
Chapter 1
Introduction

1.1 What Is Nonlinear Model Predictive Control?

Nonlinear model predictive control (henceforth abbreviated as NMPC) is an
optimization-basedmethod for the feedback control of nonlinear systems. Its primary
applications are stabilization and tracking problems, which we briefly introduce in
order to describe the basic idea of model predictive control.

Supposewe are given a controlled processwhose state x(n) ismeasured at discrete
time instants tn , n = 0, 1, 2, . . . . “Controlled” means that at each time instant we
can select a control input u(n) which influences the future behavior of the state of
the system. In tracking control, the task is to determine the control inputs u(n) such
that x(n) follows a given reference x ref(n) as good as possible. This means that if
the current state is far away from the reference then we want to control the system
towards the reference and if the current state is already close to the reference then
we want to keep it there. In order to keep this introduction technically simple, we
consider x(n) ∈ X = R

d and u(n) ∈ U = R
m , furthermore we consider a reference

which is constant and equal to x∗ = 0, i.e., x ref(n) = x∗ = 0 for all n ≥ 0. With
such a constant reference, the tracking problem reduces to a stabilization problem;
in its full generality the tracking problem will be considered in Sect. 3.3.

Sincewewant to be able to react to the current deviation of x(n) from the reference
value x∗ = 0, we would like to have u(n) in feedback form, i.e., in the form u(n) =
μ(x(n)) for some map μ mapping the state x ∈ X into the set U of control values.

The idea of model predictive control—linear or nonlinear—is now to utilize a
model of the process in order to predict and optimize the future system behavior. In
this book, we will use models of the form

x+ = f (x, u) (1.1)

where f : X ×U → X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x+ at the next time instant. Starting
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2 1 Introduction

from the current state x(n), for any given control sequence u(0), . . . , u(N − 1) with
horizon length N ≥ 2, we can now iterate (1.1) in order to construct a prediction
trajectory xu defined by

xu(0) = x(n), xu(k + 1) = f (xu(k), u(k)), k = 0, . . . , N − 1. (1.2)

Proceeding this way, we obtain predictions xu(k) for the state of the system x(n+ k)
at time tn+k in the future. Hence, we obtain a prediction of the behavior of the
systemon the discrete interval tn, . . . , tn+N depending on the chosen control sequence
u(0), . . . , u(N − 1).

Now we use optimal control in order to determine u(0), . . . , u(N − 1) such that
xu is as close as possible to x∗ = 0. To this end, we measure the distance between
xu(k) and x∗ = 0 for k = 0, . . . , N − 1 by a function �(xu(k), u(k)). Here, we not
only allow for penalizing the deviation of the state from the reference but also—if
desired—the distance of the control values u(k) to a reference control u∗, which here
we also choose as u∗ = 0. A common and popular choice for this purpose is the
quadratic function

�(xu(k), u(k)) = ‖xu(k)‖2 + λ‖u(k)‖2,

where ‖ · ‖ denotes the usual Euclidean norm and λ ≥ 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired.
The optimal control problem now reads

minimize J (x(n), u(·)) :=
N−1∑

k=0

�(xu(k), u(k))

with respect to all admissible1 control sequences u(0), . . . , u(N − 1) with xu gen-
erated by (1.2).

Let us assume that this optimal control problem has a solution which is given by
the minimizing control sequence u�(0), . . . , u�(N − 1), i.e.,

min
u(0),...,u(N−1)

J (x(n), u(·)) =
N−1∑

k=0

�(xu� (k), u�(k)).

In order to get the desired feedback value μ(x(n)), we now set μ(x(n)) := u�(0),
i.e., we apply the first element of the optimal control sequence. This procedure is
sketched in Fig. 1.1.

At the following time instants tn+1, tn+2, . . . we repeat the procedure with the
new measurements x(n + 1), x(n + 2), . . . in order to derive the feedback values
μ(x(n + 1)), μ(x(n + 2)), . . . . In other words, we obtain the feedback law μ by

1The meaning of “admissible” will be defined in Sect. 3.2.
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Fig. 1.1 Illustration of the NMPC step at time tn

an iterative online optimization over the predictions generated by our model (1.1).2

This is the first key feature of model predictive control.
From the prediction horizon point of view, proceeding this iterativeway the trajec-

tories xu(k), k = 0, . . . , N provide a prediction on the discrete interval tn, . . . , tn+N at
time tn , on the interval tn+1, . . . , tn+N+1 at time tn+1, on the interval tn+2, . . . , tn+N+2

at time tn+2, and so on. Hence, the prediction horizon is moving and this moving
horizon is the second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model
predictive control is receding horizon control. While the former expression stresses
the use of model-based predictions, the latter emphasizes the moving horizon idea.
Despite these slightly different literal meanings, we prefer and follow the common
practice to use these names synonymously. The additional term nonlinear indicates
that our model (1.1) need not be a linear map.

1.2 Where Did NMPC Come From?

Due to the vast amount of literature, the brief history of NMPC we provide in this
section is inevitably incomplete and focused on those references in the literature from
which we ourselves learned about the various NMPC techniques. Furthermore, we
focus on the systems theoretic aspects of NMPC and on the academic development;
some remarks on numerical methods specifically designed for NMPC can be found

2Attentive readers may already have noticed that this description is mathematically idealized since
we neglected the computation time needed to solve the optimization problem. In practice, when the
measurement x(n) is provided to the optimizer the feedback value μ(x(n)) will only be available
after some delay. For simplicity of exposition, throughout our theoretical investigations we will
assume that this delay is negligible. We will come back to this problem in Sect. 10.6.
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in Sect. 12.7. Information about the use of linear and nonlinear MPC in practical
applications can be found in many articles, books and proceedings volumes, e.g., in
[9, 16, 23].

Nonlinear model predictive control grew out of the theory of optimal control
which had been developed in the middle of the twentieth century with seminal con-
tributions like the maximum principle of Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [21] and the dynamic programming method developed by Bellman [2].
The first paperwe are aware of inwhich the central idea ofmodel predictive control—
for discrete time linear systems—is formulated was published by Propoı̆ [22] in the
early 1960s. Interestingly enough, in this paper neither Pontryagin’s maximum prin-
ciple nor dynamic programming is used in order to solve the optimal control problem.
Rather, the paper already proposed the method which is predominant nowadays in
NMPC, in which the optimal control problem is transformed into a static optimiza-
tion problem, in this case a linear one. For nonlinear systems, the idea of model
predictive control can be found in the book by Lee and Markus [15] from 1967 on
p. 423:

One technique for obtaining a feedback controller synthesis from knowledge of open-loop
controllers is to measure the current control process state and then compute very rapidly
for the open-loop control function. The first portion of this function is then used during a
short time interval, after which a new measurement of the process state is made and a new
open-loop control function is computed for this new measurement. The procedure is then
repeated.

Due to the fact that neither computer hardware nor software for the necessary “very
rapid” computation were available at that time, for a while this observation had little
practical impact.

In the late 1970s, due to the progress in algorithms for solving constrained linear
and quadratic optimization problems, MPC for linear systems became popular in
control engineering. Richalet, Rault, Testud, and Papon [25] and Cutler and Ramaker
[6] were among the first to propose this method in the area of process control, in
which the processes to be controlled are often slow enough in order to allow for
an online optimization, even with the computer technology available at that time.
It is interesting to note that in [25] the method was described as a “new method of
digital process control” and earlier references were not mentioned; it appears that the
basicMPC principle was reinvented several times. Systematic stability investigations
appeared a little bit later; an account of early results in that direction for linear MPC
can, e.g., be found in the survey paper of García, Prett, and Morari [11] or in the
monograph by Bitmead, Gevers and Wertz [3]. Many of the techniques which later
turned out to be useful for NMPC, like Lyapunov function-based stability proofs or
stabilizing terminal conditions were in fact first developed for linear MPC and later
carried over to the nonlinear setting.

The earliest paperwewere able to findwhich analyzes anNMPCalgorithm similar
to the ones used today is an article by Chen and Shaw [4] from 1982. In this paper,
stability of an NMPC scheme with equilibrium terminal constraint in continuous
time is proved using Lyapunov function techniques; however, the whole optimal
control function on the optimization horizon is applied to the plant, as opposed to
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only the first part as in our NMPC paradigm. For NMPC algorithms meeting this
paradigm, first comprehensive stability studies for schemes with equilibrium termi-
nal constraint were given in 1988 by Keerthi and Gilbert [14] in discrete time and
in 1990 by Mayne and Michalska [18] in continuous time. The fact that for nonlin-
ear systems equilibrium terminal constraints may cause severe numerical difficulties
subsequently motivated the investigation of alternative techniques. Terminal condi-
tions, which consist of regional terminal constraints in combination with appropriate
terminal costs, turned out to be a suitable tool for this purpose and in the second half
of the 1990s there was a rapid development of such techniques with contributions
by De Nicolao, Magni, and Scattolini [7, 8], Magni and Sepulchre [17] or Chen and
Allgöwer [5], both in discrete and continuous time. This development eventually led
to the formulation of a widely accepted “axiomatic” stability framework for NMPC
schemes with stabilizing terminal conditions as formulated in discrete time in the
survey article by Mayne, Rawlings, Rao, and Scokaert [19] in 2000, which is also
an excellent source for more detailed information on the history of various NMPC
variants not mentioned here. This framework also forms the core of our stability
analysis of such schemes in Chap.5 of this book. A continuous time version of such
a framework was given by Fontes [10] in 2001.

All stability results discussed so far add terminal conditions including termi-
nal costs and additional state constraints to the finite horizon optimization in order
to ensure stability. Among the first who provided a rigorous stability result of an
NMPC scheme without such constraints were Parisini and Zoppoli [20] and Alamir
and Bornard [1], both in 1995 and for discrete time systems. Parisini and Zoppoli
[20], however, still needed a terminal cost with specific properties similar to the one
used in [5]. Alamir and Bonnard [1] were able to prove stability without such termi-
nal cost by imposing a rank condition on the linearization on the system. Under less
restrictive conditions, stability results were provided in 2005 by Grimm, Messina,
Tuna, and Teel [12] for discrete time systems and by Jadbabaie and Hauser [13] for
continuous time systems. The results presented in Chap.6 of this book are qualita-
tively similar to these references but use slightly different assumptions and a different
proof technique which allows for quantitatively tighter results; for more details we
refer to the discussions in Sects. 6.1 and 6.9.

After the basic systems theoretic principles of NMPC had been clarified, more
advanced topics such as robustness of stability and feasibility under perturbations,
performance estimates and efficiency of numerical algorithms, and extensions to opti-
mal control problems not a priori related to stabilization or tracking were addressed.
For a discussion of these more recent issues including a number of references, we
refer to the final sections of the respective chapters of this book.

1.3 How Is This Book Organized?

The book consists of twomain parts, which cover systems theoretic aspects of NMPC
in Chaps. 2–10 on the one hand and numerical and algorithmic aspects in Chaps. 11–
12 on the other hand. These parts are, however, not strictly separated; in particular,
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many of the theoretical and structural properties of NMPC developed in the first part
are used when looking at the performance of numerical algorithms.

The basic theme of the first part of the book is the systems theoretic analysis of
stability, performance, feasibility, and robustness of NMPC schemes. This part starts
with the introduction of the class of systems and the presentation of background
material from Lyapunov stability theory in Chap. 2 and proceeds with a detailed
description of different NMPC algorithms as well as related background information
on dynamic programming in Chap.3.

A distinctive feature of this book is that both schemes with stabilizing terminal
conditions as well as schemes without such conditions are considered and treated in a
uniform way. This “uniform way” consists of interpreting both classes of schemes as
relaxed versions of infinite horizon optimal control. To this end, Chap.4 first develops
the theory of infinite horizon optimal control and shows by means of dynamic pro-
gramming and Lyapunov function arguments that infinite horizon optimal feedback
laws are actually asymptotically stabilizing feedback laws. The main building block
of our subsequent analysis is the development of a relaxed dynamic programming
framework in Sect. 4.3. Roughly speaking, Theorems 4.11 and 4.14 in this section
extract the main structural properties of the infinite horizon optimal control problem,
which ensure

• asymptotic or practical asymptotic stability of the closed loop,
• admissibility, i.e., maintaining the imposed state constraints,
• a guaranteed bound on the infinite horizon performance of the closed loop,
• applicability to NMPC schemes with and without stabilizing terminal conditions.

The application of these theorems does not necessarily require that the feedback
law to be analyzed is close to an infinite horizon optimal feedback law in some
quantitative sense. Rather, it requires that the two feedback laws share certain prop-
erties which are sufficient in order to conclude asymptotic or practical asymptotic
stability and admissibility for the closed loop. While our approach allows for inves-
tigating the infinite horizon performance of the closed loop for most schemes under
consideration—which we regard as an important feature of the approach in this
book—we would like to emphasize that near optimal infinite horizon performance
is not needed for ensuring stability and admissibility.

The results from Sect. 4.3 are then used in the subsequent Chaps. 5 and 6 in
order to analyze stability, admissibility and infinite horizon performance properties
for stabilizing NMPC schemes with and without stabilizing terminal conditions,
respectively.Here, the results forNMPCschemeswith stabilizing terminal conditions
in Chap.5 can by nowbe considered as classical and thusmainly summarizewhat can
be found in the literature, although some results—e.g., Theorems 5.21 and 5.22—
generalize known results. In contrast to this, the results for NMPC schemes without
stabilizing terminal conditions in Chap.6 were mainly developed by ourselves and
coauthors and have not been presented before in this way.

In Chap.7 we discuss feasibility and robustness issues. In particular, in
Sects. 7.1–7.3 we present feasibility results for NMPC schemes without terminal
constraints and without imposing viability assumptions on the state constraints. The
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results are reformulations of results from the literature, however, some of them so far
were only established for linear MPC. These results finish our study of the properties
of stabilizing NMPC schemes in the nominal case, which is why it is followed by
a comparative discussion of the advantages and disadvantages of the various stabi-
lizing NMPC schemes presented in this book in Sect. 7.4. The remaining sections in
Chap.7 address the robustness of the stability of the NMPC closed loop with respect
to additive perturbations andmeasurement errors. Herewe decided to present a selec-
tion of results we consider representative, partially from the literature and partially
based on our own research.

Chapter 8 investigates a variant of NMPC known as Economic NMPC. Despite
the name, these schemes are not necessarily connected to problems from economy.
The name rather refers to a class of NMPC schemes in which the stage cost does
not penalize the distance to a desired reference solution, but models different opti-
mization objectives like minimization of energy consumption or maximization of
output. As these objectives are often motivated by economic considerations, the
name Economic NMPC emerged. In Chap.8, we investigate some of the important
properties of the resulting closed-loop solutions, such as averaged optimality, asymp-
totic stability of an optimal equilibrium, and finite time or transient optimality, both
for formulations with and without stabilizing terminal conditions. In both cases, the
notion of strict dissipativity plays an important role. The results in this chapter are
partially developed by us and partially by other researchers. The unified presentation
of schemes with and without terminal conditions is again a particular feature of this
book.

Chapter 9 gives an introduction intoDistributed NMPC. In this variant of NMPC,
the overall system is divided into subsystems and the optimization problem to be
solved in each step of the NMPC scheme is solved individually in each subsystem.
The approach is motivated by practical applications in which a centralized NMPC
controller cannot be realized for various reasons, either because of the inherent dis-
tributed nature of the overall system as, e.g., in traffic control, or because of the
sheer size of the system as, e.g., in large production plants or logistic networks. Of
course, there exist many different ways to divide a system into subsystems and to
solve optimization problems on the level of the individual subsystems. During the
optimization, the subsystems may communicate with each other or not, and they
may try to minimize a common optimization objective together or focus on their
individual objectives. For this reason, the chapter starts with an abstract framework,
in which the problem formulation and basic goals like feasibility and stability are
formulated independent of the concrete communication structures and couplings.
Popular algorithms from the literature like the scheme by Richards and How and the
ADMM algorithm are then discussed as particular examples in this framework.

While most of the results in this book are formulated and proved in a mathemat-
ically rigorous way, Chap. 10 deviates from this practice and presents a couple of
variants and extensions of the basic NMPC schemes considered before in a more
survey like manner. Here, proofs are occasionally only sketched with appropriate
references to the literature. These extensions finish the systems theoretic part of the
book.



8 1 Introduction

The numerical part of the book covers two central questions in NMPC: how
can we numerically compute the predicted trajectories needed in NMPC for finite-
dimensional sampled data systems and how is the optimization in each NMPC step
performed numerically? The first issue is treated in Chap.11, in which we start by
giving an overview on numerical one step methods, a classical numerical technique
for solving ordinary differential equations. After having looked at the convergence
analysis and adaptive step size control techniques,we discuss some implementational
issues for the use of this methods within NMPC schemes. Finally, we investigate
how the numerical approximation errors affect the closed-loop behavior, using the
robustness results from Chap.7.

The last Chap. 12 is devoted to numerical algorithms for solving nonlinear finite
horizon optimal control problems.We concentrate on so-called direct methodswhich
form the currently by far preferred class of algorithms in NMPC applications. In
these methods, the optimal control problem is transformed into a static optimiza-
tion problem which can then be solved by nonlinear programming algorithms. We
describe different ways of how to do this transformation and then give a detailed
introduction into some popular nonlinear programming algorithms for constrained
optimization. The focus of this introduction is on explaining how these algorithms
work rather than on a rigorous convergence theory and its purpose is twofold: on the
one hand, even though we do not expect our readers to implement such algorithms,
we still think that some background knowledge is helpful in order to understand the
opportunities and limitations of these numerical methods. On the other hand, we
want to highlight the key features of these algorithms in order to be able to explain
how they can be efficiently used within an NMPC scheme. This is the topic of the
final Sects. 12.4–12.6, in which several issues regarding efficient implementation,
warm start and feasibility are investigated. Like Chap. 10 and in contrast to the other
chapters in the book, Chap.12 has in large parts a more survey like character, since
a comprehensive and rigorous treatment of these topics would easily fill an entire
book. Still, we hope that this chapter contains valuable information for those readers
who are interested not only in systems theoretic foundations but also in the practical
numerical implementation of NMPC schemes.

Last but not least, for all examples presented in this book we offer either
MATLAB� or C++ code in order to reproduce our numerical results. This code
is available from the web page

www.nmpc-book.com

Both ourMATLABNMPC routine—which is suitable for smaller problems—and
our C++ NMPC package—which can also handle larger problems with reasonable
computing time—can also be modified in order to perform simulations for problems
not treated in this book. In order to facilitate both the usage and the modification, the
Appendix A contains brief descriptions of our routines.

Beyond numerical experiments, almost every chapter contains a small selection
of problems related to the more theoretical results. Solutions for these problems are
available from the authors upon request by email. Attentive readers will note that
several of these problems—as well as some of our examples—are actually linear

www.nmpc-book.com
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problems. Even though all theoretical and numerical results apply to general non-
linear systems, we have decided to include such problems and examples, because
nonlinear problems hardly ever admit analytical solutions, which are needed in order
to solve problems or to work out examples without the help of numerical algorithms.

Let us finally say a few words on the class of systems and NMPC problems
considered in this book. Most results are formulated for discrete time systems on
arbitrary metric spaces, which in particular cover finite- and infinite-dimensional
sampled data systems. The discrete time setting has been chosen because of its
notational and conceptual simplicity compared to a continuous time formulation.
Still, since sampled data continuous time systems form a particularly important class
of systems, we have made considerable effort in order to highlight the peculiarities
of this system class whenever appropriate. This concerns, among other topics, the
relation between sampled data systems and discrete time systems in Sect. 2.2, the
derivation of continuous time stability properties from their discrete time counterparts
in Sect. 2.4 and Remark 4.13, the transformation of continuous time NMPC schemes
into the discrete time formulation in Sect. 3.5 and the numerical solution of ordinary
differential equations in Chap.11. Readers or lecturers who are interested in NMPC
in a pure discrete time framework may well skip these parts of the book.

The settings discussed in this book include the asymptotic tracking problem in
which the goal is to asymptotically stabilize a time-varying reference x ref(n). This
leads to a time-varyingNMPC formulation; in particular, the optimal control problem
to be solved in each step of the NMPC algorithm explicitly depends on the current
time.All of the fundamental results inChaps. 2–4 explicitly take this time dependence
into account. However, in order to be able to concentrate on concepts rather than
on technical details, in the subsequent chapters we often decided to simplify the
setting. To this end, many results in Chaps. 5–7 are first formulated for time-invariant
problems x ref ≡ x∗—i.e., for stabilizing an x∗—and the necessary modifications for
the time-varying case are discussed afterwards.

1.4 What Is Not Covered in This Book?

The area of NMPC has grown so rapidly over the last two decades that it is virtually
impossible to cover all developments in detail. In order not to overload this book, we
have decided to omit several topics, despite the fact that they are certainly important
and useful in a variety of applications. We end this introduction by giving a brief
overview over some of these topics.

For this book, we decided to concentrate on NMPC schemes with online opti-
mization only, thus leaving out all approaches in which part of the optimization is
carried out offline. Some of these methods, which can be based on both infinite hori-
zon and finite horizon optimal control and are often termed explicit MPC, are briefly
discussed in Sects. 3.5 and 4.4. Furthermore, we will not discuss special classes of
nonlinear systems, e.g., piecewise linear systems often considered in the explicit
MPC literature.
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Regarding robustness ofNMPCcontrollers under perturbations,wehave restricted
our attention to schemes in which the optimization is carried out for a nominal model,
i.e., in which the perturbation is not explicitly taken into account in the optimization
objective, cf. Sects. 7.5–7.9. Some variants of model predictive control in which the
perturbation is explicitly taken into account, like min–max MPC schemes building
on game theoretic ideas or tube-basedMPC schemes relying on set oriented methods
are briefly discussed in Sect. 7.10.

At the very heart of each NMPC algorithm is amathematical model of the systems
dynamics, which leads to the discrete time dynamics f in (1.1).Whilewewill explain
in detail in Sect. 2.2 and Chap.11 how to obtain such a discrete time model from a
differential equation, we will not address the question of how to obtain a suitable
differential equation or how to identify the parameters in this model. Both modeling
and parameter identification are serious problems in their own right which cannot
be covered in this book. It should, however, be noted that optimization methods
similar to those used in NMPC can also be used for parameter identification; see,
e.g., Schittkowski [26].

A somewhat related problem stems from the fact that NMPC inevitably leads to a
feedback law inwhich the full state x(n) needs to bemeasured in order to evaluate the
feedback law, i.e., a state feedback law. In most applications, this information is not
available; instead, only output information y(n) = h(x(n)) for some output map h is
at hand. This implies that the state x(n) must be reconstructed from the output y(n)

by means of a suitable observer. While there is a variety of different techniques for
this purpose, it is interesting to note that an idea which is very similar to NMPC can
be used for this purpose: in the so-called moving horizon state estimation approach
the state is estimated by iteratively solving optimization problems over amoving time
horizon, analogous to the repeated minimization of J (x(n), u(·)) described above.
However, instead of minimizing the future deviations of the predictions from the
reference value, here the past deviations of the trajectory from the measured output
values are minimized. More information on this topic can be found, e.g., in Rawlings
and Mayne [24, Chap.4] and the references therein.
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