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    Chapter 17   
 Baclofen: Therapeutic Use and Potential 
of the Prototypic GABA B  Receptor Agonist                     

     Norman   G.     Bowery    

    Abstract     Baclofen (β-chlorophenyl GABA) is a stereospecifi c agonist at GABA 
type B (GABA B ) receptors and is inactive at GABA A  receptors. It has therefore been 
employed as a marker for GABA B  sites. Its selectivity for this receptor provides a 
unique pharmacology which is covered in this chapter. Numerous effects have been 
reported but currently only its anti-spasticity and analgesic actions are utilized in 
clinical medicine. It is the preferred treatment in spasticity of different origins. Its 
potential for use in other conditions, for example, in reducing drug addiction, in the 
treatment of gastroesophageal refl ux disease, chronic cough and hiccup is very 
strong. However, as it is a directly acting receptor agonist its action is likely to be 
diminished by desensitization. Moreover, its access to the CNS is limited requiring 
the administration of high doses. This increases the chance of unwanted side effects. 
To overcome this in spasticity, the administration of lower doses into the intrathecal 
space through an indwelling cannula has had a major infl uence on the acceptance of 
the drug by patients. In other conditions, an alternative approach is required and the 
possible solution may be the use of positive allosteric modulators of the GABA B  
receptor. This could reduce receptor desensitization and improve access to the site 
of action.  

  Keywords     Baclofen   •   Spasticity   •   Analgesia   •   Epilepsies   •   Antidepressant   • 
  Cognition   •   Addiction   •   Hiccup   •   Cough   •   Gastroesophageal refl ux disease  

   β-Chlorophenyl GABA (Baclofen)    was fi rst introduced into clinical medicine in 
1972 after evidence was obtained showing it had a muscle relaxant effect in an ani-
mal model (Bein  1972 ). It was designed to be a GABA-mimetic, which could cross 
the blood–brain barrier through increased lipophilicity (Keberle and Faigle  1968 ). 
Whilst it is able to gain access to the brain after peripheral administration, this is not 
due to passive diffusion but instead it appears to enter via a neutral amino acid trans-
porter (van Bree et al.  1988 ,  1991 ). Although baclofen was designed to mimic the 
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action of  γ-aminobutyric acid (GABA)  , there was no evidence, when it was fi rst 
used clinically, that it acted in this manner. Numerous in vitro studies failed to show 
any activity at the GABA receptor (Curtis et al.  1974 ; Davies and Watkins  1974 ). 
Only some 10–5 years later did evidence emerge that supported an interaction with 
a GABA receptor that is not associated with chloride ion channels. It was this selec-
tive effect at a metabotropic GABA receptor that provided, in part, the basis for the 
existence of a novel receptor, which we designated GABA type B ‘GABA B ’ recep-
tor (Hill and Bowery  1981 ) .  

 Activation of this receptor in brain tissue can produce neuronal hyperpolariza-
tion or a decrease in evoked neurotransmitter release. The former effect is mediated 
by K +  conductance predominantly via postsynaptic receptors (Luscher et al.  1997 ) 
whilst the latter effect is due to an action on presynaptic terminals mediated via a 
decrease in membrane Ca 2+  conductance (Dunlap  1981 ; Doze et al.  1995 ; Isaacson 
 1998 ; Wu and Saggau  1995 ). Both of these mechanisms are coupled to G-proteins 
that are members of the pertussis toxin-sensitive family G io /G oα  (Odagaki and 
Koyama  2001 ; Odagaki et al.  2000 ) although some presynaptically mediated events, 
associated with reduced Ca 2+  conductance, appear to be insensitive to pertussis 
toxin (Harrison et al.  1990 ). 

 Multiple types of K +  channels seem to be associated postsynaptic GABA B  recep-
tors (Wagner and Deakin  1993 ) whilst the predominant calcium channel linked to 
GABA B  sites appears to be the ‘N’ type although ‘P’ and ‘Q’ type channels have 
also been implicated (Santos et al.  1995 ; Lambert and Wilson  1996 ; Barral et al. 
 2000 ). GABA B  sites are also associated with adenylyl cyclase, which is normally 
inhibited by receptor activation (Xu and Wojcik  1986 ) although when the enzyme is 
activated by a G s -coupled receptor agonist such as isoprenaline, GABA B  receptor 
activation increases the formation of  cyclic adenosine monophosphate (cAMP)   
above the level produced by isoprenaline alone (Karbon et al.  1984 ; Hill  1985 ). 

 Throughout these studies baclofen (and GABA) has been used as the GABA B  
receptor agonist. 

17.1      Actions of Baclofen   

 The actions of baclofen in mammals are not confi ned to the brain which is hardly 
surprising given that GABA B  receptors have been shown to be present in many 
peripheral tissues (Giotti et al.  1990 ; Erdo and Bowery  1986 ). The receptors are not 
even confi ned to nervous tissue (Erdo and Bowery  1986 ), but the majority of receptor 
activation stems from an action on neural systems. GABA B  receptors are widely dis-
tributed throughout the mammalian brain although there are regional variations. 
Whilst there are high receptor densities in the interpeduncular nucleus, dorsal horn of 
the spinal cord, the thalamic nuclei, cerebellar molecular layer and cerebral cortex, the 
densities in other brain regions are much lower (Bowery et al.  1987 ; Chu et al.  1990 ). 
Unfortunately, the receptor density does not necessarily refl ect the physiological 
importance of the receptor in all brain regions. For example, in the hippocampus the 
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overall receptor density, as assessed by receptor autoradiography, appears to relatively 
low although there is variation within the structure. Many studies have been con-
ducted using hippocampal tissue, and this structure provided the initial evidence for a 
physiological role of the GABA B  receptor (Dutar and Nicoll  1988 ; Nicoll  2004 ). 

 Table  17.1  summarizes the effects of baclofen throughout the mammalian sys-
tem with the sites of action implicated in each case. We can consider each locus in 
turn examining what effect(s) has been observed and how this may relate to any 
clinical  potential  .

17.2         Spasticity      

 Numerous studies have been performed on the action of baclofen in the spinal cord. In 
initial studies using GABA in vivo in anaesthetized animals, it was shown that it 
depresses all types of spinal neurons and could inhibit monosynaptic and polysynaptic 
refl ex activity (Curtis and Watkins  1965 ). In a preliminary report using baclofen as a 
GABA derivative, Birkmayer et al. ( 1967 ) were able to show control of spasticity after 
spinal cord lesions. Subsequent clinical studies supported this fi nding in a placebo-
controlled trial in 6 patients (Jones et al.  1970 ) and in a double- blind trial in 23 patients 
(Hudgson and Weightman  1971 ). Baclofen rapidly became the drug of choice in spas-
ticity in patients with hemi- and tetraplegia (Brogden et al.  1974 ), in multiple sclerosis 
(Giesser  1985 ; Brar et al.  1991 ; Smith et al.  1991 ) in cerebral palsy (Buonaguro et al. 
 2005 ; Scheinberg et al.  2006 ; Krach  2009 ; Navarrete-Opazo et al.  2016 ) in stiff-man 
syndrome (Whelan  1980 ; Silbert et al.  1995 ; Stayer et al.  1997 ) tetanus (Mueller et al. 

   Table 17.1    Site of action and potential therapeutic application of  baclofen   and GABA B  receptor 
activation   

 Effect  Site of action  Clinical 

 Muscle relaxation  Spinal cord refl exes  Spasticity 
 Antinociception  Spinal cord sensory fi bres  Analgesia 

 Thalamus 
 Antitussive  Cough centre in medulla  Cough suppression 
 Suppression of drug addiction  Mesolimbic system  Drug abuse 
 Oesophageal sphincter 
relaxation 

 Intestine  Gastroesophageal refl ux 
disease 

 Smooth muscle relaxation  Lung  Asthma 
 Food intake modifi ed  Higher centres  Enhance feeding 
 Insulin/glucagon release  Pancreas  Diabetes 
 Adenylyl cyclase inhibition  Pancreas  Adenocarcinoma 
 Reduction in fat intake  Higher centres  Binge eating 
 Enhancement of neutrophil 
chemotaxis 

 Leucocytes  Infl ammation 

 Suppression of pain behaviour  Dorsal periaqueductal  grey    Anxiety/panic disorder 
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 1987 ; Demaziere et al.  1991 ; Engrand et al.  1999 ; Santos et al.  2004 ) and after stroke 
(O’Brien et al.  1996 ). The underlying effect of baclofen in these conditions is a reduc-
tion in spinal refl ex mechanisms, but how this arose was not established. No evidence 
for an action at GABA receptors was obtained. Although baclofen had a benefi cial 
effect in spasticity, it has many unwanted side effects (Table  17.2 ) primarily because it 
had to be administered orally in large doses due to poor penetration into the brain. In 
1984, Penn and Kroin ( 1984 ,  1985 ) made an important discovery that baclofen could 
be administered intrathecally using an indwelling mini-pump. This enabled much 
smaller doses to be given as Leisen et al. ( 2003 ) demonstrated; an intrathecal dose of 
600 μg baclofen produced a local  plasma      level of 5–20 ng/g whereas 100 mg baclofen 
given orally produced a level of <3 ng/g in  cerebrospinal fl uid (CSF)  . Numerous stud-
ies have been made since the Penn and Kroin ( 1984 ) original report and in all cases 
positive effects have emerged following intrathecal application (Ochs  1993 ; Becker 
et al.  1997 ; Gianino et al.  1998 ;  Rawlins 1998 ; Sasaki and Ogiwara  2016 ; Heetla et al. 
 2016 ; Bonouvrie et al.  2016 ; Okazaki et al.  2016 ; Al-Kadalry et al.  2015 ; Naito  2014 ; 
Khurana and Gang  2014 ; Mathur et al.  2014 ).

17.3         Analgesia      

 Baclofen has been shown to be anti-nociceptive in animal models of acute pain. For 
example, in the rat tail fl ick and hot plate tests at doses lower than required to pro-
duce muscle relaxation (Wilson and Yaksh  1978 ; Aley and Kulkarni  1991 ). Visceral 
pain-related responses to colorectal distension in rats are also inhibited by baclofen 
(Brusberg et al.  2009 ). An analgesic effect of baclofen in clinical medicine has been 
noted in cluster headache, migraine and trigeminal neuralgia (Hering-Hanit and 
Gadoth  2000 ; Hering-Hanit  1999 ; Fromm et al.  1980 ,  1984 ; Fromm and Terrence 
 1987 ). However, following its systemic administration rapid tolerance to the effects 
of baclofen occurs, and this limits its use as an analgesic. 

 The sites of action of baclofen responsible for analgesia are within the spinal cord 
and thalamus. Systemic, intrathecal or injection into discrete regions of the thalamus can 
produce analgesia in acute pain models (Cutting and Jordan  1975 ; Sawynok and LaBella 
 1982 ; Vaught et al.  1985 ). Whilst spinal  transection      reduces the anti-nociceptive effect 

   Table 17.2    Possible 
unwanted side effects of 
 baclofen   after oral 
administration  

 Nausea 
 Drowsiness 
 Dizziness 
 Hypotension 
 Seizures 
 Muscle weakness 
 Hallucinations 
 Mental 
disturbance 
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of baclofen (Proudfi t and Levy  1978 ), there is evidence for a distinct contribution from 
a reduction in primary afferent transmitter release within the spinal cord. GABA B  recep-
tor activation in spinal cord slices prevents the release of Substance P, glutamate and 
calcitonin gene-related peptide (CGRP) evoked by electrical stimulation of the dorsal 
roots (Malcangio and Bowery  1993 ,  1996 ; Teoh et al.  1996 ). All three compounds are 
believed to contribute to the transmission of nociceptive impulses in the spinal cord. If 
a GABA B  receptor antagonist is administered to the isolated spinal cord preparation, 
there is no increase in transmitter release. However, if chronic infl ammation is produced 
by in vivo administration of Freunds adjuvant this produces an increase of around 25 % 
in the concentration of GABA in the dorsal horn (Castro-Lopes et al.  1992 ). This facili-
tates the GABA B  receptor control of Substance P release. When a GABA B  receptor 
antagonist is applied to the isolated cord prepared from adjuvant-treated rat, the evoked 
release of Substance P is dramatically increased (Malcangio and Bowery  1994 ). 
Furthermore, if the GABA antagonist is administered to the intact adjuvant-treated rat, 
there is a striking increase in nociception. This contrasts with the lack of effect of the 
antagonist in naïve animals. This would suggest that during chronic infl ammation there 
is an increase in GABA B  innervation to primary afferent terminals that acts as a patho-
logical anti-nociceptive control to oppose the enhanced sensory input that occurs. 

 Administration of baclofen into the thalamic ventrobasal complex contralateral 
to the infl amed joint in monoarthritic rats can attenuate allodynia in the ankle-bend 
test (Potes et al.  2006 ) supporting a higher centre role in nociception. However, 
evidence for a spinal role is also strong. GABA B  receptor expression is required for 
inhibition of N-type (Cav 2.2) calcium channels by α-conotoxins in rat models of 
neuropathic pain.  Conotoxins   are anti-nociceptive. Knockdown of GABA B  recep-
tors in rat-isolated dorsal root ganglia using RNA interference produced a signifi -
cant reduction in the inhibition of N-type calcium channels produced by baclofen. 
This would indicate that GABA B  receptor activation must occur to allow the modu-
lation of N-type calcium channels and consequent analgesia by α-conotoxins (Cuny 
et al.  2012 ; Huynh et al.  2015 ) 

 Further support for the involvement of GABA B   receptors      in pain mechanisms 
comes from studies with ‘knock-out’ mice (Schuler et al.  2001 ) in which the sub-
units GABA B1  or GABA B2  are not formed. In either case, functional GABA B  recep-
tors are not produced and hyperalgesia occurs indicating that heteromeric receptors 
are required to maintain nociceptive thresholds. 

 As indicated earlier, the potential for baclofen as a clinical analgesic is limited by 
rapid tolerance and the adverse effects which can develop after systemic administration 
(Table  17.2 ). The introduction of positive allosteric modulators of the GABA B  receptor 
has provided an alternative approach to reduce both tolerance and unwanted side effects. 

 Many examples of GABA B  positive allosteric modulators have been described (see 
Chap.   18     of this volume) and tested in vivo in a variety of animal models for anti-noci-
ceptive activity. For example, ADX 71943 reduced the pain- associated behaviours in the 
acetic acid writhing and formalin tests in mice and the GABA B  antagonist,  CGP63360  , 
blocked this effect. The compound was inactive in the marble burying and elevated plus 
maze tests for anxiolytic or anxiogenic activity (Kalinichev et al.  2014 ). Baclofen pro-
duces anti-nociceptive effects in animal models of visceral pain including mechanically 
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induced visceral pain.  CGP7930  , a positive allosteric modulator (Adams and Lawrence 
 2007 ), is also anti-nociceptive in such a model (Brusberg et al.  2009 ) and rac-BHFF, 
another positive allosteric modulator, enhances baclofen-mediated anti-nociception in 
neuropathic mice (Zemoura et al.  2016 ). This would suggest that positive allosteric mod-
ulators may provide a better approach to analgesia having less unwanted side effects. 
Positive allosteric modulators appear to have an improved profi le compared to baclofen 
or other direct acting  agonists      (Table  17.3 ).

   Table 17.3    Comparison of  effects   of baclofen and positive allosteric modulators of GABA B  
receptors   

 Effect  Baclofen 
 Positive allosteric 
modulator 

 Tolerance  Yes a   No b  
 Anti-nociception  Yes c   Yes d  
 Body temperature  Decrease e   No effect f  
 Gastroesophageal disease  Reduction g   ? 
 Systemic blood pressure  Decrease (in hypertension) h   ? 
 Sedation  Yes i   No f  
 Myorelaxation (locomotor activity↓)  Yes j   No f  
 Cognition  Decrease k   ? 
 Food intake  Increase l   Increase l  

 Decrease m   Decrease m  
 Anticonvulsant  Yes n   Yes o  
 Overactive bladder  Reduces p   Reduces q  
 Anxiety  Anxiogenic/variable r   Anxiolytic f  
 Drug addiction (nicotine, cocaine, 
opiates, alcohol) 

  Decrease   s   Decrease b  

  Table 17.3 References (numbers after each effect refer to reference list below): 
  a Gjoni T, Urwyler S (2008) Neuropharmacology 55: 1293–1299 
  b Ong J, Kerr DI (2005) CNS Drug Rev 11: 317–334 
  c Brusberg M, Raynefjord A, Martinsson R et al. (2009) Neuropharmacology 56: 362–367 
  d Kalinichev M, Donovan-Rodriguez T, Girard F et al. (2014) Br J Pharmacol 171: 4941–4954 
  e Queva C, Bremner-Danielsen M, Edlund A et al. (2003) Br J Pharmacol 140: 315–322 
  f Cryan JF, Kelly PH, Chaperon F et al. (2004) J Pharmacol Exp Ther 310: 952–963 
  g Miner PB jr, Silberg DG, Ruth M et al. (2014) Gastroentorology 14: 188 
  h Li DP, Pan HL (2010) Adv Pharmacol 58: 257–286 
  i From A, Heltberg A (1975) Acta Neurol Scand 51: 158–166 
  j Stefanski RI, Plaznik A, Palejko W, Kostowski WJ (1990) J Neural Transm Park Dis Dement Sect 
2(3): 179–191 
  k Stackman RJ, Walsh TJ (1994) Behav Neural Biol 61: 181–185 
  l Ebenezer IS (2014) Eur J Pharmacol 690: 115–118 
  m Perdona E, Costantini VJ, Tessari M et al. (2011) Neuropharmacology 61: 957–966 
  n Brown JW, Moeller A, Schmidt M et al. (2016) Neuropharmacology 101: 358–367 
  o Mares P, Ticha K, Mikulecki A (2013) Epilepsy Behav 28: 113–120 
  p Frost F, Nanninga J, Penn R et al. (1989). Am J Phys Med Rehabil 68: 112–115 
  q Kalinichev M, Palea S, Haddouk H, et al. (2014) Br J Pharmacol 171: 995–1006 
  r Cryan JF, Slattery DA (2010) Adv Pharmacol 58: 427–451 
  s Viachou S, Markov A (2010) Adv Pharmacol 58: 315–371  

N.G. Bowery



343

17.4        Epilepsy:  Convulsant Seizures      

 GABA receptors have long been associated with the control of epileptic seizures. 
Defi cits in GABA type A (GABA A ) receptor function within the central nervous 
system (CNS) provide an underlying mechanism for the production of seizures 
(Gale  1992 ; Olsen et al.  1992 ) and positive allosteric modulation of GABA A  recep-
tors with benzodiazepines can reduce seizure activity (Upton and Blackburn  1997 ). 
However, GABA B  receptors have also been implicated (Gamardella et al.  2003 ; 
Pacey et al.  2009 ,  2011 ; Vienne et al.  2010 ). ‘Knock-out’ mice lacking functional 
GABA B  receptors exhibit both spontaneous and audiogenic-induced seizures 
(Prosser et al.  2001 ; Schuler et al.  2001 ; Vienne et al.  2010 ), and baclofen is known 
to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test 
(Meldrum and Horton  1980 ; Brown et al.  2016 ). However, baclofen appears to aug-
ment some seizures whilst inhibiting others. For example, it has been shown to 
increase the incidence of seizures evoked by pentylenetetrazole without increasing 
seizures due to local injections of excitatory amino acids (Snodgrass  1992 ). 

 In temporal lobe epilepsy, impairment of GABA B  receptor function has been noted 
in cerebrocortical slices obtained from patients undergoing surgery for drug- resistant 
epilepsy (Teichgraber et al.  2009 ) suggesting that GABA B  receptor activation could 
be important in seizure  suppression     .  

17.5     Epilepsy:  Absence Seizures      

 The characteristic  electroencephalography (EEG)   activity of a 3-Hz spike and 
wave, which is manifest during typical absence seizures, appears to stem from dis-
charges in the thalamic nuclei. But this is probably not the site of origin of these 
discharges. Meeren et al. ( 2005 ) have demonstrated unequivocally in a genetic rat 
model of absence epilepsy (Wistar Albino Glaxo/Rij-rat, WAG/Rij) that the origin 
is outside the thalamus in the perioral region of the somatosensory cortex. These 
discharges spread across the cortex and initiate a corticothalamic cascade. 

 Inaba et al.( 2009 ) examined the  effects      induced by baclofen (0.1–10 μM) on the 
inhibitory events recorded in vitro from neocortical slices obtained from these epi-
leptic WAG/Rij (>180 day-old) and from age-matched,  non-epileptic control (NEC) 
rats  . They found that higher doses of baclofen were required to depress pharmaco-
logically isolated, stimulus-induced  inhibitory postsynaptic potentials (IPSPs)   gen-
erated in WAG/Rij neurons as compared to those in NEC neurones. These authors 
suggest that this indicates a decreased function of presynaptic GABA B  receptors in 
the WAG/Rij rat neocortex. 

 In another rat model of absence seizures (genetic absence epilepsy rat of Strasbourg, 
GAERS), when baclofen is injected into the ventrobasal thalamus or reticular nucleus 
this exacerbates the seizures (Manning et al.  2003 ). Conversely, if a GABA B  antagonist 
is injected into the same brain regions this suppresses the seizures. These studies in a rat 
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model may implicate the GABA B  receptor in the generation or modulation of absence 
seizures but certainly indicates that baclofen might exacerbate seizures clinically and, 
therefore, would be contraindicated in patients with absence epilepsy. 

 Another model, this time in mice, DBA/2J, which are prone to audiogenic 
seizures (see above) also provides an in vivo system for studying spontaneous 
absence seizures. Baclofen, administered i.p. (0.5–10 mg/kg), dose-dependently 
increased the number of spike and wave discharge episodes in this model. This 
increase was also reversed by the GABA B  antagonist,  SCH50911   (50 mg/kg i.p.) 
(Bortolato et al.  2010 ). 

 Atypical absence epilepsy is another distinct form of absence in which the sei-
zures differ markedly from those in typical absence seizures notably in the EEG 
pattern. A model of this disorder can be produced in rats treated with the cholesterol 
synthesis inhibitor,  AY-9944   (Cortez et al.  2001 ). In this animal model, the spike 
and wave discharges are signifi cantly prolonged by baclofen and abolished by the 
GABA B  antagonist, CGP 35348 (Cortez et al.  2001 ). Over expression of the GABA B  
receptor 1a subtype in transgenic mice also appears to produce atypical absence 
seizures which are exacerbated by baclofen (Wu et al.  2007 ). 

 Taken together these data support a role for GABA B  receptors in the aetiology of 
both typical and atypical absence  epilepsy     .  

17.6      Affective Disorders   

 Lloyd et al. ( 1985 ) and Lloyd ( 1989 ) were the fi rst to report that a variety of anti-
depressant drugs, e.g. fl uoxetine, citalopram and amitriptyline given chronically 
(6–18 days) in rats, produces a signifi cant upregulation in GABA B  binding sites in 
the frontal cortex. By contrast neuroleptics, psychostimulants and anxiolytics had 
no effect (Lloyd  1989 ). From the data produced by Lloyd ( 1989 ) there would 
appear to be a close connection between GABA B  receptor mechanisms and cere-
bral beta-adrenoceptors. Repeated administration of baclofen to rats produces a 
down- regulation in cerebral adrenoceptors in a manner similar to chronic treat-
ment with nomifensine or imipramine (Suzdak and Gianutsos  1986 ). Although 
these observations were disputed (Cross and Horton  1987 ,  1988 ), there is now 
good evidence that GABA B  mechanisms are associated with depression. Baclofen 
administered to rats undergoing the forced swim test and the learned helplessness 
test, which are animal models for determining the action of antidepressant drugs, 
attenuates the action of recognized antidepressant drugs such as mianserin and 
desipramine (Nagakawa et al.  1996 ; see Chap.   12     of this volume). However, 
baclofen given alone had no direct effect in these models whereas GABA B  recep-
tor antagonists administered to mice in the forced swim test produced an antide-
pressant-like effect (Mombereau et al.  2004 ). Knock-out mice lacking GABA B1  or 
GABA B2  receptor subunits exhibit antidepressant behaviour and anxiety 
(Mombereau et al. 2004). So we might conclude that a reduction in GABA B  
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receptor function produces antidepressant-like behaviour whilst an increase in 
receptor activation produces a depressant effect. But baclofen does not fi t into this 
category; it merely appears to attenuate the effects of antidepressant drugs. 

 Very little is known about the potential clinical signifi cance of these observa-
tions, as there is a paucity of clinical data. However, Post et al. ( 1991 ) found in 3 out 
of 5 patients with depression that baclofen exacerbated their symptoms. 

 In a study by Keegan et al. ( 1983 ), a patient with pre-existing bipolar affective 
disorder developed increased depression whilst on baclofen. This led the authors to 
conclude that baclofen should be used with caution in patients with neuropsychiat-
ric  problems  .  

17.7     Cognitive  Behaviour      

 Baclofen and other GABA B  receptor agonists suppress cognitive behaviour in ani-
mals (Carletti et al.  1993 ; Stackman and Walsh  1994 ; De Sousa et al.  1994 ; Pitsikas 
et al.  2003 ), and this effect is reversed by GABA B  receptor antagonism (Pitsikas 
et al.  2003 ; Liu et al.  2014 ). Baclofen has also been shown to contribute to differ-
ent varieties of amnesia in the human brain (Zerman et al.  2016 ). By contrast, 
impairment of recognition memory induced in mice by methamphetamine (1 mg/
day for 7 days) was ameliorated by baclofen but not by the GABA A  receptor ago-
nist, gaboxadol (Arai et al.  2009 ). Similarly, in a study performed in Macaca 
mulatta primates in which cocaine (0.2–0.6 mg/kg iv) induced a cognitive decline 
in a delayed match to sample task, baclofen, co-administered with cocaine, 
reversed the task performance back to nondrug (saline iv) control levels (Porrino 
et al.  2013 ). Baclofen has also been shown to ameliorate spatial memory impair-
ment induced by chronic cerebral hypoperfusion in rats (Luo et al.  2016 ). These 
effects of baclofen seem contrary to previous reports but still implicate GABA B  
mechanisms in cognitive function. 

 Improvement in cognitive behaviour by GABA B  receptor antagonists is well 
established in a variety of animal models such as in an active and passive avoidance 
tests in rats and mice (Getova and Bowery  1998 ; Getova and Dimitrova  2007 ) and 
age-related learning in Fischer rats (Lasarge et al.  2009 ). Intrahippocampal admin-
istration of the GABA B  antagonist, 2-hydroxy saclofen (20 μM) markedly reversed 
the scopolamine-induced impairment in behavioural  long-term potentiation (LTP)   
and maze performance in rats indicating that blockade of the GABA B  receptor dis-
plays a facilitatory role in the induction of behavioural LTP and a maze learning  task      
(Liu et al.  2014 ). 

 Pentylenetetrazole-kindling-provoked amnesia in rats is also prevented by 
GABA B  antagonists such as CGP36742 (Genkova-Papazova et al.  2000 ) 

 The potential for GABA B  receptor antagonists as cognition enhancers is covered 
in Chap.   19     of this volume, but there is already evidence of limited clinical effects 
with the antagonist SGS742 [also known as CGP36742] (Froestl et al.  2004 ).  
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17.8     Drug  Addiction      

 A major goal in clinical therapeutics is the successful treatment of drug dependence, 
and many targets are under consideration. This topic is covered in Chaps.   14     and   15     
of this volume, but it seems appropriate to consider baclofen here as it was the fi rst 
GABA B -related compound to be shown to reduce the reinforcing effects of cocaine 
in rats (Roberts and Andrews  1997 ). However, it soon became clear that the addic-
tive behaviour in animals associated with morphine-like substances, nicotine and 
alcohol could also be attenuated by baclofen and other GABA B  agonists (Xi and 
Stein  1999 ; Corrigall et al.  2000 ; Addolorato et al.  2000 ,  2002 ; Cousins et al.  2002 ; 
Lorrai et al.  2016 ). Clinical evidence has been obtained for baclofen reducing alco-
hol craving in alcoholics (Imbert et al. 2015; Rolland et al.  2015 ; Chaignot et al. 
 2015 ; Lesouef et al.  2014 ) and reducing the craving for nicotine evidenced by a 
reduction in the number of cigarettes smoked per day (Colombo et al.  2004 ; Franklin 
et al.  2009 ). Whilst the attenuation of craving for cocaine by baclofen in animals is 
well established (e.g. Ling et al.  1998 ; Shoptaw et al.  2003 ; Haney et al.  2006 ), the 
effects in the clinic are not so clear. In a multi-site double-blind study, treatment of 
severe cocaine-dependent patients with a single dose of baclofen (60 mg/day) for 8 
weeks did not show any signifi cant difference from addicts treated with  placebo     . It 
was suggested that a higher dose should be tested (Kahn et al.  2009 ). 

 One possible area for clinical effi cacy is in the use of baclofen for opiate with-
drawal (Akhondzadeh et al.  2000 ), but overall more evidence is required to substan-
tiate the clinical use of baclofen in drug addiction, in part, because of the unwanted 
side effects of the compound. The advent of positive allosteric modulators of 
GABA B  sites may provide the answer as preliminary reports seem to suggest 
(Agabio and Colombo  2014 ,  2015 ; Maccioni et al.  2015 ) and see Chaps.   14    ,   15    , and 
  18     of this volume.  

17.9     Gastroesophageal Refl ux  Disease      

 Gastroesophageal refl ux disease (GERD) is a disease that affects about 1 in 5 of the 
population in the western world (Dent et al.  2005 ) and manifests as heartburn and 
regurgitation in patients but can give rise to oesophagitis (Wiklund  2004 ; Vakil et al. 
 2006 ). Baclofen can relieve these symptoms, and this was fi rst noted as an unex-
pected observation in patients treated for spasticity (e.g. Cange et al. ( 2002 ). Whilst 
antacid treatment can help in many cases, persistent symptoms often occur. The 
GABA B  receptor in the intestine appears to provide a target for inhibiting 
GERD. Baclofen and other GABA B  receptor agonists inhibit transient lower 
oesophageal sphincter relaxation, which occurs after a meal and this inhibition 
appears to be the basis for its benefi cial action (Lehmann et al.  1999 ; see also Chap. 
  16     of this book)). However, the side effects of baclofen, which result from its access 
to the brain, would indicate the need for an agent with restricted access. Lehmann 
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et al. ( 2009 ) have described the agonist  lesogaberan   that has good selectivity for the 
GABA B  receptor over the GABA A  site and higher affi nity than baclofen for GABA B  
receptors. This has led to its introduction into clinical trials for GERD (Boeckxstaens 
et al.  2009 ) but Astrazeneca have since discontinued these trials although Miner 
et al. reported a successful randomized placebo-controlled  study      in  2014 .  

17.10     Other  Actions of Baclofen   

 Many effects produced by baclofen have been reported since its clinical introduc-
tion in 1972. A number of these may be of importance when unwanted side effects 
are avoided, for example, if and when positive allosteric modulators are pursued 
clinically. 

 Baclofen is an antitussive agent and has been shown to be effective in the treatment 
of chronic refractory cough after systemic administration (Dicpinigaitis and Dobkin 
 1997 ; Dicpinigaitis and Rauf  1998 ; Xu et al.  2013 ; Chung  2015 ; see also Chap.   16     of 
this book). Another interesting action is the suppression of chronic hiccup. In patients 
with hiccup, over a prolonged period of years baclofen has been shown to stop the 
hiccup in at least 50 % of them. The mechanism underlying this effect is unclear but 
may stem from rectifying gastroesophageal abnormalities (Guelaud et al.  1995 ; 
Twycross  2003 ; Turkyilmaz and Eroglu  2008 ; Steger et al.  2015 ; Sharma  2015 ; Zhang 
et al.  2014 ; Thompson et al.  2014 ; Baumann et al.  2014 ). 

 Inhibition of vagally and histamine-induced bronchoconstriction by baclofen 
was fi rst shown by Chapman and colleagues who reported that GABA B  receptor 
activation in guinea pigs could oppose the bronchoconstriction (for review, see 
Chapman et al.  1993 ) Initial suggestions were that baclofen or an analogue might be 
useful in the clinical treatment of  asthma  . Although the action of baclofen against 
histamine was pursued clinically in patients with cervical spinal cord injury, nothing 
more has emerged with reference to asthma (Grimm et al.  1997 ). The underlying 
mechanism for this effect may well be the suppression of Substance P release from 
nerve terminal in the bronchi. 

 A major problem in patients with spinal cord lesions is unstable bladder func-
tion. Baclofen produces a marked improvement in such cases, which is a benefi cial 
side effect of treatment for  spasticity   (Taylor and Bates  1979 ; Nanninga et al.  1989 ).  

17.11     Conclusions 

 After more than 40 years since its introduction to clinical medicine, baclofen remains 
the drug of choice in the treatment of spastic disorders. It is by no means the perfect 
drug producing many unwanted side effects, and therefore improvements are needed. 
The introduction of positive allosteric modulators of the GABA B  receptor may provide 
the answer, but their clinical use has yet to emerge. But baclofen has been an extremely 
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useful compound providing a tool to defi ne the GABA B  site. It was introduced as a 
muscle relaxant in man before its mechanism of action had been obtained. Only subse-
quently was its site of action defi ned (see Chap.   1     of this volume) and since then a 
multitude of effects, wanted and unwanted, have been reported. The synthesis of ana-
logues has produced more selective agonists such as  lesogaberan   (Lehmann et al. 
 2009 ), which does not cross the blood–brain barrier so well and thus limits its actions 
to the periphery. However, one important introduction for the application of baclofen 
to the brain was its administration via the intrathecal route. This meant that much less 
drug is required which had an enormous infl uence on the incidence of unwanted side 
effects. One wonders from where the next improvement will stem.     
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