Shunsuke Inenaga - Kunihiko Sadakane
Tetsuya Sakai (Eds.)

String Processing
and Information Retrieval

23rd International Symposium, SPIRE 2016
Beppu, Japan, October 18-20, 2016
Proceedings

LNCS 9954

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9954

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Shunsuke Inenaga - Kunihiko Sadakane
Tetsuya Sakai (Eds.)

String Processing
and Information Retrieval

23rd International Symposium, SPIRE 2016
Beppu, Japan, October 18-20, 2016
Proceedings

@ Springer

Editors

Shunsuke Inenaga Tetsuya Sakai

Informatics Computer Science and Engineering
Kyushu University Waseda University

Fukuoka Tokyo

Japan Japan

Kunihiko Sadakane
Mathematical Informatics
University of Tokyo

Tokyo

Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-46048-2 ISBN 978-3-319-46049-9 (eBook)

DOI 10.1007/978-3-319-46049-9
Library of Congress Control Number: 2016950414
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at SPIRE 2016, the 23rd International
Symposium on String Processing and Information Retrieval, held October 18-20, 2016
in Beppu, Japan. Following the tradition from previous years, the focus of SPIRE this
year was on fundamental studies on string processing and information retrieval, as well
as application areas such as bioinformatics, Web mining, and so on.

The call for papers resulted in 46 submissions. Each submitted paper was reviewed
by at least three Program Committee members. Based on the thorough reviews and
discussions by the Program Committee members and additional subreviewers, the
Program Committee decided to accept 25 papers.

The main conference featured three keynote speeches by Kunsoo Park (Seoul
National University), Koji Tsuda (University of Tokyo), and David Hawking
(Microsoft & Australian National University), together with presentations by authors
of the 25 accepted papers. Prior to the main conference, two satellite workshops were
held: String Masters in Fukuoka, held October 12-14, 2016 in Fukuoka, and the 11th
Workshop on Compression, Text, and Algorithms (WCTA 2016), held on October 17,
2016 in Beppu. String Masters was coordinated by Hideo Bannai, and WCTA was
coordinated by Simon J. Puglisi and Yasuo Tabei. WCTA this year featured two
keynote speeches by Juha Kérkkdinen (University of Helsinki) and Yoshitaka Yama-
moto (University of Yamanashi).

We would like to thank the SPIRE Steering Committee for giving us the opportunity
to host this wonderful event. Also, many thanks go to the Program Committee
members and the additional subreviewers, for their valuable contribution ensuring the
high quality of this conference. We appreciate Springer for their professional pub-
lishing work and for sponsoring the Best Paper Award for SPIRE 2016. We finally
thank the Local Organizing Team (led by Hideo Bannai) for their effort to run the event
smoothly.

October 2016 Shunsuke Inenaga
Kunihiko Sadakane
Tetsuya Sakai

Program Committee

Leif Azzopardi
Philip Bille
Praveen Chandar
Raphael Clifford
Shane Culpepper
Zhicheng Dou
Hui Fang
Simone Faro
Johannes Fischer
Sumio Fujita
Travis Gagie

Pawel Gawrychowski

Simon Gog
Roberto Grossi
Ankur Gupta
Wing-Kai Hon
Shunsuke Inenaga
Makoto P. Kato
Gregory Kucherov
Moshe Lewenstein
Yiqun Liu

Mihai Lupu

Florin Manea
Gonzalo Navarro
Yakov Nekrich
Tadashi Nomoto
Iadh Ounis

Simon Puglisi
Kunihiko Sadakane
Tetsuya Sakai
Hiroshi Sakamoto
Leena Salmela
Srinivasa Rao Satti
Ruihua Song
Young-In Song
Kazunari Sugiyama

Organization

University of Glasgow, UK

Technical University of Denmark, Denmark

University of Delware, USA

University of Bristol, UK

RMIT University, Australia

Renmin University of China, China

University of Delaware, USA

University of Catania, Italy

TU Dortmund, Germany

Yahoo! Japan Research, Japan

University of Helsinki, Finland

University of Wroclaw, Poland and University of Haifa,
Israel

Karslruhe Institute of Technology, Germany

Universita di Pisa, Italy

Butler University, USA

National Tsing Hua University, Taiwan

Kyushu University, Japan

Kyoto University, Japan

CNRS/LIGM, France

Bar Ilan University, Israel

Tsinghua University, China

Vienna University of Technology, Austria

Christian-Albrechts-Universitit zu Kiel, Germany

University of Chile, Chile

University of Waterloo, Canada

National Institute of Japanese Literature, Japan

University of Glasgow, UK

University of Helsinki, Finland

University of Tokyo, Japan

Waseda University, Japan

Kyushu Institute of Technology, Japan

University of Helsinki, Finland

Seoul National University, South Korea

Microsoft Research Asia, China

Wider Planet, South Korea

National University of Singapore, Singapore

VI Organization

Aixin Sun
Wing-Kin Sung
Julian Urbano
Sebastiano Vigna
Takehiro Yamamoto

Additional Reviewers

Bingmann, Timo
Bouvel, Mathilde
Chikhi, Rayan
Cicalese, Ferdinando
Conte, Alessio
Farach-Colton, Martin
Fici, Gabriele
Fontaine, Allyx
Frith, Martin
Ganguly, Arnab

I, Tomohiro

Jo, Seungbum

Nanyang Technological University, Singapore
National University of Singapore, Singapore
University Carlos III of Madrid, Spain
Universita degli Studi di Milano, Italy

Kyoto University, Japan

Kempa, Dominik
Kosolobov, Dmitry
Lee, Joo-Young

Liu, Xitong

Mercas, Robert
Ordonez Pereira, Alberto
Pisanti, Nadia

Rosone, Giovanna
Schmid, Markus L.
Starikovskaya, Tatiana
Thankachan, Sharma V.
Viliméki, Niko

Keynote Speeches

Indexes for Highly Similar Sequences

Kunsoo Park

Department of Computer Science and Engineering, Seoul National University,
Seoul, South Korea
kpark@theory.snu.ac.kr

The 1000 Genomes Project aims at building a database of a thousand individual human
genome sequences using a cheap and fast sequencing, called next generation
sequencing, and the sequencing of 1092 genomes was announced in 2012. To sequence
an individual genome using the next generation sequencing, the individual genome is
divided into short segments called reads and they are aligned to the human reference
genome. This is possible because an individual genome is more than 99 % identical to
the reference genome. This similarity also enables us to store individual genome
sequences efficiently.

Recently many indexes have been developed which not only store highly similar
sequences efficiently but also support efficient pattern search. To exploit the similarity
of the given sequences, most of these indexes use classical compression schemes such
as run-length encoding and Lempel-Ziv compression.

We introduce a new index for highly similar sequences, called FM index of
alignment. We start by finding common regions and non-common regions of highly
similar sequences. We need not find a multiple alignment of non-common regions.
Finding common and non-common regions is much easier and simpler than finding a
multiple alignment, especially in the next generation sequencing. Then we make a
transformed alignment of the given sequences, where gaps in a non-common region are
put together into one gap. We define a suffix array of alignment on the transformed
alignment, and the FM index of alignment is an FM index of this suffix array of
alignment. The FM index of alignment supports the LF mapping and backward search,
the key functionalities of the FM index. The FM index of alignment takes less space
than other indexes and its pattern search is also fast.

This research was supported by the Bio & Medical Technology Development Program of the NRF
funded by the Korean government, MSIP (NRF-2014M3C9A3063541).

Simulation in Information Retrieval: With
Particular Reference to Simulation
of Test Collections

David Hawking

Microsoft, Canberra, Australia
david.hawking@acm.org

Keywords: Information retrieval - Simulation - Modeling

Simulation has a long history in the field of Information Retrieval. More than 50 years
ago, contractors for the US Office of Naval Research (ONR) were working on simu-
lating information storage and retrieval systems."

The purpose of simulation is to predict the behaviour of a system over time, or
under conditions in which a real system can’t easily be observed. My talk will review
four general areas of simulation activity. First is the simulation of entire information
retrieval systems, as for example exemplified by Blunt (1965):

A general time-flow model has been developed that enables a systems engineer to simulate the
interactions among personnel, equipment and data at each step in an information processing
effort.

and later by Cahoon and McKinley (1996).

A second area is the simulation of behaviour when a person interacts with an
information retrieval service, with particular interest in multi-turn interactions. For
example user simulation has been used to study implicit feedback systems (White et al.,
2004), PubMed browsing strategies (Lin and Smucker, 2007), and query suggestion
algorithms (Jiang and He, 2013).

A third area has been little studied — simulating an information retrieval service (in
the manner of Kemelen’s 1770 Automaton Chess Player) in order to study the beha-
viour of real users when confronted with a retrieval service which hasn’t yet been built.

The final area is that of simulation of test collections. It is an area in which I have
been working recently, with my colleagues Bodo Billerbeck, Paul Thomas and Nick
Craswell. My talk will include some preliminary results.

As early as 1973, Michael Cooper published a method for generating artificial
documents and queries in order to, “evaluate the effect of changes in characteristics
of the query and document files on the quantity of material retrieved.” More recently,
Azzopardi and de Rijke (2006) have studied the automated creation of known-item test
collections.

! “System” used in the Systems Theory sense.

Simulation in Information Retrieval XIII

Organizations like Microsoft have a need to develop, tune and experiment with
information retrieval services using simulated versions of private or confidential data.
Furthermore, there may be a need to predict the performance of a retrieval service when
an existing data set is scaled up or altered in some way.

We have been studying how to simulate text corpora and query sets for such
purposes. We have studied many different corpora with a wide range of different
characteristics. Some of the corpora are readily available to other researchers; others we
are unable to share. With accurate simulation models we may be able to share sufficient
characteristics of those data sets to enable others to reproduce our results.

The models underpinning our simulations include:

Models of the distribution of document lengths.

Models of the distribution of word frequencies. (Revisiting Zipf’s law.)

Models of term dependence.

Models of the representation of indexable words.

Models of how these change as the corpus grows. (e.g. revisiting the models due to
Herdan and Heaps.)

ARl e

We have implemented a document generator based on these models and software
for estimating model parameters from a real corpus. We test the models by running the
generator with extracted parameters and comparing various properties of the resulting
corpus with those of the original. In addition, we test the growth model by extracting
parameters from 1 % samples and simulating a corpus 100 times larger. In early
experimentation we have found reasonable agreement between the properties of the real
corpus and its scaled-up emulation.

The value gained from a simulation approach depends heavily on the accuracy
of the system model, but a highly accurate model may be very complex and may be
over-fitted to the extent that it doesn’t generalise. We study what is required to achieve
high fidelity but also discuss simpler forms of model which may be sufficiently accurate
for less demanding requirements.

References

1. Blunt, C.R.: An information retrieval system model. Report of Contract Nonr. 3818(00), ONR
(1965). http://www.dtic.mil/dtic/tr/fulltext/u2/623590.pdf

2. Cooper, M.D.: A simulation model of a retrieval system. Inf. Storage Retrieval 9, 13-32
(1973)

http://www.dtic.mil/dtic/tr/fulltext/u2/623590.pdf

Significant Pattern Mining: Efficient
Algorithms and Biomedical Applications

Koji Tsuda

Department of Computational Biology and Medical Sciences, Graduate School
of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

Pattern mining techniques such as itemset mining, sequence mining and graph mining
have been applied to a wide range of datasets. To convince biomedical researchers,
however, it is necessary to show statistical significance of obtained patterns to prove
that the patterns are not likely to emerge from random data. The key concept of
significance testing is family-wise error rate, i.e., the probability of at least one pattern
is falsely discovered under null hypotheses. In the worst case, FWER grows linearly to
the number of all possible patterns. We show that, in reality, FWER grows much
slower than the worst case, and it is possible to find significant patterns in biomedical
data. The following two properties are exploited to accurately bound FWER and
compute small p-value correction factors. (1) Only closed patterns need to be counted.
(2) Patterns of low support can be ignored, where the support threshold depends on the
Tarone bound. We introduce efficient depth-first search algorithms for discovering all
significant patterns and discuss about parallel implementations.

Contents

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 1
Anthony J. Cox, Andrea Farruggia, Travis Gagie, Simon J. Puglisi,
and Jouni Sirén

A Linear-Space Algorithm for the Substring Constrained Alignment
Problem. 15
Yoshifumi Sakai

Near-Optimal Computation of Runs over General Alphabet via

Non-Crossing LCE Queriesttt 22
Maxime Crochemore, Costas S. Illiopoulos, Tomasz Kociumaka,
Ritu Kundu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter,
and Tomasz Walen

The Smallest Grammar Problem Revisited 35
Danny Hucke, Markus Lohrey, and Carl Philipp Reh

Efficient and Compact Representations of Some Non-canonical

Prefix-Free Codes e 50
Antonio Farifia, Travis Gagie, Giovanni Manzini, Gonzalo Navarro,
and Alberto Ordoriez

Parallel Lookups in String Indexes 61
Anders Roy Christiansen and Martin Farach-Colton

Fast Classification of Protein Structures by an Alignment-Free Kernel 68
Taku Onodera and Tetsuo Shibuya

XBWT TriCKS. . . oo e e e e e 80
Giovanni Manzini

Maximal Unbordered Factors of Random Strings 93
Patrick Hagge Cording and Mathias Beek Tejs Knudsen

Fragmented BWT: An Extended BWT for Full-Text Indexing 97
Masaru Ito, Hiroshi Inoue, and Kenjiro Taura

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching. .. 110
Diptarama, Ryo Yoshinaka, and Ayumi Shinohara

Parallel Computation for the All-Pairs Suffix-Prefix Problem 122
Felipe A. Louza, Simon Gog, Leandro Zanotto, Guido Araujo,
and Guilherme P. Telles

http://dx.doi.org/10.1007/978-3-319-46049-9_1
http://dx.doi.org/10.1007/978-3-319-46049-9_2
http://dx.doi.org/10.1007/978-3-319-46049-9_2
http://dx.doi.org/10.1007/978-3-319-46049-9_3
http://dx.doi.org/10.1007/978-3-319-46049-9_3
http://dx.doi.org/10.1007/978-3-319-46049-9_4
http://dx.doi.org/10.1007/978-3-319-46049-9_5
http://dx.doi.org/10.1007/978-3-319-46049-9_5
http://dx.doi.org/10.1007/978-3-319-46049-9_6
http://dx.doi.org/10.1007/978-3-319-46049-9_7
http://dx.doi.org/10.1007/978-3-319-46049-9_8
http://dx.doi.org/10.1007/978-3-319-46049-9_9
http://dx.doi.org/10.1007/978-3-319-46049-9_10
http://dx.doi.org/10.1007/978-3-319-46049-9_11
http://dx.doi.org/10.1007/978-3-319-46049-9_12

XVI Contents

Dynamic and Approximate Pattern Matching in 2D. 133
Raphaél Clifford, Allyx Fontaine, Tatiana Starikovskaya,
and Hjalte Wedel Vildhaj

Fully Dynamic de Bruijn Graphs. 145
Djamal Belazzougui, Travis Gagie, Veli Mdkinen, and Marco Previtali

Bookmarks in Grammar-Compressed Strings 153
Patrick Hagge Cording, Pawel Gawrychowski, and Oren Weimann

Analyzing Relative Lempel-Ziv Reference Construction. 160
Travis Gagie, Simon J. Puglisi, and Daniel Valenzuela

Inverse Range Selection Queries.t 166
M. Oguzhan Kiilekci

Low Space External Memory Construction of the Succinct Permuted
Longest Common Prefix Array. 178
German Tischler

Efficient Representation of Multidimensional Data over Hierarchical

Domains 191
Nieves R. Brisaboa, Ana Cerdeira-Pena, Narciso Lopez-Lopez,
Gonzalo Navarro, Miguel R. Penabad, and Fernando Silva-Coira

LCP Array Construction Using O(sort(n)) (or Less) I/Os 204
Juha Kdrkkdinen and Dominik Kempa

GraCT: A Grammar Based Compressed Representation of Trajectories 218
Nieves R. Brisaboa, Adrian Gomez-Brandon, Gonzalo Navarro,
and José R. Paramad

Lexical Matching of Queries and Ads Bid Terms in Sponsored Search 231
Ricardo Baeza-Yates and Guoqgiang Wang

Compact Trip Representation over Networks 240
Nieves R. Brisaboa, Antonio Farifia, Daniil Galaktionov,
and M. Andrea Rodriguez

Longest Common Abelian Factors and Large Alphabets. 254
Golnaz Badkobeh, Travis Gagie, Szymon Grabowski, Yuto Nakashima,
Simon J. Puglisi, and Shiho Sugimoto

Pattern Matching for Separable Permutations 260
Both Emerite Neou, Romeo Rizzi, and Stéphane Vialette

Author Index e 273

http://dx.doi.org/10.1007/978-3-319-46049-9_13
http://dx.doi.org/10.1007/978-3-319-46049-9_14
http://dx.doi.org/10.1007/978-3-319-46049-9_15
http://dx.doi.org/10.1007/978-3-319-46049-9_16
http://dx.doi.org/10.1007/978-3-319-46049-9_17
http://dx.doi.org/10.1007/978-3-319-46049-9_18
http://dx.doi.org/10.1007/978-3-319-46049-9_18
http://dx.doi.org/10.1007/978-3-319-46049-9_19
http://dx.doi.org/10.1007/978-3-319-46049-9_19
http://dx.doi.org/10.1007/978-3-319-46049-9_20
http://dx.doi.org/10.1007/978-3-319-46049-9_21
http://dx.doi.org/10.1007/978-3-319-46049-9_22
http://dx.doi.org/10.1007/978-3-319-46049-9_23
http://dx.doi.org/10.1007/978-3-319-46049-9_24
http://dx.doi.org/10.1007/978-3-319-46049-9_25

RLZAP: Relative Lempel-Ziv
with Adaptive Pointers

Anthony J. Cox', Andrea Farruggia?, Travis Gagie®*®) Simon J. Puglisi®*,
and Jouni Sirén®

! Tllumina Cambridge Ltd., Cambridge, UK
2 University of Pisa, Pisa, Italy
a.farruggia@di.unipi.it
3 Helsinki Institute for Information Technology, Espoo, Finland
4 University of Helsinki, Helsinki, Finland
travis.gagie@gmail.com, simon.j.puglisi@gmail.com
5 Wellcome Trust Sanger Institute, Hinxton, UK
jouni.siren@iki.fi

Abstract. Relative Lempel-Ziv (RLZ) is a popular algorithm for com-
pressing databases of genomes from individuals of the same species when
fast random access is desired. With Kuruppu et al.’s (SPIRE 2010) orig-
inal implementation, a reference genome is selected and then the other
genomes are greedily parsed into phrases exactly matching substrings of
the reference. Deorowicz and Grabowski (Bioinformatics, 2011) pointed
out that letting each phrase end with a mismatch character usually gives
better compression because many of the differences between individuals’
genomes are single-nucleotide substitutions. Ferrada et al. (SPIRE 2014)
then pointed out that also using relative pointers and run-length com-
pressing them usually gives even better compression. In this paper we
generalize Ferrada et al.’s idea to handle well also short insertions, dele-
tions and multi-character substitutions. We show experimentally that our
generalization achieves better compression than Ferrada et al.’s imple-
mentation with comparable random-access times.

1 Introduction

Next-generation sequencing technologies can quickly and cheaply yield far more
genetic data than can fit into an everyday computer’s memory, so it is important
to find ways to compress it while still supporting fast random access. Often the
data is highly repetitive and can thus be compressed very well with LZ77 [1],
but then random access is slow. For many applications, however, we need store
only a database of genomes from individuals of the same species, which are not
only highly repetitive collectively but also but also all very similar to each other.

Supported by the Academy of Finland through grants 258308, 268324, 284598 and
285221 and by the Wellcome Trust grant 098051. Parts of this work were done during
the second author’s visit to the University of Helsinki and during the third author’s
visits to Illumina Cambridge Ltd. and the University of A Corufia, Spain.

© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 1-14, 2016.
DOI: 10.1007/978-3-319-46049-9_1

2 A.J. Cox et al.

Kuruppu, Puglisi and Zobel [2] proposed choosing one of the genomes as a refer-
ence and then greedily parsing each of the others into phrases exactly matching
substrings of that reference. They called their algorithm Relative Lempel-Ziv
(RLZ) because it can be viewed as a version of LZ77 that looks for phrase sources
only in the reference, which greatly speeds up random access later. (Ziv and
Merhav [3] introduced a similar algorithm for estimating the relative entropy
of the sources of two sequences.) RLZ is now is popular for compressing not
only such genomic databases but also other kinds of repetitive datasets; see,
e.g., [4,5]. Deorowicz and Grabowski [6] pointed out that letting each phrase
end with a mismatch character usually gives better compression on genomic
databases because many of the differences between individuals’ genomes are
single-nucleotide substitutions, and gave a new implementation with this opti-
mization. Ferrada, Gagie, Gog and Puglisi [7] then pointed out that often the cur-
rent phrase’s source ends two characters before the next phrase’s source starts, so
the distances between the phrases’ starting positions and their sources’ starting
positions are the same. They showed that using relative pointers and run-length
compressing them usually gives even better compression on genomic databases.

In this paper we generalize Ferrada et al.’s idea to handle well also short
insertions, deletions and substitutions. In the Sect.2 we review in detail RLZ
and Deorowicz and Grabowski’s and Ferrada et al.’s optimizations. We also
discuss how RLZ can be used to build relative data structures and why the opti-
mizations that work to better compress genomic databases fail for this applica-
tion. In Sect. 3 we explain the design and implementation of RLZ with adaptive
pointers (RLZAP): in short, after parsing each phrase, we look ahead several
characters to see if we can start a new phrase with a similar relative pointer;
if so, we store the intervening characters as mismatch characters and store the
new relative pointer encoded as its difference from the previous one. We present
our experimental results in Sect. 4, showing that RLZAP achieves better com-
pression than Ferrada et al.’s implementation with comparable random-access
times. Our implementation and datasets are available for download from http://
github.com /farruggia/rlzap.

2 Preliminaries

In this section we discuss the previous work that is the basis and motivation for
this paper. We first review in greater detail Kuruppu et al.’s implementation of
RLZ and Deorowicz and Grabowski’s and Ferrada et al.’s optimizations. We then
quickly summarize the new field of relative data structures — which concerns
when and how we can use compress a new instance of a data structure, using an
instance we already have for a similar dataset — and explain how it uses RLZ
and why it needs a generalization of Deorowicz and Grabowski’s and Ferrada
et al.’s optimizations.

http://github.com/farruggia/rlzap
http://github.com/farruggia/rlzap

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 3

2.1 RLZ

To compute the RLZ parse of a string S[1;n]| with respect to a reference string
R using Kuruppu et al.’s implementation, we greedily parse S from left to right
into phrases

Slpr=L;ip1 + 4, — 1]
Slp2 =p1 +Li;p2 + lo — 1]

Spt =pr—1 +le—1;pt + b — 1 = n]

such that each S[p;; p; +¢; — 1] exactly matches some substring R[q;; ¢; +¢; —1]
of R — called the ith phrase’s source — for 1 < i <, but S[p;; p; + ¢;] does not
exactly match any substring in R for 1 <4 < ¢ — 1. For simplicity, we assume R
contains every distinct character in S, so the parse is well-defined.

Suppose we have constant-time random access to R. To support constant-
time random access to S, we store an array Q[1;¢] containing the starting posi-
tions of the phrases’ sources, and a compressed bitvector B[1;n] with constant
query time (see, e.g., [8] for a discussion) and 1s marking the first character of
each phrase. Given a position j between 1 and n, we can compute in constant
time

S[j] = R[Q[B.rank(j)] + j — B.select(B.rank(j))] -

If there are few phrases then @ is small and B is sparse, so we use little space.
For example, if

R = ACATCATTCGAGGACAGGTATAGCTACAGTTAGAA
S = ACATGATTCGACGACAGGTACTAGCTACAGTAGAA

then we parse S into
ACAT, GA, TTCGA, CGA, CAGGTA, CTA, GCTACAGT, AGAA,
and store

Q =1,10,7,9,15, 24, 23,32
B = 10001010000100100000100100000001000.

To compute S[25], we compute B.rank(25) = 7 and B.select(7) = 24, which
tell us that S[25] is 25 — 24 = 1 character after the initial character in the 7th
phrase. Since Q[7] = 23, we look up S[25] = R[24] = C.

2.2 GDC

Deorowicz and Grabowski [6] pointed out that with Kuruppu et al.’s implemen-
tation of RLZ, single-character substitutions usually cause two phrase breaks:

4 A.J. Cox et al.

e.g., in our example S[1;11] = ACATGATTCGA is split into three phrases, even
though the only difference between it and R[1;11] is that S[5] = G and R[5] = C.
They proposed another implementation, called the Genome Differential Com-
pressor (GDC), that lets each phrase end with a mismatch character — as the
original version of LZ77 does — so single-character substitutions usually cause
only one phrase break. Since many of the differences between individuals’ DNA
are single-nucleotide substitutions, GDC usually compresses genomic databases
better than Kuruppu et al.’s implementation.

Specifically, with GDC we parse S from left to right into phrases S[p1;p1 +
0], Spe=p1+ 0 +1;pa+4s),...,Sp = pe—1+Ci—1+ 1;p: + £+ = n] such that
each S[p;;p; + ¢; — 1] exactly matches some substring R[g;;q; + ¢; — 1] of R —
again called the ith phrase’s source — for 1 < i < t, but S[p;; p; + ¢;] does not
exactly match any substring in R, for 1 <¢ <t —1.

Suppose again that we have constant-time random access to R. To support
constant-time random access to S, we store an array Q[1;¢] containing the start-
ing positions of the phrases’ sources, an array M|1;t] containing the last charac-
ter of each phrase, and a compressed bitvector B[1;n] with constant query time
and 1s marking the last character of each phrase. Given a position j between 1
and n, we can compute in constant time

S[j] = M]|B.rank(j)] if B[j] =1,
] R[Q[B.rank(j) + 1] 4+ j — B.select(B.rank(j)) — 1] otherwise,

assuming B.select(0) = 0.
In our example, we parse S into

ACATG, ATTCGAC, GACAGGTAC, TAGCTACAGT, AGAA,
and store

Q=1,6,13,21,32
M = GCCTA
B = 00001000000100000000100000000010001.

To compute S[25], we compute B[25] = 0, B.rank(25) = 3 and B.select(3) =
21, which tell us that S[25] is 25—21—1 = 3 characters after the initial character
in the 4th phrase. Since Q[4] = 21, we look up S[25] = R[24] = C.

2.3 Relative Pointers

Ferrada, Gagie, Gog and Puglisi [7] pointed out that after a single-character sub-
stitution, the source of the next phrase in GDC’s parse often starts two characters
after the end of the source of the current phrase: e.g., in our example the source
for S[1;5] = ACATG is R[1;4] = ACAT and the source for S[6;12] = ATTCGAC
is R[6;11] = ATTCGA. This means the distances between the phrases’ start-
ing positions and their sources’ starting positions are the same. They proposed

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 5

an implementation of RLZ that parses S like GDC does but keeps a relative
pointer, instead of the explicit pointer, and stores the list of those relative point-
ers run-length compressed. Since the relative pointers usually do not change after
single-nucleotide substitutions, RLZ with relative pointers usually gives even bet-
ter compression than GDC on genomic databases. (We note that Deorowicz,
Danek and Niemiec [9] recently proposed a new version of GDC, called GDC2,
that has improved compression but does not support fast random access.)

Suppose again that we have constant-time random access to R. To support
constant-time random access to S, we store the array M of mismatch characters
and the bitvector B as with GDC. Instead of storing @, we build an array D[1;t]
containing, for each phrase, the difference ¢; — p; between its source’s starting
position and its own starting position. We store D run-length compressed: i.e., we
partition it into maximal consecutive subsequences of equal values, store an array
V' containing one copy of the value in each subsequence, and a bitvector L[1;¢]
with constant query time and 1s marking the first value of each subsequence.
Given k between 1 and ¢, we can compute in constant time

DIk] = V[L.rank(k)].
Given a position j between 1 and n, we can compute in constant time

) M|[B.rank(j)] if B[j] =1,
Sl = {R [D[B.ran{((j) + 1] + 4] othegwise.

In our example, we again parse S into
ACATG, ATTCGAC, GACAGGTAC, TAGCTACAGT, AGAA,
and store

M = GCCTA
B = 00001000000100000000100000000010001,

but now we store D = 0,0,0,—1,0 as V = 0,—1,0 and L = 10011 instead of
storing Q. To compute S[25], we again compute B[25] = 0 and B.rank(25) = 3,
which tell us that S[25] is in the 4th phrase. We add 25 to the 4th relative pointer
DJ[4] = V[L.rank(4)] = —1 and obtain 24, so S[25] = R[24].

A single-character insertion or deletion usually causes only a single phrase
break in the parse but a new run in D, with the values in the run being one less
or one more than the values in the previous run. In our example, the insertion
of S[21] = C causes the value to decrement to —1, and the deletion of R[26] = T
(or, equivalently, of R[27] = T) causes the value to increment to 0 again. In
larger examples, where the values of the relative pointers are often a significant
fraction of n, it seems wasteful to store a new value uncompressed when it differs
only by 1 from the previous value.

For example, suppose R and S are thousands of characters long,

R[1783;1817] = ... ACATCATTCGAGGACAGGTATAGCTACAGTTAGAA . ..
S512009;2043] = ... ACATGATTCGACGACAGGTACTAGCTACAGTAGAA . ..

6 A.J. Cox et al.

and GDC still parses S[2009; 2043] into the same phrases as before, with their
sources in R[1783;1817]. The relative pointers for those phrases are —136, —136,
—136,—137,—136, so we store —136, —137, —136 for them in V', which takes at
least a couple of dozen bits without further compression.

2.4 Relative Data Structures

As mentioned in Sect. 1, the new field of relative data structures concerns when
and how we can use compress a new instance of a data structure, using an
instance we already have for a similar dataset. Suppose we have a basic FM-
index [10] for R — i.e., a rank data structure over the Burrows-Wheeler Trans-
form (BWT) [11] of R, without a suffix-array sample — and we want to use it
to build a very compact basic FM-index for S. Since R and S are very similar,
it is not surprising that their BWTs are also fairly similar:

BWT(R) = AAGGTSTTGCCTCCAAATTGAGCAAAGACTAGATGA
BWT(S) = AAGGTSGTTTCCCGAAAATGAACCTAAGACGGCTAA.

Belazzougui, Gog, Gagie, Manzini and Sirén [12] (see also [13]) showed how we
can implement such a relative FM-index for S by choosing a common subse-
quence of the two BWTs and then storing bitvectors marking the characters not
in that common subsequence, and rank data structures over those characters.
They also showed how to build a relative suffix-array sample to obtain a fully-
functional relative FM-index for S, but reviewing that is beyond the scope of
this paper.

An alternative to Belazzougui et al.’s basic approach is to compute the RLZ
parse of BWT(S) with respect to BWT(R) and then store the rank for each
character just before the beginning of each phrase. We can then answer a rank
query BWT(S).rankx (j) by finding the beginning BWT(S)[p| of the phrase con-
taining BWT(S)[j] and the beginning BWT(R)[q] of that phrase’s source, then
computing

BWT(S).rankx (p — 1) + BWT(R).rankx (q + j — p) — BWT(R).rankx (¢ — 1).

Unfortunately, single-character substitutions between R and S usually cause
insertions, deletions and multi-character substitutions between BWT(R) and
BWT(S), so Deorowicz and Grabowski’s and Ferrada et al.’s optimizations no
longer help us, even when the underlying strings are individuals’ genomes. On
the other hand, on average those insertions, deletions and multi-character sub-
stitutions are fairly few and short [14], so there is still hope that those optimized
parsing algorithms can be generalized and applied to make this alternative prac-
tical.

Our immediate concern is with a recent implementation of relative suffix
trees [15], which uses relative FM-indexes and relatively-compressed longest-
common-prefix (LCP) arrays. Deorowicz and Grabowski’s and Ferrada et al.’s
optimizations also fail when we try to compress the LCP arrays, and when we use

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 7

Kuruppu et al.’s implementation of RLZ the arrays take a substantial fraction
of the total space. In our example, however,

LCP(R) =0,1,1,4,3,1,2.2,3,2,1,2,2,0,3,2,3,1,1,0,2,2,1,1,2,1,2.0,2,3,2,1,2,1,2
LCP(S) =0,1,1,4,3,2,2,1,2,2,2.1,2,0,3,2,1,4,1,3,0,2,3,2,1,1,1,3,0,3,2,3,1,1,1

are quite similar: e.g., they have a common subsequence of length 26, almost
three quarters of their individual lengths. LCP values tend to grow at least
logarithmically with the size of the strings, so good compression becomes more
important.

3 Adaptive Pointers

We generalize Ferrada et al.’s optimization to handle short insertions, deletions
and substitutions by introducing adaptive pointers and by allowing more than
one mismatch character at the end of each phrase. An adaptive pointer is rep-
resented as the difference from the previous non-adaptive pointer. Henceforth
we say a phrase is adaptive if its pointer is adaptive, and ezplicit otherwise. In
this section we first describe our parsing strategy and then describe how we can
support fast random access.

3.1 Parsing

The parsing strategy is a generalization of the Greedy approach for adaptive
phrases. The parser first compute the matching statistics between input S and
reference R: for each suffix S[i;n] of S, a suffix of R with the longest LCP with
S[i] is found; let R[k;m| be that suffix. Let MatchPtr(i) be the relative pointer
k — i and MatchLen(i) be the length of the LCP between the two suffixes S[i;n]
and R[k;m)].

Parsing scans S from left to right, in one pass. Let us assume S has already
been parsed up to a position 7, and let us assume the most recent explicit phrase
starts at position h. The parser first tries to find an adaptive phrase (adaptive
step); if it fails, looks for an explicit phrase (explicit step). Specifically:

1. adaptive step: the parser checks, for the current position ¢ if (i) the relative
pointer MatchPtr(i) can be represented as an adaptive pointer, that is, if the
differential MatchPtr(i) -MatchPtr(j) can be represented as a signed binary
integer of at most DeltaBits bits, and (ii) if it is convenient to start a new
adaptive phrase instead of representing literals as they are, that is, whether
MatchLen(i) - logo > DeltaBits, where o is the alphabet size. The parser
outputs the adaptive phrase and advances MatchLen(i) positions if both con-
ditions are satisfied; otherwise, it looks for the leftmost position k£ in range
i+ 1 up to ¢ + LookAhead where both conditions are satisfied. If it finds
such position k, the parser outputs literals S[i; k — 1] and an adaptive phrase;
otherwise, it goes to step 2.

8 A.J. Cox et al.

2. explicit step: in this step the parser goes back to position ¢ and scans forward
until it has found a match starting at position k& > ¢ where at least one
of these two conditions is satisfied: (i) match length MatchLen(k) is greater
than a parameter Explicit,,; (ii) the match, if selected as explicit phrase, is
followed by an adaptive phrase. It then outputs a literal range S[i; k — 1] and
the explicit phrase found.

The purpose of the two conditions on the explicit phrase is to avoid having
spurious explicit phrases which are not associated to a meaningfully aligned
substrings.

It is important to notice that our data structure logically represents an adap-
tive/explicit phrase followed by a literal run as a single phrase: for example, an
adaptive phrase of length 5 followed by a literal sequence GAT is represented as
an adaptive phrase of length 8 with the last 3 symbols represented as literals.

3.2 Representation

In order to support fast random access to S, we deploy several data structures,
which can be grouped into two sets with different purposes:

1. Storing the parsing: a set of data structures mapping any position ¢ to
some useful information about the phrase P; containing S[i], that is: (i) the
position Start(i) of the first symbol in P;; (ii) P;’s length Len(i); (iii) its relative
pointer Rel(i); (iv) the number of phrases Prev(i) preceding P; in the parsing,
and (v) the number of explicit phrases Abs(i) < Prev(i) preceding P;.

2. Storing the literals: a set of data structures which, given a position ¢ and
the information about phrase P;, tells whether S[i] is a literal in the parsing
and, if this is the case, returns S[i].

Here we provide a detailed illustration of these data structures.

Storing the Parsing. The parsing is represented by storing two bitvectors. The
first bitvector P has |S| entries, marking with a 1 characters in S at the beginning
of a new phrase in the parsing. The second bitvector E has m entries, one for
every phrases in the parsing, and marks every explicit phrase in the parsing with
a 1, otherwise 0. A rank/select data structure is built on top of P, and a rank
data structure on top of E. In this way, given ¢ we can efficiently compute the
phrase index Prev(i) as P.rank(7), the explicit phrase index Abs(i) as E.rank(p;)
and the phrase beginning Start(i) as P.select(p;).

Experimentally, bitvector P is sparse, while E is usually dense. Bitvector
P can be represented with any efficient implementation for sparse bitvectors;
our implementation, detailed in Sect. 4, employs the Elias-Fano based SDarrays

data structure of Okanohara and Sadakane [16], which requires m log Bly o(m)

m
bits and supports rank in O(log %) time and select in constant time. Bitvec-
tor E is represented plainly, taking m bits, with any o(m)-space O(1)-time rank

implementation on top of it [16,17]. In particular, it is interesting to notice that

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 9

only one rank query is needed for extracting an unbounded number of consecu-
tive symbols from E, since each starting position of consecutive phrases can be
accessed with a single select query, which has very efficient implementations on
sparse bitvectors.

Both explicit and relative pointers are stored in tables A and R, respec-
tively. These integers are stored in binary, and so not compressed using statisti-
cal encoding, because this would prevent efficient random access to the sequence.
Each explicit and relative pointer takes thus [logn| and DeltaBits bits of space,
respectively. To compute Rel(i), we first check if the phrase is explicit by check-
ing if E[Prev(i)] is set to one; if it is, then Rel(i) = A[Abs(i)], otherwise it is
Rel(i) = A[Abs(i)] + R[Prev(i) — Abs(i)].

Storing Literals. Literals are extracted as follows. Let us assume we are inter-
ested in accessing S[i], which is contained in phrase P;. First, it is determined
whether S[i] is a literal or not. Since literals in a phrase are grouped at the end
of the phrase itself, it is sufficient to store, for every phrase Py in the parsing,
the number of literals Lits(k) at its end. Thus, knowing the starting position
Start(j) and length Len(j) of phrase P;, symbol S[i] is a literal if and only if
i > Start(j) + Len(j) — Lits(j).

All literals are stored in a table L, where L[k] is the k-th literal found by
scanning the parsing from left to right. How we represent L depends on the
kind of data we are dealing with. In our experiments, described in Sect. 4, we
consider differentially-encoded LCP arrays and DNA. For DLCP values, L simply
stores all values using minimal binary codes. For DNA values, a more refined
implementation (which we describe in a later paragraph) is needed to use less
than 3 bits on average for each symbol. So, in order to display the literal S[i],
we need a way to compute its index in L, which is equal to Start(j) — Len(j) —
Lits(k) plus the prefix sum Zi;ll Lits(k). In the following paragraph we detail
two solutions for efficiently storing Lits(k) values and computing prefix sums.

Storing Literal Counts. Here we detail a simple and fast data structure for
storing Lits(—) values and for computing prefix sums on them. The basic idea
is to store Lits(—) values explicitly, and accelerate prefix sums by storing the
prefix sum of some regularly sampled positions. To provide fast random access,
the maximum number of literals in a phrase is limited to 2M>4t — 1 where MaxLit
is a parameter chosen at construction time. Every value Lits(—) is thus collected
in a table L, stored using MaxLit bits each. Since each phrase cannot have more
than 2M2xLit _ 1 literals, we split each run of more than 2M2x4t _ 1 literals into
the minimal number of phrases which do meet the limit. In order to speed-up
the prefix sum computation on L, we sample one every Samplelnt positions and
store prefix sums of sampled positions into a table Prefix. To accelerate further
prefix sum computation, we employ a 256-entries table Bytey, which maps any
sequence of 8/MaxLit elements into their sum. Here, we constrain MaxLit as a
power of two not greater than 8 (that is, either 1, 2, 4 or 8) and Samplelnt as
a multiple of 8/MaxLit. In this way we can compute the prefix sum by just one

look-up into Prefix and at most Zj’&‘gﬁll_':: queries into Bytey,. Using Bytey, is faster

10 A.J. Cox et al.

than summing elements in L because it replaces costly bitshift operations with
efficient byte-accesses to L. This is because 8/MaxLit elements of L fit into one
byte; moreover, those bytes are aligned to byte-boundaries because Samplelnt is
a multiple of 8/MaxLit, which in turn implies that the sampling interval spans
entire bytes of L.

Storing DNA Literals. Every literal is collected into a table J, where each ele-
ment is represented using a fixed number of bits. For the DNA sequences we
consider in our experiments, this would imply using 3 bits, since the alphabet is
{A,C,G, T, N}. However, since symbols N occur less often than the others, it
is more convenient to handle those as exceptions, so other literals can be stored
in just 2 bits. In particular, every N in table J is stored as one of the other
four symbols in the alphabet (say, A) and a bit-vector Exc marks every position
in J which corresponds to an N. Experimentally, bitvector Exc is sparse and
the 1 are usually clustered together into a few regions. In order to reduce the
space needed to store Exc, we designed a simple bit-vector implementation to
exploit this fact. In our design, Exc is divided into equal-sized chunks of length
C. A bitvector Chunk marks those chunks which contain at least one bit set to
1. Marked chunks of Exc are collected into a vector V. Because of the clustering
property we just mentioned, most of the chunks are not marked, but marked
chunks are locally dense. Because of this, bitvector Chunk is implemented using
a sparse representation, while each chunk employs a dense representation. Good
experimental values for C' are around 16 — 32 bits, so each chunk is represented
with a fixed-width integer. In order to check whether a position i is marked in
Exc, we first check if chunk ¢ = [i/C] is marked in Chunk. If it is marked, we
compute Chunk.rank(c) to get the index of the marked chunk in V.

4 Experiments

We implemented RLZAP in C++11 with bitvectors from Gog et al.’s sdsl
library (https://github.com/simongog/sdsl-lite), and compiled it with gcc ver-
sion 4.8.4 with flags -03, -march=native, -ffast-math, -funroll-loops and
-DNDEBUG. We performed our experiments on a computer with a 6-core Intel
Xeon X5670 clocked at 2.93 GHz, 40 GiB of DDR3 ram clocked at 1333 MHz
and running Ubuntu 14.04. As noted in Sect. 1, our code is available at http://
github.com /farruggia/rlzap.
We performed our experiments on the following four datasets:

— Cere: the genomes of 39 strains of the Saccharomyces cerevisiae yeast;

E. Coli: the genomes of 33 strains of the Escherichia coli bacteria;

— Para: the genomes of 36 strains of the Saccharomyces paradoxus yeast;

— DLCP: differentially-encoded LCP arrays for three human genomes, with
32-bit entries.

These files are available from http://acube.di.unipi.it/rlzap-dataset.

https://github.com/simongog/sdsl-lite
http://github.com/farruggia/rlzap
http://github.com/farruggia/rlzap
http://acube.di.unipi.it/rlzap-dataset

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 11

For each dataset we chose the file (i.e., the single genome or DLCP array) with
the lexicographically largest name to be the reference, and made the concatena-
tion of the other files the target. We then compressed the target against the refer-
ence with Ferrada et al.’s optimization of RLZ — which reflects the current state
of the art, as explained in Sect.1 — and with RLZAP. For the DNA files (i.e.,
Cere, E. Coli and Para) we used LookAhead = 32, Explicit, ., = 32, DeltaBits = 2
MaxLit = 4 and Samplelnt = 64, while for DLCP we used LookAhead = 8,
Explicit, ., = 4, DeltaBits = 4, MaxLit = 2 and Samplelnt = 64. We chose these
parameters during a calibration step performed on a different dataset, which we
will describe in the full version of this paper.

Table 1 shows the compression achieved by RLZ and RLZAP. (We note that,
since the DNA datasets are each over an alphabet of {A, C, G, T,N} and Ns are
rare, the targets for those datasets can be compressed to about a quarter of their
size even with only, e.g., Huffman coding.) Notice RLZAP consistently achieves
better compression than RLZ, with its space usage ranging from about 17 % less
for Cere to about 32 % less for DLCP.

Table 1. Compression achieved by RLZ and RLZAP. For each dataset we report in
MiB (2% bytes) the size of the reference and the size of the target uncompressed and
compressed with each method

Dataset | Reference | Target Compressed target size (MiB)
Size (MiB) | Size (MiB) | RLZ RLZAP

Cere 12.0 451 9.16 7.61

E. Coli |4.8 152 30.47 21.51

Para 11.3 398 15.57 10.49

DLCP | 11,582 23,392 1,745.33|1,173.81

Table 2 shows extraction times for RLZ- and RLZAP-compressed targets.
RLZAP is noticeably slower than RLZ for DNA, while it is slightly faster for the
DLCP dataset when at least four characters are extracted. We believe RLZAP
outperforms RLZ on the DLCP because its parsing is generally more cache-
friendly: our measurements indicate that on this dataset RLZAP causes about
36 % fewer L2 and L3 cache misses than RLZ. Even for DNA, RLZAP is still fast
in absolute terms, taking just tens of nanoseconds per character when extracting
at least four characters.

On DNA files, RLZAP achieves better compression at the cost of slightly
longer extraction times. On differentially-encoded LCP arrays, RLZAP outper-
forms RLZ in all regards, except for a slight slowdown when extraction substrings
of length less than 4. That is, RLZAP is competitive with the state of the art even
for compressing DNA and, as we hoped, advances it for relative data structures.
Our next step will be to integrate it into the implementation of relative suffix
trees mentioned in Subsect. 2.4.

12 A.J. Cox et al.

Table 2. Extraction times per character from RLZ- and RLZAP-compressed targets.
For each file in each target, we compute the mean extraction time for 22*/¢ pseudo-
randomly chosen substrings; take the mean of these means

Dataset | Algorithm | Mean extraction time per character (ns)
1 |4 |16 |64 |256 |1024
Cere RLZ 234159 16444 |1.47 0.55
RLZAP 274170 19.5]5.7 |2.34 |1.26
E. Coli |RLZ 22562 20.1|7.7 |4.34 |3.34
RLZAP 322191 31.3/15.3|10.78 1 9.47
Para RLZ 23559 17.215.2 |2.23 |1.03
RLZAP 284 74 121.2/6.9 |3.09 |2.26
DLCP |RLZ 756 | 238{61.520.5|9.00 |6.00
RLZAP 826 212 57.5|19.0 | 8.00 | 4.50

5 Future Work

In the near future we plan to perform more experiments to tune RLZAP and
discover its limitations. For example, we will test it on the balanced-parentheses
representations of suffix trees’ shapes, which are an alternative to LCP arrays,
and on the BWTs in relative FM-indexes. We also plan to investigate how to
minimize the bit-complexity of our parsing — i.e., how to choose the phrases and
sources so as to minimize the number of bits in our representation — building
on the results by Farruggia, Ferragina and Venturini [18,19] about minimizing
the bit-complexity of LZ77.

RLZAP can be viewed as a bounded-lookahead greedy heuristic for computing
a glocal alignment [20] or S against R. Such an alignment allows for genetic
recombination events, in which potentially large sections of DNA are rearranged.
We note that standard heuristics for speeding up edit-distance computation and
global alignment do not work here, because even a low-cost path through the
dynamic programming matrix can occasionally jump arbitrarily far from the
diagonal. RLZAP runs in linear time, which is attractive, but it may produce
a suboptimal alignment — i.e., it is not an admissible heuristic. In the longer
term, we are interested in finding practical admissible heuristics.

Apart from the direct biological interest of computing optimal or nearly opti-
mal glocal alignments, they can also help us design more data structures. For
example, consider the problem of representing the mapping between orthologous
genes in several species’ genomes; see, e.g., [21]. Given two genomes’ indices and
the position of a base-pair in one of those genomes, we would like to return
quickly the positions of all corresponding base-pairs in the other genome. Only
a few base-pairs correspond to two base-pairs in another genome and, ignoring
those, this problem reduces to representing compressed permutations. A feature
of these permutations is that base-pairs tend to be mapped in blocks, possi-
bly with some slight reordering within each block. We can extract this block

RLZAP: Relative Lempel-Ziv with Adaptive Pointers 13

structure by computing a glocal alignment, either between the genomes or
between the permutation and its inverse.

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Inf. Theor. 23, 337-343 (1977)

Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201-206. Springer, Heidelberg (2010)

Ziv, J., Merhav, N.: A measure of relative entropy between individual sequences
with application to universal classification. IEEE Trans. Inf. Theor. 39, 1270-1279
(1993)

Hoobin, C., Puglisi, S.J., Zobel, J.: Sample selection for dictionary-based corpus
compression. In: Proceedings of SIGIR, pp. 1137-1138 (2011)

Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. Proc. VLDB 5, 265-273 (2011)
Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27, 2979-2986 (2011)

Ferrada, H., Gagie, T., Gog, S., Puglisi, S.J.: Relative Lempel-Ziv with constant-
time random access. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS,
vol. 8799, pp. 13-17. Springer, Heidelberg (2014)

Karkkéinen, J., Kempa, D., Puglisi, S.J.: Hybrid compression of bitvectors for the
FM-index. In: Proceedings of DCC, pp. 302-311 (2014)

Deorowicz, S., Danek, A., Niemiec, M.: GDC2: compression of large collections of
genomes. Sci. Rep. 5, 1-12 (2015)

Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52, 552-581 (2005)
Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

Belazzougui, D., Gagie, T., Gog, S., Manzini, G., Sirén, J.: Relative FM-indexes.
In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 52-64.
Springer, Heidelberg (2014)

Boucher, C., Bowe, A., Gagie, T., Manzini, G., Sirén, J.: Relative select. In: Iliopou-
los, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 149-155.
Springer, Heidelberg (2015)

Léonard, M., Mouchard, L., Salson, M.: On the number of elements to reorder
when updating a suffix array. J. Discrete Algorithms 11, 87-99 (2012)

Gagie, T., Navarro, G., Puglisi, S.J., Sirén, J.: Relative compressed suffix trees.
Technical report 1508.02550 (2015). arxiv.org

Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proceedings of ALENEX (2007)

Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3, 43 (2007)

Farruggia, A., Ferragina, P., Venturini, R.: Bicriteria data compression. In: Pro-
ceedings of SODA, pp. 1582-1595 (2014)

Farruggia, A., Ferragina, P., Venturini, R.: Bicriteria data compression: efficient
and usable. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp.
406-417. Springer, Heidelberg (2014)

https://arxiv.org/

14 A.J. Cox et al.

20. Brudno, M., Malde, S., Poliakov, A., Do, C.B., Couronne, O., Dubchak, I., Bat-
zoglou, S.: Glocal alignment: finding rearrangements during alignment. In: Pro-
ceedings of ISMB, pp. 54-62 (2003)

21. Kubincova, P.: Mapping between genomes. Bachelor thesis, Comenius University,
Slovakia Supervised by Brona Brejovéd (2014)

A Linear-Space Algorithm for the Substring
Constrained Alignment Problem

Yoshifumi Sakai®*

Graduate School of Agricultural Science, Tohoku University,
1-1, Amamiyamachi, Tsutsumidori, Aobaku, Sendai 981-8555, Japan
sakai@biochem.tohoku.ac. jp

Abstract. In a string similarity metric adopting affine gap penalties,
we propose a quadratic-time, linear-space algorithm for the following
constrained string alignment problem. The input of the problem is a pair
of strings to be aligned and a pattern given as a string. Let an occurrence
of the pattern in a string be a minimal substring of the string that is
most similar to the pattern. Then, the output of the problem is a highest-
scoring alignment of the pair of strings that matches an occurrence of
the pattern in one string and an occurrence of the pattern in the other,
where the score of the alignment excludes the similarity between the
matched occurrences of the pattern. This problem may arise when we
know that each of the strings has exactly one meaningful occurrence of
the pattern and want to determine a putative pair of such occurrences
based on homology of the strings.

1 Introduction

Constructing a highest-scoring alignment is a common way to analyze how two
strings are similar to each other [7], because it is well known that, using the
dynamic programming technique, we can obtain such an alignment of an arbi-
trary m-length string A and an arbitrary n-length string B in O(mn) time [10].
As a more appropriate analysis of the similarity in the case where we know that
a common pattern string P occurs both in A and B and that these occurrences
should be matched in the alignment, Tsai [12] proposed the constrained longest
common subsequence (LCS) problem. This problem consists of finding an arbi-
trary LCS containing P as a subsequence, where an LCS can be thought of as
a highest-scoring alignment in a certain simple similarity metric. Chin et al. [4]
showed that this problem is solvable in O(mnr) time and O(nr) space, where
r is the length of P and m > n > r. Recently, as one of the generalized con-
strained LCS problems, Chen and Chao [2] proposed the STR-IC-LCS problem,
which consists of finding an arbitrary LCS of A and B that contains P as a
substring, instead of as a subsequence. Deorowicz [5] showed that this problem
is solvable in O(mn) time and O(mn) space. The difference between the align-
ments found in these problems is whether the score of the alignment takes the
similarity between the matched occurrences of P in X and Y into account or
not. The STR-IC-LCS problem may arise when we know that each of the strings

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 15-21, 2016.
DOI: 10.1007/978-3-319-46049-9 2

16 Y. Sakai

has exactly one meaningful occurrence of the pattern and want to determine a
putative pair of such occurrences based on homology of the strings.

In comparing strings over an alphabet set with various levels of symbol sim-
ilarity, such as amino acid sequences of proteins, however, the LCS metric is
sometimes too naive to adopt as a similarity metric. In the present article, we
consider generalized similarity metrics, including the metric based on an amino
acid substitution matrix with affine gap penalties, which is widely used to esti-
mate the similarity between amino acid sequences [7]. This similarity metric
is also adopted by another generalized constrained LCS problem, the regular
expression constrained alignment problem [1,3,9], in which the pattern P is
given as a regular expression.

The present article propose an O(mn)-time, O(n)-space algorithm for the
problem consisting of finding a highest-scoring alignment of A and B that
matches an occurrence of P in A and an occurrence of P in B. In this prob-
lem, we treat an arbitrary minimal substring of a string most similar to P as
an occurrence of P in the string and ignore the similarity between the matched
occurrences of P when estimating the score of the alignment. The proposed algo-
rithm achieves the same asymptotic execution time and required space as the
algorithm for the (non-constrained) alignment problem based on the divide-and-
conquer technique of Hirschberg [8]. Furthermore, since the problem we consider
is identical to the STR-IC-LCS problem if we adopt the LCS metric, the proposed
algorithm improves space complexity of the STR-IC-LCS problem achieved by
the algorithm of Deorowicz [5] from quadratic to linear.

2 Preliminaries

A string is a sequence of symbols. For any string X, | X| denotes the length of
X, X[i] denotes the symbol in X at position ¢, and X (i',i] denotes the substring
of X at position between i’ + 1 and 7. The concatenation of string X’ followed
by string X" is denoted by X’ X”.

Let X be an alphabet set of a constant number of symbols. Let - denote a gap
symbol that does not belong to X. A gap is a string consisting only of more than
zero gap symbols. We use + and / to represent the first and last gap symbols in a
gap of length more than one, respectively, and * to represent the only gap symbol
in a gap of length one. In what follows, we use - to represent a gap symbol in
a gap of length more than two other than the first and last gap symbols. Let
I'={+-,/,%} and let Y = X UT. Let a gapped string of a string X over X be
a string over Y obtained from X by inserting a concatenation of zero or more
gaps at position between ¢ and 7+ 1 for each index ¢ with 0 < ¢ < |X|. Although
concatenations of two or more gaps inserted in a string may look uncommon, we
adopt this definition of a gapped string for a technical reason mentioned later.
We sometimes use the index representation, denoted I ¢, of a gapped string X of
a substring of X, in which X[i] is represented as index ¢ and any gap symbol
in I' that appears in the concatenation of gaps inserted in X at position between
i and 7 + 1 is represented as y with subscript i.

A Linear-Space Algorithm for the Substring Constrained Alignment Problem 17

For any strings X and Y over X, an alignment of X and Y is a pair of a
gapped string X of X and a gapped string Y of Y with | X| = |Y| such that X|[q]
or Y[q] is not a gap symbol in I" for any index ¢ with 1 < ¢ < |X| (= |Y]). Let
a symbol similarity score table s consist of values s(a,b) indicating how much
a is similar to b for all ordered pair (a,b) of symbols in Y other than pairs
of gap symbols in I'. A typical setting, adopted in affine gap penalty metrics,
is s(a,+) = s(a,*) = s(+,a) = s(*,a) = gip + gep and s(a,-) = s(a,/) =
s(=,a) = s(/,a) = gep for any symbol a in X, where gip is a gap insertion
penalty representing the penalty for each insertion of a gap and gep is a gap
extension penalty representing the penalty for each one-symbol extension of a
gap. How well an alignment ()~(, 17) makes a connection between symbols in X
and symbols in Y is estimated by the score s(X,Y) = D 1<q<|X| 5(X|[q], Y[q]) of
the alignment. For any strings X and Y over X, let how much X is similar to
Y be defined as Sim(X,Y) = max g y) s(X,Y), where (X,Y) ranges over all
alignments of X and Y. We define an occurrence of a pattern in a string as a
minimal substring of the string that is most similar to the patter in the sense of
the following definition.

Definition 1. For any strings X and Y over X, let a substring X’ of X be an
occurrence of Y in X if Sim(X',Y) > Sim(X",Y) for any substring X" of X
and Sim(X',Y) > Sim(X",Y) for any substring X" of X’ with |X"| < |X"|.

The present article considers the following problem.

Definition 2. Given strings, A of length m, B of length n, and P of length
r, over X with m > n > r, let the substring constrained alignment (StrCA)
problem consist of finding an arbitrary pair of an occurrence Ay of P in A and
an occurrence By.. of P in B such that

Sim(Apreﬁ Bpref) + Sim(Asuffa Bsuff)

is maximum, where A = AprerAoccAsut and B = Bpet BoceBsugt- (If arbitrary
highest-scoring alignments of Apcr and Bprer and of Agug and Bs,g are necessary
after the StrCA problem is solved, we can obtain such alignments in O(mn) time
and O(n) space based on the divide-and-conquer technique of Hirschberg [8].)

3 Algorithm

This section proposes an O(mn)-time, O(n)-space algorithm for the StrCA prob-
lem. In order to design the proposed algorithm, we introduce several lemmas each
with no proof, due to limitation of space. However, they can be proven easily in
a straightforward manner.

The algorithm we propose is based on the dynamic programming technique.
We use edge-weighted directed acyclic graphs (DAGs) to represent dynamic pro-
gramming (DP) tables as follows.

18 Y. Sakai

Definition 3. Let G be an arbitrary edge-weighted DAG. For any edge e in G,
let w(e) denote the weight of e. We also use w(u,v) to denote w(e) if e is from
vertex u to vertex v. For any path 7 in G, let the weight w(7) of m be the sum
of w(e) over all edges e in 7. For any vertex v in G, let to(v) denote the set of all
vertices u such that G has an edge from w to v. If no such vertices u exist, then
v is a source vertex. Any vertex u not appearing in to(v) for any vertex v in G is
a sink vertex. We focus only on edge-weighted DAGs having exactly one source
vertex and one sink vertex. For any vertex v in G, we use dp(v) to denote the
value of v in the DP table with respect to G. This value is defined recursively
as dp(v) = 0, if v is the source vertex, or dp(v) = max,eqo(v)(dp(u) + w(u,v)),
otherwise. Hence, dp(v) represents the weight of any heaviest path from the
source vertex to v.

To solve the StrCA problem, we utilize an edge-weighted DAG, called the
StrCA DAG, that reduces the StrCA problem to the problem of finding an
arbitrary one of certain edges through which a heaviest path from the source
vertex to the sink vertex passes. Applying the same idea as the algorithm of
Deorowicz [5] for the STR-IC-LCS problem to this DAG, we can immediately
obtain an algorithm for the SrtCA problem. However, as mentioned later, the
algorithm proposed in the present article uses this DAG in a different way in
order to save a great deal of space required.

The StrCA DAG is defined as a certain variant of the following edge-weighted
DAG, called the alignment DAG, which is based on an idea similar to the algo-
rithm of Gotoh [6] for the alignment problem with affine gap penalties. This
DAG is designed such that any two-edge path corresponds to a pair of consec-
utive positions in some alignment of two strings and vice versa. The reason for
the uncommon definition of a gapped string is because of a close relationship
between paths in the DAG and alignments of substrings of the strings.

Definition 4. For any strings X and Y over X, let the alignment DAG, denoted
G(X,Y), for X and Y be the edge-weighted DAG counsisting of vertices

h(i,j) for all index pairs (4,) with 0 <¢ < |X| and 0 < j < |Y|, and

- d(z j) for all index pairs (4,7) with 0 <7 < |X| and 0 < j < |Y],
7)
v(i,7) for all index pairs (i,7) with 0 <4 < |X| and 0 < 5 < |Y]

and edges

— e(i,7) of weight s(X[i], Y[j]) from d(i — 1,5 — 1) to d(4,),

— e(+;,7) of weight s(+,Y[j]) from d(¢,5 — 1) to h(i,J),

— e(=4,7) of weight s(-,Y[j]) from h(i,j — 1) to h(i,),

— e(/4,7) of weight s(/,Y[j]) from h(i,j — 1) to d(i,J),

— e(*;,7) of weight s(x,Y[j]) from d(¢,j — 1) to d(s, j),

— e(i,+;) of weight s(X[i],+) from d(i — 1, j) to v(¢, j),

— e(i,-;) of weight s(X[i], =) from v(i —1,7) to v(i, j),

— e(i,/;) of weight s(X[i],/) from v(i — 1,7) to d(4,j), and
(ir%)) (X[i],) from d(i — 1.5) to d(i.)

— e(i, *;) of weight s(X|[i],*) from d(i — 1, 7) to d(q,

A Linear-Space Algorithm for the Substring Constrained Alignment Problem 19

for all possible index pairs (4, j). Let the ith row of G(X,Y") consist of all vertices
d(i,7) with 0 < 5 <Y, h(i,j) with 0 < j < |Y], and v(4,j) with 0 < j < |Y].

Lemma 1. Any path m = e(21, 1)e(i2, J2) - - €(ip, Jp) in G(X,Y) from d(7',j)
to d(i, j) bijectively corresponds to the alignment (X,Y) of X[i' +1..i] and Y [j’ +
1..j] with I ¢ =712+ and Iy = J1J2 - - - Jp. Furthermore, for any such pair of
a path © and an alignment (X,Y), w(n) = s(X,Y) holds.

Before presenting the StrCA DAG, we show that all occurrences of a pattern
in a string can be found in quadratic time and linear space, if we use the following
variant of the alignment DAG. This DAG is based on an idea similar to the
algorithm of Smith and Waterman [11] for the local alignment problem.

Definition 5. For any strings X and Y over X, let the occurrence DAG, denoted
Goce(X,Y), of Y in X be the edge-weighted DAG obtained from G(X,Y) by
adding two vertices src and snk, bypass edges in(i') of weight zero from src to
d(i’,0) for all indices ¢’ with 0 < ¢/ < |X|, and bypass edges out(i) of weight
zero from d(i,|Y]) to snk for all indices ¢ with 0 < ¢ < |X|. For any vertex v
in Goee(X,Y) other than src, let i'(v) be the greatest index ' such that some
heaviest path from src to v passes through bypass edge in(i’).

Lemma 2. Substring X (i',i] is an occurrence of Y in X if and only if some
heaviest path in Goee(X,Y) from src to snk passes through out(i), i'(d(i,|Y])) =
i, and no substrings X (i',4"] with i’ <i"” <i are occurrences of Y in X.

Lemma 3. For any vertex v in Goec(X,Y) other than src, i’ (v) is equal to the
mazimum of i’ (u) over all vertices u in to(v) with dp(v) = dp(u)+w(u,v), where
we treat i'(u) =i if u = src and v =d(i’,0).

Let DPocc(i) and I'(i) denote the array of DP table values dp(v) and the
array of indices ¢’'(v) for all vertices v in the ith row of Goec(X,Y), respec-
tively. It then follows from the recurrence relation of DP table value dp(v) given
in Definition 3 that DPg..(4) can be constructed in O(]Y]) time from scratch,
if i = 0, or from DPc.(i — 1), otherwise. Similarly, we can obtain I’ (i) in O(|Y|)
time from scratch, if i = 0, or from DPgc.(i — 1), I'(i — 1), and DP(i)occ, other-
wise, based on Lemma 3. Thus, we obtain Algorithm findOcc(X,Y") presented in
Fig.1 as an O(|X||Y|)-time, O(|Y|)-space algorithm that enumerates all occur-
rences of Y in X. In this algorithm, lines 1 through 4 prepare dp(snk), the weight
of any heaviest path from src to snk, as the value of variable dpgy. Using this
value, each iteration of lines 7 through 9 applies Lemma 2, where index variable
7' in line 8 is maintained so as to indicate that, if i/ > 0, then some substring
X (i',4"] with i < " < i is an occurrence of Y in X.

Lemma 4. For any strings X andY over X, Algorithm findOcc(X,Y") enumer-
ates all occurrences X (i',i] of Y in X in ascending order with respect to i and,
hence, with respect to i’ in O(|X||Y]) time and O(|Y|) space.

Now we present the StrCA DAG, together with the properties crucial to
designing the proposed algorithm.

20 Y. Sakai

Let dp,,, = 0;
for each index ¢ from 0 to | X]|,
construct DPocc(); delete DPocc(i — 1) if 7 > 1,
let dpsnk = max(dpsnk7 dp(d(7‘7 ‘YD) + w(OUt(l)))v
let i = —1;
for each index 4 from 0 to | X|,
construct DPocc(i) and I'(i); delete DPocc(i — 1) and I'(i — 1) if i > 1;
if dp(d(s,|Y])) = dp,,, and i’ < 7' (d(i,|Y])), then
let 7' =4'(d(3,|Y])); report that X (i',1] is an occurrence of Y in X.

Fig. 1. Algorithm findOcc(X,Y)

1: Obtain all occurrences of P in B by executing Algorithm findOcc(B, P);
let ' = 0; let i = 0;
for each occurrence A(ip,ip] of P in A reported by Algorithm findOcc(A, P),
which is executed along with iterations of this sentence,
while 7/ < p,
compute DPper(i'); delete DPpyer(i’ — 1) if 3" > 1;
increase i’ by one;
while i <ip, or i <m if A(ip,ip] is the last occurrence of P in A,
compute DPg,(i) and TR(7); delete DPqug(i—1) and TR(i—1) if i > 1;
increase ¢ by one;
output (A(i',4], B(j', j]), where the edge in tr(dsus(m,n)) obtained as an ele-
ment of TR(m) is from dpret(i', ') t0 dsus (4, 7).

Fig. 2. Algorithm solveSrtCA(A, B, P)

Definition 6. Let Gper and Ggug be copies of G(A, B) and let vertices in them
be indicated by subscripts pref and suff, respectively. Let the StrCA DAG,
denoted Ggirca, be the edge-weighted DAG obtained from Gpres and Geug by
adding a transition edge of weight zero from dpyef (7', §7) to dsus (4, j) for any pair
of an occurrence A(i’,i] of P in A and an occurrence B(j',j] of P in B and
adding a dummy transition edge of weight —oo from dpe (0, 0) to dsus (0, 0). For
any vertex v in Gguft, let tr(v) represent an arbitrary transition edge through
which some heaviest path from dp,er(0,0) to v passes.

Lemma 5. Substring pair (A(i',i], B(j',7]) is a solution of the StrCA prob-
lem if and only if the transition edge from dpper(i',5') to dsum(i,j) is passed
through by some heaviest path in Gsyca from dprer(0,0) to dsug(m,n). Hence,
tr(dsug(m, n)) gives a solution of the StrCA problem.

Lemma 6. For any vertex v in Gsug and any vertez u in to(v) with dp(v) =
dp(u) +w(u,v), tr(u) is an instance of tr(v), where we treat the transition edge
from w to v as tr(u) if u is a vertex in Gpyer.

The proposed algorithm solves the StrCA problem based on Lemma 5. The
key idea to achieve linear-space computation of tr(ds.g(m,n)) is to successively
focus on which transition edge some heaviest path in Ggypoa from dper(0, 0)

A Linear-Space Algorithm for the Substring Constrained Alignment Problem 21

to each vertex v in Ggug passes through. According to the recurrence relation
of tr(v) given in Lemma 6, the algorithm determines tr(v) for each vertex v
in Ggug and forget previously determined ¢r(u) no longer in use successively.
This is unlike in the case of the algorithm adopting an approach similar to
the quadratic-space algorithm of Deorowicz [5] for the STR-IC-LCS problem,
which simultaneously determines how much any heaviest path from dpef(0,0)
to dsur(m, n) passing through each of all transition edges weighs.

Let DPpei(t’) denote the array of DP table values dp(v) for all vertices v
in the ¢'th row of Gprer and let DPguq(2) and TR(i) denote the array of DP
table values dp(v) and the array of transition edges ¢r(v) for all vertices v in
the ith row of Gsum, respectively. Then, DP (i) can be constructed in O(n)
time from scratch, if i/ = 0, or from DPp.f(i’ — 1), otherwise. Furthermore,
DPgu (i) and TR(7) can be constructed in O(n) time from scratch, if ¢ = 0, or
otherwise from DPg.g(i—1) and TR(i— 1), together with DPp.¢(¢') if A has an
occurrence A(i', 4] of P for some index i’. Thus, we eventually obtain Algorithm
solveStrCA(A, B, P) presented in Fig. 2 as the proposed algorithm for the StrCA
problem, which satisfies the following theorem.

Theorem 1. The StrCA problem is solvable in O(mn) time and O(n) space by
executing Algorithm solveStrCA(A, B, P).

References

1. Arslan, A.N.: Regular expression constrained sequence alignment. J. Discrete Algo-
rithms 5, 647-661 (2007)

2. Chen, Y.-C., Chao, K.-M.: On the generalized constrained longest common subse-
quence problems. J. Comb. Optim. 21, 383-392 (2011)

3. Chung, Y.-S., Lu, C.L., Tang, C.Y.: Efficient algorithms for regular expression
constrained sequence alignment. Inf. Process. Lett. 103, 240-246 (2007)

4. Chin, F.Y.L., De Santis, A., Ferrara, A.L., Ho, N.L., Kim, S.K.: A simple algorithm
for the constrained sequence problems. Inf. Process. Lett. 90, 175-179 (2004)

5. Deorowicz, S.: Quadratic-time algorithm for a string constrained LCS problem.
Inf. Process. Lett. 112, 423-426 (2012)

6. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162, 705-708 (1982)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

8. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24, 664-675 (1977)

9. Kucherov, G., Pinhas, T., Ziv-Ukelson, M.: Regular language constrained sequence
alignment revisited. J. Comput. Biol. 18, 771-781 (2011)

10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453
(1970)

11. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147, 195-197 (1981)

12. Tsai, Y.-T.: The constrained longest common subsequence problem. Inf. Process.
Lett. 88, 173-176 (2003)

Near-Optimal Computation of Runs over
General Alphabet via Non-Crossing LCE
Queries

Maxime Crochemore!®™), Costas S. Iliopoulos!, Tomasz Kociumaka?,
Ritu Kundu', Solon P. Pissis!, Jakub Radoszewski''?, Wojciech Rytter?,
and Tomasz Waleri?

! Department of Informatics, King’s College London, London, UK
{maxime .crochemore,costas.iliopoulos,ritu.kundu,solon. pissis}@kcl .ac.uk
2 Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw, Warsaw, Poland
{kociumaka, jrad,rytter,walen}@mimuw.edu.pl

Abstract. Longest common extension queries (LCE queries) and runs
are ubiquitous in algorithmic stringology. Linear-time algorithms com-
puting runs and preprocessing for constant-time LCE queries have been
known for over a decade. However, these algorithms assume a linearly-
sortable integer alphabet. A recent breakthrough paper by Bannai et al.
(SODA 2015) showed a link between the two notions: all the runs in a
string can be computed via a linear number of LCE queries. The first to
consider these problems over a general ordered alphabet was Kosolobov
(Inf. Process. Lett., 2016), who presented an O(n(logn)?/?)-time algo-
rithm for answering O(n) LCE queries. This result was improved by
Gawrychowski et al. (CPM 2016) to O(nloglogn) time. In this work
we note a special non-crossing property of LCE queries asked in the
runs computation. We show that any n such non-crossing queries can be
answered on-line in O(na(n)) time, where a(n) is the inverse Ackermann
function, which yields an O(na(n))-time algorithm for computing runs.

1 Introduction

Runs (also called mazimal repetitions) are a fundamental type of repetitions
in a string as they represent the structure of all repetitions in a string in a
succinct way. A run is an inclusion-maximal periodic factor of a string in which
the shortest period repeats at least twice. A crucial property of runs is that
their maximal number in a string of length n is O(n). This fact was already
observed by Kolpakov and Kucherov [15,16] who conjectured that this number

T. Kociumaka—Supported by Polish budget funds for science in 2013-2017 as a
research project under the ‘Diamond Grant’ program.
J. Radoszewski—Newton International Fellow.
W. Rytter and T. Walei—Supported by the Polish National Science Center, grant
no. 2014/13/B/ST6,/00770.

© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 22-34, 2016.
DOI: 10.1007/978-3-319-46049-9_3

Near-Optimal Computation of Runs over General Alphabet 23

is actually smaller than n, which was known as the runs conjecture. Due to the
works of several authors [6-8,12,19-21] more precise bounds on the number of
runs have been obtained, and finally in a recent breakthrough paper [2] Bannai
et al. proved the runs conjecture, which has since then become the runs theorem
(even more recently in [10] the upper bound of 0.957n was shown for binary
strings).

Perhaps more important than the combinatorial bounds is the fact that the
set of all runs in a string can be computed efficiently. Namely, in the case of a
linearly-sortable alphabet X (e.g., ¥ = {1,...,0} with o = n®M) a linear-time
algorithm based on Lempel-Ziv factorization [15,16] was known for a long time.
In the recent papers of Bannai et al. [1,2] it is shown that to compute the set of
all runs in a string, it suffices to answer O(n) longest common extension (LCE)
queries. An LCE query asks, for a pair of suffixes of a string, for the length of their
longest common prefix. In the case of ¢ = n®® such queries can be answered
on-line in O(1) time after O(n)-time preprocessing that consists of computing
the suffix array with its inverse, the LCP table and a data structure for range
minimum queries on the LCP table; see e.g. [5]. The algorithms from [1,2] use
(explicitly and implicitly, respectively) an intermediate notion of Lyndon tree
(see [3,13]) which can, however, also be computed using LCE queries.

Let T,ce(n) denote the time required to answer on-line n LCE queries in
a string. In a very recent line of research, Kosolobov [17] showed that, for a
general ordered alphabet, Ti,cr(n) = O(n(logn)?/3), which immediately leads
to O(n(logn)?/3)-time computation of the set of runs in a string. In [11] a faster,
O(nloglogn)-time algorithm for answering n LCE queries has been presented
which automatically leads to O(nloglogn)-time computation of runs.

Runs have found a number of algorithmic applications. Knowing the set of
runs in a string of length n one can compute in O(n) time all the local periods
and the number of all squares, and also in O(n + TLcg(n)) time all distinct
squares provided that the suffix array of the string is known [9]. Runs were also
used in a recent contribution on efficient answering of internal pattern matching
queries and their applications [14].

Our Results. We observe that the computation of a Lyndon tree of a string
and furthermore the computation of all the runs in a string can be reduced to
answering O(n) LCE queries that are non-crossing, i.e., no two queries LCE(i, j)
and LCE(#/, j') are asked with i < i’ < j < j' or ¢’ <i < j < j. Let TheLor(n)
denote the time required to answer n such queries on-line in a string of length
n over a general ordered alphabet. We show that ThcLcr(n) = O(na(n)), where
a(n) is the inverse Ackermann function. As a consequence, we obtain O(na(n))-
time algorithms for computing the Lyndon tree, the set of all runs, the local
periods and the number of all squares in a string over a general ordered alphabet.

Our solution relies on a trade-off between two approaches. The results of [11]
let us efficiently compute the LCEs if they are short, while LCE queries with
similar arguments and a large answer yield structural properties of the string,
which we discover and exploit to answer further such queries.

24 M. Crochemore et al.

Our approach for answering non-crossing LCE queries is described in three
sections: in Sect. 3 we give an overview of the data structure, in Sect. 4 we present
the details of the implementation, and in Sect. 5 we analyse the complexity of
answering the queries. The applications including runs computation are detailed
in Sect. 6.

2 Preliminaries

Strings. Let X be a finite ordered alphabet of size o. A string w of length
|w| = n is a sequence of letters w[l]...w[n| from X. By w[i,j] we denote the
factor of w being a string of the form wli] ... w[j]. A factor wli, j] is called proper
if wli, j] # w. A factor is called a prefiz if i = 1 and a suffiz if j = n. We say
that p is a period of w if w[i]| = w[i + p] for alli =1,...,n — p. If p is a period
of w, the prefix w[l, p] is called a string period of w.

By an interval [£,r] we mean the set of integers {¢,...,r}. If w is a string of
length n, then an interval [a, b] is called a run in w if 1 < a < b < n, the shortest
period p of wla, b] satisfies 2p < b — a + 1 and none of the factors w[a — 1, b] and
wla, b+ 1] (if it exists) has the period p. An example of a run is shown in Fig. 1.

W
W= a b a b a a b a a b b b a a
3 10

Fig. 1. Example of a run [3, 10] with period 3 in the string w = ababaabaabbbaa. This
string contains also other runs, e.g. [10,12] with period 1 and [1, 5] with period 2.

Lyndon Words and Trees. By <==< we denote the order on X and by <; we
denote the reverse order on X'. We extend each of the orders <, for r € {0,1} to
a lexicographical order on strings over X. A string w is called an r-Lyndon word
if w <, u for every non-empty proper suffix u of w. The standard factorization
of an r-Lyndon word w is a pair (u,v) of r-Lyndon words such that w = wv and
v is the longest proper suffix of w that is an r-Lyndon word.

The r-Lyndon tree of an r-Lyndon word w, denoted as LTree,.(w), is a rooted
full binary tree defined recursively on w[l,n| as follows:

— LTree,(wli,i]) consists of a single node labeled with [é, 4]
—if j —¢>1 and (u,v) is the standard factorization of wli, j], then the root of
LTree,(w) is labeled by [i, j], has left child LTree,(u) and right child LTree,(v).

See Fig. 2 for an example. We can also define the r-Lyndon tree of an arbitrary
string. Let $y,$1 be special characters smaller than and greater than all the
letters from X' respectively. We then define LTree,.(w) as LTree,($,w); note
that $,w is an r-Lyndon word.

LCE Queries. For two strings u and v, by lep(u, v) we denote the length of their
longest common prefix. Let w be a string of length n. An LCE query LCE(%, j)

Near-Optimal Computation of Runs over General Alphabet 25

a a a b a b a a b b a b b

Fig. 2. The Lyndon tree LTreeo(w) of a Lyndon word w = aaababaabbabb.

computes lep(w(i, n], w[j, n]). An ¢-limited LCE query Limited-LCE<,(4,) com-
putes min(LCE(%, j), £). Such queries can be answered efficiently as follows; see
Lemma 14 in [11].

Lemma 1 ([11]). A sequence of q queries Limited-LCE<y, (ip,jp) can be
answered on-line in O((n+3_1_, log£,)a(n)) time over a general ordered alpha-
bet.

The following observation shows a relation between LCE queries and periods
in a string that we use in our data structure; for an illustration see Fig. 3.

Observation 2. Assume that the factors wla,dp — 1] and w[b, dg — 1] have the
same string period, but neither wla,da] nor w(b, dg] has this string period. Then

min(da — a,dg — b) if da —a#dg —b,

LCE(a,b) =
(a,) {dA—a—l—LCE(dA,dB) otherwise.

p
a (1/ dA
p
(o O Y N N
b b dp

Fig. 3. In this example figure da —a = 14, dg —b = 18, and p = 4. We have LCE(a,b) =
14 and LCE(a’, V') = 8 + LCE(da, dB).

Non-Crossing Pairs. For a positive integer n, we define the set of pairs

P,={(a,b)eZ*:1<a<b<n}

26 M. Crochemore et al.

Pairs (a,b) and (a’,b') are called crossing if a < a’ <b<b ora <a<?b <b.
A subset S C P, is called non-crossing if it does not contain crossing pairs.

A graph G is called outerplanar if it can be drawn on a plane without cross-
ings in such a way that all vertices belong to the unbounded face. An outerplanar
graph on n vertices has less than 2n edges (at most 2n — 3 for n > 2).

Fact 3. A non-crossing set of pairs S C P, has less than 3n elements.

Proof. We associate S\{(a,a) : 1 < a < n} with a plane graph on vertices
{1,...,n} drawn on a circle in this order, and edges represented as straight-line
segments. The non-crossing property of pairs implies that these segments do not
intersect. Thus, the graph drawing is outerplanar, and therefore the number of
edges is less than 2n. Accounting for the pairs of the form (a,a), we get the
claimed upper bound. a

For a set of pairs S = {(a;,b;) : 1 <14 <k} and a positive integer ¢, by [S/t]
we denote the set {([%],[%]):1 <4<k}

Observation 4. If S is non-crossing, then [S/t| is also non-crossing.

3 High-Level Description of the Data Structure

We say that a sequence of LCE(a,b) queries, for a < b, is non-crossing if the
underlying collection of pairs (a,b) is non-crossing. In this section, we give an
overview of our data structure, which answers a sequence of ¢ non-crossing LCE
queries on-line in O(q +n - a(n)) total time.

The data structure is composed of [logn| levels. Function LCE(i)(a7 b) cor-
responds to the level ¢ and returns LCE(a, b). In the computation it may make
calls to LCE®"Y(q,b). However, we make sure that the total number of such
calls is bounded. Each original LCE(a, b) query is first asked at the level 0.

The implementation of LCE® (a,b) consists of two phases. If LCE(a,b) >
3 - 2%, then this LCE® query is called relevant; otherwise it is called short. In
the first phase, we check the type of the query via a Limited-LCE<3.i(a,b)
query. This lets us immediately answer short queries. In the second phase, we
know that the query is relevant, and we try to deduce the answer based on data
gathered while processing similar queries or to learn some information useful for
answering future similar queries by asking LCE(+Y queries.

We shall say that LCE® queries for (a,b) and (a/,b') are similar if 5] =
[;—;1 and [2] = (g—;] Each equivalence class of this relation is processed by an
independent component, called a block-pair. A block at level ¢ is an interval of
the form [z -2° + 1, (x + 1) - 2], and a block-pair is a data structure identified
by a pair (4, B) of blocks. If a relevant LCE¥ (a,b) query satisfies a € A and
b € B for some block-pair (A, B), we say that the block-pair is responsible for the
query or that the query concerns the block-pair. As we show in Sect. 5, the pairs
of interval right endpoints of block-pairs at each level are non-crossing (whereas
LCE® queries that will be asked for i > 1 are non necessarily non-crossing).

Near-Optimal Computation of Runs over General Alphabet 27

The implementation of a block-pair, summarized in the lemma below, is given
in Sect. 4.

Lemma 5. Consider a sequence of relevant LCE® queries concerning a block-
pair (A, B). The block-pair can answer these queries on-line in worst-case con-
stant time plus the time to answer at most four LCE(i+1)(a,b) queries, such
that each either corresponds to the currently processed LCE® query or satisfies
a<b<a+ 2t

Structural conditions stated in Lemma 5 let us characterize the set of queries
passed to the next level. The complexity analysis in Sect. 5 relies on this char-
acterization.

4 Block-Pair Implementation

Our aim in this section is to prove Lemma 5. Information stored by a block-pair
changes through the course of the algorithm, and the implementation of the
query algorithm depends on what is currently stored. We distinguish four states
of a block pair (4, B) at level i. Figure 4 illustrates two of the states.

state(A, B) |description

initial No auxiliary data is stored

visited(ag, bg, L)|ag € A and by € B are the arguments of the first query
that concerns this block pair, L = LCE(ag, by) > 3 - 2¢

full(da,dp) |3pep2it1) : wmax A,da — 1] and w[max B, dg — 1] have
common period p and length at least p 4+ 2¢, but neither
w[max A, da] nor wmax B, dg] has period p

full™ (da,dg, L') |As in full(da,dg) plus L' = LCE(da, dg).

4.1 Initial State

In this state, we simply forward the query to the level i + 1, return the obtained
LCE(a, b) value, and change the state to visited(a, b, LCE(a,b)).

Algorithm 1. Tnitial- LCE{} (a,)

Require: LCE” (a,b) concerns (A4, B), whose state is initial

L« LCE(Hl)(a,b); > higher level call
transform (A, B) to state visited(a,b, L);

return L;

28 M. Crochemore et al.

visited(ao, bo, L)

A B
__ [] [-
ao bo
fb— L = LCE(ao,bo) — * fb— L = LCE(ao,bo) —A#

ful]Jr (dA, dB 5 Ll)

A B
TI \ o o \ o Z
\/\/\/\/_dA /\/\/\/\/Q]é
. e L' kKL
ke pok—— > 2" —— ke pok—— > 2" ——

Fig. 4. Block-pair (4, B) in states visited(ao, bo, L) and fullt (da,ds, L').

4.2 Visited State

In state visited(ao, bo, L), we can immediately determine LCE(a, b) if (a,b) is a
shift of (ag,bp). Otherwise, we apply Lemma 6 to move to state full.

Lemma 6. Let LCE" (a,b), LCE® (/') be similar and relevant queries and
letp=|(b—0)—(a—a)|. Ifp#0 and V' <b, then LCE(a,a +p) > 21 ie.,
p is a (not necessarily shortest) period of the factor wla,a + 2°t +p —1].

Proof. We shall first prove that LCE(a,a + q) > 3 -2 — (b — V') where ¢ =
(b—10b") — (a — a'). First, observe that a + ¢ = o’ + (b — V'), and thus LCE(a +
¢,b) = LCE(d’ + (b—b'),b' + (b—V)) > 32! — (b— V') because LCE®W (a/, V) is
relevant. Since LCE® (a, b) is also relevant, we have LCE(a,b) > 3-2¢ > 3.2¢ —
(b —b'). Combining these two inequalities, we immediately get LCE(a,a + q) >
min(LCE(a, b), LCE(a + ¢,b)) > 3-2° — (b — V'), as claimed.

If ¢ > 0, we have ¢ = p, and thus LCE(a, a+p) > 3-2¢— (b—1V’). Since the two
LCE® queries are similar, we have 3-2i — (b—b') > 2+1 so LCE(a, a+p) > 201,
See Fig. 5 for an illustration of this case.

——— > 21t

/PiQ\/\/\/ k—— LCE(a,b) 23'21.4){
N NI] N N]
__ 1§ ol O PP Z
a a b b
CR N| CR N
bk—;jl k—— LCE(a’, ') > 3 -2 —i

Fig. 5. Illustration of Lemma 6: case ¢ > 0. We assume that LCE(a+q,b) < LCE(a, b).
The marked fragments correspond to LCE(a, a + ¢) = LCE(a + ¢, b).

Near-Optimal Computation of Runs over General Alphabet 29

Otherwise, ¢ = —p, and we have LCE(a,a — p) > 3-2° — (b — b'), which
implies LCE(a + p,a) > 3-2" — (b—b') + ¢ = 3-2" — (a — a’). Again, the fact
that the queries are similar yields 3 - 2! — (@ — a’) > 2°*!, and consequently
LCE(a,a + p) > 2¢+1. O

In the query algorithm, we first check if a —ag = b—bg. If so, let us denote the
common value by A. Note that |A| < 2¢, LCE(a,b) > 3 - 2%, and LCE(ag, by) >
3 - 2%, This clearly yields LCE(a,b) = LCE(ag, by) + 4, which lets us compute
the result in constant time.

Algorithm 2. Visited-LCE{ , (a,b)

Require: LCE (a,b) concerns (A, B), whose state is visited(ag, b, L)
if a —ag=0b— by then
return L + a — aop;
else
p < [(a—ap) — (b—bo)l;
a' — maxA; b < max B;
dy —ad +p+ LCE(iJrl)(a’,a’ + p); > higher level call
dg b +p+ LCE(Hl)(b', b+ p); > higher level call
transform (A, B) to state full(da, dp);

return Full—LCEEQ B)(a,b); > recursive call on state full

Otherwise, our aim is to change the state of the block-pair to full. Lemma 6
lets us deduce that LCE(a, a+p) > 2! for some @ € {a,ag} and (by symmetry)
LCE(b, b+ p) > 2+ for some b € {b,by}, where p = |(a — ag) — (b—by)| (a and
b depend on the relative order of b, by and a, ag, respectively). Let a’ = max A
and b’ = max B. We have LCE(a/,a’ + p) > 2* and LCE(V, V' + p) > 2¢ because
a —2<a<da and ¥ — 2 < b < V. Such a situation allows for a move to
state full. The exact values of dy and dp are computed using a higher level call,
which lets us determine LCE(a’,a’ + p) and LCE(V, b + p). Note that p < 2¢+1
implies that these queries satisfy the condition of Lemma 5. The answer to the
initial LCE(i)(a,b) query is computed by the routine for state full, which we
give below.

4.3 Full States

In state full” we can answer every relevant query in constant time. In state full
we can either answer the query in constant time or make the final query at level
i + 1 to transform the state to full™; see the following lemma.

Lemma 7. Consider a relevant LCE(i)(a,b) query concerning a block-pair
(A, B) in state full(da,dg) or full™ (da,dg, L'). Then

min(da — a,dp — b) if da —a #dg —b,

LCE(a,b) =
(a,) {dA—a—I—LCE(dA,dB) otherwise.

30 M. Crochemore et al.

Proof. Let ag = max A, by = max B and let p be the witness period of the state
of (A, B). Let us define A = max(ag — a,bp —b), a’ =a+ A, and ' = b+ A.
Observe that A < 2%, ag < @’ < ag+ 2%, and by < b’ < by + 2°. The fact that the
query is relevant yields LCE(a,b) > 3-2¢ > p+ A, so LCE(a, b) = A+LCE(d/, V)
and LCE(a/,b") > p. Moreover, dy > p + 2° + ag and dg > p + 2% + by implies
that fragments wla’,ds — 1] and w[b’,dg — 1] have length at least p, and thus
they are right-maximal with period p. Consequently, the fragments wla’, dy — 1]
and w[b/,dg — 1] have the same string period of length p. This lets us apply
Observation 2, which gives

min(dy —a’,dg — V) ifdya —ad' #dg -,

LCE(d',b') = .
dpn —a’ + LCE(da,dg) otherwise.

Since @' =a+ A, b =b+ A, and LCE(a,b) = A+ LCE(d/, V'), this is clearly
equivalent to the claimed formula for LCE(a, b). O

Algorithm 3. Full- LCE()} , (a,b)

Require: LCE” (a,b) concerns (A, B), whose state is full(dy, dg) or
full® (da, dg, L)

if dy —a # dg — b then
return min(dy — a,dp — b);
else
if (A, B) is in state full(da,dp) then
L' — LCE" Y (a,b) — (da — a); > higher level call
transform (A, B) to state full ™ (da, dg, L');
return dy —a + L’;

4.4 Proof of Lemma 5

Lemma 5. Consider a sequence of relevant LCE® queries concerning a block-
pair (A,B). The block-pair can answer these queries on-line in worst-case con-
stant time plus the time to answer at most four LCE(”l)(a,b) queries, such
that each either corresponds to the currently processed LCE® query or satisfies
a<b<a+ 2t

Proof. Algorithms 1, 2 and 3 answer queries concerning the block-pair (A, B),
and use constant time. The level ¢ + 1 call is only made when the state changes.
The original query is forwarded during a shift from state initial to visited and
from state full to fullt, while during a shift from visited to full two LCE
queries are asked, both with arguments at distance p < 2°*!, as claimed. a

Near-Optimal Computation of Runs over General Alphabet 31

5 Complexity Analysis

Algorithm 4 summarizes the implementation of the LCE (a,b) function. As
mentioned in Sect. 3, we first compute Limited-LCE<3.9i(a,b), which might
immediately give us the sought value LCE(a,b). Otherwise the query is rele-
vant, and we refer to the block-pair (A, B) which is responsible for the query.

Algorithm 4. LCE" (a, b)
£ « Limited-LCE3.5i (a, b);

if £< 3.2 then > short query
return /;
else > relevant query
(A, B) < block-pair responsible for the query (a,b) at level i;
return:)
Initial—LCEEX’B)(a, b) if (A, B) is in state initial
Visited—LCEEiz‘B>(a, b) if (A, B) is in state visited
Full-LCE! (a, b) if (A, B) is in state full or full*

Let S; = {(a,b) : LCE(a,b) is called }. Then [S;/2%] corresponds to the
set of pairs of interval right endpoints of block-pairs at level i.

Fact 8. The set [S;/2"] is non-crossing.

Proof. We proceed by induction on i. The base case is trivial from the assump-
tion on the input sequence. Lemma 5 proves that S;11 C S; U{(a,b) :a < b <
a+271}. Hence, [Si1/277] C [[S:/27] /2] U{(a,b) : a < b < a+1}. The first
component is non-crossing by the inductive hypothesis combined with Observa-
tion 4. Pairs of the form (a,a) and (a,a + 1) do not cross any other pair, so
adding them to a non-crossing family preserves this property. a

Consequently, Fact 3 proves that the number of block-pairs responsible for a
query at level ¢ — 1 is bounded by 23—?1 Each of them yields at most 4 queries
at level 7. This leads straight to the following bound.

Observation 9. |5;| < 2511-" fori>1.

If we stored the block-pairs using a hash table, we could retrieve the internal data
of the block-pair responsible for (a,b) in randomised constant time. However, in
the case of non-crossing LCE queries we can make this time worst-case.

Recall from Fact 3 that for a set S C P, of non-crossing pairs we can identify
S\{(a,a) : 1 <a < n} with an outerplanar graph on vertices {1,...,n}. We say
that a simple undirected graph has arboricity at most c if it can be partitioned
into ¢ forests. Outerplanar graphs have arboricity at most 2 (see [18]) which
lets us use the following theorem to store S\{(a,a) : 1 < a < n}. Membership
queries for pairs (a,a) are trivial to support using an array.

32 M. Crochemore et al.

Theorem 10. ([4]). Consider a graph of arboricity ¢ with vertices given in
advance and edges revealed on-line. One can support adjacency queries, asking
to return the edge between two given vertices or nil if it does not exist, in worst-
case O(c) time, with edge insertions processed in amortized constant time.

The following corollary shows, by Fact 8, that indeed the block-pairs at each
level can be retrieved in worst-case constant time.

Corollary 11. Consider a set S C P, of non-crossing pairs arriving on-
line. One can support membership queries (asking if (a,b) € S and, if so, to
return data associated with this pair) in worst-case constant time with inser-
tions processed in amortized constant time.

Theorem 12. In a string of length n, a sequence of ¢ non-crossing LCE queries
can be answered in total time O(q + n - a(n)).

Proof. For i > 0, an LCE® query, excluding the LCE(+Y) queries called,
requires O(i - (n)) time for answering a Limited-LCE<3.0: query by Lemma 1
plus O(1) additional time by Lemma 5. For ¢ = 0 we may compute
Limited-LCE<3 naively in constant time, so the running time is constant.

The number of LCE(® queries is g, while the number of LCE® queries for
i > 11is O(3r) by Observation 9. The total running time is therefore

O<q+n~a Z

,j) Olg-+n-an)) .

6 Computing Runs

Bannai et al. [1,2] presented an algorithm for computing all the runs in a string of
length n that works in time proportional to answering O(n) LCE queries on the
string or on its reverse. As main tool they used Lyndon trees. We note here that
the LCE queries asked by their algorithm can be divided into a constant number
of groups, each consisting of non-crossing LCE queries. Roughly speaking, this is
based on the obvious fact that intervals in a Lyndon tree form a laminar family,
i.e., for every two they are either disjoint or one of them contains the other.

In the first phase, given a string w, the algorithm of [1,2] constructs
LTreeg(w) and LTree;(w). For each r € {0,1}, the construction of LTree,(w)
goes from right to left. Before the k-th step (for kK = n,...,1), we store on a
stack the roots of subtrees of LTree, (w) that correspond to w[k+1,n]. Hence, the
intervals corresponding to the roots on the stack are disjoint and cover the inter-
val [k + 1,n]. In the k-th step we push on the stack a single node corresponding
to [k, k]. Afterwards, as long as the stack contains at least two elements and the
top element [k,[] and the second to top element [a,d] satisfy w[k,] <, w(a,b],
we pop the two subtrees from the stack and push one subtree with the root [k, b].
The lexicographical comparison is performed via an LCE(k, a) query.

Near-Optimal Computation of Runs over General Alphabet 33

Observation 13. The LCE queries asked in the construction of LTree,.(w) are
non-crossing.

Proof. In the k-th step of the algorithm we only ask LCE(4, j) queries for i = k.
Suppose towards contradiction that in the course of the algorithm we ask two
LCE queries with (4, j) and (¢, j) such that ¢ < i’ < j < j'. The latter is asked
at step ¢/, and at that moment [i’,j" — 1] is a root of a subtree of LTree,(w).
Then the former is asked at step ¢, and then [i,j — 1] is a root of a subtree
of LTree,(w). This contradicts the fact that the intervals in LTree,(w) form a
laminar family. O

In the second phase, for each node [a,b] of each Lyndon tree LTree,(w) we
check if there is a run with period p = b—a+1 that contains wa, b]. To this end
we check how long does the periodicity with period p extend to the right and to
the left of w(a,b]. The former obviously reduces to an LCE(a, b + 1) query and
the latter to an LCE query in the reverse of w, which is totally symmetric. As
the intervals in LTree,(w) form a laminar family, we arrive at the following,.

Observation 14. The LCE queries asked when right-extending the periodicity
of the intervals from LTree.(w) are non-crossing.

By Observations 13 and 14, Theorem 12 yields the following result and its
immediate corollary.

Theorem 15. The Lyndon tree and the set of all runs in a string of length n
over a general ordered alphabet can be computed in O(na(n)) time.

Corollary 16. All the local periods and the number of all squares in a string of
length n over a general ordered alphabet can be computed in O(na(n)) time.

References

1. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new
characterization of maximal repetitions by Lyndon trees. In: Indyk, P. (ed.) 26th
Annual ACM-STAM Symposium on Discrete Algorithms, SODA 2015, pp. 562-571.
SIAM (2015)

2. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs”
theorem (2015). arXiv:1406.0263v7

3. Barcelo, H.: On the action of the symmetric group on the free Lie algebra and the
partition lattice. J. Comb. Theory, Ser. A 55(1), 93-129 (1990)

4. Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne,
F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
342-351. Springer, Heidelberg (1999)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, New York (2007)

6. Crochemore, M., Ilie, L..: Analysis of maximal repetitions in strings. In: Kucera, L.,
Kugera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 465-476. Springer, Heidelberg
(2007)

http://arxiv.org/abs/1406.0263v7

34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Crochemore et al.

Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci.
74(5), 796-807 (2008)

Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the “runs” conjecture.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 290-302.
Springer, Heidelberg (2008)

. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Walen,

T.: Extracting powers and periods in a word from its runs structure. Theor. Com-
put. Sci. 521, 29-41 (2014)

Fischer, J., Holub, S., I, T., Lewenstein, M.: Beyond the runs theorem. In: Iliopou-
los, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 277-286.
Springer, Heidelberg (2015)

Gawrychowski, P., Kociumaka, T., Rytter, W., Walen, T.: Faster longest common
extension queries in strings over general alphabets. In: Grossi, R., Lewenstein, M.
(eds.) 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016.
LIPIcs, vol. 54, pp. 5:1-5:13. Schloss Dagstuhl (2016)

Giraud, M.: Not so many runs in strings. In: Martin-Vide, C., Otto, F., Fernau,
H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 232-239. Springer, Heidelberg (2008)
Hohlweg, C., Reutenauer, C.: Lyndon words, permutations and trees. Theor. Com-
put. Sci. 307(1), 173-178 (2003)

Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching
queries in a text and applications. In: Indyk, P. (ed.) 26th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, pp. 532-551. STAM (2015)
Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, pp. 596-604. IEEE Computer Society (1999)

Kolpakov, R.M., Kucherov, G.: On maximal repetitions in words. J. Dis-
crete Algorithms, 159-186. Special Issue of Matching Patterns, Hermes Science
Publishing (2000). https://www.amazon.com/Matching-Patterns-Crochemore/
dp/190339807X

Kosolobov, D.: Computing runs on a general alphabet. Inf. Process. Lett. 116(3),
241-244 (2016)

Nash-Williams, C.S.J.A.: Decompositions of finite graphs into forests. J. London
Math. Soc. 39, 12 (1964)

Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain?
Theor. Comput. Sci. 401(1-3), 165-171 (2008)

Rytter, W.: The number of runs in a string: improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184-195. Springer, Heidelberg (2006)

Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459-1469 (2007)

https://www.amazon.com/Matching-Patterns-Crochemore/dp/190339807X
https://www.amazon.com/Matching-Patterns-Crochemore/dp/190339807X

The Smallest Grammar Problem Revisited

Danny Hucke®™), Markus Lohrey, and Carl Philipp Reh

University of Siegen, Siegen, Germany
{hucke,lohrey,reh}@eti.uni-siegen.de

Abstract. In a seminal paper of Charikar et al. on the smallest grammar
problem, the authors derive upper and lower bounds on the approxima-
tion ratios for several grammar-based compressors, but in all cases there
is a gap between the lower and upper bound. Here we close the gaps for
LZ78 and BISECTION by showing that the approximation ratio of LZ78
is @((n/logn)?/®), whereas the approximation ratio of BISECTION is
O((n/logn)'/?). We also derive a lower bound for a smallest grammar
for a word in terms of its number of LZ77-factors, which refines exist-
ing bounds of Rytter. Finally, we improve results of Arpe and Reischuk
relating grammar-based compression for arbitrary alphabets and binary
alphabets.

1 Introduction

The idea of grammar-based compression is based on the fact that in many cases
a word w can be succinctly represented by a context-free grammar that produces
exactly w. Such a grammar is called a straight-line program (SLP) for w. In the
best case, one gets an SLP of size O(logn) for a word of length n, where the size
of an SLP is the total length of all right-hand sides of the rules of the grammar.
A grammar-based compressor is an algorithm that produces for a given word w
an SLP A for w, where, of course, A should be smaller than w. Grammar-based
compressors can be found at many places in the literature. Probably the best
known example is the classical LZ78-compressor of Lempel and Ziv [17]. Indeed,
it is straightforward to transform the LZ78-representation of a word w into an
SLP for w. Other well-known grammar-based compressors are BISECTION [9],
SEQUITUR [13], and RePair [10], just to mention a few.

One of the first appearances of straight-line programs in the literature are
[2,5], where they are called word chains (since they generalize addition chains
from numbers to words). In [2], Berstel and Brlek prove that the function
g(k,n) = max{g(w) | w € {1,...,k}"}, where g(w) is the size of a smallest
SLP for the word w, is in @(n/log, n). Note that g(k,n) measures the worst
case SLP-compression over all words of length n over a k-letter alphabet. The
first systematic investigations of grammar-based compressors are [4,8]. Whereas
in [8], grammar-based compressors are used for universal lossless compression
(in the information-theoretic sense), Charikar et al. study in [4] the worst case
approximation ratio of grammar-based compressors. For a given grammar-based
compressor C that computes from a given word w an SLP C(w) for w one defines

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 35-49, 2016.
DOI: 10.1007/978-3-319-46049-9 4

36 D. Hucke et al.

the approximation ratio of C on w as the quotient of the size of C(w) and the
size g(w) of a smallest SLP for w. The approximation ratio ac¢(n) is the maxi-
mal approximation ratio of C among all words of length n over any alphabet. In
[4] the authors compute upper and lower bounds for the approximation ratios
of several grammar-based compressors (among them are the compressors men-
tioned above), but for none of the compressors the lower and upper bounds
match. Our first main contribution (Sect. 3) closes the gaps for LZ78 and BISEC-
TION. For this we improve the corresponding lower bounds from [4] and obtain
the approximation ratios ©((n/logn)'/?) for BISECTION and ©((n/logn)?/3)
for LZ78. For BISECTION (resp., LZ78), we prove this lower bound for a binary
(resp., ternary) alphabet.

In Sect. 4 we compare the size of a smallest SLP for a word w with the num-
ber of factors of the LZ77-factorization of w (we denote the latter with g, z77(w)).
Rytter [14] proved for every word w of length n the following bounds on the size
g(w) of a smallest SLP for w: g(w) > gLzz7z(w) and g(w) € O(gLzrz(w) - logn).
This leads to the question whether the upper bound g(w) € O(gLz77(w)-logn) on
g(w) can be improved. This would have immediate consequences for grammar-
based compression: If one could construct in polynomial time an SLP of size
o(gLz77(w) - logn) for a given word w, then one would obtain a grammar-based
compressor with an approximation ratio of o(logn). Currently, the theoreti-
cally best grammar-based compressors (which all work in linear time) achieve
an approximation ratio in O(log(n/g(w))) [4,7,14], and a polynomial time
grammar-based compressor with an approximation ratio in o(logn/loglogn)
would imply a spectacular breakthrough on a long standing open problem on
approximating addition chains [4]. Here, we partially answer the above ques-
tion whether the bound g(w) € O(gizzz(w) - logn) is sharp. Using a Kol-
mogorov complexity argument we construct a sequence of words w, for which
g(wn) € 2(gizrr(wy) - log |wy |/ loglog [wy|).

Our last contribution deals with the hardness of the smallest grammar prob-
lem for words over a binary alphabet. The smallest grammar problem is the
problem of computing a smallest grammar for a given input word. Storer and
Szymanski [15] and Charikar et al. [4] proved that the smallest grammar prob-
lem cannot be solved in polynomial time unless P = NP. Even worse, unless
P = NP one cannot compute in polynomial time for a given word w an SLP of
size < 8569/8568-g(w) [4]. The construction in [4] uses an alphabet of unbounded
size, and it was open whether this complexity lower bound also holds for words
over a fixed alphabet. In [4] it is remarked that the construction in [15] shows
that the smallest grammar problem for words over a ternary alphabet cannot
be solved in polynomial time unless P = NP. But this is not clear at all, see the
recent paper [3] for a detailed explanation. In the same paper [3] it was shown
that the smallest grammar problem for an alphabet of size 24 cannot be solved in
polynomial time unless P = NP using a rather complicated construction [3]. It is
far from clear whether this construction can be adapted so that it works also for
a binary alphabet. Another idea is to reduce the smallest grammar problem for
unbounded alphabets to the smallest grammar problem for a binary alphabet.

The Smallest Grammar Problem Revisited 37

This route was investigated in [1], where the following result was shown: If there
is a polynomial time grammar-based compressor with approximation ratio c
(a constant) on binary words, then there is a polynomial time grammar-based
compressor with approximation ratio 24c+ ¢ for every € > 0 on arbitrary words.
The construction in [1] uses a quite technical block encoding of arbitrary alpha-
bets into a binary alphabet. Here, we present a very simple construction that
encodes the i-th alphabet symbol by a’b, which yields the same result as [1] but
with 24c¢ + € replaced by 6.

2 Straight-Line Programs

Let w=ay---a, (a1,...,a, € X) be a word over an alphabet X. The length |w|
of w is n and we denote by € the word of length 0. Let ¥ = X* \ {e} be the
set of nonempty words. For w € X7, we call v € X7 a factor of w if there exist
z,y € X* such that w = zvy. If x = € (respectively y = ¢) then we call v a prefic
(respectively suffiz) of w. A factorization of w is a decomposition w = f1--- f;
into factors f1, ..., fe. For words w1, ..., w, € X*, we further denote by H?:j w;
the word wjwjy1---wy, if § < n and € otherwise.

A straight-line program, briefly SLP, is a context-free grammar that produces
a single word w € XT. Formally, it is a tuple A = (N, X, P, S), where N is a
finite set of nonterminals with NN X = (), S € N is the start nonterminal,
and P is a finite set of productions (or rules) of the form A — w for A € N,
w € (NUX)T such that: (i) For every A € N, there exists exactly one production
of the form A — w, and (ii) the binary relation {(4,B) € N x N | (A —
w) € P, B occurs in w} is acyclic. Every nonterminal A € N produces a unique
string valy(A) € XT. The string defined by A is val(A) = valy(S). We omit
the subscript A when it is clear from the context. The size of the SLP A is
A = Z(A‘VUJ)GP |w|. We will use the following lemma which summarizes known
results about SLPs.

Lemma 1. Let X be a finite alphabet.

1. For every word w € X1 of length n, there exists an SLP A of size O(n/logn)
such that val(A) = w.

2. For an SLP A and a number n > 0, there exists an SLP B of size |A| +
O(logn) such that val(B) = val(A)™.

3. For SLPs Ay and Ay there exists an SLP B of size |Ai| + |Az| such that
val(B) = val(Aj)val(Ag).

4. For given words wy, ..., w, € X*, u € X and SLPs A1, Ay with val(A;) = u
and val(Ag) = wizwax - - - wyp_1xW, for a symbol x & X, there exists an SLP
B of size |A1| 4 |Ag| such that val(B) = wiuwau - - - wy,_1uwy,.

Statement 1 can be found for instance in [2]. Statements 2 and 3 are shown
in [4]. The proof of 4 is straightforward: Simply replace in the SLP Ay every
occurrence of the terminal x by the start nonterminal of A; and add all rules of
A1 to AQ.

38 D. Hucke et al.

We denote by g(w) the size of a smallest SLP producing the word w € X+.
The maximal size of a smallest SLP for all words of length n over an alphabet
of size k is

g(k,n) = max{g(w) | w & [1,k]"},

where [1,k] = {1,...,k}. By point 1 of Lemma 1 we have g(k,n) € O(n/log, n).
In fact, Berstel and Brlek proved in [2] that g(k,n) € ©(n/log;, n). The following
result provides further information about the function g(k, n):

Proposition 2. Let ny = 2k? + 2k + 1 for k > 0. Then (i) g(k,n) < n for
n > ng and (ii) g(k,n) =n for n < ng.

Proof. Let Xy = {a1,...,ax} and let M, , C X be the set of all words w where
a factor v of length £ occurs at least n times without overlap. It is easy to see
that g(w) < |w]| if and only if w € M3 o U My 3. Hence, we have to show that
every word w ¢ Ms o U My 3 has length at most 2k? + 2k + 1. Moreover, we
present words wy, € X} of length 2k + 2k + 1 such that wy ¢ M3 o U M 3.

Let w ¢ Mso U My 3. Consider a factor a;a; of length two. If ¢ # j then
this factor does not overlap itself, and thus a;a; occurs at most twice in w. Now
consider a;a;. Then w contains at most four (possibly overlapping) occurrence of
a;a;, because five occurrences of a;a; would yield at least three non-overlapping
occurrences of a;a;. It follows that w has at most 2(k? — k) + 4k positions where
a factor of length 2 starts, which implies |w| < 2k? + 2k + 1.

Now we create a word wy ¢ M3 2 U M 3 which realizes the above maximal
occurrences of factors of length 2:

k k—1 [i=k
— 5 2
Wk = Hak—i—H H H(ajai) Ai10;Qi41
=1

i=1 \it2
For example we have ws = aja3aj(azai)?azaiazazazas. One can check that
|U)k| =2k?>+2k+1 and W ¢ M3’2 @] M2,3. O

3 Approximation Ratio

As mentioned in the introduction, there is no polynomial time algorithm that
computes a smallest SLP for a given word, unless P = NP [4,15]. This result
motivates approximation algorithms which are called grammar-based compres-
sors. A grammar-based compressor C computes for a word w an SLP C(w) such
that val(C(w)) = w. The approzimation ratio ac(w) of C for an input w is defined
as |C(w)|/g(w). The worst-case approximation ratio ac(k, n) of C is the maximal
approximation ratio over all words of length n over an alphabet of size k:

ac(k,n) = max{ac(w) | w € [1,k]"} = max{|C(w)|/g(w) | w € [1,k]"}

If the alphabet size is unbounded, i.e. we allow alphabets of size |w|, then we
write ac(n) instead of ag(n,n). This is the definition of the worst-case approx-
imation ratio in [4]. The grammar-based compressors studied in our work are

The Smallest Grammar Problem Revisited 39

BISECTION [9] and LZ78 [17]. We will abbreviate the approximation ratio of
BISECTION (respectively LZ78) by ag (respectively aiz7s). The families of words
which we will use to prove new lower bounds for ag|(n) and a)z7g(n) are inspired
by the constructions in [4].

3.1 BISECTION

The BISECTION algorithm [9] first splits an input word w with |w| > 2 as
w = wyws such that |w;| = 27 for the unique number j > 0 with 27 < |w| < 29+1,
This process is recursively repeated with w; and ws until we obtain words of
length 1. During the process, we introduce a nonterminal for each distinct factor
of length at least two and create a rule with two symbols on the right-hand side
corresponding to the split. Note that if w = wjug---ug with |u;| = 2™ for all
i,1 < i < k, then the SLP produced by BISECTION contains a nonterminal for
each distinct word u; (1 < ¢ < k).

Ezxample 3. BISECTION constructs an SLP for w = ababbbaabbaaab as follows:

— w = wiws with wy = ababbbaa, wo = bbaaab
Introduced rule: S — W;Ws

— w1 = x1T9 With 1 = abab, xo = bbaa, and wy = xox3 With x3 = ab
Introduced rules: W7 — X1 X5, Wo — X5X3, X3 — ab

— X1 = x3%3, To = Y1y With y; = bb and y2 = aa
Introduced rules: X; — X3X3, Xo — 1Yy, Y7 — b, Y5 — aa

BISECTION performs asymptotically optimal on unary words a™ since it pro-
duces an SLP of size O(logn). Therefore ag(1,n) € O(1). The following bounds
on the approximation ratio for alphabets of size at least two are proven in [4,
Theorems 5 and 6]:

agi(2,n) € 2(yv/n/logn) (1)

agi(n) € O(y/n/logn) (2)

We improve the lower bound (1) so that it matches the upper bound (2):
Theorem 4. For every k,2 < k <n we have ag|(k,n) € O(y/n/logn).

Proof. The upper bound (2) implies that ag|(k,n) € O(y/n/logn) for all k,2 <
k < n. So it suffices to show ag|(2,n) € 2(y/n/logn). We first show that
agi(3,n) € 2(y/n/logn). In a second step, we encode a ternary alphabet into a
binary alphabet while preserving the approximation ratio.

For every k > 2 let biny, : {0,1,...,k — 1} — {0,1}1°82*] be the function
where bing(j) (0 < j < k—1) is the binary representation of j filled with leading
zeros (e.g. bing(3) = 0011). We further define for every k > 2 the word

k—2
U = H bing(7)a™* | bing(k — 1),
§=0

40 D. Hucke et al.

where my, = 2F-Mo82F1 _ [log, k]. For instance k = 4 leads to my = 2 and
ug = 00aa0laalOaall. We analyse the approximation ratio ag(sx) for the word

mk+1)mk

Sk = (uka Uk -

Claim 1. The SLP produced by BISECTION on input sj has size 2(2%).

If s, is split into non-overlapping factors of length my + [log, k] = ok—[logy kT
then the resulting set Fj of factors is

F = {a'bing(§)a™ " |0<j <k —1,0<1i<my}.

For example s, consecutively consists of the factors 00aa, 0laa, 10aa, 11aa, a00a,
alla, al0a, alla, aa00, aa0l, aal0 and aall. The size of Fy is (mg + 1) - k €
O(2%), because all factors are pairwise different and my € ©(2%/k). It follows
that the SLP produced by BISECTION on input s has size §2(2¥), because the
length of each factor in Fj is a power of two and thus BISECTION creates a
nonterminal for each distinct factor in Fj.

Claim 2. A smallest SLP producing sy has size O(k).

There is an SLP of size O(logmy) = O(k) for the word a™* by Lemma 1
(point 2). This yields an SLP for uy of size O(k) + g(u},) by Lemma 1 (point 4),
where uj = (Hf:_o2 bing (i)x)bing (k — 1) is obtained from wy by replacing all
occurrences of a™* by a fresh symbol z. The word wj, has length ©(klogk).
Applying point 1 of Lemma 1 (note that u), is a word over a ternary alphabet)
it follows that

klogk klogk
!/ — —
9(ur) €0 (log(klog k)) © (logk + log log k:) O(k).

Hence g(uy) € O(k). Finally, the SLP of size O(k) for uy yields an SLP of size
O(k) for s again using Lemma 1 (points 2 and 3).

In conclusion: We showed that a smallest SLP for s, has size O(k), while BISEC-
TION produces an SLP of size £2(2%). This implies agi(sx) € £2(2F/k). Let
n = |sk|. Since sy is the concatenation of ©(2F) factors of length ©(2%/k), we
have n € ©(2%¢/k) and thus \/n € O(2%/Vk). This yields agi(sy) € 2(\/n/k).
Together with k € ©(logn) we obtain ag|(3,n) € 2(1/n/logn).

Let us now encode words over {0,1,a} into words over {0,1}. Consider the
homomorphism f : {0,1,a}* — {0,1}* with f(0) = 00, f(1) = 01 and f(a) = 10.
Then we can prove the same approximation ratio of BISECTION for the input
f(sk) € {0,1}* that we proved for s above: The size of a smallest SLP for f(sg)
is at most twice as large as the size of a smallest SLP for sy, because an SLP for
si can be transformed into an SLP for f(s) by replacing every occurrence of
a symbol z € {0,1,a} by f(z). Moreover, if we split f(sx) into non-overlapping
factors of twice the length as we considered for s, then we obtain the factors
from f(F}), whose length is again a power of two. Since f is injective, we have
(R = | Fil € ©(2%). 0

The Smallest Grammar Problem Revisited 41

3.2 LZ78

The LZ78 algorithm on input w € XF implicitly creates a list of words f1,..., f
(which we call the LZ78-factorization) with w = f; - - - fo such that the following
properties hold, where we set fy = e:

— fi# fjforalli,j,0<4d,j<{¢—1withi#j.
— Forall i,1 <4 < /¢ —1 there exist j,0 < j <7 and a € X such that f; = fja.
— fo= fi for some 0 <i</{—1.

Note that the LZ78-factorization is unique for each word w. To compute it, the
LZ78 algorithm needs ¢ steps performed by a single left-to-right pass. In the
k™ step (1 < k < £ —1) it chooses the factor fi as the shortest prefix of the
unprocessed suffix fi--- fy such that fr # f; for all ¢ < k. If there is no such
prefix, then the end of w is reached and the algorithm sets f; to the (possibly
empty) unprocessed suffix of w.

The factorization f1, ..., fr yields an SLP for w of size at most 3¢ as described
in the following example:

Ezxample 5. The LZ78-factorization of w = aabaaababababaa is a, ab, aa, aba, b,
abab, aa and leads to an SLP with the following rules:

-5 - F1F2F3F4F5F6F3
- F1 — a, F2 — F1b7 Fd — Fla, F4 — FQQ, F5 — b, F@ — F4b

We have a nonterminal F; for each factor f; (1 < ¢ < 6) such that valy(F;) = f;.
The last factor aa is represented in the start rule by the nonterminal Fj.

The LZ78-factorization of a” (n > 0) is a',a?,...,a™,a*, where k € {0,...,m}
such that n = k +)_;",i. Note that m € O(y/n) and thus aiz7s(1,n) €

O(y/n/logn). The following bounds for the worst-case approximation ratio of
LZ78 were shown in [4, Theorems 3 and 4]:

azrg(2,n) € 2(n*?/logn) 3)
azzs(n) € O((n/ logn)*’?) (4)

For ternary (or larger) alphabets, we will improve the lower bound so that it
matches the upper bound in (4).

Theorem 6. For every k > 3 we have az7g(k,n) € O((n/logn)?/3).

Proof. Due to (4) it suffices to show az7s(3,n) € £2((n/logn)?/?). For

_) 2
k> 2m > 1, let upp = (akbmc)k(m+2) ' and vmi = ([T lﬂczk)lc . We
now analyse the approximation ratio of LZ78 on the words

k(k+1)/2 1)/2
Sm,k = Q (k+1)/ bm(m+)/ Um,k Um k-
For example we have usy = (a®t?c)!®, vay = (ba'b?a*)!® and sy4 =

alo b3 U2.4 V2,4-

42 D. Hucke et al.

Claim 1. The SLP produced by LZ78 on input s, x has size ©(k*m).

We consider the LZ78-factorization fi, ..., fo of s, . The prefix a*(*+1)/2 pro-
duces the factors f; = a* for every 4,1 < i < k and the substring bm(m+1)/2
produces the factors fi.; = b for every i,1 <i < m.

We next show that the substring u,, then produces (among other factors)
all factors a't’, where 1 < i < k, 1 < j < m. All other factors produced by
U, contain the letter ¢ and therefore do not affect the factorization of the final
suffix vy, 1, € {a,b}*.

The first factors of Uy, ; in Sm i are frim+1 = a®b and frimiz = b e,
which together form the first occurrence of a*b™c. The next two factors are
a*b? and b™~2c. This pattern continues and the prefix (a®b™c)™ of wup
yields the next 2m factors fyipmyoi—1 = afb’ and frymi2i = b *c for every
i,1 <14 < m. The factorization of u,, ; continues with fi3m+1 = aFbme followed
by fri3zmio = aFb"ca. Next, we have fiyi3mi3 = a* 'band fri3mia = 0" ‘ca,
which is the beginning of a similar pattern as we discovered for (a*b™c)™. There-
fore, the next 2m factors are frysmioir1 = a* 1% and frismioite = V™ ‘ca
for every i,1 < i < m. The next two factors are frysmis = a*~1b™c followed
by frismaa = aF*b™ca®. The iteration of these arguments yields k (consecutive)
blocks of 2m + 2 factors (resp. 2m + 1 in the last block) in w, :

15t block: [, (b’ b e) akbmc akbmea
2nd block: []%, (a*~'6" o™ ica) a*=ome ko™ ea?
(k—1)™ block: T[T, (a®b’ b icak 2 a’bmc akbmeak 1
kth block: [T, (ab’ b icah ! ab™c

We will show that the remaining suffix vy, ; of s, produces then the set of
factors

{a'bPa? |0<i<k—1,1<j<k 1<p<m}.

Let x = k+m + k(2m + 2) — 1 and note that this is the number of factors
that we have produced so far. The factorization of vy, ;, in s, i slightly differs
whether m is even or is odd. We now assume that m is even and explain the
difference to the other case afterwards. The first factor of vy, i in sy, i is foq1 =
ba. We already have produced the factors a*~1b* for every i,1 < i < m and
hence f,y; = a*~'bia for every i,2 < i < m and fyymy1 = a* " 'ba. The next
m factors are foimyi = a""'b'a? if i is even, fiymis = a7 2bla if i is odd
(2 <i<m)and fyyomys1 = a¥*2ba. This pattern continues: The next m factors
are foiomii = a7 1b'a® if i is even, fyyomyi = a¥3b%a if i is odd (2 < i < m)
and f,y3m+1 = a* 3ba and so on. Hence, we get the following sets of factors for

([T, b'ab)®:

(i) {a*bPa |1 <

1<k, 1<
(ii) {a*~1oPad |1 <5 1

k < m, p is Odd} for f:c+17fx+3 .- '7fx+km71
<k, p

p
<p< m, p is even} for fw+2afz+47 R fm+k:m

The Smallest Grammar Problem Revisited 43

The remaining word then starts with the factor f,41 = ba?, where y = z + km.
Now the former pattern can be adapted to the next k repetitions of H:’;l bia®
which gives us the following factors:

(1) {ak_iprLQ_ ‘ 1 < 1 < k7 1 < p < m, p is Odd} for fy+1:fy+3 .. '7.fy+k’m—1
(ll) {ak*QbPa] | 1 S] S k7 1 S p S m, p is even} for fy+2afy+47 .. '7fy+km,

The iteration of this process then reveals the whole pattern and thus yields the
claimed factorization of v,, j, in s,, into factors a’bPa’ for every i,0 <i < k—1,
J, 1 <j<kandp,1<p<m. Ifmisoddthen the patternsin (1) and (2) switch
after each occurrence of [}~ b’a®, which does not affect the result but makes
the pattern slightly more complicated. But the case that m is even suffices in
order to derive the lower bound from the theorem.

We conclude that there are exactly k +m + k(2m + 2) — 1 + k?m factors
(ignoring f; = ¢) and hence the SLP produced by LZ78 on input s, 5 has size
O(k*m).

Claim 2. A smallest SLP producing s, , has size O(log k + m).

We will combine the points stated in Lemma 1 to prove this claim. Points 2 and 3
yield an SLP of size O(log k + logm) for the prefix a*(k+1)/2 pm(m+1)/24, o of
Sm, k- To bound the size of an SLP for v, note at first that there is an SLP of
size O(log k) producing a* by point 2 of Lemma 1. Applying point 4 and again
point 2, it follows that there is an SLP of size O(log k) + g(vy,, ;) producing vy, x,
where v], = [[iZ, b’z for some fresh letter 2. To get a small SLP for v/, ,, we
can introduce m nonterminals By, ..., B,, producing b',...,b™ by adding rules
B; — band Bj11 — B;b (1 < i < m —1). This is enough to get an SLP of
size O(m) for v, , and therefore an SLP of size O(log k +m) for vy, ;. Together
with our first observation and point 3 of Lemma 1 this yields an SLP of size
O(log k + m) for sp, .

Claim 1 and 2 imply aizz7s(smk) € 2(k*m/(logk + m)). Let us now fix
m = [logk]. We get aiz7g(sm.x) € 2(k*). Moreover, for the length n = |s,, x|
of sm i we have n € O(k*m + k*m?) = O(k3logk). We get aiz78(smk) €
2((n/log k)?/3) which together with logn € ©(log k) finishes the proof. O

It remains open whether also oy z78(2, 1) € @((n/logn)?/?) holds. In contrast
to BISECTION it is not clear how to encode a ternary alphabet into a binary
alphabet while preserving the approximation ratio for LZ78.

4 LZ77 and Composition Systems

The LZ77-factorization of a non-empty word w € Xt is w = fi1fo- -+ fm, where
for every i,1 < ¢ < m, f; is (i) the longest non-empty prefix of f;fit1--- fm
which is a factor of fy fo--- fi—1 or (ii) the first symbol of f;fi+1 -+ fm if such a
prefix does not exist. Let g z77(w) = m be the number of factors in the LZ77-
factorization of w.

44 D. Hucke et al.

Ezample 7. The LZ77-factorization of w = aabaaababababaa is a, a, b, aa, aba,
ba, baba, a and we have g, z77(w) = 8.

We are interested in the following ratios, where 1 < k < n:

Brzrr(k,n) = max{g(w)/gLzrr(w) | w € [1,k]"} and Bizr7(n) = Brzrz(n, n).

For a word w over a unary alphabet one has g z77(w) € ©(log|w|) and therefore
Bizz7(1,n) € O(1). Rytter proved that for every word w, g(w) > gizz7(w) and
hence B z77(k,n) > 1 for all k,1 < k < n [14].> Moreover, in the same paper,
he constructed for a word w an SLP of size O(giz77(w) - log|w]|). This yields
Bizrz(n) € O(logn). Using Kolmogorov complexity we prove the lower bound
Przz7(2,n) € £2(logn/loglogn).

For a partial recursive function ¢ : {0,1}* — {0,1}* and a word w € {0, 1}*
let Cy(w) = min{|p| | p € {0,1}*, ¢(p) = w} (where we define min()) = oo) be
the Kolmogorov complexity of w with respect to ¢. The invariance theorem of
Kolmogorov complexity states that there is a partial recursive surjective function
U :{0,1}* — {0,1}* such that for every partial recursive function ¢ : {0,1}* —
{0, 1}* there is a constant ¢ > 0 with Cy(w) < Cy(w) + ¢ for all w. We fix such
a function U (it can be obtained from a universal Turing machine) and define
the Kolmogorov complexity of w as C(w) := Cy(w). It is well known that for
every n > 0 there is a word w € {0,1}" with C(w) > n (such a word is called
Kolmogorov random). See [11] for further details.

Theorem 8. [.777(2,n) € 2(logn/loglogn).

Proof. Let m € N, w € {0,1}*, |w| = m? and C(w) > m?. We factorize w as
W = wy - - Wy, where |w;| = m for every i,1 < i < m. We encode every w; into a
binary number of size ©(2™) using the following (ranking) function p : {0,1}* —
N: We define p(u) = i if and only if u is the i word in the length-lexicographic
enumeration of all words from {0,1}* (where p(¢) = 0). This is a computable
bijection from {0,1}* to N such that p(z) € O(21*l). Let N; = p(w;) for every
i,1 <14 < m. Thus, we have N; € ©(2™). Let N = max{Ny,...,N,,} € O(2™)
and define the word v = aN#a™'# ... #a™™# over the alphabet {a,#}. Let A
be a smallest SLP for v. Note that v and hence A uniquely encodes the word
w. Since an SLP of size k can be encoded by a bit string of size O(klogk)
[16] and C(w) > m?, it follows that |A| - log|A| € 2(m?). Note that this is
the point where the Kolmogorov randomness of w is applied. Moreover, there
exists an SLP for v of size O(m - log N) = O(m?). Thus, |A| € O(m?), which
together with |A| - log(|A|) € 2(m?) implies |A| € 2(m?/logm) and hence
g(v) € 2(m?/logm). On the other hand, the LZ77-factorization of v has O(m)
factors: The prefix a™¥# of v contributes O(log N) = O(m) factors. Because
N =max{Ny,..., Ny}, every a’Vi#, where 1 < i < m, contributes at most one

! Tt is shown in [14] that every SLP in Chomsky normal form for w has at least giz77(w)
many nonterminals. But the number of nonterminals in a smallest Chomsky normal
form SLP for w is bounded by g(w).

The Smallest Grammar Problem Revisited 45

additional factor. Altogether, we get grz77(v) € O(m). Let n = |[v| € O(m - 2™),
which implies logn € ©(m). We get

2
ﬁLZn(ZMZﬂGQ M N ™Y gt)
gLz77(v) mlogm logm loglogn

This concludes the proof. a

It remains open, whether the lower bound in Theorem 8 can be raised to £2(log n).

A common generalization of SLPs and LZ77-factorizations are so called com-
position systems [6] or Cut-SLP [12] (briefly CSLP), which we define next. For
awordw =a;---a, € ¥ and 1 <i < j < n we define wfi : j] =a;---a;. A
CLSP C = (N, X, P,S) is defined analogously to an SLP but in addition may
contain rules of the form A — B[i: j] for A,B € N and 1 < i < j < |val(B)].
We then define val(A) = val(B)[i : j]. The size of a right-hand side B[i : j] is
set to [Bi : j]| = 1 and the size of a CSLP is [C| = 34, cp [w]- We denote
by gcsip(w) the size of a smallest CSLP C such that val(C) = w and define
Besip (k, n) = max{g(w)/gcsip(w) | w € [1,k]"} and Besip(n) = Besip(n, n).

Note that if a non-empty word w has an LZ77-factorization w = f1 fo - -+ fp, of
length m then gcsip(w) < 3m: We introduce for every 4,1 < i < m a nonterminal
A; which evaluates to fy--- f;. For this, we set A; — f; (f1 must be a single
symbol). For every i,2 < ¢ < m we set A; — A;_1f; if f; is a single symbol
and Az — Aileiv Bz — Aifl[j : k] if fz = (fl fzfl)[_] :]ﬂ] Together with
Theorem 8 this yields the lower bound in the following theorem. The upper
bound follows easily using the techniques from [14].

Theorem 9. We have fcsip(2,n) € (logn/loglogn) and PBesip(n) €
O(logn).

5 Hardness of Grammar-Based Compression for Binary
Alphabets

The goal of this section is to prove the following result:

Theorem 10. Let ¢ > 1 be a constant. If there exists a polynomial time
grammar-based compressor C with ac(2,n) < ¢ then there exists a polynomial
time grammar-based compressor D with ap(n) < 6c.

For a factor 24 + ¢ (with € > 0) instead of 6 this result was shown in [1] using a
more complicated block encoding.

We split the proof of Theorem 10 in two lemmas that state translations
between SLPs over arbitrary alphabets and SLPs over a binary alphabet. For
the rest of this section fix the alphabets X' = {aq,...,ax—1} and Xy = {a,b}.
To translate between these two alphabets, we define an injective homomorphism
p: 2" — 25 by

o(a;) =a'd (0<i<k-—1). (5)

46 D. Hucke et al.

Lemma 11. Let w € X* such that every symbol from X occurs in w. From an
SLP A for w one can construct in polynomial time an SLP B for p(w) of size
at most 3 - |Al.

Proof. To translate A into an SLP B for ¢(w), we first add the productions
Ag — band A; — aA;_q forevery 1,1 <i<k—1.

Finally, we replace in A every occurrence of a; € X by A;. This yields an
SLP B for ¢(w) of size |A| + 2k — 1. Because k < |A| (since every symbol from
X occurs in w), we obtain |B| < 3 |A]. |

Lemma 12. Let w € X* such that every symbol from X occurs in w. From an
SLP B for p(w) one can construct in polynomial time an SLP A for w of size
at most 2 - |B|.

Proof. A factor of a word from (X*) is of the form s = a’1b---arba’"+! for
some n > 0, and 0 < 43,...,%,41 < k — 1. Take new symbols a;, 0 < 7 <
k — 1. Intuitively, @; is an abbreviation for a’ (whereas a; is an abbreviation for
a'b). The symbols a; are only used during the construction for clarification, and
disappear at the end. For the word s = a®tb---a'"ba'"+1 define £(s) € X U {e},
m(s) € X*, and r(s) € {a; | 0 <i <k — 1} as follows:

a;, ifn>1 5
() = { T =,) =,

Note that ¢(s) = € implies that m(s) = € as well. Finally, let

1/)(8) = CL7;1 ah e ain éin+1 .
£(s) m(s) r(s)

Note that for every word w € X* we have ¢ (p(w)) = wao.

Let w € X* and B = (N, X5, P,S) be an SLP for ¢(w). For a nonterminal
A € N we define ¢(A), m(A),r(A) as £(val(A)), m(val(A)),r(val(A)). We now
define an SLP A’ that contains for every nonterminal A € N a nonterminal
A’ such that val(A’) = m(A). Moreover, the algorithm also computes ¢(A) and
r(A).

We define the productions of A’ inductively over the structure of B. Consider
a production (A — «a) € P, where a = woAjw1As -+ wy—1 Apw, with n > 0,
Ai,..., A, € N, and wo,w1,...,w, € X5. Let ¢; = £(4;) and r; = r(A;). The
right-hand side for A’ is obtained as follows. We start with the word

Y(wo) b1 AL p(wr) bo Ay -+ h(wp—1) by AL 7 Y (wy,). (6)

Note that each of the factors ¢; A}r; produces (by induction) ¢ (val(A;)). Next we
remove every A’ that derives the empty word (which is equivalent to m(4;) = ¢).
After this step, every occurrence of a symbol @; is either the last symbol of the
word or it is followed by another symbol a; or a;. This allows us to eliminate
all occurrences of symbols a; except for the last symbol using the two reduction

The Smallest Grammar Problem Revisited 47

rules a;a; — a;4; (which corresponds to a‘a’ = a'*7) and a;a; — a;4; (which
corresponds to a‘a’b = a't7b). If we perform these rules as long as possible
(the order of applications is not relevant since these rules form a confluent and
terminating system), only a single occurrence of a symbol @; at the end of the
right-hand side will remain. The resulting word «’ produces 1(A). Hence, we
obtain the right-hand side for the nonterminal A’ by removing the first symbol
of o/ if it is of the form a; (this symbol is then ¢(A)) and the last symbol of o/,
which must be of the form a; (this symbol is r(A4)).

Note that for the start variable S of B we must have r(S) = ag since val(5)
belongs to the image of ¢. Let S’ — o be the production for S’ in A’. We obtain
the SLP A by replacing this production by S’ — £(S)o. Since valy/(S") = m(S)
and valg(S) = ¢(w) we have valy (S') = £(S)m(S) = w.

To bound the size of A note that the length of the word in (6) is at most
|a|] + 2n. But when forming the right-hand side of A’, all symbols rq,...,r,
are removed from (6). Hence, |A’| is bounded by the size of B plus the total
number of occurrences of nonterminals in right-hand sides of B, which is at most
2|B| — 1 (there is at least one terminal occurrence in a right-hand side). Since
Al = |A'| + 1 we get |A] < 2|B|.

It is easy to observe that the runtime of the algorithm is linear. a

Ezample 13. Consider the production A — a®ba®A;aA2a?b? Aza® and assume
that val(4;) = a2, val(4z) = aba*ba and val(A3) = ba?ba®. Hence, when we
produce the right-hand side for A’ we have: val(A}) = ¢, val(A}) = as, val(4%) =
as, {1 =¢,r = ag, bo = a1, ro = a1, f¢3 = ag, r3 = az. We start with the word

a3d5A/1(32&30,114/2&1(12@0&0&014{3&3&2.

Then we replace A} by e and obtain azasasasa; Abaiasa0aoagAsaszaz. Applying
the reduction rules finally yields azai; AbasagagAsas. Hence, we have ((A) = ag,
r(A) = as and the production for A’ is A’ — aj1ASa3a0a0As.

Proof of Theorem 10. Let C be an arbitrary grammar-based compressor working
in polynomial time such that a¢(2,n) < c¢. The grammar-based compressor D
works for an input word w over an arbitrary alphabet as follows: Let X =
{ao,...,ar—1} be the set of symbols that occur in w and let ¢ be defined as in
(5). Using C, one first computes an SLP B for p(w) such that [B| < ¢- g(p(w)).
Then, using Lemma 12, one computes from B an SLP A for w such that |A| <
2¢ - g(p(w)). Lemma 11 implies g(¢(w)) < 3 - g(w) and hence |A| < 6¢ - g(w),
which proves the theorem. a

6 Open Problems

Several open problems arise from this paper. First of all, it would be nice to
prove (or disprove) the lower bound £2((n/logn)?/3) for the approximation
ratio of LZ78 also for a binary alphabet. Our proof needs a ternary alpha-
bet. Another interesting question arises from the gap between the lower bound

48

D. Hucke et al.

2(logn/loglogn) and the upper bound O(logn) for BLzz7(n) (worst case size
of a smallest SLP in relation to the number of LZ77-factors). It is open whether
the factor 1/loglogn in the lower bound is necessary. Finally, one should try
to narrow also the gaps between the lower and upper bounds for the other
grammar-based compressors analyzed in [4]. In particular, for the so called global
algorithms from [4] these gaps are quite large.

Acknowledgment. The work in this paper was supported by the DFG grant LO
748/10-1.

References

10.

11.

12.

13.

14.

15.

. Arpe, J., Reischuk, R.: On the complexity of optimal grammar-based compression.

In: Proceedings of the DCC 2006, pp. 173-182. IEEE Computer Society (2006)
Berstel, J., Brlek, S.: On the length of word chains. Inf. Process. Lett. 26(1), 23-28
(1987)

Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complexity
of grammar-based compression over fixed alphabets. In: Proceeding ICALP 2016,
LNCS. Springer, Heidelberg (2016, to appear)

Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M.,
Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554-2576 (2005)

Diwan, A.A.: A New Combinatorial Complexity Measure for Languages. Tata Insti-
tute, Bombay (1986)

Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms
for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.)
SWAT 1996. LNCS, vol. 1097, pp. 392-403. Springer, Heidelberg (1996)

Jez, A.: Approximation of grammar-based compression via recompression. In: Fis-
cher, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165-176. Springer,
Heidelberg (2013)

. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: a new class of universal lossless

source codes. IEEE Trans. Inf. Theory 46(3), 737-754 (2000)

Kieffer, J.C., Yang, E.-H., Nelson, G.J., Cosman, P.C.: Universal lossless compres-
sion via multilevel pattern matching. IEEE Trans. Inf. Theory 46(4), 1227-1245
(2000)

Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proceedings of
the DCC 1999, pp. 296-305. IEEE Computer Society (1999)

Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer, Heidelberg (2008)

Lohrey, M.: The Compressed Word Problem for Groups. Springer, Heidelberg
(2014)

Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. 7, 67-82 (1997)

Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211-222 (2003)
Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928-951 (1982)

The Smallest Grammar Problem Revisited 49

16. Tabei, Y., Takabatake, Y., Sakamoto, H.: A succinct grammar compression. In:
Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 235-246. Springer,
Heidelberg (2013)

17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24(5), 530-536 (1977)

Efficient and Compact Representations of Some
Non-canonical Prefix-Free Codes

Antonio Farina', Travis Gagie?(®™ | Giovanni Manzini®*, Gonzalo Navarro®,

and Alberto Ordéfiez®

! Database Laboratory, University of A Corufia, A Corufia, Spain
2 Department of Computer Science,
Helsinki Institute for Information Technology (HIIT),
University of Helsinki, Helsinki, Finland
travis.gagie@gmail.com
3 Institute of Computer Science, University of Eastern Piedmont, Alessandria, Italy
4 IIT-CNR, Pisa, Italy
5 Department of Computer Science, University of Chile, Santiago, Chile
5 Yoop SL, A Coruiia, Spain

Abstract. For many kinds of prefix-free codes there are efficient and
compact alternatives to the traditional tree-based representation. Since
these put the codes into canonical form, however, they can only be used
when we can choose the order in which codewords are assigned to char-
acters. In this paper we first show how, given a probability distribution
over an alphabet of o characters, we can store a nearly optimal alpha-
betic prefix-free code in o(o) bits such that we can encode and decode
any character in constant time. We then consider a kind of code intro-
duced recently to reduce the space usage of wavelet matrices (Claude,
Navarro, and Ordénez, Information Systems, 2015). They showed how
to build an optimal prefix-free code such that the codewords’ lengths are
non-decreasing when they are arranged such that their reverses are in lex-
icographic order. We show how to store such a code in (’)(a log L + 2€L)
bits, where L is the maximum codeword length and ¢ is any positive
constant, such that we can encode and decode any character in constant
time under reasonable assumptions. Otherwise, we can always encode
and decode a codeword of ¢ bits in time O(¢) using O(o log L) bits of
space.

Funded in part by European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sktodowska-Curie grant agreement No 690941 (project
BIRDS). The first author was supported by: MINECO (PGE and FEDER) grants
TIN2013-47090-C3-3-P and TIN2015-69951-R; MINECO and CDTI grant ITC-
20151305; ICT COST Action IC1302; and Xunta de Galicia (co-founded with
FEDER) grant GRC2013/053. The second author was supported by Academy of
Finland grants 268324 and 250345 (CoECGR). The fourth author was supported by
Millennium Nucleus Information and Coordination in Networks ICM /FIC P10-024F,
Chile.
© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 50-60, 2016.
DOI: 10.1007/978-3-319-46049-9_5

Non-canonical Prefix-Free Codes 51

1 Introduction

Binary prefix-free codes can be represented as binary trees whose leaves are
labelled with the characters of the source alphabet, so that the ancestor at
depth d of the leaf labelled z is a left child if the dth bit of the codeword for
x is a 0, and a right child if it is a 1. To encode a character, we start at the
root and descend to the leaf labelled with that character, at each step writing
a 0 if we go left and a 1 if we go right. To decode an encoded string, we start
at the root and descend according to the bits of the encoding until we reach a
leaf, at each step going left if the next bit is a 0 and right if it is a 1. Then we
output the character associated with the leaf and return to the root to continue
decoding. Therefore, a codeword of length ¢ is encoded/decoded in time O(¥).
This all generalizes to larger code alphabets, but for simplicity we consider only
binary codes in this paper.

There are, however, faster and smaller representations of many kinds of
prefix-free codes. If we can choose the order in which codewords are assigned
to characters then, by the Kraft Inequality [8], we can put any prefix-free code
into canonical form [13]— i.e., such that the codewords’ lexicographic order is
the same as their order by length, with ties broken by the lexicographic order of
their characters—without increasing any codeword’s length. If we store the first
codeword of each length as a binary number then, given a codeword’s length and
its rank among the codewords of that length, we can compute the codeword via
a simple addition. Given a string prefixed by a codeword, we can compute that
codeword’s length and its rank among codewords of that length via a predeces-
sor search. If the alphabet consists of o characters and the maximum codeword
length is L, then we can build an O(olog L)-bit data structure with O(log L)
query time that, given a character, returns its codeword’s length and rank among
codewords of that length, or vice versa. If L is at most a constant times the size
of a machine word (which it is when we are considering, e.g., Huffman codes
for strings in the RAM model) then in theory we can make the predecessor
search and the data structure’s queries constant-time, meaning we can encode
and decode in constant time [5].

There are applications for which there are restrictions on the codewords’
order, however. For example, in alphabetic codes the lexicographic order of the
codewords must be the same as that of the characters. Such codes are use-
ful when we want to be able to sort encoded strings without decoding them
(because the lexicographic order of two encodings is always the same as that of
the encoded strings) or when we are using data structures that represent point
sets as sequences of coordinates [10], for example. Interestingly, since the map-
ping between symbols and leaves is fixed, alphabetic codes need only to store the
tree topology, which can be represented more succinctly than optimal prefix-free
codes, in 20 + o(o) bits [9], so that encoding and decoding can still be done in
time O(¢). There are, however, no equivalents to the faster encoding/decoding
methods used on canonical codes [5].

In Sect. 2 we show how, given a probability distribution over the alphabet, we
can store a nearly optimal alphabetic prefix-free code in o(c) bits such that we

52 A. Farina et al.

can encode and decode any character in constant time. We note that we can still
use our construction even if the codewords must be assigned to the characters
according to some non-trivial permutation of the alphabet, but then we must
store that permutation such that we can evaluate and invert it quickly.

In Sect.3 we consider another kind of non-canonical prefix-free code, which
Claude, Navarro, and Ordéniez [1] introduced recently to reduce the space usage
of their wavelet matrices. (Wavelet matrices are alternatives to wavelet trees
[6,10] that are more space efficient when the alphabet is large.) They showed how
to build an optimal prefix-free code such that the codewords’ lengths are non-
decreasing when they are arranged such that their reverses are in lexicographic
order. They represent the code in O(o L) bits, and encode and decode a codeword
of length ¢ in time O(¢). We show how to store such a code in O(olog L) bits,
and still encode and decode any character in O(¢) time. We also show that, by
using O(J log L + QEL) bits, where € is any positive constant, we can encode and
decode any character in constant time when L is at most a constant times the
size of a machine word. Our first variant is simple enough to be implementable.
We show experimentally that it uses 23-30 times less space than a classical
implementation, at the price of being 10-21 times slower at encoding and 11-30
at decoding.

2 Alphabetic Codes

Our approach to storing an alphabetic prefix code compactly has two parts: first,
we show that we can build such a code such that the expected codeword length is
at most a factor of (14+0O(1/y/logn))? = 14+ 0O(1/y/logn) greater than optimal,
the code-tree has height at most lgo + v/Igo + 3, and each subtree rooted at
depth [lgo — v/Igo] is completely balanced; then, we show how to store such a
code-tree in o(o) bits such that encoding and decoding take constant time.

Evans and Kirkpatrick [2] showed how, given a binary tree on n leaves, we
can build a new binary tree of height at most [lgn] + 1 on the same leaves in
the same left-to-right order, such that the depth of each leaf in the new tree is
at most 1 greater than its depth in the original tree. We can use their result
to restrict the maximum codeword length of an optimal alphabetic prefix code,
for an alphabet of o characters, to be at most lgo + v/Ig o + 3, while forcing its
expected codeword length to increase by at most a factor of 1 + (9(1/\/10g 0).
To do so, we build the tree T,,; for an optimal alphabetic prefix code and then
rebuild, according to Evans and Kirkpatrick’s construction, each subtree rooted
at depth [/Ig o). The resulting tree, T};m,, has height at most [Igo]+[lgo]+1
and any leaf whose depth increases was already at depth at least [/Igo].

There are better ways to build a tree T};,, with such a height limit. Itai [7] and
Wessner [14] independently showed how, given a probability distribution over an
alphabet of o characters, we can build an alphabetic prefix code T};,, that has
maximum codeword length at most lgo + /Igo + 3 and is optimal among all
such codes. Our construction in the previous paragraph, even if not optimal,
shows that the expected codeword length of Ty, is at most 1 + O(l/\/log 0‘)
times that of an optimal code with no length restriction.

Non-canonical Prefix-Free Codes 53

Further, let us take Tj;,,, and completely balance each subtree rooted at depth
[lgo — v/Igo]. The height remains at most lgo + v/Igo + 3 and any leaf whose
depth increases was already at depth at least [lgo — v/Igo], so the expected
codeword length increases by at most a factor of

lgo+Igo+3
Teo —Vigo] 1+O(1/\/loga> .

Let Typq; be the resulting tree. Since the expected codeword length of Tj;,, is in
turn at most a factor of 1 4 0(1/\/log n) larger than that of T, the expected
codeword length of Ty is also at most a factor of (1 + O(1/y/logn))? =1+
(9(1 /v/1og n) larger than the optimal. Tj4; then describes our suboptimal code.

To represent Tpq;, we store a bitvector B[l..s] in which B[i] = 1 if and
only if the codeword for the ith character in the alphabet has length at most
[lgo — /g o], or if the ith leaf in T is the leftmost leaf in a subtree rooted at
depth [lgo — v/Igo]. With Patragcu’s implementation [12] for B this takes a
total of O(Zlg"_\/@loga + o/ log® a) = O(o/log® o) bits for any constant c,
and allows us to perform in constant time O(c) the following operations on B:
(1) access, that is, inspecting any B[i]; (2) rank, that is, rank(B,) counts the
number of 1s in any prefix B[1..7]; and select, that is, select(B, j) is the position
of the jth 1 in B, for any j.

Let us for simplicity assume that the alphabet is [1..0]. For encoding in
constant time we store an array S[1..2/7~V1271] which stores the explicit code
assigned to the leaves of Ty, where B[i] = 1, in the same order of B. That is,
if B[i] = 1, then the code assigned to the character i is stored at S[rank(B,1)],
using lg 0++/1g 043 = O(log o) bits. Therefore S requires O (2lg o—VIga o9 a) =
o(o/log® o) bits of space, for any constant c. We can also store the length of the
code within the same asymptotic space.

To encode the character i, we check whether B[i] = 1 and, if so, we simply
look up the codeword in S as explained. If B[i] = 0, we find the preceding 1 at
i' = select(B,rank(B, 1)), which marks the leftmost leaf in the subtree rooted
at depth [lgo — y/Igo]| that contains the ith leaf in T. Since the subtree is
completely balanced, we can compute the code for the character 7 in constant
time from that of the character +': The size of the balanced subtree is r = 7"/ — ¢/,
where i = select(B,rank(B,i') + 1), and its height is h = [lgr]. Then the
first 2r — 2" codewords are of the same length of the codeword for i/, and the
last 2" — r have one bit less. Thus, if i — i’ < 2r — 2", the codeword for i’ is
S[rank(B,i")]4+i—1', of the same length of that of i; otherwise it is one bit shorter,
(S[rank(B,i")|+2r—2")/2+i—i' —(2r—2") = S[rank(B,i)]/2+i—i' —(r—2""1).

To be able to decode quickly, we store an array A[l..?“g(’_‘/lgiﬂ] such that,
for 1 < j < 2M18o=V18al if the [Igo — /Igo]-bit binary representation of j —1 is
prefixed by the ith codeword, then A[j] stores i and the length of that codeword.
If, instead, the [lgo — /Igo]-bit binary representation of j is the path label to
the root of a subtree of Tj,; with size more than 1, then A[j] stores the position

54 A. Farina et al.

i in B of the leftmost leaf in that subtree (thus B[i'] = 1). Again, A takes
C’)(?log"_\/@log 0) = o(c/log o) bits, for any constant c.

Given a string prefixed by the ith codeword, we take the prefix of length
[lgo — /g o] of that string (padding with Os on the right if necessary), view it
as the binary representation of a number j, and check A[j]. This either tells us
immediately ¢ and the length of the ¢th codeword, or tells us the position i’ in B
of the leftmost leaf in the subtree containing the desired leaf. In the latter case,
since the subtree is completely balanced, we can compute ¢ in constant time: We
find 7", r, and h as done for encoding. We then take the first h bits of the string
(including the prefix we had already read, and padding with a 0 if necessary),
and interpret it as the number j’. Then, if d = j' — S[rank(B,i")] < 2r — 2", it
holds i = ¢’ 4+ d. Otherwise, the code is of length h — 1 and the decoded symbol
isi=1d+2r—2"+ [(d— (2r —2M)/2] =i +r—2""1 + |d/2].

Theorem 1. Given a probability distribution over an alphabet of o characters,
we can build an alphabetic prefiz code whose expected codeword length is at most
a factor of 1+ O(1/y/log o) more than optimal and store it in O(c/log® o) bits,
for any constant c, such that we can encode and decode any character in constant
time O(c).

3 Codes for Wavelet Matrices

As we mentioned in Sect. 1, in order to reduce the space usage of their wavelet
matrices, Claude, Navarro, and Ordénez [1] recently showed how to build an
optimal prefix code such that the codewords’ lengths are non-decreasing when
they are arranged such that their reverses are in lexicographic order. Specifically,
they first build a normal Huffman code and then use the Kraft Inequality to build
another code with the same codeword lengths with the desired property. They
store an O(oL)-bit mapping between characters and their codewords, where
again o is the alphabet size and L is the maximum length of any codeword,
which allows them to encode and decode codewords of length ¢ in time O(¢). (In
the wavelet matrices, they already spend O(¢) time in the operations associated
with encoding and decoding.)

Assume we are given a code produced by Claude et al.’s construction. We
reassign the codewords of the same length such that the lexicographic order
of the reversed codewords of that length is the same as that of their char-
acters. This preserves the property that codeword lengths are non-decreasing
with their reverse lexicographic order. The positive aspect of this reassignment
is that all the information on the code can be represented in olg L bits as a
sequence D = dy,...,d,, where d; is the depth of the leaf encoding character 7
in the code-tree T. We can then represent D using a wavelet tree [6], which uses

O(olog L) bits and supports the following operations on D in time O(log L):
(1) access any D[i], which gives the length ¢ of the codeword of character i;
(2) compute r = ranky(D,), which gives the number of occurrences of ¢ in

D[1..7], which if D[i] = ¢ gives the position (in reverse lexicographic order)

Non-canonical Prefix-Free Codes 55

of the leaf representing character ¢ among those of codeword length ¢; and (3)
compute i = selecty(D,r), which gives the position in D of the rth occurrence
of ¢, or which is the same, the character 7 corresponding to the rth codeword of
length ¢ (in reverse lexicographic order).

If, instead of O(log L) time, we wish to perform the operations in time O(¥),
where ¢ is the length of the codeword involved in the operation, we can simply
give the wavelet tree of D the same shape of the tree T. We can even perform
the operations in time O(log¢) by using a wavelet tree shaped like the trie for
the first o codewords represented with Elias 4- or d-codes [4, Observation 1].
The size stays O(o log L) if we use compressed bitmaps at the nodes [6,10].

We are left with two subproblems. For decoding the first character encoded
in a binary string, we need to find the length ¢ of the first codeword and the
lexicographic rank r of its reverse among the reversed codewords of that length,
since then we can decode i = selecty(D,). For encoding a character i, we find its
length ¢ = D[i] and the lexicographic rank r = rank,(D,) of its reverse among
the reversed codewords of length ¢, and then we must find the codeword given
¢ and r. We first present a solution that takes O(Llogo) = O(olog L) further
bits' and works in O(¢) time. We then present a solution that takes O(2F)
further bits and works in constant time.

Let T be the code-tree and, for each depth d between 0 and L, let nodes(d)
be the total number of nodes at depth d in T and let leaves(d) be the number of
leaves at depth d. Let v be a node other than the root, let u be v’s parent, let r,
be the lexicographic rank (counting from 1) of v’s reversed path label among all
the reversed path labels of nodes at v’s depth, and let r,, be defined analogously
for u. Notice that since T is optimal it is strictly binary, so half the nodes at
each positive depth are left children and half are right children. Moreover, the
reversed path labels of all the left children at any depth are lexicographically
less than the reversed path labels of all the right children at the same depth (or,
indeed, at any depth). Finally, the reversed path labels of all the leaves at any
depth are lexicographically less than the reversed path labels of all the internal
nodes at that depth. It follows that

— v is u's left child if and only if r, < nodes(depth(v))/2,
— if v is w’s left child then r, = r, — leaves(depth(u)),
— if v is w’s right child then r, = r, — leaves(depth(u)) 4+ nodes(depth(v))/2.

Of course, by rearranging terms we can also compute 7, in terms of r,.
Suppose we store nodes(d) and leaves(d) for d between 0 and L. With the
three observations above, given a codeword of length ¢, we can start at the root
and in O(¢) time descend in T' until we reach the leaf v whose path label is that
codeword, then return its depth £ and the lexicographic rank r» = r,, of its reverse
path label among all the reversed path labels of nodes at that depth.? Then we
compute 4 from ¢ and r as described, in further O(log¢) time. For encoding 4,

! Since the code tree has height L and o leaves, it follows that L < o.
2 This descent is conceptual; we do not have a concrete node v at each level, but we
do know 7.

56 A. Farina et al.

we obtain as explained its length ¢ and the rank r = r,, of its reversed codeword
among the reversed codewords of that length. Then we use the formulas to walk
up towards the root, finding in each step the rank r, of the parent u of v, and
determining if v is a left or right child of w. This yields the £ bits of the codeword
of 7 in reverse order (0 when v is a left child of v and 1 otherwise), in overall
time O(f). This completes our first solution, which we evaluate experimentally
in Sect. 4.

Theorem 2. Suppose we are given an optimal prefix code in which the code-
words’ lengths are non-decreasing when they are arranged such that their reverses
are in lexicographic order. We can store such a code in O(clogL) bits — pos-
sibly after swapping characters’ codewords of the same length — where o is the
alphabet size and L is the mazimum codeword length, such that we can encode
and decode any character in O(L) time, where £ is the corresponding codeword
length.

If we want to speed up descents, we can build a table that takes as arguments
a depth and several bits, and returns the difference between r, and r, for any
node u at that depth and its descendant v reached by following edges corre-
sponding to those bits. Notice that this difference depends only on the bits and
the numbers of nodes and leaves at the intervening levels. If the table accepts
t bits as arguments at once, then it takes L2¢log o bits and we can descend in
O(L/t) time. Setting t = €L/2, and since L > lgo, we use O(2°") space and
descend from the root to any leaf in constant time.

Speeding up ascents is slightly more challenging. Consider all the path labels
of a particular length that end with a particular suffix of length ¢: the lexico-
graphic ranks of their reverses form a consecutive interval. Therefore, we can
partition the nodes at any level by their r values, such that knowing which part
a node’s r value falls into tells us the last ¢ bits of that node’s path label, and the
difference between that node’s r value and the r value of its ancestor at depth ¢
less. For each depth, we store the first r value in each interval in a predecessor
data structure, implemented as a trie with degree o¢/3; since there are at most
2" intervals in the partition for each depth and L > lgo, setting t = €L /2 again
we use a total of O(L2°/20</3log o) C O(2¢F) bits and ascend from any leaf
to the root in constant time.

Finally, the operations on the wavelet tree can be made constant-time by
using a balanced multiary variant [3].

Theorem 3. Suppose we are given an optimal prefix code in which the code-
words’ lengths are non-decreasing when they are arranged such that their reverses
are in lexicographic order. Let L be the maximum codeword length, so that it is
at most a constant times the size of the machine word. Then we can store such
a code in O(cr log L + 25L) bits — possibly after swapping characters’ codewords
of the same length — where € is any positive constant, such that we can encode
and decode any character in constant time.

Non-canonical Prefix-Free Codes 57

4 Experiments

We have run experiments to compare the solution of Theorem 2 (referred to as
WMM in the sequel, for Wavelet Matrix Model) with the only previous encoding,
that is, the one used by Claude et al. [1] (denoted by TABLE). Note that our
codes are not canonical, so other solutions [5] do not apply.

Claude et al. [1] use for encoding a single table of oL bits storing the code
of each symbol, and thus they easily encode in constant time. For decoding,
they have tables separated by codeword length £. In each such table, they store
the codewords of that length and the associated character, sorted by codeword.
This requires o(L+1g o) further bits, and permits decoding binary searching the
codeword found in the wavelet matrix. Since there are at most 2 codewords of
length ¢, the binary search takes time O(¥).

For the sequence D used in our WMM, we use binary Huffman-shaped wavelet
trees with plain bitmaps. The structures for supporting rank/select efficiently
require 37.5 % space overhead, so the total space is 1.37 0 Ho (D), where Ho(D) <
lg L is the per-symbol zero-order entropy of the sequence D. We also add a
small index to speed up select queries [11] (that is, decoding), which can be
parameterized with a sampling value that we set to {16, 32,64, 128}. Finally, we
store the values leaves and nodes, which add an insignificant L? bits in total.

We used a prefix of three datasets in http://lbd.udc.es/research/ECRPC.
The first one, EsWiki, contains a sequence of word identifiers generated by using
the Snowball algorithm to apply stemming to the Spanish Wikipedia. The sec-
ond one, EsInv, contains a concatenation of differentially encoded inverted lists
extracted from a random sample of the Spanish Wikipedia. The third dataset,
Indo was created with the concatenation of the adjacency lists of Web graph
Indochina-2004 available at http://law.di.unimi.it/datasets.php. In Table 1 we
provide some statistics about the datasets. We include the number of symbols in
the dataset (n) and the alphabet size (0). Assuming P is the relative frequency of
the alphabet symbols, H(P) indicates (in bits per symbol) the empirical entropy
of the sequence. This approximates the average ¢ value of queries. Finally we
show L, the maximum code length, and the zero-order entropy of the sequence
D, Hy(D), in bits per symbol. The last column is then a good approximation of
the size of our Huffman-shaped wavelet tree for D.

Table 1. Main statistics of the texts used.

Collection | Length (n) | Alphabet | Entropy (H(P)) | Max code | Entropy of

size (o) length(L) |level entries
(Ho(D))
EsWiki | 200,000,000 | 1,634,145 |11.12 28 2.24
EsInv 300,000,000 | 1,005,702 | 5.88 28 2.60

Indo 120,000,000 | 3,715,187 | 16.29 27 2.51

http://lbd.udc.es/research/ECRPC
http://law.di.unimi.it/datasets.php

58 A. Farina et al.

Our test machine has a Intel(R) Core(tm) i7-3820@3.60 GHz CPU (4 cores/8
siblings) and 64 GB of DDR3 RAM. It runs Ubuntu Linux 12.04 (Kernel 3.2.0-99-
generic). The compiler used was g++ version 4.6.4 and we set compiler optimiza-
tion flags to —09. All our experiments run in a single core and time measures
refer to CPU user-time.

Collection EsWiki Collection EsWiki
Compression Decompression
200
TABLE * 700 [-~ TABLE *
x WMM =eeederes } ~ [3.7;694.4] WMM =eeederes
150 [3.2:175.2 600 *
500 b x == [1.7:512.1]
£ £ 400
5 100 S
& Zz 300
50 200
[96.0:18.34 100 [96.0:39.6]
*
*
0 0
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100
Space (bits/alphabet symbol) Space (bits/alphabet symbol)
Collection EsInv Collection EsInv
Compression Decompression
250 600
x TABLE * zs‘ TABLE *
WMM - =eeeeeees WMM - =eeeeeees
232 .
200 [3.6232.6 500 =
. [8.8:505.8
B _ 400 [4.2:556.4
4:: 150 ":
S 5 300
& 100 &
200
50
3 100
[96.0:11.0] [96.0:18.6]
0 X 0 x
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100
Space (bits/alphabet symbol) Space (bits/alphabet symbol)
Collection Indo Collection Indo
Compression Decompression
150 600
TABLE * TABLE *
X WMM eegerees 500 | ——[4.2;513.5] WMM eegerees
[3.5:132.7
_ 100 _ 400
z z ~.
2 2 X ~[8.7:300.
: E a0 _—1[8.7:300.5]
= =
= =
50 200
[96.0:45.9]
[96.0;8.8] 100
* *
0 0
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100
Space (bits/alphabet symbol) Space (bits/alphabet symbol)

Fig. 1. Size of code representations versus either compression time (left) or decompres-
sion time (right). Time is measured in nanoseconds per symbol.

Figure 1 compares the space required by both code representations and their
compression and decompression times. As expected, the space per character of
our new code representation, WMV, is close to 1.37 Ho(D), whereas that of TABLE
is close to 2L + lgo. This explains the large difference in space between both
representations, a factor of 23-30 times. For decoding we show the mild effect
of adding the structure that speeds up select queries.

Non-canonical Prefix-Free Codes 59

The price of our representation is the encoding and decoding time. While the
TABLE approach encodes using a single table access, in 8-18 ns, our representation
needs 130-230, which is 10 to 21 times slower. For decoding, the binary search
performed by TABLE takes 20-50ns, whereas our WMM representation requires
510-700 in the slowest and smallest variant (i.e., 11-30 times slower). Our faster
variants require 300-510 ns, which is still several times slower.

5 Conclusions

A classical prefix code representation uses O(oL) bits, where o is the alphabet
size and L the maximum codeword length, and encodes in constant time and
decodes a codeword of length £ in time O(¢). Canonical prefix codes can be rep-
resented in O(o log L) bits, so that one can encode and decode in constant time
under reasonable assumptions. In this paper we have considered two families of
codes that cannot be put in canonical form. Alphabetic codes can be represented
in O(o) bits, but encoding and decoding take time O(¢). We gave an approxima-
tion that worsens the average code length by a factor of 1+ O(l/\/log U), but in
exchange requires o(o) bits and encodes and decodes in constant time. We then
consider a family of codes that are canonical when read right to left. For those
we obtain a representation using O(olog L) bits and encoding and decoding in
time O(¢), or even in O(1) time under reasonable assumptions if we use O(2%)
further bits, for any constant € > 0.

We have implemented the simple version of these right-to-left codes, which
are used for compressing wavelet matrices, and shown that our encodings are
significantly smaller than classical ones in practice (up to 30 times), albeit also
slower (up to 30 times). For the journal version of the paper, we plan to imple-
ment the wavelet tree of D with a shape that lets it operate in time O(¢) or
O(log{), as used to prove Theorem 2; currently we gave it Huffman shape in
order to minimize space. Since there are generally more longer than shorter
codewords, the Huffman shape puts them higher in the wavelet tree of D, so
the longer codewords perform faster and the shorter codewords perform slower.
This is the opposite effect as the one sought in Theorem 2. Therefore, a faithful
implementation may lead to a slightly larger but also faster representation.

An interesting challenge is to find optimal alphabetic encodings that can
encode and decode faster than in time O({), even if they use more than O(o)
bits of space. Extending our results to other non-canonical prefix codes is also
an interesting line of future work.

Acknowledgements. This research was carried out in part at University of A Coruna,
Spain, while the second author was visiting and the fifth author was a PhD student
there. It started at a StringMasters workshop at the Research Center on Information
and Communication Technologies (CITIC) of the university. The workshop was partly
funded by EU RISE project BIRDS (Bioinformatics and Information Retrieval Data
Structures). The authors thank Nieves Brisaboa and Susana Ladra.

60

A. Farina et al.

References

10.
11.

12.
13.

14.

. Claude, F., Navarro, G., Ordéiiez, A.: The wavelet matrix: an efficient wavelet tree

for large alphabets. Inf. Syst. 47, 15-32 (2015)

. Evans, W., Kirkpatrick, D.G.: Restructuring ordered binary trees. J. Algorithms

50, 168-193 (2004)
Ferragina, P., Manzini, G., Mékinen, V., Navarro, G.: Compressed representations
of sequences, full-text indexes. ACM Trans. Algorithm 3(2), 20 (2007)

. Gagie, T., He, M., Munro, J.I., Nicholson, P.K.: Finding frequent elements in com-

pressed 2D arrays and strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.)
SPIRE 2011. LNCS, vol. 7024, pp. 295-300. Springer, Heidelberg (2011)

Gagie, T., Navarro, G., Nekrich, Y., Ordénez, A.: Efficient and compact represen-
tations of prefix codes. IEEE Trans. Inf. Theory 61(9), 4999-5011 (2015)

Grossi, R., Gupta, A., and Vitter, J.S.: High-order entropy-compressed text
indexes. In: Proceedings SODA, pp. 841-850 (2003)

Itai, A.: Optimal alphabetic trees. SIAM J. Comp. 5, 9-18 (1976)

Kraft, L.G.: A device for quantizing, grouping, and coding amplitude modulated
pulses. M.Sc. thesis, EE Dept., MIT (1949)

Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comp. 31(3), 762-776 (2001)

Navarro, G.: Wavelet trees for all. J. Discr. Algorithm 25, 2-20 (2014)

Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295-306. Springer, Heidelberg (2012)
Patragcu, M.: Succincter. In: Proceedings FOCS, pp. 305-313 (2008)

Schwartz, E.S., Kallick, B.: Generating a canonical prefix encoding. Commun.
ACM 7, 166-169 (1964)

Wessner, R.L.: Optimal alphabetic search trees with restricted maximal height.
Inf. Proc. Lett. 4, 90-94 (1976)

Parallel Lookups in String Indexes

Anders Roy Christiansen!®™) and Martin Farach-Colton?

1 The Technical University of Denmark, Kongens Lyngby, Denmark
aroy@dtu.dk
2 Rutgers University, New Brunswick, USA
farach@Qcs.rutgers.edu

Abstract. Recently, the first PRAM algorithms were presented for look-
ing up a pattern in a suffix tree. We improve the bounds, achieving opti-
mal results.

Keywords: Parallel - Pattern matching - Suffix trees - PRAM

1 Introduction

Looking up a pattern string in an index is one of the most basic primitives in
stringology, and the suffix tree (and its suffix array representation) is among the
most basic indexes. It is therefore surprising that, until recently, there were no
known PRAM algorithms for looking up an m-character pattern P in a suffix tree
of an n-character text T'. This contrasts sharply with the rich PRAM literature
for the problem of finding all occurrences of P in T in the case where P can be
preprocessed, optimal solutions of which are known for the full range of PRAM
models [5,8,15].

Recently Jekovec and Brodnik [10] considered the problem of parallel lookups
in an index, specifically suffix trees and quadratic-space suffix tries. They
achieved work-time optimal O(m) work and O(log m) time for suffix trie lookups
in the CREW PRAM, although the preprocessing involves quadratic work and
space. For suffix tree lookups, they achieve O(mlogm) work and O(logm)
time by augmenting the O(n)-size suffix tree with further data structures!
that increase the size to O(nlogn). These bounds are time-optimal due to the
2(logn) time lower bound for computing the OR of n-bits [4] in the CREW
PRAM.

Fischer et al. [7] gave an CREW PRAM algorithm using the suffix array
and some additional compact data structures requiring a total of nlogn +
O(n) bits (i.e. n + o(n) words), thus improving the space. Their algorithm
uses O(loglogmloglogn + logm) time and O(m + min(m,logn)(logm +
loglog mloglogn)) work. Additionally they considered the approximate pattern
lookup problem and lookups in compressed suffix arrays.

In this paper, we improve the bounds for looking up a pattern in an index
in several ways. First, we provide an algorithm that matches the time-work

! Suffix trees of subsets of characters, hash tables, etc.

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 61-67, 2016.
DOI: 10.1007/978-3-319-46049-9_6

62 A .R. Christiansen and M. Farach-Colton

optimal bounds of O(log m) time, O(m) work while achieving O(n) space. Also,
our algorithm runs on the EREW PRAM, thus improving on the earlier CREW
PRAM algorithms. As in the previous algorithms, we use randomization, but
only in the preprocessing, whereas the pattern matching phase is deterministic?.

We consider two variants of the pattern lookup problem: exact matching and
prefix matching. In exact matching, we find the place in the suffix tree where
the complete pattern matches. In prefix matching, we find the location in the
suffix tree which matches the longest possible prefix of the pattern.

Our main result is:

Theorem 1. Given a suffiz tree of a string T of length n and a pattern P of
length m, then parallel prefiz pattern lookup in the suffix tree takes worst-case
O(logm) time and O(m) work, after O(lognlog®n) time and O(n) work pre-
processing w.h.p. requiring O(n) additional space. All bounds are on the EREW
PRAM model.

In order to present this result, we first present a simpler but similar method
that does more work during preprocessing and does not support prefix pattern
lookups. Both results augment suffix trees with Karp-Rabin fingerprints [12]
and perfect hashing [2]. The final result is obtained by reducing the number
of strings that must be guaranteed to have collision-free KR fingerprints by
discarding possible false-positives during a query. We note that the techinque
of combining indexes with Karp-Rabin fingerprints for efficient pattern lookups
was introduced in [1], but in that case it was to improve sequential dictionary
pattern matching.

Furthermore we include a simple algorithm for parallel prefix pattern lookup
in a suffix array because it is deterministic in both the query and preprocess-
ing phases and works on general alphabets whereas the first works on integer
alphabets, at the cost of some running time. The result is summarized below:

Theorem 2. Prefiz pattern matching in a suffix array with LCP-values can be
performed in O(logn) time and O(m +logn) work on the CRCW PRAM model
with no other preprocessing than computing the suffix array and the LCP array.

2 Preliminaries

Denote by T a text of length n of letters from an alphabet X. Call the corre-
sponding suffix tree S. For an edge e € S denote by T'(e) the string of letters on
the path from the root to e and including the letters on e. Similarly let pre(e)
denote the string of letters on the path from the root to e including only the
first letter on e. Let parent(e) be the edge that shares a node with e and is on
the e-root path. Let T'[i] be the ith character of T and T, j] be the substring
of T from the ith character to the jth character, both inclusive.

2 Both earlier results involve hashing, as does ours. We give our bounds using fast,
randomized perfect hashing, rather than slow, deterministic perfect hashing.

Parallel Lookups in String Indexes 63

In this paper we will be working in the PRAM model see [9] for details. We
present all results based on the work-time presentation framework described in
[9] (i.e. without having the number of processors as a parameter).

We will be using the following lemmas throughout our solutions:

Lemma 1 (Follows from list rank in [3]). Given a set of linked lists repre-
sented by a table of length n of next-pointers and the index of a head element
one can compute which elements are in the linked list that contains the head.
This can be done in O(logn) time and O(n) work in the EREW PRAM model.

Lemma 2 ([6]). Given a table B of n bits, one can find the leftmost 1-bit in B
in O(1) time and O(n) work in the CRCW PRAM model.

Lemma 3 (Follows from Prefix Sum [13]). Given a string T of length n,
all prefix Karp-Rabin fingerprints [12] ¢(T[1,1]), ¢(T[1,2]),... can be computed
in O(logn) time and O(n) work in the EREW PRAM model.

Lemma 4 (From [2], adapted to EREW). Given a (multi-)set of n integers
a perfect hash table of size n can be computed in time O(lognlog® n) using O(n)
work and space w.h.p. in the EREW PRAM model.

3 Simple Fingerprint-Based Pattern Lookup

The main idea in this solution is to use a combination of Karp-Rabin fingerprints
and perfect hash tables to avoid doing an actual traversal of the suffix tree from
the root. We first show a simplified version of this solution, and then extend it
to reduce preprocessing time and to support prefix lookups.

Data Structure. Let ¢ be a Karp-Rabin based fingerprint function that is collision
free for all substrings in 7. We store the string T, the suffix tree S for T', and a
perfect hash table Hy for each d = 1...n mapping H|pe(e) [¢(pre(e))] — e for
each edge e in S. These structures use O(n) space in total.

Query. Given a pattern P, first compute the prefix fingerprints of P using
Lemma 3. In parallel, look up a fingerprint ¢(P[1,d]) in hash table Hy, for all
d = 1...m. If there is a match, let M[d] = Hy[¢(P[1,d])], and otherwise let
M]d] = L. Since all lookups are in different hash tables there are no read con-
flicts. Find the rightmost non-_L value in M and call it e.. If P occurs in 7" then
this match must be on e. in the suffix tree. Match P character-by-character to
T(e.)[1, m]. If there are no differences, report that P exists on e, in T'; otherwise,
report that P does not occur.

Since all characters of P are compared to a substring of T' before reporting
an occurrence, no false positives are reported. We need this verification part
because our fingerprints are only guaranteed to be collision-free on 7', not on P.

If P does occur in T, then the fingerprint function is guaranteed to be
collision-free in both P and T, and so we will find a single maximal e, so that a
prefix of P matches with pre(e.). The brute-force matching phase then extends
the match length down the edge e..

64 A .R. Christiansen and M. Farach-Colton

The bottleneck of the query is the O(logm)-time, O(m)-work of computing
the fingerprints (Lemma 3), and the same time and work to verify a match. We
conclude that these are overall work-time bounds.

Preprocessing. We assume the suffix tree is given®. In O(logn) time and O(n)
work we can compute all prefix fingerprints of T using Lemma 3. From these
prefix fingerprints the fingerprint of an arbitrary substring of T' can be computed
in constant time and work.

Validate that ¢ is collision-free for the substrings of 7' by computing all
possible fingerprints. Since there are ©(n?) different substrings this takes O(n?)
work. They can all be calculated independently, but O(n) fingerprints might
depend on the same fingerprint prefix which means the algorithm might need
to read the same memory cell at the same time. Since a CREW algorithm can
be simulated as an EREW algorithm with O(logn) time overhead per step [9],
this takes O(logn) time. Construct a hash table over all the fingerprints using
Lemma4 to check for duplicates - if there are any duplicates, start over with a
new random Karp-Rabin fingerprint function. In total this takes O(lognlog” n)
time and O(n?) work w.h.p.

Finally constructing the n different hash tables with a total of O(n) elements
can be done in O(lognlog™n) time and O(n) work w.h.p. using Lemma 4.

Overall preprocessing takes O(logn log* n) time and O(n?) work, both w.h.p.

4 Better Fingerprint-Based Pattern Lookup

We now show how to improve the above solution such that the preprocessing
work will be O(n) w.h.p. instead of O(n?). Furthermore, this method will support
general prefix pattern lookups. These improvements are achieved by reducing the
number of substrings of T" that must be guaranteed to have collision-free finger-
prints from O(n?) to O(n), and instead taking care of possible false positives
during the query.

Data Structure. The data structure used is the same as above with the difference
that the fingerprint function ¢ is only guaranteed to be collision free for the
substrings pre(e) for all e € S, of which there are O(n).

Query. Given a pattern P, first compute its prefix fingerprints. In parallel, look
up the fingerprint ¢(P[1,d]) in the respective hash table Hy for alld =1...m.
If there is a match set M[d] = Hy[¢(P][1,d])] otherwise M[d] = L. If M[1] = L
then P does not occur in 7', so in this case stop and report no match. The edges
contained in M form a set of disjoint paths in S (see proof below). Consider
each of these paths to be a linked list of edges. Let N[i] be a table describing
the next-pointers i.e. which edge M[N[i]] follows M[i]. Define e = M|[d] and
e’ = parent(e), and set N||pre(e’)|] = d if e # L and M||pre(e’)|] = ¢’. Let
N[d] = L denote unset entries. Use Lemmal to compute which edges are in

3 Though, in fact, the suffix tree of T can be constructed in O(log® n) time, O(nlogn)
work and O(n) space [11] for general alphabets.

Parallel Lookups in String Indexes 65

the same linked list as M1], let d be the index of the right-most of these. Now
e. = M|[d] is our candidate edge. In parallel find the longest prefix of the strings
P and T'(e.)[1,m] that matches. Report the result.

Q
EQ
Taa

CLTTLT-T-TT-T1-]-

Fig. 1. An illustration of a small part of the suffix tree S. Green edges represent the
edges in M. As illustrated they all form disjoint monotone paths. A prefix of the pattern
P of length m' occurs on the left-most path in the illustration. An example of the
N-array is included. The y-position of a node represents the string depth. (Color figure
online)

Before reporting any results we verify by comparing P to a substring of T,
so that no false-positives are reported.

We focus on proving that we always find a (prefix) match of P in T if it
exists. So assume a non-empty prefix of P exists somewhere in 7. In this case
there is a path P from the root spelling out this prefix of P. We now need to
show P is a prefix of the path P from the root to the edge e. our algorithm picks
as the candidate edge for verification.

Consider the set of edges the algorithm finds in M. All edges e € P are in this
set as P[1,|pre(e)|] = pre(e) = ¢(PIL,|pre(e)|]) = ¢(pre(e)). If the fingerprint
function were collision-free (even with P), then this set of edges would be exactly
the edges on P. Unfortunately, this is not the case for the restricted-collision-free
fingerprint function we are using. In our case the set of edges form a disjoint set
of monotone paths in S as illustrated in Fig. 1. To prove this, we show that at
most one outgoing edge of a node can be in M. Assume to the contrary that
e1 and eg are both outgoing edges of a node with string depth d and they are
both in M. Then ¢(P[1,d 4+ 1]) = ¢(pre(er)) and ¢(P[1,d + 1]) = ¢(pre(ez2)),
which implies that ¢(pre(e1)) = ¢(pre(ez)). This contradicts that the fingerprint
function is collision free for strings pre(e) where e € S.

Since all edges in P are in M and any node can have at most one outgoing
edge, the path we are interested in is the one containing the root of S. All other
paths can safely be discarded. Therefore we use Lemma 1 to remove all edges of
M not connected to the root. Since all the edges on P are on this path and we
pick the deepest, Pisa prefix of P. This completes the proof.

Preprocessing. All steps of the preprocessing are similar to the steps of the pre-
processing before with the only exception we only need to verify our Karp-Rabin
fingerprint function is collision free on a set of O(n) strings. As this was the bot-
tleneck on the work before, the work is now reduced to O(n) w.h.p.

66 A .R. Christiansen and M. Farach-Colton

5 Parallel Suffix Array Pattern Lookup

Here we describe a parallelization of [14], which has the advantage of working
for any alphabet and of being deterministic in both query and preprocessing.
The query run time is slower.

Manber’s algorithm performs a binary search over the suffix array. It main-
tains an interval [L, R] C [1,n] of the suffix array wherein potential matches lie.
In each round the middle element M in [L, R] is found, and it is determined if the
search should continue in the interval [L, M] or [M, R]. This is accomplished by
matching P to T[SA[M],SA[M] + m]. Finding the leftmost mismatch between
the two strings in parallel takes O(1) time and O(m) work using Lemma 2. There
are O(logn) rounds, so the overall time is O(logn) and the work is O(mlogn).

This method can be generalized to the algorithm that uses the LCP-array
as well. If we just keep comparing the current suffix with the entire part of P
that has not yet been matched we will obtain the same time and work bounds
as above. By a small modification, the work can be reduced to O(m) as follows.
Instead of comparing all of the pattern to the current suffix the algorithm should
perform the comparison in chunks of size lo?;n'
characters match, the total work is O(m+

m
logn

logn). In the remaining rounds, the total work is O(m). Thus the overall time
is still O(logn) but the work is reduced to O(m + logn).

In rounds where no more than

References

1. Amir, A., Farach, M., Matias, Y.: Efficient randomized dictionary matching algo-
rithms. In: Proceedings of the 3rd CPM, pp. 262-275 (1992)

2. Bast, H., Hagerup, T.: Fast and reliable parallel hashing. In: Proceedings of the
Third Annual ACM Symposium on Parallel Algorithms and Architectures, pp.
50-61. ACM (1991)

3. Cole, R., Vishkin, U.: Approximate and exact parallel scheduling with applica-
tions to list, tree and graph problems. In: Proceedings of the IEEE 27th Annual
Symposium on Foundations of Computer Science, pp. 478-491 (1986)

4. Cook, S., Dwork, C., Reischuk, R.: Upper and lower time bounds for parallel ran-
dom access machines without simultaneous writes. STAM J. Comput. 15(1), 87-97
(1986)

5. Czumaj, A., Galil, Z., Gasieniec, L., Park, K., Plandowski, W.: Work-time-optimal
parallel algorithms for string problems. In: Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing, pp. 713-722. ACM (1995)

6. Fich, F.E., Ragde, P., Wigderson, A.: Relations between concurrent-write models
of parallel computation. STAM J. Comput. 17(3), 606-627 (1988)

7. Fischer, J., Koppl, D., Kurpicz, F.: On the benefit of merging suffix array intervals
for parallel pattern matching. In: Proceedings of the 27th CPM (2016)

8. Galil, Z.: A constant-time optimal parallel string-matching algorithm. J. ACM
(JACM) 42(4), 908-918 (1995)

9. J4J4, J.: An Introduction to Parallel Algorithms. Addison Wesley, Redwood City
(1992)

10.

11.

12.

13.

14.

15.

Parallel Lookups in String Indexes 67

Jekovec, M., Brodnik, A.: Parallel query in the suffix tree. arXiv preprint
arXiv:1509.06167 (2015)

Kaérkkéinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918-936 (2006)

Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249-260 (1987)

Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM (JACM) 27(4),
831-838 (1980)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935-948 (1993)

Vishkin, U.: Optimal parallel pattern matching in strings. Inf. Control 67(1-3),
91-113 (1985)

http://arxiv.org/abs/1509.06167

Fast Classification of Protein Structures
by an Alignment-Free Kernel

Taku Onodera!2(®) and Tetsuo Shibuyal-?

! Human Genome Center, Institute of Medical Science,
The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
{tk-ono, tshibuya}@hgc. jp
2 CREST, JST, Tokyo, Japan

Abstract. Alignment is the most fundamental algorithm that has been
widely used in numerous research in bioinformatics, but its computation
cost becomes too expensive in various modern problems because of the
recent explosive data growth. Hence the development of alignment-free
algorithms, i.e., alternative algorithms that avoid the computationally
expensive alignment, has become one of the recent hot topics in algo-
rithmic bioinformatics.

Analysis of protein structures is a very important problem in bioinfor-
matics. We focus on the problem of predicting functions of proteins from
their structures, as the functions of proteins are the keys of everything in
the understandings of any organisms and moreover these functions are
said to be determined by their structures. But the previous best-known
(i-e., the most accurate) method for this problem utilizes alignment-based
kernel method, which suffers from the high computation cost of align-
ments.

For the problem, we propose a new kernel method that does not
employ alignments. Instead of alignments, we apply the two-dimensional
suffix tree and the contact map graph to reduce kernel-related computa-
tion cost dramatically. Experiments show that, compared to the previous
best algorithm, our new method runs about 16 times faster in training
and about 37 times faster in prediction while preserving comparatively
high accuracy.

1 Introduction

Proteins are fundamental biomolecules that work as functional units of biological
systems. A protein consists of amino acids connected like a chain. In natural
environments, this chain is folded into a three-dimensional structure by physical
or chemical forces. Roughly speaking, each sequence is folded into a specific
structure, which gives rise to specific functions. Thus, researchers have devoted
much energies to identify protein structures and maintain them with annotations.

Since protein structures are notoriously difficult to determine by wet lab.
techniques such as X-ray crystallography, once identified, they are often become
subjects of “heavy” analyses. However, there are several situations where
computationally inexpensive analysis methods are desirable. In particular,

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 68-79, 2016.
DOI: 10.1007/978-3-319-46049-9_7

Fast Classification of Protein Structures by an Alignment-Free Kernel 69

computer simulations, nowadays, are beginning to produce large amounts of
protein structure data. This technology is promising because it enables us to
study proteins that are not amenable to conventional methods. Also, by simula-
tion, one can observe the dynamic behaviors of proteins in environments such as
water. To further this technology, more efficient algorithms for protein structure
analysis are needed.

In this article, we propose a method to classify protein structures. For the
classification of non-vectorial data such as strings or graphs, kernel methods
are known to be effective [21]. We design a kernel function, a kind of similar-
ity measure, for protein structures and plug it in to support vector machines
(SVMs) [24]. Previously, researchers have developed structural alignment, a
group of problem formulations/methods that capture relevant protein structure
similarities very well [11]. But structural alignment is often computationally too
expensive to apply to classification for two reasons. First, all structural align-
ment formulations require finding “good” correspondences between one protein’s
amino acids and those of another. This gives rise to hard combinatorial optimiza-
tion problems. Second, most formulations involve complex algebraic scores such
as the root mean square deviation. This makes it difficult to classify data by the
structural similarity even if amino acids correspondence is known.

To overcome these difficulties, we take the approach of alignment-free method
and apply it to compare protein structures. Alignment-free methods are recently
gaining popularity among the community of sequence data analysis as a compu-
tationally cheaper and (sometimes) more relevant alternative of sequence align-
ment [1,5,6,12,23]. The crux of these methods is to avoid the quadratic cost
of pairwise sequence alignment or NP-hardness of multiple alignment. We take
the same approach for protein structures, for which even pairwise alignment is
NP-hard (or it has a high degree polynomial time complexity depending on the
exact formulation).

To compare protein structures without alignment, we define a kernel function
through protein contact maps. The contact map of a protein is a graph with
totally ordered vertices representing the amino acids and edges representing the
proximity of amino acids in the folded state. It was introduced in the context of
structural alignment and researchers have used it mainly to formulate contact
map overlap problem, where optimal order preserving correspondence between
vertices from different contact maps are sought [10]. We, instead, respect the
sequential aspect of proteins more and characterize each protein by the histogram
of square submatrices of the adjacency matrix of the contact map. See Fig. 1 for
an illustration. The leftmost image is a protein comprising of 3 amino acids.
Every pair of amino acids except the 1st and the 3rd is spatially close enough
to each other. The middle image is the adjacency matrix of the corresponding
contact map. The right image is the resulting feature vector (only some of the
coordinates are shown.) Then we define the kernel function of two proteins as
the inner product of their feature vectors. This function is positive semidefinite
and thus, we can feed it into SVMs.

70 T. Onodera and T. Shibuya

f
vector oo
structure adjacency o
matrix 0 olo
110
11110 111 1
= (1|11 = P
111
117,

Fig. 1. Example feature vector of the proposed kernel with parameter k£ = 2. Every
pair of amino acids except the 1st and the 3rd is spacially close to each other. In the
feature vector on the right, only some of the coordinates are shown

Physically, the characterization of proteins described above corresponds to
treating contiguous amino acids on the chain as groups and counting the patterns
of interactions between such groups. This is natural for two reasons. First, inter-
actions between spatially close amino acids have much more significant impact
on the global structure than those between spatially remote amino acids do.
Therefore, by representing proteins by contact map instead of, e.g., distance
matrix, we lose some information but the loss should be minor. On the other
hand, the combinatorial nature of the contact map opens the possibility of effi-
cient solution. Second, amino acids close on the chain are close in space. Thus,
we can treat a set of contiguous amino acids as a unit of interaction. In existing
work, researchers chose the set of amino acids that are actually spatially close
as units of interaction [4,25]. While this is also a reasonable choice, by using the
proximity on the chain, and the contact map representation, we can apply the
very efficient techniques of combinatorial pattern matching for the computation
of the kernel function.

The results of this paper are summarized as follows:

— We propose a novel alignment-free kernel function for protein structures that
is based on protein contact maps;

— We propose an efficient algorithm to calculate the proposed kernel function.
The algorithm is based on the two-dimensional suffix tree [9,15] and runs in
O(n?)-time where n is the size of input proteins. This bound matches the time
complexity of the fastest existing method [25];

— We also propose a prediction algorithm for the test phase of SVMs based
on the kernel we introduce. The time complexity of the algorithm does not
depend on the size of the support vectors;

— We experimentally show that the combination of the proposed kernel function
and the SVMs achieves classification performance comparative to the most
accurate existing method [4] while it runs about 16 times faster in training
and 37 times faster in prediction.

Fast Classification of Protein Structures by an Alignment-Free Kernel 71

Related work. Wang et al. [25] and Bhattacharya et al. [4] worked on the
same problem addressed in the current paper. For performance comparison, see
Tables 1, 2 and 3. Wang et al. proposed a kernel function for protein structures
that incorporates both sequential information, i.e., amino acid types, and struc-
tural information. They used the set of amino acids within some distance from
an amino acid as a unit of interaction. Their method was the fastest but the least
accurate among the methods we tested. Bhattacharya et al., taking the opposite
approach to ours, proposed kernel functions based on structural alignment. They
used the set of a fixed number of amino acids closest to an amino acid as a unit
of interaction. In our experiment, their method gave accurate results but it took
very long computation time. Qiu et al. [19] also proposed a kernel function based
on structural alignment but in a different context of function annotation. This
method may be applicable to the problem considered in the current paper but
we did not test it because it is similar to Bhattacharya et al.’s method.

Alignment-free analysis is a well-studied topic among sequence data analy-
sis community [1,5,6,12,23]. In particular, our method can be seen as a two-
dimensional analogue of the spectrum kernel [16].

2 Preliminaries

Proteins and contact maps. In this paper, we model a protein as a sequence
of three-dimensional coordinates. These coordinates represent the positions of
carbon atoms called C,. Due to the nature of peptide bond, the distance between
a pair of neighboring C,, atoms is always about 3.8 A.

Let P = (p1,p2,-..,pn) be a protein. The contact map of P is a graph con-

sisting of n totally ordered vertices vy, vs,...,v,. There exists an edge between
v; and v; iff the distance between p; and p; is less than a parameter ¢ > 0.
The Isuffix tree. For a string T, we denote the substring from the i-th to the j-th
character inclusive by T'[i : j]. We denote the length of T by |T'|. We denote the
submatrix from the ¢;-th row to the is-th row and the j;-th column to the jo-th
column of a matrix M as M[iy : i9,j1 : j2]. We also write M|[i, 1 : j2] to mean
MTi : i,71 : j2] and write M[iq : is, j] to mean M|i;y : ia,7 : j]-

The two-dimensional suffix tree for an m x n matrix M should support that,
given an £ X £ square matrix @ as a query, finding all (¢,7) s.t. M[i:i+£—1,7:
j+ ¢ —1] = Q. The Isuffix tree [15] is an instance of the two-dimensional suffix
tree. To explain the Isuffix tree, we first need to define Istrings. For an n x n
square matrix M, the Istring of M, denoted by I,;, is a length 2n — 1 string of
strings. The characters of I; are defined as

Iulil M[1:(i+1)/2,(i+1)/2] if4is odd
MUY M2 41,11 4/2] if i is even.
For each 4, the string Ip[i] is called an Icharacter. Strings of strings are ordered
by naturally generalizing the order on strings. The suffix of an m x n matrix M at
position (i, 7), denoted by M; ;,is M[i : i+k, j : j+k] where k = min{m—i,n—j}.

72 T. Onodera and T. Shibuya

In other words, M;_; is the largest square submatrix of M whose upper left corner
is (i, 7).

The Isuffix tree of an m x n matrix M is a compressed trie storing Istrings
of all suffixes of M. See Fig.2 for an example. One can search a query square
matrix) in M by searching Ig in the Isuffix tree. Because each edge label is
equal to IMi/,j/ [i : j] for some suffix M, ;s and 4, j, it can be represented by the
tuple (¢, 4',4, 7). Thus, the Isuffix tree takes ©(mn)-space. The path label of a
node is the concatenation of the edge labels of edges in the path from the root
to the node. The depth of a node is the number of Icharacters in the path label
of the node. One can guarantee that the leaves and suffixes correspond to each
other one-to-one by appending a row at the bottom of M and a column on the
right of M consisting of unique elements.

Kim et al. [15] gave an algorithm to construct the Isuffix tree of an m x n
matrix consisting of entries from universe {1,2,..., (mn)°M} in @(mn)-time.

Isuffix Tree of

/ S S S S | %

(1,2) (2:3) (2,2

1,1) 2,1)

Fig. 2. An example of the Isuffix tree. Length 1 suffixes (those submatrices consisting
only of 1 entry $; for 1 < ¢ < 7) are not shown

Support vector machines. Support vector machines (SVMs) are supervised learn-
ing models for classification and regression [24]. Here, we explain how kernel-
based SVMs work.! See [21] for the details.

A supervised learning problem consists of training phase and test phase. In
the training phase, training data (z1,y1) ..., (z¢ye) € U x {—1,1} are given

! The SVM described here is called 1-norm soft margin SVM.

Fast Classification of Protein Structures by an Alignment-Free Kernel 73

where U is the universe of data. The value y; indicates if x; belongs to the group
of interest or not. In the test phase, test data (x,y) is given but the algorithm
cannot access y. The algorithm should predict y from the training data and =x.

Kernel-based SVMs do this task as follows. First one specifies a map ¢ from
the universe of data U to R?. The map is called feature map and the resulting
vectors are called feature vectors. Then, in the training phase, one solves the
following optimization problem:

4
maximize — Z yiyjaiaﬂ(ﬂ?i)Tﬁﬁ(xj)’

ij=1
¢)
subject to Zyiai =0, Zai =1
i=1 i=1

and 0<a; <Cfori=1,2,...,4

The value C is a positive parameter. Let (af,as, ..., a}) be the solution of the
problem and let S := {1 < ¢ < ¢ : af > 0}. Training data z; is said to be a
support vector if 7 € S. In the test phase, one judges y = 1 iff

> il p(zi) p(x) > b* (1)
€S

where b* is a constant that is determined in the training phase.

Sometimes, it is possible to compute kernel function K : U x U 5 (z1,x2) —
#(r1) T ¢(x2) € R without constructing feature vectors ¢(z1) and ¢(z2). Such
algorithms are usually much faster than the naive algorithm involving feature
vector construction when the dimension of feature vectors is high.

3 Method

3.1 Definition of the Kernel Function

Let P be a protein and Ap be the adjacency matrix of the contact map of P.
Let k > 0 and M}, be the space of all k& x k binary matrices. The feature vector
@ (P) is a vector defined as follows:

@k(P) = (#{(’L,j)AP[ZZ+]€—1,_]]+k—1]:H})H€Mk

The kernel function K is defined to be the function that takes two proteins Py
and P, and outputs the inner product of @, (P;) and @k (Ps).

3.2 Algorithm to Compute the Kernel Function

Let P; and P» be two proteins. For brevity, we assume both of them are of length
n. We compute K (P, P») as follows. First, we construct the contact maps of
P, and P». From contact maps, we compute adjacency matrices Ap, and Ap,.

74 T. Onodera and T. Shibuya

We append a row and a column consisting of unique numbers to each of Ap, and
Ap, making them (n+1) x (n+ 1) matrices. Then we construct the Isuffix tree
of the (n+ 1) x (2n + 2) matrix derived by concatenating Ap, to the right of
Ap, . Next, we traverse the Isuffix tree in depth first order following Algorithm 1.
During the traversal, the depth of the current node goes up and down. While
we are at a node of depth greater than or equal to 2k — 1, we count the number
of leaves from Ap, that we have encountered since the last time we were at a
node of depth less than 2k — 1. We also count the same number for Ap,. When
we climb up from a node of depth greater or equal to 2k — 1 to a node of depth
less than 2k — 1 we compute the product of these counts and reset counters to
0. The output is the sum of these products.

The sizes of the adjacency matrices and the Isuffix tree are all ©(n?). The
computation of adjacency matrices and the Isuffix tree and the traversal of the
Isuffix tree take ©(n?)-time. The contact maps can be constructed in O(n)-
time probabilistically by hashing? but to derive ©(n?)-time bound on the kernel
computation, the trivial deterministic algorithm is enough.

Algorithm 1. Traversal of the Isuffix tree
a0
while traversal of the Isuffix tree in depth first order do
if depth of the current node < 2k — 1 then
a<— a-+cico
C1 <— 0
co«— 0
else
if the current node is a leaf from Ap, then
cp«—c1+1
if the current node is a leaf from Ap, then
co—co+1
return a

The second column of Table 1 shows the comparison of the time complexities
of existing methods and our method. The expression align(n) is the time needed
to align protein structures of length n.? The smallest bound on align(n) we could
find in literature was O(n*) by Poleksic’s formulation and algorithm [18].

Therefore, in terms of the dependence on the size of input, the time com-
plexity of our algorithm matches the fastest existing method. Also, it does not
depend on the parameters.

2 This bound uses the sparsity of protein contact maps. See the discussion in Sect. 5.
3 It is impossible to give a single explicit form for align(n) because unlike sequence
alignment, there is no de facto standard formulation of structural alignment. Also,
practical structural alignment tools do not even formally state the problem it solves.

Fast Classification of Protein Structures by an Alignment-Free Kernel 75

3.3 Training Algorithm

In training, we compute kernel functions for all pairs of the training data and
solve SVM optimization problem. The third column of Table 1 shows time com-
plexities. They involve only kernel computation time because it is not clear how
optimization time, which depends on various parameters and heuristic tech-
niques, scales. In our experiment, optimization took much less time than the
kernel computation. See also the discussion in Sect. 5

3.4 Prediction Algorithm

In the test phase of SVM, one needs to evaluate the left hand side of inequal-
ity (1). In the case of our kernel, when query protein P is given, one needs to
evaluate >, s Yo} ¢(P) T ¢(P) = 3, cqyic; Ki(P;, P). A trivial method is to
compute each Ky (P;, P) separately and take the weighted sum. However, it takes
time linear to the number of support vectors ¢, which, in the worst case, can
be as large as the size of the training set. Here, we explain another algorithm
whose computational cost does not depend on ¢'.
First observe that

Zyza Ky (P, P) = Zyl Z occ(H, Ap,)occ(H, Ap)

i€s i€s HeM,,
= Z (Z y;0; oce(H, Api)> occ(H, Ap)
HeM; \ieS

Z (Zyia;kocc(Ap[s:s—&-k—l,t:t—i—k—l],Api)).

1<s,t<|P|—k+1 \i€S

For each i € S, we prepare n+ 1-dimensional square matrix derived by appending
a row and a column consisting of unique numbers to the bottom and right of Ap,.
Then, we construct the Isuffix tree of the (n + 1) x £/(n + 1) matrix derived by
concatenating these ¢’ square matrices. Each leaf of the Isuffix tree corresponds
to some Isuffix of Ap, for some i € S. For each ¢ € S, we label each leaf
from Ap, by y,a;. We label each internal node by the sum of the labels of
its children. leen query P, for each (4,j) s.t. 1 < s,t <|P|—k + 1, we search
Pls:s+k—1,t:t+k—1]in the Isuffix tree for all (¢,7) s.t. 1 < s,t < |P|—k+1
and take the sum of the labels of the nodes the searches end up at. When a search
ends up at somewhere in the middle of an edge, take the label of the upper end
point node of the edge.

It takes O(k?|P|?)-time because each search takes O(k?)-time and there are
O(|P)?) search instances invoked.

4 Experiments

To assess the effectiveness of our algorithm, we tested if it can recover the classi-
fication of existing classified databases correctly. We used SCOP database [8] as

76 T. Onodera and T. Shibuya

Table 1. Comparison of time complexities. Each protein in the training set and the
test set is assumed to be of length n. £ is the number of proteins for training. K is a
parameter of our kernel. £’ is the number of the support vectors. align(n) is the time
needed to align protein structures of length n

Method | Pairwise Training Prediction
Ours O(n?) O(*n?) O(k*n?)

[25] O(n?) O(£?n?) O('n?)

[4] O(align(n)) | O(£2align(n)) | O(¢ align(n))

the data source.* In SCOP, data are hierarchically organized into a tree struc-
ture. The deepest level of the tree based on structural information is called
superfamily and the level just above it is called fold. In order to test the abil-
ity of structure classifiers, it is reasonable to check if they can recognize the
boundaries between superfamilies that are within the same fold. Thus, we made
a dataset by extracting all entries in a superfamily that is under the fold c.1 and
contains at least 16 entries. We selected c.1 because it is the fold that contains the
largest number of superfamilies satisfying the condition. The resulting dataset
consists of 9 classes (superfamilies) and contains 383 entries. We used half of the
entries as the training set and the other half as the test set. For each class, we
classified the test data as either in that class or not. To take both precision and
recall into account, we used F-score to measure classification performance.

Our kernel has two parameters, namely, the threshold ¢ for contact maps and
the size of submatrix k. We optimized k by performing 2-fold cross validation
within the training set. More precisely, we chose k& between 3 and 7 that gave
the best cross validation result. On the other hand, we treated ¢ as a fixed
parameter. We just report different results for different values of ¢. This is because
optimization of k, which can be done by reusing the same two-dimensional suffix
tree, is computationally inexpensive while optimization of ¢ is expensive. We
optimized the soft margin hyperparameter C' of SVM by grid search. We used
LIBSVM [7] for SVM optimization.

In terms of implementation details, we used two-dimensional analogue of the
suffix array instead of the suffix tree. Since the ©(n?)-time algorithm of Kim
et al. [15] (and its adoptation to two-dimensional suffix array) is very complex,
we used ternary sort [3] for Isuffix sorting. For prediction, we used standard
binary search instead of the two-dimensional analogue of the search algorithm
of Manber and Myers [17]. We run the codes on Xeon E5-2670 v3 processors.

We compared our method with the method of Wang et al. [25] and Bhat-
tacharya et al. [4]. The latter authors proposed many kernels but we only report
the results of the kernel called K{* in the original paper because we found the

4 Each SCOP entry corresponds to a subregion of a protein called domain. In most
applications, domains are not known a priori. Nevertheless, SCOP entries are widely
used for benchmarking in protein classification studies including the work related to
the current one. Thus, we followed the convention.

Fast Classification of Protein Structures by an Alignment-Free Kernel 7

other kernels were much less accurate than K{*. The kernel K{* requires struc-
tural alignment as input and its performance may depend on the quality of the
alignment. In the original paper, the authors used their own structural alignment
algorithm but they did not provide the detail. Thus, we instead used a famous
structural alignment algorithm called combinatorial extension [22] (CE). For the
eigendecomposition needed in K7, we used LAPACK [2].

Table 2 shows the comparison of classification performances. The proposed
kernel scored better than Wang et al.’s kernel [25] for most cases. It is difficult
to judge which one of the proposed kernel and Bhattacharya et al.’s kernel [4]
is better. However, it should be noted that for some classes such as c.1.4 and
c.1.12, the dominance of the proposed kernel is clear for all values of ¢ we tested.

Table 3 shows the comparison of runtimes. The numbers of our method were
taken from the case when ¢ = 12. Runtimes for other values of ¢t were similar.
The training time includes SVM optimization and cross validations. The method
of Wang et al. [25] runs very fast because it is also alignment-free. However,
this method had low classification scores. Compared to the alignment based
method [4], our method runs about 16 times faster in training and about 37
times faster in prediction.

Table 2. Classification performance comparison. The performance measure is F-score.
The unit of parameter ¢ is A. The cases when the proposed method had the highest
score among all tested methods are indicated by boldface numbers

Method cl2cl4d cl7|cl8|cl19|c1.10|c.1.11|c.1.12|c.1.18

[25] 0.31 |0.14 | 0.33 |0.84 |0.40 |0.39 |0.79 |0 0

[4] 0.37 10.27 |0.86 |0.81 |0.84 [0.62 |0.93 |0.13 |0.84

Ours [t =8 |0.41/0.59|0.36 |0.86|0.76 0.58 |0.75 |0.40 |0.83
t= 0.48|0.40|0.62 1 0.79 0.89 0.65 |0.93 0.53 |0.67

t=10/0.35 | 0.48 0.19 |0.80 |0.82 |0.60 |0.84 |0.29 |0.89
t=11/0.730.590.50 [0.79 |0.72 1 0.50 |0.95 |0.38 |0.55
t=12/0.39/0.38 0.880.82 |0.92/0.64 [0.92 |0.17 |0.59
t=13/0.26 0.560.80 |[0.84|0.72 0.62 |0.86 |0.50 |0.80
t=14/0.730.56 0.57 |0.84|0.86 0.57 |0.93 |0.27 |0.77

Table 3. Runtime comparison

Method | Training time | Average prediction time
[25] 4.4s 0.0168s

[4] 1182 min 72.4s

Ours 40 min 14s 0.619s

78 T. Onodera and T. Shibuya

5 Conclusion

We proposed a kernel function for protein structures that is based on a novel
use of the protein contact map and an efficient algorithm to compute the kernel
function applying the two-dimensional suffix tree. We also experimentally showed
that, by using the proposed kernel, one can classify protein structures much
faster than the most accurate existing method while achieving a comparable
classification performance.

We conclude this paper with some discussion. For large datasets, SVM opti-
mization may become the computational bottleneck of the training phase. There
are several researches addressing this problem [14,20]. These results are orthog-
onal to ours.

We did not consider tuning of parameter ¢ in this paper. If we consider
distance between objects into account, there is no need to introduce such para-
meters as t. Since there are structural alignment problems/algorithms based on
distance matrices [13], it may be possible to design a relevant alignment-free
similarity measure for protein structures from distance matrices.

When t is independent of n, protein contact maps are sparse because there
is a limit on the number of amino acids packed in a certain volume of space.
Our algorithm needs quadratic time because it does not take into account this
sparsity. Ideally, it is desirable to have relevant protein similarity measures that
are computable in linear time.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Num-
bers 25280002 and 24106007. The super-computing resource was provided by Human
Genome Center (the Univ. of Tokyo).

References

1. Aluru, S., Apostolico, A., Thankachan, S.V.: Efficient alignment free sequence
comparison with bounded mismatches. In: Przytycka, T.M. (ed.) RECOMB 2015.
LNCS, vol. 9029, pp. 1-12. Springer, Heidelberg (2015)

2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

3. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 360-369 (1997)

4. Bhattacharya, S., Bhattacharyya, C., Chandra, N.: Structural alignment based
kernels for protein structure classification. In: Proceedings of the 24th International
Conference on Machine Learning, pp. 73-80 (2007)

5. Bonham-Carter, O., Steele, J., Bastola, D.: Alignment-free genetic sequence com-
parisons: a review of recent approaches by word analysis. Briefings Bioinform.
15(6), 890-905 (2014)

6. Bfinda, K., Sykulski, M., Kucherov, G.: Spaced seeds improve k-mer-based metage-
nomic classification. Bioinformatics 31(22), 3584-3592 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Fast Classification of Protein Structures by an Alignment-Free Kernel 79

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27:1-27:27 (2011)

Fox, N.K., Brenner, S.E., Chandonia, J.M.: SCOPe: structural classification of
proteins-extended, integrating scop and astral data and classification of new struc-
tures. Nucleic Acids Res. 42(D1), D304-D309 (2014)

Giancarlo, R.: A generalization of the suffix tree to square matrices, with applica-
tions. STAM J. Comput. 24(3), 520-562 (1995)

Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein struc-
ture similarity. In: Proceedings of the 40th Symposium on Foundations of Com-
puter Science, pp. 512-521 (1999)

Hasegawa, H., Holm, L.: Advances and pitfalls of protein structural alignment.
Curr. Opin. Struct. Biol. 19(3), 341-348 (2009)

Haubold, B.: Alignment-free phylogenetics and population genetics. Briefings
Bioinf. 15(3), 407-418 (2014)

Holm, L., Sander, C.: Protein structure comparison by alignment of distance matri-
ces. J. Mol. Biol. 233(1), 123-138 (1993)

Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
217-226 (2006)

Kim, D.K., Na, J.C., Sim, J.S., Park, K.: Linear-time construction of two-
dimensional suffix trees. Algorithmica 59(2), 269297 (2011)

Leslie, C.S., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for SVM
protein classification. In: Pacific Symposium on Biocomputing, pp. 566-575 (2002)
Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proceedings of the 1st Annual ACM-STAM Symposium on Discrete Algorithms,
pp. 319-327 (1990)

Poleksic, A.: Algorithms for optimal protein structure alignment. Bioinformatics
25(21), 2751-2756 (2009)

Qiu, J., Hue, M., Ben-Hur, A., Vert, J.P., Noble, W.S.: A structural alignment
kernel for protein structures. Bioinformatics 23(9), 1090-1098 (2007)

Severyn, A., Moschitti, A.: Large-scale support vector learning with structural
kernels. In: Balcdzar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD
2010, Part III. LNCS, vol. 6323, pp. 229-244. Springer, Heidelberg (2010)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combi-
natorial extension (CE) of the optimal path. Protein Eng. 11(9), 739-747 (1998)
Song, K., Ren, J., Reinert, G., Deng, M., Waterman, M.S., Sun, F.: New devel-
opments of alignment-free sequence comparison: measures, statistics and next-
generation sequencing. Briefings Bioinf. 15(3), 343-353 (2014)

Vapnik, V.N.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

Wang, C., Scott, S.D.: New kernels for protein structural motif discovery and
function classification. In: Proceedings of the 22nd International Conference on
Machine Learning, pp. 940-947 (2005)

XBWT Tricks

Giovanni Manzini'?(®9
1 Computer Science Institute, University of Eastern Piedmont, Alessandria, Italy
giovanni.manzini@uniupo.it
2 Institute of Informatics and Telematics, CNR, Pisa, Italy

Abstract. The eXtended Burrows-Wheeler Transform (XBWT) is a
data transformation introduced in [Ferragina et al., FOCS 2005] to com-
pactly represent a labeled tree and simultaneously support navigation
and path-search operations over its label structure.

A natural application of the XBWT is to store a dictionary of strings.
A recent extensive experimental study [Martinez-Prieto et al., Informa-
tion Systems, 2016] shows that, among the available string dictionary
implementations, the XBWT is attractive because of its good tradeoff
between small space usage, speed, and support for substring searches.
In this paper we further investigate the use of the XBWT for storing a
string dictionary. Our first contribution is to show how to add suffix links
(aka failure links) to a XBWT string dictionary. For a XBWT dictionary
with n internal nodes our suffix links can be traversed in constant time
and only take 2n + o(n) bits of space.

Our second contribution are practical construction algorithms for the
XBWT, including the additional data structure supporting the traver-
sal of suffix links. Our algorithms build on the many well engineered
algorithms for Suffix Array and BWT construction and offer different
tradeoffs between running time and working space.

1 Introduction

A trie [15] is a fundamental data structure to represent a set of strings. A trie
with n nodes takes O(nlogn) bits of space and supports extremely simple and
efficient algorithms to determine whether a string belongs to the set. In this
paper we are interested in the “compressed” version of a trie obtained applying
to it the eXtended Burrows Wheeler Transform (XBWT): a generalization of the
BWT introduced in [6-8] to compactly represent an arbitrary labeled tree. The
XBWT represents an n-node trie in @(n) bits of space still supporting constant
time upward and downward navigation.

In a recent comprehensive study of string dictionaries [18], the authors show
that in many applications we need to handle dictionaries whose size is larger than
the available RAM. In this setting, compression is mandatory to avoid incurring
the penalties of external memory access. In the same paper the authors show
that, among the available string dictionary implementations, the XBWT-trie is
particularly attractive because of its good tradeoff between small space usage,
speed, and support for substring searches.

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 80-92, 2016.
DOI: 10.1007/978-3-319-46049-9 8

XBWT Tricks 81

In this paper we present two contributions related to the XBWT-trie. Our
first contribution is the observation that we can enrich the XBWT with 2n+o(n)
additional bits in order to support suffix links. Suffix links, also known as failure
links, are useful to speedup some search operations as in the classical Aho-
Corasick algorithm [9, Sect. 3.4].

Our second contribution is related to the problem of computing the XBWT.
For a set of strings x1, ...,z of total length m we can compute the XBWT-
trie by first building the n-nodes (uncompressed) trie and then applying the
XBWT construction algorithm from [8]. This approach takes optimal O(m +
n) time but it may not work well in practice because trie construction may
constitute a memory bottleneck. Indeed, as shown by the Suffix-Tree vs Suffix
Array debate, pointer based tree structures often have very large multiplicative
constants hidden in the O notation that in practice prevent their use for large
datasets. An indirect confirmation of this state of affairs is that in [18] the
authors report that they were unable to build the trie for the largest dataset due
to excessive memory usage.

In this paper we take advantage of the similarities between XBWT and BWT
to derive alternative algorithms for the construction of the XBWT starting from
the Suffix Array or the BWT. Our motivation is that the algorithms for con-
structing these data structures have been widely studied and engineered so there
are practical algorithms using very little working space or even designed for
external memory, see [3-5,10,12,13] and references therein. Our contribution
is to show that given the Suffix Array or BWT we can compute the XBWT,
including the data structure supporting suffix links, in O(m) time. Combining
our algorithms with the available (and future!) Suffix Array and BWT construc-
tion algorithms we obtain a wide range of tradeoffs between running time and
working space for XBWT construction.

2 XBWT Trie Representation

Given a string z[1,n] over a finite ordered alphabet X' we write x[i] to denote its
i-th symbol and z[i, j] to denote the substring z[i]z[i +1] - - - z[j]. We write 2 to
denote the string x reversed z[n] - - - z[1]. We write < y (x < y) to denote that
x is lexicographically (strictly) smaller than y. As usual we assume that if z is a
prefix of y then 2 < y. Throughout the paper we use the notation rank.(z,) to
denote the number of occurrences of ¢ in z[1, 4], and select.(x,j) to denote the
position of the j-th ¢ in x.

Tries [15] are a fundamental data structure for representing a set of k dis-
tinct strings x1,a,...,zg. A trie efficiently supports the two basic dictionary
operations: locate(s) returning ¢ if s = x; for some i € [1, k] or 0 otherwise, and
extract(i) returning the string x; given an index ¢ € [1, k]. In addition, it supports
the operation locatePrefix(s) returning the strings which are prefixed by s [18].
To simplify the algorithms, and ensure that no string is the prefix of another
one, it is customary to add a special symbol $ € X' at the end of each string z;.
A trie for the set of strings {aa, acaa, ba, aba, aac, bc} is shown in Fig. 1.

82 G. Mangzini

Last| L |IT
0 | ale
1 |b
0 |ala
0|b
1 |c
09 |aa
1 |c
1 |9$ |aaca
11]$|ab
1|9 |aba
1 | a |aca
0 |alb
1 |c
1 | a|ba
1| ajca
1|9 |caa
1 |alcb

Fig. 1. A trie representing the strings and its XBWT representation (the arrays Last
and L). The array IT is not stored in the XBWT even if navigation algorithms use it
to identify internal nodes.

The eXtended Burrows-Wheeler Transform is a generalization of the BWT
designed to compactly represent a labeled tree. We now show how to compute the
XBWT of a trie T and obtain two arrays L and Last that compactly represent T'.
Our description of the XBWT is slightly different (simpler) from the one in [6, 8]
that takes as input an arbitrary labeled tree.

To each internal trie node w we associate the string A\, obtained by con-
catenating the symbols in the arcs in the upward path from w to the root of
T. Hence, if node w has depth d its associated string has length d. If T has n
internal nodes we have n strings overall. Let IT[1,n] denote the array containing
the above set of n strings sorted lexicographically. Note that IT[1] is always the
empty string corresponding to the root of T

Fori=1,...,n let L; denote the set of symbols in the arcs exiting from the
trie node corresponding to I1[i]. We do not require that the symbols in L; are in
any particular order, but since T is a trie they are distinct. We define the array
L as the concatenation of the arrays L, ..., L,. Clearly if T' has n’ nodes, then
L has n’ — 1 elements: one for each trie edge. By construction L contain n — 1
symbols from X and n’ —n occurrences of $. To keep an explicit representation of
the intervals L1, ..., L, we define a binary array Last[1,n'] such that Last[i] = 1
iff L[i] is the last symbol of some interval L;. Hence Last contains exactly n 1’s.
See Fig. 1 for a complete example.

If L[] # $ belongs to the interval L; then L[i] naturally corresponds to the
internal trie node reachable from the node corresponding to II[j] following the
arc labeled L[i]. Such a node corresponds to the entry IT[i'] such that II[i'] =

XBWT Tricks 83

L[i][j]. In other words, there is a bijection between the symbols in L different
from $ and the entries in IT different from the empty string. For historical reasons
this bijection is called the LF-map, and we call LF (i) the index in IT of the entry
corresponding to L[i]. Hence, LF is defined by the relation

HLF ()] = L[]

for every 4,7 with L[{] € L; and L[i] # $. The following results are a simple
restatement of Properties 1-3 in [8] using the notation of this paper.

Lemma 1 (Order preserving property). For every pair of indices i,k such
that L[i) # 8, L[k] # $, it is

Lli] < L]
L] = L

A

k| = LF(®i) < LF(k),
kK| = LF(i)<LF(k) & i<k

O

For any symbol ¢ € X let C(c) denote the index of the first position in IT
containing a path starting with symbol ¢. Lemma 1 makes it possible to compute
LF and its inverse LF ! using rank and select operations. In turn, the LF map
makes it possible to navigate the XBWT-trie, that is to move from the entry in
II representing a trie node to the entries representing its children and parent.

Lemma 2 (Downward navigation). Let ¢ = L[i| # $. Then
LF(i) = C[c] + rank.(L,i — 1).

As a consequence, if node w corresponds to II[j] and has a child with label c,
then such child corresponds to entry II[j'] with

j' = C|c] + rank.(L, selecty (Last, 5)).
O

Lemma 3 (Upward navigation). For i > 1 let ¢ denote the first symbol of
path II[i]. Then

LF~'(i) = select.(L,1 +1i — C[c]).

As a consequence, if node w corresponds to the non empty path II[j] whose first
character is ¢, the parent of w' corresponds to the entry II[j'] with

4" =14 rankq (Last, LF~*(5) — 1) = 1 + ranky (Last, select.(L, 1 + j — Clc])).

84 G. Mangzini

Using downward (resp. upward) navigation we can implement the locate
(resp. extract) trie operation. As observed in [18] it is convenient to take as
the ID of x; the rank in L of the $ occurrence that we reach starting from the
root and following z;’s symbols. If we reorder the strings in reverse lexicographic
order (i.e. so that zf < zff <. < 2F) then ID(z;) = i.

The most common representation of the array L is a (possibly compressed)
Wavelet tree. We also need a bitarray representation of Last supporting con-
stant time rank;, select; operations, and a suitable representation of the array C'
(possibly another bitarray). Using a balanced uncompressed Wavelet trees for L
the space usage is O(n’log(]X])) bits and each upward or downward step takes
O(log | X)) time.

3 Adding Suffix Links

In addition to pointers to their children and parent, trie nodes may store an
additional pointer called a suffix link. The node corresponding to path « has a
suffix link pointing to the node corresponding to the longest proper suffix of «
that is also in T'. Hence, if we have reached the node corresponding to the path
cocy - - - ¢; the suffix link makes it possible to reach in constant time the node
corresponding to path ¢;---c; where j > 0 is the smallest positive integer for
which such node exists. Since the root corresponds to the empty string, a suffix
link exists for all internal nodes except for the root itself.

In a XBWT-trie internal nodes are identified with their position in IT.
Because of the ordering of the paths in I7, the target of the suffix link of node
I1[i] is the node ¢ < i such that IT[¢] is the longest proper prefiz of II[i] which
is in II.

To emulate suffix links we build a string P of balanced parentheses of length
2n. We write a pair of parentheses for each internal node so that the parentheses
for node j enclose those for 4 iff IT[j] is a prefix of II[i]. To build P we start with
an empty string and consider I1[i] for ¢ = 1,...,n. When we reach IT[7] first we
write a) for every ¢ < i such that the closed parenthesis for IT[¢] has not been
written and II[¢] is not a prefix of II[i]; then we write the (corresponding to
II[i]. After we have reached IT[n] we write a closing parenthesis for all indices ¢
such that the closed parenthesis for IT[¢] has not yet been written. For example,
for the XBWT of Fig. 1 it is P = (((O) (OO (O) (O O).

The following lemma shows that to find the suffix link for node IT[i] it suffices
to find the closest set of parentheses enclosing the (associated to IT[i].

Lemma 4. Let 1 < i < n and o = II[i]. Define k = select (P,i) and j =
enclose(k). Then, the longest proper prefix of o in II is o = II[¢] with ¢
rank (P, 7).

Proof. First note that enclose is always defined since the pair P[1] = (, P[2n] =)
corresponding to I1[1] encloses every other pair of parentheses.

We need to prove that o/ = IT[{] is the longest proper prefix of o which is
in IT. Since the) for IT[¢] is not written when we reach II[i], by construction

XBWT Tricks 85

IT[¢] is a prefix of II[i]. To prove it is the longest prefix assume by contradiction
that IT[¢'] is also a prefix of I1[i] and |IT[¢']| > |II[¢]|. Because of the ordering in
IT we would have ¢ < ¢/ < i. Also because of the ordering, for i’ = ¢'.. .4 II[i']
would be a prefix of IT[i]. But then the parentheses for ¢ would enclose those
for 4, which is a contradiction since by construction ¢ corresponds to the closest
enclosing pair. 0

Using the range min-max tree from [19] we can represent the balanced paren-
thesis sequence P in 2n+ o(n) bits of space and support rank, select, and enclose
in O(1) time. We have therefore established the following result.

Theorem 1. We can add to the XBWT-trie suffix links traversable in constant
time using additional 2n 4 o(n) bits. O

Since II only contains internal nodes, the approach described above only
provides suffix links for the trie internal nodes. However, it can be extended
to the trie leaves if necessary. Since the symbol $ appears only at the end of
a string, the suffix link of a leaf can only point to another leaf. Thus, we can
build a subsequence I’ of I containing only the internal nodes which have $
among their children. It is easy to see that the parenthesis array P’ build on IT’
provides suffix links for the leaves.

4 Alternative Construction Algorithms

In this section we propose new algorithms for computing the XBWT of the trie
containing the set of distinct strings z1,xs,...,z;. Our algorithms derive the
XBWT from the Suffix Array or BWT of the concatenation t = y;$y2% - - - y1.$,
where y; = 2 reversed and $ is assumed to be lexicographically smaller than any
symbol in X'. We denote by SA, LCP and BWT respectively the Suffix Array, LCP
array, and Burrows Wheeler Transform of the string ¢ (See Fig. 2 for an example).
Throughout this section let m denote the length of ¢, i.e. m =" (|z;| + 1).
Let z be a string not containing the symbol $ and such that z$ is a substring
of t. We denote by [b.,e.] the maximal range of suffix array rows prefixed by
28. For example, in Fig.2 for z = € the maximal range is [1, 6], for z = aa the
maximal range is [11,12], and for z = ca the maximal range is [20, 20].

Lemma 5. Let[b,,e,] denote the maximal range for the string z. Then e, —b,+1
1s equal to the number of strings in x1,...,x which have z as a prefiz. In
addition it is LCP[b,] < |z| and

LCP[i] > || + 1 fori=b,+1,... ¢e,.

Proof. By construction the rows prefixed by z$ are in a bijection with the strings
yi’s which have 2 as a suffix. Since y; = x!* the first part of the lemma follows.
Since b, is the first row prefixed by 2$ row b, — 1 must be prefixed by a string
lexicographically strictly smaller than z$. Since $ is the smallest symbol, row
b, — 1 cannot be prefixed by z. O

86 G. Mangzini

#| SA|LCP|BWT||RCP|MR||Sorted suffixes
1| 22| - b - 1%
2l 3|1 a 0 | 0 |[$aaca$ababacaachb
3] 8] 2 a 0 | 0 ||$ab%aba$caacb
4 11| 3 b 0 | 0 ||abacaacb
5/ 15| 1 a 0 | 0 |[caacb$
6| 19| 2 a 0 0 (|cb
71 210 a 0 | 1 ||a$aaca$ababacaacb
8| 7| 3 c 1 | 0 ||a$ab%aba$caacb
9| 14| 2 b 1 | 0 ||acaacb$
10| 18| 3 a 1 0 [la%cb
11 1] 1 $ 1 | 1 ||aa$aaca$ababacaadch$
12 17| 3 [¢ 2 0 [laa%ch
13| 4| 2 $ 2 | 1 ||laaca$ab%$abacaacb$
14| 9| 1 $ 1 | 1 ||ab%abacaach
15| 12| 2 $ 2 | 1 ||labacaacb$
16| 5| 1 a 1 | 1 [lacaababacaacb$
17 21| O C 0 1 ||b$
18| 10| 1 a 1 | 0 [|babacaacb
19| 13| 1 a 1 | 1 [|ba%caacb$
20| 6| O a 0 | 1 ||ca$ab%$abacaachb$
21| 16| 2 $ 2 | 1 ||caacb
221 20| 1 $ 1 1 ||cb$

Fig. 2. Suffix array, LCP array, MR array, and BWT for the concatenation t =
aa%aacaababacaacb$ obtained from the set of strings aac, aa, aba, acaa, ba, bc
The arrays MR and RCP will be introduced later.

Lemma 6. Let T denote the trie representing the strings x1,...,xy. There is a
one-to-one (bijective) correspondence between internal nodes of T and mazimal
row ranges of SA. Each node w corresponds to a mazximal range containing a
number of rows equals to the number of leaves in the subtree rooted at w. The
correspondence is order preserving in the sense that row range [by,e,] precedes
[b.,e.] iff the node corresponding to the former interval precedes the node corre-
sponding to the latter in the array II used to define the XBWT.

Proof. For each internal node w let A\, denote the string obtained concatenating
the symbols in the upward path from w to the root. The image of node w is the
maximal row range associated to A, that is, the set of SA rows prefixed by A $.
As we have already observed, the number of rows in this interval is equal to
the number of strings x1,...,x; which have A\, as prefix which coincides with
the number of leaves in the subtree rooted at w. The correspondence is order
preserving since both in I7 and in the suffix array the order is determined by
the lexicographic order of . a

Lemma 7. Let [b,e] denote the mazimal row range associated to the internal
node w. Then, the labels on the arcs exiting from w coincide with the set of
symbols in the substring BWT][b, e].

XBWT Tricks 87

Proof. Let A\, denote the string containing the symbols in the upward path from
w to the root. There is an arc with label ¢ € X' leaving w iff there is at least a
string x; prefixed by Afc. This implies ¢\, is a prefix of y;. If j € [b,e] is the
row prefixed by A\, $y; 18- - - yr$ it is BWT[j] = ¢. Viceversa, if BWT[h] = ¢ for
h € [b, €] then at least one y; is prefixed by c),, hence A\fc is a prefix of z; and
there must be an arc with label ¢ exiting from node w.

Finally, there is an arc with label $ leaving w iff \Z = z;, for some h €
[1,k]. But then there will be one SA row prefixed by yn$yn+13---yr$ and the
corresponding BWT position will contain the symbol $. a

From Lemma 7 we can derive a simple strategy to compute the XBWT, that
is, the arrays L and Last defined in Sect.2. Assume we are given a binary array
MR such that MR[i] = 1 iff row 4 is the starting position of a maximal row range
(see example in Fig.2). MR encodes the maximal row ranges and by Lemma 6
each maximal row range corresponds to an element in the array I7. In Sect. 2
we have logically partitioned the array L into Lq,..., L, where L; contains the
labels in the arcs leaving the internal node associated to IT[i]. We compute the
subarrays Lq, ..., L, in that order. We scan the array MR starting from its first
position until we find an index j; such that MR[j; 4+ 1] = 1. We know that [1, j;]
is the maximal row range corresponding to I7[1]. In O(j;) time we compute the
set of distinet symbols in BWTI1, j;] and we write them to L. By Lemma 7
we have just computed L; and we complete this phase by writing 0/%1/=11 to
Last. Next we restart the scanning of MR until we find an index js such that
MR[j2 + 1] = 1. By construction [j; + 1, j] is the maximal range corresponding
to I1[2] so from BWT][j;1 +1, jo] we can derive Ly and so on. The above algorithm
takes O(m) time and only requires the arrays BWT and MR.

The bit array MR can be derived from the SA and LCP arrays. However a
faster alternative is to modify one of the algorithms computing the LCP from
the SA so that, instead of the LCP, it computes the RCP (Reduced Common
Prefix) array storing the lengths of the common prefix among lexicographically
consecutive suffixes assuming that all instances of the $ symbol are different.
See again Fig.2 for an example.! The linear time LCP construction algorithms
in [11,14,17] can all be easily modified to compute the RCP values instead of
LCP values. The MR array can be computed along with the RCP array observing
that MR[i]] = 0 iff LCP[:] > RCP[i]. The latter condition can be verified even
without knowing the LCP values by testing whether ¢[SA[i] + RCP[i]] = t[SA[i —
1] + RCP[i]] = $. Indeed, the RCP array satisfies the following lemma which is
an immediate consequence of Lemma 5.

Lemma 8. Let [b,,e,] denote the mazimal range for the string z € II. It is
RCP[b, + 1] = RCP[b, 4+ 2] = --- = RCPJe.] = |7]

and RCP[b,] = lep(z, 2) where 2’ is the string immediately preceding z in the IT
array. O

! The RCP array coincides with the LCP array if we build the concatenation ¢ inserting
a different symbol $; at the end of each string z;. However, this approach is not
practical since would increase significantly the size of the alphabet.

88 G. Mangzini

Compute P
1: S« empty stack; P « empty string
2: fori=1,...m do
3: if MR[{] ==1do // beginning of maximal row range
4: ¢ — RCP[i]
5: while ({i0p > ¢) do
6: S.pop() // pop if not prefix of the new string
T if ¢t[SAfitop] + £+ 1] #$ do
8: l— étop
9: S.pop()
10: S.push(i,)
11: while (S not empty) do
12: S.pop()

Fig. 3. Algorithm for computing the parenthesis array P given ¢, SA, RCP and MR.
An open parenthesis is written to P at each push operation, and a closed parenthesis
at each pop operation. (itop, ltop) represents the pair currently at the top of the stack.

Note that computing the RCP array is faster than computing the LCP array
(the common prefixes are shorter) and its storage takes less space since each
entry takes at most [log(max; |z;|)] bits.

We have established that with a single scan of the BWT and MR array we
can compute the arrays L and Last. We now show that using the RCP array we
can also compute the parenthesis string P that supports suffix links emulation
as described in Sect. 3. The algorithm for computing P is described in Fig. 3. To
prove its correctness we first establish the following Lemma.

Lemma 9. In the algorithm of Fig. 3 let (i1,41), (i2,¢2), ..., (in,fr) denote the

pairs stored in the stack at any given moment, and let z1, za, . .., zp denote the
corresponding strings, i.e. z; corresponds to the mazimal row range [i;, e;]. Then,
fori=2 ... h we have that z;_1 is a proper prefix of z; and |zi—1| = ;.

Proof. Initially the stack is empty so the hypothesis is true. Assume now the
stack (i1,01), (i2,02),..., (in, L) satisfies the hypothesis and we have reached
position ¢ which is the beginning of the next maximal row range which corre-
sponds to the string z. Note that i, is the starting point of the immediately
preceding row range. Hence, setting ¢ = RCP[i] we have ¢ = Icp(zp, 2). In addi-
tion, for j < h since z; is a prefix of z, it is lep(z;, 2) = min(¢, |z;]). Clearly if
¢; > £, z; cannot be a prefix of z since

|2i] > |zj-1] = £; = £ = lep(25, 2)

so it is correct to remove (ij,¢;) from the stack at Line 6. If £; < £ then z; is
a prefix of z iff £ = |z;| which is the condition tested at Line 7. If this is the
case we push (i,¢) to the stack and the invariant is maintained. If z; is not a
prefix of z then z;_; certainly is, since it is a proper prefix of z;[1,¢] = 2[1, /],

XBWT Tricks 89

and we add to the stack (7, ¢;) after having removed (i, ¢;) thus maintaining the
invariant. ad

Theorem 2. The algorithm of Fig. 3 correctly computes the array P in O(m)
time.

Proof. Because of the order preserving correspondence between maximal row
ranges and paths in II, scanning the array MR is equivalent to scanning the
array IT. Lemma 9 ensures that we write an open parenthesis for each path II[i]
and that the corresponding closed parenthesis is written immediately before the
opening parenthesis of the first path II[h] with h > ¢ such that II[i] is not a
prefix of IT[h]. This is exactly how P is defined in Sect.3 and the correctness
follows.

To see that the running time is O(m) observe that in addition to the outer
loop we only have push and pop operations on the stack. Since we push one pair
(i,£) for each 1 in MR, and once popped from the stack pairs are discarded, the
overall time is O(m). O

For the construction of P, in addition to the input arrays, the algorithm
needs extra storage only for the stack. Since the values in the stack are strictly
increasing, it uses at most O(¢log¥) bits where ¢ = max; RCP[i]. Summing up,
we are able to compute the XBWT with simple sequential scans using the SA and
LCP (actually RCP) arrays. Since there are many well engineered algorithms for
computing the SA and LCP array, we believe our solution is the most practical
choice when the working space is not an issue. Indeed, its working space is
dominated by the space required for the storage and computation of the SA
which is still O(mlogm) bits but in practice it could be much less than the
space required for storing a pointer based representation of the trie T'.

We now describe an alternative XBWT construction algorithm that only
uses the BWT of the string ¢ = y1$y28- - - yx$. Since the BWT takes mlog|X|
bits and can be computed using o(m logm) bits of working space, our algorithm
provides new time/space trade-offs for XBWT construction. In addition, our
algorithm works without modification if the BWT of ¢ is replaced by the Multi
String BWT [10] of {z1,...,2zx}. Although BWT algorithms have been studied
for a longer time, Multi String BWT algorithms are potentially faster and have
recently received much attention, see [1,10,16] and references therein.

The idea of our algorithm is to compute the MR array emulating a depth
first visit of the trie T" using the BWT. Since each internal trie node corresponds
to a maximal row range, the visit will give us all maximal row ranges, i.e., the
bit array MR. Our solution is inspired by the algorithm in [2] that computes the
LCP array emulating a breadth first visit on the suffix trie using the BWT.

Assuming the BWT is stored in a balanced Wavelet Tree we can use the
algorithm getlnterval from [2] to compute, given the maximal row range corre-
sponding to an internal node w, the maximal row ranges corresponding to w’s
children. This computation takes O(dlog|X|) time, where d is the number of
w’s children. Using getlnterval, the computation of the MR array can be done by
the algorithm in Fig.4 whose running time is O(m + nlog|X|) where n is the

90 G. Mangzini

Compute MR (lightweight)

1: fori=1,...m
2: MR[i] < 0 // Clear the MR array
3. df_visit(1,k,¢)

df_visit(b., e, 2)
MR[e.] <1 // mark the endpoint of the maximal row range
foreach ¢ # $ in BWT[b.,e.] do
[bez, €cz] < maximal row range for cz
df_visit(bez, ecz, ¢2)

Fig. 4. Algorithm for computing the MR array given the BWT.

Compute P (lightweight)

1: S « empty stack; P <« empty string
2: fori=1,...ndo

3: £ «— RCP'[{]

4: while ({iop > ¢) do

5: S.pop() // pop if not prefix of the new one
6: if LEN'[i¢op] # ¢ do

7 — Liop

8: S.pop()

9: S.push(i,)

10: while (S not empty) do

11: S.pop()

Fig. 5. Algorithm for computing the parenthesis array P given RCP’ and LEN’.

number of internal trie nodes. The working space of the algorithm, in addition
to the BWT and MR arrays, is dominated by the stack for the depth first visit
which takes (max; |x;|)|X| words. After the computation of MR, the arrays L
and Last can be obtained in O(m + | X|) time as described above.

To compute also the parenthesis array P we use the following approach. Our
starting point is the observation that the algorithm in Fig.3 only uses the RCP
values for the entries ¢ such that MR[i] = 1. In addition, the SA is only used at
Line 7 to check if the string that prefixes row i, is a prefix of the string that
prefixes row i. This property can be tested also by checking if the length of the
string at ;. is equal to RCP[i].

This observation suggests that after the computation of MR we count the
number of 1’s in it: this gives us the number n of internal trie nodes. Then, we
allocate two length-n arrays RCP’ and LEN’ where we store the RCP and the
length of the entries in IT with MR[i] = 1. These arrays take O(nlog(max; |z;|))
bits and can be computed in O(nlog|X|) time using a straightforward modifi-
cation of the LCP construction algorithm from [2]. Using RCP’ and LCP” we can
compute the parenthesis array P using the algorithm of Fig. 5 which is derived

XBWT Tricks 91

from the one in Fig. 3 but has a simpler structure since, instead of scanning MR
skipping the 0 entries, it scans directly RCP” and LEN'.

5 Concluding Remarks

With the advent of applications that use very large string dictionaries the
XBWT-trie becomes a valid alternative for their storage. In this paper we have
presented two contributions that can increase the practical appeal of this data
structure. We believe there are other improvements to the original XBWT-trie
design that can make this data structure even more appealing to practitioners.
For example, it is relatively simple to support the contraction of unary paths.
The computation of the XBWT also deserves further investigations: we have
shown how to compute it from the SA or the BWT but we are currently working
on the design of efficient and lightweight direct construction algorithms.

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor. Comput. Sci. 483, 134-148 (2013)

2. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. J. Discrete Algorithms
18, 22-31 (2013)

3. Beller, T., Zwerger, M., Gog, S., Ohlebusch, E.: Space-efficient construction of
the Burrows-Wheeler transform. In: Kurland, O., Lewenstein, M., Porat, E. (eds.)
SPIRE 2013. LNCS, vol. 8214, pp. 5-16. Springer, Heidelberg (2013)

4. Crochemore, M., Grossi, R., Karkkainen, J., Landau, G.M.: Computing the
Burrows-Wheeler transform in place and in small space. J. Discrete Algorithms
32, 44-52 (2015)

5. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica 63, 707-730 (2012)

6. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proceedings of the 46th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 184-193 (2005)

7. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and search-
ing XML data via two zips. In: Proceedings of the 15th International World Wide
Web Conference (WWW), pp. 751-760 (2006)

8. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM, 57 (2009)

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

10. Holt, J., McMillan, L.: Constructing Burrows-Wheeler transforms of large string
collections via merging. In: BCB, pp. 464-471. ACM (2014)

11. Karkkéinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181—
192. springer, Heidelberg (2009)

12. Karkkéinen, J., Kempa, D.: Engineering a lightweight external memory suffix array
construction algorithm. In: Proceedings of CEUR Workshop, ICABD, vol. 1146,
pp- 53-60 (2014). http://CEUR-WS.org

http://CEUR-WS.org

92

13.

14.

15.

16.

17.

18.

19.

G. Mangzini

Karkkéinen, J., Kempa, D., Puglisi, S.J.: Parallel external memory suffix sorting.
In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp.
329-342. Springer, Heidelberg (2015)

Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181-192. Springer,
Heidelberg (2001)

Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, 2nd edn.
Addison-Wesley, Reading (1998)

Li, H.: Fast construction of FM-index for long sequence reads. Bioinformatics 30,
3274-3275 (2014)

Manzini, G.: Two space saving tricks for linear time LCP array computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372-383.
Springer, Heidelberg (2004)

Martinez-Prieto, M.A., Brisaboa, N.R., Cdnovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Inf. Syst. 56, 73—-108 (2016)

Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
ACM Trans. Algorithms 10 (2014). Article 16

Maximal Unbordered Factors of Random Strings

Patrick Hagge Cording'®™) and Mathias Baek Tejs Knudsen?

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
phaco@dtu.dk
2 Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark

Abstract. A border of a string is a non-empty prefix of the string that
is also a suffix of the string, and a string is unbordered if it has no bor-
der. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the
following: If we pick a string of length n from a fixed alphabet uniformly
at random, then the expected length of the maximal unbordered factor
is n — O(1). We prove that this conjecture is true by proving that the
expected value is in fact n —O(o 1), where o is the size of the alphabet.
We discuss some of the consequences of this theorem.

1 Introduction

A string S is a finite sequence of n characters from an alphabet X of size o.
S[i, 7], 1 <1 < j < n, is the sequence of characters of S starting in ¢ and j, both
indices included. We denote S[i, j] a factor of S. The factor S[1, j] is a prefix of
S and S[i,n] is a suffix. A border of a string is a non-empty prefix of the string
that is also a suffix of the string. If S = a8 = A, for non-empty strings § and A,
then « is a border of S with length |«|. The maximal border of S is the longest
border among all borders of S. S is unbordered if it does not have a border. The
maximal unbordered factor is the longest factor that does not have a border.
A string is periodic if it can be written as S = a*a’, where ¥ is the string o
repeated k > 0 times and o’ is a prefix of a.

Borders were first studied by Ehrenfeucht and Silberger [2] with emphasis on
the relationship between the maximal unbordered factor of a string and its mini-
mal period. This relationship has since received more attention in the litterature
[1,4,5].

Loptev, Kucherov, and Starikovskaya [10] prove that for o > 2 the expected
length of the maximal unbordered factor is at least n(1 — &(0) - o=%) + O(1),
where £(o) converges to 2 as o grows. When o > 5 and n is sufficiently large this
implies that the expected length of the maximal unbordered factor is at least

P.H. Cording—Supported by the Danish Research Council under the Sapere Aude
Program (DFF 4005-00267).
M.B.T. Knudsen—Research partly supported by Mikkel Thorup’s Advanced Grant
from the Danish Council for Independent Research under the Sapere Aude research
career programme and the FNU project AlgoDisc - Discrete Mathematics, Algo-
rithms, and Data Structures.

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 93-96, 2016.
DOI: 10.1007/978-3-319-46049-9_9

94 P.H. Cording and M.B.T. Knudsen

0.99n. Supported by experimental results, the authors of [10] conjectured that
the expected length of maximal unbordered factor is n — O(1). We prove that
this conjecture is true and obtain the following theorem.

Theorem 1. Let S be a string of length n, where each character is chosen i.i.d.
uniformly from an alphabet A of size ¢ > 2. The expected length of the mazimal
unbordered factor is n — O(c™1).

The problem of computing the maximal unbordered factor of a string has
been studied by Loptev et al. [10] and Gawrychowski et al. [3], who give algo-
rithms with average-case running times O(Z—Z +n) and O(nlogn), respectively.
It can be decided in O(n) time if a string of length n has a border by com-
puting the border array (also known as the failure function, made famous by
the KMP pattern matching algorithm [7,11]). Entry ¢ of the border array B
of a string S contains the length of the maximal border of the prefix S[1,1].
If B[n] = 0 then S is unbordered. Let B; be the border array for the suffix
Slj,n]. If B;[i] = 0 it means that the factor S[j,1] is unbordered. Computing
Bj for j =1...n and scanning these to find the maximal unborderd factor of S
takes O(n?) time. As mentioned in [10], we can compute the B;’s in decreasing
order of the suffix length and stop the algorithm once n — j is smaller than the
currently longest unbordered factor and obtain an algorithm with average-case
running time O((n — p + 1)n) where p is the expected length of the maximal
unbordered factor. With our new bound on the expected length of the maximal
unbordered factor, we therefore get the following corollary.

Corollary 1. There is an algorithm with average-case running time O(n) that
finds the mazimal unbordered factor.

This improves the previously best known average-case bounds for finding the
maximal unbordered factor of a string.

Related Work. The worst-case running time of the above mentioned algorithm
is still O(n?). Gawrychowski et al. [3] give an algorithm with worst-case running
time O(n!?).

Holub and Shallit [6] investigated the expected length of the maximal border
of a random word.

Data structures for answering a border query have also been developed. A
border query takes two indices ¢ and j and the answer is the maximal border
of the factor S[i, j]. Kociumaka et al. [8] show several time-space trade-offs for
this problem. For one of these, their data structure can answer border queries
in O(log' ™ n) time and uses O(n) space. Kociumaka et al. [9] improved this to
O(1) time for answering border queries while using O(n) space.

2 The Proof of Theorem 1

Fix A and o > 2. Let X,, be the expected length of the maximal unbordered
factor of a random string of length n. We define Xy = 0, and we let Y,, = n—X,.

Maximal Unbordered Factors of Random Strings 95

We prove in the following that Y,, < ¢, where c is given by:

20
(c—-1)21—-0"1—-072)

C =

Since ¢ < % this will prove the theorem. This follows from o > 2 and the
following calculation:

2 2 32

c(l—o 1)’ (1l-01-0"2) oc(1-2"1)*1-2"1-2"2) o0

We will prove the claim by induction on n. By definition this is true whenever
n < 1. So fix some n and assume that Y;,, < ¢ for all m < n.

Let S be a random string of length n. Let f = f(S) be the smallest positive
integer < n such that S[1, f] = S[n — f 4+ 1,n]. If no such integer exists we let
f = 0. We note that if f > 0 then f < %, since if f > T then f' = 2f —n
satisfies S[1, f'] = S[n — ' + 1,n] as well and f’ < f which is impossible. Let
L = L(S) be the length of the maximal unbordered factor of S. Then:

ln/2]
YVo=n-X,=n—-E(L)=> P(f=0n-EL]|f=10) (1)
£=0
If 1 <¢< % then S[¢ 4 1,n — /] is independent of the event f =/, since f = ¢
is determined by S[1,¢] and S[n — ¢ + 1,n]. The longest unbordered factor in
S[¢+1,n — €] is also an unbordered factor in S and hence for ¢ < F:

E(L|f=10)=Xn_2 (2)

If n is odd (2) holds for all integers ¢ € {1,2, ceey LgJ} If n is even we see
that if £ = [%| the right hand side of (2) is 0 and hence it also holds for all
integers {1, 2,..., L%J } If f =0, then S is an unbordered factor, and therefore
E(L | f =0) = n. So we can use this observation together with the inequality
(2) to upper bound Y,, in (1) by:

[n/2] [n/2] [n/2]
Vo< Y P(f=0(n—Xn)= Y 2P(f =0+ > P(f=0Y o (3)
/=1 =1 =1

Nielsen [12] proved the following lower bound on the probability that S is unbor-
dered. Since S is unbordered iff f = 0 we get:

Theorem 2 (Nielsen[12]).
P(f=0)>1-0'-072
Using Theorem 2 together with the fact that Y, _oy < ¢ we get:

In/2] [n/2]
D P =0Ynz<c)y P(f=0)=cl-P(f=0)<clo+07?) (4)
{=1

(=1

96 P.H. Cording and M.B.T. Knudsen

If f =/ then S[1,£] = S[n — £+ 1,n]. After fixing S[1,/] there are o ways to
choose S[n — £+ 1,n] and hence P(f = ¢) < o~*. Using this we get:

/2] o0 %

S UP(f=10) <> 2o =Go1¢ (5)

=1 =1

Inserting (4) and (5) into (3) gives:
20

(0 —1)?

which finishes the induction and the proof. O

Y, < +e(c ' +07%) =c

References

1. Duval, J.-P.: Relationship between the period of a finite word and the length of its
unbordered segments. Discrete Math. 40(1), 31-44 (1982)

2. Ehrenfeucht, A., Silberger, D.: Periodicity and unbordered segments of words. Dis-
crete Math. 26(2), 101-109 (1979)

3. Gawrychowski, P., Kucherov, G., Sach, B., Starikovskaya, T.: Computing the
longest unbordered substring. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.)
SPIRE 2015. LNCS, vol. 9309, pp. 246-257. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23826-5_24

4. Harju, T., Nowotka, D.: Periodicity and unbordered words: a proof of the extended
duval conjecture. J. ACM (JACM) 54(4), 20 (2007)

5. Holub, S., Nowotka, D.: The ehrenfeucht-silberger problem. J. Comb. Theor. Ser.
A 119(3), 668-682 (2012)

6. Holub, S., Shallit, J.: Periods and borders of random words. In: 33rd Symposium
on Theoretical Aspects of Computer Science (2016)

7. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. STAM
J. Comput. 6(2), 323-350 (1977)

8. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Efficient data structures
for the factor periodicity problem. In: Calderén-Benavides, L., Gonzalez-Caro, C.,
Chévez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284—-294. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34109-0_30

9. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching
queries in a text and applications. In: Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 532-551. SIAM (2015)

10. Loptev, A., Kucherov, G., Starikovskaya, T.: On maximal unbordered factors. In:
Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 343-354.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19929-0_29

11. Morris Jr., J.H., Pratt, V.R.: A linear pattern-matching algorithm (1970)

12. Nielsen, P.T.: A note on bifix-free sequences (corresp.). IEEE Trans. Inf. Theor.
19(5), 704-706 (1973)

http://dx.doi.org/10.1007/978-3-319-23826-5_24
http://dx.doi.org/10.1007/978-3-319-23826-5_24
http://dx.doi.org/10.1007/978-3-642-34109-0_30
http://dx.doi.org/10.1007/978-3-319-19929-0_29

Fragmented BWT: An Extended BWT
for Full-Text Indexing

Masaru Ito!®™) | Hiroshi Inoue?, and Kenjiro Taura!

! Department of Information and Communication Engineering,
Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan
{mito,tau}@eidos.ic.i.u-tokyo.ac.jp
2 IBM Research, Tokyo, Japan
inouehrs@jp.ibm.com

Abstract. This paper proposes Fragmented Burrows Wheeler Trans-
form (FBWT), an extension to the well-known BWT structure for full-
text indexing and searching. A FBWT consists of a number of BWT
fragments each covering only a subset of all the suffixes of the original
string. As constructing FBWT does not entail building the BWT of the
whole string, it is faster than constructing BWT. On the other hand,
searching with FBWT can be more costly than that with BWT, since
searching the former requires searching all fragments; its amount of work
is O(dp+ occlog™™* n) as opposed to O(p+ occlog' € n) of regular BWT,
where p is the length of the query string, n the length of the original text,
occ the occurrences of the query string, and d the number of fragments.
To compensate the search cost, searching with FBWT can be acceler-
ated with SIMD instructions by searching multiple fragments in parallel.
Experiments show that building FBWT is about twice as fast as building
BWT via a state of the art algorithm (SA-IS); and that FBWT’s search
performance compared to BWT’s depends on the number of occurrences,
ranging from four times slower than BWT (when there are few occur-
rences), to twice as fast as BWT (when there are many).

Keywords: Suffix array - Burrows- Wheeler transform - Full-text
indexing

1 Introduction

Full-text searching is a fundamental topic for text processing applications. It is
used in many applications such as genome analysis, data mining, search engine,
and so on. As the amount of text data has been rapidly increasing in recent
years, many efforts have been made to index and search texts faster. Suffix array
[12] and Burrows Wheeler Transform (BWT) [1] are popular data structures
to accomplish the task and are widely used by genome analysis applications
such as BWA [10], SOAPv2 [11], bowtie [9]. For constructing suffix arrays and
BWTs, many algorithms have been developed such as SA-IS [13], DC3 [7] and

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 97-109, 2016.
DOI: 10.1007/978-3-319-46049-9_10

98 M. Ito et al.

parallelized [6] to accelerate constructing them. For full-text searching, many
data structures have been proposed such as Ferragina and Manzini [3,4], wavelet
tree [5], and wavelet matrix [2].

We propose an extension of BWT, named Fragmented BWT (FBWT). This
data structure consists of a number of BWT fragments. Each fragment is essen-
tially a BWT covering only a subset of the original string. An FBWT can be
constructed more cheaply than BWT because it needs to build only a part of the
suffix array. On the other hand, searching with FBWT can be more costly than
that with BWT, as it needs to search all fragments individually. Fortunately,
the cost can be reduced by searching them in parallel with SIMD instructions.
Experiments show that we can build FBWT twice as fast as building the reg-
ular BWT by a state of the art algorithm (SA-IS). The search performance of
FBWT depends on the number of occurrences (occ) and it is from about four
times slower to two times faster than searching with BWT, after vectorization
applied.

2 Related Work

Suffix array [12] is a fundamental data structure whose construction and search-
ing have been extensively studied. For the construction, Manber and Myers pro-
posed the first O(nlogn)-time algorithm [12]. O(n)-time algorithms have been
studied [7,13] and the state of the art algorithm is SA-IS introduced by Nong
et al. [13]. As suffix array needs O(nlogn) bits for n characters, researchers have
proposed more compact data structures that still allow full text searching. A rep-
resentative method is due to Sadakane et al. [14] and Ferragina and Manzini [3].
Sadakane, et al. uses ¥ array which stores the position of the next suffix on
the original string in the suffix array. This method has O(plogn + occlog®n)
time complexity, where n is length of the original text. Ferragina and Manzini
introduced a new data structure using Burrows Wheeler Transform [1]. This
method consists of two steps. The first step finds ranks of matching suffixes in
time complexity O(p), where p is the length of the query string, and the second
step locates them in the original reference string, in O(occlog! ™ n)-time, where
occ is the number of occurrences. The present work is largely based on Ferragina
and Manzini’s, with the main difference being that we build a suffix array of a
string d times smaller than the entire string. Our method also makes the second
step of the searching algorithm more efficient, although it makes the first step
more expensive.

3 Background

3.1 Notational Preliminaries

Throughout this paper, T is an original text we build the index of. As is cus-
tomary we assume T ends with a special character, written as ‘$’, which is the
lexicographically smallest character. n is the number of characters in T including

Fragmented BWT: An Extended BWT for Full-Text Indexing 99

suffix array

F L

0 mississippi$ 11 § mississipp i

1 ississippi$m 10 i $mississip p

2 ssissippi$mi 7 i ppi$missis s

3 sissippi$mis 4 i ssippi$mis s

4 issippi$miss 1 7 ssissippi$ m

5 ssippi$missi 0 m ississippi $

6 sippi$missis 9 p i$mississi p

7 ippi$mississ 8 p pi$mississ i

8 ppi$mississi 6 s ippi$missi s

9 pi$mississip 3 s issippi$mi s

10 i$mississipp 5 s sippi$miss i
11 $mississippi 2 s sissippi$m i

Fig. 1. Burrows Wheeler transform for mississippi$

this end character. T'[i] is the character at index i of T' (¢ starting from zero).
Tla : b] is the substring of T starting from its ath character to bth character.
Tla:] is an abbreviation of T'[a:n], the suffix starting from position a. We write
s < t to mean string s is lexicographically smaller than ¢.

3.2 Suffix Array and Burrows Wheeler Transform

Given a reference string T, its suffix array [12] is a sorted array of its all suffixes.
Each suffix is actually represented by its starting index in T, so the suffix array
of T, SA, is a permutation of {0,...,n — 1}, such that for all ¢ and j, 0 < i <
Jj <n=T[SA[i]:] < T[SA[j]:]

Burrows Wheeler transform of 7', BWT, is an array of n characters defined
as follows.

T[SA[i] — 1] (SA[i] # 0) (1)
Tin—1] (SA[i] =0)

That is, BWT’s ith element is the character ahead of ith smallest suffix (for
convenience, we consider the character ahead of T[0] is T'[n — 1]). In other words,
BWT is a permutation of the reference string, sorted by lexicographic order of
the suffix following each character.

This is illustrated in Fig. 1, which shows the BWT of a reference string “mis-
sissippi$”. On the left is all the suffixes of the reference string. Each suffix is
represented as a cyclic shift of the original string. Note that the order between
cyclic shifts is equivalent to that between suffixes, as ‘$’ is smaller than any other
character. On the right is its lexicographical sort, signifying the first and the last
characters of each cyclic shift in the F and L columns, respectively. BWT is the
sequence of characters in the L column.

BWﬂﬂ{

3.3 LF-Mapping and Backward Search

Searching for a string using a suffix array amounts to finding suffixes that have
the query string as a prefix. As suffixes are lexicographically sorted, such suffixes
form a contiguous interval in the suffix array. If the suffix array of the entire
string were available, searching for a string could be done by a straightforward

100 M. Ito et al.

binary search on the suffix array. Ferragina and Manzini [3] have shown that
BWT can answer how many times a query string occurs in the original string
without using a suffix array. Finding their positions in the original string needs
a sparsely sampled suffix array, but still does not need the full suffix array. The
following function, LF-mapping, gives the fundamental tool to accomplish this.

LF-mapping is a mapping from the rank of a suffix to the rank of the suffix
one character longer. Specifically, given the rank of a suffix, ¢, its LF-mapping,
LF(i) is defined as j satistying SA[j] = SA[i] — 1. That is,

LF(i) € jsuchthat SA[j] = SA[i] — 1. 2)
Remarkably, this can be computed without materializing SA, as follows.
LF(i) = Clc] + occ(e,i — 1), (3)

where ¢ is the character ahead of the given suffix (that is, ¢ = BWT[i]), C[z]
the number of characters smaller than z in the original string (or equivalently
in BWT), and oce(z, p) the number of character x’s in BWTI0:p).

We sketch its correctness for the sake of extending it for our method. Recall
that we are trying to find the rank of suffix “c” | T[SA[i] :] (the symbol ||
means a string concatenation). As it starts with ¢, all suffixes starting from
characters smaller than ¢ have ranks lower than this suffix, which are counted
by the term Cfc]. Now we count suffixes starting from ¢ and lexicographically
smaller than “c” || T[SA[i] :]. As they all share the same first character (c),
this amounts to counting the number of suffixes lexicographically smaller than
T[SA[i] :] and immediately following ¢, which is the number of suffixes among
T[SA[0):], T[SA[1]:],--- ,T[SA[i — 1]:] that immediately follow c. This is exactly
the number of times ¢ appears in BWT[0:4¢ — 1], which is occ(c,i — 1).

The above argument can be extended to searching for an arbitrary query
string, g. In order to search for a string ¢, we start from an empty query string and
extend it ahead one character at a time, keeping track of the minimum /maximum
ranks of suffixes that have the query string in their prefixes. The procedure is
illustrated as follows.

search_bwt(q) {

s=0; e=n—1;

for (i=|g[—1;i>0; i——){
¢ = qli];
s = Clc] + oce(e, s — 1);
e = C[c] + occ(e,e) — 1;
if (s >e) break;

}

return (s, e);

R - TR T U SR SN

~
S

}

Fragmented BWT: An Extended BWT for Full-Text Indexing 101

3.4 Locating Suffixes in the Reference String

This backward search procedure immediately gives the number of occurrences
of ¢, which is (e — s+ 1). To locate them in the original string, however, we need
an extra step for each suffix we have found. This would be trivial, again if the
entire suffix array were available; we merely return SA[j] for each j € [s,e]. A
cleverer technique was invented to accomplish this without holding the entire
suffix array in memory. The key idea is to sparsely sample the suffix array, to
build a (partial) mapping from ranks to locations in the original string. Samples
are taken so that they are regularly interspaced in the original string. By taking
a sample from every log(HE) n consecutive elements, the space usage becomes
nlogn/log'™ n € o(n). Once such sampled suffix array is available, finding
the position of the suffix can be done by extending the suffix backward in the
manner of LF-mapping, until we reach a suffix that is mapped in the sampled
suffix array. The time complexity thus becomes O(10g1+€ n) for each occurrence
A sampled suffix array is actually implemented as a hash table mapping from
integers (rank) to integers (positions).

/x SSA : a sampled suffix array (hash table)
j : rank of the suffix we want to locate in the reference string %/
get_position (7, SSA) {
backward_count = 0;
while (j not found in SS4) {
c = Lli];
j = Cle + ocele, j) — 1;
backward_count++;

}

return SSA[j] + backward_count;

© % N« N L e e

~
)

}

4 Fragmented BWT

In this section, we describe our index data structure and searching method. We
assume the special character ‘$’ appears at the end of T at least once and so
many times that the length of T' becomes a multiple of the number of fragments
in the fragmented BWT we are to build.

Definition 1. For a string T, (r/d)-fragment of T'’s suffix array, SA,,q, is a
sorted array of T'’s suffizes that start from positions that are v modulo d. (r/d)-
fragment of T'’s BWT, BWT, 4, is defined similarly to Eq. (1):

A [T1SA,ali] — 1] (54, /afi] #0)
BWTr/d”‘{T[nﬁ (SAorali] = 0) @

The fragmented suffix array (or BWT) of T is the collection of all (r/d)-
fragments (r = 0,...,d — 1). We show how to construct a fragmented BWT of

a string in Sect.4.1 and how to search using a fragmented BWT in Sects. 4.2
and 4.3.

102 M. Ito et al.

4.1 Constructing FBWT

A straightforward approach to constructing a fragmented BWT of a string T
is to build the full suffix array of T, scan it to split it into fragments (put
elements that are » modulo d into the (r/d)-fragment), and then derive BWT
fragments. This method, obviously, does not bring any benefit in construction
time. Alternatively, we could build each suffix array fragment individually, by
sorting only suffixes that belong to the fragment we would like to build, and
derive the corresponding BWT fragment. In essence, instead of sorting an array
of n elements, we sort d arrays each having n/d elements. The latter may be
faster than the former but the benefit will be marginal, especially when we use
fast O(n) suffix array construction algorithms, as we are merely replacing sorting
n elements with sorting n/d elements d times.

Our method constructs only the (0/d)-fragment from the original string.
Other fragments are obtained from fragments already built, as shown below.
We call d consecutive characters a wide character. The original string T of n
characters can be naturally viewed as an array of (n/d) wide characters, each
starting from a position that is a multiple of d. Define the lexicographical order
between wide characters in the obvious manner. The procedure for obtaining all
BWT fragments, Ly, L1, ,Lg—1, is the following. Figure 2 shows the example
of FBWT construction for “cock-a-doodle-doo”.

+ | build FBWT(T, d) {

2 /x T : array of n characters including trailing $’s
3 d : the number of fragments (divides n) */

4 W = array of (n/d) wide characters in T

5 /x i.e. W[i| =T[id, (i +1)d —1] for i € [0,n/d) */

6 /* get the first fragment Lo */

;| L =BWTof W;

s Lo = array of (n/d) characters, obtained by

9 collecting (d — 1)th character of each wide character in L;
10 /* i.e., Lo[i] = (d —1)th character of L[i] (i € [0,n/d)) =/

11 /* derive other fragments x/

12 for (r=d—-1;r>1; r—) {

13 stably sort L by rth character;

1 L, = array of (n/d) characters, obtained by

15 collecting (r — 1)th character of each wide character in L;
16 /% i.e., L.[i] = (r — 1)th character of L[i] (i € [0,n/d)) %/

18 return {Lo, L1,...,La—1} ;

19 }

The (0/d)-fragment of BWT, Ly, can be obtained by making the BWT of the
wide character array W and then collecting the last character from each wide
character in W’s BWT. From this fragment, we work backward, first obtaining
Lg_1,then Ly o, ..., until finally obtaining L;. When obtaining Ly, from Ly,
we stably sort the wide characters in the just obtained BWT of W, L, by its

Fragmented BWT: An Extended BWT for Full-Text Indexing 103

T = cock-a-doodle-doo$$$
d=14
w = {{cock}, {-a-d}, {ood1},{e-do},{o$$$3}
SAo/4 L
'
0 cock -a-d oodl e-do 0%$$$ 4| -a-d oodl e-do 0$$$|cock
4 -a-d oodl e-do 0$$$ cock 0| cock -a-d oodl e-do|o$$$
8 oodl e-do 0%$%$ cock -a-d —— 12| e-do 0$$$ cock -a-d|ood]
12 e-do 0%$$ cock -a-d oodl 16| 0%$%$ cock -a-d oodl|e-do
16 0$$$ cock -a-d oodl e-do 8| ood1 e-do 0$$$ cock|-a-d

Lo = k$lod
L1 = $-cdd
L2 = $aoo-
L3 = oe-co

Fig. 2. FBWT for “cock-a-doodle-doo$$$”

(d — 1)th character and then collect their (d — 2)th characters. We repeat this
process (d—1) times; each iteration obtains L, from L, (Lg = L¢ for notational
convenience) by stably sorting wide characters in L by their rth characters and
then collecting their (r — 1)th characters in the sorted L.

We will show the correctness of the above procedure. Consider an (imaginary)
array L’ whose ith element L'[4] is a pair (L[i], the suffix that follows L[¢]) and it
is sorted in the same way as L is sorted along the way. Below, we denote the
second element of the ith pair as S[i].

Lemma 1. At the beginning of iteration r (d —1,d —2,...,0), the imaginary
array L' is sorted by the lexicographic order of (L[i][r + 1:] || S[i]).

L[i] is a wide character (d characters) and L[i][r 4+ 1:] is thus a suffix of it
starting from its (r 4+ 1)th character.

Proof. By induction. Recall that initially (r = d — 1), L is the BWT of W. By
the definition of BWT, L’ is sorted by the lexicographical order of the S[i]’s. As
r =d—1, each L[{][r + 1:] is an empty string, so the order between S[i]’s is
equivalent to the lexicographical order of (L[é][r 4+ 1:] || S[¢]). This shows that
the claim initially holds for » = d — 1. Assume the claim holds at the beginning
of iteration r. In this iteration, it stably sorts L (and the imaginary L’) with rth
characters. As L' is already sorted by (L[é][r + 1:] || S[¢]), stably sorting them
with rth character is equivalent to sorting them by (L[i][r:] || S[¢]), establishing
the claim in the next iteration (r — 1).

Given the lemma, it is easy to observe that at the end of iteration r, taking
their (r — 1)th character will give the desired fragment L,..

104 M. Ito et al.

4.2 LF-Mapping and Backward Search with FBWT

Let us extend LF-mapping and backward search for fragmented BWT. Let
the fragments be {Lg, L1, - ,Lq—1} (L, is (r/d)-fragment). The extended LF-
mapping maps the rank (¢) of a suffix, known to be starting from a position that
is 7 modulo d, to the rank (j) of the suffix one character longer. A rank is a local
rank computed within each fragment. That is,

LF(r,i) < jsuchthat SA,_ alj] = SA,/4li] — 1. (5)

(for 7 = 0, we define SA_;,q = SAg_y,q for convenience). Analogously to the
regular LF-mapping, this can be computed with BWT, which is now fragmented.

LF(r,i) = Crlc] + ocer(c,i — 1) (6)

where ¢ is the character ahead of the suffix ranked ith in (r/d)-fragment; C,[z]
is the number of characters smaller than z in positions that are (r — 1) modulo
d in the reference string, which is equivalent to the number of characters smaller
than x in L, ((r/d)-fragment of BWT); oce,(x, p) is the number of z’s L, [0 : p].
Due to space limitation, we omit the correctness proof of the above procedure,
which is analogous to that of the original LF-mapping.

The extended LF-mapping can be similarly extended to searching for arbi-
trary strings. The procedure below finds occurrences of ¢ starting from positions
that are r modulo d in the reference string. It returns an interval in (r/d)-
fragment of the suffix array. That is, (s,e) such that

s <j<e <= qisaprefixof T[SA, 4[j]:].

backward_search_fragment(q, r) {

s=0; e=n—1;

for (i=|g[—1;i>0; i——){
/* extend search one character ahead x/
z=(r+i+1) mod d;
s = Calglil] + ocex(qlil, s — 1);
e = Celqli]] + occa(qli], €) — 1;
if (s> e) break;

}

return (s,e); }

R T e

~
S

To find all occurrences in the original string, we must search all fragments;
this is roughly d times more costly than backward-searching a single BWT cov-
ering the entire string. Fortunately, however, we can search multiple fragments
in parallel using SIMD instructions.

4.3 Locating Suffixes with FBWT

The second step is similar to get_position of Ferragina and Manzini. Starting from
the rank of a suffix whose position in the reference string is unknown, we repeat

Fragmented BWT: An Extended BWT for Full-Text Indexing 105

applying LF-mapping, until we find a suffix that is sampled and whose position in
the original string is thus known. In this process, we enjoy a benefit of splitting
the BWT into fragments, as explained below. As we go backward with LF-
mapping, we need to check if the current suffix is sampled. We take samples only
from a single fragment (specifically, (0/d)-fragment). In this setting, the check
is redundant if we know a suffix does not start at a position not a multiple of
d. The get_position procedure by Ferragina and Manzini cannot take advantage
of this fact, as such information is not readily available. In our algorithm, in
contrast, suffizes are already classified into fragments by their starting positions
modulo d. Thus we can easily know that the current suffix ever has a chance to
have been sampled. This can reduce the number of costly checks to see if a suffix
is in the sampled array roughly by a factor of d (see line 6 below). As a result,
this step is faster than that in the ordinary BWT and the entire search faster
when it is dominated by this step (i.e. there are many occurrences).

/% return the position in the reference string of suffic whose rank is
J in (r/d)—fragment of suffiz array. in other words, it returns
SA,,ql7], without fully materializing SA.,q. */

get_position_fragment(r, j, SSA) {
backward_count = 0;
while (r # 0 or j not found in SSA) {
c= L. [j];

j = Cylc] + ocer(c, j) — 1;
backward_count++;

© N w A e e o~

~
)

return SSA[j] + backward_count;

}

~
S

Finally, the toplevel procedure to search for ¢ in the entire string is below.

/* search the entire reference string to find
occurrences of q, no matter where they start. x/
search(q) {
ranks = {}; /+ empty set x/
/* get interval in suffic array of all fragments having prefix q x/
for (r=0; r<d; r++) {
s,e = backward_search_fragment(q, 7);
ranks = ranks U {(r,s,e)};
}
/* get positions in the reference string x/
I={}; /x empty set x/
for each ((r,s,e) € ranks) {
for (j=s; j<e; j++) {
I =1U { get_position_fragment(r, j, SSA) };
}
}

return [;

S - Y T Y N

s e s N s e
LS S

~
~

}

~
%

106 M. Ito et al.

5 Implementation

We describe implementation details not described so far. For the number of
fragments, we chose d = 8, a natural choice because the size of a wide character
then fits a single 64 bits register. In the backward search procedure, we used 256
bits AVX2 SIMD instructions to search all fragments in parallel. We assumed an
array index fits 32 bits, so the choice of d = 8 allows us to process all d fragments
in parallel with the 256 bits instruction set. If we desire to handle strings larger
than 232 characters, the natural choice would be d = 4.

To initially construct the suffix array of the wide characters, we combined
DC3 [7] and SA-IS [13]; we implemented DC3 that can handle eight bytes
wide characters by ourselves. For SA-IS; we used an implementation by Mori
(https://sites.google.com/site/yuta256 /sais/). The toplevel procedure is DC3
which, upon the recursive call, switches to SA-IS if the character size becomes
smaller than 232, the size the SA-IS implementation we used can handle. In
practice, DC3 is used only in the first level, where we have eight bytes wide
characters. We build a sampled suffix array of S4¢,4, taking every other element
from it (equivalent to taking a sample from every 16 elements of the entire suffix
array). We used unordered map of C++ Standard Template Library to imple-
ment a sampled suffix array. occ, function is implemented by building a wavelet
matrix of BWT, /4. In this implementation, our index is almost the same size as
BWT method.

6 Evaluation

Our evaluation platform has Xeon E5-2699 v3 processor running Linux 3.1.6
kernel. In creating suffix array and fragmented BWT, we compare our method
and SA-IS, the state of the art algorithm. Figure3 shows index construction
time for genome sequence (http://ftp.ensembl.org/pub/release-75/fasta/homo-_
sapiens/dna/) over various string lengths. This shows that our method is con-
sistently two times faster against a range of data sizes.

To evaluate search performance, we took substrings of various lengths from
the reference string and use them as queries. We varied query lengths from 10 to
100 and for each length, we extracted 1000 strings from the head of the string,
skipping the very first region that entirely consists of many ‘N’s.

Figure 4 shows query execution time including both steps (backward search
and locating suffixes in the reference string), against a range of the number of
occurrences. As seen in Fig. 4, our method is four times slower when there are
few occurrences; our method starts outperforming regular BWT backward search
when the number of occurrences becomes as many as 16 and becomes twice as
fast when there are many occurrences.

To better understand this result, Fig. 5 shows execution time of the backward
search step against query string lengths. As shown, despite the use of SIMD
instructions to search many fragments in parallel, our method is about three
times slower than the regular backward search. Ideally, we like to expect search-
ing all the eight fragments in parallel with eight-way SIMD instructions would

https://sites.google.com/site/yuta256/sais/
http://ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/dna/
http://ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/dna/

Fragmented BWT: An Extended BWT for Full-Text Indexing 107

?8 FBWT 5
= SAIS) g-s FBWT -,
Z 0 v 57 BWT .
£ 50 £ o8
S 40 s 2°
8 g 510
§ 30 g o1 .
X 20 3 12 L
o 513 e
10 g 3_14 tm.“....,;”}:ﬁ
0 Q515 B
0 5 10 15 20 25 30 35 40 45 50 55 < Z.46
2
Data size [x10MB] 20 22 24 26 28 10 12
Fig. 3. Construction time of FBWT Fig. 4. Search time
and SA-IS
— 180 - 2
2 FBWT = . T g FBWT
= 160 BWT .~ 0 2 BWT .
£ 140 £ 28 B
T 120 g 27
S £ a2 "
£ 100 52 .
g -14 o ¥
% % 2_15 ‘xﬁ""f
o @ 2 e
2 g ol
© o 5,20
% 22
10 20 30 40 50 60 70 80 90 100 20 22 gt 8 8 i 12
Query string length The average number occurrences
Fig. 5. Backward search time Fig. 6. Time to locate suffixes found

result in roughly the same execution time as the ordinary backward search. This
did not happen because of the following reasons.

— Fundamentally, the backward search can quit before reaching the head of the
query string, as soon as one of its suffixes turns out not to occur at all, but by
searching eight fragments in parallel, the search continues until all the eight
fragments quit.

— Even if eight fragments quit with roughly the same number of iterations,
searching eight fragments involve some overheads associated with the use of
SIMD instructions. In particular, we use gather instructions to access multiple
locations in parallel, but this does not have the same latency/throughput as
the scalar load instruction.

Figure 6 shows execution time for locating suffixes (get_position_fragment)
in the reference string, which seems consistently roughly twice faster than the
ordinary procedure (get_position). This is because the former does not need to
check if the current query string is found in the sampled suffix array in every
iteration; it knows which fragments the current suffix belongs to and checks its
presence only when the suffix is known to be from (0/d)-fragment.

108 M. Ito et al.

7 Conclusion and Future Work

Fragmented BWT for full-text indexing and searching are described. Advan-
tages include that (1) its construction is faster than that of the regular BWT
and (2) searching with FBWT is faster in locating suffixes in the reference string.
To accelerate to construct FBWT more, we can apply other algorithm such as
parallel construction [8] or parallelize our implementation for sorting in DC3.
We can expect FBWT construction be faster than BWT construction because
the space consumption is smaller thanks to fewer number of suffix array con-
struction. It is slower in the first step of the search (backward search to find
ranks of suffixes), but this can be mitigated by SIMD instructions. Experiments
show that the construction becomes roughly twice as fast as the state of the art
method (SA-IS), locating suffixes roughly twice as fast as the same procedure
for monolithic BWTs. The backward search becomes third to four times slower
(despite applying SIMD instructions). Our future work includes applying SIMD
to the second step as well to further accelerate the search procedure and better
understanding of the cause of imperfect speedup with SIMD instructions.

Acknowledgement. This work was in part supported by Grant-in-Aid for Scientific
Research (A) 16H01715.

References

1. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Algorithm Data Compression (124), p. 18 (1994)

2. Claude, F., Navarro, G.: The wavelet matrix. In: SPIRE, pp. 167-179 (2012)

3. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552-581
(2000)

4. Ferragina, P., Manzini, G., Makinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms 3(2), 20 (2007)

5. Grossi, R., Gupta, A., Vitter, S.: High-order entropy-compressed text indexes.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 841-850 (2003)

6. Hayashi, S., Taura, K.: Parallel and memory-efficient Burrows-Wheeler transform.
In: Proceedings - 2013 IEEE International Conference on Big Data, pp. 43-50
(2013)

7. Kérkkéinen, J., Sanders, P.: Simple linear work suffix array construction. In: Col-
loquium on Automata, Languages and Programming, pp. 943-955 (2003)

8. Karkkainen, J., K.D., S.; P.: Parallel external memory suffix sorting. In: CPM
2015, pp. 329-342 (2015)

9. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 1
(2009)

10. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754-1760 (2009)

11. Li, R., Yu, C., Li, Y., Lam, W., Yiu, M., Kristiansen, K., Wang, J.: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 25, 1966-1967
(2009)

12.

13.

14.

Fragmented BWT: An Extended BWT for Full-Text Indexing 109

Manber, U., Myers, G.: Suffix string arrays: a new searches method for on-line. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 319-327 (1990)

Nong, G., Zhang, S., Chan, H.: Linear suffix array construction by almost pure
induced-sorting. In: 2009 Data Compression Conference, pp. 193-202 (2009)
Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Algorithms 48(2), 294-313 (2003)

AC-Automaton Update Algorithm
for Semi-dynamic Dictionary Matching

Diptarama®), Ryo Yoshinaka, and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University,
6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan
diptarama@shino.ecei.tohoku.ac.jp, {ry,ayumi}@ecei.tohoku.ac.jp

Abstract. Given a set of pattern strings called a dictionary and a text
string, dictionary matching is the problem to find the occurrences of the
patterns on the text. Dynamic dictionary matching is dictionary match-
ing where patterns may dynamically be inserted into and deleted from
the dictionary. The problem is called semi-dynamic dictionary match-
ing when we only consider the insertion. An AC-automaton is a data
structure which enables us to solve dictionary matching in O(dlog o)
preprocessing time and O(nlogo) matching time, where d denotes the
total length of the patterns in the dictionary, n denotes the length of the
text, and o denotes the alphabet size. In this paper we propose an effi-
cient algorithm that dynamically updates an AC automaton for insertion
of a new pattern by using a directed acyclic word graph.

Keywords: Semi-dynamic dictionary matching + AC-automaton
DAWG

1 Introduction

The pattern matching problem is one of the fundamental problems in string
processing. Given a pattern string and a text string, output all occurrence posi-
tions of the pattern in the text. Pattern matching algorithms can be applied in
data mining, search engines, text editors, etc.

An extension of the pattern matching problem is to find multiple pat-
terns simultaneously instead of a single pattern. That is, given a set D =
{p1,p2,...,pr} of patterns called dictionary and a text, we find all occurrences
of the patterns in the text. This problem is called the dictionary matching prob-
lem [1,2]. The dictionary matching problem can be solved by the Aho-Corasick
algorithm [1] or the Commentz-Walter algorithm [7]. Both of the algorithms
preprocess the dictionary first in O(dlog o) time, and then find the occurrences
of patterns in the text in O(nlogo) time for the AC-algorithm and O(ndlog o)
time for the Commentz-Walter algorithm in the worst case, where d is the total
length of the patterns, n is the length of the text, and o is the alphabet size.

Meyer [15] introduced incremental string matching, which is also known as
semi-dynamic dictionary matching problem, as a variant of dictionary matching
© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 110-121, 2016.
DOI: 10.1007/978-3-319-46049-9_11

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching 111

Table 1. Comparison of the algorithms for (semi-)dynamic dictionary matching. n is
the length of text, m is the length of pattern, and d is the total length of dictionary.
k > 2 is any constant. lmax is the length of the longest pattern, and s is the size of
the AC-automaton before insertion.

Algorithm Update Query

Idury and Schéffer [12] | O(m(kd** 4 log o)) O(n(k + log o))

Amir et al. 3] O(m(logd/loglogd +log o)) | O(n(logd/loglogd + log o))
Chan et al. [6] O(mlog® d) O(nlog?d)

Hon et al. [11] O(mlogo + logd) O(nlogd)

Feigenblat et al. [10] | O(mlogdloglogd) O(n(loglog d) +logo)
Meyer [15] O(lmazx - s - o) O(nlogo)

Tsuda et al. [16] O(slogo) O(nlogo)

Proposed O(mlogo + s) O(nlogo)

that allows insertion of a pattern into the dictionary. He proposed an algorithm
for semi-dynamic dictionary matching, which updates the AC-automaton when
a new pattern is inserted into the dictionary. Amir et al. [2] introduced dynamic
dictionary matching problem by allowing deletion of a pattern from dictionary.
Dynamic dictionary matching can be solved by constructing sophisticated data
structures from the dictionary [2,3,6,12]. Moreover, succinct data structures
are also introduced to deal with dynamic dictionary matching, where the main
concern is to save the memory usage to store the dictionary [10,11]. Remark
that in all these approaches except Meyer’s, the query time to search a text for
patterns is more or less sacrificed.

Tsuda et al. [16] also considered dynamic dictionary matching by directly
following and extending Meyer’s method [15], and showed how to update the
dictionary, while keeping the query time in O(nlogo). They also performed
some computational experiments. Ishizaki and Toyama [13] introduced a data
structure called an expect tree to efficiently update the dictionary for insert-
ing patterns, and showed some experimental results, but with no theoretical
analysis. Along this line, in this paper, we propose a simple and more efficient
algorithm for the semi-dynamic dictionary matching problem, where the query
time is still in O(nlog o). The algorithm updates an AC-automaton when a new
pattern is inserted into the dictionary by using a directed acyclic word graph
(DAWG) [4,5] of the dictionary. For each new pattern p, the algorithm updates
the AC-automaton in O(mlog o +uys+u,) time, where m is the length of p, u, is
the number of states whose output function needs to be updated, and uy is the
number of states whose failure link needs to be updated. Table 1 shows a sum-
mary of the proposed algorithm and existing algorithms. Note that us+u, < 2s.
In this sense, our algorithm is more efficient than any other existing ones, under
the constraint of the query time in O(nlogo).

112 Diptarama et al.

2 Preliminaries

Let X denote an alphabet of size 0. An element of X* is called a string. For a
string w, the length of w is denoted by |w|. The empty string, denoted by ¢, is
a string of length 0. For a string w = xyz, strings =, y, and z are called prefiz,
substring, and suffiz of w, respectively. For a string w, let Substr(w) denote the
set of all substrings of w, and for a set D = {wy,ws,...,w,} of strings, let
Substr(D) = Ul_, Substr(w;). Similarly, let Pref(D) be the set of all prefixes of
strings in D.

Let D = {p1,pa2,...,pr} be a set of patterns over X. D is often called a
dictionary. Let d = Y_:_, |pi|, the total length of the patterns in D. An Aho-
Corasick Automaton of D, denoted by AC(D), is a trie of all patterns in D,
consisting of goto, failure and output functions. We often identify a state s with
the string obtained by concatenating all the labels found on the path from the
root to the state s. The state transition function goto is defined so that for
any two states s,s’ € Substr(D) and any character ¢ € X, if s = sc then
s’ = goto(s,c). The failure function is defined by flink(s) = s’ where s’ is the
longest proper suffix of s such that s’ € Substr(D). Finally, output(s) is the set
of all patterns that are suffixes of s. AC(D) is used to find occurrences of any
pattern in D on a text. We omit to explain the basic construction algorithm of
AC(D) and how to use it for text search (see [1,9]).

For any z,y € Substr(D), we define x =p y iff endPosp(x) = endPosp(y),
where endPosp(x) is the set of all positions in the patterns in D where an
occurrence of x ends. We denote by [z]p the equivalence class of x with respect
to =p. The Directed Acyclic Word Graph for D, denoted by DAWG(D), is a
directed acyclic graph with the set of nodes' {[z]p | € Substr(D)} and the
set of edges {([z]p, [zc]p) | xc € Substr(D),c € X'}. Each edge ([z]p, [zc]p) is
labeled by c¢. The node [¢]p is called the source of DAWG(D). Figure1 shows
an example of a DAWG. For each node except the root, suffiz link is defined as
slink([x]p) = [y]p, where y is the longest suffix of z satisfying [z|p # [y]p. For
convenience, we define slink’([z]p) = slink'™* (slink([z]p)) and slink'([z]p) =
slink([x]p). We call a node v a trunk node if there exists u € Pref (D) such that
u is obtained by concatenating all the labels found on the path from the source
to the node v. Other nodes are called branch nodes. For example, in Fig. 2(b),
trunk nodes are numbered, while branch nodes are blank.

From the properties of AC-automaton and DAWG, for each state s in AC'(D),
there exists a unique node v in DAWG(D) that corresponds to s, so that
AC(D) can be consistently embedded into DAWG (D). Because s € Pref (D),
the corresponding node v is a trunk node and each trunk node has its corre-
sponding state. Therefore, there exists a one-to-one mapping from the set of
trunk nodes in DAWG(D) to the states of AC(D). We denote this mapping
by s = w(v). Figure 3(a) and (b) show the AC-automaton and DAWG of D =
{abba, aca, cbb}, respectively, where each number expresses the correspondence.

1 To avoid confusion, we refer to vertex in DAWG as node, and vertex in AC-automaton
as state in this paper.

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching 113

Fig. 1. DAWG({abba}). The table at each node v represents the inverse suffix links
vq, and the number on top of each node v’ shows its index v},,4., in the table

We can verify the following property, which will be utilized in our algorithms.

Lemma 1. Let s and s’ be any states in AC(D), and let v=n"1(s) and v =
7=1(s") be corresponding trunk nodes in DAWG(D). Then, s’ = flink(s) if and
only if there exists an integer k > 0 such that v' = slink™(v) and each slink(v)
is a branch node for 0 < i < k.

3 Maintenance of Inverse Suffix Links of DAWG

Meyer [15] and Tsuda et al. [16] used the inverse of the failure function of the
AC-automaton to update it. Although the inverse failure function can be stored
in O(d) space in total, it is not trivial that the access and update time of inverse
failure function can be done in O(1) time, because the number of inverse failure
links of each state may change dynamically and can be as large as the number
of states in the AC-automaton. For instance, let us consider AC(D) for D =
{baaaac} over X' = {a,b,c} in Fig.2(a). Its root is pointed by 6 failure links.
When adding a new pattern ¢ to D, these algorithms first create a new state s,
a new transition from the root to s, and a failure link from s to the root. The
real difficulty arises when they try to find which suffix links should be updated
to point at s; they must follow all the 6 inverse failure links from the root and
get 6 states numbered 2, 3,...,7, and check whether there is an edge labeled
¢ from each of them, although only one state 7 should be updated. Ishizaki
and Toyama [13] introduced an auxiliary tree structure called an expect tree to
reduce the number of the candidates and showed some experimental results, but
no theoretical analysis is provided. Unfortunately, their algorithm behaves the
same for the above example. Therefore, maintaining the inverse failure links to
update the AC-automaton might be inefficient.

In order to deal with this difficulty, we pay our attention to the suffix links
of DAWG(D), instead of the failure links of AC(D). It is known (see, e.g. [9])
that for any node v in DAWG(D), the number of suffix links that point at v
is at most o. Therefore, accessing and updating the inverse suffix links can be

114 Diptarama et al.

done in O(1) time, for a fixed alphabet . However, this method is inefficient
in space if the alphabet is large, such as Chinese and Japanese ones. We need a
more space efficient method to maintain the inverse suffix links.

We store the inverse suffix links of each node v in a dynamic array v,, which
is a resizable array [17]. We grow the array when a new suffix link pointed at the
node is added and the size exceeds the capacity. The ith suffix link that points
at v is represented as v,[i]. Moreover, in order to make the array accessible and
updatable in O(1) time, we associate the index i to u as Ujnder = ¢ if u = v4[i],
i.e., u is the ith node whose suffix link points v = slink(u). Figure 1 shows an
example of a DAWG with its inverse suffix links.

The inverse suffix links can be maintained in O(d) time overall when we con-
struct DAWG (D). First, from a property of the DAWG constructing algorithm,
the number of suffix links that point at each node is never reduced, thus the
size of array storing inverse suffix links from the node is also never reduced.
Therefore, we do not have to worry about deleting any elements from the array.
Next, each inverse suffix link is updated only when the node is split [4]. In this
case, we can assign the space in the inverse suffix link array which has been
occupied by the old node to the new one. Suppose that there is a node x whose
suffix link points at z, i.e., slink(x) = z, z,[i] = = and Tinges = @ for some 3.
When z is split into x and y, we update the inverse suffix link as slink(y) = z,
zall] = Y, Yindex = 1, slink(z) = y, ya[l] = x, and x;n4e = 1. This operation
can be performed in O(1) time, because the inverse suffix link can be accessed
randomly.

One may think that a DAWG can be used for dictionary matching directly.
This is indeed possible for a single pattern [8]. However, it is difficult to maintain
the output function efficiently for multiple patterns, as is mentioned in [14].
Therefore, we efficiently update AC(D) with the guide of DAWG (D), and then
update DAWG(D) too, as we will see in the next section.

4 AC-Automaton Update Algorithm

We consider inserting a new pattern p of length m into the dictionary D, and
we denote the new dictionary by D’ = DU {p} = {p1,p2,...,pr,p}. It is known

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching 115

Fig. 4. Illustration of updating process when inserting a pattern p = bac into the dic-
tionary D = {abba, aca, cbb}. Compare them with Fig. 3. (a) The updated automaton
AC(D'"), where the only updated failure links are shown. (b) In DAWG(D), the only
suffix links that are used for the update are shown, and the visited nodes are colored.
(Color figure online)

that DAWG(D) can be constructed in O(dlog o) time, and can be updated to
DAWG(D') online in O(mlog o) time [4]. We update AC(D) to AC(D') by using
DAWG(D), and then update DAWG(D) to DAWG(D’). The key point of our
algorithm is to update the output and failure functions of AC(D) in linear time
with respect to the number of states that should be modified. The goto function
can be updated easily by adding a new transition for a new state in the same
way as in the AC-automaton construction algorithm. We then update the output
and failure functions efficiently by using inverse suffix links of DAWG(D). Algo-
rithm 1 updates AC(D) when a new pattern is inserted to D, and Algorithms 2
and 3 find the states whose output function and failure link should be updated,
respectively.

For any node v in DAWG(D), let isuf (v) = {« | slink(x) = v} be the set of
its inverse suffix links. The set isuf (v) of inverse suffix links for each v is stored
in the dynamic array v, as described in Sect. 3. For the new pattern p, we can
divide p to p = xyz and categorize the prefixes of p into three categories, so that
for any 7,7,k with 1 <4 <|z| <j <|z|+ |y| < k < m;

116 Diptarama et al.

Algorithm 1. Pattern insertion algorithm of AC-automaton

Input: new pattern p
1 activeState = rootState;

2 newStatesSet = empty;

3 for 1 <i<mdo

4 if goto(activeState, p[i]) # fail then activeState = goto(activeState, p[i]);
5 else

6 create newState;

7 goto(activeState, p[i]) = newState;

8 activeState = newState;

9 newStatesSet = newStatesSet U {newState};

10 if ¢ = m then
11 L output(newState) = output(newState) U {p};

12 failStates = getFailStates(p, m — |newStatesSet| + 1);
13 for (s,1) € failStates do

1 L flink(s) = newStatesSet[i — |newStatesSet| + 1];
15 activeState = rootState;

16 for 1 <i<m do

'S

17 if goto(activeState, pi]) € newStatesSet then

18 failureState = flink(activeState);

19 while goto(failureState, p[i]) = fail do

20 L failureState = flink(failureState);

21 activeState = goto(activeState, p[i]);

22 flink (activeState) = failureState;

23 | output(activeState) = output(activeState) U output(failureState);
24 else

25 L activeState = goto(activeState, p[i]);

26 outStates = getOutStates(p);
27 for , € outStates do output(s) = output(s) U {p};

1. p[1 : 7] exists both in AC(D) and DAWG(D),
2. p[l: j] does not exist in AC(D) but exists in DAWG(D), and
3. p[l: k] exists in neither AC(D) nor DAWG(D).

To update both output and failure functions of AC(D) to AC(D’) we only use
nodes in DAWG(D) that represent prefixes in the second category. Algorithm 2
follows inverse suffix links of a node representing p recursively in DAWG (D), in
order to find the states in AC (D) whose output functions need to be updated.
On the other hand, Algorithm 3 follows inverse suffix link of nodes that represent
pli : j] for |z| < j <|z|+ |y| (category 2) recursively, until it finds a trunk node
and then saves the state that corresponds to the trunk node to update its failure
link later.

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching 117

Algorithm 2. getOutStates(p)

Output: set of states whose output functions should be updated.
1 activeNode = root;
2 for 1 <i <m and activeNode # null do
3 activeNode = trans(activeNode, p[i]);
4
5

if i = m then
L push activeNode to stack;

6 if activeNode # null then

7 queue = empty;

8 push activeNode to queue;
9 while queue # empty do

10 pop node from queue;

11 if node is a trunk node then

12 L outStates = outStates U {m(node)}
13 for Inode € isuf (node) do

14 L push Inode to queue;

15 return outStates;

Figure4 illustrates an example, where we insert a pattern p = bac into the
dictionary D = {abba,aca, cbb}. First, we create new states 11, 12, and 13.
The string b is represented by node z in DAWG(D), and by the new state 11 in
AC(D’), thus there is at least one state whose failure link should be updated to
point at the state 11. We will explain how to find these states below. Similarly,
we know that at least one failure link should be updated to point at the state 12,
because the string ba represented by the state 12 in AC(D’) is also represented
by node 5 in DAWG (D). However, the string bac, which is represented by the
new state 13, is not represented in DAWG(D), thus we know that there is no
state whose failure link should be updated to state 13. As a result, we have the
set {11,12} of states. (Lines 3-6 in Algorithm 3)

We now explain how to find states whose failure links should be updated.
We begin by the deepest state in {11, 12}, that is, state 12. We search the states
from node 5 in DAWG(D), which represents the same string ba as state 12 in
AC(D’). When searching from node 5, we do not search further because node
5 is a trunk node. Therefore, we update the failure link of state 5 to state 12.
Next, to find states whose failure links should be updated to state 11, we search
the states from node ¢ in DAWG(D), which represents the same string b as
state 11 in AC(D’). By following the inverse suffix links recursively from node
g until reaching a trunk node, we get the set {3,4,9,10} of trunk nodes (see
Fig.4(d)). Therefore, we update the failure link of states 3, 4, 9, and 10 to state
11. (Lines 7-19)

We now show the correctness and running time of our Algorithms2 and 3.

118 Diptarama et al.

Algorithm 3. getFailStates(p, start)
Output: set of states whose failure link should be updated.

1 stack = empty;
2 activeNode = root;
3 for 1 <i < m and activeNode # null do
4 activeNode = trans(activeNode, p[i]);
5 if i > start and activeNode # null then
6 L push (activeNode, i) to stack;
7 while stack # empty do
8 pop (activeNode, 1) from stack;
9 queue = empty;
10 push activeNode to queue ;
11 while queue # empty do
12 pop node from queue;
13 if node is not marked then
14 mark node;
15 if node is a trunk node then
16 L failStates = failStates U {(w(node),)}
17 else
18 for Inode € isuf (node) do
19 L L push Inode to queue;

20 return failStates;

Lemma 2 ([5]). A string x € Substr(D) is the longest member of [x]p if and
only if either x € Pref(D), or ax,bx € Substr(D) for some distinct a,b € X.

Lemma 3. For any branch node in DAWG, there exist at least two suffix links
that point at it.

Proof. Let [z]p be any branch node in DAWG(D), and « € Substr(D) be the
longest member of [z]p. Then x &€ Pref (D) because [z]|p is a branch node. By
Lemma 2, there exist two distinct a,b € X such that azx, bx € Substr(D). Because
x is the longest member of [z] p, we have [ax]p # [z]p. Thus, slink([az]p) = [z]p
because z is a suffix of ax. Similarly, slink([bz]p) = [x]p. Because [az]p # [bz]p,
the branch node [z]p is pointed by at least two suffix links. O

Lemma 4. Algorithm 2 correctly returns the set of states whose output func-
tions should be updated.

Proof. When a new pattern p is inserted to a dictionary D, we have to update
the output function of every state s in AC(D) such that p is a suffix of the string
s. If there is no node in DAWG(D) representing p, we know that no such a string
s exists in D, done. Let s, be a new state created in AC(D’) to represent the
pattern p. The output function of some state s should be updated if and only

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching 119

if s, is reachable from s via a chain of failure links. From Lemma 1, for nodes
u = m""'(s) and v, = [p]p, we have v, = slink’(u) for some i. Therefore, s = 7(u)
can be found by following inverse suffix links from v, recursively. a

Lemma 5. Algorithm 2 runs in O(mlogo + u,) time, where u, is the number
of states whose output function should be updated.

Proof. At first, Algorithm 2 finds the node v representing the pattern p, by
traversing the nodes from the root, in Lines 3-6. It takes O(mlogo) time. If
it failed, done. Then we analyze the runnning time consumed in Lines 6-14 by
counting the number ¢ of visited nodes in DAWG (D). These nodes form a tree,
rooted at v and connected by inverse suffix links chains. Let b (resp. t) be the
number of branch (resp. trunk) nodes in this tree, and let ¢ be the number
of nodes (either branch or trunk) that are child nodes of some branch node.
Because every branch node has at least two child nodes by Lemma 3, we have
2b < g, and obviously ¢ < b+ t. Thus, b < ¢, which yields that / = b+t < 2t =
2|outStates| = 2u,. Therefore, Algorithm 2 runs in O(mlogo + u,). O

Lemma 6. Algorithm 3 correctly returns the set of states whose failure links
should be be updated.

Proof. By argument similar to the proof of Lemma 4, all the states that should
be updated is reachable via chains of inverse suffix links from the nodes in
DAWG (D) that correspond to the new states in AC(D’). Next, we will show
that Algorithm 3 only returns the set S of the states that should be updated. Let
x be a new state, and ¢t = [z]p be a node that represents the string . Assume that
S contains a state s that can be reached by following inverse failure links from x
recursively, but should not be updated. Let u = 7=1(s) and v = 7~ (flink(s)) be
trunk nodes in DAWG (D) corresponding to s and flink(s), respectively. From
Lemma 1, v = slink’(u) and t = slink’ (v) for some i and j. Since Algorithm 3,
started from ¢, stops a recursive search after reaching a trunk node (v in this
case), it would not find u. Therefore, s = w(u) € S. O

Lemma 7. Algorithm 3 runs in O(mlogo + uy) time, where uy is the number
of states that their failure link be updated.

Proof. At first, Algorithm 3 finds the set V' of nodes representing the pattern
p[l : j] for 1 < j < m such that p[1 : j] does not exist in AC(D) but does exist in
DAWG(D), by traversing the nodes from the root, in Lines 3-6. The algorithm
saves the nodes in a stack, because the algorithm will search from the deepest
node. It takes O(mlogo) time. Then we analyze the running time consumed in
Lines 7-19 by counting the number ¢ of visited nodes in DAWG (D). These nodes
form a forest, where each tree is rooted by some node in V' and connected by
inverse suffix links chains, where some node in V' can be an inner node of a tree
rooted by another in V. In this case we mark the nodes that have been visited,
thus each node is visited at most twice. Let b (resp. ¢) be the number of branch
(resp. trunk) nodes in this forest, and let ¢ be the number of nodes (either branch
or trunk) that are child nodes of some branch node. Because every branch node

120 Diptarama et al.

has at least two child nodes by Lemma 3, we have 2b < ¢, and obviously ¢ < b+t.
Thus, b < t, which yields that £ = b+ ¢ < 2t = 2|failStates| = 2uy-. O

Theorem 1. AC-automaton can be updated for each pattern in O(mlogo+uys+
uo) time.

Proof. The goto, failure and output functions of newly created states can be
calculated in O(mlogo), similarly to the original AC-automaton construction
algorithm. From Lemmas 5 and 7, output and failure functions of existing states
can be updated in O(mlogo +u,) and O(mlogo +uy), respectively. Therefore,
AC-automaton can be updated in O(mlogo + us + u,) time in total. O

5 Conclusion

We proposed a new algorithm to update an AC-automaton when a new pattern
is inserted to the dicitonary. Our algorithm uses a directed acyclic word graph in
order to update the AC-automaton. We showed that our algorithm updates the
AC-automaton in O(mlogo + uy + u,) time, which is faster than existing AC-
automaton update algorithms [13,15,16], where m is the length of the inserted
pattern, w, (resp. uf) is the number of states whose output function (resp.
failure links) should be updated. It means that our update process is minimized,
compared to the existing algorithms.

Acknowledgments. This work is supported by Tohoku University Division for Inter-
disciplinary Advance Research and Education, JSPS KAKENHI Grant Numbers
JP15H05706, JP24106010, and ImPACT Program of Council for Science, Technology
and Innovation (Cabinet Office, Government of Japan).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333-340 (1975)

2. Amir, A., Farach, M., Galil, Z., Giancarlo, R., Park, K.: Dynamic dictionary match-
ing. J. Comput. Syst. Sci. 49(2), 208—222 (1994)

3. Amir, A., Farach, M., Idury, R.M., Lapoutre, J.A., Schaffer, A.A.: Improved
dynamic dictionary matching. Inf. Comput. 119(2), 258-282 (1995)

4. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578-595 (1987)

5. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automation recognizing the subwords of a text. Theor. Comput. Sci.
40, 31-55 (1985)

6. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Dynamic dictionary matching
and compressed suffix trees. In: Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied Mathemat-
ics, pp. 13-22 (2005)

7. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Maurer,
H.A. (ed.) Automata, Languages and Programming. LNCS, vol. 71, pp. 118-132.
Springer, Heidelberg (1979)

10.

11.

12.

13.

14.

15.
16.

17.

AC-Automaton Update Algorithm for Semi-dynamic Dictionary Matching 121

Crochemore, M.: String matching with constraints. In: Chytil, M.P., Koubek, V.,
Janiga, L. (eds.) Mathematical Foundations of Computer Science 1988. LNCS, vol.
324, pp. 44-58. Springer, Heidelberg (1988)

Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing
Co. Pte. Ltd., Singapore (2002)

Feigenblat, G., Porat, E., Shiftan, A.: An improved query time for succinct dynamic
dictionary matching. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM
2014. LNCS, vol. 8486, pp. 120-129. Springer, Heidelberg (2014)

Hon, W.-K., Lam, T.-W., Shah, R., Tam, S.-L., Vitter, J.S.: Succinct index for
dynamic dictionary matching. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC
2009. LNCS, vol. 5878, pp. 1034-1043. Springer, Heidelberg (2009)

Idury, R.M., Schéffer, A.A.: Dynamic dictionary matching with failure functions.
Theor. Comput. Sci. 131(2), 295-310 (1994)

Ishizaki, F., Toyama, M.: An incremental update algorithm for large Aho-Corasick
automaton. In: Proceedings of the 4th Forum on Data Engineering and Information
Management, F11-5, pp. 1-6 (2012). (In Japanese)

Kucherov, G., Rusinowitch, M.: Matching a set of strings with variable length don’t
cares. Theor. Comput. Sci. 178(12), 129-154 (1997)

Meyer, B.: Incremental string matching. Inf. Process. Lett. 21(5), 219-227 (1985)
Tsuda, K., Fuketa, M., Aoe, J.I.: An incremental algorithm for string pattern
matching machines. Int. J. Comput. Math. 58, 33—42 (1995)

Wikipedia: Dynamic array — Wikipedia, the free encyclopedia (2016). Accessed 15
May 2016

Parallel Computation for the All-Pairs
Suffix-Prefix Problem

Felipe A. Louza!®), Simon Gog?, Leandro Zanotto!, Guido Araujo!,
and Guilherme P. Telles!

! Institute of Computing, University of Campinas, Sdo Paulo, Brazil
{louza,guido,gpt}@ic.unicamp.br, leandro.zanotto@reitoria.unicamp.br
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany
gog@kit.edu

Abstract. We show how to parallelize the optimal algorithm proposed
by Tustumi et al. [19] to solve the all-pairs suffix-prefix matching problem
for general alphabets. We compared our parallel algorithm with SOF [17],
a practical solution for DNA sequences that exhibits good time and space
performance in multithreading environments. The experimental results
showed that our parallel algorithm achieves a consistent speedup when
compared with the sequential algorithm, and it is competitive with SOF
when the minimum overlap length is small.

Keywords: Suffix-prefix matching - Parallel algorithm - Multithread-
ing - Suffix array - LCP array

1 Introduction

Given a collection of strings the all-pairs suffix-prefix matching problem (APSP)
is to find all longest overlaps among string ends [7]. This problem is well know
in stringology [14] and appears often as a bottleneck part of DNA assembly,
where the number of strings ranges from thousands to billions [3]. Other applica-
tions include EST clustering [9] and approximating the shortest common super-
string [7].

The APSP has been approached in different ways. In practice with DNA
sequences, filtering strategies have been used and rendered very efficient algo-
rithms that are able to cope with the huge scale of DNA assembly [5,18]. On
the theoretical side, optimal algorithms exist [8,15,19] that are able to handle
strings from general alphabets, and, while not beating specialized algorithms for
DNA, still perform fairly.

In this article we introduce a parallel algorithm for the APSP. Our solution
builds on a previous optimal sequential algorithm by Tustumi et al. [19]. We
were able to obtain a consistent speedup with a small memory footprint with
this approach. Experimental results showed that our algorithm is competitive
with the practical solution SOF [17] when the minimum overlap length is small.

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 122-132, 2016.
DOI: 10.1007/978-3-319-46049-9_12

Parallel Computation for the All-Pairs Suffix-Prefix Problem 123

The next sections are organized as follows. In Sect.2 we introduce notation
and discuss the practical and the optimal algorithms to solve the APSP. In
Sect. 3 we present the optimal algorithm by Tustumi et al.In Sect.4 we present
our parallel algorithm and in Sect.5 we show experimental results. In Sect. 6 we
conclude the article.

2 Preliminaries

2.1 Notation

Let S be a string of length n over an ordered alphabet . The i-th symbol of
S is denoted by S[i] and the substring including symbols in the interval [z, j],
1 < i < j < mn,is denoted by S[i,j]. A prefix of S is a substring of the form
S[1,4] and a suffix is a substring of the form S[i, n], which will be denoted by
S;. We use the symbol < for the lexicographic order relation between strings.

The suffix array of S[1,n], SA, is an array of integers in the range [1,n] that

gives the lexicographic order of all suffixes of S, such that Ssaj;) < Ssapz <

. < Ssapn) [6,13]. We denote the position of suffix S; in SA as pos(S;). The
LCP-array is an array of integers that stores the length of the longest common
prefix (lep) of two consecutive suffixes in SA, such that LCP[1] = 0 and LCP[i] =
lep(Ssafi); Ssafi—1)) for 1 <@ < n. Both SA and the LCP-array can be constructed
in linear time [10,16].

The range minimum query (rmg) with respect to the LCP gives the smallest
lep value in an interval of SA. We define rmg(i, j) = min;<,<;{LCP[k]}. Given
a string S[1,n] and its LCP-array, it is easy to see that lcp(Ssafi, Ssap)) =
rmq(i,7), with 1 <i < j <mn.

Let S = S, 52%,...,8™ be a collection of strings of lengths n; = |S|, Vi €
[1,n]. The generalized suffix array of S is the suffix array of the concatenated
string 5°%* = §1$,52%8,...9™$,, of length N = m + X7 n;, where each symbol
$; is a distinct separator that does not occur in ¥, precedes every symbol in
¥, and $; < §; if ¢ < j. For a suffix SgaA‘ii], we denote the prefix of SgaA’ii] that
ends at the first separator $; by SgAm. The generalized suffix array can also be
constructed in linear time [11].

For a clearer notation, we introduce the arrays STR and SA’. STR indicates
which string in S a suffix came from, that is, STR[¢] = j if the suffix SgA[i] ends
with symbol $;. SA” holds the position of a suffix with respect to the string it
came from (up to the separator), defined as SA'[{] = k if SgA[z‘] = S,i$j. In other
words, STR and SA’ specify the order of all suffixes in the collection. We will
denote the generalized suffix array enhanced with the arrays STR, SA” and LCP
as GESA. The GESA of the collection & = {aac,aca, aa, caa} is illustrated in
Fig. 1.

Let S* be the j-th (lexicographically) smallest string in S. P is an array of
m + 1 integers that stores in P[j] the position of the complete suffix S*[1,ny]
in GESA. We define P[0] = m + 1. Let the interval B/ = (P[j — 1], P[j]] be
a block of GESA corresponding to S*¥. GESA can be partitioned into m blocks

124 F.A. Louza et al.

i SA|LCP [STR[SA” | S5,y

1] 4] o 1 4 | %

21 8| 0 2 4 1%

3 11| 0 3 3 | $s

4] 15/ 0 4 4 |84
PlO]—| 5 7| © 2 3 | a$s

6] 10| 1 3 2 | a$s

71 14 1 4 3 | a$y
P[] —| 8 9 1 3 1 | aa$s

9| 13| 2 4 2 aa$,
P[2] —|10| 1| 2 1 1 | aac$;

11 21 1 1 2 ac$,
P[3] —|12] 5| 2 2 1 | aca$s

13] 3/ 0 1 3 | c$:

14 6| 1 2 2 | ca$;
P[4] —|15] 12| 2 4 1 | caa$y

Fig. 1. The GESA of S = {aac, aca, aa, caa}. Suffixes in block 1 are highlighted.

B',B2,...,B™, one for each string S* in S. In Fig. 1, block B! = (5, 8] of the
corresponding string S = aa is shown by a gray rectangle.

2.2 APSP

The all-pairs suffix-prefix matching problem (APSP) is to find, for all pairs of
strings S* and S7 in S, the longest suffix of S* that is a prefix of S7 [7]. In
other words, S? overlaps S7. The solution of the APSP can be stored in an
“overlap” squared matrix Ov of size m?, where Ov[i, j] represents the length of
the longest suffix of S* that overlaps S7. Ov can also be stored using a compact
representation [2].

Practical Algorithms: The most demanding application for the APSP currently
is overlap detection for DNA assembly, which has been solved much faster in
practice by non-optimal algorithms. SGA [18] and Readjoiner [5] are genome
assemblers that have a very fast and isolated overlap detection stage with very
low space consumption, which find all suffix-prefix overlaps (not only the longest
overlaps). Recently, Rachid and Malluhi [17] presented SOF, a practical algo-
rithm to solve the APSP for DNA sequences that is competitive with the genome
assemblers. SGA, Readjoiner and SOF may be executed in multithreading envi-
ronments. Previous experiments [17] have shown that SOF has a better perfor-
mance with multiple threads.

Optimal Algorithms: The APSP has been solved in optimal time by Gusfield
et al. [8] in 1992 through generalized suffix trees [20] and stacks. In 2010,
Ohlebusch and Gog [15] improved memory usage through enhanced suf-
fix arrays [1,13] and stacks, reducing the practical running time. Recently,

Parallel Computation for the All-Pairs Suffix-Prefix Problem 125

Tustumi et al. [19] proposed a different traversal of the enhanced suffix array
and replaced stacks by linked lists to achieve an even better practical running
time. We stress that all these algorithms are theoretically optimal and are able
to deal with strings from general alphabets.

3 Related Work

The algorithm by Tustumi et al. [19] solves the APSP in optimal O(N + m?)
time, based on the following remarks.

All suffixes that are a prefix of S* are either in positions prior to pos(S*)
or are identical to S* and directly succeed pos(S*) in the GESA [15, Lemma
3.1]. Given a prefix S* < S* if a suffix of S”, of length ¢, is a prefix of S*
and ¢ > lep(St, S*), then such suffix of S” is not a prefix of S* [19, Lemma 2].
Furthermore, if two different suffixes of S™ are a prefix of S*, the longest is closer
to pos(S*¥) in GESA.

The blocks are processed in order. For each block B7, with j = 1,2,...,m, a
local solution is found scanning B7 backwards and a global solution is obtained
reusing the local solutions of the blocks processed previously.

For block B7, GESA is scanned backwards, from i = P[j] to P[j — 1] + 1.
Suppose that pos(S¥) = P[j] and pos(S!) = P[j — 1]. The algorithm uses m
local lists and m global lists to track all overlaps seen so far. The value of
¢ = rmq(i, P[j]) is computed in O(1) time as the minimum lep value between
the entries processed during the scanning of B7. If the length of the current
suffix is equal to lcp(SS/I,TH], SkY = rmgq(i, P[4]), then it is a prefix of S* and its
length is inserted at the end of its local list Ljocq;[STR]i]]. At the end, the longest
overlaps in B7 are at the front of each local list, and ¢ is equal to lep(St, S¥).

The longest suffix of S” that overlaps S* may be positioned in a previous
block B/~!, Bi=2 ..., B! processed so far. The global lists store these overlaps.
Each global list Lgopei[r] is composed by the elements inserted in Ljpeq[r] and
has to be updated as each block is processed. To do this, at the end of each
local solution the algorithm removes the suffixes that have length larger than
lep(St, S*) from all local lists. These suffixes no longer overlap S* or any the
following complete strings that will be processed by the algorithm. Each local
list Liocqr[r] is prepended in the global list Lgopq:[r]. Finally, the first element of
each Lgopqr[r] corresponds to the length of the longest suffix of S™ that overlaps
Sk, This value is inserted in Ov[k,r]. Note that, to improve the memory access
reference, the algorithm stores in Ov[k,r] the length of the longest suffix of S”
that overlaps S*. If Lyjopai[r] is empty, there is no overlap of S” with S*.

The suffixes identical to S* that directly succeed pos(S¥) are found scanning
GESA forward from i = P[j] + 1 to ¢, while LCP[g] = nj, [15, Lemma 3.1]. The
length of these suffixes are inserted in Ov, possibly overwriting the results in
Lgiobal [r], which is correct as such overlaps are larger.

126 F.A. Louza et al.

4 Parallel Algorithm

In this section we show how to split the computation of all overlaps performed
by Tustumi et al.’s algorithm to solve the APSP in parallel in a shared-memory
multithreading environment.

At a glance, our algorithm is composed by three phases. First, all local solu-
tions are computed scanning the blocks B’ concurrently. Then, the local lists are
accessed in parallel to obtain the global solutions. Finally, the identical suffixes
of all strings are identified scanning the GESA in parallel.

Algorithm: Suppose that for each block B7, pos(S*) = P[j] and pos(S!) =
P[j — 1]. Algorithm 1 works as follows.

In Phase 1, the m blocks of the GESA are processed in parallel (Lines 1
to 12) to compute the local solutions of each string S*. The algorithm scans
each block B? backwards (Lines 4 to 10), and whenever a suffix of S (Line 5)
that overlaps S* is found (Line 7), its length is inserted at the end of a local list,
which is pointed by an entry in a two dimensional array (matrix) of lists, namely
Liocat[r][j] (Line 8). Note that the list in Ljcqi[r][j] is ordered decreasingly by
the overlap lengths due to the backward scan. An array of integers Min of length
m is used to store in Min[j] the value of rmg(P[j — 1],P[j]) (Line 11). At the
end of Phase 1 (Line 12), all local solutions have been computed and are stored
into the local lists, which will be used together with Min in Phase 2 to obtain
the global solutions.

In Phase 2, the m arrays of local lists, that is, the m lines of matrix Ljyca;
that correspond to each S”, are processed in parallel (Lines 13 to 23) to find the
suffixes of S™ that overlap the other strings (Line 20). Let S* be such overlapped
string (Line 16). A global list for S” is used to keep track of all valid overlaps
in Ljoear[r][j], according to Min[j], as blocks B’ are processed in the inner for-
loop (Lines 15 to 22). Lgiope: is initially empty (Line 14). For each BJ, with
Jj=1,2,...,m (Lines 15 to 22), the algorithm updates Lgopqi, first removing
all suffixes larger than Min[j] (Lines 17 to 19), since these overlaps are no longer
valid for S* [19, Lemma 2]. Recall that Min[j] = rmq(P[j—1], P[j]) = lep(St, S*).
In the sequel, Liocq[7][j] is prepended to Lgiopa: (Line 20) and the longest suffix
of S” that overlaps S* will be the first element of Lgiopar that is inserted at
Ov[r, k] (Line 21).

In Phase 3, the suffixes identical to each strings S* are found in parallel
(Lines 24 to 33). For each block B’ and its corresponding string S* (Line 25),
all suffixes of S™ (Line 27) identical to S* that appear directly after pos(S¥) in
positions ¢ = P[j] + 1 to ¢ are found (Lines 28 to 32). As in Tustumi et al.’s
algorithm, the length of these suffixes are inserted in Ov (Line 29).

Theoretical Costs: In Phase 1, the parallel for loop in Line 1 is executed m/t
times, where ¢ is the number of threads. Then, Phase 1 is O(maxi<j<m, |B’|).
In Phase 2 the parallel for loop in Line 13 is executed m/t times, whereas Lines
15 to 22 are executed m?/t times. The parallel for loop of Phase 3 is executed
m/t times and each execution reads at most N elements of GESA. Thus our

Parallel Computation for the All-Pairs Suffix-Prefix Problem 127

Algorithm 1. Parallel APSP (p-apsp)

Data: GESA of the collection S = {S*,S%...,8™}

Result: result matrix Ov
// Local solutions

1 for j < 1 to m do in parallel
2 k — STRIP[4]];
3 £ «— oc;
4 for i — P[j] to P[j — 1]+ 1 do
5 r «— STRJ]
6 £ — min(£,LCP[i + 1]);
7 if |Sgar(| = ¢ then
8 insert_at_end(Liocat[r][], £) ;
9 end
10 end
11 Min[k] < ¢;

12 end
// Global solutions
13 for r +— 1 to m do in parallel

14 Lglobal — null;

15 for j — 1 to m do

16 k — STR[P[4]];

17 while first(Lgiobar) > Min[j] do

18 ‘ remove_first(Lgiobal)

19 end

20 Lgiopar < insert_at_front(Liocai[r][j]);
21 Ov[r, k] < first(Lgiopat) ;

22 end

23 end

// Identical suffixes

24 for j <+ 1 to m do in parallel

25 k — STR[P[4]];

26 i— P[]+ 1;

27 r — STR[i];

28 while |Sga ;| = LCP[i] and i < N do

29 Ov|r, k] < LCP[i] ;
30 1—1+1;

31 r «— STRJ[i];

32 end

33 end

/] S" overlaps S*

// S overlaps S*

// Siarj; is identical to Sk

algorithm runs in O(N +m?/t) time, which only occurs in bad cases (when the
string lengths are very unbalanced). In realistic cases (m > t and all strings
with about the same size) the parallel time is close to N/t +m?/t.

Overall, all threads insert at most NN suffixes into the local lists. Then, the
space complexity is given by the O(N) space of the GESA, and by the O(m?+ N)
space of the matrix of local lists, where each list stores at most N overlaps.

128 F.A. Louza et al.

Thus the space complexity of our parallel algorithm is O(N + m?2), which is
equal to the sequential algorithm by Tustumi et al.

5 Experiments

We implemented Algorithm 1 in C4++ using OpenMP directives for the paral-
lelization. We used the SDSL [4] version 2.0! to construct the GESA. Our source
code is publicly available at https://github.com/felipelouza/p-apsp.

We have compared the performance of our parallel algorithm, called p-apsp,
with the sequential optimal algorithm by Tustumi etal?, called apsp, and
with the practical solution SOF [17]?, which has good time and space perfor-
mance in multithreading environments. We used different number of threads
t = {1,2,4,8,16,32} set by the directive omp_set num_threads() for p-apsp
and SOF. All programs were compiled with g++ (v. 4.9.2) with the same opti-
mization flags.

The experiments were executed in a 64 bits Debian GNU/Linux 8 (kernel
3.16.0-4) system with an Intel Xeon Processor E5-2630 v3 20M Cache 2.40-GHz,
with 384 GB of internal memory and a 13 TB SATA storage. We used the
EST database from C. elegans®. The number of strings used in the experiments
varied from 10.000 to 300.000. We used different minimum overlap length values
7 ={5,10, 15,20} to limit the number of overlaps found by the algorithms.

We also tested the algorithms with 200.000 ESTs from Citrus sinensis® and
obtained very close results, which are not shown.

Table 1 shows the number of overlaps found solving the APSP for the C.
elegans dataset. Notice that as the value of 7 increases the number of overlaps
decreases. In particular, the number of overlaps for 300.000 strings when 7 = 5
is 23 times larger than when 7 = 10. We shall see that such variation impacts
the performance of all algorithms, both in time and space.

Table 1. Number of overlaps found in the experiments with 100.000, 200.000 and
300.000 ESTs of the C. elegans varying 7.

T 5 10 15 20

100.000 | 18,853,491 206,154 88,725 82,427
200.000 | 71,451,170 | 2,675,759 | 2,139,431 | 2,077,125
300.000 | 162,135,112 | 7,044,274 | 5,800,397 | 5,617,779

! sdsl-lite library is available at https://github.com/simongog/sdsl-lite.

2 https://github.com/felipelouza,/apsp.

3 http://confluence.qu.edu.qa,/download /attachments /9240580 /Prefix.tgz.

4 http://www.uni-ulm.de/in/theo/research/seqana.html.

5 ftp://ftp.bioinfo.wsu.edu/www.citrusgenomedb.org/Citrus_sinensis/C.sinesis_unige
ne_v1.0/.

https://github.com/felipelouza/p-apsp
https://github.com/simongog/sdsl-lite
https://github.com/felipelouza/apsp
http://confluence.qu.edu.qa/download/attachments/9240580/Prefix.tgz
http://www.uni-ulm.de/in/theo/research/seqana.html
ftp://ftp.bioinfo.wsu.edu/www.citrusgenomedb.org/Citrus_sinensis/C.sinesis_unigene_v1.0/
ftp://ftp.bioinfo.wsu.edu/www.citrusgenomedb.org/Citrus_sinensis/C.sinesis_unigene_v1.0/

Parallel Computation for the All-Pairs Suffix-Prefix Problem 129

5.1 Running Time

Figure 2 shows the running time of each algorithm not accounting for the time to
build the auxiliary data structures, that is, the GESA for apsp and p-apsp, and
the compact prefix tree for SOF. The elapsed time was taken by the directive
omp_get_wtime ().

SOF was the fastest algorithm in all experiments. However, p—apsp has shown
a good performance when the minimum overlap length is small, a situation where
the specialized strategy used by SOF is not so efficient. This result is coherent
with the theoretical optimality of Tustumi et al.’s algorithm. Note that the
parallel implementation has some overhead with 7 = 5 when comparing p-apsp
with a single thread (p-apsp;) to the sequential apsp. Note also that p-apsp and
SOF improve their running time as the number of threads increases.

400

300
= apsp

-~ p-apsp;
O p-apsp,
A p-apsp,
© p-apspg
¥ p-apspig
—H- p-apspss
-— SOF,
— SOF,
— SOF,
— SOFg
- SOFlﬁ
— SOFs;

200

—

[

f=]
1

[=}
1

Time in seconds

T T T T T T T
0 100 200 3000 100 200 300
Number of strings in thousands

Fig. 2. Running time of p-apsp, apsp and SOF for varying values of 7.

Table 2 shows the running time and the speedup of each algorithm for 300.000
ESTs with 7 = 5. However, p-apsp achieved a much better speedup with the
increasing number of threads, indicating that this parallel algorithm may be
a practical solution for large instances of the APSP on strings coming from a
general alphabet.

130 F.A. Louza et al.

Table 2. Experiments with 300.000 ESTs of the C. elegans dataset with 7 = 5. The
table shows the running time (in seconds) and the speedup of the parallel algorithms
over its serial versions, when the numbers of threads is 1

n. threads | apsp | p-apsp SOF
Time |Time |Speedup | Time | Speedup

1 397.17|463.33 82.80

2 222.78| 1.91 52.49 | 1.58

4 121.35| 3.51 29.50 | 2.81

8 68.11| 6.26 28.30 2.93

16 43.41| 9.82 28.64 | 2.89

32 34.65|12.31 23.62 | 3.50

5.2 Peak Memory

The memory usage was measured by the malloc_count library®. We observed that
the peak memory of p-apsp and SOF change slightly as the number of threads
varies. For a clearer view we plot only the peak memory for p-apsp and SOF
using 32 threads in Fig. 3.

10.0

=~
(S
L

wt
=)
L

N
o
1

=]
(==}
1

&= apsp

‘5 p-apspz;

Peak space in GB
=
o
1

=~
ot
L

— SOF32

T
0 100

T
200

T
3000

T
100

T
200

Number of strings in thousands

T
300

Fig. 3. Peak memory of p-apsp, apsp and SOF for varying values of 7

5 malloc_count library is available at http://panthema.net/2013/malloc_count.

http://panthema.net/2013/malloc_count

Parallel Computation for the All-Pairs Suffix-Prefix Problem 131

As expected, memory usage varies according to 7. SOF uses less memory in all
experiments and p-apsp memory usage is very similar to the sequential version
apsp. As demonstrated by the theoretical analysis the experiments confirm that
practical memory usage differs only by a constant factor when comparing apsp
and p-apsp.

6 Conclusion

We showed how to parallelize the optimal algorithm by Tustumi et al.[19] to
solve the APSP. We separated the computation of the local solution followed
by the global solution and by the identical suffixes searching into independent
phases. We compared our parallel algorithms with SOF [17], a practical solution
with the best parallel performance, as shown in previous work. Our experimental
results showed that the parallel algorithm achieves a 12-fold speedup, and that it
is competitive with practical algorithm, such as SOF, when the minimum overlap
length is small and offers the ability to deal with larger alphabets.

As the algorithm by Tustumi et al., our algorithm can be also improved to
work in semi-external memory, since the GESA can be constructed in external
memory [12] and its blocks can be accessed as necessary, reducing the peak
memory. Our parallel implementation is general enough that it can be executed
on a different architecture model, such as cloud distributed computing, possibly
enabling the usage of hundreds of threads.

Acknowledgments. FAL acknowledges the financial support CAPES and CNPq
(grant No. 162338/2015-5). GPT acknowledges the support of CNPq. The authors
thank Prof. Nalvo Almeida for granting access to the machine used for the experi-
ments.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53-86 (2004)

2. Dinh, H., Rajasekaran, S.: A memory-efficient data structure representing exact-
match overlap graphs with application for next-generation DNA assembly. Bioin-
formatics 27(14), 1901-1907 (2011)

3. El-Metwally, S., Hamza, T., Zakaria, M., Helmy, M.: Next-generation sequence
assembly: four stages of data processing and computational challenges. PLoS Com-
put. Biol. 9(12), 1003345 (2013)

4. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326-337. Springer, Heidelberg (2014)

5. Gonnella, G., Kurtz, S.: Readjoiner: a fast and memory efficient string graph-based
sequence assembler. BMC Bioinform. 13(1), 82 (2012)

6. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: pat trees and
pat arrays. In: Information Retrieval, pp. 66—82. Prentice-Hall Inc, Upper Saddle
River (1992)

132

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F.A. Louza et al.

Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

Gusfield, D., Landau, G.M., Schieber, B.: An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett. 41(4), 181-185 (1992)

Kalyanaraman, A., Aluru, S.: Handbook of computational molecular biology, chap.
In: Expressed Sequence Tags: Clustering and applications. CRC Press, Boca Raton
(2005)

Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181-192. Springer,
Heidelberg (2001)

Louza, F.A., Gog, S., Telles, G.P.: Induced suffix sorting for string collections. In:
Proceeding DCC, pp. 43-52. IEEE, Snowbird (2016)

Louza, F.A., Telles, G.P., Ciferri, C.D.D.A.: External memory generalized suffix
and LCP arrays construction. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS,
vol. 7922, pp. 201-210. Springer, Heidelberg (2013)

Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
STAM J. Comput. 22(5), 935-948 (1993)

Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Verlag, Oldenbusch (2013)

Ohlebusch, E., Gog, S.: Efficient algorithms for the all-pairs suffix-prefix prob-
lem and the all-pairs substring-prefix problem. Inf. Process. Lett. 110(3), 123-128
(2010)

Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction
algorithms. ACM Comp. Surv. 39(2), 1-31 (2007)

Rachid, M.H., Malluhi, Q.: A practical and scalable tool to find overlaps between
sequences. BioMed Res. Int. 2015, 1-12 (2015)

Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using
the FM-index. Bioinformatics 26(12), i367-1373 (2010)

Tustumi, W.H., Gog, S., Telles, G.P., Louza, F.A.: An improved algorithm for the
all-pairs suffix-prefix problem. J. Discrete Algorithms 47, 34-43 (2016)

Weiner, P.: Linear pattern matching algorithms. In: Proceeding Annual Sympo-
sium on Switching and Automata Theory, pp. 1-11. IEEE Computer Society,
Washington, DC (1973)

Dynamic and Approximate Pattern
Matching in 2D

Raphaél Clifford' ™) Allyx Fontaine', Tatiana Starikovskaya',
and Hjalte Wedel Vildhgj?

! Department of Computer Science, University of Bristol, Bristol, UK
Raphael.Clifford@bristol.ac.uk
2 Technical University of Denmark, DTU Compute, Kongens Lyngby, Denmark

Abstract. We consider dynamic and online variants of 2D pattern
matching between an m x m pattern and an n xn text. All the algorithms
we give are randomised and give correct outputs with at least constant
probability.

— For dynamic 2D exact matching where updates change individual
symbols in the text, we show updates can be performed in (9(10g2 n)
time and queries in O(log® m) time.

— We then consider a model where an update is a new 2D pattern and a
query is a location in the text. For this setting we show that Hamming
distance queries can be answered in O(logm + H) time, where H is
the relevant Hamming distance.

— Extending this work to allow approximation, we give an efficient algo-
rithm which returns a (1+4¢) approximation of the Hamming distance
at a given location in O(¢~? log? mloglogn) time.

Finally, we consider a different setting inspired by previous work on local-
ity sensitive hashing (LSH). Given a threshold &k and after building the
2D text index and receiving a 2D query pattern, we must output a loca-
tion where the Hamming distance is at most (1 + ¢)k as long as there
exists a location where the Hamming distance is at most k.

— For our LSH inspired 2D indexing problem, the text can be pre-
processed in O(n?*/3+1/1+) 1093 n) time into a data structure of
size O(n?1+1/ (49D with query time O(n?(/(1+e)m?),

1 Introduction

Two dimensional pattern matching has been a topic of study and great inter-
est for many years. The original motivation comes from image processing and
recognition where one is attempting to find possibly approximate occurrences
of a 2D-pattern inside a larger 2D-text. For exact matching offline, linear time
solutions are known [11,12,15] and the indexing problem is solved efficiently
with the help of 2D-suffix trees [16]. A number of other variants have also been
studied including 2D-compressed pattern matching, matching with rotations,
pattern matching with non-rectangular patterns as well as others [2-7,9,14].

© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 133-144, 2016.
DOI: 10.1007/978-3-319-46049-9_13

134 R. Clifford et al.

We will consider a number of variants of 2D-pattern matching which have to
date received little attention. These can broadly be described under the head-
ings of online and dynamic pattern matching. Our focus will be both on exact
matching as well as exact and approximate Hamming distance computation. We
will also tackle a problem formulation inspired by the locality sensitive hashing
work of Andoni and Indyk [10]. Here we are given a pattern as a query and we
must report a location in the text where the Hamming distance is not too large
as long as one exists. We will now formalise the problems we tackle. All the
algorithms we develop will be randomised giving correct answers with at least
constant probability. For each problem our input text will be a square matrix T
(the text) of size n x n and the pattern P will be of size m x m.

To start we consider a dynamic version of the classic 2D-pattern matching
problem. The problem can be seen as a generalisation of the 1D problem consid-
ered in [8], where updates are only allowed in the text and the pattern remains
static. Our solution relies heavily on Karp-Rabin fingerprinting [18]. The main
technical hurdle we overcome is the difficulty in combining fingerprints of adja-
cent rectangular matrices. We circumvent this problem by only ever combining
the fingerprints of two matrices if they are placed horizontally next to each other.

Problem 1 (Dynamic Text Static Pattern Matching in 2D). Given a text T and
a pattern P, build a dynamic index that supports an update (o, (¢,7)) which
sets T[i, j] < o and query (i,j) which returns True if there is an exact match
at location (,7) in the text and False otherwise.

Our solution to Problem 1 will in fact support the arrival of entire new
patterns efficiently as well. For our next two problems we consider online pattern
matching problems where the only update is the arrival of a new pattern and a
query will return the exact or approximate Hamming distance at some position
in the text. Our aim is to perform all three steps, preprocessing, updates and
queries as quickly as possible. We denote by Ham(P,T)(i,j) the Hamming
distance between the 2D-pattern P and the m x m submatrix of T with top left
corner (i,7).

Problem 2 (Online Ezact Hamming Distance in 2D). Given a text T, build a
dynamic index that supports updates with a pattern P and queries which return
the value Ham(P,T)(i, j).

Our solution uses as a preliminary step linearisation of the input by encoding
carefully selected substrings of the 2D-text with their Karp-Rabin fingerprints.
This will allow us to search efficiently first for mismatches within columns and
then rows using dynamic lower common ancestor queries in suitably constructed
suffix trees.

To provide faster solutions we then extend this online Hamming distance
problem to allow a (1+¢) approximation. We show that we can find the approx-
imate value considerably faster than the exact value. To achieve this we use the
technique known as sketching [1]. This technique was originally developed for

Dynamic and Approximate Pattern Matching in 2D 135

1D strings but can be transferred to our case by storing sketches of selected
substrings of the text T.

Problem 3 (Online Approzimate Hamming Distance in 2D). Given a binary text
T, construct a dynamic index that supports updates with a binary pattern P
and queries which return a (1 + €) approximation of the Hamming distance
Ham(P,T)(i, 7).

Finally we turn to a closely related indexing problem. Here we may preprocess
the 2D-text and we receive a 2D-pattern as a query along with a threshold &
and a constant €. We must output a location in the text where the Hamming
distance is no more than (1 + €)k as long as there exists a location where the
Hamming distance is no more than k.

Problem 4 (Submatriz Near Neighbour Problem). We are initially given a text T,
an integer k and a constant € > 0. Construct an index that supports the following
query. Given a pattern P, output a position (4, 5) such that Ham(T,P)(i,j) <
(1 +¢€) - k if there exists a submatrix of T with Hamming distance at most k
from P. Otherwise if there is not, the query may either report a location with
true Hamming distance up to (1 4+ €)k or no location at all.

In the 1D case Andoni and Indyk [10] solved the same problem we study by
developing an index on suffixes of a 1D string. To construct their index Andoni
and Indyk [10] heavily relied on relationships between suffixes of a 1D string.
These relationships do not exist in the 2D case and so we have introduced new
techniques and ideas to construct the index. These are our main contribution
for Problem 4.

Definitions and Notation. We will use two kinds of partitioning of the text
and pattern which we term belts and canonical submatrices. Let S be an s x t
matrix. A belt of height h < s for the matrix .S is a submatrix of S with size h x t.
A canonical submatriz of S is a submatrix of S with size 2° x 27 where i < log s
and j < logt are both integers. We will also write T[i,i +x — 154,57 +y — 1] to
denote the z x y submatrix of T with top left corner at some position (i,75) in
the text. We assume throughout that all logarithms are taken base two and for
convenience of presentation that both m and n are an exact power of two.

2 Dynamic Text Static Pattern Matching in 2D

As our first contribution we describe a dynamic randomised index that supports
efficient exact pattern matching queries as well as updates to T and hence solves
Problem 1.

Theorem 1. The text T can be preprocessed in O(n?logn) time into a data
structure of size O(n?) so that after processing the pattern P in O(m?logm)
time, we can support single character updates in (9(10g2 n) time and query if P
occurs at a position (i,7) of T w.h.p. in O(log> m) time.

136 R. Clifford et al.

The main idea of our dynamic index is to compute the Karp-Rabin finger-
prints of submatrices of T of power of two size in order to be able to compute
the fingerprint of the m x m submatrix with the top left corner at the position
(i,4) of T efficiently. A straightforward partitioning will not suffice however due
to the difficulty in computing fingerprints of the concatenation of rectangular
matrices.

We start by giving the definition of Karp-Rabin fingerprints for matrices.

Definition 1. Let S be an s x t matriz for some s,t < n. Let p > n* be a prime
and r be a random integer in F,. We define the Karp-Rabin fingerprint ¢ for S
as:

2(8) = 323 S0, 0D (mod p)

i=1 j=1

Lemma 1. The Karp-Rabin fingerprints of any two s X t matrices S, S’, where
s,t < n, have the following properties:

1. If S =5, then o(S) = p(S');
2. If S # S', then the probability ¢(S) = ©(S') is at most 1/n>.

Proof. The first claim of the lemma is trivial. To prove the second claim notice
that since ¢(S) — ¢(S’) is a non-trivial polynomial of degree s - ¢, the number of
its roots € IF), is at most s - t. The probability we choose a root randomly from
F, is at most O(s-t/n*). The result holds since s - t < n?. O

Moreover, from the definition of Karp-Rabin fingerprints we immediately
obtain the following observation. We say that two submatrices are adjacent on
the vertical side if they are placed horizontally next to each other. That is S =
Tli:i+s—1,5:j+t—1and ' =T[i:i+s—1,j+t:j+t+¢ —1]

Lemma 2. Let S,5’ be two submatrices of T adjacent on the vertical side. We
can compute the Karp-Rabin fingerprint of S” = T[i:i+s—1,j:j+t+t —1]
as

p(S") = @(8) + 7 - ¢(S') (mod p)
Proof. The proof follows immediately from the definition. O

We now present our dynamic index. For each ¢+ = 0,1, ...,logn we divide T
into n/2¢ non-overlapping belts of height 2¢. For each j = 0,1,...,logn we then
partition each belt into n/27 canonical submatrices of width 27. For each of the
canonical submatrices we store its Karp-Rabin fingerprint in a lookup table.
It follows from the fingerprint definition that an individual fingerprint can be
updated in constant time if a letter at a particular position in the text is changed.
When we change one letter in T, we need to update only (’)(log2 n) fingerprints,
which can be therefore be done in O(log® n) time in total. The partitioning into
belts and canonical submatrices is illustrated in Fig. 1.

Dynamic and Approximate Pattern Matching in 2D 137
" 2 2 Y

21|
2]
2]
2]
(a) (b) (c)

Fig. 1. (a) A matrix S of size sxt. (b) Partition of S into non-overlapping belts of height
2'. In gray is represented one such belt. (c) Partition of S into canonical submatrices
of height 2" and width 27. In gray is represented one such canonical submatrix

When a pattern arrives, we process it in the following way. For each i =
0,1,...,logm we compute and store the Karp-Rabin fingerprints of all m—27+1
belts of height 2¢. For a fixed value of i we compute the 2D-fingerprints of all
m — 2% 4 1 belts of height 2! in two steps. The first step is computing the 2D-
fingerprints of all submatrices of size 2° x 1, which we do column by column.
For each column j, we first compute the fingerprint ¢ of the string P[1 : 2, j],
and then for each ¢ > 1 we compute the fingerprint ppiq of P[{ + 1 : £ +
2¢ 4] from the fingerprint ¢, 1 of P[{ : £+ 2? — 1, 4] in constant time. As there
are m columns of length m each, this step requires O(m?) time. The second
step consists in computing for each belt its 2D-fingerprint from its columns’
fingerprints as described in Lemma 2 in time O(m).

Suppose now that we are asked if T[i,i+m—1; j, j+m—1] matches pattern P.
We can divide T[i : i +m — 1,5 : j+m — 1] into O(log m) non-overlapping belts
with heights that are powers of two. Each belt can then be divided vertically
into O(log m) canonical submatrices for which we already know their Karp-Rabin
fingerprints. With the help of Lemma 2 we compute Karp-Rabin fingerprints of
the belts in (’)(log2 m) time and compare them to those of the pattern.

Construction of the Index. We now explain how we construct the text
index. We iteratively compute Karp-Rabin fingerprints of canonical matrices
of height 2%, i = 0,1, ...,logn. When the height is fixed, we iteratively compute
Karp-Rabin fingerprints of canonical matrices of width 27, for j = 0,1,...,logn.

For each i we start by computing Karp-Rabin fingerprints of all 2¢ x 1 subma-
trices in O(n?) time in a straightforward manner. When Karp-Rabin fingerprints
of 2 x 27 submatrices are computed, we can compute Karp-Rabin fingerprints
of 2 x 29+ submatrices in O(n?/27) time using Lemma 2. In total, to compute
the fingerprints of all submatrices of height 2¢, we need O(n?) time. In total, we
will need O(n?logn) time for all submatrices.

3 Online Exact 2D Hamming Distance

In this section we consider Problem 2. We are given an n x n text T which we
process first. Updates come in the form of new m x m patterns P and a query

138 R. Clifford et al.

asks us to return the Hamming distance between P and the text at location
(4, 7)-

Theorem 2. The text T can be preprocessed in O(n?logn) time into a data
structure of size O(n?logn) so that we can support updates with a new pattern
P in O(m?) time and process Hamming distance queries to return up to H
mismatches between P and T at a position (i,7) in O(logm + H) time.

The Index for Online Exact Hamming Distance in 2D. For each ¢ =
1,2,...,logn we consider n — 2% 4 1 belts of height 2. We define a linearisation
of a belt as a string of length n, where the j-th supercharacter is the Karp-Rabin
fingerprint of the j-th column of the belt.

Lemma 3. The linearisations for all belts of height 2¢ for a fixed i can be com-
puted in O(n?) time.

Proof. Tt suffices to note that for a fixed j the Karp-Rabin fingerprints of j-th
columns of all n — 2% belts can be computed in O(n) time [18]. O

The main idea will be to first find columns within the pattern that mismatch
and then to look within those columns to find individual mismatches. In order to
do this efficiently, we compute all linearisations for all belts in O(n?logn) time
and then build a suffix tree for them. We also augment the suffix tree with an
efficient dynamic lower common ancestor (LCA) data structure [13]. The suffix
tree and the data structure can be built in O(n?logn) time. We then build a
suffix tree for all columns of T and augment it with the dynamic LCA data
structure as well.

When the pattern arrives, we partition it into O(log m) non-overlapping belts
of power of two heights. We linearise the belts in the way described above and
add the linearisations to the generalised suffix tree for the text belts. We also
add columns of the pattern to the generalised suffix tree for the columns. This
takes time O(m?), see [17]. Finally, we update the LCA data structures. In total,
this takes O(m?) time.

We then work with each of the pattern belts independently. We will use
the technique known as kangaroo jumping [17, Chap. 9.4]. To find the first H
mismatches between the pattern belt of height 2¢ and the text, we find the leaf
in the suffix tree for the text belt of height 2¢ containing the pattern belt and
the leaf for the pattern belt and use an LCA query to find the first column
of the pattern belt that does not match the corresponding column of the text
belt. We then use the generalised suffix tree for the columns and kangaroo jump
using LCA queries to report all mismatches in the column in constant time per
mismatch. We then go back to the suffix tree for the belts and proceed. When
a new pattern update arrives we need first to delete the previous pattern which
was added to the two trees.

4 Online Approximate Hamming Distance in 2D

In this section we consider Problem 3. Assume that we are given an n x n
matrix T and a constant € > 0. We assume that we are also given an m x m

Dynamic and Approximate Pattern Matching in 2D 139

pattern matrix P and that we can process it before answering queries. We will
give a text index for T that will support the following queries: Given a position
(i,4) return a (1 4 €)-approximation of the Hamming distance between P and
Tli:i+m—1,j:j+m—1].

Theorem 3. The text T can be preprocessed in O(e~%n? log® nlog log n) time
into a data structure of size O(e~2n? log® nlog log n). After processing a new
pattern P in O(e~2m?loglogn) time, we can compute a (1 + &)-approzimation
of the Hamming distance for any position (i,7) in T in O(e~21log® mloglogn)
time. The answer is correct with constant probability.

The Index for Online Approximate Hamming Distance in 2D. Consider
all O(n? log? n) canonical submatrices of T of sizes 2¢ x 27 for i = 1,2,...,logn
and j = 1,2,...,logn. Let C be a constant to be defined later. For each canonical
submatrix we create and store v = C'loglogn vectors (sketches) of length 1/¢2
as follows.

For each pair (i,5) and for each k = 1,2,...,7 we create and store 1/£2 sign
matrices Sé’j’k of size 2¢ x 27. Each entry of a sign matrix is an i.u.d. &1 random
variable. We now define the k-th sketch of a 2* x 27 matrix M as:

(M, S}75), (M, 8575y, (M, SpEE))

where (M, Sz’j’k> = tr(MT,SZ’j’k) is also known as the Hilbert-Schmidt inner
product of matrices M and S, * This sketching technique is a simple variant
of the second moment sketches of Alon et al. [1].

Suppose we have two 2* x 27 matrices A and B. For each k we approximate
the Hamming distance between A and B using the sketches obtained with the
help of the sign matrices Si7F SHIF ,Si/jaf In particular, the Hamming
distance approximation we derive from the k-th sketches is hy = €2||(S27*, (A —
B)),..., <Si;€]§, (A — B))|3. It follows from standard techniques that:

Lemma 4. We can choose a constant C so that the median of the Hamming
distance approzimations over all v = C'loglogn sketches for the matrices A and
B will belong to the interval [H,(1 + €)H] with probability at least 1 — #gzn’
where H is the Hamming distance between A and B.

We process the queries in the following way. For each arriving pattern, we
partition P into O(log® m) non-overlapping submatrices of sizes 2 x 27. Next,
we compute sketches of all submatrices in the partition with the help of sign
matrices, which takes O(s~2m? loglogn) time, but we only need to do this once.
When a query arrives, that is when we receive a position (i, j), we consider the
same partitioning of T[i : 44+ m — 1,7 : j +m — 1]. For each corresponding pair
of submatrices in the partitioning of P and T[i : i + m — 1,5 : j +m — 1] we
compute the (1 + €)-approximations of Hamming distances with the help of the
sketches. By Lemma 4 and the union bound, the sum of these values will be a
(1+4¢)-approximation between P and T[i : i+m—1,j : j+m — 1] with constant
probability. Processing a query takes O(e~2 log® mloglog n) time.

140 R. Clifford et al.

4.1 Construction of the Index

We finally explain how to compute the sketches of the canonical matrices. To
compute the sketches for one canonical matrix of size 2¢ x 2/ we need only
perform a sequence of 2D convolutions. In total, computing the sketches of all
canonical submatrices of size 2! x 2/ takes O(c~2n?lognloglogn) time. There-
fore, computing all sketches of all canonical submatrices over all sizes takes
O(e2n?log® nloglogn) time.

5 Submatrix Near Neighbour Problem

In this section we consider Problem 4. Assume that we are given an n X n matrix
T, an integer k, and a constant € > 0. We will give a text index for T which will
support the following queries: Given an m x m pattern matrix P such that there
is a k-mismatch occurrence of P in T, return an occurrence where the Hamming
distance is at most (1 +¢) - k. Let N =n? and M = m?. We will show that

Theorem 4. T can be preprocessed in O(N4/3+1/(1+5) log® N) time into a data
structure of size O(N'FY/(4)) with query time O(NY A+ M). If T contains a
k-mismatch occurrence of P, then the data structure w.h.p. retrieves a (1+¢)-k-
mismatch occurrence of P in T.

The Index for Submatrix Nearest Neighbour Search. We will start by
recalling the notion of the L-encoding of a matrix.

Definition 2 ([16]). The L-encoding of an nxn matriz T is a string s18z2 ... Sy,
of length n*, where s; = T[i:4,1:i—1]T[1:4,i:4]. (See Fig.2)

81,1 51,2|51,3 | S1,4]51,5 81,1 51,251,3 S1,4]51,5
S$2,1|52,2]82,3|52,4]52,5 82,1 1 52,252,3 S2,4]S2,5
83,1 53,2 853,3|53,4]53,5 53,1 83,2:83,3 53,4]53,5
1
1
84,1 | S4,2 | 54,3 | S4,4|54,5 84,1 | S4,2 54,3 S4,4|54,5
1
S$5,1 55,2 55,3|554 55,5 S$5,1 55,2 S5,3|55,4]55,5
(a) (b)

Fig.2. A submatrix S of the text matrix T. (a) The L-encoding of the submatrix
S is 81,1582,151,252,253,153,251,352,353,3 ...55,5. L3;4 is the L—shape formed by the 3—I‘d
and the 4-th rows and the 3-rd and the 4-th columns (shown in bold). (b) Let g be
a projection onto a set of ¢ = 9 positions {1,2,6,8,10,17,18,19,20} (highlighted in
gray), i.e. g(S) = 51,152,153,252,354,155,155,255,355,4. The blOCkS Wﬂl be {1, 2}, {6, 8, 10},
{17,18,19}, {20}. The corresponding partitioning of S into L-shapes and rectangles is
shown on the figure by bold lines

Dynamic and Approximate Pattern Matching in 2D 141

Note that if P occurs in the top left corner of T with & mismatches, then the
L-encoding of T starts with a k-mismatch occurrence of the L-encoding of P.
A suffix of T is the L-encoding of a square submatrix with bottom right hand
corner in the last row or in the last column of T. Let S1,S55,...,Sy be the
suffixes of T. A k-mismatch occurrence of P in T guarantees that at least one
of the L-encodings Sp,59,...,Sn starts with a k-mismatch occurrence of the
L-encoding of P, and vice versa. We will make use of data structure by Andoni
and Indyk which we call sketch forest. The following corollary follows directly
from the work of [10, Sect. 2].

Corollary 1. A sketch forest on a set of strings S = {S1,Sa,...,Sn} occupies
O(N'/ O+ space. If at least one of the strings starts with a k-mismatch of
the L-encoding of P, then the data structure will identify in O(N'/ O+ M) time
a subset of O(NY(1+9)Y suffives of T that w.h.p. contains at least one suffiz
starting with a (1 + €) - k-mismatch occurrence of the L-encoding of P.

After having identified the subset of O(N1/(1+2)) suffixes of T, we check for
each of them if it starts with a (14 ¢) - k-mismatch occurrence of the L-encoding
of P in a straightforward manner, comparing the letters of the suffix and the
L-encoding of P one by one. In total, this takes O(NY/(1+€) M) more time.

The work of Andoni and Indyk heavily relied for its efficiency on the fact
that different suffixes of a single string are suffixes of each other. However, in
our linearisation of the text T this is no longer true. This requires us to devise
a new method to construct the sketch forest efficiently which we now describe.

5.1 Construction

In this section we explain how we build the sketch forest. We start by describing
its main elements.

Let py =1—k/N, and ps =1 — (14 ¢) - k/N. The intuition behind these
values is as follows: If S, S5 are two strings of length N, then p; is a lower bound
for the probability of two letters Si[i], S2[i] to be equal if the Hamming distance
between S; and Sy is at most k. On the other hand, py is an upper bound for
the probability of two letters Si[i], S2[i] to be equal if the Hamming distance
between S; and Sy is at least (1+4¢) - k.

Let ‘H be a set of projections of a string along a fixed coordinate, i.e. the
j-th projection maps a string onto its j-th letter. A sketch forest is defined by
a family of N¥ = O(N'/(1+2)) random functions g; € H¢, where p = 2821 and

log p2
(= 101;%12[; ~. The choice of p and ¢ guarantees low error probability and space

complexity. Each of the functions g; can be considered as a projection along a
randomly chosen set of coordinates of size £ < N. The sketch forest contains
exactly one trie for each projection function in the family. A trie 7, contains
sketches ¢;(S1), 9i(S2), ..., 9:(Sn) of all strings in the set.

Fix a projection function g € {g1,92,...,9nr}. We will show that the trie 7
can be built in O(N*/3log? N) time. As an immediate corollary, all tries in the
sketch forest can be built in O(N*/3+1/(+) [og? N) time.

142 R. Clifford et al.

We start building the trie 7, by sorting the strings g(S1), g(S2),...,9(Sn)
lexicographically and computing the longest common prefixes of all adjacent
strings in that order. Below we show that this can be done in O(N*/31log® N)
time. After having sorted the strings we build 7, in O(N) time by using this
longest common prefix information.

We now explain how we sort g(S1),g(S2),...,9(Sn). Our algorithm will fol-
low the lines of that of [10], but because S1, S, ..., Sn are suffixes of a 2D string
and not a 1D string as in [10], we will have to introduce some new techniques.

String Sorting in (’)(N4/3log2N) Time. We will give two methods for sorting
strings ¢(S1),9(S2), ..., g(Sx). Sort A will run in O(N+v/¢log® N) time and Sort
B will run in O(N log® N/¢) time. We will use Sort A if £ < N?/3 and Sort B if
(> N?/3,

Both Sort A and Sort B need to make at most N log N string comparisons.
Note that in fact all we need to compare two strings is to find the first mis-
match between them. For Sort A, we will show that after O(N+v/¢log® N)-time
preprocessing it is possible to find the first mismatch between any two strings
in O(v/7) time. As a result, the total running time of sort A is O(N+v/¢log? N).
For Sort B, we will show that the first mismatch between any two strings can
be found in O(N log N/¢) time, which will give O(N?log® N/¢) time in total.

Sort A. Let g be a projection function onto positions p; < py < ... < pg. We
will divide this set into O(v/¢) blocks of consecutive positions of length at most
V0 each. The method will consist of two steps. We will start by finding the
first block containing a mismatch. After having found the block, we will iterate
over all positions in it to find the desired mismatch. The second step can be
implemented in a straightforward manner and requires O(v/¢) time.

We will now explain how we implement the first step. Let us start by explain-
ing how we divide the sequence p; < py < ... < p; into blocks. Remember that
these are positions in the L-encoding of an n x n matrix. Let L;.; be the L-shape
formed by the i-th to j-th rows and the i-th to j-th columns (see Fig.2 for an
example).

We start by greedily dividing the matrix into L-shapes, where each L-shape
either contains at most v/¢ sampled positions (type I L-shapes) or is of form L;.;
(type IT L-shapes). We first find the largest i1 such that L;.;, contains at most Ve
sampled positions. We then try to find the largest i3 such that L;, 1.;, contains
at most v/ sampled positions. If such i does not exist, we let i = i1 + 1,
and continue in the same fashion. We further divide each type-II L-shape into
the smallest number of horizontal and vertical rectangles containing at most v/¢
sampled positions each. The corner element forms a separate 1 x 1 rectangle.

This partitioning of the matrix into L-shapes and rectangles defines a parti-
tioning of p; < p2 < ... < py into O(\/Z) blocks, containing at most v/ of the
sampled positions each. Note that positions in each block are consecutive, that is
they form a single range of the sequence p; < pa < ... < py. Each block defines
a projection of a matrix onto at most /¢ positions, and we will now define and
compute a hash function of these projections.

Dynamic and Approximate Pattern Matching in 2D 143

For a rectangular block, we define the hash function to be the Karp-Rabin
fingerprint of the projection. We can compute the values of this hash function
for all suffixes S1,S59,...,Sn in O(Nlog N) time as a convolution of rows or
columns of T with a suitable vector.

Ezample 1. Consider Fig.2. The hash function for the block {17,18,19} is the
Karp-Rabin fingerprint of s5 155 255 3.

For an L-shaped block we define the hash function differently. First, we divide
the L-shape into two halves, a horizontal one and a vertical one. The hash func-
tion will be defined as a pair of fingerprints. The first fingerprint will be defined to
be the Karp-Rabin fingerprint of a permutation of the projection on the sampled
positions in the horizontal half obtained by reading the positions by columns,
and the second fingerprint as the Karp-Rabin fingerprint of a permutation of the
projection on the sampled positions in the vertical half obtained by reading the
positions by columns.

Example 2. Consider Fig.2. The L-shape Ls.4 is divided into two halves by a
dashed line. The hash function of the horizontal half is the Karp-Rabin fin-
gerprint of s41532. The hash function of the vertical half is the Karp-Rabin
fingerprint of sg 3.

The Karp-Rabin fingerprints of the horizontal and vertical parts for a fixed
L-shape and all suffixes S1, 59, ..., Sy can be computed in O(N log N) time as
a sequence of 2D convolutions. In total, computing the hash functions for all
L-shaped blocks takes O(N+v/flog N) time.

Sort B. Similarly to Sect. 3, we consider n — 2¢ belts of T of height 2° for each
i =1,2,...,logn. We then linearise them, build a suffix tree and augment it
with the LCA data structure. The tree can be constructed in O(N log N) time
and occupies O(N log N) space. With the help of the suffix tree and kangaroo
jumps we can report up to ¢ mismatches between any two 2! x j submatrices
Sl7 SQ of T in O(t) time.

We also build a generalised suffix tree for all columns and rows of T, which
occupies O(N) space and augment it with the LCA data structure as well.

As it was shown in [10], w.h.p. the first mismatch between g¢(S;) and g(S;)
is contained in the first 3N log N/¢ mismatches between S; and S;. We will use
binary search and the suffix trees for the belts to extract these mismatches. When
a mismatch is extracted, we check if it belongs to {p1,p2, ..., pe} in constant time
and stop if it does.

We start by finding the smallest ¢ such that there are at least 3N log N/¢
mismatches between the ¢ x t top left submatrices of S; and S;. We do so by
binary search on t. For each value of ¢ we divide the ¢ x t top left submatrices
into a logarithmic number of even smaller submatrices of size power of two by
t. For any pair of such submatrices of S; and S; we can use the suffix trees for
the belts and for the columns to list the mismatches between them in constant
time per mismatch using the kangaroo method. We stop when we have found
3N log N/¢ mismatches, so we never spend more than O(3N log N/¢) time.

144 R. Clifford et al.

We guarantee that there are at least 3N log N/¢ mismatches between the ¢ x ¢
submatrices of S; and S;. Unfortunately, there can be much more mismatches if
the L-shapes L;.; of these submatrices contain many mismatches. However, using
the suffix trees for columns and for rows, we can list the mismatches between
these two L-shapes in order in constant time per mismatch.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: STOC 1996, pp. 20-29. ACM (1996)

2. Amir, A., Benson, G.: Efficient two-dimensional compressed matching. In: Data
Compression Conference, DCC 1992, pp. 279-288. IEEE (1992)

3. Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. STAM J.
Comp. 27(1), 90-106 (1998)

4. Amir, A., Benson, G., Farach, M.: Optimal two-dimensional compressed matching.
J. Algorithms 24(2), 354-379 (1997)

5. Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps, M.: Two-
dimensional pattern matching with rotations. Theor. Comput. Sci. 314(1), 173-187
(2004)

6. Amir, A., Farach, M.: Efficient 2-dimensional approximate matching of non-
rectangular figures. In: SODA, pp. 212-223 (1991)

7. Amir, A., Farach, M.: Efficient 2-dimensional approximate matching of half-
rectangular figures. Inf. Comput. 118(1), 1-11 (1995)

8. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorithms (TALG), 3(2) (2007)

9. Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2D compressed search.
Theor. Comput. Sci. 290(3), 1361-1383 (2003)

10. Andoni, A., Indyk, P.: Efficient algorithms for substring near neighbor problem.
In: SODA 2006, pp. 1203-1212 (2006)

11. Baker, T.P.: A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM J. Comp. 7(4), 533-541 (1978)

12. Bird, R.S.: Two dimensional pattern matching. IPL 6(5), 168-170 (1977)

13. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4),
894-923 (2005)

14. Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast approximate
two dimensional pattern matching allowing rotations. In: Apostolico, A., Takeda,
M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 235-248. Springer, Heidelberg (2002)

15. Galil, Z., Park, K.: Truly alphabet-independent two-dimensional pattern matching.
In: FOCS 1992, pp. 247-256 (1992)

16. Giancarlo, R.: A generalization of the suffix tree to square matrices, with applica-
tions. STAM J. Comp. 24(3), 520-562 (1995)

17. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

18. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249-260 (1987)

Fully Dynamic de Bruijn Graphs

Djamal Belazzougui®, Travis Gagie>*®™) Veli Mikinen®?,
and Marco Previtali*

! CERIST, Ben Aknoun, Algiers, Algeria
2 Helsinki Institute for Information Technology, Helsinki, Finland
3 University of Helsinki, Helsinki, Finland
travis.gagieOgmail.com
4 University of Milano-Bicocca, Milan, Italy

Abstract. We present a space- and time-efficient fully dynamic imple-
mentation of de Bruijn graphs, which can also support fixed-length jum-
bled pattern matching.

1 Introduction

Bioinformaticians define the kth-order de Bruijn graph for a string or set of
strings to be the directed graph whose nodes are the distinct k-tuples in those
strings and in which there is an edge from u to v if there is a (k + 1)-tuple
somewhere in those strings whose prefix of length % is u© and whose suffix of
length k is v.! These graphs have many uses in bioinformatics, including de
novo assembly [17], read correction [15] and pan-genomics [16]. The datasets
in these applications are massive and the graphs can be even larger, however,
so pointer-based implementations are impractical. Researchers have suggested
several approaches to representing de Bruijn graphs compactly, the two most
popular of which are based on Bloom filters [9,14] and the Burrows-Wheeler
Transform [5-7], respectively. In this paper we describe a new approach, based
on minimal perfect hash functions [13], that is similar to that using Bloom filters
but has better theoretical bounds when the number of connected components
in the graph is small, and is fully dynamic: i.e., we can both insert and delete
nodes and edges efficiently, whereas implementations based on Bloom filters are
usually semi-dynamic and support only insertions. We also show how to modify
our implementation to support, e.g., jumbled pattern matching [8] with fixed-
length patterns.

Our data structure is based on a combination of Karp-Rabin hashing [11]
and minimal perfect hashing, which we will describe in the full version of this
paper and which we summarize for now with the following technical lemmas:

Lemma 1. Given a static set N of n k-tuples over an alphabet ¥ of size o,
with high probability in O(kn) expected time we can build a function f : % —
{0,...,n — 1} with the following properties:

1 An alternative definition, which our data structure can be made to handle but which
we do not consider in this paper, has an edge from v to v whenever both nodes are
in the graph.

© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 145-152, 2016.
DOI: 10.1007/978-3-319-46049-9_14

146 D. Belazzougui et al.

— when its domain is restricted to N, f is bijective;

— we can store f in O(n + logk + logo) bits;

- given a k-tuple v, we can compute f(v) in O(k) time;

— given u and v such that the suffiz of u of length k—1 is the prefiz of v of length
k — 1, or vice versa, if we have already computed f(u) then we can compute
f(v) in O(1) time.

Lemma 2. If N is dynamic then we can maintain a function f as described in
Lemma 1 except that:

— the range of f becomes {0,...,3n — 1};

— when its domain is restricted to N, f is injective;

— our space bound for f is O(n(loglogn + loglog o)) bits with high probability;

— insertions and deletions take O(k) amortized expected time.

— the data structure may work incorrectly with very low probability (inversely
polynomial in n).

Suppose N is the node-set of a de Bruijn graph. In Sect. 2 we show how we
can store O(no) more bits than Lemma 1 such that, given a pair of k-tuples u
and v of which at least one is in N, we can check whether the edge (u,v) is in the
graph. This means that, if we start with a k-tuple in N, then we can explore the
entire connected component containing that k-tuple in the underlying undirected
graph. On the other hand, if we start with a k-tuple not in IV, then we will learn
that fact as soon as we try to cross an edge to a k-tuple that is in V. To deal with
the possibility that we never try to cross such an edge, however — i.e., that our
encoding as described so far is consistent with a graph containing a connected
component disjoint from N — we cover the vertices with a forest of shallow
rooted trees. We store each root as a k-tuple, and for each other node we store
1 + Ig o bits indicating which of its incident edges leads to its parent. To verify
that a k-tuple we are considering is indeed in the graph, we ascend to the root of
the tree that contains it and check if that k-tuple is what we expect. The main
challenge for making our representation dynamic with Lemma 2 is updating the
covering forest. In Sect.3 how we can do this efficiently while maintaining our
depth and size invariants. Finally, in Sect.4 we observe that our representation
can be easily modified for other applications by replacing the Karp-Rabin hash
function by other kinds of hash functions. To support jumbled pattern matching
with fixed-length patterns, for example, we hash the histograms indicating the
characters’ frequencies in the k-tuples.

2 Static de Bruijn Graphs

Let G be a de Bruijn graph of order k, let N = {vg,...,v,—1} be the set of
its nodes, and let E = {aop,...,a.—1} be the set of its edges. We call each v;
either a node or a k-tuple, using interchangeably the two terms since there is a
one-to-one correspondence between nodes and labels.

We maintain the structure of G by storing two binary matrices, IN and
OUT, of size n x o. For each node, the former represents its incoming edges

Fully Dynamic de Bruijn Graphs 147

whereas the latter represents its outgoing edges. In particular, for each k-tuple
Uy = C1C2 . ..Ck—1a, the former stores a row of length ¢ such that, if there exists
another k-tuple vy = beicy ... cp—1 and an edge from vy to v, then the position
indexed by b of such row is set to 1. Similarly, OUT contains a row for v, and the
position indexed by a is set to 1. As previously stated, each k-tuple is uniquely
mapped to a value between 0 and n — 1 by f, where f is as defined in Lemma 1,
and therefore we can use these values as indices for the rows of the matrices IN
and OUT, i.e., in the previous example the values of IN[f(v;)][b] and OUT[f (v,)][a]
are set to 1. We note that, e.g., the SPAdes assembler [2] also uses such matrices.

Suppose we want to check whether there is an edge from bX to Xa. Letting
f(bX) =i and f(Xa) = j, we first assume bX is in G and check the values of
0UT[¢][a] and IN[4][b]. If both values are 1, we report that the edge is present and
we say that the edge is confirmed by IN and OUT; otherwise, if any of the two
values is 0, we report that the edge is absent. Moreover, note that if bX is in
G and OUT[i][a] = 1, then Xa is in G as well. Symmetrically, if Xa is in G and
IN[j][b] = 1, then bX is in G as well. Therefore, if OUT[¢][a] = IN[j][b] = 1, then
bX is in G if and only if Xa is. This means that, if we have a path P and if all
the edges in P are confirmed by IN and 0UT, then either all the nodes touched
by P are in G or none of them is.

We now focus on detecting false positives in our data structure maintaining
a reasonable memory usage. Our strategy is to sample a subset of nodes for
which we store the plain-text k-tuple and connect all the unsampled nodes to
the sampled ones. More precisely, we partition nodes in the undirected graph G’
underlying G into a forest of rooted trees of height at least klgo and at most
3klgo. For each node we store a pointer to its parent in the tree, which takes
1 4+ lg o bits per node, and we sample the k-mer at the root of such tree. We
allow a tree to have height smaller than klg o when necessary, e.g., if it covers a
connected component. Figure 1 shows an illustration of this idea.

We can therefore check whether a given node v, is in G by first computing
f(v,) and then checking and ascending at most 3klgo edges, updating v, and
f(vy) as we go. Once we reach the root of the tree we can compare the resulting
k-tuple with the one sampled to check if v, is in the graph. This procedure
requires O(klgo) time since computing the first value of f(v,) requires O(k),
ascending the tree requires constant time per edge, and comparing the k-tuples
requires O(k).

We now describe a Las Vegas algorithm for the construction of this data
structure that requires, with high probability, O(kn + no) expected time. We
recall that IV is the set of input nodes of size n. We first select a function f and
construct bitvector B of size n initialized with all its elements set to 0. For each
elements v, of N we compute f(v,) =4 and check the value of B[i]. If this value
is 0 we set it to 1 and proceed with the next element in N, if it is already set
to 1, we reset B, select a different function f, and restart the procedure from the
first element in N. Once we finish this procedure — i.e., we found that f do not
produces collisions when applied to N — we store f and proceed to initialize IN
and OUT correctly. This procedure requires with high probability O(kn) expected

148 D. Belazzougui et al.

Fig. 1. Given a de Bruijn graph (left), we cover the underlying undirected graph with
a forest of rooted trees of height at most 3k1go (center). The roots are shown as filled
nodes, and parent pointers are shown as arrows; notice that the directions of the arrows
in our forest are not related to the edges’ directions in the original de Bruijn graph. We
sample the k-tuples at the roots so that, starting at a node we think is in the graph, we
can verify its presence by finding the root of its tree and checking its label in O(k log o)
time. The most complicated kind of update (right) is adding an edge between a node
u in a small connected component to a node v in a large one, v’s depth is more than
2k 1g o in its tree. We re-orient the parent pointers in u’s tree to make u the temporary
root, then make u point to v. We ascend klgo steps from v, then delete the parent
pointer e of the node w we reach, making w a new root. (To keep this figure reasonably
small, some distances in this example are smaller than prescribed by our formulas.)

time for constructing f and O(no) time for computing IN and OUT. Notice that
if N is the set of k-tuples of a single text sorted by their starting position in
the text, each f(v;) can be computed in constant time from f(v,_1) except for
f(vo) that still requires O(k). More generally, if NV is the set of k-tuples of ¢ texts
sorted by their initial position, we can compute n—t values of the function f(v,)
in constant time from f(vy_1) and the remaining in O(k). We will explain how
to build the forest in the full version of this paper. In this case the construction
requires, with high probability, O(kt + n + no) = O(kt 4+ no) expected time.

Combining our forest with Lemma 1, we can summarize our static data struc-
ture in the following theorem:

Theorem 1. Given a static o-ary kth-order de Bruijn graph G with n nodes,
with high probability in O(kn + no) expected time we can store G in O(on) bits
plus O(klogo) bits for each connected component in the underlying undirected
graph, such that checking whether a node is in G takes O(klogo) time, listing
the edges incident to a node we are visiting takes O(o) time, and crossing an
edge takes O(1) time.

In the full version we will show how to use monotone minimal perfect hashing [3]
to reduce the space to (2 + €)no bits of space (for any constant ¢ > 0). We will
also show how to reduce the time to list the edges incident to a node of degree
d to O(d), and the time to check whether a node is in G to O(k). We note that
the obtained space and query times are both optimal up to constant factors,

Fully Dynamic de Bruijn Graphs 149

which is unlike previous methods which have additional factor(s) depending on
k and/or o in space and/or time.

3 Dynamic de Bruijn Graphs

In the previous section we presented a static representation of de Buijn graphs,
we now present how we can make this data structure dynamic. In particular, we
will show how we can insert and remove edges and nodes and that updating the
graph reduces to managing the covering forest over G. In this section, when we
refer to f we mean the function defined in Lemma 2. We first show how to add
or remove an edge in the graph and will later describe how to add or remove
a node in it. The updates must maintain the following invariant: any tree must
have size at least klog o and height at most 3k log o except when the tree covers
(all nodes in) a connected component of size at most klogo.

Let v, and v, be two nodes in G, e = (vy,vy) be an edge in G, and let
f(vz) =i and f(’l}y) =7

Suppose we want to add e to G. First, we set to 1 the values of QUT[é][a]
and IN[j][b] in constant time. We then check whether v, or v, are in different
components of size less than klgo in O(klgo) time for each node. If both com-
ponents have size greater than klg o we do not have to proceed further since the
trees will not change. If both connected components have size less than k1g o we
merge their trees in O(klgo) time by traversing both trees and switching the
orientation of the edges in them, discarding the samples at the roots of the old
trees and sampling the new root in O(k) time.

If only one of the two connected components has size greater than klgo we
select it and perform a tree traversal to check whether the depth of the node is
less than 2klgo. If it is, we connect the two trees as in the previous case. If it
is not, we traverse the tree in the bigger component upwards for klg o steps, we
delete the edge pointing to the parent of the node we reached creating a new
tree, and merge it with the smaller one. This procedure requires O(klgo) time
since deleting the edge pointing to the parent in the tree requires O(1) time, i.e.,
we have to reset the pointer to the parent in only one node.

Suppose now that we want to remove e from G. First we set to 0 the values
of 0UT[i][a] and IN[4][b] in constant time. Then, we check in O(k) time whether
e is an edge in some tree by computing f(v,) and f(v,) checking for each node
if that edge is the one that points to their parent. If e is not in any tree we
do not have to proceed further whereas if it is we check the size of each tree
in which v, and v, are. If any of the two trees is small (i.e., if it has fewer
than klgo elements) we search any outgoing edge from the tree that connects
it to some other tree. If such an edge is not found we conclude that we are in a
small connected component that is covered by the current tree and we sample
a node in the tree as a root and switch directions of some edges if necessary. If
such an edge is found, we merge the small tree with the bigger one by adding
the edge and switch the direction of some edges originating from the small tree
if necessary. Finally if the height of the new tree exceeds 3klogo, we traverse

150 D. Belazzougui et al.

the tree upwards from the deepest node in the tree (which was necessarily a
node in the smaller tree before the merger) for 2klgo steps, delete the edge
pointing to the parent of the reached node, creating a new tree. This procedure
requires O(klg o) since the number of nodes traversed is at most O(klgo) and
the number of changes to the data structures is also at most O(klgo) with each
change taking expected constant time.

It is clear that the insertion and deletion algorithms will maintain the invari-
ant on the tree sizes and heights. It is also clear that the invariant implies that
the number of sampled nodes is O(n/(klogo)) plus the number of connected
components.

We now show how to add and remove a node from the graph. Adding a node
is trivial since it will not have any edge connecting it to any other node. Therefore
adding a node reduces to modify the function f and requires O(k) amortized
expected time. When we want to remove a node, we first remove all its edges one
by one and, once the node is isolated from the graph, we remove it by updating
the function f. Since a node will have at most ¢ edges and updating f requires
O(k) amortized expected time, the amortized expected time complexity of this
procedure is O(cklgo + k).

Combining these techniques for updating our forest with Lemma 2, we can
summarize our dynamic data structure in the following theorem:

Theorem 2. We can maintain a o-ary kth-order de Bruijn graph G with n
nodes that is fully dynamic (i.e., supporting node and edge insertions and dele-
tions) in O(n(loglogn + o)) bits (plus O(klogo) bits for each connected com-
ponent) with high probability, such that we can add or remove an edge in
expected O(klgo) time, add a node in expected O(k + o) time, and remove a
node in expected O(cklgo) time, and queries have the same time bounds as in
Theorem 1. The data structure may work incorrectly with very low probability
(inversely polynomial in n).

4 Jumbled Pattern Matching

Karp-Rabin hash functions implicitly divide their domain into equivalence
classes — i.e., subsets in which the elements hash to the same value. In this
paper we have chosen Karp-Rabin hash functions such that each equivalence
class contains only one k-tuple in the graph. Most of our efforts have gone into
being able, given a k-tuple and a hash value, to determine whether that k-tuple
is the unique element of its equivalence class in the graph. In some sense, there-
fore, we have treated the equivalence relation induced by our hash functions as
a necessary evil, useful for space-efficiency but otherwise an obstacle to be over-
come. For some applications, however — e.g., parameterized pattern matching,
circular pattern matching or jumbled pattern matching — we are given an inter-
esting equivalence relation on strings and asked to preprocess a text such that
later, given a pattern, we can determine whether any substrings of the text are
in the same equivalence class as the pattern. We can modify our data structure

Fully Dynamic de Bruijn Graphs 151

for some of these applications by replacing the Karp-Rabin hash function by
other kinds of hash functions.

For indexed jumbled pattern matching [1,8,12] we are asked to pre-process
a text such that later, given a pattern, we can determine quickly whether any
substring of the text consists of exactly the same multiset of characters in the
pattern. Consider fixed-length jumbled pattern matching, when the length of
the patterns is fixed at pre-processing time. If we modify Lemmas 1 and 2 so
that, instead of using Karp-Rabin hashes in the definition of the function f, we
use a hash function on the histograms of characters’ frequencies in k-tuples, our
function f will map all permutations of a k-tuple to the same value. The rest of
our implementation stays the same, but now the nodes of our graph are multisets
of characters of size k and there is an edge between two nodes u and v if it is
possible to replace an element of u and obtain v. If we build our graph for the
multisets of characters in k-tuples in a string .S, then our process for checking
whether a node is in the graph tells us whether there is a jumbled match in §
for a pattern of length k. If we build a tree in which the root is a graph for all
of S, the left and right children of the root are graphs for the first and second
halves of S, etc., as described by Gagie et al. [10], then we increase the space by
a logarithmic factor but we can return the locations of all matches quickly.

Theorem 3. Given a string S[l..n] over an alphabet of size o and a length
k < n, with high probability in O(kn+ no) expected time we can store
(2nlogo)(1 + o(1)) bits such that later we can determine in O(klogo) time
if a pattern of length k has a jumbled match in S.

Acknowledgements. Many thanks to Rayan Chikhi and the anonymous reviewers
for their comments.

References

1. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled
indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 114-125. Springer, Heidelberg (2014)

2. Bankevich, A., et al.: SPAdes: a new genome assembly algorithm and its applica-
tions to single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012)

3. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hash-
ing: searching a sorted table with o(1) accesses. In: Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 785-794. Society for
Industrial and Applied Mathematics (2009)

4. Belazzougui, D., Gagie, T., Méakinen, V., Previtali, M.: Fully dynamic de bruijn
graphs. arXiv preprint (2016). arXiv:1607.04909

5. Belazzougui, D., Gagie, T., Makinen, V., Previtali, M., Puglisi, S.J.: Bidirec-
tional variable-order de Bruijn graphs. In: Kranakis, E., et al. (eds.) LATIN
2016. LNCS, vol. 9644, pp. 164-178. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49529-2_13

6. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de
Bruijn graphs. In: Data Compression Conference (DCC), pp. 383—392. IEEE (2015)

http://arxiv.org/abs/1607.04909
http://arXiv.org/abs/1607.04909
http://dx.doi.org/10.1007/978-3-662-49529-2_13
http://dx.doi.org/10.1007/978-3-662-49529-2_13

152

10.

11.

12.

13.

14.

15.

16.

17.

D. Belazzougui et al.

Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225-235. Springer,
Heidelberg (2012)

Burcsi, P., Cicalese, F., Fici, G., Liptdk, Z.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. Comput. Sci. 23(02), 357-374 (2012)

. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based

on a Bloom filter. Algorithm Mol. Biol. 8(22), 1-9 (2012)

Gagie, T., Hermelin, D.; Landau, G.M., Weimann, O.: Binary jumbled pattern
matching on trees and tree-like structures. Algorithmica 73(3), 571-588 (2015)
Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249-260 (1987)

Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern
matching with constant-sized alphabet. In: Bodlaender, H.L., Ttaliano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 625-636. Springer, Heidelberg (2013)

Mehlhorn, K.: On the program size of perfect and universal hash functions. In: 23rd
Annual Symposium on Foundations of Computer Science, SFCS’08, pp. 170-175.
IEEE (1982)

Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve
the memory usage for de Brujin graphs. In: Darling, A., Stoye, J. (eds.) WABI 2013.
LNCS, vol. 8126, pp. 364-376. Springer, Heidelberg (2013)

Salmela, L., Rivals, E.: Lordec: accurate and efficient long read error cor-
rection. Bioinformatics 30(24), 3506-3514 (2014). http://dx.doi.org/10.1093/
bioinformatics/btu538

Sirén, J., Valiméaki, N., Mékinen, V.: Indexing graphs for path queries with appli-
cations in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
11(2), 375-388 (2014)

Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 18(5), 821-829 (2008)

http://dx.doi.org/10.1093/bioinformatics/btu538
http://dx.doi.org/10.1093/bioinformatics/btu538

Bookmarks in Grammar-Compressed Strings

Patrick Hagge Cording' ™), Pawel GawrychowskiZ, and Oren Weimann?
! Technical University of Denmark, DTU Compute, Kongens Lyngby, Denmark
phaco@dtu.dk
2 University of Haifa, Haifa, Israel

Abstract. We consider the problem of storing a grammar of size n
compressing a string of size N, and a set of positions {i1,...,%}
(bookmarks) such that any substring of length [crossing one of the
positions can be decompressed in O(l) time. Our solution uses space
O((n+b) max{1,log" n—log*(% + 2)}). Existing solutions for the book-

marking problem either require more space or a super-constant “kick-off”
time to start the decompression.

1 Introduction

Textual databases for e.g. biological or web-data are growing rapidly, and it is
often only feasible to store the data in compressed form. However, compressing
the data comes at a price: it may be necessary to decompress the entire file
in order to retrieve just a small portion of it. Inserting bookmarks in the com-
pressed file can accommodate this problem. A bookmark in a compressed string
is a position ¢ from which any substring of length [crossing position ¢ can be
decompressed in O(1) time.

A popular technique for compressing a string is to instead store a small
grammar that generates the string (and only the string). The idea dates back far
and has received much attention in the theory community while also being widely
used in practice. In particular, popular compression schemes such as LZ78 [15],
LZW [13], Re-pair [9], and Sequitur [11] produce grammars. Even the LZ77 [14]
compression scheme that does not produce a grammar, can be converted to a
grammar with only a logarithmic overhead in the space [5,12]. For our purposes,
we consider Straight Line Programs (SLPs). These are context-free grammar
in Chomsky Normal Form that generate exactly one string. SLPs capture any
grammar-based compression scheme.

For the bookmarking problem, we are given an SLP S of size n compressing
a string S of size N and a set of positions {i1,. .., }, and we want to construct
a data structure that supports linear-time decompression of substrings crossing
any of the b positions.

P.H. Cording—Supported by the Danish Research Council under the Sapere Aude
Program (DFF 4005-00267).
© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 153-159, 2016.
DOI: 10.1007/978-3-319-46049-9_15

154 P.H. Cording et al.

Related Work. Gagie et al. [6] presented a bookmarking data structure that
uses O(n + blog™ N) space! for balanced SLPs (i.e., SLPs whose parse tree is
balanced). When the SLP is unbalanced, we may use an algorithm to balance it
at the cost of adding nodes [5,12], and as a result the space usage of their data
structure increases to O(n log % +blog™ N).

A more general problem is to support random access to the compressed
string (i.e., access to a single character of S without decompression). This does
not require any bookmarks to be predefined, but in turn incurs a “kick-off” time
when decompressing a substring. If we allow the kick-off time to be O(log N)
(i.e., O(l + log N) time to decompress a substring of length [), we may use
the O(n)-space data structure of Bille et al. [4]. For a faster kick-off time of
O(log, N), for any 2 < 7 < log N, we may instead apply the data structure of
Belazzougui et al. [1] at the cost of increasing the space to O(ntlog,). The
data structure of Belazzougui et al. [2] supports random access to any character
of the compressed string in O(1) time and thereby allows decompression of any
substring in time linear in the substring’s length. However, this data structure
uses space O(n'=¢N¢) for some constant 0 < ¢ < 1.

The compressed finger search problem is somehow a hybrid of the bookmark-
ing problem and the random access problem. For this problem, we place a set of
fingers, and now we may answer random access queries in O(log D) time, where
D is the distance from a given finger to the index we query for [3]. Using this
data structure, we get a bookmarking data structure of O(n) space that can
decompress any substring of length I in O(llog!) time.

Our Results. In this paper we present a bookmarking data structure for SLP-
compressed strings that uses space O((n + b) max{1,log" n — log" (% + £)}) and
supports decompression of length-I substrings crossing bookmarks in O(l) time.
The space is measured in words and we assume the standard RAM model of
computation.

The general idea is to make 7 copies of the SLP for some parameter 7. Each
copy is modified so that the decompression kick-off takes less time but only
supports decompression of substrings up to a certain length and from certain
positions. At query time, we then select the copy of the SLP that provides a
kick-off time of O(1).

2 Preliminaries

Let S be a string of length |.S| consisting of characters from an alphabet of size
o. We use S[i,j], 1 <i < j <|S|, to denote the substring starting in position ¢
and ending in position j of S.

A Straight Line Program (SLP) S is a context-free grammar in Chomsky
normal form with n production rules that derives a single string .S of size N. We

! The bound is in fact O(z+blog* N), where z is the size of the LZ77 parse of S. Since
it is known that z < n’ < n [12], where n’ is the size of the smallest SLP generating
S, we replace z by n for clarity.

Bookmarks in Grammar-Compressed Strings 155

represent the SLP as a rooted, ordered, and node-labelled directed acyclic graph
(DAG) with outdegree 2 and we will refer to production rules as nodes where it
is appropriate. We denote by v = uw that node v in the DAG has left-child «
and right-child w. A depth-first left-to-right traversal starting from a node v in
the DAG produces the string S(v). As a shorthand we sometimes use |v| instead
of |S(v)].

All logarithms in this paper are base 2. As a shorthand to denote the loga-
rithm applied ¢ times to a number n we write log(i) n, e.g., log(?’) n = logloglog n.
The iterated logarithm log™ n is equal to the number of times the logarithm can
be applied to n before the result is less than 1, i.e., log" n = arg mini{log(i) n <
1}. We also need the up-arrow notation of Knuth [8] defined as follows: 2 1710 =1
and 2 11 (k4 1) = 221T%_ Observe that k = log* n if and only if 2 11 (k — 1) <
n<217k.

3 A Simple Solution

In this section we give a simple data structure to the bookmarking problem with
the following bounds.

Theorem 1. Given an SLP for S[1, N] with n rules and positions i1, ..., in
S, we can store S in O(n + b + min{n,b}log N) space such that later, given
i € {i1,...,0} we can extract S[i,i+1] in O(l) time.

Our solution builds on the following data structure by Bille et al. [4].

Lemma 1 ([4]). Let S be a string of length N compressed by an SLP S of
size n. There is data structure of size O(n) that, given a node v in S, supports
decompression of a substring S(v)[i, + 1] in O(log|v| +1) time.

Notice that when [> log N the decompression time in Lemma 1 is dominated
by the O(I) term. This means we only need to focus on the case where [< log N.

To obtain a O(n + blog N)-space solution, since I < log N, we can simply
store the substring S[i —log N, i+log N] for each bookmark i € {i1,...,4,} along
with the data structure of Lemma 1.

In the case where n < b, to obtain a O(nlog N + b)-space solution, we show
that it is sufficient to store n substrings each of length O(log N). For this we use
the following lemma, stating that any substring of S is the concatenation of a
suffix of S(u) and a prefix of S(w) for some node v whose left child is « and right
child is w. The observation was first used for compressed pattern matching [10].
For the sake of completeness, we will give a proof using our terminology.

Lemma 2 ([10]). Let S be a string of length N compressed by an SLP S of
size n. Let r(v) = S(u)[max{1, |u| — k}, |u]}S(w)[1, min{1, k — 1}] be the relevant
substring with respect to k of a node v = uw in S. Then any substring of S of
length at most k is also a substring of some string in {r(v) |v e S A |v| > k}.

156 P.H. Cording et al.

Proof. The proof is by induction. For the base case, consider a node v = uw
where |v] < 2k — 2 and |u| < k and |w| < k. Since r(v) = S(v) this obviously
contains every substring of length k. For the inductive step we again consider
some node v = yw and we know that S(v) = S(u) o S(w). Assume that |u| > k
and |w| > k, then by the induction hypothesis it holds that the set of strings
{r) | v e Stu) A/ > kU {r(w) | w € S(w) A |w'| > k} contains all
substrings of length %k in S(u) and S(w). The substrings of length k starting
in S(u) and S(w) are not guaranteed to be in this set, but since r(v) contains
exactly all these, they will be after adding r(v) to the set. For the cases when
|u] < k or |w| < k the same argument holds. O

For our data structure, we set k = 2log N and store the strings r(v) for all
v € S. For each bookmark i we store the deepest node that generates the string
S[i —log N, i+1log N]. Furthermore, we build the data structure of Lemma 1 for
use for the case where [> log N.

Since |r(v)| < 4log N — 2 and we store O(1) words (pointers) for each book-
mark, and the data structure of Lemma 1 uses O(n) space, our data structure
uses O(nlog N + b) space in total. This concludes the proof of Theorem 1.

4 A Leveled Solution

We now describe a data structure that seeks to reduce the log N factor of the
space usage in Theorem 1. The time to decompress a substring of length [crossing
some bookmark is still O(l). The key to our solution is a technique due to
Gawrychowski [7] captured by the following lemma.

Lemma 3 ([7]). Let S be a string of length N compressed into an SLP S of
size n. We can choose an arbitrary £ and modify S in O(N) time by adding
O(n) new variables such that we can write S as S = S(v1)S(v2)...S(vy) with
m = O(N/{) and |S(v;)| < 20—2. Furthermore, for any substring S[i,i+¥] there
are a constant number of nodes vy, ...,v. such that S[i,i + €] is a substring of

S(Ul)...S(UC).

The lemma says that we can restructure the given SLP such that for any
substring S[i, ¢ + ¢] we can find O(1) nodes whose concatenation has total length
O(¢) and contains S[i,i + £] as a substring. We now describe how to apply this
restructuring procedure to get a bookmarking data structure using almost linear
space. In the description we use the parameter 7 which is later to be minimized
subject to n and b.

Construction. First we make 7 copies of S, denoted by S1,...,S,. We then
apply the restructuring procedure for ¢ = log N, log(Q) N,..., log(T) N to the 7
copies of S to get S7,...,S.. Next, we build the data structure of Lemma 1
for each SLP Sj,...,S;. For each S}, let a block node be a node v for which

|S(v)| = ©(og" N). For each SLP S} and for each bookmark i we store the
O(1) block nodes generating the string containing S[i — log"”) N, i + log N].

Bookmarks in Grammar-Compressed Strings 157

We also store the relative index of position ¢ in the string generated by the first
block node. On the lowest level (i.e., for S.) we apply the technique from the
previous section. Le., if b < n we use O(n+ blog(T) N) space and if b > n we use
O(nlog™ N + b) space.

Decompression. To decompress a substring of length [from a bookmark posi-
tion ¢ € {i1,...,ip} we do the following.

If log(jﬂ) N <I< log(j) N for some j < 7. We locate the block node that
contains 7 in SJ’- and decompress the string starting in the relative position stored
for the current bookmark using the data structure of Lemma 1. If we reach the
end of the string generated by the current block node, we move on to the next
node that we stored and repeat the process from relative position 1. When we
decompress from a block node v in S;, the query time of Lemma 1 becomes
O(loglog”) N +1) = O(1) since log¥*") N < 1. We visit O(1) block nodes so the
total time to decompress S[i, i +] becomes O(I).

If on the other hand [< log(T) N, then we use the solution chosen for the
bottom level, which according to Theorem 1 yields a decompression time of O(l).

Analysis. Our data structure creates 7 copies of S. Each has size O(n) after
the restructuring of Lemma 3 and the application of Lemma 1, i.e., this requires
O(1n) space. For each bookmark, we store references to O(1) nodes in each copy
for a total of O(7b) space. For 8. we need O(min{n, b} log!™ N) space as stated
in Theorem 1. Hence, the total space usage is O((n + b) + min{n, b} log(™ N),
which is equal to O(7(n + b) + min{n, b} log(” n), because n < N < 2" in any
SLP. It remains to choose 7 as to minimize this expression.

We define z = miﬁf{tf’b} > 1. Then, the goal is to minimize min{n, b} f(7),

where f(7) = a-7+log™ n, over all 7 > 1. We claim that f(7) is minimized (up to
a constant multiplicative factor) for 7 = max{1,log” n—log" z+1}, when f(7) =
O(zmax{1,log"n — log" z}). If log"n —log"z +1 < 2 then x > logn, so the
expression is minimized for 7 = 1. Otherwise, define p = log* n and ¢ = log" z,
where t = p—g+1 > 2. By the properties of iterated log, 2 17 (p—1) <n <217 p
and 2 11< (¢ —1) < <2 11 ¢. Hence logP~) < 2 11 (g—1) < z and
f(t) < z(t+1) < 2z -t. We claim that, for any 7 > 1, f(7) > z - t, that is,
7 =t is the (asymptotically) best choice.

If r > %t then clearly f(r) > x -7 > %az - 7. It remains to analyze the case

T< %t. We will prove that, for any 7 < %t, log™ n > %z -t. Because log(™ n is

monotone in 7, it is enough to prove that log(itfl) n > ix-t, or by the properties
of iterated log 2 17 (p—it) >21 q%t. Because p—%t > q—l—it by the assumption
that p — ¢ > 1, this reduces to showing that 2 17 (¢ + 1t) > 217 ¢- 1¢.

Lemma 4 For any z,y > 0,211 (z4+y)>21Tx-y.

Proof. If x = 0, we need to show that 2 17 y > y, which holds for any y > 0.
From now on, we assume that x > 1 and apply induction on y > 0.

158 P.H. Cording et al.

For y = 0, the left side is positive and the right side is zero. For y = 1,
22112 > 2 11 2 holds for all z > 0. For y = 2,2 11 (z +2) > 2211 > 217 2.2
holds for all > 0.

Now assume that 2 17 (x +y) > 2 11 « - y for some y > 2. Then

211 (z4+y+1) = 2211 (z+y) > 92Ty > (211 z)Y.

So now it is enough to show that (2 11 2)¥~! > y+1. But 2 > 1, so this reduces
to 2¥=1 >y + 1, which holds for any y > 3. |

In conclusion, choosing 7 = max{1,log"n — log" =z + 1} gives us the total
space usage of O((n + b) max{1,log™n — log* z}). By rewriting this expression
to remove x we get the following Theorem.

Theorem 2. Given an SLP for S[1, N] with n rules and positions i1, ...,ip in
S, we can store S in space O((n + b) max{1,log" n — log"(% + 2)}) such that
later, given i € {i1,...,ip} we can extract S[i,i + 1] in O(I) time.

5 Conclusion

We have shown a bookmarking data structure that uses a little more than linear
space. If b < bg<+>N orn log(c) N < b the space becomes O(n + b). Furthermore,
O(n + b) space can be achieved for any n and b if we are willing to pay a
O(log'® N) kick-off time for decompression. It remains open whether there exists
a bookmarking data structure that uses O(n+b) space and supports linear time

decompression, regardless of the relationship between n and b.

References

1. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and select in
grammar-compressed strings. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 142-154. Springer, Heidelberg (2015)

2. Belazzougui, D., Gagie, T., Gawrychowski, P., Karkkéainen, J., Ordénez, A., Puglisi,
S.J., Tabei, Y.: Queries on LZ-bounded encodings. In: DCC, pp. 83-92 (2014)

3. Bille, P., Christiansen, A.R., Cording, P.H., Ggrtz, I.L.: Finger search in grammar-
compressed strings (2015). CoRR arXiv:1507.02853

4. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513-539 (2015)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theor. 51(7), 2554—
2576 (2005)

6. Gagie, T., Gawrychowski, P., Karkké&inen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731-742. Springer, Heidelberg (2014)

http://arxiv.org/abs/1507.02853

10.

11.

12.

13.

14.

15.

Bookmarks in Grammar-Compressed Strings 159

Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-
compressed strings. In: Calderén-Benavides, L., Gonzélez-Caro, C., Chéavez, E.,
Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 229-236. Springer, Heidelberg
(2012)

Knuth, D.E.: Mathematics and computer science: coping with finiteness. Science
(New York, NY) 194(4271), 1235-1242 (1976)

Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. In: DCC, vol. 88,
no. 11, pp. 1722-1732 (2000)

Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Apostolico, A., Hein, J. (eds.)
CPM 97. LNCS, vol. 1264, pp. 1-11. Springer, Heidelberg (1997)
Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. (JAIR) 7, 67-82 (1997)

Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1), 211-222 (2003)

Welch, T.A.: A technique for high-performance data compression. Computer 6(17),
8-19 (1984)

Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337-343 (1977)

Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530-536 (1978)

Analyzing Relative Lempel-Ziv Reference
Construction

Travis Gagie™), Simon J. Puglisi, and Daniel Valenzuela

Department of Computer Science, Helsinki Institute for Information Technology,
University of Helsinki, Helsinki, Finland
{gagie,puglisi,dvalenzu}@cs.helsinki.fi

Abstract. Relative Lempel-Ziv is a popular algorithm designed to com-
press sets of strings relative to a given reference string, which acts as a
kind of dictionary. It can still applied even when there is no obvious
natural reference string for a dataset, by sampling substrings from the
dataset and concatenating them to obtain an artificial reference. This
works well in practice but a theoretical analysis has been lacking. In this
paper we provide such an analysis and verify it experimentally.

1 Introduction

Handling massive datasets is one of the most pressing challenges facing com-
puter scientists today. Many of these datasets are highly compressible but their
very size prevents us applying most classic compression algorithms in a rea-
sonable amount of time. For example, despite recent advances [5], running
Lempel-Ziv *77 [11] (LZ77) with an unbounded window on a dataset that does
not fit in internal memory, is often still prohibitively slow; running it with a
bounded window, on the other hand, yields poor compression when the distance
between repetitions is larger than the window size (e.g., if we try to compress a
database of genomes with a window smaller than a genome). Fortunately, new
algorithms have been developed that scale well, such as Kuruppu, Puglisi and
Zobel’s [6] Relative-Lempel Ziv (RLZ). This algorithm was designed to compress
sets of strings which are all similar to a given reference: it stores an index for
the reference (e.g., a suffix tree) and then greedily parses the rest of the dataset
into substrings that either exactly match, or match except for the final charac-
ter, some substring of the reference; thus, at compression time, it uses internal
memory bounded in terms of the size of the reference, not the whole dataset.
What seems at first to be the main drawback of RLZ—i.e., that we can
apply it only when we have a natural reference—has turned out not to be a
drawback at all in practice. Several authors [3,7,10] have shown how, by sampling
substrings from the entire dataset and concatenating them, we can build an
artificial reference, with which we can usually still obtain excellent compression.

Supported by the Academy of Finland through grants 268324, 284598, and 294143.
Part of this work was done while the first author visited the University of A Coruna,
Spain. The authors thank Pawel Gawrychowski for his suggestions.

© Springer International Publishing AG 2016

S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 160-165, 2016.
DOI: 10.1007/978-3-319-46049-9_16

Analyzing Relative Lempel-Ziv Reference Construction 161

In fact, this approach works so well that RLZ is now considered one of the
best general-purpose compression algorithms for repetitive datasets. As far as
we know, however, no one has given a theoretical analysis of why the artificial
references work so well. In this paper we provide such an analysis and show
that, e.g., if we sample z1g*t®n blocks each of length \/n/(z1gn), where n is
the length of the dataset and z is the number of phrases in its unbounded-window
LZ77 parse, then we can expect to use O((nz)!/?log®"“n) bits of space for the
encoding. That is, if LZ77 compresses a dataset well, then, given an appropriately
sampled reference, so should RLZ. Our experiments show the compression we
observe as we vary the number of blocks qualitatively fits our predictions.

2 Theoretical Analysis

It is intuitively clear that as we increase the number and length of the sampled
substrings, the size of the reference will increase but, if the dataset is repetitive,
then the complexity of the entire dataset with respect to the reference will tend
to decrease. To understand this decrease, consider that if a somewhat shorter
substring is common, then it is likely to be included somewhere in the sample, in
which case all its occurrences are well-compressed; if it is uncommon, then the
cost of storing all its occurrences uncompressed is still not large. In this section
we formalize this intuition and provide a theoretical analysis showing that when
three conditions hold we can expect good compression.

Suppose we want to compress a string S of length n over an alphabet
of size o whose LZ77 parse consists of z phrases. Results by Rytter [9] and
Gawrychowski [2] imply that we can divide S into O(n/¢) blocks of length at
most £/2 such that O(zlogn) of them are distinct, for 2 < ¢ < n. Suppose we
sample k substrings of length ¢ from S and concatenate them, appending the
first and last ¢ characters of S, to obtain the reference. This takes O(kflog o)
bits.

If the ith distinct block has frequency f;, then the probability one of its
occurrences is completely included in some sampled substring is at least 1 — p;,

E
where p; = (1 - J;’Tf) . In this case, all of its occurrences can be stored in a total

of O(filog(kl)) bits; otherwise, they are stored in O(f;£log o) bits.
Let b = O(zlogn) be the number of distinct blocks. By the optimality of
greedy parsing, the expected size in bits of the RLZ parse is

b
log (k)
<Z fi(l —p;)log(k) + Zfzpzﬁlog a) < (’)(noi(+ Llog(o Zf1p1> .

i=1

k
Since 1 —z < e *, we have p; = (17%> < m SO Z?Zl fimi <

Z?Zl eff,fim, which is concave and, thus, maximum when all the distinct blocks
occur equally often. Therefore, calculation shows

nlogo
(log(o Zfzpz = Qi)

162 T. Gagie et al.

Summing up, we obtain the following theorem:

Theorem 1. If we randomly sample and concatenate k blocks of length £ from
the dataset to form an artificial reference, then the expected total size in bits of
the RLZ encoding (i.e., the reference and the parse together) is

nlog(k€)> nlogo

O(k€10g0+ 7 (k2 log)
This bound guarantees good compression in the expected case for sufficiently
large datasets if three conditions hold simultaneously:

1. kl < n,
2. log(kf) < Llogo,
3. k=w(zlogn).

One consequence of this observation is that when LZ77 compresses well, so
too should RLZ with an artificial reference sequence when sampling is done
appropriately. For example, by setting & = z1g?**n and £ = /n/k, we use
O((nk)'/?logn) bits of space. We note as an aside that even when a good
reference is given, however, either the length of that reference or the number of
phrases in the RLZ parse must be at least the square root of the total length of
the dataset. Of course, this is not a serious concern in practice.

Corollary 1. If we randomly sample and concatenate z1g*> ¢ n blocks of length
\/n/k, then the expected total size of the RLZ encoding is O((nk)1/2 logn).

The first two conditions listed above are fairly trivial—they mean, essentially,
that the reference should be smaller than the dataset and a pointer into the
reference should be smaller than the substring it is replacing—but the third is
more interesting. For one thing, while choosing k, say, a tenth larger than optimal
should not increase the size of the encoding by more than about a tenth, the last
term in our space bound suggests that choosing k a tenth smaller than optimal
could drastically worsen compression. That is, our analysis suggests that if we
plot the size of the encoding against the number of blocks we sample, it should
start by falling sharply and then rise slowly. For another thing, it is not clear what
“optimal” really means here. The logn factor comes from the approximation
ratio of Rytter’s algorithm for building a small straight-line program, and it is
unknown if that ratio can be improved even using exponential time (see Charikar
et al. [1]).

3 Experimental Results

We checked our prediction that if we plot the size of the encoding against the
number of blocks we sample, it should start by falling sharply and then rise
slowly, by compressing the following datasets with RLZ using various sampling
regimes to build the artificial reference:

Analyzing Relative Lempel-Ziv Reference Construction 163

English: A concatenation of English text files selected from etext02 to etext05
collections of Gutenberg Project!. Total size is 1 GB.

Gov2; cp: 1GB Prefix of the TREC collection Gov?22.

Proteins: A sequence of newline-separated protein sequences (without descrip-
tions) obtained from the Swissprot database. Total size is 1.2 GB (see foot-
note 1).

Rep, op: Very repetitive text generated by concatenating 400 copies of a random
25 MB string.

We built an artificial reference for each dataset, as described in Sects. 1 and 2,
by picking values of k and ¢ and then concatenating k randomly sampled sub-
strings of length ¢ from the dataset, storing the resulting reference in kflog o
bits. We stored phrases using lg(k¢) bits for pointers and lg¢ bits for phrase
lengths.

We used two approaches to build the references:

Fixed length: we fixed a value of ¢ and tried different values of k;
Corollary 1: we used the values of k and ¢ prescribed by Corollary 1, using
varying estimates of z.

Additionally, with the algorithm of [4], we calculated the size of the LZ77 encod-
ing and include it as a baseline, using 2lgn bits for each phrase.

The results are shown in Fig.1. The curves we obtained are in accordance
with Theorem 1. That is, there is a sharp drop on th