
XBWT Tricks

Giovanni Manzini1,2(B)

1 Computer Science Institute, University of Eastern Piedmont, Alessandria, Italy
giovanni.manzini@uniupo.it

2 Institute of Informatics and Telematics, CNR, Pisa, Italy

Abstract. The eXtended Burrows-Wheeler Transform (XBWT) is a
data transformation introduced in [Ferragina et al., FOCS 2005] to com-
pactly represent a labeled tree and simultaneously support navigation
and path-search operations over its label structure.

A natural application of the XBWT is to store a dictionary of strings.
A recent extensive experimental study [Mart́ınez-Prieto et al., Informa-
tion Systems, 2016] shows that, among the available string dictionary
implementations, the XBWT is attractive because of its good tradeoff
between small space usage, speed, and support for substring searches.
In this paper we further investigate the use of the XBWT for storing a
string dictionary. Our first contribution is to show how to add suffix links
(aka failure links) to a XBWT string dictionary. For a XBWT dictionary
with n internal nodes our suffix links can be traversed in constant time
and only take 2n + o(n) bits of space.

Our second contribution are practical construction algorithms for the
XBWT, including the additional data structure supporting the traver-
sal of suffix links. Our algorithms build on the many well engineered
algorithms for Suffix Array and BWT construction and offer different
tradeoffs between running time and working space.

1 Introduction

A trie [15] is a fundamental data structure to represent a set of strings. A trie
with n nodes takes O(n log n) bits of space and supports extremely simple and
efficient algorithms to determine whether a string belongs to the set. In this
paper we are interested in the “compressed” version of a trie obtained applying
to it the eXtended Burrows Wheeler Transform (XBWT): a generalization of the
BWT introduced in [6–8] to compactly represent an arbitrary labeled tree. The
XBWT represents an n-node trie in O(n) bits of space still supporting constant
time upward and downward navigation.

In a recent comprehensive study of string dictionaries [18], the authors show
that in many applications we need to handle dictionaries whose size is larger than
the available RAM. In this setting, compression is mandatory to avoid incurring
the penalties of external memory access. In the same paper the authors show
that, among the available string dictionary implementations, the XBWT-trie is
particularly attractive because of its good tradeoff between small space usage,
speed, and support for substring searches.
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 80–92, 2016.
DOI: 10.1007/978-3-319-46049-9 8

XBWT Tricks 81

In this paper we present two contributions related to the XBWT-trie. Our
first contribution is the observation that we can enrich the XBWT with 2n+o(n)
additional bits in order to support suffix links. Suffix links, also known as failure
links, are useful to speedup some search operations as in the classical Aho-
Corasick algorithm [9, Sect. 3.4].

Our second contribution is related to the problem of computing the XBWT.
For a set of strings x1, . . . , xk of total length m we can compute the XBWT-
trie by first building the n-nodes (uncompressed) trie and then applying the
XBWT construction algorithm from [8]. This approach takes optimal O(m +
n) time but it may not work well in practice because trie construction may
constitute a memory bottleneck. Indeed, as shown by the Suffix-Tree vs Suffix
Array debate, pointer based tree structures often have very large multiplicative
constants hidden in the O notation that in practice prevent their use for large
datasets. An indirect confirmation of this state of affairs is that in [18] the
authors report that they were unable to build the trie for the largest dataset due
to excessive memory usage.

In this paper we take advantage of the similarities between XBWT and BWT
to derive alternative algorithms for the construction of the XBWT starting from
the Suffix Array or the BWT. Our motivation is that the algorithms for con-
structing these data structures have been widely studied and engineered so there
are practical algorithms using very little working space or even designed for
external memory, see [3–5,10,12,13] and references therein. Our contribution
is to show that given the Suffix Array or BWT we can compute the XBWT,
including the data structure supporting suffix links, in O(m) time. Combining
our algorithms with the available (and future!) Suffix Array and BWT construc-
tion algorithms we obtain a wide range of tradeoffs between running time and
working space for XBWT construction.

2 XBWT Trie Representation

Given a string x[1, n] over a finite ordered alphabet Σ we write x[i] to denote its
i-th symbol and x[i, j] to denote the substring x[i]x[i+1] · · · x[j]. We write xR to
denote the string x reversed x[n] · · · x[1]. We write x � y (x ≺ y) to denote that
x is lexicographically (strictly) smaller than y. As usual we assume that if x is a
prefix of y then x ≺ y. Throughout the paper we use the notation rankc(x, i) to
denote the number of occurrences of c in x[1, i], and selectc(x, j) to denote the
position of the j-th c in x.

Tries [15] are a fundamental data structure for representing a set of k dis-
tinct strings x1, x2, . . . , xk. A trie efficiently supports the two basic dictionary
operations: locate(s) returning i if s = xi for some i ∈ [1, k] or 0 otherwise, and
extract(i) returning the string xi given an index i ∈ [1, k]. In addition, it supports
the operation locatePrefix(s) returning the strings which are prefixed by s [18].
To simplify the algorithms, and ensure that no string is the prefix of another
one, it is customary to add a special symbol $ �∈ Σ at the end of each string xi.
A trie for the set of strings {aa, acaa, ba, aba, aac, bc} is shown in Fig. 1.

82 G. Manzini

Fig. 1. A trie representing the strings and its XBWT representation (the arrays Last
and L). The array Π is not stored in the XBWT even if navigation algorithms use it
to identify internal nodes.

The eXtended Burrows-Wheeler Transform is a generalization of the BWT
designed to compactly represent a labeled tree. We now show how to compute the
XBWT of a trie T and obtain two arrays L and Last that compactly represent T .
Our description of the XBWT is slightly different (simpler) from the one in [6,8]
that takes as input an arbitrary labeled tree.

To each internal trie node w we associate the string λw obtained by con-
catenating the symbols in the arcs in the upward path from w to the root of
T . Hence, if node w has depth d its associated string has length d. If T has n
internal nodes we have n strings overall. Let Π[1, n] denote the array containing
the above set of n strings sorted lexicographically. Note that Π[1] is always the
empty string corresponding to the root of T .

For i = 1, . . . , n let Li denote the set of symbols in the arcs exiting from the
trie node corresponding to Π[i]. We do not require that the symbols in Li are in
any particular order, but since T is a trie they are distinct. We define the array
L as the concatenation of the arrays L1, . . . , Ln. Clearly if T has n′ nodes, then
L has n′ − 1 elements: one for each trie edge. By construction L contain n − 1
symbols from Σ and n′−n occurrences of $. To keep an explicit representation of
the intervals L1, . . . , Ln we define a binary array Last[1, n′] such that Last[i] = 1
iff L[i] is the last symbol of some interval Lj . Hence Last contains exactly n 1’s.
See Fig. 1 for a complete example.

If L[i] �= $ belongs to the interval Lj then L[i] naturally corresponds to the
internal trie node reachable from the node corresponding to Π[j] following the
arc labeled L[i]. Such a node corresponds to the entry Π[i′] such that Π[i′] =

XBWT Tricks 83

L[i]Π[j]. In other words, there is a bijection between the symbols in L different
from $ and the entries in Π different from the empty string. For historical reasons
this bijection is called the LF -map, and we call LF (i) the index in Π of the entry
corresponding to L[i]. Hence, LF is defined by the relation

Π[LF (i)] = L[i]Π[j]

for every i, j with L[i] ∈ Lj and L[i] �= $. The following results are a simple
restatement of Properties 1–3 in [8] using the notation of this paper.

Lemma 1 (Order preserving property). For every pair of indices i, k such
that L[i] �= $, L[k] �= $, it is

L[i] < L[k] =⇒ LF (i) < LF (k),
L[i] = L[k] =⇒ LF (i) < LF (k) ⇔ i < k.

�	
For any symbol c ∈ Σ let C(c) denote the index of the first position in Π

containing a path starting with symbol c. Lemma 1 makes it possible to compute
LF and its inverse LF−1 using rank and select operations. In turn, the LF map
makes it possible to navigate the XBWT-trie, that is to move from the entry in
Π representing a trie node to the entries representing its children and parent.

Lemma 2 (Downward navigation). Let c = L[i] �= $. Then

LF (i) = C[c] + rankc(L, i − 1).

As a consequence, if node w corresponds to Π[j] and has a child with label c,
then such child corresponds to entry Π[j′] with

j′ = C[c] + rankc(L, select1(Last, j)).

�	
Lemma 3 (Upward navigation). For i > 1 let c denote the first symbol of
path Π[i]. Then

LF−1(i) = selectc(L, 1 + i − C[c]).

As a consequence, if node w corresponds to the non empty path Π[j] whose first
character is c, the parent of w′ corresponds to the entry Π[j′] with

j′ = 1 + rank1(Last, LF−1(j) − 1) = 1 + rank1(Last, selectc(L, 1 + j − C[c])).

�	

84 G. Manzini

Using downward (resp. upward) navigation we can implement the locate
(resp. extract) trie operation. As observed in [18] it is convenient to take as
the ID of xi the rank in L of the $ occurrence that we reach starting from the
root and following xi’s symbols. If we reorder the strings in reverse lexicographic
order (i.e. so that xR

1 ≺ xR
2 ≺ · · · ≺ xR

k) then ID(xi) = i.
The most common representation of the array L is a (possibly compressed)

Wavelet tree. We also need a bitarray representation of Last supporting con-
stant time rank1, select1 operations, and a suitable representation of the array C
(possibly another bitarray). Using a balanced uncompressed Wavelet trees for L
the space usage is O(n′ log(|Σ|)) bits and each upward or downward step takes
O(log |Σ|) time.

3 Adding Suffix Links

In addition to pointers to their children and parent, trie nodes may store an
additional pointer called a suffix link. The node corresponding to path α has a
suffix link pointing to the node corresponding to the longest proper suffix of α
that is also in T . Hence, if we have reached the node corresponding to the path
c0c1 · · · ci the suffix link makes it possible to reach in constant time the node
corresponding to path cj · · · ci where j > 0 is the smallest positive integer for
which such node exists. Since the root corresponds to the empty string, a suffix
link exists for all internal nodes except for the root itself.

In a XBWT-trie internal nodes are identified with their position in Π.
Because of the ordering of the paths in Π, the target of the suffix link of node
Π[i] is the node � < i such that Π[�] is the longest proper prefix of Π[i] which
is in Π.

To emulate suffix links we build a string P of balanced parentheses of length
2n. We write a pair of parentheses for each internal node so that the parentheses
for node j enclose those for i iff Π[j] is a prefix of Π[i]. To build P we start with
an empty string and consider Π[i] for i = 1, . . . , n. When we reach Π[i] first we
write a) for every � < i such that the closed parenthesis for Π[�] has not been
written and Π[�] is not a prefix of Π[i]; then we write the (corresponding to
Π[i]. After we have reached Π[n] we write a closing parenthesis for all indices �
such that the closed parenthesis for Π[�] has not yet been written. For example,
for the XBWT of Fig. 1 it is P = (((())(())())(())(())()).

The following lemma shows that to find the suffix link for node Π[i] it suffices
to find the closest set of parentheses enclosing the (associated to Π[i].

Lemma 4. Let 1 < i ≤ n and α = Π[i]. Define k = select((P, i) and j =
enclose(k). Then, the longest proper prefix of α in Π is α′ = Π[�] with � =
rank((P, j).

Proof. First note that enclose is always defined since the pair P [1] = (, P [2n] =)

corresponding to Π[1] encloses every other pair of parentheses.
We need to prove that α′ = Π[�] is the longest proper prefix of α which is

in Π. Since the) for Π[�] is not written when we reach Π[i], by construction

XBWT Tricks 85

Π[�] is a prefix of Π[i]. To prove it is the longest prefix assume by contradiction
that Π[�′] is also a prefix of Π[i] and |Π[�′]| > |Π[�]|. Because of the ordering in
Π we would have � < �′ < i. Also because of the ordering, for i′ = �′ . . . i Π[i′]
would be a prefix of Π[i]. But then the parentheses for �′ would enclose those
for i, which is a contradiction since by construction � corresponds to the closest
enclosing pair. �	

Using the range min-max tree from [19] we can represent the balanced paren-
thesis sequence P in 2n+o(n) bits of space and support rank, select, and enclose
in O(1) time. We have therefore established the following result.

Theorem 1. We can add to the XBWT-trie suffix links traversable in constant
time using additional 2n + o(n) bits. �	

Since Π only contains internal nodes, the approach described above only
provides suffix links for the trie internal nodes. However, it can be extended
to the trie leaves if necessary. Since the symbol $ appears only at the end of
a string, the suffix link of a leaf can only point to another leaf. Thus, we can
build a subsequence Π ′ of Π containing only the internal nodes which have $
among their children. It is easy to see that the parenthesis array P ′ build on Π ′

provides suffix links for the leaves.

4 Alternative Construction Algorithms

In this section we propose new algorithms for computing the XBWT of the trie
containing the set of distinct strings x1, x2, . . . , xk. Our algorithms derive the
XBWT from the Suffix Array or BWT of the concatenation t = y1$y2$ · · · yk$,
where yi = xR

i reversed and $ is assumed to be lexicographically smaller than any
symbol in Σ. We denote by SA, LCP and BWT respectively the Suffix Array, LCP
array, and Burrows Wheeler Transform of the string t (See Fig. 2 for an example).
Throughout this section let m denote the length of t, i.e. m =

∑
i(|xi| + 1).

Let z be a string not containing the symbol $ and such that z$ is a substring
of t. We denote by [bz, ez] the maximal range of suffix array rows prefixed by
z$. For example, in Fig. 2 for z = ε the maximal range is [1, 6], for z = aa the
maximal range is [11, 12], and for z = ca the maximal range is [20, 20].

Lemma 5. Let [bz, ez] denote the maximal range for the string z. Then ez−bz+1
is equal to the number of strings in x1, . . . , xk which have z as a prefix. In
addition it is LCP[bz] < |z| and

LCP[i] ≥ |z| + 1 for i = bz + 1, . . . , ez.

Proof. By construction the rows prefixed by z$ are in a bijection with the strings
yi’s which have z as a suffix. Since yi = xR

i the first part of the lemma follows.
Since bz is the first row prefixed by z$ row bz − 1 must be prefixed by a string
lexicographically strictly smaller than z$. Since $ is the smallest symbol, row
bz − 1 cannot be prefixed by z. �	

86 G. Manzini

Fig. 2. Suffix array, LCP array, MR array, and BWT for the concatenation t =
aa$aaca$ababacaacb obtained from the set of strings aac, aa, aba, acaa, ba, bc
The arrays MR and RCP will be introduced later.

Lemma 6. Let T denote the trie representing the strings x1, . . . , xk. There is a
one-to-one (bijective) correspondence between internal nodes of T and maximal
row ranges of SA. Each node w corresponds to a maximal range containing a
number of rows equals to the number of leaves in the subtree rooted at w. The
correspondence is order preserving in the sense that row range [by, ey] precedes
[bz, ez] iff the node corresponding to the former interval precedes the node corre-
sponding to the latter in the array Π used to define the XBWT.

Proof. For each internal node w let λw denote the string obtained concatenating
the symbols in the upward path from w to the root. The image of node w is the
maximal row range associated to λw, that is, the set of SA rows prefixed by λw$.
As we have already observed, the number of rows in this interval is equal to
the number of strings x1, . . . , xk which have λw as prefix which coincides with
the number of leaves in the subtree rooted at w. The correspondence is order
preserving since both in Π and in the suffix array the order is determined by
the lexicographic order of λw. �	
Lemma 7. Let [b, e] denote the maximal row range associated to the internal
node w. Then, the labels on the arcs exiting from w coincide with the set of
symbols in the substring BWT[b, e].

XBWT Tricks 87

Proof. Let λw denote the string containing the symbols in the upward path from
w to the root. There is an arc with label c ∈ Σ leaving w iff there is at least a
string xi prefixed by λR

wc. This implies cλw is a prefix of yi. If j ∈ [b, e] is the
row prefixed by λw$yi+1$ · · · yk$ it is BWT[j] = c. Viceversa, if BWT[h] = c for
h ∈ [b, e] then at least one yi is prefixed by cλw, hence λR

wc is a prefix of xi and
there must be an arc with label c exiting from node w.

Finally, there is an arc with label $ leaving w iff λR
w = xh for some h ∈

[1, k]. But then there will be one SA row prefixed by yh$yh+1$ · · · yk$ and the
corresponding BWT position will contain the symbol $. �	

From Lemma 7 we can derive a simple strategy to compute the XBWT, that
is, the arrays L and Last defined in Sect. 2. Assume we are given a binary array
MR such that MR[i] = 1 iff row i is the starting position of a maximal row range
(see example in Fig. 2). MR encodes the maximal row ranges and by Lemma 6
each maximal row range corresponds to an element in the array Π. In Sect. 2
we have logically partitioned the array L into L1, . . . , Ln where Li contains the
labels in the arcs leaving the internal node associated to Π[i]. We compute the
subarrays L1, . . . , Ln in that order. We scan the array MR starting from its first
position until we find an index j1 such that MR[j1 +1] = 1. We know that [1, j1]
is the maximal row range corresponding to Π[1]. In O(j1) time we compute the
set of distinct symbols in BWT[1, j1] and we write them to L. By Lemma 7
we have just computed L1 and we complete this phase by writing 0|L1|−11 to
Last. Next we restart the scanning of MR until we find an index j2 such that
MR[j2 + 1] = 1. By construction [j1 + 1, j2] is the maximal range corresponding
to Π[2] so from BWT[j1+1, j2] we can derive L2 and so on. The above algorithm
takes O(m) time and only requires the arrays BWT and MR.

The bit array MR can be derived from the SA and LCP arrays. However a
faster alternative is to modify one of the algorithms computing the LCP from
the SA so that, instead of the LCP, it computes the RCP (Reduced Common
Prefix) array storing the lengths of the common prefix among lexicographically
consecutive suffixes assuming that all instances of the $ symbol are different.
See again Fig. 2 for an example.1 The linear time LCP construction algorithms
in [11,14,17] can all be easily modified to compute the RCP values instead of
LCP values. The MR array can be computed along with the RCP array observing
that MR[i] = 0 iff LCP[i] > RCP[i]. The latter condition can be verified even
without knowing the LCP values by testing whether t[SA[i] +RCP[i]] = t[SA[i −
1] + RCP[i]] = $. Indeed, the RCP array satisfies the following lemma which is
an immediate consequence of Lemma 5.

Lemma 8. Let [bz, ez] denote the maximal range for the string z ∈ Π. It is

RCP[bz + 1] = RCP[bz + 2] = · · · = RCP[ez] = |z|
and RCP[bz] = lcp(z, z′) where z′ is the string immediately preceding z in the Π
array. �	
1 The RCP array coincides with the LCP array if we build the concatenation t inserting

a different symbol $i at the end of each string xi. However, this approach is not
practical since would increase significantly the size of the alphabet.

88 G. Manzini

Fig. 3. Algorithm for computing the parenthesis array P given t, SA, RCP and MR.
An open parenthesis is written to P at each push operation, and a closed parenthesis
at each pop operation. (itop, �top) represents the pair currently at the top of the stack.

Note that computing the RCP array is faster than computing the LCP array
(the common prefixes are shorter) and its storage takes less space since each
entry takes at most �log(maxi |xi|) bits.

We have established that with a single scan of the BWT and MR array we
can compute the arrays L and Last. We now show that using the RCP array we
can also compute the parenthesis string P that supports suffix links emulation
as described in Sect. 3. The algorithm for computing P is described in Fig. 3. To
prove its correctness we first establish the following Lemma.

Lemma 9. In the algorithm of Fig. 3 let (i1, �1), (i2, �2), . . . , (ih, �h) denote the
pairs stored in the stack at any given moment, and let z1, z2, . . . , zh denote the
corresponding strings, i.e. zj corresponds to the maximal row range [ij , ej]. Then,
for i = 2, . . . , h we have that zi−1 is a proper prefix of zi and |zi−1| = �i.

Proof. Initially the stack is empty so the hypothesis is true. Assume now the
stack (i1, �1), (i2, �2), . . . , (ih, �h) satisfies the hypothesis and we have reached
position i which is the beginning of the next maximal row range which corre-
sponds to the string z. Note that ih is the starting point of the immediately
preceding row range. Hence, setting � = RCP[i] we have � = lcp(zh, z). In addi-
tion, for j < h since zj is a prefix of zh it is lcp(zj , z) = min(�, |zj |). Clearly if
�j ≥ �, zj cannot be a prefix of z since

|zj | > |zj−1| = �j ≥ � ≥ lcp(zj , z)

so it is correct to remove (ij , �j) from the stack at Line 6. If �j < � then zj is
a prefix of z iff � = |zj | which is the condition tested at Line 7. If this is the
case we push (i, �) to the stack and the invariant is maintained. If zj is not a
prefix of z then zj−1 certainly is, since it is a proper prefix of zj [1, �] = z[1, �],

XBWT Tricks 89

and we add to the stack (i, �j) after having removed (ij , �j) thus maintaining the
invariant. �	
Theorem 2. The algorithm of Fig. 3 correctly computes the array P in O(m)
time.

Proof. Because of the order preserving correspondence between maximal row
ranges and paths in Π, scanning the array MR is equivalent to scanning the
array Π. Lemma 9 ensures that we write an open parenthesis for each path Π[i]
and that the corresponding closed parenthesis is written immediately before the
opening parenthesis of the first path Π[h] with h > i such that Π[i] is not a
prefix of Π[h]. This is exactly how P is defined in Sect. 3 and the correctness
follows.

To see that the running time is O(m) observe that in addition to the outer
loop we only have push and pop operations on the stack. Since we push one pair
(i, �) for each 1 in MR, and once popped from the stack pairs are discarded, the
overall time is O(m). �	

For the construction of P , in addition to the input arrays, the algorithm
needs extra storage only for the stack. Since the values in the stack are strictly
increasing, it uses at most O(� log �) bits where � = maxi RCP[i]. Summing up,
we are able to compute the XBWT with simple sequential scans using the SA and
LCP (actually RCP) arrays. Since there are many well engineered algorithms for
computing the SA and LCP array, we believe our solution is the most practical
choice when the working space is not an issue. Indeed, its working space is
dominated by the space required for the storage and computation of the SA
which is still O(m log m) bits but in practice it could be much less than the
space required for storing a pointer based representation of the trie T .

We now describe an alternative XBWT construction algorithm that only
uses the BWT of the string t = y1$y2$ · · · yk$. Since the BWT takes m log |Σ|
bits and can be computed using o(m log m) bits of working space, our algorithm
provides new time/space trade-offs for XBWT construction. In addition, our
algorithm works without modification if the BWT of t is replaced by the Multi
String BWT [10] of {x1, . . . , xk}. Although BWT algorithms have been studied
for a longer time, Multi String BWT algorithms are potentially faster and have
recently received much attention, see [1,10,16] and references therein.

The idea of our algorithm is to compute the MR array emulating a depth
first visit of the trie T using the BWT. Since each internal trie node corresponds
to a maximal row range, the visit will give us all maximal row ranges, i.e., the
bit array MR. Our solution is inspired by the algorithm in [2] that computes the
LCP array emulating a breadth first visit on the suffix trie using the BWT.

Assuming the BWT is stored in a balanced Wavelet Tree we can use the
algorithm getInterval from [2] to compute, given the maximal row range corre-
sponding to an internal node w, the maximal row ranges corresponding to w’s
children. This computation takes O(d log |Σ|) time, where d is the number of
w’s children. Using getInterval, the computation of the MR array can be done by
the algorithm in Fig. 4 whose running time is O(m + n log |Σ|) where n is the

90 G. Manzini

Fig. 4. Algorithm for computing the MR array given the BWT.

Fig. 5. Algorithm for computing the parenthesis array P given RCP′ and LEN′.

number of internal trie nodes. The working space of the algorithm, in addition
to the BWT and MR arrays, is dominated by the stack for the depth first visit
which takes (maxi |xi|)|Σ| words. After the computation of MR, the arrays L
and Last can be obtained in O(m + |Σ|) time as described above.

To compute also the parenthesis array P we use the following approach. Our
starting point is the observation that the algorithm in Fig. 3 only uses the RCP
values for the entries i such that MR[i] = 1. In addition, the SA is only used at
Line 7 to check if the string that prefixes row itop is a prefix of the string that
prefixes row i. This property can be tested also by checking if the length of the
string at itop is equal to RCP[i].

This observation suggests that after the computation of MR we count the
number of 1’s in it: this gives us the number n of internal trie nodes. Then, we
allocate two length-n arrays RCP′ and LEN′ where we store the RCP and the
length of the entries in Π with MR[i] = 1. These arrays take O(n log(maxi |xi|))
bits and can be computed in O(n log |Σ|) time using a straightforward modifi-
cation of the LCP construction algorithm from [2]. Using RCP′ and LCP′ we can
compute the parenthesis array P using the algorithm of Fig. 5 which is derived

XBWT Tricks 91

from the one in Fig. 3 but has a simpler structure since, instead of scanning MR
skipping the 0 entries, it scans directly RCP′ and LEN′.

5 Concluding Remarks

With the advent of applications that use very large string dictionaries the
XBWT-trie becomes a valid alternative for their storage. In this paper we have
presented two contributions that can increase the practical appeal of this data
structure. We believe there are other improvements to the original XBWT-trie
design that can make this data structure even more appealing to practitioners.
For example, it is relatively simple to support the contraction of unary paths.
The computation of the XBWT also deserves further investigations: we have
shown how to compute it from the SA or the BWT but we are currently working
on the design of efficient and lightweight direct construction algorithms.

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor. Comput. Sci. 483, 134–148 (2013)

2. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. J. Discrete Algorithms
18, 22–31 (2013)

3. Beller, T., Zwerger, M., Gog, S., Ohlebusch, E.: Space-efficient construction of
the Burrows-Wheeler transform. In: Kurland, O., Lewenstein, M., Porat, E. (eds.)
SPIRE 2013. LNCS, vol. 8214, pp. 5–16. Springer, Heidelberg (2013)

4. Crochemore, M., Grossi, R., Kärkkäinen, J., Landau, G.M.: Computing the
Burrows-Wheeler transform in place and in small space. J. Discrete Algorithms
32, 44–52 (2015)

5. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica 63, 707–730 (2012)

6. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proceedings of the 46th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 184–193 (2005)

7. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and search-
ing XML data via two zips. In: Proceedings of the 15th International World Wide
Web Conference (WWW), pp. 751–760 (2006)

8. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM, 57 (2009)

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

10. Holt, J., McMillan, L.: Constructing Burrows-Wheeler transforms of large string
collections via merging. In: BCB, pp. 464–471. ACM (2014)

11. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181–
192. springer, Heidelberg (2009)

12. Kärkkäinen, J., Kempa, D.: Engineering a lightweight external memory suffix array
construction algorithm. In: Proceedings of CEUR Workshop, ICABD, vol. 1146,
pp. 53–60 (2014). http://CEUR-WS.org

http://CEUR-WS.org

92 G. Manzini

13. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Parallel external memory suffix sorting.
In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp.
329–342. Springer, Heidelberg (2015)

14. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer,
Heidelberg (2001)

15. Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, 2nd edn.
Addison-Wesley, Reading (1998)

16. Li, H.: Fast construction of FM-index for long sequence reads. Bioinformatics 30,
3274–3275 (2014)

17. Manzini, G.: Two space saving tricks for linear time LCP array computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383.
Springer, Heidelberg (2004)

18. Mart́ınez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Inf. Syst. 56, 73–108 (2016)

19. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
ACM Trans. Algorithms 10 (2014). Article 16

	XBWT Tricks
	1 Introduction
	2 XBWT Trie Representation
	3 Adding Suffix Links
	4 Alternative Construction Algorithms
	5 Concluding Remarks
	References

