

The meanwhile decommissioned JUDGE cluster comprised 206 IBM iData-
Plex nodes. Each node consisted of 2 Intel Xeon X5650 (Westmere) processors
and 48 GiByte of main memory. Each processor had 6 cores and supported via
hyperthreading 12 hardware threads (providing overall 24 hardware threads per
compute node).

Regular access to the external storage system JUST was realized through
1 gateway node. the time when the runs reported here have been executed.
This was connected via 2 IB-QDR links to the IB fabric of the cluster and via
2 10-GE links to JSC’s 10-GE fabric. The nominal network bandwidth to the
IME servers was 128 Gbit/s. The direct path towards the external GPFS via
the gateway nodes was limited by the 10-GE links to a nominal bandwidth ob
20 Gbit/s.

We used up to 60 iDataPlex nodes, which served as compute nodes, all run-
ning Scientific Linux 6.7. A pre-release version of IME was used, i.e. all results
should be considered preliminary.

4 IOR Benchmarks

To measure I/O bandwidth and to explore the scalability of IME, we used the
IOR benchmark (version 2.10.3; parameter settings in Table 1).

The total amount of data written and read per process (parameter BSIZE)
was selected such that the aggregated amount of data per node was 48 GiByte,
i.e. equal to the main memory capacity per node. We also performed runs, where
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Fig. 2. Read bandwidth as a function of the number of nodes Nnode.
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Fig. 3. Write bandwidth as a function of the number of nodes Nnode.

less data was written and read, to confirm our expectation that the amount of
data is large enough to minimize possible caching effects.

In Figs. 2 and 3 we plot the maximum measured bandwidth using the POSIX
interface as a function of the number of nodes.1 We performed the measurements
for different numbers of MPI ranks per compute node. We make the following
observations:

– To maximize read or write performance at least 4 MPI ranks per node should
be involved in reading or writing.

– To fully saturate bandwidth at least 8 and 4 nodes are required when accessing
IME or directly GPFS, respectively.

1 For the setup that was put in place in December 2015, MPI I/O was not sufficiently
stable to obtain coherent results for IOR using MPIIO or HDF5 as I/O API.
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– For reading and writing to and from IME a bandwidth of up to 13.8 GByte/s
and 15.63 GByte/s was measured, respectively, which corresponds to 86 % and
98 % of the nominal network bandwidth.

– The bandwidth to GPFS via the gateway nodes could not be fully exploited.
We observed a bandwidth of 0.6–0.7 GByte/s, which amounts to about 25 %
of the nominal network bandwidth. Due to the pending decommissioning of
the cluster it was not possible to investigate this further.

5 NEST Benchmarks

5.1 Background on Application

NEST (the “NEural Simulation Tool”) [12] is used in the field of computa-
tional neuroscience to simulate biological neural networks at the level of spiking
point neurons. The focus is on the simulation of the dynamics of interactions
between nerve cells. NEST was developed under the premise that it is both
suited for small experiments on local machines and for large-scale simulations
on the world’s leading supercomputers [13]. This flexibility is achieved through
a hybrid parallelization scheme using MPI and OpenMP threads.

A typical NEST simulation consists of two stages: First the network is wired
up and connections (synapses) between neurons are established (“build stage”),
and second the dynamics of the whole network is simulated (“simulation stage”).
During the simulation stage, the generated data can be recorded and stored in the
file system. For this purpose, two classes of virtual recording devices are provided,
spike detectors and multimeters. Spike detectors register discrete signals emitted
by neurons in irregular intervals (so-called “spikes”). In contrast, multimeters
record in a continuous and deterministic fashion specific state variables, e.g. the
membrane potential of single neurons. The user can freely choose the number of
spike detectors and multimeters in the simulation, the sets of neurons connected
to them for recording, and the sampling interval and set of state variables for
each multimeter. Every recording device exists on every thread in the simulation,
and for each thread-specific instance a separate file and C++ stream is used.2

The main program structure of the NEST simulation stage can be reduced
to the following three steps which are repeated in an iteration loop:

(1) Thread-internal routing of spike events to their target neurons;
(2) updating of neuronal states and generation of spike events;
(3) exchange of spike events between MPI ranks.

During step (2), the recorded data is written to the file system. In step (3),
MPI synchronization takes place between all ranks. In large simulations, step
(1) takes a considerable amount of time [15], so that it is valid to state that
NEST writes data in bursts during step (2).

2 Because this I/O approach does not scale well on supercomputers, right now a new
I/O subsystem for NEST based on libraries for parallel I/O is developed [14].
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Fig. 4. Effective bandwidth consumed by NEST for the three settings described in the
text as a function of the number of compute nodes. Solid lines: 8 GiByte of data per
node written to the file system (corresponds to 22 multim. state vars.). Dashed lines:
1 GiByte of data per node (corresponds to 1 multim. state var.).

5.2 Workload Description

NEST was built with gcc 4.4.7 on the code base from revision 11903 in the main
NEST SVN repository. To create benchmarking data, a random balanced net-
work [16] was simulated over 100 ms of biological time. Such a network consists
of an excitatory and an inhibitory population of neurons. Both populations were
connected to a specific spike detector and a specific multimeter, thus overall
there were four virtual recording devices. The amount of written data was var-
ied through the number of state variables recorded by the multimeters from each
neuron, ranging from 1 to 22. Spike data contributed less than one percent to
the overall amount of written data.

5.3 Weak Scaling Analysis

To analyze the impact of using IME on the overall performance of the simulation
stage of NEST, we determined the effective bandwidth, i.e. the ratio of the total
amount of written data versus time-to-solution (also called “simulation time”),
for the following settings:

POSIX: Write to files in GPFS using POSIX API
POSIX2IME: Write to files in IME using POSIX API.

POSIX2DEVNULL: Write to device /dev/null instead of writing to files.

The first setup corresponds to a standard run without IME, the second setup
relies fully on IME for writing data, while the third setup mimics the ideal case
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BA

Fig. 5. Time-to-solution of the NEST simulation stage as a function of the number of
compute nodes. A: Each node writes about 1GiByte of data. B: 8 GiByte per node.

of an infinitely fast storage system. In addition to varying the amount of written
data per neuron (see preceding subsection), we varied the number of compute
nodes between 1 and 16 with the number of simulated neurons and synapses per
node being constant (strict weak scaling). On each compute node, 23 MPI ranks
were started. This is one less than the number of available hardware threads per
node. The 24th hardware thread was left to the FUSE client which always ran
at 100 % load (single-threaded).

5.4 Effective Bandwidth

Results are plotted in Fig. 4. Each data point is based on the minimum value of
time-to-solution out of five independent runs. Our observations are:

– The effective bandwidth in the case POSIX2DEVNULL is only 5–10 % higher
compared to the case POSIX2IME. This means that the performance of IME is
close to the “ideal” performance.

– Good scaling is observed: The effective bandwidth in the case of POSIX2IME
nearly doubles with every doubling of the number of compute nodes.

– On GPFS such scaling behavior could only be consistently observed up to 4
compute nodes. As a consequence the effective bandwidth on GPFS was nearly
4 times smaller compared to IME for the largest problem size and 8 GiByte
of written data per compute node.

– As NEST is performing a large number of small, formatted I/O operations,
the bandwidth is significantly smaller compared to IOR measurements.

5.5 Time-to-Solution

In Fig. 5 we compare time-to-solution as a function of the number of compute
nodes. For each setting (POSIX, POSIX2IME, POSIX2DEVNULL), we show the full
simulation time and the simulation time after subtracting the time required for
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Fig. 6. Data retention time analysis for the NEST work-flow.

step 3 in the main simulation loop of NEST (bars in light color; “w/o synchr.”).
Step 3 covers mainly MPI synchronization between ranks and therefore reflects
load imbalance between ranks. Generally, step 3 is very short, and in NEST
simulations without I/O, load imbalance is not an issue. The simulation time
after subtracting the time required for step 3 is called “effective simulation time”
in the following. Three things can be observed:

– The larger the number of nodes, the larger is the advantage of writing to IME
or to “/dev/null” instead of writing to GPFS. As observed before, the cases
POSIX2IME and POSIX2DEVNULL show nearly ideal scaling behavior.

– The larger the number of compute nodes, the more suffers GPFS from I/O-
induced load imbalance between ranks (visible in the increasing difference
between full and effective simulation times). In contrast, writing to IME shows
nearly the same pattern as writing to “/dev/null”, thus there is no I/O-
caused load imbalance. Further runtime reduction by reducing load imbalance
between ranks is therefore barely possible via I/O improvements.

– These observations hold qualitatively both for 1 GiByte of written data per
compute node (Fig. 5a) and 8 GiByte of written data per compute node
(Fig. 5b).

6 Discussion, Conclusions, and Future Work

We carried out an empirical evaluation of the IME burst buffer technology.
We collected both benchmarking data with IOR and with the HPC application
NEST on a compute cluster with up to 64 nodes. The IOR results show that
both for reading and writing data about 90 % of the nominal network bandwidth
could be saturated when using IME. This number was already nearly reached
with only eight compute nodes. Compared to GPFS attached via a small number
of 10-GE links, an I/O speedup factor of more than 20 could be observed. This
indicates that IME is a promising technology for various classes of applications
(i.e., “dominant read”, “transient write/read”, “dominant write”).
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The NEST benchmarks corroborate this general finding but go one step fur-
ther. NEST operates with a large number of small writes which occur in a burst-
like fashion roughly simultaneously on all MPI ranks. When writing to GPFS,
this behavior causes a considerable amount of load imbalance which increases
with the number of compute nodes. With only 16 compute nodes, this load
imbalance already nearly doubles the simulation time. When using IME instead
of GPFS, two beneficial effects could be observed: The load imbalance nearly
disappears, and in addition to this, the effective simulation time (not includ-
ing time lost to load imbalance) is roughly halved on 16 compute nodes. NEST
performance with IME comes very close to using NEST with an infinitely fast
storage device, resulting in nearly perfect weak scaling behavior. This finding
fully applies to the setting with only one multimeter state variable (correspond-
ing to 1 GiByte of written data per node). Such a setting would be realistic for
NEST production runs. Therefore we conclude that the incorporation of IME in
compute clusters would be highly beneficial for users of NEST or other applica-
tions with similar I/O characteristics (“dominant write” in bursts). It also has to
be emphasized that the switch from GPFS to IME did not require any changes
in the source code of NEST, making the transition effortless and easy.

For sustained performance of the burst buffer over long simulation times, the
bandwidth between burst buffer and external storage system needs to be large
enough to avoid buffer overflow. Extrapolating the scaling behavior of NEST
with IME from Fig. 4 for the realistic setting (one multimeter state variable
corresponding to 1 GiByte of written data per node), an external bandwidth of
about 3 GiByte/s would be required for a cluster with 64 compute nodes. Such a
bandwidth is achievable with today’s technology at reasonable cost, confirming
the practical applicability of the burst buffer concept.

In this paper we mainly focused on today’s implementation of work-flows,
where data is written to an external storage system. Due to bandwidth lim-
itations as well as growing data volumes we expect this not to be affordable
anymore in future. To analyse such future work-flows we consider a data reten-
tion time analysis as proposed in [17] to be helpful. This analysis results in a
classification of data used or generated by a user application depending on how
long it will be retained. It includes the following data retention time classes:
permanent, transient or short-term. Short-term data has a life-time that does
not exceed job duration. Transient data has a limited life-time that exceeds job
duration, e.g. output data that is used by a next job. Finally, permanent data is
assumed to have unlimited life-time. For NEST a retention time analysis for the
data created and re-used at different stages of the work-flow has been performed
and is shown in Fig. 6.

For the further development of IME, we recommend to consider the following
use cases and demands:

– Data pre-fetching : Applications that perform significant amount of read-
ing from the external storage system would likely benefit from data being
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pre-fetched to IME before job start. Extensions of the batch queuing system,
as implemented for the Cori system at NERSC, are a good starting point.3

– Managing short-term and transient data: IME data management tools should
allow keeping short-term or transient data within IME. As this data is not
meant to be stored permanently, it ideally never hits the external storage.
This case could also be relevant for parallel performance tools that generate
significant amount of transient data that is processed soon after job end.

– End-to-end data integrity : As the capacity of storage systems continue to grow
also the risk of undetected data corruption grows [18]. To reduce this risk, stor-
age solution providers did integrate end-to-end data integrity checks (see, e.g.,
IBM’s parallel file system GPFS). Using IME in its current implementation
as an intermediate storage layer in front of GPFS, end-to-end data integrity
between producers and consumers is not provided. However, this would be
highly desirable.

Regardless of these desired future improvements, we finally conclude that
the IME burst buffer technology has reached a level of maturity that allows it
to be used for running complex parallel applications. It allows to grow the I/O
bandwidth at a faster speed than in the past and thus mitigate the risk of a
further deepening gap between I/O and compute performance.
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Abstract. I/O subsystem performance is becoming increasingly impor-
tant for a wide range of applications. The demand can be met with a large
memory capacity or fast local SSDs, but such solutions cause very high
investment costs and are rather inflexible. Here, we investigate a multi-
tiered approach, combining memory, local SSDs and InfiniBand-attached
block storage connected via SRP (SCSI RDMA protocol). Different vari-
ants of this hybrid storage system are evaluated, and we present a method
to analyze the I/O patterns of applications for choosing the best app-
roach. We also demonstrate the integration of the dynamic remote stor-
age facility into the scheduling system Moab. Our method allows for
an on-demand provisioning of multi-tiered file systems of varying sizes,
managing storage resources automatically with a broker software.

Keywords: Multi-tiered storage · I/O access patterns · Block-device
cache · Logical volume concatenation · Job scheduling

1 Introduction

In a range of application domains, such as structural mechanics, computational
biomechanics as well as computational chemistry, the performance of the I/O
subsystem visibly influences the overall time to result. A possible approach to
provide the necessary fast I/O is to use systems equipped with sufficient main
memory or fast local storage solutions SSD devices. However, such solutions are
only available at high costs as the systems must be built for the peak demand.

One way to compromise between performance demand and cost is a tiered
storage solution with a high performance tier (e.g. based on SSDs) and a capacity
tier (realized with HDDs) [1]. There are several different options to build the
tiered system out of these building blocks as outlined later in Sect. 3.

The paper starts with an analysis of different I/O monitoring solutions and
their applicability to understand the I/O pattern of applications. The choice of
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 616–626, 2016.
DOI: 10.1007/978-3-319-46079-6 42
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analyzed software is based on their application in the field of quantum chemistry
(often abbreviated as QC). Sample jobs running Molpro [2] were chosen to pre-
pare the graphs, but the same method could be applied to any other application.

Secondly, different options to build tiered storage systems are analyzed using
the storage access patterns recorded in the first section. The following section
introduces the Dynamic Remote Scratch implementation (DRS). This solution
does not just use the fast local storage as a generic cache, but aims to combine
local and networked attached storage in a more flexible way.

2 Typical I/O Demands of High End Quantum Chemistry
Jobs

Thorough understanding of I/O patterns and identifying bottlenecks is the start-
ing point for improving performance of I/O demanding HPC applications [3]. To
do this, we analyze the I/O characteristics of a representative QC job on both,
the storage device and the application level, respectively.

2.1 Monitoring Storage Device Utilization

The I/O dependency was verified by monitoring the utilization of the exposed
storage devices while running a representative QC test job. The iostat command
has been used to capture status information on the device activity at intervals
of one second during runtime of the program. Iostat is a popular performance
reporting tool that is part of the sysstat package [4].

Although iostat provides various metrics on device activity, we confine our-
selves to the %util metrics in the study presented here. This metrics is the
percentage of CPU time during which I/O requests were issued to the device,
i.e. this value represents a measure for the utilization of the corresponding device.
A value close to 100 % indicates device saturation. For this analysis, iostat has
been invoked with the following options:

iostat -dkx 1 | tee ~/iostat.out

The -d option causes iostat to include storage device utilization metrics,
whereas the -kx option causes extended statistics to be printed in kB/s.

The system requirements for the test application are known to amount to
13 GB in main memory (RAM) and 35 GB of disk space for temporary data
during runtime. The device utilization has been recorded for two different test
runs of the application: (1) on a compute node with 16 GB of RAM and (2) on
a compute node with 48 GB RAM, both of which equipped with conventional
spinning disk hard drives. The measured storage device activities for both test
runs are shown in Fig. 1.

Figure 1 (a) shows that in run (1) the storage device was saturated for a
large amount of the runtime, meaning that the application had to wait for the
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Fig. 1. Two runs of the same application on different nodes

data to become available. Figure 1 (b) shows the device utilization for test run
(2), in which the observed storage device utilization was drastically reduced in
comparison to test run (1). The ratio of the time being spent in serving I/O
requests is in the order of 5 % (apart from some peak utilization in the starting
phase of the program). This difference in device utilization can be attributed to
page caching of the operating system: Unlike test run (1), the total amount of
memory available in test run (2), was sufficiently large for the application itself
(13 GB) and also for keeping its temporary data file (35 GB) fully within the
page cache. Thus, most of the read requests issued by the application have not
been served by the storage device itself but from data cached in memory. This
resulted in a tremendous speedup of the application by a factor of 2.5.

This test case clearly indicates that I/O operations represent a major bot-
tleneck for the application and optimization of the storage system is very likely
to increase the performance for this kind of applications.

2.2 Tracing I/O Patterns at the Application Level

The results obtained by iostat from the previous section reflect the utilization
of the underlying storage device but does not provide any deeper insight on
the application’s I/O behavior itself. Information is lacking on the type of I/O
operations sent to the OS, specifically the ratio of write versus read operations,
the number of I/O operations issued per second, the number of bytes (read
or write) per operation and the exact access pattern: sequential streaming I/O
versus random access. In order to gain a better understanding of the application’s
I/O pattern, we have used the strace command [5]. Strace is a diagnostic tool
that intercepts and records the system calls which are called by a running process
and the signals which are received by a process. The following command line has
been used to capture the I/O related system calls of the test application:

strace -T -ttt -f -e trace=file,desc -o ~/trace.out prog < infile

The -T option causes strace to report the elapsed time for any system call.
The option -ttt causes microsecond timing, the -f option causes all children
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processes to be included and the -e trace=file,desc option has been used
to limit the trace to I/O related system calls in order to reduce the amount of
data written to the output file specified by the -o option. This measurement has
been performed on a compute node equipped with 48 GB RAM, i.e. within the
environment referred to as run (2) in the previous section. The recorded output
file contained 30 million lines that were finally post-processed and visualized by
means of a number of custom shell and Perl scripts.

Fig. 2. IOPS during runtime

Fig. 3. Measured offsets between succes-
sive read operations.

Figure 2 depicts the performed
IOPS (I/O operations per second)
of the program for all read opera-
tions throughout the whole runtime.
The observed pattern reveals repet-
itive read access signatures, each of
which exposing a sub-pattern of bursty
read accesses with up to tens of
thousands read operations per second.
Obviously, these peak values exceed
the capabilities of current magnetic
hard disks. As the read requests in
the example are fully served from the
page cache instead of the physical stor-
age device, the peak values observed
in Fig. 2 represent an upper limit for
what is generally achievable.

Figure 3 shows file descriptor off-
sets for every two consecutive read
operations. A zero offset indicates
sequential reads with the next block of
data located directly after the previous
one, whereas each non–zero offset indi-
cates repositioning of the file pointer
before the subsequent read operation,
i.e. that the next data chunk is located somewhere else in the file. The latter
translates to random access I/O which increases access times due to additional
seek latencies introduced by head repositioning for spinning hard drives. Further
investigation showed that the application reads data in a small number of dis-
crete chunks sizes ranging from 19 kB up 352 kB. We have repeated this analysis
for other sub-samples for this test application, which all revealed the very same
behavior as the one described above.

The same analysis methods have been applied to various test cases that are
not presented in detail here. From our investigations we can draw a number of
conclusions: From the observation that there are more read than write opera-
tions we can deduce that cache based storage solutions represent a promising
approach to face I/O performance shortages as already demonstrated in the page
cache example of Sect. 2.1. Because the IOPS values of up to several thousand
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exceed the capabilities of conventional hard disks, we have to take SSDs into
consideration. However, as some jobs require up to 10 TB of storage, it would be
too expensive to cover these peak-capacity demands at all nodes and all times
purely by local SSDs. Thus, a tiered or hybrid storage facility consisting of local
SSDs as core storage devices and supplementary hard disk devices for serving
peak-capacity demands appear as a sensible approach.

Given that the observed I/O patterns reveal bursty but also highly discon-
tinuous workloads with significant domains of only few read accesses (as seen
in Fig. 2), the supplementary hard disks may even reside on a shared storage
device that can be accessed remotely by multiple nodes at the same time. The
SRP (SCSI RDMA Protocol) is used here as this fully preserves the local page
caching mechanisms of the operating system without introducing overhead for
cache coherence as it would be the case through e.g. the TCP/IP communication
protocol. Therefore, in the following sections we focus on a hybrid solution of
local SSDs and a central block storage system connected via SRP and the way
these two storage facilities are joined.

3 Hybrid Storage System

There are several different ways to connect two storage devices to form a single
system, often called hybrid storage or tiered storage, and in this chapter we
investigate three of them. The trivial solution is mounting the two devices side
by side. The other solutions are more sophisticated and careful configuration is
needed in order to maximize the benefit of the SSDs.

3.1 Hybrid SSD Cache Based Approach

Fig. 4. Quantchem FIO benchmark

We chose flashcache [6] to use block
devices as a cache for it is released
under the GPL and seems to be the
most stable solution currently avail-
able. The following benchmarks were
run on a single node using just a
single process as this is the typical
way to do I/O for most of the appli-
cations in quantum chemistry. The
node has 128 GB RAM, a RAID0
array of 4 SSDs with a total of
850 GB as cache, and as a backend
device a NetApp E-5560, consisting
of conventional hard disks, connected via SRP over InfiniBand. Besides the stan-
dard sequential and random I/O benchmarks we used a custom-made benchmark
called quantchem which models the behavior of typical QC jobs with random
as well as sequential reads and different block sizes using FIO (Flexible I/O
Tester) [7]. The block sizes and the mixture of sequential and random accesses
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was generated using strace analysis of quantum chemical applications like the
ones presented in this paper. The benchmark reads from files with configurable
size and Fig. 4 shows the results when this file size is successively increased from
320 GB to 1600 GB.

Evidently, as soon as the file size exceeds the size of the cache, the perfor-
mance of flashcache drops rapidly, being only barely faster than the backend
device at 1600 GB file size. This disappointing result is caused by the random
disk access pattern of the quantchem benchmark which leads to a almost uniform
access distribution. So there are many cache misses due to the unpredictability
of the data accesses and so most of the data comes from the backend device.
A similar result was seen in [8], where the same benchmark was used but on a
smaller system with much smaller files. There, the performance decline was not
quite as large when exceeding the cache size because the speed difference of the
cache- and the backend device was smaller. In Fig. 5 we will see a block access
pattern of a real QC job which makes it quite clear why it is so hard for a caching
system to figure out what data to hold in the cache. When the whole file fits in
the cache, there is still a performance gap between flashcache and a pure SSD,
which was already seen in [9]. In all these caching solutions, the cache overlays
the disk space and thus the space on the caching device does not provide any
additional space for files. The solution presented in the next chapter does not
have this drawback while showing a better performance than the cache based
solutions with standard caching algorithms.

3.2 Hybrid Concatenated Storage Systems

In the approach using a hybrid concatenated storage system, both devices, a fast
SSD and a slow HDD, are used to store data permanently. These devices can be
connected via RAID0, which splits the disk and the SSD in small stripes and
distributes the data evenly across both storage systems. Another way to connect
these devices is via LVM, logical volume management, where a single logical
volume is created by linearly concatenating the physical volume corresponding
to the SSD and the physical volume corresponding to the conventional disk. Here
we have to take care that data gets written to the SSD first. If the data written
completely fits onto the SSD, we don’t want parts of the data to be stored on
the slower disk. To achieve this, two things have to be taken into account. First,
the file system has to place files at the beginning of the device and second the
first blocks of the LVM device have to correspond to the physical volume created
from the SSD. To fulfill the second requirement, LVM can be told to create a
logical volume with a smaller size using only the physical volume from the SSD
and then extend the logical volume to the full capacity. This ensures that blocks
with small numbers are placed on the fast storage system and blocks with high
numbers are placed on the slow storage system.

Modern file systems have sophisticated methods to speed up file operations.
Often, these methods are still tailored for spinning hard disks. For example, files
are distributed across the whole device which hinders the efficient use of the
concatenated file system. In RHEL 7.1 with kernel 3.10.0-229 we noticed that
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XFS [10] evenly spreads out subdirectories on the file system by default but
when using just a single directory XFS behaves much better for our intended
use. A similar problem arises when old files are deleted and afterwards new files
are created. In this case XFS reuses the disk space of the old file as we expected
but ext4 [11] places the new file after the deleted file. This could lead to unused
disk space on the high performance storage system which is the reason why we
decided to focus on the XFS file system.

Fig. 5. Block accesses pattern of
Molpro LCCSD run

Figure 5 shows accessed block numbers in
read operations over time of a real QC job.
The job was monitored on block layer level in
an LVM concatenated file system. The hybrid
file system was created by joining a RAID0
of 3 SSDs and a remote block storage device
connected via SRP – both storage systems are
equally sized at 300 GB. The job started a Mol-
pro LCCSD [12] calculation whose read opera-
tions proved to be mainly random and traverse a
big portion of the file in a short amount of time.
The concatenated storage system benefits from
the distribution of the I/O operations because
about 70 % of the data is read from the SSD.
The fact that the program mostly reads from
the beginning of the file can of course not be
guaranteed for every QC job but we saw this
behavior on multiple occasions.

4 DRS, a Dynamic Remote Scratch Implementation

4.1 Motivation

The usage of the remote storage configurations presented above in an environ-
ment with high throughput of production jobs requires a high degree of automa-
tion and flexibility for the assignment of the limited number of remote storage
resources to the compute nodes. Ideally the remote storage resources would
“float” freely in the cluster and be assignable to any of the nodes that needs
them. This minimizes job waiting times and helps to increase resource usage
compared to a fixed static setup, where only a small number of nodes has the
additional storage capacity available. A dynamic approach allows to allocate vast
resources to single job, or many comparably large resources to a larger number
of nodes, depending only on user needs which can be expressed via batch system
resource requests and without any administrator interaction.

4.2 Experimental Setup

The experiments and validation of the developments were done on a partition of
the “JUSTUS” cluster at the University of Ulm, a system built with 444 nodes
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and a QDR infiniband interconnect. The resource management system is built
with Torque and Moab. As backend storage we used a NetApp E-5560 with
an additional disk enclosure with a total of 120 nearline SAS disks of 4 TB in
8U rackspace. The embedded dual redundant controllers offer a total of 4 QDR
InfiniBand host connections, which can be used through SRP (SCSI RDMA
protocol). The storage can sustain around 6 GB/s of bandwidth.

Volumes are created in a Dynamic Disk Pool (DDP) setup, which is NetApp’s
implementation of declustered parity RAID [13], offering fast rebuilds and high
random access performance. Tests have shown that random access performance
for small numbers of nodes is superior to traditional RAID6 volume group setups,
sacrificing a little bit of bandwidth in the saturation for larger number of nodes.

4.3 Architecture

The flexible dynamic remote resource allocation is achieved by combining exist-
ing features of the Moab batch scheduler, a custom made, specialized broker
software and a matching client, the SRP initiator in the Linux OS and the SRP
target in a storage appliance.

The components involved in the setup, as depicted in Fig. 6:

Moab scheduler. The Moab batch scheduler’s task is to schedule a job to
execution hosts, considering the user’s resource requests for remote storage
which are expressed as requests for a global consumable resource. The broker
acts as the central instance to decide which resources are available, and is
queried by Moab similar to a license server for floating licenses.

torque prologue. A customized torque prologue which runs under with root
privileges on the job execution nodes, decides which remote storage resources
are requested for the job. drs client queries the drs broker, which makes those
resources available and keeps track of the allocation. Finally, the SRP initiator
is configured and the scratch filesystem is created and mounted.

torque epilogue. When the job ends, the torque epilogue is executed. It is
used to unmount the scratch filesystem, clean up and signal to the broker
that resources are no longer used.

drs client. The drs client is used for sending queries and commands to the
central broker, for allocating, freeing and inquiring resources.

drs broker. The drs broker is the central instance that keeps track of remote
storage resource allocations and configures the storage targets.

SRP initiator/target. The SRP initiator is presenting remote storage as a
block device on the local machine. The target is the counterpart of the ini-
tiator. In the concretely investigated setup SRP targets were running within
the controllers of a NetApp E-5560 device with IB host interfaces.

With the builtin Moab mechanisms we could not keep track of remote storage
volume to node assignments. Floating licenses can not be distinguished or labeled
according to our needs for managing remote volumes. Volumes carry additional
properties like size, identifier and other attributes. The central drs broker fills
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the gap and adds the required flexibility while avoiding race conditions during
allocation.

The listed components work together to allow a large number of nodes of
a cluster to allocate flexibly remote storage from a limited pool of volumes
without risking that resources are overcommited. Moab will only start a job if
the specified resources are available. The interaction of the DRS components is
depicted in Fig. 6.

4.4 Implementation

Fig. 6. Process flow for job submission

The broker and its client are implemented
in the programming language Go [14]
which makes them very easy to deploy, as
they are static executables without depen-
dencies on shared libraries and therefore
OS version agnostic. Go offers a pretty
high abstraction while maintaining type
safety with a static type system, and
showed a good development productivity.
The communication between broker and
client is implemented using Go’s very sim-
ple and elegant RPC mechanism. As a
side effect, the broker is asynchronous as
each request is running in it’s own go-routine, Go’s implementation of light-
weight green-threads. The broker maintains a record of available storage, which
is configured with a configuration file listing the available storage targets and
the volumes available on each of them. A volume can be flagged with attributes
usable for selecting between different kinds of volumes like e.g. HDD and SSD
based volumes, and with an additional property which represents an access chan-
nel to the volume. The later is used to achieve load balancing over the dual
redundant controllers of the NetApp E-series devices, where each volume has a
preferred owner among the controllers. The broker dumps the internal state to
files at every change and reads them on restart, to make the system reboot and
crash persistent. The client does all the interaction with the broker, it is also
part of the administrative interface to the broker and can be used to inquire
the state. It serves as the interface to the broker for the Moab scheduler and
is called in the prologue and epilogue for resource allocation and deallocation.
The broker tries to always end up in a clean state, if there is e.g. a problem in
setting up a volume as part of a request for several volumes, it will roll back
and free all resources and signal to the client that resource allocation could
not succeed. A resource request can be associated with a walltime of the corre-
sponding batch job, and resources will be freed by the broker after this time has
elapsed. This way crashed nodes which didn’t execute the epilogue will never
leave stalled resources behind for unlimited time, administrator interaction for
recovery is not required. In case a client freed some resources and the broker can
not free them on the storage target for whatever reason, the volumes are marked
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as needing manual intervention and will not be candidates for allocation unless
the state is cleared. The broker’s architecture allows implementation of different
target architectures. At the moment a testing dummy target and a target for
the Netapp E-series IB SRP target are implemented, future additions could be
e.g. iSER support for different vendors targets. Different and multiple targets
can be supported by one single instance of the broker. The current implemen-
tation assumes existing volumes on the storage, it does not create the volumes
but only manages them. The volumes are mapped on demand to hosts which are
registered and deregistered in the SRP target. An enhanced implementation of
the broker which also configures the volumes is in development. We expect slight
performance regressions with this approach as the volumes initialization might
not be finished when their usage starts, a tradeoff not available in the current
setup.

4.5 Moab Interaction

As Moab can not be easily extended, we had to find a way to couple the scheduler
with the external resources broker using existing features. We chose to treat the
volumes as a Moab shared cluster resource, which is usually used e.g. for floating
software licenses. Moab can call an external tool to check the availability of such
a shared resource, and take that into consideration for scheduling decisions.

The implemented resource broker client offers an option to be called by Moab
and return a resource status in the format required by Moab. As Moab queries
the resource status very often (every 10 s in our configuration), this inquiry has
to be fast and cheap, which is one of the reasons to store the resource state in a
broker instead of querying the used NetApp storage directly. The direct query
is heavy and expensive and takes about 5 s.

5 Conclusion

I/O demanding HPC applications, such as quantum chemistry codes, suffer
from bottlenecks introduced by poor performance of pure spinning disk storage.
Although SSDs provide good performance characteristics, pure SSD based solu-
tions are currently too expensive. This I/O bottleneck challenge can be addressed
in a cost-effective and flexible manner by means of a multi-tiered storage solution
consisting of large memory, local SSDs as well as a shared on-demand HDD layer.
SSD caching solutions built upon this system result in poor performance for the
use cases investigated in this study. However, a concatenated hybrid filesystem
using LVM reveals good performance if special care is taken in the order of the
underlying physical volumes. A broker has been implemented and successfully
integrated within the scheduling system of the cluster such that the remote stor-
age resources can be dynamically assigned to the nodes according to the specific
job demands. This facility supports various flavors of hybrid scratch file systems
that are assembled and disassembled on-the-fly, transparently for the user.
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Abstract. Keeping compute and I/O performance balanced is a major
challenge for future cost-efficient HPC systems. Several architectural con-
cepts and new technologies allow to address this challenge, however at
the price of higher complexity. In this paper we propose a particular app-
roach to exploring the design space using event simulation models that
take I/O server-side performance counters as input. In this way real-life
data can be used to explore architectural modifications. We apply our
approach using data collected by a GPFS file system serving a petascale
Blue Gene/P installation.

1 Introduction

Keeping future high-performance computing (HPC) systems balanced is one of
the key challenges on the path towards exascale architectures. This, in particu-
lar, concerns the balance of compute and I/O sub-system performance [4], which
becomes even more urgent as new, emerging HPC application areas are in need
for significantly higher I/O performance. This includes, e.g., radio-astronomy [6]
or light-source experiments [2]. These trends are not expected to change in the
foreseeable future. Therefore, the design of the I/O sub-system using new emerg-
ing I/O architectures will be a key issue that needs to be addressed for future
exascale architectures. As the design of new I/O architectures is very costly, per-
formance models are an interesting approach for exploring performance behav-
iour when architectural parameters are changed or even more significant changes
to the architecture are endeavoured.

For our approach we assume that the I/O sub-system comprises a parallel file
system or other components, which allow for server-side logging of performance
numbers like number of bytes read or written in regular intervals. Based on
the hardware and software architecture a model is designed, which is suitable
for event simulation and captures the most important features of the I/O sub-
system but is kept as simple as possible. The parameters of the model are tuned
such that it reproduces the performance counters.

This article makes the following contributions: (i) We develop a methodol-
ogy for modelling I/O architectures using server-side performance monitoring
data as input for a discrete event simulation model, (ii) We demonstrate how
to apply this approach to the Blue Gene/P installation JUGENE, for which we
c© Springer International Publishing AG 2016
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collected file system statistics over a period of about 2 years, and (iii) Results
are presented on how to apply the methodology for exploring architectural mod-
ifications. More specifically, we present model results for an hypothetical change
of the Blue Gene/P I/O nodes with integrated non-volatile memory devices.

After introducing our methodology in Sect. 2 we use this to develop in Sect. 3
a model for a specific Blue Gene/P installation. We analyse the model parameters
in Sect. 4, which is followed by an application of the model to an architectural
design space exploration in Sect. 5. We draw our conclusions in Sect. 6.

2 Methodology

Modern I/O sub-systems are fairly complex, incorporating many components
and implementing various interaction protocols. Modelling I/O sub-systems,
therefore requires adequately representing the inherent functionality of the simu-
lated system, while keeping the model reasonably simplified. This requires a close
study of the modelled I/O sub-system internal components and the sum of their
behaviour. Many I/O sub-systems allow for monitoring internal progress using
performance counters. These collect information such as number of bytes read
or written at one or more components in the I/O sub-system. When logged pro-
gressively over time the performance counters can reasonably represent the I/O
behaviour, which the model can use to implement and validate it’s functionality.

In this study we observe the I/O sub-system behaviour using file system
monitoring tools. Specifically we employ a file system monitor which resides
in the General Parallel File System (GPFS). The GPFS performance counters
include, among other values, bytes read and written and number of read and
write requests [1, Chap. 8]. The counters can be logged progressively at constant
intervals in time. The resulting logged I/O behaviour is reformatted to facili-
tate analysis. Compared to other I/O monitoring methods, monitoring the I/O
behaviour in the file system can reduce the complexity of the observed system
and the resulting I/O model.

2.1 Model Creation and Validation

To build a model for a given architecture we perform the following steps: (i) Con-
struct the model in terms of different components and associated model parame-
ters, (ii) Determine model parameters based on known architectural parameters
as well as empirically obtained performance data input, and (iii) Validate the
model by comparing model predictions with performance data that was not
used for constructing the model. Details on each of these steps are given in the
remaining part of this section.

Simulation Model Design. The internal functionality of the I/O sub-system can
be represented using a limited set of components, which themselves can be com-
prised of internal components. The term component can stand for any part of the
I/O sub-system that exists to perform operations that will lead to the fulfilment
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of an I/O request. On construction of the I/O model the main issue is selecting
the relevant components and the level of details to incorporate into the model
to create the necessary internal functionality. The decision on complexity and
details depends on various factors. These include availability of information on
the inner processes and protocols of the I/O sub-system, the level of performance
information collected and details of I/O monitoring information.

Each of the components has one or more associated parameters, which
describe the capabilities and capacities of these components, e.g. data through-
put. These can be determined from the I/O sub-system documentation, or using
statistical methods for fitting the model parameters to empirically obtained per-
formance data. The need for determining these parameters also impacts the
number of components in the model and the level of detail. A too large number
of parameters cannot be determined with a sufficient level of accuracy and confi-
dence when validating the I/O model. This can lead it to suffer from parameter
sensitivity and the risk of overfitting.

Creating the event list used to drive the simulation of the I/O model, requires
incorporating an I/O Request Generator. This has the task of translating the
available I/O monitoring data into I/O requests to drive the simulation. The
internal operation of the I/O request generator depends on the I/O monitoring
data and could require interpolation to determine missing values. For server-side
I/O monitoring the details of size and temporal distribution of individual I/O
requests is unknown. This leads the event generator to create all requests with
the average size and at the beginning of the I/O monitoring interval.

Model Parameter Determination. The parameters associated with each com-
ponent have to be determined to simulate the I/O model. The values of these
parameters can be determined using known architectural information. Overall
parameters can be determined by aggregation of individual or internal compo-
nent performance. However, it is not always possible to determine the parameters
in this way. A component is only an abstract representation of several system
components and simple performance number aggregation may not be possible.
In this case the parameters need to be fixed by training the model. Training here
means that server-side performance counters are used as input to the model to
check whether it can reproduce, to some degree of accuracy the behaviour of
the modelled system. An overview over the procedure for determining the model
parameters is shown in Fig. 1.

Fig. 1. Procedure for determining the I/O model parameters.
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Fig. 2. Architecture exploration using the I/O model.

Model Validation. Model validation has several aspects. The most important
one being a comparison of model predictions with a test data set, i.e. a data set
that was not used for determining model parameters. The procedure is similar to
the one depicted in Fig. 1, except that the comparison between measured perfor-
mance data, which is also used as input to the model, matches the performance
data “predicted” by the model. Another aspect concerns the comparison of model
parameters with expectations. While this leads only to a weak validation of the
model, it is nevertheless necessary to reduce risks related to overfitting.

2.2 Architecture Exploration

Driven by real I/O behaviour the model can help predict the impact of architec-
tural changes of the I/O sub-system on performance. The architectural changes
can be implemented through changing parameters such as bandwidth and delays
or by adding or removing I/O model components. By comparing the simulated
I/O monitoring data and the modified architecture I/O monitoring data, pre-
dictions on performance of new I/O architectures can be made. The process of
architecture exploration is depicted in Fig. 2.

Changing the model may require modifying the set of I/O requests in order
to respect timing constraints or causal relations. We thus introduce a “re-
synchronized I/O request generator” (see Fig. 2).

3 Model for BlueGene/P

JUGENE was a Blue Gene/P system that had been operated at Jülich Supercom-
puting Center (JSC) from 2008 until 2012. An overview on it’s I/O sub-system
is given in Fig. 3. More details have been published in [3].

The Compute Nodes (CN) forward I/O requests to the I/O node (ION). The
Control and I/O daemon (CIOD) places the request in the CIOD buffers, each
dedicated to a single process on CN group. The GPFS Network Shared Disk
(NSD) client can place the I/O request in the available page-pool buffer, before
forwarding it on the 10 GE link to the GPFS servers. The JUGENE installation
comprised 72 racks each with 1024 CN. All racks contained a total of 8 ION,
with the exception of one rack that contained 32 ION. The GPFS storage cluster
featured an aggregate bandwidth of 66 GByte/s.

For server-side I/O monitoring we employed the GPFS I/O counters [1,
Chap. 8]. These counters are accumulated for an extended period of time and
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Fig. 3. Blue Gene/P I/O sub-system using GPFS (JUGENE), adapted from [3]

logged periodically every 120 s by each ION. On JUGENE 6 different I/O coun-
ters have been collected: bytes read and written, number of read and write
requests as well as open and close commands. By combining the I/O monitoring
data with the job information it is possible to relate I/O behaviour to jobs that
ran on the system.

3.1 BlueGene/P I/O Sub-system Model

In Fig. 4 we show the simulation model that we constructed following the pro-
cedure described in the previous section on the basis of the Blue Gene/P I/O
sub-system architecture as shown in Fig. 3.

Our model comprises several types of data links along which data is moved
between Compute Nodes (CN) and disks:

Internal component link Zero delay link connecting internal components.
Binary tree link Connects the CN forming a binary tree that ends at the ION.
10 GE Ethernet link Connects the ION to the GPFS server.
Storage link Connects the GPFS server with the disk to model the aggregate

storage bandwidth of the GPFS storage cluster.

For our model we have defined the following components (as shown in Fig. 4
from top to bottom):

I/O Request Generator Creates the event list based on the I/O monitoring
data. The request is assigned to one CN within the group of CN attached to
a given ION in round-robin fashion.

CN Sequentially receives the I/O request from the I/O generator over an inter-
nal component link and forwards it over the binary tree.

CIOD Forwards the I/O request to the corresponding CIOD buffer.
CIOD buffer Buffers the I/O request and could either forward it to the bypass

if the 10 GE link is free or, for write requests, forward it to the pagepool if it
has sufficient space.

Pagepool Operates as a write buffer if the 10 GE link is busy. Once the 10 GE
becomes free it will forward the I/O requests to the bypass.

Bypass Receives the I/O requests from the CIOD buffers or the page-pool only
if the 10 GE is free to be used.
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Fig. 4. Model for the Blue Gene/P I/O sub-system.

Fig. 5. Flow chart for Blue Gene/P I/O sub-system model describing overall model
protocol for write requests and acknowledgements.

GPFS server Receives the I/O requests on the 10 GE and forwards it to the
disks.

Disk Fulfils received requests with no read or write delay, both of which are
represented in the disk bandwidth.

An I/O request message traversing the model can be one of four types: (i)
write request, (ii) write ack, (iii) read request, (iv) read data. Only messages
containing data have a lower priority and exhibit delay when forwarded over links
with limited bandwidth. Both, the write and read requests are generated by the
I/O Request Generator. However, only the write request contains data. A write
ack contains no data and represents an acknowledgement, which is generated by
the disk or the page-pool on receiving a write request. Finally, the read data
is generated by the disk on receiving a read request and contains the data to
be read. As the messages traverse the links, the described components have to
react with the appropriate behaviour. Figure 5 depicts a flow chart describing
the resulting overall protocol for write requests and acknowledgements.

The behaviour of read requests and read data messages are similar to the
write operation. The only exception is the lack of buffering in the page-pool
for read data. This is because any read after write or re-read of the same
data cannot be detected using this I/O monitoring method. The model also
assumes no handshakes exist and the number of meta-data operations being
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small. Although meta-data operations are time consuming for some applications,
in this I/O model we focus on overall data movement. Meta-data operations
could be regarded for future improvements of the I/O model. Here we consider
the chosen parameters sufficient to tune to represent the overall I/O sub-system
behaviour.

To perform the discrete event simulation the model is implemented using
the ONNeT++ framework [7]. The design of the OMNeT++ is intended for the
simulation of networks and is written in C++. The here described model is a set
of communicating components reacting to discrete events forwarded on channels
with determined delays or bandwidth. This makes OMNeT++ as a modular
network discrete event simulator a suitable framework to describe the presented
I/O sub-system model.

4 Model Parameters

Many of the parameters are determined by studying the system specifications
and former studies of the Blue Gene/P and GPFS architecture such as [3]. The
parameters are mostly set to the architectural design values dictated by the
Blue Gene/P I/O sub-system. However, due to the use of file system monitoring
data in the form of GPFS I/O logs, some model parameters are adjusted. The
empirical results available in [3] have not been integrated into the model, as the
recorded behaviour should be represented by the sum of the chosen parameter
values.

The parameters used in the Blue Gene/P model are given in Table 1. Only
the number of CIOD buffers has been reduced to CN group size instead of the
number of process that can run on the CN group [3]. This is due the GPFS I/O
counters not logging the CN process that initiated the I/O request.

4.1 Model Validation

The validation cycle described in Sect. 2.1 is used to validate the Blue Gene/P I/O
sub-system model, with the parameters given in Table 1. The GPFS I/O logs are
employed as the I/O monitoring data to compare model predictions with I/O sub-
system behaviour. The validation ran for 24 h simulated time, simulating the full
Blue Gene/P system of 73,728 CN and 600 ION. The I/O monitoring data used
comprises the I/O requests from 4,418 arbitrary jobs that ran during these 24 h.

Table 1. Blue Gene/P model parameters and values

Binary tree 10 GE link Storage link CIOD buffer Number of Page-pool

link bandwidth bandwidth bandwidth size CIOD buffers buffer size

850 MByte/s 1.25 GByte/s 66 GByte/s 4 MiByte 32/128 1024 MiByte

(CN group size)
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Four of the GPFS I/O counters are used and measured to determine validity
of model parameters, write bytes, write requests, read bytes and read requests.
It was observed that the model achieves a high correlation to the measured
GPFS I/O logs. The highest mismatch was measured for the write requests with
the average difference between simulated and measured GPFS I/O performance
counters being 2 % for the 24 h of simulated time. The remaining counters have
a mismatch average of less than 1 %.

Given the accuracy obtained, the parameter values selected are considered
adequate to represent the I/O behaviour of the Blue Gene/P I/O sub-system
and no further parameter training is considered needed. These parameter values
are used for the subsequent design space exploration.

5 Design Space Exploration

A promising improvement on the I/O bandwidth can be achieved using burst
buffers [5]. These are high bandwidth non-volatile memory closely placed to the
compute cluster that temporarily stores data before evicting it to the storage
system. Generally burst buffers have the task to hide delays exhibited by slow
link for relatively short bursts of I/O. To accelerate the read path the burst
buffers have to operate similar to a cache or a data pre-fetching mechanism has
to be employed.

5.1 Burst Buffer I/O Sub-system Model

The Blue Gene/P I/O sub-system model shown in Fig. 4 is modified for the use
of burst buffers. These are connected internally to the bypass component of the
ION by an internal link and to the GPFS server by an external link. Introducing
the burst buffer component to the model adds three parameters, bandwidth of
internal link, bandwidth of external link and burst buffer size. The internal link is
considered to be similar to the binary tree link, therefore choosing it’s bandwidth
to be 850 MByte/s. This leaves two parameters, the external bandwidth and the
burst buffer size, to be used for architectural exploration.

The introduction of new components to the I/O model in the form of burst
buffers changes the overall I/O sub-system behaviour given in Fig. 5. Both the
CIOD buffer and the pagepool cannot forward the write requests unless the
internal link is free and the burst buffer has sufficient space for the written data.
The bypass has no longer a direct link to the GPFS server, as all I/O requests
and data flow through the burst buffer. On receiving a write request the burst
buffer stores the data and creates the corresponding write ack which it passes
back to the bypass. Finally the data to be written is forwarded to the GPFS
server when the external link becomes available.

With the exception of a few differences the read path behaves similar to the
write path. However, on receiving a read request, the burst buffer does not create
a corresponding read data as read buffering or caching is not modelled.
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Fig. 6. Histogram (blue columns) and cumulative distribution function (red line) for
the relative change in I/O time (left) and overall job execution time (right) for case
(A). δt and Δt are the original I/O and job time, respectively, while δtbb and Δtbb are
burst buffer I/O and job time, respectively. (Color figure online)

5.2 Simulation Results

As a design space exploration, we investigate the reduction of cost by decreasing
the external link bandwidth, thus replacing the 10 GE cards, which represent a
significant cost factor. Burst buffers are used to improve on possible performance
degradation. For this purpose two configurations of burst buffer size and external
link bandwidth are used. Case (A) sets the external link to 500 MByte/s and the
burst buffer size to 16 GiByte, representing the use of a burst buffer with 4 GE
as an external link, which can be achieved using 4× 1 GE links. Meanwhile, case
(B) sets the external link to 125 MByte/s and the burst buffer size to 64 GiByte,
which represents the use of a burst buffer with a single 1 GE as an external link.

To asses the two cases, the cycle for architecture exploration given in Fig. 2
is used. For that purpose the same 24 h of GPFS I/O logs used for the validation
is fed to the modified model.

The results of comparing case (A) with the unmodified model is given in
Fig. 6. As seen in Fig. 6 (left panel) the I/O time of jobs has been significantly
increased, with the I/O time becoming upto 2.5 times longer. This is consistent
with our expectations as the bandwidth of the external link has been throttled
by a factor 2.5 and the burst buffers cannot be exploited in all cases. However as
seen in Fig. 6 (right panel), this has only a marginal effect on the overall job time,
with 90 % of the jobs having suffered less than 5 % slow down. In comparison,
Fig. 7 shows the results of comparing case (B) to the unmodified model. As seen

Fig. 7. Similar to Fig. 6, but for case (B).
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both the I/O and job time have increased. The I/O time has been increased by
a factor of 10, however the overall job time has only been increased by around
10 % for 90 % of the simulated jobs.

The given results might discourage the use of burst buffers with reduced
external link bandwidth. However when factoring in the possible cost reduction,
the overall decrease in job performance could be acceptable. Additionally, con-
sidering future I/O sub-systems where an increase in external link bandwidth
could be no longer an option, these simulation results indicate burst buffers being
a good architectural choice.

6 Summary and Conclusions

In this paper we presented a methodology for constructing discrete event simu-
lation models for simulating I/O sub-systems using server-side performance data
on input. We used this method to develop a model for a large-scale Blue Gene/P
system comprising 73,728 Compute Nodes and 600 I/O Nodes. We could show
that the model parameters can be tuned such that the model becomes self consis-
tent, i.e. for event lists created from performance data collected on all I/O Nodes
the model could reproduce these performance data with satisfactory accuracy.

Simulating a modification of the architecture, which has been explored, con-
cerned the integration of buffers based on non-volatile memory technologies. The
goal of this study was to assess the overall performance impact caused by a sig-
nificant reduction of the external storage bandwidth at presence of such burst
buffers. The results indicated that replacing one 10 GE link per I/O node by
multiple 1 GE links would have impacted the overall performance by a few per-
cent. The model itself only depends on the modelled system architecture. The
performance characteristics of applications using that system architecture enter
the modelling procedure through performance data obtained on the modelled
system.
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Abstract. System software overheads in the I/O path, including VFS
and file system code, become more pronounced with emerging low-
latency storage devices. Currently, these overheads constitute the main
bottleneck in the I/O path and they limit efficiency of modern storage
systems. In this paper we present Iris, a new I/O path for applications,
that minimizes overheads from system software in the common I/O path.
The main idea is the separation of the control and data planes. The
control plane consists of an unmodified Linux kernel and is responsible
for handling data plane initialization and the normal processing path
through the kernel for non-file related operations. The data plane is a
lightweight mechanism to provide direct access to storage devices with
minimum overheads and without sacrificing strong protection seman-
tics. Iris requires neither hardware support from the storage devices nor
changes in user applications. We evaluate our early prototype and we find
that it achieves on a single core up to 1.7× and 2.2× better read and
write random IOPS, respectively, compared to the xfs and ext4 file sys-
tems. It also scales with the number of cores; using 4 cores Iris achieves
1.84× and 1.96× better read and write random IOPS, respectively.

Keywords: NVM · I/O · Storage systems · Low latency · Protection

1 Introduction

Emerging flash-based storage devices provide access latency in the order of a
few µs. Existing devices [14] provide read and write latencies in the order of 68
and 15 µs respectively, and these numbers are projected to become significantly
lower in next-generation devices. Phase Change Memories (PCM) [21], STT-
RAM [11], and memristors [15] may provide even lower access latency, at the
scale of hundreds or tens of nanoseconds [8].

Given these trends, the software overhead of the host I/O path in modern
servers is becoming the main bottleneck for achieving µs-level response times
application I/O operations. Instead of storage device technology setting the limit
in increasing the number of I/O operations per second (IOPS), as was the case
until recently, we now have to deal with limitations on the rate of serving I/O
operations, per core, due to software overhead in the I/O path. Therefore, in this
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 638–648, 2016.
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new landscape, it becomes imperative to re-design the I/O path in a manner that
it will be able to keep up with shrinking device and network latencies and to
allow applications to benefit from increasingly fast storage devices.

In this paper, we explore the design of a storage I/O stack that is placed
in user-space and in the largest part within the address space of the applica-
tion itself. An important design aspect is the separation of the control and data
planes [5,20]. This idea comes from the area of networking and several frame-
works designed in order to take advantage of fast network devices [12]. The
control plane is responsible for taking decisions regarding resource allocation
and routing, while the data plane, also termed as the forwarding plane, forwards
network packets to the correct destination according to control plane logic. In
our storage I/O context, the control plane should decide if an I/O operation
should be accelerated by our framework or it should go through the standard
I/O path in the Linux kernel. More specifically, our control plane consists of an
unmodified Linux kernel which is responsible for normal processing for non-file
related operations and the configuration of several independent data planes. Our
data plane provides a lightweight mechanism to enable direct access the storage
devices without sacrificing strong protection semantics. We use traps in the data
plane for protection rather than using a separate trusted process [24] or server
for enforcing protection. Our approach has the advantage that it does not require
any context switches or network messages in the common I/O path. The premise
behind our design is to allow the application to operate as close as possible to
locally-attached storage devices.

The key features of our design are as follows:

1. We intercept file-related calls from applications at the runtime level and con-
vert them to key-value store requests.

2. We serve block operations from a key-value store. The key-value store in our
current prototype is build directly over memory-mapped devices and makes
extensive use of copy-on-write for failure atomicity, concurrency, and relaxed-
update semantics.

3. We rely on virtualization support in modern processors (Intel’s VT-x [23] and
AMD’s SVM [1]) to provide strong protection between different processes that
access the same storage devices. These technologies have already been used
to improve the performance of virtual machines. In this paper we use them
for providing protected, shared access to our key-value store from multiple
applications in each server.

4. Finally, we use a kernel-space module for initialization and coarse-grain file
operations that do not affect the common I/O path.

We present a proof-of-concept prototype, Iris, for Linux servers and provide
preliminary performance results. For our experiments we use PMBD [8,16], a
custom block device that emulates PCM latencies. We show that, per-core, our
approach achieves a 1.7× improvement in read IOPS, and 2.2× in write IOPS.
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We also show that our design scales well, providing up to 1.84× and 1.96×
improvement for random read and write IOPS respectively using 4 cores. We
compare Iris with the state-of-art Linux kernel file systems, xfs and ext4.

The rest of this paper is organized as follows. In Sect. 2 we present the design
of Iris, and in Sect. 3 a preliminary evaluation. Section 4 reviews related work.
Section 5 concludes the paper and discusses the future work.

2 Iris Design

We implement a custom I/O path over fast persistent devices that removes most
of the overheads from the Linux kernel I/O path. Figure 1 shows the top-level
architecture of our system. Iris consists of three main parts:

– the key-value store, responsible for storing file blocks, providing atomic
semantics, and handling failure scenarios (e.g. system crashes),

– the Iris kernel, which handles accesses to the key-value store and performs
permission checks, and

– the I/O interposer which handles I/O processing at the user-space and gen-
erate key-value requests.

2.1 Key-Value Store

Our key-value store is designed primarily for fast storage devices, and is mainly
based on Tucana [18]. Its API provides methods for inserting a <key, value>
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Fig. 1. Top-level architecture of Iris.
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pair and for retrieving a <value> based on a <key>. It also supports range
queries which return keys in sorted order. We use range queries in order to
enable better performance for sequential file accesses. At its core, it implements
a variant of Bε–tree [6], a write-optimized indexing data structure. It supports
multiple databases over a single or multiple devices. Since it operates at the
device level, it implements its own allocation mechanism for space management
over storage volumes. It maps the underlying devices in memory, and access
them as memory regions.

Its persistence mechanism is based solely on the Copy-On-Write (COW)
mechanism [22]. Common key-value stores use journaling for consistency pur-
poses. In this case, for each update the mutation is first appended in a log and
then updated in-place in the primary storage space. Our store operates differ-
ently: It creates a copy of the new value and subsequently modifies it. More
specifically, each modification to the tree data structure requires the update of
a set of nodes. Instead of updating them in-place, we create a copy of the old
nodes and updates only the copy. This procedure begins from a leaf node, where
a new <key, value> inserted, and goes recursively up to the root of the tree. At
any point in time, there are two root nodes: The first one is read-only, while the
second one is where all data updates occur.

Our system is capable of batching a series of updates which subsequently are
written to the device in an atomic manner, thus reducing actual I/O operations.
After a period of time has elapsed or the application explicitly instructs to make
its changes persistent, the key-value store with an atomic operation will update
the read-only root to be the new persistent view of the database. Finally, keeping
versions of the database is supported by keeping pointers to previous versions of
the tree-structured index.

We keep both file blocks and file metadata in the key-value store. To dis-
tinguish different files, we use the persistent and unique inode number provided
by VFS for each file. The key for accessing a file block in the key-value store
is formed by the concatenation of the file’s inode number and the requested
block number. In our implementation, we use a block size of 4KB, but this is a
parameter configurable by the system administrator. The value returned by the
key-value store is a block of the actual data of the file. We also keep persistent
metadata for each file that is present in the key-value store. These include the
inode number, the file path and the name of the file, a struct stat that also
contains the size of the file, and the file ownership and permissions information.

We rely on the key-value store to provide data and metadata consistency
upon failures. By guaranteeing a series of update operations to be atomic, we
ensure that file data and metadata will not be in an inconsistent state after a
failure. Current state-of-art file systems use a journaling mechanism to provide
data integrity after a failure. Each write has to be done first on the journal
device and then on the primary device. When a failure occurs, the file system
has to replay the log. We use a different approach for failure handling. By using
the copy-on-write technique, we remove the overhead to perform a write on both



642 A. Papagiannis et al.

the journal device and then to the primary device. After a failure, only the last
consistent view of our key-value store is visible to applications.

Our key-value store is designed to be mapped to multiple applications, allow-
ing shared storage. Therefore, it has to support concurrent get and put requests.
To maintain POSIX semantics, for each file the results of the last write must be
returned to any subsequent read operation. Although these can be easily imple-
mented using coarse-grain locking, we have implemented a more sophisticated
locking protocol to support concurrent reads and writes for different files.

2.2 Iris Kernel

The Iris kernel is the heart of the system. It maps a fast storage device to the
application process address space. Therefore, in the common path Iris avoids
the overheads of system call processing, VFS, and in-kernel file system process-
ing. The main drawback of moving all I/O processing into user space is the
lack of protection that Linux kernel provides. To address this concern, we rely
on processor virtualization virtualization features. Intel VT-x [23] virtualization
technology provides two different privilege domains: VMX-root and VMX non-
root. Each of them supports the standard privilege rings (0 to 3). The purpose
of this separation is to better support Virtual Machine Managers (VMMs). Nor-
mally, the VMM runs on VMX-root, ring 0, while the guest OS of each virtual
machines runs on VMX non-root, ring 0, and guest processes on VMX non-root,
ring 3. In our work, we use this privilege separation for a different purpose,
following the idea behind the Dune [4] prototype. The Linux kernel runs on
VMX-root, ring 0, the protected I/O path code runs on VMX non-root ring 0,
and user processes (issuing I/O requests) run on VMX non-root ring 3. By using
this privilege separation we provide strong protection semantics to access shared
storage devices, similar to the unmodified Linux kernel.

The Iris kernel runs on VMX non-root ring 0, thus it is protected from user
processes that run on VMX non-root ring 3. When I/O interposer issues a get or
put request, it checks if the specified process has sufficient privileges to access the
file with the specific inode number. If not, an error is returned to the interposer
and then to the user.

2.3 I/O Interposer

The purpose of this part is to intercept I/O system calls to libc. We provide
our own dynamically linked library that replaces these libc calls and ensure that
our library gets priority over libc (via LD PRELOAD). Therefore, applications
run unmodified, while our I/O interposer handles all open file descriptors and
translates I/O requests to key-value requests: get and put. For each open file, we
maintain state related to the file, which allows us to handle ftruncate, fallocate,
stat, lseek and their variants.

Except from the persistent file metadata that are stored inside the key-value
store, the interposer also uses in-memory metadata. These metadata include
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open file descriptors and the current read/write offset in each file. These meta-
data are also not persistent in the case of the unmodified Linux kernel. After a
failure, applications do not expect to have the files descriptors that are available
before a failure. We also keep an in-memory copy of persistent metadata, to
accelerate metadata operations but without sacrificing correctness.

3 Evaluation

In this section we provide a preliminary evaluation of Iris. Our testbed con-
sists of two Intel Xeon E5620 processors running at 2.40 GHz and 24 GBytes of
DDR3/1333 DRAM organized in 2 NUMA nodes, each of them with 12 GBytes
of DDR3 DRAM. In our experiments we pin the benchmark threads on a sin-
gle NUMA node in order to remove NUMA-related effects. We run experiments
with FIO [2] to measure random-access read and write IOPS, with a block size
of 512 bytes, a device queue depth equal to 1, and direct I/O to bypass the page
cache. We vary the number of I/O issuing threads from 1 to 4. Each thread per-
forms I/O on a separate file of size equals to 128MB. We use the PMBD [8,16]
block device driver to emulate the access latencies of a PCM memory device over
DRAM. We dedicate 8GBytes of the testbed’s DRAM for use as PMBD’s stor-
age space. We compare Iris with the current state-of-art file systems provided
by the Linux kernel, EXT4 and XFS. For both of these filesystems, we also use
PMBD as the underlying block device.

Table 1 shows the number of random IOPS for both reads and writes using a
single thread. The results obtained from Iris have very small variance between
the runs. Regarding random read IOPS, Iris provides 1.65× and 1.7× higher

Table 1. Single thread random IOPS (thousands).
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Fig. 2. Random read/write IOPS scaling.
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number of IOPS compared with EXT4 and XFS, respectively. For random write
IOPS the improvement is 2.16× and 2.2×, respectively.

Figure 2 shows how random IOPS scale while increasing the number of
threads from 1 to 4, compared to EXT4 and XFS. Using 4 threads, Iris pro-
vides 1.84× and 1.82× for reads and 1.96× and 1.8× for writes higher number
of IOPS respectively. These results show that while we increase the number of
threads the performance improvements remains almost the same. With Iris, we
serve around 400 KIOPS per thread (i.e. processor core in this evaluation exper-
iment), almost 2× more than what is achievable with EXT4 and XFS, without
sacrificing protection guarantees and failure resilience.

In this work, we have focused the evaluation on small random read/write
accesses, to better highlight overheads and the improvements achievable with
Iris. Optimizations focusing on throughput, especially for sequential accesses,
are outside the scope of this paper, but we expect significant improvements
for such access patterns as well. These improvements are a consequence of the
design decision to build out key-value store on top of a Bε–tree, rather than
more commonly used hash-based data structures. To serve sequential accesses,
Iris issues range queries to its underlying key-value store, which then returns the
requested blocks in sorted order. This helps Iris to accelerate sequential accesses.
We leave this optimization and its evaluation as a future work.

4 Related Work

Recent papers have addressed the issue of how to optimize accesses to fast I/O
devices. The Arrakis [19,20] and IX [5] operating systems are based on the con-
cept of separating the control and data planes. The control plane is responsible
of managing the hardware resources in a protected and isolated manner, while
the data plane is a low-overhead mechanism that allows direct but safe access
to the hardware resources, specifically I/O devices.

Arrakis, which is based on Barrefish [3], achieve this by relying on SR-
IOV [17] hardware features. SR-IOV allows a single physical PCI-Express device
to export several virtual devices that are isolated from one another. Although
they present the idea of it on both network and storage devices, their evaluation is
mainly for network devices. Currently, SR-IOV support is not available for stor-
age controllers, although it is commonly available in server network adapters.
The current SR-IOV support for storage controllers/devices has many limita-
tions and is not practical to use yet. In Arrakis they also do not handle the
case of data sharing, which is a fundamental design issue in storage hierarchies.
In [19] the authors present the key concepts of Arrakis but with emphasis on
the storage path. They claim that the current storage path suffers from many
sources of overheads because of the very broad-scope requirement to provide a
common set of I/O operations for a wide variety of different user applications.
They propose a custom specialized storage path for different kinds of applica-
tions, with direct access to storage devices. Similarly to Arrakis, they require
hardware virtualization support from storage devices (SR-IOV), which however
is not practical today.
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Compared to Arrakis, we only require hardware virtualization support from
the processor (e.g. Intel’s VT-x in our prototype), but not from the I/O devices.
We also use an unmodified Linux kernel, thus we still support user applications
that do not require I/O acceleration. The operations that our custom data plane
cannot handle (e.g. network accesses) still go through the normal path inside the
kernel.

IX uses the unmodified Linux kernel as the control plane and implement
a lightweight OS abstraction for the data plane. It uses Dune [4] to provide
privilege separation between the control plane, the data plane and the normal
processes, to provide safe access to the hardware devices. They do not require SR-
IOV virtualization support, but they propose a solution and evaluation only for
network devices. Authors provide an event-driven API (libIX) that provides run
to completion with adaptive batching, zero-copy API and synchronization free
processing. These optimizations targeting throughput and the new event-driven
API require changes to the applications. We also use Dune for protected accesses
to hardware devices but our main contribution is to minimize latency, and we
don’t require changes to the user applications. Thus IX (i.e. network-specific)
optimizations are not suitable for Iris, a latency-optimized storage path.

Moneta-D [7] uses specialized hardware for fast access to I/O storage devices
with strong protection semantics. All the metadata operations still go through
the normal I/O path in the Linux kernel. They optimize read/write operations in
a way that does not require crossing the kernel for permission checks. Moneta-D
provides a private, virtualized interface for each process and moves file system
protection checks into hardware. As a result applications can access file data
without operating system intervention, eliminating OS and file system costs
entirely for most accesses. In our work, we only require virtualization support in
the processor, rather than in the interface to storage devices.

Another approach to access fast storage devices appeared in Aerie [24]. This
work assumes byte-addressable NVM placed on the memory bus. The key idea
in this work is that the NVM is directly mapped in the user’s address space.
Using this approach, user application can read/write data and read metadata
directly; however, the metadata updates have to be performed by a separate
trusted process, the Trusted FS Process. This approach has the disadvantage that
metadata updates, which are done by a centralized process, can limit scalability.
We don’t have this limitation in our approach, as multiple applications can
update their metadata concurrently.

In Mnemosyne [25] and NV-Heaps [9] the authors propose ideas on how to
use NVM for a persistent replacement to volatile memory that user applications
can use, i.e. applications can rely on in-memory data-structures that can survive
system crashes. Mnemosyne and NV-Heaps provide an API for NVM allocation
and deallocation, with failure handling provisions. They also implement persis-
tent data structures and atomic semantics (transactions) to leverage NVM from
user applications. These works are orthogonal to our approach. In principle, we
can apply these techniques to optimize access to NVM from our key-value store.
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Other works like BPFS [10], PMFS [13], NOVA [27] and SCMFS [26] try
to optimize in-kernel file systems. They use the standard VFS layer, and try to
optimize the file system data structures to access NVM. We don’t compare with
these approaches as we propose an alternative way to access NVM, different
from the common system call and VFS layer approach.

5 Conclusions and Future Work

In this paper we propose Iris, a custom storage system for providing direct access
to fast storage devices and minimize system software overheads without sacri-
ficing strong protection semantics. We implement a key-value store for storing
file data and metadata, and guarantee both atomicity and recoverability. The
key-value store is designed to scale-out by utilizing fast storage devices at several
nodes. We use processor virtualization features to provide protected accesses to
our key-value store. In the preliminary evaluation, we show improvements up to
1.7× for random read IOPS and 2.2× for random write IOPS as compared with
state-of-art Linux kernel file systems using a single core. Performance scales with
the number of cores, with up to 1.84× and 1.96× improvement for random read
and write IOPS, respectively, using 4 cores

Our future work includes the full implementation of Iris and its extensive
evaluation using real applications, including On-Line Transaction Processing
(OLAP) and On-Line Analytical Processing (OLTP) workloads.
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Abstract. We report our experiences in porting and tuning the Apache
Spark data analytics framework on the Cray XC30 (Edison) and XC40
(Cori) systems, installed at NERSC. We find that design decisions made
in the development of Spark are based on the assumption that Spark
is constrained primarily by network latency, and that disk I/O is com-
paratively cheap. These assumptions are not valid on Edison or Cori,
which feature advanced low-latency networks but have diskless compute
nodes. Lustre metadata access latency is a major bottleneck, severely
constraining scalability. We characterize this problem with benchmarks
run on a system with both Lustre and local disks, and show how to miti-
gate high metadata access latency by using per-node loopback filesystems
for temporary storage. With this technique, we reduce the shuffle time
and improve application scalability from O(100) to O(10, 000) cores on
Cori. For shuffle-intensive machine learning workloads, we show better
performance than clusters with local disks.

Keywords: Spark · Berkeley data analytics stack · Cray XC · Lustre ·
Shifter

1 Introduction

Apache Spark [14] is a data analytics framework which provides high-level con-
structs for expressing computations over datasets larger than the system physical
memory. The runtime provides elastic parallelism, i.e. resources could grow or
shrink without requiring any change to application code, and provides resilient
execution, which allows automatic recovering from resource failures.

Spark is part of the Berkeley Data Analytics Stack [6], which includes stor-
age, resource management and scheduling infrastructure, such as the Hadoop
Distributed File System (HDFS) [11] and the Hadoop YARN resouce sched-
uler [12]. High-level application-domain libraries are built on top of spark, such
as GraphX for graph analytics [7], Spark SQL for database queries [3], MLLib
for machine learning [10], and Spark Streaming for online data processing [15].

Spark targets directly cloud or commodity clusters compute environments,
which have latency-optimized local disk storage and bandwidth-optimized
network, relatively few cores per node, and possibly little memory per node.
c© Springer International Publishing AG 2016
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HPC systems such as the Cray XC series, in contrast, feature diskless compute
nodes with access to a high bandwidth global filesystem, large core counts, large
memory sizes per compute node, and latency-optimized networks designed for
use with HPC tightly coupled applications. The question remains if design deci-
sions made for cloud environments translate well when running Spark on HPC
systems and whether the latter can bring any value to analytics workloads due
to their superior and tightly integrated hardware. In this paper, we present a
comparative performance analysis of Spark running on Cray XC HPC systems
and on a system (Comet) designed for data intensive workloads with large local
SSDs.

We discuss the design of the Spark runtime, showing where file I/O occurs
and what file access patterns are commonly used. On Cori, a Cray XC40 system
installed at NERSC [1], we show that the use of the Lustre filesystem to store
intermediate data can lead to substantial performance degradation as a result
of expensive metadata operations. Initial Spark scalability is limited to O(100)
cores. To reduce I/O impact we extend Shifter, a lightweight container infrastruc-
ture for Cray systems, to mount a per-node loopback filesystem backed by Lustre
files. This reduces the impact of the metadata operations by many orders of mag-
nitude. With loopback, single node Spark performance on Cray XC improves by
6× and it becomes comparable to that of single Comet node with SSDs. Even
more exciting, loopback allows us to scale out to O(10, 000) cores and we observe
orders of magnitude improvements at scale. We use the spark-perf benchmark
suite, consisting of a set of core RDD benchmarks and a set of machine learning
algorithm benchmarks using MLLib. After calibrating and obtaining equivalent
node performance on the Cray and Comet, we can compare the performance
across the two system architectures.

Overall, these results are very encouraging. Simple configuration choices make
HPC systems outperform architecures specifically designed for data analytics
workloads with local SSDs: a global file system that provides a global name space
can provide good performance. This indicates current system HPC designs are
good to execute both scientific and data intensive workloads. The performance
differences between the Cray XC and Comet may provide incentive for the aqui-
sition of HPC systems in the “commercial” domain.

2 Spark Architecture

Spark implements the Map/Reduce model of computation. From the applica-
tion developer’s perspective, Spark programs manipulate resilient distributed
datasets [13] (RDD), which are distributed lists of key-value pairs. The devel-
oper constructs RDDs from input data by reading files or parallelizing existing
Scala or Python lists, and subsequently produces derived RDDs by applying
transformations and actions. Transformations, such as map and filter, declare
the kind of computation that could occur, but does not actually trigger com-
putation; rather, a lineage is constructed, showing how the data represented by
an RDD can be computed, when the data is actually required. Actions actually
retrieve values from an RDD, and trigger the deferred computation to occur.
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During map tasks, all data dependencies are intra-partition. During reduce
tasks, inter-partition dependencies can occur, and it is only during reduce tasks
that inter-node communication occurs. This occurs through a shuffle. During
a shuffle, the ShuffleManager sorts data within each partition by key, and the
key-value pairs within each partition are written to per-partition shuffle data
files on disk. Each executor then submits requests for blocks, which are either
local or remote. Each node then requests blocks, both locally and from other
executors. When a block is requested which is owned by a remote executor, the
local BlockManager makes a remote request to the owning BlockManager, which
maintains a queue of requests which are serviced once the shuffle data is written
to the corresponding shuffle file.

3 Disk I/O Patterns in Spark

Disk I/O can occur in almost every stage of a Spark application. During the
construction of input stages, disk I/O occurs to read the input data. In a tra-
ditional Spark installation, the input data would be stored in an HDFS overlay
built on top of local disks, while on the Cray XC input data is stored directly
on the Lustre filesystem available to all compute nodes. Output data is similarly
stored either in HDFS or in Lustre, depending on the installation. When data is
stored outside of HDFS, there is one file per partition, so as a minimum, there
must be at least as many file opens and file reads as there are partitions. Addi-
tionally, each file is accompanied by a checksum file used for verifying integrity,
and an index file indicating file names and offsets for specific blocks. Simple file
readers such as the text file reader perform two file opens per partition: one
for the checksum file and one for the partition data file. More complex file for-
mat readers perform more file operations; for example, the Parquet compressed
columnar storage format performs four file opens per partition: first the check-
sum is opened, the partition data file is opened and the checksum computed,
and both closed. Each partition data file is then opened, the footer is read, and
then the file is closed. Finally, the file is opened again, the remainder of the file
is read before closing the file again.

During every phase, BlockManager I/O can occur. If a block is requested
while being stored on disk, the corresponding temporary file is opened and the
data read and stored in memory, potentially triggering an eviction. When an
eviction occurs, the corresponding temporary file is created, if necessary, and
is written to. If sufficient memory is available that problem data fits in RAM,
BlockManager disk I/O does not occur.

During shuffles, files are created storing sorted shuffle data. As originally
designed, each shuffle map task would write an intermediate file for each shuffle
reduce task, resulting in O(tasks2) files being written. The very large number
of files produced tended to degrade performance by overwhelming the inode
cache [5], so this was replaced with a single file per shuffle reduce task. However,
as tasks are not supposed to affect the global state of the runtime except through
the BlockManager, every map task writing to a per-reduce-task file opens the
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file, writes to it, and closes it. Similarly, every shuffle reduce task opens the file,
reads from it, and closes it. Thus, although the total number of files has been
reduced to O(tasks), the number of metadata operations remains O(tasks2).
Shuffle intermediate files are always written regardless of the amount of memory
available.

4 Spark Performance on Lustre

Previous work on porting Spark to the Cray platform [9] running under Cluster
Compatibility Mode revealed that performance of TeraSort and PageRank was
up to four times worse on a 43 nodes of a Cray XC system compared to an
experimental 43-node Cray Aries-based system with local SSDs, even though
the experimental system had fewer cores than the Cray XC (1,032 vs 1,376). To
mitigate this problem, the authors redirected shuffle intermediate files to an in-
memory filesystem, but noted that this limited the size of problem that could be
solved, and that the entire Spark job fails if the in-memory filesystem becomes
full. Multiple shuffle storage directories can be specified, one using the in-memory
filesystem and one using the Lustre scratch filesystem, but the Spark runtime
then uses them in a round-robin manner, so performance is still degraded.

On Cori we compare directly Lustre with in-memory execution performance.
On Comet we compare Lustre with SSD storage. To illustrate the main differ-
ences we use the GroupBy benchmark which is a worst-case shuffle. GroupBy
generates key-value pairs with a limited number of keys across many partitions,
and then groups all values associated with a particular key into one partition.
This requires all-to-all communication, and thus maximizes the number of shuffle
file operations required, as described in Sect. 3, above.

Figure 1 shows the results on Cori. On a single node (32 cores), when shuffle
intermediate files are stored on Lustre, time to job completion is 6 times longer

Fig. 1. GroupBy benchmark performance (worst-case shuffle) on NERSC Cori, with
shuffle intermediate files stored on Lustre or RAMdisk. Number of partitions in each
case is 4 × cores.
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than when shuffle intermediate files are stored on an in-memory filesystem. The
performance degradation increases as nodes are added: at 80 nodes, performance
is 61 times worse on Lustre than the in-memory filesystem. Runs larger than 80
nodes using Lustre fail.

Results on Comet are shown in Fig. 2. On one node, shuffle performance is
11 times slower on Lustre than on the SSD; however, the performance penalty
does not become worse as we add nodes. Because Comet compute nodes feature
local SSDs, there is less contention for the Lustre metadata server, as other jobs
running on the system tend to make use of the SSD for intermediate file storage.

Figure 3 shows the performance of the spark-perf benchmarks [2] on SDSC
Comet. The scheduling-throughput benchmark runs a series of empty tasks with-
out any disk I/O; its performance is unaffected by the choice of shuffle data
directory. The scala-agg-by-key, scala-agg-by-key-int and scala-agg-by-key-naive
benchmarks perform aggregation by key: they generate key-value pairs and then
apply functions to all values associated with the same key throughout the RDD;
this requires a shuffle to move data between partitions. The version using float-
ing point values (scala-agg-by-key) and the integer version (scala-agg-by-key-int)
are designed to shuffle the same number of bytes of data, so that the number
of values in the integer version is larger than for the floating point version,
increasing the number of shuffle intermediate file writes. The scala-agg-by-key-
naive benchmark first performs a groupByKey, grouping all values for each key
into one partition, before performing partition-local reductions, so that shuffles
move a larger volume of data than for the non-naive versions, giving larger shuf-
fle writes. The three scala-agg-by-key benchmarks have degraded performance

Fig. 2. GroupBy benchmark performance (worst-case shuffle) on SDSC Comet, with
shuffle intermediate files stored on Lustre or local SSD. Number of partitions in each
case is 4 × cores.
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Fig. 3. Slowdown of spark-perf Spark Core benchmarks on Comet with shuffle inter-
mediate data stored on the Lustre filesystem instead of local SSDs.

when intermediate data is stored on Lustre, which continue to degrade as more
nodes are added; at 16 nodes, performance for scala-agg-by-key-naive is 12 times
worse than on SSD. The remaining benchmarks involve little or no shuffling and
so are unaffected by shuffle directory placement.

As described in Sect. 3, shuffle intermediate files are opened once for each
read or write. When shuffle intermediate files are stored on Lustre, this causes
heavy metadata server load which slows the overall process of reading or writing.
Figure 4 shows the slowdown that results from opening a file, reading it, closing
it, and repeating this process, as compared to opening a file once and performing
multiple reads. For read sizes under one megabyte, Lustre filesystems show a
penalty increasing with decreasing read size.

Spark-perf also provides a set of machine learning benchmarks implemented
using MLLib [10]. Figure 5 shows the slowdown of using Lustre storage instead of
SSD for these benchmarks. Iterative algorithms – those which perform the same
stages multiple times, and therefore have multiple rounds of shuffling – show
the worst slowdown. The lda (Latent Dirichlet allocation), pic (power itera-
tion clustering), summary statistics, spearman (Spearman rank correlation) and
prefix-span (Prefix Span sequential pattern mining) benchmarks all show sub-
santial slowdown when shuffle files are stored on Lustre rather than local SSDs.
These are all iterative with the exception of the summary statistics benchmark,
which has smaller block sizes than the other benchmarks.

These results demonstrate that shuffle performance is a major cause of perfor-
mance degradation when local disk is not available or not used for shuffle-heavy
applications.
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Fig. 4. Slowdown from performing open-per-read rather than single-open many-reads
for reads of different sizes on various filesystems on Edison, Cori, Comet, and a work-
station with local disk. The penalty is highest for the Lustre filesystems.

Fig. 5. Slowdown of spark-perf MLLib benchmarks on Comet with shuffle intermediate
data stored on the Lustre filesystem instead of local SSDs.

5 Localizing Metadata Operations with Shifter

To improve the file IO performance, ideally we need to avoid propagating meta-
data operations to the Lustre filesystem because these files are used solely by
individual compute nodes. On Cray XC systems, we do not have access to local
disk, and using in-memory filesystems limits the problem sizes. We have previ-
ously described a file-pooling technique [4] which maintains a pool of open file
handles during shuffling to avoid repeated opens of the same file. However, this
requires modifications to the Spark runtime, and affects only operations coming
from the Spark runtime. Other sources of redundant opens, such as high-level
libraries and third-party file format readers, are not addressed. Furthermore,
each file must be opened at least once, still placing load on the Lustre metadata
server, even though the files are only needed on one node.
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Fig. 6. GroupBy benchmark performance (worst-case shuffle) on NERSC Cori, with
shuffle intermediate files stored on Lustre, RAMdisk, or per-node loopback filesystems
backed by Lustre files. Number of partitions in each case is 4 × cores.

Fig. 7. Slowdown of spark-perf Spark Core benchmarks on Cori with shuffle intermedi-
ate data stored on the Lustre filesystem instead of Lustre-backed loopback filesystems.

To keep metadata operations local, we have previously experimented with
mounting a per-node loopback filesystem, each backed by a file stored on Lustre.
This enables storage larger than available through an in-memory filesystem while
still keeping file opens of intermediate files local; only a single open operation per
node must be sent to the Lustre metadata server, to open the backing file. This
approach was not feasible, however, for ordinary use, as mounting a loopback
filesystem requires root privileges.

Shifter [8] is a lightweight container infrastructure for the Cray environment
that provides Docker-like functionality. With Shifter, the user can, when schedul-
ing an interactive or batch job, specify a Docker image, which will be made
available on each of the compute nodes. In order to do this, Shifter provides a
mechanism for mounting the image, stored on Lustre, as a read-only loopback
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Fig. 8. Slowdown of spark-perf MLLib benchmarks on Cori with shuffle intermediate
data stored on the Lustre filesystem instead of Lustre-backed loopback filesystems.

Fig. 9. Weak scaling for the MLLib benchmarks most sensitive to shuffle performance
on Cori with per-node loopback filesystems and on Comet with local SSDs.

filesystem on each compute node within the job. Motivated by our work, Shifter
was recently extended to optionally allow a per-compute-node image to be
mounted as a read-write loopback filesystem.
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Using mounted files eliminates the penalty for per-read opens, as shown in
Fig. 4. When we run the GroupBy benchmark on Cori with data stored in a per-
node loopback filesystem, we vastly improve scaling behavior, and performance
at 10,240 cores is only 1.6× slower than in-memory filesystem, as shown in
Fig. 6. Unlike with the in-memory filesystem, we can select the size of the per-
node filesystem to be larger than the available memory, preventing job failure
with large shuffles.

We have run the spark-perf benchmarks used in Sect. 4 to compare perfor-
mance between Lustre and Lustre-backed loopback file systems. Results for the
Spark Core benchmarks are shown in Fig. 7. Using per-node loopback filesystems
improves performance at larger core counts for the scala-agg-by-key and scala-
agg-by-key-int benchmarks, particularly for the latter which performs a larger
number of opens. Results for the MLLib benchmarks are shown in Fig. 8. The
lda, pic, spearman, chi-sq-feature and prefix-span benchmarks show substantial
improvement from the use of per-node loopback filesystems. Furthermore, they
exhibit better scaling behavior on Cori than on Comet with local disk. Figure 9
shows weak-scaling performance with those benchmarks on Cori and Comet.
Cori nodes provide more cores (32) than Comet nodes (24), although Comet
nodes run at a higher clock speed (2.5 GHz) than Cori nodes (2.3 GHz).

6 Conclusion

We have evaluated Apache Spark on Cray XC systems using a series of run-
time microbenchmarks and machine learning algorithm benchmarks. As com-
pute nodes on these systems are not configured with local disks, files created
by the Spark runtime must be created either in an in-memory filesystem, lim-
iting the size of data which can be shuffled, or created on the global scratch
filesystem, which we have found to severely degrade performance, particularly
as more nodes are used. On other systems, such as SDSC Comet, compute nodes
have been equipped with local SSD storage for the purpose of storing temporary
data during computation, which provides up to 11× faster performance than
using a Lustre filesystem for shuffle-intensive workloads. We have identified that
the cause of the performance degradation is not read or write bandwidth but
rather file metadata latency, and have used the Shifter container infrastructure
installed on the Edison and Cori systems to mount per-node loopback filesys-
tems backed by the Lustre scratch filesystem. This allows for increased perfor-
mance and scalability, offering performance comparable to the use of local disks
for shuffle-intensive workloads, without constraining the maximum problem size
as with the in-memory filesystem. This technique is a promising approach for
deploying Apache Spark on Cray XC systems.
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Abstract. It is predicted that the number of cores per node will rapidly
increase with the upcoming era of exascale supercomputers. As a result,
multiple applications will have to share one node and compete for the
(often scarce) resources available on this node. Furthermore, the grow-
ing number of hardware components causes a decrease in the mean time
between failures. Application migration between nodes has been proposed
as a tool to mitigate these two problems: Bottlenecks due to resource
sharing can be addressed by load balancing schemes which migrate appli-
cations; and hardware errors can often be tolerated by the system if faulty
nodes are detected and processes are migrated ahead of time.

Virtual Machine (VM) migration currently seems to be the most
promising technique for such approaches as it provides a strong level of
isolation. However, the migration time of virtual machines is higher than
the respective migration time on the process level. This can be explained
by the additional virtualization layer in the memory hierarchy.

In this paper, we propose a technique for the acceleration of VM
migration. We take advantage of the fact that freed memory regions
within the guest system are not recognized by the hypervisor. Therefore,
we fill them with zeros such that zero-page detection and compression
can work more efficiently. We demonstrate that the approach reduces
migration time by up to 19 % with a negligible overhead for some appli-
cations.

1 Introduction

With the continually growing demands of HPC applications for more computa-
tional power, supercomputers are moving towards the exascale era. Compared to
today’s systems, this performance gain will not only be achieved by an increase
of the node count but also by a rising amount of cores per node. The efficient
exploitation of such exascale systems requires the usage of all the available cores
of a node. Single applications typically stress one specific resource on a compute
node, like the CPU, the memory, or the IO. The sharing of nodes by multiple
applications can overcome the resulting scaling limitations within a node, and it
c© Springer International Publishing AG 2016
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has been shown that co-scheduling multiple applications with different resource
requirements on the same node can increase the overall system utilization and
energy efficiency [4,26]. However, as applications have varying resource demands
over time, a dynamic load balancer is required to avoid that resources get
congested.

The migration of jobs across the cluster is necessary to support dynamic
load balancing. A migration mechanism can also help to improve the systems’
resiliency, as in the case of imminent failures an evacuation of affected nodes can
be performed by a migration of the respective processes [18,28]. In previous stud-
ies we investigated different migration techniques and found full virtualization
based on Kernel-based Virtual Machine (KVM) [14] to provide a high flexibility
while providing performance results comparable to a native execution [20]. A
drawback is the high migration time caused by the transfer of partly unneces-
sary memory regions. This is the result of the additional level in the address
translation that comes with full virtualization. The hypervisor is not capable of
detecting memory that has been freed by applications running within the VM.

In this paper, we propose an approach to accelerate VM migration in the
HPC context by a reduction of the transmitted data volume. While we concen-
trate on the case of virtual machines in this paper, our approach can also be
applied to other migration techniques. The migration time of VMs is mainly
determined by the network bandwidth [13] and the size of the virtual machine
image comprising the guest operating system and the application’s processes. For
a reduction of the VM image size and an acceleration of the migration, hyper-
visors apply compression [27] and zero-block detection [9]. We leverage this by
transmitting only what is required to resume the VM on the target node.

When executed within a VM the release of memory does not affect the
amount of data that is transferred during a migration since these regions are
only freed within the guest system but not returned back to the host. Therefore,
we overwrite these freed regions with zeros. This way, the zero-page detection
and the compression algorithm are able to further reduce the VM image size.
In our approach, we substitute the memory operations realloc and free to place
zeros in every freed memory region. We evaluate the approach by running a
set of HPC applications from various domains within VMs based on KVM. We
demonstrate that our approach can boost the migration time by up 19 % with a
negligible overhead for some applications.

The remainder of this paper is structured as follows: After discussing related
work, we explain our approach in Sect. 3 and evaluate it in Sect. 4. Finally, in
Sect. 5 we draw our conclusion and outline future work.

2 Related Work

Application migration is used for fault tolerance and load balancing. Nagarajan
et al. propose a fault tolerance scheme for MPI applications based on proactive
migration [18]. They monitor the health of computing nodes in order to detect
deteriorating behavior and to anticipate node failures. In such a case the moni-
toring system triggers the migration of the node’s processes to healthy nodes.
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Application migration for load balancing is seldom exploited in HPC, but
quite common in cloud computing. Load balancing strategies can include the
current load distribution in the data center, historical data on the load and/or
information about renewable energy [12,17]. Randles et al. present a comparison
of distributed load balancing strategies [23].

There exist different migration techniques in HPC, for example, process-level
migration, virtual machine migration and container-based migration. Process-
level migration is based on the checkpoint/restart (c/r) mechanism, which allows
an application to save a snapshot of its current state so that it can be restarted
from that point on the same or another node. The simplest approach is system-
level c/r which performs a memory core dump. It can be implemented in kernel
space (see BLCR [8]) or in user space (see DMTCP [1]). The advantage of system-
level checkpoint/restart is that it is transparent to the application and that
the checkpoint can be taken at arbitrary points. However, these tools produce
relatively large checkpoints because they include data that is not required for
restarting the computation.

Application-level c/r was introduced to get checkpoints of smaller size, but it
is also more complex and involves the application programmer. The programmer
must know the data structures to be included into the checkpoint and has to
add this information to the code. In order to ease the process, the programmer
is assisted by special libraries and compilers. The Libckpt library, e.g., provides
transparent c/r, but requires user directives that mark the checkpoints’ locations
and data [21]. Bronevetsky et al. provide a source-to-source compiler tool that
automatically instruments the code to save and restore its own state. The tool
coordinates c/r for parallel OpenMP [5] and MPI programs [25].

The virtualization overhead is often seen as the main reason why virtual
machine migration is rarely used in HPC. Youseff et al. show that this overhead
can be neglected and that the performance of virtual machines is relatively
close to native execution [29]. Pickartz et al. demonstrated that virtual machine
migration can also be beneficial in HPC because of its flexibly and even improved
performance [20].

A lot of effort has been spent on accelerating these virtual machine migra-
tions, either focusing on increasing the bandwidth between source and destina-
tion nodes or on finding better algorithms for copying data between the nodes.
None of the studies investigated what is contained in the virtual machine image
and whether it is needed: Huang et al. propose a high performance virtual
machine migration design that uses RDMA (Remote Direct Memory Access)
over InfiniBand [13]. In this way, they are able to increase the available band-
width for migration and reduce the migration overhead by 80 % with respect to
TCP/IP. Satyanarayanan et al. propose a suspend/resume approach for virtual
machines, in which a suspended virtual machine saves its volatile state to a file
[15,24]. This file is copied to a remote node where the virtual machine can be
resumed.

Live migration is a technique for moving virtual machine between computing
nodes with almost zero downtime. There are different techniques for live migra-
tion, for example precopy and postcopy. Hirofuchi et al. propose live migration
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with postcopy in which the content of a virtual machine is copied after its process
state has been sent to the target node [11]. Once the process state starts execu-
tion on the target node, virtual machine memory pages are fetched on demand
from the source node. The precopy approach proposed by Clark et al. first copies
the whole memory state of the virtual machine from the source to the destination
node [6]. As this memory might get updated after being copied from the host
node, updated memory pages are iteratively copied to the source node before
finally the process state can be copied to the target node. Precopy works bet-
ter with read-intensive applications; write-intensive applications accessing large
amounts of memory can make migration impossible [11]. Precopy is also more
resistant to faults because the source node still holds an updated copy of the
virtual machine. On the other hand, postcopy typically experiences the shortest
downtime.

3 Methodology

This section describes our proposed solution for an accelerated migration of
VMs in detail. First, we give an overview of the migration mechanism inside
QEMU / KVM. Afterwards we introduce our preload library implementing the
zeroing of freed memory. Finally, we provide a brief description of selected HPC
application benchmarks that we use for an evaluation of the presented approach.

3.1 Virtual Machine Migration

The migration of VMs based on KVM is implemented by the user-space emulator
QEMU [2] which does not have any knowledge of the actual page mapping
within the VM. QEMU supports both cold and live migration. However, as the
underlying migration mechanism is very similar in both modes, we focus on the
former in the scope of this work.

QEMU has to traverse the whole virtual memory region representing the
guest physical address space. Memory blocks that are not mapped into the virtual
address space of a process running within the VM resemble from QEMU’s point
of view memory regions only containing zeros. A mechanism to detect these
regions and to avoid unnecessary data transfers of whole zero-pages is part of
QEMU since Version 1.6.0. This zero-detection is realized by an unrolled loop
that can easily benefit from vector operations.

Furthermore, QEMU supports the migration of compressed VMs. This is a
rather new feature that has been integrated in Version 2.4. If enabled, the RAM
pages of a VM are compressed prior to the migration and they are decompressed
on the destination node. A fine-tuning of the performance of the compressed
migration is possible modifying the parameters compress-level and (de-)compress-
threads.
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3.2 Virtual Machine Memory Zeroing

Placing zeros in the free memory regions inside the VM is done using a newly
developed zeroing preload library. This library is loaded before the application is
executed inside the VM. The library intercepts memory deallocation operations
like realloc and free. For each memory deallocation, an approximated size of the
freed memory is fetched from the glibc library. Zeros are placed in these memory
regions before committing the deallocation operation.

For each memory allocation, the glibc library generates an allocated chunk.
This allocated chunk encapsulates the user data and a size field which contains
the size of this allocated chunk. For memory alignment reason, the glibc allocated
chunk size is usually larger than the user requested memory. Our approach was
tested with glibc version 2.17.

Setting deallocated memory to zero, is the main source of the runtime over-
head introduced to the application by our zeroing library. The runtime overhead
depends on the size of the deallocated memory and the number of deallocation
operations.

3.3 HPC Application Benchmarks

The following is a brief description of the HPC applications which we have tested
with our approach:

– NAMD [19] is a parallel molecular dynamics simulator for large biomolecular
systems. NAMD can simulate a hundred million atoms utilizing up to 500 k
cores.

– mpiblast [7] is the MPI parallel version of the Basic Local Alignment Search
Tool (BLAST). It compares nucleotide/protein sequences to sequences in a
database and computes statistics about the matching results. mpiblast boosts
the performance of BLAST and can scale up to hundreds of processors.

– gromacs [22] is a computational chemistry application that performs molecular
dynamics simulation. It can solve Newton’s equations of motion for systems
with hundreds to millions of interacting particles.

– LAMMPS [10] is also a molecular dynamics simulator. In addition to mole-
cules, LAMMPS models / simulates atomic, polymeric, biological, metallic,
granular, and coarse-grained systems using a variety of force fields and bound-
ary conditions. It parallelizes the computation by spatially decomposing the
simulation domain.

– PhyloBayes [16] is a parallel implementation of Bayesian Markov chain
Monte Carlo (MCMC) sampler for phylogenetic inference. The program uses
nucleotide, protein, or codon sequence alignments to perform phylogenetic
reconstruction.

4 Evaluation

In this section we evaluate the proposed approach in terms of runtime overhead
and checkpoint size. We show that the reduction of the checkpoint size descreases
the migration time.
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We have used two NUMA nodes for the evaluation. Both nodes have 32
virtual cores on two sockets with 8 physical cores each. The nodes are equipped
with Intel SandyBridge CPUs (E5-2650) clocked at 2 GHz and connected by a
Gigabit Ethernet fabric. Both systems have the same software stack and run an
unmodified CentOS 7.2 installation with a 3.10.0 Linux kernel. The virtualization
framework is based on KVM and QEMU version 2.5.1.

4.1 Zeroing Preload Library Overhead

The zeroing preload library introduces runtime overhead to our sample HPC
applications which is mainly the time required to place zeros in the freed memory
regions. It thus depends on the application, i.e., the number of times memory is
freed as well as the size of the affected memory regions.

We ran each of our test application benchmarks inside of a VM and mea-
sured the execution time with and without the preload library. Each run was
repeated ten times. PhyloBayes was excluded from the test because its runtime
is longer than four days. Figure 1 shows the normalized execution time of our
test applications. The runtime was normalized with respect to the maximum
runtime.

While mpiblast has a rather large preload library overhead of 6.6%. For
gromacs, NAMD and LAMMPS, the overhead is negligible with less than 0.3%.
The negative value of −0.11% for NAMD can only be explained by noise.

Finding: The runtime overhead of the preload library depends on
the application and ranges roughly from 0% to 6.6% for the sample
applications.

Fig. 1. Impact of the preload library on the runtimes of selected HPC applications.
The bars represent the normalized execution time, the median as well as the upper and
lower quartiles. The numbers above the bars are the difference between the medians
for zeroing being enabled and disabled.
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4.2 VM Image Size

The migration time of a running application inside a VM is affected by the size
of the VM image which mainly depends on the size of the application’s memory
image. We studied the effect of our zeroing preload library on the size of the VM
image and examined whether compression and zero-page detection algorithms
benefit from it.

Since KVM performs checkpointing as a memory core dump, a checkpoint
is a good measure for the VM’s image size. Again we ran each of our applica-
tion benchmarks inside a VM with and without the zeroing preload library. We
performed three checkpoints at 5 min intervals and compressed them logging the
checkpoint size before and after compression.

The zero-page detection algorithm is applied by the hypervisor with every
checkpoint. So we log the number of these detected zero pages.

Observing the results in Fig. 2, we see that, with compression disabled, all
applications have a smaller checkpoint size when zeroing is enabled. Also all
applications experience a larger number of zero pages when zeroing is enabled.
With compression enabled, the checkpoints of all application except gromacs are
smaller when zeroing is enabled.

From the results we can derive that, for all applications, the zero-page detec-
tion algorithm found additional zero blocks generated by the preload library.
The compression algorithm is applied after the zero-page detection algorithm.
For all applications except gromacs, compression benefitted from the additional
partial zero pages generated by the preload library.

Fig. 2. Impact of the preload library on the checktpoint size. The values are normalized
to the checkpoint size with disabled preload library and without compression. The
values above the bars are the absolute size with disabled preload library and without
compression. The values inside the bars are the number of detected zero pages in the
checkpoint image.
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Finding: The benefit of zeroing depends on the number of full/-
partial zero memory blocks detected within the application.

4.3 VM Migration Time

The primary goal of our work is to investigate if zeroing of unused memory
regions results in an improved migration time. We therefore compare the migra-
tion times of HPC application benchmarks with and without the preload library
enabled. For the experiment we selected NAMD and PhyloBayes because, look-
ing at the results of the previous section, they seem to be promising candidates
that might benefit from our approach.

We ran each of the two applications for more than half an hour and migrated
it back and forth between the two cluster nodes every 5 min. Therefore, we used
a VM with 10 GiB of guest physical memory and performed a mapping of the
virtual CPUs matching the host’s topology [3]. We used the Gigabit Ethernet
link for data transfer and QEMU for the migration of the VMs with compression
enabled or disabled and with default parameters, i.e., 8 compression threads,
2 decompression threads, and a compression level of 1. To get stable results
we repeated this test 10 times and averaged the results. For both applications,
zeroing accelerated the migration time by up to around 19 % (cf. Fig. 3).

The results perfectly match our findings of the previous section. Zeroing
accelerates migration whether compression is enabled or not. However when
compression is enabled, we have much more savings with respect to migration
time. This can be explained by the fact that compression also benefits from
partial zero pages.

Although we only regarded the migration over Gigabit Ethernet, the pre-
sented approach might be interesting for other interconnects as well. In any case

Fig. 3. Migration time with enabled and disabled memory zeroing. The absolute results
are displayed by means of the red and blue curves on the left y-axis respectively. The
green curves correspond to the values on the right y-axis and represent the savings
obtained when enabling memory zeroing with respect to normal execution. The dashed
curves represent measurements with enabled compression.
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the overhead generated by the preload library has to be balanced against the
savings that can be achieved with the given link speed.

Finding: The migration algorithm of KVM benefits from the zero-
ing approach in all cases whether compression is enabled or not. Using
compression is advisable because then zeroing accelerates the migra-
tion time even if none of the pages is completely zeroized.

5 Conclusion and Future Work

In this paper we have considered the migration of virtual machines and presented
a new approach for reducing the size of the data transmitted. This approach
zeros unused data so that zero-page detection and compression schemes work
more efficiently. Our evaluation shows that this technique can indeed acceler-
ate migration and reduce network traffic. In particular we have demonstrated
that it is suitable for HPC environments by testing it with parallel applications
encapsulated in VMs.

In future work, we want to eliminate the runtime overhead (time of plac-
ing zeros) of the current implementation of the preload library. When zeroized
freed memory regions are allocated again before migration, the zeroing has been
done in vain adding overhead without contributing to the acceleration of the
migration. Instead of zeroing pages, we consider discarding unwanted pages, i.e.,
completely deallocated memory pages. We are planning to implement this tech-
nique as a kernel module in the guest OS or in the hypervisor.
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Abstract. Process migration is one of the most important techniques in
modern computing centers. It enables the implementation of load balanc-
ing strategies and eases the system administration. As supercomputers
continue to grow in size, according mechanisms become interesting to
High-Performance Computing (HPC) as well.

Usually, migration is accomplished by means of hypervisor-based vir-
tualization. However, container-based approaches are an attractive alter-
native for HPC to minimize the performance penalties. In contrast to
virtual machine migration, the migration of operating system containers
is mostly unexplored in the context of HPC until today.

In this paper we present a prototype implementation of a libvirt driver
enabling the migration of LinuX Containers. We evaluate the driver in
terms of overhead added by the additional software layer and compare
its migration performance with that of virtual machines based on KVM.

Keywords: LinuX Containers · CRIU · Migration · HPC

1 Introduction

Virtualization techniques are already widely employed in today’s data centers.
In conjunction with migration mechanisms they allow for the facilitation of
load balancing strategies, an improvement of fault resiliences, and a simpli-
fied system administration [3,10]. These aspects become likewise important for
High-Performance Computing (HPC) as supercomputers continue to increase in
size. However, migration techniques did not find much adoption in this field of
research, yet. This is mainly due to two reasons: (1) the mechanisms are usu-
ally implemented in conjunction with hypervisor-based virtualization. Despite
providing great flexibility and satisfactorily performance [14,15], there is still a
little performance hit compared to native execution which does not comply with
the goals of HPC; and (2) migration on the process-level, e. g., by using Berkley
Lab Checkpoint / Restart (BLCR) [6], has to cope with the problem of residual
dependencies [10].

Containers are an attractive alternative combining the best of two worlds:
on the one hand they provide a similar level of isolation compared to Vir-
tual Machines (VMs). On the other hand containers are able to offer superior
c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 674–684, 2016.
DOI: 10.1007/978-3-319-46079-6 47
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I / O- and CPU performance [16–18]. However, in contrast to the well estab-
lished field of hypervisor-based migration, the relative young field dealing with
the migration of containers in HPC is mostly unexplored.

Libvirt1 allows for the management of different virtualization solutions (e. g.,
KVM or Xen) via an unified and stable interface. This forsters the adoption of
the individual virtualization facilities since users only have to deal with one tool-
chain. However, the support for container-based virtualization including their
migration is only partly available. Therefore, we propose a prototype imple-
mentation of a libvirt driver for the management and migration of LinuX Con-
tainers (LXC)2. For the latter we build upon Checkpoint / Restore In Userspace
(CRIU)3, a tool for checkpointing processes or groups thereof. This allows for
the implementation of cold- and live-migration features. The main contributions
of this work can be summarized as follows:

– an analysis of CRIU and an examination how its page server can be leveraged
for an implementation of container migration and

– the implementation of container-based virtualization via the long-term stable
API of libvirt with the goal of fostering the adoption of containers in HPC.

The paper is structured as follows: The next section covers background infor-
mation on container-based virtualization. After an introduction to our driver
implementation in Sect. 3, we present the evaluation results in Sect. 4. Before
concluding the paper, we discuss related work in Sect. 5.

2 Background

This section discusses the requirements for the implementation of our work.
We start with an introduction to container-based virtualization and the libvirt
toolkit. Finally, we present CRIU which enables the migration of containers.

2.1 Container-Based Virtualization

This virtualization approach creates the impression of multiple operating sys-
tems by using isolation and control mechanisms for the separation of user-space
instances, i. e., containers [18]. In contrast to hypervisor-based virtualization,
the abstraction is provided at the system call level, i. e., a single kernel is shared
among all containers, reducing the overhead of multiple kernel instances running
at the same time [17]. Therefore, containers are an attractive alternative to VMs
for HPC workloads.

Namespaces and Cgroups are means for isolation and control features pro-
vided by the Linux kernel and form the basis for containers [1]. Namespaces allow

1 http://libvirt.org/.
2 https://linuxcontainers.org/.
3 https://criu.org/.

http://libvirt.org/
https://linuxcontainers.org/
https://criu.org/
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for the isolation and partitioning of specific resources to containers, e. g., with
the pid namespace the separation of different process groups is possible [4]. This
facilitates the migration of containers across nodes since the IDs of the processes
running therein do not have to be adapted on the target systems. In contrast to
namespaces, the cgroup subsystems are applied to process groups for the track-
ing and the limitation of specific resources [9], e. g., the cpuset subsystem allows
for the assignment of individual CPUs to all processes of a cgroup [12]. This
becomes especially important when scheduling multiple containers concurrently
on the same node.

LinuX Containers is one of the first solutions for container-based virtual-
ization that exclusively uses the cgroups and namespaces. It is implemented in
user-space and requires at least the Linux kernel version 2.6.32 although certain
features depend on more recent versions. An LXC instance consists of a set of
processes to which the same namespaces apply. A limitation of its resources is
realized by means of cgroups. The management of containers is either possible
via a C API, or a set of command-line tools.

2.2 Domain Management Using Libvirt

Libvirt is an open source domain-management library written in C. Originally a
wrapper around Xen, now it supports a variety of virtualization solutions such
as QEMU, VMware ESX, and OpenVZ by now [2]. Furthermore, it provides a
long-term stable API and a unified domain configuration via XML files. This
enables an isolation from changes to the virtualization layer. Internally, libvirt
is divided into a domain-dependent and a domain-independent layer (cf. Fig. 1).
The former is implemented by means of drivers for each virtualization solution4.
The domain-independent layer separates these drivers from the user interfaces.
On the one hand, this eases the driver development as common functionality is

Domain Independent Layer

libvirt drv libvirt drv remote drv· · ·

virsh libvirtdAPI

libvirt

dom dom dom To Network

From Network

User Interactions

Fig. 1. Overview of libvirt

4 The libvirt upstream sources comprise a driver called lxc. However, this is not based
on the LXC API discussed in the previous section and lacks migration support.
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available on the domain-independent layer. On the other hand, users are provided
a consistent interface to the different virtualization solutions.

In addition to the domain drivers, libvirt provides the special remote driver.
This enables the remote management of domains even if the underlying vir-
tualization tool lacks according support. Therefore, the driver redirects calls
addressing domains on different machines to the appropriate libvirtd daemon on
the remote node.

2.3 Checkpoint/Restore in Userspace

Checkpoint/Restore In Userspace enables the checkpointing of Linux processes
or a group thereof. In this work we leverage its capabilities for the implemen-
tation of container-based migration. CRIU is mainly implemented in user space
and depends on features of the Linux kernel that have been gradually made
available since version 3.11.

The Checkpoint/Restart Procedure saves the state of a process to a set of
files forming the checkpoint, i. e., the process (the dumpee) is said to be dumped.
Therefore, CRIU retrieves the necessary information from the /proc file system,
e. g., file descriptors, memory maps, child processes, and threads. Finally, ptrace
is used for the injection of code into the dumpee for the gathering of memory
and credentials, e. g., the process ID, the user ID, etc. Due to the code injection,
CRIU requires root privileges.

After checkpointing, the injected code is removed and the dumpee may either
continue or stop its execution. Thereby a live-migration mechanism can be real-
ized. In conjunction with the kernel support for the tracking of memory changes,
CRIU is able to implement the post-copy live-migration approach [7]. For the
restoration, CRIU reads the image files and rebuilds the process tree with all
necessary resources, e. g., timers, credentials, threads. Finally, the memory is
rebuilt from within the execution context of the processes and it may resume its
execution.

ThePage-Server is a mechanism of CRIU that allows for a reduction of the over-
head generated by using the file system. Usually, the migration via CRIU requires
all dump files to be stored in the local file system of the source node and then trans-
ferred to the destination node. This may be avoided by leveraging the page-server:
it is started on the destination node and directly receives the memory content of
the migrated process from the source node. Thereby, the largest part of the migra-
tion data, i. e., the memory content, only has to be stored within the file system
of the destination node. However, the page-server does not allow for the transfer
of the metadata created by CRIU (cf. Fig. 2) in its current implementation. This
has to make the detour via the local file system of the source node. Unfortunately,
the bypassing of the file system of both nodes for all dump data is not possible
with the current version of CRIU.
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Fig. 2. Migration using the CRIU page-server

3 Libvirt LXC Driver

This section presents our prototype implementation of a novel libvirt driver for
the management of LXC instances and their migration. This driver not only
improves the usability and provides better access to LXC containers for future
research but also enables remote management capabilities of LXC instances via
the libvirt toolchain. To avoid naming conflicts with the upstream libvirt lxc
driver, we call our driver lxctools.

3.1 Container Management

For the integration of the new driver into libvirt, we only had to modify seven
existing source files and link libvirt against liblxc, i. e., the LXC C API. The
implementation of the driver API is realized by filling a predefined struct with
function pointers that reference the driver implementation. Furthermore, our
lxctools driver implements a driver object that is used for data exchange between
different consecutive driver calls. The members include a list of all available
containers (cf. Listing 1.1) which allows for the effortless translation of multiple
libvirt API calls to list operations, e. g., searching for a container or accessing
the domain configuration.

struct l x c t o o l s d r i v e r {
const char∗ path ; //LXC con f i g u r a t i on path
virDomainObjListPtr domains ; // l i s t o f con ta ine r s
int numOfDomains ; //num. a v a i l a b l e domains
virCapsPtr caps ; // d r i v e r c a p a b i l i t i e s
struct l x c t o o l s m i g r a t e da t a ∗ md; // data req . f o r migrat ion

} ;
Listing 1.1. Driver struct

A domain is always referenced by its name as parameter to the function calls.
Therefore, our driver first has to search the respective container within the above
mentioned list, e. g., when starting or stopping it. Subsequently, it ensures that
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the container is in a state appropriate for the requested operation, i. e., a container
that shall be shut down has to be in running state. On success, the driver invokes
the LXC API call and updates the domain struct with the new state.

Besides the management of domains, a libvirt driver is in charge of pro-
viding domain-specific information. For example, on the execution of the virsh
dominfo command, details on the respective domain are presented. The acquisi-
tion thereof is realized by leveraging the LXC API directly interacting with the
cgroup subsystems.

3.2 Migration Using CRIU

Checkpoint/Restart (C/R) mechanisms can be regarded as generalization of
process migration, i. e., the restart from a checkpoint on a different node than
the one the checkpoint was taken on, is effectively a migration of that process.
We leverage this fact for the implementation of the migration support for our
lxctools driver.

As the LXC API does not support a full migration procedure for containers,
our lxctools driver has to mediate between LXC and the libvirt migration API.
The domain-independent layer of libvirt provides a skeleton for the migration
feature. This successively executes several functions alternating on the source
and the destination node and establishes a communication path between the
two nodes. The individual steps have to be implemented by the drivers realizing
the actual migration.

The Cold Migration is implemented by following the path provided by the
migration skeleton. Initially, the driver and container state are validated on
the source node and then on the destination node. Subsequently, the migration
environment is prepared, i. e., for the avoidance of unnecessary overhead a tmpfs
mount is created for the dump files. The preparation step on the destination node
additionally includes the execution of the CRIU page-server and a file server that
is used for the transfer of remaining dump files that are not copied by the page-
server (cf. Sect. 2.3). The dump itself is created using the LXC API which in
turn executes CRIU. In doing so, the memory content is directly transmitted to
the destination node and stored in the local tmpfs, as we exploit the page-server
facility of CRIU with our lxctools driver.

Once the metadata is transferred to the destination node as well, the con-
tainer can be restored from the dump via the LXC API. Finally, the driver
performs various cleanup tasks, such as unmounting the tmpfs on both nodes.
The driver does not handle the transfer of the filesystem of a container. Thus, we
expect the root file systems of containers to be present in a shared file system.

The Live Migration is similar to the cold migration. However, instead of
creating a single dump only, several dumps are created during the live migra-
tion procedure. The number of dump iterations may either be set statically or
be determined dynamically, i.e., when the pre-dump execution time reaches a
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certain bound. For the evaluation of the performance of the driver, we used a
dynamic number of iterations with stops when the last iteration required less
than 1 s. This value proved to result in a good detection of unchanged memory.
In CRIU terminology, all but the last dump are so called pre-dumps which only
contain the container’s memory pages for a reduction of the overhead.

For each dump an individual folder is created on the tmpfs by the lxctools
driver. This way we can reuse the mechanism for transfering metadata that
already served for the cold migration. However, due to limitations of CRIU’s
implementation, the page-server itself has to be restarted by the driver after
each dump. This is realized by using a thread that immediately restarts the
page-server once it finished accepting a dump.

4 Evaluation

For evaluating our work we used two NUMA nodes each possessing two sockets
with eight physical cores. As each core exhibits two hardware thread contexts,
each node exposes 32 virtual cores in total. These are equipped with Intel Ivy-
Bridge CPUs (E5-2650 v2) clocked at 2.6 GHz. The nodes are connected by a
Gigabit Ethernet network which is used for transferring migration data.

The systems run the same setup employing a 4.4.4-301 Linux kernel of a
standard Fedora 23 installation. We use a modified libvirt 1.2.16 version that
embodies our lxctools driver5. This is used for all measurements, i. e., VM migra-
tion based on KVM as well as migration of LXC instances.

4.1 Driver Overhead

We started with an analysis of the overhead generated by the integration of LXC
into libvirt. Therefore, we compared the execution time of the four commands
start, shutdown, save, and restore when using libvirt including our lxctools driver

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

start

shutdown

save

restore

Execution Time in s

LXC

libvirt

Fig. 3. Command execution times of libvirt and lxc

5 This has been made available on GitHub: https://github.com/RWTH-OS/libvirt.

https://github.com/RWTH-OS/libvirt
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to the direct invocation of the LXC Command Line Interface (CLI) (cf. Fig. 3).
As the migration is not supported by LXC natively, no execution time could
be measured for this command. The presented results are averaged over 200
runs. The save and restore commands have been executed on a container with
a memory load of 1 GiB. The results indicate a small overhead generated by the
additional software layer. This is caused by the invocation of libvirt which needs
to load our driver and set up the environment, e. g., read the XML configuration.
However, the generated overhead is in the range of a few tens of milliseconds and
is therefore outweighed by the advantages we get from the full libvirt support.

4.2 Migration

Our lxctools driver enables the migration of LXC containers via the interfaces
provided by libvirt. Therefore, we can directly use the virsh command for a
comparison of the cold migration time of LXC containers to that of VMs based
on KVM (cf. Fig. 4). By performing a migration of empty VMs or containers, i. e.,
freshly started instances with n Bytes of guest physical memory (cf. Fig. 4a), we
can obtain best-case results. Again averaged over 200 runs, we can see that the
migration of a VM with 256 MiB of guest physical memory is already 35 % slower
than that of a container. This is due to the memory consumption of additional
kernel running within the VM. Furthermore, raising the guest physical memory
to 4 GiB results in an increased migration time of up to 44 %. This is due to
KVM’s migration mechanism. Instead of transferring only those pages that are
actually mapped into the virtual address space of the KVM process, its virtual
memory representing the guest physical memory is traversed and checked for
non-zero pages, i. e., the migration time grows linearly with the amount of guest
physical memory.

Figure 4b presents a similar study including memory load within the migrated
domain. Here, the transfer of the additional memory pages mainly determines the
migration time. For smaller workloads of up to 2 GiB the overhead of the kernel
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Fig. 4. Comparision of migration time for VMs run under QEMU and LXC containers.
The results are averaged over 200 iterations per meter point.
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Fig. 5. Runtime analysis of the live and cold migration implementations

within VMs prevails. With a rising workload KVM’s highly optimized migration
mechanism starts to outperform our implementation that still relies on passing
all data through at least one tmpfs. However, we observe an acceptable overhead
of around 3 % for a workload of 4 GiB.

Finally, we analysed our live-migration implementation. Therefore, we
migrated a container with 1 GiB of memory load 20 times between the clus-
ter nodes back and forth (cf. Fig. 5). As the load was allocated only once and
remained unchanged during the migration, the second pre-dump (cf. the small
red box at around 9.5 s) required less than 1 s. This results in a total of two
pre-dump iterations. In the final dump only the metadata is gathered and trans-
ferred to the destination node which takes 1.96 s on average depicting the actual
downtime.

Since the live-migration of a comparable VM requires around 0.06 s, this
demonstrates that our prototype implementation has still room for performance
improvements.

5 Related Work

The migration of operating system containers among computers used for HPC
is a rather young field of research. However, there have been several studies
comparing the performance of containers to that of VMs [5,13,17,19]. Li et al.
present a study of state-of-the-art virtualization techniques from a High Avail-
ability (HA) perspective [8]. They compare several hypervisor-based solutions to
container-based approaches such as Docker, LXC, and OpenVZ6. In accordance
with their findings, C/R or migration features for container-based environments
are far from complete.

Mirkin et al. present a C/R implementation for OpenVZ [11]. Although fea-
tures such as live-migration are supported by means of a loadable kernel module
and some user-space utilities, the main drawback of their approach is the lack of
compatibility with the Linux upstream kernel. To the best of our knowledge this
is the first work presenting an analysis of CRIU as well as a prototype imple-
mentation for the mangament of LXC domains with the domain-management
tool libvirt.

6 https://openvz.org/.

https://openvz.org/
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6 Conclusion

In this paper we present the first libvirt driver that enables the migration of LXC
instances via this management tool. In doing so, we investigate CRIU in detail
and show how its page server can be leveraged for an accelerated migration.

In accordance with our results, the invocation of the container management
facilities through libvirt and hence our driver only adds small overhead com-
pared to the CLI. Thereby libvirt offers further capabilities to the user such as
the remote management of containers. The evaluation of container-based migra-
tion could show that our driver is competitive to VM migration over Gigabit
Ethernet based on KVM. The migration of a container with a workload of 4 GiB
is only around 3 % slower than that of a comparable VM. For smaller workloads
container-based migration is even up to 44 % faster than that of VMs.

For future work we plan to work on downtime reduction for live-migration.
Therefore, we will avoid the detour of the transferred data over the local file sys-
tem. Furthermore, we will investigate how faster interconnects can be leveraged
for an acceleration of the migration.

Acknowledgment. This research and development was supported by the Federal
Ministry of Education and Research (BMBF) under Grant 01|H13004B (Project
FaST).

References

1. namespaces(7) Linux Programmer’s Manual, Sept 2014. http://man7.org/linux/
man-pages/man7/namespaces.7.html

2. Bolte, M., Sievers, M., Birkenheuer, G., Niehörster, O., Brinkmann, A.: Non-
intrusive virtualization management using libvirt. In: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pp. 574–579 (2010)

3. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation - vol. 2,
pp. 273–286 (2005)

4. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs containerization to support
PaaS. In: 2014 IEEE International Conference on Cloud Engineering (IC2E), pp.
610–614 (2014)

5. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172
(2015)

6. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for linux clus-
ters. J. Phys. Conf. Ser. 46, 494 (2006)

7. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
pp. 51–60 (2009)

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html


684 S. Pickartz et al.

8. Li, W., Kanso, A.: Comparing containers versus virtual machines for achieving
high availability. In: 2015 IEEE International Conference on Cloud Engineering
(IC2E), pp. 353–358 (2015)

9. Menage, P.: Kernel Documentation, cgroups. kernel.org. https://www.kernel.org/
doc/Documentation/cgroups/cgroups.txt
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Abstract. Virtualization at the operating system level utilizing con-
tainer technologies provides reduced performance overhead over Type-
1 hypervisors for HPC and also adds many possibilities to significantly
improve the often demanded flexibility of such an installation. This paper
discusses technologies and concepts on several layers that can be applied
to securely integrate container-based virtualization in a multitenant HPC
environment, requiring both security and high performance.

Keywords: Virtualization · Container · Docker · HPC · Security

1 Introduction

Current installations of all sizes used for High Performance Computing (HPC)
require flexible and resilient architectures, which need to be easy to install and
administer, all while providing high performance.

The use of virtualization can solve several of these requirements and improve
the flexibility of an architecture, but there are often shortcomings performance-
wise compared to a bare-metal installation, as several studies, including [3] and
[8] have shown over the years. Even with improved hardware support, narrow-
ing this performance gap for Type-1 hypervisors (ESXi, KVM, Xen), the most
common way to deploy HPC installations is still bare-metal, leaving virtualized
HPC mainly in the focus of public cloud providers. Although hypervisor-based
virtualization is widely adopted it is not the only way to virtualize.

1.1 Container-Based Virtualization for HPC

Over the course of the last three years container-based virtualization has gained
a lot of interest, especially by the popularity of Docker1. Even though Linux
Containers (LXC)2 are available since 2008 and there are several alternatives,
1 Docker - https://www.docker.com/.
2 Linux Containers - https://linuxcontainers.org/.

c© Springer International Publishing AG 2016
M. Taufer et al. (Eds.): ISC High Performance Workshops 2016, LNCS 9945, pp. 685–695, 2016.
DOI: 10.1007/978-3-319-46079-6 48
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including Rocket (rkt)3 and to a certain extent systemd-nspawn, Docker seems
the most reasonable representative. By providing tools and an ecosystem around
its core components it made workflows around containers straightforward to use.

Contrasting virtual machines (VMs) containers do not start a full operating
system (OS). All containers on one host share the same Linux kernel, which
results in near bare-metal performance, as [11] has shown.

Containers provide an appropriate technology for solving the issue of appli-
cation dependencies and conflicting requirements when providing a wide variety
of different applications or several versions of one application on the same sys-
tem, as often encountered in HPC environments. Furthermore they can be used
to run legacy code on current systems. Their suitability for containerizing com-
plex workflows [15] in one portable entity that is convenient to share with third
parties and can be managed independently of content, gained the interest of
many scientific communities, requiring reproducible research [5], or dealing with
complex pipelines, as in genome sequencing [10].

Given their advantages in lifecycle management and the circumstance that
HPC technologies like GPU-computing4 and Infiniband are available in a con-
tainerized environment, containers are to be considered a lightweight virtualiza-
tion building block for HPC environments, where a 1–2% overhead is acceptable
for increased flexibility [12].

1.2 Containers and Security

As, unlike VMs, containers all share the same host kernel and have thus to
be considered less secure, they should not be seen as a drop-in replacement
for VMs, especially when requiring strong isolation. They share the same three
major threats with any other virtualization technique:

Privilege Escalation An attacker gaining access to a container could be able
to break out of the container and access the host system and other containers.

Denial-of-Service One container using up all resources of the host could starve
out other containers on the same host and the host itself.

Information Leak Confidential details about other containers, as running
applications, or the host itself could be leaked and used for further attacks.

While most of these threats are mitigated to a certain extent by the basic under-
lying kernel features cgroups and namespaces (see Sect. 3.2), Docker has put
strong development focus on improving security in recent versions, as security
concerns are still the most limiting barrier to adoption in production [9].

In a pure batch-processing oriented HPC-environment risks can be reduced
by utilizing containers as Application Containers, prohibiting user access into the
container and also restricting access to the Docker commandline interface (CLI)
by the use of wrapper scripts. As [13] has shown, this substantially reduces the
3 Rkt - https://coreos.com/rkt/.
4 GPU-Enabled Docker Container - http://www.nvidia.com/object/docker-container.
html.

https://coreos.com/rkt/
http://www.nvidia.com/object/docker-container.html
http://www.nvidia.com/object/docker-container.html
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attack surface over so-called System Containers, which provide more unrestricted
access. System Containers are rather comparable to VMs and often requested
by users for interactive access to applications.

The current mechanisms and technologies to secure the usage of container-
based virtualization in an HPC environment, considering both application and
system containers, are introduced in Sect. 3.

They can be applied in pieces for improving the security of specific aspects,
such as image vulnerability scanning, or could be combined to a framework,
where configurations and preconditions are generated according to selected secu-
rity and isolation requirements at job submit time.

2 Related Work

As technology securing containers is currently under steady development, the
work published is usually blog posts focussing on single aspects or features and
presentations. For example [13] presented an overview of the vulnerabilities of
Xen (paravirtualized), KVM/QEMU and containers that occured in 2014.

Besides [6], that covers an overview of an unnamed older Docker version’s iso-
lation mechanisms, there are two current extensive publications, covering many
details in depth out of scope for this paper. To be specific the recently updated
best-practises security document [7], which was implemented in most parts in
Docker Bench tool (see also 3.2) and a whitepaper [14], that covers many security
aspects of Docker, LXC and Rkt in great depths and lengths and contrasts their
default configurations. Another useful resource is [4], focussing on vulnerability
exploitation in Docker Container environments.

3 Applicable Security for Container-Based Virtualization

Adopting container-based virtualization in an HPC environment does not require
a complete redesign of existing security policies, but rather their extension. There
are usually processes and mechanisms already in place to improve security and
privacy, which are basically independent of container usage, among them firewalls
and measures to provide secured and isolated access to data.

Going beyond that, multiple technologies and tools to improve the security
of container utilization can be applied to both the Provision Mode (Sect. 3.1),
responsible for providing images, and the Operation Mode (Sect. 3.2), related to
runtime and operational aspects. The modes are further devided into layers with
the applicable technologies collated accordingly.

3.1 Provision Mode

Containers are the running, stateful instances of an image. The possibility to
quickly build new images based on existing ones using Dockerfiles and upload



688 H. Gantikow et al.

them on the public registry Docker Hub5, is one of the main reasons for the
popularity of this platform, but also implies that security is a pivotal aspect of
provisioning images. Figure 1 shows the tools and technologies applicable to the
Provision Mode, explained in the following.

Fig. 1. Applicable security tools and mechanisms in Provision Mode

(a) Image Provenance and Distribution Layer. While pulling one of
100.000+ ready to run images straight from Docker Hub is convenient, there
are several constraints to consider when using Docker in production. As soft-
ware running inside a container can have elevated rights compared to running
straight on the host system, there need to be guarantees and trust about the
images’ origin, who created them and that they remained untampered during
transit and storage. This implies that the images need to be signed after build
and that transport layer security is used during transit. There are several possi-
bilities to support these requirements:

Official Repositories Docker’s concept of verified repositories with signed and
validated images is called Official Repositories and consists of curated base
images of distributions and popular applications, such as databases or web-
servers. These are considerable as trustworthy base for own images, when
building own base images is not an option, but requires trusting Docker’s
developers and the contributors to these images.

Trusted Registries For environments demanding on-premise registries due to
security and compliance requirements, there is the possibility to run a so-
called Trusted Registry (TR), that provides LDAP/AD user authentication
and Role Based Access Control (RBAC).

Private Registry As TR is a subscription-based product it is often preferred
to install a private registry, which is also favourable for integrating in audits
and vulnerability scans. In cases neither Docker Hub, alternative repositories
such as Quay.io6, or a private onsite registry are an option, the possibility to
load images straight from an internal storage remains.

5 Docker Hub - https://hub.docker.com/.
6 Quay - https://quay.io/.

https://hub.docker.com/
https://quay.io/
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Content Trust Docker’s approach to image signing and verification is called
Content Trust and uses Notary7, an open source tool that is based on The
Update Framework (TUF)8. Images should be signed locally before uploading
them to a remote registry, as is done with the Official Repositories. The use
of signed and verified images should be enforced by enabling content trust in
the configuration, as this ensures the image comes from a trusted party and
remained unmodified during transfer.

Usage of signed images, curated and stored by an Operations Team in a
dedicated private software library, as the only source of trusted software for
improved security and reproducibility, is highly recommended and transferable
to all sorts of software repositories. Images failing these requirements could be
treated with increased isolation.

(b) Image Content Layer. Ensuring images are free from known vulnera-
bilities is important, as it decreases attack vectors that can lead to security
breaches. Especially when dealing with legacy code that might depend on a vul-
nerable library that cannot be updated it is essential to be aware of potential
risks. To mitigate these, availability of vulnerable images should be limited to
certain users and containers based on these images could be placed on hosts in a
different security zone providing stronger isolation. Possibilities include limited
network connectivity, placing containers of one tenant on one host, adding an
additional layer of virtualization or even applying means to detect application
anomalies. There exist several options to detect vulnerable images:

Clair Clair9 is an analysis engine, that scans each image layer for vulnerabilities
based on the Common Vulnerabilities and Exposures (CVEs) database10. It
currently only supports Debian, Red Hat and Ubuntu images, as it relies
on their native package manager for gathering information about installed
software. Clair can be used locally or remotely via an REST-API and is
integrated in the Quay registry.

Docker Security Scanning (formerly Project Nautilus) Docker provides
a quite similar tool called Docker Security Scanning. It also analyses software
packages installed as DEB and RPM, but it furthermore scans each binary
for known vulnerabilities11. As opposed to Clair it is not available standalone
and only as an add-on service for Docker Cloud private repositories and used
for Official Repositories on Docker Hub.

Even though neither of these tools inspect running containers, the possibility
to analyse images in a repository is vital. As layers can be shared and reused
7 Notary - https://github.com/docker/notary.
8 The Update Framework - https://theupdateframework.github.io/.
9 Clair - https://github.com/coreos/clair.

10 Common Vulnerabilities and Exposures - http://cve.mitre.org/.
11 Docker Security Scanning safeguards the container content lifecycle - https://blog.

docker.com/2016/05/docker-security-scanning/.

https://github.com/docker/notary
https://theupdateframework.github.io/
https://github.com/coreos/clair
http://cve.mitre.org/
https://blog.docker.com/2016/05/docker-security-scanning/
https://blog.docker.com/2016/05/docker-security-scanning/
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already one vulnerable base image can lead to multiple vulnerable containers.
CoreOS12 has shown that 80 % of the images hosted on Quay were vulnerable
to Heartbleed. As Clair is Open Source Software, we expect support for soft-
ware installed bypassing DEB/RPM packages or using the Perl/Python package
manager in future releases, as well as checks for leaked information (passwords
and keys), and an overall support for a higher diversity of distributions.

This would especially help with the shift from traditional distributions to
optimized distributions. While Debian, Red Hat and derivates are widely used,
their base image size of 200 MB is rather large compared to lightweight distrib-
utions such as Alpine Linux with 5 MB. The use of stripped down images also
improves security by benefiting from a reduced attack surface.

Further improvements would result from the integration of means to trigger
an automated patch management process once a CVE for any component within
an image is reported. While this might limit reproducibility, it would reduce
security risks and improve auditability of such changes.

3.2 Operation Mode

Once image security is established securing operation has to be ensured. Figure 2
shows the applicable tools and technologies on the corresponding layer, futher
explained in the following section.

Fig. 2. Applicable security tools in Operation Mode.

(a) Host Layer. The host layer provides several possibilities to improve the
security that go beyond general hardening recommendations such as applying
patches and updates whenever possible, especially kernel updates, or removing
unrequired services from the host system to reduce the attack surface.

12 CoreOS Introduces Clair: Open Source Vulnerability Analysis for your Containers -
https://coreos.com/blog/vulnerability-analysis-for-containers/.

https://coreos.com/blog/vulnerability-analysis-for-containers/
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Kernel Features. Control Groups, Namespaces are no additional tool that can
be applied to containers, but should be introduced here very briefly, as they are
the core components providing isolation.

Control Groups (cgroups) Cgroups are a Linux kernel feature to provide
performance isolation (CPU, Memory and I/O resources) on a collection of
processes and are shortly described as powerful alternative to ulimits/rlimits
to ensure that containers cannot starve the host or each other by denial
of service attacks. They are also required for prioritzing shares of resource
utilization, accounting of usage and for checkpoint + restart of process groups.
They are also applicable in HPC environments without containers13.

Namespaces Namespaces provide processes and spawned child processes their
own limited view of the system. Namespaced resources are mapped to separate
values on the host, so it appears to processes within the namespace that they
have their own isolated instance of the global resource. PID 1 for instance in
a container is not PID 1 on the host or another container, and processes in a
container cannot see processes of another container or the host. Currently not
all kernel features are namespaced, which can present a risk for information
exposure and attacks. The latest namespace added was the user namespace
in 2013, with support by Docker starting 2016.

Capabilities Linux kernels capabilities can be used to assign certain coarsely
grained privileges to processes. By default containers run with a reduced set
but require additional ones for example for inserting kernel modules. In terms
of security it is advisable to reduce available capabilities as much as possible
and only add required ones. Identifying safely droppable privileges by trial
and error and a test suite is cumbersome, but currently the only way to do
so. For a HPC environment this approach can be feasible as compute jobs for
one application should have constant capabilities requirements.

Kernel Hardening Deployment of hardened kernels, using patches as grsecu-
rity14, which protects against programs modifying memory with the aim to
trigger buffer overflows, and PaX15, which adds patches to RBAC and audit-
ing, might be useful in some scenarios. In HPC environments their use is
questionable, as the security checks and measures can induce performance
overhead and PaX conflicts with applications generating code at runtime.

Linux Security Modules (LSM) / Mandatory Access Control. The LMS frame-
work supports a variety of security modules, including Smack, TOMOYO Linux
and Yama - and the widely used ones AppArmor and SELinux.

Security Enhanced Linux (SELinux) SELinux is installed on many distrib-
utions by default and usually preconfigured to protect the host and containers
from each other, by limiting access to resources. By applying specific labels

13 Resource Management with Linux Control Groups in HPC Clusters - http://slurm.
schedmd.com/pdfs/LCS cgroups BULL.pdf.

14 Grsecurity - https://grsecurity.net.
15 Pax - https://pax.grsecurity.net.

http://slurm.schedmd.com/pdfs/LCS_cgroups_BULL.pdf
http://slurm.schedmd.com/pdfs/LCS_cgroups_BULL.pdf
https://grsecurity.net
https://pax.grsecurity.net
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to a container it is also possible to create policies limiting communication
to specific ports or creating secret and top-secret containers for processing
sensitive data16.

AppArmor + Bane While less granular than SELinux, AppArmor is more
straightforward to configure and still provides a high level of protection
from containers attempting to access critical system resources, by provid-
ing pathname-based access control. The default profile can be overwritten
with a custom container-specific profile at container startup. These profiles
can be generated using the custom AppArmor profile generator Bane17.

The use of SELinux and AppArmor is not always straightforward, but can
provide strong additional security assurance preventing privilege escalation by
restricting access to resources. This is especially required in cases where user
namespaces are not applicable yet.

Auditing. Running regular audits on images, containers and hosts is essential to
ensure that no security breaches have occurred.

Linux Auditing System The Linux Auditing System is used to record events,
which can be used to detect misuse and unauthorized activities. Auditing
Docker daemon related activities, such as starting containers and changes to
configurations files, certificates and keys, should extend audits in place and
analysis of logs files needs to be integrated in security monitoring facilities.

OpenSCAP - container compliance The OpenSCAP18 project provides a
collection of tools required for implementing and enforcing the NIST Security
Content Automation Protocol (SCAP). By the use of OpenSCAP container
compliance19 these policy-based security audits can be performed on images
and containers. As these audits also includes CVE scans, there might be
redundancy with tools such as Clair (see 3.1). As Clair is easier to integrate
in image registries and compliance audits based on SCAP are often already
established, the primary use of this tool might be in custom security policy
audits and on-demand scans of potential malicious containers.

Docker Bench for Security The Docker Bench for Security tool20,21 based
on the CIS Docker Benchmark best-practises [7] automates the validation of
configuration details, such as file permissions or the use of trusted registries.
This tool might be a good start for auditing the host configuration, as it
can be extended with custom checks and policies and could be included as
precondition for running containers with additional security requirements.

16 Tuning Docker with the newest security enhancements - https://opensource.com/
business/15/3/docker-security-tuning.

17 Bane - https://github.com/jfrazelle/bane.
18 OpenSCAP - https://www.open-scap.org.
19 Container-Compliance - https://github.com/OpenSCAP/container-compliance.
20 Docker-Bench-Security - https://github.com/docker/docker-bench-security.
21 Alternative: Actuary - https://github.com/diogomonica/actuary.
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https://github.com/docker/docker-bench-security
https://github.com/diogomonica/actuary


Providing Security in Container-Based HPC Runtime Environments 693

(b) Container Runtime Layer. Recent versions of Docker include several
features that improve the possibilities to lock down containers, access to them
and the granularity to control what containerized applications are allowed to do.

Authorization Plugins The integration of authorization plugins enables fine
granular role-based access policies to interact with the Docker daemon. As
opposed to the out-of-the-box all or nothing authorization model where any
member of the docker group can run any command, resulting in severe pos-
sibilities to escalate rights, this approach provides a finer level of granularity,
given development of suitable authorization plugins. For example members
of an audit team could only access readonly commands, while an operations
team could issue container lifecycle commands. The contribution of the AuthZ
authorization framework22 is an essential option in a multitenant environment
where possibilities to directly interact with the Docker daemon need to be
provided while separation of access to resources is required.

User Namespaces Docker finally added support for Phase 1 of user
namespaces in version 1.10, which currently only remaps the root user. Phase
2 will allow full per-container UID remapping and allow a stronger tenant
separation and improve per-user accounting capabilities in future. While some
limitations apply, such as a privileged user, or member of the docker group, is
still required to interact with the Docker engine and the feature is disabled by
default, the root user remapping makes it harder to perform privilege escala-
tion with the help of the filesystem and it is now possible to apply the nproc
cgroup23 to a container, as these limits did not apply to root.

Secure computing mode (seccomp) Profiles Starting v1.10 Docker sup-
ports the kernel feature seccomp, which restricts available syscalls within the
container. If supported by host kernel the default seccomp profile can be used,
which disables around 40 out of 300+ system calls. While still providing wide
application compatibility, this feature could be used to tightly lock down
processes inside a container. By using a container-specific whitelist of syscalls
generated during a regular non-malicious run of a container, malicious code
would then fail by requiring a wider set of syscalls.

(c) Application Layer. Options to increase security at the application layer
are rather limited using an universal, non application-specific approach. As the
use of tools discussed in Sect. 3.1 is suitable to mitigate certain potential risks by
the detection of software vulnerabilities during provision, focus should be placed
on detecting application runtime anomalies at this layer.

The internal nature of containers simplifies gathering information about
processes running inside a container, as containerized processes can be monitored
in detail from the host by tracing their system calls using strace. This can be
used for detecting anomalous behaviour without any modification to either the

22 Docker AuthZ Plugins - https://www.twistlock.com/2016/02/18/docker-authz-
plugins-twistlocks-contribution-to-the-docker-community/.

23 Fork bomb prevention - https://github.com/docker/docker/issues/6479.

https://www.twistlock.com/2016/02/18/docker-authz-plugins-twistlocks-contribution-to-the-docker-community/
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container or the host kernel or prior knowledge of the application running inside
the container. This method is proposed by Abed [1,2] as a host-based intrusion
detection system (HIDS). His work uses a frequency-based approach, dropping
the sequence of occurrence and only keeping track of the frequency of occurrence
of each distinct system call. Even though this requires far less storage space than
a sequence-based approach, it is to assume that this might still impose too much
performance degradation in a multi-core, multi-host computation with several
thousand syscalls per process - per second.

The overall approach of system call tracing might be applicable with image-
specific seccomp profiles. This would provide the possibility to narrow down
whitelist of allowed syscalls, based on the results of a learning phase.

4 Future Work

While Docker’s security features have strongly improved, there still are several
areas that need further work. Among them improvements to the granularity of
access to the Docker daemon for multitenant environments, the expected imple-
mentation of Phase 2 of user namespaces and the possibility to provide security
profiles as part of the image specification. There is also a need for improved
namespace-awareness of the Linux kernel. Many features, including devices, ker-
nel ring buffer (dmesg), time, along the proc and sys pseudo-filesystems are not
namespace-aware yet and can present at least a risk of information exposure.

Furthermore an evaluation of the runtime performance overhead induced by
mechanisms such as seccomp profiles, as well as an evaluation of orchestration
frameworks from a security point of view would provide further insight.

5 Conclusion

Containers are a possible building block and core component for flexible HPC
environments. Given their low performance-overhead they are suitable for onsite
HPC installations with a wide set of different applications and possibly even for
HPC-cloud bare-metal providers, enabling them to provide customized applica-
tions in a timely manner. For IaaS-Cloud-based HPC resources they can be used
as way to deploy the required application stack and configuration.

Most of the described security measures can be established without inducing
further runtime performance overhead and only need to extend existing regular
baseline security and vulnerability scans.

Even though container-based virtualization is technically still to be consid-
ered less secure than hypervisor-based virtualization: for an HPC environment
most possible risks are preventable by providing audited container images from
a trusted source, that are run on systems patched on a regular base, following
the principle of least privilege. Meaning in this case utilizing only Application
Containers without interactive user access to the container, and the application
itself running under a non-privileged user, with further improvement by applying
a container-specific seccomp profile and limiting access to the Docker daemon
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using authorization plugins. If required required workloads from multiple tenants
could also be isolated on host-level for additional isolation.

Utilizing containers no longer neccessarly means running untrusted code
downloaded off the internet as root : csontainerized environments can be more
secure than the equivalent environment without containers, if configured right.
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