
Efficient Representation of Multidimensional
Data over Hierarchical Domains

Nieves R. Brisaboa1, Ana Cerdeira-Pena1, Narciso López-López1,
Gonzalo Navarro2, Miguel R. Penabad1(B), and Fernando Silva-Coira1

1 Database Laboratory, University of A Coruña, A Coruña, Spain
{brisaboa,acerdeira,narciso.lopez,penabad,fernando.silva}@udc.es
2 Department of Computer Science, University of Chile, Santiago, Chile

gnavarro@dcc.uchile.cl

Abstract. We consider the problem of representing multidimensional
data where the domain of each dimension is organized hierarchically,
and the queries require summary information at a different node in the
hierarchy of each dimension. This is the typical case of OLAP databases.
A basic approach is to represent each hierarchy as a one-dimensional line
and recast the queries as multidimensional range queries. This approach
can be implemented compactly by generalizing to more dimensions the
k2-treap, a compact representation of two-dimensional points that allows
for efficient summarization queries along generic ranges. Instead, we pro-
pose a more flexible generalization, which instead of a generic quadtree-
like partition of the space, follows the domain hierarchies across each
dimension to organize the partitioning. The resulting structure is much
more efficient than a generic multidimensional structure, since queries
are resolved by aggregating much fewer nodes of the tree.

1 Introduction

In many application domains the data is organized into multidimensional matri-
ces. In some cases, like GIS and 3D modelling, the data are actually points that
lie in a two- or three-dimensional discretized space. There are, however, other
domains such as OLAP systems [5,7] where the data are sets of tuples that are
regarded as entries in a multidimensional cube, with one dimension per attribute.
The domains of those attributes are not necessarily numeric, but may have richer
semantics. A typical case in OLAP [10], in particular in snowflake schemes [12],
is that each tuple contains a numeric summary (e.g., amount of sales), which

Founded in part by Fondecyt 1-140796 (for Gonzalo Navarro); and, for the Span-
ish group, by MINECO (PGE and FEDER) [TIN2013-46238-C4-3-R]; CDTI, AGI,
MINECO [IDI-20141259/ITC-20151305/ITC-20151247]; ICT COST Action IC1302;
and by Xunta de Galicia (co-founded with FEDER) [GRC2013/053]. This article was
elaborated in the context of BIRDS, a European project that has received funding
from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie GA No. 690941.

c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 191–203, 2016.
DOI: 10.1007/978-3-319-46049-9 19



192 N.R. Brisaboa et al.

is regarded as the value of a cell in the data cube. The domain of each dimen-
sion is hierarchical, so that each value in the dimension corresponds to a leaf
in a hierarchy (e.g., countries, cities, and branches in one dimension, and years,
months, and days in another). Queries ask for summaries (sums, maxima, etc.)
of all the cells that are below some node of the hierarchy across each dimension
(e.g., total sales in New York during the previous month).

A way to handle OLAP data cubes is to linearize the hierarchy of the domain
of each dimension, so that each internal node corresponds to a range. Summa-
rization queries are then transformed into multidimensional range queries, which
are solved with multidimensional indexes [14]. Such a structure is, however, more
powerful than necessary, because it is able to handle any multidimensional range,
whereas the OLAP application will only be interested in queries correspond-
ing to combinations of nodes of the hierarchies. There are well-known cases, in
one dimension, of problems that are more difficult for general ranges than if
the possible queries form a hierarchy. For example, categorical range counting
queries (i.e., count the number of different values in a range) requires in gen-
eral Ω(log n/ log log n) time if using O(n polylog n) space [11], where n is the
array size, but if queries form a hierarchy it is easily solved in constant time and
O(n) bits [13]. A second example is the range mode problem (i.e., find the most
frequent value in a range), which is believed to require time Ω(n1.188) if using
O(n1.188) space [4], but if queries form a hierarchy it is easily solved in constant
time and linear space [8].

In this paper we aim at a compact data structure to represent data cubes
where the domains in each dimension are hierarchical. Following the general
idea of the tailored solutions to the problems we mentioned [8,13], our structure
partitions the space according to the hierarchies, instead of performing a regu-
lar partition like generic multidimensional structures. Therefore, the queries of
interest for OLAP applications, which combine nodes of the different hierarchies,
will require aggregating the information of just a few nodes in our partitions,
much fewer than if we used a generic space partitioning method.

Since we aim at compact representations, our baseline will be an extension
to multiple dimensions of a two-dimensional compact summarization structure
known as k2-treap [1], a k2-tree [3] enriched with summary information on the
internal nodes. This n-dimensional treap, called kn-treap, will then be extended
so that it can follow an arbitrary hierarchy, not only a regular one. The topol-
ogy of each hierarchy will be represented using a compact tree representation,
precisely LOUDS [9]. This new structure is called CMHD (Compact represen-
tation of Multidimensional data on Hierarchical Domains). Although we focus
on sum queries in this paper, it is easy to extend our results to other kinds of
aggregations.

The rest of this paper is organized as follows. Sections 2 and 3 describe our
compact baseline and then how it is extended to obtain our new data structure.
An experimental evaluation is given in Sect. 4. Finally, we offer some conclusions
and guidelines for future work.



Efficient Rep. of Multidimensional Data over Hierarchical Domains 193

2 Our Baseline: kn-treaps

The kn-treap is a straightforward extension of the k2-treap to manage multiple
dimensions. It uses a kn-tree (in turn a straightforward extension of the k2-tree)
to store its topology, and stores separately the list of aggregate values obtained
from the sum of all values in the corresponding submatrix. Figure 1 shows a
matrix and the corresponding kn-treap. The example uses two dimensions, but
the same algorithms are used for more dimensions.

Consider a hypercube of n dimensions, where the length of each dimension
is len = ki for some i. If the length of the dimensions are different, we can
artificially extend the hypercube with empty cells, with a minimum impact in
the kn-treap size. The kn-trees, which will be used to represent the kn-treap
topology, are very efficient to represent wide empty areas. The algorithm to
build the kn-treap starts storing on its root level the sum of all values on the
matrix1. It also splits each dimension into k equal-sized parts, thus giving a total
of kn submatrices. We define an ordering to traverse all the submatrices (in the
example, rows left-to-right, columns top-to-bottom). Following this ordering, we
add a child node to the root for each submatrix. The algorithm works recursively
for each child node that represents a nonempty submatrix, storing the sum
of the cells in this submatrix, splitting it and adding child nodes. For empty
submatrices, the node stores a sum of 0.

As we can see in Fig. 1, the root node stores 51, the sum of all values in the
matrix, and it is decomposed into 4 matrices of size 4 × 4, thus adding 4 children
to the root node. Notice that the second submatrix (top-right) is full of zeroes,
so this node just stores a sum of 0 and is not further decomposed. The algorithm
proceeds recursively for the remaining 3 children of the root node.

The final data structures used to represent the kn-treap are the following:

– Values (V): Contains the aggregated values (sums) for each (sub)matrix, as
they would be obtained by a levelwise traversal of the kn-treap. It is encoded
using DACs [2], which compress small values while allowing direct access.

– Tree structure (T): It is a kn-tree that stores a bitmap T for the whole tree
except its leaves. In this case, the usual bitmap L for the leaves in a standard
kn-tree is not used, because the information about which cells have or not a
value is already represented in V . Therefore L is not needed.

The navigation through the kn-treap is basically a depth first traversal. Find-
ing the child of a node can be done very efficiently by using rank and select
operations [9] as in the standard k2-tree. The typical queries in this context are:
finding the value of an individual cell and finding the sum of the values in a
given range of cells, specified by the initial and final coordinates that define the
submatrix of interest.

1 The implemented algorithm is recursive and each sum is actually computed only
once, when returning from the recursive calls.



194 N.R. Brisaboa et al.

Fig. 1. kn-treap with a highlighted range query

Finding the value of a specific cell by its coordinates. To find the value
of the cell, for example the cell at coordinates (4, 3) in the figure, the search
starts at the root node and in each step goes down trough the children of the
matrix overlapping the searched cell. In this example, the search goes through
the first child node (with value 21 in the figure), then through its third child
(with value 6) and finally through the second child, reaching the leaf node with
value 4, which is the value returned by the query.

Finding the sum of the cells in a submatrix. The second type of query
looks for the aggregated value of a range of cells, like the shaded area in Fig. 1.
This is implemented as a depth-first multi-branch traversal of the tree. If the
algorithm finds that the range specified in the query fully contains a submatrix
of the kn-treap that has a precomputed sum, it will use this sum and will not
descend to its child nodes. The figure highlights the branches of the kn-treap
that are used. Notice that this query completely includes the sumatrices of values
{5, 4, 0, 2} and {0, 2, 1, 5}, that have their sums (11 and 8) explicitly stored on
the third level of the tree. Therefore, the algorithm does not need to reach
the leaf levels of the tree for these matrices. Notice also that there is an empty
submatrix that intersects with the region of the query (the first child of the third
child of the root), so the algorithm also stops before reaching the leaf levels in
this submatrix. Only for cells (3, 2) (with a value of 4) and (4, 2) (with a value
of 0) needs the algorithm to reach the leaf levels.

3 Our Proposal: CMHD

As previously stated, CMHD divides the matrix following the natural hierarchy
of the elements in each dimension. In this way we allow the efficient answer of
queries that consider the semantic of the dimensions.



Efficient Rep. of Multidimensional Data over Hierarchical Domains 195

3.1 Conceptual Description

Consider an n-dimensional matrix where each cell contains a weight (e.g., prod-
uct sales, credit card movements, ad views, etc.). The CMHD recursively divides
the matrix into several submatrices, taking into account the limits imposed by
the hierarchy levels of each dimension.

Figure 2 depicts an example of a CMHD representation for two dimensions.
The matrix records the number of product sales in different locations. For each
dimension, a hierarchy of three levels is considered. In particular, cities are aggre-
gated into countries and continents, while products are grouped into sections and
good categories. The tree at the right side of the image shows the resulting con-
ceptual CMHD for that matrix. Observe that each hierarchy level leads to an
irregular partition of the grid into submatrices (each of them defined by the
limits of its elements), having as associated value the sum of product sales of the
individual cells inside it. Thus, the root of the tree stores the total amount of
sales in the complete matrix. Then the matrix is subdivided by considering the
partition corresponding to the first level of the dimension hierarchies (see the
bold lines). Each of the submatrices will become a child node of the root, keeping
the sum of values of the cells in the corresponding submatrix. The decomposition
procedure is repeated for each child, considering subsequent levels of the hierar-
chies (see the dotted lines), as explained, until reaching the last one. Also notice
that, as happens in the kn-treap, the decomposition concludes in all branches
when empty submatrices are reached (that is, in this scenario, when a submatrix
with no sales is found). See, for example, the second child of the root.

Note that CMHD assumes the same height in all the hierarchies that corre-
spond to the different dimensions. Observe that, for each crossing of elements
of the same level from different dimensions, an aggregate value is stored. Notice
also that artificial levels can be easily added to a hierarchy of one dimension by
subdividing all the elements of a level in just one element (itself), thus creating
a new level identical to the previous one. This feature allows us to arbitrarily
match the levels of the different hierarchies, and thus to flexibly adapt the repre-
sentation of aggregated data to particular query needs. That is, by introducing
artificial intermediate levels where required, more interesting aggregated values
will be precomputed and stored. For example, assume we have two dimensions:
(d1) with levels for department, section and product ; and (d2) with levels for
year, season, month and day. If we were interested in obtaining the number of
sales per section for seasons, but also for months, we could devise a new level
arrangement for d1, that will have now the levels department, section, section’,
product ; where each particular section of the second hierarchy level results into
just one section’ child, which is actually itself. In this way aggregated values will
be computed and stored considering sales for section in each season, but also
sales for section’ in each month.

3.2 Data Structures

The conceptual tree that defines the CMHD is represented compactly with dif-
ferent data structures, for the domain hierarchies and for the matrix data itself.



196 N.R. Brisaboa et al.

Fig. 2. Example of CMHD construction for a two-dimensional matrix.

Domain hierarchy representation. The hierarchy of a dimension domain is
essentially a tree of C nodes. We represent this tree using LOUDS [9], a tree
representation that uses 2C bits, and can efficiently navigate it. Using LOUDS,
a tree representing the hierarchy of the elements of a dimension is encoded by
appending the degree r of each node in (left-to-right) level-order, in unary: 1r0.
Figure 2 illustrates the hierarchy encoding of the dimensions used in that example
(see d1 and d2). For instance, the degree of the first node for the products
dimension (d1) is 3, so its unary encoding is 1110. Note that each node (i.e.,
element of a dimension placed at any level of its hierarchy) is associated with one
1 in the encoded representation of the degree of its parent. LOUDS is navigated
using rank and select queries: rankb(i) is the number of bits b up to position
i, and selectb(j) is the position of the jth occurrence of bit b. Both queries are
computed in constant time using o(C) additional bits [6]. For example, given a
node whose unary representation starts at position i, its parent is p = select0(t−
j) + 1, where t = select1(j) and j = rank0(i); and i is the (t − p + 1)th child
of p. On the other hand, the kth child of i is select0(rank1(i) + k − 1) + 1. We
also use a hash table to associate the domain nodes (i.e., labels such as “USA”
in Fig. 2) with the corresponding LOUDS node position.

Data representation. To represent the n-dimensional matrix, we use the fol-
lowing data structures:

– Tree structures (Ta and Tc): to navigate the CMHD, we need to use two dif-
ferent data structures in conjunction. First, Ta, a bit array that, similarly to



Efficient Rep. of Multidimensional Data over Hierarchical Domains 197

the kn-treap, provides a compact representation of the conceptual tree inde-
pendently of the node values, for all the tree levels, except the last one2. That
is, internal nodes whose associated value is greater than 0, will be represented
with a 1. In other case, they will be labeled with a 0. Observe that, for the
kn-treap, the use of this data structure is enough to navigate the tree, taking
advantage of the regular partition of the matrix into equal-sized submatri-
ces. Instead, CMHD follows different hierarchy partitions, which results into
irregular submatrices. Therefore, a second data structure, Tc, is also required
to traverse the CMHD. This is a bit array aligned to Ta, which marks the
limits of each tree node in Ta (this time, it also considers the last tree level).
If the next tree node in Ta has z children, we append 1z−10 to Tc. Notice that
each node of Ta is associated with a 0 in Tc, which allows navigating the trees
using rank and select on Ta and Tc: say we are at a node in Ta that starts
at position i; then it has a kth child iff Ta[i + k − 1] = 1, and if so this child
starts at position select0(Tc, rank1(Ta, i + k − 1)) + 1.

– Values (V): the CMHD is traversed levelwise storing the values associated with
each node (either corresponding to original matrix cells, or to data aggrega-
tions) in a single sequence, which is then represented with DACs [2].

3.3 Queries

Queries in this context give the names of elements of the different dimensions
and ask for the sum of the cells defined for those values. Depending on the
query, we can answer it by just reporting a single aggregated value already kept
in V, or by retrieving several stored values, and then adding them up. The first
scenario arises when the elements (labels) of the different dimensions specified
in the query are all at the same level in their respective hierarchies. The second
situation arises from queries using labels of different levels. In both contexts,
top-down traversals of the conceptual CMHD are required to fetch the values.
The algorithm always starts searching the hash tables for the labels provided
by the query for the different dimensions, to locate the corresponding LOUDS
nodes. From the LOUDS nodes, we traverse each hierarchy upwards to find out
its depth and the child that must be followed at each level to reach it.

This information is then used to find the desired nodes in Ta. For example,
with two dimensions, we start at the root of Ta and descend to the child number
k1 + a1 · k2, where ki is the child that must be followed in the ith dimension
to reach the queried node, and ai is the number of children of the root in the
ith dimension (ai is easily computed with the LOUDS tree of its dimension).
We continue similarly to the node at level 2, and so on, until we reach one
of the query nodes in a dimension, say in the first. Now, to reach the other
(deeper) node in the second dimension, we must descend by every child in the
first dimension, at every level, until reaching the second queried node. Finally,

2 We do not actually need to represent the nodes of the last level in Ta. This data
structure will be used to first identify a node whose children will be later located in
another bit array (Tc). But these already constitute matrix cells, with no children.



198 N.R. Brisaboa et al.

when we have reached all the nodes, we collect and sum up the corresponding
values from V . Note that, if all the queried nodes are in the same level, we
perform a single traversal in Ta. Note also that, if we find any zero in a node
of Ta along this traversal, we immediately prune that branch, as the submatrix
contains no data.

Example. Assume we want to retrieve the total amount of speaker sales in Mon-
treal, in Fig. 2. Since both labels belong to the same level in both dimension
hierarchies (the last one), we will have to retrieve a single stored value in that
level. The path to reach it has been highlighted in the conceptual tree of the
image. To perform the navigation we must start at the root of the tree (posi-
tion 0 in Ta). In the first level, we need to fetch the sixth child (offset 5), as
it corresponds to the submatrix including the element to search, in that level.
Hence we access position 5 in Ta. Since Ta[5] = 1, we must continue descending
to the next level. Recall that we have a 1 in Ta for each node with children,
and that each node is associated with just one 0 in Tc. So the child starts at
position select0(Tc, rank1(Ta, 5)) + 1 = select0(Tc, 4) + 1 = 22 in Ta. In this
level we must access the third child (offset 2), so we check Ta[24] = 1. Again,
as we are in an internal node, we know that its children are located at position
select0(Tc, rank1(Ta, 24)) + 1 = select0(Tc, 9) + 1 = 59. Finally, we reach the
third and last level of the tree, where we know that the corresponding child is
the fourth one (at Ta[59 + 3] = Ta[62]). Recall, however, that this last level is
not represented in Ta. To perform this final step, we directly look into the array
V : V [62 + 1] = V [63] = 7 is the answer.

In case of queries combining labels of different levels, the same procedure
would apply, but having to get the values corresponding to all the possible com-
binations with the element of the lowest hierarchy level (e.g., if we want to obtain
the number of meal sales in America, we must first recover the values associated
with meal -Canada, meal -USA, and meal -Chile, and then sum them up).

4 Experimental Evaluation

This section presents the empirical evaluation of the two previously described
data structures. Both representations have been implemented in C/C++, and
the compiler used was GCC 4.6.1. (option -O9). We ran our experiments in a
dedicated Intel (R) Core (TM) i7-3820 CPU @ 3.60 GHz (4 cores) with 10 MB of
cache, and 64 GB of RAM. The machine runs Ubuntu 12.04.5 LTS with kernel
3.2.0-99 (64 bits).

We generate different datasets, all of them synthetic, to evaluate the per-
formance of the two data structures, varying the number of dimensions and
the number of items on each dimension. These datasets have been labeled as
<dim#>D <item#>, thus referring to their size specifications in the own name.
For example, dataset 5D 16 has 5 dimensions, and the number of items on each
dimension is 16. The total size of this dataset is 165 = 1048576 elements.

In order to show the CMHD advantage of considering the domain semantics,
and computing the aggregate values according to the natural limits imposed by



Efficient Rep. of Multidimensional Data over Hierarchical Domains 199

the hierarchy of elements in each dimension, the dimensions hierarchies have
been generated in two different ways for each dataset. First, the binary organi-
zation, that corresponds to a regular partition. That is, the hierarchies of each
dimension are exactly the same as those produced by a kn-treap matrix partition
into equal-sized submatrices. In this way both data structures store exactly the
same aggregated values. We named it binary because we use a value of k = 2.
Second, the irregular organization, which arbitrary groups data, on each dimen-
sion, into different and irregular hierarchies (different number of divisions, and
also different size at each level). The last scenario simulates what would be a
matrix partition following the semantic needs of a given domain. In this case the
aggregated values stored by the CMHD will be different from those stored by
the kn-treap, and therefore more appropriated to answer queries using the same
“semantic”. That means, in our context, queries considering regions that exactly
match the natural divisions of each dimension at some level of the hierarchies.

To test the structures behavior, we have also considered three different
datasets, with a different number of empty cells, for each size specification: with
no empty cells, and with 25 % and 50 % of empty cells, respectively.

First we analyze the space requirements of both data structures for all the
datasets (see Table 1). Of course, the size decreases as the number of empty
cells increases, in both cases. Moreover, we can also observe that the kn-treap
size is slightly lower than the CMHD. This is expected, because CMHD has to
store the LOUDS representation of each dimension hierarchy, while dimensions
are implicit for the kn-treap. Additionally, CMHD uses a second bitmap (Tc) to
navigate the conceptual tree, which is not necessary when using the kn-treap.

We must also clarify a small issue about the sizes of the kn-treaps: the size
of a standard kn-treap for a specific dataset is always the same, regardless of
the organization of its dimensions (binary or irregular). However, Table 1 shows
some difference in the sizes. For example, for 4D 16, the size for the binary
organization is 44.84, but it is 44.42 for the irregular one. The reason for this
variation is that all queries are performed by taking dimension labels as input,
so we need a vocabulary to translate each label into a range of cells. We have
included that vocabulary (dimension labels and cell ranges) into the size of the
kn-treaps, and the vocabulary for the irregular organization is usually smaller, as
it has less levels and less dimension labels (because each node in the conceptual
tree can have more than 2 children in the irregular organization, while the binary
organization always has 2).

Regarding query times, we have run several sets of queries for all the datasets.
As previously mentioned, queries are posed in this context by giving one element
name (label) for each different dimension, as it is the natural way to query a
multidimensional matrix defined by hierarchical dimensions. Since the kn-treap
does not directly work with labels, each query has been translated into the
equivalent ranged query, establishing the initial and final coordinates for each
dimension. The following types of queries have been considered:

– Finding one precomputed value. This value can be a specific cell of the matrix
(so forcing the algorithms to reach the last level of the tree), or a precomputed
value that corresponds to an internal node of the conceptual tree.



200 N.R. Brisaboa et al.

Table 1. Space requirements of kn-treap and CMHD data structures (in KB)

Name0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 44.84 55.56 44.22 47.82 38.16 47.54 37.54 43.04 29.51 37.09 28.89 34.18

4D 32 680.45 864.17 679.08 750.17 552.15 710.05 550.78 640.80 400.13 527.57 398.76 501.01

5D 16 631.10 793.34 630.41 729.48 527.23 667.69 526.54 653.25 408.10 523.27 407.41 509.80

5D 32 20098.9925328.2620097.4323344.1816272.6120691.8716271.0420167.6211776.9415237.5711775.3715471.61

6D 16 9663.3712073.82 9662.4811456.36 8180.3110278.04 8179.4310532.61 6419.99 8135.86 6419.11 8279.60

Following the example of Fig. 2, a query asking for the amount of speakers
sales in Montreal or the total number of beberages sales in Italy would be
queries of this type, the former accessing an individual cell and the later
obtaining a precomputed value in the penultimate level of the tree.

– Finding the sum of several precomputed values. This kind of query must obtain
a sum that is not precomputed and stored in the data structure itself. In turn,
it must access several of these aggregated values and then add them up. Given
that we are specifying the queries by dimension labels, this type of query is
defined by using labels that belong to different levels of the hierarchies across
the dimensions. The lowest level, which corresponds to individual cells, is not
used for this scenario.

An example of this query type would be to find the total number of sales
of electronic products in Chile. Note that electronic is located at the first
level of its dimension hierarchy, but Chile is at the second level of the second
dimension (see Fig. 2). Hence, the values corresponding to computers-Chile,
cameras-Chile, and audio-Chile must be first retrieved to finally sum them up.

Each created set contains 10, 000 queries, randomly generated, of the two
previous types, for each dataset. The following tables show the average query
times (in microseconds per query) for both data structures, taking into account
the two different matrix partitions of the datasets (binary or irregular) and also
the percentage of empty cells.

We first show the results obtained for queries that just need to retrieve one
precomputed value, at different levels. On the one hand, Table 2 displays query
times for specific matrix cells, that is, located at the last level of the conceptual
tree. In this case, the kn-treap performs better than the CMHD in almost all
cases. This is an expected outcome as both data structures must reach the leaf
level to get the answer, and the depth first navigation of the tree is simpler in the
kn-treap (just products and rank operations). In any case, CMHD also performs
quite well, using just a few microseconds to answer any of the queries.

On the other hand, Table 3 shows the average query times for queries of
the same type, but now considering precomputed values stored in nodes of an
intermediate level of the tree (in particular, the penultimate level). Note that
this fact holds for both data structures when working with a regular partition
of the matrix (that is, the binary scenario). Thus, in this case, the kn-treap
gets better results than CMHD, but with slight time differences. Yet, observe



Efficient Rep. of Multidimensional Data over Hierarchical Domains 201

Table 2. Average query times (in µs) for queries finding one precomputed value (orig-
inal matrix cells)

Dataset 0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 2 4 2 3 2 4 2 2 2 4 2 3

4D 32 2 5 3 4 2 4 2 1 2 4 1 4

5D 16 2 4 3 4 2 5 3 2 2 5 2 2

5D 32 3 6 3 5 2 4 3 3 2 6 3 2

6D 16 3 4 3 4 3 6 4 2 4 5 4 4

that this is not the actual scenario when dealing with meaningful application
domains, where rich semantics arise. This situation is that corresponding to
what we called irregular datasets. In this case, CMHD excels, as expected, given
that this data structure has been particularly designed to manage hierarchical
domains. Results show that CMHD is able to perform up to 12 times faster than
kn-treap (for the best case).

Table 3. Average query times (in µs) for queries finding one precomputed value (penul-
timate tree level)

Dataset 0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 1 4 7 3 1 3 6 2 2 4 5 2

4D 32 1 3 9 3 1 3 7 2 1 3 6 1

5D 16 2 4 11 1 2 3 9 1 2 4 7 3

5D 32 3 4 23 2 2 4 18 3 2 3 12 2

6D 16 2 4 35 2 2 2 28 3 3 4 21 1

To check whether the observed differences are significative (in the cases where
times were closer) we performed a statistical significance test. We checked the
4D 16 and 5D 16 datasets, for the irregular organization, with all the different
configurations of empty cells.

We show here, as a proof, the details for 4D 16 with 50 % of empty cells,
which took 5µs to the kn-treap, and 2µs to CMHD. We ran 20 sets of 10, 000
queries, and measured both the average time and the standard deviation for the
kn-treap (5.100 and 0.447, respectively) and for the CMHD (1.750 and 0.550,
respectively). With these results, we obtain a critical value of 4.725, which is
greater than 2.580, so the difference is significative with a 99 % of confidence
level. The remaining tests also proved the same significance results.

Finally, Table 4 presents the average query times for the second type of
queries (that is, those having to recover several precomputed values and then
adding them up to provide the final answer). As results show, the kn-treap dis-
plays a better performance than CMHD for the binary scenario. However, again
this is not the most interesting situation in real domains. If we observe the results



202 N.R. Brisaboa et al.

Table 4. Average query times (in µs) for queries finding a sum of precomputed values

Dataset 0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 3 10 20 4 3 6 16 3 2 6 12 6

4D 32 6 21 21 3 4 20 17 4 4 20 12 5

5D 16 4 8 30 8 4 8 25 3 3 7 19 1

5D 32 6 26 49 3 8 23 39 5 6 21 27 2

6D 16 5 15 106 7 5 10 82 6 4 9 63 8

obtained for the irregular datasets, we will appreciate that CMHD clearly out-
performs the kn-treap in this scenario, thus demonstrating the good capabilities
of our proposal to cope with the aim of this work.

5 Conclusions and Future Work

We have presented a multidimensional compact data structure that is tailored
to perform aggregate queries on data cubes over hierarchical domains, rather
than general range queries. The structure represents each hierarchy with a suc-
cinct tree representation, and then partitions the data cube according to the
product of the hierarchies. This partition is represented with an extension of
the k2-treap to higher dimensions and to non-regular partitions. The result-
ing structure, dubbed CMHD, is much faster than a regular multidimensional
k2-treap when the queries follow the hierarchical domains. This makes it partic-
ularly attractive to represent OLAP data cubes compactly and efficiently answer
meaningful aggregate queries.

As future work, we plan to experiment on much larger collections. This would
make the vocabulary of hierarchy nodes much less significant compared to the
data itself (especially for the CMHD). We also plan to test real datasets (for
example, coming from data warehouses) and real query workloads. We also
expect to compare our results with established OLAP database management
systems, and to enrich our prototype with other kinds of queries and data.

References

1. Brisaboa, N.R., de Bernardo, G., Konow, R., Navarro, G., Seco, D.: Aggregated
2d range queries on clustered points. Inf. Syst. 60, 34–49 (2016)

2. Brisaboa, N.R., Ladra, S., Navarro, G.: DACs: bringing direct access to variable-
length codes. Inf. Process. Manag. 49, 392–404 (2013)

3. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Syst. 39, 152–174 (2014)

4. Chan, T., Durocher, S., Larsen, K., Morrison, J., Wilkinson, B.: Linear-space data
structures for range mode query in arrays. In: Proceedings of 29th International
Symposium on Theoretical Aspects of Computer Science (STACS), pp. 290–301
(2012)



Efficient Rep. of Multidimensional Data over Hierarchical Domains 203

5. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

6. Clark, D.: Compact PAT Trees. Ph.D. thesis, University of Waterloo, Canada
(1996)

7. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP. On-Line Analytical
Processing to User-Analysts: An IT Mandate. E. F. Codd and Associates (1993)

8. Hon, W., Shah, R., Thankachan, S.V., Vitter, J.S.: Space-efficient frameworks for
top-k string retrieval. J. ACM 61(2), 9:1–9:36 (2014)

9. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, SFCS 1989, pp. 549–554.
IEEE Computer Society, Washington, DC (1989)

10. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd edn. Wiley, New York (2002)

11. Larsen, K., van Walderveen, F.: Near-optimal range reporting structures for cate-
gorical data. In: Proceedings of 24th Symposium on Discrete Algorithms (SODA),
pp. 265–276 (2013)

12. Levene, M., Loizou, G.: Why is the snowflake schema a good data warehouse
design? Inf. Syst. 28(3), 225–240 (2003)

13. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Dis-
crete Algorithms 5, 12–22 (2007)

14. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, San Francisco (2006)


	Efficient Representation of Multidimensional Data over Hierarchical Domains
	1 Introduction
	2 Our Baseline: kn-treaps
	3 Our Proposal: CMHD
	3.1 Conceptual Description
	3.2 Data Structures
	3.3 Queries

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References


