
Shunsuke Inenaga · Kunihiko Sadakane
Tetsuya Sakai (Eds.)

 123

LN
CS

 9
95

4

23rd International Symposium, SPIRE 2016
Beppu, Japan, October 18–20, 2016
Proceedings

String Processing
and Information Retrieval



Lecture Notes in Computer Science 9954

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Shunsuke Inenaga • Kunihiko Sadakane
Tetsuya Sakai (Eds.)

String Processing
and Information Retrieval
23rd International Symposium, SPIRE 2016
Beppu, Japan, October 18–20, 2016
Proceedings

123



Editors
Shunsuke Inenaga
Informatics
Kyushu University
Fukuoka
Japan

Kunihiko Sadakane
Mathematical Informatics
University of Tokyo
Tokyo
Japan

Tetsuya Sakai
Computer Science and Engineering
Waseda University
Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46048-2 ISBN 978-3-319-46049-9 (eBook)
DOI 10.1007/978-3-319-46049-9

Library of Congress Control Number: 2016950414

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the papers presented at SPIRE 2016, the 23rd International
Symposium on String Processing and Information Retrieval, held October 18–20, 2016
in Beppu, Japan. Following the tradition from previous years, the focus of SPIRE this
year was on fundamental studies on string processing and information retrieval, as well
as application areas such as bioinformatics, Web mining, and so on.

The call for papers resulted in 46 submissions. Each submitted paper was reviewed
by at least three Program Committee members. Based on the thorough reviews and
discussions by the Program Committee members and additional subreviewers, the
Program Committee decided to accept 25 papers.

The main conference featured three keynote speeches by Kunsoo Park (Seoul
National University), Koji Tsuda (University of Tokyo), and David Hawking
(Microsoft & Australian National University), together with presentations by authors
of the 25 accepted papers. Prior to the main conference, two satellite workshops were
held: String Masters in Fukuoka, held October 12–14, 2016 in Fukuoka, and the 11th
Workshop on Compression, Text, and Algorithms (WCTA 2016), held on October 17,
2016 in Beppu. String Masters was coordinated by Hideo Bannai, and WCTA was
coordinated by Simon J. Puglisi and Yasuo Tabei. WCTA this year featured two
keynote speeches by Juha Kärkkäinen (University of Helsinki) and Yoshitaka Yama-
moto (University of Yamanashi).

We would like to thank the SPIRE Steering Committee for giving us the opportunity
to host this wonderful event. Also, many thanks go to the Program Committee
members and the additional subreviewers, for their valuable contribution ensuring the
high quality of this conference. We appreciate Springer for their professional pub-
lishing work and for sponsoring the Best Paper Award for SPIRE 2016. We finally
thank the Local Organizing Team (led by Hideo Bannai) for their effort to run the event
smoothly.

October 2016 Shunsuke Inenaga
Kunihiko Sadakane

Tetsuya Sakai
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Indexes for Highly Similar Sequences

Kunsoo Park

Department of Computer Science and Engineering, Seoul National University,
Seoul, South Korea

kpark@theory.snu.ac.kr

The 1000 Genomes Project aims at building a database of a thousand individual human
genome sequences using a cheap and fast sequencing, called next generation
sequencing, and the sequencing of 1092 genomes was announced in 2012. To sequence
an individual genome using the next generation sequencing, the individual genome is
divided into short segments called reads and they are aligned to the human reference
genome. This is possible because an individual genome is more than 99 % identical to
the reference genome. This similarity also enables us to store individual genome
sequences efficiently.

Recently many indexes have been developed which not only store highly similar
sequences efficiently but also support efficient pattern search. To exploit the similarity
of the given sequences, most of these indexes use classical compression schemes such
as run-length encoding and Lempel-Ziv compression.

We introduce a new index for highly similar sequences, called FM index of
alignment. We start by finding common regions and non-common regions of highly
similar sequences. We need not find a multiple alignment of non-common regions.
Finding common and non-common regions is much easier and simpler than finding a
multiple alignment, especially in the next generation sequencing. Then we make a
transformed alignment of the given sequences, where gaps in a non-common region are
put together into one gap. We define a suffix array of alignment on the transformed
alignment, and the FM index of alignment is an FM index of this suffix array of
alignment. The FM index of alignment supports the LF mapping and backward search,
the key functionalities of the FM index. The FM index of alignment takes less space
than other indexes and its pattern search is also fast.

This research was supported by the Bio & Medical Technology Development Program of the NRF
funded by the Korean government, MSIP (NRF-2014M3C9A3063541).



Simulation in Information Retrieval: With
Particular Reference to Simulation

of Test Collections

David Hawking

Microsoft, Canberra, Australia
david.hawking@acm.org

Keywords: Information retrieval � Simulation � Modeling

Simulation has a long history in the field of Information Retrieval. More than 50 years
ago, contractors for the US Office of Naval Research (ONR) were working on simu-
lating information storage and retrieval systems.1

The purpose of simulation is to predict the behaviour of a system over time, or
under conditions in which a real system can’t easily be observed. My talk will review
four general areas of simulation activity. First is the simulation of entire information
retrieval systems, as for example exemplified by Blunt (1965):

A general time-flow model has been developed that enables a systems engineer to simulate the
interactions among personnel, equipment and data at each step in an information processing
effort.

and later by Cahoon and McKinley (1996).
A second area is the simulation of behaviour when a person interacts with an

information retrieval service, with particular interest in multi-turn interactions. For
example user simulation has been used to study implicit feedback systems (White et al.,
2004), PubMed browsing strategies (Lin and Smucker, 2007), and query suggestion
algorithms (Jiang and He, 2013).

A third area has been little studied – simulating an information retrieval service (in
the manner of Kemelen’s 1770 Automaton Chess Player) in order to study the beha-
viour of real users when confronted with a retrieval service which hasn’t yet been built.

The final area is that of simulation of test collections. It is an area in which I have
been working recently, with my colleagues Bodo Billerbeck, Paul Thomas and Nick
Craswell. My talk will include some preliminary results.

As early as 1973, Michael Cooper published a method for generating artificial
documents and queries in order to, “evaluate the effect of changes in characteristics
of the query and document files on the quantity of material retrieved.” More recently,
Azzopardi and de Rijke (2006) have studied the automated creation of known-item test
collections.

1 “System” used in the Systems Theory sense.



Organizations like Microsoft have a need to develop, tune and experiment with
information retrieval services using simulated versions of private or confidential data.
Furthermore, there may be a need to predict the performance of a retrieval service when
an existing data set is scaled up or altered in some way.

We have been studying how to simulate text corpora and query sets for such
purposes. We have studied many different corpora with a wide range of different
characteristics. Some of the corpora are readily available to other researchers; others we
are unable to share. With accurate simulation models we may be able to share sufficient
characteristics of those data sets to enable others to reproduce our results.

The models underpinning our simulations include:

1. Models of the distribution of document lengths.
2. Models of the distribution of word frequencies. (Revisiting Zipf’s law.)
3. Models of term dependence.
4. Models of the representation of indexable words.
5. Models of how these change as the corpus grows. (e.g. revisiting the models due to

Herdan and Heaps.)

We have implemented a document generator based on these models and software
for estimating model parameters from a real corpus. We test the models by running the
generator with extracted parameters and comparing various properties of the resulting
corpus with those of the original. In addition, we test the growth model by extracting
parameters from 1 % samples and simulating a corpus 100 times larger. In early
experimentation we have found reasonable agreement between the properties of the real
corpus and its scaled-up emulation.

The value gained from a simulation approach depends heavily on the accuracy
of the system model, but a highly accurate model may be very complex and may be
over-fitted to the extent that it doesn’t generalise. We study what is required to achieve
high fidelity but also discuss simpler forms of model which may be sufficiently accurate
for less demanding requirements.

References

1. Blunt, C.R.: An information retrieval system model. Report of Contract Nonr. 3818(00), ONR
(1965). http://www.dtic.mil/dtic/tr/fulltext/u2/623590.pdf

2. Cooper, M.D.: A simulation model of a retrieval system. Inf. Storage Retrieval 9, 13–32
(1973)
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Significant Pattern Mining: Efficient
Algorithms and Biomedical Applications

Koji Tsuda

Department of Computational Biology and Medical Sciences, Graduate School
of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

Pattern mining techniques such as itemset mining, sequence mining and graph mining
have been applied to a wide range of datasets. To convince biomedical researchers,
however, it is necessary to show statistical significance of obtained patterns to prove
that the patterns are not likely to emerge from random data. The key concept of
significance testing is family-wise error rate, i.e., the probability of at least one pattern
is falsely discovered under null hypotheses. In the worst case, FWER grows linearly to
the number of all possible patterns. We show that, in reality, FWER grows much
slower than the worst case, and it is possible to find significant patterns in biomedical
data. The following two properties are exploited to accurately bound FWER and
compute small p-value correction factors. (1) Only closed patterns need to be counted.
(2) Patterns of low support can be ignored, where the support threshold depends on the
Tarone bound. We introduce efficient depth-first search algorithms for discovering all
significant patterns and discuss about parallel implementations.
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RLZAP: Relative Lempel-Ziv
with Adaptive Pointers

Anthony J. Cox1, Andrea Farruggia2, Travis Gagie3,4(B), Simon J. Puglisi3,4,
and Jouni Sirén5

1 Illumina Cambridge Ltd., Cambridge, UK
2 University of Pisa, Pisa, Italy

a.farruggia@di.unipi.it
3 Helsinki Institute for Information Technology, Espoo, Finland

4 University of Helsinki, Helsinki, Finland
travis.gagie@gmail.com, simon.j.puglisi@gmail.com

5 Wellcome Trust Sanger Institute, Hinxton, UK
jouni.siren@iki.fi

Abstract. Relative Lempel-Ziv (RLZ) is a popular algorithm for com-
pressing databases of genomes from individuals of the same species when
fast random access is desired. With Kuruppu et al.’s (SPIRE 2010) orig-
inal implementation, a reference genome is selected and then the other
genomes are greedily parsed into phrases exactly matching substrings of
the reference. Deorowicz and Grabowski (Bioinformatics, 2011) pointed
out that letting each phrase end with a mismatch character usually gives
better compression because many of the differences between individuals’
genomes are single-nucleotide substitutions. Ferrada et al. (SPIRE 2014)
then pointed out that also using relative pointers and run-length com-
pressing them usually gives even better compression. In this paper we
generalize Ferrada et al.’s idea to handle well also short insertions, dele-
tions and multi-character substitutions. We show experimentally that our
generalization achieves better compression than Ferrada et al.’s imple-
mentation with comparable random-access times.

1 Introduction

Next-generation sequencing technologies can quickly and cheaply yield far more
genetic data than can fit into an everyday computer’s memory, so it is important
to find ways to compress it while still supporting fast random access. Often the
data is highly repetitive and can thus be compressed very well with LZ77 [1],
but then random access is slow. For many applications, however, we need store
only a database of genomes from individuals of the same species, which are not
only highly repetitive collectively but also but also all very similar to each other.

Supported by the Academy of Finland through grants 258308, 268324, 284598 and
285221 and by the Wellcome Trust grant 098051. Parts of this work were done during
the second author’s visit to the University of Helsinki and during the third author’s
visits to Illumina Cambridge Ltd. and the University of A Coruña, Spain.

c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 1–14, 2016.
DOI: 10.1007/978-3-319-46049-9 1



2 A.J. Cox et al.

Kuruppu, Puglisi and Zobel [2] proposed choosing one of the genomes as a refer-
ence and then greedily parsing each of the others into phrases exactly matching
substrings of that reference. They called their algorithm Relative Lempel-Ziv
(RLZ) because it can be viewed as a version of LZ77 that looks for phrase sources
only in the reference, which greatly speeds up random access later. (Ziv and
Merhav [3] introduced a similar algorithm for estimating the relative entropy
of the sources of two sequences.) RLZ is now is popular for compressing not
only such genomic databases but also other kinds of repetitive datasets; see,
e.g., [4,5]. Deorowicz and Grabowski [6] pointed out that letting each phrase
end with a mismatch character usually gives better compression on genomic
databases because many of the differences between individuals’ genomes are
single-nucleotide substitutions, and gave a new implementation with this opti-
mization. Ferrada, Gagie, Gog and Puglisi [7] then pointed out that often the cur-
rent phrase’s source ends two characters before the next phrase’s source starts, so
the distances between the phrases’ starting positions and their sources’ starting
positions are the same. They showed that using relative pointers and run-length
compressing them usually gives even better compression on genomic databases.

In this paper we generalize Ferrada et al.’s idea to handle well also short
insertions, deletions and substitutions. In the Sect. 2 we review in detail RLZ
and Deorowicz and Grabowski’s and Ferrada et al.’s optimizations. We also
discuss how RLZ can be used to build relative data structures and why the opti-
mizations that work to better compress genomic databases fail for this applica-
tion. In Sect. 3 we explain the design and implementation of RLZ with adaptive
pointers (RLZAP): in short, after parsing each phrase, we look ahead several
characters to see if we can start a new phrase with a similar relative pointer;
if so, we store the intervening characters as mismatch characters and store the
new relative pointer encoded as its difference from the previous one. We present
our experimental results in Sect. 4, showing that RLZAP achieves better com-
pression than Ferrada et al.’s implementation with comparable random-access
times. Our implementation and datasets are available for download from http://
github.com/farruggia/rlzap.

2 Preliminaries

In this section we discuss the previous work that is the basis and motivation for
this paper. We first review in greater detail Kuruppu et al.’s implementation of
RLZ and Deorowicz and Grabowski’s and Ferrada et al.’s optimizations. We then
quickly summarize the new field of relative data structures — which concerns
when and how we can use compress a new instance of a data structure, using an
instance we already have for a similar dataset — and explain how it uses RLZ
and why it needs a generalization of Deorowicz and Grabowski’s and Ferrada
et al.’s optimizations.

http://github.com/farruggia/rlzap
http://github.com/farruggia/rlzap


RLZAP: Relative Lempel-Ziv with Adaptive Pointers 3

2.1 RLZ

To compute the RLZ parse of a string S[1;n] with respect to a reference string
R using Kuruppu et al.’s implementation, we greedily parse S from left to right
into phrases

S[p1 = 1; p1 + �1 − 1]
S[p2 = p1 + �1; p2 + �2 − 1]

...
S[pt = pt−1 + �t−1; pt + �t − 1 = n]

such that each S[pi; pi+�i−1] exactly matches some substring R[qi; qi+�i−1]
of R — called the ith phrase’s source — for 1 ≤ i ≤ t, but S[pi; pi + �i] does not
exactly match any substring in R for 1 ≤ i ≤ t − 1. For simplicity, we assume R
contains every distinct character in S, so the parse is well-defined.

Suppose we have constant-time random access to R. To support constant-
time random access to S, we store an array Q[1; t] containing the starting posi-
tions of the phrases’ sources, and a compressed bitvector B[1;n] with constant
query time (see, e.g., [8] for a discussion) and 1 s marking the first character of
each phrase. Given a position j between 1 and n, we can compute in constant
time

S[j] = R [Q[B.rank(j)] + j − B.select(B.rank(j))] .

If there are few phrases then Q is small and B is sparse, so we use little space.
For example, if

R = ACATCATTCGAGGACAGGTATAGCTACAGTTAGAA

S = ACATGATTCGACGACAGGTACTAGCTACAGTAGAA

then we parse S into

ACAT,GA,TTCGA,CGA,CAGGTA,CTA,GCTACAGT,AGAA,

and store

Q = 1, 10, 7, 9, 15, 24, 23, 32
B = 10001010000100100000100100000001000.

To compute S[25], we compute B.rank(25) = 7 and B.select(7) = 24, which
tell us that S[25] is 25 − 24 = 1 character after the initial character in the 7th
phrase. Since Q[7] = 23, we look up S[25] = R[24] = C.

2.2 GDC

Deorowicz and Grabowski [6] pointed out that with Kuruppu et al.’s implemen-
tation of RLZ, single-character substitutions usually cause two phrase breaks:
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e.g., in our example S[1; 11] = ACATGATTCGA is split into three phrases, even
though the only difference between it and R[1; 11] is that S[5] = G and R[5] = C.
They proposed another implementation, called the Genome Differential Com-
pressor (GDC), that lets each phrase end with a mismatch character — as the
original version of LZ77 does — so single-character substitutions usually cause
only one phrase break. Since many of the differences between individuals’ DNA
are single-nucleotide substitutions, GDC usually compresses genomic databases
better than Kuruppu et al.’s implementation.

Specifically, with GDC we parse S from left to right into phrases S[p1; p1 +
�1], S[p2 = p1 + �1 + 1; p2 + �2], . . . , S[pt = pt−1 + �t−1 + 1; pt + �t = n] such that
each S[pi; pi + �i − 1] exactly matches some substring R[qi; qi + �i − 1] of R —
again called the ith phrase’s source — for 1 ≤ i ≤ t, but S[pi; pi + �i] does not
exactly match any substring in R, for 1 ≤ i ≤ t − 1.

Suppose again that we have constant-time random access to R. To support
constant-time random access to S, we store an array Q[1; t] containing the start-
ing positions of the phrases’ sources, an array M [1; t] containing the last charac-
ter of each phrase, and a compressed bitvector B[1;n] with constant query time
and 1 s marking the last character of each phrase. Given a position j between 1
and n, we can compute in constant time

S[j] =
{

M [B.rank(j)] if B[j] = 1,
R [Q[B.rank(j) + 1] + j − B.select(B.rank(j)) − 1] otherwise,

assuming B.select(0) = 0.
In our example, we parse S into

ACATG,ATTCGAC,GACAGGTAC,TAGCTACAGT,AGAA,

and store

Q = 1, 6, 13, 21, 32
M = GCCTA

B = 00001000000100000000100000000010001.

To compute S[25], we compute B[25] = 0, B.rank(25) = 3 and B.select(3) =
21, which tell us that S[25] is 25−21−1 = 3 characters after the initial character
in the 4th phrase. Since Q[4] = 21, we look up S[25] = R[24] = C.

2.3 Relative Pointers

Ferrada, Gagie, Gog and Puglisi [7] pointed out that after a single-character sub-
stitution, the source of the next phrase in GDC’s parse often starts two characters
after the end of the source of the current phrase: e.g., in our example the source
for S[1; 5] = ACATG is R[1; 4] = ACAT and the source for S[6; 12] = ATTCGAC
is R[6; 11] = ATTCGA. This means the distances between the phrases’ start-
ing positions and their sources’ starting positions are the same. They proposed
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an implementation of RLZ that parses S like GDC does but keeps a relative
pointer, instead of the explicit pointer, and stores the list of those relative point-
ers run-length compressed. Since the relative pointers usually do not change after
single-nucleotide substitutions, RLZ with relative pointers usually gives even bet-
ter compression than GDC on genomic databases. (We note that Deorowicz,
Danek and Niemiec [9] recently proposed a new version of GDC, called GDC2,
that has improved compression but does not support fast random access.)

Suppose again that we have constant-time random access to R. To support
constant-time random access to S, we store the array M of mismatch characters
and the bitvector B as with GDC. Instead of storing Q, we build an array D[1; t]
containing, for each phrase, the difference qi − pi between its source’s starting
position and its own starting position. We store D run-length compressed: i.e., we
partition it into maximal consecutive subsequences of equal values, store an array
V containing one copy of the value in each subsequence, and a bitvector L[1; t]
with constant query time and 1 s marking the first value of each subsequence.
Given k between 1 and t, we can compute in constant time

D[k] = V [L.rank(k)].

Given a position j between 1 and n, we can compute in constant time

S[j] =
{

M [B.rank(j)] if B[j] = 1,
R [D[B.rank(j) + 1] + j] otherwise.

In our example, we again parse S into

ACATG,ATTCGAC,GACAGGTAC,TAGCTACAGT,AGAA,

and store

M = GCCTA

B = 00001000000100000000100000000010001,

but now we store D = 0, 0, 0,−1, 0 as V = 0,−1, 0 and L = 10011 instead of
storing Q. To compute S[25], we again compute B[25] = 0 and B.rank(25) = 3,
which tell us that S[25] is in the 4th phrase. We add 25 to the 4th relative pointer
D[4] = V [L.rank(4)] = −1 and obtain 24, so S[25] = R[24].

A single-character insertion or deletion usually causes only a single phrase
break in the parse but a new run in D, with the values in the run being one less
or one more than the values in the previous run. In our example, the insertion
of S[21] = C causes the value to decrement to −1, and the deletion of R[26] = T
(or, equivalently, of R[27] = T) causes the value to increment to 0 again. In
larger examples, where the values of the relative pointers are often a significant
fraction of n, it seems wasteful to store a new value uncompressed when it differs
only by 1 from the previous value.

For example, suppose R and S are thousands of characters long,

R[1783; 1817] = . . .ACATCATTCGAGGACAGGTATAGCTACAGTTAGAA . . .

S[2009; 2043] = . . .ACATGATTCGACGACAGGTACTAGCTACAGTAGAA . . .
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and GDC still parses S[2009; 2043] into the same phrases as before, with their
sources in R[1783; 1817]. The relative pointers for those phrases are −136,−136,
−136,−137,−136, so we store −136,−137,−136 for them in V , which takes at
least a couple of dozen bits without further compression.

2.4 Relative Data Structures

As mentioned in Sect. 1, the new field of relative data structures concerns when
and how we can use compress a new instance of a data structure, using an
instance we already have for a similar dataset. Suppose we have a basic FM-
index [10] for R — i.e., a rank data structure over the Burrows-Wheeler Trans-
form (BWT) [11] of R, without a suffix-array sample — and we want to use it
to build a very compact basic FM-index for S. Since R and S are very similar,
it is not surprising that their BWTs are also fairly similar:

BWT(R) = AAGGT$TTGCCTCCAAATTGAGCAAAGACTAGATGA
BWT(S) = AAGGT$GTTTCCCGAAAATGAACCTAAGACGGCTAA.

Belazzougui, Gog, Gagie, Manzini and Sirén [12] (see also [13]) showed how we
can implement such a relative FM-index for S by choosing a common subse-
quence of the two BWTs and then storing bitvectors marking the characters not
in that common subsequence, and rank data structures over those characters.
They also showed how to build a relative suffix-array sample to obtain a fully-
functional relative FM-index for S, but reviewing that is beyond the scope of
this paper.

An alternative to Belazzougui et al.’s basic approach is to compute the RLZ
parse of BWT(S) with respect to BWT(R) and then store the rank for each
character just before the beginning of each phrase. We can then answer a rank
query BWT(S).rankX(j) by finding the beginning BWT(S)[p] of the phrase con-
taining BWT(S)[j] and the beginning BWT(R)[q] of that phrase’s source, then
computing

BWT(S).rankX(p − 1) + BWT(R).rankX(q + j − p) − BWT(R).rankX(q − 1).

Unfortunately, single-character substitutions between R and S usually cause
insertions, deletions and multi-character substitutions between BWT(R) and
BWT(S), so Deorowicz and Grabowski’s and Ferrada et al.’s optimizations no
longer help us, even when the underlying strings are individuals’ genomes. On
the other hand, on average those insertions, deletions and multi-character sub-
stitutions are fairly few and short [14], so there is still hope that those optimized
parsing algorithms can be generalized and applied to make this alternative prac-
tical.

Our immediate concern is with a recent implementation of relative suffix
trees [15], which uses relative FM-indexes and relatively-compressed longest-
common-prefix (LCP) arrays. Deorowicz and Grabowski’s and Ferrada et al.’s
optimizations also fail when we try to compress the LCP arrays, and when we use
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Kuruppu et al.’s implementation of RLZ the arrays take a substantial fraction
of the total space. In our example, however,

LCP(R) = 0,1,1,4,3,1,2,2,3,2,1,2,2,0,3,2,3,1,1,0,2,2,1,1,2,1,2,0,2,3,2,1,2,1,2

LCP(S) = 0,1,1,4,3,2,2,1,2,2,2,1,2,0,3,2,1,4,1,3,0,2,3,2,1,1,1,3,0,3,2,3,1,1,1

are quite similar: e.g., they have a common subsequence of length 26, almost
three quarters of their individual lengths. LCP values tend to grow at least
logarithmically with the size of the strings, so good compression becomes more
important.

3 Adaptive Pointers

We generalize Ferrada et al.’s optimization to handle short insertions, deletions
and substitutions by introducing adaptive pointers and by allowing more than
one mismatch character at the end of each phrase. An adaptive pointer is rep-
resented as the difference from the previous non-adaptive pointer. Henceforth
we say a phrase is adaptive if its pointer is adaptive, and explicit otherwise. In
this section we first describe our parsing strategy and then describe how we can
support fast random access.

3.1 Parsing

The parsing strategy is a generalization of the Greedy approach for adaptive
phrases. The parser first compute the matching statistics between input S and
reference R: for each suffix S[i;n] of S, a suffix of R with the longest LCP with
S[i] is found; let R[k;m] be that suffix. Let MatchPtr(i) be the relative pointer
k − i and MatchLen(i) be the length of the LCP between the two suffixes S[i;n]
and R[k;m].

Parsing scans S from left to right, in one pass. Let us assume S has already
been parsed up to a position i, and let us assume the most recent explicit phrase
starts at position h. The parser first tries to find an adaptive phrase (adaptive
step); if it fails, looks for an explicit phrase (explicit step). Specifically:

1. adaptive step: the parser checks, for the current position i if (i) the relative
pointer MatchPtr(i) can be represented as an adaptive pointer, that is, if the
differential MatchPtr(i) -MatchPtr(j) can be represented as a signed binary
integer of at most DeltaBits bits, and (ii) if it is convenient to start a new
adaptive phrase instead of representing literals as they are, that is, whether
MatchLen(i) · log σ > DeltaBits, where σ is the alphabet size. The parser
outputs the adaptive phrase and advances MatchLen(i) positions if both con-
ditions are satisfied; otherwise, it looks for the leftmost position k in range
i + 1 up to i + LookAhead where both conditions are satisfied. If it finds
such position k, the parser outputs literals S[i; k −1] and an adaptive phrase;
otherwise, it goes to step 2.
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2. explicit step: in this step the parser goes back to position i and scans forward
until it has found a match starting at position k ≥ i where at least one
of these two conditions is satisfied: (i) match length MatchLen(k) is greater
than a parameter ExplicitLen; (ii) the match, if selected as explicit phrase, is
followed by an adaptive phrase. It then outputs a literal range S[i; k − 1] and
the explicit phrase found.

The purpose of the two conditions on the explicit phrase is to avoid having
spurious explicit phrases which are not associated to a meaningfully aligned
substrings.

It is important to notice that our data structure logically represents an adap-
tive/explicit phrase followed by a literal run as a single phrase: for example, an
adaptive phrase of length 5 followed by a literal sequence GAT is represented as
an adaptive phrase of length 8 with the last 3 symbols represented as literals.

3.2 Representation

In order to support fast random access to S, we deploy several data structures,
which can be grouped into two sets with different purposes:

1. Storing the parsing: a set of data structures mapping any position i to
some useful information about the phrase Pi containing S[i], that is: (i) the
position Start(i) of the first symbol in Pi; (ii) Pi’s length Len(i); (iii) its relative
pointer Rel(i); (iv) the number of phrases Prev(i) preceding Pi in the parsing,
and (v) the number of explicit phrases Abs(i) ≤ Prev(i) preceding Pi.

2. Storing the literals: a set of data structures which, given a position i and
the information about phrase Pi, tells whether S[i] is a literal in the parsing
and, if this is the case, returns S[i].

Here we provide a detailed illustration of these data structures.

Storing the Parsing. The parsing is represented by storing two bitvectors. The
first bitvector P has |S| entries, marking with a 1 characters in S at the beginning
of a new phrase in the parsing. The second bitvector E has m entries, one for
every phrases in the parsing, and marks every explicit phrase in the parsing with
a 1, otherwise 0. A rank/select data structure is built on top of P, and a rank
data structure on top of E. In this way, given i we can efficiently compute the
phrase index Prev(i) as P.rank(i), the explicit phrase index Abs(i) as E.rank(pi)
and the phrase beginning Start(i) as P.select(pi).

Experimentally, bitvector P is sparse, while E is usually dense. Bitvector
P can be represented with any efficient implementation for sparse bitvectors;
our implementation, detailed in Sect. 4, employs the Elias-Fano based SDarrays

data structure of Okanohara and Sadakane [16], which requires m log |S|
m +O(m)

bits and supports rank in O(log |S|
m ) time and select in constant time. Bitvec-

tor E is represented plainly, taking m bits, with any o(m)-space O(1)-time rank
implementation on top of it [16,17]. In particular, it is interesting to notice that



RLZAP: Relative Lempel-Ziv with Adaptive Pointers 9

only one rank query is needed for extracting an unbounded number of consecu-
tive symbols from E, since each starting position of consecutive phrases can be
accessed with a single select query, which has very efficient implementations on
sparse bitvectors.

Both explicit and relative pointers are stored in tables A and R, respec-
tively. These integers are stored in binary, and so not compressed using statisti-
cal encoding, because this would prevent efficient random access to the sequence.
Each explicit and relative pointer takes thus �log n� and DeltaBits bits of space,
respectively. To compute Rel(i), we first check if the phrase is explicit by check-
ing if E[Prev(i)] is set to one; if it is, then Rel(i) = A[Abs(i)], otherwise it is
Rel(i) = A[Abs(i)] + R[Prev(i) − Abs(i)].

Storing Literals. Literals are extracted as follows. Let us assume we are inter-
ested in accessing S[i], which is contained in phrase Pj . First, it is determined
whether S[i] is a literal or not. Since literals in a phrase are grouped at the end
of the phrase itself, it is sufficient to store, for every phrase Pk in the parsing,
the number of literals Lits(k) at its end. Thus, knowing the starting position
Start(j) and length Len(j) of phrase Pj , symbol S[i] is a literal if and only if
i ≥ Start(j) + Len(j) − Lits(j).

All literals are stored in a table L, where L[k] is the k-th literal found by
scanning the parsing from left to right. How we represent L depends on the
kind of data we are dealing with. In our experiments, described in Sect. 4, we
consider differentially-encoded LCP arrays and DNA. For DLCP values, L simply
stores all values using minimal binary codes. For DNA values, a more refined
implementation (which we describe in a later paragraph) is needed to use less
than 3 bits on average for each symbol. So, in order to display the literal S[i],
we need a way to compute its index in L, which is equal to Start(j) – Len(j) –
Lits(k) plus the prefix sum

∑j−1
k=1 Lits(k). In the following paragraph we detail

two solutions for efficiently storing Lits(k) values and computing prefix sums.

Storing Literal Counts. Here we detail a simple and fast data structure for
storing Lits(−) values and for computing prefix sums on them. The basic idea
is to store Lits(−) values explicitly, and accelerate prefix sums by storing the
prefix sum of some regularly sampled positions. To provide fast random access,
the maximum number of literals in a phrase is limited to 2MaxLit−1, where MaxLit
is a parameter chosen at construction time. Every value Lits(−) is thus collected
in a table L, stored using MaxLit bits each. Since each phrase cannot have more
than 2MaxLit − 1 literals, we split each run of more than 2MaxLit − 1 literals into
the minimal number of phrases which do meet the limit. In order to speed-up
the prefix sum computation on L, we sample one every SampleInt positions and
store prefix sums of sampled positions into a table Prefix. To accelerate further
prefix sum computation, we employ a 256-entries table ByteΣ which maps any
sequence of 8/MaxLit elements into their sum. Here, we constrain MaxLit as a
power of two not greater than 8 (that is, either 1, 2, 4 or 8) and SampleInt as
a multiple of 8/MaxLit. In this way we can compute the prefix sum by just one
look-up into Prefix and at most SampleInt

8/MaxLit queries into ByteΣ . Using ByteΣ is faster
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than summing elements in L because it replaces costly bitshift operations with
efficient byte-accesses to L. This is because 8/MaxLit elements of L fit into one
byte; moreover, those bytes are aligned to byte-boundaries because SampleInt is
a multiple of 8/MaxLit, which in turn implies that the sampling interval spans
entire bytes of L.

Storing DNA Literals. Every literal is collected into a table J , where each ele-
ment is represented using a fixed number of bits. For the DNA sequences we
consider in our experiments, this would imply using 3 bits, since the alphabet is
{A,C,G, T,N}. However, since symbols N occur less often than the others, it
is more convenient to handle those as exceptions, so other literals can be stored
in just 2 bits. In particular, every N in table J is stored as one of the other
four symbols in the alphabet (say, A) and a bit-vector Exc marks every position
in J which corresponds to an N . Experimentally, bitvector Exc is sparse and
the 1 are usually clustered together into a few regions. In order to reduce the
space needed to store Exc, we designed a simple bit-vector implementation to
exploit this fact. In our design, Exc is divided into equal-sized chunks of length
C. A bitvector Chunk marks those chunks which contain at least one bit set to
1. Marked chunks of Exc are collected into a vector V . Because of the clustering
property we just mentioned, most of the chunks are not marked, but marked
chunks are locally dense. Because of this, bitvector Chunk is implemented using
a sparse representation, while each chunk employs a dense representation. Good
experimental values for C are around 16 − 32 bits, so each chunk is represented
with a fixed-width integer. In order to check whether a position i is marked in
Exc, we first check if chunk c = �i/C� is marked in Chunk. If it is marked, we
compute Chunk.rank(c) to get the index of the marked chunk in V .

4 Experiments

We implemented RLZAP in C++11 with bitvectors from Gog et al.’s sdsl
library (https://github.com/simongog/sdsl-lite), and compiled it with gcc ver-
sion 4.8.4 with flags -O3, -march=native, -ffast-math, -funroll-loops and
-DNDEBUG. We performed our experiments on a computer with a 6-core Intel
Xeon X5670 clocked at 2.93 GHz, 40 GiB of DDR3 ram clocked at 1333 MHz
and running Ubuntu 14.04. As noted in Sect. 1, our code is available at http://
github.com/farruggia/rlzap.

We performed our experiments on the following four datasets:

– Cere: the genomes of 39 strains of the Saccharomyces cerevisiae yeast;
– E. Coli: the genomes of 33 strains of the Escherichia coli bacteria;
– Para: the genomes of 36 strains of the Saccharomyces paradoxus yeast;
– DLCP: differentially-encoded LCP arrays for three human genomes, with

32-bit entries.

These files are available from http://acube.di.unipi.it/rlzap-dataset.

https://github.com/simongog/sdsl-lite
http://github.com/farruggia/rlzap
http://github.com/farruggia/rlzap
http://acube.di.unipi.it/rlzap-dataset
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For each dataset we chose the file (i.e., the single genome or DLCP array) with
the lexicographically largest name to be the reference, and made the concatena-
tion of the other files the target. We then compressed the target against the refer-
ence with Ferrada et al.’s optimization of RLZ — which reflects the current state
of the art, as explained in Sect. 1 — and with RLZAP. For the DNA files (i.e.,
Cere, E. Coli and Para) we used LookAhead = 32, ExplicitLen = 32, DeltaBits = 2
MaxLit = 4 and SampleInt = 64, while for DLCP we used LookAhead = 8,
ExplicitLen = 4, DeltaBits = 4, MaxLit = 2 and SampleInt = 64. We chose these
parameters during a calibration step performed on a different dataset, which we
will describe in the full version of this paper.

Table 1 shows the compression achieved by RLZ and RLZAP. (We note that,
since the DNA datasets are each over an alphabet of {A,C,G,T,N} and Ns are
rare, the targets for those datasets can be compressed to about a quarter of their
size even with only, e.g., Huffman coding.) Notice RLZAP consistently achieves
better compression than RLZ, with its space usage ranging from about 17 % less
for Cere to about 32 % less for DLCP.

Table 1. Compression achieved by RLZ and RLZAP. For each dataset we report in
MiB (220 bytes) the size of the reference and the size of the target uncompressed and
compressed with each method

Dataset Reference Target Compressed target size (MiB)

Size (MiB) Size (MiB) RLZ RLZAP

Cere 12.0 451 9.16 7.61

E. Coli 4.8 152 30.47 21.51

Para 11.3 398 15.57 10.49

DLCP 11,582 23,392 1,745.33 1,173.81

Table 2 shows extraction times for RLZ- and RLZAP-compressed targets.
RLZAP is noticeably slower than RLZ for DNA, while it is slightly faster for the
DLCP dataset when at least four characters are extracted. We believe RLZAP
outperforms RLZ on the DLCP because its parsing is generally more cache-
friendly: our measurements indicate that on this dataset RLZAP causes about
36 % fewer L2 and L3 cache misses than RLZ. Even for DNA, RLZAP is still fast
in absolute terms, taking just tens of nanoseconds per character when extracting
at least four characters.

On DNA files, RLZAP achieves better compression at the cost of slightly
longer extraction times. On differentially-encoded LCP arrays, RLZAP outper-
forms RLZ in all regards, except for a slight slowdown when extraction substrings
of length less than 4. That is, RLZAP is competitive with the state of the art even
for compressing DNA and, as we hoped, advances it for relative data structures.
Our next step will be to integrate it into the implementation of relative suffix
trees mentioned in Subsect. 2.4.
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Table 2. Extraction times per character from RLZ- and RLZAP-compressed targets.
For each file in each target, we compute the mean extraction time for 224/� pseudo-
randomly chosen substrings; take the mean of these means

Dataset Algorithm Mean extraction time per character (ns)

1 4 16 64 256 1024

Cere RLZ 234 59 16.4 4.4 1.47 0.55

RLZAP 274 70 19.5 5.7 2.34 1.26

E. Coli RLZ 225 62 20.1 7.7 4.34 3.34

RLZAP 322 91 31.3 15.3 10.78 9.47

Para RLZ 235 59 17.2 5.2 2.23 1.03

RLZAP 284 74 21.2 6.9 3.09 2.26

DLCP RLZ 756 238 61.5 20.5 9.00 6.00

RLZAP 826 212 57.5 19.0 8.00 4.50

5 Future Work

In the near future we plan to perform more experiments to tune RLZAP and
discover its limitations. For example, we will test it on the balanced-parentheses
representations of suffix trees’ shapes, which are an alternative to LCP arrays,
and on the BWTs in relative FM-indexes. We also plan to investigate how to
minimize the bit-complexity of our parsing — i.e., how to choose the phrases and
sources so as to minimize the number of bits in our representation — building
on the results by Farruggia, Ferragina and Venturini [18,19] about minimizing
the bit-complexity of LZ77.

RLZAP can be viewed as a bounded-lookahead greedy heuristic for computing
a glocal alignment [20] or S against R. Such an alignment allows for genetic
recombination events, in which potentially large sections of DNA are rearranged.
We note that standard heuristics for speeding up edit-distance computation and
global alignment do not work here, because even a low-cost path through the
dynamic programming matrix can occasionally jump arbitrarily far from the
diagonal. RLZAP runs in linear time, which is attractive, but it may produce
a suboptimal alignment — i.e., it is not an admissible heuristic. In the longer
term, we are interested in finding practical admissible heuristics.

Apart from the direct biological interest of computing optimal or nearly opti-
mal glocal alignments, they can also help us design more data structures. For
example, consider the problem of representing the mapping between orthologous
genes in several species’ genomes; see, e.g., [21]. Given two genomes’ indices and
the position of a base-pair in one of those genomes, we would like to return
quickly the positions of all corresponding base-pairs in the other genome. Only
a few base-pairs correspond to two base-pairs in another genome and, ignoring
those, this problem reduces to representing compressed permutations. A feature
of these permutations is that base-pairs tend to be mapped in blocks, possi-
bly with some slight reordering within each block. We can extract this block
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structure by computing a glocal alignment, either between the genomes or
between the permutation and its inverse.
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Abstract. In a string similarity metric adopting affine gap penalties,
we propose a quadratic-time, linear-space algorithm for the following
constrained string alignment problem. The input of the problem is a pair
of strings to be aligned and a pattern given as a string. Let an occurrence
of the pattern in a string be a minimal substring of the string that is
most similar to the pattern. Then, the output of the problem is a highest-
scoring alignment of the pair of strings that matches an occurrence of
the pattern in one string and an occurrence of the pattern in the other,
where the score of the alignment excludes the similarity between the
matched occurrences of the pattern. This problem may arise when we
know that each of the strings has exactly one meaningful occurrence of
the pattern and want to determine a putative pair of such occurrences
based on homology of the strings.

1 Introduction

Constructing a highest-scoring alignment is a common way to analyze how two
strings are similar to each other [7], because it is well known that, using the
dynamic programming technique, we can obtain such an alignment of an arbi-
trary m-length string A and an arbitrary n-length string B in O(mn) time [10].
As a more appropriate analysis of the similarity in the case where we know that
a common pattern string P occurs both in A and B and that these occurrences
should be matched in the alignment, Tsai [12] proposed the constrained longest
common subsequence (LCS) problem. This problem consists of finding an arbi-
trary LCS containing P as a subsequence, where an LCS can be thought of as
a highest-scoring alignment in a certain simple similarity metric. Chin et al. [4]
showed that this problem is solvable in O(mnr) time and O(nr) space, where
r is the length of P and m ≥ n ≥ r. Recently, as one of the generalized con-
strained LCS problems, Chen and Chao [2] proposed the STR-IC-LCS problem,
which consists of finding an arbitrary LCS of A and B that contains P as a
substring, instead of as a subsequence. Deorowicz [5] showed that this problem
is solvable in O(mn) time and O(mn) space. The difference between the align-
ments found in these problems is whether the score of the alignment takes the
similarity between the matched occurrences of P in X and Y into account or
not. The STR-IC-LCS problem may arise when we know that each of the strings
c© Springer International Publishing AG 2016
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has exactly one meaningful occurrence of the pattern and want to determine a
putative pair of such occurrences based on homology of the strings.

In comparing strings over an alphabet set with various levels of symbol sim-
ilarity, such as amino acid sequences of proteins, however, the LCS metric is
sometimes too naive to adopt as a similarity metric. In the present article, we
consider generalized similarity metrics, including the metric based on an amino
acid substitution matrix with affine gap penalties, which is widely used to esti-
mate the similarity between amino acid sequences [7]. This similarity metric
is also adopted by another generalized constrained LCS problem, the regular
expression constrained alignment problem [1,3,9], in which the pattern P is
given as a regular expression.

The present article propose an O(mn)-time, O(n)-space algorithm for the
problem consisting of finding a highest-scoring alignment of A and B that
matches an occurrence of P in A and an occurrence of P in B. In this prob-
lem, we treat an arbitrary minimal substring of a string most similar to P as
an occurrence of P in the string and ignore the similarity between the matched
occurrences of P when estimating the score of the alignment. The proposed algo-
rithm achieves the same asymptotic execution time and required space as the
algorithm for the (non-constrained) alignment problem based on the divide-and-
conquer technique of Hirschberg [8]. Furthermore, since the problem we consider
is identical to the STR-IC-LCS problem if we adopt the LCS metric, the proposed
algorithm improves space complexity of the STR-IC-LCS problem achieved by
the algorithm of Deorowicz [5] from quadratic to linear.

2 Preliminaries

A string is a sequence of symbols. For any string X, |X| denotes the length of
X, X[i] denotes the symbol in X at position i, and X(i′, i] denotes the substring
of X at position between i′ + 1 and i. The concatenation of string X ′ followed
by string X ′′ is denoted by X ′X ′′.

Let Σ be an alphabet set of a constant number of symbols. Let - denote a gap
symbol that does not belong to Σ. A gap is a string consisting only of more than
zero gap symbols. We use + and / to represent the first and last gap symbols in a
gap of length more than one, respectively, and * to represent the only gap symbol
in a gap of length one. In what follows, we use - to represent a gap symbol in
a gap of length more than two other than the first and last gap symbols. Let
Γ = {+, -, /, *} and let Σ̃ = Σ ∪ Γ . Let a gapped string of a string X over Σ be
a string over Σ̃ obtained from X by inserting a concatenation of zero or more
gaps at position between i and i+1 for each index i with 0 ≤ i ≤ |X|. Although
concatenations of two or more gaps inserted in a string may look uncommon, we
adopt this definition of a gapped string for a technical reason mentioned later.
We sometimes use the index representation, denoted IX̃ , of a gapped string X̃ of
a substring of X, in which X[i] is represented as index i and any gap symbol γ
in Γ that appears in the concatenation of gaps inserted in X at position between
i and i + 1 is represented as γ with subscript i.



A Linear-Space Algorithm for the Substring Constrained Alignment Problem 17

For any strings X and Y over Σ, an alignment of X and Y is a pair of a
gapped string X̃ of X and a gapped string Ỹ of Y with |X̃| = |Ỹ | such that X̃[q]
or Ỹ [q] is not a gap symbol in Γ for any index q with 1 ≤ q ≤ |X̃| (= |Ỹ |). Let
a symbol similarity score table s consist of values s(a, b) indicating how much
a is similar to b for all ordered pair (a, b) of symbols in Σ̃ other than pairs
of gap symbols in Γ . A typical setting, adopted in affine gap penalty metrics,
is s(a, +) = s(a, *) = s(+, a) = s(*, a) = gip + gep and s(a, -) = s(a, /) =
s(-, a) = s(/, a) = gep for any symbol a in Σ, where gip is a gap insertion
penalty representing the penalty for each insertion of a gap and gep is a gap
extension penalty representing the penalty for each one-symbol extension of a
gap. How well an alignment (X̃, Ỹ ) makes a connection between symbols in X
and symbols in Y is estimated by the score s(X̃, Ỹ ) =

∑
1≤q≤|X̃| s(X̃[q], Ỹ [q]) of

the alignment. For any strings X and Y over Σ, let how much X is similar to
Y be defined as Sim(X,Y ) = max(X̃,Ỹ ) s(X̃, Ỹ ), where (X̃, Ỹ ) ranges over all
alignments of X and Y . We define an occurrence of a pattern in a string as a
minimal substring of the string that is most similar to the patter in the sense of
the following definition.

Definition 1. For any strings X and Y over Σ, let a substring X ′ of X be an
occurrence of Y in X if Sim(X ′, Y ) ≥ Sim(X ′′, Y ) for any substring X ′′ of X
and Sim(X ′, Y ) > Sim(X ′′, Y ) for any substring X ′′ of X ′ with |X ′′| < |X ′|.

The present article considers the following problem.

Definition 2. Given strings, A of length m, B of length n, and P of length
r, over Σ with m ≥ n ≥ r, let the substring constrained alignment (StrCA)
problem consist of finding an arbitrary pair of an occurrence Aocc of P in A and
an occurrence Bocc of P in B such that

Sim(Apref , Bpref) + Sim(Asuff , Bsuff)

is maximum, where A = AprefAoccAsuff and B = BprefBoccBsuff . (If arbitrary
highest-scoring alignments of Apref and Bpref and of Asuff and Bsuff are necessary
after the StrCA problem is solved, we can obtain such alignments in O(mn) time
and O(n) space based on the divide-and-conquer technique of Hirschberg [8].)

3 Algorithm

This section proposes an O(mn)-time, O(n)-space algorithm for the StrCA prob-
lem. In order to design the proposed algorithm, we introduce several lemmas each
with no proof, due to limitation of space. However, they can be proven easily in
a straightforward manner.

The algorithm we propose is based on the dynamic programming technique.
We use edge-weighted directed acyclic graphs (DAGs) to represent dynamic pro-
gramming (DP) tables as follows.
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Definition 3. Let G be an arbitrary edge-weighted DAG. For any edge e in G,
let w(e) denote the weight of e. We also use w(u, v) to denote w(e) if e is from
vertex u to vertex v. For any path π in G, let the weight w(π) of π be the sum
of w(e) over all edges e in π. For any vertex v in G, let to(v) denote the set of all
vertices u such that G has an edge from u to v. If no such vertices u exist, then
v is a source vertex. Any vertex u not appearing in to(v) for any vertex v in G is
a sink vertex. We focus only on edge-weighted DAGs having exactly one source
vertex and one sink vertex. For any vertex v in G, we use dp(v) to denote the
value of v in the DP table with respect to G. This value is defined recursively
as dp(v) = 0, if v is the source vertex, or dp(v) = maxu∈to(v)(dp(u) + w(u, v)),
otherwise. Hence, dp(v) represents the weight of any heaviest path from the
source vertex to v.

To solve the StrCA problem, we utilize an edge-weighted DAG, called the
StrCA DAG, that reduces the StrCA problem to the problem of finding an
arbitrary one of certain edges through which a heaviest path from the source
vertex to the sink vertex passes. Applying the same idea as the algorithm of
Deorowicz [5] for the STR-IC-LCS problem to this DAG, we can immediately
obtain an algorithm for the SrtCA problem. However, as mentioned later, the
algorithm proposed in the present article uses this DAG in a different way in
order to save a great deal of space required.

The StrCA DAG is defined as a certain variant of the following edge-weighted
DAG, called the alignment DAG, which is based on an idea similar to the algo-
rithm of Gotoh [6] for the alignment problem with affine gap penalties. This
DAG is designed such that any two-edge path corresponds to a pair of consec-
utive positions in some alignment of two strings and vice versa. The reason for
the uncommon definition of a gapped string is because of a close relationship
between paths in the DAG and alignments of substrings of the strings.

Definition 4. For any strings X and Y over Σ, let the alignment DAG, denoted
G(X,Y ), for X and Y be the edge-weighted DAG consisting of vertices

– d(i, j) for all index pairs (i, j) with 0 ≤ i ≤ |X| and 0 ≤ j ≤ |Y |,
– h(i, j) for all index pairs (i, j) with 0 ≤ i ≤ |X| and 0 < j < |Y |, and
– v(i, j) for all index pairs (i, j) with 0 < i < |X| and 0 ≤ j ≤ |Y |
and edges

– e(i, j) of weight s(X[i], Y [j]) from d(i − 1, j − 1) to d(i, j),
– e(+i, j) of weight s(+, Y [j]) from d(i, j − 1) to h(i, j),
– e(-i, j) of weight s(-, Y [j]) from h(i, j − 1) to h(i, j),
– e(/i, j) of weight s(/, Y [j]) from h(i, j − 1) to d(i, j),
– e(*i, j) of weight s(*, Y [j]) from d(i, j − 1) to d(i, j),
– e(i, +j) of weight s(X[i], +) from d(i − 1, j) to v(i, j),
– e(i, -j) of weight s(X[i], -) from v(i − 1, j) to v(i, j),
– e(i, /j) of weight s(X[i], /) from v(i − 1, j) to d(i, j), and
– e(i, *j) of weight s(X[i], *) from d(i − 1, j) to d(i, j)
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for all possible index pairs (i, j). Let the ith row of G(X,Y ) consist of all vertices
d(i, j) with 0 ≤ j ≤ |Y |, h(i, j) with 0 < j < |Y |, and v(i, j) with 0 ≤ j ≤ |Y |.
Lemma 1. Any path π = e(̃ı1, j̃1)e(̃ı2, j̃2) · · · e(̃ıp, j̃p) in G(X,Y ) from d(i′, j′)
to d(i, j) bijectively corresponds to the alignment (X̃, Ỹ ) of X[i′+1..i] and Y [j′+
1..j] with IX̃ = ı̃1 ı̃2 · · · ı̃p and IỸ = j̃1j̃2 · · · j̃p. Furthermore, for any such pair of
a path π and an alignment (X̃, Ỹ ), w(π) = s(X̃, Ỹ ) holds.

Before presenting the StrCA DAG, we show that all occurrences of a pattern
in a string can be found in quadratic time and linear space, if we use the following
variant of the alignment DAG. This DAG is based on an idea similar to the
algorithm of Smith and Waterman [11] for the local alignment problem.

Definition 5. For any strings X and Y over Σ, let the occurrence DAG, denoted
Gocc(X,Y ), of Y in X be the edge-weighted DAG obtained from G(X,Y ) by
adding two vertices src and snk , bypass edges in(i′) of weight zero from src to
d(i′, 0) for all indices i′ with 0 ≤ i′ ≤ |X|, and bypass edges out(i) of weight
zero from d(i, |Y |) to snk for all indices i with 0 ≤ i ≤ |X|. For any vertex v
in Gocc(X,Y ) other than src, let i′(v) be the greatest index i′ such that some
heaviest path from src to v passes through bypass edge in(i′).

Lemma 2. Substring X(i′, i] is an occurrence of Y in X if and only if some
heaviest path in Gocc(X,Y ) from src to snk passes through out(i), i′(d(i, |Y |)) =
i′, and no substrings X(i′, i′′] with i′ < i′′ < i are occurrences of Y in X.

Lemma 3. For any vertex v in Gocc(X,Y ) other than src, i′(v) is equal to the
maximum of i′(u) over all vertices u in to(v) with dp(v) = dp(u)+w(u, v), where
we treat i′(u) = i′ if u = src and v = d(i′, 0).

Let DPocc(i) and I ′(i) denote the array of DP table values dp(v) and the
array of indices i′(v) for all vertices v in the ith row of Gocc(X,Y ), respec-
tively. It then follows from the recurrence relation of DP table value dp(v) given
in Definition 3 that DPocc(i) can be constructed in O(|Y |) time from scratch,
if i = 0, or from DPocc(i−1), otherwise. Similarly, we can obtain I ′(i) in O(|Y |)
time from scratch, if i = 0, or from DPocc(i − 1), I ′(i − 1), and DP(i)occ, other-
wise, based on Lemma 3. Thus, we obtain Algorithm findOcc(X,Y ) presented in
Fig. 1 as an O(|X||Y |)-time, O(|Y |)-space algorithm that enumerates all occur-
rences of Y in X. In this algorithm, lines 1 through 4 prepare dp(snk), the weight
of any heaviest path from src to snk , as the value of variable dpsnk. Using this
value, each iteration of lines 7 through 9 applies Lemma 2, where index variable
i′ in line 8 is maintained so as to indicate that, if i′ ≥ 0, then some substring
X(i′, i′′] with i′ < i′′ < i is an occurrence of Y in X.

Lemma 4. For any strings X and Y over Σ, Algorithm findOcc(X,Y ) enumer-
ates all occurrences X(i′, i] of Y in X in ascending order with respect to i and,
hence, with respect to i′ in O(|X||Y |) time and O(|Y |) space.

Now we present the StrCA DAG, together with the properties crucial to
designing the proposed algorithm.
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Fig. 1. Algorithm findOcc(X,Y )

Fig. 2. Algorithm solveSrtCA(A,B, P )

Definition 6. Let Gpref and Gsuff be copies of G(A,B) and let vertices in them
be indicated by subscripts pref and suff, respectively. Let the StrCA DAG,
denoted GStrCA, be the edge-weighted DAG obtained from Gpref and Gsuff by
adding a transition edge of weight zero from dpref(i′, j′) to dsuff(i, j) for any pair
of an occurrence A(i′, i] of P in A and an occurrence B(j′, j] of P in B and
adding a dummy transition edge of weight −∞ from dpref(0, 0) to dsuff(0, 0). For
any vertex v in Gsuff , let tr(v) represent an arbitrary transition edge through
which some heaviest path from dpref(0, 0) to v passes.

Lemma 5. Substring pair (A(i′, i], B(j′, j]) is a solution of the StrCA prob-
lem if and only if the transition edge from dpref(i′, j′) to dsuff(i, j) is passed
through by some heaviest path in GStrCA from dpref(0, 0) to dsuff(m,n). Hence,
tr(dsuff(m,n)) gives a solution of the StrCA problem.

Lemma 6. For any vertex v in Gsuff and any vertex u in to(v) with dp(v) =
dp(u) + w(u, v), tr(u) is an instance of tr(v), where we treat the transition edge
from u to v as tr(u) if u is a vertex in Gpref .

The proposed algorithm solves the StrCA problem based on Lemma 5. The
key idea to achieve linear-space computation of tr(dsuff(m,n)) is to successively
focus on which transition edge some heaviest path in GStrCA from dpref(0, 0)
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to each vertex v in Gsuff passes through. According to the recurrence relation
of tr(v) given in Lemma 6, the algorithm determines tr(v) for each vertex v
in Gsuff and forget previously determined tr(u) no longer in use successively.
This is unlike in the case of the algorithm adopting an approach similar to
the quadratic-space algorithm of Deorowicz [5] for the STR-IC-LCS problem,
which simultaneously determines how much any heaviest path from dpref(0, 0)
to dsuff(m,n) passing through each of all transition edges weighs.

Let DPpref(i′) denote the array of DP table values dp(v) for all vertices v
in the i′th row of Gpref and let DP suff(i) and TR(i) denote the array of DP
table values dp(v) and the array of transition edges tr(v) for all vertices v in
the ith row of Gsuff , respectively. Then, DPpref(i′) can be constructed in O(n)
time from scratch, if i′ = 0, or from DPpref(i′ − 1), otherwise. Furthermore,
DP suff(i) and TR(i) can be constructed in O(n) time from scratch, if i = 0, or
otherwise from DP suff(i−1) and TR(i−1), together with DPpref(i′) if A has an
occurrence A(i′, i] of P for some index i′. Thus, we eventually obtain Algorithm
solveStrCA(A,B, P ) presented in Fig. 2 as the proposed algorithm for the StrCA
problem, which satisfies the following theorem.

Theorem 1. The StrCA problem is solvable in O(mn) time and O(n) space by
executing Algorithm solveStrCA(A,B, P ).
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Abstract. Longest common extension queries (LCE queries) and runs
are ubiquitous in algorithmic stringology. Linear-time algorithms com-
puting runs and preprocessing for constant-time LCE queries have been
known for over a decade. However, these algorithms assume a linearly-
sortable integer alphabet. A recent breakthrough paper by Bannai et al.
(SODA 2015) showed a link between the two notions: all the runs in a
string can be computed via a linear number of LCE queries. The first to
consider these problems over a general ordered alphabet was Kosolobov
(Inf. Process. Lett., 2016), who presented an O(n(log n)2/3)-time algo-
rithm for answering O(n) LCE queries. This result was improved by
Gawrychowski et al. (CPM 2016) to O(n log log n) time. In this work
we note a special non-crossing property of LCE queries asked in the
runs computation. We show that any n such non-crossing queries can be
answered on-line in O(nα(n)) time, where α(n) is the inverse Ackermann
function, which yields an O(nα(n))-time algorithm for computing runs.

1 Introduction

Runs (also called maximal repetitions) are a fundamental type of repetitions
in a string as they represent the structure of all repetitions in a string in a
succinct way. A run is an inclusion-maximal periodic factor of a string in which
the shortest period repeats at least twice. A crucial property of runs is that
their maximal number in a string of length n is O(n). This fact was already
observed by Kolpakov and Kucherov [15,16] who conjectured that this number
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is actually smaller than n, which was known as the runs conjecture. Due to the
works of several authors [6–8,12,19–21] more precise bounds on the number of
runs have been obtained, and finally in a recent breakthrough paper [2] Bannai
et al. proved the runs conjecture, which has since then become the runs theorem
(even more recently in [10] the upper bound of 0.957n was shown for binary
strings).

Perhaps more important than the combinatorial bounds is the fact that the
set of all runs in a string can be computed efficiently. Namely, in the case of a
linearly-sortable alphabet Σ (e.g., Σ = {1, . . . , σ} with σ = nO(1)) a linear-time
algorithm based on Lempel-Ziv factorization [15,16] was known for a long time.
In the recent papers of Bannai et al. [1,2] it is shown that to compute the set of
all runs in a string, it suffices to answer O(n) longest common extension (LCE)
queries. An LCE query asks, for a pair of suffixes of a string, for the length of their
longest common prefix. In the case of σ = nO(1) such queries can be answered
on-line in O(1) time after O(n)-time preprocessing that consists of computing
the suffix array with its inverse, the LCP table and a data structure for range
minimum queries on the LCP table; see e.g. [5]. The algorithms from [1,2] use
(explicitly and implicitly, respectively) an intermediate notion of Lyndon tree
(see [3,13]) which can, however, also be computed using LCE queries.

Let TLCE(n) denote the time required to answer on-line n LCE queries in
a string. In a very recent line of research, Kosolobov [17] showed that, for a
general ordered alphabet, TLCE(n) = O(n(log n)2/3), which immediately leads
to O(n(log n)2/3)-time computation of the set of runs in a string. In [11] a faster,
O(n log log n)-time algorithm for answering n LCE queries has been presented
which automatically leads to O(n log log n)-time computation of runs.

Runs have found a number of algorithmic applications. Knowing the set of
runs in a string of length n one can compute in O(n) time all the local periods
and the number of all squares, and also in O(n + TLCE(n)) time all distinct
squares provided that the suffix array of the string is known [9]. Runs were also
used in a recent contribution on efficient answering of internal pattern matching
queries and their applications [14].

Our Results. We observe that the computation of a Lyndon tree of a string
and furthermore the computation of all the runs in a string can be reduced to
answering O(n) LCE queries that are non-crossing, i.e., no two queries LCE(i, j)
and LCE(i′, j′) are asked with i < i′ < j < j′ or i′ < i < j′ < j. Let TncLCE(n)
denote the time required to answer n such queries on-line in a string of length
n over a general ordered alphabet. We show that TncLCE(n) = O(nα(n)), where
α(n) is the inverse Ackermann function. As a consequence, we obtain O(nα(n))-
time algorithms for computing the Lyndon tree, the set of all runs, the local
periods and the number of all squares in a string over a general ordered alphabet.

Our solution relies on a trade-off between two approaches. The results of [11]
let us efficiently compute the LCEs if they are short, while LCE queries with
similar arguments and a large answer yield structural properties of the string,
which we discover and exploit to answer further such queries.
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Our approach for answering non-crossing LCE queries is described in three
sections: in Sect. 3 we give an overview of the data structure, in Sect. 4 we present
the details of the implementation, and in Sect. 5 we analyse the complexity of
answering the queries. The applications including runs computation are detailed
in Sect. 6.

2 Preliminaries

Strings. Let Σ be a finite ordered alphabet of size σ. A string w of length
|w| = n is a sequence of letters w[1] . . . w[n] from Σ. By w[i, j] we denote the
factor of w being a string of the form w[i] . . . w[j]. A factor w[i, j] is called proper
if w[i, j] �= w. A factor is called a prefix if i = 1 and a suffix if j = n. We say
that p is a period of w if w[i] = w[i + p] for all i = 1, . . . , n − p. If p is a period
of w, the prefix w[1, p] is called a string period of w.

By an interval [�, r] we mean the set of integers {�, . . . , r}. If w is a string of
length n, then an interval [a, b] is called a run in w if 1 ≤ a < b ≤ n, the shortest
period p of w[a, b] satisfies 2p ≤ b − a + 1 and none of the factors w[a − 1, b] and
w[a, b+1] (if it exists) has the period p. An example of a run is shown in Fig. 1.

Fig. 1. Example of a run [3, 10] with period 3 in the string w = ababaabaabbbaa. This
string contains also other runs, e.g. [10, 12] with period 1 and [1, 5] with period 2.

Lyndon Words and Trees. By ≺=≺0 we denote the order on Σ and by ≺1 we
denote the reverse order on Σ. We extend each of the orders ≺r for r ∈ {0, 1} to
a lexicographical order on strings over Σ. A string w is called an r-Lyndon word
if w ≺r u for every non-empty proper suffix u of w. The standard factorization
of an r-Lyndon word w is a pair (u, v) of r-Lyndon words such that w = uv and
v is the longest proper suffix of w that is an r-Lyndon word.

The r-Lyndon tree of an r-Lyndon word w, denoted as LTreer(w), is a rooted
full binary tree defined recursively on w[1, n] as follows:

– LTreer(w[i, i]) consists of a single node labeled with [i, i]
– if j − i > 1 and (u, v) is the standard factorization of w[i, j], then the root of

LTreer(w) is labeled by [i, j], has left child LTreer(u) and right child LTreer(v).

See Fig. 2 for an example. We can also define the r-Lyndon tree of an arbitrary
string. Let $0, $1 be special characters smaller than and greater than all the
letters from Σ, respectively. We then define LTreer(w) as LTreer($rw); note
that $rw is an r-Lyndon word.

LCE Queries. For two strings u and v, by lcp(u, v) we denote the length of their
longest common prefix. Let w be a string of length n. An LCE query LCE(i, j)
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Fig. 2. The Lyndon tree LTree0(w) of a Lyndon word w = aaababaabbabb.

computes lcp(w[i, n], w[j, n]). An �-limited LCE query Limited-LCE≤�(i, j) com-
putes min(LCE(i, j), �). Such queries can be answered efficiently as follows; see
Lemma 14 in [11].

Lemma 1 ([11]). A sequence of q queries Limited-LCE≤�p(ip, jp) can be
answered on-line in O((n+

∑q
p=1 log �p)α(n)) time over a general ordered alpha-

bet.

The following observation shows a relation between LCE queries and periods
in a string that we use in our data structure; for an illustration see Fig. 3.

Observation 2. Assume that the factors w[a, dA − 1] and w[b, dB − 1] have the
same string period, but neither w[a, dA] nor w[b, dB] has this string period. Then

LCE(a, b) =

{
min(dA − a, dB − b) if dA − a �= dB − b,

dA − a + LCE(dA, dB) otherwise.

Fig. 3. In this example figure dA−a = 14, dB−b = 18, and p = 4. We have LCE(a, b) =
14 and LCE(a′, b′) = 8 + LCE(dA, dB).

Non-Crossing Pairs. For a positive integer n, we define the set of pairs

Pn = {(a, b) ∈ Z
2 : 1 ≤ a ≤ b ≤ n}.
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Pairs (a, b) and (a′, b′) are called crossing if a < a′ < b < b′ or a′ < a < b′ < b.
A subset S ⊆ Pn is called non-crossing if it does not contain crossing pairs.

A graph G is called outerplanar if it can be drawn on a plane without cross-
ings in such a way that all vertices belong to the unbounded face. An outerplanar
graph on n vertices has less than 2n edges (at most 2n − 3 for n ≥ 2).

Fact 3. A non-crossing set of pairs S ⊆ Pn has less than 3n elements.

Proof. We associate S\{(a, a) : 1 ≤ a ≤ n} with a plane graph on vertices
{1, . . . , n} drawn on a circle in this order, and edges represented as straight-line
segments. The non-crossing property of pairs implies that these segments do not
intersect. Thus, the graph drawing is outerplanar, and therefore the number of
edges is less than 2n. Accounting for the pairs of the form (a, a), we get the
claimed upper bound. �	

For a set of pairs S = {(ai, bi) : 1 ≤ i ≤ k} and a positive integer t, by 
S/t�
we denote the set {(

⌈
ai

t

⌉
,
⌈

bi
t

⌉
) : 1 ≤ i ≤ k}.

Observation 4. If S is non-crossing, then 
S/t� is also non-crossing.

3 High-Level Description of the Data Structure

We say that a sequence of LCE(a, b) queries, for a ≤ b, is non-crossing if the
underlying collection of pairs (a, b) is non-crossing. In this section, we give an
overview of our data structure, which answers a sequence of q non-crossing LCE
queries on-line in O(q + n · α(n)) total time.

The data structure is composed of 
log n� levels. Function LCE(i)(a, b) cor-
responds to the level i and returns LCE(a, b). In the computation it may make
calls to LCE(i+1)(a, b). However, we make sure that the total number of such
calls is bounded. Each original LCE(a, b) query is first asked at the level 0.

The implementation of LCE(i)(a, b) consists of two phases. If LCE(a, b) ≥
3 · 2i, then this LCE(i) query is called relevant ; otherwise it is called short. In
the first phase, we check the type of the query via a Limited-LCE≤3·2i(a, b)
query. This lets us immediately answer short queries. In the second phase, we
know that the query is relevant, and we try to deduce the answer based on data
gathered while processing similar queries or to learn some information useful for
answering future similar queries by asking LCE(i+1) queries.

We shall say that LCE(i) queries for (a, b) and (a′, b′) are similar if 
 a
2i � =


a′
2i � and 
 b

2i � = 
 b′
2i �. Each equivalence class of this relation is processed by an

independent component, called a block-pair. A block at level i is an interval of
the form [x · 2i + 1, (x + 1) · 2i], and a block-pair is a data structure identified
by a pair (A,B) of blocks. If a relevant LCE(i)(a, b) query satisfies a ∈ A and
b ∈ B for some block-pair (A,B), we say that the block-pair is responsible for the
query or that the query concerns the block-pair. As we show in Sect. 5, the pairs
of interval right endpoints of block-pairs at each level are non-crossing (whereas
LCE(i) queries that will be asked for i ≥ 1 are non necessarily non-crossing).
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The implementation of a block-pair, summarized in the lemma below, is given
in Sect. 4.

Lemma 5. Consider a sequence of relevant LCE(i) queries concerning a block-
pair (A,B). The block-pair can answer these queries on-line in worst-case con-
stant time plus the time to answer at most four LCE(i+1)(a, b) queries, such
that each either corresponds to the currently processed LCE(i) query or satisfies
a < b ≤ a + 2i+1.

Structural conditions stated in Lemma 5 let us characterize the set of queries
passed to the next level. The complexity analysis in Sect. 5 relies on this char-
acterization.

4 Block-Pair Implementation

Our aim in this section is to prove Lemma 5. Information stored by a block-pair
changes through the course of the algorithm, and the implementation of the
query algorithm depends on what is currently stored. We distinguish four states
of a block pair (A,B) at level i. Figure 4 illustrates two of the states.

state(A,B) description

initial No auxiliary data is stored

visited(a0, b0, L) a0 ∈ A and b0 ∈ B are the arguments of the first query
that concerns this block pair, L = LCE(a0, b0) ≥ 3 · 2i

full(dA, dB) ∃p∈[1,2i+1] : w[max A, dA − 1] and w[max B, dB − 1] have
common period p and length at least p + 2i, but neither
w[max A, dA] nor w[max B, dB] has period p

full+(dA, dB, L′) As in full(dA, dB) plus L′ = LCE(dA, dB).

4.1 Initial State

In this state, we simply forward the query to the level i+1, return the obtained
LCE(a, b) value, and change the state to visited(a, b,LCE(a, b)).

Algorithm 1. Initial-LCE(i)
(A,B)(a, b)

Require: LCE(i)(a, b) concerns (A,B), whose state is initial
L ← LCE(i+1)(a, b); � higher level call
transform (A,B) to state visited(a, b, L);
return L;
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Fig. 4. Block-pair (A, B) in states visited(a0, b0, L) and full+(dA, dB, L′).

4.2 Visited State

In state visited(a0, b0, L), we can immediately determine LCE(a, b) if (a, b) is a
shift of (a0, b0). Otherwise, we apply Lemma 6 to move to state full.

Lemma 6. Let LCE(i)(a, b), LCE(i)(a′, b′) be similar and relevant queries and
let p = |(b − b′) − (a − a′)|. If p �= 0 and b′ ≤ b, then LCE(a, a + p) ≥ 2i+1, i.e.,
p is a (not necessarily shortest) period of the factor w[a, a + 2i+1 + p − 1].

Proof. We shall first prove that LCE(a, a + q) ≥ 3 · 2i − (b − b′) where q =
(b − b′) − (a − a′). First, observe that a + q = a′ + (b − b′), and thus LCE(a +
q, b) = LCE(a′ + (b − b′), b′ + (b − b′)) ≥ 3 · 2i − (b − b′) because LCE(i)(a′, b′) is
relevant. Since LCE(i)(a, b) is also relevant, we have LCE(a, b) ≥ 3 · 2i ≥ 3 · 2i −
(b − b′). Combining these two inequalities, we immediately get LCE(a, a + q) ≥
min(LCE(a, b),LCE(a + q, b)) ≥ 3 · 2i − (b − b′), as claimed.

If q > 0, we have q = p, and thus LCE(a, a+p) ≥ 3·2i−(b−b′). Since the two
LCE(i) queries are similar, we have 3·2i−(b−b′) ≥ 2i+1, so LCE(a, a+p) ≥ 2i+1.
See Fig. 5 for an illustration of this case.

Fig. 5. Illustration of Lemma 6: case q > 0. We assume that LCE(a+q, b) ≤ LCE(a, b).
The marked fragments correspond to LCE(a, a + q) = LCE(a + q, b).
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Otherwise, q = −p, and we have LCE(a, a − p) ≥ 3 · 2i − (b − b′), which
implies LCE(a + p, a) ≥ 3 · 2i − (b − b′) + q = 3 · 2i − (a − a′). Again, the fact
that the queries are similar yields 3 · 2i − (a − a′) ≥ 2i+1, and consequently
LCE(a, a + p) ≥ 2i+1. �	

In the query algorithm, we first check if a−a0 = b−b0. If so, let us denote the
common value by Δ. Note that |Δ| ≤ 2i, LCE(a, b) ≥ 3 · 2i, and LCE(a0, b0) ≥
3 · 2i. This clearly yields LCE(a, b) = LCE(a0, b0) + Δ, which lets us compute
the result in constant time.

Algorithm 2. Visited-LCE(i)
(A,B)(a, b)

Require: LCE(i)(a, b) concerns (A,B), whose state is visited(a0, b0, L)
if a − a0 = b − b0 then

return L + a − a0;
else

p ← |(a − a0) − (b − b0)|;
a′ ← max A; b′ ← max B;
dA ← a′ + p + LCE(i+1)(a′, a′ + p); � higher level call

dB ← b′ + p + LCE(i+1)(b′, b′ + p); � higher level call
transform (A,B) to state full(dA, dB);
return Full-LCE(i)

(A,B)(a, b); � recursive call on state full

Otherwise, our aim is to change the state of the block-pair to full. Lemma 6
lets us deduce that LCE(ā, ā+p) ≥ 2i+1 for some ā ∈ {a, a0} and (by symmetry)
LCE(b̄, b̄ + p) ≥ 2i+1 for some b̄ ∈ {b, b0}, where p = |(a − a0) − (b − b0)| (ā and
b̄ depend on the relative order of b, b0 and a, a0, respectively). Let a′ = max A
and b′ = max B. We have LCE(a′, a′ + p) ≥ 2i and LCE(b′, b′ + p) ≥ 2i because
a′ − 2i < ā ≤ a′ and b′ − 2i < b̄ ≤ b′. Such a situation allows for a move to
state full. The exact values of dA and dB are computed using a higher level call,
which lets us determine LCE(a′, a′ + p) and LCE(b′, b′ + p). Note that p ≤ 2i+1

implies that these queries satisfy the condition of Lemma 5. The answer to the
initial LCE(i)(a, b) query is computed by the routine for state full, which we
give below.

4.3 Full States

In state full+ we can answer every relevant query in constant time. In state full
we can either answer the query in constant time or make the final query at level
i + 1 to transform the state to full+; see the following lemma.

Lemma 7. Consider a relevant LCE(i)(a, b) query concerning a block-pair
(A,B) in state full(dA, dB) or full+(dA, dB, L′). Then

LCE(a, b) =

{
min(dA − a, dB − b) if dA − a �= dB − b,

dA − a + LCE(dA, dB) otherwise.
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Proof. Let a0 = max A, b0 = max B and let p be the witness period of the state
of (A,B). Let us define Δ = max(a0 − a, b0 − b), a′ = a + Δ, and b′ = b + Δ.
Observe that Δ ≤ 2i, a0 ≤ a′ ≤ a0 + 2i, and b0 ≤ b′ ≤ b0 + 2i. The fact that the
query is relevant yields LCE(a, b) ≥ 3·2i ≥ p+Δ, so LCE(a, b) = Δ+LCE(a′, b′)
and LCE(a′, b′) ≥ p. Moreover, dA ≥ p + 2i + a0 and dB ≥ p + 2i + b0 implies
that fragments w[a′, dA − 1] and w[b′, dB − 1] have length at least p, and thus
they are right-maximal with period p. Consequently, the fragments w[a′, dA − 1]
and w[b′, dB − 1] have the same string period of length p. This lets us apply
Observation 2, which gives

LCE(a′, b′) =

{
min(dA − a′, dB − b′) if dA − a′ �= dB − b′,
dA − a′ + LCE(dA, dB) otherwise.

Since a′ = a + Δ, b′ = b + Δ, and LCE(a, b) = Δ + LCE(a′, b′), this is clearly
equivalent to the claimed formula for LCE(a, b). �	

Algorithm 3. Full-LCE(i)
(A,B)(a, b)

Require: LCE(i)(a, b) concerns (A,B), whose state is full(dA, dB) or
full+(dA, dB, L′)

if dA − a �= dB − b then
return min(dA − a, dB − b);

else
if (A,B) is in state full(dA, dB) then

L′ ← LCE(i+1)(a, b) − (dA − a); � higher level call

transform (A,B) to state full+(dA, dB, L′);
return dA − a + L′;

4.4 Proof of Lemma 5

Lemma 5. Consider a sequence of relevant LCE(i) queries concerning a block-
pair (A,B). The block-pair can answer these queries on-line in worst-case con-
stant time plus the time to answer at most four LCE(i+1)(a, b) queries, such
that each either corresponds to the currently processed LCE(i) query or satisfies
a < b ≤ a + 2i+1.

Proof. Algorithms 1, 2 and 3 answer queries concerning the block-pair (A,B),
and use constant time. The level i + 1 call is only made when the state changes.
The original query is forwarded during a shift from state initial to visited and
from state full to full+, while during a shift from visited to full two LCE
queries are asked, both with arguments at distance p ≤ 2i+1, as claimed. �	
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5 Complexity Analysis

Algorithm 4 summarizes the implementation of the LCE(i)(a, b) function. As
mentioned in Sect. 3, we first compute Limited-LCE≤3·2i(a, b), which might
immediately give us the sought value LCE(a, b). Otherwise the query is rele-
vant, and we refer to the block-pair (A,B) which is responsible for the query.

Algorithm 4. LCE(i)(a, b)
� ← Limited-LCE≤3·2i(a, b);

if � < 3 · 2i then � short query

return �;
else � relevant query

(A, B) ← block-pair responsible for the query (a, b) at level i;
return:

Initial-LCE
(i)

(A,B)(a, b) if (A, B) is in state initial

Visited-LCE
(i)

(A,B)(a, b) if (A, B) is in state visited

Full-LCE
(i)

(A,B)(a, b) if (A, B) is in state full or full+

Let Si = {(a, b) : LCE(i)(a, b) is called }. Then
⌈
Si/2i

⌉
corresponds to the

set of pairs of interval right endpoints of block-pairs at level i.

Fact 8. The set
⌈
Si/2i

⌉
is non-crossing.

Proof. We proceed by induction on i. The base case is trivial from the assump-
tion on the input sequence. Lemma 5 proves that Si+1 ⊆ Si ∪ {(a, b) : a < b ≤
a+2i+1}. Hence,

⌈
Si+1/2i+1

⌉ ⊆ ⌈⌈
Si/2i

⌉
/2

⌉∪{(a, b) : a ≤ b ≤ a+1}. The first
component is non-crossing by the inductive hypothesis combined with Observa-
tion 4. Pairs of the form (a, a) and (a, a + 1) do not cross any other pair, so
adding them to a non-crossing family preserves this property. �	
Consequently, Fact 3 proves that the number of block-pairs responsible for a
query at level i − 1 is bounded by 3n

2i−1 . Each of them yields at most 4 queries
at level i. This leads straight to the following bound.

Observation 9. |Si| ≤ 24n
2i for i ≥ 1.

If we stored the block-pairs using a hash table, we could retrieve the internal data
of the block-pair responsible for (a, b) in randomised constant time. However, in
the case of non-crossing LCE queries we can make this time worst-case.

Recall from Fact 3 that for a set S ⊆ Pn of non-crossing pairs we can identify
S\{(a, a) : 1 ≤ a ≤ n} with an outerplanar graph on vertices {1, . . . , n}. We say
that a simple undirected graph has arboricity at most c if it can be partitioned
into c forests. Outerplanar graphs have arboricity at most 2 (see [18]) which
lets us use the following theorem to store S\{(a, a) : 1 ≤ a ≤ n}. Membership
queries for pairs (a, a) are trivial to support using an array.
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Theorem 10. ([4]). Consider a graph of arboricity c with vertices given in
advance and edges revealed on-line. One can support adjacency queries, asking
to return the edge between two given vertices or nil if it does not exist, in worst-
case O(c) time, with edge insertions processed in amortized constant time.

The following corollary shows, by Fact 8, that indeed the block-pairs at each
level can be retrieved in worst-case constant time.

Corollary 11. Consider a set S ⊆ Pn of non-crossing pairs arriving on-
line. One can support membership queries (asking if (a, b) ∈ S and, if so, to
return data associated with this pair) in worst-case constant time with inser-
tions processed in amortized constant time.

Theorem 12. In a string of length n, a sequence of q non-crossing LCE queries
can be answered in total time O(q + n · α(n)).

Proof. For i > 0, an LCE(i) query, excluding the LCE(i+1) queries called,
requires O(i · α(n)) time for answering a Limited-LCE≤3·2i query by Lemma 1
plus O(1) additional time by Lemma 5. For i = 0 we may compute
Limited-LCE≤3 näıvely in constant time, so the running time is constant.

The number of LCE(0) queries is q, while the number of LCE(i) queries for
i ≥ 1 is O( n

2i ) by Observation 9. The total running time is therefore

O
(

q + n · α(n) ·
∞∑

i=1

i

2i

)
= O(q + n · α(n)). �	

6 Computing Runs

Bannai et al. [1,2] presented an algorithm for computing all the runs in a string of
length n that works in time proportional to answering O(n) LCE queries on the
string or on its reverse. As main tool they used Lyndon trees. We note here that
the LCE queries asked by their algorithm can be divided into a constant number
of groups, each consisting of non-crossing LCE queries. Roughly speaking, this is
based on the obvious fact that intervals in a Lyndon tree form a laminar family,
i.e., for every two they are either disjoint or one of them contains the other.

In the first phase, given a string w, the algorithm of [1,2] constructs
LTree0(w) and LTree1(w). For each r ∈ {0, 1}, the construction of LTreer(w)
goes from right to left. Before the k-th step (for k = n, . . . , 1), we store on a
stack the roots of subtrees of LTreer(w) that correspond to w[k+1, n]. Hence, the
intervals corresponding to the roots on the stack are disjoint and cover the inter-
val [k + 1, n]. In the k-th step we push on the stack a single node corresponding
to [k, k]. Afterwards, as long as the stack contains at least two elements and the
top element [k, l] and the second to top element [a, b] satisfy w[k, l] ≺r w[a, b],
we pop the two subtrees from the stack and push one subtree with the root [k, b].
The lexicographical comparison is performed via an LCE(k, a) query.
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Observation 13. The LCE queries asked in the construction of LTreer(w) are
non-crossing.

Proof. In the k-th step of the algorithm we only ask LCE(i, j) queries for i = k.
Suppose towards contradiction that in the course of the algorithm we ask two
LCE queries with (i, j) and (i′, j′) such that i < i′ < j < j′. The latter is asked
at step i′, and at that moment [i′, j′ − 1] is a root of a subtree of LTreer(w).
Then the former is asked at step i, and then [i, j − 1] is a root of a subtree
of LTreer(w). This contradicts the fact that the intervals in LTreer(w) form a
laminar family. �	

In the second phase, for each node [a, b] of each Lyndon tree LTreer(w) we
check if there is a run with period p = b−a+1 that contains w[a, b]. To this end
we check how long does the periodicity with period p extend to the right and to
the left of w[a, b]. The former obviously reduces to an LCE(a, b + 1) query and
the latter to an LCE query in the reverse of w, which is totally symmetric. As
the intervals in LTreer(w) form a laminar family, we arrive at the following.

Observation 14. The LCE queries asked when right-extending the periodicity
of the intervals from LTreer(w) are non-crossing.

By Observations 13 and 14, Theorem 12 yields the following result and its
immediate corollary.

Theorem 15. The Lyndon tree and the set of all runs in a string of length n
over a general ordered alphabet can be computed in O(nα(n)) time.

Corollary 16. All the local periods and the number of all squares in a string of
length n over a general ordered alphabet can be computed in O(nα(n)) time.
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Abstract. In a seminal paper of Charikar et al. on the smallest grammar
problem, the authors derive upper and lower bounds on the approxima-
tion ratios for several grammar-based compressors, but in all cases there
is a gap between the lower and upper bound. Here we close the gaps for
LZ78 and BISECTION by showing that the approximation ratio of LZ78
is Θ((n/ log n)2/3), whereas the approximation ratio of BISECTION is
Θ((n/ log n)1/2). We also derive a lower bound for a smallest grammar
for a word in terms of its number of LZ77-factors, which refines exist-
ing bounds of Rytter. Finally, we improve results of Arpe and Reischuk
relating grammar-based compression for arbitrary alphabets and binary
alphabets.

1 Introduction

The idea of grammar-based compression is based on the fact that in many cases
a word w can be succinctly represented by a context-free grammar that produces
exactly w. Such a grammar is called a straight-line program (SLP) for w. In the
best case, one gets an SLP of size O(log n) for a word of length n, where the size
of an SLP is the total length of all right-hand sides of the rules of the grammar.
A grammar-based compressor is an algorithm that produces for a given word w
an SLP A for w, where, of course, A should be smaller than w. Grammar-based
compressors can be found at many places in the literature. Probably the best
known example is the classical LZ78-compressor of Lempel and Ziv [17]. Indeed,
it is straightforward to transform the LZ78-representation of a word w into an
SLP for w. Other well-known grammar-based compressors are BISECTION [9],
SEQUITUR [13], and RePair [10], just to mention a few.

One of the first appearances of straight-line programs in the literature are
[2,5], where they are called word chains (since they generalize addition chains
from numbers to words). In [2], Berstel and Brlek prove that the function
g(k, n) = max{g(w) | w ∈ {1, . . . , k}n}, where g(w) is the size of a smallest
SLP for the word w, is in Θ(n/ logk n). Note that g(k, n) measures the worst
case SLP-compression over all words of length n over a k-letter alphabet. The
first systematic investigations of grammar-based compressors are [4,8]. Whereas
in [8], grammar-based compressors are used for universal lossless compression
(in the information-theoretic sense), Charikar et al. study in [4] the worst case
approximation ratio of grammar-based compressors. For a given grammar-based
compressor C that computes from a given word w an SLP C(w) for w one defines
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 35–49, 2016.
DOI: 10.1007/978-3-319-46049-9 4
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the approximation ratio of C on w as the quotient of the size of C(w) and the
size g(w) of a smallest SLP for w. The approximation ratio αC(n) is the maxi-
mal approximation ratio of C among all words of length n over any alphabet. In
[4] the authors compute upper and lower bounds for the approximation ratios
of several grammar-based compressors (among them are the compressors men-
tioned above), but for none of the compressors the lower and upper bounds
match. Our first main contribution (Sect. 3) closes the gaps for LZ78 and BISEC-
TION. For this we improve the corresponding lower bounds from [4] and obtain
the approximation ratios Θ((n/ log n)1/2) for BISECTION and Θ((n/ log n)2/3)
for LZ78. For BISECTION (resp., LZ78), we prove this lower bound for a binary
(resp., ternary) alphabet.

In Sect. 4 we compare the size of a smallest SLP for a word w with the num-
ber of factors of the LZ77-factorization of w (we denote the latter with gLZ77(w)).
Rytter [14] proved for every word w of length n the following bounds on the size
g(w) of a smallest SLP for w: g(w) ≥ gLZ77(w) and g(w) ∈ O(gLZ77(w) · log n).
This leads to the question whether the upper bound g(w) ∈ O(gLZ77(w)·log n) on
g(w) can be improved. This would have immediate consequences for grammar-
based compression: If one could construct in polynomial time an SLP of size
o(gLZ77(w) · log n) for a given word w, then one would obtain a grammar-based
compressor with an approximation ratio of o(log n). Currently, the theoreti-
cally best grammar-based compressors (which all work in linear time) achieve
an approximation ratio in O(log(n/g(w))) [4,7,14], and a polynomial time
grammar-based compressor with an approximation ratio in o(log n/ log log n)
would imply a spectacular breakthrough on a long standing open problem on
approximating addition chains [4]. Here, we partially answer the above ques-
tion whether the bound g(w) ∈ O(gLZ77(w) · log n) is sharp. Using a Kol-
mogorov complexity argument we construct a sequence of words wn for which
g(wn) ∈ Ω(gLZ77(wn) · log |wn|/ log log |wn|).

Our last contribution deals with the hardness of the smallest grammar prob-
lem for words over a binary alphabet. The smallest grammar problem is the
problem of computing a smallest grammar for a given input word. Storer and
Szymanski [15] and Charikar et al. [4] proved that the smallest grammar prob-
lem cannot be solved in polynomial time unless P = NP. Even worse, unless
P = NP one cannot compute in polynomial time for a given word w an SLP of
size < 8569/8568·g(w) [4]. The construction in [4] uses an alphabet of unbounded
size, and it was open whether this complexity lower bound also holds for words
over a fixed alphabet. In [4] it is remarked that the construction in [15] shows
that the smallest grammar problem for words over a ternary alphabet cannot
be solved in polynomial time unless P = NP. But this is not clear at all, see the
recent paper [3] for a detailed explanation. In the same paper [3] it was shown
that the smallest grammar problem for an alphabet of size 24 cannot be solved in
polynomial time unless P = NP using a rather complicated construction [3]. It is
far from clear whether this construction can be adapted so that it works also for
a binary alphabet. Another idea is to reduce the smallest grammar problem for
unbounded alphabets to the smallest grammar problem for a binary alphabet.
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This route was investigated in [1], where the following result was shown: If there
is a polynomial time grammar-based compressor with approximation ratio c
(a constant) on binary words, then there is a polynomial time grammar-based
compressor with approximation ratio 24c+ ε for every ε > 0 on arbitrary words.
The construction in [1] uses a quite technical block encoding of arbitrary alpha-
bets into a binary alphabet. Here, we present a very simple construction that
encodes the i-th alphabet symbol by aib, which yields the same result as [1] but
with 24c + ε replaced by 6.

2 Straight-Line Programs

Let w = a1 · · · an (a1, . . . , an ∈ Σ) be a word over an alphabet Σ. The length |w|
of w is n and we denote by ε the word of length 0. Let Σ+ = Σ∗ \ {ε} be the
set of nonempty words. For w ∈ Σ+, we call v ∈ Σ+ a factor of w if there exist
x, y ∈ Σ∗ such that w = xvy. If x = ε (respectively y = ε) then we call v a prefix
(respectively suffix ) of w. A factorization of w is a decomposition w = f1 · · · f�

into factors f1, . . . , f�. For words w1, . . . , wn ∈ Σ∗, we further denote by
∏n

i=j wi

the word wjwj+1 · · · wn if j ≤ n and ε otherwise.
A straight-line program, briefly SLP, is a context-free grammar that produces

a single word w ∈ Σ+. Formally, it is a tuple A = (N,Σ,P, S), where N is a
finite set of nonterminals with N ∩ Σ = ∅, S ∈ N is the start nonterminal,
and P is a finite set of productions (or rules) of the form A → w for A ∈ N ,
w ∈ (N∪Σ)+ such that: (i) For every A ∈ N , there exists exactly one production
of the form A → w, and (ii) the binary relation {(A,B) ∈ N × N | (A →
w) ∈ P, B occurs in w} is acyclic. Every nonterminal A ∈ N produces a unique
string valA(A) ∈ Σ+. The string defined by A is val(A) = valA(S). We omit
the subscript A when it is clear from the context. The size of the SLP A is
|A| =

∑
(A→w)∈P |w|. We will use the following lemma which summarizes known

results about SLPs.

Lemma 1. Let Σ be a finite alphabet.

1. For every word w ∈ Σ+ of length n, there exists an SLP A of size O(n/ log n)
such that val(A) = w.

2. For an SLP A and a number n > 0, there exists an SLP B of size |A| +
O(log n) such that val(B) = val(A)n.

3. For SLPs A1 and A2 there exists an SLP B of size |A1| + |A2| such that
val(B) = val(A1)val(A2).

4. For given words w1, . . . , wn ∈ Σ∗, u ∈ Σ+ and SLPs A1,A2 with val(A1) = u
and val(A2) = w1xw2x · · · wn−1xwn for a symbol x 	∈ Σ, there exists an SLP
B of size |A1| + |A2| such that val(B) = w1uw2u · · · wn−1uwn.

Statement 1 can be found for instance in [2]. Statements 2 and 3 are shown
in [4]. The proof of 4 is straightforward: Simply replace in the SLP A2 every
occurrence of the terminal x by the start nonterminal of A1 and add all rules of
A1 to A2.
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We denote by g(w) the size of a smallest SLP producing the word w ∈ Σ+.
The maximal size of a smallest SLP for all words of length n over an alphabet
of size k is

g(k, n) = max{g(w) | w ∈ [1, k]n},

where [1, k] = {1, . . . , k}. By point 1 of Lemma 1 we have g(k, n) ∈ O(n/ logk n).
In fact, Berstel and Brlek proved in [2] that g(k, n) ∈ Θ(n/ logk n). The following
result provides further information about the function g(k, n):

Proposition 2. Let nk = 2k2 + 2k + 1 for k > 0. Then (i) g(k, n) < n for
n > nk and (ii) g(k, n) = n for n ≤ nk.

Proof. Let Σk = {a1, . . . , ak} and let Mn,� ⊆ Σ∗
k be the set of all words w where

a factor v of length � occurs at least n times without overlap. It is easy to see
that g(w) < |w| if and only if w ∈ M3,2 ∪ M2,3. Hence, we have to show that
every word w /∈ M3,2 ∪ M2,3 has length at most 2k2 + 2k + 1. Moreover, we
present words wk ∈ Σ∗

k of length 2k2 + 2k + 1 such that wk /∈ M3,2 ∪ M2,3.
Let w /∈ M3,2 ∪ M2,3. Consider a factor aiaj of length two. If i 	= j then

this factor does not overlap itself, and thus aiaj occurs at most twice in w. Now
consider aiai. Then w contains at most four (possibly overlapping) occurrence of
aiai, because five occurrences of aiai would yield at least three non-overlapping
occurrences of aiai. It follows that w has at most 2(k2 − k)+4k positions where
a factor of length 2 starts, which implies |w| ≤ 2k2 + 2k + 1.

Now we create a word wk /∈ M3,2 ∪ M2,3 which realizes the above maximal
occurrences of factors of length 2:

wk =

(
k∏

i=1

a5
k−i+1

)
k−1∏
i=1

(
j=k∏
i+2

(ajai)
2

)
ai+1aiai+1

For example we have w3 = a5
3a

5
2a

5
1(a3a1)2a2a1a2a3a2a3. One can check that

|wk| = 2k2 + 2k + 1 and wk /∈ M3,2 ∪ M2,3. ��

3 Approximation Ratio

As mentioned in the introduction, there is no polynomial time algorithm that
computes a smallest SLP for a given word, unless P = NP [4,15]. This result
motivates approximation algorithms which are called grammar-based compres-
sors. A grammar-based compressor C computes for a word w an SLP C(w) such
that val(C(w)) = w. The approximation ratio αC(w) of C for an input w is defined
as |C(w)|/g(w). The worst-case approximation ratio αC(k, n) of C is the maximal
approximation ratio over all words of length n over an alphabet of size k:

αC(k, n) = max{αC(w) | w ∈ [1, k]n} = max{|C(w)|/g(w) | w ∈ [1, k]n}
If the alphabet size is unbounded, i.e. we allow alphabets of size |w|, then we
write αC(n) instead of αC(n, n). This is the definition of the worst-case approx-
imation ratio in [4]. The grammar-based compressors studied in our work are
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BISECTION [9] and LZ78 [17]. We will abbreviate the approximation ratio of
BISECTION (respectively LZ78) by αBI (respectively αLZ78). The families of words
which we will use to prove new lower bounds for αBI(n) and αLZ78(n) are inspired
by the constructions in [4].

3.1 BISECTION

The BISECTION algorithm [9] first splits an input word w with |w| ≥ 2 as
w = w1w2 such that |w1| = 2j for the unique number j ≥ 0 with 2j < |w| ≤ 2j+1.
This process is recursively repeated with w1 and w2 until we obtain words of
length 1. During the process, we introduce a nonterminal for each distinct factor
of length at least two and create a rule with two symbols on the right-hand side
corresponding to the split. Note that if w = u1u2 · · · uk with |ui| = 2n for all
i, 1 ≤ i ≤ k, then the SLP produced by BISECTION contains a nonterminal for
each distinct word ui (1 ≤ i ≤ k).

Example 3. BISECTION constructs an SLP for w = ababbbaabbaaab as follows:

– w = w1w2 with w1 = ababbbaa, w2 = bbaaab
Introduced rule: S → W1W2

– w1 = x1x2 with x1 = abab, x2 = bbaa, and w2 = x2x3 with x3 = ab
Introduced rules: W1 → X1X2, W2 → X2X3, X3 → ab

– x1 = x3x3, x2 = y1y2 with y1 = bb and y2 = aa
Introduced rules: X1 → X3X3, X2 → Y1Y2, Y1 → bb, Y2 → aa

BISECTION performs asymptotically optimal on unary words an since it pro-
duces an SLP of size O(log n). Therefore αBI(1, n) ∈ Θ(1). The following bounds
on the approximation ratio for alphabets of size at least two are proven in [4,
Theorems 5 and 6]:

αBI(2, n) ∈ Ω(
√

n/ log n) (1)

αBI(n) ∈ O(
√

n/ log n) (2)

We improve the lower bound (1) so that it matches the upper bound (2):

Theorem 4. For every k, 2 ≤ k ≤ n we have αBI(k, n) ∈ Θ(
√

n/ log n).

Proof. The upper bound (2) implies that αBI(k, n) ∈ O(
√

n/ log n) for all k, 2 ≤
k ≤ n. So it suffices to show αBI(2, n) ∈ Ω(

√
n/ log n). We first show that

αBI(3, n) ∈ Ω(
√

n/ log n). In a second step, we encode a ternary alphabet into a
binary alphabet while preserving the approximation ratio.

For every k ≥ 2 let bink : {0, 1, . . . , k − 1} → {0, 1}�log2 k� be the function
where bink(j) (0 ≤ j ≤ k−1) is the binary representation of j filled with leading
zeros (e.g. bin9(3) = 0011). We further define for every k ≥ 2 the word

uk =

⎛
⎝k−2∏

j=0

bink(j)amk

⎞
⎠ bink(k − 1),
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where mk = 2k−�log2 k� − �log2 k�. For instance k = 4 leads to mk = 2 and
u4 = 00aa01aa10aa11. We analyse the approximation ratio αBI(sk) for the word

sk =
(
ukamk+1

)mk
uk.

Claim 1. The SLP produced by BISECTION on input sk has size Ω(2k).

If sk is split into non-overlapping factors of length mk + �log2 k� = 2k−�log2 k�,
then the resulting set Fk of factors is

Fk = {aibink(j)amk−i | 0 ≤ j ≤ k − 1, 0 ≤ i ≤ mk}.

For example s4 consecutively consists of the factors 00aa, 01aa, 10aa, 11aa, a00a,
a01a, a10a, a11a, aa00, aa01, aa10 and aa11. The size of Fk is (mk + 1) · k ∈
Θ(2k), because all factors are pairwise different and mk ∈ Θ(2k/k). It follows
that the SLP produced by BISECTION on input sk has size Ω(2k), because the
length of each factor in Fk is a power of two and thus BISECTION creates a
nonterminal for each distinct factor in Fk.

Claim 2. A smallest SLP producing sk has size O(k).

There is an SLP of size O(log mk) = O(k) for the word amk by Lemma 1
(point 2). This yields an SLP for uk of size O(k) + g(u′

k) by Lemma 1 (point 4),
where u′

k = (
∏k−2

i=0 bink(i)x)bink(k − 1) is obtained from uk by replacing all
occurrences of amk by a fresh symbol x. The word u′

k has length Θ(k log k).
Applying point 1 of Lemma 1 (note that u′

k is a word over a ternary alphabet)
it follows that

g(u′
k) ∈ O

(
k log k

log(k log k)

)
= O

(
k log k

log k + log log k

)
= O(k).

Hence g(uk) ∈ O(k). Finally, the SLP of size O(k) for uk yields an SLP of size
O(k) for sk again using Lemma 1 (points 2 and 3).

In conclusion: We showed that a smallest SLP for sk has size O(k), while BISEC-
TION produces an SLP of size Ω(2k). This implies αBI(sk) ∈ Ω(2k/k). Let
n = |sk|. Since sk is the concatenation of Θ(2k) factors of length Θ(2k/k), we
have n ∈ Θ(22k/k) and thus

√
n ∈ Θ(2k/

√
k). This yields αBI(sk) ∈ Ω(

√
n/k).

Together with k ∈ Θ(log n) we obtain αBI(3, n) ∈ Ω(
√

n/ log n).
Let us now encode words over {0, 1, a} into words over {0, 1}. Consider the

homomorphism f : {0, 1, a}∗ → {0, 1}∗ with f(0) = 00, f(1) = 01 and f(a) = 10.
Then we can prove the same approximation ratio of BISECTION for the input
f(sk) ∈ {0, 1}∗ that we proved for sk above: The size of a smallest SLP for f(sk)
is at most twice as large as the size of a smallest SLP for sk, because an SLP for
sk can be transformed into an SLP for f(sk) by replacing every occurrence of
a symbol x ∈ {0, 1, a} by f(x). Moreover, if we split f(sk) into non-overlapping
factors of twice the length as we considered for sk, then we obtain the factors
from f(Fk), whose length is again a power of two. Since f is injective, we have
|f(Fk)| = |Fk| ∈ Θ(2k). ��
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3.2 LZ78

The LZ78 algorithm on input w ∈ Σ+ implicitly creates a list of words f1, . . . , f�

(which we call the LZ78-factorization) with w = f1 · · · f� such that the following
properties hold, where we set f0 = ε:

– fi 	= fj for all i, j, 0 ≤ i, j ≤ � − 1 with i 	= j.
– For all i, 1 ≤ i ≤ � − 1 there exist j, 0 ≤ j < i and a ∈ Σ such that fi = fja.
– f� = fi for some 0 ≤ i ≤ � − 1.

Note that the LZ78-factorization is unique for each word w. To compute it, the
LZ78 algorithm needs � steps performed by a single left-to-right pass. In the
kth step (1 ≤ k ≤ � − 1) it chooses the factor fk as the shortest prefix of the
unprocessed suffix fk · · · f� such that fk 	= fi for all i < k. If there is no such
prefix, then the end of w is reached and the algorithm sets f� to the (possibly
empty) unprocessed suffix of w.

The factorization f1, . . . , f� yields an SLP for w of size at most 3� as described
in the following example:

Example 5. The LZ78-factorization of w = aabaaababababaa is a, ab, aa, aba, b,
abab, aa and leads to an SLP with the following rules:

– S → F1F2F3F4F5F6F3

– F1 → a, F2 → F1b, F3 → F1a, F4 → F2a, F5 → b, F6 → F4b

We have a nonterminal Fi for each factor fi (1 ≤ i ≤ 6) such that valA(Fi) = fi.
The last factor aa is represented in the start rule by the nonterminal F3.

The LZ78-factorization of an (n > 0) is a1, a2, . . . , am, ak, where k ∈ {0, . . . , m}
such that n = k +

∑m
i=1 i. Note that m ∈ Θ(

√
n) and thus αLZ78(1, n) ∈

Θ(
√

n/ log n). The following bounds for the worst-case approximation ratio of
LZ78 were shown in [4, Theorems 3 and 4]:

αLZ78(2, n) ∈ Ω(n2/3/ log n) (3)
αLZ78(n) ∈ O((n/ log n)2/3) (4)

For ternary (or larger) alphabets, we will improve the lower bound so that it
matches the upper bound in (4).

Theorem 6. For every k ≥ 3 we have αLZ78(k, n) ∈ Θ((n/ log n)2/3).

Proof. Due to (4) it suffices to show αLZ78(3, n) ∈ Ω((n/ log n)2/3). For

k ≥ 2,m ≥ 1, let um,k =
(
akbmc

)k(m+2)−1 and vm,k =
(∏m

i=1 biak
)k2

. We
now analyse the approximation ratio of LZ78 on the words

sm,k = ak(k+1)/2 bm(m+1)/2 um,k vm,k.

For example we have u2,4 = (a4b2c)15, v2,4 = (ba4b2a4)16 and s2,4 =
a10 b3 u2,4 v2,4.
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Claim 1. The SLP produced by LZ78 on input sm,k has size Θ(k2m).

We consider the LZ78-factorization f1, . . . , f� of sm,k. The prefix ak(k+1)/2 pro-
duces the factors fi = ai for every i, 1 ≤ i ≤ k and the substring bm(m+1)/2

produces the factors fk+i = bi for every i, 1 ≤ i ≤ m.
We next show that the substring um,k then produces (among other factors)

all factors aibj , where 1 ≤ i ≤ k, 1 ≤ j ≤ m. All other factors produced by
um,k contain the letter c and therefore do not affect the factorization of the final
suffix vm,k ∈ {a, b}∗.

The first factors of um,k in sm,k are fk+m+1 = akb and fk+m+2 = bm−1c,
which together form the first occurrence of akbmc. The next two factors are
akb2 and bm−2c. This pattern continues and the prefix (akbmc)m of um,k

yields the next 2m factors fk+m+2i−1 = akbi and fk+m+2i = bm−ic for every
i, 1 ≤ i ≤ m. The factorization of um,k continues with fk+3m+1 = akbmc followed
by fk+3m+2 = akbmca. Next, we have fk+3m+3 = ak−1b and fk+3m+4 = bm−1ca,
which is the beginning of a similar pattern as we discovered for (akbmc)m. There-
fore, the next 2m factors are fk+3m+2i+1 = ak−1bi and fk+3m+2i+2 = bm−ica
for every i, 1 ≤ i ≤ m. The next two factors are fk+5m+3 = ak−1bmc followed
by fk+5m+4 = akbmca2. The iteration of these arguments yields k (consecutive)
blocks of 2m + 2 factors (resp. 2m + 1 in the last block) in um,k:

1st block:
∏m

i=1

(
akbi bm−ic

)
akbmc akbmca

2nd block:
∏m

i=1

(
ak−1bi bm−ica

)
ak−1bmc akbmca2

· · ·
(k − 1)th block:

∏m
i=1

(
a2bi bm−icak−2

)
a2bmc akbmcak−1

kth block:
∏m

i=1

(
abi bm−icak−1

)
abmc

We will show that the remaining suffix vm,k of sm,k produces then the set of
factors

{
aibpaj | 0 ≤ i ≤ k − 1, 1 ≤ j ≤ k, 1 ≤ p ≤ m

}
.

Let x = k + m + k(2m + 2) − 1 and note that this is the number of factors
that we have produced so far. The factorization of vm,k in sm,k slightly differs
whether m is even or is odd. We now assume that m is even and explain the
difference to the other case afterwards. The first factor of vm,k in sm,k is fx+1 =
ba. We already have produced the factors ak−1bi for every i, 1 ≤ i ≤ m and
hence fx+i = ak−1bia for every i, 2 ≤ i ≤ m and fx+m+1 = ak−1ba. The next
m factors are fx+m+i = ak−1bia2 if i is even, fx+m+i = ak−2bia if i is odd
(2 ≤ i ≤ m) and fx+2m+1 = ak−2ba. This pattern continues: The next m factors
are fx+2m+i = ak−1bia3 if i is even, fx+2m+i = ak−3bia if i is odd (2 ≤ i ≤ m)
and fx+3m+1 = ak−3ba and so on. Hence, we get the following sets of factors for
(
∏m

i=1 biak)k:

(i) {ak−ibpa | 1 ≤ i ≤ k, 1 ≤ p ≤ m, p is odd} for fx+1, fx+3 . . . , fx+km−1

(ii) {ak−1bpaj | 1 ≤ j ≤ k, 1 ≤ p ≤ m, p is even} for fx+2, fx+4, . . . , fx+km
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The remaining word then starts with the factor fy+1 = ba2, where y = x + km.
Now the former pattern can be adapted to the next k repetitions of

∏m
i=1 biak

which gives us the following factors:

(i) {ak−ibpa2 | 1 ≤ i ≤ k, 1 ≤ p ≤ m, p is odd} for fy+1, fy+3 . . . , fy+km−1

(ii) {ak−2bpaj | 1 ≤ j ≤ k, 1 ≤ p ≤ m, p is even} for fy+2, fy+4, . . . , fy+km

The iteration of this process then reveals the whole pattern and thus yields the
claimed factorization of vm,k in sm,k into factors aibpaj for every i, 0 ≤ i ≤ k−1,
j, 1 ≤ j ≤ k and p, 1 ≤ p ≤ m. If m is odd then the patterns in (1) and (2) switch
after each occurrence of

∏m
i=1 biak, which does not affect the result but makes

the pattern slightly more complicated. But the case that m is even suffices in
order to derive the lower bound from the theorem.

We conclude that there are exactly k + m + k(2m + 2) − 1 + k2m factors
(ignoring f� = ε) and hence the SLP produced by LZ78 on input sm,k has size
Θ(k2m).

Claim 2. A smallest SLP producing sm,k has size O(log k + m).

We will combine the points stated in Lemma 1 to prove this claim. Points 2 and 3
yield an SLP of size O(log k + log m) for the prefix ak(k+1)/2 bm(m+1)/2 um,k of
sm,k. To bound the size of an SLP for vm,k note at first that there is an SLP of
size O(log k) producing ak by point 2 of Lemma 1. Applying point 4 and again
point 2, it follows that there is an SLP of size O(log k)+g(v′

m,k) producing vm,k,
where v′

m,k =
∏m

i=1 bix for some fresh letter x. To get a small SLP for v′
m,k, we

can introduce m nonterminals B1, . . . , Bm producing b1, . . . , bm by adding rules
B1 → b and Bi+1 → Bib (1 ≤ i ≤ m − 1). This is enough to get an SLP of
size O(m) for v′

m,k and therefore an SLP of size O(log k + m) for vm,k. Together
with our first observation and point 3 of Lemma 1 this yields an SLP of size
O(log k + m) for sm,k.

Claim 1 and 2 imply αLZ78(sm,k) ∈ Ω(k2m/(log k + m)). Let us now fix
m = �log k�. We get αLZ78(sm,k) ∈ Ω(k2). Moreover, for the length n = |sm,k|
of sm,k we have n ∈ Θ(k3m + k2m2) = Θ(k3 log k). We get αLZ78(sm,k) ∈
Ω((n/ log k)2/3) which together with log n ∈ Θ(log k) finishes the proof. ��

It remains open whether also αLZ78(2, n) ∈ Θ((n/ log n)2/3) holds. In contrast
to BISECTION it is not clear how to encode a ternary alphabet into a binary
alphabet while preserving the approximation ratio for LZ78.

4 LZ77 and Composition Systems

The LZ77-factorization of a non-empty word w ∈ Σ+ is w = f1f2 · · · fm, where
for every i, 1 ≤ i ≤ m, fi is (i) the longest non-empty prefix of fifi+1 · · · fm

which is a factor of f1f2 · · · fi−1 or (ii) the first symbol of fifi+1 · · · fm if such a
prefix does not exist. Let gLZ77(w) = m be the number of factors in the LZ77-
factorization of w.
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Example 7. The LZ77-factorization of w = aabaaababababaa is a, a, b, aa, aba,
ba, baba, a and we have gLZ77(w) = 8.

We are interested in the following ratios, where 1 ≤ k ≤ n:

βLZ77(k, n) = max{g(w)/gLZ77(w) | w ∈ [1, k]n} and βLZ77(n) = βLZ77(n, n).

For a word w over a unary alphabet one has gLZ77(w) ∈ Θ(log |w|) and therefore
βLZ77(1, n) ∈ Θ(1). Rytter proved that for every word w, g(w) ≥ gLZ77(w) and
hence βLZ77(k, n) ≥ 1 for all k, 1 ≤ k ≤ n [14].1 Moreover, in the same paper,
he constructed for a word w an SLP of size O(gLZ77(w) · log |w|). This yields
βLZ77(n) ∈ O(log n). Using Kolmogorov complexity we prove the lower bound
βLZ77(2, n) ∈ Ω(log n/ log log n).

For a partial recursive function φ : {0, 1}∗ → {0, 1}∗ and a word w ∈ {0, 1}∗

let Cφ(w) = min{|p| | p ∈ {0, 1}∗, φ(p) = w} (where we define min(∅) = ∞) be
the Kolmogorov complexity of w with respect to φ. The invariance theorem of
Kolmogorov complexity states that there is a partial recursive surjective function
U : {0, 1}∗ → {0, 1}∗ such that for every partial recursive function φ : {0, 1}∗ →
{0, 1}∗ there is a constant c ≥ 0 with CU (w) ≤ Cφ(w) + c for all w. We fix such
a function U (it can be obtained from a universal Turing machine) and define
the Kolmogorov complexity of w as C(w) := CU (w). It is well known that for
every n ≥ 0 there is a word w ∈ {0, 1}n with C(w) ≥ n (such a word is called
Kolmogorov random). See [11] for further details.

Theorem 8. βLZ77(2, n) ∈ Ω(log n/ log log n).

Proof. Let m ∈ N, w ∈ {0, 1}∗, |w| = m2 and C(w) ≥ m2. We factorize w as
w = w1 · · · wm where |wi| = m for every i, 1 ≤ i ≤ m. We encode every wi into a
binary number of size Θ(2m) using the following (ranking) function p : {0, 1}∗ →
N: We define p(u) = i if and only if u is the ith word in the length-lexicographic
enumeration of all words from {0, 1}∗ (where p(ε) = 0). This is a computable
bijection from {0, 1}∗ to N such that p(x) ∈ Θ(2|x|). Let Ni = p(wi) for every
i, 1 ≤ i ≤ m. Thus, we have Ni ∈ Θ(2m). Let N = max{N1, . . . , Nm} ∈ Θ(2m)
and define the word v = aN#aN1# . . . #aNm# over the alphabet {a,#}. Let A

be a smallest SLP for v. Note that v and hence A uniquely encodes the word
w. Since an SLP of size k can be encoded by a bit string of size O(k log k)
[16] and C(w) ≥ m2, it follows that |A| · log |A| ∈ Ω(m2). Note that this is
the point where the Kolmogorov randomness of w is applied. Moreover, there
exists an SLP for v of size O(m · log N) = O(m2). Thus, |A| ∈ O(m2), which
together with |A| · log(|A|) ∈ Ω(m2) implies |A| ∈ Ω(m2/ log m) and hence
g(v) ∈ Ω(m2/ log m). On the other hand, the LZ77-factorization of v has O(m)
factors: The prefix aN# of v contributes O(log N) = O(m) factors. Because
N = max{N1, . . . , Nm}, every aNi#, where 1 ≤ i ≤ m, contributes at most one

1 It is shown in [14] that every SLP in Chomsky normal form for w has at least gLZ77(w)
many nonterminals. But the number of nonterminals in a smallest Chomsky normal
form SLP for w is bounded by g(w).
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additional factor. Altogether, we get gLZ77(v) ∈ O(m). Let n = |v| ∈ Θ(m · 2m),
which implies log n ∈ Θ(m). We get

βLZ77(2, n) ≥ g(v)
gLZ77(v)

∈ Ω

(
m2

m log m

)
= Ω

(
m

log m

)
= Ω

(
log n

log log n

)
.

This concludes the proof. ��
It remains open, whether the lower bound in Theorem 8 can be raised to Ω(log n).

A common generalization of SLPs and LZ77-factorizations are so called com-
position systems [6] or Cut-SLP [12] (briefly CSLP), which we define next. For
a word w = a1 · · · an ∈ Σ∗ and 1 ≤ i ≤ j ≤ n we define w[i : j] = ai · · · aj . A
CLSP C = (N,Σ,P, S) is defined analogously to an SLP but in addition may
contain rules of the form A → B[i : j] for A,B ∈ N and 1 ≤ i ≤ j ≤ |val(B)|.
We then define val(A) = val(B)[i : j]. The size of a right-hand side B[i : j] is
set to |B[i : j]| = 1 and the size of a CSLP is |C| =

∑
(A→w)∈P |w|. We denote

by gCSLP(w) the size of a smallest CSLP C such that val(C) = w and define
βCSLP(k, n) = max{g(w)/gCSLP(w) | w ∈ [1, k]n} and βCSLP(n) = βCSLP(n, n).

Note that if a non-empty word w has an LZ77-factorization w = f1f2 · · · fm of
length m then gCSLP(w) ≤ 3m: We introduce for every i, 1 ≤ i ≤ m a nonterminal
Ai which evaluates to f1 · · · fi. For this, we set A1 → f1 (f1 must be a single
symbol). For every i, 2 ≤ i ≤ m we set Ai → Ai−1fi if fi is a single symbol
and Ai → Ai−1Bi, Bi → Ai−1[j : k] if fi = (f1 · · · fi−1)[j : k]. Together with
Theorem 8 this yields the lower bound in the following theorem. The upper
bound follows easily using the techniques from [14].

Theorem 9. We have βCSLP(2, n) ∈ Ω(log n/ log log n) and βCSLP(n) ∈
O(log n).

5 Hardness of Grammar-Based Compression for Binary
Alphabets

The goal of this section is to prove the following result:

Theorem 10. Let c ≥ 1 be a constant. If there exists a polynomial time
grammar-based compressor C with αC(2, n) ≤ c then there exists a polynomial
time grammar-based compressor D with αD(n) ≤ 6c.

For a factor 24 + ε (with ε > 0) instead of 6 this result was shown in [1] using a
more complicated block encoding.

We split the proof of Theorem 10 in two lemmas that state translations
between SLPs over arbitrary alphabets and SLPs over a binary alphabet. For
the rest of this section fix the alphabets Σ = {a0, . . . , ak−1} and Σ2 = {a, b}.
To translate between these two alphabets, we define an injective homomorphism
ϕ : Σ∗ → Σ∗

2 by
ϕ(ai) = aib (0 ≤ i ≤ k − 1). (5)
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Lemma 11. Let w ∈ Σ∗ such that every symbol from Σ occurs in w. From an
SLP A for w one can construct in polynomial time an SLP B for ϕ(w) of size
at most 3 · |A|.
Proof. To translate A into an SLP B for ϕ(w), we first add the productions
A0 → b and Ai → aAi−1 for every i, 1 ≤ i ≤ k − 1.

Finally, we replace in A every occurrence of ai ∈ Σ by Ai. This yields an
SLP B for ϕ(w) of size |A| + 2k − 1. Because k ≤ |A| (since every symbol from
Σ occurs in w), we obtain |B| ≤ 3 · |A|. ��
Lemma 12. Let w ∈ Σ∗ such that every symbol from Σ occurs in w. From an
SLP B for ϕ(w) one can construct in polynomial time an SLP A for w of size
at most 2 · |B|.
Proof. A factor of a word from ϕ(Σ∗) is of the form s = ai1b · · · ainbain+1 for
some n ≥ 0, and 0 ≤ i1, . . . , in+1 ≤ k − 1. Take new symbols ãi, 0 ≤ i ≤
k − 1. Intuitively, ãi is an abbreviation for ai (whereas ai is an abbreviation for
aib). The symbols ãi are only used during the construction for clarification, and
disappear at the end. For the word s = ai1b · · · ainbain+1 define �(s) ∈ Σ ∪ {ε},
m(s) ∈ Σ∗, and r(s) ∈ {ãi | 0 ≤ i ≤ k − 1} as follows:

�(s) =

{
ai1 if n ≥ 1
ε if n = 0

m(s) = ai2 · · · ain r(s) = ãin+1

Note that �(s) = ε implies that m(s) = ε as well. Finally, let

ψ(s) = ai1︸︷︷︸
�(s)

ai2 · · · ain︸ ︷︷ ︸
m(s)

ãin+1︸ ︷︷ ︸
r(s)

.

Note that for every word w ∈ Σ∗ we have ψ(ϕ(w)) = wã0.
Let w ∈ Σ∗ and B = (N,Σ2, P, S) be an SLP for ϕ(w). For a nonterminal

A ∈ N we define �(A),m(A), r(A) as �(val(A)),m(val(A)), r(val(A)). We now
define an SLP A

′ that contains for every nonterminal A ∈ N a nonterminal
A′ such that val(A′) = m(A). Moreover, the algorithm also computes �(A) and
r(A).

We define the productions of A′ inductively over the structure of B. Consider
a production (A → α) ∈ P , where α = w0A1w1A2 · · · wn−1Anwn with n ≥ 0,
A1, . . . , An ∈ N , and w0, w1, . . . , wn ∈ Σ∗

2 . Let �i = �(Ai) and ri = r(Ai). The
right-hand side for A′ is obtained as follows. We start with the word

ψ(w0) �1 A′
1 r1 ψ(w1) �2 A′

2 r2 · · · ψ(wn−1) �n A′
n rn ψ(wn). (6)

Note that each of the factors �iA
′
iri produces (by induction) ψ(val(Ai)). Next we

remove every A′
i that derives the empty word (which is equivalent to m(Ai) = ε).

After this step, every occurrence of a symbol ãi is either the last symbol of the
word or it is followed by another symbol ãj or aj . This allows us to eliminate
all occurrences of symbols ãi except for the last symbol using the two reduction
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rules ãiãj → ãi+j (which corresponds to aiaj = ai+j) and ãiaj → ai+j (which
corresponds to aiajb = ai+jb). If we perform these rules as long as possible
(the order of applications is not relevant since these rules form a confluent and
terminating system), only a single occurrence of a symbol ãi at the end of the
right-hand side will remain. The resulting word α′ produces ψ(A). Hence, we
obtain the right-hand side for the nonterminal A′ by removing the first symbol
of α′ if it is of the form ai (this symbol is then �(A)) and the last symbol of α′,
which must be of the form ãj (this symbol is r(A)).

Note that for the start variable S of B we must have r(S) = ã0 since val(S)
belongs to the image of ϕ. Let S′ → σ be the production for S′ in A

′. We obtain
the SLP A by replacing this production by S′ → �(S)σ. Since valA′(S′) = m(S)
and valB(S) = ϕ(w) we have valA(S′) = �(S)m(S) = w.

To bound the size of A note that the length of the word in (6) is at most
|α| + 2n. But when forming the right-hand side of A′, all symbols r1, . . . , rn

are removed from (6). Hence, |A′| is bounded by the size of B plus the total
number of occurrences of nonterminals in right-hand sides of B, which is at most
2|B| − 1 (there is at least one terminal occurrence in a right-hand side). Since
|A| = |A′| + 1 we get |A| ≤ 2|B|.

It is easy to observe that the runtime of the algorithm is linear. ��
Example 13. Consider the production A → a3ba5A1a

3A2a
2b2A3a

2 and assume
that val(A1) = a2, val(A2) = aba3ba and val(A3) = ba2ba3. Hence, when we
produce the right-hand side for A′ we have: val(A′

1) = ε, val(A′
2) = a3, val(A′

3) =
a2, �1 = ε, r1 = ã2, �2 = a1, r2 = ã1, �3 = a0, r3 = ã3. We start with the word

a3ã5A
′
1ã2ã3a1A

′
2ã1a2a0ã0a0A

′
3ã3ã2.

Then we replace A′
1 by ε and obtain a3ã5ã2ã3a1A

′
2ã1a2a0ã0a0A

′
3ã3ã2. Applying

the reduction rules finally yields a3a11A
′
2a3a0a0A

′
3ã5. Hence, we have �(A) = a3,

r(A) = ã5 and the production for A′ is A′ → a11A
′
2a3a0a0A

′
3.

Proof of Theorem 10. Let C be an arbitrary grammar-based compressor working
in polynomial time such that αC(2, n) ≤ c. The grammar-based compressor D
works for an input word w over an arbitrary alphabet as follows: Let Σ =
{a0, . . . , ak−1} be the set of symbols that occur in w and let ϕ be defined as in
(5). Using C, one first computes an SLP B for ϕ(w) such that |B| ≤ c · g(ϕ(w)).
Then, using Lemma 12, one computes from B an SLP A for w such that |A| ≤
2c · g(ϕ(w)). Lemma 11 implies g(ϕ(w)) ≤ 3 · g(w) and hence |A| ≤ 6c · g(w),
which proves the theorem. ��

6 Open Problems

Several open problems arise from this paper. First of all, it would be nice to
prove (or disprove) the lower bound Ω((n/ log n)2/3) for the approximation
ratio of LZ78 also for a binary alphabet. Our proof needs a ternary alpha-
bet. Another interesting question arises from the gap between the lower bound
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Ω(log n/ log log n) and the upper bound O(log n) for βLZ77(n) (worst case size
of a smallest SLP in relation to the number of LZ77-factors). It is open whether
the factor 1/ log log n in the lower bound is necessary. Finally, one should try
to narrow also the gaps between the lower and upper bounds for the other
grammar-based compressors analyzed in [4]. In particular, for the so called global
algorithms from [4] these gaps are quite large.
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Abstract. For many kinds of prefix-free codes there are efficient and
compact alternatives to the traditional tree-based representation. Since
these put the codes into canonical form, however, they can only be used
when we can choose the order in which codewords are assigned to char-
acters. In this paper we first show how, given a probability distribution
over an alphabet of σ characters, we can store a nearly optimal alpha-
betic prefix-free code in o(σ) bits such that we can encode and decode
any character in constant time. We then consider a kind of code intro-
duced recently to reduce the space usage of wavelet matrices (Claude,
Navarro, and Ordóñez, Information Systems, 2015). They showed how
to build an optimal prefix-free code such that the codewords’ lengths are
non-decreasing when they are arranged such that their reverses are in lex-
icographic order. We show how to store such a code in O(σ log L + 2εL

)

bits, where L is the maximum codeword length and ε is any positive
constant, such that we can encode and decode any character in constant
time under reasonable assumptions. Otherwise, we can always encode
and decode a codeword of � bits in time O(�) using O(σ log L) bits of
space.
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1 Introduction

Binary prefix-free codes can be represented as binary trees whose leaves are
labelled with the characters of the source alphabet, so that the ancestor at
depth d of the leaf labelled x is a left child if the dth bit of the codeword for
x is a 0, and a right child if it is a 1. To encode a character, we start at the
root and descend to the leaf labelled with that character, at each step writing
a 0 if we go left and a 1 if we go right. To decode an encoded string, we start
at the root and descend according to the bits of the encoding until we reach a
leaf, at each step going left if the next bit is a 0 and right if it is a 1. Then we
output the character associated with the leaf and return to the root to continue
decoding. Therefore, a codeword of length � is encoded/decoded in time O(�).
This all generalizes to larger code alphabets, but for simplicity we consider only
binary codes in this paper.

There are, however, faster and smaller representations of many kinds of
prefix-free codes. If we can choose the order in which codewords are assigned
to characters then, by the Kraft Inequality [8], we can put any prefix-free code
into canonical form [13]— i.e., such that the codewords’ lexicographic order is
the same as their order by length, with ties broken by the lexicographic order of
their characters—without increasing any codeword’s length. If we store the first
codeword of each length as a binary number then, given a codeword’s length and
its rank among the codewords of that length, we can compute the codeword via
a simple addition. Given a string prefixed by a codeword, we can compute that
codeword’s length and its rank among codewords of that length via a predeces-
sor search. If the alphabet consists of σ characters and the maximum codeword
length is L, then we can build an O(σ log L)-bit data structure with O(log L)
query time that, given a character, returns its codeword’s length and rank among
codewords of that length, or vice versa. If L is at most a constant times the size
of a machine word (which it is when we are considering, e.g., Huffman codes
for strings in the RAM model) then in theory we can make the predecessor
search and the data structure’s queries constant-time, meaning we can encode
and decode in constant time [5].

There are applications for which there are restrictions on the codewords’
order, however. For example, in alphabetic codes the lexicographic order of the
codewords must be the same as that of the characters. Such codes are use-
ful when we want to be able to sort encoded strings without decoding them
(because the lexicographic order of two encodings is always the same as that of
the encoded strings) or when we are using data structures that represent point
sets as sequences of coordinates [10], for example. Interestingly, since the map-
ping between symbols and leaves is fixed, alphabetic codes need only to store the
tree topology, which can be represented more succinctly than optimal prefix-free
codes, in 2σ + o(σ) bits [9], so that encoding and decoding can still be done in
time O(�). There are, however, no equivalents to the faster encoding/decoding
methods used on canonical codes [5].

In Sect. 2 we show how, given a probability distribution over the alphabet, we
can store a nearly optimal alphabetic prefix-free code in o(σ) bits such that we
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can encode and decode any character in constant time. We note that we can still
use our construction even if the codewords must be assigned to the characters
according to some non-trivial permutation of the alphabet, but then we must
store that permutation such that we can evaluate and invert it quickly.

In Sect. 3 we consider another kind of non-canonical prefix-free code, which
Claude, Navarro, and Ordóñez [1] introduced recently to reduce the space usage
of their wavelet matrices. (Wavelet matrices are alternatives to wavelet trees
[6,10] that are more space efficient when the alphabet is large.) They showed how
to build an optimal prefix-free code such that the codewords’ lengths are non-
decreasing when they are arranged such that their reverses are in lexicographic
order. They represent the code in O(σL) bits, and encode and decode a codeword
of length � in time O(�). We show how to store such a code in O(σ log L) bits,
and still encode and decode any character in O(�) time. We also show that, by
using O(

σ log L + 2εL
)

bits, where ε is any positive constant, we can encode and
decode any character in constant time when L is at most a constant times the
size of a machine word. Our first variant is simple enough to be implementable.
We show experimentally that it uses 23–30 times less space than a classical
implementation, at the price of being 10–21 times slower at encoding and 11–30
at decoding.

2 Alphabetic Codes

Our approach to storing an alphabetic prefix code compactly has two parts: first,
we show that we can build such a code such that the expected codeword length is
at most a factor of (1+O(

1/
√

log n
)
)2 = 1+O(

1/
√

log n
)

greater than optimal,
the code-tree has height at most lg σ +

√
lg σ + 3, and each subtree rooted at

depth �lg σ − √
lg σ� is completely balanced; then, we show how to store such a

code-tree in o(σ) bits such that encoding and decoding take constant time.
Evans and Kirkpatrick [2] showed how, given a binary tree on n leaves, we

can build a new binary tree of height at most �lg n� + 1 on the same leaves in
the same left-to-right order, such that the depth of each leaf in the new tree is
at most 1 greater than its depth in the original tree. We can use their result
to restrict the maximum codeword length of an optimal alphabetic prefix code,
for an alphabet of σ characters, to be at most lg σ +

√
lg σ + 3, while forcing its

expected codeword length to increase by at most a factor of 1 + O(
1/

√
log σ

)
.

To do so, we build the tree Topt for an optimal alphabetic prefix code and then
rebuild, according to Evans and Kirkpatrick’s construction, each subtree rooted
at depth �√lg σ�. The resulting tree, Tlim, has height at most �√lg σ�+�lg σ�+1
and any leaf whose depth increases was already at depth at least �√lg σ�.

There are better ways to build a tree Tlim with such a height limit. Itai [7] and
Wessner [14] independently showed how, given a probability distribution over an
alphabet of σ characters, we can build an alphabetic prefix code Tlim that has
maximum codeword length at most lg σ +

√
lg σ + 3 and is optimal among all

such codes. Our construction in the previous paragraph, even if not optimal,
shows that the expected codeword length of Tlim is at most 1 + O(

1/
√

log σ
)

times that of an optimal code with no length restriction.
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Further, let us take Tlim and completely balance each subtree rooted at depth
�lg σ − √

lg σ�. The height remains at most lg σ +
√

lg σ + 3 and any leaf whose
depth increases was already at depth at least �lg σ − √

lg σ�, so the expected
codeword length increases by at most a factor of

lg σ +
√

lg σ + 3
�lg σ − √

lg σ� = 1 + O
(
1/

√
log σ

)
.

Let Tbal be the resulting tree. Since the expected codeword length of Tlim is in
turn at most a factor of 1 + O(

1/
√

log n
)

larger than that of Topt, the expected
codeword length of Tbal is also at most a factor of (1 + O(

1/
√

log n
)
)2 = 1 +

O(
1/

√
log n

)
larger than the optimal. Tbal then describes our suboptimal code.

To represent Tbal, we store a bitvector B[1..σ] in which B[i] = 1 if and
only if the codeword for the ith character in the alphabet has length at most
�lg σ − √

lg σ�, or if the ith leaf in T is the leftmost leaf in a subtree rooted at
depth �lg σ − √

lg σ�. With Pǎtraşcu’s implementation [12] for B this takes a
total of O

(
2lg σ−√

lg σ log σ + σ/ logc σ
)

= O(σ/ logc σ) bits for any constant c,
and allows us to perform in constant time O(c) the following operations on B:
(1) access, that is, inspecting any B[i]; (2) rank, that is, rank(B, i) counts the
number of 1 s in any prefix B[1..i]; and select, that is, select(B, j) is the position
of the jth 1 in B, for any j.

Let us for simplicity assume that the alphabet is [1..σ]. For encoding in
constant time we store an array S[1..2�lg σ−√

lg σ�], which stores the explicit code
assigned to the leaves of Tbal where B[i] = 1, in the same order of B. That is,
if B[i] = 1, then the code assigned to the character i is stored at S[rank(B, i)],
using lg σ+

√
lg σ+3 = O(log σ) bits. Therefore S requires O

(
2lg σ−√

lg σ log σ
)

=
o(σ/ logc σ) bits of space, for any constant c. We can also store the length of the
code within the same asymptotic space.

To encode the character i, we check whether B[i] = 1 and, if so, we simply
look up the codeword in S as explained. If B[i] = 0, we find the preceding 1 at
i′ = select(B, rank(B, i)), which marks the leftmost leaf in the subtree rooted
at depth �lg σ − √

lg σ� that contains the ith leaf in T . Since the subtree is
completely balanced, we can compute the code for the character i in constant
time from that of the character i′: The size of the balanced subtree is r = i′′ − i′,
where i′′ = select(B, rank(B, i′) + 1), and its height is h = �lg r�. Then the
first 2r − 2h codewords are of the same length of the codeword for i′, and the
last 2h − r have one bit less. Thus, if i − i′ < 2r − 2h, the codeword for i′ is
S[rank(B, i′)]+i−i′, of the same length of that of i; otherwise it is one bit shorter,
(S[rank(B, i′)]+2r−2h)/2+i−i′−(2r−2h) = S[rank(B, i′)]/2+i−i′−(r−2h−1).

To be able to decode quickly, we store an array A[1..2�lg σ−√
lg σ�] such that,

for 1 ≤ j ≤ 2�lg σ−√
lg σ�, if the �lg σ −√

lg σ�-bit binary representation of j −1 is
prefixed by the ith codeword, then A[j] stores i and the length of that codeword.
If, instead, the �lg σ − √

lg σ�-bit binary representation of j is the path label to
the root of a subtree of Tbal with size more than 1, then A[j] stores the position
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i′ in B of the leftmost leaf in that subtree (thus B[i′] = 1). Again, A takes
O

(
2log σ−√

log σ log σ
)

= o(σ/ logc σ) bits, for any constant c.
Given a string prefixed by the ith codeword, we take the prefix of length

�lg σ − √
lg σ� of that string (padding with 0 s on the right if necessary), view it

as the binary representation of a number j, and check A[j]. This either tells us
immediately i and the length of the ith codeword, or tells us the position i′ in B
of the leftmost leaf in the subtree containing the desired leaf. In the latter case,
since the subtree is completely balanced, we can compute i in constant time: We
find i′′, r, and h as done for encoding. We then take the first h bits of the string
(including the prefix we had already read, and padding with a 0 if necessary),
and interpret it as the number j′. Then, if d = j′ − S[rank(B, i′)] < 2r − 2h, it
holds i = i′ + d. Otherwise, the code is of length h − 1 and the decoded symbol
is i = i′ + 2r − 2h + �(d − (2r − 2h))/2� = i′ + r − 2h−1 + �d/2�.
Theorem 1. Given a probability distribution over an alphabet of σ characters,
we can build an alphabetic prefix code whose expected codeword length is at most
a factor of 1+O(

1/
√

log σ
)
more than optimal and store it in O(σ/ logc σ) bits,

for any constant c, such that we can encode and decode any character in constant
time O(c).

3 Codes for Wavelet Matrices

As we mentioned in Sect. 1, in order to reduce the space usage of their wavelet
matrices, Claude, Navarro, and Ordóñez [1] recently showed how to build an
optimal prefix code such that the codewords’ lengths are non-decreasing when
they are arranged such that their reverses are in lexicographic order. Specifically,
they first build a normal Huffman code and then use the Kraft Inequality to build
another code with the same codeword lengths with the desired property. They
store an O(σL)-bit mapping between characters and their codewords, where
again σ is the alphabet size and L is the maximum length of any codeword,
which allows them to encode and decode codewords of length � in time O(�). (In
the wavelet matrices, they already spend O(�) time in the operations associated
with encoding and decoding.)

Assume we are given a code produced by Claude et al.’s construction. We
reassign the codewords of the same length such that the lexicographic order
of the reversed codewords of that length is the same as that of their char-
acters. This preserves the property that codeword lengths are non-decreasing
with their reverse lexicographic order. The positive aspect of this reassignment
is that all the information on the code can be represented in σ lg L bits as a
sequence D = d1, . . . , dσ, where di is the depth of the leaf encoding character i
in the code-tree T . We can then represent D using a wavelet tree [6], which uses
O(σ log L) bits and supports the following operations on D in time O(log L):
(1) access any D[i], which gives the length � of the codeword of character i;
(2) compute r = rank�(D, i), which gives the number of occurrences of � in
D[1..i], which if D[i] = � gives the position (in reverse lexicographic order)
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of the leaf representing character i among those of codeword length �; and (3)
compute i = select�(D, r), which gives the position in D of the rth occurrence
of �, or which is the same, the character i corresponding to the rth codeword of
length � (in reverse lexicographic order).

If, instead of O(log L) time, we wish to perform the operations in time O(�),
where � is the length of the codeword involved in the operation, we can simply
give the wavelet tree of D the same shape of the tree T . We can even perform
the operations in time O(log �) by using a wavelet tree shaped like the trie for
the first σ codewords represented with Elias γ- or δ-codes [4, Observation 1].
The size stays O(σ log L) if we use compressed bitmaps at the nodes [6,10].

We are left with two subproblems. For decoding the first character encoded
in a binary string, we need to find the length � of the first codeword and the
lexicographic rank r of its reverse among the reversed codewords of that length,
since then we can decode i = select�(D, r). For encoding a character i, we find its
length � = D[i] and the lexicographic rank r = rank�(D, i) of its reverse among
the reversed codewords of length �, and then we must find the codeword given
� and r. We first present a solution that takes O(L log σ) = O(σ log L) further
bits1 and works in O(�) time. We then present a solution that takes O(

2εL
)

further bits and works in constant time.
Let T be the code-tree and, for each depth d between 0 and L, let nodes(d)

be the total number of nodes at depth d in T and let leaves(d) be the number of
leaves at depth d. Let v be a node other than the root, let u be v’s parent, let rv

be the lexicographic rank (counting from 1) of v’s reversed path label among all
the reversed path labels of nodes at v’s depth, and let ru be defined analogously
for u. Notice that since T is optimal it is strictly binary, so half the nodes at
each positive depth are left children and half are right children. Moreover, the
reversed path labels of all the left children at any depth are lexicographically
less than the reversed path labels of all the right children at the same depth (or,
indeed, at any depth). Finally, the reversed path labels of all the leaves at any
depth are lexicographically less than the reversed path labels of all the internal
nodes at that depth. It follows that

– v is u’s left child if and only if rv ≤ nodes(depth(v))/2,
– if v is u’s left child then rv = ru − leaves(depth(u)),
– if v is u’s right child then rv = ru − leaves(depth(u)) + nodes(depth(v))/2.

Of course, by rearranging terms we can also compute ru in terms of rv.
Suppose we store nodes(d) and leaves(d) for d between 0 and L. With the

three observations above, given a codeword of length �, we can start at the root
and in O(�) time descend in T until we reach the leaf v whose path label is that
codeword, then return its depth � and the lexicographic rank r = rv of its reverse
path label among all the reversed path labels of nodes at that depth.2 Then we
compute i from � and r as described, in further O(log �) time. For encoding i,

1 Since the code tree has height L and σ leaves, it follows that L < σ.
2 This descent is conceptual; we do not have a concrete node v at each level, but we

do know rv.
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we obtain as explained its length � and the rank r = rv of its reversed codeword
among the reversed codewords of that length. Then we use the formulas to walk
up towards the root, finding in each step the rank ru of the parent u of v, and
determining if v is a left or right child of u. This yields the � bits of the codeword
of i in reverse order (0 when v is a left child of u and 1 otherwise), in overall
time O(�). This completes our first solution, which we evaluate experimentally
in Sect. 4.

Theorem 2. Suppose we are given an optimal prefix code in which the code-
words’ lengths are non-decreasing when they are arranged such that their reverses
are in lexicographic order. We can store such a code in O(σ log L) bits — pos-
sibly after swapping characters’ codewords of the same length — where σ is the
alphabet size and L is the maximum codeword length, such that we can encode
and decode any character in O(�) time, where � is the corresponding codeword
length.

If we want to speed up descents, we can build a table that takes as arguments
a depth and several bits, and returns the difference between ru and rv for any
node u at that depth and its descendant v reached by following edges corre-
sponding to those bits. Notice that this difference depends only on the bits and
the numbers of nodes and leaves at the intervening levels. If the table accepts
t bits as arguments at once, then it takes L2t log σ bits and we can descend in
O(L/t) time. Setting t = εL/2, and since L ≥ lg σ, we use O(

2εL
)

space and
descend from the root to any leaf in constant time.

Speeding up ascents is slightly more challenging. Consider all the path labels
of a particular length that end with a particular suffix of length t: the lexico-
graphic ranks of their reverses form a consecutive interval. Therefore, we can
partition the nodes at any level by their r values, such that knowing which part
a node’s r value falls into tells us the last t bits of that node’s path label, and the
difference between that node’s r value and the r value of its ancestor at depth t
less. For each depth, we store the first r value in each interval in a predecessor
data structure, implemented as a trie with degree σε/3; since there are at most
2t intervals in the partition for each depth and L ≥ lg σ, setting t = εL/2 again
we use a total of O(

L2εL/2σε/3 log σ
) ⊂ O(

2εL
)

bits and ascend from any leaf
to the root in constant time.

Finally, the operations on the wavelet tree can be made constant-time by
using a balanced multiary variant [3].

Theorem 3. Suppose we are given an optimal prefix code in which the code-
words’ lengths are non-decreasing when they are arranged such that their reverses
are in lexicographic order. Let L be the maximum codeword length, so that it is
at most a constant times the size of the machine word. Then we can store such
a code in O(

σ log L + 2εL
)
bits — possibly after swapping characters’ codewords

of the same length — where ε is any positive constant, such that we can encode
and decode any character in constant time.
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4 Experiments

We have run experiments to compare the solution of Theorem2 (referred to as
WMM in the sequel, for Wavelet Matrix Model) with the only previous encoding,
that is, the one used by Claude et al. [1] (denoted by TABLE). Note that our
codes are not canonical, so other solutions [5] do not apply.

Claude et al. [1] use for encoding a single table of σL bits storing the code
of each symbol, and thus they easily encode in constant time. For decoding,
they have tables separated by codeword length �. In each such table, they store
the codewords of that length and the associated character, sorted by codeword.
This requires σ(L+lg σ) further bits, and permits decoding binary searching the
codeword found in the wavelet matrix. Since there are at most 2� codewords of
length �, the binary search takes time O(�).

For the sequence D used in our WMM, we use binary Huffman-shaped wavelet
trees with plain bitmaps. The structures for supporting rank/select efficiently
require 37.5 % space overhead, so the total space is 1.37σH0(D), where H0(D) ≤
lg L is the per-symbol zero-order entropy of the sequence D. We also add a
small index to speed up select queries [11] (that is, decoding), which can be
parameterized with a sampling value that we set to {16, 32, 64, 128}. Finally, we
store the values leaves and nodes, which add an insignificant L2 bits in total.

We used a prefix of three datasets in http://lbd.udc.es/research/ECRPC.
The first one, EsWiki, contains a sequence of word identifiers generated by using
the Snowball algorithm to apply stemming to the Spanish Wikipedia. The sec-
ond one, EsInv, contains a concatenation of differentially encoded inverted lists
extracted from a random sample of the Spanish Wikipedia. The third dataset,
Indo was created with the concatenation of the adjacency lists of Web graph
Indochina-2004 available at http://law.di.unimi.it/datasets.php. In Table 1 we
provide some statistics about the datasets. We include the number of symbols in
the dataset (n) and the alphabet size (σ). Assuming P is the relative frequency of
the alphabet symbols, H(P ) indicates (in bits per symbol) the empirical entropy
of the sequence. This approximates the average � value of queries. Finally we
show L, the maximum code length, and the zero-order entropy of the sequence
D, H0(D), in bits per symbol. The last column is then a good approximation of
the size of our Huffman-shaped wavelet tree for D.

Table 1. Main statistics of the texts used.

Collection Length (n) Alphabet
size (σ)

Entropy (H(P )) Max code
length(L)

Entropy of
level entries
(H0(D))

EsWiki 200,000,000 1,634,145 11.12 28 2.24

EsInv 300,000,000 1,005,702 5.88 28 2.60

Indo 120,000,000 3,715,187 16.29 27 2.51

http://lbd.udc.es/research/ECRPC
http://law.di.unimi.it/datasets.php
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Our test machine has a Intel(R) Core(tm) i7-3820@3.60 GHz CPU (4 cores/8
siblings) and 64 GB of DDR3 RAM. It runs Ubuntu Linux 12.04 (Kernel 3.2.0-99-
generic). The compiler used was g++ version 4.6.4 and we set compiler optimiza-
tion flags to −O9. All our experiments run in a single core and time measures
refer to CPU user-time.

Fig. 1. Size of code representations versus either compression time (left) or decompres-
sion time (right). Time is measured in nanoseconds per symbol.

Figure 1 compares the space required by both code representations and their
compression and decompression times. As expected, the space per character of
our new code representation, WMM, is close to 1.37H0(D), whereas that of TABLE
is close to 2L + lg σ. This explains the large difference in space between both
representations, a factor of 23–30 times. For decoding we show the mild effect
of adding the structure that speeds up select queries.
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The price of our representation is the encoding and decoding time. While the
TABLE approach encodes using a single table access, in 8–18 ns, our representation
needs 130–230, which is 10 to 21 times slower. For decoding, the binary search
performed by TABLE takes 20–50 ns, whereas our WMM representation requires
510–700 in the slowest and smallest variant (i.e., 11–30 times slower). Our faster
variants require 300–510 ns, which is still several times slower.

5 Conclusions

A classical prefix code representation uses O(σL) bits, where σ is the alphabet
size and L the maximum codeword length, and encodes in constant time and
decodes a codeword of length � in time O(�). Canonical prefix codes can be rep-
resented in O(σ log L) bits, so that one can encode and decode in constant time
under reasonable assumptions. In this paper we have considered two families of
codes that cannot be put in canonical form. Alphabetic codes can be represented
in O(σ) bits, but encoding and decoding take time O(�). We gave an approxima-
tion that worsens the average code length by a factor of 1+O(

1/
√

log σ
)
, but in

exchange requires o(σ) bits and encodes and decodes in constant time. We then
consider a family of codes that are canonical when read right to left. For those
we obtain a representation using O(σ log L) bits and encoding and decoding in
time O(�), or even in O(1) time under reasonable assumptions if we use O(

2εL
)

further bits, for any constant ε > 0.
We have implemented the simple version of these right-to-left codes, which

are used for compressing wavelet matrices, and shown that our encodings are
significantly smaller than classical ones in practice (up to 30 times), albeit also
slower (up to 30 times). For the journal version of the paper, we plan to imple-
ment the wavelet tree of D with a shape that lets it operate in time O(�) or
O(log �), as used to prove Theorem 2; currently we gave it Huffman shape in
order to minimize space. Since there are generally more longer than shorter
codewords, the Huffman shape puts them higher in the wavelet tree of D, so
the longer codewords perform faster and the shorter codewords perform slower.
This is the opposite effect as the one sought in Theorem 2. Therefore, a faithful
implementation may lead to a slightly larger but also faster representation.

An interesting challenge is to find optimal alphabetic encodings that can
encode and decode faster than in time O(�), even if they use more than O(σ)
bits of space. Extending our results to other non-canonical prefix codes is also
an interesting line of future work.
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Abstract. Recently, the first PRAM algorithms were presented for look-
ing up a pattern in a suffix tree. We improve the bounds, achieving opti-
mal results.
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1 Introduction

Looking up a pattern string in an index is one of the most basic primitives in
stringology, and the suffix tree (and its suffix array representation) is among the
most basic indexes. It is therefore surprising that, until recently, there were no
known PRAM algorithms for looking up an m-character pattern P in a suffix tree
of an n-character text T . This contrasts sharply with the rich PRAM literature
for the problem of finding all occurrences of P in T in the case where P can be
preprocessed, optimal solutions of which are known for the full range of PRAM
models [5,8,15].

Recently Jekovec and Brodnik [10] considered the problem of parallel lookups
in an index, specifically suffix trees and quadratic-space suffix tries. They
achieved work-time optimal O(m) work and O(log m) time for suffix trie lookups
in the CREW PRAM, although the preprocessing involves quadratic work and
space. For suffix tree lookups, they achieve O(m log m) work and O(log m)
time by augmenting the O(n)-size suffix tree with further data structures1

that increase the size to O(n log n). These bounds are time-optimal due to the
Ω(log n) time lower bound for computing the OR of n-bits [4] in the CREW
PRAM.

Fischer et al. [7] gave an CREW PRAM algorithm using the suffix array
and some additional compact data structures requiring a total of n log n +
O(n) bits (i.e. n + o(n) words), thus improving the space. Their algorithm
uses O(log log m log log n + log m) time and O(m + min(m, log n)(log m +
log log m log log n)) work. Additionally they considered the approximate pattern
lookup problem and lookups in compressed suffix arrays.

In this paper, we improve the bounds for looking up a pattern in an index
in several ways. First, we provide an algorithm that matches the time-work
1 Suffix trees of subsets of characters, hash tables, etc.
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optimal bounds of O(log m) time, O(m) work while achieving O(n) space. Also,
our algorithm runs on the EREW PRAM, thus improving on the earlier CREW
PRAM algorithms. As in the previous algorithms, we use randomization, but
only in the preprocessing, whereas the pattern matching phase is deterministic2.

We consider two variants of the pattern lookup problem: exact matching and
prefix matching. In exact matching, we find the place in the suffix tree where
the complete pattern matches. In prefix matching, we find the location in the
suffix tree which matches the longest possible prefix of the pattern.

Our main result is:

Theorem 1. Given a suffix tree of a string T of length n and a pattern P of
length m, then parallel prefix pattern lookup in the suffix tree takes worst-case
O(log m) time and O(m) work, after O(log n log∗ n) time and O(n) work pre-
processing w.h.p. requiring O(n) additional space. All bounds are on the EREW
PRAM model.

In order to present this result, we first present a simpler but similar method
that does more work during preprocessing and does not support prefix pattern
lookups. Both results augment suffix trees with Karp-Rabin fingerprints [12]
and perfect hashing [2]. The final result is obtained by reducing the number
of strings that must be guaranteed to have collision-free KR fingerprints by
discarding possible false-positives during a query. We note that the techinque
of combining indexes with Karp-Rabin fingerprints for efficient pattern lookups
was introduced in [1], but in that case it was to improve sequential dictionary
pattern matching.

Furthermore we include a simple algorithm for parallel prefix pattern lookup
in a suffix array because it is deterministic in both the query and preprocess-
ing phases and works on general alphabets whereas the first works on integer
alphabets, at the cost of some running time. The result is summarized below:

Theorem 2. Prefix pattern matching in a suffix array with LCP-values can be
performed in O(log n) time and O(m + log n) work on the CRCW PRAM model
with no other preprocessing than computing the suffix array and the LCP array.

2 Preliminaries

Denote by T a text of length n of letters from an alphabet Σ. Call the corre-
sponding suffix tree S. For an edge e ∈ S denote by T (e) the string of letters on
the path from the root to e and including the letters on e. Similarly let pre(e)
denote the string of letters on the path from the root to e including only the
first letter on e. Let parent(e) be the edge that shares a node with e and is on
the e-root path. Let T [i] be the ith character of T and T [i, j] be the substring
of T from the ith character to the jth character, both inclusive.

2 Both earlier results involve hashing, as does ours. We give our bounds using fast,
randomized perfect hashing, rather than slow, deterministic perfect hashing.
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In this paper we will be working in the PRAM model see [9] for details. We
present all results based on the work-time presentation framework described in
[9] (i.e. without having the number of processors as a parameter).

We will be using the following lemmas throughout our solutions:

Lemma 1 (Follows from list rank in [3]). Given a set of linked lists repre-
sented by a table of length n of next-pointers and the index of a head element
one can compute which elements are in the linked list that contains the head.
This can be done in O(log n) time and O(n) work in the EREW PRAM model.

Lemma 2 ([6]). Given a table B of n bits, one can find the leftmost 1-bit in B
in O(1) time and O(n) work in the CRCW PRAM model.

Lemma 3 (Follows from Prefix Sum [13]). Given a string T of length n,
all prefix Karp-Rabin fingerprints [12] φ(T [1, 1]), φ(T [1, 2]), . . . can be computed
in O(log n) time and O(n) work in the EREW PRAM model.

Lemma 4 (From [2], adapted to EREW). Given a (multi-)set of n integers
a perfect hash table of size n can be computed in time O(log n log∗ n) using O(n)
work and space w.h.p. in the EREW PRAM model.

3 Simple Fingerprint-Based Pattern Lookup

The main idea in this solution is to use a combination of Karp-Rabin fingerprints
and perfect hash tables to avoid doing an actual traversal of the suffix tree from
the root. We first show a simplified version of this solution, and then extend it
to reduce preprocessing time and to support prefix lookups.

Data Structure. Let φ be a Karp-Rabin based fingerprint function that is collision
free for all substrings in T . We store the string T , the suffix tree S for T , and a
perfect hash table Hd for each d = 1 . . . n mapping H|pre(e)|[φ(pre(e))] → e for
each edge e in S. These structures use O(n) space in total.

Query. Given a pattern P , first compute the prefix fingerprints of P using
Lemma 3. In parallel, look up a fingerprint φ(P [1, d]) in hash table Hd, for all
d = 1 . . . m. If there is a match, let M [d] = Hd[φ(P [1, d])], and otherwise let
M [d] = ⊥. Since all lookups are in different hash tables there are no read con-
flicts. Find the rightmost non-⊥ value in M and call it ec. If P occurs in T then
this match must be on ec in the suffix tree. Match P character-by-character to
T (ec)[1,m]. If there are no differences, report that P exists on ec in T ; otherwise,
report that P does not occur.

Since all characters of P are compared to a substring of T before reporting
an occurrence, no false positives are reported. We need this verification part
because our fingerprints are only guaranteed to be collision-free on T , not on P .

If P does occur in T , then the fingerprint function is guaranteed to be
collision-free in both P and T , and so we will find a single maximal ec so that a
prefix of P matches with pre(ec). The brute-force matching phase then extends
the match length down the edge ec.
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The bottleneck of the query is the O(log m)-time, O(m)-work of computing
the fingerprints (Lemma 3), and the same time and work to verify a match. We
conclude that these are overall work-time bounds.

Preprocessing. We assume the suffix tree is given3. In O(log n) time and O(n)
work we can compute all prefix fingerprints of T using Lemma 3. From these
prefix fingerprints the fingerprint of an arbitrary substring of T can be computed
in constant time and work.

Validate that φ is collision-free for the substrings of T by computing all
possible fingerprints. Since there are Θ(n2) different substrings this takes O(n2)
work. They can all be calculated independently, but O(n) fingerprints might
depend on the same fingerprint prefix which means the algorithm might need
to read the same memory cell at the same time. Since a CREW algorithm can
be simulated as an EREW algorithm with O(log n) time overhead per step [9],
this takes O(log n) time. Construct a hash table over all the fingerprints using
Lemma 4 to check for duplicates - if there are any duplicates, start over with a
new random Karp-Rabin fingerprint function. In total this takes O(log n log∗ n)
time and O(n2) work w.h.p.

Finally constructing the n different hash tables with a total of O(n) elements
can be done in O(log n log∗ n) time and O(n) work w.h.p. using Lemma 4.

Overall preprocessing takes O(log n log∗ n) time and O(n2) work, both w.h.p.

4 Better Fingerprint-Based Pattern Lookup

We now show how to improve the above solution such that the preprocessing
work will be O(n) w.h.p. instead of O(n2). Furthermore, this method will support
general prefix pattern lookups. These improvements are achieved by reducing the
number of substrings of T that must be guaranteed to have collision-free finger-
prints from O(n2) to O(n), and instead taking care of possible false positives
during the query.

Data Structure. The data structure used is the same as above with the difference
that the fingerprint function φ is only guaranteed to be collision free for the
substrings pre(e) for all e ∈ S, of which there are O(n).

Query. Given a pattern P , first compute its prefix fingerprints. In parallel, look
up the fingerprint φ(P [1, d]) in the respective hash table Hd for all d = 1 . . . m.
If there is a match set M [d] = Hd[φ(P [1, d])] otherwise M [d] = ⊥. If M [1] = ⊥
then P does not occur in T , so in this case stop and report no match. The edges
contained in M form a set of disjoint paths in S (see proof below). Consider
each of these paths to be a linked list of edges. Let N [i] be a table describing
the next-pointers i.e. which edge M [N [i]] follows M [i]. Define e = M [d] and
e′ = parent(e), and set N [|pre(e′)|] = d if e �= ⊥ and M [|pre(e′)|] = e′. Let
N [d] = ⊥ denote unset entries. Use Lemma 1 to compute which edges are in

3 Though, in fact, the suffix tree of T can be constructed in O(log2 n) time, O(n logn)
work and O(n) space [11] for general alphabets.
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the same linked list as M [1], let d be the index of the right-most of these. Now
ec = M [d] is our candidate edge. In parallel find the longest prefix of the strings
P and T (ec)[1,m] that matches. Report the result.

Fig. 1. An illustration of a small part of the suffix tree S. Green edges represent the
edges in M . As illustrated they all form disjoint monotone paths. A prefix of the pattern
P of length m′ occurs on the left-most path in the illustration. An example of the
N -array is included. The y-position of a node represents the string depth. (Color figure
online)

Before reporting any results we verify by comparing P to a substring of T ,
so that no false-positives are reported.

We focus on proving that we always find a (prefix) match of P in T if it
exists. So assume a non-empty prefix of P exists somewhere in T . In this case
there is a path P̂ from the root spelling out this prefix of P . We now need to
show P̂ is a prefix of the path P from the root to the edge ec our algorithm picks
as the candidate edge for verification.

Consider the set of edges the algorithm finds in M . All edges e ∈ P̂ are in this
set as P [1, |pre(e)|] = pre(e) ⇒ φ(P [1, |pre(e)|]) = φ(pre(e)). If the fingerprint
function were collision-free (even with P ), then this set of edges would be exactly
the edges on P. Unfortunately, this is not the case for the restricted-collision-free
fingerprint function we are using. In our case the set of edges form a disjoint set
of monotone paths in S as illustrated in Fig. 1. To prove this, we show that at
most one outgoing edge of a node can be in M . Assume to the contrary that
e1 and e2 are both outgoing edges of a node with string depth d and they are
both in M . Then φ(P [1, d + 1]) = φ(pre(e1)) and φ(P [1, d + 1]) = φ(pre(e2)),
which implies that φ(pre(e1)) = φ(pre(e2)). This contradicts that the fingerprint
function is collision free for strings pre(e) where e ∈ S.

Since all edges in P are in M and any node can have at most one outgoing
edge, the path we are interested in is the one containing the root of S. All other
paths can safely be discarded. Therefore we use Lemma 1 to remove all edges of
M not connected to the root. Since all the edges on P̂ are on this path and we
pick the deepest, P̂ is a prefix of P. This completes the proof.

Preprocessing. All steps of the preprocessing are similar to the steps of the pre-
processing before with the only exception we only need to verify our Karp-Rabin
fingerprint function is collision free on a set of O(n) strings. As this was the bot-
tleneck on the work before, the work is now reduced to O(n) w.h.p.
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5 Parallel Suffix Array Pattern Lookup

Here we describe a parallelization of [14], which has the advantage of working
for any alphabet and of being deterministic in both query and preprocessing.
The query run time is slower.

Manber’s algorithm performs a binary search over the suffix array. It main-
tains an interval [L,R] ⊆ [1, n] of the suffix array wherein potential matches lie.
In each round the middle element M in [L,R] is found, and it is determined if the
search should continue in the interval [L,M ] or [M,R]. This is accomplished by
matching P to T [SA[M ],SA[M ] + m]. Finding the leftmost mismatch between
the two strings in parallel takes O(1) time and O(m) work using Lemma 2. There
are O(log n) rounds, so the overall time is O(log n) and the work is O(m log n).

This method can be generalized to the algorithm that uses the LCP-array
as well. If we just keep comparing the current suffix with the entire part of P
that has not yet been matched we will obtain the same time and work bounds
as above. By a small modification, the work can be reduced to O(m) as follows.
Instead of comparing all of the pattern to the current suffix the algorithm should
perform the comparison in chunks of size m

logn .
In rounds where no more than m

logn characters match, the total work is O(m+
log n). In the remaining rounds, the total work is O(m). Thus the overall time
is still O(log n) but the work is reduced to O(m + log n).
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Abstract. Alignment is the most fundamental algorithm that has been
widely used in numerous research in bioinformatics, but its computation
cost becomes too expensive in various modern problems because of the
recent explosive data growth. Hence the development of alignment-free
algorithms, i.e., alternative algorithms that avoid the computationally
expensive alignment, has become one of the recent hot topics in algo-
rithmic bioinformatics.

Analysis of protein structures is a very important problem in bioinfor-
matics. We focus on the problem of predicting functions of proteins from
their structures, as the functions of proteins are the keys of everything in
the understandings of any organisms and moreover these functions are
said to be determined by their structures. But the previous best-known
(i.e., the most accurate) method for this problem utilizes alignment-based
kernel method, which suffers from the high computation cost of align-
ments.

For the problem, we propose a new kernel method that does not
employ alignments. Instead of alignments, we apply the two-dimensional
suffix tree and the contact map graph to reduce kernel-related computa-
tion cost dramatically. Experiments show that, compared to the previous
best algorithm, our new method runs about 16 times faster in training
and about 37 times faster in prediction while preserving comparatively
high accuracy.

1 Introduction

Proteins are fundamental biomolecules that work as functional units of biological
systems. A protein consists of amino acids connected like a chain. In natural
environments, this chain is folded into a three-dimensional structure by physical
or chemical forces. Roughly speaking, each sequence is folded into a specific
structure, which gives rise to specific functions. Thus, researchers have devoted
much energies to identify protein structures and maintain them with annotations.

Since protein structures are notoriously difficult to determine by wet lab.
techniques such as X-ray crystallography, once identified, they are often become
subjects of “heavy” analyses. However, there are several situations where
computationally inexpensive analysis methods are desirable. In particular,
c© Springer International Publishing AG 2016
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computer simulations, nowadays, are beginning to produce large amounts of
protein structure data. This technology is promising because it enables us to
study proteins that are not amenable to conventional methods. Also, by simula-
tion, one can observe the dynamic behaviors of proteins in environments such as
water. To further this technology, more efficient algorithms for protein structure
analysis are needed.

In this article, we propose a method to classify protein structures. For the
classification of non-vectorial data such as strings or graphs, kernel methods
are known to be effective [21]. We design a kernel function, a kind of similar-
ity measure, for protein structures and plug it in to support vector machines
(SVMs) [24]. Previously, researchers have developed structural alignment, a
group of problem formulations/methods that capture relevant protein structure
similarities very well [11]. But structural alignment is often computationally too
expensive to apply to classification for two reasons. First, all structural align-
ment formulations require finding “good” correspondences between one protein’s
amino acids and those of another. This gives rise to hard combinatorial optimiza-
tion problems. Second, most formulations involve complex algebraic scores such
as the root mean square deviation. This makes it difficult to classify data by the
structural similarity even if amino acids correspondence is known.

To overcome these difficulties, we take the approach of alignment-free method
and apply it to compare protein structures. Alignment-free methods are recently
gaining popularity among the community of sequence data analysis as a compu-
tationally cheaper and (sometimes) more relevant alternative of sequence align-
ment [1,5,6,12,23]. The crux of these methods is to avoid the quadratic cost
of pairwise sequence alignment or NP-hardness of multiple alignment. We take
the same approach for protein structures, for which even pairwise alignment is
NP-hard (or it has a high degree polynomial time complexity depending on the
exact formulation).

To compare protein structures without alignment, we define a kernel function
through protein contact maps. The contact map of a protein is a graph with
totally ordered vertices representing the amino acids and edges representing the
proximity of amino acids in the folded state. It was introduced in the context of
structural alignment and researchers have used it mainly to formulate contact
map overlap problem, where optimal order preserving correspondence between
vertices from different contact maps are sought [10]. We, instead, respect the
sequential aspect of proteins more and characterize each protein by the histogram
of square submatrices of the adjacency matrix of the contact map. See Fig. 1 for
an illustration. The leftmost image is a protein comprising of 3 amino acids.
Every pair of amino acids except the 1st and the 3rd is spatially close enough
to each other. The middle image is the adjacency matrix of the corresponding
contact map. The right image is the resulting feature vector (only some of the
coordinates are shown.) Then we define the kernel function of two proteins as
the inner product of their feature vectors. This function is positive semidefinite
and thus, we can feed it into SVMs.
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Fig. 1. Example feature vector of the proposed kernel with parameter k = 2. Every
pair of amino acids except the 1st and the 3rd is spacially close to each other. In the
feature vector on the right, only some of the coordinates are shown

Physically, the characterization of proteins described above corresponds to
treating contiguous amino acids on the chain as groups and counting the patterns
of interactions between such groups. This is natural for two reasons. First, inter-
actions between spatially close amino acids have much more significant impact
on the global structure than those between spatially remote amino acids do.
Therefore, by representing proteins by contact map instead of, e.g., distance
matrix, we lose some information but the loss should be minor. On the other
hand, the combinatorial nature of the contact map opens the possibility of effi-
cient solution. Second, amino acids close on the chain are close in space. Thus,
we can treat a set of contiguous amino acids as a unit of interaction. In existing
work, researchers chose the set of amino acids that are actually spatially close
as units of interaction [4,25]. While this is also a reasonable choice, by using the
proximity on the chain, and the contact map representation, we can apply the
very efficient techniques of combinatorial pattern matching for the computation
of the kernel function.

The results of this paper are summarized as follows:

– We propose a novel alignment-free kernel function for protein structures that
is based on protein contact maps;

– We propose an efficient algorithm to calculate the proposed kernel function.
The algorithm is based on the two-dimensional suffix tree [9,15] and runs in
Θ(n2)-time where n is the size of input proteins. This bound matches the time
complexity of the fastest existing method [25];

– We also propose a prediction algorithm for the test phase of SVMs based
on the kernel we introduce. The time complexity of the algorithm does not
depend on the size of the support vectors;

– We experimentally show that the combination of the proposed kernel function
and the SVMs achieves classification performance comparative to the most
accurate existing method [4] while it runs about 16 times faster in training
and 37 times faster in prediction.
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Related work. Wang et al. [25] and Bhattacharya et al. [4] worked on the
same problem addressed in the current paper. For performance comparison, see
Tables 1, 2 and 3. Wang et al. proposed a kernel function for protein structures
that incorporates both sequential information, i.e., amino acid types, and struc-
tural information. They used the set of amino acids within some distance from
an amino acid as a unit of interaction. Their method was the fastest but the least
accurate among the methods we tested. Bhattacharya et al., taking the opposite
approach to ours, proposed kernel functions based on structural alignment. They
used the set of a fixed number of amino acids closest to an amino acid as a unit
of interaction. In our experiment, their method gave accurate results but it took
very long computation time. Qiu et al. [19] also proposed a kernel function based
on structural alignment but in a different context of function annotation. This
method may be applicable to the problem considered in the current paper but
we did not test it because it is similar to Bhattacharya et al.’s method.

Alignment-free analysis is a well-studied topic among sequence data analy-
sis community [1,5,6,12,23]. In particular, our method can be seen as a two-
dimensional analogue of the spectrum kernel [16].

2 Preliminaries

Proteins and contact maps. In this paper, we model a protein as a sequence
of three-dimensional coordinates. These coordinates represent the positions of
carbon atoms called Cα. Due to the nature of peptide bond, the distance between
a pair of neighboring Cα atoms is always about 3.8 Å.

Let P = (p1, p2, . . . , pn) be a protein. The contact map of P is a graph con-
sisting of n totally ordered vertices v1, v2, . . . , vn. There exists an edge between
vi and vj iff the distance between pi and pj is less than a parameter t > 0.
The Isuffix tree. For a string T , we denote the substring from the i-th to the j-th
character inclusive by T [i : j]. We denote the length of T by |T |. We denote the
submatrix from the i1-th row to the i2-th row and the j1-th column to the j2-th
column of a matrix M as M [i1 : i2, j1 : j2]. We also write M [i, j1 : j2] to mean
M [i : i, j1 : j2] and write M [i1 : i2, j] to mean M [i1 : i2, j : j].

The two-dimensional suffix tree for an m × n matrix M should support that,
given an � × � square matrix Q as a query, finding all (i, j) s.t. M [i : i+ �−1, j :
j + � − 1] = Q. The Isuffix tree [15] is an instance of the two-dimensional suffix
tree. To explain the Isuffix tree, we first need to define Istrings. For an n × n
square matrix M , the Istring of M , denoted by IM , is a length 2n − 1 string of
strings. The characters of IM are defined as

IM [i] =

{
M [1 : (i + 1)/2, (i + 1)/2] if i is odd
M [i/2 + 1, 1 : i/2] if i is even.

For each i, the string IM [i] is called an Icharacter. Strings of strings are ordered
by naturally generalizing the order on strings. The suffix of an m × n matrix M at
position (i, j), denoted by Mi,j , is M [i : i+k, j : j+k] where k = min{m−i, n−j}.
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In other words, Mi,j is the largest square submatrix of M whose upper left corner
is (i, j).

The Isuffix tree of an m × n matrix M is a compressed trie storing Istrings
of all suffixes of M . See Fig. 2 for an example. One can search a query square
matrix Q in M by searching IQ in the Isuffix tree. Because each edge label is
equal to IMi′,j′ [i : j] for some suffix Mi′,j′ and i, j, it can be represented by the
tuple (i′, j′, i, j). Thus, the Isuffix tree takes Θ(mn)-space. The path label of a
node is the concatenation of the edge labels of edges in the path from the root
to the node. The depth of a node is the number of Icharacters in the path label
of the node. One can guarantee that the leaves and suffixes correspond to each
other one-to-one by appending a row at the bottom of M and a column on the
right of M consisting of unique elements.

Kim et al. [15] gave an algorithm to construct the Isuffix tree of an m × n
matrix consisting of entries from universe {1, 2, . . . , (mn)O(1)} in Θ(mn)-time.

Fig. 2. An example of the Isuffix tree. Length 1 suffixes (those submatrices consisting
only of 1 entry $i for 1 ≤ i ≤ 7) are not shown

Support vector machines. Support vector machines (SVMs) are supervised learn-
ing models for classification and regression [24]. Here, we explain how kernel-
based SVMs work.1 See [21] for the details.

A supervised learning problem consists of training phase and test phase. In
the training phase, training data (x1, y1) . . . , (x�, y�) ∈ U × {−1, 1} are given

1 The SVM described here is called 1-norm soft margin SVM.
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where U is the universe of data. The value yi indicates if xi belongs to the group
of interest or not. In the test phase, test data (x, y) is given but the algorithm
cannot access y. The algorithm should predict y from the training data and x.

Kernel-based SVMs do this task as follows. First one specifies a map φ from
the universe of data U to Rd. The map is called feature map and the resulting
vectors are called feature vectors. Then, in the training phase, one solves the
following optimization problem:

maximize −
�∑

i,j=1

yiyjαiαjφ(xi)�φ(xj),

subject to
�∑

i=1

yiαi = 0,

�∑
i=1

αi = 1

and 0 ≤ αi ≤ C for i = 1, 2, . . . , �.

The value C is a positive parameter. Let (α∗
1, α

∗
2, . . . , α

∗
� ) be the solution of the

problem and let S := {1 ≤ i ≤ � : α∗
i > 0}. Training data xi is said to be a

support vector if i ∈ S. In the test phase, one judges y = 1 iff
∑
i∈S

yiα
∗
i φ(xi)�φ(x) > b∗ (1)

where b∗ is a constant that is determined in the training phase.
Sometimes, it is possible to compute kernel function K : U × U � (x1, x2) �→

φ(x1)�φ(x2) ∈ R without constructing feature vectors φ(x1) and φ(x2). Such
algorithms are usually much faster than the näıve algorithm involving feature
vector construction when the dimension of feature vectors is high.

3 Method

3.1 Definition of the Kernel Function

Let P be a protein and AP be the adjacency matrix of the contact map of P .
Let k > 0 and Mk be the space of all k × k binary matrices. The feature vector
Φk(P ) is a vector defined as follows:

Φk(P ) := (#{(i, j) : AP [i : i + k − 1, j : j + k − 1] = H})H∈Mk
.

The kernel function Kk is defined to be the function that takes two proteins P1

and P2 and outputs the inner product of Φk(P1) and Φk(P2).

3.2 Algorithm to Compute the Kernel Function

Let P1 and P2 be two proteins. For brevity, we assume both of them are of length
n. We compute Kk(P1, P2) as follows. First, we construct the contact maps of
P1 and P2. From contact maps, we compute adjacency matrices AP1 and AP2 .



74 T. Onodera and T. Shibuya

We append a row and a column consisting of unique numbers to each of AP1 and
AP2 making them (n+1) × (n+1) matrices. Then we construct the Isuffix tree
of the (n + 1) × (2n + 2) matrix derived by concatenating AP2 to the right of
AP1 . Next, we traverse the Isuffix tree in depth first order following Algorithm1.
During the traversal, the depth of the current node goes up and down. While
we are at a node of depth greater than or equal to 2k − 1, we count the number
of leaves from AP1 that we have encountered since the last time we were at a
node of depth less than 2k − 1. We also count the same number for AP2 . When
we climb up from a node of depth greater or equal to 2k − 1 to a node of depth
less than 2k − 1 we compute the product of these counts and reset counters to
0. The output is the sum of these products.

The sizes of the adjacency matrices and the Isuffix tree are all Θ(n2). The
computation of adjacency matrices and the Isuffix tree and the traversal of the
Isuffix tree take Θ(n2)-time. The contact maps can be constructed in Θ(n)-
time probabilistically by hashing2 but to derive Θ(n2)-time bound on the kernel
computation, the trivial deterministic algorithm is enough.

Algorithm 1. Traversal of the Isuffix tree
a ← 0
while traversal of the Isuffix tree in depth first order do

if depth of the current node < 2k − 1 then
a ← a + c1c2
c1 ← 0
c2 ← 0

else
if the current node is a leaf from AP1 then

c1 ← c1 + 1
if the current node is a leaf from AP2 then

c2 ← c2 + 1
return a

The second column of Table 1 shows the comparison of the time complexities
of existing methods and our method. The expression align(n) is the time needed
to align protein structures of length n.3 The smallest bound on align(n) we could
find in literature was O(n4) by Poleksic’s formulation and algorithm [18].

Therefore, in terms of the dependence on the size of input, the time com-
plexity of our algorithm matches the fastest existing method. Also, it does not
depend on the parameters.

2 This bound uses the sparsity of protein contact maps. See the discussion in Sect. 5.
3 It is impossible to give a single explicit form for align(n) because unlike sequence

alignment, there is no de facto standard formulation of structural alignment. Also,
practical structural alignment tools do not even formally state the problem it solves.
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3.3 Training Algorithm

In training, we compute kernel functions for all pairs of the training data and
solve SVM optimization problem. The third column of Table 1 shows time com-
plexities. They involve only kernel computation time because it is not clear how
optimization time, which depends on various parameters and heuristic tech-
niques, scales. In our experiment, optimization took much less time than the
kernel computation. See also the discussion in Sect. 5.

3.4 Prediction Algorithm

In the test phase of SVM, one needs to evaluate the left hand side of inequal-
ity (1). In the case of our kernel, when query protein P is given, one needs to
evaluate

∑
i∈S yiα

∗
i φ(Pi)�φ(P ) =

∑
i∈S yiα

∗
i Kk(Pi, P ). A trivial method is to

compute each Kk(Pi, P ) separately and take the weighted sum. However, it takes
time linear to the number of support vectors �′, which, in the worst case, can
be as large as the size of the training set. Here, we explain another algorithm
whose computational cost does not depend on �′.

First observe that∑
i∈S

yiα
∗
i Kk(Pi, P ) =

∑
i∈S

yiα
∗
i

∑
H∈Mk

occ(H,APi
)occ(H,AP )

=
∑

H∈Mk

(∑
i∈S

yiα
∗
i occ(H,APi

)

)
occ(H,AP )

=
∑

1≤s,t≤|P |−k+1

(∑
i∈S

yiα
∗
i occ(AP [s : s + k − 1, t : t + k − 1], APi

)

)
.

For each i ∈ S, we prepare n+1-dimensional square matrix derived by appending
a row and a column consisting of unique numbers to the bottom and right of APi

.
Then, we construct the Isuffix tree of the (n + 1) × �′(n + 1) matrix derived by
concatenating these �′ square matrices. Each leaf of the Isuffix tree corresponds
to some Isuffix of APi

for some i ∈ S. For each i ∈ S, we label each leaf
from APi

by yiα
∗
i . We label each internal node by the sum of the labels of

its children. Given query P , for each (i, j) s.t. 1 ≤ s, t ≤ |P | − k + 1, we search
P [s : s+k−1, t : t+k−1] in the Isuffix tree for all (i, j) s.t. 1 ≤ s, t ≤ |P |−k+1
and take the sum of the labels of the nodes the searches end up at. When a search
ends up at somewhere in the middle of an edge, take the label of the upper end
point node of the edge.

It takes O(k2|P |2)-time because each search takes O(k2)-time and there are
O(|P |2) search instances invoked.

4 Experiments

To assess the effectiveness of our algorithm, we tested if it can recover the classi-
fication of existing classified databases correctly. We used SCOP database [8] as
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Table 1. Comparison of time complexities. Each protein in the training set and the
test set is assumed to be of length n. � is the number of proteins for training. K is a
parameter of our kernel. �′ is the number of the support vectors. align(n) is the time
needed to align protein structures of length n

Method Pairwise Training Prediction

Ours O(n2) O(�2n2) O(k2n2)

[25] O(n2) O(�2n2) O(�′n2)

[4] O(align(n)) O(�2align(n)) O(�′align(n))

the data source.4 In SCOP, data are hierarchically organized into a tree struc-
ture. The deepest level of the tree based on structural information is called
superfamily and the level just above it is called fold. In order to test the abil-
ity of structure classifiers, it is reasonable to check if they can recognize the
boundaries between superfamilies that are within the same fold. Thus, we made
a dataset by extracting all entries in a superfamily that is under the fold c.1 and
contains at least 16 entries. We selected c.1 because it is the fold that contains the
largest number of superfamilies satisfying the condition. The resulting dataset
consists of 9 classes (superfamilies) and contains 383 entries. We used half of the
entries as the training set and the other half as the test set. For each class, we
classified the test data as either in that class or not. To take both precision and
recall into account, we used F-score to measure classification performance.

Our kernel has two parameters, namely, the threshold t for contact maps and
the size of submatrix k. We optimized k by performing 2-fold cross validation
within the training set. More precisely, we chose k between 3 and 7 that gave
the best cross validation result. On the other hand, we treated t as a fixed
parameter. We just report different results for different values of t. This is because
optimization of k, which can be done by reusing the same two-dimensional suffix
tree, is computationally inexpensive while optimization of t is expensive. We
optimized the soft margin hyperparameter C of SVM by grid search. We used
LIBSVM [7] for SVM optimization.

In terms of implementation details, we used two-dimensional analogue of the
suffix array instead of the suffix tree. Since the Θ(n2)-time algorithm of Kim
et al. [15] (and its adoptation to two-dimensional suffix array) is very complex,
we used ternary sort [3] for Isuffix sorting. For prediction, we used standard
binary search instead of the two-dimensional analogue of the search algorithm
of Manber and Myers [17]. We run the codes on Xeon E5–2670 v3 processors.

We compared our method with the method of Wang et al. [25] and Bhat-
tacharya et al. [4]. The latter authors proposed many kernels but we only report
the results of the kernel called KAl

1 in the original paper because we found the

4 Each SCOP entry corresponds to a subregion of a protein called domain. In most
applications, domains are not known a priori. Nevertheless, SCOP entries are widely
used for benchmarking in protein classification studies including the work related to
the current one. Thus, we followed the convention.
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other kernels were much less accurate than KAl
1 . The kernel KAl

1 requires struc-
tural alignment as input and its performance may depend on the quality of the
alignment. In the original paper, the authors used their own structural alignment
algorithm but they did not provide the detail. Thus, we instead used a famous
structural alignment algorithm called combinatorial extension [22] (CE). For the
eigendecomposition needed in KAl

1 , we used LAPACK [2].
Table 2 shows the comparison of classification performances. The proposed

kernel scored better than Wang et al.’s kernel [25] for most cases. It is difficult
to judge which one of the proposed kernel and Bhattacharya et al.’s kernel [4]
is better. However, it should be noted that for some classes such as c.1.4 and
c.1.12, the dominance of the proposed kernel is clear for all values of t we tested.

Table 3 shows the comparison of runtimes. The numbers of our method were
taken from the case when t = 12. Runtimes for other values of t were similar.
The training time includes SVM optimization and cross validations. The method
of Wang et al. [25] runs very fast because it is also alignment-free. However,
this method had low classification scores. Compared to the alignment based
method [4], our method runs about 16 times faster in training and about 37
times faster in prediction.

Table 2. Classification performance comparison. The performance measure is F-score.
The unit of parameter t is Å. The cases when the proposed method had the highest
score among all tested methods are indicated by boldface numbers

Method c.1.2 c.1.4 c.1.7 c.1.8 c.1.9 c.1.10 c.1.11 c.1.12 c.1.18

[25] 0.31 0.14 0.33 0.84 0.40 0.39 0.79 0 0

[4] 0.37 0.27 0.86 0.81 0.84 0.62 0.93 0.13 0.84

Ours t = 8 0.41 0.59 0.36 0.86 0.76 0.58 0.75 0.40 0.83

t = 9 0.48 0.40 0.62 0.79 0.89 0.65 0.93 0.53 0.67

t = 10 0.35 0.48 0.19 0.80 0.82 0.60 0.84 0.29 0.89

t = 11 0.73 0.59 0.50 0.79 0.72 0.50 0.95 0.38 0.55

t = 12 0.39 0.38 0.88 0.82 0.92 0.64 0.92 0.17 0.59

t = 13 0.26 0.56 0.80 0.84 0.72 0.62 0.86 0.50 0.80

t = 14 0.73 0.56 0.57 0.84 0.86 0.57 0.93 0.27 0.77

Table 3. Runtime comparison

Method Training time Average prediction time

[25] 4.4 s 0.0168 s

[4] 1182min 72.4 s

Ours 40min 14 s 0.619 s
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5 Conclusion

We proposed a kernel function for protein structures that is based on a novel
use of the protein contact map and an efficient algorithm to compute the kernel
function applying the two-dimensional suffix tree. We also experimentally showed
that, by using the proposed kernel, one can classify protein structures much
faster than the most accurate existing method while achieving a comparable
classification performance.

We conclude this paper with some discussion. For large datasets, SVM opti-
mization may become the computational bottleneck of the training phase. There
are several researches addressing this problem [14,20]. These results are orthog-
onal to ours.

We did not consider tuning of parameter t in this paper. If we consider
distance between objects into account, there is no need to introduce such para-
meters as t. Since there are structural alignment problems/algorithms based on
distance matrices [13], it may be possible to design a relevant alignment-free
similarity measure for protein structures from distance matrices.

When t is independent of n, protein contact maps are sparse because there
is a limit on the number of amino acids packed in a certain volume of space.
Our algorithm needs quadratic time because it does not take into account this
sparsity. Ideally, it is desirable to have relevant protein similarity measures that
are computable in linear time.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Num-
bers 25280002 and 24106007. The super-computing resource was provided by Human
Genome Center (the Univ. of Tokyo).
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Abstract. The eXtended Burrows-Wheeler Transform (XBWT) is a
data transformation introduced in [Ferragina et al., FOCS 2005] to com-
pactly represent a labeled tree and simultaneously support navigation
and path-search operations over its label structure.

A natural application of the XBWT is to store a dictionary of strings.
A recent extensive experimental study [Mart́ınez-Prieto et al., Informa-
tion Systems, 2016] shows that, among the available string dictionary
implementations, the XBWT is attractive because of its good tradeoff
between small space usage, speed, and support for substring searches.
In this paper we further investigate the use of the XBWT for storing a
string dictionary. Our first contribution is to show how to add suffix links
(aka failure links) to a XBWT string dictionary. For a XBWT dictionary
with n internal nodes our suffix links can be traversed in constant time
and only take 2n + o(n) bits of space.

Our second contribution are practical construction algorithms for the
XBWT, including the additional data structure supporting the traver-
sal of suffix links. Our algorithms build on the many well engineered
algorithms for Suffix Array and BWT construction and offer different
tradeoffs between running time and working space.

1 Introduction

A trie [15] is a fundamental data structure to represent a set of strings. A trie
with n nodes takes O(n log n) bits of space and supports extremely simple and
efficient algorithms to determine whether a string belongs to the set. In this
paper we are interested in the “compressed” version of a trie obtained applying
to it the eXtended Burrows Wheeler Transform (XBWT): a generalization of the
BWT introduced in [6–8] to compactly represent an arbitrary labeled tree. The
XBWT represents an n-node trie in O(n) bits of space still supporting constant
time upward and downward navigation.

In a recent comprehensive study of string dictionaries [18], the authors show
that in many applications we need to handle dictionaries whose size is larger than
the available RAM. In this setting, compression is mandatory to avoid incurring
the penalties of external memory access. In the same paper the authors show
that, among the available string dictionary implementations, the XBWT-trie is
particularly attractive because of its good tradeoff between small space usage,
speed, and support for substring searches.
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 80–92, 2016.
DOI: 10.1007/978-3-319-46049-9 8
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In this paper we present two contributions related to the XBWT-trie. Our
first contribution is the observation that we can enrich the XBWT with 2n+o(n)
additional bits in order to support suffix links. Suffix links, also known as failure
links, are useful to speedup some search operations as in the classical Aho-
Corasick algorithm [9, Sect. 3.4].

Our second contribution is related to the problem of computing the XBWT.
For a set of strings x1, . . . , xk of total length m we can compute the XBWT-
trie by first building the n-nodes (uncompressed) trie and then applying the
XBWT construction algorithm from [8]. This approach takes optimal O(m +
n) time but it may not work well in practice because trie construction may
constitute a memory bottleneck. Indeed, as shown by the Suffix-Tree vs Suffix
Array debate, pointer based tree structures often have very large multiplicative
constants hidden in the O notation that in practice prevent their use for large
datasets. An indirect confirmation of this state of affairs is that in [18] the
authors report that they were unable to build the trie for the largest dataset due
to excessive memory usage.

In this paper we take advantage of the similarities between XBWT and BWT
to derive alternative algorithms for the construction of the XBWT starting from
the Suffix Array or the BWT. Our motivation is that the algorithms for con-
structing these data structures have been widely studied and engineered so there
are practical algorithms using very little working space or even designed for
external memory, see [3–5,10,12,13] and references therein. Our contribution
is to show that given the Suffix Array or BWT we can compute the XBWT,
including the data structure supporting suffix links, in O(m) time. Combining
our algorithms with the available (and future!) Suffix Array and BWT construc-
tion algorithms we obtain a wide range of tradeoffs between running time and
working space for XBWT construction.

2 XBWT Trie Representation

Given a string x[1, n] over a finite ordered alphabet Σ we write x[i] to denote its
i-th symbol and x[i, j] to denote the substring x[i]x[i+1] · · · x[j]. We write xR to
denote the string x reversed x[n] · · · x[1]. We write x � y (x ≺ y) to denote that
x is lexicographically (strictly) smaller than y. As usual we assume that if x is a
prefix of y then x ≺ y. Throughout the paper we use the notation rankc(x, i) to
denote the number of occurrences of c in x[1, i], and selectc(x, j) to denote the
position of the j-th c in x.

Tries [15] are a fundamental data structure for representing a set of k dis-
tinct strings x1, x2, . . . , xk. A trie efficiently supports the two basic dictionary
operations: locate(s) returning i if s = xi for some i ∈ [1, k] or 0 otherwise, and
extract(i) returning the string xi given an index i ∈ [1, k]. In addition, it supports
the operation locatePrefix(s) returning the strings which are prefixed by s [18].
To simplify the algorithms, and ensure that no string is the prefix of another
one, it is customary to add a special symbol $ �∈ Σ at the end of each string xi.
A trie for the set of strings {aa, acaa, ba, aba, aac, bc} is shown in Fig. 1.
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Fig. 1. A trie representing the strings and its XBWT representation (the arrays Last
and L). The array Π is not stored in the XBWT even if navigation algorithms use it
to identify internal nodes.

The eXtended Burrows-Wheeler Transform is a generalization of the BWT
designed to compactly represent a labeled tree. We now show how to compute the
XBWT of a trie T and obtain two arrays L and Last that compactly represent T .
Our description of the XBWT is slightly different (simpler) from the one in [6,8]
that takes as input an arbitrary labeled tree.

To each internal trie node w we associate the string λw obtained by con-
catenating the symbols in the arcs in the upward path from w to the root of
T . Hence, if node w has depth d its associated string has length d. If T has n
internal nodes we have n strings overall. Let Π[1, n] denote the array containing
the above set of n strings sorted lexicographically. Note that Π[1] is always the
empty string corresponding to the root of T .

For i = 1, . . . , n let Li denote the set of symbols in the arcs exiting from the
trie node corresponding to Π[i]. We do not require that the symbols in Li are in
any particular order, but since T is a trie they are distinct. We define the array
L as the concatenation of the arrays L1, . . . , Ln. Clearly if T has n′ nodes, then
L has n′ − 1 elements: one for each trie edge. By construction L contain n − 1
symbols from Σ and n′−n occurrences of $. To keep an explicit representation of
the intervals L1, . . . , Ln we define a binary array Last[1, n′] such that Last[i] = 1
iff L[i] is the last symbol of some interval Lj . Hence Last contains exactly n 1’s.
See Fig. 1 for a complete example.

If L[i] �= $ belongs to the interval Lj then L[i] naturally corresponds to the
internal trie node reachable from the node corresponding to Π[j] following the
arc labeled L[i]. Such a node corresponds to the entry Π[i′] such that Π[i′] =
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L[i]Π[j]. In other words, there is a bijection between the symbols in L different
from $ and the entries in Π different from the empty string. For historical reasons
this bijection is called the LF -map, and we call LF (i) the index in Π of the entry
corresponding to L[i]. Hence, LF is defined by the relation

Π[LF (i)] = L[i]Π[j]

for every i, j with L[i] ∈ Lj and L[i] �= $. The following results are a simple
restatement of Properties 1–3 in [8] using the notation of this paper.

Lemma 1 (Order preserving property). For every pair of indices i, k such
that L[i] �= $, L[k] �= $, it is

L[i] < L[k] =⇒ LF (i) < LF (k),
L[i] = L[k] =⇒ LF (i) < LF (k) ⇔ i < k.

�	
For any symbol c ∈ Σ let C(c) denote the index of the first position in Π

containing a path starting with symbol c. Lemma 1 makes it possible to compute
LF and its inverse LF−1 using rank and select operations. In turn, the LF map
makes it possible to navigate the XBWT-trie, that is to move from the entry in
Π representing a trie node to the entries representing its children and parent.

Lemma 2 (Downward navigation). Let c = L[i] �= $. Then

LF (i) = C[c] + rankc(L, i − 1).

As a consequence, if node w corresponds to Π[j] and has a child with label c,
then such child corresponds to entry Π[j′] with

j′ = C[c] + rankc(L, select1(Last, j)).

�	
Lemma 3 (Upward navigation). For i > 1 let c denote the first symbol of
path Π[i]. Then

LF−1(i) = selectc(L, 1 + i − C[c]).

As a consequence, if node w corresponds to the non empty path Π[j] whose first
character is c, the parent of w′ corresponds to the entry Π[j′] with

j′ = 1 + rank1(Last, LF−1(j) − 1) = 1 + rank1(Last, selectc(L, 1 + j − C[c])).

�	
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Using downward (resp. upward) navigation we can implement the locate
(resp. extract) trie operation. As observed in [18] it is convenient to take as
the ID of xi the rank in L of the $ occurrence that we reach starting from the
root and following xi’s symbols. If we reorder the strings in reverse lexicographic
order (i.e. so that xR

1 ≺ xR
2 ≺ · · · ≺ xR

k ) then ID(xi) = i.
The most common representation of the array L is a (possibly compressed)

Wavelet tree. We also need a bitarray representation of Last supporting con-
stant time rank1, select1 operations, and a suitable representation of the array C
(possibly another bitarray). Using a balanced uncompressed Wavelet trees for L
the space usage is O(n′ log(|Σ|)) bits and each upward or downward step takes
O(log |Σ|) time.

3 Adding Suffix Links

In addition to pointers to their children and parent, trie nodes may store an
additional pointer called a suffix link. The node corresponding to path α has a
suffix link pointing to the node corresponding to the longest proper suffix of α
that is also in T . Hence, if we have reached the node corresponding to the path
c0c1 · · · ci the suffix link makes it possible to reach in constant time the node
corresponding to path cj · · · ci where j > 0 is the smallest positive integer for
which such node exists. Since the root corresponds to the empty string, a suffix
link exists for all internal nodes except for the root itself.

In a XBWT-trie internal nodes are identified with their position in Π.
Because of the ordering of the paths in Π, the target of the suffix link of node
Π[i] is the node � < i such that Π[�] is the longest proper prefix of Π[i] which
is in Π.

To emulate suffix links we build a string P of balanced parentheses of length
2n. We write a pair of parentheses for each internal node so that the parentheses
for node j enclose those for i iff Π[j] is a prefix of Π[i]. To build P we start with
an empty string and consider Π[i] for i = 1, . . . , n. When we reach Π[i] first we
write a ) for every � < i such that the closed parenthesis for Π[�] has not been
written and Π[�] is not a prefix of Π[i]; then we write the ( corresponding to
Π[i]. After we have reached Π[n] we write a closing parenthesis for all indices �
such that the closed parenthesis for Π[�] has not yet been written. For example,
for the XBWT of Fig. 1 it is P = (((())(())())(())(())()).

The following lemma shows that to find the suffix link for node Π[i] it suffices
to find the closest set of parentheses enclosing the ( associated to Π[i].

Lemma 4. Let 1 < i ≤ n and α = Π[i]. Define k = select((P, i) and j =
enclose(k). Then, the longest proper prefix of α in Π is α′ = Π[�] with � =
rank((P, j).

Proof. First note that enclose is always defined since the pair P [1] = (, P [2n] = )

corresponding to Π[1] encloses every other pair of parentheses.
We need to prove that α′ = Π[�] is the longest proper prefix of α which is

in Π. Since the ) for Π[�] is not written when we reach Π[i], by construction
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Π[�] is a prefix of Π[i]. To prove it is the longest prefix assume by contradiction
that Π[�′] is also a prefix of Π[i] and |Π[�′]| > |Π[�]|. Because of the ordering in
Π we would have � < �′ < i. Also because of the ordering, for i′ = �′ . . . i Π[i′]
would be a prefix of Π[i]. But then the parentheses for �′ would enclose those
for i, which is a contradiction since by construction � corresponds to the closest
enclosing pair. �	

Using the range min-max tree from [19] we can represent the balanced paren-
thesis sequence P in 2n+o(n) bits of space and support rank, select, and enclose
in O(1) time. We have therefore established the following result.

Theorem 1. We can add to the XBWT-trie suffix links traversable in constant
time using additional 2n + o(n) bits. �	

Since Π only contains internal nodes, the approach described above only
provides suffix links for the trie internal nodes. However, it can be extended
to the trie leaves if necessary. Since the symbol $ appears only at the end of
a string, the suffix link of a leaf can only point to another leaf. Thus, we can
build a subsequence Π ′ of Π containing only the internal nodes which have $
among their children. It is easy to see that the parenthesis array P ′ build on Π ′

provides suffix links for the leaves.

4 Alternative Construction Algorithms

In this section we propose new algorithms for computing the XBWT of the trie
containing the set of distinct strings x1, x2, . . . , xk. Our algorithms derive the
XBWT from the Suffix Array or BWT of the concatenation t = y1$y2$ · · · yk$,
where yi = xR

i reversed and $ is assumed to be lexicographically smaller than any
symbol in Σ. We denote by SA, LCP and BWT respectively the Suffix Array, LCP
array, and Burrows Wheeler Transform of the string t (See Fig. 2 for an example).
Throughout this section let m denote the length of t, i.e. m =

∑
i(|xi| + 1).

Let z be a string not containing the symbol $ and such that z$ is a substring
of t. We denote by [bz, ez] the maximal range of suffix array rows prefixed by
z$. For example, in Fig. 2 for z = ε the maximal range is [1, 6], for z = aa the
maximal range is [11, 12], and for z = ca the maximal range is [20, 20].

Lemma 5. Let [bz, ez] denote the maximal range for the string z. Then ez−bz+1
is equal to the number of strings in x1, . . . , xk which have z as a prefix. In
addition it is LCP[bz] < |z| and

LCP[i] ≥ |z| + 1 for i = bz + 1, . . . , ez.

Proof. By construction the rows prefixed by z$ are in a bijection with the strings
yi’s which have z as a suffix. Since yi = xR

i the first part of the lemma follows.
Since bz is the first row prefixed by z$ row bz − 1 must be prefixed by a string
lexicographically strictly smaller than z$. Since $ is the smallest symbol, row
bz − 1 cannot be prefixed by z. �	
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Fig. 2. Suffix array, LCP array, MR array, and BWT for the concatenation t =
aa$aaca$ab$aba$caa$cb$ obtained from the set of strings aac, aa, aba, acaa, ba, bc
The arrays MR and RCP will be introduced later.

Lemma 6. Let T denote the trie representing the strings x1, . . . , xk. There is a
one-to-one (bijective) correspondence between internal nodes of T and maximal
row ranges of SA. Each node w corresponds to a maximal range containing a
number of rows equals to the number of leaves in the subtree rooted at w. The
correspondence is order preserving in the sense that row range [by, ey] precedes
[bz, ez] iff the node corresponding to the former interval precedes the node corre-
sponding to the latter in the array Π used to define the XBWT.

Proof. For each internal node w let λw denote the string obtained concatenating
the symbols in the upward path from w to the root. The image of node w is the
maximal row range associated to λw, that is, the set of SA rows prefixed by λw$.
As we have already observed, the number of rows in this interval is equal to
the number of strings x1, . . . , xk which have λw as prefix which coincides with
the number of leaves in the subtree rooted at w. The correspondence is order
preserving since both in Π and in the suffix array the order is determined by
the lexicographic order of λw. �	
Lemma 7. Let [b, e] denote the maximal row range associated to the internal
node w. Then, the labels on the arcs exiting from w coincide with the set of
symbols in the substring BWT[b, e].
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Proof. Let λw denote the string containing the symbols in the upward path from
w to the root. There is an arc with label c ∈ Σ leaving w iff there is at least a
string xi prefixed by λR

wc. This implies cλw is a prefix of yi. If j ∈ [b, e] is the
row prefixed by λw$yi+1$ · · · yk$ it is BWT[j] = c. Viceversa, if BWT[h] = c for
h ∈ [b, e] then at least one yi is prefixed by cλw, hence λR

wc is a prefix of xi and
there must be an arc with label c exiting from node w.

Finally, there is an arc with label $ leaving w iff λR
w = xh for some h ∈

[1, k]. But then there will be one SA row prefixed by yh$yh+1$ · · · yk$ and the
corresponding BWT position will contain the symbol $. �	

From Lemma 7 we can derive a simple strategy to compute the XBWT, that
is, the arrays L and Last defined in Sect. 2. Assume we are given a binary array
MR such that MR[i] = 1 iff row i is the starting position of a maximal row range
(see example in Fig. 2). MR encodes the maximal row ranges and by Lemma 6
each maximal row range corresponds to an element in the array Π. In Sect. 2
we have logically partitioned the array L into L1, . . . , Ln where Li contains the
labels in the arcs leaving the internal node associated to Π[i]. We compute the
subarrays L1, . . . , Ln in that order. We scan the array MR starting from its first
position until we find an index j1 such that MR[j1 +1] = 1. We know that [1, j1]
is the maximal row range corresponding to Π[1]. In O(j1) time we compute the
set of distinct symbols in BWT[1, j1] and we write them to L. By Lemma 7
we have just computed L1 and we complete this phase by writing 0|L1|−11 to
Last. Next we restart the scanning of MR until we find an index j2 such that
MR[j2 + 1] = 1. By construction [j1 + 1, j2] is the maximal range corresponding
to Π[2] so from BWT[j1+1, j2] we can derive L2 and so on. The above algorithm
takes O(m) time and only requires the arrays BWT and MR.

The bit array MR can be derived from the SA and LCP arrays. However a
faster alternative is to modify one of the algorithms computing the LCP from
the SA so that, instead of the LCP, it computes the RCP (Reduced Common
Prefix) array storing the lengths of the common prefix among lexicographically
consecutive suffixes assuming that all instances of the $ symbol are different.
See again Fig. 2 for an example.1 The linear time LCP construction algorithms
in [11,14,17] can all be easily modified to compute the RCP values instead of
LCP values. The MR array can be computed along with the RCP array observing
that MR[i] = 0 iff LCP[i] > RCP[i]. The latter condition can be verified even
without knowing the LCP values by testing whether t[SA[i] +RCP[i]] = t[SA[i −
1] + RCP[i]] = $. Indeed, the RCP array satisfies the following lemma which is
an immediate consequence of Lemma 5.

Lemma 8. Let [bz, ez] denote the maximal range for the string z ∈ Π. It is

RCP[bz + 1] = RCP[bz + 2] = · · · = RCP[ez] = |z|
and RCP[bz] = lcp(z, z′) where z′ is the string immediately preceding z in the Π
array. �	
1 The RCP array coincides with the LCP array if we build the concatenation t inserting

a different symbol $i at the end of each string xi. However, this approach is not
practical since would increase significantly the size of the alphabet.
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Fig. 3. Algorithm for computing the parenthesis array P given t, SA, RCP and MR.
An open parenthesis is written to P at each push operation, and a closed parenthesis
at each pop operation. (itop, �top) represents the pair currently at the top of the stack.

Note that computing the RCP array is faster than computing the LCP array
(the common prefixes are shorter) and its storage takes less space since each
entry takes at most �log(maxi |xi|) bits.

We have established that with a single scan of the BWT and MR array we
can compute the arrays L and Last. We now show that using the RCP array we
can also compute the parenthesis string P that supports suffix links emulation
as described in Sect. 3. The algorithm for computing P is described in Fig. 3. To
prove its correctness we first establish the following Lemma.

Lemma 9. In the algorithm of Fig. 3 let (i1, �1), (i2, �2), . . . , (ih, �h) denote the
pairs stored in the stack at any given moment, and let z1, z2, . . . , zh denote the
corresponding strings, i.e. zj corresponds to the maximal row range [ij , ej ]. Then,
for i = 2, . . . , h we have that zi−1 is a proper prefix of zi and |zi−1| = �i.

Proof. Initially the stack is empty so the hypothesis is true. Assume now the
stack (i1, �1), (i2, �2), . . . , (ih, �h) satisfies the hypothesis and we have reached
position i which is the beginning of the next maximal row range which corre-
sponds to the string z. Note that ih is the starting point of the immediately
preceding row range. Hence, setting � = RCP[i] we have � = lcp(zh, z). In addi-
tion, for j < h since zj is a prefix of zh it is lcp(zj , z) = min(�, |zj |). Clearly if
�j ≥ �, zj cannot be a prefix of z since

|zj | > |zj−1| = �j ≥ � ≥ lcp(zj , z)

so it is correct to remove (ij , �j) from the stack at Line 6. If �j < � then zj is
a prefix of z iff � = |zj | which is the condition tested at Line 7. If this is the
case we push (i, �) to the stack and the invariant is maintained. If zj is not a
prefix of z then zj−1 certainly is, since it is a proper prefix of zj [1, �] = z[1, �],
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and we add to the stack (i, �j) after having removed (ij , �j) thus maintaining the
invariant. �	
Theorem 2. The algorithm of Fig. 3 correctly computes the array P in O(m)
time.

Proof. Because of the order preserving correspondence between maximal row
ranges and paths in Π, scanning the array MR is equivalent to scanning the
array Π. Lemma 9 ensures that we write an open parenthesis for each path Π[i]
and that the corresponding closed parenthesis is written immediately before the
opening parenthesis of the first path Π[h] with h > i such that Π[i] is not a
prefix of Π[h]. This is exactly how P is defined in Sect. 3 and the correctness
follows.

To see that the running time is O(m) observe that in addition to the outer
loop we only have push and pop operations on the stack. Since we push one pair
(i, �) for each 1 in MR, and once popped from the stack pairs are discarded, the
overall time is O(m). �	

For the construction of P , in addition to the input arrays, the algorithm
needs extra storage only for the stack. Since the values in the stack are strictly
increasing, it uses at most O(� log �) bits where � = maxi RCP[i]. Summing up,
we are able to compute the XBWT with simple sequential scans using the SA and
LCP (actually RCP) arrays. Since there are many well engineered algorithms for
computing the SA and LCP array, we believe our solution is the most practical
choice when the working space is not an issue. Indeed, its working space is
dominated by the space required for the storage and computation of the SA
which is still O(m log m) bits but in practice it could be much less than the
space required for storing a pointer based representation of the trie T .

We now describe an alternative XBWT construction algorithm that only
uses the BWT of the string t = y1$y2$ · · · yk$. Since the BWT takes m log |Σ|
bits and can be computed using o(m log m) bits of working space, our algorithm
provides new time/space trade-offs for XBWT construction. In addition, our
algorithm works without modification if the BWT of t is replaced by the Multi
String BWT [10] of {x1, . . . , xk}. Although BWT algorithms have been studied
for a longer time, Multi String BWT algorithms are potentially faster and have
recently received much attention, see [1,10,16] and references therein.

The idea of our algorithm is to compute the MR array emulating a depth
first visit of the trie T using the BWT. Since each internal trie node corresponds
to a maximal row range, the visit will give us all maximal row ranges, i.e., the
bit array MR. Our solution is inspired by the algorithm in [2] that computes the
LCP array emulating a breadth first visit on the suffix trie using the BWT.

Assuming the BWT is stored in a balanced Wavelet Tree we can use the
algorithm getInterval from [2] to compute, given the maximal row range corre-
sponding to an internal node w, the maximal row ranges corresponding to w’s
children. This computation takes O(d log |Σ|) time, where d is the number of
w’s children. Using getInterval, the computation of the MR array can be done by
the algorithm in Fig. 4 whose running time is O(m + n log |Σ|) where n is the
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Fig. 4. Algorithm for computing the MR array given the BWT.

Fig. 5. Algorithm for computing the parenthesis array P given RCP′ and LEN′.

number of internal trie nodes. The working space of the algorithm, in addition
to the BWT and MR arrays, is dominated by the stack for the depth first visit
which takes (maxi |xi|)|Σ| words. After the computation of MR, the arrays L
and Last can be obtained in O(m + |Σ|) time as described above.

To compute also the parenthesis array P we use the following approach. Our
starting point is the observation that the algorithm in Fig. 3 only uses the RCP
values for the entries i such that MR[i] = 1. In addition, the SA is only used at
Line 7 to check if the string that prefixes row itop is a prefix of the string that
prefixes row i. This property can be tested also by checking if the length of the
string at itop is equal to RCP[i].

This observation suggests that after the computation of MR we count the
number of 1’s in it: this gives us the number n of internal trie nodes. Then, we
allocate two length-n arrays RCP′ and LEN′ where we store the RCP and the
length of the entries in Π with MR[i] = 1. These arrays take O(n log(maxi |xi|))
bits and can be computed in O(n log |Σ|) time using a straightforward modifi-
cation of the LCP construction algorithm from [2]. Using RCP′ and LCP′ we can
compute the parenthesis array P using the algorithm of Fig. 5 which is derived
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from the one in Fig. 3 but has a simpler structure since, instead of scanning MR
skipping the 0 entries, it scans directly RCP′ and LEN′.

5 Concluding Remarks

With the advent of applications that use very large string dictionaries the
XBWT-trie becomes a valid alternative for their storage. In this paper we have
presented two contributions that can increase the practical appeal of this data
structure. We believe there are other improvements to the original XBWT-trie
design that can make this data structure even more appealing to practitioners.
For example, it is relatively simple to support the contraction of unary paths.
The computation of the XBWT also deserves further investigations: we have
shown how to compute it from the SA or the BWT but we are currently working
on the design of efficient and lightweight direct construction algorithms.
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11. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181–
192. springer, Heidelberg (2009)
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Abstract. A border of a string is a non-empty prefix of the string that
is also a suffix of the string, and a string is unbordered if it has no bor-
der. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the
following: If we pick a string of length n from a fixed alphabet uniformly
at random, then the expected length of the maximal unbordered factor
is n − O(1). We prove that this conjecture is true by proving that the
expected value is in fact n−Θ(σ−1), where σ is the size of the alphabet.
We discuss some of the consequences of this theorem.

1 Introduction

A string S is a finite sequence of n characters from an alphabet Σ of size σ.
S[i, j], 1 ≤ i ≤ j ≤ n, is the sequence of characters of S starting in i and j, both
indices included. We denote S[i, j] a factor of S. The factor S[1, j] is a prefix of
S and S[i, n] is a suffix. A border of a string is a non-empty prefix of the string
that is also a suffix of the string. If S = αβ = λα, for non-empty strings β and λ,
then α is a border of S with length |α|. The maximal border of S is the longest
border among all borders of S. S is unbordered if it does not have a border. The
maximal unbordered factor is the longest factor that does not have a border.
A string is periodic if it can be written as S = αkα′, where αk is the string α
repeated k > 0 times and α′ is a prefix of α.

Borders were first studied by Ehrenfeucht and Silberger [2] with emphasis on
the relationship between the maximal unbordered factor of a string and its mini-
mal period. This relationship has since received more attention in the litterature
[1,4,5].

Loptev, Kucherov, and Starikovskaya [10] prove that for σ ≥ 2 the expected
length of the maximal unbordered factor is at least n(1 − ξ(σ) · σ−4) + O(1),
where ξ(σ) converges to 2 as σ grows. When σ ≥ 5 and n is sufficiently large this
implies that the expected length of the maximal unbordered factor is at least
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0.99n. Supported by experimental results, the authors of [10] conjectured that
the expected length of maximal unbordered factor is n − O(1). We prove that
this conjecture is true and obtain the following theorem.

Theorem 1. Let S be a string of length n, where each character is chosen i.i.d.
uniformly from an alphabet A of size σ ≥ 2. The expected length of the maximal
unbordered factor is n − O(σ−1).

The problem of computing the maximal unbordered factor of a string has
been studied by Loptev et al. [10] and Gawrychowski et al. [3], who give algo-
rithms with average-case running times O(n2

σ4 + n) and O(n log n), respectively.
It can be decided in O(n) time if a string of length n has a border by com-
puting the border array (also known as the failure function, made famous by
the KMP pattern matching algorithm [7,11]). Entry i of the border array B
of a string S contains the length of the maximal border of the prefix S[1, i].
If B[n] = 0 then S is unbordered. Let Bj be the border array for the suffix
S[j, n]. If Bj [i] = 0 it means that the factor S[j, i] is unbordered. Computing
Bj for j = 1 . . . n and scanning these to find the maximal unborderd factor of S
takes O(n2) time. As mentioned in [10], we can compute the Bj ’s in decreasing
order of the suffix length and stop the algorithm once n − j is smaller than the
currently longest unbordered factor and obtain an algorithm with average-case
running time O((n − μ + 1)n) where μ is the expected length of the maximal
unbordered factor. With our new bound on the expected length of the maximal
unbordered factor, we therefore get the following corollary.

Corollary 1. There is an algorithm with average-case running time O(n) that
finds the maximal unbordered factor.

This improves the previously best known average-case bounds for finding the
maximal unbordered factor of a string.

Related Work. The worst-case running time of the above mentioned algorithm
is still O(n2). Gawrychowski et al. [3] give an algorithm with worst-case running
time O(n1.5).

Holub and Shallit [6] investigated the expected length of the maximal border
of a random word.

Data structures for answering a border query have also been developed. A
border query takes two indices i and j and the answer is the maximal border
of the factor S[i, j]. Kociumaka et al. [8] show several time-space trade-offs for
this problem. For one of these, their data structure can answer border queries
in O(log1+ε n) time and uses O(n) space. Kociumaka et al. [9] improved this to
O(1) time for answering border queries while using O(n) space.

2 The Proof of Theorem 1

Fix A and σ ≥ 2. Let Xn be the expected length of the maximal unbordered
factor of a random string of length n. We define X0 = 0, and we let Yn = n−Xn.
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We prove in the following that Yn ≤ c, where c is given by:

c =
2σ

(σ − 1)2(1 − σ−1 − σ−2)

Since c ≤ 32
σ this will prove the theorem. This follows from σ ≥ 2 and the

following calculation:

c =
2

σ (1 − σ−1)2 (1 − σ−1 − σ−2)
≤ 2

σ (1 − 2−1)2 (1 − 2−1 − 2−2)
=

32
σ

We will prove the claim by induction on n. By definition this is true whenever
n ≤ 1. So fix some n and assume that Ym ≤ c for all m < n.

Let S be a random string of length n. Let f = f(S) be the smallest positive
integer < n such that S[1, f ] = S[n − f + 1, n]. If no such integer exists we let
f = 0. We note that if f > 0 then f ≤ n

2 , since if f > n
2 then f ′ = 2f − n

satisfies S[1, f ′] = S[n − f ′ + 1, n] as well and f ′ < f which is impossible. Let
L = L(S) be the length of the maximal unbordered factor of S. Then:

Yn = n − Xn = n − E(L) =
�n/2�∑
�=0

P (f = �)(n − E(L | f = �)) (1)

If 1 ≤ � < n
2 then S[� + 1, n − �] is independent of the event f = �, since f = �

is determined by S[1, �] and S[n − � + 1, n]. The longest unbordered factor in
S[� + 1, n − �] is also an unbordered factor in S and hence for � < n

2 :

E(L | f = �) ≥ Xn−2� (2)

If n is odd (2) holds for all integers � ∈ {
1, 2, . . . ,

⌊
n
2

⌋}
. If n is even we see

that if � =
⌊

n
2

⌋
the right hand side of (2) is 0 and hence it also holds for all

integers
{
1, 2, . . . ,

⌊
n
2

⌋}
. If f = 0, then S is an unbordered factor, and therefore

E(L | f = 0) = n. So we can use this observation together with the inequality
(2) to upper bound Yn in (1) by:

Yn ≤
�n/2�∑
�=1

P (f = �)(n − Xn−2�) =
�n/2�∑
�=1

2�P (f = �) +
�n/2�∑
�=1

P (f = �)Yn−2� (3)

Nielsen [12] proved the following lower bound on the probability that S is unbor-
dered. Since S is unbordered iff f = 0 we get:

Theorem 2 (Nielsen[12]).

P (f = 0) ≥ 1 − σ−1 − σ−2

Using Theorem 2 together with the fact that Yn−2� ≤ c we get:

�n/2�∑
�=1

P (f = �)Yn−2� ≤ c

�n/2�∑
�=1

P (f = �) = c(1 − P (f = 0)) ≤ c(σ−1 + σ−2) (4)



96 P.H. Cording and M.B.T. Knudsen

If f = � then S[1, �] = S[n − � + 1, n]. After fixing S[1, �] there are σ� ways to
choose S[n − � + 1, n] and hence P (f = �) ≤ σ−�. Using this we get:

�n/2�∑
�=1

2�P (f = �) ≤
∞∑

�=1

2�σ−� =
2σ

(σ − 1)2
(5)

Inserting (4) and (5) into (3) gives:

Yn ≤ 2σ

(σ − 1)2
+ c(σ−1 + σ−2) = c

which finishes the induction and the proof. ��
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5. Holub, Š., Nowotka, D.: The ehrenfeucht-silberger problem. J. Comb. Theor. Ser.
A 119(3), 668–682 (2012)
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Abstract. This paper proposes Fragmented Burrows Wheeler Trans-
form (FBWT), an extension to the well-known BWT structure for full-
text indexing and searching. A FBWT consists of a number of BWT
fragments each covering only a subset of all the suffixes of the original
string. As constructing FBWT does not entail building the BWT of the
whole string, it is faster than constructing BWT. On the other hand,
searching with FBWT can be more costly than that with BWT, since
searching the former requires searching all fragments; its amount of work
is O(dp+occ log1+ε n) as opposed to O(p+occ log1+ε n) of regular BWT,
where p is the length of the query string, n the length of the original text,
occ the occurrences of the query string, and d the number of fragments.
To compensate the search cost, searching with FBWT can be acceler-
ated with SIMD instructions by searching multiple fragments in parallel.
Experiments show that building FBWT is about twice as fast as building
BWT via a state of the art algorithm (SA-IS); and that FBWT’s search
performance compared to BWT’s depends on the number of occurrences,
ranging from four times slower than BWT (when there are few occur-
rences), to twice as fast as BWT (when there are many).

Keywords: Suffix array · Burrows- Wheeler transform · Full-text
indexing

1 Introduction

Full-text searching is a fundamental topic for text processing applications. It is
used in many applications such as genome analysis, data mining, search engine,
and so on. As the amount of text data has been rapidly increasing in recent
years, many efforts have been made to index and search texts faster. Suffix array
[12] and Burrows Wheeler Transform (BWT) [1] are popular data structures
to accomplish the task and are widely used by genome analysis applications
such as BWA [10], SOAPv2 [11], bowtie [9]. For constructing suffix arrays and
BWTs, many algorithms have been developed such as SA-IS [13], DC3 [7] and
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 97–109, 2016.
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parallelized [6] to accelerate constructing them. For full-text searching, many
data structures have been proposed such as Ferragina and Manzini [3,4], wavelet
tree [5], and wavelet matrix [2].

We propose an extension of BWT, named Fragmented BWT (FBWT). This
data structure consists of a number of BWT fragments. Each fragment is essen-
tially a BWT covering only a subset of the original string. An FBWT can be
constructed more cheaply than BWT because it needs to build only a part of the
suffix array. On the other hand, searching with FBWT can be more costly than
that with BWT, as it needs to search all fragments individually. Fortunately,
the cost can be reduced by searching them in parallel with SIMD instructions.
Experiments show that we can build FBWT twice as fast as building the reg-
ular BWT by a state of the art algorithm (SA-IS). The search performance of
FBWT depends on the number of occurrences (occ) and it is from about four
times slower to two times faster than searching with BWT, after vectorization
applied.

2 Related Work

Suffix array [12] is a fundamental data structure whose construction and search-
ing have been extensively studied. For the construction, Manber and Myers pro-
posed the first O(n log n)-time algorithm [12]. O(n)-time algorithms have been
studied [7,13] and the state of the art algorithm is SA-IS introduced by Nong
et al. [13]. As suffix array needs O(n log n) bits for n characters, researchers have
proposed more compact data structures that still allow full text searching. A rep-
resentative method is due to Sadakane et al. [14] and Ferragina and Manzini [3].
Sadakane, et al. uses Ψ array which stores the position of the next suffix on
the original string in the suffix array. This method has O(p log n + occ logε n)
time complexity, where n is length of the original text. Ferragina and Manzini
introduced a new data structure using Burrows Wheeler Transform [1]. This
method consists of two steps. The first step finds ranks of matching suffixes in
time complexity O(p), where p is the length of the query string, and the second
step locates them in the original reference string, in O(occ log1+ε n)-time, where
occ is the number of occurrences. The present work is largely based on Ferragina
and Manzini’s, with the main difference being that we build a suffix array of a
string d times smaller than the entire string. Our method also makes the second
step of the searching algorithm more efficient, although it makes the first step
more expensive.

3 Background

3.1 Notational Preliminaries

Throughout this paper, T is an original text we build the index of. As is cus-
tomary we assume T ends with a special character, written as ‘$’, which is the
lexicographically smallest character. n is the number of characters in T including
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Fig. 1. Burrows Wheeler transform for mississippi$

this end character. T [i] is the character at index i of T (i starting from zero).
T [a : b] is the substring of T starting from its ath character to bth character.
T [a :] is an abbreviation of T [a :n], the suffix starting from position a. We write
s ≺ t to mean string s is lexicographically smaller than t.

3.2 Suffix Array and Burrows Wheeler Transform

Given a reference string T , its suffix array [12] is a sorted array of its all suffixes.
Each suffix is actually represented by its starting index in T , so the suffix array
of T , SA, is a permutation of {0, . . . , n − 1}, such that for all i and j, 0 ≤ i <
j < n ⇒ T [SA[i] :] ≺ T [SA[j] :].

Burrows Wheeler transform of T , BWT, is an array of n characters defined
as follows.

BWT[i] =
{

T [SA[i] − 1] (SA[i] �= 0)
T [n − 1] (SA[i] = 0) (1)

That is, BWT’s ith element is the character ahead of ith smallest suffix (for
convenience, we consider the character ahead of T [0] is T [n−1]). In other words,
BWT is a permutation of the reference string, sorted by lexicographic order of
the suffix following each character.

This is illustrated in Fig. 1, which shows the BWT of a reference string “mis-
sissippi$”. On the left is all the suffixes of the reference string. Each suffix is
represented as a cyclic shift of the original string. Note that the order between
cyclic shifts is equivalent to that between suffixes, as ‘$’ is smaller than any other
character. On the right is its lexicographical sort, signifying the first and the last
characters of each cyclic shift in the F and L columns, respectively. BWT is the
sequence of characters in the L column.

3.3 LF-Mapping and Backward Search

Searching for a string using a suffix array amounts to finding suffixes that have
the query string as a prefix. As suffixes are lexicographically sorted, such suffixes
form a contiguous interval in the suffix array. If the suffix array of the entire
string were available, searching for a string could be done by a straightforward
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binary search on the suffix array. Ferragina and Manzini [3] have shown that
BWT can answer how many times a query string occurs in the original string
without using a suffix array. Finding their positions in the original string needs
a sparsely sampled suffix array, but still does not need the full suffix array. The
following function, LF-mapping, gives the fundamental tool to accomplish this.

LF-mapping is a mapping from the rank of a suffix to the rank of the suffix
one character longer. Specifically, given the rank of a suffix, i, its LF-mapping,
LF(i) is defined as j satisfying SA[j] = SA[i] − 1. That is,

LF(i)
def≡ j such thatSA[j] = SA[i] − 1. (2)

Remarkably, this can be computed without materializing SA, as follows.

LF(i) = C[c] + occ(c, i − 1), (3)

where c is the character ahead of the given suffix (that is, c = BWT[i]), C[x]
the number of characters smaller than x in the original string (or equivalently
in BWT), and occ(x, p) the number of character x’s in BWT[0 :p].

We sketch its correctness for the sake of extending it for our method. Recall
that we are trying to find the rank of suffix “c” ‖ T [SA[i] :] (the symbol ‖
means a string concatenation). As it starts with c, all suffixes starting from
characters smaller than c have ranks lower than this suffix, which are counted
by the term C[c]. Now we count suffixes starting from c and lexicographically
smaller than “c” ‖ T [SA[i] :]. As they all share the same first character (c),
this amounts to counting the number of suffixes lexicographically smaller than
T [SA[i] :] and immediately following c, which is the number of suffixes among
T [SA[0] :], T [SA[1] :], · · · , T [SA[i − 1] :] that immediately follow c. This is exactly
the number of times c appears in BWT[0 : i − 1], which is occ(c, i − 1).

The above argument can be extended to searching for an arbitrary query
string, q. In order to search for a string q, we start from an empty query string and
extend it ahead one character at a time, keeping track of the minimum/maximum
ranks of suffixes that have the query string in their prefixes. The procedure is
illustrated as follows.

1 search bwt(q) {
2 s = 0; e = n − 1;
3 for (i = |q| − 1; i ≥ 0; i−−) {
4 c = q[i] ;
5 s = C[c] + occ(c, s − 1);
6 e = C[c] + occ(c, e) − 1;
7 if (s > e) break;
8 }
9 return (s, e);

10 }



Fragmented BWT: An Extended BWT for Full-Text Indexing 101

3.4 Locating Suffixes in the Reference String

This backward search procedure immediately gives the number of occurrences
of q, which is (e− s+1). To locate them in the original string, however, we need
an extra step for each suffix we have found. This would be trivial, again if the
entire suffix array were available; we merely return SA[j] for each j ∈ [s, e]. A
cleverer technique was invented to accomplish this without holding the entire
suffix array in memory. The key idea is to sparsely sample the suffix array, to
build a (partial) mapping from ranks to locations in the original string. Samples
are taken so that they are regularly interspaced in the original string. By taking
a sample from every log(1+ε) n consecutive elements, the space usage becomes
n log n/ log(1+ε) n ∈ o(n). Once such sampled suffix array is available, finding
the position of the suffix can be done by extending the suffix backward in the
manner of LF-mapping, until we reach a suffix that is mapped in the sampled
suffix array. The time complexity thus becomes O(log1+ε n) for each occurrence
A sampled suffix array is actually implemented as a hash table mapping from
integers (rank) to integers (positions).

1 /∗ SSA : a sampled suffix array (hash table)
2 j : rank of the suffix we want to locate in the reference string ∗/
3 get position (j , SSA) {
4 backward count = 0;
5 while (j not found in SSA) {
6 c = L[i] ;
7 j = C[c] + occ(c, j) − 1;
8 backward count++;
9 }

10 return SSA[j] + backward count;
11 }

4 Fragmented BWT

In this section, we describe our index data structure and searching method. We
assume the special character ‘$’ appears at the end of T at least once and so
many times that the length of T becomes a multiple of the number of fragments
in the fragmented BWT we are to build.

Definition 1. For a string T , (r/d)-fragment of T ’ s suffix array, SAr/d, is a
sorted array of T ’s suffixes that start from positions that are r modulo d. (r/d)-
fragment of T ’ s BWT, BWTr/d, is defined similarly to Eq. (1):

BWTr/d[i] =
{

T [SAr/d[i] − 1] (SAr/d[i] �= 0)
T [n − 1] (SAr/d[i] = 0) (4)

The fragmented suffix array (or BWT) of T is the collection of all (r/d)-
fragments (r = 0, . . . , d − 1). We show how to construct a fragmented BWT of
a string in Sect. 4.1 and how to search using a fragmented BWT in Sects. 4.2
and 4.3.
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4.1 Constructing FBWT

A straightforward approach to constructing a fragmented BWT of a string T
is to build the full suffix array of T , scan it to split it into fragments (put
elements that are r modulo d into the (r/d)-fragment), and then derive BWT
fragments. This method, obviously, does not bring any benefit in construction
time. Alternatively, we could build each suffix array fragment individually, by
sorting only suffixes that belong to the fragment we would like to build, and
derive the corresponding BWT fragment. In essence, instead of sorting an array
of n elements, we sort d arrays each having n/d elements. The latter may be
faster than the former but the benefit will be marginal, especially when we use
fast O(n) suffix array construction algorithms, as we are merely replacing sorting
n elements with sorting n/d elements d times.

Our method constructs only the (0/d)-fragment from the original string.
Other fragments are obtained from fragments already built, as shown below.
We call d consecutive characters a wide character. The original string T of n
characters can be naturally viewed as an array of (n/d) wide characters, each
starting from a position that is a multiple of d. Define the lexicographical order
between wide characters in the obvious manner. The procedure for obtaining all
BWT fragments, L0, L1, · · · , Ld−1, is the following. Figure 2 shows the example
of FBWT construction for “cock-a-doodle-doo”.

1 build FBWT(T , d) {
2 /∗ T : array of n characters including trailing $’s
3 d : the number of fragments (divides n) ∗/
4 W = array of (n/d) wide characters in T ;
5 /∗ i .e. W [i] = T [id, (i + 1)d − 1] for i ∈ [0, n/d) ∗/
6 /∗ get the first fragment L0 ∗/
7 L = BWT of W ;
8 L0 = array of (n/d) characters , obtained by
9 collecting (d − 1)th character of each wide character in L ;

10 /∗ i .e ., L0[i] = (d − 1)th character of L[i] (i ∈ [0, n/d)) ∗/
11 /∗ derive other fragments ∗/
12 for (r = d − 1; r ≥ 1; r−−) {
13 stably sort L by rth character;
14 Lr = array of (n/d) characters , obtained by
15 collecting (r − 1)th character of each wide character in L ;
16 /∗ i .e ., Lr[i] = (r − 1)th character of L[i] (i ∈ [0, n/d)) ∗/
17 }
18 return {L0, L1, ..., Ld−1} ;
19 }

The (0/d)-fragment of BWT, L0, can be obtained by making the BWT of the
wide character array W and then collecting the last character from each wide
character in W ’s BWT. From this fragment, we work backward, first obtaining
Ld−1, then Ld−2, . . . , until finally obtaining L1. When obtaining Ld−1 from L0,
we stably sort the wide characters in the just obtained BWT of W , L, by its
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Fig. 2. FBWT for “cock-a-doodle-doo$$$”

(d − 1)th character and then collect their (d − 2)th characters. We repeat this
process (d−1) times; each iteration obtains Lr from Lr+1 (Ld = L0 for notational
convenience) by stably sorting wide characters in L by their rth characters and
then collecting their (r − 1)th characters in the sorted L.

We will show the correctness of the above procedure. Consider an (imaginary)
array L′ whose ith element L′[i] is a pair 〈L[i], the suffix that follows L[i]〉 and it
is sorted in the same way as L is sorted along the way. Below, we denote the
second element of the ith pair as S[i].

Lemma 1. At the beginning of iteration r (d − 1, d − 2, . . . , 0), the imaginary
array L′ is sorted by the lexicographic order of (L[i][r + 1:] ‖ S[i]).

L[i] is a wide character (d characters) and L[i][r + 1 :] is thus a suffix of it
starting from its (r + 1)th character.

Proof. By induction. Recall that initially (r = d − 1), L is the BWT of W . By
the definition of BWT, L′ is sorted by the lexicographical order of the S[i]’s. As
r = d − 1, each L[i][r + 1 :] is an empty string, so the order between S[i]’s is
equivalent to the lexicographical order of (L[i][r + 1 :] ‖ S[i]). This shows that
the claim initially holds for r = d − 1. Assume the claim holds at the beginning
of iteration r. In this iteration, it stably sorts L (and the imaginary L′) with rth
characters. As L′ is already sorted by (L[i][r + 1 :] ‖ S[i]), stably sorting them
with rth character is equivalent to sorting them by (L[i][r :] ‖ S[i]), establishing
the claim in the next iteration (r − 1).

Given the lemma, it is easy to observe that at the end of iteration r, taking
their (r − 1)th character will give the desired fragment Lr.
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4.2 LF-Mapping and Backward Search with FBWT

Let us extend LF-mapping and backward search for fragmented BWT. Let
the fragments be {L0, L1, · · · , Ld−1} (Lr is (r/d)-fragment). The extended LF-
mapping maps the rank (i) of a suffix, known to be starting from a position that
is r modulo d, to the rank (j) of the suffix one character longer. A rank is a local
rank computed within each fragment. That is,

LF(r, i)
def≡ j such thatSAr−1/d[j] = SAr/d[i] − 1. (5)

(for r = 0, we define SA−1/d = SAd−1/d for convenience). Analogously to the
regular LF-mapping, this can be computed with BWT, which is now fragmented.

LF(r, i) = Cr[c] + occr(c, i − 1) (6)

where c is the character ahead of the suffix ranked ith in (r/d)-fragment; Cr[x]
is the number of characters smaller than x in positions that are (r − 1) modulo
d in the reference string, which is equivalent to the number of characters smaller
than x in Lr ((r/d)-fragment of BWT); occr(x, p) is the number of x’s Lr[0 : p].
Due to space limitation, we omit the correctness proof of the above procedure,
which is analogous to that of the original LF-mapping.

The extended LF-mapping can be similarly extended to searching for arbi-
trary strings. The procedure below finds occurrences of q starting from positions
that are r modulo d in the reference string. It returns an interval in (r/d)-
fragment of the suffix array. That is, (s, e) such that

s ≤ j ≤ e ⇐⇒ q is a prefix of T [SAr/d[j] :].

1 backward search fragment(q, r) {
2 s = 0; e = n − 1;
3 for (i = |q| − 1; i ≥ 0; i−−) {
4 /∗ extend search one character ahead ∗/
5 x = (r + i + 1) mod d ;
6 s = Cx[q[i]] + occx(q[i], s − 1);
7 e = Cx[q[i]] + occx(q[i], e) − 1;
8 if (s > e) break;
9 }

10 return (s, e); }

To find all occurrences in the original string, we must search all fragments;
this is roughly d times more costly than backward-searching a single BWT cov-
ering the entire string. Fortunately, however, we can search multiple fragments
in parallel using SIMD instructions.

4.3 Locating Suffixes with FBWT

The second step is similar to get position of Ferragina and Manzini. Starting from
the rank of a suffix whose position in the reference string is unknown, we repeat
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applying LF-mapping, until we find a suffix that is sampled and whose position in
the original string is thus known. In this process, we enjoy a benefit of splitting
the BWT into fragments, as explained below. As we go backward with LF-
mapping, we need to check if the current suffix is sampled. We take samples only
from a single fragment (specifically, (0/d)-fragment). In this setting, the check
is redundant if we know a suffix does not start at a position not a multiple of
d. The get position procedure by Ferragina and Manzini cannot take advantage
of this fact, as such information is not readily available. In our algorithm, in
contrast, suffixes are already classified into fragments by their starting positions
modulo d. Thus we can easily know that the current suffix ever has a chance to
have been sampled. This can reduce the number of costly checks to see if a suffix
is in the sampled array roughly by a factor of d (see line 6 below). As a result,
this step is faster than that in the ordinary BWT and the entire search faster
when it is dominated by this step (i.e. there are many occurrences).

1 /∗ return the position in the reference string of suffix whose rank is
2 j in (r/d)−fragment of suffix array. in other words, it returns
3 SAr/d[j], without fully materializing SAr/d . ∗/
4 get position fragment(r , j , SSA) {
5 backward count = 0;
6 while (r �= 0 or j not found in SSA) {
7 c = Lr[j] ;
8 j = Cr[c] + occr(c, j) − 1;
9 backward count++;

10 }
11 return SSA[j] + backward count;
12 }

Finally, the toplevel procedure to search for q in the entire string is below.

1 /∗ search the entire reference string to find
2 occurrences of q , no matter where they start . ∗/
3 search(q) {
4 ranks = {} ; /∗ empty set ∗/
5 /∗ get interval in suffix array of all fragments having prefix q ∗/
6 for (r = 0; r < d ; r++) {
7 s, e = backward search fragment(q, r);
8 ranks = ranks ∪ {(r, s, e)} ;
9 }

10 /∗ get positions in the reference string ∗/
11 I = {} ; /∗ empty set ∗/
12 for each ((r, s, e) ∈ ranks) {
13 for (j = s ; j ≤ e ; j++) {
14 I = I ∪ { get position fragment(r , j , SSA) };
15 }
16 }
17 return I;
18 }
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5 Implementation

We describe implementation details not described so far. For the number of
fragments, we chose d = 8, a natural choice because the size of a wide character
then fits a single 64 bits register. In the backward search procedure, we used 256
bits AVX2 SIMD instructions to search all fragments in parallel. We assumed an
array index fits 32 bits, so the choice of d = 8 allows us to process all d fragments
in parallel with the 256 bits instruction set. If we desire to handle strings larger
than 232 characters, the natural choice would be d = 4.

To initially construct the suffix array of the wide characters, we combined
DC3 [7] and SA-IS [13]; we implemented DC3 that can handle eight bytes
wide characters by ourselves. For SA-IS, we used an implementation by Mori
(https://sites.google.com/site/yuta256/sais/). The toplevel procedure is DC3
which, upon the recursive call, switches to SA-IS if the character size becomes
smaller than 232, the size the SA-IS implementation we used can handle. In
practice, DC3 is used only in the first level, where we have eight bytes wide
characters. We build a sampled suffix array of SA0/d, taking every other element
from it (equivalent to taking a sample from every 16 elements of the entire suffix
array). We used unordered map of C++ Standard Template Library to imple-
ment a sampled suffix array. occr function is implemented by building a wavelet
matrix of BWTr/d. In this implementation, our index is almost the same size as
BWT method.

6 Evaluation

Our evaluation platform has Xeon E5-2699 v3 processor running Linux 3.1.6
kernel. In creating suffix array and fragmented BWT, we compare our method
and SA-IS, the state of the art algorithm. Figure 3 shows index construction
time for genome sequence (http://ftp.ensembl.org/pub/release-75/fasta/homo
sapiens/dna/) over various string lengths. This shows that our method is con-
sistently two times faster against a range of data sizes.

To evaluate search performance, we took substrings of various lengths from
the reference string and use them as queries. We varied query lengths from 10 to
100 and for each length, we extracted 1000 strings from the head of the string,
skipping the very first region that entirely consists of many ‘N’s.

Figure 4 shows query execution time including both steps (backward search
and locating suffixes in the reference string), against a range of the number of
occurrences. As seen in Fig. 4, our method is four times slower when there are
few occurrences; our method starts outperforming regular BWT backward search
when the number of occurrences becomes as many as 16 and becomes twice as
fast when there are many occurrences.

To better understand this result, Fig. 5 shows execution time of the backward
search step against query string lengths. As shown, despite the use of SIMD
instructions to search many fragments in parallel, our method is about three
times slower than the regular backward search. Ideally, we like to expect search-
ing all the eight fragments in parallel with eight-way SIMD instructions would

https://sites.google.com/site/yuta256/sais/
http://ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/dna/
http://ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/dna/
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Fig. 3. Construction time of FBWT
and SA-IS

Fig. 4. Search time

Fig. 5. Backward search time Fig. 6. Time to locate suffixes found

result in roughly the same execution time as the ordinary backward search. This
did not happen because of the following reasons.

– Fundamentally, the backward search can quit before reaching the head of the
query string, as soon as one of its suffixes turns out not to occur at all, but by
searching eight fragments in parallel, the search continues until all the eight
fragments quit.

– Even if eight fragments quit with roughly the same number of iterations,
searching eight fragments involve some overheads associated with the use of
SIMD instructions. In particular, we use gather instructions to access multiple
locations in parallel, but this does not have the same latency/throughput as
the scalar load instruction.

Figure 6 shows execution time for locating suffixes (get position fragment)
in the reference string, which seems consistently roughly twice faster than the
ordinary procedure (get position). This is because the former does not need to
check if the current query string is found in the sampled suffix array in every
iteration; it knows which fragments the current suffix belongs to and checks its
presence only when the suffix is known to be from (0/d)-fragment.
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7 Conclusion and Future Work

Fragmented BWT for full-text indexing and searching are described. Advan-
tages include that (1) its construction is faster than that of the regular BWT
and (2) searching with FBWT is faster in locating suffixes in the reference string.
To accelerate to construct FBWT more, we can apply other algorithm such as
parallel construction [8] or parallelize our implementation for sorting in DC3.
We can expect FBWT construction be faster than BWT construction because
the space consumption is smaller thanks to fewer number of suffix array con-
struction. It is slower in the first step of the search (backward search to find
ranks of suffixes), but this can be mitigated by SIMD instructions. Experiments
show that the construction becomes roughly twice as fast as the state of the art
method (SA-IS), locating suffixes roughly twice as fast as the same procedure
for monolithic BWTs. The backward search becomes third to four times slower
(despite applying SIMD instructions). Our future work includes applying SIMD
to the second step as well to further accelerate the search procedure and better
understanding of the cause of imperfect speedup with SIMD instructions.

Acknowledgement. This work was in part supported by Grant-in-Aid for Scientific
Research (A) 16H01715.
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Abstract. Given a set of pattern strings called a dictionary and a text
string, dictionary matching is the problem to find the occurrences of the
patterns on the text. Dynamic dictionary matching is dictionary match-
ing where patterns may dynamically be inserted into and deleted from
the dictionary. The problem is called semi-dynamic dictionary match-
ing when we only consider the insertion. An AC-automaton is a data
structure which enables us to solve dictionary matching in O(d log σ)
preprocessing time and O(n log σ) matching time, where d denotes the
total length of the patterns in the dictionary, n denotes the length of the
text, and σ denotes the alphabet size. In this paper we propose an effi-
cient algorithm that dynamically updates an AC automaton for insertion
of a new pattern by using a directed acyclic word graph.

Keywords: Semi-dynamic dictionary matching · AC-automaton ·
DAWG

1 Introduction

The pattern matching problem is one of the fundamental problems in string
processing. Given a pattern string and a text string, output all occurrence posi-
tions of the pattern in the text. Pattern matching algorithms can be applied in
data mining, search engines, text editors, etc.

An extension of the pattern matching problem is to find multiple pat-
terns simultaneously instead of a single pattern. That is, given a set D =
{p1, p2, . . . , pr} of patterns called dictionary and a text, we find all occurrences
of the patterns in the text. This problem is called the dictionary matching prob-
lem [1,2]. The dictionary matching problem can be solved by the Aho-Corasick
algorithm [1] or the Commentz-Walter algorithm [7]. Both of the algorithms
preprocess the dictionary first in O(d log σ) time, and then find the occurrences
of patterns in the text in O(n log σ) time for the AC-algorithm and O(nd log σ)
time for the Commentz-Walter algorithm in the worst case, where d is the total
length of the patterns, n is the length of the text, and σ is the alphabet size.

Meyer [15] introduced incremental string matching, which is also known as
semi-dynamic dictionary matching problem, as a variant of dictionary matching
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 110–121, 2016.
DOI: 10.1007/978-3-319-46049-9 11
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Table 1. Comparison of the algorithms for (semi-)dynamic dictionary matching. n is
the length of text, m is the length of pattern, and d is the total length of dictionary.
k ≥ 2 is any constant. lmax is the length of the longest pattern, and s is the size of
the AC-automaton before insertion.

Algorithm Update Query

Idury and Schäffer [12] O(m(kd1/k + log σ)) O(n(k + log σ))

Amir et al. [3] O(m(log d/ log log d + log σ)) O(n(log d/ log log d + log σ))

Chan et al. [6] O(m log2 d) O(n log2 d)

Hon et al. [11] O(m log σ + log d) O(n log d)

Feigenblat et al. [10] O(m log d log log d) O(n(log log d) + log σ)

Meyer [15] O(lmax · s · σ) O(n log σ)

Tsuda et al. [16] O(s log σ) O(n log σ)

Proposed O(m log σ + s) O(n log σ)

that allows insertion of a pattern into the dictionary. He proposed an algorithm
for semi-dynamic dictionary matching, which updates the AC-automaton when
a new pattern is inserted into the dictionary. Amir et al. [2] introduced dynamic
dictionary matching problem by allowing deletion of a pattern from dictionary.
Dynamic dictionary matching can be solved by constructing sophisticated data
structures from the dictionary [2,3,6,12]. Moreover, succinct data structures
are also introduced to deal with dynamic dictionary matching, where the main
concern is to save the memory usage to store the dictionary [10,11]. Remark
that in all these approaches except Meyer’s, the query time to search a text for
patterns is more or less sacrificed.

Tsuda et al. [16] also considered dynamic dictionary matching by directly
following and extending Meyer’s method [15], and showed how to update the
dictionary, while keeping the query time in O(n log σ). They also performed
some computational experiments. Ishizaki and Toyama [13] introduced a data
structure called an expect tree to efficiently update the dictionary for insert-
ing patterns, and showed some experimental results, but with no theoretical
analysis. Along this line, in this paper, we propose a simple and more efficient
algorithm for the semi-dynamic dictionary matching problem, where the query
time is still in O(n log σ). The algorithm updates an AC-automaton when a new
pattern is inserted into the dictionary by using a directed acyclic word graph
(DAWG) [4,5] of the dictionary. For each new pattern p, the algorithm updates
the AC-automaton in O(m log σ+uf +uo) time, where m is the length of p, uo is
the number of states whose output function needs to be updated, and uf is the
number of states whose failure link needs to be updated. Table 1 shows a sum-
mary of the proposed algorithm and existing algorithms. Note that uf +uo ≤ 2s.
In this sense, our algorithm is more efficient than any other existing ones, under
the constraint of the query time in O(n log σ).
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2 Preliminaries

Let Σ denote an alphabet of size σ. An element of Σ∗ is called a string. For a
string w, the length of w is denoted by |w|. The empty string, denoted by ε, is
a string of length 0. For a string w = xyz, strings x, y, and z are called prefix,
substring, and suffix of w, respectively. For a string w, let Substr(w) denote the
set of all substrings of w, and for a set D = {w1, w2, . . . , wr} of strings, let
Substr(D) = ∪r

i=1Substr(wi). Similarly, let Pref (D) be the set of all prefixes of
strings in D.

Let D = {p1, p2, . . . , pr} be a set of patterns over Σ. D is often called a
dictionary. Let d =

∑r
i=1 |pi|, the total length of the patterns in D. An Aho-

Corasick Automaton of D, denoted by AC (D), is a trie of all patterns in D,
consisting of goto, failure and output functions. We often identify a state s with
the string obtained by concatenating all the labels found on the path from the
root to the state s. The state transition function goto is defined so that for
any two states s, s′ ∈ Substr(D) and any character c ∈ Σ, if s′ = sc then
s′ = goto(s, c). The failure function is defined by flink(s) = s′ where s′ is the
longest proper suffix of s such that s′ ∈ Substr(D). Finally, output(s) is the set
of all patterns that are suffixes of s. AC (D) is used to find occurrences of any
pattern in D on a text. We omit to explain the basic construction algorithm of
AC (D) and how to use it for text search (see [1,9]).

For any x, y ∈ Substr(D), we define x ≡D y iff endPosD(x) = endPosD(y),
where endPosD(x) is the set of all positions in the patterns in D where an
occurrence of x ends. We denote by [x]D the equivalence class of x with respect
to ≡D. The Directed Acyclic Word Graph for D, denoted by DAWG(D), is a
directed acyclic graph with the set of nodes1 {[x]D | x ∈ Substr(D)} and the
set of edges {([x]D, [xc]D) | xc ∈ Substr(D), c ∈ Σ}. Each edge ([x]D, [xc]D) is
labeled by c. The node [ε]D is called the source of DAWG(D). Figure 1 shows
an example of a DAWG. For each node except the root, suffix link is defined as
slink([x]D) = [y]D, where y is the longest suffix of x satisfying [x]D �= [y]D. For
convenience, we define slink i([x]D) = slink i−1(slink([x]D)) and slink1([x]D) =
slink([x]D). We call a node v a trunk node if there exists u ∈ Pref (D) such that
u is obtained by concatenating all the labels found on the path from the source
to the node v. Other nodes are called branch nodes. For example, in Fig. 2(b),
trunk nodes are numbered, while branch nodes are blank.

From the properties of AC-automaton and DAWG, for each state s in AC (D),
there exists a unique node v in DAWG(D) that corresponds to s, so that
AC (D) can be consistently embedded into DAWG(D). Because s ∈ Pref (D),
the corresponding node v is a trunk node and each trunk node has its corre-
sponding state. Therefore, there exists a one-to-one mapping from the set of
trunk nodes in DAWG(D) to the states of AC (D). We denote this mapping
by s = π(v). Figure 3(a) and (b) show the AC-automaton and DAWG of D =
{abba, aca, cbb}, respectively, where each number expresses the correspondence.

1 To avoid confusion, we refer to vertex in DAWG as node, and vertex in AC-automaton
as state in this paper.
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Fig. 1. DAWG({abba}). The table at each node v represents the inverse suffix links
va, and the number on top of each node v′ shows its index v′

index in the table

We can verify the following property, which will be utilized in our algorithms.

Lemma 1. Let s and s′ be any states in AC (D), and let v = π−1(s) and v′ =
π−1(s′) be corresponding trunk nodes in DAWG(D). Then, s′ = flink(s) if and
only if there exists an integer k > 0 such that v′ = slinkk(v) and each slink i(v)
is a branch node for 0 < i < k.

3 Maintenance of Inverse Suffix Links of DAWG

Meyer [15] and Tsuda et al. [16] used the inverse of the failure function of the
AC-automaton to update it. Although the inverse failure function can be stored
in O(d) space in total, it is not trivial that the access and update time of inverse
failure function can be done in O(1) time, because the number of inverse failure
links of each state may change dynamically and can be as large as the number
of states in the AC-automaton. For instance, let us consider AC (D) for D =
{baaaac} over Σ = {a, b, c} in Fig. 2(a). Its root is pointed by 6 failure links.
When adding a new pattern c to D, these algorithms first create a new state s,
a new transition from the root to s, and a failure link from s to the root. The
real difficulty arises when they try to find which suffix links should be updated
to point at s; they must follow all the 6 inverse failure links from the root and
get 6 states numbered 2, 3, . . . , 7, and check whether there is an edge labeled
c from each of them, although only one state 7 should be updated. Ishizaki
and Toyama [13] introduced an auxiliary tree structure called an expect tree to
reduce the number of the candidates and showed some experimental results, but
no theoretical analysis is provided. Unfortunately, their algorithm behaves the
same for the above example. Therefore, maintaining the inverse failure links to
update the AC-automaton might be inefficient.

In order to deal with this difficulty, we pay our attention to the suffix links
of DAWG(D), instead of the failure links of AC (D). It is known (see, e.g. [9])
that for any node v in DAWG(D), the number of suffix links that point at v
is at most σ. Therefore, accessing and updating the inverse suffix links can be
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Fig. 2. (a) AC ({baaaac}) and (b) DAWG({baaaac}).

done in O(1) time, for a fixed alphabet Σ. However, this method is inefficient
in space if the alphabet is large, such as Chinese and Japanese ones. We need a
more space efficient method to maintain the inverse suffix links.

We store the inverse suffix links of each node v in a dynamic array va, which
is a resizable array [17]. We grow the array when a new suffix link pointed at the
node is added and the size exceeds the capacity. The ith suffix link that points
at v is represented as va[i]. Moreover, in order to make the array accessible and
updatable in O(1) time, we associate the index i to u as uindex = i if u = va[i],
i.e., u is the ith node whose suffix link points v = slink(u). Figure 1 shows an
example of a DAWG with its inverse suffix links.

The inverse suffix links can be maintained in O(d) time overall when we con-
struct DAWG(D). First, from a property of the DAWG constructing algorithm,
the number of suffix links that point at each node is never reduced, thus the
size of array storing inverse suffix links from the node is also never reduced.
Therefore, we do not have to worry about deleting any elements from the array.
Next, each inverse suffix link is updated only when the node is split [4]. In this
case, we can assign the space in the inverse suffix link array which has been
occupied by the old node to the new one. Suppose that there is a node x whose
suffix link points at z, i.e., slink(x) = z, za[i] = x and xindex = i for some i.
When x is split into x and y, we update the inverse suffix link as slink(y) = z,
za[i] = y, yindex = i, slink(x) = y, ya[1] = x, and xindex = 1. This operation
can be performed in O(1) time, because the inverse suffix link can be accessed
randomly.

One may think that a DAWG can be used for dictionary matching directly.
This is indeed possible for a single pattern [8]. However, it is difficult to maintain
the output function efficiently for multiple patterns, as is mentioned in [14].
Therefore, we efficiently update AC (D) with the guide of DAWG(D), and then
update DAWG(D) too, as we will see in the next section.

4 AC-Automaton Update Algorithm

We consider inserting a new pattern p of length m into the dictionary D, and
we denote the new dictionary by D′ = D ∪ {p} = {p1, p2, . . . , pr, p}. It is known
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Fig. 3. For a dictionary D = {abba, aca, cbb} (a) AC (D), and (b) DAWG(D).

Fig. 4. Illustration of updating process when inserting a pattern p = bac into the dic-
tionary D = {abba, aca, cbb}. Compare them with Fig. 3. (a) The updated automaton
AC (D′), where the only updated failure links are shown. (b) In DAWG(D), the only
suffix links that are used for the update are shown, and the visited nodes are colored.
(Color figure online)

that DAWG(D) can be constructed in O(d log σ) time, and can be updated to
DAWG(D′) online in O(m log σ) time [4]. We update AC (D) to AC (D′) by using
DAWG(D), and then update DAWG(D) to DAWG(D′). The key point of our
algorithm is to update the output and failure functions of AC (D) in linear time
with respect to the number of states that should be modified. The goto function
can be updated easily by adding a new transition for a new state in the same
way as in the AC-automaton construction algorithm. We then update the output
and failure functions efficiently by using inverse suffix links of DAWG(D). Algo-
rithm1 updates AC (D) when a new pattern is inserted to D, and Algorithms 2
and 3 find the states whose output function and failure link should be updated,
respectively.

For any node v in DAWG(D), let isuf (v) = {x | slink(x) = v} be the set of
its inverse suffix links. The set isuf (v) of inverse suffix links for each v is stored
in the dynamic array va as described in Sect. 3. For the new pattern p, we can
divide p to p = xyz and categorize the prefixes of p into three categories, so that
for any i, j, k with 1 ≤ i ≤ |x| < j ≤ |x| + |y| < k ≤ m;
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Algorithm 1. Pattern insertion algorithm of AC-automaton
Input: new pattern p

1 activeState = rootState;

2 newStatesSet = empty;

3 for 1 ≤ i ≤ m do
4 if goto(activeState, p[i]) �= fail then activeState = goto(activeState, p[i]);

5 else
6 create newState;

7 goto(activeState, p[i]) = newState;

8 activeState = newState;

9 newStatesSet = newStatesSet ∪ {newState};

10 if i = m then
11 output(newState) = output(newState) ∪ {p};

12 failStates = getFailStates(p, m − |newStatesSet | + 1);

13 for (s, i) ∈ failStates do
14 flink(s) = newStatesSet [i − |newStatesSet | + 1];

15 activeState = rootState;

16 for 1 ≤ i ≤ m do
17 if goto(activeState, p[i]) ∈ newStatesSet then
18 failureState = flink(activeState);

19 while goto(failureState, p[i]) = fail do
20 failureState = flink(failureState);

21 activeState = goto(activeState, p[i]);

22 flink(activeState) = failureState;

23 output(activeState) = output(activeState) ∪ output(failureState);

24 else
25 activeState = goto(activeState, p[i]);

26 outStates = getOutStates(p);

27 for , ∈ outStates do output(s) = output(s) ∪ {p};

1. p[1 : i] exists both in AC (D) and DAWG(D),
2. p[1 : j] does not exist in AC (D) but exists in DAWG(D), and
3. p[1 : k] exists in neither AC (D) nor DAWG(D).

To update both output and failure functions of AC (D) to AC (D′) we only use
nodes in DAWG(D) that represent prefixes in the second category. Algorithm 2
follows inverse suffix links of a node representing p recursively in DAWG(D), in
order to find the states in AC (D) whose output functions need to be updated.
On the other hand, Algorithm3 follows inverse suffix link of nodes that represent
p[i : j] for |x| < j ≤ |x| + |y| (category 2) recursively, until it finds a trunk node
and then saves the state that corresponds to the trunk node to update its failure
link later.
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Algorithm 2. getOutStates(p)
Output: set of states whose output functions should be updated.

1 activeNode = root ;

2 for 1 ≤ i ≤ m and activeNode �= null do
3 activeNode = trans(activeNode, p[i]);

4 if i = m then
5 push activeNode to stack ;

6 if activeNode �= null then
7 queue = empty;

8 push activeNode to queue;

9 while queue �= empty do
10 pop node from queue;

11 if node is a trunk node then
12 outStates = outStates ∪ {π(node)}
13 for lnode ∈ isuf (node) do
14 push lnode to queue;

15 return outStates;

Figure 4 illustrates an example, where we insert a pattern p = bac into the
dictionary D = {abba, aca, cbb}. First, we create new states 11, 12, and 13.
The string b is represented by node x in DAWG(D), and by the new state 11 in
AC (D′), thus there is at least one state whose failure link should be updated to
point at the state 11. We will explain how to find these states below. Similarly,
we know that at least one failure link should be updated to point at the state 12,
because the string ba represented by the state 12 in AC (D′) is also represented
by node 5 in DAWG(D). However, the string bac, which is represented by the
new state 13, is not represented in DAWG(D), thus we know that there is no
state whose failure link should be updated to state 13. As a result, we have the
set {11, 12} of states. (Lines 3–6 in Algorithm 3)

We now explain how to find states whose failure links should be updated.
We begin by the deepest state in {11, 12}, that is, state 12. We search the states
from node 5 in DAWG(D), which represents the same string ba as state 12 in
AC (D′). When searching from node 5, we do not search further because node
5 is a trunk node. Therefore, we update the failure link of state 5 to state 12.
Next, to find states whose failure links should be updated to state 11, we search
the states from node q in DAWG(D), which represents the same string b as
state 11 in AC (D′). By following the inverse suffix links recursively from node
q until reaching a trunk node, we get the set {3, 4, 9, 10} of trunk nodes (see
Fig. 4(d)). Therefore, we update the failure link of states 3, 4, 9, and 10 to state
11. (Lines 7–19)

We now show the correctness and running time of our Algorithms 2 and 3.
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Algorithm 3. getFailStates(p, start)
Output: set of states whose failure link should be updated.

1 stack = empty;

2 activeNode = root ;

3 for 1 ≤ i ≤ m and activeNode �= null do
4 activeNode = trans(activeNode, p[i]);

5 if i ≥ start and activeNode �= null then
6 push (activeNode, i) to stack ;

7 while stack �= empty do
8 pop (activeNode, i) from stack ;

9 queue = empty;

10 push activeNode to queue ;

11 while queue �= empty do
12 pop node from queue;

13 if node is not marked then
14 mark node;

15 if node is a trunk node then
16 failStates = failStates ∪ {(π(node), i)}
17 else
18 for lnode ∈ isuf (node) do
19 push lnode to queue;

20 return failStates;

Lemma 2 ([5]). A string x ∈ Substr(D) is the longest member of [x]D if and
only if either x ∈ Pref (D), or ax, bx ∈ Substr(D) for some distinct a, b ∈ Σ.

Lemma 3. For any branch node in DAWG, there exist at least two suffix links
that point at it.

Proof. Let [x]D be any branch node in DAWG(D), and x ∈ Substr(D) be the
longest member of [x]D. Then x �∈ Pref (D) because [x]D is a branch node. By
Lemma 2, there exist two distinct a, b ∈ Σ such that ax, bx ∈ Substr(D). Because
x is the longest member of [x]D, we have [ax]D �= [x]D. Thus, slink([ax]D) = [x]D
because x is a suffix of ax. Similarly, slink([bx]D) = [x]D. Because [ax]D �= [bx]D,
the branch node [x]D is pointed by at least two suffix links. ��
Lemma 4. Algorithm 2 correctly returns the set of states whose output func-
tions should be updated.

Proof. When a new pattern p is inserted to a dictionary D, we have to update
the output function of every state s in AC (D) such that p is a suffix of the string
s. If there is no node in DAWG(D) representing p, we know that no such a string
s exists in D, done. Let sp be a new state created in AC (D′) to represent the
pattern p. The output function of some state s should be updated if and only
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if sp is reachable from s via a chain of failure links. From Lemma1, for nodes
u = π−1(s) and vp = [p]D, we have vp = slink i(u) for some i. Therefore, s = π(u)
can be found by following inverse suffix links from vp recursively. ��
Lemma 5. Algorithm 2 runs in O(m log σ + uo) time, where uo is the number
of states whose output function should be updated.

Proof. At first, Algorithm 2 finds the node v representing the pattern p, by
traversing the nodes from the root, in Lines 3–6. It takes O(m log σ) time. If
it failed, done. Then we analyze the runnning time consumed in Lines 6–14 by
counting the number � of visited nodes in DAWG(D). These nodes form a tree,
rooted at v and connected by inverse suffix links chains. Let b (resp. t) be the
number of branch (resp. trunk) nodes in this tree, and let q be the number
of nodes (either branch or trunk) that are child nodes of some branch node.
Because every branch node has at least two child nodes by Lemma 3, we have
2b ≤ q, and obviously q ≤ b + t. Thus, b ≤ t, which yields that � = b + t ≤ 2t =
2|outStates| = 2uo. Therefore, Algorithm 2 runs in O(m log σ + uo). ��
Lemma 6. Algorithm 3 correctly returns the set of states whose failure links
should be be updated.

Proof. By argument similar to the proof of Lemma 4, all the states that should
be updated is reachable via chains of inverse suffix links from the nodes in
DAWG(D) that correspond to the new states in AC (D′). Next, we will show
that Algorithm 3 only returns the set S of the states that should be updated. Let
x be a new state, and t = [x]D be a node that represents the string x. Assume that
S contains a state s that can be reached by following inverse failure links from x
recursively, but should not be updated. Let u = π−1(s) and v = π−1(flink(s)) be
trunk nodes in DAWG(D) corresponding to s and flink(s), respectively. From
Lemma 1, v = slink i(u) and t = slink j(v) for some i and j. Since Algorithm 3,
started from t, stops a recursive search after reaching a trunk node (v in this
case), it would not find u. Therefore, s = π(u) �∈ S. ��
Lemma 7. Algorithm 3 runs in O(m log σ + uf ) time, where uf is the number
of states that their failure link be updated.

Proof. At first, Algorithm 3 finds the set V of nodes representing the pattern
p[1 : j] for 1 ≤ j ≤ m such that p[1 : j] does not exist in AC (D) but does exist in
DAWG(D), by traversing the nodes from the root, in Lines 3–6. The algorithm
saves the nodes in a stack, because the algorithm will search from the deepest
node. It takes O(m log σ) time. Then we analyze the running time consumed in
Lines 7–19 by counting the number � of visited nodes in DAWG(D). These nodes
form a forest, where each tree is rooted by some node in V and connected by
inverse suffix links chains, where some node in V can be an inner node of a tree
rooted by another in V . In this case we mark the nodes that have been visited,
thus each node is visited at most twice. Let b (resp. t) be the number of branch
(resp. trunk) nodes in this forest, and let q be the number of nodes (either branch
or trunk) that are child nodes of some branch node. Because every branch node
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has at least two child nodes by Lemma 3, we have 2b ≤ q, and obviously q ≤ b+t.
Thus, b ≤ t, which yields that � = b + t ≤ 2t = 2|failStates| = 2uf . ��
Theorem 1. AC-automaton can be updated for each pattern in O(m log σ+uf +
uo) time.

Proof. The goto, failure and output functions of newly created states can be
calculated in O(m log σ), similarly to the original AC-automaton construction
algorithm. From Lemmas 5 and 7, output and failure functions of existing states
can be updated in O(m log σ +uo) and O(m log σ +uf ), respectively. Therefore,
AC-automaton can be updated in O(m log σ + uf + uo) time in total. ��

5 Conclusion

We proposed a new algorithm to update an AC-automaton when a new pattern
is inserted to the dicitonary. Our algorithm uses a directed acyclic word graph in
order to update the AC-automaton. We showed that our algorithm updates the
AC-automaton in O(m log σ + uf + uo) time, which is faster than existing AC-
automaton update algorithms [13,15,16], where m is the length of the inserted
pattern, uo (resp. uf ) is the number of states whose output function (resp.
failure links) should be updated. It means that our update process is minimized,
compared to the existing algorithms.
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Abstract. We show how to parallelize the optimal algorithm proposed
by Tustumi et al. [19] to solve the all-pairs suffix-prefix matching problem
for general alphabets. We compared our parallel algorithm with SOF [17],
a practical solution for DNA sequences that exhibits good time and space
performance in multithreading environments. The experimental results
showed that our parallel algorithm achieves a consistent speedup when
compared with the sequential algorithm, and it is competitive with SOF
when the minimum overlap length is small.

Keywords: Suffix-prefix matching · Parallel algorithm · Multithread-
ing · Suffix array · LCP array

1 Introduction

Given a collection of strings the all-pairs suffix-prefix matching problem (APSP)
is to find all longest overlaps among string ends [7]. This problem is well know
in stringology [14] and appears often as a bottleneck part of DNA assembly,
where the number of strings ranges from thousands to billions [3]. Other applica-
tions include EST clustering [9] and approximating the shortest common super-
string [7].

The APSP has been approached in different ways. In practice with DNA
sequences, filtering strategies have been used and rendered very efficient algo-
rithms that are able to cope with the huge scale of DNA assembly [5,18]. On
the theoretical side, optimal algorithms exist [8,15,19] that are able to handle
strings from general alphabets, and, while not beating specialized algorithms for
DNA, still perform fairly.

In this article we introduce a parallel algorithm for the APSP. Our solution
builds on a previous optimal sequential algorithm by Tustumi et al. [19]. We
were able to obtain a consistent speedup with a small memory footprint with
this approach. Experimental results showed that our algorithm is competitive
with the practical solution SOF [17] when the minimum overlap length is small.
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 122–132, 2016.
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The next sections are organized as follows. In Sect. 2 we introduce notation
and discuss the practical and the optimal algorithms to solve the APSP. In
Sect. 3 we present the optimal algorithm by Tustumi et al.In Sect. 4 we present
our parallel algorithm and in Sect. 5 we show experimental results. In Sect. 6 we
conclude the article.

2 Preliminaries

2.1 Notation

Let S be a string of length n over an ordered alphabet Σ. The i-th symbol of
S is denoted by S[i] and the substring including symbols in the interval [i, j],
1 ≤ i ≤ j ≤ n, is denoted by S[i, j]. A prefix of S is a substring of the form
S[1, i] and a suffix is a substring of the form S[i, n], which will be denoted by
Si. We use the symbol < for the lexicographic order relation between strings.

The suffix array of S[1, n], SA, is an array of integers in the range [1, n] that
gives the lexicographic order of all suffixes of S, such that SSA[1] < SSA[2] <
. . . < SSA[n] [6,13]. We denote the position of suffix Si in SA as pos(Si). The
LCP-array is an array of integers that stores the length of the longest common
prefix (lcp) of two consecutive suffixes in SA, such that LCP[1] = 0 and LCP[i] =
lcp(SSA[i], SSA[i−1]) for 1 < i ≤ n. Both SA and the LCP-array can be constructed
in linear time [10,16].

The range minimum query (rmq) with respect to the LCP gives the smallest
lcp value in an interval of SA. We define rmq(i, j) = mini<k≤j{LCP[k]}. Given
a string S[1, n] and its LCP-array, it is easy to see that lcp(SSA[i], SSA[j]) =
rmq(i, j), with 1 ≤ i < j ≤ n.

Let S = S1, S2, . . . , Sm be a collection of strings of lengths ni = |Si|, ∀i ∈
[1, n]. The generalized suffix array of S is the suffix array of the concatenated
string Scat = S1$1S2$2 . . . Sm$m of length N = m+Σm

i=1ni, where each symbol
$i is a distinct separator that does not occur in Σ, precedes every symbol in
Σ, and $i < $j if i < j. For a suffix Scat

SA[i], we denote the prefix of Scat
SA[i] that

ends at the first separator $j by S$
SA[i]. The generalized suffix array can also be

constructed in linear time [11].
For a clearer notation, we introduce the arrays STR and SA′. STR indicates

which string in S a suffix came from, that is, STR[i] = j if the suffix S$
SA[i] ends

with symbol $j . SA′ holds the position of a suffix with respect to the string it
came from (up to the separator), defined as SA′[i] = k if S$

SA[i] = Sj
k$j . In other

words, STR and SA′ specify the order of all suffixes in the collection. We will
denote the generalized suffix array enhanced with the arrays STR, SA′ and LCP
as GESA. The GESA of the collection S = {aac, aca, aa, caa} is illustrated in
Fig. 1.

Let Sk be the j-th (lexicographically) smallest string in S. P is an array of
m + 1 integers that stores in P[j] the position of the complete suffix Sk[1, nk]
in GESA. We define P[0] = m + 1. Let the interval Bj = (P[j − 1],P[j]] be
a block of GESA corresponding to Sk. GESA can be partitioned into m blocks
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Fig. 1. The GESA of S = {aac, aca, aa, caa}. Suffixes in block 1 are highlighted.

B1, B2, . . . , Bm, one for each string Sk in S. In Fig. 1, block B1 = (5, 8] of the
corresponding string S3 = aa is shown by a gray rectangle.

2.2 APSP

The all-pairs suffix-prefix matching problem (APSP) is to find, for all pairs of
strings Si and Sj in S, the longest suffix of Si that is a prefix of Sj [7]. In
other words, Si overlaps Sj . The solution of the APSP can be stored in an
“overlap” squared matrix Ov of size m2, where Ov[i, j] represents the length of
the longest suffix of Si that overlaps Sj . Ov can also be stored using a compact
representation [2].

Practical Algorithms: The most demanding application for the APSP currently
is overlap detection for DNA assembly, which has been solved much faster in
practice by non-optimal algorithms. SGA [18] and Readjoiner [5] are genome
assemblers that have a very fast and isolated overlap detection stage with very
low space consumption, which find all suffix-prefix overlaps (not only the longest
overlaps). Recently, Rachid and Malluhi [17] presented SOF, a practical algo-
rithm to solve the APSP for DNA sequences that is competitive with the genome
assemblers. SGA, Readjoiner and SOF may be executed in multithreading envi-
ronments. Previous experiments [17] have shown that SOF has a better perfor-
mance with multiple threads.

Optimal Algorithms: The APSP has been solved in optimal time by Gusfield
et al. [8] in 1992 through generalized suffix trees [20] and stacks. In 2010,
Ohlebusch and Gog [15] improved memory usage through enhanced suf-
fix arrays [1,13] and stacks, reducing the practical running time. Recently,



Parallel Computation for the All-Pairs Suffix-Prefix Problem 125

Tustumi et al. [19] proposed a different traversal of the enhanced suffix array
and replaced stacks by linked lists to achieve an even better practical running
time. We stress that all these algorithms are theoretically optimal and are able
to deal with strings from general alphabets.

3 Related Work

The algorithm by Tustumi et al. [19] solves the APSP in optimal O(N + m2)
time, based on the following remarks.

All suffixes that are a prefix of Sk are either in positions prior to pos(Sk)
or are identical to Sk and directly succeed pos(Sk) in the GESA [15, Lemma
3.1]. Given a prefix St < Sk, if a suffix of Sr, of length �, is a prefix of St

and � > lcp(St, Sk), then such suffix of Sr is not a prefix of Sk [19, Lemma 2].
Furthermore, if two different suffixes of Sr are a prefix of Sk, the longest is closer
to pos(Sk) in GESA.

The blocks are processed in order. For each block Bj , with j = 1, 2, . . . ,m, a
local solution is found scanning Bj backwards and a global solution is obtained
reusing the local solutions of the blocks processed previously.

For block Bj , GESA is scanned backwards, from i = P[j] to P[j − 1] + 1.
Suppose that pos(Sk) = P[j] and pos(St) = P[j − 1]. The algorithm uses m
local lists and m global lists to track all overlaps seen so far. The value of
� = rmq(i,P[j]) is computed in O(1) time as the minimum lcp value between
the entries processed during the scanning of Bj . If the length of the current
suffix is equal to lcp(SSTR[i]

SA′[i] , Sk) = rmq(i,P[j]), then it is a prefix of Sk and its
length is inserted at the end of its local list Llocal[STR[i]]. At the end, the longest
overlaps in Bj are at the front of each local list, and � is equal to lcp(St, Sk).

The longest suffix of Sr that overlaps Sk may be positioned in a previous
block Bj−1, Bj−2, . . . , B1 processed so far. The global lists store these overlaps.
Each global list Lglobal[r] is composed by the elements inserted in Llocal[r] and
has to be updated as each block is processed. To do this, at the end of each
local solution the algorithm removes the suffixes that have length larger than
lcp(St, Sk) from all local lists. These suffixes no longer overlap Sk or any the
following complete strings that will be processed by the algorithm. Each local
list Llocal[r] is prepended in the global list Lglobal[r]. Finally, the first element of
each Lglobal[r] corresponds to the length of the longest suffix of Sr that overlaps
Sk. This value is inserted in Ov[k, r]. Note that, to improve the memory access
reference, the algorithm stores in Ov[k, r] the length of the longest suffix of Sr

that overlaps Sk. If Lglobal[r] is empty, there is no overlap of Sr with Sk.
The suffixes identical to Sk that directly succeed pos(Sk) are found scanning

GESA forward from i = P[j] + 1 to q, while LCP[q] = nk [15, Lemma 3.1]. The
length of these suffixes are inserted in Ov, possibly overwriting the results in
Lglobal[r], which is correct as such overlaps are larger.
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4 Parallel Algorithm

In this section we show how to split the computation of all overlaps performed
by Tustumi et al.’s algorithm to solve the APSP in parallel in a shared-memory
multithreading environment.

At a glance, our algorithm is composed by three phases. First, all local solu-
tions are computed scanning the blocks Bj concurrently. Then, the local lists are
accessed in parallel to obtain the global solutions. Finally, the identical suffixes
of all strings are identified scanning the GESA in parallel.

Algorithm: Suppose that for each block Bj , pos(Sk) = P[j] and pos(St) =
P[j − 1]. Algorithm 1 works as follows.

In Phase 1, the m blocks of the GESA are processed in parallel (Lines 1
to 12) to compute the local solutions of each string Sk. The algorithm scans
each block Bj backwards (Lines 4 to 10), and whenever a suffix of Sr (Line 5)
that overlaps Sk is found (Line 7), its length is inserted at the end of a local list,
which is pointed by an entry in a two dimensional array (matrix) of lists, namely
Llocal[r][j] (Line 8). Note that the list in Llocal[r][j] is ordered decreasingly by
the overlap lengths due to the backward scan. An array of integers Min of length
m is used to store in Min[j] the value of rmq(P[j − 1],P[j]) (Line 11). At the
end of Phase 1 (Line 12), all local solutions have been computed and are stored
into the local lists, which will be used together with Min in Phase 2 to obtain
the global solutions.

In Phase 2, the m arrays of local lists, that is, the m lines of matrix Llocal

that correspond to each Sr, are processed in parallel (Lines 13 to 23) to find the
suffixes of Sr that overlap the other strings (Line 20). Let Sk be such overlapped
string (Line 16). A global list for Sr is used to keep track of all valid overlaps
in Llocal[r][j], according to Min[j], as blocks Bj are processed in the inner for-
loop (Lines 15 to 22). Lglobal is initially empty (Line 14). For each Bj , with
j = 1, 2, . . . ,m (Lines 15 to 22), the algorithm updates Lglobal, first removing
all suffixes larger than Min[j] (Lines 17 to 19), since these overlaps are no longer
valid for Sk [19, Lemma 2]. Recall that Min[j] = rmq(P[j−1],P[j]) = lcp(St, Sk).
In the sequel, Llocal[r][j] is prepended to Lglobal (Line 20) and the longest suffix
of Sr that overlaps Sk will be the first element of Lglobal that is inserted at
Ov[r, k] (Line 21).

In Phase 3, the suffixes identical to each strings Sk are found in parallel
(Lines 24 to 33). For each block Bj and its corresponding string Sk (Line 25),
all suffixes of Sr (Line 27) identical to Sk that appear directly after pos(Sk) in
positions i = P[j] + 1 to q are found (Lines 28 to 32). As in Tustumi et al.’s
algorithm, the length of these suffixes are inserted in Ov (Line 29).

Theoretical Costs: In Phase 1, the parallel for loop in Line 1 is executed m/t
times, where t is the number of threads. Then, Phase 1 is O(max1≤j≤m |Bj |).
In Phase 2 the parallel for loop in Line 13 is executed m/t times, whereas Lines
15 to 22 are executed m2/t times. The parallel for loop of Phase 3 is executed
m/t times and each execution reads at most N elements of GESA. Thus our
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Algorithm 1. Parallel APSP (p-apsp)
Data: GESA of the collection S = {S1, S2 . . . , Sm}
Result: result matrix Ov
// Local solutions

1 for j ← 1 to m do in parallel
2 k ← STR[P[j]];
3 � ← ∞;
4 for i ← P[j] to P[j − 1] + 1 do
5 r ← STR[i]
6 � ← min(�, LCP[i + 1]);
7 if |Sr

SA′[i]| = � then

8 insert at end(Llocal[r][j], �) ; // Sr overlaps Sk

9 end

10 end
11 Min[k] ← �;

12 end
// Global solutions

13 for r ← 1 to m do in parallel
14 Lglobal ← null;
15 for j ← 1 to m do
16 k ← STR[P[j]];
17 while first(Lglobal) > Min[j] do
18 remove first(Lglobal)
19 end
20 Lglobal ← insert at front(Llocal[r][j]);

21 Ov[r, k] ← first(Lglobal) ; // Sr overlaps Sk

22 end

23 end
// Identical suffixes

24 for j ← 1 to m do in parallel
25 k ← STR[P[j]];
26 i ← P[j] + 1;
27 r ← STR[i];
28 while |Sr

SA′[i]| = LCP[i] and i < N do

29 Ov[r, k] ← LCP[i] ; // Sr
SA′[i] is identical to Sk

30 i ← i + 1;
31 r ← STR[i];

32 end

33 end

algorithm runs in O(N + m2/t) time, which only occurs in bad cases (when the
string lengths are very unbalanced). In realistic cases (m � t and all strings
with about the same size) the parallel time is close to N/t + m2/t.

Overall, all threads insert at most N suffixes into the local lists. Then, the
space complexity is given by the O(N) space of the GESA, and by the O(m2+N)
space of the matrix of local lists, where each list stores at most N overlaps.
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Thus the space complexity of our parallel algorithm is O(N + m2), which is
equal to the sequential algorithm by Tustumi et al.

5 Experiments

We implemented Algorithm 1 in C++ using OpenMP directives for the paral-
lelization. We used the SDSL [4] version 2.01 to construct the GESA. Our source
code is publicly available at https://github.com/felipelouza/p-apsp.

We have compared the performance of our parallel algorithm, called p-apsp,
with the sequential optimal algorithm by Tustumi et al.2, called apsp, and
with the practical solution SOF [17]3, which has good time and space perfor-
mance in multithreading environments. We used different number of threads
t = {1, 2, 4, 8, 16, 32} set by the directive omp set num threads() for p-apsp
and SOF. All programs were compiled with g++ (v. 4.9.2) with the same opti-
mization flags.

The experiments were executed in a 64 bits Debian GNU/Linux 8 (kernel
3.16.0-4) system with an Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GHz,
with 384 GB of internal memory and a 13 TB SATA storage. We used the
EST database from C. elegans4. The number of strings used in the experiments
varied from 10.000 to 300.000. We used different minimum overlap length values
τ = {5, 10, 15, 20} to limit the number of overlaps found by the algorithms.

We also tested the algorithms with 200.000 ESTs from Citrus sinensis5 and
obtained very close results, which are not shown.

Table 1 shows the number of overlaps found solving the APSP for the C.
elegans dataset. Notice that as the value of τ increases the number of overlaps
decreases. In particular, the number of overlaps for 300.000 strings when τ = 5
is 23 times larger than when τ = 10. We shall see that such variation impacts
the performance of all algorithms, both in time and space.

Table 1. Number of overlaps found in the experiments with 100.000, 200.000 and
300.000 ESTs of the C. elegans varying τ .

τ 5 10 15 20

100.000 18,853,491 206,154 88,725 82,427

200.000 71,451,170 2,675,759 2,139,431 2,077,125

300.000 162,135,112 7,044,274 5,800,397 5,617,779

1 sdsl-lite library is available at https://github.com/simongog/sdsl-lite.
2 https://github.com/felipelouza/apsp.
3 http://confluence.qu.edu.qa/download/attachments/9240580/Prefix.tgz.
4 http://www.uni-ulm.de/in/theo/research/seqana.html.
5 ftp://ftp.bioinfo.wsu.edu/www.citrusgenomedb.org/Citrus sinensis/C.sinesis unige

ne v1.0/.

https://github.com/felipelouza/p-apsp
https://github.com/simongog/sdsl-lite
https://github.com/felipelouza/apsp
http://confluence.qu.edu.qa/download/attachments/9240580/Prefix.tgz
http://www.uni-ulm.de/in/theo/research/seqana.html
ftp://ftp.bioinfo.wsu.edu/www.citrusgenomedb.org/Citrus_sinensis/C.sinesis_unigene_v1.0/
ftp://ftp.bioinfo.wsu.edu/www.citrusgenomedb.org/Citrus_sinensis/C.sinesis_unigene_v1.0/
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5.1 Running Time

Figure 2 shows the running time of each algorithm not accounting for the time to
build the auxiliary data structures, that is, the GESA for apsp and p-apsp, and
the compact prefix tree for SOF. The elapsed time was taken by the directive
omp get wtime().

SOF was the fastest algorithm in all experiments. However, p-apsp has shown
a good performance when the minimum overlap length is small, a situation where
the specialized strategy used by SOF is not so efficient. This result is coherent
with the theoretical optimality of Tustumi et al.’s algorithm. Note that the
parallel implementation has some overhead with τ = 5 when comparing p-apsp
with a single thread (p-apsp1) to the sequential apsp. Note also that p-apsp and
SOF improve their running time as the number of threads increases.

Fig. 2. Running time of p-apsp, apsp and SOF for varying values of τ .

Table 2 shows the running time and the speedup of each algorithm for 300.000
ESTs with τ = 5. However, p-apsp achieved a much better speedup with the
increasing number of threads, indicating that this parallel algorithm may be
a practical solution for large instances of the APSP on strings coming from a
general alphabet.
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Table 2. Experiments with 300.000 ESTs of the C. elegans dataset with τ = 5. The
table shows the running time (in seconds) and the speedup of the parallel algorithms
over its serial versions, when the numbers of threads is 1

n. threads apsp p-apsp SOF

Time Time Speedup Time Speedup

1 397.17 463.33 82.80

2 222.78 1.91 52.49 1.58

4 121.35 3.51 29.50 2.81

8 68.11 6.26 28.30 2.93

16 43.41 9.82 28.64 2.89

32 34.65 12.31 23.62 3.50

5.2 Peak Memory

The memory usage was measured by the malloc count library6. We observed that
the peak memory of p-apsp and SOF change slightly as the number of threads
varies. For a clearer view we plot only the peak memory for p-apsp and SOF
using 32 threads in Fig. 3.

Fig. 3. Peak memory of p-apsp, apsp and SOF for varying values of τ

6 malloc count library is available at http://panthema.net/2013/malloc count.

http://panthema.net/2013/malloc_count
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As expected, memory usage varies according to τ . SOF uses less memory in all
experiments and p-apsp memory usage is very similar to the sequential version
apsp. As demonstrated by the theoretical analysis the experiments confirm that
practical memory usage differs only by a constant factor when comparing apsp
and p-apsp.

6 Conclusion

We showed how to parallelize the optimal algorithm by Tustumi et al.[19] to
solve the APSP. We separated the computation of the local solution followed
by the global solution and by the identical suffixes searching into independent
phases. We compared our parallel algorithms with SOF [17], a practical solution
with the best parallel performance, as shown in previous work. Our experimental
results showed that the parallel algorithm achieves a 12-fold speedup, and that it
is competitive with practical algorithm, such as SOF, when the minimum overlap
length is small and offers the ability to deal with larger alphabets.

As the algorithm by Tustumi et al., our algorithm can be also improved to
work in semi-external memory, since the GESA can be constructed in external
memory [12] and its blocks can be accessed as necessary, reducing the peak
memory. Our parallel implementation is general enough that it can be executed
on a different architecture model, such as cloud distributed computing, possibly
enabling the usage of hundreds of threads.
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(grant No. 162338/2015-5). GPT acknowledges the support of CNPq. The authors
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Abstract. We consider dynamic and online variants of 2D pattern
matching between an m×m pattern and an n×n text. All the algorithms
we give are randomised and give correct outputs with at least constant
probability.
– For dynamic 2D exact matching where updates change individual

symbols in the text, we show updates can be performed in O(log2 n)
time and queries in O(log2 m) time.

– We then consider a model where an update is a new 2D pattern and a
query is a location in the text. For this setting we show that Hamming
distance queries can be answered in O(log m + H) time, where H is
the relevant Hamming distance.

– Extending this work to allow approximation, we give an efficient algo-
rithm which returns a (1+ε) approximation of the Hamming distance
at a given location in O(ε−2 log2 m log log n) time.

Finally, we consider a different setting inspired by previous work on local-
ity sensitive hashing (LSH). Given a threshold k and after building the
2D text index and receiving a 2D query pattern, we must output a loca-
tion where the Hamming distance is at most (1 + ε)k as long as there
exists a location where the Hamming distance is at most k.
– For our LSH inspired 2D indexing problem, the text can be pre-

processed in O(n2(4/3+1/(1+ε)) log3 n) time into a data structure of
size O(n2(1+1/(1+ε))) with query time O(n2(1/(1+ε))m2).

1 Introduction

Two dimensional pattern matching has been a topic of study and great inter-
est for many years. The original motivation comes from image processing and
recognition where one is attempting to find possibly approximate occurrences
of a 2D-pattern inside a larger 2D-text. For exact matching offline, linear time
solutions are known [11,12,15] and the indexing problem is solved efficiently
with the help of 2D-suffix trees [16]. A number of other variants have also been
studied including 2D-compressed pattern matching, matching with rotations,
pattern matching with non-rectangular patterns as well as others [2–7,9,14].

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46049-9 13
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We will consider a number of variants of 2D-pattern matching which have to
date received little attention. These can broadly be described under the head-
ings of online and dynamic pattern matching. Our focus will be both on exact
matching as well as exact and approximate Hamming distance computation. We
will also tackle a problem formulation inspired by the locality sensitive hashing
work of Andoni and Indyk [10]. Here we are given a pattern as a query and we
must report a location in the text where the Hamming distance is not too large
as long as one exists. We will now formalise the problems we tackle. All the
algorithms we develop will be randomised giving correct answers with at least
constant probability. For each problem our input text will be a square matrix T
(the text) of size n × n and the pattern P will be of size m × m.

To start we consider a dynamic version of the classic 2D-pattern matching
problem. The problem can be seen as a generalisation of the 1D problem consid-
ered in [8], where updates are only allowed in the text and the pattern remains
static. Our solution relies heavily on Karp-Rabin fingerprinting [18]. The main
technical hurdle we overcome is the difficulty in combining fingerprints of adja-
cent rectangular matrices. We circumvent this problem by only ever combining
the fingerprints of two matrices if they are placed horizontally next to each other.

Problem 1 (Dynamic Text Static Pattern Matching in 2D). Given a text T and
a pattern P, build a dynamic index that supports an update (σ, (i, j)) which
sets T [i, j] ← σ and query (i, j) which returns True if there is an exact match
at location (i, j) in the text and False otherwise.

Our solution to Problem 1 will in fact support the arrival of entire new
patterns efficiently as well. For our next two problems we consider online pattern
matching problems where the only update is the arrival of a new pattern and a
query will return the exact or approximate Hamming distance at some position
in the text. Our aim is to perform all three steps, preprocessing, updates and
queries as quickly as possible. We denote by Ham(P,T)(i, j) the Hamming
distance between the 2D-pattern P and the m×m submatrix of T with top left
corner (i, j).

Problem 2 (Online Exact Hamming Distance in 2D). Given a text T, build a
dynamic index that supports updates with a pattern P and queries which return
the value Ham(P,T)(i, j).

Our solution uses as a preliminary step linearisation of the input by encoding
carefully selected substrings of the 2D-text with their Karp-Rabin fingerprints.
This will allow us to search efficiently first for mismatches within columns and
then rows using dynamic lower common ancestor queries in suitably constructed
suffix trees.

To provide faster solutions we then extend this online Hamming distance
problem to allow a (1+ε) approximation. We show that we can find the approx-
imate value considerably faster than the exact value. To achieve this we use the
technique known as sketching [1]. This technique was originally developed for
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1D strings but can be transferred to our case by storing sketches of selected
substrings of the text T.

Problem 3 (Online Approximate Hamming Distance in 2D). Given a binary text
T, construct a dynamic index that supports updates with a binary pattern P
and queries which return a (1 + ε) approximation of the Hamming distance
Ham(P,T)(i, j).

Finally we turn to a closely related indexing problem. Here we may preprocess
the 2D-text and we receive a 2D-pattern as a query along with a threshold k
and a constant ε. We must output a location in the text where the Hamming
distance is no more than (1 + ε)k as long as there exists a location where the
Hamming distance is no more than k.

Problem 4 (Submatrix Near Neighbour Problem). We are initially given a text T,
an integer k and a constant ε > 0. Construct an index that supports the following
query. Given a pattern P, output a position (i, j) such that Ham(T,P)(i, j) ≤
(1 + ε) · k if there exists a submatrix of T with Hamming distance at most k
from P. Otherwise if there is not, the query may either report a location with
true Hamming distance up to (1 + ε)k or no location at all.

In the 1D case Andoni and Indyk [10] solved the same problem we study by
developing an index on suffixes of a 1D string. To construct their index Andoni
and Indyk [10] heavily relied on relationships between suffixes of a 1D string.
These relationships do not exist in the 2D case and so we have introduced new
techniques and ideas to construct the index. These are our main contribution
for Problem 4.

Definitions and Notation. We will use two kinds of partitioning of the text
and pattern which we term belts and canonical submatrices. Let S be an s × t
matrix. A belt of height h ≤ s for the matrix S is a submatrix of S with size h×t.
A canonical submatrix of S is a submatrix of S with size 2i × 2j where i ≤ log s
and j ≤ log t are both integers. We will also write T[i, i + x − 1; j, j + y − 1] to
denote the x × y submatrix of T with top left corner at some position (i, j) in
the text. We assume throughout that all logarithms are taken base two and for
convenience of presentation that both m and n are an exact power of two.

2 Dynamic Text Static Pattern Matching in 2D

As our first contribution we describe a dynamic randomised index that supports
efficient exact pattern matching queries as well as updates to T and hence solves
Problem 1.

Theorem 1. The text T can be preprocessed in O(n2 log n) time into a data
structure of size O(n2) so that after processing the pattern P in O(m2 log m)
time, we can support single character updates in O(log2 n) time and query if P
occurs at a position (i, j) of T w.h.p. in O(log2 m) time.
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The main idea of our dynamic index is to compute the Karp-Rabin finger-
prints of submatrices of T of power of two size in order to be able to compute
the fingerprint of the m × m submatrix with the top left corner at the position
(i, j) of T efficiently. A straightforward partitioning will not suffice however due
to the difficulty in computing fingerprints of the concatenation of rectangular
matrices.

We start by giving the definition of Karp-Rabin fingerprints for matrices.

Definition 1. Let S be an s× t matrix for some s, t ≤ n. Let p ≥ n4 be a prime
and r be a random integer in Fp. We define the Karp-Rabin fingerprint ϕ for S
as:

ϕ(S) =
s∑

i=1

t∑
j=1

S[i, j]ri+(j−1)s (mod p)

Lemma 1. The Karp-Rabin fingerprints of any two s × t matrices S, S′, where
s, t ≤ n, have the following properties:

1. If S = S′, then ϕ(S) = ϕ(S′);
2. If S �= S′, then the probability ϕ(S) = ϕ(S′) is at most 1/n2.

Proof. The first claim of the lemma is trivial. To prove the second claim notice
that since ϕ(S) − ϕ(S′) is a non-trivial polynomial of degree s · t, the number of
its roots ∈ Fp is at most s · t. The probability we choose a root randomly from
Fp is at most O(s · t/n4). The result holds since s · t ≤ n2. ��

Moreover, from the definition of Karp-Rabin fingerprints we immediately
obtain the following observation. We say that two submatrices are adjacent on
the vertical side if they are placed horizontally next to each other. That is S =
T[i : i + s − 1, j : j + t − 1] and S′ = T[i : i + s − 1, j + t : j + t + t′ − 1]

Lemma 2. Let S, S′ be two submatrices of T adjacent on the vertical side. We
can compute the Karp-Rabin fingerprint of S′′ = T[i : i + s − 1, j : j + t + t′ − 1]
as

ϕ(S′′) = ϕ(S) + rst · ϕ(S′) (mod p)

Proof. The proof follows immediately from the definition. ��
We now present our dynamic index. For each i = 0, 1, . . . , log n we divide T

into n/2i non-overlapping belts of height 2i. For each j = 0, 1, . . . , log n we then
partition each belt into n/2j canonical submatrices of width 2j . For each of the
canonical submatrices we store its Karp-Rabin fingerprint in a lookup table.
It follows from the fingerprint definition that an individual fingerprint can be
updated in constant time if a letter at a particular position in the text is changed.
When we change one letter in T, we need to update only O(log2 n) fingerprints,
which can be therefore be done in O(log2 n) time in total. The partitioning into
belts and canonical submatrices is illustrated in Fig. 1.
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Fig. 1. (a) A matrix S of size s×t. (b) Partition of S into non-overlapping belts of height
2i. In gray is represented one such belt. (c) Partition of S into canonical submatrices
of height 2i and width 2j . In gray is represented one such canonical submatrix

When a pattern arrives, we process it in the following way. For each i =
0, 1, . . . , log m we compute and store the Karp-Rabin fingerprints of all m−2i+1
belts of height 2i. For a fixed value of i we compute the 2D-fingerprints of all
m − 2i + 1 belts of height 2i in two steps. The first step is computing the 2D-
fingerprints of all submatrices of size 2i × 1, which we do column by column.
For each column j, we first compute the fingerprint ϕ1 of the string P[1 : 2i, j],
and then for each � ≥ 1 we compute the fingerprint ϕ�+1 of P[� + 1 : � +
2i, j] from the fingerprint ϕ�−1 of P[� : � + 2i − 1, j] in constant time. As there
are m columns of length m each, this step requires O(m2) time. The second
step consists in computing for each belt its 2D-fingerprint from its columns’
fingerprints as described in Lemma 2 in time O(m).

Suppose now that we are asked if T[i, i+m−1; j, j+m−1] matches pattern P.
We can divide T[i : i + m − 1, j : j + m − 1] into O(log m) non-overlapping belts
with heights that are powers of two. Each belt can then be divided vertically
into O(log m) canonical submatrices for which we already know their Karp-Rabin
fingerprints. With the help of Lemma 2 we compute Karp-Rabin fingerprints of
the belts in O(log2 m) time and compare them to those of the pattern.

Construction of the Index. We now explain how we construct the text
index. We iteratively compute Karp-Rabin fingerprints of canonical matrices
of height 2i, i = 0, 1, . . . , log n. When the height is fixed, we iteratively compute
Karp-Rabin fingerprints of canonical matrices of width 2j , for j = 0, 1, . . . , log n.

For each i we start by computing Karp-Rabin fingerprints of all 2i×1 subma-
trices in O(n2) time in a straightforward manner. When Karp-Rabin fingerprints
of 2i × 2j submatrices are computed, we can compute Karp-Rabin fingerprints
of 2i × 2j+1 submatrices in O(n2/2j) time using Lemma 2. In total, to compute
the fingerprints of all submatrices of height 2i, we need O(n2) time. In total, we
will need O(n2 log n) time for all submatrices.

3 Online Exact 2D Hamming Distance

In this section we consider Problem 2. We are given an n × n text T which we
process first. Updates come in the form of new m × m patterns P and a query
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asks us to return the Hamming distance between P and the text at location
(i, j).

Theorem 2. The text T can be preprocessed in O(n2 log n) time into a data
structure of size O(n2 log n) so that we can support updates with a new pattern
P in O(m2) time and process Hamming distance queries to return up to H
mismatches between P and T at a position (i, j) in O(log m + H) time.

The Index for Online Exact Hamming Distance in 2D. For each i =
1, 2, . . . , log n we consider n − 2i + 1 belts of height 2i. We define a linearisation
of a belt as a string of length n, where the j-th supercharacter is the Karp-Rabin
fingerprint of the j-th column of the belt.

Lemma 3. The linearisations for all belts of height 2i for a fixed i can be com-
puted in O(n2) time.

Proof. It suffices to note that for a fixed j the Karp-Rabin fingerprints of j-th
columns of all n − 2i belts can be computed in O(n) time [18]. ��

The main idea will be to first find columns within the pattern that mismatch
and then to look within those columns to find individual mismatches. In order to
do this efficiently, we compute all linearisations for all belts in O(n2 log n) time
and then build a suffix tree for them. We also augment the suffix tree with an
efficient dynamic lower common ancestor (LCA) data structure [13]. The suffix
tree and the data structure can be built in O(n2 log n) time. We then build a
suffix tree for all columns of T and augment it with the dynamic LCA data
structure as well.

When the pattern arrives, we partition it into O(log m) non-overlapping belts
of power of two heights. We linearise the belts in the way described above and
add the linearisations to the generalised suffix tree for the text belts. We also
add columns of the pattern to the generalised suffix tree for the columns. This
takes time O(m2), see [17]. Finally, we update the LCA data structures. In total,
this takes O(m2) time.

We then work with each of the pattern belts independently. We will use
the technique known as kangaroo jumping [17, Chap. 9.4]. To find the first H
mismatches between the pattern belt of height 2i and the text, we find the leaf
in the suffix tree for the text belt of height 2i containing the pattern belt and
the leaf for the pattern belt and use an LCA query to find the first column
of the pattern belt that does not match the corresponding column of the text
belt. We then use the generalised suffix tree for the columns and kangaroo jump
using LCA queries to report all mismatches in the column in constant time per
mismatch. We then go back to the suffix tree for the belts and proceed. When
a new pattern update arrives we need first to delete the previous pattern which
was added to the two trees.

4 Online Approximate Hamming Distance in 2D

In this section we consider Problem 3. Assume that we are given an n × n
matrix T and a constant ε > 0. We assume that we are also given an m × m
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pattern matrix P and that we can process it before answering queries. We will
give a text index for T that will support the following queries: Given a position
(i, j) return a (1 + ε)-approximation of the Hamming distance between P and
T[i : i + m − 1, j : j + m − 1].

Theorem 3. The text T can be preprocessed in O(ε−2n2 log3 n log log n) time
into a data structure of size O(ε−2n2 log2 n log log n). After processing a new
pattern P in O(ε−2m2 log log n) time, we can compute a (1 + ε)-approximation
of the Hamming distance for any position (i, j) in T in O(ε−2 log2 m log log n)
time. The answer is correct with constant probability.

The Index for Online Approximate Hamming Distance in 2D. Consider
all O(n2 log2 n) canonical submatrices of T of sizes 2i × 2j for i = 1, 2, . . . , log n
and j = 1, 2, . . . , log n. Let C be a constant to be defined later. For each canonical
submatrix we create and store γ = C log log n vectors (sketches) of length 1/ε2

as follows.
For each pair (i, j) and for each k = 1, 2, . . . , γ we create and store 1/ε2 sign

matrices Si,j,k
� of size 2i ×2j . Each entry of a sign matrix is an i.u.d. ±1 random

variable. We now define the k-th sketch of a 2i × 2j matrix M as:

(〈M,Si,j,k
1 〉, 〈M,Si,j,k

2 〉, . . . , 〈M,Si,j,k
1/ε2〉)

where 〈M,Si,j,k
� 〉 = tr(MT , Si,j,k

� ) is also known as the Hilbert-Schmidt inner
product of matrices M and Si,j,k

� . This sketching technique is a simple variant
of the second moment sketches of Alon et al. [1].

Suppose we have two 2i × 2j matrices A and B. For each k we approximate
the Hamming distance between A and B using the sketches obtained with the
help of the sign matrices Si,j,k

1 , Si,j,k
2 , . . . , Si,j,k

1/ε2 . In particular, the Hamming

distance approximation we derive from the k-th sketches is hk = ε2‖〈Si,j,k
1 , (A−

B)〉, . . . , 〈Si,j,k
1/ε2 , (A − B)〉‖22. It follows from standard techniques that:

Lemma 4. We can choose a constant C so that the median of the Hamming
distance approximations over all γ = C log log n sketches for the matrices A and
B will belong to the interval [H, (1 + ε)H] with probability at least 1 − 1

2 log2 n
,

where H is the Hamming distance between A and B.

We process the queries in the following way. For each arriving pattern, we
partition P into O(log2 m) non-overlapping submatrices of sizes 2i × 2j . Next,
we compute sketches of all submatrices in the partition with the help of sign
matrices, which takes O(ε−2m2 log log n) time, but we only need to do this once.
When a query arrives, that is when we receive a position (i, j), we consider the
same partitioning of T[i : i + m − 1, j : j + m − 1]. For each corresponding pair
of submatrices in the partitioning of P and T[i : i + m − 1, j : j + m − 1] we
compute the (1 + ε)-approximations of Hamming distances with the help of the
sketches. By Lemma 4 and the union bound, the sum of these values will be a
(1+ε)-approximation between P and T[i : i+m−1, j : j +m−1] with constant
probability. Processing a query takes O(ε−2 log2 m log log n) time.
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4.1 Construction of the Index

We finally explain how to compute the sketches of the canonical matrices. To
compute the sketches for one canonical matrix of size 2i × 2j we need only
perform a sequence of 2D convolutions. In total, computing the sketches of all
canonical submatrices of size 2i × 2j takes O(ε−2n2 log n log log n) time. There-
fore, computing all sketches of all canonical submatrices over all sizes takes
O(ε−2n2 log3 n log log n) time.

5 Submatrix Near Neighbour Problem

In this section we consider Problem 4. Assume that we are given an n×n matrix
T, an integer k, and a constant ε > 0. We will give a text index for T which will
support the following queries: Given an m×m pattern matrix P such that there
is a k-mismatch occurrence of P in T, return an occurrence where the Hamming
distance is at most (1 + ε) · k. Let N = n2 and M = m2. We will show that

Theorem 4. T can be preprocessed in O(N4/3+1/(1+ε) log3 N) time into a data
structure of size O(N1+1/(1+ε)) with query time O(N1/(1+ε)M). If T contains a
k-mismatch occurrence of P, then the data structure w.h.p. retrieves a (1+ε) ·k-
mismatch occurrence of P in T.

The Index for Submatrix Nearest Neighbour Search. We will start by
recalling the notion of the L-encoding of a matrix.

Definition 2 ([16]). The L-encoding of an n×n matrix T is a string s1s2 . . . sn

of length n2, where si = T [i : i, 1 : i − 1]T [1 : i, i : i]. (See Fig. 2)

Fig. 2. A submatrix S of the text matrix T. (a) The L-encoding of the submatrix
S is s1,1s2,1s1,2s2,2s3,1s3,2s1,3s2,3s3,3 . . . s5,5. L3:4 is the L-shape formed by the 3-rd
and the 4-th rows and the 3-rd and the 4-th columns (shown in bold). (b) Let g be
a projection onto a set of � = 9 positions {1, 2, 6, 8, 10, 17, 18, 19, 20} (highlighted in
gray), i.e. g(S) = s1,1s2,1s3,2s2,3s4,1s5,1s5,2s5,3s5,4. The blocks will be {1, 2}, {6, 8, 10},
{17, 18, 19}, {20}. The corresponding partitioning of S into L-shapes and rectangles is
shown on the figure by bold lines
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Note that if P occurs in the top left corner of T with k mismatches, then the
L-encoding of T starts with a k-mismatch occurrence of the L-encoding of P.
A suffix of T is the L-encoding of a square submatrix with bottom right hand
corner in the last row or in the last column of T. Let S1, S2, . . . , SN be the
suffixes of T. A k-mismatch occurrence of P in T guarantees that at least one
of the L-encodings S1, S2, . . . , SN starts with a k-mismatch occurrence of the
L-encoding of P, and vice versa. We will make use of data structure by Andoni
and Indyk which we call sketch forest. The following corollary follows directly
from the work of [10, Sect. 2].

Corollary 1. A sketch forest on a set of strings S = {S1, S2, . . . , SN} occupies
O(N1+1/(1+ε)) space. If at least one of the strings starts with a k-mismatch of
the L-encoding of P, then the data structure will identify in O(N1/(1+ε)M) time
a subset of O(N1/(1+ε)) suffixes of T that w.h.p. contains at least one suffix
starting with a (1 + ε) · k-mismatch occurrence of the L-encoding of P.

After having identified the subset of O(N1/(1+ε)) suffixes of T, we check for
each of them if it starts with a (1+ ε) ·k-mismatch occurrence of the L-encoding
of P in a straightforward manner, comparing the letters of the suffix and the
L-encoding of P one by one. In total, this takes O(N1/(1+ε)M) more time.

The work of Andoni and Indyk heavily relied for its efficiency on the fact
that different suffixes of a single string are suffixes of each other. However, in
our linearisation of the text T this is no longer true. This requires us to devise
a new method to construct the sketch forest efficiently which we now describe.

5.1 Construction

In this section we explain how we build the sketch forest. We start by describing
its main elements.

Let p1 = 1 − k/N , and p2 = 1 − (1 + ε) · k/N . The intuition behind these
values is as follows: If S1, S2 are two strings of length N , then p1 is a lower bound
for the probability of two letters S1[i], S2[i] to be equal if the Hamming distance
between S1 and S2 is at most k. On the other hand, p2 is an upper bound for
the probability of two letters S1[i], S2[i] to be equal if the Hamming distance
between S1 and S2 is at least (1 + ε) · k.

Let H be a set of projections of a string along a fixed coordinate, i.e. the
j-th projection maps a string onto its j-th letter. A sketch forest is defined by
a family of Nρ = O(N1/(1+ε)) random functions gi ∈ H�, where ρ = log p1

log p2
and

� = log N
log 1/p2

. The choice of ρ and � guarantees low error probability and space
complexity. Each of the functions gi can be considered as a projection along a
randomly chosen set of coordinates of size � ≤ N . The sketch forest contains
exactly one trie for each projection function in the family. A trie Tgi

contains
sketches gi(S1), gi(S2), . . . , gi(SN ) of all strings in the set.

Fix a projection function g ∈ {g1, g2, . . . , gNρ}. We will show that the trie Tg

can be built in O(N4/3 log2 N) time. As an immediate corollary, all tries in the
sketch forest can be built in O(N4/3+1/(1+ε) log2 N) time.
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We start building the trie Tg by sorting the strings g(S1), g(S2), . . . , g(SN )
lexicographically and computing the longest common prefixes of all adjacent
strings in that order. Below we show that this can be done in O(N4/3 log2 N)
time. After having sorted the strings we build Tg in O(N) time by using this
longest common prefix information.

We now explain how we sort g(S1), g(S2), . . . , g(SN ). Our algorithm will fol-
low the lines of that of [10], but because S1, S2, . . . , SN are suffixes of a 2D string
and not a 1D string as in [10], we will have to introduce some new techniques.

String Sorting inO(N4/3log2N) Time. We will give two methods for sorting
strings g(S1), g(S2), . . . , g(SN ). Sort A will run in O(N

√
� log2 N) time and Sort

B will run in O(N log2 N/�) time. We will use Sort A if � ≤ N2/3 and Sort B if
� > N2/3.

Both Sort A and Sort B need to make at most N log N string comparisons.
Note that in fact all we need to compare two strings is to find the first mis-
match between them. For Sort A, we will show that after O(N

√
� log2 N)-time

preprocessing it is possible to find the first mismatch between any two strings
in O(

√
�) time. As a result, the total running time of sort A is O(N

√
� log2 N).

For Sort B, we will show that the first mismatch between any two strings can
be found in O(N log N/�) time, which will give O(N2 log2 N/�) time in total.

Sort A. Let g be a projection function onto positions p1 < p2 < . . . < p�. We
will divide this set into O(

√
�) blocks of consecutive positions of length at most√

� each. The method will consist of two steps. We will start by finding the
first block containing a mismatch. After having found the block, we will iterate
over all positions in it to find the desired mismatch. The second step can be
implemented in a straightforward manner and requires O(

√
�) time.

We will now explain how we implement the first step. Let us start by explain-
ing how we divide the sequence p1 < p2 < . . . < p� into blocks. Remember that
these are positions in the L-encoding of an n×n matrix. Let Li:j be the L-shape
formed by the i-th to j-th rows and the i-th to j-th columns (see Fig. 2 for an
example).

We start by greedily dividing the matrix into L-shapes, where each L-shape
either contains at most

√
� sampled positions (type I L-shapes) or is of form Li:i

(type II L-shapes). We first find the largest i1 such that L1:i1 contains at most
√

�
sampled positions. We then try to find the largest i2 such that Li1+1:i2 contains
at most

√
� sampled positions. If such i2 does not exist, we let i2 = i1 + 1,

and continue in the same fashion. We further divide each type-II L-shape into
the smallest number of horizontal and vertical rectangles containing at most

√
�

sampled positions each. The corner element forms a separate 1 × 1 rectangle.
This partitioning of the matrix into L-shapes and rectangles defines a parti-

tioning of p1 < p2 < . . . < p� into O(
√

�) blocks, containing at most
√

� of the
sampled positions each. Note that positions in each block are consecutive, that is
they form a single range of the sequence p1 < p2 < . . . < p�. Each block defines
a projection of a matrix onto at most

√
� positions, and we will now define and

compute a hash function of these projections.
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For a rectangular block, we define the hash function to be the Karp-Rabin
fingerprint of the projection. We can compute the values of this hash function
for all suffixes S1, S2, . . . , SN in O(N log N) time as a convolution of rows or
columns of T with a suitable vector.

Example 1. Consider Fig. 2. The hash function for the block {17, 18, 19} is the
Karp-Rabin fingerprint of s5,1s5,2s5,3.

For an L-shaped block we define the hash function differently. First, we divide
the L-shape into two halves, a horizontal one and a vertical one. The hash func-
tion will be defined as a pair of fingerprints. The first fingerprint will be defined to
be the Karp-Rabin fingerprint of a permutation of the projection on the sampled
positions in the horizontal half obtained by reading the positions by columns,
and the second fingerprint as the Karp-Rabin fingerprint of a permutation of the
projection on the sampled positions in the vertical half obtained by reading the
positions by columns.

Example 2. Consider Fig. 2. The L-shape L3:4 is divided into two halves by a
dashed line. The hash function of the horizontal half is the Karp-Rabin fin-
gerprint of s4,1s3,2. The hash function of the vertical half is the Karp-Rabin
fingerprint of s2,3.

The Karp-Rabin fingerprints of the horizontal and vertical parts for a fixed
L-shape and all suffixes S1, S2, . . . , SN can be computed in O(N log N) time as
a sequence of 2D convolutions. In total, computing the hash functions for all
L-shaped blocks takes O(N

√
� log N) time.

Sort B. Similarly to Sect. 3, we consider n − 2i belts of T of height 2i for each
i = 1, 2, . . . , log n. We then linearise them, build a suffix tree and augment it
with the LCA data structure. The tree can be constructed in O(N log N) time
and occupies O(N log N) space. With the help of the suffix tree and kangaroo
jumps we can report up to t mismatches between any two 2i × j submatrices
S1, S2 of T in O(t) time.

We also build a generalised suffix tree for all columns and rows of T, which
occupies O(N) space and augment it with the LCA data structure as well.

As it was shown in [10], w.h.p. the first mismatch between g(Si) and g(Sj)
is contained in the first 3N log N/� mismatches between Si and Sj . We will use
binary search and the suffix trees for the belts to extract these mismatches. When
a mismatch is extracted, we check if it belongs to {p1, p2, . . . , p�} in constant time
and stop if it does.

We start by finding the smallest t such that there are at least 3N log N/�
mismatches between the t × t top left submatrices of Si and Sj . We do so by
binary search on t. For each value of t we divide the t × t top left submatrices
into a logarithmic number of even smaller submatrices of size power of two by
t. For any pair of such submatrices of Si and Sj we can use the suffix trees for
the belts and for the columns to list the mismatches between them in constant
time per mismatch using the kangaroo method. We stop when we have found
3N log N/� mismatches, so we never spend more than O(3N log N/�) time.
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We guarantee that there are at least 3N log N/� mismatches between the t×t
submatrices of Si and Sj . Unfortunately, there can be much more mismatches if
the L-shapes Lt:t of these submatrices contain many mismatches. However, using
the suffix trees for columns and for rows, we can list the mismatches between
these two L-shapes in order in constant time per mismatch.
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Abstract. We present a space- and time-efficient fully dynamic imple-
mentation of de Bruijn graphs, which can also support fixed-length jum-
bled pattern matching.

1 Introduction

Bioinformaticians define the kth-order de Bruijn graph for a string or set of
strings to be the directed graph whose nodes are the distinct k-tuples in those
strings and in which there is an edge from u to v if there is a (k + 1)-tuple
somewhere in those strings whose prefix of length k is u and whose suffix of
length k is v.1 These graphs have many uses in bioinformatics, including de
novo assembly [17], read correction [15] and pan-genomics [16]. The datasets
in these applications are massive and the graphs can be even larger, however,
so pointer-based implementations are impractical. Researchers have suggested
several approaches to representing de Bruijn graphs compactly, the two most
popular of which are based on Bloom filters [9,14] and the Burrows-Wheeler
Transform [5–7], respectively. In this paper we describe a new approach, based
on minimal perfect hash functions [13], that is similar to that using Bloom filters
but has better theoretical bounds when the number of connected components
in the graph is small, and is fully dynamic: i.e., we can both insert and delete
nodes and edges efficiently, whereas implementations based on Bloom filters are
usually semi-dynamic and support only insertions. We also show how to modify
our implementation to support, e.g., jumbled pattern matching [8] with fixed-
length patterns.

Our data structure is based on a combination of Karp-Rabin hashing [11]
and minimal perfect hashing, which we will describe in the full version of this
paper and which we summarize for now with the following technical lemmas:

Lemma 1. Given a static set N of n k-tuples over an alphabet Σ of size σ,
with high probability in O(kn) expected time we can build a function f : Σk →
{0, . . . , n − 1} with the following properties:
1 An alternative definition, which our data structure can be made to handle but which

we do not consider in this paper, has an edge from u to v whenever both nodes are
in the graph.
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– when its domain is restricted to N , f is bijective;
– we can store f in O(n + log k + log σ) bits;
– given a k-tuple v, we can compute f(v) in O(k) time;
– given u and v such that the suffix of u of length k−1 is the prefix of v of length

k − 1, or vice versa, if we have already computed f(u) then we can compute
f(v) in O(1) time.

Lemma 2. If N is dynamic then we can maintain a function f as described in
Lemma 1 except that:

– the range of f becomes {0, . . . , 3n − 1};
– when its domain is restricted to N , f is injective;
– our space bound for f is O(n(log log n + log log σ)) bits with high probability;
– insertions and deletions take O(k) amortized expected time.
– the data structure may work incorrectly with very low probability (inversely

polynomial in n).

Suppose N is the node-set of a de Bruijn graph. In Sect. 2 we show how we
can store O(nσ) more bits than Lemma 1 such that, given a pair of k-tuples u
and v of which at least one is in N , we can check whether the edge (u, v) is in the
graph. This means that, if we start with a k-tuple in N , then we can explore the
entire connected component containing that k-tuple in the underlying undirected
graph. On the other hand, if we start with a k-tuple not in N , then we will learn
that fact as soon as we try to cross an edge to a k-tuple that is in N . To deal with
the possibility that we never try to cross such an edge, however — i.e., that our
encoding as described so far is consistent with a graph containing a connected
component disjoint from N — we cover the vertices with a forest of shallow
rooted trees. We store each root as a k-tuple, and for each other node we store
1 + lg σ bits indicating which of its incident edges leads to its parent. To verify
that a k-tuple we are considering is indeed in the graph, we ascend to the root of
the tree that contains it and check if that k-tuple is what we expect. The main
challenge for making our representation dynamic with Lemma 2 is updating the
covering forest. In Sect. 3 how we can do this efficiently while maintaining our
depth and size invariants. Finally, in Sect. 4 we observe that our representation
can be easily modified for other applications by replacing the Karp-Rabin hash
function by other kinds of hash functions. To support jumbled pattern matching
with fixed-length patterns, for example, we hash the histograms indicating the
characters’ frequencies in the k-tuples.

2 Static de Bruijn Graphs

Let G be a de Bruijn graph of order k, let N = {v0, . . . , vn−1} be the set of
its nodes, and let E = {a0, . . . , ae−1} be the set of its edges. We call each vi
either a node or a k-tuple, using interchangeably the two terms since there is a
one-to-one correspondence between nodes and labels.

We maintain the structure of G by storing two binary matrices, IN and
OUT, of size n × σ. For each node, the former represents its incoming edges
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whereas the latter represents its outgoing edges. In particular, for each k-tuple
vx = c1c2 . . . ck−1a, the former stores a row of length σ such that, if there exists
another k-tuple vy = bc1c2 . . . ck−1 and an edge from vy to vx, then the position
indexed by b of such row is set to 1. Similarly, OUT contains a row for vy and the
position indexed by a is set to 1. As previously stated, each k-tuple is uniquely
mapped to a value between 0 and n− 1 by f , where f is as defined in Lemma 1,
and therefore we can use these values as indices for the rows of the matrices IN
and OUT, i.e., in the previous example the values of IN[f(vx)][b] and OUT[f(vy)][a]
are set to 1. We note that, e.g., the SPAdes assembler [2] also uses such matrices.

Suppose we want to check whether there is an edge from bX to Xa. Letting
f(bX) = i and f(Xa) = j, we first assume bX is in G and check the values of
OUT[i][a] and IN[j][b]. If both values are 1, we report that the edge is present and
we say that the edge is confirmed by IN and OUT; otherwise, if any of the two
values is 0, we report that the edge is absent. Moreover, note that if bX is in
G and OUT[i][a] = 1, then Xa is in G as well. Symmetrically, if Xa is in G and
IN[j][b] = 1, then bX is in G as well. Therefore, if OUT[i][a] = IN[j][b] = 1, then
bX is in G if and only if Xa is. This means that, if we have a path P and if all
the edges in P are confirmed by IN and OUT, then either all the nodes touched
by P are in G or none of them is.

We now focus on detecting false positives in our data structure maintaining
a reasonable memory usage. Our strategy is to sample a subset of nodes for
which we store the plain-text k-tuple and connect all the unsampled nodes to
the sampled ones. More precisely, we partition nodes in the undirected graph G′

underlying G into a forest of rooted trees of height at least k lg σ and at most
3k lg σ. For each node we store a pointer to its parent in the tree, which takes
1 + lg σ bits per node, and we sample the k-mer at the root of such tree. We
allow a tree to have height smaller than k lg σ when necessary, e.g., if it covers a
connected component. Figure 1 shows an illustration of this idea.

We can therefore check whether a given node vx is in G by first computing
f(vx) and then checking and ascending at most 3k lg σ edges, updating vx and
f(vx) as we go. Once we reach the root of the tree we can compare the resulting
k-tuple with the one sampled to check if vx is in the graph. This procedure
requires O(k lg σ) time since computing the first value of f(vx) requires O(k),
ascending the tree requires constant time per edge, and comparing the k-tuples
requires O(k).

We now describe a Las Vegas algorithm for the construction of this data
structure that requires, with high probability, O(kn + nσ) expected time. We
recall that N is the set of input nodes of size n. We first select a function f and
construct bitvector B of size n initialized with all its elements set to 0. For each
elements vx of N we compute f(vx) = i and check the value of B[i]. If this value
is 0 we set it to 1 and proceed with the next element in N , if it is already set
to 1, we reset B, select a different function f , and restart the procedure from the
first element in N . Once we finish this procedure — i.e., we found that f do not
produces collisions when applied to N — we store f and proceed to initialize IN
and OUT correctly. This procedure requires with high probability O(kn) expected
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Fig. 1. Given a de Bruijn graph (left), we cover the underlying undirected graph with
a forest of rooted trees of height at most 3k lg σ (center). The roots are shown as filled
nodes, and parent pointers are shown as arrows; notice that the directions of the arrows
in our forest are not related to the edges’ directions in the original de Bruijn graph. We
sample the k-tuples at the roots so that, starting at a node we think is in the graph, we
can verify its presence by finding the root of its tree and checking its label in O(k log σ)
time. The most complicated kind of update (right) is adding an edge between a node
u in a small connected component to a node v in a large one, v’s depth is more than
2k lg σ in its tree. We re-orient the parent pointers in u’s tree to make u the temporary
root, then make u point to v. We ascend k lg σ steps from v, then delete the parent
pointer e of the node w we reach, making w a new root. (To keep this figure reasonably
small, some distances in this example are smaller than prescribed by our formulas.)

time for constructing f and O(nσ) time for computing IN and OUT. Notice that
if N is the set of k-tuples of a single text sorted by their starting position in
the text, each f(vx) can be computed in constant time from f(vx−1) except for
f(v0) that still requires O(k). More generally, if N is the set of k-tuples of t texts
sorted by their initial position, we can compute n−t values of the function f(vx)
in constant time from f(vx−1) and the remaining in O(k). We will explain how
to build the forest in the full version of this paper. In this case the construction
requires, with high probability, O(kt + n + nσ) = O(kt + nσ) expected time.

Combining our forest with Lemma 1, we can summarize our static data struc-
ture in the following theorem:

Theorem 1. Given a static σ-ary kth-order de Bruijn graph G with n nodes,
with high probability in O(kn + nσ) expected time we can store G in O(σn) bits
plus O(k log σ) bits for each connected component in the underlying undirected
graph, such that checking whether a node is in G takes O(k log σ) time, listing
the edges incident to a node we are visiting takes O(σ) time, and crossing an
edge takes O(1) time.

In the full version we will show how to use monotone minimal perfect hashing [3]
to reduce the space to (2 + ε)nσ bits of space (for any constant ε > 0). We will
also show how to reduce the time to list the edges incident to a node of degree
d to O(d), and the time to check whether a node is in G to O(k). We note that
the obtained space and query times are both optimal up to constant factors,
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which is unlike previous methods which have additional factor(s) depending on
k and/or σ in space and/or time.

3 Dynamic de Bruijn Graphs

In the previous section we presented a static representation of de Buijn graphs,
we now present how we can make this data structure dynamic. In particular, we
will show how we can insert and remove edges and nodes and that updating the
graph reduces to managing the covering forest over G. In this section, when we
refer to f we mean the function defined in Lemma 2. We first show how to add
or remove an edge in the graph and will later describe how to add or remove
a node in it. The updates must maintain the following invariant: any tree must
have size at least k log σ and height at most 3k log σ except when the tree covers
(all nodes in) a connected component of size at most k log σ.

Let vx and vy be two nodes in G, e = (vx, vy) be an edge in G, and let
f(vx) = i and f(vy) = j.

Suppose we want to add e to G. First, we set to 1 the values of OUT[i][a]
and IN[j][b] in constant time. We then check whether vx or vy are in different
components of size less than k lg σ in O(k lg σ) time for each node. If both com-
ponents have size greater than k lg σ we do not have to proceed further since the
trees will not change. If both connected components have size less than k lg σ we
merge their trees in O(k lg σ) time by traversing both trees and switching the
orientation of the edges in them, discarding the samples at the roots of the old
trees and sampling the new root in O(k) time.

If only one of the two connected components has size greater than k lg σ we
select it and perform a tree traversal to check whether the depth of the node is
less than 2k lg σ. If it is, we connect the two trees as in the previous case. If it
is not, we traverse the tree in the bigger component upwards for k lg σ steps, we
delete the edge pointing to the parent of the node we reached creating a new
tree, and merge it with the smaller one. This procedure requires O(k lg σ) time
since deleting the edge pointing to the parent in the tree requires O(1) time, i.e.,
we have to reset the pointer to the parent in only one node.

Suppose now that we want to remove e from G. First we set to 0 the values
of OUT[i][a] and IN[j][b] in constant time. Then, we check in O(k) time whether
e is an edge in some tree by computing f(vx) and f(vy) checking for each node
if that edge is the one that points to their parent. If e is not in any tree we
do not have to proceed further whereas if it is we check the size of each tree
in which vx and vy are. If any of the two trees is small (i.e., if it has fewer
than k lg σ elements) we search any outgoing edge from the tree that connects
it to some other tree. If such an edge is not found we conclude that we are in a
small connected component that is covered by the current tree and we sample
a node in the tree as a root and switch directions of some edges if necessary. If
such an edge is found, we merge the small tree with the bigger one by adding
the edge and switch the direction of some edges originating from the small tree
if necessary. Finally if the height of the new tree exceeds 3k log σ, we traverse
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the tree upwards from the deepest node in the tree (which was necessarily a
node in the smaller tree before the merger) for 2k lg σ steps, delete the edge
pointing to the parent of the reached node, creating a new tree. This procedure
requires O(k lg σ) since the number of nodes traversed is at most O(k lg σ) and
the number of changes to the data structures is also at most O(k lg σ) with each
change taking expected constant time.

It is clear that the insertion and deletion algorithms will maintain the invari-
ant on the tree sizes and heights. It is also clear that the invariant implies that
the number of sampled nodes is O(n/(k log σ)) plus the number of connected
components.

We now show how to add and remove a node from the graph. Adding a node
is trivial since it will not have any edge connecting it to any other node. Therefore
adding a node reduces to modify the function f and requires O(k) amortized
expected time. When we want to remove a node, we first remove all its edges one
by one and, once the node is isolated from the graph, we remove it by updating
the function f . Since a node will have at most σ edges and updating f requires
O(k) amortized expected time, the amortized expected time complexity of this
procedure is O(σk lg σ + k).

Combining these techniques for updating our forest with Lemma 2, we can
summarize our dynamic data structure in the following theorem:

Theorem 2. We can maintain a σ-ary kth-order de Bruijn graph G with n
nodes that is fully dynamic (i.e., supporting node and edge insertions and dele-
tions) in O(n(log log n + σ)) bits (plus O(k log σ) bits for each connected com-
ponent) with high probability, such that we can add or remove an edge in
expected O(k lg σ) time, add a node in expected O(k + σ) time, and remove a
node in expected O(σk lg σ) time, and queries have the same time bounds as in
Theorem 1. The data structure may work incorrectly with very low probability
(inversely polynomial in n).

4 Jumbled Pattern Matching

Karp-Rabin hash functions implicitly divide their domain into equivalence
classes — i.e., subsets in which the elements hash to the same value. In this
paper we have chosen Karp-Rabin hash functions such that each equivalence
class contains only one k-tuple in the graph. Most of our efforts have gone into
being able, given a k-tuple and a hash value, to determine whether that k-tuple
is the unique element of its equivalence class in the graph. In some sense, there-
fore, we have treated the equivalence relation induced by our hash functions as
a necessary evil, useful for space-efficiency but otherwise an obstacle to be over-
come. For some applications, however — e.g., parameterized pattern matching,
circular pattern matching or jumbled pattern matching — we are given an inter-
esting equivalence relation on strings and asked to preprocess a text such that
later, given a pattern, we can determine whether any substrings of the text are
in the same equivalence class as the pattern. We can modify our data structure
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for some of these applications by replacing the Karp-Rabin hash function by
other kinds of hash functions.

For indexed jumbled pattern matching [1,8,12] we are asked to pre-process
a text such that later, given a pattern, we can determine quickly whether any
substring of the text consists of exactly the same multiset of characters in the
pattern. Consider fixed-length jumbled pattern matching, when the length of
the patterns is fixed at pre-processing time. If we modify Lemmas 1 and 2 so
that, instead of using Karp-Rabin hashes in the definition of the function f , we
use a hash function on the histograms of characters’ frequencies in k-tuples, our
function f will map all permutations of a k-tuple to the same value. The rest of
our implementation stays the same, but now the nodes of our graph are multisets
of characters of size k and there is an edge between two nodes u and v if it is
possible to replace an element of u and obtain v. If we build our graph for the
multisets of characters in k-tuples in a string S, then our process for checking
whether a node is in the graph tells us whether there is a jumbled match in S
for a pattern of length k. If we build a tree in which the root is a graph for all
of S, the left and right children of the root are graphs for the first and second
halves of S, etc., as described by Gagie et al. [10], then we increase the space by
a logarithmic factor but we can return the locations of all matches quickly.

Theorem 3. Given a string S[1..n] over an alphabet of size σ and a length
k � n, with high probability in O(kn + nσ) expected time we can store
(2n log σ)(1 + o(1)) bits such that later we can determine in O(k log σ) time
if a pattern of length k has a jumbled match in S.

Acknowledgements. Many thanks to Rayan Chikhi and the anonymous reviewers
for their comments.
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Abstract. We consider the problem of storing a grammar of size n
compressing a string of size N , and a set of positions {i1, . . . , ib}
(bookmarks) such that any substring of length l crossing one of the
positions can be decompressed in O(l) time. Our solution uses space
O((n+ b) max{1, log∗ n− log∗(n

b
+ b

n
)}). Existing solutions for the book-

marking problem either require more space or a super-constant “kick-off”
time to start the decompression.

1 Introduction

Textual databases for e.g. biological or web-data are growing rapidly, and it is
often only feasible to store the data in compressed form. However, compressing
the data comes at a price: it may be necessary to decompress the entire file
in order to retrieve just a small portion of it. Inserting bookmarks in the com-
pressed file can accommodate this problem. A bookmark in a compressed string
is a position i from which any substring of length l crossing position i can be
decompressed in O(l) time.

A popular technique for compressing a string is to instead store a small
grammar that generates the string (and only the string). The idea dates back far
and has received much attention in the theory community while also being widely
used in practice. In particular, popular compression schemes such as LZ78 [15],
LZW [13], Re-pair [9], and Sequitur [11] produce grammars. Even the LZ77 [14]
compression scheme that does not produce a grammar, can be converted to a
grammar with only a logarithmic overhead in the space [5,12]. For our purposes,
we consider Straight Line Programs (SLPs). These are context-free grammar
in Chomsky Normal Form that generate exactly one string. SLPs capture any
grammar-based compression scheme.

For the bookmarking problem, we are given an SLP S of size n compressing
a string S of size N and a set of positions {i1, . . . , ib}, and we want to construct
a data structure that supports linear-time decompression of substrings crossing
any of the b positions.
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Related Work. Gagie et al. [6] presented a bookmarking data structure that
uses O(n + b log∗ N) space1 for balanced SLPs (i.e., SLPs whose parse tree is
balanced). When the SLP is unbalanced, we may use an algorithm to balance it
at the cost of adding nodes [5,12], and as a result the space usage of their data
structure increases to O(n log N

n + b log∗ N).
A more general problem is to support random access to the compressed

string (i.e., access to a single character of S without decompression). This does
not require any bookmarks to be predefined, but in turn incurs a “kick-off” time
when decompressing a substring. If we allow the kick-off time to be O(log N)
(i.e., O(l + log N) time to decompress a substring of length l), we may use
the O(n)-space data structure of Bille et al. [4]. For a faster kick-off time of
O(logτ N), for any 2 < τ ≤ log N , we may instead apply the data structure of
Belazzougui et al. [1] at the cost of increasing the space to O(nτ logτ

N
n ). The

data structure of Belazzougui et al. [2] supports random access to any character
of the compressed string in O(1) time and thereby allows decompression of any
substring in time linear in the substring’s length. However, this data structure
uses space O(n1−εN ε) for some constant 0 < ε ≤ 1.

The compressed finger search problem is somehow a hybrid of the bookmark-
ing problem and the random access problem. For this problem, we place a set of
fingers, and now we may answer random access queries in O(log D) time, where
D is the distance from a given finger to the index we query for [3]. Using this
data structure, we get a bookmarking data structure of O(n) space that can
decompress any substring of length l in O(l log l) time.

Our Results. In this paper we present a bookmarking data structure for SLP-
compressed strings that uses space O((n + b)max{1, log∗ n − log∗(n

b + b
n )}) and

supports decompression of length-l substrings crossing bookmarks in O(l) time.
The space is measured in words and we assume the standard RAM model of
computation.

The general idea is to make τ copies of the SLP for some parameter τ . Each
copy is modified so that the decompression kick-off takes less time but only
supports decompression of substrings up to a certain length and from certain
positions. At query time, we then select the copy of the SLP that provides a
kick-off time of O(l).

2 Preliminaries

Let S be a string of length |S| consisting of characters from an alphabet of size
σ. We use S[i, j], 1 ≤ i ≤ j ≤ |S|, to denote the substring starting in position i
and ending in position j of S.

A Straight Line Program (SLP) S is a context-free grammar in Chomsky
normal form with n production rules that derives a single string S of size N . We

1 The bound is in fact O(z+b log∗ N), where z is the size of the LZ77 parse of S. Since
it is known that z ≤ n′ ≤ n [12], where n′ is the size of the smallest SLP generating
S, we replace z by n for clarity.
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represent the SLP as a rooted, ordered, and node-labelled directed acyclic graph
(DAG) with outdegree 2 and we will refer to production rules as nodes where it
is appropriate. We denote by v = uw that node v in the DAG has left-child u
and right-child w. A depth-first left-to-right traversal starting from a node v in
the DAG produces the string S(v). As a shorthand we sometimes use |v| instead
of |S(v)|.

All logarithms in this paper are base 2. As a shorthand to denote the loga-
rithm applied i times to a number n we write log(i) n, e.g., log(3) n = log log log n.
The iterated logarithm log∗ n is equal to the number of times the logarithm can
be applied to n before the result is less than 1, i.e., log∗ n = arg mini{log(i) n ≤
1}. We also need the up-arrow notation of Knuth [8] defined as follows: 2 ↑↑ 0 = 1
and 2 ↑↑ (k + 1) = 22↑↑k. Observe that k = log∗ n if and only if 2 ↑↑ (k − 1) <
n ≤ 2 ↑↑ k.

3 A Simple Solution

In this section we give a simple data structure to the bookmarking problem with
the following bounds.

Theorem 1. Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in
S, we can store S in O(n + b + min{n, b} log N) space such that later, given
i ∈ {i1, . . . , ib} we can extract S[i, i + l] in O(l) time.

Our solution builds on the following data structure by Bille et al. [4].

Lemma 1 ([4]). Let S be a string of length N compressed by an SLP S of
size n. There is data structure of size O(n) that, given a node v in S, supports
decompression of a substring S(v)[i, i + l] in O(log |v| + l) time.

Notice that when l ≥ log N the decompression time in Lemma 1 is dominated
by the O(l) term. This means we only need to focus on the case where l < log N .

To obtain a O(n + b log N)-space solution, since l < log N , we can simply
store the substring S[i−log N, i+log N ] for each bookmark i ∈ {i1, . . . , ib} along
with the data structure of Lemma 1.

In the case where n < b, to obtain a O(n log N + b)-space solution, we show
that it is sufficient to store n substrings each of length O(log N). For this we use
the following lemma, stating that any substring of S is the concatenation of a
suffix of S(u) and a prefix of S(w) for some node v whose left child is u and right
child is w. The observation was first used for compressed pattern matching [10].
For the sake of completeness, we will give a proof using our terminology.

Lemma 2 ([10]). Let S be a string of length N compressed by an SLP S of
size n. Let r(v) = S(u)[max{1, |u| − k}, |u|]S(w)[1,min{1, k − 1}] be the relevant
substring with respect to k of a node v = uw in S. Then any substring of S of
length at most k is also a substring of some string in {r(v) | v ∈ S ∧ |v| ≥ k}.
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Proof. The proof is by induction. For the base case, consider a node v = uw
where |v| ≤ 2k − 2 and |u| < k and |w| < k. Since r(v) = S(v) this obviously
contains every substring of length k. For the inductive step we again consider
some node v = uw and we know that S(v) = S(u) ◦ S(w). Assume that |u| ≥ k
and |w| ≥ k, then by the induction hypothesis it holds that the set of strings
{r(u′) | u′ ∈ S(u) ∧ |u′| ≥ k} ∪ {r(w′) | w′ ∈ S(w) ∧ |w′| ≥ k} contains all
substrings of length k in S(u) and S(w). The substrings of length k starting
in S(u) and S(w) are not guaranteed to be in this set, but since r(v) contains
exactly all these, they will be after adding r(v) to the set. For the cases when
|u| < k or |w| < k the same argument holds. 	


For our data structure, we set k = 2 log N and store the strings r(v) for all
v ∈ S. For each bookmark i we store the deepest node that generates the string
S[i− log N, i+ log N ]. Furthermore, we build the data structure of Lemma 1 for
use for the case where l ≥ log N .

Since |r(v)| ≤ 4 log N − 2 and we store O(1) words (pointers) for each book-
mark, and the data structure of Lemma 1 uses O(n) space, our data structure
uses O(n log N + b) space in total. This concludes the proof of Theorem 1.

4 A Leveled Solution

We now describe a data structure that seeks to reduce the log N factor of the
space usage in Theorem 1. The time to decompress a substring of length l crossing
some bookmark is still O(l). The key to our solution is a technique due to
Gawrychowski [7] captured by the following lemma.

Lemma 3 ([7]). Let S be a string of length N compressed into an SLP S of
size n. We can choose an arbitrary � and modify S in O(N) time by adding
O(n) new variables such that we can write S as S = S(v1)S(v2) . . . S(vm) with
m = O(N/�) and |S(vi)| ≤ 2�−2. Furthermore, for any substring S[i, i+�] there
are a constant number of nodes v1, . . . , vc such that S[i, i + �] is a substring of
S(v1) . . . S(vc).

The lemma says that we can restructure the given SLP such that for any
substring S[i, i+ �] we can find O(1) nodes whose concatenation has total length
O(�) and contains S[i, i + �] as a substring. We now describe how to apply this
restructuring procedure to get a bookmarking data structure using almost linear
space. In the description we use the parameter τ which is later to be minimized
subject to n and b.

Construction. First we make τ copies of S, denoted by S1, . . . ,Sτ . We then
apply the restructuring procedure for � = log N, log(2) N, . . . , log(τ) N to the τ
copies of S to get S ′

1, . . . ,S ′
τ . Next, we build the data structure of Lemma 1

for each SLP S ′
1, . . . ,S ′

τ . For each S ′
j , let a block node be a node v for which

|S(v)| = Θ(log(j) N). For each SLP S ′
j and for each bookmark i we store the

O(1) block nodes generating the string containing S[i − log(j) N, i + log(j) N ].
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We also store the relative index of position i in the string generated by the first
block node. On the lowest level (i.e., for S ′

τ ) we apply the technique from the
previous section. I.e., if b ≤ n we use O(n+ b log(τ) N) space and if b > n we use
O(n log(τ) N + b) space.

Decompression. To decompress a substring of length l from a bookmark posi-
tion i ∈ {i1, . . . , ib} we do the following.

If log(j+1) N < l ≤ log(j) N for some j < τ . We locate the block node that
contains i in S ′

j and decompress the string starting in the relative position stored
for the current bookmark using the data structure of Lemma 1. If we reach the
end of the string generated by the current block node, we move on to the next
node that we stored and repeat the process from relative position 1. When we
decompress from a block node v in S ′

j , the query time of Lemma 1 becomes
O(log log(j) N + l) = O(l) since log(j+1) N < l. We visit O(1) block nodes so the
total time to decompress S[i, i + l] becomes O(l).

If on the other hand l < log(τ) N , then we use the solution chosen for the
bottom level, which according to Theorem 1 yields a decompression time of O(l).

Analysis. Our data structure creates τ copies of S. Each has size O(n) after
the restructuring of Lemma 3 and the application of Lemma 1, i.e., this requires
O(τn) space. For each bookmark, we store references to O(1) nodes in each copy
for a total of O(τb) space. For S ′

τ we need O(min{n, b} log(τ) N) space as stated
in Theorem 1. Hence, the total space usage is O(τ(n + b) + min{n, b} log(τ) N),
which is equal to O(τ(n + b) + min{n, b} log(τ) n), because n ≤ N ≤ 2n in any
SLP. It remains to choose τ as to minimize this expression.

We define x = n+b
min{n,b} ≥ 1. Then, the goal is to minimize min{n, b}f(τ),

where f(τ) = x·τ+log(τ) n, over all τ ≥ 1. We claim that f(τ) is minimized (up to
a constant multiplicative factor) for τ = max{1, log∗ n−log∗ x+1}, when f(τ) =
O(xmax{1, log∗ n − log∗ x}). If log∗ n − log∗ x + 1 < 2 then x > log n, so the
expression is minimized for τ = 1. Otherwise, define p = log∗ n and q = log∗ x,
where t = p−q+1 ≥ 2. By the properties of iterated log, 2 ↑↑ (p−1) < n ≤ 2 ↑↑ p

and 2 ↑↑≤ (q − 1) < x ≤ 2 ↑↑ q. Hence log(p−q+1) n ≤ 2 ↑↑ (q − 1) < x and
f(t) ≤ x(t + 1) ≤ 2x · t. We claim that, for any τ ≥ 1, f(τ) ≥ 1

4x · t, that is,
τ = t is the (asymptotically) best choice.

If τ ≥ 1
4 t then clearly f(τ) ≥ x · τ ≥ 1

4x · τ . It remains to analyze the case
τ < 1

4 t. We will prove that, for any τ < 1
4 t, log(τ) n ≥ 1

4x · t. Because log(τ) n is
monotone in τ , it is enough to prove that log(

1
4 t−1) n ≥ 1

4x·t, or by the properties
of iterated log 2 ↑↑ (p− 1

4 t) ≥ 2 ↑↑ q· 14 t. Because p− 1
4 t ≥ q+ 1

4 t by the assumption
that p − q ≥ 1, this reduces to showing that 2 ↑↑ (q + 1

4 t) ≥ 2 ↑↑ q · 1
4 t.

Lemma 4 For any x, y ≥ 0, 2 ↑↑ (x + y) ≥ 2 ↑↑ x · y.

Proof. If x = 0, we need to show that 2 ↑↑ y ≥ y, which holds for any y ≥ 0.
From now on, we assume that x ≥ 1 and apply induction on y ≥ 0.
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For y = 0, the left side is positive and the right side is zero. For y = 1,
22↑↑x ≥ 2 ↑↑ x holds for all x ≥ 0. For y = 2, 2 ↑↑ (x + 2) > 22↑↑x ≥ 2 ↑↑ x · 2
holds for all x ≥ 0.

Now assume that 2 ↑↑ (x + y) ≥ 2 ↑↑ x · y for some y ≥ 2. Then

2 ↑↑ (x + y + 1) = 22↑↑(x+y) ≥ 22↑↑x·y ≥ (2 ↑↑ x)y.

So now it is enough to show that (2 ↑↑ x)y−1 ≥ y +1. But x ≥ 1, so this reduces
to 2y−1 ≥ y + 1, which holds for any y ≥ 3. 	


In conclusion, choosing τ = max{1, log∗ n − log∗ x + 1} gives us the total
space usage of O((n + b)max{1, log∗ n − log∗ x}). By rewriting this expression
to remove x we get the following Theorem.

Theorem 2. Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in
S, we can store S in space O((n + b)max{1, log∗ n − log∗(n

b + b
n )}) such that

later, given i ∈ {i1, . . . , ib} we can extract S[i, i + l] in O(l) time.

5 Conclusion

We have shown a bookmarking data structure that uses a little more than linear
space. If b ≤ n

log(c) N
or n log(c) N ≤ b the space becomes O(n+ b). Furthermore,

O(n + b) space can be achieved for any n and b if we are willing to pay a
O(log(c) N) kick-off time for decompression. It remains open whether there exists
a bookmarking data structure that uses O(n+ b) space and supports linear time
decompression, regardless of the relationship between n and b.
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Abstract. Relative Lempel-Ziv is a popular algorithm designed to com-
press sets of strings relative to a given reference string, which acts as a
kind of dictionary. It can still applied even when there is no obvious
natural reference string for a dataset, by sampling substrings from the
dataset and concatenating them to obtain an artificial reference. This
works well in practice but a theoretical analysis has been lacking. In this
paper we provide such an analysis and verify it experimentally.

1 Introduction

Handling massive datasets is one of the most pressing challenges facing com-
puter scientists today. Many of these datasets are highly compressible but their
very size prevents us applying most classic compression algorithms in a rea-
sonable amount of time. For example, despite recent advances [5], running
Lempel-Ziv ’77 [11] (LZ77) with an unbounded window on a dataset that does
not fit in internal memory, is often still prohibitively slow; running it with a
bounded window, on the other hand, yields poor compression when the distance
between repetitions is larger than the window size (e.g., if we try to compress a
database of genomes with a window smaller than a genome). Fortunately, new
algorithms have been developed that scale well, such as Kuruppu, Puglisi and
Zobel’s [6] Relative-Lempel Ziv (RLZ). This algorithm was designed to compress
sets of strings which are all similar to a given reference: it stores an index for
the reference (e.g., a suffix tree) and then greedily parses the rest of the dataset
into substrings that either exactly match, or match except for the final charac-
ter, some substring of the reference; thus, at compression time, it uses internal
memory bounded in terms of the size of the reference, not the whole dataset.

What seems at first to be the main drawback of RLZ—i.e., that we can
apply it only when we have a natural reference—has turned out not to be a
drawback at all in practice. Several authors [3,7,10] have shown how, by sampling
substrings from the entire dataset and concatenating them, we can build an
artificial reference, with which we can usually still obtain excellent compression.
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In fact, this approach works so well that RLZ is now considered one of the
best general-purpose compression algorithms for repetitive datasets. As far as
we know, however, no one has given a theoretical analysis of why the artificial
references work so well. In this paper we provide such an analysis and show
that, e.g., if we sample z lg2+ε n blocks each of length

√
n/(z lg n), where n is

the length of the dataset and z is the number of phrases in its unbounded-window
LZ77 parse, then we can expect to use O(

(nz)1/2 log2+ε n
)

bits of space for the
encoding. That is, if LZ77 compresses a dataset well, then, given an appropriately
sampled reference, so should RLZ. Our experiments show the compression we
observe as we vary the number of blocks qualitatively fits our predictions.

2 Theoretical Analysis

It is intuitively clear that as we increase the number and length of the sampled
substrings, the size of the reference will increase but, if the dataset is repetitive,
then the complexity of the entire dataset with respect to the reference will tend
to decrease. To understand this decrease, consider that if a somewhat shorter
substring is common, then it is likely to be included somewhere in the sample, in
which case all its occurrences are well-compressed; if it is uncommon, then the
cost of storing all its occurrences uncompressed is still not large. In this section
we formalize this intuition and provide a theoretical analysis showing that when
three conditions hold we can expect good compression.

Suppose we want to compress a string S of length n over an alphabet
of size σ whose LZ77 parse consists of z phrases. Results by Rytter [9] and
Gawrychowski [2] imply that we can divide S into O(n/�) blocks of length at
most �/2 such that O(z log n) of them are distinct, for 2 ≤ � ≤ n. Suppose we
sample k substrings of length � from S and concatenate them, appending the
first and last � characters of S, to obtain the reference. This takes O(k� log σ)
bits.

If the ith distinct block has frequency fi, then the probability one of its
occurrences is completely included in some sampled substring is at least 1 − pi,

where pi =
(
1 − fi�

2n

)k

. In this case, all of its occurrences can be stored in a total
of O(fi log(k�)) bits; otherwise, they are stored in O(fi� log σ) bits.

Let b = O(z log n) be the number of distinct blocks. By the optimality of
greedy parsing, the expected size in bits of the RLZ parse is

O
(

b∑
i=1

fi(1 − pi) log(k�) +
b∑

i=1

fipi� log σ

)
≤ O

(
n log(k�)

�
+ � log(σ)

b∑
i=1

fipi

)
.

Since 1 − x ≤ e−x, we have pi =
(
1 − fi�

2n

)k

≤ 1
efik�/2n so

∑b
i=1 fipi ≤∑b

i=1
fi

efik�/2n , which is concave and, thus, maximum when all the distinct blocks
occur equally often. Therefore, calculation shows

� log(σ)
b∑

i=1

fipi =
n log σ

eΩ(k/z log n)
.
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Summing up, we obtain the following theorem:

Theorem 1. If we randomly sample and concatenate k blocks of length � from
the dataset to form an artificial reference, then the expected total size in bits of
the RLZ encoding (i.e., the reference and the parse together) is

O
(

k� log σ +
n log(k�)

�

)
+

n log σ

eΩ(k/z log n)
.

This bound guarantees good compression in the expected case for sufficiently
large datasets if three conditions hold simultaneously:

1. k� � n,
2. log(k�) � � log σ,
3. k = ω(z log n).

One consequence of this observation is that when LZ77 compresses well, so
too should RLZ with an artificial reference sequence when sampling is done
appropriately. For example, by setting k = z lg2+ε n and � =

√
n/k, we use

O(
(nk)1/2 log n

)
bits of space. We note as an aside that even when a good

reference is given, however, either the length of that reference or the number of
phrases in the RLZ parse must be at least the square root of the total length of
the dataset. Of course, this is not a serious concern in practice.

Corollary 1. If we randomly sample and concatenate z lg2+ε n blocks of length√
n/k, then the expected total size of the RLZ encoding is O(

(nk)1/2 log n
)
.

The first two conditions listed above are fairly trivial—they mean, essentially,
that the reference should be smaller than the dataset and a pointer into the
reference should be smaller than the substring it is replacing—but the third is
more interesting. For one thing, while choosing k, say, a tenth larger than optimal
should not increase the size of the encoding by more than about a tenth, the last
term in our space bound suggests that choosing k a tenth smaller than optimal
could drastically worsen compression. That is, our analysis suggests that if we
plot the size of the encoding against the number of blocks we sample, it should
start by falling sharply and then rise slowly. For another thing, it is not clear what
“optimal” really means here. The log n factor comes from the approximation
ratio of Rytter’s algorithm for building a small straight-line program, and it is
unknown if that ratio can be improved even using exponential time (see Charikar
et al. [1]).

3 Experimental Results

We checked our prediction that if we plot the size of the encoding against the
number of blocks we sample, it should start by falling sharply and then rise
slowly, by compressing the following datasets with RLZ using various sampling
regimes to build the artificial reference:
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English: A concatenation of English text files selected from etext02 to etext05
collections of Gutenberg Project1. Total size is 1 GB.

Gov21GB : 1GB Prefix of the TREC collection Gov22.
Proteins: A sequence of newline-separated protein sequences (without descrip-

tions) obtained from the Swissprot database. Total size is 1.2 GB (see foot-
note 1).

Rep1GB: Very repetitive text generated by concatenating 400 copies of a random
25 MB string.

We built an artificial reference for each dataset, as described in Sects. 1 and 2,
by picking values of k and � and then concatenating k randomly sampled sub-
strings of length � from the dataset, storing the resulting reference in k� log σ
bits. We stored phrases using lg(k�) bits for pointers and lg � bits for phrase
lengths.

We used two approaches to build the references:

Fixed length: we fixed a value of � and tried different values of k;
Corollary 1: we used the values of k and � prescribed by Corollary 1, using

varying estimates of z.

Additionally, with the algorithm of [4], we calculated the size of the LZ77 encod-
ing and include it as a baseline, using 2 lg n bits for each phrase.

The results are shown in Fig. 1. The curves we obtained are in accordance
with Theorem 1. That is, there is a sharp drop on the left, when increasing
the number of samples significantly improves compression. At some point, the
curve starts to rise roughly parallel to the reference size, which increases linearly.
That is, as noted in Sect. 2, increasing the number of samples by a tenth, for
example, never increases the size of the encoding by more than about a tenth.
This explains why the reference pruning strategies employed in [7,10] work: it is
much safer to oversample in the beginning than to undersample.

4 Discussion

We have given the first theoretical analysis of artificial reference construction for
RLZ, and the results of our experiments qualitatively fit our predictions. One
possible concern, however, is that our analysis prescribes sampling parameters
in terms of z, which depends on the behaviour of LZ77, and if we could run
LZ77 then we would not need RLZ in the first place3. We note, however, that it
is possible to estimate z more efficiently than by computing the LZ77 parse [8].
Another concern is whether our analysis is reasonably tight. It is not difficult to
construct instances in which we achieve better compression by sampling fewer
blocks than our analysis prescribes: for example, consider a randomly chosen
1 Available at http://pizzachili.dcc.uchile.cl/.
2 For more details, see http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm.
3 Though RLZ does have attractive properties other than ease of compression; for

example, support for random access.

http://pizzachili.dcc.uchile.cl/
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm.
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Fig. 1. Size of the RLZ compression using different artificial references on four different
collections. For each collection, different regimes for constructing the reference are
shown: fixed length of samples of size 3000, 1000, and 100 characters each, and varying
amounts (k value) for each of them. Also the strategy proposed by Corollary 1 is used.
Our curves show the total size of the encoding as a function of k/z. For each data point
in the curves we show a point in the same color below that indicates the size of the
reference. In addition, we include the size of the LZ77 encoding as a baseline
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binary string B of length
√

n, and let B′ be the binary string of length n obtained
by replacing each 0 in B by the same randomly-chosen binary string S0 and
replacing each 1 by the same randomly-chosen binary string S1. Since z is almost
certainly around n1/2/ lg n, following the sampling regime we described above
results in us using about n3/4 lg1+ε n lg σ bits, whereas if we simply sample S0

and S1 then RLZ uses about n1/2 lg n bits.
We do not see how to tighten our analysis to address such cases. Even a

loose upper bound may still be useful, however: to see why, suppose we want to
apply RLZ to a massive dataset in external memory; if our bound tells us that
using the prescribed number and lengths of blocks should produce an encoding
that fits in internal memory; because of the properties of RLZ, once we have
built that encoding we can support fast access to the dataset without reading
anything from disk; it follows that we can then try different sampling regimes
or pruning strategies [7,10] to find the best, working in internal memory only.
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Abstract. On a given sequence X = 〈x1x2 . . . xn〉, the range selec-
tion queries denoted by Q(i, j, k) return the kth-smallest element on
〈xixi+1 . . . xj〉. The problem has received significant attention in recent
years and many solutions aiming to achieve this task with a cost lower
than dynamically sorting the elements on the queried range have been
proposed. The reverse problem interestingly has not yet received that
much attention, although there exists practical usage scenarios especially
in the time–series analysis. This study investigates the inverse range
selection query Q̄(υ, k) that aims to detect all possible intervals on X
such that the kth-smallest element is less than or equal to υ. We present
the basic solution first and then discuss how that basic solution can be
implemented with different data structures previously proposed for reg-
ular range selection queries.

1 Introduction

Unprecedented increase in the volume, velocity, and variety of data produced in
recent years has led to numerous challenges in algorithmic data management.
A massive amount of the data to-be-generated in the near future is expected to
be sequences of numbers as a result of the upcoming age of machine-to-machine
communication, where many sensors connected to the internet will be continu-
ously transmitting some measurements in the concept of internet-of-things. That
fact provides a strong motivation for the studies focusing on management and
analysis of number sequences.

One of the fundamental issue in massive number series management is surely
the computation of some queries that are particularly important in statistical
analysis of those sequences. Range selection queries [1,2,5,7] in that sense has
been a good research problem with its possible usage in many practical cases.
Given a sequence of integers as X = 〈x1, x2, . . . , xn〉, where xi ∈ {0, 1, 2, . . . , U}
for a large U >> n, the range selection query Q(i, j, k) aims to detect the
kth-smallest element on 〈xixi+1 . . . xj〉 for dynamically changing parameters i, j
and k. The naive solution for such queries is to sort the numbers in the queried
range 〈xixi+1 . . . xj〉 and then simply return the kth element on that sorted list.
However, this would bring a heavy computational load when the sequence as
well as the number of queries are huge. Thus, research on this problem targets
to provide methods that perform the job without performing a sort operation for
each individual query. Many results from different perspectives have appeared
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 166–177, 2016.
DOI: 10.1007/978-3-319-46049-9 17
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on the range selection queries. An early algorithm, the quickselect, developed by
Hoare [4] solves the problem in linear time (O(j − i)–time) by modifying the
quicksort algorithm such that once the elements in the queried range are split
into two as the ones greater than and smaller than a randomly selected pivot,
the piece in which the kth smallest item should appear is recursively split again
around a randomly selected pivot in that section until the result is reached.
Since only one segment of the array is processed at each step, the O(n log n)
time complexity of quicksort becomes O(n) in the quickselect. The problem has
a special interest when k = (j−i)

2 as in this case the median value, which is a
fundamental parameter in statistical analysis of sequences, is returned [6,11].

The inverse of the problem on the other hand has not been mentioned in
the studies to the best of our knowledge. Sample practical scenarios to describe
the usage of the inverse problem might be given as follows. Assume we have the
daily temperature readings from various locations and would like to answer such
a query: “What are the intervals in which the temperature did not fall below
10 ◦C for more than three days?”. Yet another exemplary query might be given
on the analysis of the sensor data in a large scientific experiment such that one
may need to find the intervals where the data read from the sensor has not
fallen below a threshold for more than, say 3, times as those 3 cases might be
the possible erroneous readings.

Several variants of the problem might also be interesting depending on the
practical use cases. For instance, the inverse range median queries, where it is
required to detect largest intervals whose median value is equal to, greater than,
or less than a value might be precious in the analysis of time-series data, e.g.,
“How many days long is the largest interval where the median temperature had
not fallen below 15 ◦C?”.

Answering those queries require performing the reverse of the range selection,
which we denote with Q̄(υ, k) as finding all possible intervals on X such that the
k–th smallest element in that interval is less than or equal to k. This definition
may be narrowed down to detect the intervals that the k–th smallest is exactly
equal to υ to precisely reflect the reverse problem of the range selection query
definitions. Considering that this would be too restrictive in practice, we prefer
to keep it with “less than or equal to”. Obviously, all solutions described in this
study may support that exact case also.

There is an important distinction between the range selection and its inverse.
In range selection, we are given a dynamic range, and the complexity of the
operation actually relies on the length of that interval. When that range is small,
using the sort based naive solutions might be more efficient in practice. On the
other hand, to answer the reverse problem, one needs to investigate the whole
sequence regardless of the parameters. Thus, on each query, it is always required
to explore X completely to detect the appropriate ranges. When the source
sequence X is extremely large, this might turn into a heavy computational load
especially when the number of queries is huge. Thus, opportunistic approaches
to increase the chance of achieving sub-linear performances on the average would
be helpful for the reverse range selection queries.
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In this study, we begin by formally describing the problem, and then provide
the basic O(n)–time solution that requires O(k) words of space. It would not
be very meaningful in practice to construct different data structures for the
ordinary and the reverse problems. Thus, we consider how to utilize the data
structures previously proposed for efficient handling of range selection queries
in the reverse problem. Selected previous solutions proposed for the ordinary
queries are investigated in this study despite the basic linear solution.

In [2], the authors constructed a wavelet tree [9] over X that returns the
answer of a range selection query in O(log σ) time, where σ represents the num-
ber of unique integers in X. When all integers are unique in X, the time com-
plexity becomes O(log n), and the additional space requirement reaches o(n)
bits. We investigate the opportunity of using the same data structure to answer
the reverse problem, and observe that depending on the rank of the υ parameter
in X, it is possible to achieve sub-linear performance.

Another solution that proposed to use the wavelet trees for the range selection
was [7] by which the queries are answered in O(log log U +log a), where a denotes
the returned answer, the k–th smallest in the queried range. The data structure
introduced in [7] does not only helps efficient handling of the queries, but also
keeps the integers in X compact by representing each xi with its minimal binary
description length �log xi�. Despite the space gained by keeping the integers com-
pact, the additional overhead is also smaller as being n log log U + o(n log log U)
bits when compared to n log σ+o(n log σ) bits in the normal wavelet tree solution
assuming that usually in practice σ >> log U .

In this study, we explore ways of using that data-aware approach [7] for
answering the inverse problem, and observe that it may also result a sub-liner
performance for some υ values.

Besides the wavelet tree based approaches, a sort based solution that first
sorts X and stores the rank array in a preprocessing step is also considered.

The outline of the study is as follows. Following the formal definition of
the inverse range selection queries in Sect. 2, Sect. 3 is devoted to the possible
solutions, where we first analyze the basic linear–time solution, and then inves-
tigate the usage of the wavelet–tree based solutions previously proposed for the
range selection. The space–efficient and sorting-based approaches are also vis-
ited in related subsections of Sect. 3. We conclude with a concise summary of the
results including possible future research directions related to the range queries.

2 The Inverse Range Selection Problem

Let X = 〈x1, x2, . . . xn〉 be a sequence of integers such that 0 ≤ xi ≤ U for
1 ≤ i ≤ n. The range selection query υ ← Q(i, j, k), for 1 ≤ k ≤ (j − i + 1) and
1 ≤ i < j ≤ n, returns the kth smallest value υ in the range 〈xi, xi+1, . . . xj〉.
Definition 1 (Inverse range selection query). On a given sequence X =
〈x1, x2, . . . xn〉, the inverse range selection query A ← Q̄(υ, k) returns the set A
that includes all possible 〈i, j〉 tuples, where in 〈xi, xi+1, . . . , xj〉 the kth smallest
value is less than or equal to v.
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On a sample X = {16, 17, 3, 6, 2, 11, 5, 2, 3, 15, 16, 9, 13}, assume we would
like to answer Q̄(3, 2) as detecting all intervals whose 2nd smallest value is less
than or equal to 3. The list of valid range pairs for that query is 〈1, 5〉, 〈1, 6〉,
〈1, 7〉, 〈2, 5〉, 〈2, 6〉, 〈2, 7〉, 〈3, 5〉, 〈3, 6〉, 〈3, 7〉, 〈4, 8〉, 〈5, 8〉, 〈6, 9〉, 〈7, 9〉, 〈8, 9〉,
〈8, 10〉, 〈8, 11〉, 〈8, 12〉, 〈8, 13〉.
Definition 2 (Maximal range). The range 〈xi, xi+1, . . . xj〉 denoted by the
tuple 〈i, j〉 in the answer set A of an inverse range selection query A ← Q̄(υ, k)
is a maximal range if there exists no other tuple 〈m,n〉 ∈ A such that m ≤ i <
j ≤ n, which means the 〈i, j〉 interval cannot be expanded either to the right or
to the left.

Following the example above, the intervals 〈1, 7〉, 〈4, 8〉, 〈6, 9〉, and 〈8, 13〉 are
the maximal ranges for the Q̄(3, 2) on X.

Lemma 1. If 〈xi, xi+1, . . . xj〉 is a maximal range, then
[
(xi−1 ≤ v) ∨ (i = 1)

]
and

[
(xj+1 ≤ v) ∨ (j = n)

]
conditions should hold.

Proof. According to the Definitions 1 and 2, the 〈xi, xi+1, . . . xj〉 includes k items
that are less than or equal to υ, and is not expandable towards right or left. The
interval can not be extended to the left when i = 1 as this is the leftmost position
on X that naturally prohibits moving left. In case i > 1, then xi−1 ≤ υ should
hold, since the 〈xi−1, xi, . . . xj〉 interval will otherwise have k + 1 items smaller
than the queried υ parameter. Similarly, the expansion to the right is restricted
when j = n or xj+1 ≤ υ.

Lemma 2. If 〈xi, xi+1, . . . xj〉 is a maximal range, where the xi′ and xj′ are
respectively the leftmost and rightmost values that are less than or equal to υ for
i ≤ i′ ≤ j′ ≤ j, then all 〈a, b〉 tuples for a ∈ {i, i + 1, . . . , i′} and b ∈ {j′, j′ +
1, . . . , j} are in the set A of the inverse range selection query A ← Q̄(υ, k).

Proof. Following the assumption mentioned, there are k integers that are less
than or equal to υ in 〈xi′ , xi′+1, . . . xj′〉. All of the integers in the intervals
〈xi, xi+1, . . . xi′−1〉 and 〈xj′+1, xj′+2, . . . xj〉 should be larger than k, since there
will be otherwise more than k items smaller than υ, which would violate
the query. Then, an interval 〈xa, xa+1, . . . xb〉, for a ∈ {i, i + 1, . . . , i′} and
b ∈ {j′, j′ + 1, . . . , j}, includes exactly k items less than υ, and holds with the
Q̄(υ, k) query.

We are explicitly interested with the maximal ranges since the remain-
ing intervals can be trivially generated from them as proved in Lemma2. For
instance, 〈1, 7〉 is a maximal range as stated in the example of the Definition 2.
All 〈a, b〉 intervals, for a ∈ {1, 2, 3} and b ∈ {5, 6, 7} are in the answer set of the
inverse range query for the inverse range selection query A ← Q̄(υ, k). These
subranges as 〈1, 5〉, 〈1, 6〉, 〈1, 7〉, 〈2, 5〉, 〈2, 6〉, 〈2, 7〉, 〈3, 5〉, 〈3, 6〉, 〈3, 7〉 can be
computed once it is determined that the leftmost and rightmost positions in the
maximal range 〈1, 7〉 having values less than or equal to υ = 3 are 3(x3 = 3) and
5(x5 = 2). Hence, the primary concern in this study is to detect the maximal
ranges for a given inverse range selection query.
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Definition 3 (Maximal range set). The maximal range set A′ ⊆ A that can
be expressed with

A′ = {〈i, j〉 :
(
Q(i, j, k) ≤ υ

) ∧ [
(xi−1 ≤ v) ∨ (i = 1)

] ∧ [
(xj+1 ≤ v) ∨ (j = n)

]}
includes all maximal range 〈i, j〉 tuples in the answer set A of the inverse range
selection query Q̄(υ, k).

3 The Solution

Theorem 1. The maximal range set of the inverse range selection query Q̄(υ, k)
on an integer sequence X = 〈x1x2 . . . xn〉 can be detected in O(n)-time by using
(k + 1) · log n bits additional space.

Proof. Following Lemma 1, a maximal range computation requires the knowledge
of (k + 1) consecutive positions whose corresponding integers are less than or
equal to υ on X. A first-in-first-out array q[1 . . . (k +1)] keeping the positions of
the last observed such (k + 1) integers can be maintained while passing over X
linearly. The size of that array is (k+1)·log n bits as each entry is log n bits long.
After detecting the first such (k + 1) integers on X, the initial maximal range is
〈x1 . . . xq[k+1]−1〉, which expands from position 1 to the preceding position of the
last item in the array. The next maximal range should begin from the succeeding
position of the first element in the q array. After selecting the starting position of
the next maximal range as q[1]+1, the next position on X whose corresponding
value is less than or equal to υ is scanned and the q array is updated. Since q is
a FIFO array, this update may be described as shifting all values to the left by
one, which disposes q[1], and inserting the newly detected position to the end
of the array, q[k + 1]. Now the end of the current maximal range is set to the
newly computed (q[k+1]−1). Deciding on the start of the next range, updating
the array by keep scanning X linearly, and setting the end according to the
latest update is repeated until all elements in X are visited. Since we visit each
element of X once during the traversal, and maintain an array of size (k + 1),
the procedure detects all maximal ranges in O(n)-time and O(k)-space.

The pseudo-code shown in Algorithm 1 returns the maximal range set for an
inverse range query Q̄(k, υ) over X. Notice that we simulate the FIFO array q
described in the proof of the Theorem1 via a circular array in this procedure.

3.1 Solution via Wavelet Tree

Let’s assume a hypothetical bitmap M = m1m2 . . .mn such that mi = 1 when
xi ≤ υ, and mi = 0 otherwise. Algorithm 1 may be viewed as simulating the
search on M for the largest intervals that exactly include k number of 1 bits.
While achieving this goal, it does not maintain the bit array M explicitly, but
instead computes it on the fly while passing over X linearly with the “while”
loops appearing at the lines 5 and 17 on Algorithm1. The efficiency of that
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Algorithm 1. InverseRangeSelect(X, k, υ)
Input: X = 〈x1, x2, . . . xn〉 is the input integer stream, k and υ are the parameters of the

inverse range selection query.
Output: The maximal range set A′ including all possible 〈i, j〉 pairs such that

〈xi, xi+1, . . . , xj〉 is a maximal range having k values less than or equal to υ.
1 A′ ← {};
2 z ← 1;
3 q ← 0;
4 for i = 1 to k + 1 do // the positions of the first (k + 1) integers not greater than υ
5 while

(
(xz > υ) ∧ (z ≤ n)

)
do z ← z + 1; // find next xz ≤ υ

6 arr[q] ← z ; // store the position in arr[q]
7 z ← z + 1 ; // advance the pointer on X
8 q ← (q + 1) mod (k + 1) ; // advance the pointer on the circular array arr
9 if (z > n) then break;

10 end

11 if (i < (k + 1)) then return A′; // less than (k + 1) items are ≤ υ in X
12 begin ← 1 ; // the beginning position of the first interval
13 end ← arr[(q − 1) mod (k + 1)] − 1 ; // the ending position of the first interval

14 A′ ← A′ ∪ 〈begin, end〉;
15 while (z < n) do
16 begin ← arr[q] + 1; // save the beginning position of the next interval

17 while
(
(xz > υ) ∧ (z ≤ n)

)
do z ← z + 1; // find next xz ≤ υ

18 arr[q] ← z; // update the array to store the detected position z
19 end ← arr[q] − 1; // compute the ending position of the interval

20 A′ ← A′ ∪ 〈begin, end〉; // add this interval to the maximal range set
21 q ← (q + 1) mod (k + 1) ; // manage the circular array to imitate the FIFO list

22 end

23 return A′;

solution will be improved if a better way of detecting the xi ≤ υ positions can
be achieved.

Previously, the study by Gagie et al. [2] has proposed to use wavelet trees
for the range selection queries. The wavelet tree constructed over a sample X
sequence is depicted in Fig. 1. The same structure may also be used for the
inverse problem.

Lemma 3. Given the balanced wavelet tree W constructed over an integer
sequence X, detection of the positions of all integers on X that are less than
or equal to υ can be computed on the average with

n ·
�log n�∑

i=1

pi · i

2i

select queries, where pi ∈ {0, 1} indicates whether the top-down traversal for υ
on W follows the left (pi = 0) or right child (pi = 1) on the bitmap at level i.

Proof. We begin searching for the value υ on the balanced wavelet tree W .
During this traversal if the pivotal value (pivoti) of the visited node at level
i on W is larger than or equal to υ (υ ≤ pivoti), we move to the left child
that is devoted to the items represented by 0 bits in the current node. Else, if
υ > pivoti, then we should follow the right link. However, in this case all the
items represented by 0 bits in the current node are known to be less than υ,
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Fig. 1. The wavelet tree constructed on a sample X integer vector. The pivot values
at each node are highlighted. The leaf nodes are surrounded with boxes.

and thus, should be traced back on the tree to mark their positions on the M
array. For each such 0 bit in the current node at level i, it needs i number of
select operations until the root is reached and the positions are marked on M .
Assuming the number of zeros and ones at each node of the balanced wavelet
tree are approximately equal, the number of 0 bits at a node at level i is around
n
2i . During the top-down traversal of the W for the value υ, no select required
as we keep going left, and n·i

2i select operations should be performed when we
move right at a node at level i.

The pseudocode to detect the integer positions that are less than or equal
to a queried value υ is given in Algorithm 2. As an example, assume we would
like to mark the positions of xi ≤ 13 on the given sample X in Fig. 1. Since 13
is larger than the pivotal value 9 of the root node at level 1, the positions of
the 7 0-bits in the root bitmap should be marked with 1 on the bitmask M . We
move to right child of the root node and compare 13 with the new pivot value 15
of the new node. Since 13 ≤ 15, we follow the left child without any operation
on the current node’s bitmap. Similarly, as 13 is still less than or equal to the
pivotal value of the node at level 3 that is 13, we again take the left link. In the
current visited node at 4th level of W , we observe that the pivotal value is 11,
which is larger than 13. Thus, we need to traverse the 0-bits in the current node
back to the root. We have only one 0 bit here, and the corresponding positions
on the 4th, 3rd, 2nd, and 1th level bitmaps are computed as 1, 1, 3, and 6 with a
total of 4 select queries. After setting m6 = 1 on M , we follow the right child,
which takes us to the leaf node devoted to the value 13. As this value is ≤ 13
again, we need to traverse back the 1 bits in the parent node of this leaf. This
traversal requires 4 select queries as we have only one bit set to 1 in the parental
node at level 4. The respective positions computed on the path to the root are
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Algorithm 2. DetectLEQValues(X, W , υ)
Input: X = 〈x1, x2, . . . xn〉 is the input integer sequence and the wavelet tree W is the

balanced wavelet tree constructed over X according to the scheme proposed by
Gaggie et al. [2]. The value υ is the parameter of the inverse range selection query.

Output: The bitmap M = m1m2 . . . mn such that mi = 1 when xi ≤ υ, else mi = 0.
1 B ← W.rootBitmap ; // begin with the root bitmap at level i = 1
2 φ ← 0 ; // until the last step we will be selecting 0 bits
3 M [1..n] ← 0 ; // initialize bit array M to all 0s
4 continue ← true; // iterate until the last step that we reach the leaf
5 while (1) do
6 while (υ ≤ B.pivotV alue) do B ← B.leftChild; // move left while υ ≤ pivoti

7 m ← number of bits set to φ in B ; //
8 for i = 1 to m do // before moving right do this for each φ bit on current node

9 B′ ← B;

10 pos ← selectφ(i, B′); // select the ith φ bit on the current node

11 while (B′ = W.rootBitmap) do // trace back this position till the root

12 P ← B′.parent;

13 if B′ == P.leftChild then
14 pos ← select0(pos, P )
15 else
16 pos ← select1(pos, P )
17 end

18 B′ ← P ;

19 end
20 M [pos] ← 1; // mark the detected position on M

21 end
22 if (continue == false) then break;
23 B ← B.rightChild; // move to right child

24 if
(
(B.isLeaf)&&(leafV alue ≤ υ)

)
then

25 φ ← 1; // now we need to trace 1 bits of the parent node back to root
26 B ← B.parent;
27 continue ← false ; // since we reached a leaf, stop after tracing the 1 bits

28 else break;

29 end
30 return M ;

2, 3, 6, and 11. At the end, M = {0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1} is constructed
with 15 select queries.

The number of required select queries increase as much as the υ value is
represented towards the right side of the wavelet tree, which means it resides in
the higher quartiles of the sorted X. Thus, the wavelet tree construction over X
results sub-linear performance only when the υ value resides in the initial quar-
tiles of the sorted X sequence. For instance, on our example, when υ = 2, 8 select
queries are sufficient to create the mask M = {0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0}.

Theorem 2. The inverse range selection query Q̄(υ, k) can be answered in
O(κ + D)-time by using O(n log σ) bits space, where κ denotes the number of
integers on X = 〈x1, x2, . . . xn〉 such that xi ≤ υ, σ is the number of unique
integers in X, and D is the time required to create the mask bitarray M as
described in Lemma 3.

Proof. As a one-time preprocessing operation, the wavelet tree W of size
O(n log σ) can be constructed over X, which has σ distinct integers, in O(n log σ)
time [3]. Given the Q̄(υ, k) query, the mask bit array M with constant-time
select support [10] is computed from the wavelet tree W as discussed in
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Lemma 3. The time required for this operation is denoted by O(D), where D
is the number of select queries performed during this computation. Once the
M array that includes κ 1 bits is constructed, the while loops at lines 5 and 17
can be replaced by constant-time select queries to find the next position hold-
ing a value less than or equal to υ, which reduces the complexity of Algorithm
1 to O(κ). The total time complexity for the query becomes O(κ + D).

3.2 Solution via Sorting

The number of select operations in the wavelet tree based solution may be
less than or larger than n depending on the rank of the value of υ in the sorted
X. When this value is large, the wavelet tree based solution (Theorem 2) is not
expected to be competitive with the basic solution (Theorem 1). Yet another
approach, which makes use of a space equivalent to the wavelet tree while pro-
viding a better time complexity in such a case is described in Theorem 3.

Theorem 3. When κ denotes the number of integers on X = 〈x1, x2, . . . xn〉
such that xi ≤ υ, the inverse range selection query Q̄(υ, k) can be answered in
O(log n + κ)-time by using O(n log σ) bits additional space.

Proof. In a preprocessing step that is to be achieved only once, X can be sorted
in O(n log n) time. The positions of the integers in increasing order in this sorted
array can be saved by reserving a space of O(n log σ) bits assuming there are
σ distinct values in X. For the inverse range selection query, first the position
of the largest integer that is less than or equal to υ is detected by a binary
search that takes O(log n) time on that indices array. The positions till that
point are the positions of the κ integers on X having a value less than or equal
to υ. As an example, for the sample X depicted in Fig. 1, the sorted values
are 〈2, 2, 3, 3, 5, 6, 9, 11, 13, 15, 16, 16, 17〉, and the corresponding indices array is
〈5, 8, 3, 9, 7, 4, 12, 6, 13, 10, 1, 11〉. The positions that hold values less than or equal
to 13 are the first 9 items in the indices list since the position of 13 is detected to
be position 9 via a binary search incorporating the X and the indices array. The
mask array M with the constant-time select support is then created by marking
those positions on M . The detection of the maximal intervals is achieved accord-
ing to Algorithm 1 by replacing the while loops on lines 5 and 17 with O(1)–time
select operations on M , which reduces the complexity of the Algorithm 1 from
O(n) time to O(κ)-time.

3.3 Space–Efficient Solution with Compact Integer Representation

Both the wavelet tree based and the sorting based solutions described above
require O(n log σ) bits space in addition to the space occupied by the actual
integer array X itself. When all integers in X are in between 0 and U , X requires
a space of n log U bits.

Previously, Külekci and Thankachan [7] has proposed to use the compact inte-
ger representation introduced in [8] for the range selection problem. Within that
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Fig. 2. The wavelet tree constructed over the �xi� values (denoted by L arrays in the
tree) of the sample X integer vector as described in [7,8]. The integers at the leaf notes
are represented by their minimal binary lengths.

scheme, the integers in X are clustered according to their �log xi� values by con-
structing a wavelet tree. Since the �log xi� values are in {0, 1, 2, . . . �log U�}, the
height of the balanced wavelet tree is �log log U, and thus, the additional space
required becomes O(n log log U) bits, which is better than O(n log σ) for partic-
ularly large n and σ. More than that, since the integers are clustered according
to their bit-lengths1 in the leaves of the wavelet tree, instead of reserving a fixed-
length log U bits per each integer, an individual xi value is represented by no
more than required minimal �log xi� bits. The reduction caused by the compact
representation of the integers compensates the space deposited for the wavelet
tree to some extent. Hence, such a representation becomes more space efficient
in practice.

Such a wavelet tree constructed over the sample X is depicted in Fig. 2.
In [7], it has been proposed to keep the integers in a leaf node again with a
secondary wavelet tree that holds the bits of the integers from most significant
to least significant one. Figure 3 shows that representation for a sample bunch
of integers that all require 3 bits.

Theorem 4. On a given X = 〈x1x2 . . . xn〉, where xi ∈ {0, 1, 2, . . . , U}, the
inverse range selection query Q̄(υ, k) can be answered in O(D + κ)-time with
O(n log log U) bits space by representing X with the compact data structure intro-
duced in [7]. Here, D denotes the number of select operations required on that
data structure to detect all κ integers that are less than or equal to υ on X.

Proof. Since the �log xi� values are in {0, 1, 2, . . . , �log U�}, the balanced wavelet
tree constructed over them will require O(n log log U) bits. Each leaf node of that
tree is devoted to a specific length by which all integers mapped to that node

1 An integer xi can be represented by �log xi� bits by omitting the leftmost 1 bit. We
assume log 0 = 0 and process the integers 0 and 1 a bit differently on the wavelet
tree. See [7,8] for more details.
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Fig. 3. The wavelet tree representation of a sample Y integer vector from the most-
significant to least-significant bits.

can be represented with. The integers belonging a leaf node may be represented
by another wavelet tree such that the bits of the integers from the most to least
significant positions are collected as depicted in Fig. 1.

To answer a Q̄(υ, k) query, first all the items such that �log xi� < �log υ� are
detected with the same process described in Algorithm 2 on the top wavelet tree
constructed over log xi values. This is due to the fact that if �log xi� < �log υ�,
then xi < υ. Notice that we have now at most log log U levels to traverse as
oppose to log σ, which may reduce the number of required select operations
significantly when compared to the pure wavelet tree based solution described
above.

When we arrive to the leaf node to which the υ value should be assigned, we
start finding the integers that are less than or equal to υ again with Algorithm2.
The number of levels to traverse here is �log υ. At each level if the corresponding
bit of the υ is 0, we move to the left child without any operation, and if it is 1
we trace back all 0 items to mark their positions.

For large υ values the depth of the bottom wavelet tree increases, which also
brings an increase in the number of select queries. To avoid this, one may
prefer not to keep the integers in the bottom wavelet tree, but instead maintain
a rank array as described in Theorem3. This will bring an additional overhead
of

∑�log U�
0 ci · log ci, where ci represents the number of integers xi such that

log xi = ci c0 + c1 + . . . + c�log U� = n bits. However, since the efficiency will be
improved this trade–off might make sense according to the structure of the X.

4 Conclusions

This study has shed an initial light on the inverse range selection queries that
have not been explicitly addressed to date. Unlike the ordinal range selection
queries, where the query is focused on a specific region of the data, while answer-
ing an individual inverse range selection query, one needs to process the complete
sequence at each time.

Although there had been significant theoretical results on range selection
queries, studies addressing the practical performances of the proposed schemes
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is limited. Combined with the inverse range selection queries introduced in this
study, evaluating the methods in an experimental framework is believed to make
sense in future research.

Acknowledgments. The author thanks to the anonymous reviewers of the paper for
their valuable corrections and comments.
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Abstract. The longest common prefix (LCP) array is a versatile auxil-
iary data structure in indexed string matching. It can be used to speed
up searching using the suffix array (SA) and provides an implicit repre-
sentation of the topology of an underlying suffix tree. The LCP array of
a string of length n can be represented as an array of length n words,
or, in the presence of the SA, as a bit vector of 2n bits plus asymptoti-
cally negligible support data structures. External memory construction
algorithms for the LCP array have been proposed, but those proposed
so far have a space requirement of O(n) words (i.e. O(n log n) bits) in
external memory. This space requirement is in some practical cases pro-
hibitively expensive. We present an external memory algorithm for con-
structing the 2n bit version of the LCP array which uses O(n log σ) bits
of additional space in external memory when given a (compressed) BWT
with alphabet size σ and a sampled inverse suffix array at sampling rate
O(log n). This is often a significant space gain in practice where σ is
usually much smaller than n or even constant. The algorithm has aver-
age run-time O(n log n log σ) and worst case run-time O(n2 log σ). It can
be improved to O(n log2 n log σ) worst case time while keeping the same
space bound in external memory if O(n/ log n) bits of internal mem-
ory are available. We also present experimental data showing that our
approach is practical.

1 Introduction

The suffix array (SA) and longest common prefix array (LCP) were introduced
as a lower memory variant of the suffix tree (cf. [30]) for exact string match-
ing using a precomputed index (cf. [20]). For a text of length n both can be
computed in linear time in internal memory (IM) (cf. [4,18,19]) and require n
words of memory each. For large texts the space requirements of SA and LCP in
IM can be prohibitive. Compressed and succinct variants including compressed
suffix arrays (see e.g. [13,14,23]), the FM index and variants (see [7–9]) and suc-
cinct LCP arrays (see [24]) use less space, but for practicality it is also crucial to
be able to construct these data structures using affordable space requirements.
Construction algorithms for compressed suffix arrays and the Burrows Wheeler
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 178–190, 2016.
DOI: 10.1007/978-3-319-46049-9 18
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transform (BWT, see [3]) using o(n log n) bits of space in IM (assuming σ ∈ o(n))
were introduced (see e.g. [15,22]). However they require an amount of IM which
is several times larger than what is needed for the input text. An algorithm for
constructing the succinct LCP array in IM using a compressed suffix array was
given in [25]. External memory solutions for constructing the suffix array and
LCP array have also been presented (see e.g. [2,5,16]). These algorithms require
O(n) words (O(n log n) bits) of external memory (EM). However, as for their IM
pendants, this space requirement is large if the algorithms are used as a vehicle
to obtain a compressed representation. Recently algorithms for constructing the
BWT in EM without explicitly constructing a full suffix array were designed and
implemented (see [6,27]). In this paper we present an algorithm for construct-
ing a succinct LCP array in EM based on a BWT and sampled inverse suffix
array while using O(n log σ) instead of O(n log n) bits of space in EM. Both
the BWT and sampled inverse suffix array can be produced in space O(n log σ)
bits in external memory by the algorithm presented in [27,28]. We also present
experimental data showing that our approach is practical.

2 Definitions

Let Σ denote a totally ordered and ranked alphabet, we assume Σ = {0, 1, . . . ,
σ − 1} for some σ > 0. Throughout this paper we consider a string s =
s0s1 . . . sn−1 of length |s| = n > 0 over Σ s.t. the last symbol of s is the
minimal symbol in s and does not appear elsewhere in s. The assumption of
Σ = {0, 1, . . . , σ−1} for some σ > 0 is w.l.o.g. if σ ∈ O(nk) for some finite expo-
nent k. We use s[i] to denote si and s[i . . j] for sisi+1 . . . sj for 0 ≤ i ≤ j < n.
s[i . . j] is the empty string for i > j. The i’th suffix of s denoted by s̃i is the
string s[i . . n−1]. Suffix s̃i is smaller than s̃j for i �= j (denoted by s̃i < s̃j) if for
the smallest k s.t. s[i+k] �= s[j+k] we have s[i+k] < s[j+k]. The suffix array SA
of s is the permutation of 0, 1, . . . , n−1 s.t. s̃SA[i−1] < s̃SA[i] for i = 1, 2, . . . , n−1.
For two suffixes s̃i and s̃j with i �= j the longest common prefix lcp(i, j) of the
two is [i . . i+ �− 1] for the smallest � s.t. s[i+ �] �= s[j + �]. The longest common
prefix array LCP of s is defined by LCP[i] = |lcp(SA[i − 1], SA[i])| for i > 0 and
LCP[0] = 0. The inverse suffix array ISA of s is defined by ISA[SA[i]] = i for
0 ≤ i < n. The permuted LCP array PLCP of s is given by PLCP[i] = LCP[ISA[i]]
for 0 ≤ i < n and PLCP[i] = 0 otherwise. The Burrows Wheeler transform
BWT of s is defined by BWT[i] = s[(SA[i] − 1) mod n] for 0 ≤ i < n. Let C be
the array of length σ s.t. C[a] = |{i | s[i] = a}| for a ∈ Σ and let D be an
array of length σ + 1 s.t. D[a] =

∑
i<a C[i] for 0 ≤ a ≤ σ. For a sequence

t = t0, t1, . . . , tk−1 for some k ≥ 0 let rankt(a, j) = |{i|0 ≤ i < min(j, k), ti =
a}|, i.e. the number of a elements in t up to but excluding index j and let
selectt(a, j) = min{i | rankt(a, i + 1) = j + 1} if 0 ≤ j < rankt(a, k)
and undefined otherwise. LF is defined by LF(r) = ISA[(SA[r] − 1) mod n]. R is
defined by R(a, i) = D[a] + rankBWT(a, i) for a ∈ σ, 0 ≤ i ≤ n and backstep by
backstep(a, (i, j)) = (R(a, i),R(a, j)) for a ∈ Σ, 0 ≤ i, j ≤ n. A rank r is called
reducible (the notion was introduced in [17]) if BWT[r] = BWT[(r − 1) mod n].
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Otherwise it is irreducible. We denote the block transfer size used for EM by B
(see [29]) and assume this expresses the number of words per block, i.e. one disk
block stores B log n bits.

3 Previous Work

The first linear time algorithm for computing the LCP array from the suffix array
and text appeared in [19]. One of the main combinatorial properties used by this
algorithm is the fact that PLCP[i] ≥ PLCP[i − 1] − 1 for 0 < i < n. This property
is also used in [24] to obtain a representation of the PLCP array using 2n+ o(n)
bits while allowing constant time access. Let ζ(0) = 1 and ζ(i) = 0ζ(i − 1) for
i > 0 (the concatenation of a zero bit and ζ(i − 1)). The 2n bits in the data
structure are the bit sequence K = η(n − 1) given by η(0) = ζ(PLCP[0] + 1) and
η(i) = η(i − 1)ζ(PLCP[i] − PLCP[i − 1] + 1) for 0 < i < n. The o(n) additional
bits are used for a select index (cf. [21]) on K. K stores the sequence of pairwise
differences of adjacent PLCP values shifted by 1 in unary representation (the
number i is represented as i zero bits followed by a 1 bit). The value PLCP[i] can
be retrieved as selectK(1, i)−2(i+1)−1. In [1] Beller et al. present an algorithm
for computing the LCP array in IM using a wavelet tree (see [13]). This algorithm
runs for �m +1 rounds where �m is the maximum LCP value produced. Round i
for 0 ≤ i ≤ �m sets LCP[r] for exactly those ranks r s.t. LCP[r] = i, i.e. the values
are produced in increasing order.

4 Computing the Succinct PLCP Array

4.1 Constructing the PLCP Bit Vector by Observing LCP Values
in Increasing Order

In this section we modify the algorithm by Beller et al. (cf. [1]) to produce the
succinct 2n bit PLCP bit vector in EM. The main idea is to use the fact that
the algorithm produces the LCP values in increasing order. It starts with a tuple
(ε, (0, n)) which denotes the empty word and the corresponding rank interval on
the suffix array (the lower end 0 is included, the upper n is excluded). Round
i takes the tuples from the previous round (or the start tuple for round 0) and
considers all possible extensions by one symbol via backward search (cf. [7]),
i.e. it produces (aw, (l′, r′)) from (w, (l, r)) for each aw appearing in s. All suffixes
considered in round i starting by aw in the rank interval (l′, r′) have a common
prefix of length i + 1, while the suffixes at ranks l′ − 1 and l′ (for l′ �= 0) as well
as at ranks r′ − 1 and r′ (for r′ < n) have a common prefix of at most length
i. Based on this insight we can set LCP[l′] and LCP[r′] to i, if they have not
already been set in a previous round. In the tuples the first (string) component
is only provided for the sake of exposition, the algorithm does not require or
use it. In addition the algorithm prunes away intervals when a respective LCP
value (Beller et al. use the upper bound r′ for setting new values in [1], in our
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implementation we use the lower bound l′ as it simplifies the transition to EM)
is already set.

The succinct PLCP array K contains n zero and n one bits. The one bits mark
positions in the text (remember PLCP is in text order). The zero bits encode
the differences between adjacent PLCP values shifted by 1. For computing this
bit vector assume that we start off with a vector of n one bits. The information
we need in addition is how many 0 bits we have to insert in front of any given
1 bit in the sequence. If PLCP[i] is not smaller than PLCP[i − 1], then we have to
add PLCP[i] − PLCP[i − 1] + 1 zero bits just in front of the (i + 1)st 1 bit. In the
algorithm we can achieve this by starting to add 0 bits for ranks r which did
not have their value set in a previous round but which do have the value for the
rank of the previous position (obtainable as LF(r)) set in the current round. We
call this adding a rank to the active set. We stop adding 0 bits for a rank in the
round in which the value for the rank itself gets set, which we call removing a
rank from the active set.

4.2 Computing Backward Extensions in External Memory

The first obstacle we need to overcome is to compute backward extensions in
external memory. Let

I = [I0 = (�0, r0), I1 = (�1, r1), . . . , Iz−1 = (�z−1, rz−1)]

denote a sequence of intervals s.t. �0 = 0, rz−1 = n, ri−1 = �i for 1 ≤ i <
z and �i �= ri for 0 ≤ i < z. We call any sequence of intervals with these
properties a partition. Note that backstep(a, (�, r)) for a ∈ Σ and an interval
(�, r) can, if the result is non empty, be computed by extracting the smallest
rank �′ and the largest rank r′ in �, � + 1, . . . , r − 1 s.t. BWT[�′] = BWT[r′] =
a and subsequently computing (LF(�′), LF(r′) + 1) which by the definition of
backstep is equivalent to (LF(�′), LF(�′) + c) for c = {i | � ≤ i < r, BWT[i] = a}.
Due to the properties of the BWT the LF function for some rank r can be
computed by marking rank r in the BWT, sorting the BWT stably by symbol
and extracting the index of the marked symbol after sorting (see [3]). Given
a sequence of source ranks �0, �1, . . . , �z−1 in strictly increasing order we can
compute the set LF(�0), LF(�1), . . . , LF(�z−1) by marking all of the source ranks
in the BWT, sorting it and checking where the marked symbols ended up. If we
have BWT[�0] = BWT[�1] = . . . = BWT[�z−1] then LF(�0), LF(�1), . . . , LF(�z−1) will
also be a strictly increasing sequence as LF(r) = R(BWT[r], r) and R(BWT[r], r) is
strictly increasing for any strictly increasing sequence of ranks r0, r1, . . . , rx−1

s.t. BWT[r0] = BWT[r1] = . . . BWT[rx−1]. The algorithm shown in Fig. 1 uses these
properties to compute all backward extensions for a given partition I using a
bucketing approach. The BWT is scanned sequentially and can thus be in any
compressed form allowing efficient sequential scanning. The partition I can be
stored as two bit vectors of length n where one bit vector marks the lower
interval ends and the other the upper end minus one (see [1]). The Ki sequences
are stored in the same way. The algorithm runs in time O(nσ). This approach
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however is not suitable for external memory for all but the smallest alphabets,
as it requires σ output streams for storing the output intervals. This is fixed
by transforming the algorithm to the one shown in Fig. 2 by turning the pure
bucketing approach (use one bucket per alphabet symbol) to a radix sort along
the bit representation of the alphabet symbols (use �log2 σ� rounds of bucket
sorting using 2 buckets. The rounds use the bits of the alphabet symbols from
the least to most the most significant one for bucketing). This brings the run-
time of the algorithm to O(n log σ). However it requires to sort the BWT along the
way, which involves decoding and encoding it log(σ) times and thus increases
the amount of I/O necessary from a linear scan to O(n log2 σ

B log n ). The extension of
the algorithm to a radix base larger than two is straight forward, which can save
some I/O in practice. This allows us to compute all required backward extensions
for one round of the algorithm in time O(n log σ) and O(n log2 σ

B log n ) I/O.

Fig. 1. Backward extension of a partition I by all symbols in Σ (bucketing approach)

4.3 Computing LCP Difference Bits

We store the set of ranks set so far using a bit vector S in external memory. Hav-
ing computed the backward extensions we can determine the vector T of ranks
to be newly set in this round by extracting the interval lower bounds and com-
bining them with the S vector. This takes linear time and I/O O(n/(B log n)).
To determine which ranks need to be activated we need to compute which ranks
r are not set in S but LF(r) will be set in this round, i.e. rank LF(r) is set in
the T vector. To this end we reorder T along an inverse LF mapping. Like the
forward LF mapping corresponds to a sorting operation on the BWT the inverse
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LF mapping corresponds to an inverse sorting operation on the BWT, i.e. tak-
ing the sorted BWT and performing reorder operations to obtain the original
BWT while avoiding to swap equal elements. Like the forward sorting this can
be implemented using a bucket/radix sorting method. Figure 3 shows an inverse
sorting procedure for binary keys based on bucket sorting. The key sequence is
scanned from left to right and values from the blocks corresponding to the 0 and
1 key areas in the data array are extracted as required. Radix inverse sorting
can be implemented by storing the binary key sequences as they are observed
during a forward radix sorting based on binary bucket sorting and performing
the inverse sorting in reverse order. Binary bucket inverse sorting requires three
input streams scanned sequentially (one for the key sequence, two for the 0 and
1 areas of the value sequence) and a single output stream.

Fig. 2. Backward extension of a partition I by all symbols in Σ (radix sort version)

We inverse sort the T bit vector to T i based on the BWT. For this note that the
inverse sorting key bits can be computed once and do not need to be recomputed
for each round of the algorithm. The inverse sorting requires time O(n log σ) and
O(n log2 σ

B log n ) I/O. Then we scan T i and S to find ranks which are set in T i but not
in S. These ranks are marked in a bit vector we use to denote the set of active
ranks. This takes time O(n) and I/O O(n/(B log n)). Using this updated vector
of active ranks we can update the vector PD storing the information we have
accumulated about the succinct LCP array so far. This vector is initialised by n
one bits before the first round. If rank r is present (i.e. set, but not necessarily
added to the active bit vector in this round) in the active bit vector, then we add
one zero bit ahead of the one bit for rank r. The vector PD will grow from n to 2n
bits during the algorithms progress. After updating the PD vector we deactivate
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Fig. 3. Inverse binary bucket sorting for key vector K and data vector A of length n

all ranks marked in the T vector which are set in the active bit vector and mark
all ranks set in the T vector in the S vector. These operations all together take
time O(n) and O(n) elements of I/O O(n/(B log n). In total one round of the
algorithm takes time O(n log σ) and I/O O(n log2 σ

B log n ). The algorithm runs as long
as the S vector has unset ranks. This can in the worst case take n − 1 rounds,
but on average ends after O(logσ n) rounds (cf. [26]).

4.4 Reordering from Rank to Position Order

When all ranks are marked in S we still have to take care of the task of transform-
ing the vector from rank to position order. To this end assume we have a sampled
inverse suffix array of sampling rate ∫ , i.e. the sequence ISA[0], ISA[∫ ], . . .. We
generate the list P of tuples (ISA[p], p, 0, empty, 1) for p = 0, ∫ , . . . and sort
it by the first (rank) component. The third component stores how many LCP
difference values we have attached so far, the fourth stores those values (we
encode them in γ code so the total space is bounded by O(n) bits, cf. [28])
and the fifth component marks the tuple’s activity. This takes time O(n

∫ log n)
and I/O O(n log n

∫B ). Then we run ∫ rounds of the following sequence of steps.
Perform an LF operation on the tuples turning the first two components from
(r, p) to (LF(r), p − 1 mod n). This can be done by sorting as stated above in
time O(n log σ) and O( log σ

B (n
∫ + n

log n )) I/O operations. Scan PD and P and add
values from PD to P for matching ranks in P (first component). For adding to a
tuple the third component of the tuple is incremented by one and the new value
is prepended to the list of the fourth component. Tuples which have reached a
position s.t. p mod ∫ = 0 are deactivated to avoid copying the same value several
times. In total the ∫ rounds require time O(n log σ∫) and I/O O( log σ

B (n+ n∫
log n )).

Afterwards the list P is sorted by the second (position) component and subse-
quently the values in the fourth component are extracted in order to obtain the
final succinct LCP array. This takes time O(n log n

∫ ) and I/O O((n
∫ + n

log n ) 1
B ).

Assuming an ISA sampling rate ∫ ∈ Ω(log n/ log σ) the algorithm has a space
requirement of O(n log σ) in external memory and an I/O volume of O(n log σ

B (1+
�m log σ
log n )). If the largest appearing LCP value is �m. We summarise this section

in the following theorem.
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Theorem 1. The succinct 2n bit PLCP representation for a string s of length
n can, given its BWT and sampled suffix array of sampling rate ∫ ∈ Θ(log n), be
constructed in worst cast time O(n2 log σ) and I/O O(n2 log2 σ

B log n ) and average time

O(n log n log σ) using I/O O(n log2 σ
B ). In both cases it uses space O(n log σ) bits

of space in EM.

5 Improvement of Worst Case

While on average our algorithm has a run-time of O(n log n log σ) as the LCP
values are O(log n) on average, we often see cases in practice where, while most
of the LCP values are small (in the order of log n), there are some significantly
larger values as well. In this case an easy adaption of our algorithm is to stop the
computation of the PD vector after a certain number of rounds (say 3 log n) and
compute the missing values using the algorithm presented in [16]. This adaption
can be performed using the following steps before reordering the LCP difference
values from rank to position order.

First we remove all values from PD for ranks which are still in the active set
by setting them back to zero as they are incomplete. Then we mark all ranks
in S which are reducible. Such ranks can be safely ignored because their value
in PD will be zero in the end (cf. [17]). Then compute the bit vector U (unset)
by inverting S. Let u denote the number of bits set in U . These steps can be
performed in linear time and I/O O(n/(B log n)). Compute the bit vector ULF by
setting LF (r) in ULF for each rank r in U , then merge ULF into U . We add those
ranks because we need them to compute LCP differences between a position
and the previous position. This takes time O(n log σ) and O(n log2 σ

B log n ) I/O. For
each rank r in U add rank r − 1 mod n in linear time and I/O O(n/(B log n)).
These ranks are required for computing LCP values by definition. Similar to
transforming rank to position order above use ∫ rounds of LF operations to
annotate the ranks produced with the respective positions in time O(n log σ∫)
and I/O O( 1

B (n+ n∫ log σ
log n )). Extract tuples (r−1 mod n, SA[r−1 mod n], r, SA[r])

from the pairs generated by checking for neighbouring ranks in the pairs in
time O(u) and O(u/B) I/O. Sort those tuples by the last component in time
O(u log n) and O(u log n

B ) I/O operations. Compute LCP values based on these
tuples using the algorithm in [16], which gives us new tuples (r, p, LCP[r]). It
takes time O(n2/(M logσ n) + n logM/B(n/B)) if M log n bits of memory are
available and O(n2/(MB(logσ n)2) + n/B logM/B n/B) (see [16]) I/O. Sort the
resulting tuples by the position component in time O(u log n) and I/O O(u log n

B ).
Combine tuples for position p with such for position p − 1 mod n if present and
drop the position component leaving us with tuples (r, δl) in time O(u) and I/O
O(u/B). Sort these tuples by rank in time O(u log n) and I/O O(u log n

B ). Finally
merge the information computed into the PD vector in time O(n) using I/O
O(n/(B log n)+u/B) and continue the algorithm above. Assuming ∫ ∈ O(log n)
and σ ∈ o(n) the total I/O for this alternative path inside the algorithm is
O(n log σ+u log n

B + n2/(MB(logσ n)2) + n/B logM/B n/B). The first term is even
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in the average case dominated by the I/O required in the earlier stage of the
algorithm (Sect. 4).

Using this hybrid algorithm we can obtain a trade off between the faster
worst case run-time of the algorithm presented in [16] given sufficient IM and
the reduced EM space usage of our algorithm presented above. In this second
stage of the hybrid algorithm we are generally only interested in computing
values for so called irreducible LCP values (cf. [17]) as only such values produce
0 bits in the succinct PLCP vector. The sum over all irreducible LCP values for
any string of length n is bounded by 2n log n (see [17]). This bound is reached for
de Bruijn strings (cf. [17]), however in this setting each irreducible LCP value is
Θ(log n). If we run the algorithm from the previous Sect. 4 for O(log2 n) rounds,
then all LCP values which remain unset must have a value of Ω(log2 n), which
means there are O( n

log n ) such values and consequently the hybrid algorithm
runs in worst case time O(n log2 n log σ) while using O(n log σ) space in EM and
O( n

log n ) bits in IM.

Theorem 2. Given the BWT and sampled inverse suffix array of sampling rate
∫ ∈ Θ(log n) for a string s of length n over an alphabet of size σ the succinct
permuted LCP array for s can be computed in time O(n log2 n log σ) and I/O
O(n log n log2 σ

B ) while using O(n log σ) bits of space in EM and O( n
log n ) bits of

space in IM.

As the bound of 2n log n for the sum over the irreducible LCP values of a string is
obtained for LCP values which are all of length O(log n) the interesting question
remains whether there is a smaller upper bound for the sum of the irreducible
LCP values when only LCP values in ω(log n) are considered in the sum.

6 Experimental Results

Presenting an algorithm with quadratic worst case behaviour, even one which
can be hybridised with another algorithm to obtain subquadratic run-time, begs
the question whether the algorithm is in any way practical, i.e. whether the
lower space usage of O(n log σ) bits in EM is bought at the cost of an intolerable
run-time. We have implemented a version of the hybrid algorithm. It is available
in the lcpbit program of the bwtb3m suite on github1. The program contains a
parallelised version of the algorithm. We omit the details of the parallelisation
from this paper due to lack of space. The first stage of the algorithm was run until
less then n/(2 log n) irreducible ranks were unset in S. Tests were performed on
48 core machines equipped with Intel Xeon E5-2670v3 CPUs running at 2.30 GHz
and 1 TB of RAM, the actual amount of memory we used was however set to
much lower limits. The machines were running CentOS Linux 7.2.1511 (kernel
version 3.10.0). Files were stored on a network file system (Lustre). For testing
we used two data sets. The first, called DNA, consists of 20 mammalian genomes

1 https://github.com/gt1/bwtb3m.

https://github.com/gt1/bwtb3m
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downloaded from the NCBI reference database2. We extracted the sequences and
replaced indeterminate N bases randomly by determinate (A,C,G,T) bases. We
added the reverse complement. The second data set, called enwiki, was an XML
dump of the English Wikipedia3. Note that for enwiki we operate on the full
alphabet encoded in Unicode, not the byte sequence used to encode it. The BWT
and sampled ISA were computed using bwtb3m (which is an implementation of
the concepts described in [27,28]). Details about the data sets can be found in
Table 1. For enwiki we reduced the alphabet size by removing unused symbol
values, which can be performed by a sorting (which we do anyway for producing
the unsort keys) and unsorting loop. This step is contained in the stated run-time
and obviously does not change the LCP array obtained.

Table 1. Datasets used, columns: name, size of input alphabet (maximum symbol
appearing plus one), size of reduced alphabet 0, 1, . . . , σred −1 with no symbol unused,
length of sequence in symbols divided by 230, size of compressed BWT file in GB,
fraction of irreducible ranks, ISA sampling rate used

Name σin σred n/230 BWT/230 firred ∫
DNA 4 4 99.678 26.010 0.565671 32

enwiki 1114112 58488 52.410 7.560 0.203 64

Run-time and space usage for the sample data sets are shown in Table 2.
The table also shows the run-time of the program presented in [16] for the DNA
data set. The algorithm is named KK in the table. A comparison for the enwiki
data set was not possible as the implementation presented in [16] does not handle
alphabets of the size we consider here. The space usage of KK in external memory
is stated as given by the authors in [16]. The fact that this value is computed
from the input length and not measured is denotes by an asterisk in the table.
The program does not output the amount of space used. Table 2 shows that the
algorithm presented in this paper is feasible for large data sets. The I/O volume
is higher than what is reported for comparable data sets reported in [16], however
the average I/O data rate is easily handled by modern solid state drives (M.2
or SATA Express). Our current implementation is also not optimal in terms of
minimising I/O yet. The implementation of the algorithm in Fig. 2 for instance
really sorts the BWT instead of only reading the key bits already stored for the
BWT anyway. For enwiki the run-time suffers somewhat from the dependence
on the alphabet size, but the approach is still functional for larger alphabets. In
addition the run-time for enwiki is higher due to the lower sampling frequency of
the ISA. However both cases show that a succinct LCP array can be computed
in external memory without using an amount of disk space which is an order
of magnitude larger than the length of the original text. On these examples we

2 ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate mammalian.
3 https://dumps.wikipedia.org.

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian
https://dumps.wikipedia.org
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use about 3n bytes per symbol in EM which is significantly less than the 21n
bytes per symbol reported in [16] for computing an uncompressed LCP array.
Our internal memory use on these examples may look high, but it is mainly due
to compression and decompression support data structures which are allocated
per thread. These can be assumed to scale with the alphabet size and thread
number but not with the length of the input sequence. We could reduce them at
the expense of sacrificing compression efficiency. An interesting property of the
algorithm is that it reads more data than it writes. This has little bearing for
conventional hard disks on which both operations usually have the same speed,
however it is beneficial for solid state drives which are often faster at reading data
than writing it. The reduced space requirement in external memory comes at
the cost of increased CPU requirements for encoding and decoding compressed
data structures. This however is alleviated by the use of multi threading. And as
the steady increase of CPU frequency over a long time has all but ceased and is
increasingly replaced by an increase of parallelism (more CPU cores) multi core
machines are now very common.

Table 2. Experimental data, columns: name of data set, run-time (wall clock, d:h:m:s)
to produce succinct LCP bit vector, run-time per symbol (seconds per 220 symbols),
input in bytes per symbol, output in bytes per symbol, I/O in bytes per symbol
(in+out), average I/O rate (MB/s), EM used in GB including input (BWT+ISA) and
output (succinct LCP bit vector), EM (bytes) per input symbol, peak IM allocation in
GB, peak IM allocation per thread in GB

algo data run-time t/s in out I/O (I/O)/s EM EM/n IM IM/thr

lcpbit DNA 0:18:03:25 0.636 319 100 419 658.24 319.220 3.203 8.340 .174

kk DNA 2:06:04:20 1.907 n/a n/a n/a n/a 2093∗ 21∗ 10.855 10.855

lcpbit enwiki 2:06:31:07 3.657 1700 294 2064 545.23 162.55 3.15 11.323 .236

Our lcpbit program is capable of computing a succinct PLCP bit vector the
complete NCBI reference sequence database (forward plus reverse complement,
together about 1.44 TB) in about a week using a system similar to the test
system described but with half the number of CPU cores while employing about
100 GB of RAM to speed up the semi external part derived from [16].

7 Conclusion and Future Work

We have presented a practical algorithm for computing the succinct PLCP array
in external memory while using O(n log σ) bits of space in external memory. The
algorithm can be extended to operate on circular strings and to compute the LCP
data structure described in [11] as well as supporting data structures for related
queries like previous/next smaller value (cf. [12]) and range minimum queries
(cf. [10]) on the non permuted LCP array. We will describe these extensions
elsewhere.
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Abstract. We consider the problem of representing multidimensional
data where the domain of each dimension is organized hierarchically,
and the queries require summary information at a different node in the
hierarchy of each dimension. This is the typical case of OLAP databases.
A basic approach is to represent each hierarchy as a one-dimensional line
and recast the queries as multidimensional range queries. This approach
can be implemented compactly by generalizing to more dimensions the
k2-treap, a compact representation of two-dimensional points that allows
for efficient summarization queries along generic ranges. Instead, we pro-
pose a more flexible generalization, which instead of a generic quadtree-
like partition of the space, follows the domain hierarchies across each
dimension to organize the partitioning. The resulting structure is much
more efficient than a generic multidimensional structure, since queries
are resolved by aggregating much fewer nodes of the tree.

1 Introduction

In many application domains the data is organized into multidimensional matri-
ces. In some cases, like GIS and 3D modelling, the data are actually points that
lie in a two- or three-dimensional discretized space. There are, however, other
domains such as OLAP systems [5,7] where the data are sets of tuples that are
regarded as entries in a multidimensional cube, with one dimension per attribute.
The domains of those attributes are not necessarily numeric, but may have richer
semantics. A typical case in OLAP [10], in particular in snowflake schemes [12],
is that each tuple contains a numeric summary (e.g., amount of sales), which
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is regarded as the value of a cell in the data cube. The domain of each dimen-
sion is hierarchical, so that each value in the dimension corresponds to a leaf
in a hierarchy (e.g., countries, cities, and branches in one dimension, and years,
months, and days in another). Queries ask for summaries (sums, maxima, etc.)
of all the cells that are below some node of the hierarchy across each dimension
(e.g., total sales in New York during the previous month).

A way to handle OLAP data cubes is to linearize the hierarchy of the domain
of each dimension, so that each internal node corresponds to a range. Summa-
rization queries are then transformed into multidimensional range queries, which
are solved with multidimensional indexes [14]. Such a structure is, however, more
powerful than necessary, because it is able to handle any multidimensional range,
whereas the OLAP application will only be interested in queries correspond-
ing to combinations of nodes of the hierarchies. There are well-known cases, in
one dimension, of problems that are more difficult for general ranges than if
the possible queries form a hierarchy. For example, categorical range counting
queries (i.e., count the number of different values in a range) requires in gen-
eral Ω(log n/ log log n) time if using O(npolylog n) space [11], where n is the
array size, but if queries form a hierarchy it is easily solved in constant time and
O(n) bits [13]. A second example is the range mode problem (i.e., find the most
frequent value in a range), which is believed to require time Ω(n1.188) if using
O(n1.188) space [4], but if queries form a hierarchy it is easily solved in constant
time and linear space [8].

In this paper we aim at a compact data structure to represent data cubes
where the domains in each dimension are hierarchical. Following the general
idea of the tailored solutions to the problems we mentioned [8,13], our structure
partitions the space according to the hierarchies, instead of performing a regu-
lar partition like generic multidimensional structures. Therefore, the queries of
interest for OLAP applications, which combine nodes of the different hierarchies,
will require aggregating the information of just a few nodes in our partitions,
much fewer than if we used a generic space partitioning method.

Since we aim at compact representations, our baseline will be an extension
to multiple dimensions of a two-dimensional compact summarization structure
known as k2-treap [1], a k2-tree [3] enriched with summary information on the
internal nodes. This n-dimensional treap, called kn-treap, will then be extended
so that it can follow an arbitrary hierarchy, not only a regular one. The topol-
ogy of each hierarchy will be represented using a compact tree representation,
precisely LOUDS [9]. This new structure is called CMHD (Compact represen-
tation of Multidimensional data on Hierarchical Domains). Although we focus
on sum queries in this paper, it is easy to extend our results to other kinds of
aggregations.

The rest of this paper is organized as follows. Sections 2 and 3 describe our
compact baseline and then how it is extended to obtain our new data structure.
An experimental evaluation is given in Sect. 4. Finally, we offer some conclusions
and guidelines for future work.
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2 Our Baseline: kn-treaps

The kn-treap is a straightforward extension of the k2-treap to manage multiple
dimensions. It uses a kn-tree (in turn a straightforward extension of the k2-tree)
to store its topology, and stores separately the list of aggregate values obtained
from the sum of all values in the corresponding submatrix. Figure 1 shows a
matrix and the corresponding kn-treap. The example uses two dimensions, but
the same algorithms are used for more dimensions.

Consider a hypercube of n dimensions, where the length of each dimension
is len = ki for some i. If the length of the dimensions are different, we can
artificially extend the hypercube with empty cells, with a minimum impact in
the kn-treap size. The kn-trees, which will be used to represent the kn-treap
topology, are very efficient to represent wide empty areas. The algorithm to
build the kn-treap starts storing on its root level the sum of all values on the
matrix1. It also splits each dimension into k equal-sized parts, thus giving a total
of kn submatrices. We define an ordering to traverse all the submatrices (in the
example, rows left-to-right, columns top-to-bottom). Following this ordering, we
add a child node to the root for each submatrix. The algorithm works recursively
for each child node that represents a nonempty submatrix, storing the sum
of the cells in this submatrix, splitting it and adding child nodes. For empty
submatrices, the node stores a sum of 0.

As we can see in Fig. 1, the root node stores 51, the sum of all values in the
matrix, and it is decomposed into 4 matrices of size 4 × 4, thus adding 4 children
to the root node. Notice that the second submatrix (top-right) is full of zeroes,
so this node just stores a sum of 0 and is not further decomposed. The algorithm
proceeds recursively for the remaining 3 children of the root node.

The final data structures used to represent the kn-treap are the following:

– Values (V): Contains the aggregated values (sums) for each (sub)matrix, as
they would be obtained by a levelwise traversal of the kn-treap. It is encoded
using DACs [2], which compress small values while allowing direct access.

– Tree structure (T): It is a kn-tree that stores a bitmap T for the whole tree
except its leaves. In this case, the usual bitmap L for the leaves in a standard
kn-tree is not used, because the information about which cells have or not a
value is already represented in V . Therefore L is not needed.

The navigation through the kn-treap is basically a depth first traversal. Find-
ing the child of a node can be done very efficiently by using rank and select
operations [9] as in the standard k2-tree. The typical queries in this context are:
finding the value of an individual cell and finding the sum of the values in a
given range of cells, specified by the initial and final coordinates that define the
submatrix of interest.

1 The implemented algorithm is recursive and each sum is actually computed only
once, when returning from the recursive calls.
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Fig. 1. kn-treap with a highlighted range query

Finding the value of a specific cell by its coordinates. To find the value
of the cell, for example the cell at coordinates (4, 3) in the figure, the search
starts at the root node and in each step goes down trough the children of the
matrix overlapping the searched cell. In this example, the search goes through
the first child node (with value 21 in the figure), then through its third child
(with value 6) and finally through the second child, reaching the leaf node with
value 4, which is the value returned by the query.

Finding the sum of the cells in a submatrix. The second type of query
looks for the aggregated value of a range of cells, like the shaded area in Fig. 1.
This is implemented as a depth-first multi-branch traversal of the tree. If the
algorithm finds that the range specified in the query fully contains a submatrix
of the kn-treap that has a precomputed sum, it will use this sum and will not
descend to its child nodes. The figure highlights the branches of the kn-treap
that are used. Notice that this query completely includes the sumatrices of values
{5, 4, 0, 2} and {0, 2, 1, 5}, that have their sums (11 and 8) explicitly stored on
the third level of the tree. Therefore, the algorithm does not need to reach
the leaf levels of the tree for these matrices. Notice also that there is an empty
submatrix that intersects with the region of the query (the first child of the third
child of the root), so the algorithm also stops before reaching the leaf levels in
this submatrix. Only for cells (3, 2) (with a value of 4) and (4, 2) (with a value
of 0) needs the algorithm to reach the leaf levels.

3 Our Proposal: CMHD

As previously stated, CMHD divides the matrix following the natural hierarchy
of the elements in each dimension. In this way we allow the efficient answer of
queries that consider the semantic of the dimensions.
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3.1 Conceptual Description

Consider an n-dimensional matrix where each cell contains a weight (e.g., prod-
uct sales, credit card movements, ad views, etc.). The CMHD recursively divides
the matrix into several submatrices, taking into account the limits imposed by
the hierarchy levels of each dimension.

Figure 2 depicts an example of a CMHD representation for two dimensions.
The matrix records the number of product sales in different locations. For each
dimension, a hierarchy of three levels is considered. In particular, cities are aggre-
gated into countries and continents, while products are grouped into sections and
good categories. The tree at the right side of the image shows the resulting con-
ceptual CMHD for that matrix. Observe that each hierarchy level leads to an
irregular partition of the grid into submatrices (each of them defined by the
limits of its elements), having as associated value the sum of product sales of the
individual cells inside it. Thus, the root of the tree stores the total amount of
sales in the complete matrix. Then the matrix is subdivided by considering the
partition corresponding to the first level of the dimension hierarchies (see the
bold lines). Each of the submatrices will become a child node of the root, keeping
the sum of values of the cells in the corresponding submatrix. The decomposition
procedure is repeated for each child, considering subsequent levels of the hierar-
chies (see the dotted lines), as explained, until reaching the last one. Also notice
that, as happens in the kn-treap, the decomposition concludes in all branches
when empty submatrices are reached (that is, in this scenario, when a submatrix
with no sales is found). See, for example, the second child of the root.

Note that CMHD assumes the same height in all the hierarchies that corre-
spond to the different dimensions. Observe that, for each crossing of elements
of the same level from different dimensions, an aggregate value is stored. Notice
also that artificial levels can be easily added to a hierarchy of one dimension by
subdividing all the elements of a level in just one element (itself), thus creating
a new level identical to the previous one. This feature allows us to arbitrarily
match the levels of the different hierarchies, and thus to flexibly adapt the repre-
sentation of aggregated data to particular query needs. That is, by introducing
artificial intermediate levels where required, more interesting aggregated values
will be precomputed and stored. For example, assume we have two dimensions:
(d1) with levels for department, section and product ; and (d2) with levels for
year, season, month and day. If we were interested in obtaining the number of
sales per section for seasons, but also for months, we could devise a new level
arrangement for d1, that will have now the levels department, section, section’,
product ; where each particular section of the second hierarchy level results into
just one section’ child, which is actually itself. In this way aggregated values will
be computed and stored considering sales for section in each season, but also
sales for section’ in each month.

3.2 Data Structures

The conceptual tree that defines the CMHD is represented compactly with dif-
ferent data structures, for the domain hierarchies and for the matrix data itself.
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Fig. 2. Example of CMHD construction for a two-dimensional matrix.

Domain hierarchy representation. The hierarchy of a dimension domain is
essentially a tree of C nodes. We represent this tree using LOUDS [9], a tree
representation that uses 2C bits, and can efficiently navigate it. Using LOUDS,
a tree representing the hierarchy of the elements of a dimension is encoded by
appending the degree r of each node in (left-to-right) level-order, in unary: 1r0.
Figure 2 illustrates the hierarchy encoding of the dimensions used in that example
(see d1 and d2). For instance, the degree of the first node for the products
dimension (d1) is 3, so its unary encoding is 1110. Note that each node (i.e.,
element of a dimension placed at any level of its hierarchy) is associated with one
1 in the encoded representation of the degree of its parent. LOUDS is navigated
using rank and select queries: rankb(i) is the number of bits b up to position
i, and selectb(j) is the position of the jth occurrence of bit b. Both queries are
computed in constant time using o(C) additional bits [6]. For example, given a
node whose unary representation starts at position i, its parent is p = select0(t−
j) + 1, where t = select1(j) and j = rank0(i); and i is the (t − p + 1)th child
of p. On the other hand, the kth child of i is select0(rank1(i) + k − 1) + 1. We
also use a hash table to associate the domain nodes (i.e., labels such as “USA”
in Fig. 2) with the corresponding LOUDS node position.

Data representation. To represent the n-dimensional matrix, we use the fol-
lowing data structures:

– Tree structures (Ta and Tc): to navigate the CMHD, we need to use two dif-
ferent data structures in conjunction. First, Ta, a bit array that, similarly to
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the kn-treap, provides a compact representation of the conceptual tree inde-
pendently of the node values, for all the tree levels, except the last one2. That
is, internal nodes whose associated value is greater than 0, will be represented
with a 1. In other case, they will be labeled with a 0. Observe that, for the
kn-treap, the use of this data structure is enough to navigate the tree, taking
advantage of the regular partition of the matrix into equal-sized submatri-
ces. Instead, CMHD follows different hierarchy partitions, which results into
irregular submatrices. Therefore, a second data structure, Tc, is also required
to traverse the CMHD. This is a bit array aligned to Ta, which marks the
limits of each tree node in Ta (this time, it also considers the last tree level).
If the next tree node in Ta has z children, we append 1z−10 to Tc. Notice that
each node of Ta is associated with a 0 in Tc, which allows navigating the trees
using rank and select on Ta and Tc: say we are at a node in Ta that starts
at position i; then it has a kth child iff Ta[i + k − 1] = 1, and if so this child
starts at position select0(Tc, rank1(Ta, i + k − 1)) + 1.

– Values (V): the CMHD is traversed levelwise storing the values associated with
each node (either corresponding to original matrix cells, or to data aggrega-
tions) in a single sequence, which is then represented with DACs [2].

3.3 Queries

Queries in this context give the names of elements of the different dimensions
and ask for the sum of the cells defined for those values. Depending on the
query, we can answer it by just reporting a single aggregated value already kept
in V, or by retrieving several stored values, and then adding them up. The first
scenario arises when the elements (labels) of the different dimensions specified
in the query are all at the same level in their respective hierarchies. The second
situation arises from queries using labels of different levels. In both contexts,
top-down traversals of the conceptual CMHD are required to fetch the values.
The algorithm always starts searching the hash tables for the labels provided
by the query for the different dimensions, to locate the corresponding LOUDS
nodes. From the LOUDS nodes, we traverse each hierarchy upwards to find out
its depth and the child that must be followed at each level to reach it.

This information is then used to find the desired nodes in Ta. For example,
with two dimensions, we start at the root of Ta and descend to the child number
k1 + a1 · k2, where ki is the child that must be followed in the ith dimension
to reach the queried node, and ai is the number of children of the root in the
ith dimension (ai is easily computed with the LOUDS tree of its dimension).
We continue similarly to the node at level 2, and so on, until we reach one
of the query nodes in a dimension, say in the first. Now, to reach the other
(deeper) node in the second dimension, we must descend by every child in the
first dimension, at every level, until reaching the second queried node. Finally,

2 We do not actually need to represent the nodes of the last level in Ta. This data
structure will be used to first identify a node whose children will be later located in
another bit array (Tc). But these already constitute matrix cells, with no children.
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when we have reached all the nodes, we collect and sum up the corresponding
values from V . Note that, if all the queried nodes are in the same level, we
perform a single traversal in Ta. Note also that, if we find any zero in a node
of Ta along this traversal, we immediately prune that branch, as the submatrix
contains no data.

Example. Assume we want to retrieve the total amount of speaker sales in Mon-
treal, in Fig. 2. Since both labels belong to the same level in both dimension
hierarchies (the last one), we will have to retrieve a single stored value in that
level. The path to reach it has been highlighted in the conceptual tree of the
image. To perform the navigation we must start at the root of the tree (posi-
tion 0 in Ta). In the first level, we need to fetch the sixth child (offset 5), as
it corresponds to the submatrix including the element to search, in that level.
Hence we access position 5 in Ta. Since Ta[5] = 1, we must continue descending
to the next level. Recall that we have a 1 in Ta for each node with children,
and that each node is associated with just one 0 in Tc. So the child starts at
position select0(Tc, rank1(Ta, 5)) + 1 = select0(Tc, 4) + 1 = 22 in Ta. In this
level we must access the third child (offset 2), so we check Ta[24] = 1. Again,
as we are in an internal node, we know that its children are located at position
select0(Tc, rank1(Ta, 24)) + 1 = select0(Tc, 9) + 1 = 59. Finally, we reach the
third and last level of the tree, where we know that the corresponding child is
the fourth one (at Ta[59 + 3] = Ta[62]). Recall, however, that this last level is
not represented in Ta. To perform this final step, we directly look into the array
V : V [62 + 1] = V [63] = 7 is the answer.

In case of queries combining labels of different levels, the same procedure
would apply, but having to get the values corresponding to all the possible com-
binations with the element of the lowest hierarchy level (e.g., if we want to obtain
the number of meal sales in America, we must first recover the values associated
with meal -Canada, meal -USA, and meal -Chile, and then sum them up).

4 Experimental Evaluation

This section presents the empirical evaluation of the two previously described
data structures. Both representations have been implemented in C/C++, and
the compiler used was GCC 4.6.1. (option -O9). We ran our experiments in a
dedicated Intel (R) Core (TM) i7-3820 CPU @ 3.60 GHz (4 cores) with 10 MB of
cache, and 64 GB of RAM. The machine runs Ubuntu 12.04.5 LTS with kernel
3.2.0-99 (64 bits).

We generate different datasets, all of them synthetic, to evaluate the per-
formance of the two data structures, varying the number of dimensions and
the number of items on each dimension. These datasets have been labeled as
<dim#>D <item#>, thus referring to their size specifications in the own name.
For example, dataset 5D 16 has 5 dimensions, and the number of items on each
dimension is 16. The total size of this dataset is 165 = 1048576 elements.

In order to show the CMHD advantage of considering the domain semantics,
and computing the aggregate values according to the natural limits imposed by
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the hierarchy of elements in each dimension, the dimensions hierarchies have
been generated in two different ways for each dataset. First, the binary organi-
zation, that corresponds to a regular partition. That is, the hierarchies of each
dimension are exactly the same as those produced by a kn-treap matrix partition
into equal-sized submatrices. In this way both data structures store exactly the
same aggregated values. We named it binary because we use a value of k = 2.
Second, the irregular organization, which arbitrary groups data, on each dimen-
sion, into different and irregular hierarchies (different number of divisions, and
also different size at each level). The last scenario simulates what would be a
matrix partition following the semantic needs of a given domain. In this case the
aggregated values stored by the CMHD will be different from those stored by
the kn-treap, and therefore more appropriated to answer queries using the same
“semantic”. That means, in our context, queries considering regions that exactly
match the natural divisions of each dimension at some level of the hierarchies.

To test the structures behavior, we have also considered three different
datasets, with a different number of empty cells, for each size specification: with
no empty cells, and with 25 % and 50 % of empty cells, respectively.

First we analyze the space requirements of both data structures for all the
datasets (see Table 1). Of course, the size decreases as the number of empty
cells increases, in both cases. Moreover, we can also observe that the kn-treap
size is slightly lower than the CMHD. This is expected, because CMHD has to
store the LOUDS representation of each dimension hierarchy, while dimensions
are implicit for the kn-treap. Additionally, CMHD uses a second bitmap (Tc) to
navigate the conceptual tree, which is not necessary when using the kn-treap.

We must also clarify a small issue about the sizes of the kn-treaps: the size
of a standard kn-treap for a specific dataset is always the same, regardless of
the organization of its dimensions (binary or irregular). However, Table 1 shows
some difference in the sizes. For example, for 4D 16, the size for the binary
organization is 44.84, but it is 44.42 for the irregular one. The reason for this
variation is that all queries are performed by taking dimension labels as input,
so we need a vocabulary to translate each label into a range of cells. We have
included that vocabulary (dimension labels and cell ranges) into the size of the
kn-treaps, and the vocabulary for the irregular organization is usually smaller, as
it has less levels and less dimension labels (because each node in the conceptual
tree can have more than 2 children in the irregular organization, while the binary
organization always has 2).

Regarding query times, we have run several sets of queries for all the datasets.
As previously mentioned, queries are posed in this context by giving one element
name (label) for each different dimension, as it is the natural way to query a
multidimensional matrix defined by hierarchical dimensions. Since the kn-treap
does not directly work with labels, each query has been translated into the
equivalent ranged query, establishing the initial and final coordinates for each
dimension. The following types of queries have been considered:

– Finding one precomputed value. This value can be a specific cell of the matrix
(so forcing the algorithms to reach the last level of the tree), or a precomputed
value that corresponds to an internal node of the conceptual tree.
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Table 1. Space requirements of kn-treap and CMHD data structures (in KB)

Name0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 44.84 55.56 44.22 47.82 38.16 47.54 37.54 43.04 29.51 37.09 28.89 34.18

4D 32 680.45 864.17 679.08 750.17 552.15 710.05 550.78 640.80 400.13 527.57 398.76 501.01

5D 16 631.10 793.34 630.41 729.48 527.23 667.69 526.54 653.25 408.10 523.27 407.41 509.80

5D 32 20098.9925328.2620097.4323344.1816272.6120691.8716271.0420167.6211776.9415237.5711775.3715471.61

6D 16 9663.3712073.82 9662.4811456.36 8180.3110278.04 8179.4310532.61 6419.99 8135.86 6419.11 8279.60

Following the example of Fig. 2, a query asking for the amount of speakers
sales in Montreal or the total number of beberages sales in Italy would be
queries of this type, the former accessing an individual cell and the later
obtaining a precomputed value in the penultimate level of the tree.

– Finding the sum of several precomputed values. This kind of query must obtain
a sum that is not precomputed and stored in the data structure itself. In turn,
it must access several of these aggregated values and then add them up. Given
that we are specifying the queries by dimension labels, this type of query is
defined by using labels that belong to different levels of the hierarchies across
the dimensions. The lowest level, which corresponds to individual cells, is not
used for this scenario.

An example of this query type would be to find the total number of sales
of electronic products in Chile. Note that electronic is located at the first
level of its dimension hierarchy, but Chile is at the second level of the second
dimension (see Fig. 2). Hence, the values corresponding to computers-Chile,
cameras-Chile, and audio-Chile must be first retrieved to finally sum them up.

Each created set contains 10, 000 queries, randomly generated, of the two
previous types, for each dataset. The following tables show the average query
times (in microseconds per query) for both data structures, taking into account
the two different matrix partitions of the datasets (binary or irregular) and also
the percentage of empty cells.

We first show the results obtained for queries that just need to retrieve one
precomputed value, at different levels. On the one hand, Table 2 displays query
times for specific matrix cells, that is, located at the last level of the conceptual
tree. In this case, the kn-treap performs better than the CMHD in almost all
cases. This is an expected outcome as both data structures must reach the leaf
level to get the answer, and the depth first navigation of the tree is simpler in the
kn-treap (just products and rank operations). In any case, CMHD also performs
quite well, using just a few microseconds to answer any of the queries.

On the other hand, Table 3 shows the average query times for queries of
the same type, but now considering precomputed values stored in nodes of an
intermediate level of the tree (in particular, the penultimate level). Note that
this fact holds for both data structures when working with a regular partition
of the matrix (that is, the binary scenario). Thus, in this case, the kn-treap
gets better results than CMHD, but with slight time differences. Yet, observe
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Table 2. Average query times (in µs) for queries finding one precomputed value (orig-
inal matrix cells)

Dataset 0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 2 4 2 3 2 4 2 2 2 4 2 3

4D 32 2 5 3 4 2 4 2 1 2 4 1 4

5D 16 2 4 3 4 2 5 3 2 2 5 2 2

5D 32 3 6 3 5 2 4 3 3 2 6 3 2

6D 16 3 4 3 4 3 6 4 2 4 5 4 4

that this is not the actual scenario when dealing with meaningful application
domains, where rich semantics arise. This situation is that corresponding to
what we called irregular datasets. In this case, CMHD excels, as expected, given
that this data structure has been particularly designed to manage hierarchical
domains. Results show that CMHD is able to perform up to 12 times faster than
kn-treap (for the best case).

Table 3. Average query times (in µs) for queries finding one precomputed value (penul-
timate tree level)

Dataset 0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 1 4 7 3 1 3 6 2 2 4 5 2

4D 32 1 3 9 3 1 3 7 2 1 3 6 1

5D 16 2 4 11 1 2 3 9 1 2 4 7 3

5D 32 3 4 23 2 2 4 18 3 2 3 12 2

6D 16 2 4 35 2 2 2 28 3 3 4 21 1

To check whether the observed differences are significative (in the cases where
times were closer) we performed a statistical significance test. We checked the
4D 16 and 5D 16 datasets, for the irregular organization, with all the different
configurations of empty cells.

We show here, as a proof, the details for 4D 16 with 50 % of empty cells,
which took 5µs to the kn-treap, and 2µs to CMHD. We ran 20 sets of 10, 000
queries, and measured both the average time and the standard deviation for the
kn-treap (5.100 and 0.447, respectively) and for the CMHD (1.750 and 0.550,
respectively). With these results, we obtain a critical value of 4.725, which is
greater than 2.580, so the difference is significative with a 99 % of confidence
level. The remaining tests also proved the same significance results.

Finally, Table 4 presents the average query times for the second type of
queries (that is, those having to recover several precomputed values and then
adding them up to provide the final answer). As results show, the kn-treap dis-
plays a better performance than CMHD for the binary scenario. However, again
this is not the most interesting situation in real domains. If we observe the results
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Table 4. Average query times (in µs) for queries finding a sum of precomputed values

Dataset 0% Zeroes 25% Zeroes 50% Zeroes

Binary Irregular Binary Irregular Binary Irregular

kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD kn-treap CMHD

4D 16 3 10 20 4 3 6 16 3 2 6 12 6

4D 32 6 21 21 3 4 20 17 4 4 20 12 5

5D 16 4 8 30 8 4 8 25 3 3 7 19 1

5D 32 6 26 49 3 8 23 39 5 6 21 27 2

6D 16 5 15 106 7 5 10 82 6 4 9 63 8

obtained for the irregular datasets, we will appreciate that CMHD clearly out-
performs the kn-treap in this scenario, thus demonstrating the good capabilities
of our proposal to cope with the aim of this work.

5 Conclusions and Future Work

We have presented a multidimensional compact data structure that is tailored
to perform aggregate queries on data cubes over hierarchical domains, rather
than general range queries. The structure represents each hierarchy with a suc-
cinct tree representation, and then partitions the data cube according to the
product of the hierarchies. This partition is represented with an extension of
the k2-treap to higher dimensions and to non-regular partitions. The result-
ing structure, dubbed CMHD, is much faster than a regular multidimensional
k2-treap when the queries follow the hierarchical domains. This makes it partic-
ularly attractive to represent OLAP data cubes compactly and efficiently answer
meaningful aggregate queries.

As future work, we plan to experiment on much larger collections. This would
make the vocabulary of hierarchy nodes much less significant compared to the
data itself (especially for the CMHD). We also plan to test real datasets (for
example, coming from data warehouses) and real query workloads. We also
expect to compare our results with established OLAP database management
systems, and to enrich our prototype with other kinds of queries and data.
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Abstract. The suffix array, one of the most important data structures
in modern string processing, needs to be augmented with the longest-
common-prefix (LCP) array in many applications. Their construction is
often a major bottleneck especially when the data is too big for internal
memory. While there are external memory algorithms that construct
the suffix array and the LCP array simultaneously in the optimal I/O
complexity of O(sort(n)), for several reasons it would be desirable to
construct the suffix array first and then the LCP array from the suffix
array in a separate stage. In this paper we describe the first algorithm
that achieves O(sort(n)) I/O complexity for the LCP array construction
stage and is not an extension of a suffix sorting algorithm. As a variant,
we obtain a Monte Carlo algorithm that, given a sparse suffix array
containing m < n suffixes in sorted order, computes the corresponding
LCP array in O(scan(n) + sort(m) log(n/m)) I/Os if the suffix positions
are evenly spaced, and in O(scan(n) + sort(m) log(n)) I/Os in general.

1 Introduction

The suffix array [13,28], a lexicographically sorted list of the suffixes of a text,
is one of the most important data structures in modern string processing. It is
frequently augmented with the longest-common-prefix (LCP) array, which stores
the lengths of the longest common prefixes between lexicographically adjacent
suffixes. Together they are the basis of powerful text indexes such as enhanced
suffix arrays [1] and many compressed full-text indexes [30]. Modern textbooks
spend dozens of pages in describing their applications, see e.g. [27,33].

The construction of the two arrays is a bottleneck in many applications. They
can be constructed either simultaneously using a single algorithm, a SLACA (suf-
fix and LCP array construction algorithm), or separately constructing the suffix
array first using a SACA (suffix array construction algorithm) and then the LCP
array from the suffix array and the text using a LACA (LCP array construc-
tion algorithm). The latter option is preferred because the separate algorithms
are simpler, enable separate development and optimization, and allow many dif-
ferent combinations. The best SACA+LACA combinations are also both faster
and more space efficient than the best SLACAs in practice. This is true even in
external memory computation as shown in [17,18].
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 204–217, 2016.
DOI: 10.1007/978-3-319-46049-9 20
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However, asymptotically the external memory LACAs are inferior to the
best SLACAs. In the standard external memory (EM) model, with RAM size
M and disk block size B, common I/O complexities are scan(n) = n/B,
which is the complexity of scanning a sequence of n elements, and sort(n) =
(n/B) logM/B(n/B), which is the complexity of sorting n elements. The I/O com-
plexity of the best SACAs and SLACAs is O(sort(n)), where n is the length of the
text, which is clearly optimal since the construction involves sorting. The I/O
complexity of the external memory LACAs is O(

sort(n) + (n2/(MB log2σ n))
)

(or worse), where σ is the size of the alphabet. This leaves open the existence of
a LACA with I/O complexity O(sort(n)).

Our Contribution. We describe the first LACA with I/O complexity O(sort(n)).
It is based on two sampling schemes, difference covers and sparse PLCP arrays,
both of which have been previously used in LCP array construction, but never
together and never in the way we use them.

Difference cover sampling has been used in SACAs [15], SLACAs [21] and
LACAs [34] as well as in a data structure for answering longest common exten-
sion (LCE) queries [6], which ask for lcp(i, j), the length of the longest common
prefix of the suffixes starting at positions i and j. A difference cover sample
defines a subset of text positions with specific properties. All of the above appli-
cations compute a sparse suffix array containing in lexicographical order the
suffixes starting at the difference cover positions. The corresponding sparse LCP
array is used in the LACA and the LCE data structure. The SACA DC3 [15]
also involves O(n) substrings defined by recursive difference covers in the early
stages of its computation, and it is these DC-substrings that form the central
data structure of our new algorithm. Each DC-substring is assigned a name
so that we can compare the equality of two DC-substrings by comparing their
names. The names can be computed in O(sort(n)) I/Os similarly to DC3. Alter-
natively, in O(scan(n)) I/Os we can compute Karp-Rabin fingerprints for the
DC-substrings, which results in a Monte Carlo algorithm that works correctly
with high probability.

We show that given the substring names, we can answer an LCE query
lcp(i, j) in O(log lcp(i, j)) time. We can answer informed, approximate LCE
queries even faster, where informed means that we are given lower and upper
bounds on lcp(i, j) as input, and approximate means that the output consists of
(tighter) lower and upper bounds instead of the exact value. In external mem-
ory, we can answer batches of such LCE queries efficiently. Specifically, we can
answer a batch of d exact queries in O(scan(n) + sort(d) log �) I/Os, where � is
the average value of the results, and informed approximate queries even faster.

The second sampling technique, sparse PLCP array, has been used for LCP
array construction in [20]. The PLCP array is a permutation of the LCP array
into the text order instead of the lexicographical order, and a sparse PLCP array
is a subsequence of the full PLCP array. A sparse PLCP array allows computing
lower and upper bounds for the other PLCP array entries. In [20], a simple sparse
PLCP was used in a space efficient LCP array construction algorithm. Our new
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algorithm involves a recursive hierarchy of sparse PLCP arrays, which are used
for obtaining input bounds for informed approximate LCE queries.

A careful combination of the two sampling techniques produces the full PLCP
array, and thus the LCP array, using O(sort(n)) I/Os. Furthermore, given an
arbitrary sparse suffix array of size m < n, the associated LCP array can be
computed in O(scan(n) + sort(m) log(n)) I/Os, excluding the computation of
the DC-substring names. Using Karp-Rabin fingerprints as DC-substring names
results in a Monte Carlo algorithm with the same I/O complexity. If the suf-
fixes are evenly spaced in the text, the I/O complexity can be improved to
O(scan(n) + sort(m) log(n/m)).

Related Work. The first SLACA appeared already in the seminal paper by Man-
ber and Myers [28], but the LCP array did not really become popular until
Kasai et al. [23] introduced the first LACA. Since then several new LACAs
have been developed with a particular emphasis on reducing the space require-
ments [4,12,20,26,29,34,35]. Some of the algorithms are even semi-external, i.e.,
they keep most of the data structures on disk but need to have at least the full
text in RAM [20,34].

The first I/O-optimal external memory SACA, DC3 [15], came right away
with a modification into a SLACA [21, Sect. 4]. Other external memory SLA-
CAs are eSAIS [7], which is I/O optimal, and eGSA [25], which does not have
useful worst case bounds on the I/O complexity. Several recent external memory
SACAs are based on induced sorting [24,31,32] and could probably be converted
into SLACAs using the same technique (introduced in [9]) as eSAIS. For practi-
cal purposes, the best SACAs are probably SAscan [16] and pSAscan [19], even
though their I/O complexity is a non-optimal O(

sort(n) + (n2/(MB logσ n))
)
.

The external memory LACAs in [17,18] have an I/O-complexity similar to
SAscan and pSAscan, O(

sort(n) + (n2/(MB log2σ n))
)
. Despite the apparently

quadratic I/O complexity, the SACA+LACA combination of these algorithms
is probably the best way to construct the suffix and LCP arrays for large texts
in most practical situations. Based on the analysis and experiments in [18], the
text would have to be more than 100 times the size of the available RAM before
the quadratic part becomes dominant, and we do not believe our new algorithm
would be competitive for any smaller texts. Beyond that limit though, a well
engineered implementation of the new algorithm could become the algorithm of
choice.

We are not aware of previous results directly comparable to our results on
LCE queries and sparse LCP array construction, but there exists tangentially
related recent work on external memory range minimum queries [2,3] (since LCE
queries can be answered as range minimum queries on the LCP array), as well as
on LCE queries [5,11,36] and sparse suffix and LCP array construction [10,14]
in internal memory.
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2 Preliminaries

Throughout we consider a string X = X[0 . . n) = X[0]X[1] . . .X[n − 1] of |X| = n
symbols drawn from the alphabet [0 . . σ). Here and elsewhere we use [i . . j) as a
shorthand for [i . . j − 1]. For i ∈ [0 . . n], we write X[i . . n) to denote the suffix of
X of length n − i, that is X[i . . n) = X[i]X[i + 1] . . .X[n − 1]. We will often refer
to suffix X[i . . n) simply as “suffix i”. Similarly, we write X[0 . . i) to denote the
prefix of X of length i. X[i . . j) is the substring X[i]X[i + 1] . . .X[j − 1] of X that
starts at position i and ends at position j − 1.

The suffix array SA of X is an array SA[0 . . n] which contains a permutation of
the integers [0 . . n] such that X[SA[0] . . n) < X[SA[1] . . n) < · · · < X[SA[n] . . n).
In other words, SA[j] = i iff X[i . . n) is the (j + 1)th suffix of X in ascending
lexicographical order. The inverse suffix array SA−1 is the inverse permutation
of SA, that is SA−1[i] = j iff SA[j] = i. Conceptually, SA−1[i] tells the position
of suffix i in SA. Another representation of the permutation is the Φ array [20]
Φ[0 . . n) defined by Φ[SA[j]] = SA[j−1] for j ∈ [1 . . n]. In other words, the suffix
Φ[i] is the immediate lexicographical predecessor of the suffix i.

Let lcp(i, j) denote the length of the longest-common-prefix (LCP) of suffix i
and suffix j. For example, in the string X = cccccatcat, lcp(0, 3) = 2 = |cc|, and
lcp(4, 7) = 3 = |cat|. The longest-common-prefix array, LCP[1 . . n], is defined
such that LCP[i] = lcp(SA[i],SA[i − 1]) for i ∈ [1 . . n]. The permuted LCP
array [20] PLCP[0 . . n) is the LCP array permuted from the lexicographical
order into the text order, i.e., PLCP[SA[j]] = LCP[j] for j ∈ [1 . . n]. Then
PLCP[i] = lcp(i,Φ[i]) for all i ∈ [0 . . n). The following property of the PLCP
array is the basis of all efficient LACAs.

Lemma 1 ([18]). Let i, j ∈ [0 . . n). If i ≤ j, then i + PLCP[i] ≤ j + PLCP[j].
Symmetrically, if Φ[i] ≤ Φ[j], then Φ[i] + PLCP[i] ≤ Φ[j] + PLCP[j].

Let p be a prime and choose s ∈ [0 . . p − 1] uniformly at random. The Karp-
Rabin fingerprint [22] for a substring X[i . . j] of X is defined as FP[i . . j] =∑j

k=i X[k] · sj−k mod p. Clearly, if X[i . . i + �] = X[j . . j + �] then FP[i . . i + �] =
FP[j . . j + �]. On the other hand, if X[i . . i+ �] �= X[j . . j + �] then FP[i . . i+ �] �=
FP[j . . j+�] with probability at least 1−n−c for any constant c > 0 [8] (assuming
p > nc+4). The fingerprint of a concatenation can be computed efficiently using
FP[i . . k] = FP[i . . j] · sk−j + FP[j + 1 . . k] mod p for any i ≤ j < k.

3 LCE Queries Using DC-substrings

In this section we develop the basic machinery that is used to compute (or
approximate) the LCE queries. Assume for simplicity that n is a power of 3. Let
bk−1 . . . b0 be the binary representation of integer b. For k ≥ 0 let

Sk = {a3k +
k−1∑
i=0

(bi + 1)3i | a ∈ [0 . . n/3k), b ∈ [0 . . 2k)}.
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Note that for any k ≥ 0, Sk ⊂ [0 . . n). The set of DC-substrings of X is defined as

log3 n⋃
k=0

{X[i . . i + 3k) | i ∈ Sk}.

In the above definition we implicitly assume that X is followed by a sequence
of infinitely repeated special symbol that is smaller than any symbol in the
alphabet. From the definition of Sk we have |Sk| = 2k(n/3k). Thus, the total
number of DC-substrings is n

∑log3 n
k=0 (2/3)k = O(n).

We want to assign a name to each DC-substring such that any two substrings
of the same length are equal (or equal with high probability) if and only if
their names are equal. We now describe a procedure for computing deterministic
names (that when compared guarantee the equality of corresponding substrings)
and Monte-Carlo names (that guarantee the equality with high probability) in
external memory. For any i ∈ Sk we denote the name (of any kind) of DC-
substring X[i . . i+3k) by αk(i). We will assume that names for DC-substrings of
different lengths are stored in different files on disk, so that accessing the names
of all DC-substrings of length 3k takes O(

scan
(
n(2/3)k

))
I/Os.

Lemma 2. The deterministic names of all DC-substrings can be computed using
O(sort(n)) I/Os in the standard EM model.

Proof. For k = 0 we sort all letters of X and assign a rank of each letter (in sorted
order) as the name of the substring. For larger k we observe that Sk+1 ⊂ Sk.
Furthermore, if i ∈ Sk and i + 3k < n then i + 3k ∈ Sk. Thus, given the names
of DC-substrings of length 3k we can compute the names for DC-substrings of
length 3k+1 by sorting the set of triples {(αk(i), αk(i + 3k), αk(i + 2 · 3k)) | i ∈
Sk+1} lexicographically and again assigning a rank of each triple as the name of
the corresponding substring (if either of the positions i + 3k and i + 2 · 3k are
outside the range [0..n) we use −1 as the name of the corresponding substring). A
single sorting step takes O(scan(|Sk|) + sort(|Sk+1|)) = O(

sort
(
n(2/3)k

))
I/Os

which over all lengths of DC-substrings sums up to O(sort(n)) I/Os. ��
Lemma 3. The Monte-Carlo names of all DC-substrings can be computed using
O(scan(n)) I/Os in the standard EM model.

Proof. The goal is to compute Karp-Rabin fingerprint for every DC-substring.
The general scheme of the naming procedure follows the one from Lemma 2. How-
ever, unlike in Lemma 2 the Monte-Carlo name of substring X[i . . i+3k+1) can be
directly computed from the names of substrings X[i . . i+3k), X[i+3k . . i+2·3k),
and X[i + 2·3k . . i + 3·3k) in O(1) time. Thus, we only need to scan the file con-
taining the names of DC-substrings of length 3k which takes O(

scan
(
n(2/3)k

))
I/Os. Over all lengths of DC-substrings we spend O(scan(n)) I/Os. ��

Note that to efficiently collect the names during scans in the above lemmas,
within a single file we need to additionally group the names of DC-substrings
according to the value i mod 3k, where i is the starting position of the substring.
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We will next show how to use names of DC-substrings to efficiently compute
or approximate LCE queries. For simplicity we now describe the internal-memory
versions of basic procedures and later explain how to modify them for external
memory. Figure 1 gives a pseudo-code of an algorithm to answer an LCE query
for an arbitrary pair of suffixes. The number of iterations of the while loop in
lines 3–7 is bounded using the following lemma.

Lemma 4. Let i, j ∈ Sk and assume that max{i, j} + 2 · 3k < n. Then either
{i, j} ⊂ Sk+1 or {i + 3k, j + 3k} ⊂ Sk+1 or {i + 2 · 3k, j + 2 · 3k} ⊂ Sk+1.

Proof. Let a, b be such that i = a3k +
∑k−1

i=0 (bi + 1)3i where a ∈ [0 . . n/3k)
and b ∈ [0 . . 2k) (which exist from the definition of Sk). It is easy to check that
i ∈ Sk+1 iff a mod 3 �= 0. Thus, exactly two out of {i, i + 3k, i + 2 · 3k} are in
Sk+1. Since the analogous property holds for j, the claim follows. ��

Fig. 1. Left: Computation of lcp(i, j) using DC-substrings. Right: Approximating the
value of lcp(i, j). Given �̌ and �̂ such that �̌ ≤ lcp(i, j) < �̂ the function lcph returns a
pair (�̌, �̂) that in addition satisfies �̂ − �̌ ≤ 3h. In both functions we assume i �= j

To perform the check {i, j} ⊂ Sk+1 efficiently, we identify the DC-substrings
of length 3k starting at positions i and j using triples (k, a, b) where a, b are as
in the definition of Sk. This representation supports the check in constant time.
Every update of i and j (represented in this way) in Fig. 1 also takes constant
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time. Thus, since by Lemma 4 the lcp algorithm uses O(1) DC-substrings of each
length it runs in O(log n) time. A more careful analysis shows that the algorithm
only inspects DC-substrings up to length Θ(lcp(i, j)), and thus its running time
is in fact O(log lcp(i, j)).

Given h ≥ 0, �̌, and �̂ such that �̌ ≤ lcp(i, j) < �̂ we define the informed
approximate LCE query with accuracy 3h as the task of refining the slack defined
as �̂ − �̌, so that in addition to initial assumption, it satisfies �̂ − �̌ ≤ 3h. We now
describe a method of answering approximate LCE queries using DC-substrings.
We start by introducing useful auxiliary functions.

Lemma 5. For any k ≥ 0 and any i, j ∈ [0 . . n), max{i, j} + 3k ≤ n, there
exists δ ∈ [0 . . 3k) such that {i + δ, j + δ} ⊂ Sk. We denote such δ by δ+k (i, j).
Symmetrically, if i, j ≥ 3k − 1, there exists δ ∈ [0 . . 3k) such that {i− δ, j − δ} ⊂
Sk. We denote such δ by δ−

k (i, j).

Proof. Clearly {i, j} ⊂ S0. By Lemma 4 we can find δ0 ≤ 2 such that {i+ δ0, j +
δ0} ⊂ S1. Iteratively applying Lemma 4 gives δ = δ0 + . . . + δk−1 such that
{i + δ, j + δ} ⊂ Sk. Since δt ≤ 2 · 3t, we have δ ≤ 2

∑k−1
t=0 3t < 3k. The proof for

δ−
k (i, j) is analogous. ��

The pseudo-code of the function approximating lcp is given in Fig. 1. It works
essentially the same as the exact version except we start (lines 4–5) by computing
k and δ such that 0 ≤ δ < 3k ≤ �̌ + 1 and 3k ≤ �̂ − �̌. The first condition
ensures that i and j are increased by a value in the interval [0 . . �̌] in line 6
(which is correct from the definition of �̌). The second condition guarantees
that the algorithm does not use DC-substrings longer than Θ(�̂ − �̌). This is
necessary in the case �̂ − �̌ 	 �̌ because otherwise the algorithm would perform
Θ(log(�̌/(�̂ − �̌))) comparisons of DC-substrings in the while loop in lines 12–16
which are guaranteed (from the definition of �̂) to not be equal. The shortest DC-
substrings used in the algorithm are of length Ω(min(�̌, 3h)). Thus, the number
of compared DC-substrings is O(log((�̂ − �̌)/min(�̌, 3h))).

In the remainder of the paper we focus on a special type of informed approx-
imate LCE queries for which the bounds provided as input additionally satisfy
3h ≤ �̌, �̂ − �̌, where 3h is the required accuracy of the query. We call them
3h-LCE queries. Note that from the discussion above a 3h-LCE query can be
answered using O(log((�̂ − �̌)/3h)) comparisons.

4 Answering Batches of LCE Queries

Assume we are given a sequence of d LCE queries R = [(i1, j1), . . . , (id, jd)]. We
can answer a single LCE query (i, j) using O(log lcp(i, j)) comparisons of DC-
substrings. Thus, to answer a batch of d queries we need O(

∑d
t=1 log lcp(it, jt))

comparisons. By Jensen’s inequality this is bounded by O(d log �) where � =
(
∑d

t=1 lcp(it, jt))/d is the average lcp value. Thus, we obtain the following
lemma.



LCP Array Construction Using O(sort(n)) (or Less) I/Os 211

Lemma 6. It suffices to compare O(d log �) DC-substrings to answer a batch of
d LCE queries with an average value �.

Consider now the task of answering a batch of d 3h-LCE queries R =
[(i1, j1, �̌1, �̂1), . . . , (id, jd, �̌d, �̂d)]. As shown in the previous section, answering
a single 3h-LCE query takes O(log((�̂ − �̌)/3h)) comparisons, thus a batch of d

queries needs O(
∑d

t=1 log((�̂t−�̌t)/3h)) comparisons. Again, by Jensen’s inequal-
ity this is bounded by O(

d log(�/3h)
)
, where � = (

∑d
t=1(�̂t− �̌t))/d is the average

slack in R.

Lemma 7. It suffices to compare O(
d log(�/3h)

)
DC-substrings to answer a

batch of d 3h-LCE queries with an average slack of �.

Suppose now we want to answer a batch of d LCE queries in external memory.
Assume that both the set of queries R and names of all DC-substrings are stored
on disk. We divide the lcp algorithm in Fig. 1 into two phases corresponding to
loops in lines 3–7 and 8–12.

Consider the first phase. During the algorithm we maintain log3 n files on
disk and at any given moment each LCE query is stored in exactly one of the
files. The k-th file stores all triples (iinit, i, j) such that iinit corresponds to the
value that we store in line 1, and {i, j} ⊂ Sk stores the current state of the
query. We process files in increasing order of k. To process k-th file we scan all
triples and for every (iinit, i, j) we generate requests to retrieve the names αk(i),
αk(i+3k), αk(i+2·3k), αk(j), αk(j+3k), αk(j+2·3k). By Lemma 4 these are the
only names of DC-substrings of length 3k used by the lcp algorithm. All name
requests are first sorted by the starting position and then the corresponding
names are retrieved with a single scan of the file containing k-level names. The
name requests are then sorted back to the original order and each of the LCE
queries is now updated. Depending on the result of the name comparison, the
query either stays in the current file (mismatch) or is moved to the (k + 1)-th
file (match) and the values i, j are updated.

If by dk we denote the number of triples in the k-th file then executing
the k-th step takes O(

scan
(
n(2/3)k

)
+ sort(dk)

)
I/Os. Over all steps the I/O

is O(scan(n) +
∑log3 n

k=0 sort(dk)). By Lemma 6 we have
∑log3 n

k=0 dk = O(d log �)
where � is the average lcp value. Thus by Jensen’s inequality the total I/O volume
is bounded by O(scan(n) + sort(d) log �).

To execute the second stage of the algorithm (lines 8–12) the algorithm pro-
ceeds analogously, except now we process the remaining items in all files in the
decreasing order of k. The I/O complexity does not change.

Lemma 8. A batch of d LCE queries with an average value � can be answered
using O(scan(n) + sort(d) log �) I/Os in the standard EM model.

Answering a batch of 3h-LCE queries in external memory works analogously
and the result follows from Lemma 7. We don’t access DC-substrings shorter
than 3h and thus the scanning time is reduced.
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Fig. 2. Given R = [(i, Φ(i), �̌i, �̂i)], |R| ≤ n/3k such that 3k −1 ≤ �̌i ≤ lcp(i, Φ(i)) < �̂i,
refine all �̌i, �̂i so that in addition to initial assumptions they satisfy �̂i − �̌i ≤ 3k

Lemma 9. A batch of d 3h-LCE queries with an average slack � can be answered
using O(

scan
(
n(2/3)h

)
+ sort(d) log(�/3h)

)
I/Os in the standard EM model.

Note that all the complexities stated in this section exclude the time needed
to compute the names of DC-substrings. Thus, to solve an arbitrary set of
LCE queries we need to additionally spend O(sort(n)) I/Os to compute deter-
ministic names (Lemma 2) or O(scan(n)) I/Os to compute Monte-Carlo names
(Lemma 3).

5 LCP Array Construction

Let k ≥ 0 and consider an arbitrary subset P of at most n/3k text positions from
[0 . . n) such that 3k − 1 ≤ lcp(i,Φ(i)) for all i ∈ P . Let R = {(i,Φ(i), �̌i, �̂i) | i ∈
P} be such that 3k − 1 ≤ �̌i ≤ lcp(i,Φ(i)) < �̂i for all i. The main ingredient of
the new LCP array construction algorithm is the procedure to reduce all slacks
in R to at most 3k. It uses batched 3k-LCE queries in the final step after first
improving the bounds with a different technique.

The pseudo-code of the procedure is given in Fig. 2. For simplicity we use the
standard notation for internal-memory algorithms. Below we outline all steps
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and explain how to implement them in external memory using scanning and
sorting.

We start by checking, for every i, whether lcp(i,Φ(i)) ≥ 3k+1 − 1. This
requires fetching O(1) names of DC-substrings of length 3k for each tuple,
and thus takes O(

scan
(
n(2/3)k

)
+ sort(|R|)) I/Os. Next, we create a sample

consisting of every third tuple (we assume they are sorted by i) for which
lcp(i,Φ(i)) ≥ 3k+1 − 1 and recursively reduce the slacks of the sample to at
most 3k+1. Excluding the cost of recursive call, it takes O(sort(|R|)) I/Os. In
the next step we use the slacks of the sample set to reduce all remaining slacks.
The correctness of the reduction follows from Lemma 1. The reduced slacks sat-
isfy the following property.

Lemma 10. The total slack in R after step 4 is O(n).

Proof. Denote the elements of S after returning from recursion (line 9) by
(iSj ,Φ(iSj ), �̌S

j , �̂S
j ), where j ∈ [1 . . |S|] and assume iSj < iSj+1 for j ∈ [1 . . |S|). For

j = |S|+1 we set iSj = n, �̂S
j = 0. Let (i,Φ(i), �̌i, �̂i) ∈ R′\S be one of the elements

processed in line 10. Let (iSj ,Φ(iSj ), �̌S
j , �̂S

j ) be the predecessor of (i,Φ(i), �̌i, �̂i) in
S (which always exists since S contains the smallest item of R′). Then the succes-
sor of (i,Φ(i), �̌i, �̂i) in S is (iSj+1,Φ(iSj+1), �̌

S
j+1, �̂

S
j+1). The slack of the processed

tuple after the update satisfies �̂i − �̌i ≤ (�̂S
j+1 + (iSj+1 − i)) − (�̌S

j − (i − iSj )) =
(�̂S

j+1 − �̌S
j )+(iSj+1 − iSj ). Since each tuple in S can be the predecessor of at most

two elements in R′\S (from definition of S), the total slack in R′\S is bounded
by

2
|S|∑
j=1

((�̂S
j+1 − �̌S

j ) + (iSj+1 − iSj )) ≤ 2n + 2
|S|∑
j=1

(�̂S
j − �̌S

j ).

Since the total slack in S does not exceed |S| · 3k+1 = O(n), the total slack in
R′\S is also O(n). Finally, by Step 1 and definition of R′, the slack in R\R′ is
not greater than |R| · 3k+1 = O(n). ��

As a last step we apply the algorithm from the previous section to answer
a batch of at most |R| approximate lcp queries. The average slack in R at this
point is O(n/|R|), and thus by Lemma9 answering all approximate lcp queries
takes O(

scan
(
n(2/3)k

)
+ sort(|R|) log(n/3k|R|)) I/Os. Excluding the cost of the

recursive call, this step dominates the I/O complexity.
Consider the call of Reduce processing the sample S (i.e., the first level of

recursion). The number of performed I/Os (excluding deeper recursive calls)
is O(

scan
(
n(2/3)k+1

)
+ sort(|S|) log(n/3k+1|S|)). We have |S| ≤ |R|/3, but

since O(
sort(d) log(n/3k+1d)

)
as a function of d is non-decreasing (assum-

ing d = O(
n/3k+1

)
), the I/O complexity is maximized for |S| = |R|/3 and

hence sort(|S|) log(n/3k+1|S|) = O(
sort(|R|/3) log(n/3k|R|)). Thus, since I/O

decreases exponentially with every level of recursion, the total I/O complexity
of Reduce(k,R) is not greater than the complexity at zero-level recursion.
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Lemma 11. Reduce uses O(
scan

(
n(2/3)k

)
+ sort(|R|) log(n/3k|R|)) I/Os in

the standard EM model.

Using Reduce we can compute the LCP array as follows. We scan the suffix
array and for every i > 0 we create a tuple (i,SA[i],SA[i − 1]). We then sort
these tuples by the second component to obtain a sequence (SA−1[i], i,Φ[i]).
Using that we create a sequence of tuples (i,Φ[i], 0, n) which is then used as an
input to Reduce with k = 0. As a result we obtain a sequence (i, ·,PLCP[i], ·),
which we can now permute into LCP using SA−1 values. The total I/O com-
plexity (including the computation of deterministic names for DC-substrings) is
O(sort(n)).

Theorem 1. Using DC-substrings the LCP array can be computed correctly in
the standard EM model from the text and its suffix array using O(sort(n)) I/Os.

6 o(sort(n)) I/Os

Finally, we look at some variants of the LCP array construction problem, where
we can achieve an I/O complexity of o(sort(n)). In all of these, we use the Monte
Carlo names of DC-substrings, which can be computed in O(scan(n)) I/Os, and
thus the results are correct with high probability.

A sparse suffix array contains some subset of suffixes in the lexicographical
order and the associated LCP array contains lcps of suffixes that are lexico-
graphically adjacent in that subset. The LCP array can be computed as a batch
of LCE queries and thus by Lemma 8 we obtain the following result.

Theorem 2. Given a sparse suffix array containing m < n suffixes of a text of
length n in sorted order it takes

O(scan(n) + sort(m) log(�)) = O(scan(n) + sort(m) log(n))

I/Os in the standard EM model to compute the corresponding LCP array cor-
rectly with high probability, where � is the average value in the LCP array.

We can do better in the special case of evenly spaced sparse suffix array that
contains exactly every qth suffix of the text for some q ≥ 1. In this case, we can
use the Reduce algorithm and give as input the set of pairs (i,Φ(i)), where i
and Φ(i) are divisible by q and the suffix Φ(i) is the immediate lexicographical
predecessor of the suffix i among the sparse set. Notice that this approach does
not work correctly for an arbitrary sparse set (because of Step 4 in Reduce).

Theorem 3. Given an evenly spaced sparse suffix array containing every qth

suffix of a text of length n in sorted order it takes O(scan(n) + sort(n/q) log(q))
I/Os in the standard EM model to compute the corresponding LCP array cor-
rectly with high probability.
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If q = ω(1), the number of performed I/Os is o(sort(n)). For example, if q =
Ω((logM/B(n/B))2), the I/O complexity is O(scan(n)).

Finally, we can sometimes compute the full PLCP array using o(sort(n)) I/Os
by computing first a subset of so called irreducible lcp values, from which the
other lcp values are easy to derive (see [18,20]). For highly repetitive texts, the
number r of the irreducible lcp values can be much smaller than n. To identify
the irreducible positions quickly we need the Burrows–Wheeler transform as an
additional input. We can compute the irreducible entries of the PLCP array
using Reduce in O(scan(n) + sort(r) log(n/r)) I/Os and then the other entries
by a simple scan in O(scan(n)) I/Os.

Theorem 4. Given the suffix array and the Burrows-Wheeler transform of a
text of length n, it takes O(scan(n) + sort(r) log(n/r)) I/Os in the standard EM
model to compute the PLCP array correctly with high probability, where r is the
number of irreducible lcp values.

If r = o(n), the complexity is o(sort(n)). Transforming the PLCP array into an
LCP array still needs Θ(sort(n)) I/Os.
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Abstract. We present a compressed data structure to store free tra-
jectories of moving objects (ships over the sea, for example) allowing
spatio-temporal queries. Our method, GraCT, uses a k2-tree to store the
absolute positions of all objects at regular time intervals (snapshots),
whereas the positions between snapshots are represented as logs of rela-
tive movements compressed with Re-Pair. Our experimental evaluation
shows important savings in space and time with respect to a fair baseline.

1 Introduction

After more than two decades of research on moving objects, this field still
presents interesting problems that represent a topic of active research. The
renewed interest to represent and exploit data about moving objects is mainly
due to the new context in which large amounts of data (from, for example, cel-
lular phones informing about the GPS coordinates of their position in real time)
need to be stored and analyzed. Therefore, new big data sets and new application
domains demand more efficient technology to manage moving objects.

Traditional spatio-temporal indexes can be classified into two families, space-
based indexes and trajectory-based indexes. Each type of index is adapted to
answer different types of queries. Indexes in the first family usually are mod-
ifications of the classical spatial R-tree, like for example the RT-tree [17], the
HR-tree [11], the 3DR-tree [14], the MV3R-Tree [13], or the SEST-Index [5].
Those indexes efficiently answer queries which return the ids or the number of
objects into a given spatial region at a specific time instant (time-slice queries)
or at a specific time interval (time-interval queries), but they cannot efficiently
return the position of an object at a time instant or which was its trajectory1

during a time interval.
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The second family of indexes were designed to improve the management of
trajectories, like SETI [4], the CSE-tree [15], and trajectory splitting strategies
[6,12]. Those indexes can describe trajectories of individual objects but cannot
answer efficiently time-slice or time-interval queries over objects in a specific
region of the space.

Those indexes maintain the bulk of the data on disk, while the index struc-
tures reside in main memory. They rarely use compression to reduce disk or
memory usage, or to reduce the disk transfer time.

In this paper we introduce an in-memory representation called Gram-
mar based Compressed representation of Trajectories (GraCT). GraCT is a
trajectory-oriented technique, that is, it belongs to the second family. How-
ever, it structures the index into snapshots of the objects taken at regular time
instants, and logs of their movements between snapshots. This allows GraCT to
efficiently answer time-slice and time-interval queries as well, by processing the
logs between two snapshots. Besides, GraCT represents data and index together,
and uses grammar compression on the logs. This not only reduce the size of the
representation, but also the nonterminals are enriched to allow processing long
parts of the log files without decompressing them, and faster than with a plain
representation. Its space savings allow GraCT fitting much larger datasets in
main memory, where they can be queried much faster than on disk.

2 Background

2.1 K2-tree

The k2-tree is a compact data structure originally designed for representing Web
graphs in little space, allowing its manipulation directly in compressed form [3].
The k2-tree is used to represent the adjacency matrix of the graphs, and it can
also be used to represent any type of binary matrices.

The k2-tree is conceptually a non-balanced k2-ary tree built from a binary
matrix by recursively subdividing the matrix into k2 submatrices of the same
size. It starts by subdividing the original matrix into k2 submatrices of size
n2/k2, being n×n the size of the matrix. The submatrices are ordered from left
to right and from top to bottom. Each of those submatrices generates a child
of the root node whose value is 1 if there is at least one 1 in the cells of that
submatrix, and 0 otherwise. The subdivision proceeds recursively for each child
with value 1 until it reaches a submatrix full of 0s, or it reaches the cells of the
original matrix (i.e., submatrices of size 1×1). Figure 1 shows an example of this
subdivision (left) and the resulting conceptual k2-ary tree (right up) for k = 2.

Instead of using a pointer-based representation, the k2-tree is compactly
stored using two bitmaps T and L (see Fig. 1). T stores all the bits of the
k2-tree except those in the last level. The bits are placed following a levelwise
traversal: first the k2 binary values of the root node, then the values of the sec-
ond level, and so on. L stores the last level of the tree. Thus, it represents the
value of original cells of the binary matrix.
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Fig. 1. Example of binary matrix (left) and resulting k2-tree conceptual representation
(right up), and the compact representation (right down), with k = 2.

Fig. 2. An example of Re-pair compression.

It is possible to obtain any cell, row, column, or region of the matrix very
efficiently, by just running rank and select operations [7] over the bitmap T :
rankb(T, p) is the number of occurrences of bit b ∈ {0, 1} in T up to position
p, and selectb(T, j) is the position in T of the jth occurrence of the bit b. For
example, given a value 1 at position p in T , its k2 children will start at position
pchildren = rank1(T, p) × k2 of T , except when the position of the children
of a node returns a position pchildren > |T |; in that case we access instead
L[pchildren − |T |] to retrieve the actual value of the cells. Similarly, the parent
of a position p in T : L is q − (q mod k2), where q = select1(T, �p/k2�), and
q mod k2 indicates which is the submatrix of p within its parent’s.

2.2 Re-Pair

Re-pair [9] is a grammar-based compression method. Given a sequence of integers
I (called terminals), it proceeds as follows: (1) it obtains the most frequent pair
of integers ab in I, (2) it adds the rule s → ab to a dictionary R, where s is a
new symbol not appearing in I (called a nonterminal), (3) every occurrence of
ab in I is replaced by s, and (4) it repeats steps 1–3 until every pair in I appears
only once (see Fig. 2). The resulting sequence after compressing I is called C.
Every symbol in C represents a phrase (a sequence of 1 or more of the integers
in I). If the length of the represented phrase is 1, then the phrases consists of an
original (terminal) symbol, otherwise it is a new (nonterminal) symbol. Re-Pair
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can be implemented in linear time, and a phrase can be recursively expanded in
optimal time (that is, proportional to its length).

3 Our Approach

GraCT represents moving objects that follow free trajectories on the space. We
consider the time as discrete, therefore each time instant actually corresponds to
a short period of time. We assume that in each time instant, each object informs
its position (e.g., international regulations require that ships inform their GPS
position at regular intervals). We use a raster model to represent the space,
therefore the space is divided into cells of a fixed size, and objects are assumed
to fit in one cell. The size of the cells and the period used to sample the time
are parameters that can be adapted to the specific domain.

Every s time instants, GraCT uses a data structure based on k2-trees to rep-
resent the absolute positions of all objects. We call those time instants snapshots.
The distance s between snapshots is another parameter of the system. Between
two consecutive snapshots the trajectory of each moving object is represented
as a log, which is an array of movements, that is, relative positions with respect
to the previous time instant.

Snapshots. Each snapshot uses a k2-tree where a cell set to 1 indicates that
one or more objects are placed in that cell, whereas a 0 means that no object
is in that cell. However, we still need to know which objects are in a cell set to
1. Observe that each 1 in the binary matrix corresponds to a bit set to 1 in the
bitmap L of the k2-tree. We store the list of object identifiers corresponding to
each of those bits set to 1 in an array, where the objects identifiers are sorted
following the order of appearance in L. We call that array perm, since that array
is a permutation [8]. In addition, we need a bitmap, called Q, aligned with perm,
that informs with a 0 that the object identifier aligned in perm is the last object
of a leaf, whereas a 1 signals that more objects exist. Observe in Fig. 3, the
object identifiers corresponding to the first 1 in L (which is at position 3 of L)
are stored starting at position 1 of perm. In order to know how many objects
are in the corresponding cell, we access Q starting at position 1 searching for the
first 0, which is at position 2, therefore there are two objects in the inspected
cell. By accessing positions 1 and 2 of perm, we obtain the object identifiers 4
and 2. Now, in position 3 of perm starts the object identifiers corresponding to
the second 1 in L, and so on.

With these structures used to represent the absolute positions of all the
moving objects at snapshots we can answer two types of queries:

– Find the objects in a given cell : First, using the procedure shown in Sect. 2.1
to navigate downwards the k2-tree, we traverse the tree from the root until
reaching the position n in L corresponding to that cell. Next, we count the
number of 1 s in the array of leaves L until the position n; this gives us the
number of leaves with objects up to the nth leaf, x = rank1(L, n). Then we
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Fig. 3. The position of objects in the space (left), and the representing snapshot (right).

calculate the position of the (x − 1)th 0 in Q, which indicates the last bit of
the previous leaf (with objects), and we add 1 to get the first position of our
leaf, p = select0(Q,x − 1) + 1. Then p is the position in perm of the first
object identifier corresponding to the searched position. From p, we read all
the object identifiers aligned with 1 s in Q, until we reach a 0, which signals
the last object identifier of that leaf.

– Find the position in the space of a given object. First, we need to obtain the
position k in perm of the searched object. In order to avoid a sequential search
over perm to obtain that position, we add additional structures to compute
cells of the inverse permutation of perm [10]. Then, we have to find the leaf in
L corresponding to the kth position of perm. For this sake, we calculate the
number of leaves before the object in position k of perm, that is, we need to
count the number of 0 s until the position before k, y = rank0(Q, k−1). Then
we find in L the position of the (y + 1)th 1, that is, select1(L, y + 1). With
that position of L, we can traverse the k2-tree upwards in order to obtain the
position in the space of that cell, and thus the position of the object.

Log of Relative Movements. The changes that occur between snapshots are
tracked using a log file per object. The use of snapshots and logs is not new [16],
but in previous works log values are stored according the appearance of “events”
(such as objects that appear in or disappear from an area).

The log stores relative movements with respect to the last known position
of an object, that is, to its position in the preceding time instant. Objects can
change their positions along the two Cartesian axes, so every movement in the
log can be described with two integers. Instead, in order to save space, we encode
the two values with a unique positive integer. For this sake, we enumerate the
cells around the actual position of an object, following a spiral where the origin
is the initial object position, as it is shown in Fig. 4 (left). Let us suppose that
an object moves with respect to the previous known position one cell to the East
in the x-axis, and one cell to the North in the y-axis. Instead of encoding the
movement as the pair (1, 1), we encode it as an 8. In Fig. 4 (right) we show the
trajectory of an object starting at cell (0, 2). Each number indicates a movement
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Fig. 4. Encoding object’s movements.

between two consecutive time instants. Since most relative movements involve
short distances, this technique produces a sequence of usually small numbers.

Sometimes real objects stop emitting signals during periods of time. This
forces us to add two new possible movements inside a log: relative reappearance
and absolute reappearance. We reserve two codewords to signal these events. We
use a relative reappearance when an object disappears and reappears between
the same snapshots, and an absolute reappearance otherwise. Relative reappear-
ances are followed by the time elapsed from the disappearance and a relative
movement from that time instant, whereas absolute reappearances are followed
by the number of time instants that elapsed since the disappearance and the
absolute values of the (x, y) coordinates of the new position of the object.

4 Compressing the Log

The log not only saves much space compared to using k2-trees for every instant,
but it also offers important opportunities for further compression. A first choice
is statistical compression, since as said, most movements are short-distanced and
thus our spiral encoding uses mostly small numbers. We exploit this fact using
(s, c)-Dense Codes (SCDC) [2], a very fast-to-decode statistical compressor that
has a low redundancy over the zero-order empirical entropy of the sequence. We
will use this approach as fair baseline.

The second approach, which gives the title to this paper, uses grammar com-
pression on the set of all the log files. Our aim is to exploit the fact that there are
typical trajectories followed by many objects, which translate into long sequences
of identical movements that grammar compression can convert into single non-
terminals. This includes, in particular, long straight trajectories in any direction.

ScdcCT: Using SCDC for Compressing the Logs. The size of the cells and
the time elapsed between consecutive time instants must be carefully chosen to
represent properly the typical speed of moving objects, so that short movements
to contiguous cells are more frequent than movements to distant cells. Instead
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of sorting the spiral codes by frequency, we will simply assume that smaller
numbers are more frequent than larger ones. Since the (s, c)-codes depend only
on the relative frequency of the symbols, we do not need to store any statistical
model. Still, we will use the frequencies to optimize s and c in order to minimize
the space usage.

GraCT: Using Re-Pair for Compressing the Logs. Moving objects spend
most of the time either stopped or moving following a specific course and speed.
In both cases, the logs will present longs sections with numbers representing the
same or contiguous values of the spiral. For example, the moving object in Fig. 4
follows a NE trajectory moving one or two cells per time instant. Therefore its log
represents the series of relative movements 8, 9, 8, 9, 8, 7, 9, 8, 7, 9; see the array
I of Fig. 2. Those series of similar movements are very efficiently compressed
using a grammar compressor such as Re-Pair. To avoid having to decompress
the log before processing it, we enrich the rules of the grammar R with further
data apart from the two symbols to be replaced. Specifically, each rule in R will
have the following information: s → a, b,#t, x, y,MBR, where s, a and b are the
components of a normal rule of Re-Pair, #t is the number of instants covered
by the rule, (x, y) are the relative coordinates of the final position of the object
after the application of the rule, and MBR is the minimum bounding rectangle
enclosing the movements of the rule.

For example, the rules of Fig. 2 are enriched as follows. The first rule of R is
A → 8, 9, 2, (3, 2), (0, 0, 3, 2): 8 and 9 are the substituted symbols, 2 indicates
that the rule represents a sequence of 2 movements, (3, 2) indicates the position
of the object after the application of the rule if we start at (0, 0), and the last
four values are two points defining a rectangle that encloses all the movements
encoded by the rule. The other rules are B → 9, 9, 2, (4, 2), (0, 0, 4, 2), C →
8, 7, 2, (1, 2), (0, 0, 1, 2), and D → A, A, 4, (6, 4), (0, 0, 6, 4).

Thanks to this additional information, to obtain the position of an object
at any time instant between two snapshots, the nonterminal symbols of array
C do not need to be decompressed in most cases. Assume we want to know the
position of the object at the 5th time instant, which is when the object in Fig. 4
(right) is at position (7, 7). The preceding snapshot informs that the absolute
position of the object at the beginning of the log is (0, 2). Next, we inspect
the log (the C array of Fig. 2) from the beginning. The first value is a D. The
enriched rule indicates that such symbol represents 4 time instants, and after it,
the object is displaced 6 columns to the East and 4 rows to the North, that is,
starting at (0, 2), after the application of this rule, the object will be at (6, 6).
Since our target time instant is later than the final time instant of this rule,
we do not have to decompress it, and this is the usual case. The next symbol
is C, which lasts 2 time instants. This would take us to time instant 6, but
this surpasses our target time instant(5). Therefore, in this case, that is, only
in the last step of the search, we have to decompress the rule, and process its
components: C → 8 7. The 8 is a terminal symbol that lasts 1 time instant, and
thus it is enough to reach our target time instant. An 8 moves 1 column to the
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East and 1 to the North, which applied to the previous position (6, 6) takes us
to the position (7, 7).

The MBR component aids during the computation of time-slice and time-
interval queries, as we will see soon.

The additional elements enriching the rules are compressed with an encoder
designed for small integers (Directly Addressable Codes, DAC) that support
efficient access to any individual value in the sequence [1]. To obtain better com-
pression, the times of all the rules are compressed with one DAC, separately from
the 3 pairs of coordinates of all the rules, which are compressed with another.

5 Querying

Obtain the Position of an Object in a Given Time Instant. This query
is solved by accessing the snapshot preceding the queried time instant tq, where
we retrieve the position of the object at the snapshot time instant. We then
apply the movements of the log over this position until we reach tq. In the case
of SCDC compression, we follow the log decoding each codeword and applying
the relative movement to the previous position. In the case of Re-Pair, we follow
the process described in the previous section.

Obtain the Trajectory of an Object Between Two Time Instants. First,
we obtain the position of the object in the start time instant ts, using the same
algorithm of the previous query; then we apply the movements of the log until
reaching the end time instant te. In this case, when using GraCT, we have to
decompress C to recover I, since only with I we are capable of describing the
trajectory in detail, and thus we cannot take advantage of the enriched nonter-
minal data. Therefore this query is more time-consuming than the previous one
for GraCT, and scdcCT takes over.

Time Slice Query. Given a time instant tq and a window rectangle r of the
space, this query returns the objects that lie within r at time tq, and their
positions. We can distinguish two cases. First, if tq corresponds to a snapshot,
we only need to traverse the k2-tree until the leaves, inspecting those nodes that
intersect r. When we reach the leaves, we know their position and can retrieve
from the permutation the objects that are in this area.

The second case occurs when tq is between two snapshots si and si+1. In
this case, we inspect in si a region r′, which is an enlargement of the query
region r. Region r′ is defined using using the fastest object of the dataset as an
upper bound. Thus, r′ is the rectangle containing all the points from where we
can reach the region r at tq if moving at maximum speed along some direction.
Then, from si, we only track the objects that are within r′ in the snapshot,
therefore limiting the objects to follow and not wasting time with objects that
do not have chances to be in the answer. We follow the movements of those
objects from si using the log, until reaching tq. We further prune the tracking as
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we process the log: a candidate object may follow a direction that takes it away
from region r, so we recheck the condition after every movement and discard an
object as soon as it loses the chance of reaching r at time tq.

The tracking of objects is performed with the same algorithm explained for
obtaining the position of an object in a given time instant, but in the case of
GraCT, when a non terminal in the log corresponds to a rule that brings the
object we are following from an instant before to an instant after tq, instead of
decompressing the nonterminal, we intersect the MBR of the rule with r, and
disregard the object if the intersection is empty. Otherwise we decompress the
nonterminal into two and try again until reaching tq or discarding the object.

Figure 5 shows an example where we want to find the objects that are located
in r at tq. Assume that the fastest object can move only to an adjacent cell in
the period between two consecutive time instants. Let si be the last snapshot
preceding tq and let there be 2 time instants between si and tq. The left part
of the figure shows the state of the objects at the time instant corresponding to
si, in the middle to si + 1 = tq − 1, and in the right to tq, where we show the
region r. In r′ (shown on the left grid) we have four elements (1, 4, 5, 8), which
are candidates to be in r at tq, thus we follow their log movements. In the middle
grid, we show the region r′′ where the objects still have chances to be within r
at tq. Observe that, from the candidate objects in si, object 4 has no further
chances to reach r, and thus it is not followed anymore. However, object 1 still
have chances, and therefore we keep tracking it.

Fig. 5. Example of enlarged region r′ and query region r in a time-slice query.

This query is affected by the time elapsed between si and tq. The farther
away si and tq are, the larger r′ will be, and thus, we will have more candidate
objects that have to be followed through the log movements. In addition, with
a large period between si and tq, we have to traverse a longer portion of the
log. To alleviate this problem, if tq is closer to si+1 than to si, we can start the
search at si+1 and follow backwards the movements of the log. For this backward
traversal, we need to add before each snapshot the last known position and its
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corresponding time instant of the objects that are disappeared at the time instant
of the snapshot. This applies to both approaches scdcCT and GraCT. Therefore,
the maximum distance will be half of the distance between two snapshots.

Time Interval Query. In the time-slice query we have to know which objects
are in r at the query time instant and their positions, but in the time-interval
query, the target is to know which objects were within r at any time instant of
the time interval [ts, te], specified in the query. In this case, we use the expanded
region r′ again, which is built as in the time-slice query, but using the time te.

Using SCDC, the objects within r at ts are reported as part of the solution,
the other objects with chances at ts are followed until they reach the region r,
in which case they are added to the answer; or when they move such that they
lose the chance to reach r at te, in which case they are not followed anymore.

Table 1. Compression ratio.

GraCT scdcCT

Period 120 240 360 720 120 240 360 720

Size

(MB)

196.79 193.31 192.24 179.60 312.27 263.46 273.20 282.95

Ratio 39.27% 38.58% 38.36% 35.84% 62.32% 56.47% 54.52% 52.58%

Snapshot

(MB)

7.55

(3.83%)

3.77

(1.95%)

2.51

(1.31%)

1.25

(0.70%)

7.55

(2.42%)

3.77

(1.33%)

2.51

(0.92%)

1.25

(0.48%)

Log

(MB)

189.25

(96.17%)

189.54

(98.05%)

189.73

(98.69%)

178.34

(99.30%)

304.73

(97.58%)

279.18

(98.67%)

270.69

(99.08%)

262.20

(99.52%)

In GraCT, we process the log without decompressing nonterminal symbols
until the final time of a symbol in the log is equal or larger than ts. After this
moment, for each symbol we read in the log, until the object is selected or the
next symbol in the log to read starts after te, we follow the next procedure:
For each log symbol we check if the final point is inside r. If it is, the object
is selected. If not, and the MBR does not intersect r, we go on to the next
log symbol. If the final point is not in r but the MBR intersects r, we must
apply the same procedure recursively to the pair of symbols represented by the
nonterminal, until the object is selected or we process the whole nonterminal.

6 Experimental Evaluation

GraCT and scdcCT were coded in C++ and the experiments were run on a
1.70 GHzx4 Intel Core i5 computer with 8 GBytes of RAM and an operating
system Linux of 64 bits.
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Datasets Description and Compression Data. We use a real dataset
obtained from the site http://marinecadastre.gov/ais/. The dataset provides the
location signals of 3,654 ships during a month. Every position emitted by a ship
is discretized into a matrix where the cell size is 50 × 50 m. With this data nor-
malization, we obtain a matrix with 100,138,325 cells, 36,775 in the x-axis and
2,723 in the y-axis. Observe that our structure deals with object positions at
regular intervals, but in the dataset ship signals are emitted with distinct fre-
quencies, or they can send erroneous information. Therefore, we preprocessed the
signals to obtain regular time instants every minute, thus discretizing the time
into 44,642 min in one month. With these settings, the original dataset occupies
501 MBs.

We built GraCT and scdcCT data structures over that dataset using different
snapshot distances, namely every 120, 240, 360, and 720 time instants. The
construction time of the complete structure takes around 1 min. Table 1 shows
the results of compression ratio2, where we can see that GraCT obtains much
better compression ratios than scdcCT. The rows snapshot and log show the size
of the snapshot and the log as a percentage of the compressed data structure.
We can see that the log is the most space demanding structure. As reference we
compress the plain data with p7zip and we obtain a compression ratio of 10,97 %,
which is better than GraCT, however with this compressed data is impossible
to answer any type of query.

Query Types and Answer Times. Table 2 shows the average answer times of
50 random queries of different types: object tq shows searches for the position of
an object in a given time instant, trajectory searches for the trajectory followed
by an object between two time instants, slice S are time-slice queries that check
for small regions (367×272 cells) and slice L for large regions (3677×2723 cells),
interval S are time-interval queries with a small region and a small time interval
( 1
10 of the snapshot period) and interval L with large regions and a large time

interval (14 of the snapshot period).

Table 2. Time of different queries (ms)

GraCT scdcCT

Period 120 240 360 720 120 240 360 720

Object tq 0.0157 0.0169 0.0210 0.0229 0.0125 0.0169 0.0220 0.0246

Trajectory 0.1582 0.1210 0.1130 0.1153 0.0881 0.0904 0.0900 0.0960

Slice S 1.5386 2.4241 2.9580 5.8788 1.3080 2.6712 4.0430 7.6636

Slice L 1.7835 2.8074 3.6000 6.6430 1.5883 3.8615 5.1130 9.1384

Interval S 2.4435 3.6005 5.0090 9.5635 1.4882 3.8612 5,8610 11.1765

Interval L 2.7505 4.0847 6.1330 12.1832 1.7161 4.9578 9.8680 16.4471

2 The size of the compressed data structure as a percentage of the original dataset.

http://marinecadastre.gov/ais/
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GraCT is the overall winner in all queries, except in the trajectory query.
This is expected, since to recover the trajectory, GraCT has to decode all the
symbols in C, given that the enriched information in rules does not have the
details of the movements inside each rule. In the rest of the queries the enriched
information avoids in many cases to decode the rules in C, and thus, since the
logs in GraCT have far fewer values than in scdcCT, the searches are faster.
The exception is when the size of the log between two snapshots is small, as the
effect is not noticeable. Notice that in this case the nonterminal symbols in the
grammar cannot represent arrays of more than 120 terminals.

7 Conclusions

We have presented a grammar based data structure for representing moving
objects. It uses snapshots where the objects are represented in the space using
a k2-tree and movement logs that are grammar-compressed. The results of this
first experimental evaluation are very promising, as compression yields significant
reductions in both space and time performance with respect to the baseline.

One reason why our space results are not even better is that the enriched
data pose a significant space overhead per nonterminal. We plan to improve our
representation by encoding these data in smarter ways. We also plan to compare
GraCT with state of the art indexes aimed at both time-slice and time-interval
queries, and trajectories.
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Abstract. We present an algorithm that matches queries to a set of
advertising bid terms, including lexical variants. We use an enhanced
digital tree as index that allows to match misspelled words, word seg-
mentation and splitting, and some stems. The results, both in quality
and performance, are competitive and improved revenue in several per-
centage points. To the best of our knowledge, this is the first pure lexical
matching algorithm for sponsored search.

1 Introduction

When a person searches for a query in a web search engine, the answer page has
several parts. The main part is composed by the ranked search results, also called
organic results. The second important part are the sponsored results, which are
small text ads to the right of the organic results and sometimes also above and
below them, depending on the search engine. Companies that wish to advertise
their products or services in this way, bid for terms that will appear in the queries
of their interest, hence called bid terms. Advertisers assign bid values to each
individual bid term and the search engine will run a special auction with them.
This bid value is the maximum value that the advertiser is willing to pay for a
click in the ad. This payment mechanism is known as cost per click (CPC), and
the most used ranking scheme for the ads is to estimate the probability of a click
in an ad and use the product of this probability and the bid value for each ad
as ranking score. The most used auction is the well known second price, because
the best strategy is to be truthful. For more details and the impact of sponsored
search we refer the reader to [9].

In the context of sponsored search, we propose a new lexical matching algo-
rithm that handles misspells, split/merge words, plurals, etc. It is based in run-
ning a NDFA of the query with all lexical variations over a digital tree of the
ads bid terms, a particular case of [2]. Nodes of the digital tree that matches
words and lexical variants of bid terms have inverted lists with all bid terms and

This work was carried out when the first author was at Yahoo Labs.
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its associated ads in a special order, as done in standard inverted indexes [1].
Results in a real production system showed a significant revenue improvement
with good time performance.

This paper is organized as follows. The next section covers the main related
work. In Sect. 3 we present the new lexical matching algorithm. In Sect. 4 we
present our quality evaluation of the results as well as some performance figures.
We end with some concluding remarks.

2 Related Work

In the last decade there was a lot of work on the matching and the economics
behind sponsored search [9–11]. To simplify the matching of ads, the initial idea
of Goto.com [6] was to ask advertisers for bid terms that should appear in the
queries. Hence, in some sense, part of the matching problem was left to people.
However, if an ad does not have good bid terms, if the query is not common,
or the search engine does not have a large portfolio of ads, the matching phase
can produce few or no results at all. For this reason the concept of broad match
appeared, allowing the search engine to find queries similar to the bid terms of an
ad (e.g., see [5] for the case of long tail queries). In this context, lexical matching
of ads is crucial, to allow for lexical variants of the bid terms. On the other hand,
lexical match is not enough and must be combined by other techniques to deal
with semantic similarity (e.g., see [14]). In the work presented in this paper, the
semantic similarity of the production system is based in word2vec over the query
log stream enhanced with clicked and non-clicked ads, among other innovations
[7,8].

Regarding the searching techniques used, our algorithm is inspired in search-
ing regular expressions on a text in average sub-linear time by simulating an
NDFA over a digital trie or trie built from the text [4]. This idea has later been
adapted and enhanced for searching biological sequences [3] and also inspired
applied algorithms to search similar proper names [13]. For the main results on
approximate string matching we refer the reader to [12].

Regarding our specific problem, most algorithms used in sponsored search are
proprietary and never published. For this reason, to the best of our knowledge,
our algorithm is the first pure lexical matching algorithm ever published.

3 A New Lexical Matching Algorithm

3.1 Formal Problem

Given a set of ads bid terms BT , the lexical match for a query q, implies to find
and rank a set of ads that have bid terms that are lexically similar to q, allowing
the following variations:

– exact match;
– partial match (e.g., a proper subset of words in the bid term);

www.Goto.com
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– misspellings (that is, a few substitutions, deletions, or insertions);
– singular/plural (the number cardinality should not matter);
– word split/merge (to handle missing and extra spaces); and
– other lexical variations (e.g., stemming).

As we can have millions of ads, the solution must keep an index of the bid terms
to achieve fast search for the ads to be shown for each query.

For BT , we use only the active bid terms. An active bid term is defined as one
that has at least one active entity for every entity in the advertising hierarchy:
advertiser, campaign, ad group, and ads (bid terms are associated to the lowest
level of the hierarchy, ads). In addition, active bid terms are also restricted to
advertisers and campaigns that had budget in the last week.

3.2 Index Design

We start by detailing the index used, which is based in a trie or digital tree for
all active bid terms BT . Every bid term has an id and we also keep the number
of words in the term. Each node in the trie can be either an internal node or a
final node that implies that a potential lexical match has been found, depending
on several rules that we detail later. Each final node links to an inverted list of
the ordered set of bid terms that are associated to that final node. For the order
we use first the number of competing advertisers, then the number of words, and
finally the id.

To improve the search time and considering that many ads have a geograph-
ical target (that is, the user should be in a specific region or the query should
mention a location in that region), the inverted lists are partitioned by target
regions (e.g., USA could be a region). This not only makes the search faster, but
also disallows queries that do not have a geographical intent (that is, they do not
mention a location) to match a bid term that has a specific geographic target,
and vice versa. Hence, inverted lists are implemented as a hash map using the
associated geographic location or woeid1 as key.

To further improve the search performance, we use two bigrams tables: stan-
dard bigrams as well as skip-bigrams from BT . Bigrams are used in word split,
where two consecutive words do appear in the bid terms, while skip-bigrams are
used for pruning the search paths in the trie. For each bigram we store the two
words and the frequencies associated to when they are a bigram or a skip-bigram.
Notice that stopwords are removed while generating the bigrams.

Although bigrams increase the use of space, fast online performance is the
primary goal of the system. In addition, the way that we partition the index (see
later), drastically reduces the number of bigrams.

1 See https://en.wikipedia.org/wiki/GeoPlanet.

https://en.wikipedia.org/wiki/GeoPlanet
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3.3 Index Building

The complete preprocessing has the following phases:

– Filter and clean active bid terms. This includes removing bid terms that con-
tain Unicode characters, convert all letters to lowercase, convert periods to
spaces, and convert multiple spaces to a single space.

– Build the bigrams tables with a geographically partitioned hash map.
– Build the trie in parallel. For this we use a producer-consumer approach where:

• Producers: one reader per producer, and emit tokens of the bid terms into
a shared queue; and

• Consumers: one consumer per first character of each token, such that
synchronization of map insertions on leaf nodes is not needed, since they
will happen sequentially in the same thread.

Balancing the work of producers and consumers determines the number of
each, as producers do less work than consumers, which are the ones that
insert all bid terms in parallel into the trie.

– Build the inverted lists in each final node of the trie.

3.4 Searching Algorithm

The high level process for the search is the following:

– Split a query into tokens;
– For every token, search the trie to discover its lexical variations;
– Convert single-token variations found in final states into all the possible com-

binations of token sequences;
– For every token sequence, find matched bid terms;
– Intersect the inverted lists of bid terms for all token sequences; and
– Join all the partial results, delete duplicates if any, and return the top candi-

dates.

The search can be modeled as traversing the trie with a non-deterministic
finite automata, where

– we have a set of active states that are tuples (token position, trie node, errors),
where the initial state is (0, trie root, 0);

– we have transitions that can advance the token position, can follow a child
link in the trie, or do both; and

– we reach a final state if the tuple satisfies the following condition: (token
length, a trie final node, errors < maximum errors), where in practice the
maximum number of errors is 1 or 2.

We now detail all possible transitions in each trie node. First, the simple ones
that take care of misspellings:

– MATCH: [position+ 1, trie→=, errors], for the child labeled with the letter
that matches the current token letter, if exists;
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– SUBS: [position + 1, trie→ �=, errors + 1], for all children labeled with a
letter that does not match the current letter;

– INS: [position, trie→all, errors+ 1], for all children of the current node;
and

– DEL: [position + 1, trie, errors + 1].

For matching singular and plurals we have the following standard cases:

1. Query token is singular and trie node is plural. In this case the token ends
and if the trie node is a final node, the trie node includes a child with s that
is also a final node.

2. Query token is plural and trie node is singular. In this case if a token has
only an s left and the trie node is a final node, we consider that a final state.

Other forms of regular singular/plural matches are also supported, such as:
y to ies, and vice versa; f to ves, and vice versa; z to zes, and vice versa; ch to
ches, and vice versa; and sh to shes.

To handle token splits we add a special transition to the state (position +
1, trie root, 0) only when the current trie node is a final node (that is, if we
had en extra space, we would have a token match). In addition, we allow further
splits if the associated bigram frequency must be over a certain threshold. For
example, if we have the query alaskaairlines, the first valid split would be
alaska airlines and the second valid split might be air lines while the third
split line s will be certainly invalid. Adding the plural rule, the final splits for
the example would be alaska airline, alaska airlines, alaska air line,
and alaska air lines.

To avoid an exponential number of active states due to the NFA matching
many misspelling variations, we store intermediate results in a priority queue
using the number of errors as a key, always following first the transitions in
the state that has the smallest number of errors (in case of ties we use a FIFO
policy). In this way we first find exact matches, followed by the lexical variations.
In addition, we do not enqueue intermediate states with the maximum allowed
number of error when enough results have been already found (usually a few
hundreds).

After all results are found, we also remove lexical variations with frequency
less than a certain ratio of maximal term frequency in all the results (in practice
we used 0.01). We also remove token sequences that are infrequent or that never
appear, based on the skip-bigrams table. For instance, for the query now yark,
we may have the following variations:

now = <new|now> & york = <york|yark>,

that can match the following token sequences:

<new york>, <new yark>, <now york> & <now yark>.

Based on skip-bigrams, the final result will be limited to just the first token
sequence, as all the other cases are infrequent.

To end, for every token sequence candidate we:
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Fig. 1. Overall system example.

– Calculate the woeid for the token sequence;
– For every trie final node, we obtain the set of bid terms from the inverted list

map using the woeid as the map look-up key;
– Compute the intersection of bid terms for all the final nodes, starting with the

shortest inverted list as is customary.

To search faster, multi-threading was implemented, with one thread for every
token sequence. Figure 1 shows the full system based on the previous examples.

4 Evaluation

4.1 Quality

We evaluated the results for a random sample of 5,000 queries with no coverage
or few ads. We first did an editorial evaluation, where expert editors labeled
our results with four levels: excellent (E), good (G), fair (F), or bad (B). We
obtained that 65.2 % of the results had the levels EGF while 33.4 % were bad.
The rest (1.4 %) had no judgments, a situation that happens when the expert
cannot assess the right level.

Next, we used the ad relevance scoring of the current system in production,
which is a number in the range from 0 to 1, where below 0.2 is considered bad.
The production system is trained by a much larger sample of editorial judgments.
The results are shown in Table 1. We also compared the agreement between the
system and the editorial evaluation and the results are shown in Table 2. Finally,
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we compared the overall score of the production system (that uses ad relevance as
a filter) with our results in Table 3. These results are quite reasonable, specially
considering the agreement levels.

Table 1. Quality evaluation.

Judgment Average # of ads Good ads in answer Good ads overall Average score

EGF 15.9 100% 63.1% 0.64

Mixed 22.2 46% 10.3% 0.31

Bad 4.7 0% 14.7% 0.11

Table 2. Editorial and system agreement.

Judgment level Agreement Disagreement

EGF 72.0% 28.0%

Bad 49.2% 50.8%

Table 3. Overall comparison with the production system score.

Score range Our results Editorial relevance Ad relevance

[0.54, 0.70] 8.30% [EGF, B] = [27%, 73%] [EGF, B] = [43%, 31%]

(0.70, 0.75] 19.88% [EGF, B] = [41%, 59%] [EGF, B] = [49%, 23%]

(0.75, 0.80] 33.71% [EGF, B] = [65%, 35%] [EGF, B] = [63%, 14%]

(0.80, 0.85] 24.89% [EGF, B] = [85%, 15%] [EGF, B] = [75%, 7%]

(0.85, 1.00] 13.18% [EGF, B] = [96%, 4%] [EGF, B] = [75%, 5%]

4.2 Performance

We used a sample of about 70 million active ads to test the performance of
our system in a 192 GB memory 24-core computing server. To build the trie of
this sample we used 5 producers and 39 consumers that finished in 3 min. This
is 10 times faster than a sequential approach and implies that the index can
be refreshed often as new active ads appear due to new advertisers or budget
changes. The final index had about 13.9M nodes, of which 29 % where final
nodes.



238 R. Baeza-Yates and G. Wang

To test the searching performance, we used a sample of almost 55M queries
from Yahoo’s search query log, such that in the last 45 days were searched at
least 5 times. We searched all the queries with 20 parallel threads in 4.75 h
achieving a QPS (queries per second) rate of 3,200. The 95 % of the queries that
had at least one result, completes in less than 66 ms. For those queries, 93.3 % of
them took less than 50 ms with an average latency of just 17 ms. The rest of the
queries had an average latency of 125 ms. These results are quite encouraging
considered that were obtained with a prototype, and the production version will
easily have a QPS of more than 5,000 which implies 432M queries per day.

5 Conclusions

We have presented a new algorithm for lexical matching of ads and queries
that has competitive quality and fast performance by using a combination of
algorithmic and engineering techniques. Recent results of the A/B testing of the
algorithm showed revenue increases of one digit percentage when integrated with
the current sponsored search system that uses a word2vec approach [7,8]. Due
to these results, this algorithm is currently being re-implemented to be included
as one more of the several heuristics being used in the production system.

This algorithm can be used off-line as well, to generate bid terms that can
be merged with the results from other matching algorithms. Possible extensions
to our algorithm is to add verbal stemming, to allow different conjugations. We
can even match token synonyms at final nodes to have also semantic similarity.

Although lexical matching is an important component of current sponsored
search systems, would be much better to remove the need for advertisers to
specify bid terms and let the system find semantic matches between ads and
queries. Indeed, using new technologies such as deep learning, we can find similar
queries and ads by using all the ads metadata as well as the content of the target
ad page as input.

Finally, there are still many possible improvements in sponsored search,
including semantic similarity, click prediction, budget pacing, and pricing for
partial matches, to mention just a few.
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Abstract. We present a new Compact Trip Representation (CTR) that
allows us to manage users’ trips (moving objects) over networks. These
could be public transportation networks (buses, subway, trains, and so
on) where nodes are stations or stops, or road networks where nodes are
intersections. CTR represents the sequences of nodes and time instants
in users’ trips. The spatial component is handled with a data structure
based on the well-known Compressed Suffix Array (CSA), which provides
both a compact representation and interesting indexing capabilities. We
also represent the temporal component of the trips, that is, the time
instants when users visit nodes in their trips. We create a sequence with
these time instants, which are then self-indexed with a balanced Wavelet
Matrix (WM). This gives us the ability to solve range-interval queries effi-
ciently. We show how CTR can solve relevant spatial and spatio-temporal
queries over large sets of trajectories. Finally, we also provide experimen-
tal results to show the space requirements and query efficiency of CTR.

1 Introduction

Current technology allows us to capture data about the usage of transporta-
tion networks whose analysis could have an important impact on improving the
quality of services. Data about the origin and destination of passengers of train
services can be directly captured when selling tickets. Using more sophisticated
technology, the movement of people or vehicles over networks of streets or roads
can be collected from the mobile phone signals. Even more, nowadays many
cities (from London to Santiago of Chile) provide smartcards to the users of
their public transportation network. These smartcards (that can be recharged
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with money) allow users to pay the entrance to subways and buses. Even though
there typically exists only a card reader in the entrance to the network (i.e.,
there is no control at exits or in middle stops), it is possible to know how people
actually use the public transportation by collecting the entrance and estimating
the destination (e.g., as the entry point for the return trip) and the traversed
stops (the shorter path among stops used as the entrance and exit) [11]. In
all scenarios, the massive data about trips makes the problem of storing and
efficiently accessing data about trips a challenging computational problem.

This paper presents a compact and self-indexed data structure to represent
trips over networks, which could be public transportation networks where nodes
are stations or stops, or road networks where nodes are intersection points.

Although there exist proposals of data structures for moving objects, they
have addressed typical spatio-temporal queries such as time slice or time interval
queries that retrieve trajectories or objects that were in a spatial region at a time
instant or during a time interval. They were not designed to answer queries that
are based on counting occurrences such as the number of trips starting or end-
ing at some time instant in specific stops (nodes) or the top-k most used stops
of a network during a given time interval, which are more meaningful queries
for public-transportation or traffic administrators. Our proposal (CTR) is ori-
ented to efficiently answering these types of queries, and it differs from previous
approaches in the use of compact self-indexed data structures to represent the
big amount of trips in compact space. It is important to emphasize that our goal
is to provide an indexed representation for a static collection of trips in order to
allow an efficient batch processing of such data.

CTR combines two well-known data structures. The first one, initially
designed for the representation of strings, is Sadakane’s Compressed Suffix Array
(CSA) [18]. The second one is the Wavelet Matrix (WM) [1]. To make the use
of the CSA possible in this domain, we define a trip or trajectory of a moving
object over a network as the temporally-ordered sequence of the nodes the trip
traverses. An integer id is assigned to each node such that a trip is a string of
nodes’ ids. Then a CSA, over the concatenation of these strings (trips) is built
with some adaptations for this context. In addition, we discretize the time in
periods of fixed duration (i.e. timeline split into 5-min instants) and each time
segment is identified by an integer id. In this way, it is possible to store the
times when trips reach each node by associating the corresponding time id with
each node in each trip. The sequence of times for all the nodes within a trip is
self-indexed with a WM to efficiently answer spatio-temporal queries.

We experimentally tested our proposal using two sets of synthetic data rep-
resenting trips over two different real public transportation systems. Our results
are promising because the representation uses only around 30 % of its original
size and answers spatial and spatio-temporal queries in microseconds. No exper-
imental comparisons with classical spatial or spatio-temporal index structures
are possible, because none of them were designed to answer the types of queries
in this work. Our approach can be considered as a proof of concept that opens
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new application domains for the use of CSA and WM, creating a new strategy
for exploiting trajectories represented in a self-indexed way.

The organization of this paper is as follows. Section 2 reviews previous works
on trip representations. It also makes reference to the CSA and WM, upon which
we develop our proposal. Section 3.1 shows how CTR represents the spatial com-
ponent and Sect. 3.2 the temporal component of trips. Section 4 presents the rel-
evant queries that are solved by CTR and Sect. 5 gives our experimental results.
Finally, conclusions and future work are discussed in Sect. 6.

2 Previous Work

Trajectory Indexing. Many data structures have been proposed to support
efficient query capabilities on collections of trajectories. We refer to [13, Chapter
4] for a comprehensive and up-to-date survey on data management techniques
for trajectories of moving objects. We can broadly classify these data structures
into two groups: those that index trajectories in free space and those that index
trajectories constrained to a network. The 3D R-tree (an extension of the classi-
cal R-tree spatial index [7]), the TB-tree [14], and MV3R-tree [19] are examples
of the former, whereas the FNR-tree [4], the MON-tree [2], and PARINET [15]
are examples of the latter. While the former type of structures could also apply
over networks, the second type exploits the constraints imposed by the topology
of the network to optimize the data structure. From them, PARINET is the
most efficient alternative [15]. It partitions trajectories into segments from an
underlaying road network, and then adds one temporal B+-tree to index the tra-
jectory segments from each road. Those indexes permit us to filter out candidate
trajectory segments matching time constraints at query time.

All previous data structures were designed to answer spatio-temporal queries,
where the space and time are the main filtering criteria. Examples of such queries
are: retrieve trajectories that crossed a region within a time interval, retrieve
trajectories that intersect, or retrieve the k-best connected trajectories (i.e., the
most similar trajectories in terms of a distance function). Yet, they could not
easily support queries such as number of trips starting in X and ending at Y.

The application of data compression techniques has been explored in the
context of massive data about trajectories. The work by Meratnia and de By [10]
adapts a classical simplification algorithm by Douglas and Peucker to reduce the
number of points in a curve and, in consequence, the space use to represent
trajectories. Ptomaias et al. [16] use concepts, such as speed and orientation, to
improve compression. Both techniques work for trajectories in free space.

In [5,8,17], they focus mainly on how to represent trajectories constrained to
networks, and in how to gather the location of one or more given moving objects
from those trajectories. Yet, these works are also out of our scope as they would
poorly support queries oriented to exploit the data about the network usage
such as those oriented to aggregate the number of trips with a specific spatio-
temporal pattern (e.g. Count the trips starting at stop X and ending at stop Y
in working days between 7:00 and 9:00).
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In [9], authors use a representation of trajectories where for each edge in a
trajectory both the starting and ending times are kept, and present an index
called NETTRA. They used a relational database where those data are stored
in a table and indexes are created in order to support a particular type of queries
called Strict Path Queries. Although our CTR could also deal with those types
of queries, this database-oriented representation is out of our scope as they do
not consider space constraints (they do not compress data nor do they consider
the size of the indexes used).

Underlying Compact Structures of CTR. Our proposal is based on two well-
known compact structures: a Compressed Suffix Array (CSA) [18] and a Wavelet
Matrix (WM) [1]. We used the variant of CSA from [3], where authors adapted
CSA to deal with large (integer-based) alphabets and created the integer-based
CSA (iCSA). They also showed that the best compression of Ψ was obtained when
combining differential encoding of runs with Huffman and run-length encoding.

WM is a data structure originated from the Wavelet Tree [6], but requires less
space and permits to make an efficient occurrence count of a continuous range
of values [1] (see Sect. 3.2 for details). WM provides, as the Wavelet Tree a self-
indexed representation of symbols based on the rearrangement of their bits in
different bit maps at different levels. WM allows us to perform efficient operations
over the sequence, among other operations: access(i) returns the symbol at the
position i, rankα(i) counts the number of occurrences of a symbol α up to
position i; and selectα(j) gives the position of the j-th α. Those operations are
implemented using the classical bit operations rank and select on the underlying
bitmaps and they need O(log σ) time, being σ the number of encoded symbols.

3 Compact Trip Representation (CTR)

Trips on networks are temporally-ordered sequences of nodes (referred to as
the spatial component) tagged with timestamps (referred to as the temporal
component). We show how the proposed Compact Trip Representation (CTR)
combines a Compact Suffix Array (CSA) to represent the spatial component and
a Wavelet Matrix (WM) to represent the temporal one.

3.1 Representing the Spatial Component of CTR with a CSA

In CTR, integer IDs identify stops of the network. The first step to build the CSA
is to sort the trips. They are sorted by the first stop, then by the last stop, then by
the start time of the trip, and finally by the second, third, and successive stops.
For example, we have a dataset T with the following set of trips: {〈2, 3, 10, 6〉,
〈2, 3, 10, 4, 7〉, 〈1, 2, 3〉 〈3, 10, 5〉, 〈1, 2, 3〉 〈9, 8, 7〉}. Let us assume that these trips
start at time instants 10, 2, 0, 9, 5, 12, respectively. Following lexicographic order,
the trip 〈2, 3, 10, 4, 7〉 should be before the trip 〈2, 3, 10, 6〉. However, because
after the first stop, we consider the last stop, the trip 〈2, 3, 10, 6〉 goes before the
trip 〈2, 3, 10, 4, 7〉. In addition, the two trips 〈1, 2, 3〉 are sorted by their starting
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time instants (0 and 5 respectively). This sorting of the trips will allow us to
answer a useful query very efficiently (i.e., trips starting at X and ending at Y ).

We concatenate the sorted trips and construct an array S where trips are sep-
arated with a symbol $. We also add an additional ending $. Figure 1 shows the
array S for the running example. Despite the standard suffix array construction
in the CSA that compares two suffixes by their lexicographical order until the
end of S, we introduced a modification so that two suffixes are now compared
considering their trips as a cycle.

Figure 1 depicts the structures Ψ and D used by the CTR over the trips in
the dataset T . There is also the vocabulary V containing all the stops in their
lexicographic order, as well as the $ symbol. We include the sequence S, the
suffix array A, and Ψ ′ only for clarity (they are not needed in the CTR). Ψ ′

contains the first entries of Ψ from a regular CSA, just to explain the difference
of how we build Ψ . For example, A[8] = 1 points to the first stop of the first
trip S[1]. Ψ [8] = 10 and A[10] = 2 points to the second stop. Ψ [10] = 14 and
A[14] = 3 points to the third stop. Ψ [14] = 2 and A[2] = 4 points to the ending
$ of the first trip. Therefore, in the standard CSA, Ψ ′[2] = 9 and A[9] = 5 points
to the first stop of the second trip. However, in CTR, Ψ [2] = 8 and A[8] = 1
points to the first stop of the first trip. Thus, subsequent applications of Ψ will
allow us to cyclically traverse the stops of the trip. Finally, note that aligned
with sequence S, we could keep the times associated with the stops in each trip
with the structures I and Icode, which are explained in the following subsection.

Fig. 1. Structures involved in the creation of a CTR.

The definition of a suffix proposed above explains why A[22] = 18 is placed
before A[23] = 26. Note that the suffix starting at S[18] is “7 · $ · 2 · 3 . . . ” and
that suffix at S[26] is “7 · $ · 9 · . . . ”. Therefore, it holds that A[22] ≺ A[23].
However, considering the traditional definition of a suffix, these suffixes would
be “7 · $ · 3 · · · ” and “7 · $ · $ · · · ” respectively, and A[22] ≺ A[23] would not hold.

Note also that, in the shaded range Ψ [1, 7], the first entry is related to ter-
minator $, whereas the next six entries correspond to the $ symbols that mark
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the end of each trip in S (sorted by the starting stop, then by the ending stop,
then by their initial time, and finally by the second, third and following up
stops). This property makes it very simple to find starting stops. For example,
the ending $ of the 4th trip is at the 5th position (because the first $ corre-
sponds to the final $ at S[28]). Therefore, its starting stop can be obtained by
Ψ [5] = 12 and rank1(D, 12) = 3; that is, the starting stop is the 3th entry in
the vocabulary. The next stop of that trip would be obtained by Ψ [12] = 16 and
rank1(D, 16) = 4, and so on.

We expect to obtain good compressibility in CTR due to the structure of the
network, and the fact that trips that start in a given stop or simply those going
through that stop will probably share the same sequence of “next” stops. This
will lead us to obtain many runs in Ψ [12], and consequently, good compression.

3.2 Representing the Temporal Component of CTR with a WM

To exploit usage patterns of a network, we need to represent and query the time
component of trips, which indicates when a moving object reaches each node
along its trip. To represent this time component, we discretize time and assign
an integer code to each resulting time interval. The size of the time interval is a
parameter that can be adjusted to fit the required precision in each domain. For
example, in a public transportation network, if we had data about five years of
trips, a possibility would be to divide that five-years period into 10-min intervals,
or in cyclical annual periods resulting in a vocabulary of roughly 365 × 24 ×
60/10 = 52, 560 different codes. However, in public transportation networks
queries such as “Number of trips using the stop X on May 10 between 9:15 and
10:00” may be not as useful as queries such as “Number of trips using stop X on
Sundays between 9:15 and 10:00”. For this reason, CTR can adapt how the time
component is encoded depending on the queries that the system must answer.

In Fig. 1, sequence I contains the time associated with each stop in a trip,
and Icode a possible encoding of times. In CTR we use a similar encoding to
that in Icode, yet aligned to Ψ rather than to S.

Fig. 2. WM representation for the times associated with the trips in Fig. 1.
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Those entries in Icodes are given a fixed-length binary code and are repre-
sented with a balanced Wavelet Matrix (WM) [1]. That is, for any stop in a trip
at the position i in Ψ , its timestamp ti can be recovered by accessing the WM
at position i. Recall [1] that a WM is a grid of n × m bits. In our case n is the
number of entries in the CSA and m = log σt are the bits needed to represent
the different σt codes for the time instants of interest.

Besides the typical access(i), rankα(i) and selectα(i), the WM provides a
count operation that CTR heavily relies on. count(x1, x2, y1, y2) returns the
number of occurrences of symbols between y1 and y2 in the range of posi-
tions [x1, x2] from the encoded sequence in O(m) time. While its implemen-
tation details can be found in [1], we include an example of how to solve
count(20, 28, 10, 15) over the sequence shown in Fig. 2. The algorithm starts from
the upper level (Bit1) of the WM and iterates downwards, refining the search-
ing range. In Bit1 we are only interested in positions from [20, 28] that have a
1, because none of the symbols between 10 and 15 starts with a 0. Also, since
rank0(Bit1, 28) = 12, in Bit2 we will have to search in the positions between
12+rank1(Bit1, 20) = 21 and 12+rank1(Bit1, 28) = 28. Now, while the second
bit for 10 and 11 is 0, it is 1 for the symbols between 12 and 15. Because of this,
we need to perform both rank0 and rank1 on the limits of [21, 28] in Bit21, and
split the search in two subranges for Bit3: [10, 11] using rank0 and [23, 28] using
rank1. As the second subrange may only contain symbols from 12 to 15 (11xx),
further refinement is not needed. In the case of the range [10, 11], it could contain
symbols from 8 to 11, depending on their third bits, so we need to perform rank1
over its limits in Bit3, which leads to [21, 22] in Bit4. The number of 10 and 11
symbols is the size of this last range.

If we wanted to return the positions of the results in the original sequence,
we could do that with a simple algorithm, using select of bits over bitmaps, that
iterates upwards from the level where each result is found until the first level
where its position in the original sequence can be retrieved.

Summarizing, CTR takes the advantage of the WM to count and report the
occurrences of a continuous range of values. The starting positions in the CSA
belonging to the $ symbols have no time by themselves, but it is useful to answer
some queries to store the starting time instants of the corresponding trip in these
positions too.

The time intervals could be mapped to a variable-length code, instead of a
fixed length codes, where the most frequent intervals would be represented by
less bits and, therefore, requiring less levels in a Wavelet Tree. In the future we
will explore this possibility.

4 Query Processing

We distinguish two types of queries to be answered by the CTR: spatial and
spatio-temporal queries. We briefly sketch the algorithms to process these
queries.
1 rank1(Bit2, i) = i − rank0(Bit2, i), and vice versa.
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Spatial Queries. The following queries can be solved by only using the CSA
that represents the spatial component of trips.

– Number of trips starting at stop X. Because Ψ was cyclically built in such a
way that every $ symbol is followed by the first stop of its trip, this query is
solved by performing the binary search of the pattern $X over the section of
Ψ corresponding to $. The size of the resulting range gives the number of trips
starting at X.

– Number of trips ending at stop X. In a similar way to the previous query, this
one can be answered with a binary search for pattern X$ over the section of
Ψ corresponding to stop X.

– Number of trips starting at X and ending at Y . Combining both ideas from
above, this query is solved directly by searching for the Y $X pattern.

– Number of trips using stop X. Instead of performing a binary search
over Ψ , we operate on bitmap D. Assuming that X is at position p in
the vocabulary V of CTR, its total frequency is obtained by occsX ←
select1(D, p + 1) − select1(D, p). If p is the last entry in V , we set occsX ←
n + 1 − select1(D, p).

– Top-k most used stops. We provide two possible solutions for these queries:
sequential and binary-partition approaches.

• To return the k most used stops using a sequential approach, we can
apply select1 operation sequentially for every stop from 1 to δ, returning
the k stops with highest frequency. We use a min-heap that is initialized
with the first k stops, and for every stop s from k+1 to δ, we compare its
frequency with the frequency of the minimum stop in the heap. In case
the new one is higher, the root of the heap is replaced and moved down to
comply with the heap ordering. At the end of the process, the heap will
contain the top-k most used stops, which can be sorted with the heapsort
algorithm if needed. Note that this approach always performs δ select1
operations on D.

• A binary-partition approach to solve queries about the top-k most used
stops takes advantage of the skewed distribution of the stops that trips
visit. Working over D and V , D is recursively split into segments of D after
each iteration. Each partition must, if possible, leave the same number of
different stops in each side of the partition. The segments created after
the partitioning step are pushed into a priority queue Q, storing the initial
and the final positions of the segment in D, and also the initial and final
corresponding entries in V . The priority of each segment in Q is directly its
size. The priority queue Q is initialized with a segment covering the whole
D (without its initial range of δ $ symbols). When a segment extracted
from the queue Q represents the instance of only one stop, that stop is
returned as a result of the top-k algorithm. The algorithm stops when the
first k stops are found.

For example, when searching for the top-1 most used stops in the
running example, Q is initialized with the segment [8, 28], corresponding
to stops from 1 to 10 (positions from 2 to 11 in V ). Note that the entries
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of D from 1 to 7 and V [1] represent the $ symbol. These are not stops
and must be skipped. Then [8, 28] is split producing the segments [8, 20]
for stops 1 to 5 and [21, 28] for stops 6 to 10. After three more iterations,
we extract the segment [14, 18] for the single stop 3, concluding that the
top-1 most used stop is 3 with a frequency equal to 5.

Spatio-Temporal Queries. These queries combine both the CSA and WM.
The idea is to restrict spatial queries to a time interval [t1, t2]. An example of
this type of query is to return the number of trips starting at stop X between
t1 and t2, which we solve by relying on the count operation of the WM. The
following are the spatio-temporal queries solved by the CTR:

– Number of trips starting at stop X during the time interval [t1, t2]. Remember
that in the WM we also have timestamps associated with the area of $-symbols
in Ψ ; each $ has associated the time of the first stop of its trip and, therefore,
we can use the WM in that area of Ψ . Using the range in Ψ obtained by
searching the $X pattern, as done in a regular spatial query, a count operation
is performed over these positions in the WM searching for the limits of the
interval. That is, we count the number of entries in the obtained range that
have a timestamp in the WM inside [t1, t2].

– Number of trips ending at stop X during the time interval [t1, t2]. As before, we
use a count operation in the WM, restricted to the range in Ψ that corresponds
to the pattern X$ found in the spatial query.

– Number of trips using stop X during the time interval [t1, t2]. As in the spa-
tial query, the range in Ψ is obtained with two select1 on D. Then, a count
operation is done over the WM to find the occurrences inside the time interval
[t1, t2].

– Number of trips starting at X and ending at Y occurring during time interval
[t1, t2]. We consider two different semantics. A query with strong semantics
will obtain trips that start and end inside [t1, t2]. Whereas, a query with weak
semantics will obtain trips whose time intervals overlap [t1, t2] and, therefore,
they could actually start before t1 or end after t2.

We can binary search Ψ for the pattern Y $X, hence obtaining the corre-
sponding continuous range of positions in the section of Ψ devoted to Y . We
know that the range for Y $X in Ψ has pointers to the section $ in Ψ . But,
note that taking into account the considerations in the sorting of trips when
building the CSA, this section $XY is a continuous range of the same size
than the range Y $X, and it also preserves the same order of the trips.
Note that, the range Y $X of Ψ has associated the final time of each trip in the
WM, whereas the range $XY has associated the timestamps of the starting
time of each trip in increasing order (due to how we sorted the trips). There-
fore, we can use these ranges, respectively, to check time constraints related
to the ending stop (Y ) and to the starting stop ($X) of each trip.

• Strong semantics. Since time instants within the range $XY are in
increasing order, we can use the WM to obtain a continuous subrange
(inside $XY ) of trips starting during the interval [t1, t2]. That subrange



Compact Trip Representation over Networks 249

has a matching subrange inside of the range Y $X corresponding to the
final stop of those trips (in the same order). We can again use the WM
to count the number of those trips with valid ending times. That is, we
can perform a count operation in the WM over the subrange of Y $X
corresponding to the subrange of $XY with valid starting times.

• Weak semantics. In this case we need to consider all the trips in the
range $XY starting within [t1, t2], as well as the ones starting before t1
but ending after t1.

5 Experimental Evaluation

In this section we provide experimental results to show how CTR handles a large
collection of trips. We discuss both the space requirements of our representation
and also show its performance at query time. Although due to legal issues we
could not provide experiments over real trips gathered from transport companies,
we managed to use real data of the Madrid’s public transportation network2 (in
the GTFS3 format) to generate two datasets of synthetic trips:

– Subway trips. This combines the subway network with the Spanish com-
muter rail system called “Cercańıas”. In total, there are 313 different stations
organized in 23 lines. They are open to the public from 6:00 AM to 2:00 AM,
thus trips were always generated within 20 h a day.

– Bus trips. It uses 4648 bus stops, organized in 206 lines. Some of these lines
are from special night services, so we generated trips using 24 h a day.

Trip generation process choses a starting stop and an ending stop, and uses
the network description to generate every stop that the trip must traverse. We
generated 50 million trips in both datasets, whose lengths vary from 2 to 31
stops following a binomial distribution with a mean length of 11.81 stops. Based
on the GTFS data, we also generated realistic timestamps along each stop, and
built the WM-based time index in CTR discretizing these timestamps into 5-min
intervals. We distinguished four kinds of days in a week: regular working days,
Fridays/holiday eves, Saturdays, and Sundays/holidays; and two kinds of weeks
for high and low season representations. In total, a time interval may belong to
eight types of day.

Below, we show the space/time tradeoff for both datasets obtained by three
settings of CTR. We tune its Ψ sample rate parameter to values 16, 64, and 256,
respectively. All tests were run on a machine with an Intel(R) Core(TM) i5-
4440@3.1 GHz CPU, and 8 GB DDR3 RAM. The operating system was Ubuntu
15.04 and the compiler gcc 4.9.2 (options -O3).

We compare the space usage of the stops representation in the CTR with
the space required by two baseline compressors: gzip and bzip2. To measure the
2 Data from the EMT corporation https://www.emtmadrid.es/movilidad20/googlet.

html.
3 GTFS is a well-known specification for representing an urban transportation net-

work. See https://developers.google.com/transit/gtfs/reference?hl=en.

https://www.emtmadrid.es/movilidad20/googlet.html
https://www.emtmadrid.es/movilidad20/googlet.html
https://developers.google.com/transit/gtfs/reference?hl=en
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compression, we assume, as a reference, a plain representation that uses the
least amount of bits needed to represent every stop with a fixed width4. The
sizes of these plain representations are 687.28 MiB for the subway trips dataset,
and 992.59 MiB for the bus trips. Note that we ignore the space needed for the
representation of time intervals, as WM does not offer any compression by itself,
and needs 866.27 and 944.88 MiB for subway and bus trips, respectively.

Results regarding space usage are given in Table 1. Note that an iCSA built
on English text [3] typically reached the compression of gzip (around 35 % in
compression ratio). As expected, the high compressibility of our sorted dataset
of trips permits CTR to improve those numbers with compression ratios under
30 % in the most sparse setup, much better than gzip, and even than bzip2. Yet,
CTR offers also indexing features that allow us to perform efficient searches.

To provide a rough comparison with a database solution similar to NET-
TRA [9] we included in a table a row containing each trip ID (represented with
4 bytes), stop ID (represented with 2 bytes), and time interval (represented with
2 bytes instead of a full datetime). The size of the whole table was around
4505 MiB, without taking any indexes into account. Therefore, such represen-
tation would use at least more than twice the space of CTR while it could not
efficiently support the queries discussed in this paper.

Table 1. Comparison on space usage for stops. Space in MiB.

Dataset Ψ16 Ψ64 Ψ256 gzip bzip2

Subway 467.07 249.14 193.10 401.72 238.43

(67.96 %) (36.25 %) (28.10 %) (58.45 %) (34.69 %)

Bus 499.84 283.12 227.42 957.03 389.74

(50.36 %) (28.52 %) (22.91 %) (96.42 %) (39.26 %)

To see the query performance of CTR, we generated 10, 000 random queries
of each type, and measured the average time required to solve them.

Table 2 shows the results of spatial queries. Almost any query can be solved
in the order of ten μsecs and the heaviest Top-k within msecs per query in our
experiments. As expected, the query “ends at X” performs slightly faster than
“starts at X”, as the region in Ψ for any stop X is smaller than the region of $,
thus needing more time to search a pattern inside the later. It is also expected
that the spatial “uses X” performs much faster than any other query as it does
not operate over Ψ and its samples, using instead the select1 operator over D. For
the same reasons, both spatial Top-k algorithms are also independent from the Ψ
sample rate parameter. However, it is interesting to point out that even when the
binary partitioning algorithm is much faster for small values of k, its sequential
counterpart overcomes it for large values of k. This is a reasonable phenomena
considering that for large values of k, the number of select1 operations that the
4 9 bits/stop for subway trips, 13 bits/stop for bus trips.
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binary partitioning algorithm needs to perform tends to be the same as in the
sequential algorithm, but with the additional cost of maintaining a larger and
more complex structure (a priority queue versus a binary heap).

Table 2. Time performance for spatial queries (in μsecs/query).

CTR Starts at X Ends at X Starts at X Uses X Sequential Binary Sequential Binary

ends at Y top 10 top 10 top 1000 top 1000

Subway Ψ16 6.03 4.53 11.24

SubwayΨ64 8.22 4.61 16.68 0.3902 50.42 39.36 62.79 75.09

Subway Ψ256 18.78 5.69 38.82

Bus Ψ16 7.51 6.27 9.24

Bus Ψ64 9.58 6.52 15.72 0.7944 761.14 588.01 1031.84 1514.07

Bus Ψ256 22.77 11.35 41.31

Table 3 shows the results of spatio-temporal queries. Looking at the differ-
ences between spatial queries and their spatio-temporal counterparts, it can be
seen that computing a count query over the WM takes roughly around 3 μsec,
so its time overhead is relatively small.

Table 3. Time performance for spatio-temporal queries (in μsecs/query).

CTR Starts at X Ends at X Starts at X ends at Y (strong) Starts at X ends at Y (weak) Uses X

Subway Ψ16 8.34 7.44 22.42 18.95

Subway Ψ64 11.21 7.83 28.07 24.32 2.08

Subway Ψ256 21.68 8.58 49.98 46.50

Bus Ψ16 10.41 9.50 12.25 12.12

Bus Ψ64 12.95 10.19 18.84 18.75 4.90

Bus Ψ256 26.20 14.87 44.84 44.92

6 Conclusions and Future Work

As better tracking mechanisms will be installed, the problem of storing and
querying trips to support network analysis will gain interest for network manage-
ment administrations and even end-user applications. For instance, with enough
data of vehicle trips from a significant amount of drivers over the network formed
by the streets of a city, it would be possible to infer traffic rules by examining
turns that nobody takes, their usual driving speed across the network, and other
useful information.

We showed that CTR is a powerful structure to represent user trips. Using
compact data structures to represent trips over a transportation network allows
us not only to keep a much larger amount of data in main memory (compression
ratio is around 30 %), but also to efficiently perform spatial and spatio-temporal
queries oriented to understand the real usage of the network.
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We have presented CTR as a proof of concept development. It is flexible
enough to allow new adaptations and functionality improvements we plan to
do as future work, such as the analysis of line changes in switching stops (that
would require storing the network topology) or providing compression for the
time index. Also, future work considers providing new experiments over real
data of trips.
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Abstract. Two strings X and Y are considered Abelian equal if the
letters of X can be permuted to obtain Y (and vice versa). Recently,
Alatabbi et al. (2015) considered the longest common Abelian factor prob-
lem in which we are asked to find the length of the longest Abelian-equal
factor present in a given pair of strings. They provided an algorithm
that uses O(σn2) time and O(σn) space, where n is the length of the
pair of strings and σ is the alphabet size. In this paper we describe an
algorithm that uses O(n2 log2 n log∗ n) time and O(n log2 n) space, sig-
nificantly improving Alatabbi et al.’s result unless the alphabet is small.
Our algorithm makes use of techniques for maintaining a dynamic set of
strings under split, join, and equality testing (Melhorn et al., Algorith-
mica 17(2), 1997).

1 Introduction

Two strings X and Y are considered to be Abelian equal if the letters of X can
be permuted to obtain Y (and vice versa). At the String Masters 2013 meeting,
Thierry Lecroq and Arnaud Lefebvre, posed the longest common Abelian factor
problem in which we are asked to find the length of the longest Abelian-equal
factor present in a given pair of strings.

The problem is a variant on the classic longest common factor (LCF) prob-
lem, the colorful history of which has been recently chronicled by Apostolico
et al. [3]. The LCF of two strings can be computed in time linear in the length
of the strings via suffix tree construction, and indeed the drive for a linear-time
LCF algorithm was the reason the suffix tree was unearthed when it was.

To our knowledge, the only work on the LCAF problem was presented very
recently by Alatabbi et al. [1]. They describe an algorithm that runs in O(σn2)
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 254–259, 2016.
DOI: 10.1007/978-3-319-46049-9 24
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worst-case time, using O(σn) working space1, where n is the length of the strings
and σ = |Σ| is the alphabet size.

Our main result in this paper is an algorithm that uses O(n2 log2 n log∗ n)
time and O(n log2 n) space, significantly improving Alatabbi et al.’s result unless
the alphabet is o(log2 n log∗ n). To obtain this result, we make use of techniques
for maintaining a set of strings under split, join, and equality testing by Melhorn,
Sundar, and Uhrig [8].

We also show how to reduce the space requirements of Alatabbi et al.’s algo-
rithm from O(σn) to O(n), without affecting their running time. Before getting
to these new results, however, in Sect. 3 we highlight a link between the LCF
and LCAF problems that provides an alternative path to Alatabbi et al.’s upper-
bound.

2 Preliminaries

Let S = S[1..n] be a string of length n over an alphabet Σ of size σ = |Σ|.
For 1 ≤ i ≤ j ≤ n, S[i] denotes the ith symbol of S, and S[i..j] the contiguous
sequence of symbols (or factor or substring) S[i]S[i + 1] . . . S[j]. We will use the
same notation for arrays. String S[i..j], where j − i + 1 = �, will also be called
an �-gram from S. Throughout we assume that σ = O(n) and Σ = {1, 2, . . . , σ}.
If this is not the case, we can first remap the alphabet for both input strings in
O(n log n) time and using O(n) extra space.

The Parikh vector for string S, denoted as P (S)[1 . . . σ], is defined as a vector
(array) of size σ storing the number of occurrences of each alphabet symbol in S.
Formally, P (S)[c] = k iff |{i : S[i] = c}| = k, for any alphabet symbol c. For two
strings S and T of equal length and over a common alphabet, we say that the
Parikh vector P (S) is (lexicographically) smaller than the Parikh vector P (T ),
denoted as P (S) < P (T ), iff there exists an alphabet symbol c′, 1 ≤ c′ ≤ σ, such
that P (S)[c] = P (T )[c] for all c < c′ and P (S)[c′] > P (T )[c′]. The two Parikh
vectors are equal, i.e., P (S) = P (T ), when P (S)[c] = P (T )[c] for all symbols c.

3 LCAF via LCF

While Alatabbi et al.’s algorithm for computing the LCAF is simple, we note
here that the same result can be immediately obtained by a reduction from the
LCF problem.

Hui [6] showed that using a generalized suffix tree it is possible to find the
LCF for a pair of strings of length n in O(n) time. We use this algorithm n
times, for each factor length �, replacing each �-length factor by its Parikh vec-
tor followed with a unique terminator (e.g., for the factors taken from A the
subsequent terminators can be −1, −2, ..., while for the factors taken from B
they can be −n − 1, −n − 2, ...). The terminators prevent matches longer than
σ. If there exists an LCF of length exactly σ, it must correspond to a pair of

1 We express space usage in words, throughout.
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factors, one from A and one from B, of length �. This takes O(σn) time for one
value of �, using O(σn) space, hence the total time, for all possible factor lengths,
becomes O(σn2) with O(σn) space (we build and discard the generalized suffix
trees one at a time). In this way, we obtain the same time and space bounds as
Alatabbi et al.’s solution.

4 Reducing Space Usage in Alatabbi et al.’s Algorithm

Recently, Kociumaka et al. [7] showed that for any tradeoff parameter 1 ≤ τ ≤ n,
the LCF problem can be solved in O(τ) space and O(n2/τ) time. Applying this
to the LCAF problem, we obtain an algorithm using O(τσn2) time and O(σn/τ)
space, for any 1 ≤ τ ≤ σn.

The specifics of LCAF, however, allow for a better result. We consider each
factor length � separately. For a given �, we sort all n−�+1 factors of A according
to their Parikh vectors, using LSD radix sort. Each factor is represented as its
start position in A. There are σ passes of the radix sort and the problem seems
to be accessing the keys’ “digits”. However, before each pass of the radix sort
we scan A and for each �-sized window collect the count of the corresponding
symbol in it. More precisely, just before the ith pass of the radix sort, in which
the keys will be distributed according to P (·)[σ − i + 1], we compute and store
P (A[j . . . j+�−1])[σ−i+1] for each factor A[j . . . j+�−1], using O(n) time and
O(n) extra space. This allows us to access a digit in the radix sort in constant
time. After the ith pass, the P (·)[σ − i + 1] statistics are discarded. In this way,
sorting of the �-length factors of A takes O(σn) time and requires O(n) working
space, including for the output.

We sort the factors of B in the same way. Additionally, for every σth evenly
sampled �-length factor of A and B, we store explicitly its Parikh vector using
O(σ) space. More precisely, we compute and store the Parikh vectors for the
factors A[1 . . . �], A[σ + 1 . . . σ + �], A[2σ + 1 . . . 2σ + �], . . ., and similarly for
B[1 . . . �], B[σ + 1 . . . σ + �], B[2σ + 1 . . . 2σ + �], . . .. Because we scan the strings
from left to right and compute the successive Parikh vectors incrementally (first
making a copy of the previous vector), this phase takes O(n + (n/σ)σ) = O(n)
time and O(n) space.

The computed Parikh vectors serve to speed up factor comparisons during
the last phase, which is to intersect the lists of factors from A and B (similar
to a two-way merge). By using the sampled Parikh vectors that we have kept at
regular intervals of A and B, each factor comparison takes O(σ) time, and the
intersection therefore takes O(σn) time.

The total cost of the described procedure, over all relevant factor lengths,
becomes O(σn2) and the required space is O(n). This matches the time com-
plexity of Alatabbi et al.’s solution, but reduced space usage by a factor of σ.

5 New Algorithm Based on Dynamic String Sets

To determine if A and B have a common factor of length �, it suffices to be able
to count the number of distinct Parikh vectors in a string. To see this, let D�(A),
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D�(B), and D�(A$B) denote the number of distinct Parikh vectors in strings A,
B, and A$B, respectively, where $ is a sentinel symbol not occurring in either
A or B.

Clearly, if
D�(A$B) < D�(A) + D�(B) (1)

then at least one Parikh vector is shared by A and B, and so the LCAF will
have length at least �. This gives us a simple algorithm for computing the LCAF:
compute D�(A), D�(B), and D�(A$B) for every � ∈ [1, n]; the largest � for which
(1) holds is the length of the LCAF.

For the remainder of this section we focus on how to compute D�(X) for a
given string X and window length �. Our main tool is a data structure due to
Melhorn et al. [8] for maintaining a (dynamic) set of strings under split, join, and
equality testing. More precisely, their data structure supports four operations:

(i) make sequence(s, a1): creates the sequence s equal to the symbol a1.
(ii) equal(s1, s2): returns true iff the strings s1 and s2 are equal.
(iii) join(s1, s2, s3): creates the sequence s3 = s1s2 without destroying s1 and s2.
(iv) split(s1, s2, s3, i), which creates two new sequences, s2 = a1 . . . ai and

s3 = ai+1 . . . an, without destroying s1.

All presented operations work with string identifiers (ids). For example, join
takes as its parameters the ids of strings s1 and s2, and returns the id of the
newly created s3; if some string already in the collection is equal to s3, their
ids will be equal. Importantly, the ids in the collection are positive integers and
their maximum value after m operations is m3.

Two solutions were presented by Melhorn et al.: one deterministic and
one randomized—the latter with slightly better expected times for the oper-
ations (ii)–(iv)—we only make use here of the deterministic solution. The
corresponding four time complexities, for the mth operation in the lifecy-
cle of the structure, are: O(1) for make sequence, O(log m) for equal, and
O(log n(log m log∗ m + log n)) for join and split. After m operations the space
used is O(m log n(log∗ m + log n)).

Our use of Melhorn et al.’s data structure is to store Parikh vectors, which we
will simultaneously treat as both strings and arrays of integers. In the context of
our application, all we need to be able to do is support increment and decrement
of elements of these Parikh vectors. This can be simulated with split and join
operations allowed by Melhorn et al.’s string collection data structure, as we
now explain.

Consider the successive windows of length � shifted over sequence X. For the
first window, we calculate the corresponding Parikh vector in O(σ + �) = O(n)
time and add it to the string collection using a series of make sequence and join
operations. For any following window, starting at some valid position i + 1, the
respective Parikh vector for X[i+1 . . . i+ �] is calculated from the Parikh vector
for X[i . . . i+�−1] by incrementing P (X[i . . . i+�−1])[X[i+�]] and decrementing
P (X[i . . . i+�−1])[X[i]]. For presentation clarity, let us implement this operation
in two stages: first going from P (X[i . . . i + � − 1]) to P (X[i . . . i + �]) and then
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going from P (X[i . . . i+ �]) to P (X[i+1 . . . i+ �]). Let s1 = P (X[i . . . i+ �− 1]).
Using the dynamic collection of strings, the first transition between the Parikh
vectors boils down to the following sequence of steps:

split(s1, s2, s3, X[i + �]),
split(s2, s4, s5, X[i + �] − 1),
make sequence(s6, s1[X[i + �]] + 1),
s7 = join(s4, s6),
s8 = join(s7, s3).

The sequence labeled by s8 corresponds to P (X[i . . . i+�]), hence the first stage is
accomplished. The second stage is analogous so we omit it here. This procedure
uses a constant number of split, join, and make sequence operations and so has
time complexity O(log n(log m log∗ m + log n)).

We observe now that in O(n log n(log m log∗ m + log n)) time (where m =
Θ(n)) we can obtain the Parikh vectors for all �-grams from X, and the corre-
sponding string ids in passing.

Our goal is to know the number of different string ids produced (which cor-
responds to the number of distinct Parikh vectors for the �-length factors of X).
With this in mind, at each step i we record the id produced in element i of an
array of n−� elements. Recall that the maximum id is upper-bounded by Θ(n3),
and so each id can be stored in O(log n) bits or O(1) words of space. This in
turn means the search tree requires O(n) space overall. We then sort this array
and then scan it to determine the number of distinct elements.

6 Concluding Remarks

Finding the longest common Abelian factor is a recently posed problem, with a
solution given in [1], achieving O(σn2) worst-case time and needing O(σn) words
of space. A significant weakness of that result is its space requirement, which
may be unacceptable with a larger alphabet. We have improved this result in
two ways.

The algorithm of Sect. 4 keeps the time complexity of Alatabbi et al.’s but
reduces its space usage to O(n). This is obtained by very simple means (the key
component is LSD radix sort). Our second algorithm removes the dependency on
σ and uses O(n2 log2 n log∗ n) time and O(n log2 n) space. This algorithm is also
simple conceptually, exploiting a reduction of the problem to counting distinct
Parikh vectors present in a string for different factor lengths.

We believe better algorithms for the LCAF problem are possible, and the
discovery of one is the main open problem we leave; to be specific: is O(n2) time
and O(n) space possible? One obvious line of attack is to use word-level paral-
lelism (in the word-RAM model) for Parikh vector comparisons. The anticipated
speed-up factor however is only about w/ log(n/σ), where w is the machine word
size. Perhaps more interesting would be to attempt to share computations for
different factor lengths to obtain faster algorithms. Hardness results, possibly
following the 3SUM reduction for other Abelian problems by Amir et al. [2],
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would also be welcome. In another direction, we may be able to use rounding
techniques described by Cicalese et al. [4] to trade off accuracy for time. We are
currently working on sampling techniques that we hope can be combined with
rounding to yield even faster algorithms.

Finally, we note that achieving O(n2) time and O(n) space is possible if we
are happy with answers that are sometimes incorrect. More precisely, we can use
Karp-Rabin hashing in place of Melhorn et al.’s data structure in our algorithm
(which is effectively acting as a rolling hash function). This gives a Monte Carlo
algorithm that correctly computes the LCAF with high probability; and can
be made Las Vegas fairly easily by applying techniques from [5]. We defer the
details to the full version of this paper.
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1 Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC,
77454 Marne-la-Vallée, France
{neou,vialette}@univ-mlv.fr

2 Department of Computer Science, Università degli Studi di Verona, Verona, Italy
romeo.rizzi@univr.it

Abstract. Given a permutation π (called the text) of size n and another
permutation σ (called the pattern) of size k, the NP-complete permuta-
tion pattern matching problem asks whether σ occurs in π as an order-
isomorphic subsequence. In this paper, we focus on separable permuta-
tions (those permutations that avoid both 2413 and 3142, or, equiva-
lently, that admit a separating tree). The main contributions presented
in this paper are as follows.

– We simplify the algorithm of Ibarra (Finding pattern matchings for
permutations, Information Processing Letters 61 (1997), no. 6) to
detect an occurrence of a separable permutation in a permutation and
show how to reduce the space complexity from O(n3k) to O(n3 log k).

– In case both the text and the pattern are separable permutations,
we give a more practicable O(n2k) time and O(nk) space algorithm.
Furthermore, we show how to use this approach to decide in O(nk3�2)
time whether a separable permutation of size n is a disjoint union of
two given permutations of size k and �.

– Given a permutation of size n and a separable permutation of size
k, we propose an O(n6k) time and O(n4 log k) space algorithm to
compute the largest common separable permutation that occurs in
the two input permutations. This improves upon the existing O(n8)
time algorithm by Rossin and Bouvel (The longest common pattern
problem for two permutations, Pure Mathematics and Applications
17 (2006)).

– Finally, we give a O(n6k) time and space algorithm to detect an
occurrence of a bivincular separable permutation in a permutation.
(Bivincular patterns generalize classical permutations by requiring
that positions and values involved in an occurrence may be forced to
be adjacent).

1 Introduction

A permutation σ is said to occurs in π, in symbols σ � π, if there exists a
subsequence of entries of π that has the same relative order as σ, and in this case
σ is said to be a occurs in π. Otherwise, π is said to avoid the permutation σ. For
example, the permutation π = 391867452 contains the pattern σ = 51342 as can
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 260–272, 2016.
DOI: 10.1007/978-3-319-46049-9 25
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be seen in the highlighted subsequence of π = 391867452 (or π = 391867452
or π = 391867452 or π = 391867452). However, since the permutation π =
391867452 contains no increasing subsequence of length four, π avoids 1234.
During the last decade, the study of the permutation pattern matching has
become a very active area of research and an annual conference (Permutation
Pattern) is devoted to the subject of pattern in permutation and a database1

of permutation pattern avoidance is maintained by Bridget Tenner.
We consider here the so-called permutation pattern matching problem (also

sometimes referred to as the pattern involvement or pattern containment prob-
lem): Given two permutations σ and π, this problem is to decide whether σ � π
(the problem is ascribed to Wilf in [5]). The permutation pattern matching prob-
lem is NP-hard [5]. It is, however, polynomial time solvable by brute-force enu-
meration if σ has bounded size. Improvements to this algorithm were presented
in [1,2], the latter describing a nice O(|π|0.47k+o(|σ|)) time algorithm. Bruner
and Lackner [8] gave a fixed-parameter algorithm solving the permutation pat-
tern matching problem with an exponential worst-case runtime of O(1.79run(π)),
where run(π) denotes the number of alternating runs of π. (This is an improve-
ment upon the O(k

(
n
k

)
) runtime required by brute-force search without imposing

restrictions on σ and π.) Of particular importance, it has been proved in [11]
that the permutation pattern matching problem is fixed-parameter tractable for
parameter k.

A few particular cases of the permutation pattern matching problem have
been attacked successfully. Of particular interest in our context, the permutation
pattern matching problem is solvable in polynomial time for separable patterns.
Separable permutations are those permutations where the patterns 2413 and
3142 do not occur. The permutation pattern matching problem is solvable in
O(kn4) time and O(kn3) space for separable patterns [12] (see also [5]), where
k is the size of the pattern and n is the size of the text. Notice that there are
numerous characterizations of separable permutations. To mention just a few
examples, they are the permutations whose permutation graphs are cographs
(i.e. P4-free graphs); equivalently, a separable permutation is a permutation
that can be obtained from the trivial permutation 1 by direct sums and skew
sums [16]. While the term separable permutation dates only to the work of Bose,
Buss, and Lubiw [5], these permutations first arose in Avis and Newborns work
on pop stacks [3].

There exist many generalisations of patterns that are worth considering in the
context of algorithmic issues in pattern involvement (see [14] for an up-to-date
survey). Vincular patterns, also called generalized patterns, resemble (classical)
patterns, with the constraint that some of the letters in an occurrence must be
consecutive. Of particular importance in our context, Bruner and Lackner [8]
proved that deciding whether a vincular pattern σ of size k occurs in a permuta-
tion π of size n is W [1]-complete for parameter k. Bivincular patterns generalize
classical patterns even further than vincular patterns. Indeed, in bivincular pat-
terns, not only positions but also values of elements involved in a occurrence
may be forced to be adjacent

1 http://math.depaul.edu/bridget/patterns.html.

http://math.depaul.edu/bridget/patterns.html
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The paper is organized as follows. Section 2 is devoted to presenting the
needed material. In Sect. 3, we revisit the polynomial-time algorithm of Ibarra
[12] and we propose a simpler dynamic programming approach, and in Sect. 4
we focus on the case where both the pattern and the target permutation are
separable. Section 5 is devoted to presenting related problems. Subsection 5.1 is
concerned with presenting an algorithm to test whether a separable permuta-
tion is the disjoint union of two given (necessarily separable) permutations. In
Subsect. 5.2, we revisit the classical problem of computing a longest common sep-
arable pattern as introduced by Rossin and Bouvel [15] and propose a slightly
faster - yet still not practicable - algorithm. Finally, in Subsect. 5.3, we prove
that the pattern matching problem is polynomial-time solvable for vincular sep-
arable patterns. To the best of our knowledge, this is the first time the pattern
matching problem is proved to be tractable for a generalization of separable pat-
terns. Due to space constraints, most proofs are omitted and deferred to the full
version of this paper.

2 Definitions

A permutation of size n is a one-to-one function from an n-element set to itself.
We write permutations as words π = π1 π2 . . . πn, whose letters are distinct
and usually consist of the integers 1, 2, . . . , n. We designate its i-th element by
π[i], and for any i, j ∈ [n] with i ≤ j, we let π[i : j] stand for the sequence
πiπi+1 . . . πj . We let Sn denote the set of all permutations of size n. We shall
also represent a permutation π by its plot consisting in the set of points at
coordinates (i, π[i]) drawn in the plane. According to this representation, we say
that an element π[i] is on the left (resp. right) of another element π[j] if i < j
(resp. i > j). Furthermore, we say that an element π[i] is above (resp. below)
another element π[j] if π[j] < π[i] (resp. π[i] < π[j]).

The reduced form of a permutation π on a set {j1, j2, . . . , jk} where j1 <
j2 < . . . < jk, is the permutation π′ obtained by renaming the letters of π so
that ji is renamed i for all 1 ≤ i ≤ k. We let red(π) denote the reduced form of
π. For example red(5826) = 2413. If red(u) = red(w), we say that u and w are
order-isomorphic.

A permutation σ ∈ Sk is said to occur within a permutation π ∈ Sn, if there
is some k-tuple 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n such that red(πi1πi2 . . . πik) = σ (i.e.,
π has a subsequence of size k that is order-isomorphic to σ). The subsequence
πi1πi2 . . . πik is called an occurrence of σ in π. If σ does not occur in π, then π
is said to avoid σ.

For two permutations π1 of size n1 and π2 of size n2, the direct sum of
π1 and π2 is defined by π1 ⊕ π2 = π1[1]π1[2] . . . π1[n1](π2[1] + n1)(π2[2] +
n1) . . . (π2[n2] + n1) [16]. The direct sum operation reduces to putting the ele-
ments of π2 right above the elements of π1. See Fig. 1 for an example of a
direct sum. Similarly, we define the skew sum of π1 and π2 by π1 � π2 =
(π1[1] + n2)(π1[2] + n2) . . . (π1[n1] + n2)π2[1]π2[2] . . . π2[n2] [16]. The skew sum
operation reduces to putting the elements of π1 left above the elements of π2.
See Fig. 2 for an example of a skew sum.
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Fig. 1. 312 ⊕ 3214 = 3216547

Fig. 2. 312 � 3214 = 7563214

Separable permutations may be characterized by the forbidden permutation
patterns 2413 and 3142. Equivalently, Bose, Buss, and Lubiw [5] define a sep-
arable permutation to be a permutation that has a separating tree (note that
there may be more than one tree for a given permutation): a rooted binary tree
in which the elements of the permutation appear (in permutation order) at the
leaves of the tree, and in which the descendants of each tree node form a contigu-
ous subset of these elements. Each interior node of the tree is either a positive
node in which all descendants of the left child are smaller than all descendants
of the right node, or a negative node in which all descendants of the left node
are greater than all descendants of the right node. See Fig. 3 for an illustration.
Let σ ∈ Sk be a separable permutation, and Tσ be the corresponding separating
tree. For every node v of Tσ, we let σ(v) stand for the sequence of elements of
σ stored at the leaves of the subtree rooted at v. Also a permutation is said to
be separable if and only if it is the permutation with a unique element or it can
be written as a direct sum or skew sum of two smaller separable permutations.
The tree representation and the decomposition with direct sum or skew sum are
strongly related: if σ = σ1 ⊕σ2 (resp. σ = σ1 �σ2) then there exists a separating
tree with a positive (resp. negative) root and the left child of the root is the
separating tree of σ1 and the right child is the separating tree of σ2.

An occurrence of a bivincular permutation pattern σ̃ = (σ,X, Y ) in π is an
occurrence of σ in π such that if (e1, e2) ∈ X then the elements matching e1 and
e2 must be consecutive in index and if (e1, e2) ∈ Y then the elements matching e1

and e2 must be consecutive in value. Moreover if (e1, e2) ∈ X (resp. (e1, e2) ∈ Y )
and e1 /∈ σ then e2 must matched to the leftmost (resp. bottommost) element of
π and if (e1, e2) ∈ X (resp. (e1, e2) ∈ Y ) and e2 /∈ σ then e1 must matched to the
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Fig. 3. On the left, a separating tree Tπ for the permutation π = 342561 together with
the corresponding σ(v) sequences and on the right the decomposition of the root of this
tree and of its left child: 342561 = red(34256) � 1 = (red(342) ⊕ red(56)) � 1. (Color
figure online)

rightmost (resp. topmost) element of π. Note we only consider “realisable” bivin-
cular permutation pattern which means that σ̃ occurs in σ (by adding elements
in X or Y this may not be the case such as (0, 2) ∈ Y ) and “clean” bivincular
permutation pattern which means that there is not redundancy in the elements of
X and Y . For example, given σ̃ = (2143, {(0, 2), (4, 3)}, {(1, 4), (4, 5)}) 3217845
is an occurrence of σ̃ but 3217845 is not 2 is not the leftmost element. Note
that this definition differs from Definition 1.4.1 in [14], but it is more suited for
our algorithm.

3 Improved Algorithm to Detect a Separable Pattern

Let π ∈ Sn and σ ∈ Sk, and assume that σ is a separable permutation. Ibarra [12]
gave a nice O(kn4) time and O(kn3) space algorithm to detect an occurrence of
σ in π. We revisit the approach of Ibarra and propose a simpler algorithm.

Since σ is a separable permutation, we can assume that we are given in
addition a separating tree Tσ for σ (constructing a separating tree of a separable
permutation is linear time and space [5]). Let S be a sequence of elements in [n]
with no repetitions. A occurrence of a node v of Tσ into S is an occurrence of
red(σ(v)) into red(S). The bottom point ↓(s) of an occurrence s of σ(v) into S
is the minimum value of the sequence s. Similarly, the upmost point ↑(s) is the
maximum value of s. In the following, since all numbers in [n] are positive, we
adopt the convention that the maximum value occurring in an empty subset of
[n] is 0.

We consider the following family of subproblems that has been first intro-
duced by Ibarra [12]: For every node v of Tσ, every two i, j ∈ [n] with i ≤ j,
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and every upper bound ub ∈ [n], we have the subproblem ↓̂v,i,j [ub], where the
semantic is the following:

↓̂v,i,j [ub] Δ= max{↓(s) : s is an occurrence of σ(v) into π[i : j] with ↑(s) ≤ ub}.

We first observe that this family of problems is already closed under induction
(we do not need to introduce the family H as in [12]). These subproblems can
be solved by the following equations:

– Base: If v is a leaf of Tσ then

↓̂v,i,j [ub] := max{π[ι] : π[ι] ≤ ub, i ≤ ι ≤ j}.

– Step: Let vL and vR be the left and right children of v.
• If v is a positive node of Tσ (i.e., all elements in the interval associated to

vR are larger than all elements in the interval associated to vL), then

↓̂v,i,j [ub] := max{↓̂vL,i,ι−1[↓̂vR,ι,j [ub]] : i < ι ≤ j}.

• If v is a negative node of Tσ (i.e., all elements in the interval associated
to vR are smaller than all elements in the interval associated to vL), then

↓̂v,i,j [ub] := max{↓̂vR,ι,j [↓̂vL,i,ι−1[ub]] : i < ι ≤ j}.

These relations imply a O(kn4) time and O(kn3) space algorithm for detect-
ing an occurrence of a separable permutation of size k in a permutation of size
n, as obtained by Ibarra in [12], only simplified.

Proposition 1. One can reduce the memory consumption of the algorithm
above to O(n3 log k).

Proof. Observe first that for computing all the entries ↓̂v,·,·[·] for a certain node
v with left and right children vL and vR, we only need the entries ↓̂vL,·,·[·] and
↓̂vR,·,·[·]. The main idea for achieving the memory spearing is the following.

– All problems for a same node v are solved together and their solution is main-
tained in memory until the problems for the parent of v have also been solved.
At that point the memory used for node v is released.

– We use a modified DFS traversal on Tσ: for every node v which has two
children, we first process its largest child (in terms of the number of nodes in
the subtree rooted at that child), then the other child, and finally v itself.

We claim that the above procedure yields a O(n3 log k) space algorithm. We
first expand our DFS algorithm to what is known as the White-Gray-Black DFS
[9]. First, we color all vertices white. When we call dfs(u), we color u gray.
Finally, when DFS(u) returns, we color u black. Thanks to this colour scheme,
at each step of the modified DFS, we may partition Tσ into a white-gray subtree
(all nodes are either white or gray) and a forest of maximal black subtrees
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(all nodes are black and the parent of the root - if it exists - is either white or
gray). Our space complexity claim is reduced to prove that, at every step of the
algorithm, the forest contains at most O(log k) maximal black subtrees. Let hσ

be the height of Tσ, and consider any partition of Tσ into a white-gray subtree
and an non-empty forest T b of maximal black subtrees. The following property
easily follows from the (standard) DFS colour scheme.

Property 1. For every 1 ≤ i ≤ hσ, there exist at most two maximal black subtrees
in T b whose roots are at height i in Tσ. Furthermore, if there are two maximal
black subtrees in T b whose roots are at height i in Tσ (they must have the same
parent), then T b contains no maximal black subtree whose root is at height j > i
in Tσ.

According to Property 1 and aiming at maximising |T b|, we may focus on
the case where T b contains one maximal black subtree whose root is at height
i, 1 ≤ i < hσ, in Tσ (if T b contains one maximal black subtree whose root is
at height 0 in Tσ then |T b| = 1), and T b contains two maximal black subtrees
whose roots are at height hσ in Tσ (these two maximal black subtrees reduce
to size-1 subtrees). The claimed space complexity for the dynamic programming
algorithm (i.e., |T b| = log(k)) now follows from the fact that we are using a
modified DFS algorithm where we branch of the largest subtree first after having
marked a vertex gray. Indeed, the maximal black subtree whose root is at height
1 in Tσ contains at least half of the nodes of Tσ, and the same argument applies
for subsequent maximal black subtrees in the forest T b. 	


4 Both π and σ Are Separable Permutations

When both π and σ are separable permutations we can strive for more efficient
solutions since we can construct in linear time the two separating trees Tπ and
Tσ. It turns out, however, that the standard (i.e. binary) separating trees are
not well-suited to handle this task. We use here the notion of compact separating
tree (also known as decomposition tree [16]). Informally, in compact separating
tree, we strive for every node to have as many children as possible (so that the
compact separating tree of the identity permutation has only the root as its
- positive - internal node). A simple linear time post-processing can be used
to produce the decomposition tree out of the binary separating tree. We will
adopt the convention that a compact separating tree of a separating tree Tπ

is denoted T̃π. The compact tree can be understood with direct/skew sums as
the largest decomposition in direct/skew sums: if π = π1 ⊕ . . . ⊕ π� then the
(unique) compact separating tree of π is the tree with a positive root and with
the compact separating tree of π1 as first child, the compact separating tree of
πi as ith child and the compact separating tree of π� as �th child. See Figs. 4 and
5 for examples. Note that when π is decomposed into direct (resp. skew) sums
it forms a stair up (resp. down) of rectangles.

Now, recall that the tree inclusion problem for ordered and labeled trees
is defined as follows: Given two ordered and labeled trees T and T ′, can T be
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Fig. 4. A separating tree Tπ for the permutation π = 453126987, the corresponding
separating tree T̃π and the decomposition 453126987 = red(45312)⊕red(6)⊕red(987) =
(red(45) � red(3) � red(12)) ⊕ red(6) ⊕ (red(9) � red(8) � red(7)) (Color figure online)

obtained from T ′ by deleting nodes? (Deleting a node v entails removing all
edges incident to v and, if v has a parent u, replacing the edge from u to v by
edges from u to the children of v; see Fig. 6.) This problem has been recognized
as an important query primitive in XML databases. The rationale for considering
compact separating trees stems from the following property.

Property 2. Let π and σ be two separable permutations. We have σ � π if and
only if the compact separating tree T̃σ is included into the compact separating
tree T̃π.

Kilpeläinen and Manilla [13] presented the first polynomial time algorithm
using quadratic time and space for the tree inclusion problem. Since then, several
improved results have been obtained for special cases when T and T ′ have a small
number of leaves or small depth. However, in the worst case these algorithms
still use quadratic time and space. The best algorithm is by Bille and Gørtz [4]
who gave an O(nT ) space and

O

⎛
⎝min

⎧⎨
⎩

lT ′ nT

lT ′ lT log log nT + nT
nT nT ′
log nT

+ nT log nT

⎫⎬
⎭

⎞
⎠
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Fig. 5. On the left the permutation π = π1 ⊕ . . . ⊕ πi ⊕ . . . ⊕ π� and on the right its
corresponding compact separating tree.

Fig. 6. The effect of removing a node from a tree.

time algorithm, where nT (resp. nT ′) denotes the number of node of T (resp.
T ′) and lT (resp. lT ′) denotes the number of leaves of T (resp. T ′).

However, all efficient solutions developed so far for the tree inclusion problem
result in very complicated and hard-to-implement algorithms. For example, the
main idea in the efficient algorithm presented in [4] is to construct a data struc-
ture on T supporting a small number of procedures, called the set procedures,
on subsets of nodes of T . We propose a dynamic programming based approach
for solving this problem.

Proposition 2. There exits an O(n2k) time and O(nk) space algorithm to find
an occurrence of a separable pattern of size k in a separable permutation of size n.

5 Related Problems

Some related problems (deciding the union of a separable permutation, find-
ing a maximum size separable subpermutation and pattern matching issues for
bivincular separable patterns) are gathered in this section. All algorithms rely
on dynamic programming.

5.1 Deciding the Union of a Separable Permutations

This subsection is devoted to shuffling permutations. Given three permutations
π, σ and τ , the problem is to decide whether π is the disjoint union of two pat-
terns that are order-isomorphic to σ and τ , respectively. For example 937654812
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is the disjoint union of two subsequences that are order-isomorphic to 2431 and
53241, as can be seen in the highlighted form 937654812. This problem is of
interest since it is strongly related to two others combinatorial problems that
naturally arise in the context of pattern in permutations. The first one is to
decide whether the permutation pattern matching problem for parameter n − k
is fixed-parameter tractable (FPT). (Recall that the permutation pattern match-
ing problem for parameter k is fixed-parameter tractable [11].) The second one is
to decide whether a permutation is a square: Given a permutation π, does there
exists a permutation σ such that π is the disjoint union of two subsequences that
are both order-isomorphic to σ? This problem has recently been proved to be
NP-complete [10] for general permutations.

Proposition 3. Given three separable permutations π of size n, σ of size k and
τ of size �, there exists an O(nk3�2) time and O(nk2�2) space algorithm to decide
whether π is the disjoint union of two patterns that are order-isomorphic to σ
and τ , respectively.

Note that the complexity of the problem is still open if we do not restrict the
input permutations to be separable [10].

5.2 Finding a Maximum Size Separable Subpermutation

The longest common pattern problem for permutations is, given a set of permu-
tation, to find the largest permutation that occurs in each input permutation.
The problem is intended to be the natural counterpart to the classical longest
common subsequence problem. Rossin and Bouvel [15] gave an O(n8) time algo-
rithm for computing the largest common separable permutation that occurs in
two permutations of size (at most) n, one of these two permutations being sepa-
rable. This problem was further generalised in [6] where it is shown that that the
problem of computing the largest separable permutation that occurs in k per-
mutations of size (at most) n is solvable in O(n6k+1) time and O(n4k+1) space.
Notice that this later problem is NP-complete for unbounded k, even if all input
permutations are actually separable. The following proposition improves upon
the algorithm of Rossin and Bouvel [15].

Proposition 4. Given a permutation of size n and a separable permutation of
size k, one can compute in O(n6k) time and O(n4 log k) space the largest common
separable permutation that occurs in the two input permutations.

5.3 Vincular and Bivincular Separable Patterns

We prove here that detecting a vincular or a bivincular separable pattern in a
permutation is polynomial time solvable. Since a vincular pattern is a special
case of bivincular pattern (when Y = {∅}), we focus on bivincular patterns. Note
that the algorithm of Sect. 3 cannot be used to find an occurrence of a bivincular
pattern as we do not have any control on the positions and on the values of the
matched elements.
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Let σ̃ be a separable bivincular pattern (this is a shortcut for σ being sep-
arable) of size k and π is a permutation of size n. We can represent bivincular
patterns (as well as occurrences of bivincular patterns in permutations) by theirs
plots. Such plot consists in the set of points at coordinates (i, σ[i]) drawn in the
plane together with forbidden regions denoting adjacency constraints (similarly
to what is done with mesh patterns, see [7]). A vertical forbidden region between
two points denotes the fact that the occurrence of these two points must be con-
secutive in positions. Similarly, a horizontal forbidden region between two points
denotes the fact that the occurrence of these two points must be consecutive in
value. Now, given a permutation π and a pattern σ̃, the bivincular pattern σ̃
occurs in π if there exists a set of points in the plot of π that is order-isomorphic
to σ and if the forbidden regions do not contain any point (see Fig. 7).

Fig. 7. From left to right, the bivincular pattern σ̃ = (2143, {(0, 2), (4, 3)},
{(1, 4), (4, 5)}), an occurrence of σ̃ in 3216745, an occurrence of σ in 3216745 but not
an occurrence of σ̃ in 3216745 because the point (1, 3) and (5, 7) are in the forbidden
areas.

Proposition 5. Given a permutation π of size n and a bivincular separable
pattern σ̃ of size k, there exists a O(n6k) time and space algorithm to decide
whether σ̃ occurs in π.

Before explaining the main idea of the algorithm, we need the notion of
rectangle in a permutation. Given a permutation π, a rectangle R with bottom
left corner (i, lb) and top right corner (j,ub) is the pattern π[i : j] in which
all entries greater than ub and smaller than lb are removed. We say that a
rectangle R contains an occurrence of σ if and only if there exists a subsequence
of Re which is order-isomorphic to σ. The following lemma is the key element
for proving Proposition 5:

Lemma 1. Let σ = σL ⊕ σR (resp. σ = σL � σR). σ occurs in π if and only if
there exist rectangles RL and RR in π, such that RL is left below RR (resp. RL is
left above RR), RL contains an occurrence of σL and RR contains an occurrence
of σR.
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Given a positive (resp. negative) node v of σ with left child vL and right child
vR, and a rectangle R of π, deciding whether σ(v) occurs in R reduced to deciding
whether there exists a split of the rectangle R into two rectangles RL and RR such
that RL is left below RR (resp. RL is left above RR), RL contains an occurrence
of σ(vL) and RR contains an occurrence of σ(vR). This recursive algorithm solves
the permutation pattern matching, but not for the bivincular case as we have
no control over the values and the positions of the elements in the occurrence.
Notice now that, given two rectangles that are consecutive horizontally, say
R1 = ((∗, ∗), (j, ∗) and R2 = ((j + 1, ∗)(∗, ∗)), if the rightmost element of the
occurrence in R1 is on the right edge of R1 and the leftmost element of the
occurrence in R2 is on the left edge of R2 then those two elements are consecutive
in position. In the same way, given two rectangles that are consecutive vertically,
say R1 = ((∗, ∗), (∗,ub) and R2 = ((∗,ub +1)(∗, ∗)), if the topmost element of
the occurrence in R1 is on the top edge of R1 and the bottommost element of
the occurrence in R2 is on the bottom edge of R2 then those two elements are
consecutive in value.

The proposed algorithm implements the above idea to ensure that two ele-
ments are consecutive in position or in value in the sought occurrence: The
algorithm splits the rectangle R into RL and RR such that RL and RR are
always consecutive horizontally and vertically: if v is a positive node then R is
splitted into RL = ((∗, ∗), (j,ub)) and RR = ((j + 1,ub +1), (∗, ∗)), and other-
wise (if v is a negative node) then R is splitted into RL = ((∗, lb), (j, ∗)) and
RR = ((j + 1, ∗), (∗, lb −1)).
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