
Chapter 11
Numerical Discretization

This chapter is particularly devoted to sampled data systems, which need to be
discretized in order to be able to solve the optimal control problem within the NMPC
algorithm numerically. We present suitable methods, discuss the convergence theory
for one step methods and give an introduction into step size control algorithms.
Furthermore,we explain how thesemethods can be integrated intoNMPCalgorithms,
investigate how the numerical errors affect the stability of the NMPC controller
derived from the numerical model and show which kind of robustness is needed in
order to ensure a practical kind of stability.

11.1 Basic Solution Methods

In order to define the setting, we start by summarizing the main concepts from Sect.
2.2. As already mentioned there, in most applications the discrete time system (2.1)
is obtained from sampling a continuous time system

ẋ(t) = fc(x(t), v(t)) (2.6)

with x(t) ∈ R
d and v(t) ∈ R

m . More precisely, given a subsetU ⊆ L∞([0, T ],Rm),
i.e., each u ∈ U is a continuous time control function defined on the sampling interval
[0, T ], we define the discrete time dynamics f in (2.1) by

x+ = f (x, u) := ϕ(T, 0, x, u) (2.8)

where ϕ(T, 0, x, u) is the solution of (2.6) with v = u satisfying the initial condition
ϕ(0, 0, x, u) = x . Here, we tacitly assume that for all admissible initial values x ∈
X ⊆ X = R

d and all admissible controls u ∈ U(x) ⊆ U the solution ϕ(t, 0, x, u)
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344 11 Numerical Discretization

exists for t ∈ [0, T ]. This waywe obtain a discrete time system (2.1) whose solutions
for each control sequence u(·) ∈ U

N (x) satisfy

ϕ(tn, t0, x0, v) = xu(n, x0), n = 0, 1, 2, . . . , N , (2.7)

for all sampling times tn = nT , n = 0, . . . , N , and the continuous time control
function v given by

v(t) = u(n)(t − tn) for almost all t ∈ [tn, tn+1] and all n = 0, . . . , N − 1, (2.13)

cf. Theorem 2.7.
Since a closed formula for f defined in (2.8) will only be available in exceptional

cases, it is in general necessary to use numerical schemes in order to compute a
numerical approximation of f . This way, instead of an analytical formula we obtain
an algorithm which can be used in order to compute the predictions needed in the
optimal control problem and its variants. For the exposition in this chapter we restrict
ourselves to sampling with zero order hold in which each element u(n) of the control
sequence is a constant function from [0, T ] to Rm . This amounts to defining

U := {u : [0, T ] → R
m | there exists u0 ∈ R

m with u(t) = u0 for all t ∈ [0, T ]}.

Observe that each element in U is uniquely defined by the value u0 ∈ R
m . Accord-

ingly, we identifyU withRm and regard each u ∈ U as a value inRm . Henceforth, we
will again use the symbol u (instead of u0) for this value. The resulting continuous
time control function v in (2.7) is then piecewise constant on the sampling intervals,
cf. also Fig. 2.3 and the discussion after Theorem 2.7. Recall from Remark 2.8 that
the overlap of the sampling intervals at the sampling times tn does not pose a problem
in the definition of v in (2.13).

In the following, we give an introduction into numerical methods for ordinary
differential equations and their analysis. In particular, we give details on so-called
one step methods and show convergence results and requirements. Moreover, we
sketch the basic idea of the very useful step size control algorithms. These algorithms
allow us to externally define an error tolerance level for the solution and produce
an adaptive time grid which is computationally much more efficient than using a
sufficiently fine uniform grid, a requirement that is frequently found in the sampled
data literature. For references to textbooks which cover the material presented here
more comprehensively and in more detail we refer to Sect. 11.6.

For computing f in (2.8) it is sufficient to solve (2.6) on the interval [0, T ] on
which u ∈ U in (2.8) is constant. Hence, the right-hand side in (2.8) does not depend
on t and—more importantly—does not exhibit discontinuities on the interval [0, T ].
For this reason, standard numerical techniques can be applied. Still, the solution
depends on the constant control value u which will be reflected in the subsequent
notation.
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Before we can develop solution methods for ordinary differential equations, we
need to define some general concepts. As we have pointed out before, the fundamen-
tal idea of almost all numerical solution methods is to replace the analytic solution
ϕ(t, 0, x, u) for t ∈ [0, T ] by an approximation. Throughout the rest of this chapter,
we denote this approximation by ϕ̃(t, 0, x, u). The following definition states for
which t such an app roximation is defined and what convergence of such an approx-
imation means.

Definition 11.1 (i) A set G = {τ0, τ1, . . . , τM } of time instants with 0 = τ0 <

τ1 < . . . < τM = T is called a time grid on the interval [0, T ]. The values
hi := τi+1 − τi and h := maxi=0,...,M−1 hi are called step sizes and maximal
step size, respectively.

(ii) A function ϕ̃ : G × G × R
d ×U → R

d is called grid function.
(iii) Assume that the solution ϕ(t; τ0, x0, u) of (2.6) exists for t ∈ [0, T ]. Then a

family of grid functions ϕ̃ j , j ∈ N, on time grids G j on the interval [0, T ] with
maximal step sizes h j is called (discrete) approximation of ϕ(t; τ0, x0, u) (2.6),
if it is convergent, i.e.,

max
τi∈G j

‖ϕ̃ j (τi ; τ0, x0, u) − ϕ(τi ; τ0, x0, u)‖ → 0 as h j → 0.

The convergence of the approximation is said to be of order p > 0 if for all
compact sets K ⊂ R

d , Q ⊂ U there exists a constant M > 0 such that

max
τi∈G j

‖ϕ̃ j (τi ; τ0, x0, u) − ϕ(τi ; τ0, x0, u)‖ ≤ Mh
p
j (11.1)

holds for all x0 ∈ K , all u ∈ Q and all sufficiently fine grids G j on [0, T ].
Less technically speaking, an approximation ϕ̃(τi , 0, x, u) is a grid function

defined on G which approximates the values of the true solution at the grid points
and becomes the more accurate the finer the grid becomes. Moreover, the larger the
order of convergence p is, the faster the approximation will converge toward the
exact solution for h → 0.

The most simple class of numerical methods to compute a discrete approximation
satisfying Definition 11.1 are so-called one stepmethods. Although simple to design,
thesemethods are nonetheless well suited even for rather complicated problems. One
step methods compute the grid function ϕ̃ iteratively via

ϕ̃(τ0; τ0, x0, u) := x0, ϕ̃(τi+1; τ0, x0, u) := Φ(ϕ̃(τi ; τ0, x0, u), u, hi ) (11.2)

for i = 0, . . . , M − 1 starting from the given initial value x0. Here Φ is a mapping

Φ : Rd × U × R → R
d

which should be easy to implement and cheap to evaluate on a computer and, of
course, provide a convergent approximation in the sense of Definition 11.1(iii).
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In order to design such amapΦ,weuse that the solution of the differential equation
(2.6) for two consecutive grid points τi and τi+1 satisfies the integral equation

ϕ(τi+1; τ0, x0, u) = ϕ(τi ; τ0, x0, u) +
τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt.

Approximating the integral expression by the rectangle rule we obtain

τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt ≈ (τi+1 − τi ) fc(ϕ(τi ; τ0, x0, u), u) = hi fc(ϕ(τi ; τ0, x0, u), u)

Inserting this approximation into the above integral equation then yields

ϕ(τi+1; τ0, x0, u) ≈ ϕ(τi ; τ0, x0, u) + hi fc(ϕ(τi ; τ0, x0, u), u).

Now we define an approximate solution ϕ̃ by requiring that it exactly solves this
approximate equation, i.e.,

ϕ̃(τi+1; τ0, x0, u) = ϕ̃(τi ; τ0, x0, u) + hi fc(ϕ̃(t; 0, x0, u), u). (11.3)

This is exactly the iteration in (11.2) with

Φ(x, u, h) := x + h fc(x, u).

This one stepmethod is called theEuler scheme.Now, ifwe assume ϕ̃(τi ; τ0, x0, u) ≈
ϕ(τi ; τ0, x0, u), then we see that

ϕ̃(τi+1; τ0, x0, u) ≈ ϕ(τi ; 0, x0, u) + hi fc(ϕ(τi ; τ0, x0, u), u)

≈ ϕ(τi ; τ0, x0, u) +
τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt = ϕ(τi+1; τ0, x0, u)

which suggests that this method yields an approximation in the sense of Definition
11.1(iii). Formally, we will prove this property for general one step methods in
Theorem 11.5 below. Before we turn to the convergence analysis, we present an
important class of solution methods which follow from a generalization of the Euler
approximation idea to solve the integral equation.

The idea to generalize the Euler method is to use a higher order approximation
for the integral. For example, one can approximate the integral by the trapezoidal
rule instead of the rectangle rule, which leads to the approximation
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ϕ(τi+1; τ0, x0, u) ≈ ϕ(τi ; τ0, x0, u)

+ hi
2

(
fc(ϕ(τi ; τ0, x0, u), u) + fc(ϕ(τi+1; τ0, x0, u), u)

)
.

When trying to use this approximation in order to define ϕ̃ analogous to (11.3),
above, we run into the problem that the unknown value ϕ̃(τi+1; τ0, x0, u) appears
on the right hand side. We can avoid this if we use the Euler scheme in order to
approximate

fc(ϕ(τi+1; τ0, x0, u), u) ≈ fc(ϕ(τi ; τ0, x0, u) + hi fc(ϕ(τi ; τ0, x0, u))).

Proceeding this way we end up with the so-called Heun method

Φ(x, v, h) := x + h

2

(
fc(x, u) + fc(x + h fc(x, u), u)

)
.

Observe that in this formula the value fc(x, u) appears twice and that the scheme uses
nested evaluations of the vector field fc. The formalism of Runge–Kutta methods
now gives a systematic way to formalize this nested structure. We first illustrate this
formalism using the Heun method, for which it reads

k1 := fc(x, u)

k2 := fc(x + hk1, u)

Φ(x, u, h) := x + h

(
1

2
k1 + 1

2
k2

)

The advantage of this formalism is that one can easily add new function evaluations
or modify the weighted combination. This leads to the following general form.

Definition 11.2 An s-stage (explicit) Runge–Kutta method is given by

ki := f

⎛
⎝x + h

i−1∑
j=1

ai j k j

⎞
⎠ for i = 1, . . . , s

Φ(x, u, h) := x + h
s∑

i=1

biki .

The value ki = ki (x, u, h) is called the i th stage of the method.

The methods thus defined depend on the parameters ai j and bi . If the vector
field explicitly depends on t—which is not the case in our setting—then additional
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Table 11.1 Butcher tableaus for the Euler, Heun, and classical Runge–Kutta method (left to right)

0

1

0
1 1

1
2

1
2

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

parameters ci are used in the definition.More compactly, these parameters arewritten
as so-called Butcher tableaus of the form

c1
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as s−1

b1 b2 · · · bs−1 bs

Table 11.1 shows Butcher tableaus corresponding to the Euler scheme (left), the
Heun scheme (middle) and the so-called classical Runge–Kutta scheme with s = 4
stages proposed by Carl Runge and Martin Kutta in 1895 (right).

Remark 11.3 Models based on partial differential equations, like the one discussed
in Example 6.32, require discretization techniques different from the one discussed
here. In particular, apart from the discretization in time also a discretization in space
has to be performed. Popular techniques for this purpose are finite difference or finite
elementmethods and the interested reader is referred to the large amount of textbooks
on this topic, like, e.g., the books by LeVeque [9] or Braess [1] respectively.

11.2 Convergence Theory

Having defined one step methods we now show that the resulting approximations
actually converge toward the solution. To this end, we define the error at time τi ∈ G
as

e(τi ) := ‖ϕ̃(τi ; τ0, x, u) − ϕ(τi ; τ0, x, u)‖.

The main idea to show convergence is to use the triangle inequality in order to
separate the error sources in the iteration (11.2) into the error caused by the previously
accumulated error (a) and the local error (b). Abbreviating ϕ(τi ) = ϕ(τi ; τ0, x0, u)

and ϕ̃(τi ) = ϕ̃(τi ; τ0, x0, u), this leads to the estimate
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Fig. 11.1 Illustration of the
separation of errors

τ0 τ1 τ2 τ3

x0

ϕ (τ1)

ϕ (τ2)

ϕ (τ3)

ϕ̃ (τ1)

ϕ̃ (τ2)

ϕ̃ (τ3)

Φ(ϕ (τ2), u, h2)

(a)

(b)
e(τ3)

e(τi+1) = ‖ϕ̃(τi+1) − ϕ(τi+1)‖ = ‖Φ(ϕ̃(τi ), u, hi ) − ϕ(τi+1)‖
≤ ‖Φ(ϕ̃(τi ), u, hi ) − Φ(ϕ(τi ), u, hi )‖︸ ︷︷ ︸

accumulated error (a)

+ ‖Φ(ϕ(τi ), u, hi ) − ϕ(τi+1)‖︸ ︷︷ ︸
local error (b)

.

(11.4)

The idea is sketched in Fig. 11.1 for i = 2.
In order to prove convergence we will use the following conditions which guar-

antee that both errors (a) and (b) remain small.

Definition 11.4 (i) A one step method satisfies the Lipschitz condition if for all
compact subsets K ⊂ R

d and Q ⊂ U there exists a constant Λ > 0 such that
for all sufficiently small h > 0 the inequality

‖Φ(x1, u, h) − Φ(x2, u, h)‖ ≤ (1 + Λh)‖x1 − x2‖ (11.5)

holds for all x1, x2 ∈ K and all u ∈ Q.
(ii) A one step method is called consistent with order of consistency p > 0 if for all

compact subsets K ⊂ R
d and Q ⊂ U there exists a constant C > 0 such that

for all sufficiently small h > 0 the inequality

‖Φ(x, u, h) − ϕ(h; 0, x, u)‖ ≤ Chp+1 (11.6)

holds for all x ∈ K and all u ∈ Q.

Inequality (11.5) guarantees that the propagation of previous errors within a one
step method, i.e., term (a), stays bounded. The consistency condition (11.6), on the
other hand, ensures that the local error (b) remains small.

One can easily show that the previously introduced Euler approximation as well
as all explicit Runge–Kutta methods satisfy the Lipschitz condition (11.5) if the
vector field fc satisfies the Lipschitz condition fromAssumption 2.4. The consistency
condition (11.6), on the other hand, cannot be checked that easily in general. In order
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to verify that a method Φ exhibits an order of consistency p ≥ 1, one utilizes the
Taylor approximation of the method with respect to the step size h in h = 0, i.e.,

Φ(x, u, h) = x +
p∑

i=1

hi

i !
∂ i

∂hi

∣∣∣∣
h=0

Φ(x, u, h) + O(h p+1) (11.7)

and compares it to the Taylor approximation of the exact solution ϕ(h; 0, x, u) with
respect to h in h = 0. It turns out that this Taylor approximation can be computed
without actually using the—in general unknown—solution ϕ. To this end, we use
the higher order Lie derivative Li

fc
, i ∈ N0, with respect to the vector field fc which

for arbitrary smooth vector fields g : Rd ×U → R
d is defined inductively by

L0
fc g(x, u) = g(x, u), Li

fc g(x, u) =
(

∂

∂x
Li−1

fc
g(x, u)

)
fc(x, u).

Using the Lie derivative, the Taylor approximation of ϕ reads

ϕ(h; 0, x, u) = x +
p∑

i=1

hi

i ! L
i−1
fc

fc(x, u) + O(h p+1). (11.8)

Then, if the p summands in (11.7) and (11.8) coincide, the scheme is consistent with
order p. In particular, if Φ can be written as

Φ(x, u, h) = x + hψ(x, u, h)

with a continuous function ψ satisfying ψ(x, u, 0) = fc(x, u), then it follows that
the order of consistency is at least p = 1.

Using this technique one can show that the order of consistency of the classical
Runge–Kutta method is p = 4. More generally, the comparison of the summands
can be used in order to derive conditions on the coefficients of arbitrary Runge–
Kutta schemes for any consistency order p ≥ 1. Unfortunately, the number of these
condition grows exponentially with p, hence for p ≥ 10 it is almost impossible to
use them for constructing appropriate Runge–Kutta methods.

Note that in order to guarantee the order of consistency p the vector field fc needs
to be p times continuously differentiable with respect to x in order to ensure that
approximation (11.8) holds. If the vector field depends on t , then it also needs to be p
times continuously differentiable with respect to t on the interval [τi , τi+1] if wewant
to apply (11.6) on this interval. This is no problem as long as [τi , τi+1] ⊆ [0, T ]which
is always the case in this section. However, if we consider sampled data systems,
i.e., (2.6) with v from (2.13) on an interval [τi , τi+1] with tn ∈ (τi , τi+1) for some
sampling time tn , this becomes a major issue since the control v and thus the map
t �→ fc(x, v(t)) is in general discontinuous and thus in particular nonsmooth at the
sampling times. We will discuss this issue in Sect. 11.4, below.
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After discussing the assumptions and how these assumptions can be checked, we
are now ready to state the main result of this section.

Theorem 11.5 If a one step method Φ satisfies the Lipschitz condition (11.5) and
the consistency condition (11.6) with order p, then the approximation ϕ̃ from 11.2
is convergent in the sense of Definition 11.1(iii) with order of convergence p.

Proof We will show (11.1) for each grid G on [0, T ] with h > 0 sufficiently small.
For simplicity of notation, we drop the index j in (11.1). To this end, fix two compact
sets K ⊂ R

d and Q ⊂ U . Then the set

K1 := {ϕ(t; 0, x0, u) | t ∈ [0, T ], x0 ∈ K , u ∈ Q}

is again compact, since ϕ is continuous in all variables and images of compact sets
under continuous maps are again compact. We choose some δ > 0 and consider the
compact set

K2 := Bδ(K1) =
⋃
x∈K1

Bδ(x)

which contains exactly those points x ∈ R
d which have a distance less or equal δ to

a point on a solution x(t; 0, x0, u) with x0 ∈ K and u ∈ Q. Let Λ > 0 and C > 0 be
the constants in the Lipschitz condition (11.5) and the consistency condition (11.6),
respectively, for K = K2 and the set Q fixed above.

We first prove (11.1) under the following condition, which we will verify after-
wards.

For all gridsG with sufficiently small h > 0, all initial
values x0 ∈ K and all u ∈ Q the grid function ϕ̃ from
(11.2) satisfiesϕ(τi , τ0, x0, u) ∈ K2 for all τi ∈ G .

(11.9)

For proving (11.1) we choose x0 ∈ K and u ∈ Q and abbreviate ϕ(t) =
ϕ(t; τ0, x0, u) and ϕ̃(τi ) = ϕ̃(τi ; τ0, x0, u). With

e(τi ) := ‖ϕ̃(τi ) − ϕ(τi )‖

we denote the error at time τi ∈ G . Then from (11.4) we obtain

e(τi+1) ≤ ‖Φ(ϕ̃(τi ), u, hi ) − Φ(ϕ(τi ), u, hi ) + ‖Φ(ϕ(τi ), u, hi ) − ϕ(τi+1)‖[0]
≤ (1 + Λhi−1)‖ϕ̃(τi−1) − ϕ(τi−1)‖ + Chp+1

i−1 [0]
= (1 + Λhi−1)e(τi−1) + Chp+1

i−1 ,

using (11.5) and (11.6) for K = K2 in the second inequality. These inequalities apply
since the construction of K1 and K2 implies ϕ(τi ) ∈ K1 ⊂ K2 and (11.9) ensures
ϕ̃(τi ) ∈ K2.

By induction over i we now show that this inequality implies the estimate



352 11 Numerical Discretization

e(τi ) ≤ Ch
p 1

Λ
(exp(Λ(τi − τ0)) − 1).

For i = 0 this inequality follows immediately. For i − 1 → i we use

exp(Λhi ) = 1 + Λhi + Λ2h2i
2

+ . . . ≥ 1 + Λhi

which together with the induction assumption yields

e(τi ) ≤ (1 + Λhi−1)e(τi−1) + Chp+1
i−1 [0]

≤ (1 + Λhi−1)Ch
p 1

Λ
(exp(Λ(τi−1 − τ0)) − 1) + hi−1 Chp

i−1︸ ︷︷ ︸
≤Ch

p

[0]

= Ch
p 1

Λ

(
hi−1Λ + (1 + Λhi−1)(exp(Λ(τi−1 − τ0)) − 1)

)
[0]

= Ch
p 1

Λ

(
hi−1Λ + (1 + Λhi−1) exp(Λ(τi−1 − τ0)) − 1 − Λhi−1

)
[0]

= Ch
p 1

Λ

(
(1 + Λhi−1) exp(Λ(τi−1 − τ0)) − 1

)
[0]

≤ Ch
p 1

Λ

(
exp(Λhi−1) exp(Λ(τi−1 − τ0)) − 1

)
[0]

= Ch
p 1

Λ
(exp(Λ(τi − τ0)) − 1).

Since τ0 = 0 this implies (11.1) with M = C(exp(ΛT ) − 1)/Λ.
It remains to show that condition (11.9) is satisfied. We show that this assumption

holds for all grids G whose maximal step size satisfies

Ch
p ≤ δΛ

exp(Λ(T − τ0)) − 1
.

To this end, we consider a numerical solution ϕ̃(τi ) = ϕ̃(τi , τ0, x0, u) for some
x0 ∈ K and u ∈ Q and show ϕ̃(τi ) ∈ K2 by induction. Since ϕ̃(τ0) = x0 ∈ K ⊂ K2

the assertion holds for i = 0.
For the induction step i−1 → i assume that the induction assumption ϕ̃(τk) ∈ K2

holds for k = 0, 1, . . . , i − 1. We have to show ϕ̃(τi ) ∈ K2. Observe, that for the
inequality

e(τi ) ≤ Ch
p 1

Λ
(exp(Λ(T − τ0)) − 1)

to hold it is sufficient that ϕ̃(τk) ∈ K2 holds for k = 0, 1, . . . , i − 1. By choice of h
we thus obtain e(τi ) ≤ δ, i.e.,

‖ϕ̃(τi ) − ϕ(τi )‖ ≤ δ.
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Since by construction of K1 we have ϕ(τi ) ∈ K1, it follows that ϕ̃(τi ) ∈ Bδ(ϕ(τi )) ⊂
K2, i.e., the desired property. �

11.3 Adaptive Step Size Control

The convergence theorem from the previous section shows that the presented one
step methods are applicable to solve the underlying continuous time dynamics of the
form (2.6) of a problem. Yet, so far we can only guarantee those methods to exhibit
small errors if each time step hi in the grid G is sufficiently small since the error
bound in (11.1) depends on h = max hi . In the literature, it is occasionally proposed
to use the grid induced by the sampling times as computational grid, i.e., to choose
τn = tn = nT . This, however, results in h = T and thus requires the sampling period
T to be small in order to obtain an accurate approximation. Apart from the fact that
it may not be desirable to use very small sampling periods, there are subtle pitfalls
regarding stability of the closed-loop system when the accuracy of the approximate
model and the sampling rate are linked, see the discussion in Sect. 11.6.

Away to avoid linking h and T is to use a constant step size hi ≡ h with h = T/K
for some K ∈ N. Adjusting h appropriately, we can make the error term in (11.1)
arbitrarily small without changing T . This, however, leads to equidistant grids which
are known to be computationally inefficient since they do not reflect the properties
of the solution. A much more efficient way is to choose the time steps hi adapted to
the solution, i.e., we allow for large hi if the error is small and use small hi when
large errors are observed. However, we surely do not want to manually adapt the step
sizes to every situation the NMPC controller may face since this would render such
an algorithm to be inapplicable.

In order to obtain an efficient way to construct an adaptive grid G , we consider
step size control algorithms. Such methods are well established in the numerics of
ordinary differential equations. In this section, we explain the central idea behind
step size control algorithms. The key idea is to use two different one step methods
Φ1,Φ2 with different orders of consistency p1 < p2 in order to compute a step length
hi = τi+1 − τi at time τi for the next time step which guarantees a predefined local
error bound tolODE. Here, by p1 < p2 we mean that forΦ = Φ1 the inequality (11.6)
cannot hold for p = p2, i.e., no matter how C is chosen (11.6) will be violated for
all sufficiently small h. As in the previous sections, we consider the solution of (2.6)
on one sampling interval [0, T ] on which the control u is constant.

In (11.4) we used the auxiliary term Φ(ϕ(τi ; τ0, x, u), u, hi ) in order to quantify
the local error. Since the value of ϕ(τi ; 0, x, u) is not available at runtime of a one
step method, we cannot use it to guarantee the local error (a) to satisfy

‖Φ(ϕ(τi ; τ0, x, u), u, hi ) − ϕ(τi ; τ0, x, v)‖ ≤ tolODE.

To circumvent this problem, in the triangle inequality for estimating e(τi+1)we insert
the term ϕ(τi+1; τi , ϕ̃(τi ; τ0, x, u), u) instead of Φ(ϕ(τi ; τ0, x, u), u, hi ). Using that
by the cocycle property we have ϕ(τi+1; τ0, x, u) = ϕ(τi+1; τi , ϕ(τi ; τ0, x, u), u),
this leads to the inequality
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‖ϕ̃(τi+1; τ0, x, u) − ϕ(τi+1; τ0, x, u)‖ ≤
≤ ‖Φ(ϕ̃(τi ; τ0, x, u), u, hi ) − ϕ(τi+1; τi , ϕ̃(τi ; τ0, x, u), u)‖

+ ‖ϕ(τi+1; τi , ϕ̃(τi ; τ0, x, u), u) − ϕ(τi+1; τi , ϕ(τi ; τ0, x, u), u)‖.

In this sum, the second term essentially depends on the error of the approximation
at time instant τi , which is independent of the choice of hi = τi+1 − τi . Hence,
for choosing hi we only consider the first summand. More precisely, we attempt to
choose hi such that the tolerable error bound

‖Φ(ϕ̃(τi ; τ0, x, u), u, hi ) − ϕ(τi+1; ti , ϕ̃(τi ; τ0, x, u), u)‖ ≤ tolODE

is satisfied.
When trying to implement this method, one faces the problem that the value

ϕ(τi+1; ti , ϕ̃(τi ; τ0, x, u), u) is not known. This is where the idea of using two meth-
odsΦ1 andΦ2 with different orders of consistency p2 > p1 is used. SettingΦ = Φ1

and approximating ϕ(τi+1; ti , ϕ̃(τi ; τ0, x, u), u) by themore accuratemethodΦ2 one
can show the following theorem.

Theorem 11.6 Consider two one step methods Φ1, Φ2 with orders of consistency
p1, p2 satisfying p2 ≥ p1 + 1. Then there exist constants k1, k2 > 0 such that for all
sufficiently small hi > 0 the computable error

ε := ‖Φ1(ϕ̃(τi ; 0, x, u), u, hi ) − Φ2(ϕ̃(τi ; 0, x, u), u, hi )‖ (11.10)

and the local error of the one step method Φ1

ε := ‖Φ1(ϕ̃(τi ; 0, x, u), u, hi ) − ϕ(τi+1; τi , ϕ̃(τi ; 0, x, u), u)‖

satisfy the inequality

k1ε ≤ ε ≤ k2ε.

Proof First we define the errors

ηi, j := Φ j (ϕ̃(τi ; 0, x, u), u, hi ) − ϕ(τi+1; τi , ϕ̃(τi ; 0, x, u), u)

for both one step methods Φ j , j = 1, 2. By Definition 11.4(ii) we obtain the local

error bounds εi, j := ‖ηi, j‖ ≤ C jh
pj+1
i . Using p2 ≥ p1 + 1 and the fact that this

implies εi,1 ≥ Chp2+1
i for all C > 0 and all sufficiently small hi > 0, we can

conclude θ := εi,2/εi,1 < 1 if hi is chosen sufficiently small since θ → 0 as hi → 0.
We fix θ0 < 1, consider hi > 0 such that θ < θ0 < 1 holds and define

η := Φ1(ϕ̃(τi ; 0, x, u), u, hi ) − Φ2(ϕ̃(τi ; 0, x, u), u, hi ) = ηi,1 − ηi,2.
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Then we have

(1 − θ)εi,1 = (1 − θ)‖ηi,1‖ =
(
1 − ‖ηi,1 − η‖

‖ηi,1‖
)

‖ηi,1‖ =
= ‖ηi,1‖ − ‖ηi,1 − η‖ ≤ ‖η‖ = ε

which yields the lower bound k1 = 1 − θ0 and

ε = ‖η‖ ≤ ‖ηi,1‖ + ‖ηi,1 − η‖ =
(
1 + ‖ηi,1 − η‖

‖ηi,1‖
)

‖ηi,1‖ =
= (1 + θ)‖ηi,1‖ = (1 + θ)εi,1

giving the upper bound k2 = 1 + θ0. �

Using Theorem 11.6 we can now compute a suitable step size hi if we additionally
assume that the local error is of the form εi,1 ≈ ci h

p1+1
i for small hi . Note that for

Runge–Kutta methods this assumption is satisfied if the vector field f is p1+2 times
continuously differentiable. In this case, ci is given by the coefficient of the h p1+1

i
term in the Taylor approximation of the method.

For small step sizes it follows from the proof of Theorem 11.6 that k1 ≈ k2 ≈ 1,
i.e., ε ≈ εi,1 ≈ ci h

p1+1
i which gives us the estimate ci ≈ ε/h p1+1

i for the coefficient
ci . Hence, the error tolerance tolODE is satisfied (approximately) for the step size

tolODE = ci h
p1+1
i,new = ε

h p1+1
i

h p1+1
i,new ⇐⇒ hi,new = p1+1

√
fac

tolODE
ε

hi (11.11)

Since all these equalities are only satisfied approximately, a security factor fac ∈
(0, 1) has been introduced to compensate for these approximation errors. For this
factor, fac = 0.9 is a typical choice in many algorithms.

A schematic implementation of a one step scheme with adaptive step size is
given in Algorithm 11.7, below. This algorithm combines the iteration (11.2) with
the computation of the step size hi described above. Here, we solve (2.6) on one
sampling interval [0, T ] using the length T of the sampling interval as an initial
choice for the first step size h0. For large T , one may alternatively choose h0 < T . In
each step the error ε is computed. If ε exceeds the tolerance tolODE, then the step is
rejected and repeated using the new step size from (11.11). If ε maintains the desired
tolerance, then the step is accepted and the new step size from (11.11) is used as an
initial choice for the next time step.

Algorithm 11.7 Suppose an initial value x , a control value u, a tolerance tolODE,
and sampling period T are given.

(1) Set ϕ̃(0; 0, x, v) = x , i = 0, τ0 = 0, h0 = T
(2) If τi = T stop; If τi + hi > T set hi = T − τi
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(3) Set τi+1 = τi +hi and computeΦ1(ϕ̃(τi+1; t j , x, v), v, hi ),Φ2(ϕ̃(τi+1; t j , x, v),

v, hi )
(4) Compute ε and hi,new according to (11.10), (11.11)
(5) If ε > tolODE set hi = hi,new and goto (3)
(6) If ε ≤ tolODE set ϕ̃(τi+1; τ0, x, u) = Φ2(ϕ̃(τi+1; τ0, x, u), u, hi ), hi+1 = hi,new,

i = i + 1 and goto (2)

In practical implementations, this basic algorithm is often refined in various ways.
For instance, the new step size may be derived on the basis of a weighted sum of
the absolute and the relative error instead of using only the absolute error as above.
Upper and lower bounds for the time step hi as well as for the ratio between hi and
hi+1 are also frequently used in practice.

Although the evaluation of two methods Φ1 and Φ2 and their possibly repeated
evaluation in every step seems to be computationally more demanding, step size con-
trol algorithms are usually muchmore efficient than the use of equidistant time grids.
This is due to two different aspects: on the one hand, there typically exist regions
which allow for larger time steps and thus allow for a faster progress of the adap-
tive iteration procedure. On the other hand, the additional effort of simultaneously
evaluating two methods can be reduced significantly by embedding these methods
into each other. This means that the less accurate Runge–Kutta method Φ1 uses the
same stages ki , cf. Definition 11.2, as the more accurate methods Φ2 and thus the
stages ki only need to be evaluated once for both methods. One standard embedded
method is the Dormand–Prince method of order (4)5, also called DoPri5, in which
Φ1 has order p1 = 4 and Φ2 is of order p2 = 5. The Butcher tableau is displayed in
Table 11.2. The second last line specifies the coefficients bi for Φ1 and the last line
the bi for Φ2.

With the same induction as in the proof of Theorem 11.5, one sees that if the
local errors maintain the tolerances tolODE = εhi for some ε > 0, then the overall
error at time T can be estimated as e(T ) ≤ ε(exp(ΛT ) − 1)/Λ and thus scales
linearly with ε. It should, however, be mentioned that adaptive step size selection
schemes usually do not rigorouslymaintain the specified error tolerance. The reason
for this is that Theorem 11.6 and the derivation of (11.11) require hi to be sufficiently
small. Suitable upper bounds which quantify this “sufficiently small” are, however,
difficult to obtain without an extensive a priori analysis of the individual system and
can therefore not be enforced in practice. Hence, the step size selection algorithm
may select large step sizes for which the error estimation is no longer valid and
thus the desired accuracy is no longer guaranteed. Thus, in general only equidistant
grids with sufficiently small maximal step size h provide rigorous error bounds. Still,
numerical experience shows that in the vast majority of examples error estimation-
based adaptive step size algorithms like Algorithm 11.7 perform very reliably.
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Table 11.2 Butcher tableau of the DoPri(4)5 method

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

− 56
15

32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168

− 355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
85

35
384

0 500
1113

125
192

− 2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

11.4 Using the Methods Within the NMPC Algorithms

Looking at the NMPC Algorithm 3.11 and its variants, we see that in every iteration
an optimal control problem has to be solved. To this end, the optimization algorithm
needs to be able to compute the solution xu and to evaluate the functional JN . In
fact, there are various ways for incorporating xu into the optimization algorithm, for
details see Sect. 12.1. However, no matter which method from this section we use,
we need to be able to evaluate ϕ(T, 0, x, u) in (2.8) numerically.

To this end, we replace the unknown map ϕ(T, 0, x, u) in (2.8) by its approxima-
tion ϕ̃(T, 0, x, u) from Algorithm 11.7. This way we end up with the definition

x+ = f (x, u) := ϕ̃(T, 0, x, u). (11.12)

Iterating this map according to (2.2), which amounts to calling Algorithm 11.7 N
times with initial values xu(n, x) and control values u(n), n = 0, . . . , N − 1, we
can then obtain an approximate predicted solution trajectory. Proceeding this way,
one should keep in mind that the numerical scheme provides only an approximation
of the exact solution. The effects of the approximation errors will be discussed in
Sect. 11.5, below.
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When the stage cost � is defined via the integral formula (3.4) with running cost
L , then we can efficiently include the numerical evaluation of the integral

�(x, u) =
∫ T

0
L(ϕ(t, 0, x, u), u)dt

into the computation of ϕ̃. Here, we have removed the argument t from u because—
following the convention in this chapter—u is constant on the sampling interval
[0, T ]. In order to compute the integral, consider the augmented ordinary differential
equation

ẋ(t) = f (x(t), u) (11.13)

with

x(t) =
(
x(t)
y(t)

)
∈ R

d × R and f (x, u) =
(

fc(x, u)

L(x, u)

)
.

Solving (11.13) with initial condition x = (x, 0) we obtain the solution

ϕ(T, x, u) =
(

ϕ(T, x, u)

�(x, u)

)
.

Thus, solving (11.13) numerically yields a numerical solution whose first n com-
ponents equal ϕ̃(T, x, u) and whose (n + 1)st component approximates �(x, u).
Proceeding this way we avoid the use of a separate numerical integration formula,
in particular, we do not have to store the intermediate values ϕ̃(τi , x, u) for a sub-
sequent numerical integration of L . Furthermore, the adaptive step size algorithm
ensures that � is approximated with the same accuracy as the solution ϕ.

As we will see in detail in Sect. 12.1, one way to incorporate the dynamics of the
system into the numerical optimization algorithm is to externally compute the whole
trajectory xu(·, x0), an approach called recursive elimination. In order to compute
this trajectory, instead of defining f via (11.12) and then iterating f according to
(2.2) one could apply a numerical one step method directly on the interval [0, NT ].
This way we obtain a numerical approximation of xu (and of JN if we include the
computation of �) on [0, NT ] invoking Algorithm 11.7 only once. However, this has
to be done with care. As already mentioned, in order to guarantee consistency with
order p of the numerical schemes, it is important that themap (t, x) �→ fc(x, v(t)) in
(2.6) is p times continuously differentiable. Formally, this can be shown by extending
the Formulas (11.7) and (11.8) to time varying vector fields fc.

However, we can also give an informal explanation of this fact: when considering
the solution of (2.6) with zero-order hold, then the control function v is discontinu-
ous at the sampling times tn . Consequently, the solution ϕ(t, 0, x, v) is not differen-
tiable for t = tn , as sketched in Fig. 11.2. Since we cannot approximate nonsmooth
functions by a Taylor approximation, Formula (11.8) will not hold if we replace
ϕ(h, 0, x, u) by ϕ(τi + hi , τi , x, v) with tn ∈ (τi , τi + hi ) = (τi , τi+1) for some
sampling time tn . Thus, we have to make sure that this situation does not happen.
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t

/v

v(·)

(·,0,x,v)

ti ti+1 ti+2 ti+3 ti+4

Fig. 11.2 Approximation of the sampled data solution

Defining the set of sampling times

T := {tn ∈ R | tn = nT, n = 0, . . . , N } (11.14)

and using the time grid

G := {τi ∈ [0, NT ] | τi is a discretization time in the one step method}, (11.15)

in order to exclude the existence of i and nwith tn ∈ (τi , τi +hi ) = (τi , τi+1)we need
to make sure that the inclusionT ⊂ G holds. This assumption is not very restrictive,
however, in order to ensure it we need to appropriately adjust Algorithm 11.7.

11.5 Numerical Approximation Errors and Stability

Defining the discrete dynamics f via the numerical approximation ϕ̃, cf. (11.12),
introduces errors in the predictions xu in the optimal control problems and its variants.
In this section, we shift our focus from analyzing the effects of these errors on the
open loop toward their effect on the closed loop. To this end, we utilize the techniques
from Sects. 7.5–7.9 and – similar to these sections – restrict ourselves to constant
reference x ref ≡ x∗ in order to simplify the exposition. For the extension to time
varying x ref we refer to the remarks following the main results in Sects. 7.5–7.9.

As a general assumption we suppose that for each ε > 0 we can compute a
numerical approximation ϕ̃ε which satisfies

‖ϕ̃ε(T, 0, x, u) − ϕ(T, 0, x, u)‖ ≤ ε (11.16)

for some ε > 0, all x ∈ X and u ∈ U(x). As discussed at the end of Sect. 11.3,
such an estimate is rigorously ensured for ϕ̃ε generated by one step methods on
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equidistant grids with sufficiently small h > 0 but can typically also be expected
for ϕ̃ from the adaptive step size Algorithm 11.7 by adjusting the tolerance tolODE
appropriately. Observe that since (11.1) only holds for x and u from compact sets,
in the case of equidistant grids we may have to adjust h > 0 to x and u in order to
ensure (11.16) if X or U(x) are noncompact. In case of Algorithm 11.7 the step size
will be automatically adjusted by the step size selection mechanism.

Given that ϕ̃ε is an approximation of the true solutionϕ it seems natural to consider
ϕ̃ε as a perturbed version of ϕ. However, since by definition the model used in the
NMPC algorithm—i.e., the numerical approximation ϕ̃ε—is the nominal model, we
need the converse interpretation in order to apply the results from Sects. 7.5–7.9.
In what follows we show that the closed loop obtained from the exact sampled data
system (2.8) can be considered as a perturbed system in the sense of Sect. 7.5. To
this end, we consider the following setting.

TheNMPCalgorithm is runwith the numerically approximated discrete dynamics

f (x, u) = f ε(x, u) := ϕ̃ε(T, 0, x, u) (11.17)

as a nominalmodel. The resultingNMPC-feedback law is denoted byμε
N x

ε
με

N
and x̃ε

με
N

we denote the corresponding nominal and perturbed NMPC closed-loop trajectory
from (3.5) and (7.7) with f = f ε = ϕ̃ε and μN = με

N , respectively, i.e.,

xε
με

N
(n + 1) = f ε(xε

με
N
(n), με

N (xε
με

N
(n)))

and

x̃ε
με

N
(n + 1) = f ε(x̃ε

με
N
(n), με

N (x̃ε
με

N
(n) + e(n))) + d(n).

The closed-loop system obtained from applying the numerically computed NMPC-
feedback με

N to the exact model f = ϕ from (2.8) according to (3.5), i.e.,

xexμε
N
(n + 1) = f (xexμε

N
(n), με

N (xexμε
N
(n))),

will be called the exact closed-loop system. The resulting trajectories will be denoted
by xexμε

N
.

Note that the same NMPC-feedback law με
N—computed from f = f ε = ϕ̃ε—is

used in (3.5) for generating xε
με

N
and xexμε

N
. The difference between the two trajectories

only lies in the map f in (3.5) which is given by f = f ε = ϕ̃ε for xε
με

N
and by f = ϕ

for xexμε
N
. Using this notation we obtain the following result.

Lemma 11.8 (Perturbed solution) Consider the discrete time dynamics f = f ε

from (11.17) obtained from a numerical approximation ϕ̃ε satisfying (11.16), an
NMPC-feedback lawμε

N withμε
N (x) ∈ U(x) and the solution xε

με
N
of the correspond-

ing closed-loop system (3.5). Consider, furthermore, the solution xexμε
N
of the exact

closed-loop system.
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Then for each x0 ∈ X there exists a perturbation sequence d(·) ∈ (Rd)∞ with
‖d(n)‖ ≤ ε such that the solution x̃ε

με
N
(n, x0) of the perturbed system (7.7) with

f = f ε and e ≡ 0 satisfies

xexμε
N
(n, x0) = x̃ε

με
N
(n, x0)

for all n ∈ N0.

Proof Define

d(n) := ϕ(T, 0, xexμε
N
(n, x0), μ

ε
N (xexμε

N
(n, x0))) − ϕ̃ε(T, 0, xexμε

N
(n, x0), μ

ε
N (xexμε

N
(n, x0)))

for all n ∈ N0. Then (11.16) with x = xexμε
N
(n, x0) and u = με

N (xexμε
N
(n, x0)) implies

‖d(n)‖ ≤ ε for all n ∈ N0. We show the desired identity by induction over n.
For n = 0 we obtain xexμε

N
(0, x0) = x0 = x̃ε

με
N
(0, x0). For n → n + 1 assume that

xexμε
N
(n, x0) = x̃ε

με
N
(n, x0) holds. Then we get

xexμε
N
(n + 1, x0) = ϕ(T, 0, xexμε

N
(n, x0), μ

ε
N (xexμε

N
(n, x0)))

= ϕ̃ε(T, 0, xexμε
N
(n, x0), μ

ε
N (xexμε

N
(n, x0))) + d(n)

= f ε(xexμε
N
(n, x0), μ

ε
N (xexμε

N
(n, x0))) + d(n)

= f ε(x̃ε
με

N
(n, x0), μ

ε
N (x̃ε

με
N
(n, x0))) + d(n) = x̃ε

με
N
(n + 1, x0).

This shows the assertion. �

Lemma 11.8 shows that the closed-loop solution for the discrete time model
obtained from the exact sampled data system (2.8) can be interpreted as a per-
turbed solution of the discrete timemodel obtained from the numerical approximation
(11.17). The size of the perturbation d(·) directly corresponds to the numerical error
(11.16).

This lemma enables us to use all results from Sects. 7.5–7.9 in order to con-
clude stability properties for xexμε

N
. The appropriate stability property is given by the

following definition, cf. Definition 7.24.

Definition 11.9 Consider the exact closed-loop system (2.5) with f = ϕ from (2.8)
with με

N computed from f = f ε = ϕ̃ε from (11.17) satisfying (11.16) for some
ε > 0. Given a set A ⊆ X such that the optimal control problem defining με

N is
feasible for all x0 ∈ A, we say that x∗ is semiglobally practically asymptotically
stable on A with respect to the numerical error ε if there exists β ∈ such that the
following property holds: for each δ > 0 and Δ > δ there exists ε > 0, such that for
each initial value x0 ∈ A with |x0|x∗ ≤ Δ and each ε ∈ (0, ε] the solution xexμε

N
(·, x0)

satisfies xexμε
N
(k, x0) ∈ A and

|xexμε
N
(k, x0)|x∗ ≤ max{β(|x0|x∗ , k), δ}
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for all k ∈ N0.

The following theorem now gives conditions under which this stability property
holds.

Theorem 11.10 (Stability for perturbed solution) Consider the NMPC-feedback
laws με

N obtained from one of the NMPC algorithms from Theorems 7.26 and 7.36
or 7.41 with f = f ε = ϕ̃ε from (11.17). Assume that (11.16) holds and that there is
ε0 > 0 such that one of the following assumptions is satisfied for all ε ∈ (0, ε0].
(i) In case of Theorem 7.26, assume that α, α1, α2, α3 in Theorem 4.11 as well as

ωV and ω f can be chosen independently of ε > 0.
(ii) In case of Theorem 7.36, assume that α, α1, α̃ in Theorem 6.20, β from Assump-

tion 7.35 and η in Definition 7.33 can be chosen independently of ε > 0.
(iii) In case of Theorem 7.41, assume that α, α1, α2, α3 in Theorem 4.11, δ, γ , ε′ in

Assumption 7.38 and the bound on f as well as the moduli of continuity of f
and � can be chosen independently of ε > 0.

Then the exact closed-loop system (2.5) with f = ϕ from (2.8) is semiglobally
practically asymptotically stable with respect to ε from (11.16) in the sense of Defi-
nition 11.9 on the set A specified in the respective theorem.

Proof The respective theorems ensure semiglobal practical asymptotic stability for
all perturbed trajectories x̃ε

με
N
with respect to d and e in the sense of Definition 7.24.

An inspection of the proofs of the respective theorems then reveals that the uniformity
assumptions (i)–(iii) guarantee that for given δ and Δ the bounds d and e and the
function β ∈ in Definition 7.24 are independent of ε > 0.

Fixing δ and Δ we thus find d > 0 such that each perturbed solution x̃ε
με

N
with

perturbations ‖d(n)‖ ≤ d and e ≡ 0 satisfies the conditions of Definition 7.24 for
all ε ∈ (0, ε0]. Setting ε = min{d, ε0} and using that by Lemma 11.8 the exact
closed-loop trajectory xexμε

N
equals one of the trajectories x̃ε

με
N
with d = ε and e = 0,

we obtain that xexμε
N
satisfies the conditions of Definition 11.9 for the given δ and Δ

and all ε ∈ (0, ε]. This yields the assertion. �

Note that Theorem 11.10 only guarantees the stability of the discrete time closed-
loop system (2.5) with f from (2.8) but not for the sampled data closed loop (2.30).
In order to conclude stability properties of (2.30) the techniques from Sect. 2.4 can be
used. While Theorem 2.27 and its assumptions are formulated for the case of “real”
asymptotic stability, its statement, and proof can be straightforwardly extended to
the semiglobal practical setting of Definition 11.9. Recall from Remark 4.13 that the
assumptions of Theorem 2.27 are satisfied for suitable integral costs (3.4). Although
we have not rigorously analyzed the effect of the error induced by the numerical
approximation of such integral costs, we conjecture that the estimates in Remark
4.13 remain valid in a suitable approximate sense if these errors are sufficiently
small.



11.5 Numerical Approximation Errors and Stability 363

Since numerical approximations are used in virtually all NMPC algorithms for
sampled data systems, Theorem 11.10 implies that all such algorithms need appro-
priate robustness—either inherently as in case (i) or by an appropriate design of
the state constraints as in cases (ii) and (iii) of Theorem 11.10—in a uniform way
with respect to ε in order to ensure semiglobal practical stability in the presence of
numerical errors. In practice, however, this is hardly ever rigorously ensured. The
reason for this is that for good numerical methods numerical errors are usually very
small compared to other error sources like model errors, external perturbations, etc.
Although even very small errors may in the worst case be destabilizing, as illustrated
by Example 7.31, it is not very likely that this indeed happens and—also according to
our experience—such phenomena are hardly ever observed in simulations or practi-
cal examples. Hence, unless robustness is needed in order to cope with error sources
which are significantly larger than the numerical errors discussed in this chapter, for
most practical purposes it seems justified to neglect the robustness issue, provided,
of course, the numerical errors are indeed sufficiently small. Still, one has to keep
in mind that proceeding this way does not rigorously ensure stability of the exact
closed-loop system.

11.6 Notes and Extensions

Thematerial contained in Sects. 11.1–11.3 can be found inmany textbooks on numer-
ical analysis for ordinary differential equations, like, e.g., the books by Deuflhard an
Bornemann [2], Hairer, Nørsett and Wanner [8] or Stoer and Bulirsch [11]. Clearly,
the presentation in this chapter cannot replace any of these textbooks and aims at
giving an introduction into the subject rather than a comprehensive treatment.

Among the many topics we have not covered in this chapter we would in particu-
lar like to mention stiff problems and differential algebraic equations (DAEs), often
called descriptor systems in systems theory. While stiff problems “look” like normal
ordinary differential equations, they are very difficult to solve with the explicit meth-
ods presented in Sect. 11.1. For stiff equations, which often appear when modeling
technical systems, an adaptive step size algorithm like Algorithm 11.7 will typically
select very small time steps even though the solution is almost constant. Explaining
the precise mathematical reasons for this behavior goes beyond these notes, but we
would at least like to mention that so-called implicit methods perform much better
for stiff equations. DAEs are ordinary differential equations with additional algebraic
constraints, often given implicitly. DAEs appear as models, e.g., in mechanics and
electrical engineering and NMPC is perfectly suited for handling DAES, however,
the solution methods presented in this chapter do not apply to such equations and
specialized numerical schemes are needed, which are again often of the implicit type.
While also covered in some standard textbooks, there is a large amount of literature
particularly devoted to stiff and DAE problems, as, e.g., Hairer and Wanner [7], and
we refer the reader to such books for more details.

As Examples 2.12 and 6.32 show, NMPC is also suitable for infinite-dimensional
systems generated by controlled PDEs. NMPC for PDEs requires the solution of an
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optimal control problem for PDEs in each step. The monograph by Troeltzsch [12]
provides a good introduction into such problems. A simple way to approach this
problem numerically is to proceed similar as described for the ordinary differential
equations in this chapter with an additional spatial discretization by, e.g., a finite
difference method (which is what we used in Example 6.32), see, e.g., LeVeque
[9] or a finite element method, see, e.g., Braess [1]. However, it is by no means
clear whether this is the most efficient way of approaching the problem numerically;
in fact, the development of suitable numerical schemes is currently a very active
research area. Furthermore, we are not aware of a rigorous analysis of the effects of
spatial discretization errors in NMPC controller design.

The need to use numerical approximations and the consequences for the stability
analysis discussed in Sect. 11.5 are largely ignored in the NMPC literature. An
exception to this rule are the papers by Gyurkovics and Elaiw [5, 6], which are
in the same spirit as cases (i) and (iii) of Theorem 11.10 in the sense that they
exploit uniform continuity properties, in particular of the optimal value function VN .
However, these results require Lyapunov function terminal costs and do not consider
state constraints as in cases (ii) and (iii) of Theorem 11.10.

More generally, the problem considered in Sect. 11.5 can be seen as a special case
of a nonlinear controller design based on approximate models. A comprehensive
treatment of this topic in a rather general setting can be found in Nešić and Teel [10].
An application to infinite horizon optimal control based feedback design was given
in Grüne and Nešić [4]. The idea to treat numerical errors as perturbations is classical
in numerical analysis. In a control theoretic framework this idea was used extensively
in the monograph Grüne [3]. All these approaches are similar to our approach in the
sense that the stability property of the approximate system is required to be robust in
some suitable sense, that the robustness can be quantified and that this quantitative
measure of the robustness is independent of the numerical accuracy. In all cases the
obtained stability property is semiglobal practical stability, just as in Theorem 11.10.
State constraints are, however, again not considered in these references.

Nešić and Teel [10] also nicely illustrate the pitfalls of feedback design based on
approximate models by means of simple examples and discuss the case in which the
numerical accuracy is linked to the sampling period T . Roughly speaking, in this case
uniform continuity of the Lyapunov function under consideration is not sufficient in
order to ensure stability of the exact closed-loop system. Rather, a stronger prop-
erty like Lipschitz continuity with Lipschitz constant independent of the numerical
accuracy ε is needed in this case.

There are numerous issues related to numerical errorswehave not addressed in this
chapter. For instance, numerical errors may lead to the situation that the inequalities
in Assumption 5.9(ii) or Assumptions 6.3 or 6.5 are only satisfied up to an error term
ε, which has to be taken into account in the results relying on these assumptions.
While we conjecture that in both cases the respective proofs can be modified in order
to obtain at least semiglobal practical asymptotic stability of xε

με
n
, we are not aware

of respective results in the literature. Hence, this area certainly offers a number of
open questions for future research.
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Problems

1. Prove that the solution ϕ(t, 0, x0, u) of (2.6) with t ∈ [0, T ] and constant control
function u satisfies the integral equation

ϕ(τi+1; τ0, x0, u) = ϕ(τi ; τ0, x0, u) +
τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt.

for all τi , τi+1 ∈ [0, T ] with τi+1 > τi .
2. Prove that the Euler and the Heun scheme satisfy the Lipschitz condition (11.5)

if the vector field fc satisfies the Lipschitz condition from Assumption 2.4.
3. Given the control system ẋ(t) = x(t) + u(t) with stage cost �(x, u) = x2 + u2.

(a) Consider the NMPCAlgorithm 3.1 with N = 2 and f generated by the Euler
method with G = T for (11.14) and (11.15). Prove that the control μN (x)
converges tends to zero as T → 0 for each x ∈ R.

(b) Consider the same situation as in (a) but with the grid

G := {τi = iT/k | i = 0, . . . , Nk}

with k ∈ N. Does the control value μN (x) converge if T > 0 is fixed and k
tends to infinity?

4. Consider the differential equation

ẋ1(t) = −x2(t)

ẋ2(t) = x1(t)

whose solution shall be used to generate a time varying reference for an NMPC
algorithm.

(a) Using a transformation to polar coordinates, compute the analytical solution
of the system.

(b) Show that the numerical solution of the system using Euler’s method will
deviate from the analytical solution from (a) for every step size h > 0 and
every initial value x0 �= (0, 0)�.

(c) Applying the transformation to polar coordinates, show that the occurring
error from (b) can be avoided if the resulting differential equation is solved
using Euler’s method.

5. Consider the continuous time control system

ẋ1(t) = −x2(t) + v(t)

ẋ2(t) = x1(t)
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where u shall be computed via NMPC to track the (exact) time varying reference
solution from Problem 4.

(a) Show that this system is (uniformly) asymptotically controllable in the sense
of Definition 4.2 for control functions which are piecewise constant on each
interval [iT, (i + 1)T ) for arbitrary sampling time T > 0.

(b) Consider the approximate discrete time system (11.12) with ϕ̃ obtained from
applying the Euler method with step size h = T/k for arbitrary k ∈ N to the
(non transformed) differential equation. Show that this approximate system is
not asymptotically controllable regardless how T > 0 and k ∈ N are chosen.

Hint for (b): A necessary condition for asymptotic controllability is that the ref-
erence is a solution of the system.
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