
Communications and Control Engineering

Lars Grüne
Jürgen Pannek

Nonlinear Model
Predictive
Control
Theory and Algorithms

 Second Edition

Communications and Control Engineering

Series editors

Alberto Isidori, Roma, Italy
Jan H. van Schuppen, Amsterdam, The Netherlands
Eduardo D. Sontag, Piscataway, USA
Miroslav Krstic, La Jolla, USA

More information about this series at http://www.springer.com/series/61

Lars Grüne • Jürgen Pannek

Nonlinear Model Predictive
Control
Theory and Algorithms

Second Edition

123

Lars Grüne
Mathematisches Institut
Universität Bayreuth
Bayreuth
Germany

Jürgen Pannek
Bremer Institut für Produktion und Logistik
(BIBA)

Universität Bremen
Bremen
Germany

Additional material to this book can be downloaded from http://extras.springer.com.

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill
Drive, Natick, MA 01760-2098, USA, http://www.mathworks.com.
MAPLE™ is a trademark of Waterloo Maple Inc., 615 Kumpf Drive, Waterloo, ON Canada,
N2V 1K8, http://www.maplesoft.com.

ISSN 0178-5354 ISSN 2197-7119 (electronic)
Communications and Control Engineering
ISBN 978-3-319-46023-9 ISBN 978-3-319-46024-6 (eBook)
DOI 10.1007/978-3-319-46024-6

Library of Congress Control Number: 2016950897

Mathematics Subject Classification (2010): 93-02, 92C10, 93D15, 49M37

© Springer International Publishing Switzerland 2011, 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

For Brigitte, Florian and Carla
LG

For Sabina, Alina, Laura and Timo
JP

Preface to the Second Edition

The continuing research activities in the field of Nonlinear Model Predictive
Control have resulted in various new developments which were not represented in
the first edition of this book. Five years after its publication we therefore proposed
to write a second, significantly updated edition and we were glad that the
Springer-Verlag immediately approved this proposal.

In order to maintain the character of the book as a mixture between a research
monograph and an advanced textbook, we decided to limit the new material. We
added two topics which have reached a certain level of maturity and to which we
ourselves have made contributions—and which received widespread interest in
recent years. This is on the one hand the new paradigm of Economic Nonlinear
Model Predictive Control, in which more general optimal control problems than
those penalizing the distance to a desired reference solution are considered. In
Chap. 8 we provide a detailed presentation of the most important properties of the
resulting closed-loop solution: averaged optimality, asymptotic stability of an
optimal equilibrium, and finite time or transient optimality, both for formulations
with and without stabilizing terminal conditions. On the other hand, Chap. 9 gives
an introduction into Distributed Nonlinear Model Predictive Control. Here, we first
develop an abstract framework for distributed schemes and their feasibility and
stability, and then show how a number of schemes proposed in the literature fit into
this framework. Beyond these two new chapters, the material in the remaining
chapters has been updated and all typos and inaccuracies we were aware of have
been corrected. Most importantly, with Proposition 6.19 we have provided an
alternative simplified version of Proposition 6.18 as the main building block for the
analysis of schemes without terminal constraints. While being more conservative,
Proposition 6.19 allows for a considerably simpler proof than Proposition 6.18,
which is thus also suitable for presentation in lectures.

Like the first edition, the present second edition also benefitted from the help of
many people. We would like to thank Frank Allgöwer, David Angeli, Bob Bitmead,
Andrea Boccia, Philipp Braun, Moritz Diehl, Timm Faulwasser, Rolf Findeisen,
Arthur Fleig, Matthias Gerdts, Achim Ilchmann, Chris Kellett, David Mayne,
Matthias A. Müller, Vryan Gil Palma, Simon Pirkelmann, Jim Rawlings, Marcus

vii

Reble, Willi Semmler, Tobias Sprodowski, Marleen Stieler, Andy Teel, Steve
Weller, Karl Worthmann, and Mario Zanon for valuable discussions and critical
comments on the material presented in this book, for joint research leading to new
results presented or at least mentioned in this book, for pointing out inaccuracies
and suggesting improvements and for proofreading the new chapters. LG particu-
larly thanks Chris Kellett and Steve Weller for their fantastic hospitality during his
sabbatical at the University of Newcastle, Australia. Finally, we thank Oliver
Jackson from Springer for his continuing excellent support.

Bayreuth, Germany Lars Grüne
Bremen, Germany Jürgen Pannek
June 2016

viii Preface to the Second Edition

Preface to the First Edition

The idea for this book grew out of a course given at a winter school of the
International Doctoral Program “Identification, Optimization and Control with
Applications in Modern Technologies” in Schloss Thurnau in March 2009. Initially,
the main purpose of this course was to present results on stability and performance
analysis of nonlinear model predictive control algorithms, which had at that time
recently been obtained by ourselves and coauthors. However, we soon realized that
both the course and even more the book would be inevitably incomplete without a
comprehensive coverage of classical results in the area of nonlinear model pre-
dictive control and without the discussion of important topics beyond stability and
performance, like feasibility, robustness, and numerical methods.

As a result, this book has become a mixture between a research monograph and
an advanced textbook. On the one hand, the book presents original research results
obtained by ourselves and coauthors during the last 5 years in a comprehensive and
self-contained way. On the other hand, the book also presents a number of results—
both classical and more recent—of other authors. Furthermore, we have included a
lot of background information from mathematical systems theory, optimal control,
numerical analysis, and optimization to make the book accessible to graduate
students—on PhD and Master level—from applied mathematics and control engi-
neering alike. Finally, via our web page www.nmpc-book.com we provide
MATLAB and C++ software for all examples in this book which enables the reader
to perform his or her own numerical experiments. For reading this book, we assume
a basic familiarity with control systems, their state space representation as well as
with concepts like feedback and stability as provided, e.g., in undergraduate courses
on control engineering or in courses on mathematical systems and control theory in
an applied mathematics curriculum. However, no particular knowledge of nonlinear
systems theory is assumed. Substantial parts of the systems theoretic chapters of the
book have been used by us for a lecture on nonlinear model predictive control for
master students in applied mathematics and we believe that the book is well suited
for this purpose. More advanced concepts like time varying formulations or
peculiarities of sampled data systems can be easily skipped if only time invariant
problems or discrete time systems shall be treated.

ix

The book centers around two main topics: systems theoretic properties of
nonlinear model predictive control schemes on the one hand and numerical algo-
rithms on the other hand; for a comprehensive description of the contents we refer
to Sect. 1.3. As such, the book is somewhat more theoretical than engineering or
application-oriented monographs on nonlinear model predictive control, which are
furthermore often focused on linear methods.

Within the nonlinear model predictive control literature, distinctive features of
this book are the comprehensive treatment of schemes without stabilizing terminal
constraints and the in-depth discussion of performance issues via infinite horizon
suboptimality estimates, both with and without stabilizing terminal constraints. The
key for the analysis in the systems theoretic part of this book is a uniform way of
interpreting both classes of schemes as relaxed versions of infinite horizon optimal
control problems. The relaxed dynamic programming framework developed in
Chap. 4 is thus a cornerstone of this book, even though we do not use dynamic
programming for actually solving nonlinear model predictive control problems; for
this task we prefer direct optimization methods as described in the last chapter of
this book since they also allow for the numerical treatment of high-dimensional
systems.

There are many people whom we have to thank for their help in one or the other
way. For pleasant and fruitful collaboration within joint research projects and on
joint papers—of which many have been used as the basis for this book—we are
grateful to Frank Allgöwer, Nils Altmüller, Rolf Findeisen, Marcus von Lossow,
Dragan Nešić, Anders Rantzer, Martin Seehafer, Paolo Varutti, and Karl
Worthmann. For enlightening talks, inspiring discussions, for organizing work-
shops and minisymposia (and inviting us) and, last but not least, for pointing out
valuable references to the literature we would like to thank David Angeli, Moritz
Diehl, Knut Graichen, Peter Hokayem, Achim Ilchmann, Andreas Kugi, Daniel
Limón, Jan Lunze, Lalo Magni, Manfred Morari, Davide Raimondo, Saša Raković,
Jörg Rambau, Jim Rawlings, Markus Reble, Oana Serea and Andy Teel, and we
apologize to everyone who is missing in this list although he or she should have
been mentioned. Without the proofreading of Nils Altmüller, Robert Baier, Thomas
Jahn, Marcus von Lossow, Florian Müller, and Karl Worthmann the book would
contain even more typos and inaccuracies than it probably does—of course, the
responsibility for all remaining errors lies entirely with us and we appreciate all
comments on errors, typos, missing references, and the like. Beyond proofreading,
we are grateful to Thomas Jahn for his help with writing the software supporting
this book and to Karl Worthmann for his contributions to many results in Chaps.
6 and 10, most importantly the proof of Proposition 6.18. Finally, we would like to
thank Oliver Jackson and Charlotte Cross from Springer-Verlag for their excellent
support.

Bayreuth, Perth Lars Grüne
April 2011 Jürgen Pannek

x Preface to the First Edition

Contents

1 Introduction . 1
1.1 What Is Nonlinear Model Predictive Control? 1
1.2 Where Did NMPC Come From? . 3
1.3 How Is This Book Organized? . 5
1.4 What Is Not Covered in This Book? . 9
References. 10

2 Discrete Time and Sampled Data Systems. 13
2.1 Discrete Time Systems . 13
2.2 Sampled Data Systems . 16
2.3 Stability of Discrete Time Systems . 29
2.4 Stability of Sampled Data Systems . 37
2.5 Notes and Extensions . 40
Problems . 41
References. 43

3 Nonlinear Model Predictive Control . 45
3.1 The Basic NMPC Algorithm . 45
3.2 Constraints . 48
3.3 Variants of the Basic NMPC Algorithms 52
3.4 The Dynamic Programming Principle . 58
3.5 Notes and Extensions . 64
Problems . 67
References. 68

4 Infinite Horizon Optimal Control. 71
4.1 Definition and Well Posedness of the Problem 71
4.2 The Dynamic Programming Principle . 74
4.3 Relaxed Dynamic Programming . 80
4.4 Notes and Extensions . 86
Problems . 87
References. 89

xi

5 Stability and Suboptimality Using Stabilizing Terminal
Conditions . 91
5.1 The Relaxed Dynamic Programming Approach 91
5.2 Equilibrium Endpoint Constraint. 92
5.3 Lyapunov Function Terminal Cost . 99
5.4 Suboptimality and Inverse Optimality. 107
5.5 Notes and Extensions . 115
Problems . 116
References. 118

6 Stability and Suboptimality Without Stabilizing Terminal
Conditions . 121
6.1 Setting and Preliminaries . 121
6.2 Bounds on VN and Asymptotic Controllability

with Respect to ‘ . 125
6.3 Implications of the Bound on VN . 129
6.4 Computation of a . 130
6.5 Main Stability and Performance Results 135
6.6 Design of Good Stage Costs ‘ . 144
6.7 Semiglobal and Practical Asymptotic Stability 154
6.8 Proof of Proposition 6.18 . 163
6.9 Notes and Extensions . 172
Problems . 174
References. 176

7 Feasibility and Robustness . 177
7.1 The Feasibility Problem . 177
7.2 Feasibility of Unconstrained NMPC Using Exit Sets 180
7.3 Feasibility of Unconstrained NMPC Using Stability 184
7.4 Comparing NMPC with and Without Terminal Conditions 188
7.5 Robustness: Basic Definition and Concepts 192
7.6 Robustness Without State Constraints. 194
7.7 Examples for Nonrobustness Under State Constraints. 199
7.8 Robustness with State Constraints via Robust-Optimal

Feasibility . 204
7.9 Robustness with State Constraints via Continuity of VN 209
7.10 Notes and Extensions . 215
Problems . 217
References. 218

8 Economic NMPC . 221
8.1 Setting . 221
8.2 Averaged Performance with Terminal Conditions. 223
8.3 Asymptotic Stability with Terminal Conditions 227
8.4 Non-averaged and Transient Performance with Terminal

Conditions . 231

xii Contents

8.5 Averaged Optimality Without Terminal Conditions 239
8.6 Practical Asymptotic Stability Without Terminal

Conditions . 243
8.7 Non-averaged and Transient Performance Without

Terminal Conditions . 248
8.8 Notes and Extensions . 255
Problems . 256
References. 257

9 Distributed NMPC . 259
9.1 Background and Problem Formulation . 259
9.2 Classification of Connectedness . 261
9.3 Problem Classes for Different Levels of Connectedness 272
9.4 Asymptotic Stability and Convergence . 276
9.5 Communication and Coordination Schemes 281
9.6 Notes and Extensions . 292
Problems . 293
References. 294

10 Variants and Extensions . 297
10.1 Schemes with Mixed Terminal Conditions 297
10.2 Unconstrained NMPC with Terminal Weights 301
10.3 Nonpositive Definite Stage Cost . 302
10.4 Multistep NMPC-Feedback Laws . 306
10.5 Fast Sampling . 308
10.6 Compensation of Computation Times . 312
10.7 Online Measurement of a . 316
10.8 Adaptive Optimization Horizon . 325
10.9 Nonoptimal NMPC. 332
References. 341

11 Numerical Discretization . 343
11.1 Basic Solution Methods . 343
11.2 Convergence Theory. 348
11.3 Adaptive Step Size Control. 353
11.4 Using the Methods Within the NMPC Algorithms 357
11.5 Numerical Approximation Errors and Stability 359
11.6 Notes and Extensions . 363
Problems . 365
References. 366

12 Numerical Optimal Control of Nonlinear Systems 367
12.1 Discretization of the NMPC Problem . 367
12.2 Unconstrained Optimization . 380
12.3 Constrained Optimization . 385
12.4 Implementation Issues in NMPC . 408

Contents xiii

12.5 Warm Start of the NMPC Optimization 418
12.6 Nonoptimal NMPC. 426
12.7 Notes and Extensions . 430
Problems . 432
References. 432

Appendix A: NMPC Software Supporting This Book 435

Appendix B: Glossary . 441

Index . 449

xiv Contents

Chapter 1
Introduction

1.1 What Is Nonlinear Model Predictive Control?

Nonlinear model predictive control (henceforth abbreviated as NMPC) is an
optimization-basedmethod for the feedback control of nonlinear systems. Its primary
applications are stabilization and tracking problems, which we briefly introduce in
order to describe the basic idea of model predictive control.

Supposewe are given a controlled processwhose state x(n) ismeasured at discrete
time instants tn , n = 0, 1, 2, “Controlled” means that at each time instant we
can select a control input u(n) which influences the future behavior of the state of
the system. In tracking control, the task is to determine the control inputs u(n) such
that x(n) follows a given reference x ref(n) as good as possible. This means that if
the current state is far away from the reference then we want to control the system
towards the reference and if the current state is already close to the reference then
we want to keep it there. In order to keep this introduction technically simple, we
consider x(n) ∈ X = R

d and u(n) ∈ U = R
m , furthermore we consider a reference

which is constant and equal to x∗ = 0, i.e., x ref(n) = x∗ = 0 for all n ≥ 0. With
such a constant reference, the tracking problem reduces to a stabilization problem;
in its full generality the tracking problem will be considered in Sect. 3.3.

Sincewewant to be able to react to the current deviation of x(n) from the reference
value x∗ = 0, we would like to have u(n) in feedback form, i.e., in the form u(n) =
μ(x(n)) for some map μ mapping the state x ∈ X into the set U of control values.

The idea of model predictive control—linear or nonlinear—is now to utilize a
model of the process in order to predict and optimize the future system behavior. In
this book, we will use models of the form

x+ = f (x, u) (1.1)

where f : X ×U → X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x+ at the next time instant. Starting

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_1

1

2 1 Introduction

from the current state x(n), for any given control sequence u(0), . . . , u(N − 1) with
horizon length N ≥ 2, we can now iterate (1.1) in order to construct a prediction
trajectory xu defined by

xu(0) = x(n), xu(k + 1) = f (xu(k), u(k)), k = 0, . . . , N − 1. (1.2)

Proceeding this way, we obtain predictions xu(k) for the state of the system x(n+ k)
at time tn+k in the future. Hence, we obtain a prediction of the behavior of the
systemon the discrete interval tn, . . . , tn+N depending on the chosen control sequence
u(0), . . . , u(N − 1).

Now we use optimal control in order to determine u(0), . . . , u(N − 1) such that
xu is as close as possible to x∗ = 0. To this end, we measure the distance between
xu(k) and x∗ = 0 for k = 0, . . . , N − 1 by a function �(xu(k), u(k)). Here, we not
only allow for penalizing the deviation of the state from the reference but also—if
desired—the distance of the control values u(k) to a reference control u∗, which here
we also choose as u∗ = 0. A common and popular choice for this purpose is the
quadratic function

�(xu(k), u(k)) = ‖xu(k)‖2 + λ‖u(k)‖2,

where ‖ · ‖ denotes the usual Euclidean norm and λ ≥ 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired.
The optimal control problem now reads

minimize J (x(n), u(·)) :=
N−1∑

k=0

�(xu(k), u(k))

with respect to all admissible1 control sequences u(0), . . . , u(N − 1) with xu gen-
erated by (1.2).

Let us assume that this optimal control problem has a solution which is given by
the minimizing control sequence u�(0), . . . , u�(N − 1), i.e.,

min
u(0),...,u(N−1)

J (x(n), u(·)) =
N−1∑

k=0

�(xu� (k), u�(k)).

In order to get the desired feedback value μ(x(n)), we now set μ(x(n)) := u�(0),
i.e., we apply the first element of the optimal control sequence. This procedure is
sketched in Fig. 1.1.

At the following time instants tn+1, tn+2, . . . we repeat the procedure with the
new measurements x(n + 1), x(n + 2), . . . in order to derive the feedback values
μ(x(n + 1)), μ(x(n + 2)), In other words, we obtain the feedback law μ by

1The meaning of “admissible” will be defined in Sect. 3.2.

1.1 What Is Nonlinear Model Predictive Control? 3

past

past feedback values

prediction horizon

current
state x(n)

optimal predicted trajectory xu (k)past trajectory

optimal control sequence u (k)

feedback value µ(x(n))= u (0)

tn+Ntn+1tn

current time

time t

Fig. 1.1 Illustration of the NMPC step at time tn

an iterative online optimization over the predictions generated by our model (1.1).2

This is the first key feature of model predictive control.
From the prediction horizon point of view, proceeding this iterativeway the trajec-

tories xu(k), k = 0, . . . , N provide a prediction on the discrete interval tn, . . . , tn+N at
time tn , on the interval tn+1, . . . , tn+N+1 at time tn+1, on the interval tn+2, . . . , tn+N+2

at time tn+2, and so on. Hence, the prediction horizon is moving and this moving
horizon is the second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model
predictive control is receding horizon control. While the former expression stresses
the use of model-based predictions, the latter emphasizes the moving horizon idea.
Despite these slightly different literal meanings, we prefer and follow the common
practice to use these names synonymously. The additional term nonlinear indicates
that our model (1.1) need not be a linear map.

1.2 Where Did NMPC Come From?

Due to the vast amount of literature, the brief history of NMPC we provide in this
section is inevitably incomplete and focused on those references in the literature from
which we ourselves learned about the various NMPC techniques. Furthermore, we
focus on the systems theoretic aspects of NMPC and on the academic development;
some remarks on numerical methods specifically designed for NMPC can be found

2Attentive readers may already have noticed that this description is mathematically idealized since
we neglected the computation time needed to solve the optimization problem. In practice, when the
measurement x(n) is provided to the optimizer the feedback value μ(x(n)) will only be available
after some delay. For simplicity of exposition, throughout our theoretical investigations we will
assume that this delay is negligible. We will come back to this problem in Sect. 10.6.

4 1 Introduction

in Sect. 12.7. Information about the use of linear and nonlinear MPC in practical
applications can be found in many articles, books and proceedings volumes, e.g., in
[9, 16, 23].

Nonlinear model predictive control grew out of the theory of optimal control
which had been developed in the middle of the twentieth century with seminal con-
tributions like the maximum principle of Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [21] and the dynamic programming method developed by Bellman [2].
The first paperwe are aware of inwhich the central idea ofmodel predictive control—
for discrete time linear systems—is formulated was published by Propoı̆ [22] in the
early 1960s. Interestingly enough, in this paper neither Pontryagin’s maximum prin-
ciple nor dynamic programming is used in order to solve the optimal control problem.
Rather, the paper already proposed the method which is predominant nowadays in
NMPC, in which the optimal control problem is transformed into a static optimiza-
tion problem, in this case a linear one. For nonlinear systems, the idea of model
predictive control can be found in the book by Lee and Markus [15] from 1967 on
p. 423:

One technique for obtaining a feedback controller synthesis from knowledge of open-loop
controllers is to measure the current control process state and then compute very rapidly
for the open-loop control function. The first portion of this function is then used during a
short time interval, after which a new measurement of the process state is made and a new
open-loop control function is computed for this new measurement. The procedure is then
repeated.

Due to the fact that neither computer hardware nor software for the necessary “very
rapid” computation were available at that time, for a while this observation had little
practical impact.

In the late 1970s, due to the progress in algorithms for solving constrained linear
and quadratic optimization problems, MPC for linear systems became popular in
control engineering. Richalet, Rault, Testud, and Papon [25] and Cutler and Ramaker
[6] were among the first to propose this method in the area of process control, in
which the processes to be controlled are often slow enough in order to allow for
an online optimization, even with the computer technology available at that time.
It is interesting to note that in [25] the method was described as a “new method of
digital process control” and earlier references were not mentioned; it appears that the
basicMPC principle was reinvented several times. Systematic stability investigations
appeared a little bit later; an account of early results in that direction for linear MPC
can, e.g., be found in the survey paper of García, Prett, and Morari [11] or in the
monograph by Bitmead, Gevers and Wertz [3]. Many of the techniques which later
turned out to be useful for NMPC, like Lyapunov function-based stability proofs or
stabilizing terminal conditions were in fact first developed for linear MPC and later
carried over to the nonlinear setting.

The earliest paperwewere able to findwhich analyzes anNMPCalgorithm similar
to the ones used today is an article by Chen and Shaw [4] from 1982. In this paper,
stability of an NMPC scheme with equilibrium terminal constraint in continuous
time is proved using Lyapunov function techniques; however, the whole optimal
control function on the optimization horizon is applied to the plant, as opposed to

1.2 Where Did NMPC Come From? 5

only the first part as in our NMPC paradigm. For NMPC algorithms meeting this
paradigm, first comprehensive stability studies for schemes with equilibrium termi-
nal constraint were given in 1988 by Keerthi and Gilbert [14] in discrete time and
in 1990 by Mayne and Michalska [18] in continuous time. The fact that for nonlin-
ear systems equilibrium terminal constraints may cause severe numerical difficulties
subsequently motivated the investigation of alternative techniques. Terminal condi-
tions, which consist of regional terminal constraints in combination with appropriate
terminal costs, turned out to be a suitable tool for this purpose and in the second half
of the 1990s there was a rapid development of such techniques with contributions
by De Nicolao, Magni, and Scattolini [7, 8], Magni and Sepulchre [17] or Chen and
Allgöwer [5], both in discrete and continuous time. This development eventually led
to the formulation of a widely accepted “axiomatic” stability framework for NMPC
schemes with stabilizing terminal conditions as formulated in discrete time in the
survey article by Mayne, Rawlings, Rao, and Scokaert [19] in 2000, which is also
an excellent source for more detailed information on the history of various NMPC
variants not mentioned here. This framework also forms the core of our stability
analysis of such schemes in Chap.5 of this book. A continuous time version of such
a framework was given by Fontes [10] in 2001.

All stability results discussed so far add terminal conditions including termi-
nal costs and additional state constraints to the finite horizon optimization in order
to ensure stability. Among the first who provided a rigorous stability result of an
NMPC scheme without such constraints were Parisini and Zoppoli [20] and Alamir
and Bornard [1], both in 1995 and for discrete time systems. Parisini and Zoppoli
[20], however, still needed a terminal cost with specific properties similar to the one
used in [5]. Alamir and Bonnard [1] were able to prove stability without such termi-
nal cost by imposing a rank condition on the linearization on the system. Under less
restrictive conditions, stability results were provided in 2005 by Grimm, Messina,
Tuna, and Teel [12] for discrete time systems and by Jadbabaie and Hauser [13] for
continuous time systems. The results presented in Chap.6 of this book are qualita-
tively similar to these references but use slightly different assumptions and a different
proof technique which allows for quantitatively tighter results; for more details we
refer to the discussions in Sects. 6.1 and 6.9.

After the basic systems theoretic principles of NMPC had been clarified, more
advanced topics such as robustness of stability and feasibility under perturbations,
performance estimates and efficiency of numerical algorithms, and extensions to opti-
mal control problems not a priori related to stabilization or tracking were addressed.
For a discussion of these more recent issues including a number of references, we
refer to the final sections of the respective chapters of this book.

1.3 How Is This Book Organized?

The book consists of twomain parts, which cover systems theoretic aspects of NMPC
in Chaps. 2–10 on the one hand and numerical and algorithmic aspects in Chaps. 11–
12 on the other hand. These parts are, however, not strictly separated; in particular,

6 1 Introduction

many of the theoretical and structural properties of NMPC developed in the first part
are used when looking at the performance of numerical algorithms.

The basic theme of the first part of the book is the systems theoretic analysis of
stability, performance, feasibility, and robustness of NMPC schemes. This part starts
with the introduction of the class of systems and the presentation of background
material from Lyapunov stability theory in Chap. 2 and proceeds with a detailed
description of different NMPC algorithms as well as related background information
on dynamic programming in Chap.3.

A distinctive feature of this book is that both schemes with stabilizing terminal
conditions as well as schemes without such conditions are considered and treated in a
uniform way. This “uniform way” consists of interpreting both classes of schemes as
relaxed versions of infinite horizon optimal control. To this end, Chap.4 first develops
the theory of infinite horizon optimal control and shows by means of dynamic pro-
gramming and Lyapunov function arguments that infinite horizon optimal feedback
laws are actually asymptotically stabilizing feedback laws. The main building block
of our subsequent analysis is the development of a relaxed dynamic programming
framework in Sect. 4.3. Roughly speaking, Theorems 4.11 and 4.14 in this section
extract the main structural properties of the infinite horizon optimal control problem,
which ensure

• asymptotic or practical asymptotic stability of the closed loop,
• admissibility, i.e., maintaining the imposed state constraints,
• a guaranteed bound on the infinite horizon performance of the closed loop,
• applicability to NMPC schemes with and without stabilizing terminal conditions.

The application of these theorems does not necessarily require that the feedback
law to be analyzed is close to an infinite horizon optimal feedback law in some
quantitative sense. Rather, it requires that the two feedback laws share certain prop-
erties which are sufficient in order to conclude asymptotic or practical asymptotic
stability and admissibility for the closed loop. While our approach allows for inves-
tigating the infinite horizon performance of the closed loop for most schemes under
consideration—which we regard as an important feature of the approach in this
book—we would like to emphasize that near optimal infinite horizon performance
is not needed for ensuring stability and admissibility.

The results from Sect. 4.3 are then used in the subsequent Chaps. 5 and 6 in
order to analyze stability, admissibility and infinite horizon performance properties
for stabilizing NMPC schemes with and without stabilizing terminal conditions,
respectively.Here, the results forNMPCschemeswith stabilizing terminal conditions
in Chap.5 can by nowbe considered as classical and thusmainly summarizewhat can
be found in the literature, although some results—e.g., Theorems 5.21 and 5.22—
generalize known results. In contrast to this, the results for NMPC schemes without
stabilizing terminal conditions in Chap.6 were mainly developed by ourselves and
coauthors and have not been presented before in this way.

In Chap.7 we discuss feasibility and robustness issues. In particular, in
Sects. 7.1–7.3 we present feasibility results for NMPC schemes without terminal
constraints and without imposing viability assumptions on the state constraints. The

1.3 How Is This Book Organized? 7

results are reformulations of results from the literature, however, some of them so far
were only established for linear MPC. These results finish our study of the properties
of stabilizing NMPC schemes in the nominal case, which is why it is followed by
a comparative discussion of the advantages and disadvantages of the various stabi-
lizing NMPC schemes presented in this book in Sect. 7.4. The remaining sections in
Chap.7 address the robustness of the stability of the NMPC closed loop with respect
to additive perturbations andmeasurement errors. Herewe decided to present a selec-
tion of results we consider representative, partially from the literature and partially
based on our own research.

Chapter 8 investigates a variant of NMPC known as Economic NMPC. Despite
the name, these schemes are not necessarily connected to problems from economy.
The name rather refers to a class of NMPC schemes in which the stage cost does
not penalize the distance to a desired reference solution, but models different opti-
mization objectives like minimization of energy consumption or maximization of
output. As these objectives are often motivated by economic considerations, the
name Economic NMPC emerged. In Chap.8, we investigate some of the important
properties of the resulting closed-loop solutions, such as averaged optimality, asymp-
totic stability of an optimal equilibrium, and finite time or transient optimality, both
for formulations with and without stabilizing terminal conditions. In both cases, the
notion of strict dissipativity plays an important role. The results in this chapter are
partially developed by us and partially by other researchers. The unified presentation
of schemes with and without terminal conditions is again a particular feature of this
book.

Chapter 9 gives an introduction intoDistributed NMPC. In this variant of NMPC,
the overall system is divided into subsystems and the optimization problem to be
solved in each step of the NMPC scheme is solved individually in each subsystem.
The approach is motivated by practical applications in which a centralized NMPC
controller cannot be realized for various reasons, either because of the inherent dis-
tributed nature of the overall system as, e.g., in traffic control, or because of the
sheer size of the system as, e.g., in large production plants or logistic networks. Of
course, there exist many different ways to divide a system into subsystems and to
solve optimization problems on the level of the individual subsystems. During the
optimization, the subsystems may communicate with each other or not, and they
may try to minimize a common optimization objective together or focus on their
individual objectives. For this reason, the chapter starts with an abstract framework,
in which the problem formulation and basic goals like feasibility and stability are
formulated independent of the concrete communication structures and couplings.
Popular algorithms from the literature like the scheme by Richards and How and the
ADMM algorithm are then discussed as particular examples in this framework.

While most of the results in this book are formulated and proved in a mathemat-
ically rigorous way, Chap. 10 deviates from this practice and presents a couple of
variants and extensions of the basic NMPC schemes considered before in a more
survey like manner. Here, proofs are occasionally only sketched with appropriate
references to the literature. These extensions finish the systems theoretic part of the
book.

8 1 Introduction

The numerical part of the book covers two central questions in NMPC: how
can we numerically compute the predicted trajectories needed in NMPC for finite-
dimensional sampled data systems and how is the optimization in each NMPC step
performed numerically? The first issue is treated in Chap.11, in which we start by
giving an overview on numerical one step methods, a classical numerical technique
for solving ordinary differential equations. After having looked at the convergence
analysis and adaptive step size control techniques,we discuss some implementational
issues for the use of this methods within NMPC schemes. Finally, we investigate
how the numerical approximation errors affect the closed-loop behavior, using the
robustness results from Chap.7.

The last Chap. 12 is devoted to numerical algorithms for solving nonlinear finite
horizon optimal control problems.We concentrate on so-called direct methodswhich
form the currently by far preferred class of algorithms in NMPC applications. In
these methods, the optimal control problem is transformed into a static optimiza-
tion problem which can then be solved by nonlinear programming algorithms. We
describe different ways of how to do this transformation and then give a detailed
introduction into some popular nonlinear programming algorithms for constrained
optimization. The focus of this introduction is on explaining how these algorithms
work rather than on a rigorous convergence theory and its purpose is twofold: on the
one hand, even though we do not expect our readers to implement such algorithms,
we still think that some background knowledge is helpful in order to understand the
opportunities and limitations of these numerical methods. On the other hand, we
want to highlight the key features of these algorithms in order to be able to explain
how they can be efficiently used within an NMPC scheme. This is the topic of the
final Sects. 12.4–12.6, in which several issues regarding efficient implementation,
warm start and feasibility are investigated. Like Chap. 10 and in contrast to the other
chapters in the book, Chap.12 has in large parts a more survey like character, since
a comprehensive and rigorous treatment of these topics would easily fill an entire
book. Still, we hope that this chapter contains valuable information for those readers
who are interested not only in systems theoretic foundations but also in the practical
numerical implementation of NMPC schemes.

Last but not least, for all examples presented in this book we offer either
MATLAB� or C++ code in order to reproduce our numerical results. This code
is available from the web page

www.nmpc-book.com

Both ourMATLABNMPC routine—which is suitable for smaller problems—and
our C++ NMPC package—which can also handle larger problems with reasonable
computing time—can also be modified in order to perform simulations for problems
not treated in this book. In order to facilitate both the usage and the modification, the
Appendix A contains brief descriptions of our routines.

Beyond numerical experiments, almost every chapter contains a small selection
of problems related to the more theoretical results. Solutions for these problems are
available from the authors upon request by email. Attentive readers will note that
several of these problems—as well as some of our examples—are actually linear

www.nmpc-book.com

1.3 How Is This Book Organized? 9

problems. Even though all theoretical and numerical results apply to general non-
linear systems, we have decided to include such problems and examples, because
nonlinear problems hardly ever admit analytical solutions, which are needed in order
to solve problems or to work out examples without the help of numerical algorithms.

Let us finally say a few words on the class of systems and NMPC problems
considered in this book. Most results are formulated for discrete time systems on
arbitrary metric spaces, which in particular cover finite- and infinite-dimensional
sampled data systems. The discrete time setting has been chosen because of its
notational and conceptual simplicity compared to a continuous time formulation.
Still, since sampled data continuous time systems form a particularly important class
of systems, we have made considerable effort in order to highlight the peculiarities
of this system class whenever appropriate. This concerns, among other topics, the
relation between sampled data systems and discrete time systems in Sect. 2.2, the
derivation of continuous time stability properties from their discrete time counterparts
in Sect. 2.4 and Remark 4.13, the transformation of continuous time NMPC schemes
into the discrete time formulation in Sect. 3.5 and the numerical solution of ordinary
differential equations in Chap.11. Readers or lecturers who are interested in NMPC
in a pure discrete time framework may well skip these parts of the book.

The settings discussed in this book include the asymptotic tracking problem in
which the goal is to asymptotically stabilize a time-varying reference x ref(n). This
leads to a time-varyingNMPC formulation; in particular, the optimal control problem
to be solved in each step of the NMPC algorithm explicitly depends on the current
time.All of the fundamental results inChaps. 2–4 explicitly take this time dependence
into account. However, in order to be able to concentrate on concepts rather than
on technical details, in the subsequent chapters we often decided to simplify the
setting. To this end, many results in Chaps. 5–7 are first formulated for time-invariant
problems x ref ≡ x∗—i.e., for stabilizing an x∗—and the necessary modifications for
the time-varying case are discussed afterwards.

1.4 What Is Not Covered in This Book?

The area of NMPC has grown so rapidly over the last two decades that it is virtually
impossible to cover all developments in detail. In order not to overload this book, we
have decided to omit several topics, despite the fact that they are certainly important
and useful in a variety of applications. We end this introduction by giving a brief
overview over some of these topics.

For this book, we decided to concentrate on NMPC schemes with online opti-
mization only, thus leaving out all approaches in which part of the optimization is
carried out offline. Some of these methods, which can be based on both infinite hori-
zon and finite horizon optimal control and are often termed explicit MPC, are briefly
discussed in Sects. 3.5 and 4.4. Furthermore, we will not discuss special classes of
nonlinear systems, e.g., piecewise linear systems often considered in the explicit
MPC literature.

10 1 Introduction

Regarding robustness ofNMPCcontrollers under perturbations,wehave restricted
our attention to schemes in which the optimization is carried out for a nominal model,
i.e., in which the perturbation is not explicitly taken into account in the optimization
objective, cf. Sects. 7.5–7.9. Some variants of model predictive control in which the
perturbation is explicitly taken into account, like min–max MPC schemes building
on game theoretic ideas or tube-basedMPC schemes relying on set oriented methods
are briefly discussed in Sect. 7.10.

At the very heart of each NMPC algorithm is amathematical model of the systems
dynamics, which leads to the discrete time dynamics f in (1.1).Whilewewill explain
in detail in Sect. 2.2 and Chap.11 how to obtain such a discrete time model from a
differential equation, we will not address the question of how to obtain a suitable
differential equation or how to identify the parameters in this model. Both modeling
and parameter identification are serious problems in their own right which cannot
be covered in this book. It should, however, be noted that optimization methods
similar to those used in NMPC can also be used for parameter identification; see,
e.g., Schittkowski [26].

A somewhat related problem stems from the fact that NMPC inevitably leads to a
feedback law inwhich the full state x(n) needs to bemeasured in order to evaluate the
feedback law, i.e., a state feedback law. In most applications, this information is not
available; instead, only output information y(n) = h(x(n)) for some output map h is
at hand. This implies that the state x(n) must be reconstructed from the output y(n)

by means of a suitable observer. While there is a variety of different techniques for
this purpose, it is interesting to note that an idea which is very similar to NMPC can
be used for this purpose: in the so-called moving horizon state estimation approach
the state is estimated by iteratively solving optimization problems over amoving time
horizon, analogous to the repeated minimization of J (x(n), u(·)) described above.
However, instead of minimizing the future deviations of the predictions from the
reference value, here the past deviations of the trajectory from the measured output
values are minimized. More information on this topic can be found, e.g., in Rawlings
and Mayne [24, Chap.4] and the references therein.

References

1. Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme:
the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957). Reprinted
in 2010

3. Bitmead, R.R., Gevers, M., Wertz, V.: Adaptive Optimal Control: The Thinking Man’s GPC.
International Series in Systems and Control Engineering. Prentice-Hall, New York (1990)

4. Chen, C.C., Shaw, L.: On receding horizon feedback control. Automatica 18(3), 349–352
(1982)

5. Chen, H., Allgöwer, F.: Nonlinear model predictive control schemes with guaranteed stability.
In:Berber,R.,Kravaris,C. (eds.)NonlinearModelBasedProcessControl, pp. 465–494.Kluwer
Academic, Dodrecht (1999)

References 11

6. Cutler, C.R., Ramaker, B.L.: Dynamic matrix control – a computer control algorithm. In:
Proceedings of the Joint Automatic Control Conference, pp. 13–15 (1980)

7. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing nonlinear receding horizon control via
a nonquadratic terminal state penalty. In: CESA’96 IMACS Multiconference: Computational
Engineering in Systems Applications, Lille, France, pp. 185–187 (1996)

8. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear
time-varying systems. IEEE Trans. Automat. Control 43(7), 1030–1036 (1998)

9. Del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (eds.): Automotive
Model Predictive Control – Models, Methods and Applications. Lecture Notes in Control and
Information Sciences. Springer, Berlin (2010)

10. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model predictive con-
trollers. Syst. Control Lett. 42(2), 127–143 (2001)

11. García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice - a survey.
Automatica 25(3), 335–348 (1989)

12. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a
local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50(5), 546–558
(2005)

13. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal
cost. IEEE Trans. Automat. Control 50(5), 674–678 (2005)

14. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of
constrained discrete-time systems: stability and moving-horizon approximations. J. Optim.
Theory Appl. 57(2), 265–293 (1988)

15. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)
16. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2002)
17. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding-horizon control via inverse

optimality. Syst. Control Lett. 32(4), 241–245 (1997)
18. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans.

Automat. Control 35(7), 814–824 (1990)
19. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive con-

trol: stability and optimality. Automatica 36(6), 789–814 (2000)
20. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural

approximation. Automatica 31(10), 1443–1451 (1995)
21. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical

Theory of Optimal Processes. Translated by D. E. Brown. Pergamon/Macmillan, New York
(1964)

22. Propoı̆, A.I.: Application of linear programming methods for the synthesis of automatic
sampled-data systems. Avtom. Telemeh. 24, 912–920 (1963)

23. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control
Eng. Pract. 11, 733–764 (2003)

24. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Pub-
lishing, Madison (2009)

25. Richalet, J., Rault, A., Testud, J.L., Papon, J.: Model predictive heuristic control: applications
to industrial processes. Automatica 14, 413–428 (1978)

26. Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Applied Optimization, vol.
77. Kluwer Academic, Dordrecht (2002)

Chapter 2
Discrete Time and Sampled Data Systems

2.1 Discrete Time Systems

In this book, we investigate model predictive control for discrete time nonlinear
control systems of the form

x+ = f (x, u). (2.1)

Here, the transition map f : X × U → X assigns the state x+ ∈ X at the next
time instant to each pair of state x ∈ X and control value u ∈ U . The state space X
and the control value space U are arbitrary metric spaces, i.e., sets in which we can
measure distances between two elements x, y ∈ X or u, v ∈ U by metrics dX (x, y)

or dU (u, v), respectively. Readers who are less familiar with metric spaces may think
of X = R

d andU = R
m for d, m ∈ Nwith the Euclideanmetrics dX (x, y) = ‖x−y‖

and dU (u, v) = ‖u −v‖ induced by the usual Euclidean norm ‖ ·‖, although some of
our examples use different spaces. While most of the systems we consider possess
continuous transition maps f , we do not require continuity in general.

The set of finite control sequences u(0), . . . , u(N −1) for N ∈ Nwill be denoted
by U N and the set of infinite control sequences u(0), u(1), u(2), . . . by U∞. Note
that we may interpret the control sequences as functions u : {0, . . . , N − 1} → U or
u : N0 → U , respectively. For either type of control sequences we will briefly write
u(·) or simply u if there is no ambiguity. With N∞ we denote the natural numbers
including ∞ and with N0 the natural numbers including 0.

A trajectory of (2.1) is obtained as follows: given an initial value x0 ∈ X and a
control sequence u(·) ∈ U K for K ∈ N∞, we define the trajectory xu(k) iteratively
via

xu(0) = x0, xu(k + 1) = f
(
xu(k), u(k)

)
, (2.2)

for all k ∈ N0 if K = ∞ and for k = 0, 1, . . . , K − 1 otherwise. Whenever we want
to emphasize the dependence on the initial value we write xu(k, x0).

An important basic property of the trajectories is the cocycle property: given an
initial value x0 ∈ X , a control u ∈ U N , and time instants k1, k2 ∈ {0, . . . , N − 1}
© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_2

13

14 2 Discrete Time and Sampled Data Systems

with k1 ≤ k2 the solution trajectory satisfies

xu(k2, x0) = xu(·+k1)(k2 − k1, xu(k1, x0)). (2.3)

Here, the shifted control sequence u(· + k1) ∈ U N−k1 is given by

u(· + k1)(k) := u(k + k1), k ∈ {0, . . . , N − k1 − 1}, (2.4)

i.e., if the sequence u consists of the N elements u(0), u(1), . . . , u(N − 1), then
the sequence ũ = u(· + k1) consists of the N − k1 elements ũ(0) = u(k1), ũ(1) =
u(k1 + 1), . . . , ũ(N − k1 − 1) = u(N − 1). With this definition, the identity (2.3) is
easily proved by induction using (2.2).

We illustrate our class of models by three simple examples—the first two being
in fact linear.

Example 2.1 One of the simplest examples of a control system of type (2.1) is given
by X = U = R and

x+ = x + u =: f (x, u).

This system can be interpreted as a very simple model of a vehicle on an infinite
straight road in which u ∈ R is the traveled distance in the period until the next time
instant. For u > 0 the vehicle moves right and for u < 0 it moves left.

Example 2.2 A slightly more involved version of Example2.1 is obtained if we
consider the state x = (x1, x2)� ∈ X = R

2, where x1 represents the position and x2
the velocity of the vehicle. With the dynamics

(
x+
1

x+
2

)
=
(

x1 + x2 + u/2
x2 + u

)
=: f (x, u)

on an appropriate time scale the control u ∈ U = R can be interpreted as the
(constant) acceleration in the period until the next time instant. For a formal derivation
of this model from a continuous time system see Example2.6, below.

Example 2.3 Another variant of Example2.1 is obtained if we consider the vehicle
on a road which forms an ellipse, cf. Fig. 2.1, in which half of the ellipse is shown.

Here, the set of possible states is given by

X =
{

x ∈ R
2

∣∣∣∣

∥∥∥∥

(
x1

2x2

)∥∥∥∥ = 1

}
.

Since X is a compact subset ofR2 (more precisely a submanifold, butwewill not need
this particular geometric structure) we can use the metric induced by the Euclidean
norm on R

2, i.e., dX (x, y) = ‖x − y‖. Defining the dynamics

(
x+
1

x+
2

)
=
(
sin(ϑ(x) + u)

cos(ϑ(x) + u)/2

)
=: f (x, u)

2.1 Discrete Time Systems 15

Fig. 2.1 Illustration of
Example2.3

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

with u ∈ U = R and

ϑ(x) =
{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0

the vehicle moves on the ellipse with traveled distance u ∈ U = R in the next time
step, where the traveled distance is now expressed in terms of the angle ϑ . For u > 0
the vehicle moves clockwise and for u < 0 it moves counterclockwise.

The main purpose of these very simple examples is to provide test cases which we
will use in order to illustrate various effects in model predictive control. Due to their
simplicity, we can intuitively guess what a reasonable controller should do and often
even analytically compute different optimal controllers. This enables us to compare
the behavior of the NMPC controller with our intuition and other controllers. More
sophisticated models will be introduced in the next section.

As outlined in the introduction, the model (2.1) will serve for generating the
predictions xu(k, x(n)) which we need in the optimization algorithm of our NMPC
scheme, i.e., (2.1) will play the role of the model (1.1) used in the introduction.
Clearly, in general we cannot expect that this mathematical model produces exact
predictions for the trajectories of the real process to be controlled. Nevertheless,
during the Chaps. 3–6 and 8–10 and in Sects. 7.1–7.4 of this book we will suppose
this idealized assumption. In otherwords, given theNMPCfeedback lawμ : X → U ,
we assume that the resulting closed-loop system satisfies

x+ = f (x, μ(x)) (2.5)

with f from (2.1). We will refer to (2.5) as the nominal closed-loop system.

16 2 Discrete Time and Sampled Data Systems

There are several good reasons for using this idealized assumption: First, satis-
factory behavior of the nominal NMPC closed loop is a natural necessary condition
for the correctness of our controller—if we cannot ensure proper functioning in the
absence of modeling errors we can hardly expect the method to work under real life
conditions. Second, the assumption that the prediction is based on an exact model of
the process considerably simplifies the analysis and thus allows us to derive sufficient
conditions under which NMPC works in a simplified setting. Last, based on these
conditions for the nominal model (2.5), we can investigate additional robustness
conditions which ensure satisfactory performance also for the realistic case in which
(2.5) is only an approximate model for the real closed-loop behavior. This issue will
be treated in Sects. 7.5–7.9.

2.2 Sampled Data Systems

Most models of real-life processes in technical and other applications are given as
continuous time models, usually in form of differential equations. In order to convert
these models into the discrete time form (2.1) we introduce the concept of sampling.

Let us assume that the control system under consideration is given by a finite-
dimensional ordinary differential equation

ẋ(t) = fc
(
x(t), v(t)

)
(2.6)

with vector field fc : Rd × R
m → R

d , control function v : R → R
m , and unknown

function x : R → R
d , where ẋ is the usual short notation for the derivative dx/dt

and d, m ∈ N are the dimensions of the state and the control vector. Here, we use
the slightly unusual symbol v for the control function in order to emphasize the
difference between the continuous time control function v(·) in (2.6) and the discrete
time control sequence u(·) in (2.1).

Caratheodory’s Theorem (see, e.g., [15, Theorem 54]) states conditions on fc and
v under which (2.6) has a unique solution. For its application we need the following
assumption.

Assumption 2.4 The vector field fc : Rd × R
m → R

d is continuous and Lipschitz
in its first argument in the following sense: for each r > 0 there exists a constant
L > 0 such that the inequality

∥∥ fc(x, v) − fc(y, v)
∥∥ ≤ L‖x − y‖

holds for all x, y ∈ R
d and all v ∈ R

m with ‖x‖ ≤ r , ‖y‖ ≤ r and ‖v‖ ≤ r .

Under Assumption 2.4, Caratheodory’s Theorem yields that for each initial value
x0 ∈ R

d , each initial time t0 ∈ R and each locally Lebesgue integrable control
function v : R → R

m Eq. (2.6) has a unique solution x(t) with x(t0) = x0 defined

2.2 Sampled Data Systems 17

for all times t contained in some open interval I ⊆ R with t0 ∈ I . We denote this
solution by ϕ(t, t0, x0, v).

We further denote the space of locally Lebesgue integrable control functions
mapping R into R

m by L∞(R,Rm). For a precise definition of this space see,
e.g., [15, Sect. C.1]. Readers who are not familiar with Lebesgue measure theory
may always think of v being piecewise continuous, which is the approach taken
in [7, Chap. 3]. Since the space of piecewise continuous functions is a subset of
L∞(R,Rm), existence and uniqueness holds for these control functions as well. Note
that if we consider (2.6) only for times t from an interval [t0, t1] then it is sufficient
to specify the control function v for these times t ∈ [t0, t1], i.e., it is sufficient to
consider v ∈ L∞([t0, t1],Rm). Furthermore, note that two Caratheodory solutions
ϕ(t, t0, x0, v1) and ϕ(t, t0, x0, v2) for v1, v2 ∈ L∞(R,Rm) coincide if v1 and v2 co-
incide for almost all τ ∈ [t0, t], where almost all means that v1(τ)
= v2(τ) may
hold for τ ∈ T ⊂ [t0, t] where T is a set with zero Lebesgue measure. Since, in
particular, sets T with only finitely many values have zero Lebesgue measure, this
implies that for any v ∈ L∞(R,Rm) the solution ϕ(t, t0, x0, v) does not change if
we change the value of v(τ) for finitely many times τ ∈ [t0, t].1

The idea of sampling consists of defining a discrete time system (2.1) such that
the trajectories of this discrete time system and the continuous time system coincide
at the sampling times t0 < t1 < t2 < · · · < tN , i.e.,

ϕ(tn, t0, x0, v) = xu(n, x0), n = 0, 1, 2, . . . , N , (2.7)

provided the continuous time control function v : R → R
m and the discrete time

control sequence u(·) ∈ U N are chosen appropriately. Before we investigate how
this appropriate choice can be done, cf. Theorem2.7, below, we need to specify the
discrete time system (2.1) which allows for such a choice.

Throughout this book we use equidistant sampling times tn = nT , n ∈ N0, with
sampling period T > 0. For this choice, we claim that

x+ = f (x, u) := ϕ(T, 0, x, u) (2.8)

for x ∈ R
d and u ∈ L∞([0, T],Rm) is the desired discrete time system (2.1) for

which (2.7) can be satisfied. Clearly, f (x, u) is only well defined if the solution
ϕ(t, 0, x, u) exists for the time t = T . Unless explicitly stated otherwise, we will
tacitly assume that this is the case whenever using f (x, u) from (2.8).

Before we explain the precise relation between u in (2.8) and u(·) and ν(·) in (2.7),
cf. Theorem2.7, below, we first look at possible choices of u in (2.8). In general, u in
(2.8) may be any function in L∞([0, T],Rm), i.e., any measurable continuous time
control function defined on one sampling interval. This suggests that we should use

1Strictly speaking, L∞ functions are not even defined pointwise but rather via equivalence classes
which identify all functions v ∈ L∞(R,Rm)which coincide for almost all t ∈ R. However, in order
not to overload the presentation with technicalities we prefer the slightly heuristic explanation given
here.

18 2 Discrete Time and Sampled Data Systems

U = L∞([0, T],Rm) in (2.1) when f is defined by (2.8). However, other—much
simpler—choices of U as appropriate subsets of L∞([0, T],Rm) are often possible
and reasonable. This is illustrated by the following examples and discussed after
Theorem2.7 in more detail.

Example 2.5 Consider the continuous time control system

ẋ(t) = v(t)

with n = m = 1. It is easily verified that the solutions of this system are given by

ϕ(t, 0, x0, v) = x0 +
∫ t

0
v(τ) dτ.

Hence, for U = L∞([0, T],R) we obtain (2.8) as

x+ = f (x, u) = x +
∫ T

0
u(τ) dτ.

If we restrict ourselves to constant control functions u(t) ≡ u ∈ R (for ease of
notation we use the same symbol u for the function and for its constant value), which
corresponds to choosing U = R, then f simplifies to

f (x, u) = x + T u.

If we further specify T = 1, then this is exactly Example2.1.

Example 2.6 Consider the continuous time control system

(
ẋ1(t)
ẋ2(t)

)
=
(

x2(t)
v(t)

)

with n = 2 and m = 1. In this model, if we interpret x1(t) as the position of a vehicle
at time t , then x2(t) = ẋ1(t) is its velocity and v(t) = ẋ2(t) its acceleration.

Again, one easily computes the solutions of this system with initial value x0 =
(x01, x02)� as

ϕ(t, 0, x0, v) =
(

x01 + ∫ t
0 x2(τ) dτ

x02 + ∫ t
0 v(τ) dτ

)
=
(

x01 + ∫ t
0

(
x02 + ∫ τ

0 v(s) ds
)

dτ

x02 + ∫ t
0 v(τ) dτ

)
.

Hence, for U = L∞([0, T],R) and x = (x1, x2)� we obtain (2.8) as

x+ = f (x, u) =
(

x1 + T x2 + ∫ T
0

∫ t
0 u(s) ds dt

x2 + ∫ T
0 u(t) dt.

)

.

2.2 Sampled Data Systems 19

x0x0

t0t0 − s

v(t + s)

v(t)

ϕ(t, t0,x0,v)

ϕ(t, t0 − s,x0,v(·+ s))

t

Fig. 2.2 Illustration of equality (2.9)

If we restrict ourselves to constant control functions u(t) ≡ u ∈ R (again using
the same symbol u for the function and for its constant value), i.e., U = R, then f
simplifies to

f (x, u) =
(

x1 + T x2 + T 2u/2
x2 + T u

)

If we further specify T = 1, then this is exactly Example2.2.

In order to see how the control inputs v(·) in (2.6) and u(·) in (2.8) need to be
related such that (2.8) ensures (2.7), we use that the continuous time trajectories
satisfy the identity

ϕ(t, t0, x0, v) = ϕ
(
t − s, t0 − s, x0, v(· + s)

)
(2.9)

for all t, s ∈ R, provided, of course, the solutions exist for the respective times. Here
v(· + s) : R → R

m denotes the shifted control function, i.e., v(· + s)(t) = v(t + s),
see also (2.4). This identity is illustrated in Fig. 2.2: changing ϕ(t, t0−s, x0, v(·+s))
to ϕ(t − s, t0 − s, x0, v(· + s)) implies a shift of the upper graph by s to the right
after which the two graphs coincide.

Identity (2.9) follows from the fact that x(t) = ϕ(t−s, t0−s, x0, v(·+s)) satisfies

ẋ(t) = d

dt
ϕ
(
t − s, t0 − s, x0, v(· + s)

)

= f
(
ϕ
(
t − s, t0 − s, x0, v(· + s)

)
, v(· + s)(t − s)

) = f (x(t), v(t))

and
x(t0) = ϕ

(
t0 − s, t0 − s, x0, v(· + s)

) = x0.

20 2 Discrete Time and Sampled Data Systems

Hence, both functions in (2.9) satisfy (2.6) with the same control function and fulfill
the same initial condition. Consequently, they coincide by uniqueness of the solution.

Using a similar uniqueness argument one sees that the solutions ϕ satisfy the
cocycle property

ϕ(t, t0, x0, v) = ϕ
(
t, s, ϕ(s, t0, x0, v), v

)
(2.10)

for all t, s ∈ R, again provided all solutions in this equation exist for the respective
times. This is the continuous time version of the discrete time cocycle property (2.3).
Note that in (2.3) we have combined the discrete time counterparts of (2.9) and (2.10)
into one equation since by (2.2) the discrete time trajectories always start at time 0.

With the help of (2.9) and (2.10) we can now prove the following theorem.

Theorem 2.7 Assume that (2.6) satisfies Assumption2.4 and let x0 ∈ R
d and v ∈

L∞([t0, tN],Rm) be given such that ϕ(tn, t0, x0, v) exists for all sampling times tn =
nT , n = 0, . . . , N with T > 0. Define the control sequence u(·) ∈ U N with U =
L∞([0, T],Rm) by

u(n) = v|[tn ,tn+1](· + tn), n = 0, . . . , N − 1, (2.11)

where v|[tn ,tn+1] denotes the restriction of v onto the interval [tn, tn+1]. Then

ϕ(tn, t0, x0, v) = xu(n, x0) (2.12)

holds for n = 0, . . . , N and the trajectory of the discrete time system (2.1) defined
by (2.8).

Conversely, given u(·) ∈ U N with U = L∞([0, T],Rm), then Eq. (2.12) holds
for n = 0, . . . , N for any v ∈ L∞([t0, tN],Rm) satisfying

v(t) = u(n)(t − tn) f or almost all t ∈ [tn, tn+1] and all n = 0, . . . , N − 1,
(2.13)

provided ϕ(tn, t0, x0, v) exists for all sampling times tn = nT , n = 0, . . . , N.

Proof We prove the assertion by induction over n. For n = 0 we can use the initial
conditions to get

xu(t0, u) = x0 = ϕ(t0, t0, x0, v).

For the induction step n → n +1 assume (2.12) for tn as induction assumption. Then
by definition of xu we get

xu(n + 1, x0) = f
(
xu(n, x0), u(n)

) = ϕ
(
T, 0, xu(n, x0), u(n)

)

= ϕ
(
T, 0, ϕ(tn, t0, x0, v), v(· + tn)

)

= ϕ
(
tn+1, tn, ϕ(tn, t0, x0, v), v

)

= ϕ
(
tn+1, t0, x0, v

)
,

2.2 Sampled Data Systems 21

where we used the induction assumption in the third equality, (2.9) in the fourth
equality and (2.10) in the last equality.

The converse statement follows by observing that applying (2.11) for any v sat-
isfying (2.13) yields a sequence of control functions u(0), . . . , u(N − 1) whose
elements coincide with the original ones for almost all t ∈ [0, T]. �

Remark 2.8 At a first glance it may seem that the condition on v in (2.13) is not
well defined at the sampling times tn: from (2.13) for n − 1 and t = tn we obtain
v(tn) = u(n −1)(tn − tn−1) while (2.13) for n and t = tn yields v(tn) = u(n)(0) and,
of course, the values u(n−1)(tn −tn−1) and u(n)(0) need not coincide. However, this
does not pose a problem because the set of sampling times tn in (2.13) is finite and
thus the solutions ϕ(t, t0, x0, v) do not depend on the values v(tn), n = 0, . . . , N −1,
cf. the discussion after Assumption2.4. Formally, this is reflected in the words almost
all in (2.13) which in particular imply that (2.13) is satisfied regardless of how v(tn),
n = 0, . . . , N − 1 is chosen.

Theorem2.7 shows that we can reproduce every continuous time solution at the
sampling times if we choose U = L∞([0, T],Rm). Although this is a nice property
for our subsequent theoretical investigations, usually this is not a good choice for
practical purposes in an NMPC context: recall from the introduction that in NMPC
we want to optimize over the sequence u(0), . . . , u(N − 1) ∈ U N in order to deter-
mine the feedback value μ(x(n)) = u(0) ∈ U . Using U = L∞([0, T],Rm), each
element of this sequence and hence also μ(x(n)) is an element from a very large
infinite-dimensional function space. In practice, such a general feedback concept is
impossible to implement. Furthermore, although theoretically it is well possible to
optimize over sequences from this space, for practical algorithms we will have to
restrict ourselves to finite-dimensional sets, i.e., to subsets U ⊂ L∞([0, T],Rm)

whose elements can be represented by finitely many parameters.
A popular way to achieve this—which is also straightforward to implement in

technical applications—is via zero-order hold, where we choose U to be the space
of constant functions which we can identify with R

m , cf. also the Examples2.5 and
2.6. For u(n) ∈ U , the continuous time control functions v generated by (2.13) are
then piecewise constant on the sampling intervals, i.e., v(t) = u(n) for almost all
t ∈ [tn, tn+1], as illustrated in Fig. 2.3. Recall from Remark2.8 that the fact that the
sampling intervals overlap at the sampling instants tn does not pose a problem.

Consequently, the feedbackμ(x(n)) is a single control value fromR
m to be used as

a constant control signal on the sampling interval [tn, tn+1]. This is also the choice we
will use inChap.11 onnumericalmethods for solving (2.6) andwhich is implemented
in our NMPC software, cf. Appendix A. In our theoretical investigations, we will
nevertheless allow for arbitrary U ⊆ L∞([0, T],Rm).

Other possible choices of U can be obtained, e.g., by polynomials u : [0, T] →
R

m resulting in piecewise polynomial control functions v. Yet another choice can be
obtained by multirate sampling, in which we introduce a smaller sampling period
τ = T/K for some K ∈ N, K ≥ 2 and choose U to be the space of functions which
are constant on the intervals [jτ, (j +1)τ), j = 0, . . . , K −1. In all cases the time n

22 2 Discrete Time and Sampled Data Systems

u(n)

n0 1 2 3 4 5 6 7 8 9 10 11 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

v(t)

t

Fig. 2.3 Illustration of zero-order hold: the sequence u(n) ∈ R
m on the left corresponds to the

piecewise constant control functions with ν(t) = u(n) for almost all t ∈ [tn, tn+1] on the right

in the discrete time system (2.1) corresponds to the time tn = nT in the continuous
time system.

Remark 2.9 The particular choice of U affects various properties of the resulting
discrete time system. For instance, in Chap.5 we will need the setsXN which contain
all initial values x0 for which we can find a control sequence u(·) with xu(N , x0) ∈
X0 for some given set X0. Obviously, for sampling with zero-order hold, i.e., for
U = R

m , this set XN will be smaller than for multirate sampling or for sampling
withU = L∞([0, T],Rm). For this reason, wewill formulate all assumptions needed
in the subsequent chapters directly in terms of the discrete time system (2.1) rather
than for the continuous time system (2.6), cf. also Remark6.9.

When using sampled data models, the map f from (2.8) is usually not available
in exact analytical form but only as a numerical approximation. We will discuss this
issue in detail in Chap.11.

We end this section by three further examples we will use for illustration purposes
later in this book.

Example 2.10 A standard example in control theory is the inverted pendulum on a
cart problem shown in Fig. 2.4.

This problem has two types of equilibria, the stable downright position and the
unstable upright position. A typical task is to stabilize one of the unstable upright
equilibria. Normalizing the mass of the pendulum to 1, the dynamics of this system
can be expressed via the system of ordinary differential equations

ẋ1(t) = x2(t)

ẋ2(t) = −g

l
sin(x1(t)) − u(t) cos(x1(t)) − kL

l
x2(t)|x2(t)| − kRsgn(x2(t))

ẋ3(t) = x4(t)

ẋ4(t) = u(t)

2.2 Sampled Data Systems 23

Fig. 2.4 Schematical sketch
of the inverted pendulum on
a cart problem: The
pendulum (with unit mass
m = 1) is attached to a cart
which can be controlled
using the acceleration force
u. Through the joint, this
force will have an effect on
the dynamics of the
pendulum

x1

−u

u

−ucos(x1)

l

m = 1

with gravitational force g, length of the pendulum l, air friction constant kL , and
rotational friction constant kR . Here, x1 denotes the angle of the pendulum, x2 the
angular velocity of the pendulum, x3 the position, and x4 the velocity of the cart. For
this system the upright unstable equilibria are of the form ((2k + 1)π, 0, 0, 0)� for
k ∈ Z.

Our model thus presented deviates from other variants often found in the lit-
erature, see, e.g., [2, 9], in terms of the types of friction we included. Instead of
the linear friction model often considered, here we use a nonlinear air friction term
kL
l x2(t)|x2(t)| and a rotational discontinuous Coulomb friction term kRsgn(x2(t)).
The air friction term captures the fact that the force induced by the air friction grows
quadratically with the speed of the pendulum mass. The Coulomb friction term is
derived from first principles using Coulomb’s law, see, e.g., [17] for an introduction
and a description of the mathematical and numerical difficulties related to discon-
tinuous friction terms. We consider this type of modeling as more appropriate in an
NMPC context, since it describes the evolution of the dynamics more accurately,
especially around the upright equilibria which we want to stabilize. For short time
intervals, these nonlinear effect may be neglected, but within the NMPC design we
have to predict the future development of the system for rather long periods, which
may render the linear friction model inappropriate.

Unfortunately, these friction terms pose problems both theoretically and
numerically.

24 2 Discrete Time and Sampled Data Systems

ẋ2(t) = −g

l
sin(x1(t)) − u(t) cos(x1(t)) − kL

l
x2(t)|x2(t)|

︸ ︷︷ ︸
not C2

− kRsgn(x2(t))︸ ︷︷ ︸
discontinuous

The rotational Coulomb friction term is discontinuous in x2(t), hence Assump-
tion2.4, which is needed for Caratheodory’s existence and uniqueness theorem, is
not satisfied. In addition, the air friction term is only once continuously differen-
tiable in x2(t), which poses problems when using higher order numerical methods
for solving the ODE for computing the NMPC predictions, cf. the discussion before
Theorem11.5 in Chap.11.

Hence, for the friction terms we use smooth approximations which allow us to
approximate the behavior of the original equation.

ẋ1(t) = x2(t) (2.14)

ẋ2(t) = −g

l
sin(x1(t)) − kL

l
arctan(1000x2(t))x2

2 (t) − u(t) cos(x1(t))

− kR

(
4ax2(t)

1 + 4(ax2(t))2
+ 2 arctan(bx2(t))

π

)
(2.15)

ẋ3(t) = x4(t) (2.16)

ẋ4(t) = u(t). (2.17)

In some examples in this book we will also use the linear variant of this system.
To obtain it, a transformation of coordinates is applied which shifts one unstable
equilibrium to the origin and then the system is linearized. Using a simplified set of
parameters including only the gravitational constant g and a linear friction constant
k, this leads to the linear control system

ẋ(t) =

⎛

⎜⎜
⎝

0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟
⎠ x(t) +

⎛

⎜⎜
⎝

0
1
0
1

⎞

⎟⎟
⎠ u(t). (2.18)

Example 2.11 In contrast to the inverted pendulum example where our task was to
stabilize one of the upright equilibria, the control task for the Arm/Rotor/Platform
(ARP) model illustrated in Fig. 2.5 the different elements A, R, P, and B in the model
is indicated in the description of this figure) is a digital redesign problem, see [4, 12].

Such problems consist of two separate steps: First, a continuous time control
signal v(t) derived from a continuous time feedback law is designed which—in the
case considered here—solves a tracking problem. Since continuous time control laws
may perform poorly under sampling, in a second step, the trajectory corresponding
to v(t) is used as a reference function to compute a digital control using NMPC such
that the resulting sampled data closed loop mimics the behavior of the continuous
time reference trajectory. Compared to a direct formulation of a tracking problem,

2.2 Sampled Data Systems 25

Fig. 2.5 Graphical
illustration of the
arm/rotor/platform (ARP)
problem, see also [1,
Sect. 7.3]: The arm (A) is
driven by a motor (R) via a
flexible joint. This motor is
mounted on a platform (P)
which is again flexibly
connected to a fixed base (B).
Moreover, we assume that
there is no vertical force and
that the rotational motion of
the platform is not present

this approach is advantageous since the resulting NMPC problem is easier to solve.
Here, we describe themodel and explain the derivation of the continuous time control
function v(t). Numerical results for the corresponding NMPC controller are given
in Example10.21 in Chap.10.

Using the Lagrange formalism and a change of coordinates detailed in [1,
Sect. 7.3], the ARP model can be described by the differential equation system

ẋ1(t) = x2(t) + x6(t)x3(t) (2.19)

ẋ2(t) = − k1
M

x1(t) − b1
M

x2(t) + x6(t)x4(t) − mr

M2
b1x6(t) (2.20)

ẋ3(t) = −x6(t)x1(t) + x4(t) (2.21)

ẋ4(t) = −x6(t)x2(t) − k1
M

x3(t) − b1
M

x4(t) + mr

M2
k1 (2.22)

ẋ5(t) = x6(t) (2.23)

ẋ6(t) = −a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − p1x1(t) − p2x2(t) (2.24)

ẋ7(t) = x8(t) (2.25)

ẋ8(t) = a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t) + 1

J
v(t) (2.26)

where

a1 = k3M

M I − (mr)2
a4 = k3

J
p1 = mr

M I − (mr)2
k1

a2 = b3M2 − b1(mr)2

M[M I − (mr)2] a5 = b3
J

p2 = mr

M I − (mr)2
b1

26 2 Discrete Time and Sampled Data Systems

a3 = b3M

M I − (mr)2
a6 = b4

J

Here, M represents the total mass of arm, rotor, and platform and m is the mass of
arm, r denotes the distance from the A/R joint to arm center of mass and I , J , and D
are the moment of inertia of arm about A/R joint, of the rotor, and of the platform,
respectively. Moreover, k1, k2, and k3 denote the translational spring constant of P/B
connection as well as the rotational spring constants of the P/B connection and the
A/R joint. Last, b1, b2, b3, and b4 describe the translational friction coefficient of
P/B connection as well as the rotational friction coefficients of P/B, A/R, and R/P
connection, respectively. The coordinates x1 and x2 correspond to the (transformed)
x position of P and its velocity of the platform in direction x , whereas x3 and x4
represent the (transformed) y position of P and the respective velocity. The remaining
coordinates x5 and x7 denote the angles θ and α and the coordinates x6 and x8 the
corresponding angular velocities.

Our design goal is to regulate the system such that the position of the arm relative
to the platform, i.e., the angle x5, tracks a given reference signal. Note that this task
is not simple since both connections of the rotor are flexible. Here, we assume that
the reference signal and its derivatives are known and available to the controller.
Moreover, we assume that the relative positions and velocities x5, x6, x7, and x8 are
supplied to the controller.

In order to derive the continuous time feedback, we follow the backstepping
approach from [1] using the output

ζ(t) = x5(t) − a3

a1 − a2a3
[x6(t) − a3x7(t)] . (2.27)

The output has relative degree 4, that is the control v(t) appears explicitly within
the fourth derivative of ζ(t). Expressing ζ (4)(t) by the known data, we obtain the
continuous time input signal2

v(t) = J

a2
1 + a3[p] ·

[[
∂ F(x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

(
−
(

− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]
)

(
− a2

1 + a1a2(a2 − a3) +
(

a3[p] · [F(x6(t)) − (a1 + a2a3)[p]]
)

[[
∂ F(x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

+ 2a3[p]
[

∂ F(x6(t))

∂x6(t)

]
· [[F(x6(t))] · [η(t)] + [G(x6(t))]]

)

2For details of the derivation see [13, Sect. 7.3].

2.2 Sampled Data Systems 27

−
(

a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t)
)

(
a2
1 + a3

(
a3[p] ·

[[
∂ F(x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]
− a1(a2 − a3)

))

−
(

a3[p] · [F(x6(t))] − a1[p]
)

· [F(x6(t))] · [[F(x6(t))] · [η(t)] + [G(x6(t))]]

−
(

− a1(x6(t) − x8(t)) − [p] · [[F(x6(t))] · [η(t)] + [G(x6(t))]]
)

(
− a1(a2 − a3) + a3[p] ·

[[
∂ F(x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]])

+ (a1 − a2a3)v̂(t)

)
(2.28)

where we used the abbreviations

[η(t)] := (
x1(t) x2(t) x3(t) x4(t)

)T
, [χ(t)] := (

x5(t) x6(t) x7(t) x8(t)
)T

,

[F(x6(t))] :=

⎛

⎜⎜⎜⎜
⎝

0 1 x6(t) 0

− k1
M − b1

M 0 x6(t)

−x6(t) 0 0 1

0 −x6(t) − k1
M − b1

M

⎞

⎟⎟⎟⎟
⎠

, [G(x6(t))] :=

⎛

⎜⎜⎜
⎝

0

−mrb1
M2 x6(t)

0
mrk1
M2

⎞

⎟⎟⎟
⎠

,

[A] :=

⎛

⎜⎜
⎝

0 1 0 0
−a1 −a2 a1 a3
0 0 0 1
a4 a5 −a4 −(a5 + a6)

⎞

⎟⎟
⎠ , [E] :=

⎛

⎜⎜
⎝

0 0
−p1 −p2
0 0
0 0

⎞

⎟⎟
⎠ , [B] :=

⎛

⎜⎜
⎝

0
0
0
1
J

⎞

⎟⎟
⎠

as well as the row vector [p] := (
p1 p2 0 0

)
. In (2.28), we added the function v̂(t)

which we will now use as the new input. Given a desired reference ζref(·) for the
output (2.27), we can track this reference by setting v̂ in (2.28) as

v̂(t) := ζ
(4)
ref (t) − c3(ζ

(3)(t) − ζ
(3)
ref (t)) − c2(ζ̈ (t) − ζ̈ref(t))

− c1(ζ̇ (t) − ζ̇ref(t)) − c0(ζ(t) − ζref(t))

with design parameters ci ∈ R, ci ≥ 0. These parameters are degrees of freedom
within the design of the continuous time feedback which can be used as tuning
parameters, e.g., to reduce the transient time or the overshoot.

Example 2.12 Another class of systems fitting our framework, which actually goes
beyond the setting we used for introducing sampled data systems, are infinite-
dimensional systems induced by partial differential equations (PDEs). In this ex-
ample, we slightly change our notation in order to be consistent with the usual PDE
notation.

28 2 Discrete Time and Sampled Data Systems

In the following controlled parabolic PDE (2.29) the solution y(t, x) with y :
R × → R depends on time t as well as on a one-dimensional state variable
x ∈ = (0, L) for a parameter L > 0. Thus, the state of the system at each time t is
now a continuous function y(t, ·) : → R and x becomes an independent variable.
The control v in this example is a so-called distributed control, i.e., a measurable
function v : R × → R. The evolution of the state is defined by the equation

yt (t, x) = θyxx (t, x) − yx (t, x) + ρ
(
y(t, x) − y(t, x)3

) + v(t, x) (2.29)

for x ∈ and t ≥ 0 together with the initial condition y(0, x) = y0(x) and the
boundary conditions y(t, 0) = y(0, L) = 0.

Here yt and yx denote the partial derivatives with respect to t and x , respectively
and yxx denotes the second partial derivative with respect to x . The parameters θ

and ρ are positive constants. Of course, in order to ensure that (2.29) is well defined,
we need to interpret this equation in an appropriate weak sense and make sure that
for the chosen class of control functions a solution to (2.29) exists in appropriate
function spaces. For details on these issues we refer to, e.g., [10] or [18]. As we
will see later in Example 6.32, for suitable values of the parameters θ and ρ the
uncontrolled equation, i.e., (2.29) with v ≡ 0, has an unstable equilibrium y∗ ≡ 0
which can be stabilized by NMPC.

Using the letter z for the state of the discrete time systemassociated to the sampled-
data solution of (2.29), we can abstractly write this system as

z+ = f (z, u)

with z and z+ being continuous functions from to R. The function f maps y0 = z
to the solution y(T, x) of (2.29) at the sampling time T using the measurable control
function u = v : [0, T]× → R. Thus, it maps continuous functions to continuous
functions; again we omit the exact details of the respective functions spaces.

As in the ordinary differential equation case, we can restrict ourselves to the zero-
order hold situation, i.e., to control functions u(t, x)which are constant in t ∈ [0, T].
The corresponding control functions v generated via (2.11) are again constant in t
on each sampling interval [tn, tn+1). Note, however, that in our distributed control
context both u and v are still arbitrary measurable—i.e., in particular nonconstant—
functions in x .

For sampled data systems, the nominal closed-loop system (2.5) corresponds to
the closed-loop sampled data system

ẋ(t) = fc(x(t), μ(x(tn))(t − tn)), t ∈ [tn, tn+1), n = 0, 1, 2, . . . (2.30)

whose solution with initial value x0 ∈ X we denote by ϕ(t, t0, x0, μ). Note that
the argument “(t − tn)” of μ(x(tn)) can be dropped in case of sampling with zero
order hold when—as usual—we interpret the control value μ(x(tn)) ∈ U = R

m as
a constant control function.

2.3 Stability of Discrete Time Systems 29

2.3 Stability of Discrete Time Systems

In the introduction, we already specified the main goal of model predictive control,
namely to control the state x(n) of the system toward a reference trajectory x ref(n)

and then keep it close to this reference. In this section we formalize what wemean by
“toward” and “close to” using concepts from stability theory of nonlinear systems.

We first consider the case where x ref is constant, i.e., where x ref ≡ x∗ holds for
some x∗ ∈ X . We assume that the states x(n) are generated by a difference equation
of the form

x+ = g(x) (2.31)

for a not necessarily continuous map g : X → X via the usual iteration x(n +
1) = g(x(n)). As before, we write x(n, x0) for the trajectory satisfying the initial
condition x(0, x0) = x0 ∈ X . Allowing g to be discontinuous is important for our
NMPC application, because g will later represent the nominal closed-loop system
(2.5) controlled by the NMPC-feedback law μ, i.e., g(x) = f (x, μ(x)). Since μ is
obtained as an outcome of an optimization algorithm, in general we cannot expect
μ to be continuous and thus g will in general be discontinuous, too.

Nonlinear stability properties can be expressed conveniently via so-called com-
parison functions which were first introduced by Hahn in 1967 [5] and popularized
in nonlinear control theory during the 1990s by Sontag, particularly in the context
of input-to-state stability [14]. Although we mainly deal with discrete time systems,
we stick to the usual continuous time definition of these functions using the notation
R

+
0 = [0,∞).

Definition 2.13 (Comparison functions) We define the following classes of com-
parison functions.

K := {α : R+
0 → R

+
0 | α is continuous & strictly increasing with α(0) = 0}

K∞ := {α : R+
0 → R

+
0 | α ∈ K , α is unbounded}

L := {δ : R+
0 → R

+
0 | δ is continuous & strictly decreasing with lim

t→∞ δ(t) = 0}
KL := {β : R+

0 × R
+
0 → R

+
0 | β is continuous, β(·, t) ∈ K , β(r, ·) ∈ L }.

The graph of a typical function β ∈ KL is shown in Fig. 2.6.
Using this function, we can now introduce the concept of asymptotic stability.

Here, for arbitrary x1, x2 ∈ X we denote the distance from x1 to x2 by

|x1|x2 := dX (x1, x2).

Furthermore, we use the ball

Bη(x∗) := {x ∈ X | |x |x∗ < η}

30 2 Discrete Time and Sampled Data Systems

Fig. 2.6 Illustration of a typical class KL function

and we say that a set Y ⊆ X is forward invariant for (2.31) if g(x) ∈ Y holds for all
x ∈ Y .

Definition 2.14 (Asymptotic stability) Let x∗ ∈ X be an equilibrium for (2.31), i.e.,
g(x∗) = x∗. Then we say that x∗ is locally asymptotically stable if there exist η > 0
and a function β ∈ KL such that the inequality

|x(n, x0)|x∗ ≤ β(|x0|x∗ , n) (2.32)

holds for all x0 ∈ Bη(x∗) and all n ∈ N0.
We say that x∗ is asymptotically stable on a forward invariant set Y with x∗ ∈ Y

if there exists β ∈ KL such that (2.32) holds for all x0 ∈ Y and all n ∈ N0 and we
say that x∗ is globally asymptotically stable if x∗ is asymptotically stable on Y = X .

If one of these properties holds then β is called attraction rate.

Note that asymptotic stability on a forward invariant setY implies local asymptotic
stability if Y contains a ball Bη(x∗). However, we do not necessarily require this
property.

Asymptotic stability thus defined consists of two main ingredients:

(i) The smaller the initial distance from x0 to x∗ is, the smaller the distance from
x(n) to x∗ becomes for all future n, or formally: for each ε > 0 there exists δ > 0
such that |x(n, x0)|x∗ ≤ ε holds for all n ∈ N0 and all x0 ∈ Y (or x0 ∈ Bη(x∗))
with |x0|x∗ ≤ δ.
This fact is easily seen by choosing δ so small that β(δ, 0) ≤ ε holds, which is
possible since β(·, 0) ∈ K . Since β is decreasing in its second argument, for
|x0|x∗ ≤ δ from (2.32) we obtain

|x(n, x0)|x∗ ≤ β(|x0|x∗ , n) ≤ β(|x0|x∗ , 0) ≤ β(δ, 0) ≤ ε.

(ii) As the system evolves, the distance from x(n, x0) to x∗ becomes arbitrarily
small, or formally: for each ε > 0 and each R > 0 there exists N > 0 such
that |x(n, x0)|x∗ ≤ ε holds for all n ≥ N and all x0 ∈ Y (or x0 ∈ Bη(x∗)) with

2.3 Stability of Discrete Time Systems 31

|x0|x∗ ≤ R. This property easily follows from (2.32) by choosing N > 0 with
β(R, N) ≤ ε and exploiting the monotonicity properties of β.

These two properties are known as (i) stability (in the sense of Lyapunov) and
(ii) attraction. In the literature, asymptotic stability is often defined via these two
properties. In fact, for continuous time (and continuous) systems (i) and (ii) are
known to be equivalent to the continuous time counterpart of Definition2.14, cf. [8,
Sect. 3]. We conjecture that the arguments in this reference can be modified in order
to prove that equivalence also holds for our discontinuous discrete time setting.

Asymptotic stability includes the desired properties of the NMPC closed loop
described earlier: whenever we are already close to the reference equilibrium we
want to stay close; otherwise we want to move toward the equilibrium.

Asymptotic stability also includes that eventually the distance of the closed-loop
solution to the equilibrium x∗ becomes arbitrarily small. Occasionally, this may be
too demanding. In the following chapters, this is for instance the case if the system is
subject to perturbations or modelling errors, cf. Sects. 7.5–7.9 or if in NMPCwithout
stabilizing terminal constraints the system cannot be controlled to x∗ sufficiently fast,
cf. Sect. 6.7. In this case, one can relax the asymptotic stability definition to practical
asymptotic stability as follows. Herewe only consider the case of asymptotic stability
on a forward invariant set Y .

Definition 2.15 (P-practically asymptotic stability) Let Y be a forward invariant
set and let P ⊂ Y be a subset of Y . Then we say that a point x∗ ∈ Y is P-practically
asymptotically stable on Y if there exists β ∈ KL such that (2.32) holds for all
x0 ∈ Y and all n ∈ N0 with x(n, x0) /∈ P .

Figure2.7 illustrates practical asymptotic stability (on the right) as opposed to “usual”
asymptotic stability (on the left).

This definition is typically used with P contained in a small ball around the
equilibrium, i.e., P ⊆ Bδ(x∗) for some small δ > 0. In this case one obtains the
estimate

|x(n, x0)|x∗ ≤ max{β(|x0|x∗ , n), δ} (2.33)

Fig. 2.7 Sketch of
asymptotic stability (left) as
opposed to practical
asymptotic stability (right)

x0 x0

x∗x∗

P

x(n,x0) x(n,x0)

32 2 Discrete Time and Sampled Data Systems

for all x0 ∈ Y and all n ∈ N0, i.e., the system behaves like an asymptotically stable
systemuntil it reaches the ballBδ(x∗). Note that x∗ does not need to be an equilibrium
in Definition2.15.

For general nonconstant reference functions x ref : N0 → X we can easily extend
Definition2.14 if we take into account that the objects under consideration become
time varying in two ways: (i) the distance under consideration varies with n and
(ii) the system (2.31) under consideration varies with n. While (i) is immediate, (ii)
follows from the fact that with time varying reference also the feedback law μ is
time varying, i.e., we obtain a feedback law of the type μ(n, x(n)). Consequently,
we now need to consider systems

x+ = g(n, x) (2.34)

with g of the form g(n, x) = f (x, μ(n, x)). Furthermore, we now have to take
the initial time n0 into account: while the solutions of (2.31) look the same for all
initial times n0 (which is why we only considered n0 = 0) now we need to keep
track of this value. To this end, by x(n, n0, x0) we denote the solution of (2.34)
with initial condition x(n0, n0, x0) = x0 at time n0. The appropriate modification
of Definition 2.14 then looks as follows. Here we say that a time dependent family
of sets Y (n) ⊆ X , n ∈ N0 is forward invariant if g(n, x) ∈ Y (n + 1) holds for all
n ∈ N0 and all x ∈ Y (n).

Definition 2.16 (Uniform asymptotic stability) Let x ref : N0 → X be a trajectory
for (2.31), i.e., x ref(n+1) = g(x ref(n)) for all n ∈ N0. Then we say that x ref is locally
uniformly asymptotically stable if there exists η > 0 and a function β ∈ KL such
that the inequality

|x(n, n0, x0)|x ref(n) ≤ β(|x0|x ref(n0), n − n0) (2.35)

holds for all x0 ∈ Bη(x ref(n0)) and all n0, n ∈ N0 with n ≥ n0.
We say that x∗ is uniformly asymptotically stable on a forward invariant family of

sets Y (n) with x ref(n) ∈ Y (n) if there exists β ∈ KL such that (2.35) holds for all
n0, n ∈ N0 with n ≥ n0 and all x0 ∈ Y (n0) and we say that x∗ is globally uniformly
asymptotically stable if x∗ is asymptotically stable on Y (n) = X for all n0 ∈ N0.

If one of these properties hold then β is called (uniform) attraction rate.

The term “uniform” describes the fact that the bound β(|x0|x ref(n0), n − n0) only
depends on the elapsed time n − n0 but not on the initial time n0. If this were the
case, i.e., if we needed different β for different initial times n0, then wewould call the
asymptotic stability “nonuniform”. For a comprehensive discussion of nonuniform
stability notions and their representation via time-dependentKL functions we refer
to [3].

As in the time-invariant case, asymptotic stability on a forward invariant family of
sets Y (n) implies local asymptotic stability if each Y (n) contains a ballBη(x ref(n)).
Again, we do not necessarily require this property.

2.3 Stability of Discrete Time Systems 33

The time-varying counterpart of P-practical asymptotic stability is defined as
follows.

Definition 2.17 (Uniform P-practical asymptotic stability) Let Y (n) be a forward
invariant family of sets and let P(n) ⊂ Y (n) be subsets of Y (n). Then we say that a
reference trajectory x ref with x ref(n) ∈ Y (n) is P-practically uniformly asymptoti-
cally stable on Y (n) if there exists β ∈ KL such that (2.35) holds for all x0 ∈ Y (n0)

and all n0, n ∈ N0 with n ≥ n0 and x(n, n0, x0) /∈ P(n).

Analogous to the time-invariant case, this definition is typically used with P(n) ⊆
Bδ(x ref(n)) for some small value δ > 0 which then yields

|x(n, n0, x0)|x ref(n) ≤ max{β(|x0|x ref(n0), n − n0), δ}. (2.36)

In order to verify that our NMPC controller achieves asymptotic stability, we will
utilize the concept of Lyapunov functions. For constant reference x ref ≡ x∗ ∈ X
these functions are defined as follows.

Definition 2.18 (Lyapunov function) Consider a system (2.31), a point x∗ ∈ X and
let S ⊆ X be a subset of the state space. A function V : S → R

+
0 is called a Lyapunov

function on S if the following conditions are satisfied:

(i) There exist functions α1, α2 ∈ K∞ such that

α1(|x |x∗) ≤ V (x) ≤ α2(|x |x∗) (2.37)

holds for all x ∈ S.
(ii) There exists a function αV ∈ K such that

V (g(x)) ≤ V (x) − αV (|x |x∗) (2.38)

holds for all x ∈ S with g(x) ∈ S.

The following theorem shows that the existence of a Lyapunov function ensures
asymptotic stability.

Theorem 2.19 (Asymptotic stability using Lyapunov functions) Let x∗ be an equi-
librium of (2.31) and assume there exists a Lyapunov function V on S. If S contains
a ball Bν(x∗) with g(x) ∈ S for all x ∈ Bν(x∗) then x∗ is locally asymptotically
stable with η = α−1

2 ◦ α1(ν). If S = Y holds for some forward invariant set Y ⊆ X
containing x∗ then x∗ is asymptotically stable on Y . If S = X holds then x∗ is globally
asymptotically stable.

Proof The idea of the proof lies in showing that by (2.38) the function V (x(n, x0))
is strictly decreasing in n and converges to 0. Then by (2.37) we can conclude that
x(n, x0) converges to x∗. The function β from Definition2.14 will be constructed

34 2 Discrete Time and Sampled Data Systems

from α1, α2 and αV . In order to simplify the notation, throughout the proof we write
|x | instead of |x |x∗ .

First, if S is not forward invariant, define the value γ := α1(ν) and the set
S̃ := {x ∈ S | V (x) < γ }. Then from (2.37) we get

x ∈ S̃ ⇒ α1(|x |) ≤ V (x) < γ ⇒ |x | < α−1
1 (γ) = ν ⇒ x ∈ Bν(x∗),

observing that each α ∈ K∞ is invertible with α−1 ∈ K∞.
Hence, for each x ∈ S̃ inequality (2.38) applies and consequently V (g(x)) ≤

V (x) < γ implying g(x) ∈ S̃. If S = Y for some forward invariant set Y ⊆ X
we define S̃ := S. With these definitions, in both cases the set S̃ becomes forward
invariant.

Now we define α′
V := αV ◦ α−1

2 . Note that concatenations of K -functions are
again inK , hence α′

V ∈ K . Since |x | ≥ α−1
2 (V (x)), using monotonicity of αV this

definition implies

αV (|x |) ≥ αV ◦ α−1
2 (V (x)) = α′

V (V (x)).

Hence, along a trajectory x(n, x0) with x0 ∈ S̃, from (2.38) we get the inequality

V (x(n +1, x0)) ≤ V (x(n, x0))−αV (|x(n, x0)|) ≤ V (x(n, x0))−α′
V (V (x(n, x0))).

(2.39)
For the construction of β we need the last expression in (2.39) to be strictly

increasing in V (x(n, x0)). To this end we define

α̃V (r) := min
s∈[0,r]{α

′
V (s) + (r − s)/2}.

Straightforward computations show that this function satisfies r2 − α̃V (r2) > r1 −
α̃V (r1) ≥ 0 for all r2 > r1 ≥ 0 and min{α′

V (r/2), r/4} ≤ α̃V (r) ≤ α′
V (r) for all

r ≥ 0. In particular, (2.39) remains valid and we get the desired monotonicity when
α′

V is replaced by α̃V .
We inductively define a function β1 : R+

0 × N0 → R
+
0 via

β1(r, 0) := r, β1(r, n + 1) = β1(r, n) − α̃V (β1(r, n)). (2.40)

By induction over n using the properties of α̃V (r) and Inequality (2.39) one easily
verifies the following inequalities:

β1(r2, n) > β1(r1, n) ≥ 0 for all r2 > r1 ≥ 0 and all n ∈ N0 (2.41)

β1(r, n1) > β1(r, n2) > 0 for all n2 > n1 ≥ 0 and all r > 0 (2.42)

V (x(n, x0)) ≤ β1(V (x0), n) for all n ∈ N0 and all x0 ∈ S̃ (2.43)

From (2.42) it follows that β1(r, n) is monotone decreasing in n and by (2.41) it is
bounded from below by 0. Hence, for each r ≥ 0 the limit β∞

1 (r) = limn→∞ β1(r, n)

2.3 Stability of Discrete Time Systems 35

exists. We claim that β∞
1 (r) = 0 holds for all r . Indeed, convergence implies

β1(r, n) − β1(r, n + 1) → 0 as n → ∞ which together with (2.40) yields
α̃V (β1(r, n)) → 0. On the other hand, since α̃V is continuous, we get α̃V (β1(r, n)) →
α̃V (β∞

1 (r)). This implies
α̃V (β∞

1 (r)) = 0

which because of α̃V (r) ≥ min{αV (r/2), r/4} and αV ∈ K is only possible if
β∞
1 (r) = 0.
Consequently, β1(r, n) has all properties of aKL function except that it is only

defined for n ∈ N0. Defining the linear interpolation

β2(r, t) := (n + 1 − t)β1(r, n) + (t − n)β1(r, n + 1)

for t ∈ [n, n + 1) and n ∈ N0, we obtain a function β2 ∈ KL which coincides with
β1 for t = n ∈ N0. Finally, setting

β(r, t) := α−1
1 ◦ β2(α2(r), t)

we can use (2.43) in order to obtain

|x(n, x0)| ≤ α−1
1 (V (x(n, x0)) ≤ α−1

1 ◦ β1(V (x0), n)

= α−1
1 ◦ β2(V (x0), n) ≤ α−1

1 ◦ β2(α2(|x0|, n) = β(|x0|, n),

for all x0 ∈ S̃ and all n ∈ N0. This is the desired inequality (2.32). If S̃ = S = Y
this shows the claimed asymptotic stability on Y and global asymptotic stability if
Y = X . If S̃
= S, then in order to satisfy the local version of Definition2.14 it
remains to show that x ∈ Bη(x∗) implies x ∈ S̃. Since by definition of η and γ we
have η = α−1

2 (γ), we get

x ∈ Bη(x∗) ⇒ |x | < η = α−1
2 (γ) ⇒ V (x) ≤ α2(|x |) < γ ⇒ x ∈ S̃.

This finishes the proof. �

Likewise, P-practical asymptotic stability can be ensured by a suitable Lyapunov
function condition provided the set P is forward invariant.

Theorem 2.20 (P-practical asymptotic stability) Consider forward invariant sets Y
and P ⊂ Y and a point x∗ ∈ P. If there exists a Lyapunov function V on S = Y \ P
then x∗ is P-practically asymptotically stable on Y .

Proof The same construction of β as in the proof of Theorem 2.19 yields

|x(n, x0)|x∗ ≤ β(|x |x∗ , n)
(
2.32

)

for all n = 0, . . . , n∗ − 1, where n∗ ∈ N0 is minimal with x(n∗, x0) ∈ P . This
follows with the same arguments as in the proof of Theorem2.19 by restricting the

36 2 Discrete Time and Sampled Data Systems

times considered in (2.39) and (2.43) to n = 0, . . . , n∗ − 2 and n = 0, . . . , n∗ − 1,
respectively.

Since forward invariance of P ensures x(n, x0) ∈ P for all n ≥ n∗, the times n
for which x(n, x0) /∈ P holds are exactly n = 0, . . . , n∗ − 1. Since these are exactly
the times at which (2.32) is required, this yields the desired P-practical asymptotic
stability. �

In case of a time-varying reference x ref we need to use the time varying asymptotic
stability from Definition 2.16. The corresponding Lyapunov function concept is as
follows.

Definition 2.21 (Uniform time-varying Lyapunov function) Consider a system
(2.34), reference points x ref(n), subsets of the state space S(n) ⊆ X and define
S := {(n, x) | n ∈ N0, x ∈ S(n)}. A function V : S → R

+
0 is called a uniform

time-varying Lyapunov function on S(n) if the following conditions are satisfied:

(i) There exist functions α1, α2 ∈ K∞ such that

α1(|x |x ref(n)) ≤ V (n, x) ≤ α2(|x |x ref(n)) (2.44)

holds for all n ∈ N0 and all x ∈ S(n).
(ii) There exists a function αV ∈ K such that

V (n + 1, g(n, x)) ≤ V (n, x) − αV (|x |x ref(n)) (2.45)

holds for all n ∈ N0 and all x ∈ S(n) with g(n, x) ∈ S(n + 1).

Theorem 2.22 (Asymptotic stability) Let xref be a trajectory of (2.34) and assume
there exists a uniform time-varying Lyapunov function V on S(n). If each S(n)

contains a ball Bν(xref(n)) with g(n, x) ∈ S(n + 1) for all x ∈ Bν(xref(n)) then
xref is locally asymptotically stable with η = α−1

2 ◦α1(ν). If the family of sets S(n) is
forward invariant in the sense stated before Definition2.16, then xref is asymptotically
stable on S(n). If S(n) = X holds for all n ∈ N0 then xref is globally asymptotically
stable.

Proof The proof is analogous to the proof of Theorem2.19 with the obvious modi-
fications to take n ∈ N0 into account. �

Indeed, the necessary modification in the proof are straightforward because the time-
varying Lyapunov function is uniform, i.e., α1, α2 and αV do not depend on n. For
the more involved nonuniform case we again refer to [3].

The P-practical version of this statement is provided by the following theorem in
which we assume forward invariance of the sets P(n). Observe that here x ref does
not need to be a trajectory of the system (2.34).

Theorem 2.23 (P-practical asymptotic stability) Consider forward invariant fam-
ilies of sets Y (n) and P(n) ⊂ Y (n), n ∈ N0, and reference points xref(n) ∈ P(n).

2.3 Stability of Discrete Time Systems 37

If there exists a uniform time-varying Lyapunov function V on S(n) = Y (n) \ P(n)

then xref is P-practically asymptotically stable on Y (n).

Proof The proof is analogous to the proof of Theorem2.20 with the obvious modi-
fications. �

2.4 Stability of Sampled Data Systems

We now investigate the special case in which (2.31) represents the nominal closed-
loop system (2.5) with f obtained from a sampled data system via (2.8). In this case,
the solutions x(n, x0) of (2.31) and the solutions ϕ(tn, t0, x0, μ) of the sampled data
closed-loop system (2.30) satisfy the identity

x(n, x0) = ϕ(tn, t0, x0, μ) (2.46)

for all n ∈ N0. This implies that the stability criterion fromDefinition2.14 (and anal-
ogous for the other stability definitions) only yields inequalities for the continuous
state of the system at the sampling times tn , i.e.,

|ϕ(tn, t0, x0, μ)|x∗ ≤ β(|x0|x∗ , n) for all n = 0, 1, 2, . . . (2.47)

for a suitable β ∈ KL . However, for a continuous time system it is in general de-
sirable to ensure the existence of β ∈ KL such that the continuous time asymptotic
stability property

|ϕ(t, t0, x0, μ)|x∗ ≤ β(|x0|x∗ , t) for all t ≥ 0 (2.48)

holds.
In the remainder of this chapter we will show that under a reasonable additional

assumption (2.47) implies the existence of β ∈ KL such that (2.48) holds. For
simplicity, we restrict ourselves to local asymptotic stability and to the case of time-
invariant reference x ref ≡ x∗. The arguments can be modified to cover the other
cases, as well.

The necessary additional condition is the following boundedness assumption on
the solutions in between two sampling instants.

Definition 2.24 Consider a sampled data closed-loop system (2.30) with sampling
period T > 0. If there exists a function γ ∈ K and a constant η > 0 such that for
all x ∈ X with |x |x∗ ≤ η, the solutions of (2.30) exist on [0, T] and the solutions
satisfy

|ϕ(t; 0, x, μ)|x∗ ≤ γ (|x |x∗)

for all t ∈ [0, T] then the solutions of (2.30) are called uniformly bounded over T .

38 2 Discrete Time and Sampled Data Systems

Effectively, this condition demands that in between two sampling times tn and
tn+1 the continuous time solution does not deviate too much from the solution at the
sampling time tn . Sufficient conditions for this property formulated directly in terms
of the vector field fc in (2.30) can be found in [11, Lemma 3]. A sufficient condition
in our NMPC setting is discussed in Remark4.13.

For the subsequent analysis we introduce the following class of KL functions
which will allow us to deal with the inter sampling behavior of the continuous time
solution.

Definition 2.25 A function β ∈ KL is called uniformly incrementally bounded if
there exists P > 0 such that β(r, k) ≤ Pβ(r, k +1) holds for all r ≥ 0 and all k ∈ N.

Uniformly incrementally bounded KL functions exhibit a nice bounding prop-
erty compared to standard KL functions which we will use the proof of Theo-
rem2.27. Before, we show that anyKL function β—like the one in (2.47)—can be
bounded from above by a uniformly incrementally bounded KL function.

Lemma 2.26 For any β ∈ KL the function

β̃(r, t) := max
τ∈[0,t] 2

−τ β(r, t − τ).

is a uniformly incrementally bounded KL function with β(r, t) ≤ β̃(r, t) for all
r ≥ 0 and all t ≥ 0 and P = 2.

Proof The inequality β ≤ β̃ follows immediately from the definition. Uniform
incremental boundedness with P = 2 follows from the inequality

β̃(r, t) = max
τ∈[0,t] 2

−τ β(r, t − τ) = max
τ∈[1,t+1] 2

1−τ β(r, t − τ + 1)

= 2 max
τ∈[1,t+1] 2

−τ β(r, t − τ + 1) ≤ 2 max
τ∈[0,t+1] 2

−τ β(r, t − τ + 1) = 2β̃(r, t + 1).

It remains to show that β̃ ∈ KL .
Since β ∈ KL it follows that β̃ is continuous and β̃(0, t) = 0 for any t ≥ 0. For

any r2 > r1 ≥ 0, β ∈ KL implies 2−τ β(r2, t − τ) > 2−τ β(r1, t − τ). This shows
that β̃(r2, t) > β̃(r1, t) and hence β̃(·, t) ∈ K .

Next we show that for any fixed r > 0 the function t �→ β̃(r, t) is strictly
decreasing to 0. To this end, in the following we use that for all t ≥ s ≥ q ≥ 0 and
all r ≥ 0 the inequality

max
τ∈[q,s] 2

−τ β(r, t − τ) ≤ 2−qβ(r, t − s)

holds. In order to show the strict decrease property for r > 0, let t2 > t1 ≥ 0.
Defining d := t2 − t1 we obtain

2.4 Stability of Sampled Data Systems 39

β̃(r, t2) = max
τ∈[0,t2]

2−τ β(r, t2 − τ)

= max

{
max

τ∈[0,d/2] 2
−τ β(r, t2 − τ), max

τ∈[d/2,d] 2
−τ β(r, t2 − τ),

max
τ∈[d,t2]

2−τ β(r, t2 − τ)

}

≤ max

{
β(r, t2 − d/2), 2−d/2β(r, t2 − d), max

τ∈[0,t1]
2−τ−dβ(r, t1 − τ)

}

= max
{
β(r, t1 + d/2), 2−d/2β(r, t1), 2

−d β̃(r, t1)
}

.

Now the strictmonotonicity β̃(r, t2) < β̃(r, t1) follows sinceβ(r, t1+d/2) < β(r, t1)
≤ β̃(r, t1), 2−d/2β(r, t1) < β(r, t1) ≤ β̃(r, t1) and 2−d β̃(r, t1) < β̃(r, t1).

Finally, we prove limt→∞ β̃(r, t) = 0 for any r > 0. Since

β̃(r, t) ≤ max

{
max

τ∈[0,t/2] 2
−τ β(r, t − τ), max

τ∈[t/2,t] 2
−τ β(r, t − τ)

}

≤ max
{
β(r, t/2), 2−t/2β(r, 0)

} → 0 as t → ∞

the assertion follows. �
Now, we are ready to prove the final stability result.

Theorem 2.27 (Asymptotic stability and uniform boundedness over T) Consider
the sampled data closed-loop system (2.30) with sampling period T > 0 and the
corresponding discrete time closed-loop system (2.5) with f from (2.8). Then (2.30)
is locally asymptotically stable, i.e., there exists η > 0 and β ∈ KL such that (2.48)
holds for all x ∈ Bη(x∗), if and only if (2.5) is locally asymptotically stable and the
solutions of (2.30) are uniformly bounded over T .

Proof If (2.30) is locally asymptotically stable with some β ∈ KL , then by (2.46)
it immediately follows that the discrete time system (2.5) is asymptotically stable
with β(r, k) = β(r, kT) and that the solutions of (2.30) are uniformly bounded with
γ (r) = β(r, 0).

Conversely, assume that (2.5) is locally asymptotically stable and that the so-
lutions of (2.30) are uniformly bounded over T . Denote the values η > 0 from
Definitions2.14 and 2.24 by ηs and ηb, respectively. These two properties imply that
there exist β ∈ KL and γ ∈ K∞ such that

|x |x∗ ≤ ηs =⇒ |ϕ(kT ; 0, x, μ)|x∗ ≤ β(|x |x∗ , k) for all k ≥ 0 (2.49)

|x |x∗ ≤ ηb =⇒ |ϕ(t; 0, x, μ)|x∗ ≤ γ (|x |x∗) for all t ∈ [0, T]. (2.50)

In order to show the assertion we have to construct η > 0 and β ∈ KL with

|x |x∗ ≤ η =⇒ |ϕ(t; 0, x, μ)|x∗ ≤ β(|x |x∗ , t) for all t ≥ 0. (2.51)

40 2 Discrete Time and Sampled Data Systems

Define γ0(r) := β(r, 0) and let η = min{ηs, γ −1
0 (ηb)}. This definition implies

β(η, 0) ≤ ηb andη ≤ ηs . Inwhat followswe consider arbitrary x ∈ X with |x |x∗ ≤ η.
For these x , (2.49) and η ≤ ηs yield

|ϕ(kT ; 0, x, μ)|x∗ ≤ β(‖x‖x∗ , k) ≤ β(η, 0) ≤ ηb for all k ≥ 0. (2.52)

For any k ≥ 0 and t ∈ [kT, (k + 1)T] the definition of (2.30) implies

ϕ(t, 0, x, μ) = ϕ(t − kT, 0, ϕ(kT, 0, x, μ), μ).

Since (2.52) implies |ϕ(kT, 0, x, μ)|x∗ ≤ ηb for all k ≥ 0, (2.50) holds for x =
ϕ(kT, 0, x, μ) and from (2.50) and (2.52) we obtain

|ϕ(t, 0, x, μ)|x∗ ≤ γ (‖ϕ(kT, 0, x, μ)‖) ≤ γ (β(‖x‖x∗ , k)) (2.53)

for all t ∈ [kT, (k + 1)T] and all k ≥ 0.
Now we define β̂(r, t) := γ (β(r, t)). Clearly, β̂ ∈ KL and by Lemma2.26 we

can assume without loss of generality that β̂ is uniformly incrementally bounded;
otherwise we replace it by β̃ from this lemma.

Hence, for k ∈ N0 and s ∈ [0, 1] we obtain

β̂(r, k) ≤ Pβ̂(r, k + 1) ≤ Pβ̂(r, k + s). (2.54)

Now pick an arbitrary t ≥ 0 and let k ∈ N0 be maximal with k ≤ t/T . Then (2.53)
and (2.54) with s = t/T − k ∈ [0, 1] imply

|ϕ(t, 0, x, μ)|x∗ ≤ β̂(‖x‖x∗ , k)) ≤ Pβ̂(|x |x∗ , k + (t/T − k)) = Pβ̂(|x |x∗ , t/T).

This shows the assertion with β(r, t) = Pβ̂(r, t/T). �

Concluding, if we can compute an asymptotically stabilizing feedback law for
the discrete time system induced by the sampled data system, then the resulting
continuous time sampled data closed loop is also asymptotically stable provided its
solutions are uniformly bounded over T .

2.5 Notes and Extensions

The general setting presented in Sect. 2.1 is more or less standard in discrete time
control theory, except maybe for the rather general choice of the state space X and
the control value space U which allows us to cover infinite-dimensional systems as
illustrated in Example2.12 and sampled data systems without the zero order hold
assumption as discussed after Theorem2.7.

2.5 Notes and Extensions 41

This definition of sampled data systems is not so frequently found in the literature,
where often only the special case of zero-order hold is discussed. While zero-order
hold is usually the method of choice in practical applications and is also used in the
numerical examples later in this book, for theoretical investigations the more general
approach given in Sect. 2.2 is appealing, too.

The discrete time stability theory presented in Sect. 2.3 has a continuous time
counterpart which is actually more frequently found in the literature. Introductory
textbooks on this subject in a control theoretic setting are, e.g., the books byKhalil [7]
and Sontag [15]. The proofs in this section are not directly taken from the literature,
but they are based on standard arguments, which appear inmany books and papers on
the subject. Formulating asymptotic stability via KL -function goes back to Hahn
[5] and became popular in nonlinear control theory during the 1990s via the input-
to-state stability (ISS) property introduced by Sontag in [14]. A good survey on this
theory can be found in Sontag [16].

While here we only stated direct Lyapunov function theorems which state that
the existence of a Lyapunov function ensures asymptotic stability, there is a rather
complete converse theory,which shows that asymptotic stability implies the existence
of Lyapunov functions. A collection of such results—again in a control theoretic
setting—can be found in the PhD thesis of Kellett [6].

The final Sect. 2.4 on asymptotic stability of sampled data systems is based on the
Paper [11] by Nešić, Teel and Sontag, in which this topic is treated in a more general
setting. In particular, this paper also covers ISS results for perturbed systems.

Problems

1. Show that there exists no differential equation ẋ(t) = fc(x(t)) (i.e., without
control input) such that the difference equation x+ = f (x) with

f (x) =
{

x
2 , x ≥ 0

−x, x < 0

is the corresponding sampled data system.

2. (a) Show that x ref(n) =
n∑

k=0

1
2n−k sin(k) is a solution of the difference equation

x(n + 1) = 1

2
x(n) + sin(n).

(b) Prove that x ref from (a) is uniformly asymptotically stable and derive a
comparison function β ∈ KL such that (2.35) holds. Here it is sufficient
to derive a formula for β(r, n) for n ∈ N0.

42 2 Discrete Time and Sampled Data Systems

(c) Show that x ref(n) =
n∑

k=0

k+1
n+1 sin(k) is a solution of the difference equation

x(n + 1) = n + 1

n + 2
x(n) + sin(n).

(d) Can you also prove uniform asymptotic stability for x ref from (c)?
Hint for (b) and (d): One way to proceed is to derive a difference equation for
z(n) = x(n, n0, x0) − x ref(n) and look at the equilibrium x∗ = 0 for this new
equation.

3. Consider the two-dimensional difference equation

x+ = (1 − ||x ||)
(

0 1
−1 0

)
x

with x = (x1, x2)� ∈ R
2.

(a) Prove that V (x) = x2
1 + x2

2 is a Lyapunov function for the equilibrium
x∗ = 0 on S = {x ∈ R

2 | ‖x‖ ≤ 1}.
(b) Is V also a Lyapunov function on S = R

2?
(c) Solve (a) and (b) for the difference equation

x+ = 1

1 + ||x ||
(

0 1
−1 0

)
x .

4. Consider a globally asymptotically stable difference equation (2.31) with equilib-
rium x∗ ∈ X and a Lyapunov function V on S = X withα1(r) = 2r2,α2(r) = 3r2

and αV (r) = r2.
Compute the rate of attraction β ∈ KL such that (2.32) holds. Here it is sufficient
to derive a formula for β(r, n) for n ∈ N0.
Hint: Follow the construction of β from the proof of Theorem2.19. Why can you
use α̃V = α′

V for this problem?
5. Consider a difference equation (2.31) with equilibrium x∗ ∈ X and a function

V : X → R
+
0 which satisfies (2.37) but only

V (g(x)) ≤ V (x)

instead of (2.38).

(a) Prove that there exists αL ∈ K∞ such that the solutions of (2.1) satisfy the
inequality

|x(n, x0)|x∗ ≤ αL(|x0|).

(b) Conclude from (a) that the system is stable in the sense of Lyapunov, cf. the
discussion after Definition2.14.

References 43

References

1. Freeman, R.A., Kokotovic, P.V.: RobustNonlinear ControlDesign: Systems andControl: Foun-
dations and Applications. Birkhäuser, Boston (1996)

2. Giselsson, P., Åkesson, J., Robertsson, A.: Optimization of a pendulum system using optimica
and modelica. In: 7th International Modelica Conference 2009. Modelica Association (2009)

3. Grüne, L., Kloeden, P.E., Siegmund, S., Wirth, F.R.: Lyapunov’s second method for nonau-
tonomous differential equations. Discret. Contin. Dyn. Syst. 18(2–3), 375–403 (2007)

4. Grüne, L., Nešić, D., Pannek, J., Worthmann, K.: Redesign techniques for nonlinear sampled-
data systems. at - Automatisierungstechnik 56(1), 38–47 (2008)

5. Hahn, W.: Stability of Motion. Springer, Heidelberg (1967)
6. Kellett, C.M.: Advances in converse and control Lyapunov functions. PhD thesis University of

California, Santa Barbara (2000)
7. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)
8. Lin, Y., Sontag, E.D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability.

SIAM J. Control Optim. 34(1), 124–160 (1996)
9. Magni, L., Scattolini, R., Aström, K.J.: Global stabilization of the inverted pendulum using

model predictive control. In: Proceedings of the 15th IFAC World Congress (2002)
10. Neittaanmäki, P., Tiba, D.: Optimal control of nonlinear parabolic systems. In: Theory, Algo-

rithms, and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol.
179. Marcel Dekker Inc., New York (1994)

11. Nešić, D., Teel, A.R., Sontag, E.D.: Formulas relatingK L stability estimates of discrete-time
and sampled-data nonlinear systems. Syst. Control Lett. 38(1), 49–60 (1999)

12. Nešić, D., Grüne, L.: A receding horizon control approach to sampled-data implementation of
continuous-time controllers. Syst. Control Lett. 55, 660–672 (2006)

13. Pannek, J.: Receding Horizon Control: A Suboptimality-based Approach. PhD thesis, Univer-
sity of Bayreuth, Germany (2009)

14. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Con-
trol 34(4), 435–443 (1989)

15. Sontag, E.D.: Mathematical Control Theory. Texts in Applied Mathematics, vol. 6, 2nd edn.
Springer, New York (1998)

16. Sontag, E.D.: Input to state stability: basic concepts and results. In: Nonlinear and Optimal
Control Theory, LectureNotes inMathematics, vol. 1932, pp. 163–220. Springer, Berlin (2008)

17. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)
18. Tröltzsch, F.: Optimal control of partial differential equations, Graduate Studies in Mathemat-

ics, vol. 112. American Mathematical Society, Providence, RI. Theory, methods and applica-
tions, Translated from the 2005 German original by Jürgen Sprekels (2010)

Chapter 3
Nonlinear Model Predictive Control

In this chapter, we introduce the nonlinear model predictive control algorithm in a
rigorous way. We start by defining a basic NMPC algorithm for constant reference
and continue by formalizing state and control constraints. Viability (or weak forward
invariance) of the set of state constraints is introduced and the consequences for the
admissibility of the NMPC-feedback law are discussed. After having introduced
NMPC in a special setting, we describe various extensions of the basic algorithm,
considering time varying reference solutions, terminal constraints, and costs and
additionalweights. Finally,we investigate the optimal control problemcorresponding
to this generalized setting and prove several properties, most notably the dynamic
programming principle.

3.1 The Basic NMPC Algorithm

As already outlined in the introductory Chap. 1, the idea of the NMPC scheme is as
follows: at each sampling instant n we optimize the predicted future behavior of the
system over a finite time horizon k = 0, . . . ,N − 1 of length N ≥ 2 and use the first
element of the resulting optimal control sequence as a feedback control value for the
next sampling interval. In this section we give a detailed mathematical description
of this basic idea for a constant reference xref ≡ x∗ ∈ X. The time varying case as
well as several other variants will then be presented in Sect. 3.3.

A prerequisite for being able to find a feedback law which stabilizes the system
at x∗ is that x∗ is an equilibrium of the nominal closed-loop system (2.5), i.e., x∗ =
f (x∗, μ(x∗))—this follows immediately fromDefinition2.14with g(x) = f (x, μ(x)).
A necessary condition for this is that there exists a control value u∗ ∈ U with

x∗ = f (x∗, u∗), (3.1)

which we will assume in the sequel. The cost function to be used in our optimization
should penalize the distance of an arbitrary state x ∈ X to x∗. In addition, it is often

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_3

45

46 3 Nonlinear Model Predictive Control

desired to penalize the control u ∈ U. This can be useful for computational reasons,
because optimal control problems may be easier to solve if the control variable is
penalized.On the other hand, penalizingumayalso be desired formodeling purposes,
e.g., because we want to avoid the use of control values u ∈ U corresponding to
expensive high energy. For these reasons, we choose our cost function to be of the
form � : X × U → R

+
0 .

In any case, we require that if we are in the equilibrium x∗ and use the control
value u∗ in order to stay in the equilibrium, then the cost should be 0. Outside the
equilibrium, however, the cost should be positive, i.e.,

�(x∗, u∗) = 0 and �(x, u) > 0 for all x ∈ X, u ∈ U with x �= x∗. (3.2)

If our system is defined on Euclidean space, i.e., X = R
d and U = R

m, then we
may always assume x∗ = 0 and u∗ = 0 without loss of generality: if this is not the
case we can replace f (x, u) by f (x + x∗, u+ u∗) − x∗ which corresponds to a simple
linear coordinate transformation on X and U. Indeed, this transformation is always
possible if X and U are vector spaces, even if they are not Euclidean spaces. In this
case, a popular choice for � meeting Condition (3.2) is the quadratic function

�(x, u) = ‖x‖2 + λ‖u‖2,

with the usual Euclidean norms and a parameter λ ≥ 0. In our general setting on
metric spaces with metrics dX and dU on X and U, the analogous choice of � is

�(x, u) = dX(x, x∗)2 + λdU(u, u∗)2. (3.3)

Note, however, that in both settings many other choices are possible and often rea-
sonable, as we will see in the subsequent chapters. Moreover, we will introduce
additional conditions on � later, which we require for a rigorous stability proof of
the NMPC closed loop.

In the case of sampled data systems we can take the continuous time nature of
the underlying model into account by defining the stage cost � as an integral over
a continuous time running cost function L : X × U → R

+
0 on a sampling interval.

Using the continuous time solution ϕ from (2.8), we can define

�(x, u) :=
∫ T

0
L(ϕ(t, 0, x, u), u(t))dt. (3.4)

Defining � this way, we can incorporate the intersampling behavior of the sampled
data system explicitly into our optimal control problem. As we will see later in
Remark4.13, this enables us to derive rigorous stability properties not only for the
sampled data closed-loop system (2.30). The numerical computation of the integral
in (3.4) can be efficiently integrated into the numerical solution of the ordinary
differential equation (2.6), see Sect. 11.4 for details.

3.1 The Basic NMPC Algorithm 47

Given such a cost function � and a prediction horizon length N ≥ 2, we can now
formulate the basic NMPC scheme as an algorithm. In the optimal control problem
(OCPN) within this algorithm we introduce a set of control sequences UN (x0) ⊆ UN

over which we optimize. This set may include constraints depending on the initial
value x0. Details about how this set should be chosen will be discussed in Sect. 3.2.
For the moment we simply set UN (x0) := UN for all x0 ∈ X.

Algorithm 3.1 (Basic NMPC algorithm for constant reference xref ≡ x∗) At each
sampling time tn, n = 0, 1, 2 . . .

(1) Measure the state x(n) ∈ X of the system
(2) Set x0 := x(n), solve the optimal control problem

minimize JN (x0, u(·)) :=
N−1∑
k=0

�(xu(k, x0), u(k))

with respect to u(·) ∈ U
N (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPN)

and denote the obtained optimal control sequence by u�(·) ∈ U
N (x0).

(3) Define the NMPC-feedback value μN (x(n)) := u�(0) ∈ U and use this control
value in the next sampling period.

Observe that in this algorithm we have assumed that an optimal control sequence
u�(·) exists. Sufficient conditions for this existence are briefly discussed after
Definition3.14, below.

The nominal closed-loop system resulting from Algorithm3.1 is given by (2.5)
with state feedback law μ = μN , i.e.,

x+ = f (x, μN (x)). (3.5)

The trajectories of this system will be denoted by xμN (n) or, if we want to emphasize
the initial value x0 = xμN (0), by xμN (n, x0).

During our theoretical investigations we will neglect the fact that computing the
solution of (OCPN) in Step (2) of the algorithm usually needs some computation time
τc which—in the case when τc is relatively large compared to the sampling period
T—may not be negligible in a real-time implementation. We will sketch a solution
to this problem in Sect. 10.6.

In our abstract formulations of the NMPC Algorithm3.1 only the first element
u�(0) of the respective minimizing control sequence is used in each step, the remain-
ing entries u�(1), . . . , u�(N − 1) are discarded. In the practical implementation,
however, these entries play an important role because numerical optimization algo-
rithms for solving (OCPN) (or its variants) usually work iteratively: starting from
an initial guess u0(·) an optimization algorithm computes iterates ui(·), i = 1, 2, . . .
converging to the minimizer u�(·) and a good choice of u0(·) is crucial in order to
obtain fast convergence of this iteration, or even to ensure convergence, at all. Here,
the minimizing sequence from the previous time step can be efficiently used in order

48 3 Nonlinear Model Predictive Control

to construct such a good initial guess. Several different ways to implement this idea
are discussed in Sect. 12.4.

3.2 Constraints

One of the main reasons for the success of NMPC (and MPC in general) is its
ability to explicitly take constraints into account. Here, we consider constraints both
on the control as well as on the state. To this end, we introduce a nonempty state
constraint set X ⊆ X and for each x ∈ Xwe introduce a nonempty control constraint
set U(x) ⊆ U. Of course, U may also be chosen independent of x. The idea behind
introducing these sets is that wewant the trajectories to lie inX and the corresponding
control values to lie in U(x). This is made precise in the following definition:

Definition 3.2 (Admissibility) Consider a control system (2.1) and the state and
control constraint sets X ⊆ X and U(x) ⊆ U.

(i) The states x ∈ X are called admissible states and the control values u ∈ U(x) are
called admissible control values for x. The elements of the set Y := {(x, u) ∈
X × U | x ∈ X, u ∈ U(x)} are called admissible pairs.

(ii) For N ∈ N and an initial value x0 ∈ X we call a control sequence u ∈ UN and
the corresponding trajectory xu(k, x0) admissible for x0 up to time N , if

(xu(k, x0), u(k)) ∈ Y for all k = 0, . . . ,N − 1 and xu(N, x0) ∈ X

holds. We denote the set of admissible control sequences for x0 up to time N
by U

N (x0).
(iii) A control sequence u ∈ U∞ and the corresponding trajectory xu(k, x0) are

called admissible for x0 if they are admissible for x0 up to every time N ∈ N.
We denote the set of admissible control sequences for x0 by U

∞(x0).
(iv) A (possibly time varying) feedback law μ : N0 × X → U is called admissible

if μ(n, x) ∈ U
1(x) holds for all x ∈ X and all n ∈ N0.

Whenever the reference to x or x0 is clear from the context we will omit the
additional “for x” or “for x0”.

Since we can (and will) identify control sequences with only one element with the
respective control value, we can consider U1(x0) as a subset of U, which we already
implicitly did in the definition of admissibility for the feedback law μ, above. How-
ever, in general U1(x0) does not coincide with U(x0) ⊆ U because using xu(1, x) =
f (x, u) and the definition of UN (x0) we get U1(x) := {u ∈ U(x) | f (x, u) ∈ X}. With
this subtle difference in mind, one sees that our admissibility condition (iv) on μ

ensures both μ(n, x) ∈ U(x) and f (x, μ(n, x)) ∈ X whenever x ∈ X.
Furthermore, our definition ofUN (x) implies that even ifU(x) = U is independent

of x the set UN (x) may depend on x for some or all N ∈ N∞.

3.2 Constraints 49

Often, in order to be suitable for optimization purposes these sets are assumed to
be compact and convex. For our theoretical investigations, however, we do not need
any regularity requirements of this type except that these sets are nonempty. We will,
however, frequently use the following assumption.

Assumption 3.3 (Viability) For each x ∈ X there exists u ∈ U(x) such that f (x, u) ∈
X holds.

The property defined in this assumption is called viability or weak (or controlled)
forward invariance of X. It excludes the situation that there are states x ∈ X from
which the trajectory leaves the set X for all admissible control values. Hence, it
ensures UN (x0) �= ∅ for all x0 ∈ X and all N ∈ N∞. This property is important
to ensure the feasibility of (OCPN): the optimal control problem (OCPN) is called
feasible for an initial value x0 if the set UN (x0) over which we optimize is non
empty. Viability ofX thus implies that (OCPN) is feasible for each x0 ∈ X and hence
ensures that μN (x) is well defined for each x ∈ X. Furthermore, a straightforward
induction shows that under Assumption3.3 any finite admissible control sequence
u(·) ∈ U

N (x0) can be extended to an infinite admissible control sequence ũ(·) ∈
U

∞(x0) with u(k) = ũ(k) for all k = 0, . . . ,N − 1.
In order to see that the construction of a constraint set Xmeeting Assumption3.3

is usually a nontrivial task, we reconsider Example2.2.

Example 3.4 Consider Example2.2, i.e.,

x+ = f (x, u) =
(
x1 + x2 + u/2
x2 + u

)
.

Assumewewant to constrain all variables, i.e., the position x1, the velocity x2 and the
acceleration u to the interval [−1, 1]. For this purpose one could defineX = [−1, 1]2
and U(x) = U = [−1, 1]. Then, however, for x = (1, 1)�, one immediately obtains

x+
1 = x1 + x2 + u/2 = 2 + u/2 ≥ 3/2

for all u, hence x+ /∈ X for all u ∈ U. Thus, in order to find a viable set X we need to
either tighten or relax some of the constraints. For instance, relaxing the constraint
on u to U = [−2, 2] the viability of X = [−1, 1]2 is guaranteed, because then by
elementary computations one sees that for each x ∈ X the control value

u =
⎧⎨
⎩
0, x1 + x2 ∈ [−1, 1]
2 − 2x1 − 2x2, x1 + x2 > 1
−2 − 2x1 − 2x2, x1 + x2 < −1

is in U and satisfies f (x, u) ∈ X. A way to achieve viability without changing U is
by tightening the constraint on x2 by defining

X = {(x1, x2)T ∈ R
2 | x1 ∈ [−1, 1], x2 ∈ [−1, 1] ∩ [−3/2 − x1, 3/2 − x1]}, (3.6)

50 3 Nonlinear Model Predictive Control

Fig. 3.1 Illustration of the
set X from (3.6)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

see Fig. 3.1. Again, elementary computations show that for each x ∈ X and

u =
⎧⎨
⎩
1, x2 < −1/2
−2x2, x2 ∈ [−1/2, 1/2]
−1, x2 > 1/2

the desired properties u ∈ U and f (x, u) ∈ X hold.

This example shows that finding viable constraint sets X (and the corresponding
U or U(x)) is a tricky task already for very simple systems. Still, Assumption3.3
significantly simplifies the subsequent analysis, cf. Theorem3.5, below. For this
reason we will impose this condition in our theoretical investigations for schemes
without stabilizing terminal conditions in Chap. 6. Ways to relax this condition will
be discussed in Sects. 7.1–7.3.

For schemes with stabilizing terminal constraints as featured in Chap.5, we will
not need this assumption, since for these schemes the region on which the NMPC
controller is defined is by construction confined to feasible subsets XN of X, see
Definition3.9, below. Even if X is not viable, these feasible sets XN turn out to be
viable provided the terminal constraint set is viable, cf. Lemmas5.2 and 5.10. For
a more detailed discussion of these issues see also Part (iv) of the discussion in
Sect. 7.4.

NMPC is well suited to handle constraints because these can directly be inserted
into Algorithm3.1. In fact, since we already formulated the corresponding optimiza-
tion problem (OCPN) with state dependent control value sets, the constraints are
readily included if we use UN (x0) from Definition3.2(ii) in (OCPN). The following
theorem shows that the viability assumption ensures that the NMPC closed-loop
system obtained this way indeed satisfies the desired constraints.

3.2 Constraints 51

Theorem 3.5 (Admissibility) Consider Algorithm3.1 using U
N (x0) from

Definition3.2(ii) in the optimal control problem (OCPN) for constraint sets X ⊂ X,
U(x) ⊂ U, x ∈ X, satisfying Assumption3.3. Consider the nominal closed-loop
system (3.5) and suppose that xμN (0) ∈ X. Then the constraints are satisfied along
the solution of (3.5), i.e.,

(xμN (n), μN (xμN (n))) ∈ Y (3.7)

for all n ∈ N. Thus, the NMPC-feedback μN is admissible in the sense of
Definition3.2(iv).

Proof First, recall from the discussion after Assumption3.3 that under this assump-
tion the optimal control problem (OCPN) is feasible for each x ∈ X, hence μN (x) is
well defined for each x ∈ X.

We now show that xμN (n) ∈ X impliesμN (xμN (n)) ∈ U(xμN (n)) and xμN (n+1) ∈
X. Then the assertion follows by induction from xμn(0) ∈ X.

The viability ofX fromAssumption3.3 ensures thatwhenever xμN (n) ∈ Xholds in
Algorithm3.1 then x0 ∈ X holds for the respective optimal control problem (OCPN).
Since the optimization is performed with respect to admissible control sequences
only, also the optimal control sequence u�(·) is admissible for x0 = xμN (n). This
implies μN (xμN (n)) = u�(0) ∈ U

1(xμN (n)) ⊆ U(xμN (n)) and thus also

xμN (n + 1) = f (xμN (n), μN (xμN (n))) = f (x(n), u�(0)) ∈ X,

i.e., xμN (n + 1) ∈ X. �
Theorem3.5 in particular implies that if a state x is feasible for (OCPN), which under
Assumption3.3 is equivalent to x ∈ X (cf. the discussion after Assumption3.3), then
its closed-loop successor state f (x, μN (x)) is again feasible. This property is called
recursive feasibility of X.

In the case of sampled data systems, the constraints are only defined for the
sampling times tn but not for the intersampling times t �= tn. That is, for the sampled
data closed-loop system (2.30) we can only guarantee

ϕ(tn, t0, x0, μ) ∈ X for n = 0, 1, 2, . . .

but in general not

ϕ(t, t0, x0, μ) ∈ X for t �= tn, n = 0, 1, 2, . . .

Since we prefer to work within the discrete time framework, directly checking
ϕ(t, t0, x0, u) ∈ X for all t does not fit our setting. If desired, however, one could
implicitly include this condition in the definition of U(x), e.g., by defining new
control constraint sets via

Ũ(x) := {u ∈ U(x) | ϕ(t, 0, x, u) ∈ X for all t ∈ [0,T]}.

52 3 Nonlinear Model Predictive Control

In practice, however, this is often not necessary because continuity of ϕ in t ensures
that the constraints are usually only “mildly” violated for t �= tn, i.e., ϕ(t, t0, x0, μ)

will still be close toX at intersampling times. Still, one should keep this fact in mind
when designing the constraint set X.

In the underlying optimization algorithms for solving (OCPN), usually the con-
straints cannot be specified via sets X and U(x). Rather, one uses so-called equality
and inequality constraints in order to specify X and U(x) according to the following
definition.

Definition 3.6 Given functions GS
i : X × U → R, i ∈ E S = {1, . . . , pg} and

HS
i : X × U → R, i ∈ I S = {pg + 1, . . . , pg + ph} with pg, ph ∈ N0, we define the

constraint sets X and U(x) via

X :=
{
x ∈ X

∣∣∣∣ there exists u ∈ U with GS
i (x, u) = 0 for all i ∈ E S

and HS
i (x, u) ≥ 0 for all i ∈ I S

}

and for x ∈ X

U(x) :=
{
u ∈ U

∣∣∣∣G
S
i (x, u) = 0 for all i ∈ E S and

HS
i (x, u) ≥ 0 for all i ∈ I S

}

Here, the functions GS
i and H

S
i do not need to depend on both arguments. The func-

tions GS
i , H

S
i not depending on u are called pure state constraints, the functions GS

i ,
HS

i not depending on x are called pure control constraints and the functions GS
i , H

S
i

depending on both x and u are called mixed constraints.

Observe that if we do not have mixed constraints then U(x) is independent of x.
The reason for defining X and U(x) via these (in)equality constraints is purely

algorithmic: the plain information “xu(k, x0) /∈ X” does not yield any information for
the optimization algorithm in order to figure out how to find an admissible u(·), i.e.,
a u(·) for which “xu(k, x0) ∈ X” holds. In contrast to that, an information of the form
“HS

i (xu(k, x0), u(k)) < 0” together with additional knowledge about HS
i (provided,

e.g., by the derivative ofHS
i) enables the algorithm to compute a “direction” in which

u(·) needs to be modified in order to reach an admissible u(·). For more details on
this we refer to Chap.12.

In our theoretical investigations we will use the notationally more convenient
set characterization of the constraints via X and U(x) or UN (x). In the practical
implementation of our NMPC method, however, we will use their characterization
via the inequality constraints from Definition3.6.

3.3 Variants of the Basic NMPC Algorithms

In this section we discuss some important variants and extensions of the basic NMPC
Algorithm3.1; several further variants will be briefly discussed in Sect. 3.5. We start

3.3 Variants of the Basic NMPC Algorithms 53

by incorporating nonconstant references xref(n) and afterwards turn to including
terminal constraints, terminal costs and weights.

If the reference xref is time varying, we need to take this fact into account in the
formulation of the NMPC algorithm. Similar to the constant case where we assumed
that x∗ is an equilibrium of (2.1) for control value u∗, we now assume that xref is a
trajectory of the system, i.e.,

xref(n) = xuref(n, x0)

for x0 = xref(0) and some suitable admissible reference control sequence uref(·) ∈
U

∞(x0). In contrast to the constant reference case of Sect. 3.1, even for X = R
d and

U = R
m wedo not assume that these references are constantly equal to 0, because this

would lead to time varying coordinate transformations inX andU. For this reason,we
always need to take xref(·) and uref(·) into account when defining �. As a consequence,
� becomes time varying, too, i.e., we use a function � : N0 × X × U → R

+
0 .

Furthermore, we need to keep track of the current sampling instant n in the optimal
control problem.

Again, we require that the cost function � vanishes if and only if we are exactly
on the reference. In the time varying case (3.2) becomes

�(n, xref(n), uref(n)) = 0 for all n ∈ N0 and
�(n, x, u) > 0 for all n ∈ N0, x ∈ X, u ∈ U with x �= xref(n).

(3.8)

For X = R
d , U = R

m with Euclidean norms, a quadratic distance function is now
of the form

�(n, x, u) = ‖x − xref(n)‖2 + λ‖u − uref(n)‖2

with λ ≥ 0 and in the general case

�(n, x, u) = dX(x, xref(n))2 + λdU(u, uref(n))2

is an example for � meeting (3.8).
For sampled data systems, we can again define � via an integral over a continuous

time running cost function L analogous to (3.4). Note, however, that for defining L
we will then need a continuous time reference.

For each k = 0, . . . ,N − 1, the prediction xu(k, x0) with x0 = x(n) used in the
NMPC algorithm now becomes a prediction for the closed-loop state x(n+ k) which
we would like to have close to xref(n + k). Consequently, in the optimal control
problem at time n we need to penalize the distance of xu(k, x0) to xref(n+ k), i.e., we
need to use the cost �(n + k, xu(k, x0), u(k)). This leads to the following algorithm
where we minimize over the set of control sequences UN (x0) defined in Sect. 3.2.

Algorithm 3.7 (Basic NMPC algorithm for time varying reference xref) At each
sampling time tn, n = 0, 1, 2 . . .

54 3 Nonlinear Model Predictive Control

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n), solve the optimal control problem

minimize JN (n, x0, u(·)) :=
N−1∑
k=0

�(n + k, xu(k, x0), u(k))

with respect to u(·) ∈ U
N (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCP n
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N (x0).

(3) Define theNMPC-feedback valueμN (n, x(n)) := u�(0) ∈ U and use this control
value in the next sampling period.

Note that Algorithm3.7 and (OCP n
N) reduce to Algorithm3.1 and (OCPN), respec-

tively, if � does not depend on n.
The resulting nominal closed-loop system is now given by (2.5) with μ(x) =

μN (n, x), i.e.,
x+ = f (x, μN (n, x)). (3.9)

As before, the trajectories of this system will be denoted by xμN (n). Since the right
hand side is now time varying, whenever necessary we include both the initial time
and the initial value in the notation, i.e., for a given n0 ∈ N0 we write xμN (n, n0, x0)
for the closed-loop solution satisfying xμN (n0, n0, x0) = x0. It is straightforward to
check that Theorem3.5 remains valid for Algorithm3.7 when (3.7) is replaced by

(xμN (n), μN (n, xμN (n))) ∈ Y. (3.10)

Remark 3.8 Observe that Algorithm3.7 can be straightforwardly extended to the
case when f and X depend on n, too. However, in order to keep the presentation
simple, we do not explicitly reflect this possibility in our notation.

More often than not one can find variations of the basic NMPC Algorithms3.1
and 3.7 in the literature in which the optimal control problem (OCPN) or (OCP n

N)
is changed in one way or another in order to improve the closed-loop performance.
These techniques will be discussed in detail in Chap.5 and in Sects. 10.1 and 10.2.
We now introduce generalizations (OCPN,e) and (OCP n

N,e) of (OCPN) and (OCP n
N),

respectively, that contain all the variants which we will investigate in these chapters
and sections.

A typical choice for such a variant is an additional terminal constraint of the form

xu(N, x(n)) ∈ X0 for a terminal constraint set X0 ⊆ X (3.11)

for the time-invariant case of (OCPN) and

xu(N, x(n)) ∈ X0(n + N) for terminal constraint sets X0(n) ⊆ X, n ∈ N0 (3.12)

3.3 Variants of the Basic NMPC Algorithms 55

for the time varying problem (OCP n
N). Of course, in the practical implementation, the

constraint sets X0 or X0(n) are again expressed via (in)equalities of the form given
in Definition3.6.

When using terminal constraints, the NMPC-feedback law is only defined for
those states x0 for which the optimization problem within the NMPC algorithm is
feasible also for these additional constraints, i.e., for which there exists an admissi-
ble control sequence with corresponding trajectory starting in x0 and ending in the
terminal constraint set. Such initial values are again called feasible and the set of all
feasible initial values form the feasible set. This set along with the corresponding
admissible control sequences is formally defined as follows.

Definition 3.9 (Feasible set and admissible control sequences)
(i) For X0 from (3.11) we define the feasible set for horizon N ∈ N by

XN := {x0 ∈ X | there exists u(·) ∈ U
N (x0) with xu(N, x0) ∈ X0}

and for each x0 ∈ XN we define the set of admissible control sequences by

U
N
X0

(x0) := {u(·) ∈ U
N (x0) | xu(N, x0) ∈ X0}.

(ii) ForX0(n) from (3.12) we define the feasible set for horizonN ∈ N at time n ∈ N0

by

XN (n) := {x0 ∈ X | there exists u(·) ∈ U
N (x0) with xu(N, x0) ∈ X0(n + N)}

and for each x0 ∈ XN (n) we define the set of admissible control sequences by

U
N
X0

(n, x0) := {u(·) ∈ U
N (x0) | xu(N, x0) ∈ X0(n + N)}.

Note that in (i) XN = X and U
N
X0

(x) = U
N (x) holds if X0 = X, i.e., if no additional

terminal constraints are imposed. Similarly, in case (ii) XN (n) = X and UN
X0

(n, x) =
U

N (x) holds if X0(n) = X.
Another modification of the optimal control problems (OCPN) and (OCP n

N), often
used in conjunction with this terminal constraint is an additional terminal cost of the
form F(xu(N, x(n))) with F : X → R

+
0 in the optimization objective. This function

may also be time depending, i.e., it may be of the form F(n + N, xu(N, x(n))) with
F : N0 × X → R

+
0 . As terminal constraints X0 and terminal costs F often come

together, we will refer to their combination as terminal conditions.
An alternative to using terminal costs is to put weights on some summands of

the objective, i.e., replacing �(xu(k, x0), u(k)) by ωN−k�(xu(k, x0), u(k)) for weights
ω1, . . . , ωN ≥ 0. Although for NMPC schemes we will only investigate the effect of
the weight ω1 in detail, cf. Sect. 10.2, here we introduce weights for all summands
since this offers more flexibility and does not further complicate the subsequent
analysis in this chapter. The need for the “backward” numbering of the ωN−k will
become clear in the proof of Theorem3.15, below.

56 3 Nonlinear Model Predictive Control

In the sequel, we will analyze schemes with terminal cost F and schemes with
weights ωN−k separately, cf. Sects. 5.3, 10.1, and 10.2. However, in order to reduce
the number of variants of NMPC algorithms in this book we include both features in
the optimization problems (OCPN,e) and (OCP n

N,e) in the followingNMPCalgorithms
extending the basic Algorithms3.1 and 3.7, respectively. Note that compared to these
basic algorithms only the optimal control problems are different, i.e., the part in the
boxes in Step (2). We start by extending the time-invariant Algorithm3.1.

Algorithm 3.10 (Extended NMPC algorithm for constant reference xref ≡ x∗) At
each sampling time tn, n = 0, 1, 2 . . .:

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 := x(n), solve the optimal control problem

minimize JN (x0, u(·)) :=
N−1∑
k=0

ωN−k�(xu(k, x0), u(k))

+ F(xu(N, x0))

with respect to u(·) ∈ U
N
X0

(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPN,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(x0).
(3) Define the NMPC-feedback value μN (x(n)) := u�(0) ∈ U and use this control

value in the next sampling period.

Similarly, we can extend the time-variant Algorithm3.7.

Algorithm 3.11 (ExtendedNMPCalgorithm for time varying reference xref)At each
sampling time tn, n = 0, 1, 2 . . .:

(1) Measure the state x(n) ∈ X of the system.

(2) Set x0 = x(n), solve the optimal control problem

minimize JN (n, x0, u(·)) :=
N−1∑
k=0

ωN−k�(n+k, xu(k, x0), u(k))

+ F(n + N, xu(N, x0))

with respect to u(·) ∈ U
N
X0

(n, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCP n
N,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(n, x0).

(3) Define theNMPC-feedback valueμN (n, x(n)) := u�(0) ∈ U and use this control
value in the next sampling period.

3.3 Variants of the Basic NMPC Algorithms 57

Observe that the terminal constraints (3.11) and (3.12) are included via the restric-
tions u(·) ∈ U

N
X0

(x0) and u(·) ∈ U
N
X0

(n, x0), respectively.
Algorithm3.10 is a special case of Algorithm3.11 if �, F andX0 do not depend on

n. Furthermore, Algorithm3.1 is obtained from Algorithm3.10 for F ≡ 0, ωN−k =
1, k = 0, . . . ,N − 1 and X0 = X. Likewise, we can derive Algorithm3.7 from
Algorithm3.11 by setting F ≡ 0, ωNk = 1, k = 0, . . . ,N − 1 and X0(n) = X,
n ∈ N0. Consequently, all NMPC Algorithms in this book are special cases of
Algorithm3.11 and all optimal control problems included in these algorithms are
special cases of (OCP n

N,e).
We end this section with two useful results on the sets of admissible con-

trol sequences from Definition3.9 which we formulate for the general setting of
Algorithm3.11, i.e., for time varying terminal constraint set X0(n).

Lemma 3.12 Let x0 ∈ XN (n), N ∈ N and K ∈ {0, . . . ,N} be given.
(i) For each u(·) ∈ U

N
X0

(n, x0) we have xu(K, x0) ∈ XN−K(n + K).
(ii) For each u(·) ∈ U

N
X0

(n, x0) the control sequences u1 ∈ UK and u2 ∈ UN−K

uniquely defined by the relation

u(k) =
{

u1(k), k = 0, . . . ,K − 1
u2(k − K), k = K, . . . ,N − 1

(3.13)

satisfy u1 ∈ U
K
XN−K

(n, x0) and u2 ∈ U
N−K
X0

(n + K, xu1(K, x0)).

(iii) For each u1(·) ∈ U
K
XN−K

(n, x0) there exists u2(·) ∈ U
N−K
X0

(n + K, xu1(K, x0))

such that u(·) from (3.13) satisfies u ∈ U
N
X0

(n, x0).

Proof (i) Using (2.3) we obtain the identity

xu(K+·)(N − K, xu(K, x0))) = xu(N, x0) ∈ X0(n + N),

which together with the definition of XN−K implies the assertion.
(ii) The relation (3.13) together with (2.3) implies

xu(k, x0) =
{

xu1(k, x0), k = 0, . . . ,K
xu2(k − K, xu1(K, x0)), k = K, . . . ,N

(3.14)

For k = 0, . . . ,K − 1 this identity and (3.13) yield

u1(k) = u(k) ∈ U(xu(k, x0)) = U(xu1(k, x0))

and for k = 0, . . . ,N − K − 1 we obtain

u2(k) = u(k + K) ∈ U(xu(k + K, x0)) = U(xu2(k, xu1(K, x0))),

implying u1 ∈ U
K(x0) and u2 ∈ U

N−K(xu1(K, x0)). Furthermore, (3.14)
implies the equation xu2(N − K, xu1(K, x0)) = xu(N, x0) ∈ X0(n + N)

58 3 Nonlinear Model Predictive Control

which proves u2 ∈ U
N−K
X0

(n + K, xu1(K, x0)). This, in turn, implies that

U
N−K
X0

(n + K, xu1(K, x0)) is nonempty, hence xu1(K, x0) ∈ XN−K(n + K) and
consequently u1 ∈ U

K
XN−K

(n, x0) follows.

(iii) By definition, for each x ∈ XN−K(n + K) there exists u2 ∈ U
N−K
X0

(n + K, x).
Choosing such a u2 for x = xu1(K, x0) ∈ XN−K(n + K) and defining u via
(3.13), similar arguments as in Part (ii), above, show the claim u ∈ U

N
X0

(n, x0). �

A straightforward corollary of this lemma is the following.

Corollary 3.13
(i) For each x ∈ XN the NMPC-feedback law μN obtained from Algorithm3.10
satisfies

f (x, μN (x)) ∈ XN−1.

(ii) For each n ∈ N and each x ∈ XN (n) the NMPC-feedback law μN obtained from
Algorithm3.11 satisfies

f (x, μN (n, x)) ∈ XN−1(n + 1).

Proof We show (ii) which contains (i) as a special case. SinceμN (n, x) is the first ele-
ment u�(0) of the optimal control sequence u� ∈ U

N
X0

(n, x) we get f (x, μN (n, x)) =
xu� (1, x). Now Lemma3.12(i) yields the assertion. �

3.4 The Dynamic Programming Principle

In this section we provide one of the classical tools in optimal control, the dynamic
programming principle. We will formulate and prove the results in this section for
(OCP n

N,e), since all other optimal control problemswhich have been introduced above
can be obtained as special cases of this problem. We will first formulate the principle
for the open-loop control sequences in (OCP n

N,e) and then derive consequences for
the NMPC-feedback law μN . The dynamic programming principle is often used
as a basis for numerical algorithms, cf. Sect. 3.5. In contrast to this, in this book
we will exclusively use the principle for analyzing the behavior of NMPC closed-
loop systems, while for the actual numerical solution of (OCP n

N,e) we use different
algorithms as described in Chap. 12. The reason for this is that the numerical effort
of solving (OCP n

N,e) via dynamic programming usually grows exponentially with the
dimension of the state of the system, see the discussion in Sect. 3.5. In contrast to
this, the computational effort of the methods described in Chap.12 scales muchmore
moderately with the space dimension.

We start by defining some objects we need in the sequel.

3.4 The Dynamic Programming Principle 59

Definition 3.14 Consider the optimal control problem (OCP n
N,e) with initial value

x0 ∈ X, time instant n ∈ N0 and optimization horizon N ∈ N0.

(i) The function

VN (n, x0) := inf
u(·)∈UN

X0
(x0)

JN (n, x0, u(·))

is called optimal value function.
(ii) A control sequence u�(·) ∈ U

N
X0

(x0) is called optimal control sequence for x0, if

VN (n, x0) = JN (n, x0, u
�(·))

holds. The corresponding trajectory xu� (·, x0) is called optimal trajectory.

In our NMPC Algorithm3.11 and its variants we have assumed that an optimal
control sequence u�(·) exists, cf. the comment after Algorithm3.1. In general, this is
not necessarily the case but under reasonable continuity and compactness conditions
the existence of u�(·) can be rigorously shown. Examples of such theorems for a
general infinite-dimensional state space can be found in Keerthi and Gilbert [10] or
Doležal [7]. While for formulating and proving the dynamic programming principle
we will not need the existence of u�(·), for all subsequent results we will assume
that u�(·) exists, in particular when we derive properties of the NMPC-feedback law
μN . While we conjecture that most of the results in this book can be generalized
to the case when μN is defined via an approximately minimizing control sequence,
we decided to use the existence assumption because it considerably simplifies the
presentation of the results in this book.

The following theorem introduces the dynamic programming principle. It gives an
equationwhich relates the optimal value functions for different optimization horizons
N and for different points in space.

Theorem 3.15 (Dynamic programming principle) Consider the optimal control
problem (OCP n

N,e) with x0 ∈ XN (n) and n,N ∈ N0. Then for all N ∈ N and all
K = 1, . . . ,N the equation

VN (n, x0) = inf
u(·)∈UK

XN−K
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ VN−K(n + K, xu(K, x0))

} (3.15)

holds. If, in addition, an optimal control sequence u�(·) ∈ U
N
X0

(n, x0) exists for x0,
then we get the equation

VN (n, x0) =
K−1∑
k=0

ωN−k�(n+k, xu� (k, x0), u
�(k))+VN−K(n+K, xu� (K, x0)). (3.16)

60 3 Nonlinear Model Predictive Control

In particular, in this case the “inf” in (3.15) is a “min”.

Proof First observe that from the definition of JN for u(·) ∈ U
N
X0

(n, x0) we immedi-
ately obtain

JN (n, x0, u(·)) =
K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ JN−K(n + K, xu(K, x0), u(· + K)).

(3.17)

Since u(· + K) equals u2(·) from Lemma3.12(ii) we obtain u(· + K) ∈ U
N−K
X0

(n +
K, xu(K, x0)). Note that for (3.17) to hold we need the backward numbering ofωN−k .

We now prove (3.15) by proving “≥” and “≤” separately. From (3.17) we obtain

JN (n, x0, u(·)) =
K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ JN−K(n + K, xu(K, x0), u(· + K))

≥
K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k)) + VN−K(n + K, xu(K, x0)).

Since this inequality holds for all u(·) ∈ U
N
X0

(n, x0), it also holds when taking the
infimum on both sides. Hence we get

VN (n, x0) = inf
u(·)∈UN

X0
(n,x0)

JN (n, x0, u(·))

≥ inf
u(·)∈UN

X0
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ VN−K(n + K, xu(K, x0))

}

= inf
u1(·)∈UK

XN−K
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu1(k, x0), u(k))

+ VN−K(n + K, xu1(K, x0))

}
,

i.e., (3.15) with “≥”. Here in the last step we used the fact that by Lemma3.12(ii)
the control sequence u1 consisting of the first K elements of u(·) ∈ U

N
X0

(n, x0)
lies in U

K
XN−K

(n, x0) and, conversely, by Lemma3.12(iii) each control sequence in
u1(·) ∈ U

K
XN−K

(n, x0) can be extended to a sequence in u(·) ∈ U
N
X0

(n, x0). Thus, since
the expression in braces does not depend on u(K), . . . , u(N−1), the infima coincide.

3.4 The Dynamic Programming Principle 61

In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control
sequence for the right hand side of (3.17), i.e.,

K−1∑
k=0

ωN−k�(n + k, xuε (k, x0), u
ε(k)) + JN−K(n + K, xuε (K, x0), u

ε(· + K))

≤ inf
u(·)∈UN

X0
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ JN−K(n + K, xu(K, x0), u(· + K))

}
+ ε.

Now we use the decomposition (3.13) of u(·) into u1 ∈ U
K
XN−K

(n, x0) and u2 ∈
U

N−K
X0

(n + K, xu1(K, x0)) from Lemma3.12(ii). This way we can proceed

inf
u(·)∈UN

X0
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ JN−K(n + K, xu(K, x0), u(· + K))

}

= inf
u1(·)∈UK

XN−K
(n,x0)

u2(·)∈UN−K
X0

(n+K,xu1 (K,x0))

{ K−1∑
k=0

ωN−k�(n + k, xu1(k, x0), u1(k))

+ JN−K(n + K, xu1(K, x0), u2(·))
}

= inf
u1(·)∈UK

XN−K
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu1(k, x0), u1(k))

+ VN−K(n + K, xu1(K, x0))

}

Now (3.17) yields

VN (n, x0) ≤ J(n, x0, u
ε(·))

=
K−1∑
k=0

ωN−k�(n + k, xuε (k, x0), u
ε(k)) + JN−K(n + K, xuε (K, x0), u

ε(· + K))

≤ inf
u(·)∈UK

XN−K
(n,x0)

{ K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ VN−K(n + K, xu(K, x0))

}
+ ε.

62 3 Nonlinear Model Predictive Control

Since the first and the last term in this inequality chain are independent of ε and since
ε > 0 was arbitrary, this shows (3.15) with “≤” and thus (3.15).

In order to prove (3.16) we use (3.17) with u(·) = u�(·). This yields

VN (n, x0) = J(n, x0, u
�(·))

=
K−1∑
k=0

ωN−k�(n + k, xu� (k, x0), u
�(k)) + JN−K (n + K, xu� (K, x0), u

�(· + K))

≥
K−1∑
k=0

ωN−k�(n + k, xu� (k, x0), u
�(k)) + VN−K (n + K, xu� (K, x0))

≥ inf
u(·)∈UK

XN−K
(n,x0)

⎧⎨
⎩
K−1∑
k=0

ωN−k�(n + k, xu(k, x0), u(k)) + VN−K (n + K, xu(K, x0))

⎫⎬
⎭

= VN (n, x0),

where we used the (already proven) equality (3.15) in the last step. Hence, the two
“≥” in this chain are actually “=” which implies (3.16). �

The following corollary states an immediate consequence of the dynamic program-
ming principle. It shows that tails of optimal control sequences are again optimal
control sequences for suitably adjusted optimization horizon, time instant, and initial
value.

Corollary 3.16 If u�(·) is an optimal control sequence for initial value x0 ∈ XN (n),
time instant n and optimization horizon N ≥ 2, then for each K = 1, . . . ,N − 1 the
sequence u�

K(·) = u�(· + K), i.e.,

u�
K(k) = u�(K + k), k = 0, . . . ,N − K − 1

is an optimal control sequence for initial value xu� (K, x0), time instant n + K and
optimization horizon N − K.

Proof Inserting VN (n, x0) = JN (n, x0, u�(·)) and the definition of u�
k(·) into (3.17)

we obtain

VN (n, x0) =
K−1∑
k=0

ωN−k�(n + k, xu� (k, x0), u
�(k)) + JN−K(n + K, xu� (K, x0), u

�
K(·))

Subtracting (3.16) from this equation yields

0 = JN−K(n + K, xu� (K, x0), u
�
K(·)) − VN−K(n + K, xu� (K, x0))

which shows the assertion. �

3.4 The Dynamic Programming Principle 63

The next theorem relates the NMPC-feedback law μN defined in the NMPC
Algorithm3.11 and its variants to the dynamic programming principle. Here we use
the argmin operator in the following sense: for a map a : U → R, a nonempty subset
Ũ ⊆ U and a value u� ∈ Ũ we write

u� = argmin
u∈Ũ

a(u) (3.18)

if and only if a(u�) = infu∈Ũ a(u) holds. Whenever (3.18) holds the existence of the
minimum minu∈Ũ a(u) follows. However, we do not require uniqueness of the mini-
mizer u�. In case of uniqueness equation (3.18) can be understood as an assignment,
otherwise it is just a convenient way of writing “u� minimizes a(u)”.

Theorem 3.17 (Dynamic programming and NMPC) Consider the optimal control
problem (OCP n

N,e)with x0 ∈ XN (n)andn,N ∈ N0 andassume that anoptimal control
sequence u� exists. Then the NMPC-feedback law μN (n, x0) = u∗(0) satisfies

μN (n, x0) = argmin
u∈U1

XN−1
(n,x0)

{ωN�(n, x0, u) + VN−1(n + 1, f (x0, u))} (3.19)

and

VN (n, x0) = ωN�(n, x0, μN (n, x0)) + VN−1(n + 1, f (x0, μN (n, x0))) (3.20)

where in (3.19) we interpret U1
XN−1

(n, x0) as a subset of U, i.e., we identify the one
element sequence u = u(·) with its only element u = u(0).

Proof Equation (3.20) follows by inserting u�(0) = μN (n, x0) and xu� (1, x0) =
f (x0, μN (n, x0)) into (3.16) for K = 1.

Inserting xu(1, x0) = f (x0, u) into the dynamic programming principle (3.15) for
K = 1 we further obtain

VN (n, x0) = inf
u∈U1

XN−1
(n,x0)

{ωN�(n, x0, u) + VN−1(n + 1, f (x0, u))} . (3.21)

This implies that the right-hand sides of (3.20) and (3.21) coincide. Thus, the
definition of argmin in (3.18) with a(u) = ωN�(n, x0, u) + VN−1(n + 1, f (x0, u))
and Ũ = U

1
XN−1

(n, x0) yields (3.19). �

Our final corollary in this section shows that we can reconstruct the whole optimal
control sequence u�(·) using the feedback from (3.19).

Corollary 3.18 Consider the optimal control problem (OCP n
N,e) with x0 ∈ X and

n,N ∈ N0 and consider admissible feedback laws μN−k : N0 × X → U, k =
0, . . . ,N − 1, in the sense of Definition3.2(iv). Denote the solution of the closed-
loop system

64 3 Nonlinear Model Predictive Control

x(0) = x0, x(k + 1) = f (x(k), μN−k(n + k, x(k))), k = 0, . . . ,N − 1 (3.22)

by xμ(·) and assume that the μN−k satisfy (3.19) with horizon N − k instead of N,
time index n+k instead of n and initial value x0 = xμ(k) for k = 0, . . . ,N −1. Then

u�(k) = μN−k(n + k, xμ(k)), k = 0, . . . ,N − 1 (3.23)

is an optimal control sequence for initial time n and initial value x0 and the solution
of the closed-loop system (3.22) is a corresponding optimal trajectory.

Proof Applying the control (3.23) to the dynamics (3.22) we immediately obtain

xu� (n, x0) = xμ(n), n = 0, . . . ,N − 1.

Hence, we need to show that

VN (n, x0) = JN (n, x0, u
�) =

N−1∑
k=0

ωN−k�(n + k, x(k), u�(k)) + F(n + N, x(N)).

Using (3.23) and (3.20) for N − k instead of N we get

VN−k(n + k, x(k)) = ωN−k�(n + k, x(k), u�(k)) + VN−k−1(n + k + 1, x(k + 1))

for k = 0, . . . ,N−1. Summing these equalities for k = 0, . . . ,N−1 and eliminating
the identical terms VN−k(n + k, x0), k = 1, . . . ,N − 1 on both sides we obtain

VN (n, x0) =
N−1∑
k=0

ωN−k�(n + k, x(k), u�(k)) + V0(n + N, x(N))

Since by definition of J0 we have V0(n+N, x) = F(x), this shows the assertion. �

3.5 Notes and Extensions

The discrete time nonlinear model predictive control framework introduced in
Sects. 3.1–3.3 covers most of the settings commonly found in the literature. For
continuous time systems, one often also finds nonlinear model predictive control
frameworks in explicit continuous time form. In these frameworks, the optimization
in (OCP n

N,e) and its variants is carried out at times t0, t1, t2, . . .minimizing an integral
criterion along the continuous time solution of the form

JTopt(x0, v) =
∫ Topt

0
L(ϕ(t, x0, v), v(t))dt + F(ϕ(Topt,N, x0, v)).

3.5 Notes and Extensions 65

The feedback law μTopt computed at time tn is then obtained by applying the first
portion v�|[0,tn+1−tn] of the optimal control function v� to the system, see, e.g., Alamir
[1] or Findeisen [9]. Provided that tn+1 − tn = T holds for all n, this problem is
equivalent to our setting if the sampled data system (2.8) and the integral criterion
(3.4) with running cost L is used.

Regarding notation, in NMPC it is important to distinguish between the open-loop
predictions and theNMPCclosed loop.Herewehave decided to denote the open-loop
predictions by xu(k) or xu(k, x0) and the NMPC closed-loop trajectories by either
x(n) or—more often—by xμN (n) or xμN (n, x0). There are, however, various other
notations commonly found in the literature. For instance, the prediction at time instant
n is occasionally denoted as x(k|n) in order to emphasize the dependence on the time
instant n. In our notation, the dependence on n is implicitly expressed via the initial
condition x0 = x(n) and the index n in (OCP n

N) or (OCP
n
N,e). Whenever necessary,

the value of n under consideration will be specified in the context. On the other hand,
we decided to always explicitly indicate the dependence of open-loop solutions on
the control sequence u. This notation enables us to easily distinguish between open-
loop and closed-loop solutions and also for simultaneously considering open-loop
solutions for different control sequences.

In linear discrete timeMPC, the optimization at each sampling instant is occasion-
ally performed over control sequences with predefined values u(K), . . . , u(N − 1)
for some K ∈ {1, . . . ,N − 1}, i.e., only u(0), . . . , u(K − 1) are used as optimization
variables in (OCPN,e) and its variants. For instance, if x∗ = 0 and u∗ = 0, cf. Sect. 3.1,
then u(K), . . . , u(N − 1) = 0 is a typical choice. In this setting, K is referred to as
optimization horizon (or control horizon) and N is referred to as prediction horizon.
Since this variant is less common in nonlinear MPC, we do not consider it in this
book; in particular, we use the terms optimization horizon and prediction horizon
synonymously, while the term control horizon will receive a different meaning in
Sect. 10.4. Still, most of the subsequent analysis could be extended to the case in
which the optimization horizon and the prediction horizon do not coincide.

Regarding the cost function �, the setting described in Sects. 3.1 and 3.3 is easily
extended to the case in which a set instead of a single equilibrium or a time-variant
family of sets instead of a single reference shall be stabilized. Indeed, if we are given
a family of sets X ref(n) ⊂ X such that for each x ∈ X ref(n) there is a control ux with
f (x, ux) ∈ X ref(n + 1), then we can modify (3.8) to

�(n, x, ux) = 0 for all x ∈ X ref(n) and
�(n, x, u) > 0 for all x ∈ X \ X ref(n), u ∈ U.

(3.24)

Similarly, we can modify (3.2) in the time-invariant case.
Anothermodification of �, again often found in the linearMPC literature, are stage

cost functionswhich include two consecutive control values, i.e., �(xu(k), u(k), u(k−
1)). Typically, this is used in order to penalize large changes in the control input by
adding a term σ‖u(k) − u(k − 1)‖ (assuming U to be a vector space with norm
‖ · ‖, for simplicity). Using the augmented state x̃u(k) = (xu(k), u(k − 1)) this can

66 3 Nonlinear Model Predictive Control

be transformed into a cost function meeting our setting by defining �̃(x̃u(k), u(k)) =
�(xu(k), u(k), u(k − 1)).

Yet another commonly used variant are stage costs in which only an output y =
h(x) instead of the whole state is taken into account. In this case, � will usually no
longer satisfy (3.2) or (3.8), i.e., � will not be positive definite, anymore. We will
discuss this case in Sect. 10.3. In this context it should be noted that even if the stage
cost � depends only on an output, the NMPC-feedback μN will nevertheless be a
state feedback law. Hence, if only output data is available, suitable observers need to
be used in order to reconstruct the state of the system. An even more general choice
of � is allowed in economic NMPC, which we will discuss in Chap.8.

The term dynamic programming was introduced by Bellman [2] and due to his
seminal contributions to this area the dynamic programming principle is often also
called Bellman’s principle of optimality. The principle is widely used in many appli-
cation areas and a quite comprehensive account of its use in various different settings
is given in themonographs byBertsekas [4, 5]. ForK = 1, the dynamic programming
principle (3.15) simplifies to

VN (n, x) = inf
u∈U1

XN−1
(n,x)

{ωN�(n + k, x, u) + VN−1(n + 1, f (x, u))} (3.25)

and in this form it can be used for recursively computing V1, V2, . . . VN starting from
V0(x) = F(x). Once VN and VN−1 are known, the feedback law μN can be obtained
from (3.19).

Whenever VN can be expressed using simple functions this approach of computing
VN can be efficiently used. For instance, when the dynamics are linear and finite
dimensional, the stage cost is quadratic and there are no constraints, then VN can
be expressed as VN (x) = x�PNx for a matrix PN ∈ R

d×d and (3.25) reduces to the
Riccati difference equation, see, e.g., Dorato and Levis [8].

For nonlinear systems with low-dimensional state space it is also possible to
approximate VN numerically using the backward recursion induced by (3.25) with
approximations Ṽ1 ≈ V1, . . . , ṼN ≈ VN . These approximations can then, in turn, be
used in order to compute a numerical approximation of the NMPC-feedback lawμN .
This is, roughly speaking, the idea behind the so-called explicit MPC methods, see,
e.g., Borrelli, Baotic, Bemporad and Morari [6], Bemporad and Filippi [3], Tøndel,
Johansen and Bemporad [11], to mention but a few papers from this area in which
often special problem structures like piecewise linear dynamics instead of general
nonlinear models are considered. The main advantage of this approach is that ṼN and
the approximation of μN can be computed offline and thus the online computational
effort of evaluating μN is very low. Hence, in contrast to conventional NMPC in
which (OCP n

N,e) is entirely solved online, this method is also applicable to very fast
systems which require fast sampling.

Unfortunately, for high-dimensional systems, the numerical effort of this approach
becomes prohibitive since the computational complexity of computing ṼN grows
exponentially in the state dimension, unless one can exploit very specific prob-
lem structure. This fact—the so-called curse of dimensionality—arises because the

3.5 Notes and Extensions 67

approximation of VN requires a global solution to (OCP n
N,e) or its variants for all

initial values x0 ∈ X or at least in the set of interest, which is typically a set of full
dimension in state space. Consequently, dynamic programming method cannot be
applied to high-dimensional systems. In contrast to this, the methods we will dis-
cuss in Chap.12 solve (OCP n

N,e) for a single initial value x0 only at each sampling
instant, i.e., locally in space. Since this needs to be done online, these methods are in
principle slower, but since the numerical effort scales much more moderate with the
state dimension they are nevertheless applicable to systems with much higher state
dimension.

Problems

1. Consider the control system

x+ = f (x, u) = ax + bu

with x ∈ X = R, u ∈ U = R, constraints X = [−1, 1] and U = [−100, 100] and
real parameters a, b ∈ R.

(a) For which parameters a, b ∈ R is the state constraint set X viable?
(b) For those parameters for which X is not viable, determine a viable state

constraint set contained in X.

2. Compute an optimal trajectory for the optimal control problem (OCPN,e)

Minimize
N−1∑
k=0

u(k)2

subject to x1(k + 1) = x1(k) + 2x2(k)

x2(k + 1) = 2u(k) − x2(k)

x1(0) = 0, x2(0) = 0

x1(N) = 4, x2(N) = 0

with N = 4 via dynamic programming.

3. Consider the NMPC problem defined by the dynamics

x+ = f (x, u) = x + u

with x ∈ X = R, u ∈ U = R and stage costs

�(x, u) = x2 + u2.

68 3 Nonlinear Model Predictive Control

(a) Compute the optimal value function V2 and the NMPC-feedback law μ2 by
dynamic programming.

(b) Show that V2 is a Lyapunov function for the closed loop and compute the
functions α1, α2 and αV in (2.37) and (2.38).

(c) Show that the NMPC closed loop is globally asymptotically stable without
using the Lyapunov function V2.

4. Consider an optimal trajectory xu� (·, x0) for the optimal control problem (OCPN)
with initial value x0 and optimization horizon N ≥ 2. Prove that for any K ∈
{1, . . . ,N − 1} the tail

xu� (K, x0), . . . , xu� (N − 1, x0)

of the optimal trajectory along with the tail

u�(K), . . . , u�(N − 1)

of the optimal control sequence are optimal for (OCPN) with new initial value
xu� (K, x0) and optimization horizon N − K , i.e., that

N−1∑
k=K

�(xu� (k, x0), u
�(k)) = VN−K(xu� (K, x0))

holds.

5. After a lecture in which you presented the basic NMPC Algorithm 3.1, a student
asks the following question:
“If I ride my bicycle and want to make a turn to the left, I first steer a little bit to
the right to make my bicycle tilt to the left. Let us assume that this way of making
a turn is optimal for a suitable problem of type (OCPN). This would mean that
the optimal control sequence will initially steer to the right and later steer to the
left. If we use this optimal control sequence in an NMPC algorithm, only the first
control action will be implemented. As a consequence, we will always steer to
the right, and we will make a turn to the right instead of a turn to the left. Does
this mean that NMPC does not work for controlling my bicycle?”
What do you respond?

References

1. Alamir,M.: Stabilization of nonlinear systems using receding-horizon control schemes. Lecture
Notes in Control and Information Sciences, vol. 339. Springer, London (2006)

2. Bellman, R.: Dynamic programming. Princeton University Press. Reprinted in 2010 (1957)
3. Bemporad,A., Filippi, C.: Suboptimal explicitMPCvia approximatemultiparametric quadratic

programming. In: Proceedings of the 40th IEEE Conference on Decision and Control - CDC
2001, pp. 4851–4856. Orlando, Florida, USA (2001)

References 69

4. Bertsekas, D.P.: Dynamic Programming andOptimal Control, vol. I, 3rd edn. Athena Scientific,
Belmont (2005)

5. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II, 2nd edn. Athena Scien-
tific, Belmont (2001)

6. Borrelli, L., Baotic, T., Bemporad, A., Morari, T.: Efficient on-line computation of constrained
optimal control. In: Proceedings of the 40th IEEE Conference on Decision and Control - CDC
2001, pp. 1187–1192. Orlando, Florida, USA (2001)

7. Doležal, J.: Existence of optimal solutions in general discrete systems. Kybernetika 11(4),
301–312 (1975)

8. Dorato, P., Levis, A.H.: Optimal linear regulators: the discrete-time case. IEEETrans. Automat.
Control 16, 613–620 (1971)

9. Findeisen, R.: Nonlinear Model Predictive Control: A Sampled-Data Feedback Perspective.
University of Stuttgart, VDI-Verlag, Düsseldorf, PhD-thesis (2004)

10. Keerthi, S.S., Gilbert, E.G.: An existence theorem for discrete-time infinite-horizon optimal
control problems. IEEE Trans. Automat. Control 30(9), 907–909 (1985)

11. Tøndel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic pro-
gramming and explicit MPC solutions. Automatica 39(3), 489–497 (2003)

Chapter 4
Infinite Horizon Optimal Control

In this chapter we give an introduction to nonlinear infinite horizon optimal control.
The dynamic programming principle aswell as several consequences of this principle
are proved. One of the main results of this chapter is that the infinite horizon opti-
mal feedback law asymptotically stabilizes the system and that the infinite horizon
optimal value function is a Lyapunov function for the closed-loop system. Moti-
vated by this property we formulate a relaxed version of the dynamic programming
principle, which allows to prove stability and suboptimality results for nonoptimal
feedback laws and without using the optimal value function. A practical version of
this principle is provided, too. These results will be central in the following chapters
for the stability and performance analysis of NMPC algorithms. For the special case
of sampled data systems we finally show that for suitable integral costs asymptotic
stability of the continuous time sampled data closed-loop system follows from the
asymptotic stability of the associated discrete time system.

4.1 Definition and Well Posedness of the Problem

For the finite horizon optimal control problems from the previous chapter we can
define infinite horizon counterparts by replacing the upper limitsN−1 in the respec-
tive sums by ∞. Since for this infinite horizon formulation the terminal state xu(N)

vanishes from the problem, it is not reasonable to consider terminal conditions. Fur-
thermore, we will not consider any weights in the infinite horizon case. Hence, the
most general infinite horizon problem we consider is the following.

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_4

71

72 4 Infinite Horizon Optimal Control

minimize J∞(n, x0, u(·)) :=
∞∑

k=0

�(n + k, xu(k, x0), u(k))

with respect to u(·) ∈ U
∞(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPn∞)

We optimize over the set of admissible control sequences U
∞(x0) defined in

Definition3.2 and assume that this set is nonempty for all x0 ∈ X, which is equivalent
to the viability of X according to Assumption3.3. In order to keep the presentation
self contained all subsequent statements are formulated for general time varying
stage cost �. For some of the results we assume that � is as in (3.8), i.e., it penalizes
the distance to a (possibly time varying) reference trajectory xref . In the special case
of constant reference xref ≡ x∗ the stage cost � and the functional J∞ in (OCPn∞) do
not depend on the time n. In this case, we denote the problem by (OCP∞).

Similar to Definition3.14 we define the optimal value function and optimal tra-
jectories.

Definition 4.1 Consider the optimal control problem (OCPn∞) with initial value
x0 ∈ X and time instant n ∈ N0.

(i) The function
V∞(n, x0) := inf

u(·)∈U∞(x0)
J∞(n, x0, u(·))

is called optimal value function.
(ii) A control sequence u�(·) ∈ U

∞(x0) is called optimal control sequence for x0 if

V∞(n, x0) = J∞(n, x0, u
�(·))

holds. The corresponding trajectory xu� (·, x0) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears
in the definition of J∞, it is no longer straightforward that V∞ is finite. In order to
ensure that this is the case, the following definition is helpful.

Definition 4.2 Consider the control system (2.1) and a reference trajectory xref :
N0 → Xwith reference control sequence uref ∈ U

∞(xref(0)). We say that the system
is (uniformly) asymptotically controllable to xref if there exists a function β ∈ KL
such that for each initial time n0 ∈ N0 and for each admissible initial value x0 ∈ X

there exists an admissible control sequence u ∈ U
∞(x0) such that the inequality

|xu(n, x0)|xref (n+n0) ≤ β(|x0|xref (n0), n) (4.1)

holds for all n ∈ N0. We say that this asymptotic controllability has the small control
property if u ∈ U

∞(x0) can be chosen such that the inequality

4.1 Definition and Well Posedness of the Problem 73

|xu(n, x0)|xref (n+n0) + |u(n)|uref (n+n0) ≤ β(|x0|xref (n0), n) (4.2)

holds for all n ∈ N0. Here, as in Sect. 2.3 we write |x1|x2 = dX(x1, x2) and |u1|u2 =
dU(u1, u2).

Observe that uniform asymptotic controllability is a necessary condition for uni-
form feedback stabilization. Indeed, if we assume asymptotic stability of the closed-
loop system x+ = g(n, x) = f (x, μ(n, x)), then we immediately get asymptotic
controllability with control u(n) = μ(n, x(n, n0, x0)). The small control property,
however, is not satisfied in general.

In order to useDefinition4.2 for deriving bounds on the optimal value function,we
need a result known as Sontag’s KL -Lemma [24, Proposition 7]. This proposition
states that for eachKL -function β there exist functions γ1, γ2 ∈ K∞ such that the
inequality

β(r, n) ≤ γ1(e
−nγ2(r))

holds for all r, n ≥ 0 (in fact, the result holds for real n ≥ 0 but we only need it for
integers here). Using the functions γ1 and γ2 we can define stage cost functions

�(n, x, u) := γ −1
1 (|x|xref (n)) + λγ −1

1 (|u|uref (n)) (4.3)

for λ ≥ 0. The following theorem states that under Definition4.2 this stage cost
ensures (uniformly) finite upper and positive lower bounds on V∞.

Theorem 4.3 (Bounds on V∞) Consider the control system (2.1) and a reference
trajectory xref : N0 → X with reference control sequence uref ∈ U

∞(xref(0)). If the
system is asymptotically controllable to xref , then there exist α1, α2 ∈ K∞ such that
the optimal value function V∞ corresponding to the cost function � : N0 ×X ×U →
R

+
0 from (4.3) with λ = 0 satisfies

α1(|x0|xref (n0)) ≤ V∞(n0, x0) ≤ α2(|x0|xref (n0)) (4.4)

for all n0 ∈ N0 and all x0 ∈ X.
If, in addition, the asymptotic controllability has the small control property then the
statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof For each x0, n0, and u ∈ U
∞(x0) we get

J∞(n0, x0, u) =
∞∑

k=0

�(n0 + k, xu(k, x0), u(k)) ≥ �(n, xu(0, x0), u(0)) ≥ γ −1
1 (|x0|xref (n0))

for each λ ≥ 0. Hence, from the definition of V∞ we get

V∞(n0, x0) = inf
u(·)∈U∞(x0)

J∞(n0, x0, u(·)) ≥ γ −1
1 (|x0|xref (n0)).

74 4 Infinite Horizon Optimal Control

This proves the lower bound in (4.4) for α1 = γ −1
1 .

For proving the upper bound, we first consider the case λ = 0. For all n0 and x0
the control u ∈ U

∞(x0) from Definition4.2 yields

V∞(n0, x0) ≤ J∞(n0, x0, u)

=
∞∑

k=0

�(n0 + k, xu(k, x0), u(k))

=
∞∑

k=0

γ −1
1 (|xu(k, x0)|xref (n0+k))

≤
∞∑

k=0

γ −1
1 (β(|x0|xref (n0), k)) ≤

∞∑

k=0

e−kγ2(|x0|xref (n0))

= e

e − 1
γ2(|x0|xref (n0)),

i.e., the upper inequality from (4.4) with α2(r) = eγ2(r)/(e−1). If the small control
property holds, then the upper bound for λ > 0 follows similarly with α2(r) =
(1 + λ)eγ2(r)/(e − 1). �

In fact, the specific form (4.3) is just one possible choice of � for which this
theorem holds. It is rather easy to extend the result to any � which is bounded from
below by someK∞-function in x (uniformly for all u and n) and bounded from above
by � from (4.3) in balls Bε(xref(n)). Since, however, the choice of appropriate cost
functions � for infinite horizon optimal control problems is not a central topic of this
book, we leave this extension to the interested reader.

4.2 The Dynamic Programming Principle

In this section we essentially restate and reprove the results from Sect. 3.4 for the
infinite horizon case. We begin with the dynamic programming principle for the
infinite horizon problem (OCPn∞). Throughout this section we assume that V∞(x) is
finite for all x ∈ X as ensured, e.g., by Theorem4.3.

Theorem 4.4 (Dynamic programmingprinciple)Consider the optimal control prob-
lem (OCPn∞) with x0 ∈ X and n ∈ N0. Then for all K ∈ N the equation

V∞(n, x0) = inf
u(·)∈UK (x0)

{
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + V∞(n + K, xu(K, x0))

}

(4.5)
holds. If, in addition, an optimal control sequence u�(·) exists for x0, then we get the
equation

4.2 The Dynamic Programming Principle 75

V∞(n, x0) =
K−1∑

k=0

�(n + k, xu� (k, x0), u
�(k)) + V∞(n + K, xu� (K, x0)). (4.6)

In particular, in this case the “inf” in (4.5) is a “min”.

Proof From the definition of J∞ for u(·) ∈ U
∞(x0) we immediately obtain

J∞(n, x0, u(·)) =
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + J∞(n + K, xu(K, x0), u(· + K)),

(4.7)
where u(· + K) denotes the shifted control sequence defined by u(· + K)(k) =
u(k + K), which is admissible for xu(K, x0).

We now prove (4.5) by showing “≥” and “≤” separately: From (4.7) we obtain

J∞(n, x0, u(·)) =
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + J∞(n + K, xu(K, x0), u(· + K))

≥
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + V∞(n + K, xu(K, x0)).

Since this inequality holds for all u(·) ∈ U
∞, it also holds when taking the infimum

on both sides. Hence we get

V∞(n, x0) = inf
u(·)∈U∞(x0)

J∞(n, x0, u(·))

≥ inf
u(·)∈UK (x0)

{
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + V∞(n + K, xu(K, x0))

}
,

i.e., (4.5) with “≥”.
In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control

sequence for the right hand side of (4.7), i.e.,

K−1∑

k=0

�(n + k, xuε (k, x0), u
ε(k)) + J∞(n + K, xuε (K, x0), u

ε(· + K))

≤ inf
u(·)∈U∞(x0)

⎧
⎨

⎩

K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + J∞(n + K, xu(K, x0), u(· + K))

⎫
⎬

⎭ + ε.

Now we decompose u(·) ∈ U
∞(x0) analogously to Lemma3.12(ii) and (iii) into

u1 ∈ U
K(x0) and u2 ∈ U

∞(xu1(K, x0)) via

76 4 Infinite Horizon Optimal Control

u(k) =
{
u1(k), k = 0, . . . ,K − 1
u2(k − K), k ≥ K

This implies

inf
u(·)∈U∞(x0)

⎧
⎨

⎩

K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + J∞(n + K, xu(K, x0), u(· + K))

⎫
⎬

⎭

= inf
u1(·)∈UK (x0)

u2(·)∈U∞(xu1 (K,x0))

⎧
⎨

⎩

K−1∑

k=0

�(n + k, xu1(k, x0), u1(k)) + J∞(n + K, xu1(K, x0), u2(·))
⎫
⎬

⎭

= inf
u1(·)∈UK (x0)

⎧
⎨

⎩

K−1∑

k=0

�(n + k, xu1(k, x0), u1(k)) + V∞(n + K, xu1(K, x0))

⎫
⎬

⎭

Now (4.7) yields

V∞(n, x0) ≤ J∞(n, x0, u
ε(·))

=
K−1∑

k=0

�(n + k, xuε (k, x0), u
ε(k)) + J∞(n + K, xuε (K, x0), u

ε(· + K))

≤ inf
u(·)∈UK (x0)

{
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + V∞(n + K, xu(K, x0))

}
+ ε,

i.e.,

V∞(n, x0)

≤ inf
u(·)∈UK (x0)

{
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + V∞(n + K, xu(K, x0))

}
+ ε.

Since ε > 0 was arbitrary and the expressions in this inequality are independent of
ε, this inequality also holds for ε = 0, which shows (4.5) with “≤” and thus (4.5).

In order to prove (4.6) we use (4.7) with u(·) = u�(·). This yields

V∞(n, x0) = J∞(n, x0, u
�(·))

=
K−1∑

k=0

�(n + k, xu� (k, x0), u
�(k)) + J∞(n + K, xu� (K, x0), u

�(· + K))

≥
K−1∑

k=0

�(n + k, xu� (k, x0), u
�(k)) + V∞(n + K, xu� (K, x0))

4.2 The Dynamic Programming Principle 77

≥ inf
u(·)∈UK (x0)

{
K−1∑

k=0

�(n + k, xu(k, x0), u(k)) + V∞(n + K, xu(K, x0))

}

= V∞(n, x0),

where we used the (already proved) equality (4.5) in the last step. Hence, the two
“≥” in this chain are actually “=” which implies (4.6). �

The following corollary states an immediate consequence from thedynamic program-
ming principle. It shows that tails of optimal control sequences are again optimal
control sequences for suitably adjusted initial value and time.

Corollary 4.5 If u�(·) is an optimal control sequence for (OCPn∞) with initial value
x0 and initial time n, then for each K ∈ N the sequence u�

K(·) = u�(· + K), i.e.,

u�
K(k) = u�(K + k), k = 0, 1, . . .

is an optimal control sequence for initial value xu� (K, x0) and initial time n + K.

Proof Inserting V∞(n, x0) = J∞(n, x0, u�(·)) and the definition of u�
K(·) into (4.7)

we obtain

V∞(n, x0) =
K−1∑

k=0

�(n + k, xu� (k, x0), u
�(k)) + J∞(n + K, xu� (K, x0), u

�
K(·))

Subtracting (4.6) from this equation yields

0 = J∞(n + K, xu� (K, x0), u
�
K(·)) − V∞(n + K, xu� (K, x0))

which shows the assertion. �

The next two results are the analogues of Theorem3.17 and Corollary3.18 in the
infinite horizon setting.

Theorem 4.6 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0 and assume that an optimal control sequence u�(·) exists. Then the feedback law
μ∞(n, x0) = u∗(0) satisfies

μ∞(n, x0) = argmin
u∈U1(x0)

{�(n, x0, u) + V∞(n + 1, f (x0, u))} . (4.8)

and
V∞(n, x0) = �(n, x0, μ∞(n, x0)) + V∞(n + 1, f (x0, μ∞(n, x0))) (4.9)

where in (4.8)—as usual—we interpret U1(x0) as a subset of U, i.e., we identify the
one element sequence u = u(·) with its only element u = u(0).

78 4 Infinite Horizon Optimal Control

Proof The proof is identical to the finite horizon counterpart Theorem3.17. �

As in the finite horizon case, the following corollary shows that the feedback law
(4.8) can be used in order to construct the optimal control sequence.

Corollary 4.7 Consider the optimal control problem (OCPn∞) with x0 ∈ X and
n ∈ N0 and consider an admissible feedback law μ∞ : N0 ×X → U in the sense of
Definition3.2(iv). Denote the solution of the closed-loop system

x(0) = x0, x(k + 1) = f (x(k), μ∞(n + k, x(k)), k = 0, 1, . . . (4.10)

by xμ∞ and assume that μ∞ satisfies (4.8) for initial values x0 = xμ∞(k) for all
k = 0, 1, Then

u�(k) = μ∞(n + k, xu� (k, x0)), k = 0, 1, . . . (4.11)

is an optimal control sequence for initial time n and initial value x0 and the solution
of the closed-loop system (4.10) is a corresponding optimal trajectory.

Proof From (4.11) for x(n) from (4.10) we immediately obtain

xu� (n, x0) = x(n), n = 0, 1,

Hence, we need to show that

V∞(n, x0) = J∞(n, x0, u
�),

where it is enough to show “≥” because the opposite inequality follows by definition
of V∞. Using (4.11) and (4.9) we get

V∞(n + k, x0) = �(n + k, x(k), u�(k)) + V∞(n + k + 1, x(k + 1))

for k = 0, 1, Summing these equalities for k = 0, . . . ,K−1 for arbitraryK ∈ N

and eliminating the identical terms V∞(n + k, x0), k = 1, . . . ,K − 1 on the left and
on the right we obtain

V∞(n, x0) =
K−1∑

k=0

�(n + k, x(k), u�(k)) + V∞(n + K, x(K)) ≥
K−1∑

k=0

�(n + k, x(k), u�(k)).

Since the sum is monotone increasing in K and bounded from above, for K → ∞
the right hand side converges to J∞(n, x0, u�) showing the assertion. �

Corollary4.7 implies that infinite horizon optimal control is nothing but NMPC
with N = ∞: Formula (4.11) for k = 0 yields that if we replace the optimization
problem (OCPnN) in Algorithm3.7 by (OCPn∞), then the feedback law resulting from
this algorithm equals μ∞. The following theorem shows that for stage cost of the

4.2 The Dynamic Programming Principle 79

form (3.8) this infinite horizon NMPC feedback law yields an asymptotically stable
closed loop and thus solves the stabilization and tracking problem.

Theorem 4.8 (Asymptotic stability)Consider the optimal control problem (OCPn∞)
for the control system (2.1) and a reference trajectory xref : N0 → X with reference
control sequence uref ∈ U

∞(xref(0)). Assume that there exist α1, α2, α3 ∈ K∞ such
that the inequalities

α1(|x|xref (n)) ≤ V∞(n, x) ≤ α2(|x|xref (n)) and �(n, x, u) ≥ α3(|x|xref (n)) (4.12)

hold for all x ∈ X, n ∈ N0, and u ∈ U. Assume furthermore that an optimal feedback
μ∞ exists, i.e., an admissible feedback law μ∞ : N0 × X → U satisfying (4.8) for
all n ∈ N0 and all x ∈ X. Then this optimal feedback asymptotically stabilizes the
closed-loop system

x+ = g(n, x) = f (x, μ∞(n, x))

on X in the sense of Definition2.16.

Proof For the closed-loop system, (4.9) and the last inequality in (4.12) yield

V∞(n, x) = �(n, x, μ∞(n, x)) + V∞(n + 1, f (x, μ∞(n, x)))

≥ α3(|x|xref (n)) + V∞(n + 1, f (x, μ∞(n, x))).

Together with the first two inequalities in (4.12) this shows that V∞ is a Lyapunov
function on X in the sense of Definition2.21 with αV = α3. Thus, Theorem2.22
yields asymptotic stability on X. �

By Theorem4.3 we can replace (4.12) by the asymptotic controllability condition
from Definition4.2 if � is of the form (4.3). This is used in the following corollary
in order to give a stability result without explicitly assuming (4.12).

Corollary 4.9 Consider the optimal control problem (OCPn∞) for the control system
(2.1) and a reference trajectory xref : N0 → X with reference control sequence
uref ∈ U

∞(xref(0)). Assume that the system is asymptotically controllable to xref

and that an optimal feedback μ∞, i.e., a feedback satisfying (4.8), exists for the cost
function � : N0 × X × U → R

+
0 from (4.3) with λ = 0. Then this optimal feedback

asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f (x, μ∞(n, x))

on X in the sense of Definition2.16.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof Theorem4.3 yields

α1(|x0|xref (n0)) ≤ V∞(n0, x0) ≤ α2(|x0|xref (n0))

80 4 Infinite Horizon Optimal Control

for suitable α1, α2 ∈ K∞. Furthermore, by (4.3) the third inequality in (4.12) holds
with α3 = γ −1

1 . Hence, (4.12) holds and Theorem4.8 yields asymptotic stability on
X. �

4.3 Relaxed Dynamic Programming

The last results of the previous section show that infinite horizon optimal control
can be used in order to derive a stabilizing feedback law. Unfortunately, a direct
solution of infinite horizon optimal control problem is in general impossible, both
analytically and numerically. Still, infinite horizon optimal control plays an important
role in our analysis since we will interpret the model predictive control algorithm
as an approximation of the infinite horizon optimal control problem. Here the term
“approximation” is not necessarily to be understood in the sense of “being close to”
(although this aspect is not excluded) but rather in the sense of “sharing the important
structural properties”.

Looking at the proof ofTheorem4.8we see that the important property for stability
is the inequality

V∞(n, x) ≥ �(n, x, μ∞(n, x)) + V∞(n + 1, f (x, μ∞(n, x)))

which follows from the feedback version (4.9) of the dynamic programming princi-
ple. Observe that although (4.9) yields equality, only this inequality is needed in the
proof of Theorem4.8.

This observation motivates a relaxed version of this dynamic programming
inequality, which on the one hand yields asymptotic stability and on the other hand
provides a quantitative measure of the closed-loop performance of the system. This
relaxed version will be formulated in Theorem4.11, below. In order to quantitatively
measure the closed-loop performance, we use the infinite horizon cost functional
evaluated along the closed-loop trajectory which we define as follows.

Definition 4.10 (Infinite horizon cost) Let μ : N0 × X → U be an admissible
feedback law. For the trajectories xμ(n) of the closed-loop system x+ = f (x, μ(n, x))
with initial value xμ(n0) = x0 ∈ X we define the infinite horizon cost as

Jcl∞(n0, x0, μ) :=
∞∑

k=0

�(n0 + k, xμ(n0 + k), μ(xμ(n0 + k))).

For stage costs of the form (3.8) our stage cost � is always nonnegative, hence either
the infinite sum has a well defined finite value or it diverges to infinity, in which case
we write Jcl∞(n0, x0, μ) = ∞. More general stage costs will be discussed in Chap.8.

By Corollary4.7 for the infinite horizon optimal feedback law μ∞ we obtain

Jcl∞(n0, x0, μ∞) = V∞(n0, x0)

4.3 Relaxed Dynamic Programming 81

while for all other admissible feedback laws μ we get

Jcl∞(n0, x0, μ) ≥ V∞(n0, x0).

In other words, V∞ is a strict lower bound for Jcl∞(n0, x0, μ).
The following theoremnowgives a relaxed dynamic programming condition from

which we can derive both asymptotic stability and an upper bound on the infinite
horizon cost Jcl∞(n0, x0, μ) for an arbitrary admissible feedback law μ.

Theorem 4.11 (Asymptotic stability and suboptimality estimate) Consider a stage
cost � : N0 ×X ×U → R

+
0 and a function V : N0 ×X → R

+
0 . Let μ : N0 ×X → U

be an admissible feedback law and let S(n) ⊆ X, n ∈ N0 be a family of forward
invariant sets for the closed-loop system

x+ = g(n, x) = f (x, μ(n, x)). (4.13)

Assume there existsα ∈ (0, 1] such that the relaxed dynamic programming inequality

V (n, x) ≥ α�(n, x, μ(n, x)) + V (n + 1, f (x, μ(n, x))) (4.14)

holds for all n ∈ N0 and all x ∈ S(n). Then the suboptimality estimate

Jcl∞(n, x, μ) ≤ V (n, x)/α (4.15)

holds for all n ∈ N0 and all x ∈ S(n).
If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1(|x|xref (n)) ≤ V (n, x) ≤ α2(|x|xref (n)) and �(n, x, u) ≥ α3(|x|xref (n))

hold for all x ∈ X, n ∈ N0, u ∈ U and a reference trajectory xref : N0 → X,
then the closed-loop system (4.13) is asymptotically stable on S(n) in the sense of
Definition2.16.

Proof In order to prove (4.15) consider n ∈ N0, x ∈ S(n) and the trajectory xμ(·) of
(4.13) with xμ(n) = x. By forward invariance of the sets S(n) this trajectory satisfies
xμ(n + k) ∈ S(n + k). Hence from (4.14) for all k ∈ N0 we obtain

α�(n + k, xμ(n + k), μ(n + k, xμ(k)))

≤ V (n + k, xμ(n + k)) − V (n + k + 1, xμ(n + k + 1)).

Summing over k yields for all K ∈ N

α

K−1∑

k=0

�(n + k, xμ(k), μ(xμ(k))) ≤ V (n, xμ(n)) − V (n + K, xμ(n + K)) ≤ V (n, x)

82 4 Infinite Horizon Optimal Control

since V (n+K, xμ(n+K)) ≥ 0 and xμ(n) = x. Since the stage cost � is nonnegative,
the term on the left is monotone increasing and bounded, hence for K → ∞ it
converges to αJcl∞(n, x, μ). Since the right hand side is independent of K , this yields
(4.15).

The stability assertion now immediately follows by observing that V satisfies all
assumptions of Theorem2.22 with αV = α α3. �

Remark 4.12 An inspection of the proof of Theorems2.19 and 2.22 reveals that for
fixed α1, α2 ∈ K∞ and αV = α α3 with fixed α3 ∈ K∞ and varying α ∈ (0, 1]
the attraction rate β ∈ KL constructed in this proof depends on α in the following
way: if βα and βα′ are the attraction rates from Theorem2.22 for αV = α α3 and
αV = α′α3, respectively, with α′ ≥ α, then βα′(r, t) ≤ βα(r, t) holds for all r, t ≥ 0.
This in particular implies that for every ᾱ ∈ (0, 1) the attraction rate βᾱ is also an
attraction rate for all α ∈ [ᾱ, 1], i.e., we can find an attraction rate β ∈ KL which
is independent of α ∈ [ᾱ, 1].
Remark 4.13 Theorem4.11 proves asymptotic stability of the discrete time closed-
loop system (4.13) or (2.5). For a sampled data system (2.8) with sampling period
T > 0 this implies the discrete time stability estimate (2.47) for the sampled data
closed-loop system (2.30). For sampled data systems we may define the stage cost �
as an integral over a running cost function L according to (3.4), i.e.,

�(x, u) :=
∫ T

0
L(ϕ(t, 0, x, u), u(t))dt.

We show that for this choice of � a mild condition on L ensures that the sampled data
closed-loop system (2.30) is also asymptotically stable in the continuous time sense,
i.e., that (2.48) holds. For simplicity, we restrict ourselves to time invariant reference
xref ≡ x∗.

The condition we use is that there exists δ ∈ K∞ such that the vector field fc in
(2.6) satisfies

‖fc(x, u)‖ ≤ max{ε, δ(1/ε)L(x, u)} (4.16)

holds for all x ∈ X, all u ∈ U and all ε > 0. For instance, in a linear–quadratic
problem with X = R

d , U = R
m, and x∗ = 0 we have ‖fc(x, u)‖ = ‖Ax + Bu‖ ≤

C1(‖x‖+‖u‖) and L(x, u) = x�Qx+u�Ru ≥ C2(‖x‖+‖u‖)2 for suitable constants
C1, C2 > 0 provided Q and R are positive definite. In this case, (4.16) holds with
δ(r) = C2

1/C2r, since ‖fc(x, u)‖ > ε implies C1(‖x‖ + ‖u‖) > ε and thus

C1(‖x‖ + ‖u‖) ≤ C2
1

ε
(‖x‖ + ‖u‖)2 ≤ C2

1

C2ε
C2(‖x‖ + ‖u‖)2 = δ(1/ε)L(x, u).

In the general nonlinear case, (4.16) holds if fc is continuous with fc(x∗, u∗) = 0,
L(x, u) is positive definite and the inequality ‖fc(x, u)‖ ≤ CL(x, u) holds for some
constant C > 0 whenever ‖fc(x, u)‖ is sufficiently large.

4.3 Relaxed Dynamic Programming 83

We now show that (4.16) together with Theorem4.11 implies the continuous time
stability estimate (2.48). If the assumptions of Theorem4.11 hold, then (4.15) implies
�(x, μ(x)) ≤ V (x)/α ≤ α2(|x|x∗)/α. Thus, for t ∈ [0,T] inequality (4.16) yields

|ϕ(t, 0, x, μ)|x∗ ≤ |x|x∗ +
∫ t

0
‖fc(ϕ(τ, 0, x, μ), μ(x)(τ))‖dτ

≤ |x|x∗ + max

{
tε, δ(1/ε)

∫ t

0
L(ϕ(τ, 0, x, μ), μ(x)(τ))dτ

}

≤ |x|x∗ + max {Tε, δ(1/ε)�(x, u)}
≤ |x|x∗ + max

{
Tε, δ(1/ε)α2(|x|x∗)/α

}

Setting ε = γ̃ (|x|x∗) with

γ̃ (r) = 1

δ−1
(

1√
α2(r)

)

for r > 0 and γ̃ (0) = 0 yields γ̃ ∈ K∞ and

δ(1/ε)α2(|x|x∗) = √
α2(|x|x∗).

Hence, defining
γ (r) = r + max{T γ̃ (r),

√
α2(r)/α}

we finally obtain
|ϕ(t, 0, x, μ)|x∗ ≤ γ (|x|x∗)

for all t ∈ [0,T] with γ ∈ K∞.
Hence, if (4.16) and the assumptions of Theorem4.11 hold, then the sampled

data closed-loop system (2.30) fulfills the uniform boundedness over T property
from Definition2.24 and consequently by Theorem2.27 the sampled data closed-
loop system (2.30) is asymptotically stable.

We now turn to investigating practical stability. Recalling the Definitions2.15 and
2.17 of P-practical asymptotic stability and their Lyapunov function characteriza-
tions in Theorems2.20 and 2.23 we can formulate the following practical version of
Theorem4.11.

Theorem 4.14 (Asymptotic stability and suboptimality estimate) Consider a stage
cost � : N0 ×X ×U → R

+
0 and a function V : N0 ×X → R

+
0 . Let μ : N0 ×X → U

be an admissible feedback law and let S(n) ⊆ X, and P(n) ⊂ S(n), n ∈ N0 be
families of forward invariant sets for the closed-loop system (4.13).

Assume there exists α ∈ (0, 1] such that the relaxed dynamic programming
inequality (4.14) holds for all n ∈ N0 and all x ∈ S(n) \ P(n). Then the subop-
timality estimate

Jclk∗(n, x, μ) ≤ V (n, x)/α (4.17)

84 4 Infinite Horizon Optimal Control

holds for all n ∈ N0 and all x ∈ S(n), where k∗ ∈ N0 is the minimal time with
xμ(k∗ + n, n, x) ∈ P(k∗ + n) and

Jclk∗(n, x, μ) :=
k∗−1∑

k=0

�(n + k, xμ(n + k, n, x), μ(xμ(n + k, n, x)))

is the truncated closed-loop performance functional from Definition4.10.
If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1(|x|xref (n)) ≤ V (n, x) ≤ α2(|x|xref (n)) and �(n, x, u) ≥ α3(|x|xref (n))

hold for all x ∈ X, n ∈ N0, and u ∈ U and a reference xref : N0 → X, then the closed-
loop system (4.13) is P-asymptotically stable on S(n) in the sense of Definition2.17.

Proof The proof follows with analogous arguments as the proof of Theorem4.11 by
only considering k < k∗ in the first part and using Theorem2.23 with Y(n) = S(n)
instead of Theorem2.22 in the second part. �

Remark 4.15 (i) Note that Remark4.12 holds accordingly for Theorem4.14. Fur-
thermore, it is easily seen that both Theorems4.11 and 4.14 remain valid if f in
(4.13) depends on n.

(ii) The suboptimality estimate (4.17) states that the closed-loop trajectories
xμ(·, x) from (4.13) behave like suboptimal trajectories until they reach the
sets P(·).

As a consequence of Theorem4.11, we can show the existence of a stabilizing
almost optimal infinite horizon optimal feedback even if no infinite horizon optimal
feedback exists. The assumptions of the following Theorem4.16 are identical with
the assumptions of Theorem4.8 except that we do not assume the existence of an
infinite horizon optimal feedback law μ∞.

Theorem 4.16 Consider the the optimal control problem (OCPn∞) with stage cost
� of the form (3.8) for the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). Assume that there
exist α1, α2, α3 ∈ K∞ such that the inequalities (4.12) hold for all x ∈ X, n ∈ N0,
and u ∈ U.

Then for each α ∈ (0, 1) there exists an admissible feedback μα : N0 × X → U
which asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f (x, μα(n, x))

on X in the sense of Definition2.16 and satisfies

Jcl∞(n, x, μα) ≤ V∞(n, x)/α

4.3 Relaxed Dynamic Programming 85

for all x ∈ X and n ∈ N0.

Proof Fix α ∈ (0, 1) and pick an arbitrary x ∈ X. From (4.5) for K = 1 for each
x ∈ X and each ε > 0 there exists uε

x ∈ U
1(x) with

V∞(n, x) ≥ �(n, x, uε
x) + V∞(n + 1, f (x, uε

x)) − ε.

If V∞(n, x) > 0, then (4.12) implies x �= xref(n) and thus again (4.12) yields the
inequality infu∈U �(n, x, u) > 0. Hence, choosing ε = (1 − α) infu∈U �(n, x, u) and
setting μα(n, x) = uε

x yields

V∞(n, x) ≥ α�(n, x, μα(n, x)) + V∞(n + 1, f (x, μα(n, x))). (4.18)

If V∞(n, x) = 0, then (4.12) implies x = xref(n) and thus from the definition of
uref we get f (x, uref(n)) = xref(n + 1). Using (4.12) once again gives us V∞(n +
1, f (x, uref(n))) = 0 and from (3.8) we get �(n, x, uref(n)) = 0. Thus, μα(n, x) =
uref(n) satisfies (4.18). Hence, we obtain (4.14) with V = V∞ for all x ∈ X. In
conjunctionwith (4.12) this implies that all assumptions of Theorem4.11 are satisfied
for V = V∞ with S(n) = X. Thus, the assertion follows. �

Again we can replace (4.12) by the asymptotic controllability condition from
Definition4.2.

Corollary 4.17 Consider the the optimal control problem (OCPn∞) for the control
system (2.1) anda reference trajectory xref : N0 → Xwith reference control sequence
uref ∈ U

∞(xref(0)). Assume that the system is asymptotically controllable to xref and
that the cost function � : N0 × X × U → R

+
0 is of the form (4.3) with λ = 0. Then

for each α ∈ (0, 1) there exists an admissible feedback μα : N0 × X → U which
asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f (x, μα(n, x))

on X in the sense of Definition2.16 and satisfies

Jcl∞(n, x, μα) ≤ V∞(n, x)/α

for all x ∈ X and n ∈ N0.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof Theorem4.3 yields

α1(|x0|xref (n0)) ≤ V∞(n0, x0) ≤ α2(|x0|xref (n0))

for suitable α1, α2 ∈ K∞. Furthermore, by (4.3) the third inequality in (4.12) holds
with α3 = γ −1

1 . Hence, (4.12) holds and Theorem4.16 yields the assertion. �

86 4 Infinite Horizon Optimal Control

While Theorem4.16 and Corollary4.17 are already nicer than Theorem4.8 and
Corollary4.9, respectively, in the sense that no existence of an optimal feedback law
is needed, for practical applications both theorems require the (at least approximate)
solution of an infinite horizon optimal control problem, which is in general a hard,
often infeasible computational task, see also the discussion in Sect. 4.4, below.

Hence, in the following chapters we are going to use Theorems4.11 and 4.14 in a
different way: we will derive conditions under which (4.14) is satisfied by the finite
horizon optimal value function V = VN and the corresponding NMPC feedback law
μ = μN . The advantage of this approach lies in the fact that in order to compute
μN (x0) it is sufficient to know the finite horizon optimal control sequence u� for
initial value x0. This is a much easier computing task, at least if the optimization
horizon N is not too large.

4.4 Notes and Extensions

Infinite horizon optimal control is a classical topic in control theory. The version pre-
sented in Sect. 4.1 can be seen as a nonlinear generalization of the classical (discrete
time) linear-quadratic regulator (LQR) problem, see, e.g., Dorato and Levis [6]. A
rather general existence result for optimal control sequences and trajectories in the
metric space setting considered here was given by Keerthi and Gilbert [15]. Note,
however, that by Theorem4.16 we do not need the existence of optimal controls for
the existence of almost optimal stabilizing feedback controls.

Dynamic programming as introduced in Sect. 4.2 is a very common approach
also for infinite horizon optimal control and we refer to the discussion in Sect. 3.5
for some background information. As in the finite horizon case, the monographs of
Bertsekas [2, 3] provide a good source for more information on this method.

The connection between infinite horizon optimal control and stabilization prob-
lems for nonlinear systems has been recognized for quite a while. Indeed, the
well known construction of control Lyapunov functions in continuous time by
Sontag [23] is based on techniques from infinite horizon optimal control. As already
observed after Corollary4.7, discrete time infinite horizon optimal control is noth-
ing but NMPC with N = ∞. This has lead to the investigation of infinite horizon
NMPC algorithms, e.g., by Keerthi and Gilbert [16], Meadows and Rawlings [19],
and Alamir and Bornard [1]. For linear systems, this approach was also considered
in the monograph of Bitmead, Gevers, and Wertz [4].

The stability results in this chapter are easily generalized to the stability of sets
when � is of the form (3.24). In this case, it suffices to replace the bounds αj(|x|xref (n)),
j = 1, 2, 3, in, e.g., Theorem4.11 by bounds of the form

αj

(
min

y∈X ref (n)
|x|y

)
. (4.19)

4.4 Notes and Extensions 87

Alternatively, one could formulate these bounds via so called proper indicator func-
tions as used, e.g., by Grimm et al. in [8].

By Formula (4.8) the optimal—and stabilizing—feedback law μ∞ can be com-
puted by solving a rather simple optimization problem once the optimal value
function V∞ is known. This has motivated a variety of approaches for solving the
dynamic programming equation (4.5) (usually for K = 1) numerically in order to
obtain an approximation of μ∞ from a numerical approximation of V∞. Approxi-
mation techniques like linear and multilinear approximations are proposed, e.g., in
Kreisselmeier and Birkhölzer [17], Camilli, Grüne, and Wirth [5], or by Falcone
[7]. A set oriented approach was developed in Junge and Osinga [14] and used for
computing stabilizing feedback laws in Grüne and Junge [10] (see also [11, 12] for
further improvements of this method). All such methods, however, suffer from the
so called curse of dimensionality, which means that the numerical effort grows expo-
nentially with the dimension of the state space X. In practice, this means that these
approaches can only be applied for low-dimensional systems, typically not higher
than 4–5. For homogeneous systems, Tuna [25] (see also Grüne [9]) observed that it
is sufficient to compute V∞ on a sphere, which reduces the dimension of the prob-
lem by one. Still, this only slightly reduces the computational burden. In contrast to
this, a numerical approximation of the optimal control sequence u� for finite horizon
optimal control problems like (OCPN) and its variants is possible also in rather high
space dimensions, at least when the optimization horizon N is not too large. This
makes the NMPC approach computationally attractive.

Relaxed dynamic programming in the form introduced in Sect. 4.3 was originally
developed by Lincoln and Rantzer [18] and Rantzer [20] in order to lower the com-
putational complexity of numerical dynamic programming approaches. Instead of
trying to solve the dynamic programming equation (4.5) exactly, it is only solved
approximately using numerical approximations for V∞ from a suitable class of func-
tions, e.g., polynomials. The idea of using such relaxations is classical and can be
realized in various other ways, too, see, e.g., [2, Chapter 6]. Here we use relaxed
dynamic programming not for solving (4.5) but rather for proving properties of
closed-loop solutions, cf. Theorems4.11 and 4.14. While the specific form of the
assumptions in these theorems were first used in an NMPC context in Grüne and
Rantzer [13], the conceptual idea is actually older and can be found, e.g., in Shamma
and Xiong [22] or in Scokaert, Mayne and Rawlings [21]. The fact that stability
of the sampled data closed-loop can be derived from the stability of the associated
discrete time system for integral costs (3.4), cf. Remark4.13, was, to the best of our
knowledge, not observed before.

Problems

1. Consider the problem (OCPn∞) with finite optimal value function V∞ : N0×X →
R

+
0 and asymptotically stabilizing admissible optimal feedback law μ∞ : N0 ×

X → U. Let V : N0 × X → R
+
0 be a function which satisfies

88 4 Infinite Horizon Optimal Control

V (n, x0) = min
u∈U1(x0)

{�(n, x0, u) + V∞(n + 1, f (x0, u))} (4.20)

for all n ∈ N0 and all x0 ∈ X.

(a) Prove that V (n, x) ≥ V∞(n, x) holds for all n ∈ N0 and all x ∈ X.
(b) Prove that for the optimal feedback law the inequality

V (n, x0) − V∞(n, x0) ≤ V (n + 1, f (x, μ∞(n, x))) − V∞(n + 1, f (x, μ∞(n, x)))

holds for all n ∈ N0 and all x ∈ X.
(c) Assume that in addition there exist α2 ∈ K∞ such that the inequality

V (n, x) ≤ α2(|x|xref (n))

holds for all n ∈ N0, x ∈ X and a reference trajectory xref : N0 → X. Prove
that under this condition V (n, x) = V∞(n, x) holds for all n ∈ N0 and all
x ∈ X.

(d) Find a function V : N0 ×X → R
+
0 satisfying (4.20) but for which V (n, x) =

V∞(n, x) does not hold. Of course, for this function the additional condition
on V from (c) must be violated.

Hint for (a): Define a feedback μ which assigns to each pair (n, x) a minimizer of
the right hand side of (4.20), check that Theorem4.11 is applicable for S(n) = X

(for which α ∈ (0, 1]?) and conclude the desired inequality from (4.15).
Hint for (c): Perform an induction over the inequality from (b) along the optimal
closed-loop trajectory.

2. Consider the unconstrained linear control system

x+ = Ax + Bu

with matrices A ∈ R
d×d , B ∈ R

d×m. Consider problem (OCPn∞) with

�(x, u) = x�Qx + u�Ru

with symmetric positive definite matrices Q,R of appropriate dimension (this
setting is called the linear-quadratic regulator (LQR) problem). If the pair (A,B)

is stabilizable, then it is known that the discrete time algebraic Riccati equation

P = Q + A�(P − PB(B�PB + R)−1B�P)A.

has a unique symmetric and positive definite solution P ∈ R
d×d .

(a) Show that the function V (x) = x�Px satisfies (4.20). Note that since the
problem here is time invariant we do not need the argument n.

(b) Use the results from Problem 1 to conclude that V∞(x) = x�Px holds.

Problems 89

(c) Prove that the corresponding optimal feedback law asymptotically stabilizes
the equilibrium x∗ = 0.

Hint for (a): You may use that for symmetric matrices C,D,E of appropriate
dimension with D positive definite the formula

min
u∈Rm

{x�Cx + u�Du + u�Ex + x�Eu} = c�Cx − x�ED−1x

holds. This formula is proved by computing the zero of the derivative of the
expression in the “min” with respect to u (which is also a nice exercise).
Hint for (b) and (c): Use that for any symmetric and positive definite matrix
M ∈ R

d×d there exist constants C2 ≥ C1 > 0 such that the inequality C1‖x‖2 ≤
x�Mx ≤ C2‖x‖2 holds for all x ∈ R

d .
3. Consider the finite horizon counterpart (OCPN) of Problem 2. For this setting

one can show that the optimal value function is of the form VN (x) = x�PNx
and that the matrix PN converges to the matrix P from Problem 2 as N → ∞.
This convergence implies that for each ε > 0 there exists Nε > 0 such that the
inequality

|x�PNx − x�Px| ≤ ε‖x‖2

holds for all N ≥ Nε. Use this property and Theorem4.11 in order to prove that
the NMPC feedback law from Algorithm 3.1 is asymptotically stabilizing for
sufficiently large optimization horizon N > 0.
Hint: Look at the hint for Problem 2 (b) and (c).

4. Consider the scalar control system

x+ = x + u

with x ∈ X = R, u ∈ U = R which shall be controlled via the NMPC Algorithm
3.1 using the quadratic stage cost function

�(x, u) = x2 + u2

Compute VN (x0) und Jcl∞(x0, μN (·)) for N = 2 (cf. Chap. 3, Problem 3). Using
these values, derive the degree of suboptimality α from the relaxed dynamic
programming inequality (4.14) and from the suboptimality estimate (4.15).

References

1. Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme:
the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)

2. Bertsekas, D.P.: Dynamic Programming andOptimal Control, vol. I, 3rd edn. Athena Scientific,
Belmont (2005)

90 4 Infinite Horizon Optimal Control

3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II, 2nd edn. Athena Scien-
tific, Belmont (2001)

4. Bitmead, R.R., Gevers, M., Wertz, V.: Adaptive optimal control. The thinking man’s GPC.
International Series in Systems and Control Engineering. Prentice-Hall, New York (1990)

5. Camilli, F., Grüne, L., Wirth, F.: A regularization of Zubov’s equation for robust domains of
attraction. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds.) Nonlinear Control in
the Year 2000, vol. 1. Lecture Notes in Control and Information Science, vol. 258, pp. 277–289.
Springer, London (2001)

6. Dorato, P., Levis, A.H.: Optimal linear regulators: the discrete-time case. IEEETrans. Automat.
Control 16, 613–620 (1971)

7. Falcone,M.: Numerical solution of dynamic programming equations. Appendix A in Bardi, M.
andCapuzzoDolcetta, I., Optimal control and viscosity solutions ofHamilton–Jacobi–Bellman
equations, Birkhäuser, Boston (1997)

8. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a
local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50(5), 546–558
(2005)

9. Grüne, L.: Homogeneous state feedback stabilization of homogeneous systems. SIAM J. Con-
trol Optim. 38, 1288–1314 (2000)

10. Grüne, L., Junge, O.: A set oriented approach to optimal feedback stabilization. Syst. Control
Lett. 54, 169–180 (2005)

11. Grüne, L., Junge, O.: Global optimal control of perturbed systems. J. Optim. Theory Appl.
136, 411–429 (2008)

12. Grüne, L., Junge, O.: Set oriented construction of globally optimal controllers. at -. Automa-
tisierungstechnik 57, 287–295 (2009)

13. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers.
IEEE Trans. Automat. Control 53, 2100–2111 (2008)

14. Junge, O., Osinga, H.M.: A set oriented approach to global optimal control. ESAIM Control
Optim. Calc. Var. 10, 259–270 (2004)

15. Keerthi, S.S., Gilbert, E.G.: An existence theorem for discrete-time infinite-horizon optimal
control problems. IEEE Trans. Automat. Control 30(9), 907–909 (1985)

16. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of
constrained discrete-time systems: stability and moving-horizon approximations. J. Optim.
Theory Appl. 57(2), 265–293 (1988)

17. Kreisselmeier, G., Birkhölzer, T.: Numerical nonlinear regulator design. IEEE Trans. Automat.
Control 39, 33–46 (1994)

18. Lincoln, B., Rantzer, A.: Relaxing dynamic programming. IEEE Trans. Automat. Control
51(8), 1249–1260 (2006)

19. Meadows, E.S., Rawlings, J.B.: Receding horizon control with an infinite cost. In: Proceedings
of the American Control Conference - ACC 1993, pp. 2926–2930. San Francisco, California,
USA (1993)

20. Rantzer, A.: Relaxed dynamic programming in switching systems. IEE Proc. - Control Theory
Appl. 153(5), 567–574 (2006)

21. Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasi-
bility implies stability). IEEE Trans. Automat. Control 44(3), 648–654 (1999)

22. Shamma, J.S., Xiong, D.: Linear nonquadratic optimal control. IEEE Trans. Automat. Control
42(6), 875–879 (1997)

23. Sontag, E.D.: A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control
Optim. 21(3), 462–471 (1983)

24. Sontag, E.D.: Comments on integral variants of ISS. Syst. Contr. Lett. 34, 93–100 (1998)
25. Tuna, E.S.: Optimal regulation of homogeneous systems. Automatica 41, 1879–1890 (2005)

Chapter 5
Stability and Suboptimality Using
Stabilizing Terminal Conditions

In this chapter, we present a comprehensive stability and suboptimality analysis for
NMPC schemes with stabilizing terminal conditions. Both endpoint constraints as
well as regional constraints plus Lyapunov function terminal cost are covered. We
show that viability of the state constraint set can be replaced by viability of the ter-
minal constraint set in order to ensure admissibility of the resulting NMPC-feedback
law. The “reversing of monotonicity” of the finite time optimal value functions is
proved and used in order to apply the relaxed dynamic programming framework
introduced in the previous chapter. Using this framework, stability, suboptimality
(i.e., estimates about the infinite horizon performance of the NMPC closed-loop
system), and inverse optimality results are proved.

5.1 The Relaxed Dynamic Programming Approach

In this chapter, we investigate stability and performance of NMPC schemes with
stabilizing terminal conditions for stage costs � satisfying (3.8). Before we turn to
the precise definition of these conditions, we outline the main arguments that we will
use in our analysis. The central idea is to apply the relaxed dynamic programming
result from Theorem 4.11 to μ = μN and V = VN from Algorithm 3.11 and its
variants and Definition 3.14, respectively.

According to the assumptions of Theorem 4.11, in order to obtain the subopti-
mality estimate Jcl∞(n, x, μN) ≤ VN (n, x)/α we have to ensure the inequality

VN (n, x) ≥ α�(n, x, μN (n, x)) + VN (n + 1, f (x, μN (n, x))) (5.1)

to hold for all x ∈ X, n ∈ N0, and some α ∈ (0, 1], preferably as close to one as
possible.

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_5

91

92 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

For asymptotic stability, in addition we have to ensure the existence of α1, α2,
α3 ∈ K∞ such that the inequalities

α1(|x|xref(n)) ≤ VN (n, x) ≤ α2(|x|xref(n)) and �(n, x, u) ≥ α3(|x|xref(n)) (5.2)

hold for all x ∈ X, n ∈ N0, and u ∈ U.
In order to motivate why stabilizing terminal conditions can be helpful when

verifying (5.1), let us consider the problem of verifying (5.1) for the optimal control
problem (OCP n

N). Looking at Equality (3.20) from Theorem 3.17 and noting that
ωN = 1 holds if we specialize (OCP n

N,e) to (OCP
n
N) we see that μN and VN satisfy

VN (n, x0) ≥ �(n, x0, μN (n, x0)) + VN−1(n + 1, f (x0, μN (n, x0))). (5.3)

This is “almost” (5.1), even with α = 1, except that (5.3) contains the function VN−1

at the place where we would like to have VN .
The trouble now is that VN is obtained by optimizing over N steps while VN−1

by optimizing over only N − 1 steps. Hence, without terminal conditions, for each
admissible control sequence u ∈ U

N (x0) we get

JN (n, x0, u) ≥ JN−1(n, x0, u).

This inequality immediately carries over to the corresponding optimal value func-
tions, i.e., we obtain

VN (n, x0) ≥ VN−1(n, x0). (5.4)

Unfortunately, this is exactly the opposite ofwhatwewould need in order to conclude
(5.1) from (5.3).

This is the point where suitable terminal conditions provide a way out. In the fol-
lowing sections, we discuss terminal constrained variants (OCPN,e) and (OCP n

N,e) of
the optimal control problems (OCPN) and (OCP n

N),respectively, underwhich inequal-
ity (5.4) is reversed. Throughout this chapter we will not need viability of the state
constraint set X, i.e., Assumption 3.3 will not be needed. As we will see, viability of
the terminal constraint setX0 is sufficient in order to prove that the resulting NMPC-
feedback law maintains the imposed state constraints, see also the comments after
Lemma 5.2 and before Assumption 5.9, below.

5.2 Equilibrium Endpoint Constraint

A simple way of constructing stabilizing terminal conditions consists of explicitly
including the desired reference solution in the optimization constraints.We introduce
this variant for the case of a constant reference xref = x∗ and the corresponding
Algorithm 3.10 and discuss the general case of a time-varying reference at the end
of this section, cf. Problem (5.14). Within Algorithm 3.10, we use the optimization

5.2 Equilibrium Endpoint Constraint 93

problem (OCPN,e) with X0 = {x∗}, F ≡ 0, and ωk = 1 for k = 0, . . . ,N − 1. This
means that we specialize (OCPN,e) to

minimize JN (x0, u(·)) :=
N−1∑

k=0

�(xu(k, x0), u(k))

with respect to u(·) ∈ U
N
X0

(x0) with X0 = {x∗}
subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(5.5)

Recall from Definition 3.9 that each trajectory xu(·, x0) with u(·) ∈ U
N
X0

(x0)
satisfies xu(N, x0) ∈ X0, i.e., xu(N, x0) = x∗. Thus, in (5.5) we only optimize over
trajectories satisfying this equilibrium endpoint constraint. Note that (5.5) is only
well defined if x0 is an element of the feasible set XN from Definition 3.9.

The idea behind the equilibrium endpoint constraint xu(N, x0) = x∗ is intuitive:
since we want our closed-loop system to converge to x∗ we simply add this require-
ment as a constraint to the optimal control problem. And since “convergence” is dif-
ficult to formalize for the finite horizon predictions, it appears reasonable to require
the predictions to end exactly at the desired equilibrium.

For the analysis of this problem we will use the following assumptions.

Assumption 5.1 (Equilibrium endpoint constraint) (i) The point x∗ ∈ X is an equi-
librium for an admissible control value u∗, i.e., there exists a control value u∗ ∈ U(x∗)
with f (x∗, u∗) = x∗.

(ii) The stage cost � : X × U → R
+
0 satisfies �(x∗, u∗) = 0 for u∗ from (i).

Observe that Assumption 5.1(i) is nothing else but a viability assumption for
X0 = {x∗}, cf. Assumption 3.3. In order to show that Inequality (5.4) is indeed
reversed for Problem (5.5) satisfying Assumption 5.1, we first need an auxiliary
result for the feasible sets XN and the corresponding admissible control sequences
U

N
X0

(x0) from Definition 3.9. For the specific constraint xu(N, x0) = x∗ in (5.5) the
following lemma states that each admissible control sequence on the horizon N − 1
can be extended to an admissible control sequence on the horizon N .

Lemma 5.2 If Assumption 5.1(i) holds for the terminal constraint set X0 = {x∗},
then for each N ≥ 2 the following properties hold.

(i) For each x0 ∈ XN−1 and each uN−1(·) ∈ U
N−1
X0

(x0) the control sequence

uN (k) := uN−1(k), k = 0, . . . ,N − 2, uN (N − 1) := u∗ (5.6)

satisfies uN ∈ U
N
X0

(x0)
(ii) The inclusion XN−1 ⊆ XN holds.

94 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

Proof (i) The idea of the proof is simple: since the trajectory related to uN−1(·) ∈
U

N−1
X0

(x0) ends up in x∗, the trajectory corresponding to the prolonged control
sequence uN from (5.6) satisfies xuN (N, x0) = x∗.

In order to verify uN ∈ U
N
X0

(x0) we need to show that xuN (k, x0) ∈ X for k =
0, . . . ,N , uN (k) ∈ U(xuN (k, x0)) for k = 0, . . . ,N − 1 and xuN (N, x0) = x∗.

From uN−1 ∈ U
N−1
X0

(x0) and Lemma 3.12 we obtain

xuN−1(k, x0) ∈ XN−1−k ⊆ X, uN−1(k) ∈ U(xuN−1(k, x0)), k = 0, . . . ,N − 2 (5.7)

and
xuN−1(N − 1, x0) = x∗ ∈ X0 ⊆ X (5.8)

and from (5.8) and the definition of uN we get

xuN (k, x0) = xuN−1(k, x0), k = 0, . . . ,N − 1, xuN (N, x0) = x∗. (5.9)

Hence (5.7) and (5.8) are also valid for xuN . In addition, we get uN (N − 1) = u∗ ∈
U(x∗) = U(xuN (N − 1, x0)) and xuN (N, x0) = f (xuN (N − 1, x0), uN (N − 1)) =
f (x∗, u∗) = x∗. Thus, uN ∈ U

N
X0

(x0).
(ii) Let x0 ∈ XN−1. Then, there exists uN−1 ∈ U

N−1
X0

(x0) and by (i) we can conclude
that there exists uN ∈ U

N
X0

(x0). Thus, UN
X0

(x0)
= ∅ from which x0 ∈ XN follows. �

Observe that we did not need to impose viability of the constraint set X in this
proof. In fact, we implicitly used that under Assumption 5.1(i) the set XN is forward
invariant for all admissible control sequences U

N
X0

(x). We explicitly formulate a
consequence of this property for the NMPC closed-loop system in the following
Lemma.

Lemma 5.3 Under Assumption 5.1(i) for each N ∈ N the NMPC-feedback law μN

obtained from Algorithm 3.10 with (OCPN,e) = (5.5) renders the set XN forward
invariant, i.e., f (x, μN (x)) ∈ XN for all x ∈ XN .

Proof Follows immediately from Corollary 3.13 and Lemma 5.2(ii). �

This lemma shows that if a state x is feasible, i.e., contained in the feasible set
XN then its closed-loop successor state f (x, μN (x)) is again feasible. Thus, XN is
recursively feasible in the sense defined after Theorem 3.5. Using Lemma 5.2 it is
now easy to establish that Inequality (5.4) is reversed for (5.5).

Lemma 5.4 If Assumptions 5.1(i) and (ii) hold, then for each N ≥ 2 and each
x0 ∈ XN−1 the optimal value functions of Problem (5.5) satisfy

VN (x0) ≤ VN−1(x0) (5.10)

5.2 Equilibrium Endpoint Constraint 95

Proof We first show that for each uN−1 ∈ U
N−1
X0

(x0) the control sequence uN ∈
U

N
X0

(x0) from (5.6) satisfies

JN (x0, uN) ≤ JN−1(x0, uN−1). (5.11)

To this end, recall from the proof of Lemma 5.2 that the trajectories xuN (·, x0) and
xuN−1(·, x0) satisfy

xuN (k, x0) = xuN−1(k, x0), k = 0, . . . ,N − 1, xuN (N, x0) = x∗.

Together with (5.6) this yields

JN (x0, uN) =
N−1∑

k=0

�(xuN (k, x0), uN (k))

=
N−2∑

k=0

�(xuN (k, x0), uN (k)) + �(xuN (N − 1, x0), uN (N − 1))

=
N−2∑

k=0

�(xuN−1(k, x0), uN−1(k))

︸ ︷︷ ︸
=JN−1(x0,uN−1)

+ �(x∗, u∗)︸ ︷︷ ︸
=0

= JN−1(x0, uN−1).

This shows (5.11). In fact, we even proved “=” but wewill only need “≤” for proving
(5.10). In order to prove (5.10), let ukN−1 ∈ U

N−1
X0

(x0), k ∈ N, be a sequence of control
sequences such that

VN−1(x0) = inf
u∈UN−1

X0
(x0)

JN−1(x0, u) = inf
k∈N

JN−1(x0, u
k
N−1)

holds. Then, we can find ukN ∈ U
N
X0

(x0) such that (5.11) holds for uN = ukN and
uN−1 = ukN−1. This implies

VN (x0) = inf
u∈UN

X0
(x0)

JN (x0, u) ≤ inf
k∈N

JN (x0, u
k
N) ≤ inf

k∈N
JN−1(x0, u

k
N−1) = VN−1(x0)

and thus (5.10). �

Note that for Problem (5.5) in general (5.4) does no longer hold, because the terminal
constraint is more restrictive for smaller horizon than for larger ones. Thus, with the
terminal constraint we do not get (5.10) on top of (5.4). Rather, we replaced (5.4)
by (5.10).

Lemma 5.4 in conjunction with (5.3) enables us to conclude that the optimal
value function VN satisfies Inequality (5.1). This will be used in the proof of our
following first stability theorem for an NMPC scheme in which we simply assume
(5.2). Sufficient conditions for these inequalities will be discussed after the theorem.

96 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

Theorem 5.5 (Stability using endpoint constraint) Consider the NMPC Algorithm
3.10 with (OCPN,e) = (5.5) and optimization horizon N ∈ N. Let the Assumptions
5.1(i) and (ii) hold and assume that (5.2) holds for suitable α1, α2, α3 ∈ K∞. Then
the nominal NMPC closed-loop system (3.5) with NMPC-feedback lawμN is asymp-
totically stable on XN .

In addition, for Jcl∞(x, μN) from Definition 4.10 the inequality

Jcl∞(x, μN) ≤ VN (x)

holds for each x ∈ XN .

Proof Combining Equality (3.20) from Theorem 3.17 with Inequality (5.10) from
Lemma 5.4 with x0 = f (x, μN (x)), for each x ∈ XN we obtain

VN (x) ≥ �(x, μN (x)) + VN−1(f (x, μN (x))) ≥ �(x, μN (x)) + VN (f (x, μN (x))).

Thus, the assumptions of Theorem 4.11 are satisfied with V = VN , μ = μN , S(n) =
XN (which is forward invariant by Lemma 5.3) and α = 1 which yields the assertion.
�

The fact that each predicted trajectory xu in (5.5) satisfies xu(N, x0) = x∗ does by
no means imply that the NMPC closed-loop trajectory satisfies xμN (N) = x∗. The
following example illustrates this fact.

Example 5.6 Consider again Example 2.1, i.e.,

x+ = x + u =: f (x, u)

with X = X = U = U = R and x∗ = 0. We use the stage cost �(x, u) = x2 + u2 and
the terminal constraints X0 = {x∗}.

Observing that every u(·) ∈ U
1
X0

(x)must satisfy f (x, u(0)) = 0we get u(0) = −x.
Hence, (3.19) yields

V1(x) = inf
u∈U1

X0
(x)

�(x, u(0)) = x2 + (−x)2 = 2x2.

and μ1(x) = −x. Now, using (3.19) for (5.5) with N = 2 we get

μ2(x) = argmin
u∈R

{�(x, u) + V1(f (x, u))} = argmin
u∈R

{
x2 + u2 + 2(x + u)2

}
= −2

3
x,

which is easily computed by setting the first derivative w.r.t. u of the term in braces
to 0, observing that the second derivative is strictly positive. Thus, the NMPC closed
loop for N = 2 becomes

x+ = f (x, μ2(x)) = x − μ2(x) = x − 2

3
x = 1

3
x

5.2 Equilibrium Endpoint Constraint 97

with solutions

xμ2(n, x0) = 1

3n
x0.

Hence, the closed-loop solution asymptotically converges to x∗ = 0 but never reaches
0 in finite time.

In Theorem 5.5 we have made the assumption that VN satisfies the inequalities in
(5.2). In terms of the problem data f and � this is an implicit condition which may be
difficult to check. For this reason, in the following proposition we give a sufficient
condition on f and � for these inequalities to hold true.

Proposition 5.7 Let VN denote the optimal value function of Problem (5.5) for opti-
mization horizon N ∈ N.

(i) Assume there exists a function α3 ∈ K∞ such that the inequality

�(x, u) ≥ α3(|x|x∗)

holds for all x ∈ X and all u ∈ U. Then

VN (x) ≥ α3(|x|x∗)

holds for all x ∈ XN .
(ii) Assume that f and � are continuous in X ×U, U is compact and there exists a

ball Bν(x∗) ⊂ X, ν > 0, and a function α̃2 ∈ K∞ with the following property: For
each x ∈ Bν(x∗) ∩ X there is ux ∈ U(x) with f (x, ux) = x∗ and

�(x, ux) ≤ α̃2(|x|x∗). (5.12)

Then there exists α2 ∈ K∞ such that

VN (x) ≤ α2(|x|x∗). (5.13)

holds for all x ∈ XN .

Proof (i) is immediate from the definition of VN .
In order to prove (ii), first observe that for x ∈ Bν(x∗) ∩ X the existence of ux

with f (x, ux) = x∗ immediately implies x ∈ X1 and

V1(x) = inf
u∈U1

X0
(x)

�(x, u(0)) ≤ �(x, ux) ≤ α̃2(|x|x∗),

because the control sequence u(·) ∈ U1 defined by u(0) = ux lies in U
1
X0

(x) since
by assumption f (x, ux) = x∗. Now by Lemma 5.4 the inequality

VN (x) ≤ α̃2(|x|x∗)

98 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

follows for each N ∈ N and each x ∈ Bν(x∗) ∩ X.
For x ∈ XN outside this ball consider an arbitrary closed ball Br(x∗) for r > 0

and an arbitrary N ∈ N. Since f and � are assumed to be continuous, the functional
JN : X × UN → R

+
0 is continuous, too, and since U is assumed to be compact the

set Br(x∗) × UN is also compact (both continuity and compactness hold with the
usual product topology on X × UN). Thus the value

α̂2(r) := max{JN (x, u) | x ∈ Br(x∗), u ∈ UN }

exists and is finite and the resulting function α̂2 is continuous and monotone increas-
ing in r. By this definition, for each x ∈ XN we get

VN (x) ≤ α̂2(|x|x∗).

Now define a function α2 : R+
0 → R

+
0 by

α2(r) := r +
{

α̃2(ν) + α̂2(r), r ≥ ν

α̃2(r) + rα̂2(ν)/ν, r ∈ [0, ν)

This function is continuous since both expressions are equal for r = ν, equal to
0 at r = 0 and strictly increasing and unbounded due to the addition of r. Hence,
α2 ∈ K∞. Furthermore, it satisfies α2(r) ≥ α̃2(r) for r ∈ [0, ν] and α2(r) ≥ α̂2(r)
for r ≥ ν. Thus, it is the desired upper bound for VN . �

The specific upper boundα2 constructed in this proof depends onN andwill in general
grow unboundedly as N → ∞. However, since by inequality (5.10) we know that
the functions VN are decreasing in N we can actually conclude the existence of an
upper bound in K∞ which is independent of N . However, since we did not (and
do not want to) assume continuity of VN , the construction of this K∞-function is
somewhat technically involved which is why we skip the details.

If wewant to deduce local asymptotic controllability from the asymptotic stability
on XN , we need that XN contains a ball Bν(x∗) around the equilibrium x∗, cf. the
comment after Definition 2.14. The following example shows that this does not
necessarily mean that Xk for k ≤ N − 1 must contain such a ball, too.

Example 5.8 Consider the system x+ = f (x, u) with x ∈ X = X = R
2, u ∈ U =

[0, 1] ⊂ U = R, x∗ = 0 and

f (x, u) =
(
x1(1 − u)

‖x‖u
)

.

We use the NMPC Algorithm 3.10 with (OCPN,e) = (5.5). For x
= 0 the system is
controllable to X0 = {0} in one step if and only if x1 = 0. Thus X1 = {x ∈ R

2 | x1 =
0} which obviously does not contain a neighborhood of x∗ = 0.

5.2 Equilibrium Endpoint Constraint 99

On the other hand, using the control sequence u(0) = 1, u(1) = 0 for each initial
value x ∈ R

2 one obtains

xu(0, x) = x, xu(1, x) = (0, ‖x‖)�, xu(2, x) = 0,

which implies X2 = R
2 = X and thus XN = R

2 = X for all N ≥ 2.
Furthermore, using the stage cost �(x, u) = ‖x‖2 we obtain the upper bound

V2(x) ≤ ‖x‖2 + ‖(0, ‖x‖)�‖2 = 2‖x‖2

and the lower bound ‖x‖2 ≤ VN (x) for all N ≥ 2. Hence, Theorem 5.5 implies that
the NMPC-feedback law μN stabilizes the system on XN = R

2 for each N ≥ 2.

The method described in this section is easily extended to time-varying reference
trajectories xref(·) replacing (5.5) by

minimize JN (n, x0, u(·)) :=
N−1∑

k=0

�(n + k, xu(k, x0), u(k))

with respect to u(·) ∈ U
N
X0

(n, x0) with X0(n) = {xref(n)}
subject to
xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(5.14)

and choosing (OCP n
N,e) = (5.14) in Algorithm 3.11. Since xref(·) is known, the con-

straint xu(n + N, x0) = xref(n + N) is as easy to implement as its time-invariant
counterpart in (5.5). All proofs in this section are easily extended to the time-varying
case by including the appropriate time instants in �, JN , VN , and μN .

5.3 Lyapunov Function Terminal Cost

The equilibrium terminal constraint described in the previous section provides a
way to guarantee stability which is intuitive and easy to implement. Still, it has the
obvious drawback that the system under consideration must be exactly controllable
to x∗ in finite time in order to ensure that the feasible setsXN of (5.5) or (5.14) indeed
contain a neighborhood of x∗ or xref(n) in the time-varying case. Thus, it cannot be
applied to systems which are merely stabilizable but not controllable to x∗. As a
simple system where this is the case consider, e.g., the system with two-dimensional
state x = (x1, x2)� and one-dimensional control u given by

x+ = f (x, u) =
(
x1 + u
x2/2

)
.

100 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

This system is obviously stabilizable at x∗ = 0, e.g., by the feedback law μ(x) =
−x1/2.However, it is not controllable to x∗ = 0 infinite time since for any initial value
x0 = (x0 1, x0 2)� with x0 2
= 0 the second component of the solution xu(k, x0) =
(xu(k, x0)1, xu(k, x0)2)� satisfies xu(k, x0)2 = 2−kx0 2
= 0 for all k ≥ 0 regardless
of the choice of u(·).

Furthermore, for nonlinear and nonconvex optimal control problems the strict
point constraint xn(N, x0) = x∗ may cause numerical difficulties in the optimization
algorithm, such that the algorithm may not be able to find a feasible solution even if
such a solution exists.

In this section, we are going to present terminal conditions in which the terminal
constraint is relaxed by choosingX0 as a larger set containing x∗. In order to guarantee
stability for this relaxed terminal constraint, we add the terminal cost function F in
(OCPN,e) to the terminal conditions. Again, we introduce the method for constant
reference xref = x∗ and explain the necessary modifications for the general case at
the end of this section.

We choose the optimal control problem (OCPN,e) in Algorithm 3.10 as

minimize JN (x0, u(·)) :=
N−1∑

k=0

�(xu(k, x0), u(k))

+ F(xu(N, x0))
with respect to u(·) ∈ U

N
X0

(x0) with x∗ ∈ X0

subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(5.15)

Recall again that by Definition 3.9 the choice u(·) ∈ U
N
X0

(x0) guarantees xu(N, x0) ∈
X0 and that (5.15) is only well defined for x0 in the feasible set XN from Definition
3.9.

We are now going to specify the properties of the terminal constraint set X0 ⊆ X

and the terminal cost F : X0 → R
+
0 . As in the last section we do not need to impose

Assumption 3.3, i.e., viability for the state constraint set X. However, in order to
compensate for this we need viability of X0.

Assumption 5.9 (Lyapunov function terminal cost) For the closed terminal con-
straint setX0 ⊆ X definingUN

X0
(x0) in (5.15) via Definition 3.9 and the terminal cost

F : X0 → R
+
0 in (5.15) we assume:

(i) X0 is viable, i.e., for each x ∈ X0 there exists an admissible control value
ux ∈ U(x) such that

f (x, ux) ∈ X0 (5.16)

holds.

5.3 Lyapunov Function Terminal Cost 101

(ii) The terminal cost F : X0 → R
+
0 in (5.15) is such that for each x ∈ X0 there

exists an admissible control value ux ∈ U(x) for which (5.16) and

F(f (x, ux)) + �(x, ux) ≤ F(x)

hold.

Assumption 5.9(ii) implies that F is a local control Lyapunov function of our con-
trol system. The approach of adding F is often referred to as quasi-infinite horizon
NMPC. The reason for this denomination is that if the terminal cost F is an approx-
imation of the infinite horizon optimal value function V∞, then the finite horizon
dynamic programming principle (3.15) is an approximation of the infinite horizon
dynamic programming principle (4.5) and consequently (5.15) can be interpreted
as an approximation to the infinite horizon problem (OCP∞). While a function F
satisfying Assumption 5.9(ii) exists under mild conditions on the system provided it
is asymptotically controllable, cf. the discussion on control Lyapunov functions in
Sect. 2.5, it is not always easy to find—wewill sketch a linearization-based approach
to findF andX0 in Remark 5.15, below. Note that the equilibrium terminal constraint
problem (5.5) can be seen as a special case of (5.15) with X0 = {x∗} and F ≡ 0,
in which case Assumption 5.9 implies Assumption 5.1. The more interesting case,
however, is obtained when X0 contains a whole ball around x∗, because in this case
the terminal constraint is considerably weaker than in the case X0 = {x∗} and con-
sequently more easy to achieve for the optimization algorithm.

The subsequent analysis is analogous to the respective results in Sect. 5.2 with the
goal to establish that inequality (5.4) is reversed.

Lemma 5.10 If Assumption 5.9(i) holds for the terminal constraint set X0 ⊆ X,
then for each N ≥ 2 the following properties hold.

(i) For each x0 ∈ XN−1 and each uN−1(·) ∈ U
N−1
X0

(x0) the control sequence

uN (k) := uN−1(k), k = 0, . . . ,N − 2, uN (N − 1) := ux (5.17)

with ux from Assumption 5.9(i) for x = xu(N − 1, x0) satisfies uN ∈ U
N
X0

(x0).
(ii) The inclusion XN−1 ⊆ XN holds.

Proof The proof is completely analogous to the proof of Lemma 5.2 replacing
f (x∗, u∗) = x∗ by f (x, ux) ∈ X0 for x ∈ X0. �

As in the equilibrium constraint case from the previous section, the set XN is
invariant under the MPC feedback law μN as shown in the following lemma.

Lemma 5.11 Under Assumption 5.9(i) for each N ∈ N the NMPC-feedback lawμN

obtained from Algorithm 3.10 with (OCPN,e) = (5.15) renders the set XN forward
invariant, i.e., f (x, μN (x)) ∈ XN for all x ∈ XN .

Proof Follows immediately from Corollary 3.13 and Lemma 5.10(ii). �

102 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

Using Lemma 5.10 we can now prove that inequality (5.4) is reversed for (5.15).

Lemma 5.12 If Assumptions 5.9(i) and (ii) hold, then for each N ≥ 2 and each
x0 ∈ XN−1 the optimal value functions of Problem (5.15) satisfy

VN (x0) ≤ VN−1(x0) (5.18)

Proof We first show that for each uN−1 ∈ U
N−1
X0

(x0) the control sequence uN ∈
U

N
X0

(x0) from (5.17) satisfies

JN (x0, uN) ≤ JN−1(x0, uN−1). (5.19)

To this end, observe that by construction of uN the trajectories xuN (·, x0) and
xuN−1(·, x0) satisfy

xuN (k, x0) = xuN−1(k, x0), k = 0, . . . ,N − 1, xuN (N, x0) ∈ X0.

We abbreviate x̃ = xuN (N−1, x0) ∈ X0 and ux̃ = uN (N−1), noting that by (5.17) ux̃
coincides with ux from Assumption 5.9(ii) for x = x̃. Thus (5.17) and Assumption
5.9(ii) yield

JN (x0, uN) =
N−1∑

k=0

�(xuN (k, x0), uN (k)) + F(xuN (N, x0)))

=
N−2∑

k=0

�(xuN (k, x0), uN (k)) + �(xuN (N − 1, x0), uN (N − 1)) + F(xuN (N, x0))

=
N−2∑

k=0

�(xuN (k, x0), uN (k))

︸ ︷︷ ︸
=JN−1(x0,uN−1)−F(x̃)

+�(x̃, ux̃) + F(f (x̃, ux̃))

= JN−1(x0, uN−1) −F(x̃) + �(x̃, ux̃) + F(f (x̃, ux̃))︸ ︷︷ ︸
≤0

≤ JN−1(x0, uN−1).

Now we can conclude (5.18) from (5.19) as in the proof of Lemma 5.4. �
As in the last section, we want to emphasize that for Problem (5.15) in general (5.4)
does no longer hold.

We can obtain an similar inequality to (5.18) also forN = 1. Indeed, given x ∈ X0

and using the one element control sequence u(0) = ux with ux from Assumption
5.9(ii), we obtain

V1(x) ≤ J1(x, u) = �(xu(0, x), u(0)) + F(xu(1, x)) = �(x, ux) + F(f (x, ux)) ≤ F(x)

5.3 Lyapunov Function Terminal Cost 103

which together with (5.18) proves

VN (x) ≤ F(x) for all x ∈ X0, N ∈ N. (5.20)

Lemma 5.12 in conjunction with (5.3) enables us to conclude that the optimal
value function VN satisfies inequality (5.1). This will be used in the proof of our
following second stability theorem for NMPC schemes. Again, we simply assume
(5.2) and discuss sufficient conditions afterwards.

Theorem 5.13 (Stability using Lyapunov terminal costs)Consider the NMPCAlgo-
rithm 3.10 with (OCPN,e) = (5.15) and optimization horizon N ∈ N. Let the Assump-
tions 5.9(i) and (ii) hold and assume that (5.2) holds for suitable α1, α2, α3 ∈ K∞.
Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback law μN is
asymptotically stable on XN .

In addition, for Jcl∞(x, μN) from Definition 4.10 the inequality

Jcl∞(x, μN) ≤ VN (x)

holds for each x ∈ XN .

Proof Combining Equality (3.20) from Theorem 3.17 with Inequality (5.18) from
Lemma 5.12 with x0 = f (x, μN (x)), for each x ∈ XN we obtain

VN (x) ≥ �(x, μN (x)) + VN−1(f (x, μN (x))) ≥ �(x, μN (x)) + VN (f (x, μN (x))).

Thus, the assumptions of Theorem 4.11 are satisfied with V = VN , μ = μN , S(n) =
XN (which is forward invariant byLemma5.11) andα = 1which yields the assertion.
�

So far the results in this section were very much in parallel to the respective
results for equilibrium terminal constraints in Sect. 5.2. The difference between the
two approaches becomes apparent in the following proposition, where we look at
sufficient conditions on the problem data under which (5.2) holds. In contrast to
Proposition 5.7(ii) in which we needed a condition on f and �, in Part (ii) of the
following proposition we can give a sufficient condition in terms of F.

Proposition 5.14 Let VN denote the optimal value function of Problem (5.15) for
some N ∈ N.

(i) Assume there exists a function α3 ∈ K∞ such that the inequality

�(x, u) ≥ α3(|x|x∗)

holds for all x ∈ X and all u ∈ U. Then

VN (x) ≥ α3(|x|x∗)

holds for all x ∈ XN .

104 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

(ii) Assume that f , �, and F are continuous in X ×U orX0, respectively, that U is
compact and that Assumption 5.9 is satisfied. Assume furthermore that X0 contains
a ball Bν(x∗), ν > 0, and that there exists a function α̃2 ∈ K∞ such that

F(x) ≤ α̃2(|x|x∗)

holds for all x ∈ X0 ∩ Bν(x∗). Then there exists α2 ∈ K∞ such that

VN (x) ≤ α2(|x|x∗). (5.21)

holds for all x ∈ XN .

Proof (i) is immediate from the definition of VN .
In order to prove (ii), observe that for x ∈ Bν(x∗) the bound on F together with

(5.20) implies
VN (x) ≤ F(x) ≤ α̃2(|x|x∗).

Now we can proceed as in the proof of Proposition 5.7 in order to construct the
desired α2 ∈ K∞. �

Remark 5.15 For nonlinear systems with X = R
d and U = R

m whose linearization
at x∗ is stabilizable, F and X0 satisfying Assumption 5.9 can be constructed by a
linear-quadratic approach (LQR) via the corresponding Riccati equation, provided
X and U contain neighborhoods of x∗ and u∗, respectively. We briefly sketch this
approach considering for simplicity of notation x∗ = 0 and u∗ = 0: Assume that the
dynamics f satisfies

f (x, u) = Ax + Bu + f̃ (x, u) (5.22)

withA ∈ R
d×d ,B ∈ R

d×m, and f̃ : Rd ×R
m → R

d . Assume furthermore that the pair
(A,B) is stabilizable and that themap f̃ satisfies‖f̃ (x, u)‖ ≤ C(‖x‖2+‖x‖‖u‖+‖u‖2)
for some constant C > 0 and all x, u with ‖x‖, ‖u‖ ≤ δ for some δ > 0.

Under these assumptions, given symmetric and positive definite matrices Q ∈
R

d×d , R ∈ R
m×m, we can solve the infinite horizon linear-quadratic optimal control

problem

minimize J̃∞(y, u) =
∞∑

k=0

yu(k, y)
�Qyu(k, y) + u(k)�Ru(k)

over u(·) ∈ U∞, where yu(k, y) solves y+ = Ay + Bu.
More precisely, the optimal value function of this problem is given by Ṽ∞(y) =

y�Py, where P ∈ R
d×d is the unique symmetric and positive definite solution of the

discrete time algebraic Riccati equation

P = A�PA − (A�PB)(R + B�PB)−1(B�PA) + Q. (5.23)

5.3 Lyapunov Function Terminal Cost 105

Once P is computed, the optimal control for J̃∞ is available in feedback form

u�(y) = −(R + B�PB)−1B�PAy. (5.24)

The infinite horizon dynamic programming principle (4.6) for this problem forK = 1
reads

Ṽ∞(y) = y�Qy + (u�(y))�Ru�(y) + Ṽ∞(Ay + Bu�(y)). (5.25)

We now show how Ṽ∞, which is readily computable, e.g., by solving the algebraic
Riccati equation (5.23) numerically, can be used in order to construct X0 and F in
Assumption 5.9. To this end, we choose � satisfying

�(x, u) = x�Qx + u�Ru + �̃(x, u) (5.26)

with |�̃(x, u)| ≤ D(‖x‖3 +‖x‖2‖u‖+‖x‖‖u‖2 +‖u‖3) for some constantD > 0 and
all ‖x‖, ‖u‖ ≤ δ. For this choice, for u = u�(x) from (5.24) with y = x and using
(5.25) we can compute

Ṽ∞(f (x, u)) = (Ax + Bu + f̃ (x, u))�P(Ax + Bu + f̃ (x, u))

= (Ax + Bu)�P(Ax + Bu) + 2(Ax + Bu)�Pf̃ (x, u) + f̃ (x, u)�Pf̃ (x, u)︸ ︷︷ ︸
=:r(x,u)

= Ṽ∞(x) − x�Qx − u�Ru + r(x, u)

= Ṽ∞(x) − �(x, u) + �̃(x, u) + r(x, u).

Now the structure of r(x, u) and �(x, u) together with the fact that u = u�(y) in
(5.24) depends linearly on y = x implies the existence of a constant E > 0 with
|r(x, u)| + |�̃(x, u)| ≤ E‖x‖3, cf. Problem 2(a) in this chapter. Thus, for each σ > 1
we find δ > 0 such that ‖x‖ ≤ δ implies

−�(x, u) + �̃(x, u) + r(x, u) ≤ −�(x, u)/σ

for u = u�, cf. Problem 2(b). From this inequality we obtain

Ṽ∞(f (x, u)) ≤ Ṽ∞(x) − �(x, u)/σ (5.27)

whenever ‖x‖ ≤ δ. Fixing some σ > 1 and the corresponding δ > 0 we now pick
ν > 0 such that for all x ∈ R

d the inequality Ṽ∞(x) ≤ ν implies

‖x‖ ≤ δ, x ∈ X and u�(x) ∈ U,

which exists since P is positive definite. We claim that X0 := {x ∈ R
d | Ṽ∞(x) ≤ ν}

and F(x) := σ Ṽ∞(x) satisfy Assumption 5.9.

106 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

Indeed, picking x ∈ X0 and using the control value u = u�(x) Inequality (5.27)
implies Ṽ∞(f (x, u)) ≤ Ṽ∞(x) ≤ ν and thus Assumption 5.9(i) and

F(f (x, u)) ≤ σ Ṽ∞(f (x, u)) ≤ σ Ṽ∞(x) − �(x, u) = F(x) − �(x, u)

which is exactly Assumption 5.9(ii). Note that in this construction the set X0 will
become smaller as σ > 1 becomes smaller.

The following example illustrates this construction.

Example 5.16 Consider the one-dimensional bilinear system

x+ = x + u + xu

which is of the form (5.22) with A = B = 1 and f̃ (x, u) = xu. For simplicity,
we do not consider state and control constraints, i.e., we set X = X = R and
U(x) = U = R. We consider the stage cost

�(x, u) = x2 + u2 + u4

which is of the form (5.26) with Q = R = 1 and �̃(x, u) = u4. The Riccati equation
for the linearization reads

P = P − P(1 + P)−1P + 1

and its solution is P = 1
2 (1 + √

5). Thus, the optimal value function of the linear-
quadratic problem becomes

Ṽ∞(y) = 1

2
(1 + √

5)y2 ≈ 1.618y2

and the corresponding optimal feedback control reads

u�(y) = −1 + √
5

3 + √
5
y ≈ −0.618y.

Numerical evaluation then yields that Assumption 5.9(ii) holds for F(x) = σ Ṽ∞(x)
and ux = u�(x), e.g., for σ = 1.1 and all x ∈ R with Ṽ∞(x) ≤ ν = 0.1.

Remark 5.17 All results in this section can be easily generalized to tracking time-
varying references xref replacingX0 byX0(n), (OCP∞) by (OCPn∞) and generalizing
the two conditions in Assumption 5.9 by

f (x, ux) ∈ X0(n + 1)

5.3 Lyapunov Function Terminal Cost 107

and
F(n + 1, f (x, ux)) + �(n, x, ux) ≤ F(n, x),

both for x ∈ X0(n).
However, constructing F in the time-varying case is considerably more compli-

cated than in the time-invariant case, because in the time-varying case linearization
and linear-quadratic control does not lead to an algebraic Riccati equation which can
be easily solved.

5.4 Suboptimality and Inverse Optimality

Having established the stability of theNMPCclosed loop, another important question
which naturally arises in the context of NMPC schemes is the performance of the
NMPC-feedback law. Here and in what follows, we again consider the simpler case
of time-invariant problems noting that the extension to time-varying problems is
straightforward.

While performance of general stabilizing feedback laws can be measured in many
different ways, in NMPC it is natural to compare the NMPC controller with the
infinite horizon optimal controller. To this end, for linear MPC controllers various
characteristic values like gains and poles can be compared, see, e.g., [17, Sect. 6.5].
In the nonlinear setting considered in this book, a convenient and meaningful perfor-
mance measure for the optimization-based NMPC-feedback law μN is the infinite
horizon cost along the closed-loop trajectory as defined in Definition 4.10. In the
time-invariant setting it is given by

Jcl∞(x0, μN) :=
∞∑

k=0

�(k, xμN (k, x0), μN (xμN (k, x0)).

In general, it is too optimistic to assume that the NMPC-feedback μN yields the
optimal value Jcl∞(x0, μN) = V∞(x0). The following two examples illustrate this
point.

Example 5.18 Consider again Example 5.6, i.e.,

x+ = x + u, �(x, u) = x2 + u2

with X = X = U = U = R. Using the terminal constraints X0 = {0}, in Example
5.6 we have seen that the NMPC-feedback law for N = 2 is μ2 = − 2

3x.
By solving the associated discrete time algebraic Riccati equation

P = P − P(1 + P)−1P + 1

108 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

we can obtain the infinite horizon optimal solution. The positive solution of this
equation is P = 1

2 (1+√
5) and thus the infinite horizon optimal value function reads

V∞(x) = 1

2
(1 + √

5)x2 ≈ 1.618x2,

cf. also Example 5.16. Evaluating Jcl∞(x, μ2) for the NMPC-feedback law μ2(x) =
− 2

3x with trajectory xμ2(n, x) = 1
3n x yields

Jcl∞(x, μ2) =
∞∑

k=0

xμ2 (k, x)
2 + μ2(xμ2 (k, x))

2 =
∞∑

k=0

(
1 + 4

9

)
1

9k
x2 = 13

8
x2 = 1.625x2.

Although this value is quite close to V∞(x), it is not optimal.

Example 5.19 Consider again Example 5.6 but now with a non quadratic cost, i.e.,

x+ = x + u, �(x, u) = x2 + u4

inwhich large u are penalizedmore heavily.As inExample 5.6weuse the equilibrium
terminal constraintX0 = {0}. Repeating the computations of Example 5.6 we obtain

V1(x) = x2 + x4

and
μ2(x) = argmin

u∈R

{
x2 + u4 + (x + u)2 + (x + u)4

}
.

Solving this minimization problem (e.g., with MAPLEtm, cf. Sect. A.2) yields the
nonlinear feedback law

μ2(x) = 1

12
(−108x + 12

√
324x6 + 324x4 + 189x2 + 12)

1
3

− 3x2 + 1

(−108x + 12
√
324x6 + 324x4 + 189x2 + 12)

1
3

− 1

2
x

Numerical evaluation of the corresponding infinite horizon cost along the closed-loop
solution for x0 = 20 yields

Jcl∞(20, μ2) ≈ 11240.39.

Since this problem is not linear-quadratic we cannot use the Riccati equation in order
to compute the exact optimal value. However, the feedback law

μ(x) = 1

6
(−54x + 6

√
6 + 81x2)

1
3 − 1

(−54x + 6
√
6 + 81x2)

1
3

5.4 Suboptimality and Inverse Optimality 109

—whose derivation we will explain in Example 7.23 in Chap. 7—yields Jcl∞(20, μ)

≈ 1725.33whichwas again evaluated numerically.Hence, the optimal value function
satisfies V∞(20) ≤ 1725.33 which shows thatμ2 is far from optimal in this example.

An alternative to the direct evaluation of Jcl∞(x0, μN) as performed in these exam-
ples is readily available from the Theorems 5.5 and 5.13. These theorems provide
the explicit upper bound

Jcl∞(x0, μN) ≤ VN (x0) (5.28)

for the NMPC-feedback law μN derived from Algorithm 3.10 with either (OCPN,e)
= (5.5) or (OCPN,e) = (5.15). Unfortunately, in general there is no simple formula
for the mismatch between VN and the infinite horizon optimal value function V∞.
This is due to the fact that in both (5.5) and (5.15), the optimization is restricted
to the controls u(·) ∈ U

N
X0

(x0) whose corresponding trajectories enter the terminal
constraint set X0 after at most N steps. The following proposition shows that this
inevitably leads to the inequality VN (x) ≥ V∞(x) for all x ∈ XN .

Proposition 5.20 Consider the optimal control problem (5.5) or (5.15) and the infi-
nite horizon optimal control problem (OCP∞)with same stage cost � and constraints
X and U(x). Let the assumptions of the respective Theorem 5.5 or 5.13 be satisfied.
Then the inequality

VN (x) ≥ V∞(x)

holds for all x ∈ XN .

Proof Given x ∈ XN we define a control sequence u(·) ∈ U
N (x) by evaluatingμN (x)

along the NMPC closed-loop trajectory, i.e.,

u(k) := μN (xμN (k, x)).

Then we get
V∞(x) ≤ J∞(x, u) = Jcl∞(x, μN) ≤ VN (x),

where the last inequality is obtained from Theorems 5.5 and 5.13, respectively. This
shows the assertion. �

Unfortunately, the quantitative effect of the stabilizing constraints, i.e., the question
about how much larger VN is compared to V∞ is in general difficult if not impossible
to answer. Still, we can provide asymptotic results, i.e., conditions under which VN

converges to V∞ on arbitrary (but fixed) balls around x∗ as N → ∞.

Theorem 5.21 (Convergence of VN) Consider the optimal control problem (5.5) or
(5.15) and the infinite horizon optimal control problem (OCP∞) with same stage
cost � and constraints X and U(x). Let the assumptions of Theorem 4.16 hold and
assume that there is N0 ∈ N such that the assumptions of the respective Theorem

110 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

5.5 or 5.13 hold for N = N0. Assume, furthermore, that XN0 contains a ballBν(x∗).
Then for each R > 0 and each ε > 0 there exists NR,ε > 0 such that the inequality

VN (x) ≤ V∞(x) + ε

holds for all N ≥ NR,ε and all x ∈ XN with |x|x∗ ≤ R.

Proof For N0 from the assumption, α2 from the assumption of Theorem 5.5 or 5.13,
respectively, and from (5.10) we get

VN (x) ≤ VN0(x) ≤ α2(|x|x∗)

for all N ≥ N0 and all x ∈ Bν(x∗). Since the assumptions of Theorem 4.16 are
satisfied, for any α ∈ (0, 1) the feedback law μα from Theorem 4.16 satisfies

Jcl∞(x, μα) ≤ V∞(x)/α

for all x ∈ X. Furthermore, μα asymptotically stabilizes the system, i.e., there exists
β ∈ KL such that

|xμα
(n, x)|x∗ ≤ β(|x|x∗ , n)

holds for all x ∈ X and all n ∈ N0. Fixing some arbitrary ᾱ ∈ (0, 1), by Remark 4.12
we may assume that β is independent of α ∈ [ᾱ, 1).

Now fix R > 0 and ε > 0 and let nR,ε ∈ N be large enough such that the
inequalities

β(R, nR,ε) < ν and α2(β(R, nR,ε)) ≤ ε

hold and setNR,ε = N0 +nR,ε. By the monotonicity properties of α2 and β the choice
of nR,ε implies xμα

(n, x) ∈ Bν(x∗) ⊂ XN0 and

VN0(xμα
(n, x)) ≤ α2(β(|x|x∗ , nR,ε)) ≤ ε

for all n ≥ nR,ε and all x ∈ XN with |x|x∗ ≤ R.
For such an x and an N ≥ NR,ε, consider the control sequence u(·) ∈ U

N
X0

(x)

u(n) =
{

μα(xμα
(n, x)), n = 0, . . . ,N − N0 − 1

u∗(n − N + N0), n = N − N0, . . . ,N − 1

where u∗ is the optimal control sequence for (5.5) or (5.15) with N = N0 and
x0 = xμα

(N − N0, x). The control u(·) lies in U
N
X0

(x) because it inherits u(·) ∈
U

N (x) from μα and u∗ and the corresponding trajectory ends in X0 because u∗(·) ∈
U

N0
X0

(xμα
(N − N0, x)). For this control sequence we get

5.4 Suboptimality and Inverse Optimality 111

VN (x) ≤ JN (x, u) =
N−1∑

n=0

�(xu(n, x), u(n)) + F(xu(N, x))

=
N−N0−1∑

n=0

�(xu(n, x), u(n)) +
N−1∑

n=N−N0

�(xu(n, x), u(n)) + F(xu(N, x))

=
N−N0−1∑

n=0

�(xu(n, x), u(n)) + JN0(xu(N − N0, x), u(· + N − N0))

=
N−N0−1∑

n=0

�(xμα
(n, x), μα(xμα

(n, x))) + JN0(xμα
(N − N0, x), u

∗(·))

≤ Jcl∞(x, μα) + VN0(xμα
(N − N0, x)) ≤ V∞(x)/α + ε

where we used N − N0 ≥ NR,ε − N0 ≥ nR,ε for estimating VN0(xμα
(N − N0, x)) in

the last inequality. From this inequality, we obtain the assertion since α ∈ (ᾱ, 1) was
arbitrary and NR,ε is independent of α ∈ (ᾱ, 1). �

While in Theorem 5.21 the lower bound on the necessary optimization horizon N
depends on R and ε, we can exploit the special structure of (5.15) in order to give a
condition under which the bound on N merely depends on R and on properties of F.

Theorem 5.22 Consider the optimal control problem (5.15) and the infinite horizon
optimal control problem (OCP∞)with same stage cost � and constraintsX andU(x).
Let the assumptions of Theorem 4.16 hold and assume that there is N0 ∈ N such
that the assumptions of Theorem 5.13 hold for N = N0. Assume in addition that X0

contains a ball Bν(x∗) and that the terminal cost F satisfies

|F(x) − V∞(x)| ≤ ε

for all x ∈ Bν(x∗) and some ε > 0. Then for each R > 0 there exists NR > 0 such
that the inequality

VN (x) ≤ V∞(x) + ε

holds for all N ≥ NR and all x ∈ XN with |x|x∗ ≤ R.

Proof Using ᾱ and β as in the proof of Theorem 5.21 we choose NR ∈ N such that
the inequality

β(R,NR) < ν

holds. Given x ∈ X with |x|x∗ ≤ R and N ≥ NR and an arbitrary α ∈ [ᾱ, 1), we
define the control sequence

u(n) = μα(xμα
(n, x)), n = 0, . . . ,N − 1

with μα from Theorem 4.16, i.e., satisfying (4.18). This control sequence lies in
U

N
X0

(x0) since

112 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

|xμα
(N, x)|x∗ ≤ β(|x|x∗ ,N) ≤ β(R,NR) < ν,

thus xu(N, x) = xμα
(N, x) ∈ Bν(x∗) ⊆ X0. For this u(·) we get

VN (x) ≤ JN (x, u) =
N−1∑

n=0

�(xu(n, x), u(n)) + F(xu(N, x))

=
N−1∑

n=0

�(xμα
(n, x), μα(xμα

(n, x))) + F(xμα
(N, x))

≤
N−1∑

n=0

�(xμα
(n, x), μα(xμα

(n, x))) + V∞(xμα
(N, x)) + ε

≤
N−1∑

n=0

�(xμα
(n, x), μα(xμα

(n, x))) + V∞(xμα
(N, x))/α + ε. (5.29)

where we used V∞(xμα
(N, x)) ≥ 0 and α < 1 in the last inequality. Now (4.18)

implies

�(xμα
(n, x), μα(xμα

(n, x))) ≤ V∞(xμα
(n, x))/α − V∞(xμα

(n + 1, x))/α.

Inserting this inequality into (5.29) yields

VN (x) ≤
N−1∑

n=0

�(xμα
(n, x), μα(xμα

(n, x))) + V∞(xμα
(N, x))/α + ε

≤
N−1∑

n=0

[
V∞(xμα

(n, x))/α − V∞(xμα
(n + 1, x))/α

] + V∞(xμα
(N, x))/α + ε

≤ V∞(xμα
(0, x))/α + ε = V∞(x)/α + ε

and since α ∈ [ᾱ, 1) was arbitrary the assertion follows. �

Example 5.23 We illustrate Theorem 5.21 by Examples 5.6 and 5.18. Observing
that XN = R holds for N ≥ 1, the dynamic programming equation (3.15) for K = 1
and N ≥ 2 becomes

VN (x) = inf
u∈R

{x2 + u2 + VN−1(x + u)}.

Using this equation in order to iteratively compute VN starting from V1(x) = 2x2,
cf. Example 5.6, we obtain the (approximate) values

5.4 Suboptimality and Inverse Optimality 113

V1(x) = 2 x2 V2(x) = 1.666666667 x2

V3(x) = 1.625 x2 V4(x) = 1.619047619 x2

V5(x) = 1.618181818 x2 V6(x) = 1.618055556 x2

V7(x) = 1.618037135 x2 V8(x) = 1.618034448 x2

V9(x) = 1.618034056 x2 V10(x) = 1.618033999 x2,

cf. Problem 4. Since, as computed in Example 5.18, the infinite horizon optimal value
function is given by

V∞(x) = 1

2
(1 + √

5)x2 ≈ 1.618033988 x2,

this shows that, e.g., for R = 1, the inequality VN (x) − V∞(x) ≤ ε holds for ε =
2.2 ·10−5 for N = 6, for ε = 4.6 ·10−7 for N = 8 and for ε = 1.1 ·10−8 for N = 10.

We end this section by investigating the inverse optimality of the NMPC-feedback
lawμN .While the suboptimality estimates provided so far in this section give bounds
on the infinite horizon performance of μN , inverse optimality denotes the fact that
μN is in fact an infinite horizon optimal feedback law—but not for the stage cost �

but for a suitably adjusted stage cost �̃. The motivation for such a result stems from
the fact that optimal feedback laws have desirable robustness properties. This can be
made precise for continuous time control affine systems

ẋ(t) = g0(x) + g1(x)u (5.30)

with x ∈ R
d , u ∈ R

m, g0 : Rd → R
d , and g1 : Rd → R

d×m. For these systems, it
is known that a stabilizing (continuous time) infinite horizon optimal feedback law
μ∞ has a sector margin (1/2,∞) which means that u = μ∞(x) stabilizes not only
(5.30) but also

ẋ(t) = g0(x) + g1(x)φ(u) (5.31)

for any φ : Rm → R
m satisfying ‖u‖2/2 ≤ u�φ(u) ≤ ∞ for all u ∈ R

m, see Magni
and Sepulchre [9] for details.

Although we are not aware of analogous discrete time results in the literature, it
seems reasonable to expect that this robustness is inherited in an approximate way
for optimal control of sampled data systems with sufficiently fast sampling. This
justifies the investigation of inverse optimality also in the discrete time setting.

For the NMPC schemes presented in this chapter, we can make the following
inverse optimality statement.

Theorem 5.24 (Inverse optimality) Consider the optimal control problem (5.5) or
(5.15) for some N ∈ N with the usual constraints x ∈ X and u ∈ U(x). Let the
assumptions of the respective Theorem 5.5 or 5.13 hold for this N. Then on the set
XN the feedback μN equals the infinite horizon optimal feedback law for (OCP∞)

with stage cost

114 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

�̃(x, u) := �(x, u) + VN−1(f (x, u)) − VN (f (x, u)) (5.32)

and constraints x ∈ XN−1 and u ∈ U(x).

Proof First observe that the assumptions of Theorem 5.5 or 5.13 imply (5.10) or
(5.18), respectively, and V (x∗) = 0. Hence, (5.32) satisfies �̃ ≥ �, is of the form (3.2),
and the inequality for � in (5.2) remains valid for �̃. We denote the infinite horizon
optimal value function of (OCP∞) with stage cost �̃ by Ṽ∞ and the corresponding
optimal feedback law by μ̃N .

From the dynamic programming principle (3.15) with K = 1 and the definition
of �̃ we get

VN (x0) = inf
u∈U1

XN−1
(x0)

{�(x0, u) + VN−1(f (x0, u))}

= inf
u∈U1

XN−1
(x0)

{�̃(x0, u) + VN (f (x0, u))}.

Similarly, (3.19) implies

VN (x0) = �̃(x0, μN (x0)) + VN (f (x0, μN (x0))).

From these two equations, by induction for each K ∈ N we get

VN (x0) ≤
K−1∑

k=0

�̃(xu(k, x0), u(k)) + VN (xu(K, x0)) (5.33)

for every u ∈ U
∞(x0) with U∞(x0) defined with respect to the constraint x ∈ XN−1,

and

VN (x0) =
K−1∑

k=0

�̃(xμN (k, x0), μN (xμN (k, x0))) + VN (xμN (K, x0)). (5.34)

Since �̃ ≥ 0, for an arbitrary u ∈ U
∞(x0) in (5.33), for K → ∞ the sum

K−1∑

k=0

�̃(xu(k, x0), u(k))

either grows unboundedly or converges to some finite value. Since �(x, u) ≥
α3(|x|x∗), convergence is only possible if xu(k, u) converges to x∗ as k → ∞, i.e., if
VN (xu(K, u)) → 0 as k → ∞. Thus, in either case letting K → ∞ in (5.33) we get

VN (x0) ≤
∞∑

k=0

�̃(xu(k, x0), u(k))

5.4 Suboptimality and Inverse Optimality 115

for all u ∈ U
∞(x0), which implies VN (x0) ≤ Ṽ∞(x0).

On the other hand, since μN asymptotically stabilizes the system, in (5.34) we
get VN (xμN (K, x0)) → 0 as K → ∞ and thus letting K → ∞ in (5.34) yields

VN (x0) =
∞∑

k=0

�̃(xμN (k, x0), μN (xμN (k, x0))) (5.35)

which implies VN (x0) ≥ Ṽ∞(x0). Consequently, we get VN (x0) = Ṽ∞(x0) and from
(5.35) it follows that μ̃∞ = μN is the infinite horizon optimal feedback law for stage
cost �̃. �

Observe that for the inverse optimality statement to hold, we need to replace the
constraints x ∈ X in (OCP∞) by the in general tighter constraints x ∈ XN−1, where
XN−1 is the feasible set for (5.5) or (5.15) with horizon N − 1. This is because by
(3.19), the feedbackμN is obtained byminimizationwith respect to these constraints.
Thus, it cannot in general be optimal for the infinite horizon problemwith the usually
weaker original constraints x ∈ X.

5.5 Notes and Extensions

Most of the results in this chapter are classical and can be found in several places
in the NMPC literature. In view of the huge amount of this literature, here we do
not make an attempt to give a comprehensive list of references but rather restrict
ourselves just to the literature from which we learned the results presented in this
chapter.

While the proofs in the NMPC literature are similar to the proofs given here, the
relaxed dynamic programming arguments outlined in Sect. 5.1 are usually applied
in a more ad hoc manner. The reason we have put more emphasis on this approach
and, in particular, used Theorem 4.11 in the stability proofs is because the analysis
of NMPC schemes without stabilizing terminal conditions in the following Chap. 6
will also be based on Theorem 4.11. Hence, proceeding this way we can highlight
the similarities in the analysis of these different classes of NMPC schemes.

For discrete time NMPC schemes with equilibrium terminal constraints as fea-
tured in Sect. 5.2, a version of Theorem 5.5 was published by Keerthi and Gilbert [8]
in 1988, even for the more general case in which the optimization horizon may vary
with time. Their approach was inspired by earlier results for linear systems, for more
information on these linear results we refer to the references in [8]. Even earlier,
in 1982 Chen and Shaw [1] proved stability of an NMPC scheme with equilibrium
terminal constraint in continuous time, however, in their setting the whole optimal
control function on the optimization horizon is applied to the plant, as opposed to
only the first part. Continuous time and sampled data versions of Theorem 5.5 were
given by Mayne and Michalska [10] in 1990, using, however, a differentiability
assumption on the optimal value function which is quite restrictive in the presence
of state constraints.

116 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

The “quasi infinite horizon” idea of imposing regional terminal constraints X0

plus a terminal cost satisfying Assumption 5.9 as presented in Sect. 5.3 came up
in the second half of the 1990s in papers by De Nicolao, Magni and Scattolini
[3, 4], Magni and Sepulchre [9] or Chen and Allgöwer [2], both in discrete and
continuous time. Typically, these papers provide specific constructions of F and
X0 satisfying Assumption 5.9 rather than imposing this assumption in an abstract
way as we did here. The abstract formulation of these conditions given here was
inspired by the survey article by Mayne, Rawlings, Rao, and Scokaert [11] which
also contains a comparative discussion of the approaches in some of the cited papers.
For a continuous time version of such abstract conditions we refer to Fontes [5].
A terminal cost meeting Assumption 5.9 was already used before by Parisini and
Zoppoli [14], however, without terminal constraint; we will investigate this setting in
Sect. 10.1. The construction ofF andX0 in Remark 5.15 is similar to the construction
in [2, 14]. A related NMPC variant which may have motivated some of the authors
cited above was proposed byMichalska andMayne [12]. In this so-called dual mode
NMPC, the prediction horizon length is an additional optimization variable and the
prediction is stopped once the set X0 is reached. Inside this set, the control value ux
from Assumption 5.9(ii) is used.

Establishing the existence of a suitable upper bound of VN is essential for being
able to use VN as a Lyapunov function. The argument used here in the proofs of
Propositions 5.7(ii) and 5.14(ii) was adopted from Rawlings and Mayne [16, Propo-
sition 2.18]. Of course, this is not the only way to obtain an upper bound on VN .
Other sufficient conditions, like, e.g., the controllability condition “C” in Keerthi
and Gilbert [8, Definition 3.2], may be used as well.

Regarding the suboptimality results in Sect. 5.4, for the special case of equilib-
rium terminal constraintsX0 = {x∗} and F ≡ 0, a version of the suboptimality result
in Theorem 5.21 was given by Keerthi and Gilbert [8]. For the case of general X0

and F we are not aware of a result similar to Theorem 5.21, although we would not
be surprised to learn that such a result exists in the huge body of NMPC literature.
Theorem 5.22 is a variant of Grüne and Rantzer [6, Theorem 6.2] and extends The-
orem 2 of Hu and Linnemann [7] in which the case F = V∞ is considered.

Inverse optimality was extensively investigated already for linear MPC leading to
the famous “fake” algebraic Riccati equation introduced by Poubelle, Bitmead and
Gevers [15]. For nonlinear systems in continuous time, this property was proved by
Magni and Sepulchre [9].While the discrete time nonlinear version given in Theorem
5.24 is used in an ad hoc manner in several papers (e.g., in Nešić and Grüne [13]),
we were not able to find it in the literature in the general form presented here.

Problems

1. Consider the scalar control system

x+ = x + u, x(0) = x0

Problems 117

with x ∈ X = R, u ∈ U = R which shall be controlled via NMPC using the
quadratic stage cost

�(x, u) = x2 + u2

and the stabilizing endpoint constraint xu(N, x0) = x∗ = 0. For the horizon
N = 2, compute an estimate for the closed-loop costs Jcl∞(x, μ2(·)).

2. Consider the setting of Remark 5.15 and prove the following properties.

(a) There exists a constant E > 0 such that |r(x, u)| + |�̃(x, u)| ≤ E‖x‖3 holds
for each x ∈ R

d and u = u�(x).

(b) For each σ > 1 there exists δ > 0 such that ‖x‖ ≤ δ implies

−�(x, u) + �̃(x, u) + r(x, u) ≤ −�(x, u)/σ

for u = u�(x).

Hint for (b): Look at the hints for Problem 2 in Chap. 4.

3. Consider f , �,X0 and F satisfying the assumptions of Proposition 5.14(i) and (ii).
Prove the following properties.

(a) The stage cost satisfies �(x, ux) ≤ α̃2(|x|x∗) for x ∈ X0, ux from Assumption
5.9(ii) and α̃2 from the assumption of Proposition 5.14(ii).

(b) For the feedback lawμ(x) := ux with ux fromAssumption 5.9(ii) the closed-
loop system x+ = f (x, μ(x)) is asymptotically stable on X0.

4. Consider the setting from Problem 1. Prove without using Theorem 5.21 that for
all ε > 0 and R > 0 there exists Nε ∈ N such that

VN (x) ≤ V∞(x) + ε

holds for all N ≥ Nε and all x ∈ R with |x| ≤ R. Proceed as follows:

(a) Use dynamic programming in order to show VN (x) = CNx2 with C1 = 2
and

CN = 8C2
N−1 + 12CN−1 + 4

4C2
N−1 + 8CN−1 + 4

.

(b) Use the expression from (a) to conclude that CN → 1
2 (1 + √

5) holds as
N → ∞.

(c) Use the exact expression for V∞ from Example 5.23 in order to prove the
claim.

118 5 Stability and Suboptimality Using Stabilizing Terminal Conditions

5. Consider Example 2.3, i.e.,

f (x, u) :=
(
x+
1
x+
2

)
=

(
sin(ϑ(x) + u)
cos(ϑ(x) + u)/2

)

with

ϑ(x) =
{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0

,

initial value (0, 1/2) and stage cost �(x, u) = ‖x−x∗‖2+u2 with x∗ = (0,−1/2).
The control values are restricted to the set U = [0, 0.2] which allows the car to
only move clockwise on the ellipse

X =
{
x ∈ R

2

∣∣∣∣

∥∥∥∥

(
x1

2x2

)∥∥∥∥ = 1

}
.

Perform the following numerical simulations for this problem.

(a) Implement the NMPC closed loop for N = 8 and confirm that the closed-
loop trajectory does not converge toward x∗.

(b) Modify the NMPC problem by introducing the terminal constraint X0 =
{x∗}. Again considering the horizon length N = 8, verify that now x(n) →
x∗.

(c) Check the control constraints for each NMPC iterate from (b) more closely,
verify that they are violated at some sampling instants and explain why this
happens. Determine by simulations how large N needs to be such that these
violations vanish.

Hint: Instead of implementing the problem from scratch you may suitably modify
the MATLAB� code for Example 6.31, cf. Appendix A.1.

References

1. Chen, C.C., Shaw, L.: On receding horizon feedback control. Automatica 18(3), 349–352
(1982)

2. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme
with guaranteed stability. Automatica J. IFAC 34(10), 1205–1217 (1998)

3. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing nonlinear receding horizon control via
a nonquadratic terminal state penalty. In: CESA’96 IMACS Multiconference: Computational
Engineering in Systems Applications, Lille, France, pp. 185–187 (1996)

4. De Nicolao, G., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear
time-varying systems. IEEE Trans. Automat. Control 43(7), 1030–1036 (1998)

5. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model predictive con-
trollers. Syst. Control Lett. 42(2), 127–143 (2001)

References 119

6. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers.
IEEE Trans. Automat. Control 53, 2100–2111 (2008)

7. Hu, B., Linnemann, A.: Toward infinite-horizon optimality in nonlinear model predictive con-
trol. IEEE Trans. Automat. Control 47(4), 679–682 (2002)

8. Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of
constrained discrete-time systems: stability and moving-horizon approximations. J. Optim.
Theory Appl. 57(2), 265–293 (1988)

9. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding-horizon control via inverse
optimality. Syst. Control Lett. 32(4), 241–245 (1997)

10. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans.
Automat. Control 35(7), 814–824 (1990)

11. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive con-
trol: stability and optimality. Automatica 36(6), 789–814 (2000)

12. Michalska,H.,Mayne,D.Q.: Robust receding horizon control of constrained nonlinear systems.
IEEE Trans. Automat. Control 38(11), 1623–1633 (1993)

13. Nešić, D., Grüne, L.: A receding horizon control approach to sampled-data implementation of
continuous-time controllers. Syst. Control Lett. 55, 660–672 (2006)

14. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural
approximation. Automatica 31(10), 1443–1451 (1995)

15. Poubelle, M.A., Bitmead, R.R., Gevers, M.R.: Fake algebraic Riccati techniques and stability.
IEEE Trans. Automat. Control 33(4), 379–381 (1988)

16. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Pub-
lishing, Madison (2009)

17. Wang, L.: Model Predictive Control System Design and Implementation using MATLAB.
Advances in Industrial Control. Springer, London (2009)

Chapter 6
Stability and Suboptimality
Without Stabilizing Terminal Conditions

In this chapter, we present a comprehensive stability and suboptimality analysis for
NMPC schemes without stabilizing terminal conditions. After defining the setting
and presenting motivating examples, we introduce a boundedness condition on the
optimal value function and an asymptotic controllability assumption. Moreover, we
give a detailed derivation of stability and performance estimates based on these
assumptions and the relaxed dynamic programming framework introduced before.
We show that our stability criterion is tight for the class of systems satisfying the
controllability assumption and give conditions under which the level of subopti-
mality and a bound on the optimization horizon length needed for stability can be
explicitly computed from the parameters in the controllability condition. As a spinoff
we recover the well-known result that—under suitable conditions—stability of the
NMPC closed loop can be expected if the optimization horizon is sufficiently large.
We further deduce qualitative properties of the stage cost which lead to stability
with small optimization horizons and illustrate by means of two examples how these
criteria can be used even if the parameters in the controllability assumption cannot
be evaluated precisely. Finally, we give weaker conditions under which semiglobal
and semiglobal practical stability of the NMPC closed loop can be ensured.

6.1 Setting and Preliminaries

In this chapter, we consider the NMPC schemes without stabilizing terminal condi-
tions for stage costs � satisfying (3.8). Throughout this chapter we will use the basic
NMPC Algorithms 3.1 and 3.7 with optimal control problems (OCPN) and (OCPn

N),
respectively. Weights ωk as in (OCPN,e) and (OCPn

N,e)—more precisely, terminal
weights—will be discussed in Sect. 10.2. We consider state and control constraints
X and U(x) as introduced in Sect. 3.2 and the respective sets Y of admissible pairs

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_6

121

122 6 Stability and Suboptimality Without …

and U
N (x) of admissible control sequences from Definition 3.2. Throughout this

chapter, the state constraint set X ⊂ X is supposed to be viable in the sense of
Assumption 3.3. Relaxations of this viability assumption on X will be discussed in
Sects. 7.1–7.3.

As in the previous chapter, our goal is to apply Theorem 4.11, for which we need
to establish the inequalities

VN (n, x) ≥ α�(n, x, μN (n, x)) + VN (n + 1, f (x, μN (n, x))) (5.1)

for all x ∈ X, n ∈ N0 and some α ∈ (0, 1], and the existence of α1, α2, α3 ∈ K∞
such that the inequalities

α1(|x |x ref(n)) ≤ VN (n, x) ≤ α2(|x |x ref(n)) and �(n, x, u) ≥ α3(|x |x ref(n)) (5.2)

hold for all x ∈ X, n ∈ N0 and u ∈ U , cf. Sect. 5.1. Again, the inequality

VN (n, x0) ≥ �(n, x0, μN (n, x0)) + VN−1(n + 1, f (x0, μN (n, x0))) (5.3)

which follows from (3.20) plays a vital role in our analysis. In Sect. 6.7, we will also
use Theorem 4.14 in order to prove practical stability properties.

For the optimal value functions VN of (OCPN) or (OCPn
N) and V∞ of the corre-

sponding infinite horizon problems (OCPn∞) it is immediate that we get the inequal-
ities

VN−1(n, x0) ≤ VN (n, x0) ≤ V∞(n, x0) (6.1)

for all n ∈ N0, all N ∈ N and all x0 ∈ X. This inequality follows since minimization
is carried out with the same constraints for all N (including ∞) and the stage cost �
is nonnegative. Hence, JN is increasing in N , which carries over to VN .

For this reason, the arguments of the last section in which we used the terminal
conditions in order to reverse the inequalities in (6.1) do not work anymore.

Nevertheless, NMPC without terminal conditions works, as the following two
simple examples show, in which α in (5.1) can be computed explicitly.

Example 6.1 Consider again Example 5.6, i.e.,

x+ = x + u, �(x, u) = x2 + u2

with X = X = U = U = R. Here, we get

V1(x0) = inf
u∈R

0∑

k=0

�(xu(k, x0), u(k)) = inf
u∈R

x20 + u2 = x20 .

and, by (3.15) for N = 2 and K = 1,

6.1 Setting and Preliminaries 123

V2(x0) = inf
u(·)∈U1(x0)

{�(xu(0, x0), u(0)) + V1(xu(1, x0))}
= inf

u∈U{x20 + u2 + (x0 + u)2} = inf
u∈U{2x20 + 2u2 + 2x0u}

The minimum of this expression is attained at u = −x0/2 which by (3.19) implies
μ2(x0) = −x0/2. The resulting minimum is

V2(x0) = 3

2
x20 .

Thus, (5.1) for N = 2 becomes

3

2
x2 ≥ α(x2 + x2/4) + 3

2
(x2/4)

which is satisfied for all x by α = 0.9, i.e., (5.1) is satisfied for N = 2 and this α for
all x ∈ X = R.

Note that the closed-loop system forμ2 is givenby x+ = x/2 forwhich asymptotic
stability at x∗ = 0 is also easily seen directly.

Example 6.2 We consider the previous Example 6.1 again, i.e.,

x+ = x + u, �(x, u) = x2 + u2

with X = X = U = R but now we impose the control constraint U(x) ≡ U =
[−1, 1]. While the computation for V1 again yields V1(x0) = x20 , the expression for
V2 now becomes

V2(x0) = inf
u∈[−1,1]{2x

2
0 + 2u2 + 2x0u},

whose minimizer is

μ2(x0) =
{
max{−x0/2, −1}, x ≥ 0
min{x0/2, 1}, x < 0.

Consequently, V2 becomes

V2(x0) =
{

3
2 x

2
0 , x0 ∈ [−2, 2]

2(x20 − |x0| + 1), x0 /∈ [−2, 2]

For |x | ≤ 2, inequality (5.1) for N = 2 is as in the previous example and is thus
satisfied for α = 0.9. For |x | ∈ (2, 3), (5.1) becomes

2(x20 − |x0| + 1) ≥ α(x2 + 1) + 3

2
(x − 1)2

124 6 Stability and Suboptimality Without …

which is satisfied for all |x | ∈ (2, 3) with α = 0.8. For |x | > 3, we get

2(x20 − |x0| + 1) ≥ α(x2 + 1) + 2(x20 − 3|x0| + 3)

which is satisfied for α = 4(|x | − 1)/(x2 + 1).
Hence, if we restrict the state space X = R to X = [−a, a] for some a > 0 (note

that each such X is forward invariant under the closed-loop system), then we always
find α ∈ (0, 1) such that (5.1) holds for all x ∈ X = [−a, a]. Consequently, the
feedback μ2 asymptotically stabilizes the system at x∗ = 0 on each set of the form
X = [−a, a] and thus also globally.

The last example shows one of the advantages of NMPC without stabilizing
terminal conditions over the constrained approach from the previous chapter: Since
in this example | f (x, u) − x | ≤ 1 holds for each x ∈ R and each u ∈ U = [−1, 1],
using a terminal constraint of the form X0 = [−ε, ε] implies that the feasible sets
are given by XN = [−N − ε, N + ε]. Hence, in order to compute a controller
defined on a large set XN , a large horizon length N is needed. In contrast to this, the
NMPC-feedbackμN without stabilizing terminal constraints globally asymptotically
stabilizes the system already for N = 2.

Further advantages of NMPC without stabilizing terminal conditions are that
no Lyapunov function terminal cost F has to be computed in advance and that
no additional constraints have to be added to the optimization problem; a detailed
comparative discussion of schemes with and without stabilizing terminal constraints
is given in Sect. 7.4. For these reasons, stabilizing terminal conditions are often
avoided in practice.

A rigorous proof for the fact that one can obtain asymptotic stability without
imposing stabilizing terminal conditions was—to the best of our knowledge—first
given by Alamir and Bornard in [1] for nonlinear discrete time systems whose lin-
earization with respect to u satisfies a specific rank condition and for quadratic stage
costs �. Ten years later, this result was extended by Jadbabaie and Hauser in [13]
(for continuous time systems) and by Grimm et al. in [9] (for discrete time systems)
to systems without any rank conditions and to arbitrary positive definite costs using
an exponential controllability condition in [13] and a bound on the finite horizon
optimal value function VN in [9]. The proofs in these references exploit that for
N → ∞ the open-loop optimal trajectories converge to a region in which � is small.
This fact is either used directly as in [9] or indirectly by exploiting that it implies
the convergence VN − VN−1 → 0 for N → ∞ as in [1, 13]. This convergence was
also used by Grüne and Rantzer in [12] in order to estimate α in (5.1) from suitable
bounds on VN , which in turn can be guaranteed by an appropriate controllability
condition.

Even though [12] showed that the convergence VN − VN−1 → 0 for N → ∞
can be used in order to estimate α in (5.1), in this book we present a different
approach in order to estimate α which we consider advantageous, because it uses the
available information—either from bounds on the optimal value functions or from a
controllability condition—in amore efficient way; a discussion on this fact is given in

6.1 Setting and Preliminaries 125

Sect. 6.9. In particular, we will not try to establish (5.1) from the fact that VN −VN−1

becomes small. Rather, we will use a direct argument based on properties of optimal
trajectories in order to derive an upper bound for VN (n+1, f (x, μN (n, x))) in (5.1).
An argument of this type was first used by Tuna, Messina and Teel [19] for NMPC
with terminal cost (but without terminal constraints) and we extend this argument to
the case without terminal costs. Moreover, we formulate an optimization problem in
order to get the best possible estimate for α in (5.1) from this approach. As we will
see, proceeding this way leads to a tight characterization of α and—under suitable
conditions—to an explicit formula relating α to the bounds on the value functions
or to the parameters in the controllability condition.

Following the structure from the previous chapter, we will first present our con-
cepts and results for the time-invariant case of Algorithm 3.1 and then discuss the
extensions to the time varying case of Algorithm 3.7 at the end of Sect. 6.5.

6.2 Bounds on VN and Asymptotic Controllability
with Respect to �

The central assumption we will use in order to ensure asymptotic stability and per-
formance bounds imposes upper bounds on the optimal value functions VN . These
bounds are formulated relative to the stage cost �. To this end, we define

�∗(x) := inf
u∈U �(x, u). (6.2)

With this notation, we can formulate our central assumption.

Assumption 6.3 (Bounds on VN) Consider the optimal control problem (OCPN).
We assume that there exist functions BK ∈ K∞, K ∈ N such that for each x ∈ X

the inequality
VK (x) ≤ BK (�∗(x)) (6.3)

holds for all K ∈ N.

We observe that VK (x) ≥ �(x, u�(0)) ≥ �∗(x) implies BK (r) ≥ r .
Before we state consequences from this assumption in the next section, we discuss

a sufficient controllability condition which ensures Assumption 6.3. To this end, we
first slightly enlarge the class ofKL -functions introduced in Definition 2.13.

Definition 6.4 We say that a continuous function β : R≥0 ×R≥0 → R≥0 is of class
KL 0 if for each r > 0 we have limt→∞ β(r, t) = 0 and for each t ≥ 0 we either
have β(·, t) ∈ K∞ or β(·, t) ≡ 0.

Compared to the class KL , here we do not assume monotonicity in the second
argument and we allow for β(·, t) being identically zero for some t . This allows for
tighter bounds for the actual controllability behavior of the system. It is, however,

126 6 Stability and Suboptimality Without …

easy to see that each β ∈ KL 0 can be overbounded by a β̃ ∈ KL , e.g., by setting
β̃(r, t) = maxτ≥t β(r, τ) + e−t r . Using the KL 0 functions we now formulate our
controllability assumption.

Assumption 6.5 (Asymptotic controllability wrt. �) Consider the optimal control
problem (OCPN). We assume that the system is asymptotically controllable with
respect to � with rate β ∈ KL 0, i.e., for each x ∈ X and each N ∈ N there exists
an admissible control sequence ux ∈ U

N (x) satisfying

�(xux (n, x), ux (n)) ≤ β(�∗(x), n)

for all n ∈ {0, . . . , N − 1}.
Special cases for β ∈ KL 0 are

β(r, n) = Cσ nr (6.4)

for real constants C ≥ 1 and σ ∈ (0, 1), i.e., exponential controllability, and

β(r, n) = cnr (6.5)

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0 for all n ≥ n0, i.e., finite
time controllability with linear overshoot bound.

The following lemma links Assumptions 6.5 and 6.3.

Lemma 6.6 If Assumption 6.5 holds then Assumption 6.3 holds. More precisely, for
each K ∈ N and each x ∈ X the inequality

VK (x) ≤ JK (x, ux) ≤ BK (�∗(x)) (6.6)

holds for ux from Assumption 6.5 and

BK (r) :=
K−1∑

n=0

β(r, n). (6.7)

Proof The inequality follows immediately from

VK (x) ≤ JK (x, ux) =
K−1∑

n=0

�(x(n, ux), ux (n))

≤
K−1∑

n=0

β(�∗(x), n) = BK (�∗(x)).

�

6.2 Bounds on VN and Asymptotic Controllability with Respect to � 127

In the special case (6.4) the values BK , K ∈ N, evaluate to

BK (r) = C
1 − σ K

1 − σ
r

while for (6.5) we obtain

BK (r) = CKr with CK =
min{n0,K−1}∑

j=0

c j .

It should be noted that Lemma 6.6 does not necessarily lead to the best bound on VK

in Assumption 6.3. A setting in which additional information leads to significantly
better bounds can be found in Sect. 10.5.

It is easily seen that if the state trajectories itself are exponentially controllable
to some equilibrium x∗ then exponential controllability, i.e., Assumption 6.5 with
β from (6.4), holds if � has polynomial growth. In particular, this covers the usual
linear-quadratic setting for stabilizable systems.

However, even if the system itself is not exponentially controllable, exponential
controllability in the sense of Assumption 6.5 can be achieved by proper choice of
�, as the following example shows.

Example 6.7 Consider the control system

x+ = x + ux3

with X = [−1, 1] and U = [−1, 1]. The system is controllable to x∗ = 0, which
can be seen by choosing u = −1. This results in the system x+ = x − x3 whose
solutions approach x∗ = 0 monotonically for x0 ∈ X.

However, the system is not exponentially controllable to 0: exponential control-
lability would mean that there exist constants C > 0, σ ∈ (0, 1) such that for each
x ∈ X there is ux ∈ U

∞(x) with

|xux (n, x)| ≤ Cσ n|x |.

This implies that by choosing n∗ > 0 so large such that Cσ n∗ ≤ 1/2 holds the
inequality

|xux (n
∗, x)| ≤ |x |/2 (6.8)

must hold for each x ∈ X. However, for each x ≥ 0 the restriction u ∈ [−1, 1]
implies x+ ≥ x − x3 = (1 − x2)x which by induction yields

xu(n
∗, x) ≥ (1 − x2)n

∗
x

for all u ∈ U
∞(x) which contradicts (6.8) for x < 1 − 2−1/n∗

.

128 6 Stability and Suboptimality Without …

On the other hand, since |x | ≤ 1we obtain (1−x2)2(2x2+1) = 1+2x6−3x4 ≤ 1
which implies

1

(1 − x2)2
≥ 2x2 + 1 ⇒ − 1

2x2(1 − x2)2
≤ −2x2 + 1

2x2
= −1 − 1

2x2
.

Hence, choosing

�(x, u) = �(x) = e− 1
2x2 ,

for u ≡ −1 we obtain

�(x+) = �(x − x3) = e
− 1

2x2(1−x2)2 = e
− 1

2x2(1−x2)2 ≤ e−1e− 1
2x2 = e−1�(x).

By induction this impliesAssumption 6.5withβ from (6.4)withC = 1 and σ = e−1.

For certain results it will be useful that β in Assumption 6.5 has the property

β(r, n + m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0. (6.9)

Inequality (6.9), often referred to as submultiplicativity, ensures that any sequence
of the form bn = β(r, n), r > 0, also fulfills bn+m ≤ β(bn,m). It is, for instance,
always satisfied in case (6.4) and satisfied in case (6.5) if cn+m ≤ cncm . If needed,
this property can be assumed without loss of generality, because by Sontag’s KL -
Lemma [18, Proposition 7] (cf. also the discussion before Theorem 4.3) the function
β in Assumption 6.5 can be replaced by a β of the form β(r, t) = α1(α2(r)e−t) for
α1, α2 ∈ K∞. Then, (6.9) is easily verified if α2 ◦ α1(r) ≥ r , which is equivalent to
α1 ◦ α2(r) ≥ r , which in turn is a necessary condition for Assumption 6.5 to hold
for n = 0 and β(r, t) = α1(α2(r)e−t).

Remark 6.8 Computing β satisfying Assumption 6.5 is in general a hard task for
nonlinear systems. One way to obtain such a β is via a suitable control Lyapunov
function, similar to the procedure described in Khalil [14, Sect 4.4] or used in Nešić
and Teel [15, Proof of Proposition 1]. However, as we will see later, the precise
knowledge of β is not necessarily needed in order to apply our results, because we
will be able to identify structural properties of β which guarantee good performance
of the NMPC closed loop, cf. Sect. 6.6.

Remark 6.9 Note that Assumption 6.5 is an assumption in discrete time. In the case
of sampled data systems with zero order hold, this implies that the discrete time
system obtained from (2.8) with constant control function u : [0, T] → R

m needs to
satisfy this assumption. Due to the fact that this system corresponds to the continuous
time system (2.6) with control functions v : R → R

m which are constant on the
sampling intervals, this is in general a stronger assumption than requiring (2.6) to be
asymptotically controllable with measurable control functions v ∈ L∞(R,Rm), cf.
also Remark 2.9.

6.3 Implications of the Bound on VN 129

6.3 Implications of the Bound on VN

In this section, we will use the bound on the VN from Assumption 6.3 in order to
establish two lemmaswhich yield bounds for optimal value functions and functionals
along pieces of optimal trajectories. In the subsequent section, these bounds will then
be used for the calculation of α in (5.1).

In order to be able to calculate α in (5.1), we will need an upper bound for
VN (f (x, μN (x))). To this end, recall from Step (3) of Algorithm 3.1 that μN (x0)
is the first element of the optimal control sequence u�(·) for (OCPN) with initial
value x0. In particular, this implies f (x0, μN (x0)) = xu� (1, x0). Hence, if we want
to derive an upper bound for VN (f (x0, μN (x0))) then we can alternatively derive an
upper bound for VN (xu� (1, x0)). This will be done in the following lemma.

Lemma 6.10 Suppose Assumption 6.3 holds and consider x0 ∈ X and an optimal
control u� ∈ U

N (x0) for (OCPN). Then, for each j = 0, . . . , N − 2 the inequality

VN (xu� (1, x0)) ≤ Jj (xu� (1, x0)), u
�(1 + ·)) + BN− j (�

∗(xu� (1 + j, x0)))

holds for BK from (6.3).

Proof We define the control sequence

ũ(n) =
{
u�(1 + n), n ∈ {0, . . . , j − 1}
ux (n − j), n ∈ { j, . . . , N − 1},

where ux is an optimal control for initial value x = xu� (1 + j, x0) and N = N − j .
By construction, this control sequence is admissible for xu� (1, x0) and we obtain

VN (xu� (1, x0)) ≤ J (xu� (1, x0), ũ)

= Jj (xu� (1, x0), u
�(1 + ·)) + JN− j (xu� (1 + j, x0), ux)

≤ Jj (xu� (1, x0), u
�(1 + ·)) + BN− j (�

∗(xu� (1 + j, x0)))

where we used JN− j (xu� (1 + j, x0), ux) = VN− j (xu� (1 + j, x0)) and Assumption
6.3 in the last step. This is the desired inequality. �

In words, the idea of this proof is as follows. The upper bound for each j ∈
{0, . . . , N−2} is obtained from a specific trajectory.We follow the optimal trajectory
for initial value x0 and horizon N for j steps and for the point x reached this way we
use the optimal control sequence for initial value x and horizon N − j for another
N − j steps.

In the next lemma, we derive upper bounds for the Jk-terms along tails of the
optimal trajectory xu� , which will later be used in order to bound the right hand side
of the inequality from Lemma 6.10. To this end we use that these tails are optimal
trajectories themselves.

130 6 Stability and Suboptimality Without …

Lemma 6.11 Suppose Assumption 6.3 holds and consider x0 ∈ X and an optimal
control u� ∈ U

N (x) for (OCPN). Then for each k = 0, . . . , N − 1 the inequality

JN−k(xu� (k, x0), u
�(k + ·)) ≤ BN−k(�

∗(xu� (k, x0)))

holds for BK from (6.3).

Proof Corollary 3.16 implies JN−k(xu� (k, x0), u�(k + ·)) = VN−k(xu� (k, x0)).
Hence, the assertion follows immediately from Assumption 6.3. �

Remark 6.12 Since u� ∈ U
N (x0) we obtain xu� (k, x0) ∈ X for k = 0, . . . , N . For

k = 0, . . . , N − 1 this property is crucial for the proof of Lemma 6.10 because
it ensures that an optimal control for initial value x = xu� (1 + j, x0) exists. Note,
however, that we do not need xu� (N , x0) ∈ X. In fact, all results in this and the
ensuing sections remain true if we remove the state constraint xu� (N , x0) ∈ X from
the definition of UN (x0) or replace it by some weaker constraint.

6.4 Computation of α

We will now use the inequalities derived in the previous section in order to compute
α for which (5.1) holds for all x ∈ X. When trying to put together these inequalities
in order to bound VN (xu� (1, x0)) from above, one notices that the functionals in
Lemmas 6.10 and 6.11 are not exactly the same. Hence, in order to combine these
results into a closed form which is suitable for computing α we need to look at the
single terms of the stage cost � contained in these functionals.

To this end, let u� be an optimal control for (OCPN) with initial value x0 = x .
Then from the definition of VN and μN it follows that (5.1) is equivalent to

N−1∑

k=0

�(xu� (k, x), u�(k)) ≥ α�(x, u�(0)) + VN (xu� (1, x)). (6.10)

Thus, in order to compute α for which (5.1) holds for all x ∈ X we can equivalently
compute α for which (6.10) holds for all optimal trajectories xu� (·, x) with initial
values x ∈ X.

For this purpose, we now consider arbitrary real values λ0, . . . , λN−1, ν ≥ 0
and start by deriving necessary conditions which hold if these values coincide
with the cost along an optimal trajectory �(xu� (k, x), u�(k)) and an optimal value
VN (xu� (1, x)), respectively.

Proposition 6.13 Suppose Assumption 6.3 holds and consider N ≥ 1, values λn ≥
0, n = 0, . . . , N − 1, and a value ν ≥ 0. Consider x ∈ X and assume that there
exists an optimal control sequence u� ∈ U

N (x) for (OCPN) such that

λk = �(xu� (k, x), u�(k)), k = 0, . . . , N − 1

6.4 Computation of α 131

holds. Then,
N−1∑

n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (6.11)

holds. If, furthermore,
ν = VN (xu� (1, x))

holds then

ν ≤
j−1∑

n=0

λn+1 + BN− j (λ j+1), j = 0, . . . , N − 2 (6.12)

holds.

Proof If the stated conditions hold, then λn and ν must meet the inequalities given
in Lemmas 6.10 and 6.11, which is exactly (6.12) and (6.11). �

Using this proposition, we can give a sufficient condition for (6.10) and thus for
(5.1). The idea behind the following proposition is to express the terms in inequality
(6.10) using the values λ0, . . . , λN−1 and ν introduced above.

Proposition 6.14 Consider N ≥ 1 and BK ∈ K∞, K = 2, . . . , N and assume that
all values λn ≥ 0, n = 0, . . . , N − 1 and ν ≥ 0 fulfilling (6.11) and (6.12) satisfy
the inequality

N−1∑

n=0

λn − ν ≥ αλ0 (6.13)

for some α ∈ (0, 1]. Then for this α and each optimal control problem (OCPN)
satisfying Assumption 6.3 inequality (5.1) holds for μN from Algorithm 3.1 and all
x ∈ X.

Proof Consider a control system satisfying Assumption 6.3 and an optimal control
sequence u� ∈ U

N (x) for initial value x ∈ X. Then, by Proposition 6.13 the values
λk = �(xu� (k, x), u�(k)) and ν = VN (xu� (1, x)) satisfy (6.11) and (6.12), hence
by assumption also (6.13). Thus, using �(x, u�(0)) = �(xu� (0, x), u�(0)) = λ0 we
obtain

VN (xu� (1, x)) + α�(x, u�(0)) = ν + αλ0 ≤
N−1∑

k=0

λk =
N−1∑

k=0

�(xu� (k, x), u�(k)).

This proves (6.10) and thus also (5.1). �

Proposition 6.14 is the basis for computingα as specified in the following theorem.

Theorem 6.15 (Abstract optimization problem) Consider N ≥ 1 and BK ∈ K∞,
K = 2, . . . , N and assume that the optimization problem

132 6 Stability and Suboptimality Without …

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν

λ0
subject to the constraints (6.11), (6.12), and
λ0 > 0, λ1, . . . , λN−1, ν ≥ 0

(6.14)

has an optimal value α ∈ (0, 1]. Then for this α and each optimal control problem
(OCPN) satisfying Assumption 6.3 inequality (5.1) holds for μN from Algorithm 3.1
and all x ∈ X.

Proof Consider arbitrary values λ0, . . . , λN−1, ν ≥ 0 satisfying (6.11) and (6.12).
If λ0 > 0 then the definition of Problem (6.14) immediately implies (6.13).
If λ0 = 0, then inequality (6.11) for k = 0 together with BK (0) = 0 implies

λ1, . . . , λN−1 = 0. Thus, (6.12) for j = 1 yields ν = 0 and again (6.13) holds.
Hence, (6.13) holds in both cases and Proposition 6.14 yields the assertion. �

Remark 6.16 (i) Theorem 6.15 shows Inequality (5.1) for all x ∈ X if Assumption
6.3 or, alternatively, Assumption 6.5 holds for all x ∈ X and K = 2, . . . , N .

If we want to establish Inequality (5.1) only for states x0 ∈ Y for a subset Y ⊂ X,
then from the proofs of the Lemmas 6.10 and 6.11 it follows that Proposition 6.13
holds for all x0 ∈ Y (instead of for all x ∈ X) under the following condition:

(6.3) holds for x = xu� (k, x0) for all k = 0, . . . , N − 1, all x0 ∈ Y
and all K = 2, . . . , N , where u� is the optimal control for JN (x0, u).

(6.15)

This implies that under condition (6.15) Theorem 6.15 holds for all x0 ∈ Y and
consequently (5.1) holds for all x0 ∈ Y .

(ii) A further relaxation of the assumptions of Theorem 6.15 can be obtained by
observing that if we are interested in establishing Inequality (5.1) only for states
x0 ∈ Y , then in (6.14) we only need to optimize over those λi which correspond to
optimal trajectories starting in Y . In particular, if we know that inf x0∈Y �∗(x0) ≥ ζ

for some ζ > 0, then the constraint λ0 > 0 can be tightened to λ0 ≥ ζ .

The following lemma shows that the optimization problem (6.14) specializes to
a linear program if the functions BK (r) are linear in r .

Lemma 6.17 If the functions BK (r) from (6.3) in the constraints (6.11), (6.12) are
linear in r , then α from Problem (6.14) coincides with

α := min
λ0,...,λN−1,ν

N−1∑

n=0

λn − ν

subject to the (now linear) constraints(6.11), (6.12), and
λ0 = 1, λ1, . . . , λN−1, ν ≥ 0.

(6.16)

In particular, this holds if Assumption 6.5 holds with functions β(r, t) being linear
in r .

6.4 Computation of α 133

Proof Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄ satisfying the constraints
in (6.14) can be written as γ λ0, . . . , γ λN−1, γ ν for some λ0, . . . , λN−1, ν satisfying
the constraints in (6.16), where γ = 1/λ̄0. Since

∑N−1
n=0 λ̄n − ν̄

λ̄0
=

∑N−1
n=0 γ λn − γ ν

γ λ0
=

∑N−1
n=0 λn − ν

λ0
=

N−1∑

n=0

λn − ν,

the values α in Problems (6.14) and (6.16) coincide. �

The next result gives an explicit solution of Problem (6.16) and thus also (6.14)
if the functions BK are linear.

Proposition 6.18 If the functions BK (r) from (6.3) in the constraints (6.11), (6.12)
are linear in r , then the solution of Problems (6.14) and (6.16) satisfies the inequality

α ≥ αN (6.17)

for

αN := 1 −
(γN − 1)

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏

k=2
(γk − 1)

with γk = Bk(r)/r, (6.18)

where γk is well defined by linearity of Bk.
If, in addition, the functions BK are of the form (6.7) with β ∈ KL 0 being linear

in its second argument and satisfying (6.9), then equality holds in (6.17), i.e.,

α = αN . (6.19)

Proof The rather technical proof of this proposition can be found in Sect. 6.8.

In the special cases of exponential controllability (6.4) and finite time controlla-
bility (6.5) we get

γk = C
1 − σ k

1 − σ
and γk = Ck =

min{n0,k−1}∑

j=0

c j ,

respectively. We will further investigate Formula (6.18) in Sect. 6.6.
Due to the optimization-based approach leading to Proposition 6.18, Eq. (6.18)

yields a very good (and under suitable conditions even tight, cf. Theorem 6.27)
estimate for α in (5.1). The price for this is a very involved proof, cf. Sect. 6.8. The
following, conceptually similar version of Proposition 6.18, yields a weaker estimate
but allows for a much more simple proof.

134 6 Stability and Suboptimality Without …

Proposition 6.19 If the functions BK (r) from (6.3) in the constraints (6.11), (6.12)
are linear in r , then the solution of Problems (6.14) and (6.16) satisfies the inequality

α ≥ α̃N (6.20)

for

α̃N := 1 − (γ2 − 1)(γN − 1)
N−1∏

k=2

(
γk − 1

γk

)
with γk = Bk(r)/r. (6.21)

Proof We prove the theorem by showing the inequality

λN−1 ≤ (γN − 1)
N−1∏

k=2

(
γk − 1

γk

)
λ0 (6.22)

for all feasible λ0, . . . , λN−1. From this (6.20) follows since (6.12) with j = N − 2
implies

ν ≤
N−2∑

n=1

λn + γ2λN−1

and thus (6.22), γ2 ≥ 1 and λ0 = 1 yield

N−1∑

n=0

λn − ν ≥ λ0 + (1− γ2)λN−1 ≥ λ0 − (γ2 − 1)(γN − 1)
N−1∏

k=2

(
γk − 1

γk

)
λ0 = α̃N

for all feasible λ1, . . . , λN−1 and ν, which yields α ≥ α̃N .
In order to prove (6.22), we start by observing that (6.11) with j = p implies

N−1∑

k=p+1

λk ≤ (γN−p − 1)λp (6.23)

for p = 0, . . . , N − 2. From this we can conclude

λp +
N−1∑

k=p+1

λk ≥
∑N−1

k=p+1 λk

γN−p − 1
+

N−1∑

k=p+1

λk = γN−p

γN−p − 1

N−1∑

k=p+1

λk .

Using this inequality inductively for p = 1, . . . , N − 2 yields

N−1∑

k=1

λk ≥
N−2∏

k=1

(
γN−k

γN−k − 1

)
λN−1 =

N−1∏

k=2

(
γk

γk − 1

)
λN−1.

6.4 Computation of α 135

Using (6.23) for p = 0 we then obtain

(γN − 1)λ0 ≥
N−1∑

k=1

λk ≥
N−1∏

k=2

(
γk

γk − 1

)
λN−1

which implies (6.22). �

A comparison of the two formulas (6.19) and (6.20) can be found in Remark 6.22,
below.

6.5 Main Stability and Performance Results

We are now ready to state our main result on stability and performance of the basic
NMPC Algorithm 3.1 without stabilizing terminal conditions. In this section, we
deal with global asymptotic stability, i.e., asymptotic stability on the whole state
constraint setX. Further results on semiglobal and practical asymptotic stability will
be provided in Sect. 6.7.

Theorem 6.20 (Stability without terminal conditions) Consider the NMPC Algo-
rithm 3.1 with optimization horizon N ∈ N and stage cost � satisfying α3(|x |x∗) ≤
�∗(x) ≤ α4(|x |x∗) for suitable α3, α4 ∈ K∞. Suppose that Assumption 6.3 holds and
that α from Theorem 6.15 satisfies α ∈ (0, 1]. Then the nominal NMPC closed-loop
system (3.5) with NMPC-feedback law μN is asymptotically stable on X.

In addition, the inequality

J cl
∞(x, μN) ≤ VN (x)/α ≤ V∞(x)/α

holds for each x ∈ X.

Proof The assertion follows readily from Theorem 4.11 and Inequality (6.1) if we
prove the inequalities (5.1) and (5.2). Inequality (5.1) follows directly from Theorem
6.15.

Regarding (5.2), observe that the inequality for � follows immediately from our
assumptions. From the definition of VN , we get

VN (x) = inf
u∈UN (x)

JN (x, u) ≥ inf
u∈UN (x)

�(x, u(0)) = �∗(x) ≥ α3(|x |x∗),

thus the lower inequality for VN follows with α1 = α3. The upper inequality in (5.2)
follows from Assumption 6.3 and the upper bound on �∗ via

VN (x) ≤ BN (�∗(x)) ≤ BN (α4(|x |x∗)),

i.e., for α2 = BN ◦ α4. �

136 6 Stability and Suboptimality Without …

The next corollary is an immediate consequence of Theorem 6.20.

Corollary 6.21 Consider the NMPC Algorithm 3.1 with optimization horizon N ∈
N and stage cost � satisfying α3(|x |x∗) ≤ �∗(x) ≤ α4(|x |x∗) for suitable α3, α4 ∈
K∞. Suppose that Assumption 6.3 holds for linear functions BK ∈ K∞ and that
α = αN from Formula (6.18) satisfies α ∈ (0, 1]. Then the nominal NMPC closed-
loop system (3.5) with NMPC-feedback law μN is asymptotically stable on X.

In addition, the inequality

J cl
∞(x, μN) ≤ VN (x)/α ≤ V∞(x)/α

holds for each x ∈ X.

Proof The assertion follows from Theorem 6.20 and Proposition 6.18. �

The main advantage of Corollary 6.21 over Theorem 6.20 lies in the fact that
α is given explicitly by Formula (6.18) rather than implicitly by the Optimization
Problem (6.14).

Remark 6.22 The essential condition for stability in Corollary 6.21 is the inequality
αN > 0. This could alternatively be formulated using α̃N from (6.21) instead of
αN from (6.18), leading to a more conservative criterion. In order to illustrate that
the criterion α̃N > 0 is more conservative than the criterion αN > 0, we consider
the case where γk = γ for all k, i.e., the γk are independent of k, and compute the
minimal N for which α̃N > 0 and αN > 0, respectively, hold. For γk = γ the
expressions simplify to

α̃N = 1 − (γ − 1)N

γ N−2
and αN = 1 − (γ − 1)N

γ N−1 − (γ − 1)N−1
.

Thus, an optimization horizon N for which α̃N > 0 must satisfy

N > 2 + 2
ln(γ − 1)

ln γ − ln(γ − 1)

while the same condition for αN > 0 is given by

N > 2 + ln(γ − 1)

ln γ − ln(γ − 1)
.

This means that the estimate for the minimal stabilizing horizon based on α̃N is about
twice as large as the estimate based on αN .

In this context, it is interesting to look at the asymptotic behavior of the bounds
on N for γ → ∞. For large γ the denominator is approximately 1/γ . This implies
that asymptotically for γ → ∞ the first estimate for N behaves like 2γ ln γ while
the second behaves like γ ln γ .

6.5 Main Stability and Performance Results 137

The class of systems which is covered by Corollary 6.21 is quite large, since, e.g.,
exponential controllability holds on compact sets X whenever the linearization of f
in x∗ is stabilizable and � is quadratic.

The following simple example illustrates the use of Corollary 6.21 for the case of
a nonexponentially controllable system.

Example 6.23 We reconsider Example 6.7, i.e.,

x+ = x + ux3 with �(x, u) = e− 1
2x2 .

As shown in Example 6.7, Assumption 6.5 holds with β(r, k) = Cσ kr with C = 1
and σ = e−1. The bounds in Assumption 6.3 resulting from this β according to (6.7)
are

BK (r) = C
1 − σ K

1 − σ
r = C

1 − e−K

1 − e−1
r,

thus Corollary 6.21 is applicable and we obtain α ≥ αN with αN from Formula
(6.18). The γk in Formula (6.18) are given by

γk = C
1 − e−k

1 − e−1
.

Astraightforward computation reveals that for these values, Formula (6.18) simplifies
to

1 −
(γN − 1)

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏

k=2
(γk − 1)

= 1 − e−N .

Hence, for N = 2 we obtain α = 1 − e−2 ≈ 0.865 and for N = 3 we get α ≥
1 − e−3 ≈ 0.95. Hence, Corollary 6.21 ensures asymptotic stability for all N ≥ 2
and—since 1/0.95 ≈ 1.053—for N = 3 the performance of the NMPC controller
is at most about 5.3% worse than the infinite horizon controller.

While in this simple example the computation of α via Formula (6.18) is possible,
in many practical examples this will not be the case. However, Formula (6.18) can
still be used to obtain valuable information for the design of NMPC schemes. This
aspect will be discussed in detail in Sect. 6.6.

Although the main benefit of the approach developed in this chapter compared
to other approaches is that we can get rather precise quantitative estimates, it is
nevertheless good to know that our approach also guarantees asymptotic stability for
sufficiently large optimization horizons N under suitable assumptions. This is the
statement of our final stability result.

138 6 Stability and Suboptimality Without …

Theorem 6.24 (Stability for sufficiently large N) Consider the NMPC Algorithm
3.1 with optimization horizon N ∈ N and stage cost � satisfying α3(|x |x∗) ≤ �∗(x) ≤
α4(|x |x∗) for suitable α3, α4 ∈ K∞. Suppose that Assumption 6.3 holds for linear
BK ∈ K∞ of the form BK (r) = γKr with γ∞ := supk∈N γk < ∞.

Then the nominal NMPC closed-loop system (3.5) with NMPC-feedback law μN

is asymptotically stable on X provided N is sufficiently large.
Furthermore, for each C > 1 there exists NC > 0 such that

J cl
∞(x, μN) ≤ CVN (x) ≤ CV∞(x)

holds for each x ∈ X and each N ≥ NC.

Proof The assertion follows immediately fromCorollary 6.21 if we show that αN →
1 holds in (6.18) as N → ∞. This property holds if and only if

lim
N→∞

(γN − 1)
N∏

k=2
(γk − 1)

N∏
k=2

γk −
N∏

k=2
(γk − 1)

= 0 (6.24)

with γk defined in (6.18). Note that γk ≥ 1 holds for all k ∈ N and that we may
assumewithout loss of generality γk ′ ≥ γk for k ′ > k ≥ 1, because otherwisewemay
replace γk ′ by maxk=1,...,k ′ γk . This implies the convergence γk → γ∞ for k → ∞.

If γk = 1 holds for some k ≥ 2, then we immediately get the assertion since then
the expression in (6.24) equals 0 for all N ≥ j . Thus, we may assume γk > 1 for all
k ≥ 2.

The inequality γk ≤ γ∞ shows that the factor (γN − 1) in (6.24) is uniformly
bounded by γ∞ − 1 for all N ∈ N. The remaining factor in (6.24) can be written as

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏

k=2
(γk − 1)

= 1
N∏

k=2
γk−

N∏
k=2

(γk−1)

N∏
k=2

(γk−1)

= 1
N∏

k=2

γk
γk−1 − 1

Now, we pick K > 0 so large that |γk − γ∞| ≤ 1/2 for all k ≥ K . Such a K exists
since γk → γ∞ as k → ∞. Then the estimates γK ≤ γk ≤ γ∞ for all k ≥ K ∈ N

imply for N > K

N∏

k=2

γk

γk − 1
≥

K∏

k=2

γk

γk − 1

(
γK

γ∞ − 1

)N−K

→ ∞

as N → ∞, since γ∞ − 1 < γK . Thus,

6.5 Main Stability and Performance Results 139

lim
N→∞

N∏
k=2

(γk − 1)

N∏
k=2

γk −
N∏

k=2
(γk − 1)

= lim
N→∞

1
N∏

k=2

γk
γk−1 − 1

= 0

which shows the claim. �

Remark 6.25 For BK of the form (6.7), a sufficient condition for theγk beingbounded
byγ∞ is thatAssumption 6.5 holds for aβ ∈ KL 0 which is linear in its first argument
and is summable, i.e.,

∞∑

k=0

β(r, k) < ∞ for all r > 0.

Theorem 6.24 justifies what is often done in practice: we set up an NMPC scheme
using a reasonable stage cost � and increase N until the closed-loop system becomes
stable. While this procedure may work in many applications, it is certainly not the
most sophisticated way to proceed and a clever design of �may significantly improve
the performance. Examples in which this is the case can be found in Sect. 6.6.

Remark 6.26 Recall from Sect. 6.1 that throughout this chapter, we use our standing
assumption that X is viable. This property is needed in order to ensure recursive
feasibility of X, cf. the discussion after Theorem 3.5. Approaches which allow to
relax these assumptions are discussed in Sects. 7.1–7.3, cf. also the discussion in
Sect. 7.4(iv).

Theorem 6.20 and Corollary 6.21 give a sufficient condition for asymptotic sta-
bility for the nominal NMPC closed-loop system (3.5) in terms of the value α.
Particularly, if α from (6.14) or αN from (6.18), respectively, is positive for the BK

induced by a β ∈ KL 0 via (6.7), then we can conclude asymptotic stability when-
ever Assumption 6.5 is satisfied with this β for the optimization problem (OCPN) in
Algorithm 3.1.

The following theorem shows that for β ∈ KL 0 satisfying (6.9)—which implies
α = αN if β is linear in its first argument—this condition is tight for the class of
systems satisfyingAssumption 6.5 in the following sense: ifα from (6.14) is negative,
then there exists a control system (2.1) and a stage cost � such that Assumption 6.5
holds but the nominal NMPC closed-loop system (3.5) is not asymptotically stable.

Theorem 6.27 Consider β ∈ KL 0 satisfying (6.9), let N ≥ 1 and assume that the
optimization problem (6.14) for BK from (6.7) has an optimal value α < 0.

Then there exists a control system (2.1) and a stage cost � satisfying Assumption
6.5 and α3(|x |x∗) ≤ �∗(x) ≤ α4(|x |x∗) for suitable α3, α4 ∈ K∞, such that the
nominal NMPC closed-loop system (3.5) is not asymptotically stable.

140 6 Stability and Suboptimality Without …

Proof We first show that α < 0 in (6.14) implies the following property:

there exists λ0, . . . , λN−1, ν > 0 satisfying
(6.11)with strict inequalities, (6.12)and∑N−1

n=0 λn − ν < 0.
(6.25)

In order to prove (6.25) we use that α < 0 in (6.14) yields the existence of λ̄0 > 0,
λ̄1, . . . , λ̄N−1, ν ≥ 0 satisfying (6.11), (6.12) and

N−1∑

n=0

λ̄n − ν̄ < 0. (6.26)

These properties imply λ̄1 > 0, . . . , λ̄N−1 > 0 and ν̄ > 0: the inequality ν̄ > 0
immediately follows from (6.26) and λ̄k ≥ 0. Assuming λ̄k = 0 for some k ∈
{1, . . . , N − 1}, the respective inequality from (6.11) together with BN−k(0) = 0
implies λ̄k+1 = . . . = λ̄N−1 = 0. Thus, in particular λ̄N−1 = 0 which using (6.12)
for j = N − 2 implies ν̄ ≤ ∑N−3

n=0 λ̄n+1 contradicting (6.26).
Now we pick an arbitrary ε > 0 and set

λ0 := λ̄0, . . . , λN−2 := λ̄N−2, λN−1 := λ̄N−1 − ε,

and

ν := min

{
ν̄,

N−2∑

n=0

λn+1 + B2(λN−1)

}
.

We claim that for these values (6.25) holds for all sufficiently small ε > 0. In
order to see this, first one easily checks that (6.11) and (6.12) hold. Furthermore,
since λN−1 < λ̄N−1 appears on the left hand side but not on the right hand side of
each inequality in (6.11), it follows that the inequalities in (6.11) are indeed strict.
Furthermore, for ε > 0 sufficiently small the inequality λN−1 > 0 holds. In order to
complete the proof of (6.25) it remains to show that for ε > 0 sufficiently small the
inequality ν > 0 and the inequality in the last line of (6.25) holds.

To this end,weuse that the second term in the “min” is exactly (6.12) for j = N−2.
Thus, by continuity of B2 the value ν converges to ν̄ > 0 as ε → 0. Hence, for ε > 0
sufficiently small ν̄ > 0 implies ν > 0 and (6.26) implies the inequality in the last
line of (6.25) which completes the proof of (6.25).

Now, we construct a control system (2.1) on the state-space

X =
{
(q, p) ∈ R

2 | q ∈ {0} ∪ {2−k |k ∈ N0}, p ∈ {(−N + 1)q, . . . , Nq}
}
.

For the control values U = {−1, 0, 1} we define the dynamics

6.5 Main Stability and Performance Results 141

f ((1, p),−1) = (1,max{−N + 1, p − 1}), p ∈ {(−N + 1)q, . . . , Nq}
f ((1, p), 0) = (1/2, p/2), p ∈ {(−N + 1)q, . . . , Nq}
f ((1, p), 1) = (1,min{N , p + 1}), p ∈ {(−N + 1)q, . . . , Nq}
f ((q, p), u) = (q/2, p/2), (q, p) ∈ X, q ≤ 1/2, u ∈ U

for which x∗ = (0, 0) is an equilibrium for all u ∈ U . On X we use the metric
induced by the usual Euclidean norm ‖(q, p)‖ = √

q2 + p2 implying ‖x‖x∗ = ‖x‖.
We do not impose any constraints, i.e., we set X = X and U(x) = U for all x ∈ X .

Using the values λ1, . . . , λN−1 and ν from (6.25) we define the stage cost � in
(OCPN) as

�((1, p), 1) = λp, p ∈ {0, N − 1}
�((1, p), 1) = ν, p /∈ {0, N − 1}

�((1, p),−1) = �((1,−p + 1), 1)

�((1, p), 0) = β(min{�((1, p), 1), �((1, p),−1)}, 0)
�((2−k, p), u) = β(min{�((1, 2k p), 1), �((1, 2k p),−1)}, k), k ≥ 1, u ∈ U.

We first verify that f and � satisfy the stated assumptions.
The stage cost � satisfies the inequalities from the assumption for α′

3(r) =
inf x∈X,‖x‖≥r �∗(x) and α̃′

4(r) = supx∈X,‖x‖≤r �∗(x). Due to the discrete nature of the
state spaceα′

3 andα′
4 are discontinuous but they are easily under- and overbounded by

continuousK∞ functions α3 and α4, respectively, for which the assumed inequalities
α3(|x |x∗) ≤ �∗(x) ≤ α4(|x |x∗) hold.

In order to see that Assumption 6.5 is satisfied for the given β, first observe that
Assumption 6.5 for n = 0 impliesβ(r, 0) ≥ r . From this inequality and the definition
of �, we obtain

�((1, p), 0) ≥ min{�((1, p), 1), �((1, p),−1)}

and thus
�∗((1, p)) = min{�((1, p), 1), �((1, p),−1)}.

Furthermore, for k ≥ 1 we have that �((2−k, p), u) is independent of u which yields

�∗((2−k, p)) = �((2−k, p), 0).

Now for ux ≡ 0 and initial value x = (q, p) ∈ X with q = 2−k0 the trajectory
becomes

xux (k, x) = (2−k−k0 , 2−k p).

142 6 Stability and Suboptimality Without …

Thus, by construction of � and (6.9) we obtain

�(xux (k, x), ux (k)) = β(min{�((1, 2k0 p), 1), �((1, 2k0 p),−1)}, k + k0)

= β(�∗(1, 2k0 p), k + k0)

≤ β(β(�∗(1, 2k0 p), k0), k) = β(�((2−k0 , p), 0), k)

= β(�∗((2−k0 , p)), k) = β(�∗(x), k)

which yields Assumption 6.5.
Now, we prove the existence of a closed-loop trajectory which does not converge

to x∗, which shows that asymptotic stability does not hold. To this end we abbre-
viate � = ∑N−1

n=0 λn (note that (6.25) implies ν > �) and investigate the values
JN ((1, 0), u) for different choices of u:

Case 1: u(0) = 0. In this case, regardless of the values u(n), n ≥ 1, we obtain
x(n, u) = (2−n, 0) and thus

JN ((1, 0), u) =
N−1∑

n=0

β(min{�((1, 0), 1), �((1, 0),−1)}, n)

= BN (min{�((1, 0), 1), �((1, 0),−1)}) = BN (min{λ0, λ1}).

In case that the minimum is attained in λ0, by the (strict) inequality (6.11) for k = 0
we obtain JN ((1, 0), u) > �. If the minimum is attained in λ1 then by (6.12) for
j = 0 and (6.25)we obtain JN ((1, 0), u) ≥ ν > �. Thus, in both cases the inequality
JN ((1, 0), u) > � holds.

Case 2: u(n) = −1, n = 0, . . . , N − 2. This choice yields x(n, u) = (1,−n) for
n = 0, . . . , N − 1 and thus

JN ((1, 0), u) =
N−2∑

n=0

λn+1 + �((1,−(N − 1)),−1) ≥ �((1,−(N − 1)),−1)

= �((1, N), 1) = ν > �.

Case 3: u(n) = −1, n = 0, . . . , k − 1, and u(k) = 1 for a k ∈ {1, . . . , N − 2}.
In this case we obtain x(n, u) = (1,−n) for n = 0, . . . , k implying

JN ((1, 0), u) =
k−1∑

n=0

λn+1 + �((1,−k), 1) ≥ �((1,−k), 1) = ν > �.

Case 4: u(n) = −1, n = 0, . . . , k − 1, and u(k) = 0 for a k ∈ {1, . . . , N − 2}.
This control sequence yields x(n, u) = (1,−n) for n = 0, . . . , k while for n =
k + 1, . . . , N − 1 we get x(n, u) = (2−(n−k),−2−(n−k)k). Thus

6.5 Main Stability and Performance Results 143

JN ((1, 0), u) =
k−1∑

n=0

λn+1 +
N−1∑

n=k

β(min{�((1,−k), 1), �((1,−k),−1)}, n − k)

=
k−1∑

n=0

λn+1 + BN−k(λk+1) ≥ ν > �,

where we have used (6.12) for j = k in the second last inequality.
Case 5: u(n) = 1, n = 0, . . . , N − 1. This yields x(n, u) = (1, n) and thus

JN ((1, 0), u) =
N−1∑

n=0

λn = �.

Summarizing, we obtain that any optimal control u�
x for x = (1, 0) must satisfy

u�
x (0) = 1 because for u(0) = 1 we can realize a value ≤ � while for u(0) �= 1

we inevitably obtain a value > �. Consequently, the NMPC-feedback law μN (x) =
u�
x (0) will steer the system from x = (1, 0) to x+ := (1, 1).
Now, we use that by construction f and � have the symmetry properties

f ((q, p), u) − (0, p) = − f ((q,−p + q),−u) + (0,−p + q)

�((q, p), u) = �((q,−p + q),−u)

for all (q, p) ∈ X which implies J ((q, p), u) = J (q,−p + q),−u). Observe that
x+ = (1, 1) is exactly the symmetric counterpart of x = (1, 0). Thus, any optimal
control u�

x+ for x+ must satisfy u�
x+(n) = −u�

x (n) for some optimal control u�
x

for initial value x . Hence, we obtain u�
x+(0) = −1, which means that the NMPC-

feedback μN (x+) = u�
x+(0) steers x+ back to x . Thus, under the NMPC-feedback

law, we obtain the closed-loop trajectory (x, x+, x, x+, . . .), which clearly does not
converge to x∗ = (0, 0). This shows that the closed-loop system is not asymptotically
stable. �

Remark 6.28 If we weaken the assumptions of Theorem 6.27 to α = 0 instead of
α < 0, then the inequalities in (6.25) will not be strict. Under this weaker assumption,
in Cases 1–4 in the proof of Theorem 6.27 we get JN ((1, 0), u) ≥ � instead of
JN ((1, 0), u) > �. This means that the control sequence u(n) ≡ 1 from Case 5 is
still optimal but it is no longer the unique optimal control sequence. Consequently,
the value of μN ((1, 0)) depends on the optimization algorithm. The algorithm may
select μN ((1, 0)) = 1—leading to a closed-loop system which is not asymptotically
stable—or it may select a control value which yields asymptotic stability. Thus,
instability may occur for α = 0 but it does not necessarily need to occur.

All results developed so far in this chapter remain valid for the time varying case
when the bounds on the VN are uniform in time according to the following definition.

144 6 Stability and Suboptimality Without …

Assumption 6.29 (Bounds on VN) Consider the optimal control problem (OCPn
N).

We assume that there exist functions BK ∈ K∞, K ∈ N, such that for each x ∈ X

and n ∈ N the inequality
VK (n, x) ≤ BK (�∗(x)) (6.27)

holds for all K ∈ N.

A straightforward extension of Lemma 6.6 shows that Assumption 6.29 is implied
by the following assumption.

Assumption 6.30 (Asymptotic controllability wrt. �) Consider the optimal control
problem (OCPn

N).Weassume that the system is uniformly asymptotically controllable
with respect to � with rate β ∈ KL 0, i.e., for each x ∈ X, each N ∈ N and each
n0 ∈ N0 there exists an admissible control sequence ux ∈ U

N (x) satisfying

�(n0 + n, xux (n, x), ux (n)) ≤ β(�∗(n0, x), n)

for all n ∈ {0, . . . , N − 1}.
Under these assumptions, all results in this chapter carry over to the time-

dependent setting when we replace λk and ν in Proposition 6.13 by

λk = �(n0 + k, xu� (k, x), u�(k)) and ν = VN (n0 + 1, xu� (1, x)).

Proceeding this way, one easily sees that all results remain valid.

6.6 Design of Good Stage Costs �

In this section,we illustrate bymeans of several examples howour theoretical findings
and in particular Theorem 6.15 in conjunction with Lemma 6.6 and Proposition 6.18
can be used in order to identify and design stage costs � such that the NMPC feedback
law μN exhibits stability and good performance with small optimization horizons
N . To this end we first visualize Formula (6.18) for linear BK induced by different
β ∈ KL 0 via (6.7), starting with the case of exponential controllability (6.4). Note
that in this case (6.9) and thus (6.19) always holds.

Given a desired suboptimality level α� ≥ 0, we use Formula (6.18) in order to
determine the regions in the (σ,C)-plane for which αN ≥ α� holds for different
optimization horizons N . Figure6.1 shows the resulting regions for α� = 0 (i.e.,
“plain” stability) and α� = 0.5.

Looking at Fig. 6.1 one sees that the parameters C and σ play a very different
role. While for both parameters the necessary optimization horizon N becomes the
smaller the smaller these parameters are, small overshoot C (i.e., values of C close
to 1) have a much stronger effect than small decay rates σ (i.e., values of σ close to
0). Indeed, Fig. 6.1(left) shows that for sufficiently small C we can always achieve

6.6 Design of Good Stage Costs � 145

stability for N = 2 while for C ≥ 8 even values of σ very close to 0 will not
yield stability for N ≤ 16. For the required higher suboptimality level α ≥ 0.5,
Fig. 6.1(right) indicates a qualitatively similar behavior.

For finite time control, i.e., controllability with KL 0-functions satisfying (6.5),
the situation is very similar. For instance, consider functions of the form β(r, 0) =
c0r , β(r, 1) = c1r , c0 ≥ c1, and β(r, n) = 0 for n ≥ 2, i.e., n0 = 2. This function
again satisfies (6.9), hence (6.19) holds. For this β, Fig. 6.2 shows the analogous
graphs as in Fig. 6.1.

One immediately sees that the qualitative behavior depicted in Fig. 6.2 is very
similar to the analogous graphs in Fig. 6.1: again, reducing the overshoot c0 we can

Fig. 6.1 Suboptimality regions for different optimization horizons N depending on C and σ in
(6.4) for α� = 0 (left) and α� = 0.5 (right)

Fig. 6.2 Suboptimality regions for different optimization horizons N depending on c0 and c1/c0
in (6.5) with n0 = 2 for α� = 0 (left) and α� = 0.5 (right)

146 6 Stability and Suboptimality Without …

Fig. 6.3 Suboptimality regions for different optimization horizons N depending on c0 and n0 in
(6.5) with cn = c0/2 for n = 1, . . . , n0 − 1 for α� = 0 (left) and α� = 0.5 (right)

always achieve stability with N = 2 regardless of the ratio c1/c0 while reducing c1
and keeping c0 fixed, in general we need N > 2 in order to guarantee stability.

Finally, in Fig. 6.3 we compare the effect of the overshoot c0 and the time n0 in
(6.5) by using β(r, 0) = c0r , β(r, n) = c0r/2 for n = 1, . . . , n0 and β(r, n) = 0 for
n ≥ n0. Again, it turns out that the time n0 needed to control the system to x∗ is less
important than the overshoot: for all times n0 ≥ 1 we can always achieve stability for
c0 sufficiently close to 1 while for fixed c0 this can in general not be achieved even for
n0 = 1, i.e., for controllability in one step. Note that for c0 < 2 this function β does
not satisfy (6.9), thus for these values of c0 Formula (6.18) only provides a lower
bound for α, cf. (6.17). Consequently, for c0 < 2 the regions depicted in Fig. 6.3
may underestimate the true regions. Still, for all n0 the lower bounds obtained from
(6.17) ensure both asymptotic stability and the desired performance bound α ≥ 0.5
for N = 2 whenever c0 is sufficiently close to 1.

Together, these examples lead to a conclusion which is as intuitive as simple:
an NMPC controller without stabilizing terminal conditions will yield stability and
good performance for small horizons N if � can be chosen such that Assumption
6.5 is satisfied with a β ∈ KL 0 with small overshoot. Thus, the criterion “small
overshoot” can be used as a design guideline for selecting a good stage cost �.

For some systems, it is possible to rigorously compute β in Assumption 6.5 which
leads to a precise determination of, e.g., C and σ in (6.4). Examples where this is
possible also include infinite dimensional systems, like the linear wave equation
or certain classes of semilinear parabolic equations, cf. [7]. However, more often
than not precise estimates for β cannot be obtained due to the complexity of the
dynamics. Still, using heuristic arguments it may be possible to determine stage
costs � for which the overshoot is reduced. In the remainder of this section, we will
illustrate this procedure for two examples.

6.6 Design of Good Stage Costs � 147

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6.4 Illustration of the stabilization problem

Example 6.31 We consider Example 2.3, i.e.,

f (x, u) :=
(
x+
1
x+
2

)
=

(
sin(ϑ(x) + u)

cos(ϑ(x) + u)/2

)

with

ϑ(x) =
{
arccos 2x2, x1 ≥ 0
2π − arccos 2x2, x1 < 0

using the control values U = [0, 0.2], i.e., the car can only move clockwise on the
ellipse

X =
{
x ∈ R

2

∣∣∣∣

∥∥∥∥

(
x1

2x2

)∥∥∥∥ = 1

}
.

As in illustrated in Fig. 6.4, we want to stabilize the system at the equilibrium x∗ =
(0,−1/2)� starting from the initial value x0 = (0, 1/2)�.

Interpreting X as a subset of R2, we can try to achieve this goal by using NMPC
without terminal conditions with the stage cost

�(x, u) = ‖x − x∗‖2 + u2. (6.28)

As the simulations in Fig. 6.5 show, asymptotic stability of x∗ = (0,−1/2) is
achieved for N = 11 but not for N = 10.

The reason for the closed loop not being asymptotically stable for N = 10 (and,
in fact, for all N ≤ 10) is the overshoot in the stage cost � when moving along the
ellipse; see Fig. 6.6.

The fact that this overshoot of � appears along the NMPC closed-loop trajec-
tory does in general not imply that the overshoot is present for all possible control

148 6 Stability and Suboptimality Without …

Fig. 6.5 NMPC closed-loop trajectories for Example 2.3 with stage cost (6.28) and optimization
horizons N = 11 (left), N = 10 (right)

Fig. 6.6 Stage cost (6.28)
along the NMPC closed-loop
trajectory for N = 11

sequences u controlling the system to x∗. However, in this example a look at the
geometry reveals that for � from (6.28) the overshoot is in fact not avoidable: no
matter how we control the system to x∗, before we can eventually reduce � to 0, we
need to increase � when moving along the ellipse around the curve. Thus, loosely
speaking, the loss of asymptotic stability for N ≤ 10 is caused by the fact that the
optimizer does not “see” that in the long run it is beneficial to move around the curve
and thus stays at the initial value x0 for all future times.

Looking closer at the geometry of the example, one easily sees that the overshoot
is entirely due to the x1-component of the solution: while x2 convergesmonotonically
to the desired position x∗2 = −0.5, x1 first needs to move from 0 to 1 before we
can eventually control it to x∗1 = 0, again. From this observation it follows that the
overshoot in � can be avoided by putting more weight on the x2–component. Indeed,
if we replace �(x, u) = ‖x − x∗‖2 +u2 = (x1 − x∗1)2 + (x2 − x∗2)2 +u2 from (6.28)
by

�(x, u) = (x1 − x∗1)2 + 5(x2 − x∗2)2 + u2, (6.29)

6.6 Design of Good Stage Costs � 149

Fig. 6.7 NMPC closed-loop
trajectories for Example 2.3
with stage cost (6.29) and
optimization horizon N = 2

Fig. 6.8 Stage cost (6.29)
along the NMPC closed loop
for N = 2

then we obtain asymptotic stability even for N = 2, cf. Fig. 6.7.
Figure6.8 shows the stage cost along the closed loop trajectory for this example.

The figure clearly shows that the overshoot has been removed completely which
explains why the NMPC closed-loop is stable for N = 2.

We would like to emphasize that for removing the overshoot we did not use
any quantitative information, i.e., we did not attempt to estimate the function β in
Assumption 6.5. For selecting a good cost function � it was sufficient to observe that
putting a larger weight on x2 will reduce the overshoot. On the basis of this obser-
vation, the fact that the weight “5” used in (6.29) is sufficient to achieve asymptotic
stability with N = 2 was then determined by a simple try-and-error procedure using
numerical simulations.

150 6 Stability and Suboptimality Without …

Example 6.32 As a second example we consider the infinite dimensional PDEmod-
els introduced in Example 2.12.We first consider the systemwith distributed control,
i.e.,

yt (t, x) = θyxx (t, x) − yx (t, x) + ρ
(
y(t, x) − y(t, x)3

) + u(t, x) (6.30)

with control function u ∈ L∞(R × �,R), domain � = (0, 1) and real parameters
θ = 0.1, ρ = 10. Here yt and yx denote the partial derivatives with respect to t and
x , respectively, and yxx denotes the second partial derivative with respect to x .

The solution y of (6.30) is supposed to be continuous in � and to satisfy the
boundary and initial conditions

y(t, 0) = 0, y(t, 1) = 0 for all t ≥ 0 and y(0, x) = y0(x) for all x ∈ �

(6.31)
for some given continuous function y0 : � → R with y0(0) = y0(1) = 0.

Observe that we have changed notation here in order to be consistent with the
usual PDE notation: x ∈ � is the independent space variable while the unknown
function y(t, ·) : � → R in (6.30) is the state now. Hence, the state is now denoted
by y (instead of x) and the state space of this PDE control system is a function space,
more precisely the Sobolev space H 1

0 (�), although the specific form of this space is
not crucial for the subsequent reasoning.

Figure6.9 shows the solution of the uncontrolled system (6.30), (6.31), i.e., with
u ≡ 0. For growing t the solution approaches an asymptotically stable steady state
y∗∗ �= 0. The figure (as well as all other figures in this section) was computed
numerically using a finite difference scheme with 50 equidistant nodes on (0, 1)
(finer resolutions did not yield significantly different results) and initial value y0 with
y0(0) = y0(1) = 0, y0|[0.02,0.3] ≡ −0.1, y0|[0.32,0.98] ≡ 0.1 and linear interpolation
in between.

By symmetry of (6.30) the function−y∗∗ must be an asymptotically stable steady
state, too. Furthermore, from (6.30) it is obvious that y∗ ≡ 0 is another steady state,

Fig. 6.9 Solution y(t, x) of
(6.30), (6.31) with u ≡ 0

6.6 Design of Good Stage Costs � 151

which is, however, unstable. Our goal is now to use NMPC in order to stabilize the
unstable equilibrium y∗ ≡ 0.

To this end we consider the sampled data system corresponding to (6.30) with
sampling period T = 0.025. In order to obtain a more intuitive notation for the
solution of the sampled data system, instead of introducing the abstract variable z
as in Example 2.12 here we denote the state of the sampled data system at the n-th
sampling instant, i.e., at time nT by y(n, ·). For penalizing the distance of the state
y(n, ·) to y∗ ≡ 0 a popular choice in the literature is the L2 functional

�(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(�) + λ‖u(n, ·)‖2L2(�) (6.32)

which penalizes the mean squared distance from y(n, ·) to y∗ ≡ 0 and the control
effort with weighting parameter λ > 0. Here we choose λ = 0.1.

Another possible choice of measuring the distance to y∗ ≡ 0 is obtained by using
the H 1 norm

‖y(n, ·)‖H 1(�) = ‖y(n, ·)‖2L2(�) + ‖yx (n, ·)‖2L2(�).

This leads to defining

�(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(�) + ‖yx (n, ·)‖2L2(�) + λ‖u(n, ·)‖2L2(�), (6.33)

which in addition to the L2 distance and the control effort as in (6.32) also penalizes
the mean squared distance from yx (n, ·) to y∗,x ≡ 0. Figures6.10 and 6.11 show
the respective NMPC closed-loop solutions with optimization horizons N = 3 and
N = 11.

Figure6.10 indicates that for N = 3 the NMPC scheme with � from (6.32) does
not stabilize the system at y∗ ≡ 0, while for � from (6.33) it does. For (6.32) we need
an optimization horizon of at least N = 11 in order to obtain a stable closed-loop
solution, cf. Fig. 6.11. For � from (6.33) the right images in Figs. 6.10 and 6.11 show
that enlarging the horizon does not improve the closed-loop behavior any further.

Fig. 6.10 NMPC closed loop for (6.30) with N = 3 and � from (6.32) (left) and (6.33) (right)

152 6 Stability and Suboptimality Without …

Fig. 6.11 NMPC closed loop for (6.30) with N = 11 and � from (6.32) (left) and (6.33) (right)

Using our theoretical results we can explainwhy � from (6.33) performsmuch bet-
ter for small horizons N . For this example, our controllability condition Assumption
6.5 reads

�(y(n, ·), u(n, ·)) ≤ Cσ n�∗(y(0, ·)). (6.34)

For � from (6.32) this becomes

‖y(n, ·)‖2L2(�) + λ‖u(n, ·)‖2L2(�) ≤ Cσ n‖y(0, ·)‖2L2(�). (6.35)

Now in order to control the system to y∗ ≡ 0, in (6.30) the control needs to com-
pensate for yx and ρ

(
y(t, x) − y(t, x)3

)
, i.e., any control steering y(n, ·) to 0 must

satisfy

‖u(n, ·)‖2L2(�) ≈ ‖yx (n, ·)‖2L2(�) + ‖ρ (
y(n, ·) − y(n, ·)3) ‖2L2(�). (6.36)

Inserting this approximate equality into (6.35) implies—regardless of the value of
σ—that the overshoot bound C in (6.35) is large if ‖yx (n, ·)‖2L2(�)

>> ‖y(0, ·)‖2L2(�)

holds, which is the case in our example.
For � from (6.33) inequality (6.34) becomes

‖y(n, ·)‖2L2(�) + ‖yx (n, ·)‖2L2(�) + λ‖u(n, ·)‖2L2(�)

≤ Cσ n
(
‖y(0, ·)‖2L2(�) + ‖yx (0, ·)‖2L2(�)

)
. (6.37)

Due to the fact that ‖yx (0, ·)‖2L2(�)
>> ‖y(0, ·)‖2L2(�)

holds in our example, inserting
the approximate Eq. (6.36) into (6.37) does not imply large C , which explains the
considerable better performance for � from (6.33).

The fact that the H 1-norm penalizes the distance to y∗ ≡ 0 in a “stronger” way
than the L2-norm may lead to the conjecture that the better performance for this
norm is intuitive. Our second example shows that this is not the case. This example

6.6 Design of Good Stage Costs � 153

is similar to Eqs. (6.30), (6.31), except that the distributed control is changed to
Dirichlet boundary control. Thus, (6.30) becomes

yt (t, x) = θyxx (t, x) − yx (t, x) + ρ
(
y(t, x) − y(t, x)3

)
, (6.38)

again with θ = 0.1 and ρ = 10, and (6.31) changes to

y(t, 0) = u0(t), y(t, 1) = u1(t) for all t ≥ 0, y(0, x) = y0(x) for all x ∈ �

with u0, u1 ∈ L∞(R,R). The cost functions (6.32) and (6.33) change to

�(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(�) + λ(u0(n)2 + u1(n)2) (6.39)

and

�(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(�) + ‖yx (n, ·)‖2L2(�) + λ(u0(n)2 + u1(n)2),

(6.40)

respectively, again with λ = 0.1.
Due to themore limited possibilities to control the equation, the problemobviously

becomes more difficult, hence we expect to need larger optimization horizons for
stability of the NMPC closed loop. However, what is surprising at the first glance is
that � from (6.39) stabilizes the system for smaller horizons than � from (6.40), as
the numerical results in Fig. 6.12 confirm.

A closer look at the dynamics reveals that we can again explain this behavior with
our theoretical results. In fact, steering the chosen initial solution to y∗ = 0 requires
u1 to be such that a rather large gradient appears close to x = 1. Thus, during the
transient phase ‖yx (n, ·)‖2L2(�)

becomes large which in turn causes � from (6.40) to
become large and thus causes a large overshoot bound C in (6.34). In � from (6.39),
on the other hand, these large gradients are not “visible” which is why the overshoot
in (6.34) is smaller and thus allows for stabilization with smaller N .

Fig. 6.12 NMPC closed loop for (6.38) with N = 15 and � from (6.32) (left) and (6.33) (right)

154 6 Stability and Suboptimality Without …

6.7 Semiglobal and Practical Asymptotic Stability

We have seen in Theorem 6.24 that linearity of the BK in Assumption 6.3—together
with boundedness of the corresponding γK—guarantees that for sufficiently large
optimization horizon N the nominal NMPC closed-loop system (3.5) will be asymp-
totically stable on the whole setX. Even though the examples in the last section show
that the linearity condition can be fulfilled, it is easy to come up with examples in
which linearity is not satisfied or at least difficult or almost impossible to check. In
this section we show that also in this case one can guarantee that NMPC without
stabilizing terminal conditions has reasonable stability properties. However, to this
end we have to weaken the stability notion according to the following definition.

Definition 6.33 Consider the NMPC Algorithm 3.1 and the resulting nominal
closed-loop system (3.5) with feedback law μN and solutions xμN (k, x).

(i) We call the closed-loop system (3.5) semiglobally asymptotically stable with
respect to the optimization horizon N if there exists β ∈ KL such that the
following property holds: for each Δ > 0 there exists NΔ ∈ N such that for all
N ≥ NΔ and all x ∈ X with |x |x∗ ≤ Δ the inequality

|xμN (k, x)|x∗ ≤ β(|x |x∗ , k)

holds for all k ∈ N0.
(ii) We call the closed-loop system (3.5) semiglobally practically asymptotically

stable with respect to the optimization horizon N if there exists β ∈ KL such
that the followingproperty holds: for each δ > 0 andΔ > δ there exists Nδ,Δ ∈ N

such that for all N ≥ Nδ,Δ and all x ∈ X with |x |x∗ ≤ Δ the inequality

|xμN (k, x)|x∗ ≤ max{β(|x |x∗ , k), δ}

holds for all k ∈ N0.

Semiglobal asymptotic stability relaxes the asymptotic stability condition by
requiring asymptotic stability only for the set of initial values x ∈ X with |x |x∗ ≤ Δ.
Although Δ can be chosen arbitrarily large by suitably adjusting the optimization
horizon N , for each finite N it will in general be a finite value.

Semiglobal practical asymptotic stability additionally relaxes the requirement that
the solution exactly tends to the equilibrium x∗ by only requiring that the solution
behaves like an asymptotically stable solution until it reaches a δ-neighborhood of
x∗. Similar to the value of Δ, the size δ of this neighborhood can be arbitrarily tuned
by adjusting the optimization horizon N , but for each finite N it will in general be a
positive value.

Of course, both definitions can be straightforwardly extended to the time varying
case with reference x ref(n) instead of x∗.

6.7 Semiglobal and Practical Asymptotic Stability 155

Semiglobal and semiglobal practical asymptotic stability can be expressed via
the stability properties already introduced in Chap.2. This is made precise in the
following lemma.

Lemma 6.34 (i) The NMPC closed-loop is semiglobally asymptotically stable with
respect to the optimization horizon N if for each Δ > 0 there exists NΔ > 0 such
that for all N ≥ NΔ there exists a forward invariant set Y with BΔ(x∗) ⊂ Y such
that the system is asymptotically stable on Y in the sense of Definition 2.14.

(ii) The NMPC closed loop is semiglobally practically asymptotically stable with
respect to the optimization horizon N if for each δ > 0 and Δ > δ there exists
Nδ,Δ > 0 such that for all N ≥ Nδ,Δ there exist forward invariant sets Y and P with
BΔ(x∗) ⊂ Y and P ⊆ Bδ(x∗) such that the system is P-practically asymptotically
stable on Y in the sense of Definition 2.15.

Proof (i) follows immediately from the definition. (ii) follows from the fact that
according to Definition 2.15 for each k ∈ N0 either |xμN (k, x)|x∗ ≤ β(|x |x∗ , k)
or xμN (k, x) ∈ P holds. Since the latter implies |xμN (k, x)|x∗ ≤ δ we obtain the
assertion. �

For obtaining semiglobal stability, it turns out that a “semiglobal” linearity
assumption on the BK is sufficient. This is the statement of the following theorem.

Theorem 6.35 Consider theNMPCAlgorithm 3.1with optimization horizon N ∈ N

and stage cost � satisfying α3(|x |x∗) ≤ �∗(x) ≤ α4(|x |x∗) for suitable α3, α4 ∈ K∞.
Assume that Assumption 6.3 holds for functions BK ∈ K∞ which for each R > 0
and all r ∈ [0, R] satisfy the inequality

Bk(r) ≤ γ R
k r for all k ∈ N, with constants γ R

k satisfying sup
k∈N

γ R
k < ∞.

Then the nominal NMPC closed-loop system (3.1) with NMPC-feedback law μN is
semiglobally asymptotically stable on X with respect to the optimization horizon N.

Furthermore, for each C > 1 and each Δ > 0 there exists NC,Δ > 0 such that

J cl
∞(x, μN) ≤ CVN (x) ≤ CV∞(x)

holds for each x ∈ BΔ(x∗) ∩ X and each N ≥ NC,Δ.

Proof We first show the existence of α ∈ K∞ such that the inequality Bk(r) ≤ α(r)
holds for all r ≥ 0 and all k ∈ N. To this end, we define γ R∞ := supk∈N γ R

k for each
R > 0. Then the inequality Bk(r) ≤ γ R∞r holds for all k ∈ N and all r ∈ [0, R].
Now for R = 1, 2, . . . we inductively define γ 1 = γ 1∞ and

γ R+1 = max{γ R, γ R+1
∞ }.

This definition implies γ R+1 ≥ γ R and Bk(r) ≤ γ Rr for all r ∈ [0, R], R ∈ N.
Setting

156 6 Stability and Suboptimality Without …

α(r) := (R − r)γ Rr + (r − R + 1)γ R+1r, r ∈ [R − 1, R], R ∈ N

we obtain a continuous, strictly increasing and unbounded function with α(0) = 0,
hence α ∈ K∞. For r ∈ [R − 1, R] and R ∈ N we obtain

Bk(r) ≤ γ Rr = (R − r)γ Rr + (r − R + 1)γ Rr ≤ (R − r)γ Rr + (r − R + 1)γ R+1r

which shows Bk(r) ≤ α(r) for r ∈ [R − 1, R]. Since this holds for each R ∈ N, we
get the desired inequality Bk(r) ≤ α(r) for all r ≥ 0.

Now fix Δ > 0 and set L := α(α̃(Δ)). Since for each N ∈ N we have the
inequality VN (x) ≤ α(�∗(x)) ≤ α(α4(|x |x∗)), for x ∈ BΔ(x∗)we obtain VN (x) ≤ L
and thus the inclusion

BΔ(x∗) ⊆ V−1
N ([0, L]) =: SN , (6.41)

where V−1
N denotes the sublevel set

V−1
N ([0, L]) := {x ∈ X | VN (x) ∈ [0, L]}.

Defining further L ′ := α−1
3 (L), for all x ∈ SN and all y /∈ BL ′(x∗) we obtain

VN (x) ≤ L = α3(L
′) < α3(|y|x∗) ≤ �∗(y).

This implies that for all N ∈ N and all x ∈ SN each optimal trajectory xu� (·, x) of
length N will remain in BL ′(x∗). This holds because if there exists k ′ ∈ {0, . . . ,
N − 1} with y = xu� (k ′, x) /∈ BL ′(x∗) we obtain

JN (x, u�) =
N−1∑

k=0

�(xu� (k, x), u�(k)) ≥ �(xu� (k ′, x), u�(k ′)) ≥ �∗(y) > VN (x)

contradicting the optimality of u�. Setting R := α4(L ′) then implies �∗(xu� (k, x)) ≤
R for all k = 0, . . . , N − 1 and each optimal trajectory for VN (x) with x ∈ SN and
arbitrary N ∈ N.

Now we fix an arbitrary α0 ∈ (0, 1) and note that the values γ R
k can without loss

of generality be assumed to be increasing in k; otherwise we may replace γ R
k by

maxk ′≤k γ R
k ′ . Then by the same arguments as in the proof of Theorem 6.24 we find

NΔ > 0 such that for all N ≥ NΔ the inequality αN ≥ α0 holds in (6.18) with γk =
γ R
k . Now for each x ∈ SN we have shown above that the optimal trajectory for VN (x)

satisfies �∗(xu� (k, x)) ≤ R for all k = 0, . . . , N − 1 and thus Bk(�
∗(xu� (k, x))) ≤

γ R
k �∗(xu� (k, x)) holds. Hence, by Remark 6.16(ii) Inequality (5.1) holds for all x ∈
SN . In particular, this implies VN (f (x, μN (x))) ≤ VN (x) for all x ∈ SN and thus by
definition of SN as a sublevel set of VN this set is forward invariant. Hence, Theorem
4.11 can be applied with S(n) = SN . Together with Lemma 6.34(i) and (6.41) this
proves semiglobal asymptotic stability and with α0 = 1/C we obtain the estimate
for J cl∞(x, μN). �

6.7 Semiglobal and Practical Asymptotic Stability 157

Let us now turn to practical (and semiglobal) stability. We have seen so far that a
global linearity assumption on the Bk implies global stability while a “semiglobal”
linearity assumption, i.e., the existence of a linear upper bound for Bk on each interval
of the form [0, R], implies semiglobal stability. This observation naturally leads to
the conjecture that a “semiglobal practical” linearity assumption, i.e., a linear bound
on the Bk on each interval [ρ, R]with R > ρ > 0 should be sufficient for semiglobal
practical stability. As we will see, this is indeed the case, however, we can formulate
this condition in an even weaker way by simply assuming the existence of α ∈ K∞
with Bk(r) ≤ α(r) for all k ∈ N and all r ≥ 0. This is because on each interval
[ρ, R] for R > ρ > 0 anyK∞-function α can be bounded from above by the linear
function r �→ γ r for γ = maxr∈[ρ,R] α(r)/r . Hence, anyK∞ function automatically
satisfies a “semiglobal practical” linearity assumption.

Before we can formulate the respective Theorem 6.37, we have to provide a tech-
nical lemma which we will need in its proof. Without the linearity assumption the
functions Bk appearing in the constraints (6.11), (6.12) in (6.14) become nonlinear
functions. Hence, (6.14) does no longer reduce to the linear problem (6.16) for which
our formula (6.18) is valid. In the semiglobal case in Theorem 6.35 we could cir-
cumvent this problem in the proof by ensuring that all finite time optimal trajectories
starting in SN stay in the region where Bk is linear. In the following semiglobal
practical case, we have to cope with nonlinearities in the Bk(r) not only for large r
but also for small r which correspond to small neighborhoods of x∗. Since there is
no way to exclude that the finite time optimal trajectories enter small neighborhoods
of x∗—after all, this is precisely what we want them to do when we minimize the
distance from x∗—we cannot use the same trick as in the proof of Theorem 6.35.
Instead, we show in the following lemma that changing the Bk in a region where Bk

is small does only slightly change the optimal value of (6.14), at least for trajectories
starting sufficiently far away from 0, i.e., for values λ0 in (6.14) which are bounded
from below by some sufficiently large constant ζ . This statement is made precise in
the following lemma.

Lemma 6.36 Consider increasing functions Bi
k : R+

0 → R
+
0 for k ∈ N and i = 1, 2.

Assume that these functions satisfy Bi
k(r) ≥ r for all k ∈ N, r ≥ 0 and that there

exist constants σ, ρ > 0 with

|Bi
k(r)| ≤ σ for all r ≤ ρ and k ∈ N

for i = 1, 2 and
B1
k (r) = B2

k (r) for all r ≥ ρ and k ∈ N.

For i = 1, 2 and a constant ζ ≥ ρ consider the optimization problems

αi := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν

λ0
subject to the constraints (6.11), (6.12) with Bk = Bi

k, and
λ0 ≥ ζ, λ1, . . . , λN−1, ν ≥ 0.

(6.42)

158 6 Stability and Suboptimality Without …

Then the inequality |α1 − α2| ≤ σ/ζ holds.

Proof We show the inequality α1 ≤ α2 + σ/ζ . Then the assertion follows by sym-
metry of the two problems.

In order to show the assertion, fix ε > 0 and pick ε-optimal values λ2
0, . . . , λ

2
N−1,

ν2, i.e., values which satisfy the constraints in (6.42) for i = 2 and

∑N−1
n=0 λ2

n − ν2

λ2
0

≤ α2 + ε.

The proof now consists in constructing λ1
k , ν

1 satisfying the constraints in (6.42) for
i = 1 and ∑N−1

n=0 λ1
n − ν1

λ1
0

≤ α2 + ε + σ/ζ.

To this end, we distinguish two cases:
Case 1: λ2

n ≥ ρ for all n ∈ {0, . . . , N − 1}. In this case B1
k (λ

2
n) and B2

k (λ
2
n)

coincide, hence λ1
n := λ2

n , n = 0, . . . , N − 1, and ν1 := ν2 satisfy the constraints
(6.11), (6.12) for Bk = B1

k . This implies

α1 ≤
∑N−1

n=0 λ1
n − ν1

λ1
0

=
∑N−1

n=0 λ2
n − ν2

λ2
0

= α2 + ε

Case 2: λ2
n < ρ for some n ∈ {0, . . . , N −1}. In this case, let n∗ ∈ {0, . . . , N −1}

be minimal with λ2
n∗ < ρ, which implies B2

N−n∗+1(λ
2
n∗) ≤ σ . Since λ2

0 ≥ ζ ≥ ρ we
obtain n∗ ≥ 1. From (6.12) with j = n∗ − 1 it follows that

ν2 ≤
n∗−1∑

n=1

λ2
n + BN−n∗+1(λ

2
n∗) ≤

n∗−1∑

n=1

λ2
n + σ. (6.43)

We now set λ1
n := λ2

n for n = 0, . . . , n∗ − 1, λ1
n := 0, n = n∗, . . . , N − 1 and

ν1 := max{ν2 − σ, 0}. This definition implies

B1
N−k(λ

1
k) = B2

N−k(λ
2
k) for k = 0, . . . , n∗ − 1,

N−1∑

n=k

λ1
k ≤

N−1∑

n=k

λ2
k for k = 0, . . . , N − 1

and
N−1∑

n=k

λ1
k = 0 for k = n∗, . . . , N − 1,

6.7 Semiglobal and Practical Asymptotic Stability 159

which implies (6.11) for Bk = B1
k . Since ν2 satisfies (6.12), for ν1 we get the inequal-

ity

ν1 ≤ ν2 ≤
j−1∑

n=0

λ2
n+1 + B2

N− j (λ
2
j+1) =

j−1∑

n=0

λ1
n+1 + B1

N− j (λ
1
j+1) for j ≤ n∗ − 2.

In case ν1 = 0 we furthermore get

ν1 = 0 ≤
j−1∑

n=0

λ1
n+1 + B1

N− j (λ
2
j+1) for j ≥ n∗ − 1

and in case ν1 = ν2 − σ from (6.43) and the definition of the λ1
n we obtain

ν1 = ν2 − σ ≤
n∗−2∑

n=0

λ2
n+1 ≤

j−1∑

n=0

λ1
n+1 + B1

N− j (λ
1
j+1) for j ≥ n∗ − 1.

This shows (6.12) for B1 = B1
k . Thus, sinceλ1

0 = λ2
0 ≥ ζ , the valuesλ1

0, . . . , λ
1
N−1, ν

1

satisfy all constraints in (6.42) and we can conclude

α1 ≤
∑N−1

n=0 λ1
n − ν1

λ1
0

≤
∑N−1

n=0 λ2
n − ν1

λ2
0

≤
∑N−1

n=0 λ2
n − ν2 + σ

λ2
0

≤ α2 + ε + σ

ζ

where we used λ1
0 = λ2

0 and λ2
0 ≥ ζ .

Thus, in both cases we obtain

α1 ≤ α2 + ε + σ

ζ

which shows the assertion since ε > 0 was arbitrary. �
Now we are able to prove our main result on semiglobal practical asymptotic

stability of the NMPC closed loop. Here we define the finite horizon closed-loop
performance J cl

k∗ analogous to (4.10) with k∗ instead of∞ as upper summation limit.

Theorem 6.37 (Practical stability without terminal conditions)Consider the NMPC
Algorithm 3.1 with optimization horizon N ∈ N and stage cost � satisfying
α3(|x |x∗) ≤ �∗(x) ≤ α4(|x |x∗) for suitable α3, α4 ∈ K∞. Assume that Assump-
tion 6.3 holds for functions BK ∈ K∞ which satisfy

BK (r) ≤ α(r)

for some α ∈ K∞, all K ∈ N and all r ≥ 0. Then the nominal NMPC closed-loop
system (3.5)with NMPC-feedback lawμN is semiglobally practically asymptotically
stable on X with respect to the optimization horizon N.

160 6 Stability and Suboptimality Without …

Furthermore, for each C > 1 and each Δ > δ > 0 there exists NC,δ,Δ > 0 such
that

J cl
k∗ (x, μN) ≤ CVN (x) ≤ CV∞(x)

for all x ∈ BΔ(x∗) ∩ X and all N ≥ NC,δ,Δ where k∗ ∈ N0 is the minimal time
instant with |xμN (k∗, x)|x∗ ≤ δ.

Proof We first show the a priori estimate

VN (f (x, μN (x))) ≤ α(VN (x)) (6.44)

for all N ≥ 2 and all x ∈ X. Indeed, we have

VN (x) =
N−1∑

k=0

�(xu∗(k, x), u∗(k)) ≥ �∗(xu∗(1, x)) = �∗(f (x, μN (x))).

By Assumption 6.3 this implies

VN (f (x, μN (x))) ≤ BN (�∗(f (x, μN (x)))) ≤ α(�∗(f (x, μN (x)))) ≤ α(VN (x)),

i.e., (6.44). Furthermore, we observe that with α1 = α3 and α2 = α ◦α4 the inequal-
ities

α1(|x |x∗) ≤ VN (x) ≤ α2(|x |x∗)

hold for all N ≥ 2 and all x ∈ X.
Now we fix arbitrary Δ > δ > 0. We pick R > 0 as in the proof of Theorem 6.35

and define the values

r0 := α1(δ), r1 := α−1(r0) and ζ := α−1(r1).

These definitions yield the implications

VN (x) ≤ r0 ⇒ |x |x∗ ≤ δ, (6.45)

VN (x) ≤ r1 ⇒ VN (f (x, μN (x))) ≤ r0 (6.46)

and
VN (x) ≥ r1 ⇒ α(�∗(x)) ≥ r1 ⇒ �∗(x) ≥ ζ, (6.47)

where we used (6.44) for (6.46) and Assumption 6.3 together with the bound α on
the Bk for (6.47).

Now, we pick α0 ∈ (0, 1), set σ = (1 − α0)ζ/2 and ρ = α−1(σ). Defining
γ := maxr∈[ρ,R] α(r)/r we obtain

Bk(r) ≤ α(r) ≤ γ r for all r ∈ [ρ, R].

6.7 Semiglobal and Practical Asymptotic Stability 161

Defining further

B1
k (r) = γ r and B2

k (r) =
{
max{γ r, Bk(r)}, r ∈ [0, R]
γ r, r ≥ R

we get B1
k (r) = B2

k (r) for r ≥ ρ and B1
k (r) ≤ B2

k (r) ≤ α(r) ≤ σ for r ∈ [0, ρ].
Hence, B1

k and B2
k satisfy the assumptions of Lemma 6.36. Since B1

k (r) is linear in
r , by the same arguments as in the proof of Theorem 6.24 we find Nδ,Δ > 0 such
that (6.18) for Bk = B1

k yields αN ≥ α0/2 + 1/2 for all N ≥ Nδ,Δ. This implies
α1 ≥ α0/2 + 1/2 in Lemma 6.36 and consequently

α2 ≥ α0/2 + 1/2 − σ/ζ = α0/2 + 1/2 − (1 − α0)/2 = α0.

Now using the set SN = V−1
N ([0, L]) ⊇ BΔ(x∗) defined in the proof of Theorem

6.35, as in this proofwe obtain that each optimal trajectory starting in x ∈ SN satisfies
�∗(xu� (k, x)) ≤ R. Setting Y = SN \ V−1

N ([0, r1]), by (6.47) we furthermore obtain
�∗(x) ≥ ζ for all x ∈ Y . Hence, for this set Y the variant of the optimization problem
(6.14) obtained fromRemark 6.16(i) and (ii) coincideswith the optimization problem
fromLemma 6.36with i = 2, yielding α = α2 ≥ α0 in Theorem 6.15. Consequently,
we obtain (5.1) with α = α0 for all x ∈ Y .

We claim that this implies that the sublevel set V−1
N ([0, r0]) is forward invariant for

the closed-loop system, i.e., that VN (f (x, μN (x))) ≤ r0 holds whenever VN (x) ≤ r0
holds. Indeed, if VN (x) ∈ [r1, r0], then we have x ∈ Y and thus (5.1) holds with
α = α0 > 0, which implies VN (f (x, μN (x))) ≤ VN (x) ≤ r0. On the other hand, if
VN (x) ≤ r1 then (6.46) yields VN (f (x, μN (x))) ≤ r0.

Thus, defining P = V−1
N ([0, r0]) and S = SN , all assumptions of Theorem 4.14

are satisfied and furthermore the inclusions BΔ(x∗) ⊆ S and P ⊆ Bδ(x∗) hold by
(6.41) and (6.45). Hence, Theorem 4.14 yields semiglobal practical stability using
Lemma 6.34(ii) and the estimate for Jk∗(x, μN) by choosing α0 = 1/C . �

We end this section by a simple example which illustrates the practical stability.

Example 6.38 Consider the control system (2.1), i.e.,

x+ = x + u,

with equilibrium x∗ = 0 and stage cost

�(x, u) = x2 + |u|.

The system is controllable to 0 in finite time, which is easily seen if for initial value
x we choose ux (0) = −x and ux (n) = 0 for n ≥ 1. The resulting trajectories satisfy
xux (n) = 0 for n ≥ 1. In particular, we obtain

162 6 Stability and Suboptimality Without …

VN (x) ≤
N−1∑

n=0

�(xux (n), ux (n)) = �(x, ux (0)) = x2 + |x |

and since �∗(x) = x2 this shows that Assumption 6.3 holds with BK (r) = r + √
r .

In particular, the assumptions of Theorem 6.37 hold with α(r) = r + √
r which

ensures semiglobal practical asymptotic stability of the NMPC closed loop.
On the other hand, for the given stage cost Assumption 6.3 does not hold with uni-

formly linearly bounded functions BK . We show this fact by contradiction: Suppose
there exists γ ∈ R auch that Assumption 6.3 holds with BK (r) ≤ γ r for all K ∈ N

and all r ≥ 0. Then Assumption 6.3 implies for any x ∈ R and the corresponding
optimal control sequence u�

N with horizon N

N−1∑

n=0

|u�
N (n)| ≤

N−1∑

n=0

�(xu�
N
(n), u�

N (n)) = VN (x) ≤ BN (�∗(x)) ≤ γ x2. (6.48)

This implies
|xu�

N
(n, x)| ≥ |x | − γ nx2.

Together with (6.48) we obtain

γ x2 ≥
N−1∑

n=0

�(xu�
N
(n), u�

N (n)) ≥
N−1∑

n=0

|xu�
N
(n, x)|2 ≥

N−1∑

n=0

(|x | − γ nx2)2.

Fixing 0 < η < 1 and choosing |x | so small that γ (N − 1)x2 < η|x |, this inequality
yields

γ x2 ≥ N (1 − η)x2.

This, however, is not possible for N > γ/(1 − η), hence Assumption 6.3 cannot
hold with BK (r) ≤ γ r .

As a consequence, Theorem 6.24 is not applicable and we cannot expect asymp-
totic stability of the closed loop. The numerical simulations shown in Fig. 6.13 con-
firm this behavior. From left to right the closed-loop trajectory for N = 2, 3, 4 with

0 5 10 15
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

n

x

N=2

0 5 10 15
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

n

x

N=3

0 5 10 15
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

n

x

N=4

Fig. 6.13 Closed-loop behavior for optimization horizons N = 2, 3, 4

6.7 Semiglobal and Practical Asymptotic Stability 163

x0 = 2 is shown. As Theorem 6.37 predicts, the solutions converge to smaller and
smaller neighborhoods of x∗ = 0 as N increases, but they do not converge to x∗ = 0
for fixed N .

6.8 Proof of Proposition 6.18

In this section we provide the proof of Proposition 6.18. We start by recalling that
Assumption 6.3 and VN (x) ≥ �∗(x) imply Bk(r) ≥ r and thus γk ≥ 1.

Now, the main part of the proof consists of three steps. In the first step, we trans-
form (6.16) into an equivalent form more suitable for our analysis. In the second
step we show that αN from (6.18) is the explicit solution of this equivalent problem
if we remove some of the constraints. Since the solution of the minimization prob-
lem with fewer constraints is always less or equal than the solution of the problem
with all constraints, this proves (6.17). Finally, in the third step we show that under
condition (6.9) the removed constraints are always satisfied for the optimal solution
of the problem from Step 2, which shows (6.19). Some technical equalities we need
throughout the proof are collected in Lemma 6.40 at the end of this section.

Step 1: The optimal value α of (6.16) equals the optimal value of the following
optimization problem:

min
λ

1 − (γ2 − 1)λN−1 (6.49)

subject to the (componentwise) constraints λ = (λ1, . . . , λN−1)
� ≥ 0 and

N−2∑

n=1

λn + λN−1 ≤ γN − 1 (6.50)

N−2∑

n= j

λn − γN− jλ j + λN−1 ≤ 0, j = 1, . . . , N − 2 (6.51)

N−2∑

n= j

λn − γN− j+1λ j + γ2λN−1 ≤ 0, j = 1, . . . , N − 2 (6.52)

Proof of Step 1: We first show that for the optimal values λ0, . . . , λN−1 and ν in
(6.16) the inequality (6.12) for j = N − 2 is an equality. To this end, assume that
inequality (6.12) for j = N − 2 is strict, i.e., that it holds with <.

If λN−1 > 0, then we can—at least slightly—reduce λN−1 without violating the
inequalities (6.11) and (6.12). Since this reduces the value under the minimum in
(6.16), this contradicts the optimality of λ0, . . . , λN−1 and ν.

If λN−1 = 0, then the strict inequality (6.12) for j = N − 2 and the inequality
λN−2 ≤ B3(λN−2) implies that (6.12) for j = N − 3 must be strict, too. Thus,
assuming λN−2 > 0 leads to a contradiction similarly to the case λN−1 > 0, above.
Proceeding inductively yields λ1 = λ2 = . . . = λN−1 = 0 and consequently the

164 6 Stability and Suboptimality Without …

right hand side of (6.12) for j = N − 2 equals zero. Since ν ≥ 0 this contradicts
this inequality being strict.

Since we have shown that equality holds in (6.12) for j = N − 2, we obtain the
expression

ν =
N−2∑

n=1

λn + B2(λN−1) =
N−2∑

n=1

λn + γ2λN−1. (6.53)

Inserting this into the expression under the minimum in (6.16) and using λ0 = 1
yields

N−1∑

n=0

λn −
N−2∑

n=1

λn − γ2λN−1 = λ0 + λN−1 − γ2λN−2 = 1 − (γ2 − 1) λN−1.

This shows that the optimization objectives in (6.16) and (6.49) coincide. In order to
show that the optimal values coincide, it hence remains to show that the constraints
(6.11), (6.12) with λ0 = 1 are equivalent to (6.50)–(6.52).

To this end, we first note that (6.11) for k = 0 becomes

N−1∑

n=0

λn ≤ γNλ0 = γN

which is equivalent to (6.50) since λ0 = 1.
The remaining inequalities (6.11) for k = 1, . . . , N − 2 can be rewritten as

λN−1 ≤ γN−kλk −
N−2∑

n=k

λn, k = 1, . . . , N − 2

which is exactly (6.51) if we change the index from k to j .
Inserting the expression (6.53) into (6.12) and shifting the summation index by 1,

the inequalities (6.12) can be equivalently rewritten as

γ2λN−1 ≤ γN− j+1λ j −
N−2∑

n= j

λn, j = 1, . . . , N − 2.

which is (6.52). This shows the claim in Step 1.
In the following second step, we remove the constraints (6.51) from Problem

(6.49) and provide an explicit solution for this relaxed problem.
Step 2: The optimization problem (6.49) with constraints (6.50), (6.52) and λ ≥ 0

has the solution
min

λ
1 − (γ2 − 1)λN−1 = αN

6.8 Proof of Proposition 6.18 165

with αN from (6.18). Furthermore, λ� = (λ�
1, . . . , λ

�
N−1) with

λ�
N−1−i = −

⎛

⎝
i−1∏

j=1

dN−1− j − 1

dN−1− j

⎞

⎠ γ2

dN−1−i
λ�
N−1, i = 1, . . . , N − 2 (6.54)

with d j = 1 − γN− j+1 is a corresponding minimizer.
Proof of Step 2: First observe that γ2 = 1 implies minλ 1 − (γ2 − 1)λN−1 = 1

and that λ1 = . . . = λN−1 = 0 is a minimizer. In this case one easily verifies the
assertion of Step 2, hence in what follows we will assume γ2 > 1 which implies
γ j > 1 for all j ≥ 2.

We can equivalently rewrite the constraints (6.50), (6.52) compactly as Aλ ≤ b
(interpreted componentwise), where

A :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
d1 1 . . . 1 γ2

0 d2
. . .

...
...

...
. . .

. . . 1 γ2
0 . . . 0 dN−2 γ2

⎞

⎟⎟⎟⎟⎟⎟⎠
and b :=

⎛

⎜⎜⎜⎜⎜⎝

γN − 1
0
...

0
0

⎞

⎟⎟⎟⎟⎟⎠

with d j defined as above. This equivalence follows since the first inequality in Aλ ≤ b
is equivalent to (6.50) while the remaining N−2 inequalities are equivalent to (6.52),
j = 1, . . . N − 2.

Now denote by λ� ≥ 0 a minimizer of (6.49) satisfying the constraints Aλ� ≤ b.
We show by contradiction that Aλ� = b holds. To this end, assume that Aλ� �= b
holds, i.e., that there exists k ∈ {1, . . . , N − 1} such that

N−1∑

n=1

Aknλ
�
n < bk (6.55)

holds. In order to obtain the contradiction, note that γ2 > 1 implies that minimizing
(6.49) is equivalent to maximizing λN−1.

If (6.55) holds for k = 1, then we define the constants

ε := b1 −
N−1∑

n=1

A1nλ
�
n > 0, δ := − max

i=1,...,N
di > 0

and choose ε̃ > 0 such that

ε̃

(
1 + γ2

N−2∑

i=1

(1 + δ)N−2−i

δN−1−i

)
≤ ε.

166 6 Stability and Suboptimality Without …

We set λN−1 = λ�
N−1 + ε̃ and

λi = λ�
i + ε̃γ2

(1 + δ)N−2−i

δN−1−i
, i = 1, . . . , N − 2.

This implies

N−1∑

n=1

A1nλn =
N−1∑

n=1

A1nλ
�
n + ε̃ +

N−1∑

n=2

ε̃γ2
(1 + δ)N−2−i

δN−1−i
≤ A1nλ

�
n + ε = b1

and, for k = 2, . . . , N − 1,

N−1∑

n=1

Aknλn =
N−2∑

n=1

Akn

(
λ�
n + ε̃γ2

(1 + δ)N−2−n

δN−1−n

)
+ AkN−1(λ

�
N−1 + ε̃)

=
N−1∑

n=1

Aknλ
�
n + dk−1ε̃γ2

(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

ε̃γ2
(1 + δ)N−2−n

δN−1−n
+ γ2ε̃

Now we can estimate

dk−1ε̃γ2
(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

ε̃γ2
(1 + δ)N−2−n

δN−1−n
+ γ2ε̃

= ε̃

(
dk−1γ2

(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

γ2
(1 + δ)N−2−n

δN−1−n
+ γ2

)

≤ ε̃

(
−δγ2

(1 + δ)N−1−k

δN−k
+

N−2∑

n=k

γ2
(1 + δ)N−2−n

δN−1−n
+ γ2

)

= ε̃γ2

δN−1−k

(
−(1 + δ)N−1−k +

N−2−k∑

n=0

(1 + δ)N−2−k−n + δN−1−k

)
= 0

where we used (6.62) in the last step. This shows

N−1∑

n=1

Aknλn ≤
N−1∑

n=1

Aknλ
�
n ≤ bk .

Thus, we have constructed a vector λ ≥ 0 satisfying the constraints Aλ ≤ b and
λN−1 > λ�

N−1. Since λN−1 must be maximal for the optimal solution, this contradicts
the optimality of λ�. Hence, (6.55) cannot hold for k = 1.

Now assume (6.55) for some k ≥ 2. Let k� be maximal such that (6.55) holds
for k = k�. Then, since d j < 0, λ�

k�−1 is the only entry with negative sign in this
inequality and thus it must be strictly positive since bk∗ = 0. On the other hand, λ�

k�−1

6.8 Proof of Proposition 6.18 167

appears with positive sign in all inequalities for k ≤ k� − 1 and it does not appear at
all in all inequalities for k ≥ k� + 1. Thus, for ε > 0 sufficiently small the sequence

λ = (λ1, . . . , λN−1) = (λ�
1, . . . , λ

�
k�−2, λ

�
k�−1 − ε, λ�

k� , . . . , λ
�
N−1)

satisfies the constraints Aλ ≤ b and yields the same optimal value in (6.49) as λ�.
Thus, λ is optimal, too. However, the inequality λk�−1 < λ�

k�−1 implies that (6.55)
holds for λ and k = 1. By the first part of the proof, this contradicts the optimality
of λ. Hence, (6.55) cannot hold for k ≥ 2.

The considerations made so far show that the optimal λ� satisfies Aλ� = b. We
use this linear system of equations in order to prove (6.54) by induction over i .

For i = 1, (6.54) follows immediately from the last equation in Aλ� = b. For the
induction step i −1 → i we use the (N − i)th equation in Aλ� = b in order to obtain

λ�
N−1−i = 1

−dN−1−i

(
γ2λ

�
N−1 +

i−1∑

k=1

λ�
N−1−k

)
.

Using the induction assumption, i.e., (6.54) for i − 1 instead of i we can continue

1

−dN−1−i

(
γ2λ

�
N−1 +

i−1∑

k=1

λ�
N−1−k

)

= γ2λ
�
N−1

−dN−1−i

⎛

⎝1 −
i−1∑

k=1

k−1∏

j=1

dN−1− j − 1

dN−1− j

1

dN−1−k

⎞

⎠

= γ2λ
�
N−1

−dN−1−i

⎛

⎝1 +
i−1∑

k=1

k−1∏

j=1

1 − dN−1− j

−dN−1− j

1

−dN−1−k

⎞

⎠

= γ2λ
�
N−1∏i

j=1(−dN−1− j)

i−1∑

k=0

⎛

⎝
k−1∏

j=1

(1 − dN−1− j)

i−1∏

j=k+1

(−dN−1− j)

⎞

⎠

= γ2λ
�
N−1∏i

j=1(−dN−1− j)

i−1∑

k=0

i−1∏

j=1

(1 − dN−1− j)

= −
⎛

⎝
i−1∏

j=1

dN−1− j − 1

dN−1− j

⎞

⎠ γ2

dN−1−i
λ�
N−1

where in the second last step we have used Lemma 6.40(i) with δ j = −d j . This
shows (6.54) for i .

Finally, we use this formula in order to show that αN from (6.18) is the optimal
value for the problem defined in Step 2. To this end we rewrite the first equation of
Aλ� = b as γN −1−λ�

N−1 = ∑N−2
k=1 λk . Inserting (6.54) into this equation and using

168 6 Stability and Suboptimality Without …

the definition d j = 1 − γN− j+1 we obtain

γN − 1 − λ�
N−1 =

N−2∑

k=1

λk =
⎛

⎝−
N−2∑

k=1

⎛

⎝
k−1∏

j=1

dN−1− j − 1

dN−1− j

⎞

⎠ γ2

dN−1−k

⎞

⎠ λ�
N−1

=
⎛

⎝
N−2∑

k=1

⎛

⎝
k−1∏

j=1

γ j+2

γ j+2 − 1

⎞

⎠ γ2

γk+2 − 1

⎞

⎠ λ�
N−1

=
N−2∏

j=1

1

γ j+2 − 1

⎛

⎝
N−2∑

k=1

⎛

⎝
k−1∏

j=1

γ j+2

N−2∏

j=k+1

(γ j+2 − 1)

⎞

⎠

⎞

⎠ γ2λ
�
N−1

=
N∏

j=3

1

γ j − 1

⎛

⎝
N∑

k=3

⎛

⎝
k−1∏

j=3

γ j

N∏

j=k+1

(γ j − 1)

⎞

⎠

⎞

⎠ γ2λ
�
N−1

=
N∏

j=3

1

γ j − 1

⎛

⎝
N∏

j=3

γ j −
N∏

j=3

(γ j − 1)

⎞

⎠ γ2λ
�
N−1

=
⎛

⎝
N∏

j=3

γ j

γ j − 1
− 1

⎞

⎠

︸ ︷︷ ︸
=:ρ

γ2λ
�
N−1

where we used (6.63) in the second last equality. Solving for λ�
N−1 yields

λ�
N−1 = γN − 1

ργ2 + 1

and inserting this into (6.49) we obtain

min 1 − (γ2 − 1)λN−1 = 1 − (γ2 − 1)λ�
N−1 = 1 − (γ2 − 1)(γN − 1)

ργ2 + 1
. (6.56)

The denominator of this fraction can be written as

ργ2 + 1 =
⎛

⎝
N∏

j=3

γ j

γ j − 1
− 1

⎞

⎠ γ2 + 1 =
∏N

j=3 γ j
∏N

j=3(γ j − 1)
γ2 − (γ2 − 1)

=
∏N

j=2 γ j − ∏N
j=2(γ j − 1)

∏N
j=3(γ j − 1)

.

Inserting this into (6.56) we finally obtain

6.8 Proof of Proposition 6.18 169

min 1 − (γ2 − 1)λN−1 = 1 − (γ2 − 1)(γN − 1)
∏N

j=3(γ j − 1)
∏N

j=2 γ j − ∏N
j=2(γ j − 1)

which is exactly αN from (6.18). This finishes the proof of Step 2.
Let us summarize what we have proved so far: In Step 1, we have shown that

Problem (6.16) can be equivalently reformulated as (6.49) subject to the constraints
λ ≥ 0, (6.50), (6.51) and (6.52). In Step 2, we have shown that the optimal value
of the Problem (6.49) subject to the constraints λ ≥ 0, (6.50) and (6.52) is exactly
αN from (6.18). Since this is the optimal value of a minimization problem which
is equivalent to (6.16) but with fewer constraints, αn must be less or equal than the
optimal value of (6.16). Hence, we have shown (6.17).

The proof of the remaining Eq. (6.19) provided (6.9) holds is an immediate con-
sequence of our final Step 3.

Step 3: If (6.9) holds and the Bk are defined by (6.7), then the optimal solution λ�

of Problem (6.49) subject to the constraints (6.50) and (6.52) satisfies the constraints
(6.51).

Proof of Step 3:Weprove the assertion by showing that forλ = λ� the inequalities
(6.51) for j = 2, . . . , N − 2 are implied by the respective inequalities (6.52). Since
(6.52) holds for λ� by definition of the constraints in Step 2, this shows (6.51).

To this end, it is sufficient to show that

−γN− jλ
�
j + λ�

N−1 ≤ −γN− j+1λ
�
j + γ2λ

�
N−1

or, equivalently,
(γ2 − 1)λ�

N−1 ≥ (γN− j+1 − γN− j)λ
�
j (6.57)

holds for j = 2, . . . , N − 2. Inserting (6.54) one sees that (6.57) is equivalent to

N− j+1∏

i=2

(γi − 1) ≥ (γN− j+1 − γN− j)

N− j∏

i=2

γi . (6.58)

Now we define cn := β(r, n)/r . Note that the cn are well defined since β is linear in
r and that (6.7) yields the identity γk = ∑k−1

n=0 cn . Property (6.9) then implies1

cn+m ≤ cncm for all n,m ∈ N0. (6.59)

In order to prove (6.58) we prove the auxiliary inequality

N− j∏

i=2

(γi − 1)
N− j+k−1∑

n=k

cn − cN− j+k−1

N− j∏

i=2

γi ≥ 0 (6.60)

1In fact, (6.59) is the reason for calling (6.9) “submultiplicativity”.

170 6 Stability and Suboptimality Without …

for arbitrary k ∈ N and j = 1, . . . , N−2by induction over j , startingwith j = N−2.
In this case for arbitrary k ∈ N we get

N− j∏

i=2

(γi − 1)
N− j+k−1∑

n=k

cn − cN− j+k−1

N− j∏

i=2

γi = (γ2 − 1) (ck + ck+1) − ck+1γ2

= γ2ck − ck − ck+1

= c0ck + c1ck − ck − ck+1

≥ ck + ck+1 − ck − ck+1 = 0

using (6.59) for m = k and n = 0 and 1 in the ≥-estimate. For the induction step
j + 1 → j and arbitrary k ∈ N we can write the right hand side of (6.60)

N− j∏

i=2

(γi − 1)
N− j+k−1∑

n=k

cn − cN− j+k−1

N− j∏

i=2

γi

= (−1)
N− j−1∏

i=2

(γi − 1)
N− j+k−1∑

n=k

cn

+ γN− j

[
N− j−1∏

i=2

(γi − 1)
N− j+k−1∑

n=k

cn − cN− j+k−1

N− j−1∏

i=2

γi

]

=
N− j−1∏

i=2

(γi − 1)

(
ckγN− j −

N− j+k−1∑

n=k

cn

)

+ γN− j

[N− j−1∏

i=2

(γi − 1)
N− j+k−1∑

n=k+1

cn − cN− j+k−1

N− j−1∏

i=2

γi

]
.

Now the induction assumption implies that the second summand is ≥ 0, since the
term in square brackets is the right hand side of (6.60) with j + 1 and k + 1 instead
of j and k. For the first summand, using (6.59) we can estimate

ckγN− j = ck

N− j−1∑

n=0

cn =
N− j−1∑

n=0

ckcn ≥
N− j−1∑

n=0

ck+n =
N− j+k−1∑

n=k

cn.

This shows that the term in brackets and thus the whole first summand is ≥ 0, which
proves (6.60).

Using the equality γk = ∑k−1
n=0 ck and c0 ≥ 1, the left hand side of the desired

inequality (6.58) can be estimated by

N− j+1∏

i=2

(γi − 1) =
N− j∏

i=2

(γi − 1)

(
N− j∑

n=0

cn − 1

)
≥

N− j∏

i=2

(γi − 1)
N− j∑

n=1

cn.

6.8 Proof of Proposition 6.18 171

For the right hand side we obtain

(γN− j+1 − γN− j)

N− j∏

i=2

γi = cN− j

N− j∏

i=2

γi .

Hence, (6.60) for k = 1 implies (6.58) and thus (6.57). This proves Step 3.
Step 3 implies that the optimal solution αN from (6.18) of (6.49) subject to the

constraints (6.50) and (6.52) obtained in Step 2 equals the optimal solution of (6.49)
subject to the constraints (6.50)–(6.52). Since by Step 1 the latter problem is equiv-
alent to (6.16), this proves (6.19) and thus finishes the proof of Proposition 6.18.

Remark 6.39 In Step 3, we have shown that under the condition (6.9) the conditions
(6.51) are redundant in (6.49). Since in Step 1 we have shown that the conditions
(6.51) are equivalent to (6.11) for k = 1, . . . , N − 2, this shows that under condi-
tion (6.9) the optimal value of Problem (6.16) does not change if we remove the
constraints (6.11) for k = 1, . . . , N − 2. While this has no consequences for the
results in this book—since we get these constraints for free from the optimality of
the trajectory xu� (·, x0) via Lemma 6.11—this observation may be useful in other
settings, e.g., when analyzing NMPC with nonoptimal trajectories.

We end this section with a technical lemma we needed in the preceding proof.

Lemma 6.40 (i) For all δ1, . . . , δN−2 ∈ R and all i ∈ {1, . . . , N − 1} the equation
i−1∏

j=1

(1 + δN−1− j) =
i−1∑

k=0

⎛

⎝
k−1∏

j=1

(1 + δN−1− j)

i−1∏

j=k+1

δN−1− j

⎞

⎠ . (6.61)

holds (with the usual convention
∏ j2

j= j1
= 1 if j2 < j1).

(ii) For all δ ∈ R and k ∈ {1, . . . , N − 1} the equation

(1 + δ)N−1−k =
N−2−k∑

n=0

(1 + δ)N−2−k−nδn + δN−1−k (6.62)

holds.
(iii) For all γ3, . . . , γN ∈ R the equation

N∏

j=3

γ j =
N∏

j=3

(γ j − 1) +
N∑

k=3

⎛

⎝
k−1∏

j=3

γ j

N∏

j=k+1

(γ j − 1)

⎞

⎠ (6.63)

holds.

172 6 Stability and Suboptimality Without …

Proof (i) We prove (6.61) by induction over i . For i = 1 the equality is obvious.
Under the induction assumption that (6.61) holds for i − 1 instead of i we obtain

i−1∏

j=1

(1 + δN−1− j) =
i−2∏

j=1

(1 + δN−1− j) + δN−1−(i−1)

(i−1)−1∏

j=1

(1 + δN−1− j)

=
i−2∏

j=1

(1 + δN−1− j)

+ δN−1−(i−1)

(i−1)−1∑

k=1

⎛

⎝
k−1∏

j=1

(1 + δN−1− j)

(i−1)−1∏

j=k+1

δN−1− j

⎞

⎠

=
i−1∑

k=0

⎛

⎝
k−1∏

j=1

(1 + δN−1− j)

i−1∏

j=k+1

δN−1− j

⎞

⎠ ,

i.e., (6.61) for i .
(ii) Formula (6.62) follows immediately from (6.61) by setting δ1 = . . . , δN−1 = δ

and k = N − i .
(iii) Using (6.61) with δN−1− j = γ j+2 − 1 and i = N − 1 yields

N−2∏

j=1

γ j+2 =
N−2∑

k=0

⎛

⎝
k−1∏

j=1

γ j+2

N−2∏

j=k+1

(γ j+2 − 1)

⎞

⎠ .

Writing the summand for k = 0 on the right hand side separately and using the
summation indices j + 2 instead of j and k + 2 instead of k yields (6.63).

6.9 Notes and Extensions

The conceptual idea of establishing stability and performance of NMPC schemes via
relaxed dynamic programming ideas as outlined in Sect. 6.1 was to our knowledge
first used byShammaandXiong [17].However, in this reference different inequalities
than (5.1) were used and the inequalities were verified by numerical evaluation. In the
form presented here, relaxed dynamic programming was introduced for the analysis
of NMPC schemes in Grüne and Rantzer [12], where also a first controllability
condition for verifying this inequality was given.

The asymptotic controllability condition with respect to � from Sect. 6.2 was
introduced in Grüne [10] and most of the results in Sects. 6.2–6.5 were taken from
this reference with minor modifications and extensions. Exceptions are Proposition
6.18 and Theorem 6.24 and their respective proofs which were taken from Grüne,
Pannek, Seehafer and Worthmann [11] and Proposition 6.19, which can be seen as
a variant of Tuna, Messina and Teel [19] without terminal cost. Note that in [11]

6.9 Notes and Extensions 173

Proposition 6.18 is proved in a more general setting (and with an even more involved
proof); we will sketch this setting in Sect. 10.4.

Section6.6 summarizes and extends discussions from [10, 11]. Example 6.31
in this section has not been published before while Example 6.32 was taken from
Altmüller, Grüne and Worthmann [6]. Further examples of the analysis and design
of stage costs can be found, e.g., in Worthmann et al. [20] for a nonholonomic ODE
model and in Altmüller [3] and Altmüller and Grüne [4, 5] for controlled PDEs.
Section6.7 consists of previously unpublished material, however, the semiglobal
practical stability result in Theorem 6.37 was proved before by Grimm, Messina,
Tuna, and Teel in [9, Theorem 1] using a different proof technique and slightly
different technical assumptions. Corollaries 2 and 3 in [9] provide counterparts of
Theorems 6.35 and 6.24 proving semiglobal and “real” asymptotic stability, respec-
tively, under similar conditions as in our theorems. Since the results in this reference
are quite similar to our approach presented in this chapter, we will briefly discuss
the main differences.

The decisive difference to our results is that in [9] bounds of the type VN (x) ≤
αV (|x |x∗) for αV ∈ K∞ independent of N together with suitable bounds on αV and
the other K∞ functions involved are used while our analysis relies on the Assump-
tions 6.3 or 6.5. The main advantage of using these assumptions instead of the bound
VN (x) ≤ αV (|x |x∗) lies in the fact that the fine structure of β(r, k) or Bk—in par-
ticular the dependence of these functions on k—can be used. The benefit of using
this structure is nicely illustrated in the exponential controllability case (6.4): for
β(r, k) = Cσ kr and �∗(x) ≤ α4(|x |x∗) we obtain the bound VN (x) ≤ αV (|x |x∗) for
αV (r) = Cα4(r)/(1 − σ). Given C1 < C2 and σ1 > σ2 with

C1

1 − σ1
= C2

1 − σ2

this will thus yield the same αV . Hence, using the upper bound αV in the stability
analysis, we cannot distinguish between large overshoot C2 and fast decay σ2 and
small overshoot C1 and slow decay σ1. However, our analysis in Sect. 6.6 based on
Assumption 6.5 shows that the pair C1, σ1 provides a much better stability behavior
than C2, σ2. Particularly, Fig. 6.1 shows that for C1 sufficiently close to 1 we always
enter the region where stability holds for N = 2, a fact which remains invisible when
looking only at αV .

Another advantage of our approach is that it automatically leads to suboptimality
estimates which are not provided in [9]. On the other hand, a major advantage of
the approach in [9] is that it allows to handle nonpositive definite stage costs � via a
suitable detectability condition. We will discuss this aspect in Sect. 10.3. It should be
noted that the advantages of our approach are maintained if we replace Proposition
6.18 by Proposition 6.19, which is an adaptation of a result for NMPC with terminal
costs (but without terminal constraints) in Tuna, Messina and Teel [19]. Proposition
6.19 is easier to prove than Proposition 6.18, but we also arrive at more conservative
estimates, as Remark 6.22 shows.

174 6 Stability and Suboptimality Without …

Since the first edition of this book, continuous time counterparts of the most
important results presented in this chapter have been developed by Reble and
Allgöwer [16] and the relation between the discrete time analysis presented here
and the continuous time analysis in this reference has been investigated for sampled
data systems by Worthmann, Reble, Grüne and Allgöwer [21]. The continuous time
approach was subsequently extended and applied to the Burgers PDE by Azmi and
Kunisch [8] and an analysis of the value of α in the context of model reduction of
semilinear parabolic PDEs was presented by Alla and Volkwein [2].

Besides the approach presented in this chapter and [9] there are various other
approaches which ensure stability of NMPC schemes without stabilizing terminal
conditions. Probably the earliest reference is Alamir and Bornard [1], another well-
known reference is Jadbabaie and Hauser [13]. Both were already briefly discussed
at the end of Sect. 6.1; here we only remark that these references do not provide
bounds on the optimization horizon N .

We finally mention that inverse optimality can be obtained in a similar way as for
terminal conditioned schemes in Theorem 5.24, see Problem 6, below.

Problems

General remark: all NMPC algorithms in the following problems are meant without
stabilizing terminal conditions.

1. Consider a control system (2.1) on X = R
d and U = R

m which is exponentially
controllable to x∗ = 0. Thismeans that there exist constants K > 0 and η ∈ (0, 1)
such that for each x ∈ R

d there is a control sequence ux ∈ U
N (x) such that

‖xux (k, x)‖ ≤ Kηn‖x0‖

holds for all k ∈ N0.

(a) Show that the system satisfies the controllability Assumption 6.5 with β ∈
KL 0 of type (6.4) for any stage cost of the form �(x, u) = x�Qx with
positive definite matrix Q ∈ R

d×d .
(b) Does the assertion from (a) also hold for a stage cost of the form �(x, u) =

x�Qx + u�Ru for positive definite matrices Q ∈ R
d×d and R ∈ R

m×m? If
not, which additional property must be satisfied?

Hint: Look at the hints for Problem 2 in Chap. 4.
2. Consider a function β ∈ KL 0 of the form (6.5).

(a) Prove that there exists C ≥ 1 and σ ∈ (0, 1) such that for the function
β̃ ∈ KL 0 of type (6.4) with β̃(r, n) = Cσ nr the inequality

β(r, n) ≤ β̃(r, n)

holds for all n ∈ N0 and all r ≥ 0.

Problems 175

(b) Determine C ≥ 1 and σ ∈ (0, 1) (with C as small as possible) such that the
inequality from (a) holds for the values n0 = 2, c0 = 2 and c1 = 1 in (6.5).

(c) Compute α for β(r, n) and β̃(r, n) for the values from (b) and N = 3, 4, 5, 6
using (6.19) (MAPLEtm or MATLAB� may be helpful here). Which func-
tion provides better values?

3. Consider the control system

x(n + 1) =
(

1 1.1
−1.1 1

)
x(n) +

(
0
1

)
u(n)

with x(n) ∈ X = R, u(n) ∈ U = R and stage cost �(x, u) = max{‖x‖∞, u}.
(a) Given the initial value x(0) = (x1, x2), use the control sequence u(0) =

21
110 x1 − 2x2, u(1) = 221

110 x1 + 221
100 x2, u(n) = 0 for all n ≥ 2 to compute the

minimal horizon length N for which stability can be guaranteed.
(b) Try to reduce the minimal required horizon length N from (a). To this end,

change the term u in the stage cost � to η u for some η ∈ R
+
0 and analyze

the impact of this change.

Hint for (a): Construct β such that Assumption 6.5 holds and Corollary 6.21 is
applicable.

4. Consider a control system (2.1), an admissible feedback law μ : X → U and
a Lyapunov function V : X → R

+
0 for the closed-loop system x+ = g(x) :=

f (x, μ(x)). Show that theNMPC-feedback lawμN for stage cost �(x, u) = V (x)
stabilizes the system for N = 2.
Hint: A direct argument may be easier than trying to apply one of the theorems
from this chapter.

5. Consider the control system

x(n + 1) = 2x(n) + u(n)

with x(n) ∈ X = R, u(n) ∈ U = R.

(a) Show that for stage cost �(x, u) = x2 the NMPC control law μN : X → U
is optimal for the infinite horizon problem for arbitrary N ≥ 2, .

(b) For the stage cost �(x, u) = x2 + u2, compute minimal horizon lengths N
such that α ≥ α holds for α ∈ {0.5, 0.9, 0.99}.

6. Consider an NMPC problem satisfying the assumptions of Theorem 6.20. Prove
that the function

�̃(x, u) := �(x, u) + VN−1(f (x, u)) − VN (f (x, u))

(cf. (5.32)) is of the form (3.2) and thatμN is the infinite horizon optimal feedback
law for (OCP∞) with stage cost �̃.
Hint: Follow the proof of Theorem 5.24.

176 6 Stability and Suboptimality Without …

References

1. Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme:
the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)

2. Alla, A., Volkwein, S.: Asymptotic stability of POD based model predictive control for a
semilinear parabolic PDE. Adv. Comput. Math. 41(5), 1073–1102 (2015)

3. Altmüller, N.: Model predictive control for partial differential equations. PhD Thesis, Univer-
sität Bayreuth (2014)

4. Altmüller, N., Grüne, L.: Distributed and boundary model predictive control for the heat equa-
tion. GAMM-Mitt. 35, 131–145 (2012)

5. Altmüller, N., Grüne, L.: A comparative stability analysis of Neumann and Dirichlet boundary
MPC for the heat equation. In: Proceedings of the 1st IFAC Workshop on Control of Systems
Modeled by Partial Differential Equations – CPDE 2013, pp. 161–166 (2013)

6. Altmüller, N., Grüne, L., Worthmann, K.: Performance of NMPC schemes without stabiliz-
ing terminal constraints. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent
Advances in Optimization and its Applications in Engineering, pp. 289–298. Springer (2010)

7. Altmüller, N., Grüne, L., Worthmann, K.: Receding horizon optimal control for the wave
equation. In: Proceedings of the 49th IEEE Conference on Decision and Control - CDC 2010,
pp. 3427–3432. Atlanta, Georgia (2010)

8. Azmi, B., Kunisch, K.: On the stabilizability of the Burgers equation by receding horizon
control. SIAM J. Control Optim. 54(3), 1378–1405 (2016)

9. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local
control Lyapunov function, all is not lost. IEEE Trans. Autom. Control 50(5), 546–558 (2005)

10. Grüne, L.: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite
dimensional systems. SIAM J. Control Optim. 48, 1206–1228 (2009)

11. Grüne, L., Pannek, J., Seehafer, M.,Worthmann, K.: Analysis of unconstrained nonlinearMPC
schemes with varying control horizon. SIAM J. Control Optim. 48, 4938–4962 (2010)

12. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers.
IEEE Trans. Autom. Control 53, 2100–2111 (2008)

13. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal
cost. IEEE Trans. Autom. Control 50(5), 674–678 (2005)

14. Khalil, H.K.: Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ (2002)
15. Nešić, D., Teel, A.R.: A framework for stabilization of nonlinear sampled-data systems based

on their approximate discrete-time models. IEEE Trans. Autom. Control 49(7), 1103–1122
(2004)

16. Reble, M., Allgöwer, F.: Unconstrained model predictive control and suboptimality estimates
for nonlinear continuous-time systems. Automatica 48, 1812–1817 (2011)

17. Shamma, J.S., Xiong, D.: Linear nonquadratic optimal control. IEEE Trans. Autom. Control
42(6), 875–879 (1997)

18. Sontag, E.D.: Comments on integral variants of ISS. Syst. Control Lett. 34, 93–100 (1998)
19. Tuna, S.E., Messina, M.J., Teel, A.R.: Shorter horizons for model predictive control. In: Pro-

ceedings of the 2006 American Control Conference, pp. 863–868. Minneapolis, Minnesota,
USA (2006)

20. Worthmann, K., Mehrez, M.W., Zanon, M., Mann, G.K.I., Gosine, R.G., Diehl, M.: Model
predictive control of nonholonomic mobile robots without stabilizing constraints and costs.
IEEETrans. Control Syst. Tech. 1, 1 (2016). doi:10.1109/TCST.2015.2488589. Printed version
to appear

21. Worthmann, K., Reble, M., Grüne, L., Allgöwer, F.: The role of sampling for stability and
performance in unconstrained nonlinear model predictive control. SIAM J. Cont. Optim. 52,
581–605 (2014)

http://dx.doi.org/10.1109/TCST.2015.2488589

Chapter 7
Feasibility and Robustness

In this chapter we consider two different but related issues. In the first part we discuss
the feasibility problem, i.e., that the nominal NMPC closed-loop solutions remain
inside a set on which the finite horizon optimal control problems defining the NMPC
feedback law are feasible. We formally define the property of recursive feasibility
and explain why the assumptions of the previous chapters, i.e., viability of the state
constraint set or of the terminal constraint set ensure this property. Then we present
two ways to relax the viability assumption on the state constraint set in the case that
no terminal constraints are used. After a comparative discussion on NMPC schemes
with and without stabilizing terminal conditions, we start with the second part of
the chapter in which robustness of the closed loop under additive perturbations and
measurement errors is investigated. Here robustness concerns both the feasibility
and admissibility as well as the stability of the closed loop. We provide different
assumptions and resulting NMPC schemes for which we can rigorously prove such
robustness results and also discuss examples which show that in general robustness
may fail to hold.

7.1 The Feasibility Problem

We start by introducing the feasibility problem for the NMPCAlgorithm3.1, i.e., for
the NMPC formulation without terminal constraints.

Recall from Definition3.2 that for each x ∈ X the set of admissible control
sequences UN (x0) is nonempty if and only if there exists a control sequence u ∈ U

N

for which the conditions

(xu(k, x0), u(k)) ∈ Y for all k = 0, . . . , N − 1 and xu(N , x0) ∈ X

are satisfied. Moreover, recall from the discussion after Assumption 3.3 that the
optimization problem (OCPN) in the NMPC Algorithm 3.1 is called feasible for the

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_7

177

178 7 Feasibility and Robustness

initial value x0 if UN (x0) �= ∅ holds. Since only feasible optimal control problems
allow for an admissible solution, the points x0 ∈ X satisfyingUN (x0) �= ∅ are exactly
the points for which the NMPC feedback law μN is well defined. The feasibility
problem in NMPC now lies in the fact that even though the constraints xu(n, x0) ∈ X

imply xu� (1, x0) = xμN (1, x0) = f (x0, μN (x0)) ∈ X, it may happen that

U
N (f (x0, μN (x0))) = ∅,

i.e., that the optimization problem (OCPN) for initial value f (x0, μN (x0)) to be
solved at next time instant is infeasible. This means that μN and thus also the closed
loop system (2.5) is not defined for x = f (x0, μN (x0)) and the NMPC closed loop
runs into a “dead end”.

Example 7.1 We illustrate this fact by Example 3.4, i.e.,

x+ = f (x, u) =
(
x1 + x2 + u/2
x2 + u

)
.

We use the state constraints X = [−1, 1]2 and the control constraints U(x) = U =
[−1/4, 1/4]. With the same computation as in Example 3.4 one sees that X is not
viable, since, for instance, for the point x = (1, 1)� ∈ X we obtain f (x, u) /∈ X for
all u ∈ U.

As we have seen in Example 10.2, the system can be stabilized respecting the
state and control constraints starting from the initial value x = (−1, 1)�. Running
theNMPCAlgorithm3.1with N = 2 and �(x, u) = ‖x‖2+5u2 with this initial value,
however, results in the trajectory shown in Fig. 7.1. Here we have not stopped the
simulation upon infeasibility but rather continued the computationwith the infeasible
solution returned by the optimization algorithm.

Fig. 7.1 Infeasible
trajectory for Example 7.1
with initial value
x0 = (−1, 1)� and
optimization horizon N = 2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

7.1 The Feasibility Problem 179

Although asymptotically stable, at time n = 3 and 4 this trajectory violates the
state constraints which are indicated by the black box.Moreover, while the optimiza-
tion algorithm reported infeasibility for n = 1, 2, 3, 4, it terminated successfully at
time n = 0, i.e., the infeasibility at later time instants was not detected upon ini-
tialization and is not due to a failure of the optimization algorithm at time n = 0.

In order to formally analyze this problem we introduce the following notions.

Definition 7.2 Let a constraint set X and an optimization horizon N ∈ N∞ for the
NMPC Algorithm 3.1 be given.
(i) A point x ∈ X is called feasible for X and N if UN (x) �= ∅.
(ii) The feasible set for X and N is defined as

FN := {x ∈ X | x is feasible forX and N }.

The setF∞ is also called viability kernel.
(iii) A set A ⊆ X is called recursively feasible for optimization horizon N ∈ N

if A ⊆ FN and it is forward invariant for the NMPC feedback law μN , i.e., if
f (x, μN (x)) ∈ A holds for all x ∈ A.

The recursive feasibility property from Definition 7.2(iii) guarantees that for any
initial value x ∈ A theNMPCclosed loopwill generate a solutionwhich is admissible
for all future times. Formally, this is stated in the following lemma.

Lemma 7.3 Let A ⊆ X be recursively feasible for the NMPC Algorithm3.1 with
optimization horizon N ∈ N. Then for each x ∈ A the closed-loop solution xμN (n, x)
generated by (2.5) is well defined for all n ∈ N0 and satisfies xμN (n, x) ∈ A and
thus also xμN (n, x) ∈ X for all n ∈ N0.

Proof The result follows by a straightforward induction using (2.5) and the relation
f (x, μN (x)) ∈ A for all x ∈ A. �

Thus, in addition to stability, for proper operation of the NMPC scheme we also
need to ensure that the desired operating range of our controller lies in a recursively
feasible set. Note that xμN (n, x) ∈ X for all n ∈ N immediately implies the inclusion
A ⊆ F∞. For this reason, the viability kernelF∞ is themaximal possible recursively
feasible subset of X. In particular, it is the maximal set on which an admissible
feedback can be defined, independent of how this feedback is constructed.

The reason why we did not address the feasibility problem in the previous chap-
ters lies in the fact that the assumptions imposed so far always implied feasibility. In
fact, in Chap. 6 we always assumed that the constraint set X is viable in the sense of
Assumption 3.3. Under this assumption Theorem 3.5 ensures that A = X is recur-
sively feasible, as already remarked after this theorem. However, arbitrary constraint
sets are in general not viable. Moreover, while in simple examples the construction
of a viable subset of X may be possible, cf. Example 3.4, for complicated dynamics
this can be a difficult if not impossible task.

180 7 Feasibility and Robustness

The terminal constrained scheme discussed in Chap. 5 provides a remedy to this
problem. For this scheme, recursive feasibility of XN is always ensured by Lemma
5.3. However, the price that we pay for this nice property is that the operating range is
a priori restricted toXN , which may be considerably smaller than the operating range
of the unconstrained scheme, cf. Example 6.2. Furthermore, we either need to impose
equilibrium constraints X0 = {x∗}—which may be too restrictive for some systems
and may cause problems in the numerical optimization routine—or we need to find
a viable terminal constraint setX0 along with a terminal cost F defined onX0 which
satisfies Assumption 5.9. While the design of F can be avoided by using the mixed
scheme from the first part of Sect. 10.1, in any case we need to find a viable terminal
constraint set X0. Note that finding this “small” set is in general easier than finding
a “big” viable state constraint set X. However, both in terms of the operating range
of the scheme and in terms of implementational simplicity, it would be desirable if
we could use the unconstrained scheme without having to worry about the feasibility
problem and without having to construct a viable terminal constraint set X0. In the
following sections we will show two approaches in this direction.

7.2 Feasibility of Unconstrained NMPC Using Exit Sets

In this and in the subsequent section we present two results which ensure feasibility
for the unconstrained NMPC Algorithm 3.1 under two different assumptions. While
the first result uses properties of the interplay between the dynamics f and the
constraint set X and is independent of any stability properties, the second approach
uses asymptotic stability of the closed loop in order to ensure feasibility of subsets
of the state space.

In order to introduce our first approach we need the following objects.

Definition 7.4 Consider a control system (2.1) with state constraint set X ⊂ X and
control constraint set U(x) ⊆ U , x ∈ X. We recursively define the exit sets Ek ⊆ X ,
k ∈ N0 as

E0 := X \ X, Ek := {x ∈ X | f (x, u) ∈
k−1⋃
i=0

Ei for all u ∈ U(x)}, k = 1, 2,

Remark 7.5 (i) This definition immediately implies Ek ′ ⊆ Ek for all k ≥ k ′ ≥ 1.
(ii) If X is viable then the definition of E0 implies E1 = ∅ and thus by induction

Ek = ∅ for all k ≥ 1.

In words, for k ≥ 1 the exit set Ek consists of all points x0 ∈ X for which it is
unavoidable that the trajectory xu(k, x0) leaves X after at most k steps regardless of
how u ∈ U

k(x0) is chosen. This is made precise in the following lemma.

7.2 Feasibility of Unconstrained NMPC Using Exit Sets 181

Lemma 7.6 A point x ∈ X satisfies x ∈ Ek if and only if the following property
holds:

for each u ∈ Uk there exists ku ∈ {0, . . . , k} such that either
u(n) /∈ U(xu(n, x)) for some n ∈ {0, . . . , ku − 1} or xu(ku, x) /∈ X.

(7.1)

Proof We show the property by induction over k. For k = 0 the assertion follows
immediately from E0 = X \ X and xu(0, x) = x . For the induction step k → k + 1
assume that the assertion holds for k. We then need to show that x ∈ Ek+1 holds if
and only if (7.1) holds for k + 1.

We first show that (7.1) holds for x ∈ Ek+1. Let x ∈ Ek+1 and pick u ∈ Uk+1.
If u(0) /∈ U(x), then (7.1) holds with ku = 1. Hence, assume u(0) ∈ U(x). Then
we get x ′ = xu(1, x) ∈ Ei for some i ∈ {0, . . . , k}. Now, by induction assumption
for the shifted control u′ = u(· + 1) ∈ Uk there exists ku′ ∈ {0, . . . , k} such that
either u′(n) /∈ U(xu′(n, x ′)) for some n ∈ {0, . . . , ku′ − 1} or xu′(ku′, x ′) /∈ X. Since
u′(n) = u(n + 1) and xu′(ku′, x ′) = xu(ku, x) for ku = ku′ + 1 ≤ k + 1, this shows
that (7.1) holds for ku = ku′ + 1.

Conversely, given x ∈ X for which (7.1) holds for k + 1, we need to show
x ∈ Ek+1. Let ux ∈ U(x) be given and denote x ′ = f (x, ux). We have to show that
x ′ ∈ Ei for some i ≤ k. If x ′ /∈ X then x ′ ∈ E0 and we are done. Otherwise, we pick
an arbitrary control sequence u′ ∈ Uk for x ′ and define a control sequence u ∈ Uk+1

by setting u(0) = ux and u(j) = u′(j − 1) for j ∈ {1, . . . , k}. Then by (7.1) there
exists ku ≤ k + 1 such that either u(n) /∈ U(xu(n, x)) for some n ∈ {0, . . . , ku − 1}
or xu(ku, x) /∈ X and since xu(1, x) = x ′ ∈ X we know that ku ≥ 1. By construction
of u this implies that (7.1) holds for x ′ and u′ with ku′ = ku − 1 ≤ k. Hence, by the
induction assumption x ′ ∈ Ek and consequently by definition of the Ek we obtain
x ∈ Ek+1. �

Our next lemma shows the relation between the exit sets Ek and the feasible sets
FN from Definition 7.2(ii).

Lemma 7.7 Consider a control system (2.1) with state constraint set X ⊂ X and
control constraint set U(x), x ∈ X. Then the identity

FN = X \ EN = X \
(

N⋃
k=1

Ek

)
(7.2)

holds for all N ∈ N.

Proof The second equality follows immediately from Remark 7.5(i). It remains to
show FN = X \ EN which we will do by proving “⊆” and “⊇”.

“⊆”: Consider x ∈ FN . ThenUN (x) is nonempty, hence we can pick u ∈ U
N (x).

By definition ofUN (x) this implies u(k) ∈ U(xu(k, x)) for all k = 0, . . . , N −1 and
xu(k, x) ∈ X for k = 0, . . . , N . Thus, (7.1) does not hold and Lemma 7.6 implies
x /∈ EN and thus x ∈ X \ EN .

182 7 Feasibility and Robustness

“⊇”: Let x ∈ X\ EN , i.e., x ∈ X and x /∈ EN . Then Lemma 7.6 implies that (7.1)
does not hold, i.e., there exists u ∈ UN with u(n) ∈ U(xu(n, x)) for n = 0, . . . , N−1
and xu(n, x) ∈ X for n = 0, . . . , N . This means that u ∈ U

N (x), hence UN (x) �= ∅
and consequently x ∈ FN . �

Remark 7.8 If f is continuous then one can also show F∞ = X \ (⋃∞
k=1 Ek

)
.

Now we introduce the assumption we will use in order to guarantee feasibility.

Assumption 7.9 There exists N0 ∈ N0 such that Ek ⊆ EN0 for all k ≥ N0.

By Remark 7.5(ii) this assumption is satisfied for N0 = 0 if X is viable. Thus,
Assumption 7.9 can be seen as a relaxation of Assumption 3.3. In Example 7.12,
below, we will see that this condition is satisfied for the system from Example 7.1.
However, before we look at this example we show that under this assumption the
feasible setFN0 becomes recursively feasible for optimization horizon N ≥ N0 +1.
To this end we need another preparatory lemma.

Lemma 7.10 Under Assumption 7.9 the identity

F∞ = FN

holds for all N ≥ N0.

Proof First observe that Assumption 7.9 together with Lemma 7.7 immediately
implies FN = FN0 for all N ≥ N0. Thus, it is sufficient to show the assertion for
N = N0.

Since the inclusion F∞ ⊆ FN follows directly from the definition, it remains
to show the converse inclusion. Thus, we need to prove that U∞(x) �= ∅ for all
x ∈ FN0 . We do this by constructing u ∈ U

∞(x). To this end, since FN0 = FN0+1,
we can pick u0 ∈ U

N0+1(x) and set u(0) := u0(0). Then the definition of UN (x)
implies u0(·+1) ∈ U

N0(x1) for x1 = xu0(1, x) = xu(1, x). Thus x1 ∈ FN0 = FN0+1

and we can find u1 ∈ U
N0+1(x1). Setting u(1) := u1(0) with the same arguments we

obtain u1(·+1) ∈ U
N0(x2) for x2 = xu1(1, x1) = xu(2, x). Proceeding iteratively we

obtain a control sequence u ∈ U
∞ which satisfies xk = xu(k, x) = xuk−1(1, xk−1) ∈

FN0+1 ⊆ X and u(k) = uk(0) ∈ U(xk) = U(xu(k, x)) for all k ∈ N0. Thus
u ∈ U

∞(x). �

Using Lemma 7.10 we can now prove our first recursive feasibility result.

Theorem 7.11 (Recursive feasibility for exit sets) Consider the NMPC Algorithm
3.1 and let Assumption 7.9 hold. Then the feasible set FN0 = F∞ is recursively
feasible for all optimization horizons N ≥ N0 + 1.

7.2 Feasibility of Unconstrained NMPC Using Exit Sets 183

Proof Consider x ∈ FN0 . Since by Lemma 7.10 the identity FN0 = FN holds,
in particular we obtain FN0 ⊆ FN . Hence, problem (OCPN) in Algorithm (3.1) is
feasible. Let u� be the corresponding optimal control which implies μN (x) = u�(0).
Since u� ∈ U

N (x) the definition of UN (x) implies u�(· + 1) ∈ U
N−1(xu� (1, x)) =

U
N−1(f (x, μN (x))). Thus, UN−1(f (x, μN (x))) �= ∅ and hence f (x, μN (x)) ∈

FN−1. Since N − 1 ≥ N0, Lemma 7.10 yields FN−1 = FN0 . This shows
f (x, μN (x)) ∈ FN0 , i.e.,FN0 is recursively feasible. �

Example 7.12 We illustrate Assumption 7.9 and Theorem 7.11 by means of Exam-
ples 3.4 and 7.1, i.e.,

x+ = f (x, u) =
(
x1 + x2 + u/2
x2 + u

)
.

As in the previous examples we use the state constraints X = [−1, 1]2. The control
constraints are chosen more generally as U(x) = U = [−ū, ū] with ū > 0.

A straightforward but tedious computation shows that the exit sets Ek are given
by

Ek =
k⋃
j=1

{x ∈ [−1, 1]2 | x1 > − j x2 + 1 + j2ū/2 or x1 < − j x2 − 1 − j2ū/2}.

In Example 3.4 we chose ū = 1. With this parameter one sees that Ek = E1 for
all k ≥ 1 because the inequalities for j ≥ 2 are never satisfied for x ∈ [−1, 1]2.
Hence, Assumption 7.9 is satisfied with N0 = 1 and Theorem 7.11 yields that the
setF1 = F∞ = X \ E1 from Lemma 7.7 is recursively feasible for all N ≥ 2. This
set is exactly the set defined in (3.6).

In Example 7.1 we have ū = 1/4. In this case one sees that E4 �= E3 because
(−0.99, 1)� ∈ E4 but (−0.99, 1)� /∈ E3. On the other hand, Ek = E4 for all k ≥ 4
because for x2 ∈ [−1, 1] and j ≥ 5 the inequality

− j x2 + 1 + j2ū/2 > −4x2 + 1 + 42ū/2

holds. Hence, the inequality for j = 4 is always satisfied whenever the inequality
for some j ≥ 5 is satisfied, thus x ∈ E j for j ≥ 5 implies x ∈ E4. Consequently,
Assumption 7.9 holds with N0 = 4 and according to Theorem 7.11 for Example 7.1
the closed-loop solution satisfies the state constraints for N ≥ 5 and all x ∈ X \ E4.
In particular, since the point (−1, 1)� is not contained in E4, the infeasibility from
Fig. 7.1 should disappear. Figure7.2 shows that this is exactly what happens.1

1In fact, the infeasibility already disappears for N = 3 and N = 4 but this is not covered by our
theorem.

184 7 Feasibility and Robustness

Fig. 7.2 Feasible trajectory
for Example 7.1 with initial
value x0 = (−1, 1)� and
optimization horizon N = 5

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

7.3 Feasibility of Unconstrained NMPC Using Stability

A main advantage of the feasibility analysis in the previous section is that it is com-
pletely independent of any stability properties of the closed loop. Thus, feasibility and
stability can be analyzed independently of each other. Unfortunately, Theorem 7.11
crucially relies on Assumption 7.9 which may not be satisfied for many practical
problems and, even if it is satisfied, may be difficult to verify for complex dynamics.

Thus, in this section we present an alternative result which shows that feasibility
may be inherited from the optimality properties of the solution and from the stability
of the closed loop. In order to derive this result we first need three basic assumptions
and a couple of preparatory lemmas.

Our stability results rely on Assumptions 6.3 or 6.5 which are both only satisfied
for all x ∈ X if the state constraint set X is viable. We now show how to generalize
Assumption 6.5 ifX is not viable. In this case, asymptotic controllability for arbitrary
horizons N only makes sense for initial values x ∈ F∞. This is what our first
assumption demands.

Assumption 7.13 (Asymptotic controllability) Consider the optimal control prob-
lem (OCPN) with a not necessarily viable state constraint set X. We assume that on
the viability kernel F∞ the system is asymptotically controllable with respect to �

with rate β ∈ KL 0, i.e., for each x ∈ F∞ and each N ∈ N there exists an admis-
sible control sequence ux ∈ U

N (x) satisfying xux (n, x) ∈ F∞ for all n = 1, . . . , N
and

�(xux (n, x), ux (n)) ≤ β(�∗(x), n)

for all n ∈ {0, . . . , N − 1} and �∗ from (6.2).

7.3 Feasibility of Unconstrained NMPC Using Stability 185

Under this assumption the results from the stability analysis in Chap. 6 remain
valid if we replace the state constraints xu(k, x) ∈ X for k = 0, . . . , N (which
in (OCPN) is implicitly expressed by the requirement u ∈ U

N (x)) by the state
constraints

xu(k, x) ∈ F∞ for k = 0, . . . , N . (7.3)

Indeed, sinceF∞ is viable the standing assumption fromChap.6, cf. Remark 6.26, is
satisfied for these stricter state constraints, i.e., if we replaceX byF∞. Furthermore,
from the observation in Remark 6.12 it follows that the results from Chap.6 remain
valid if we replace the constraint for k = N in (7.3) by a weaker constraint. In
particular, Theorem 6.15 remains valid for β from Assumption 7.13 and F∞ in
place of X if we weaken (7.3) to

xu(k, x) ∈ F∞ for k = 0, . . . , N − 1, xu(N , x) ∈ X. (7.4)

In the remainder of this section, the reference (OCPN)will always refer to the problem
with the original state constraints xu(k, x) ∈ X, k = 0, . . . , N , while we will always
explicitly refer to (7.4) if we consider (OCPN) with the additional constraints (7.4).

In order to apply our stability results fromChap.6, we need further assumptions on
� and VN . For this assumption recall once again the definition �∗(x) := infu∈U �(x, u)

from (6.2).

Assumption 7.14 There exist α1, α2, α3, α4 ∈ K∞ and N0 ≥ 2 such that the
inequalities

α1(|x |x∗) ≤ VN (x) ≤ α2(|x |x∗)

and
α3(|x |x∗) ≤ �∗(x) ≤ α4(|x |x∗)

hold for all N ≥ N0.

Note that the assumptions of Theorem 6.24 imply Assumption 7.14 with α1 = α3

and α2(r) = ∑∞
k=0 β(α4(r), k). Here the linearity and summability of β ensure that

α2 is indeed aK∞-function.
Finally, we want to ensure that the feedback stabilization problem under the given

state constraints X is solvable locally around x∗. A prerequisite for this is that there
exists a neighborhood of x∗ whose intersection with X consists of points which are
feasible for N = ∞. This is our last assumption.

Assumption 7.15 There exists a ball Bδ(x∗) such that Bδ(x∗) ∩ X ⊆ F∞.

Observe that we only require the inclusion Bδ(x∗) ∩ X ⊆ F∞ (as opposed to
Bδ(x∗) ⊆ F∞), which allows for the situation that x∗ is on the boundary of X.

The following two lemmas show properties of optimal trajectories which are
crucial for our feasibility analysis.

186 7 Feasibility and Robustness

Lemma 7.16 Assume that Assumptions 7.13–7.15 hold. Let ε = α−1
2 ◦ α3(δ) > 0

with α2, α3 ∈ K∞ from Assumption 7.14 and δ > 0 from Assumption 7.15. Then for
each N ≥ 2 and each x ∈ Bε(x∗) ∩ X the optimal trajectory for (OCPN) satisfies
xu� (n, x) ∈ Bδ(x∗) ∩ X for all n ∈ {0, . . . , N − 1}.
Proof The relation xu� (n, x) ∈ X follows immediately from u� ∈ U

N (x). It remains
to show xu� (n, x) ∈ Bδ(x∗). From the inequality for �∗ in Assumption 7.14we obtain

�(y, u) ≥ α3(δ) for all y /∈ Bδ(x∗). (7.5)

On the other hand, the inequality for VN in Assumption 7.14 and the definition of ε

imply

VN (x) < α2(ε) = α2(α
−1
2 ◦ α3(δ)) = α3(δ) for all x ∈ Bε(x∗). (7.6)

Now assuming xu� (n, x) /∈ Bδ(x∗) for some x ∈ Bε(x∗) and some n ∈ {0, . . . ,
N − 1}, and using (7.5) with y = xu� (n, x) implies

VN (x) =
N−1∑
k=0

�(xu� (k, x), u�(k)) ≥ �(xu� (n, x), u�(n)) ≥ α3(δ)

which contradicts (7.6). �

Lemma 7.17 Assume that Assumptions 7.13–7.15 hold and consider some ε > 0.
Let N ≥ 2 and x ∈ FN with VN (x) < Nα3(ε). Then the optimal trajectory xu� (n, x)
for (OCPN) satisfies xu� (n, x) ∈ Bε(x∗) ∩ X for some n ∈ {0, . . . , N − 1}.
Proof Again, xu� (n, x) ∈ X follows immediately from u� ∈ U

N (x) and it remains
to show xu� (n, x) ∈ Bε(x∗). To this end, assume xu� (n, x) /∈ Bε(x∗) for all n ∈
{0, . . . , N − 1}. Then Assumption 7.14 implies

VN (x) =
N−1∑
k=0

�(xu� (k, x), u�(k)) ≥
N−1∑
k=0

α3(|xu� (k, x)|x∗) ≥ Nα3(ε)

which contradicts VN (x) < Nα3(ε). �

The next lemma shows a property of arbitrary admissible trajectories.

Lemma 7.18 Let N ∈ N, x ∈ FN and u ∈ U
N (x) be such that the corresponding

trajectory satisfies xu(N − 1, x) ∈ F∞. Then xu(k, x) ∈ F∞ for all k = 0, . . . ,
N − 1.

Proof Fix an arbitrary k ∈ {0, . . . , N − 2} and abbreviate xk = xu(k, x). Since
y = xu(N − 1, x) ∈ F∞ there exists a control sequence uy ∈ U

∞(y), i.e.,

uy(n) ∈ U(xuy (n, y)) and xuy (n, y) ∈ X

7.3 Feasibility of Unconstrained NMPC Using Stability 187

for all n ∈ N0. Then the concatenated control sequence

ū(n) =
{
u(n + k), n = 0, . . . , N − k − 2
uy(n − N + k + 1), n ≥ N − k − 1

and the initial value xk yield a trajectory satisfying

xū(n, xk) =
{
xu(n + k, x), n = 0, . . . , N − k − 1
xuy (n − N + k + 1, y), n ≥ N − k − 1.

This trajectory remains in X for all n ≥ 0 and the corresponding control sequence ū
is admissible for all times. Thus u ∈ U

∞(xk), hence U∞(xk) �= ∅ and consequently
xk ∈ F∞. �

Combining the three previous lemmas we arrive at the following proposition.

Proposition 7.19 Assume that Assumptions 7.13–7.15 hold and let N ≥ 2 and
x ∈ FN with VN (x) < Nα3 ◦ α−1

2 ◦ α3(δ) with α2, α3 ∈ K∞ from Assumption 7.14
and δ > 0 from Assumption 7.15. Then the optimal trajectory xu� (n, x) for (OCPN)
with horizon N satisfies xu� (n, x) ∈ F∞ for all n ∈ {0, . . . , N − 1}.

In particular, for these x the optimal values and the optimal trajectories do not
change if we add the constraints (7.4) to the optimal control problem (OCPN).

Proof Applying Lemma 7.17 with ε = α−1
2 ◦ α3(δ) yields xu� (n, x) ∈ Bε(x∗) for

some n ∈ {0, . . . , N − 1}. Since by Corollary 3.16 the trajectory xu� (n + ·, x) is
optimal for horizon N −n and initial value xu� (n, x), Lemma 7.16 yields xu� (k, x) ∈
Bδ(x∗) ∩ X for k = n, . . . , N − 1. In particular, this implies xu� (N − 1, x) ∈
Bδ(x∗) ∩ X ⊆ F∞. Now Lemma 7.18 yields the assertion. �

Now we are ready to formulate our feasibility theorem.

Theorem 7.20 (Recursive feasibility via controllability condition) Let Assumptions
7.13–7.15 hold, let N ≥ 2 and assume that α from Theorem 6.15 with β from
Assumption 7.13 satisfies α ∈ (0, 1]. Then the set

A = {x ∈ FN | VN (x) < Nα3 ◦ α−1
2 ◦ α3(δ)}

with α2, α3 ∈ K∞ from Assumption 7.14 and δ > 0 from Assumption 7.15 is recur-
sively feasible for the NMPC feedback μN from Algorithm3.1. Furthermore, the
NMPC closed loop (2.5) is asymptotically stable on A.

Proof From the discussion after Assumption 7.13 it follows that Theorem 6.15 is
applicable for Algorithm 3.1 with the additional constraints (7.4) in (OCPN) with
β from Assumption 7.13. Thus, (5.1) holds for μN from Algorithm 3.1 and the
corresponding optimal value function VN for all x ∈ F∞ if we add the constraints
(7.4).

188 7 Feasibility and Robustness

By Proposition 7.19, for x ∈ A the optimal trajectories do not change if we add
the constraints (7.4) to the optimal control (OCPN) in Algorithm 3.1. In particular,
this implies that the resulting NMPC feedbackμN does not change if we add the state
constraints (7.4). Since, furthermore, for x ∈ A the optimal trajectories of (OCPN)
lie in F∞, we get x ∈ F∞ and f (x, μN (x)) ∈ F∞, thus VN is defined in x and
f (x, μN (x)). Hence, for each x ∈ A (5.1) also holds for μN from Algorithm3.1
and the corresponding optimal value function VN without the constraints (7.4). For
x ∈ A this implies

VN (f (x, μN (x))) ≤ VN (x) − α�(x, μN (x)) ≤ VN (x) < Nα3 ◦ α−1
2 ◦ α3(δ)

and thus f (x, μN (x)) ∈ A. This shows the recursive feasibility of A. �

Corollary 7.21 Let Assumptions 7.13–7.15 hold, let N0 ≥ 2 and assume that α from
Theorem 6.15 with β from Assumption 7.13 satisfies α ∈ (0, 1] for all N ≥ N0. Then
for each bounded set K ⊆ F∞ there exists NK ≥ N0 such that for each N ≥ NK

there exists a recursively feasible set AN for the NMPC feedback μN from Algorithm
3.1 with K ⊆ AN . Furthermore, the NMPC closed loop (2.5) is asymptotically
stable on AN . In particular, if X is bounded, then F∞ is recursively feasible for all
sufficiently large optimization horizons N.

Proof Using the upper bound α2 on VN from Assumption 7.14 and the inclusion
F∞ ⊆ FN it follows that the set A fromTheorem 7.20 contains the setBν(x∗)∩F∞
with

ν = α−1
2

(
Nα3 ◦ α−1

2 ◦ α3(δ)
)
.

Since ν ↗ ∞ for N → ∞, for each bounded set K ⊆ F∞ we can choose NK ≥ N0

such that K ⊆ Bν(x∗) ∩ F∞ holds for all N ≥ NK . This shows the claim for
AN = A. �

7.4 Comparing NMPC with and Without Terminal
Conditions

Now that we have developed the main stability and feasibility results we will discuss
themain advantages and disadvantages of NMPC schemes with andwithout terminal
conditions. More precisely we distinguish between the following schemes.

(a) NMPC with equilibrium (or time-varying reference) endpoint constraint from
Sect. 5.2

(b) NMPC with Lyapunov function terminal cost from Sect. 5.3
(c) NMPC without terminal conditions from Chap. 6

We compare the main features of these NMPC variants in terms of

(i) design, i.e., the choice of the necessary ingredients of the respective algorithms

7.4 Comparing NMPC with and Without Terminal Conditions 189

(ii) stability, i.e., the asymptotic stability properties of the closed loop and the
assumptions needed in order to guarantee them

(iii) performance, i.e., the suboptimality compared with the infinite horizon optimal
value

(iv) feasibility, i.e., the guarantee that the optimal control problem in the NMPC
closed loop is solvable for the given constraints

(v) numerical effort, i.e., the time needed for the online optimization

(i) Regarding the design, clearly the schemes (a) and (c) are preferable. In both
cases all that needs to be designed is a desired equilibrium (or reference in the time-
varying case) and a stage cost �which is positive definitewith respect to this reference
which in the simplest case could be of the form (3.3).

In contrast to this, the additional construction of a viable terminal constraint set
X0 and a terminal cost F meeting Assumptions 5.1(i) and (ii) necessary for (b) poses
a considerable additional difficulty in the design of the scheme, notably (but not
exclusively) for time-varying references.

This is probably the main reason for the fact that in our discussion with practition-
ers the formulations (a) and (c) turned out to be the by far preferred NMPC variants
in industrial applications.

(ii) The main difference of the stability properties for the different schemes lies in
the fact that for (a) and (b) the operating range, i.e., the region onwhich the stabilizing
feedback is defined or, equivalently, the domain of attraction of the reference solution
for the closed-loop solution, is a priori confined to the feasible set XN . In contrast
to this, the unconstrained scheme (c) can yield larger and even unbounded stability
regions for fixed N , cf. Example 6.2. On the other hand, for small optimization
horizons N in (a) and (b) only the domainof attraction shrinkswhile for (c) asymptotic
stability may be lost completely. Which of the two advantages is dominant can only
be assessed on a case by case basis for each particular system to be controlled, usually
performed with the support of numerical simulations and/or experimental results.

Regarding the conditions for stability, (a) requires the system to be controllable
to the desired reference point or trajectory in finite time, while (b) requires the
viability of the terminal constraint set X0 and the compatibility of F and � in the
sense of Assumption 5.1(ii). The unconstrained scheme, in turn, requires the bound
from Assumption 6.3 or the asymptotic controllability from Assumption 6.5 and a
positive value α in Theorem 6.15 or a sufficiently large optimization horizon N ,
cf. Theorem 6.37. The conditions for the existence of suitable F and � for (b) and
� for (c), respectively, can roughly be regarded as comparably strong as they both
essentially require asymptotic controllability with suitable uniformity. In contrast to
this, the finite time controllability condition for (a) is stronger.

Concerning the verification of these conditions, the assumptions for (a) and (b) are
typically considerably easier to check than the asymptotic controllability condition
for (c). However, a considerable difference between the conditions for (b) and (c)
is that F in (b) must be constructed in order to run the scheme while BK or β in
Assumption 6.3 or 6.5, respectively, are only needed for the analysis of the scheme
but not at runtime.

190 7 Feasibility and Robustness

(iii) Regarding performance, the respective Theorems 5.21 and 6.24 show that
for all schemes (a)–(c) the infinite horizon performance J cl∞(x, μN) from Definition
(4.10) approaches the optimal value V∞(x) if the optimization horizon N tends
to infinity. The conditions for these theorems to hold are essentially equivalent to
conditions needed for asymptotic stability. For scheme (b), Theorem 5.22 gives an
alternative estimate under an assumption on the terminal cost F .

For fixed N , however, not only the operating range (cf. Example 6.2 and the
discussion in (ii), above) but also the performance may differ, at times considerably,
even if XN = X holds. We illustrate this effect by two examples.

Example 7.22 We reconsider the Examples 5.18 and 6.1, i.e.,

x+ = x + u, �(x, u) = x2 + u2

with X = X = U = U = R. In Example 5.18 we computed that scheme (a) for
N = 2 yields the controller μ2(x) = 2x/3 satisfying J cl∞(x, μ2) = 1.625x2.

In Example 6.1 it turned out that for the same example from scheme (c) we obtain
the controller μ2(x) = −x/2. This yields the closed-loop solution xμ2(k, x) = x/2k

and �(x, μ2(x)) = x2 + (x/2)2 = 5x2/4. This implies

J cl
∞(x, μ2) =

∞∑
k=0

�(xμ2(k, x), μ2(xμ2(k, x))) =
∞∑
k=0

5

4

x2

22k
= 5

3
x2 ≈ 1.666x2

(note that this value coincides with the upper bound V2(x)/α from Theorem
6.20 since in Example 6.1 we computed V2(x) = 3x2/2 and α = 0.9, hence
V2(x)/α = (3x2/2)(10/9) = 5x2/3). Hence, for this example scheme (a) yields
a better performance than scheme (c).

Example 7.23 Consider again Example 5.19, i.e.,

x+ = x + u, �(x, u) = x2 + u4

with X = X = U = U = R. In this example we showed that scheme (a) yields

J cl
∞(20, μ2) ≈ 11240.39.

On the other hand, the controllerμ given in Example 5.19 is nothing but the controller
μ2 for scheme (c), which we again computed by MAPLEtm. This controller yields

J cl
∞(20, μ2) ≈ 1725.33,

i.e., a considerably better value.

Roughly speaking, the terminal conditions employed in (a) and (b) cause the
NMPC feedback law to steer the system to the equilibrium or reference more rapidly

7.4 Comparing NMPC with and Without Terminal Conditions 191

at the cost of larger control effort, while the unconditioned scheme (c) typically
acts more cautiously. This is why in Example 7.22, in which the control is only
moderately penalized, scheme (a) performs better while in Example 7.23, in which
large control values are penalized much more heavily, scheme (c) yields the better
result. In general, it appears that for a stronger penalization of the control effort
the unconstrained scheme (c) provides better performance. It should, however, also
be mentioned that a stronger penalization of u typically yields larger BK and β

in Assumptions 6.3 and 6.5, respectively, which in turn may affect the stability of
scheme (c).

(iv) Our discussion on feasibility from the last sections shows that for the terminal
conditioned schemes (a) and (b) the setsXN are “automatically” recursively feasible.
This property is inherited from the viability of the terminal constraint set X0. For
the unconstrained scheme recursive feasibility can be expected on (a subset of) the
viability kernel, as Theorems 7.11 and 7.20 as well as Corollary 7.21 show. However,
in contrast to (a) and (b) here we need additional assumptions and a sufficiently large
optimization horizon N if the state constraint set X itself is not viable.

Regarding the detection of infeasibility, the schemes (a) and (b) have the advan-
tage that feasibility of the nominal closed loop is guaranteed once the optimization
algorithm reports that (OCPN,e) has a feasible solution for the initial value x0. In
contrast to this, in scheme (c) infeasibility may occur even if (OCPN) has a feasi-
ble solution for the initial value, cf. Example 7.1. Thus, in schemes (a) and (b) the
infeasibility is usually detected earlier than in scheme (c).

(v) The numerical effort depends on many different parameters, most notably on
the dimension of the problem, on the optimization horizon, on the structure of the
dynamics f and the stage cost � and on the number and type of constraints. Generally,
one has to take into account that in a nonlinear and nonconvex setting it can often
not be expected that the optimization algorithm is able to find a global optimum.
The reason for this will become apparent in the discussion of nonlinear optimization
algorithms in Chap. 12. Hence, in general it is difficult to assess which of the schemes
is preferable from the numerical point of view.

However, regarding the constraints it is clear that the schemes (a) and (b) are more
demanding than (c). In particular, the endpoint constraint of scheme (a) may cause
severe problems in the numerical optimization routine for nonlinear and nonconvex
problems. From this point of view the regional constraint in scheme (b) is typically
preferable to (a) and scheme (c) without terminal conditions is certainly the best of
all. However, if the terminal conditions help to significantly reduce the optimization
horizon N in scheme (a) or (b) compared to scheme (c), e.g., when no good stage
cost in the sense of Sect. 6.6 can be found for (c), then this effect may easily override
the advantage of having fewer constraints in scheme (c). Hence, similar to what was
said in the discussion in the first paragraph of (ii), again an assessment on a case by
case basis must be made in order to decide which scheme is more appropriate for a
given system and control task.

Summarizing the discussion in this section, one sees that both schemes with and
without stabilizing terminal conditions have their specific advantages and disadvan-

192 7 Feasibility and Robustness

tages. In practice, it is presumably a good choice to start with an unconditioned
scheme which is easier to design and assess its performance via numerical sim-
ulations and practical experiments. If the desired performance—be it in terms of
stability, suboptimality or feasibility—is not achieved for reasonable choices of N
and simple modifications like, e.g., the terminal weights from Sect. 10.2 do not yield
a solution, then one of the more sophisticated methods like adding appropriate ter-
minal constraints and costs, a redesign of the stage cost functions in the spirit of
Sect. 6.6 or one of the mixed schemes from Sect. 10.1 should be considered.

7.5 Robustness: Basic Definition and Concepts

Real systems never exactly coincide with their mathematical models. This means
that in practice the behavior of the real system will deviate from the mathematically
idealized model (2.1). In this and in the following sections we will analyze the
impact of these deviations on the NMPC closed loop and discuss NMPC variants
which provide robustness against such errors. In order to simplify the setting we will
consider the case of time invariant reference x ref = x∗. All results do, however, carry
over to the time-varying case provided the necessary assumptions hold uniformly
with respect to time; we will comment on this in remarks after our main results.

Sources for errors are, for instance, modeling errors, uncertain parameters, exter-
nal disturbances acting on the system and measurement errors. A further source are
numerical errors, which are almost inevitable in NMPC schemes because we need a
numerical integration scheme for the solution of (OCPnN,e) or its variants. This topic
will be treated in detail in Chap. 11, see in particular Sect. 11.5.

As a consequence, the predicted trajectories xu(k, x) used in (OCPnN,e) and its
variants do not exactly coincide with the future behavior of the real system.

Formally, we have already taken this fact into account by referring to the closed-
loop systems (2.5) and (3.5) as nominal closed-loop system. Recall that the nominal
NMPC closed loop (3.5) whose behavior we analyzed in the preceding chapters and
sections is given by

x+ = f (x, μN (x)).

Here f exactly coincides with f in (2.1) which is used in (OCPnN,e) or its variants to
compute the NMPC controller μN .

In order to analyze the influence of the various error sources, for simplicity of
exposition we assume that our state space X is a normed vector space such that we
can add elements of X and measure the size of elements x ∈ X by their norm ‖x‖.
Then we can introduce the perturbed closed-loop model

x̃+ = f (x̃, μN (x̃ + e)) + d (7.7)

Here d ∈ X is an additive perturbation which covers all kinds of errors causing
f to deviate from the evolution of the real system, like modeling and numerical

7.5 Robustness: Basic Definition and Concepts 193

errors, external disturbances, uncertain parameters etc. In addition, we consider the
error term e ∈ X which models measurement errors. Note that when both f and
μN are continuous then one could express the effects of d and e on the system via
one additive perturbation d̄. However, while all of our robustness results will rely on
the continuity of f we will not assume continuity of μN because optimal feedback
controls and thus NMPC-feedback laws are, in general, discontinuous.

In order to distinguish between the nominal and the perturbed system, we denote
the states of the perturbed system by x̃ and the states of the nominal model by x . For
initial value x0 ∈ X and sequences of perturbation values d(·), e(·) ∈ XN we obtain
solutions x̃μN (k, x0) of (7.7) from the iteration

x̃μN (0, x0) = x0
x̃μN (k + 1, x0) = f (x̃μN (k, x0), μN (x̃μN (k, x0) + e(k))) + d(k), k = 0, 1, . . .

Although this solution depends on the particular sequences d(·) and e(·), we will not
explicitly include this dependence in our notation. Instead, given a tuple of bounds
(d, e) ∈ R

+
0 × R

+
0 and an initial value x0 we will define the following set S(d,e)(x0)

of solutions

S(d,e)(x0) := {x̃μN (·, x0) | ‖d(k)‖ ≤ d, ‖e(k)‖ ≤ e for all k ∈ N0}.

The desired robust stability property is now given by the following definition.

Definition 7.24 (Practical stabilitywith respect to perturbations)Given a set A ⊆ X

such that the optimal control problem defining μN is feasible for all x0 ∈ A, we say
that x∗ is semiglobally practically asymptotically stable on A with respect to the
perturbations d and e if there exists β ∈ KL such that the following property
holds: for each δ > 0 and Δ > δ there exists d, e > 0, such that each solution
x̃μN (·, x0) ∈ S(d,e)(x0) with x0 ∈ A and |x0|x∗ ≤ Δ satisfies x̃μN (k, x0) ∈ A and

|x̃μN (k, x0)|x∗ ≤ max{β(|x0|x∗ , k), δ}

for all k ∈ N0, provided the initial measurement error e(0) satisfies x0 + e(0) ∈ A.

Observe that this definition resembles Definition 6.33(ii) except that now the size
of the perturbation plays the role of the optimization horizon N . Furthermore,wehave
explicitly included admissibility and feasibility into the definition in order to exclude
the case that the perturbations drive the closed-loop trajectory out of the feasible or
admissible set. The precise meaning of “the optimal control problem defining μN

is feasible for all x0 ∈ A” depends on the NMPC setting under consideration: if
terminal constraints X0 are used we require A ⊆ XN , otherwise A ⊆ FN . The
additional set A ⊆ X is needed if the feasible set is strictly smaller than X. Observe
that the definition in particular implies recursive feasibility of A.

In words, this definition requires that for all initial values x0 which are both in the
ballBΔ(x∗) and in A the perturbed solutions of (7.7) stay within the state constraint
setX and behave like asymptotically stable solutions until they reach the ballBδ(x∗).

194 7 Feasibility and Robustness

The condition x0 + e(0) ∈ A is a technical requirement needed to ensure that the
optimization problem for obtaining μN—which we do not assume to be feasible
outside A—is feasible at initial time n = 0. In what follows, we will often use the
simpler term robust stability instead of semiglobal practical asymptotic stability.

It should be noted that this robust stability property is closely related to a regional
version of the input-to-state stability (ISS) property. Indeed, the assumption in Defin-
ition 7.24 implies that for fixedΔ > 0we can find aK∞-function ρ such that for each
δ ∈ (0,Δ] the stability property in Definition 7.24 is satisfied whenever d ≤ ρ(δ)

and e ≤ ρ(δ) holds, i.e., the term “sufficiently small” in Definition 7.24 may be
quantified by a function ρ ∈ K∞. Then, defining γ = ρ−1, for all x0 ∈ BΔ(x∗)
and all perturbation sequences d, e with ‖d‖∞ := supk∈N0

‖d(k)‖ ≤ ρ(Δ) and
‖e‖∞ := supk∈N0

‖e(k)‖ ≤ ρ(Δ), Definition 7.24 and the definition of γ imply

|x̃μN (k, x0)|x∗ ≤ max{β(|x0|x∗ , k), γ (‖d‖∞), γ (‖e‖∞)},

i.e., the system is input-to-state stable for inputs d and e.

7.6 Robustness Without State Constraints

In this section we will show that the robust stability property from Definition 7.24
is always satisfied under mild conditions if we do not impose state constraints. State
constraints affect the robustness analysis of the stability of (7.7) in two ways: on the
one hand, even if the nominal closed loop is admissible on the whole state constraint
setX, i.e., if f (x, μN (x)) ∈ X holds for all x ∈ X, arbitrary small perturbations d, e
may lead to a violation of the state constraints, i.e., to f (x, μN (x + e)) + d /∈ X,
if f (x, μN (x)) is near the boundary of X. Likewise, the perturbations may destroy
the recursive feasibility of a nominally recursively feasible set. On the other hand,
state constraints may introduce instability even if we only consider perturbations
satisfying f (x, μN (x + e)) + d ∈ X. The latter is a more subtle issue, which we
will illustrate in the next section. Solutions to both problems will be discussed in
Sects. 7.8 and 7.9.

Without state constraints, i.e., with X = X , the problem considerably simplifies.
As introduced in the last section we assume that X is a normed vector space with
norm ‖x‖. This implies x + d ∈ X and x + e ∈ X for all x, d, e ∈ X . We allow
for input constraints but we assume U(x) = U, i.e., that the input constraint set is
independent of x . This ensures μN (x + e) ∈ U for all x, e ∈ X while for state
dependent input constraints and measurement errors we will never be able to exactly
satisfy state dependent input constraints, because the control valueμN (x+e)will be
selected from U(x + e) instead of U(x). One could, however, extend the subsequent
proofs to input constraint sets U(x) which depend continuously on the state x in
a suitable set theoretic sense. Still, in order not to overload the presentation with
technicalities we decided not to include this extension.

For our analysis we need the following definition.

7.6 Robustness Without State Constraints 195

Definition 7.25 (Uniform continuity) Consider vector spaces X and Y , a set A ⊂ X
and an arbitrary set U.

(i) A function W : X → Y is called uniformly continuous on A if there exists a
function ω ∈ K such that for all x, y ∈ A the inequality

‖W (x) − W (y)‖ ≤ ω(‖x − y‖) (7.8)

holds.
(ii) A function W : X × U → Y is called uniformly continuous on A uniformly

in u ∈ U if there exists a function ω ∈ K such that for all x, y ∈ A and all u ∈ U

the inequality
‖W (x, u) − W (y, u)‖ ≤ ω(‖x − y‖) (7.9)

holds. In both cases, the function ω is called modulus of continuity.

Note that continuity of W : X → Y implies uniform continuity on any compact set
A ⊂ X . This observation will be used, e.g., in Corollary 7.29, below, exploiting the
fact that closed balls in the state space X = R

d are always compact.
Before, however, we formulate our main result for arbitrary vector spaces X . The

following theorem is formulated for Algorithm3.1 without terminal conditions and
we will comment on the case with terminal conditions afterwards. For simplicity, we
will directly work with the assumptions of Theorem 4.11, which are ensured, e.g.,
by Theorems 6.20 and 6.24 or by Corollary 6.21. Alternatively, one could work with
the weaker assumptions of Theorem 4.14 as in Theorem 6.37 but since this would
cause further technicalities in the statement and the proof of the following theorem,
we prefer to use the simpler setting of Theorem 4.11.

Theorem 7.26 (Practical stability using uniform continuity) Consider the NMPC
Algorithm 3.1 without state constraints, i.e., X = X for some vector space X and
with input constraints satisfying U(x) = U for all x ∈ X. Assume that V = VN

satisfies the assumptions of Theorem 4.11 with constant reference x ref ≡ x∗ on
S = X. Assume furthermore that VN and f are uniformly continuous, uniformly in
u in case of f , on the closed balls Bρ(x∗) for all ρ > 0, with functions ωV and ω f

in (7.8) and (7.9), respectively.
Then the perturbed closed-loop system (7.7) is semiglobally practically asymp-

totically stable in the sense of Definition 7.24 on A = X.

Proof Fix Δ > δ > 0. For all ν > 0 the bounds α1, α2 ∈ K∞ on V = VN from
Theorem 4.11 imply

Bα−1
2 (ν)(x∗) ⊆ V−1

N ([0, ν]) ⊆ Bα−1
1 (ν)(x∗).

Thus, defining σ = α−1
2 (α1(δ)/2), γ = α−1

1 (α2(Δ)) and ρ = α−1
1 (α2(γ +σ)) yields

the inclusions

Bσ (x∗) ⊆ V−1
N ([0, α1(δ)/2]), V−1

N ([0, α1(δ)]) ⊆ Bδ(x∗),

196 7 Feasibility and Robustness

BΔ(x∗) ⊆ V−1
N ([0, α2(Δ)]) ⊆ Bγ (x∗)

and

Bσ (V−1
N ([0, α2(Δ)])) ⊆ Bγ+σ (x∗) ⊆ V−1

N ([0, α2(γ + σ)]) ⊆ Bρ(x∗).

Note that (4.14) yields the implication

x ∈ V−1
N ([0, α2(γ + σ)]) ⇒ f (x, μN (x)) ∈ V−1

N ([0, α2(γ + σ)]). (7.10)

Let ωV and ω f be the functions from Definition 7.25 for VN and f (·, u), respec-
tively, for A = Bρ(x∗). This implies that (7.8) and (7.9), respectively, hold for VN

and f (·, u) for all x, y ∈ V−1
N ([0, α2(γ + σ)]). Furthermore, since the lower bound

α3 ∈ K∞ on � from Theorem (4.14) is continuous, it is uniformly continuous on the
compact set [0,Δ + σ]. We denote the respective function ω from (7.8) by ωα .

Now we define the function

Ṽ (x) :=
{
VN (x), x ∈ V−1

N ([0, α2(γ + σ)])
α2(γ + σ), otherwise.

By construction, this function is continuous, coincides with VN on V−1
N ([0, α2(γ +

σ)]) and is constant outside this set. Hence, (7.8) holds for W = Ṽ with ω = ωV

for all x, y ∈ X . Furthermore, (7.10) implies that (4.14) holds for V = Ṽ for all
x ∈ V−1

N ([0, α2(γ + σ)]).
Now consider arbitrary d, e ∈ X with ‖d‖ ≤ σ and ‖e‖ ≤ σ and a point

x ∈ V−1
N ([0, α2(Δ)]). This choice implies

x + e ∈ Bσ (V−1
N ([0, α2(Δ)])) ⊆ V−1

N ([0, α2(γ + σ)])

and thus (4.14) holds for Ṽ in the point x + e. Using (7.8) and (4.14) we obtain

Ṽ (f (x, μN (x + e)) + d)

≤ Ṽ (f (x, μN (x + e)) + ωV (‖d‖)
≤ Ṽ (f (x + e, μN (x + e)) + ωV (‖d‖) + ωV (ω f (‖e‖))
≤ Ṽ (x + e) − α�(x + e, μ(x + e)) + ωV (‖d‖) + ωV (ω f (‖e‖))
≤ Ṽ (x) − αα3(|x + e|x∗) + ωV (‖d‖) + ωV (ω f (‖e‖)) + ωV (‖e‖)
≤ Ṽ (x) − αα3(|x |x∗) + ωV (‖d‖) + ωV (ω f (‖e‖)) + ωV (‖e‖) + αωα(‖e‖).

Now choose d, e ∈ (0, σ] so small that

ωV (d) + ωV (ω f (e)) + ωV (e) + αωα(e) ≤ min{αα3(σ)/2, α1(δ)/2}

7.6 Robustness Without State Constraints 197

holds. For x ∈ X with Ṽ (x) ∈ [α1(δ)/2, α2(Δ)] and ‖d‖ ≤ d, ‖e‖ ≤ e this implies

Ṽ (f (x, μN (x + e)) + d)

≤ Ṽ (x) − αα3(|x |x∗) + ωV (‖d‖) + ωV (ω f (‖e‖)) + ωV (‖e‖) + αωα(‖e‖)
≤ Ṽ (x) − αα3(|x |x∗) + αα3(σ)/2

≤ Ṽ (x) − αα3(|x |x∗)/2

and for Ṽ (x) ≤ α1(δ)/2 we obtain

Ṽ (f (x, μN (x + e)) + d)

≤ Ṽ (x) − αα3(|x |x∗) + ωV (‖d‖) + ωV (ω f (‖e‖)) + ωV (‖e‖) + αωα(‖e‖)
≤ Ṽ (x) + α1(δ)/2 ≤ α1(δ)

In both cases we obtain Ṽ (f (x, μN (x + e)) + d) ≤ α2(Δ) ≤ α2(γ + σ), hence x
and f (x, μN (x + e)) + d lie in the region where Ṽ and VN coincide and thus we
can replace every occurrence of Ṽ by VN in both chains of inequalities. The leads to

VN (f (x, μN (x + e)) + d) ≤ VN (x) − αα3(|x |x∗)/2 (7.11)

if VN (x) ∈ [α1(δ)/2, α2(Δ)] and

VN (f (x, μN (x + e)) + d) ≤ α1(δ) (7.12)

ifVN (x) ≤ α1(δ)/2.Observing that (7.11) implies (7.12) ifVN (x) ∈ [α1(δ)/2, α1(δ)]
we can conclude that (7.12) holds for all x ∈ X with VN (x) ≤ α1(δ).

Defining S = V−1
N ([0, α2(Δ)]) and P = V−1

N ([0, α1(δ)]), Inequalities (7.11)
and (7.12) imply that both sets are forward invariant and that (4.14) is satisfied for
�(x, u) = α3(|x |x∗)/2 for all x ∈ S \ P . Indeed, forward invariance of S follows
immediately from (7.11) while forward invariance of P follows since (7.12) holds
for all x with VN (x) ∈ [0, α1(δ)].

Thus, all assumptions of Theorem 4.14 are satisfied (observe that the theorem
remains valid in presence of the additional n-dependence of the perturbed system,
cf. Remark 4.15). Hence, we obtain the assertion from Lemma 6.34 using that by
construction we have BR(x∗) ∩ A ⊆ S and P ⊆ Bε(x∗). �

Remark 7.27 (i) Note that we did not use continuity of μN in this proof, which is
important since optimal feedback laws are in general not continuous.

(ii) For the NMPC Algorithm 3.10 with terminal conditions the result also holds
if we can ensure f (x, μN (x + e)) + d ∈ XN for all x ∈ V−1

N ([0, α2(Δ)]). This is,
for instance, guaranteed if the sublevel set V−1

N ([0, α2(γ + σ)]) used in the proof
does not intersect the boundary of XN , i.e., if it is contained in the interior of XN .
However, stabilizing terminal conditions may prevent VN from being continuous, cf.
Example 7.30, below.

198 7 Feasibility and Robustness

(iii) The result can be straightforwardly generalized to time-varying references
provided W = VN (n, ·) satisfies (7.8) for all n ∈ N0 with ω independent of n.

(iv) The function ωV in (7.8) measures how sensitive VN (x) depends on changes
in x . The proof shows that d can be chosen the larger the smaller ωV is. Typically,
the solutions xu(k, x) appearing in the definition of VN (x) depend more sensitive
on x the larger k is. Thus, one can expect that ωV grows with N , i.e., the stability
becomes less robust for larger optimization horizons. This is rather intuitive since
the longer the prediction horizon the more the perturbed solutions x̃μN (k, x) deviate
from the nominal predictions xu(k, x).

(v) The condition that the uniform continuity of f is uniform in u is quite strong
if U is unbounded. However, this can be circumvented by penalizing large u in �

sufficiently strong such that the optimal solutionwill never use large u. This technique
has, for instance, been used in a sampled data context in [9] and for continuous time
systems in [3].

The following corollaries show that robustness can be expected under suitable
continuity conditions on the problem data. The first corollary is formulated for state
spaces which are arbitrary vector spaces.

Corollary 7.28 Consider the NMPC Algorithm 3.1 without state constraints, i.e.,
X = X for some vector space X, and with input constraints satisfying U(x) = U

for all x ∈ X. Assume that V = VN satisfies the assumptions of Theorem 4.11 with
constant reference x ref ≡ x∗ on S = X, that f is bounded and uniformly continuous
in x on each closed ballBρ(x∗) and that � is uniformly continuous in x on each such
ball, both uniformly in u ∈ U.

Then the perturbed closed-loop system (7.7) is semiglobally practically asymp-
totically stable in the sense of Definition 7.24 on A = X.

Proof We show that under the given conditions VN is uniformly continuous on each
closed ball BR(x∗), R > 0. Then the assertion follows from Theorem 7.26.

To this end, observe that the boundedness assumption on f implies that there
exists ρ > 0 such that xu(k, x) ∈ Bρ(x∗) holds for all k = 0, . . . , N − 1, all
x ∈ BR(x∗) and all u ∈ U.

This implies that xu(k, x) is uniformly continuous in x ∈ BR(x∗), hence the stage
cost �(xu(k, x), u(k)) is uniformly continuous in x ∈ BR(x∗) and consequently
JN (x, u) is uniformly continuous in x ∈ BR(x∗), too. This uniform continuity
carries over to VN which proves the claim. �

The second corollary shows that in finite-dimensional state space we can drop the
uniform continuity and the boundedness assumptions on the problem data.

Corollary 7.29 Consider the NMPC Algorithm 3.1 with X = R
d without state

constraints, i.e., X = X and with input constraints satisfying U(x) = U for all
x ∈ X. Assume that V = VN satisfies the assumptions of Theorem 4.11 with constant
reference x ref ≡ x∗ on S = X. Assume furthermore that � and f are continuous and
that U is compact.

7.6 Robustness Without State Constraints 199

Then the perturbed closed-loop system (7.7) is semiglobally practically asymp-
totically stable in the sense of Definition 7.24 on A = X.

Proof The proof follows when we show continuity of VN , because then in X = R
d

uniform continuity of VN and f on each closed ball Bρ(x∗) and on Bρ(x∗) × U,
respectively, follows from the compactness of these sets.Note that uniform continuity
of f in (x, u) in the sense of Definition 7.25(i) implies uniform continuity of f in x
uniformly in u in the sense of Definition 7.25(ii).

In order to prove continuity of VN , observe that continuity of f and � implies
continuity of JN (x, u) on R

d × U
N . This continuity carries over to VN because

minima of continuous functions are again continuous. �

For infinite-dimensional systems, Corollary 7.29 does not apply since closed balls
are not compact. Thus, even though Theorem 7.26 and Corollary 7.28 formally
apply to infinite-dimensional systems, their practical usefulness is somewhat limited
because the required uniform continuity properties may not be satisfied for most
practically relevant systems. In fact, it appears doubtful whether robust stability for
infinite-dimensional systems can be expected, at all, for the general class of pertur-
bations considered here. Rather, we conjecture that suitable structural properties of
the perturbations need to be imposed, as, e.g., in the robust stability results for linear
infinite-dimensional systems by Curtain and Zwart in [4, Chap. 9].

However, as we will see in the next section, even for finite-dimensional systems
Corollary 7.29 does in general neither extend to NMPC schemes with general state
constraints nor to schemes with stabilizing terminal conditions.

7.7 Examples for Nonrobustness Under State Constraints

In this section we provide two examples, taken fromGrimm,Messina, Tuna and Teel
[6], which show that both general state constraints as well as terminal constraints
which are part of stabilizing terminal conditions can render the stability of the NMPC
closed loop non-robust.

Our first example shows that evenwithout additional state constraints a stabilizing
terminal constraint may result in a non-robust NMPC feedback law.

Example 7.30 Consider again Example 5.8, i.e., x+ = f (x, u) with x ∈ X = X =
R

2, u ∈ U = [0, 1] ⊂ U = R, x∗ = 0 and

f (x, u) =
(
x1(1 − u)

‖x‖u
)

.

As we have seen in Example 5.8, using the NMPC Algorithm 3.1 with (OCPN,e) =
(5.5) and X0 = {0} we obtain X1 = {x ∈ R

2 | x1 = 0}. Hence, for x ∈ R
2 with

200 7 Feasibility and Robustness

x1 �= 0 each admissible control sequence u ∈ U
2
X0

(x) must satisfy u(0) = 1 in order
to ensure xu(1, x) ∈ X1. Thus, the NMPC-feedback law for N = 2 also satisfies

μ2(x) = 1 for all x ∈ R
2 with x1 �= 0.

Now consider the perturbed closed loop (7.7) with perturbation sequences d(·) ≡
d0 = (ε, 0)� and e(·) ≡ e0 = 0 for some arbitrarily small ε > 0. Then for any
x ∈ R

2 with x /∈ X1 we obtain

f (x, μ2(x + e0)) + d0 =
(
x1(1 − μ2(x))

‖x‖μ2(x)

)
+

(
ε

0

)
=

(
0

‖x‖
)

+
(

ε

0

)
=

(
ε

‖x‖
)

which implies x̃μ2(1, x) = f (x, μ2(x + e(0))) + d(0) /∈ X1 and

‖x̃μ2(1, x)‖ = ‖ f (x, μ2(x + e(0))) + d(0)‖ = ‖(ε, ‖x‖)�‖ > ‖x‖.

Since x̃μ2(1, x) /∈ X1 we can go on inductively and obtain

‖x̃μ2(k, x)‖ > ‖x‖

for all k ∈ N. Thus, despite the fact that μ2 globally asymptotically stabilizes the
nominal closed-loop system as shown in Example 5.8, for arbitrary small perturba-
tions d the perturbed closed loop (7.7) is not asymptotically stable.

Note that byRemark 7.27(ii), Theorem7.26would in principle be applicable since
X2 = R

2 and thus no sublevel set of V2 intersects the boundary of X2. However, V2

is discontinuous at X1, because on X1 we get V2(x) ≤ V1(x) = ‖x‖2 while outside
X1 the only admissible control sequence is u(0) = 1, u(1) = 0, which implies
V2(x) = 2‖x‖2.

For this example the NMPC Algorithm 3.1 without terminal conditions provides
an alternative which resolves the robustness problem. Indeed, for u = 1/2 we obtain

‖ f (x, u)‖2 =
∥∥∥∥
(

x1/2
‖x‖/2

)∥∥∥∥
2

= (x1/2)
2 + (‖x‖/2)2 = x21

4
+ x21

4
+ x22

4
≤ ‖x‖2

2
.

Thus, for �(x) = ‖x‖2 and ux ≡ 1/2 Assumption 6.5 is satisfied with β(r, n) =
Cσ nr with C = 1 and σ = 1/2. For N = 2, Proposition 6.18 yields α = αN =
1 − (γ2 − 1)2 and since γ2 = B2(r)/r = C + Cσ = 3/2 by Lemma 6.6, we obtain
α = 1 − (1/2)2 = 3/4. Thus, by Corollary 6.21 the NMPC-feedback μ2 without
terminal conditions stabilizes the system and since all assumptions of Corollary 7.29
are satisfied, the asymptotic stability is robust.

Example 7.31 Our second example shows that state constraints may also render
NMPC without stabilizing terminal conditions to be nonrobust. The system is a
discrete time version of a system known as Artstein’s circles. For x ∈ X = R

2 and
u ∈ U = [−1, 1] it is given by

7.7 Examples for Nonrobustness Under State Constraints 201

x+ = f (x, u) =

⎛
⎜⎜⎜⎝

−(x21 + x22)u + x1
1 + (x21 + x22)u

2 − 2x1u
x2

1 + (x21 + x22)u
2 − 2x1u

⎞
⎟⎟⎟⎠ .

This is the exact zero order hold sampled data system for sampling period T = 1 of
the continuous time system ẋ1 = (x21 − x22)u, ẋ2 = 2x1x2u introduced by Artstein
in [1].

The peculiarity of the system is that a solution which starts on the circle

Sr = {x ∈ R
2 | x21 + (x2 − r)2 = r2}

for some r ∈ R can never leave this circle regardless of how the control u is chosen.
Figure7.3 illustrates these circles for r = −5,−4, . . . , 5.

For x �= 0, the control can only be used in order to change the direction of rotation
on each circle Sr which for x2 > 0 is clockwise for u < 0 and counterclockwise for
u > 0. For x2 < 0 this orientation changes, for x2 = 0 and x1 �= 0 the system moves
left or right on the x1-axis and x∗ = 0 is an equilibrium for all u ∈ U. For the cost
function �(x) = ‖x‖∞ = max{|x1|, |x2|}, on each circle with parameter r we have
�(x) = |x2| if |x2| ≥ r and �(x) = |x1| otherwise. Using this fact one can conclude
that there exists σ ∈ (0, 1) such that

�(f (x, u)) ≤ σ�(x)

holds when we choose u = −1 for x1 ≥ 0 and u = 1 for x1 ≤ 0. Thus, Assumption
6.5 is satisfied for β(r, n) = Cσ nr with C = 1 which implies αN > 0 in (6.18).
Hence, by Theorem 6.20 the NMPC closed loop for Algorithm 3.1 is asymptotically
stable for all horizons N ≥ 2.

Fig. 7.3 Sketch of Artstein’s
circles

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

202 7 Feasibility and Robustness

Fig. 7.4 Sketch of state
constraint set for Artstein’s
circles. Admissible states are
to the left of the vertical line

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

The state constraints we consider now are given by the set

X = {x ∈ R
2 | x1 ≤ c}

for some c > 0. For c = 4 the complement of this set is given by the hatched region
in Fig. 7.4.

A little computation shows that for all c ∈ (0, 1), all circles Sr with r > rc =
c/

√
1 − c2, i.e., circles in the upper half plane with radius r > rc, and all initial

values x ∈ Sr ∩ X with x2 > r it is not possible to move clockwise toward 0
without violating the state constraints at some point. Hence, we have to take the
counterclockwise “detour” in order to control the system to x∗ = 0. In the function β

in the Controllability Assumption 6.5 this detour shows up as an overshoot parameter
C > 1. However, since the stage cost along the detour is at most 2�(x) and the time
until � decreases exponentially again is bounded from above by a number of steps
which is independent of �(x), the function β(r, n) is still of the form Cσ nr and
hence we can conclude asymptotic stability for sufficiently large N by Lemma 6.6
and Corollary 6.21.

This asymptotic stability is, however, not robust in the sense of Definition 7.24.
In order to see this, fix an arbitrary and sufficiently small ε > 0, consider the circle
Src and the unique point y on this circle with y1 = c and y2 > rc, i.e., the “upper”
intersection of Src with the boundary of X. Using the control value u = −1 this
point is mapped onto the point z = f (x,−1) on Src with z1 = c and z2 < r ,
i.e., on the “lower” intersection of Src with the boundary of X. On the one hand
this implies that the control sequence u ≡ −1 is admissible and that it controls the
trajectory counterclockwise in the shortest and thus also cheapest way—in the sense
of (OCPN)—to the origin. Hence, μN (y) = −1.

On the other hand, the fact that z = f (x,−1) is on the boundary of X implies
that for ε > 0 sufficiently small all points

7.7 Examples for Nonrobustness Under State Constraints 203

y′ ∈ Y ′ := Bε(y) ∩ X ∩ Src \ {y},

i.e., all points that lie above y and close to y on Src , the image z′ = f (y′,−1) will
not be contained inX. Hence, in order to construct a trajectory xu(·) with xu(0) = y′
which converges to the origin we have two possibilities: either we pick the (unique)
control value uy′ < 0 with xu(1) = f (y′, uy′) = y, set u(0) = uy′ and continue with
u(1) = u(2) = · · · = −1. This will result in a clockwise movement. Alternatively,
we can choose the control sequence u ≡ 1whichwill cause the trajectory to approach
the origin counterclockwise. The stage cost � decreases along the first trajectorywhile
for c < 1/2 one can compute that it increases along the second—at least for one
step before it starts to decrease, again. For this reason, the first trajectory will be
optimal for (OCPN) for all horizons N ≥ 2. Consequently, we get μN (y′) = uy′ and
f (y′, μN (y′)) = y.
Now we can use a similar construction as in the previous example: pick an initial

value x ∈ Y ′ and perturbation sequences e ≡ 0 and ‖d(n)‖ < ε where each d(n) is
chosen such that y + d(n) ∈ Y ′. By induction over n this implies

f (x̃μN (n), μN (x̃μN (n))) + d(n) = y + d(n) ∈ Y ′.

Thus, for arbitrarily small perturbations the solution gets stuck in Y ′ and will never
reach a neighborhood of the origin.

It is interesting to look at the Lyapunov function VN of the system on the set
Y ′ ∪ {y}. Indeed, since the first move of the optimal trajectory will map y′ ∈ Y ′ to y,
by the dynamic programming principle and since �(y′) ≥ y′

2 > rc we can conclude
that VN (y′) > VN−1(y) + rc. Since, on the other hand, the optimal trajectory for y
approaches the origin clockwise with maximal speed for all N , the additional term
in VN (y) compared to VN−1(y) will be strictly smaller than rc − ε for some ε > 0
for all N ≥ 2. Hence we get VN (y) ≤ VN−1(y) + rc − ε ≤ VN (y′) − ε with ε > 0
independent of y. Since y lies at the (lower) boundary of the set Y ′ this immediately
implies that VN is discontinuous at y.

It should be noted that this discontinuity is not caused by the specific choice of �

or the horizon N . Instead, it is solely due to the fact that for topological reasons the
given state constraints separate the initial values into different sets whose optimal
trajectories approach the origin in different ways: for y it moves clockwise with
maximal speed and for each y′ ∈ Y it moves clockwise with passing through y.
Furthermore, as pointed out after Fig. 7.4, for all x ∈ Sr ∩ X with r > rc and
x2 > r it is not possible at all to approach the origin clockwise, hence the optimal
trajectorywillmove counterclockwisewithmaximal speed,whichdefines yet another
different behavior. Since the counterclockwise movement is more expensive than the
clockwisemovement and since passing through y ismore expensive than approaching
the origin with maximal speed, VN will be discontinuous at all boundaries where
these different sets of initial values touch—unless � is particularly tuned in order to
penalize the different trajectories in exactly the same way, which is a difficult if not
impossible task and in any case an exceptional situation.

204 7 Feasibility and Robustness

Thus, in general wewill have to take discontinuities of VN into account and cannot
conclude robustness from continuity as in Theorem 7.26. Consequently, in the next
section we will look at a technique which allows us to conclude robustness without
assuming continuity of VN .

7.8 Robustness with State Constraints via Robust-Optimal
Feasibility

In order to ensure robustness in the presence of state constraints we present two
approaches. Again we assume U(x) = U in order to avoid violation of the input
constraints due to measurement errors. Like in Sect. 7.6, however, the subsequent
definitions, statements and proofs could be extended to the case of input constraint
sets U(x) depending continuously on x .

In this section we will present a first approach, which is inspired by Grimm,
Messina, Tuna and Teel [8], but we simplify the setting and use a different proof
based on the techniques from Chap.6. This first approach has the advantage that
we do not need continuity of the optimal value function VN . The second approach,
presented in the following Sect. 7.9, uses this continuity and presents a setting in
which continuity can be proved in the presence of state constraints.

Both approaches rely on the fact that we use state constraint sets which depend
on time. To this end, we denote the state constraint sets by Xk , k = N , N − 1, . . . , 0
with X = X

N and extend Definition 3.2 as follows.

Definition 7.32 For K ∈ N and N ∈ Nwith K ≤ N and an initial value x0 ∈ X
K we

call a control sequence u ∈ UK and the corresponding trajectory xu(k, x0) admissible
for x0 and K , if

u(k) ∈ U(xu(k, x0)) and xu(k + 1, x0) ∈ X
K−(k+1)

holds for all k = 0, . . . , K − 1. The respective set of admissible control sequences
for x0 is denoted by U

K (x0).

Note that this definition reduces to Definition 3.2 if Xk = X for all k = 0, . . . , N .
The optimization problem (OCPN) can be used with this setting without any changes
since we use the same notation for the admissible control sequences as before in
Definition 3.2. Similarly, Assumptions 6.3 and 6.5 and the definition of the feasible
setFN in Definition 7.2(ii) immediately extend to this time-varying state constraint
concept. As always, we will assume that an optimal control u� exists for (OCPN) for
each initial value.

Observe that the terminal constraints from Definition 3.9 form a special case of
this time-varying constraint setting by defining X

N = X
N−1 = · · · = X

1 = X

and X
0 = X0. In this case UK (x) from Definition 7.32 coincides with U

K
X0

(x) from
Definition 3.9 and FK from Definition 7.2(ii) equals XK from Definition 3.9.

For our first robustness result, we use the following property.

7.8 Robustness with State Constraints via Robust-Optimal Feasibility 205

Definition 7.33 (Robust-optimal feasibility) For given optimization horizon N ∈ N

the NMPC Algorithm 3.1 is said to be robust-optimal feasible, if for each closed ball
Bρ(x∗) there exists η > 0 such that the following holds:

For each x ∈ Bρ(x∗) ∩FN , each z ∈ Bη(f (x, μN (x))) and the optimal control
u� for (OCPN) with x0 = x we have

xu�(·+1)(k, z) ∈ FN−k for all k ∈ {0, . . . , N − 1} (7.13)

This condition in particular demands z = xu�(·+1)(0, z) ∈ FN for z = f (x,
μN (x)) which implies that FN is recursively feasible for the NMPC closed loop. It
can be satisfied by the following construction of tightening state constraints sets Xk

whose idea goes back to Limón, Alamo, and Camacho [14].
Assume that f is uniformly continuous and bounded in x on each closed ball

uniformly in u. Then for each arbitrary but fixed horizon N and admissible control
input u ∈ U

N the trajectory xu(k, x) is uniformly continuous in x ∈ Bρ(x∗) ∩ FN

uniformly in k ∈ {1, . . . , N −2} and u. Let ω denote the modulus of continuity from
(7.9). Now we pick δ > 0 and assume that we can choose the constraint setsXk such
that

X
N = X, Bδ(X

k−1) ⊂ X
k and Fk = X

k (7.14)

holds for all k = 1, . . . , N . Let x ∈ Bρ(x∗)∩FN andu� ∈ U
N (x)be a corresponding

optimal control. Then for z = f (x, μN (x)) we obtain

xu�(·+1)(k, z) = xu�(·)(k + 1, x) ∈ X
N−k−1

for k = 0, . . . , N − 1. For arbitrary z ∈ Bε(f (x, μN (x))) this implies

xu�(·+1)(k, z) ∈ Bω(ε)(X
N−k−1)

and if we choose ε > 0 so small that ω(ε) ≤ δ holds then we get

xu�(·+1)(k, z) ∈ Bω(ε)(X
N−k−1) ⊆ Bδ(X

N−k−1) ⊂ X
N−k

for k = 0, . . . , N − 1. Hence, we obtain (7.13).
The main limitation of this construction is the conditionFk = X

k in (7.14), since
in general the feasible setsFk for the tightening constraint setsXk may be very small
or even empty. However, for some systems it is possible to prove rigorously that this
construction is possible, as the following example shows.

Example 7.34 We reconsider Artstein’s circles with the constraints from Example
7.31 and show that Xk with (7.14) can be constructed for this example. From the
form of the dynamics it follows that for each a > 0 there exists ν ∈ (0, 1) such that
for each x ∈ R

2 with x1 > a there exists u ∈ U with f (x, u)1 ≤ νx1. Hence, setting

206 7 Feasibility and Robustness

X
k = {x ∈ R

2 | x1 ≤ c − (N − k)ε},

for ε > 0 sufficiently small (depending on c and N) we obtain Fk = X
k . Since the

first two conditions in (7.14) are obviously satisfied for this choice of the Xk , with
these state constraint sets the NMPC-feedback law satisfies (7.13).

Effectively, the tightening constraint sets cause the NMPC controller to choose
the more expensive counterclockwise trajectories for a larger set of initial values and
thus prevent the feedback from selecting the small steps from y′ to y which caused
the nonrobustness in Example 7.31.

In order to show robustness of the asymptotic stability, again we need a suitable
controllability condition. The following condition is slightly different fromAssump-
tion 7.13 in the sense that we assume controllability on the sets FN−k rather than
onF∞, since for a finite number of state constraint sets XN ,XN−1, . . . ,X0 it is not
possible to define F∞.

Assumption 7.35 Consider the optimal control problem (OCPN) with a not nec-
essarily viable state constraint set X. We assume that on the feasible sets FN−k ,
k = 0, . . . , N − 1 the system is asymptotically controllable with respect to � with
rate β ∈ KL 0, i.e., for each x ∈ FN−k there exists an admissible control sequence
ux ∈ U

N−k(x) satisfying

�(xux (n, x), ux (n)) ≤ β(�∗(x), n)

for all n ∈ {0, . . . , N − k − 1}.
The following theorem now shows that Definition 7.33 and Assumption 7.35

indeed imply robustness of the asymptotic stability.

Theorem 7.36 (Practical stability using robust-optimal feasibility) Consider the
NMPCAlgorithm3.1with state constraint setsX andXN , . . . ,X0 ⊆ X withXN = X

for some vector space X and with input constraints satisfying U(x) = U for all
x ∈ X. Assume that f is bounded and uniformly continuous in x on each closed ball
Bρ(x∗) and that � is uniformly continuous in x on each such ball, both uniformly in
u ∈ U. Let the assumptions of Theorem 6.20 hold with Assumption 6.3 replaced by
Assumption 7.35 and assume that Definition 7.33 is satisfied.

Then the perturbed closed-loop system (7.7) is semiglobally practically asymp-
totically stable in the sense of Definition 7.24 on A = FN .

Proof We first show the assertion for e ≡ 0, i.e., for the case without measurement
error. To this end, fix Δ > δ > 0 in Definition 7.24. Let R > 0 be such that
BΔ(x∗) ∩ FN ⊆ V−1

N ([0, R]), let ρ > 0 be such that V−1
N ([0, R]) ⊆ Bρ(x∗) and

pick η > 0 from Definition 7.33.
We show that there exists a function σ(d) with σ(d) → 0 as d → 0 such that the

inequality

VN (f (x, μN (x)) + d) ≤ VN (x) − α�(x, μN (x)) + σ(d) (7.15)

7.8 Robustness with State Constraints via Robust-Optimal Feasibility 207

holds for all x ∈ V−1
N ([0, R]) and all ‖d‖ ≤ d with α ∈ (0, 1) from the assump-

tions of Theorem 6.20. For d sufficiently small this implies the Inequalities (7.11)
and (7.12) from the proof of Theorem 7.26 from which we can conclude practical
asymptotic stability as in this proof.

In order to prove (7.15), pick η corresponding toBρ(x∗) fromDefinition 7.33, x ∈
Bρ(x∗) ∩ FN and consider the trajectories xu�(·+1)(k, z) for z ∈ Bη(f (x, μN (x))).
For z = f (x, μN (x)) we obtain xu�(·+1)(k, f (x, μN (x))) = xu� (k + 1, x) and thus
the values

λk := �(xu�(·+1)(k − 1, f (x, μN (x))), u�(k))

satisfy (6.11). Defining

λ̃k(z) := �(xu�(·+1)(k − 1, z), u�(k))

for z ∈ Bη(f (x, μN (x))), from the uniform continuity we obtain the existence of
σ̃ (η) with σ̃ (η) → 0 as η → 0 such that

|λ̃k(z) − λk | ≤ σ̃ (η)

holds for all z ∈ Bη(f (x, μN (x))). Using the same arguments as in the proof of
Lemma 6.10, from Assumption 7.35 and (7.13) we obtain

VN (z) ≤
j−1∑
n=0

λ̃n+1(z) + BN− j (λ̃ j+1(z)), j = 0, . . . , N − 2

with BK from (6.7). Now continuity of the BK implies the existence of σ(η) with
σ(η) → 0 as η → 0 such that

VN (z) ≤
j−1∑
n=0

λn+1 + BN− j (λ j+1) + σ(η), j = 0, . . . , N − 2. (7.16)

Observe that this is exactly (6.12) with VN (z) in place of ν and the additional term
σ(η). Now the assumptions of Theorem 6.20 imply that Theorem 6.15 applies which
in turn implies that (6.13) holds for some α > 0. Hence we get that each ν satisfying
(6.12) also satisfies

ν ≤ VN (x) − α�(x, μN (x)).

Hence, (7.16) implies

VN (z) ≤ VN (x) − α�(x, μN (x)) + σ(η)

which is exactly (7.15) by setting η = d and z = f (x, μN (x)) + d.

208 7 Feasibility and Robustness

It remains to show the assertion for e �≡ 0. To this end, fix Δ > δ > 0 and denote
by d̃ > 0 the bound on ‖d‖ from the first part of the proof which ensures practical
asymptotic stability for δ̃ = δ/2, Δ̃ = Δ + δ̃ > 0 and ẽ ≡ 0. Let ρ > 0 be as in the
first part of the proof for these values. Now take a trajectory x̃μN (k, x0) of (7.7) with
|x |x∗ ≤ Δ and define x̂(k) = x̃μN (k, x) + e(k). Then x̂ is a solution of the system

x̂(n + 1) = f (x̂(n), μN (x̂(n))) + d̃(n)

with

d̃(n) = d(n) + f (x̃μN (k, x), μN (x̂(n))) − f (x̂(n), μN (x̂(n))) + e(n + 1).

As long as the solution stays in Bρ(x∗), by uniform continuity of f in x we find
e > 0 such that ‖e(n)‖ ≤ e and ‖e(n + 1)‖ ≤ e imply

‖d̃(n)‖ ≤ ‖d(n)‖ + d̃/2.

Without loss of generality we can set e ≤ δ̃ implying x̂(0) = x0 + e(0) ∈ BΔ̃(x∗).
Hence, setting d = d̃/2 the trajectory x̂(n) can be interpreted as a solution of (7.7)
with e ≡ 0 and d = d̃ starting in x̂(0) = x0 + e(0) ∈ BΔ̃(x∗) ∩ FN . Hence, the
first part of the proof applies to x̂ , in particular, the trajectory stays inBρ(x∗) for all
n and thus we get the practical asymptotic stability estimate

|x̂(k)|x∗ ≤ max{β̃(|x̂(0)|x∗ , k), δ̃}

which implies
|x̃μN (k, x0)|x∗ ≤ max{β̃(|x |x∗ + e, k), δ̃} + e.

It remains to convert this upper bound into the form fromDefinition 7.24. To this end,
set β(r, n) = 2β̃(2r, n) which is again inKL . We reduce e further, if necessary, in
order to ensure e ≤ δ̃ and β̃(2e, 0) ≤ δ̃. Then, for |x |x∗ ≤ e we obtain

β̃(|x |x∗ + e, k) ≤ δ̃

for all k ≥ 0 which implies

|x̃μN (k, x0)|x∗ ≤ δ̃ + e ≤ δ.

For |x |x∗ ≥ e we get
β(|x |x∗ , k) ≥ 2β̃(|x |x∗ + e, k)

Hence, for all k ≥ 0 with β̃(|x |x∗ +e, k) ≥ δ̃ we get β(|x |x∗ , k) ≥ β̃(|x |x∗ +e, k)+ δ̃

and thus
|x̃μN (k, x0)|x∗ ≤ β̃(|x |x∗ + e, k) + e ≤ β(|x |x∗ , k).

7.8 Robustness with State Constraints via Robust-Optimal Feasibility 209

Finally, for k ≥ 0 with β̃(|x |x∗ + e, k) ≤ δ̃ we get

|x̃μN (k, x0)|x∗ ≤ δ̃ + e ≤ δ.

Thus, for all k ≥ 0 we have

|x̃μN (k, x0)|x∗ ≤ max{β(|x |x∗ , k), δ},

i.e., the desired property from Definition 7.24. �

Remark 7.37 (i) As in the proof of Theorem 7.26 we did not use continuity of μN .
(ii) The proof heavily relies on the controllability based analysis for NMPC

schemes without terminal conditions. Hence, it does not apply to the case with
terminal conditions. However, analogous statements can be made also for NMPC
schemes with terminal conditions, see, e.g., [8, 14, Sect. IV].

(iii) Like Theorem 7.26 the result can be straightforwardly generalized to time-
varying references provided the assumed continuity and controllability properties
for � are uniform with respect to the initial time.

(iv) In finite-dimensional state space, i.e., X = R
d , the assumed uniform conti-

nuity properties on the balls Bρ(x∗) follow from mere continuity by an argument
similar to the one used in the proof of Corollary 7.29. Regarding the uniformity of
the assumed properties with respect to u, Remark 7.27(v) applies accordingly.

(v) As outlined in the discussion after Corollary 7.29, for infinite-dimensional
systems the required uniform continuity is a rather restrictive condition.

7.9 Robustness with State Constraints via Continuity of VN

The second approach we want to present for ensuring Definition 7.24 under state
constraints uses a modification of Theorem 7.26 which exploits the continuity of
VN . The main problem here is not to extend Theorem 7.26—this will turn out to
be rather straightforward—but rather to design the state constraint sets X

k such
that continuity of VN can be expected under a checkable condition. The following
assumption defines a sufficient condition for this purpose.

Assumption 7.38 The state constraint sets Xk , k = N , N − 1, . . . , 0 satisfy the
following conditions.

(i) X
N−1 = X

N−2 = · · · = X
0 and Bδ(X

0) ⊆ X
N = X for some δ > 0.

(ii) For each x ∈ X
N there exists u ∈ U(x) with f (x, u) ∈ X

0.
(iii) For eachρ > 0 there exist γ ∈ K and ε′ > 0 such that for each ε ∈ (0, ε′], each

x ∈ X
N ∩Bρ(x∗), each u ∈ U(x)with f (x, u) ∈ X

0 and each x ′ ∈ X
N ∩Bε(x)

there is u′ ∈ U (x ′) with f (x ′, u′) ∈ X
0, ‖ f (x, u) − f (x ′, u′)‖ ≤ γ (ε) and

|�(x, u) − �(x ′, u′)| ≤ γ (ε).

210 7 Feasibility and Robustness

The condition again requires a tightening structure of the state constraint sets,
however, in contrast to (7.14) only for XN and XN−1 while all other state constraint
sets equal XN−1. In words, it demands that whenever x ∈ X

N and f (x, u) ∈ X
0,

then for all nearby points x ′ ≈ x we find a control u′ with f (x ′, u′) ∈ X
0 which

is “nearby” u in the sense that f (x ′, u′) ≈ f (x, u) and �(x ′, u′) ≈ �(x, u). Before
showing that this condition ensures continuity of VN , let us consider an example
where this condition is satisfied.

Example 7.39 We reconsider Example 3.4 (see also Examples 2.2, 7.1 and 7.12),
i.e.,

x+ = f (x, u) =
(
x1 + x2 + u/2
x2 + u

)

with state constraints X = [−1, 1]2. Even for the largest possible set U = R of
control values it is not possible to satisfy Assumption 7.38 for XN = X. This is
because the only control which maps the point x = (1, 1)� into X = [−1, 1]2 is
u = −2: for larger values u′ > −2 we get f (x, u′)1 = 1+1+u′/2 > 2−1 = 1 and
for smaller values u′ < −2 we get f (x, u′)2 = 1 + u′ < 1 − 2 = −1. For u = −2,
however, we get f (x, u) = (1,−1)� ∈ ∂XN and thus we cannot reach any set X0

withBδ(X
0) ⊆ X

N , regardless of how small δ > 0 is chosen.
Hence, we need to restrict X in order to satisfy Assumption 7.38. For simplicity,

we again pick the set

X
N = X = {(x1, x2)� ∈ R

2 | x1 ∈ [−1, 1], x2 ∈ [−1, 1] ∩ [−3/2 − x1, 3/2 − x1]}

derived in Example 3.4. We claim that for U = [−1 − 2η, 2 + 2η] and X
N−1 =

X
N−2 = . . . = X

0 with

X
0 = {(x1, x2)� ∈ R

2 | x1 ∈ [−1 + η, 1 − η],
x2 ∈ [−1 + η, 1 − η] ∩ [−3/2 − x1 + η, 3/2 − x1 − η]}

Assumption 7.38 holds if � is continuous and η > 0 is sufficiently small.
First observe that this choice implies Assumption 7.38(i) for δ > 0 sufficiently

small compared to η (for instance, δ = η/4 will work). Assumption 7.38(ii) follows
since straightforward computations show that for each x ∈ X the relation f (x, u) ∈
X

0 holds if and only if u ∈ U satisfies the inequalities

u ≥ max

{
2

3

(
−x1 − 2x2 − 3

2
+ η

)
, −1 − x2 + η, 2(−1 − x1 − x2 + η)

}

(7.17)

7.9 Robustness with State Constraints via Continuity of VN 211

and

u ≤ min

{
2

3

(
−x1 − 2x2 + 3

2
− η

)
, 1 − x2 − η, 2(1 − x1 − x2 − η)

}
.

(7.18)

Comparison of the single terms on the right hand sides of (7.17) and (7.18) yields
that for all x ∈ X

N there exists u ∈ U satisfying (7.17) and (7.18) whenever η ≤ 3/8.
Finally, Assumption 7.38(iii) follows because the bounds on u in (7.17) and (7.18)

change continuouslywith x . Thus, given an admissible u for some x ∈ Xwhich hence
must satisfy the bounds (7.17) and (7.18), for x ′ ∈ Xwith x ′ ≈ x the bounds change
only slightly and thus we find an admissible u′ ≈ u for x ′. Since f is continuous and
� was assumed to be continuous, the existence of the desired γ ∈ K follows.

In contrast to this example, for Artstein’s circles under the state constraints X
from Example 7.31, Assumption 7.38 does not hold: no matter how the constraint
sets Xk are chosen there will always be points x and x ′ ∈ X arbitrarily close to
each other such that from x a clockwise movement is possible while from x ′ only a
counterclockwise movement is admissible, or vice versa.

The followingProposition shows that underAssumption 7.38 and under additional
continuity conditions on f and �, VN is uniformly continuous on closed balls.

Proposition 7.40 Consider the optimal control problem (OCPN) with state con-
straint sets XN , . . . ,X0 satisfying Assumption 7.38 and assume that f is bounded
and uniformly continuous in x on each closed ball Bρ(x∗) and that � is uniformly
continuous in x on each such ball, both uniformly in u ∈ U. Then VN is uniformly
continuous on BR(x∗) ∩ X for each R > 0.

Proof For each η > 0 and initial value x ∈ BR(x∗) ∩X we pick a control sequence
ux,η ∈ U

N (x) with
JN (x, ux,η) ≤ VN (x) + η.

We show that there exists ω ∈ K such that for all sufficiently small ε0 > 0, all
x ∈ BR(x∗) ∩ X, all η > 0 and all x̂ ∈ X ∩ Bε0(x∗) there exists û ∈ U

N (x ′) such
that the inequality

JN (x̂, û) ≤ JN (x, ux,η) + ω(ε0) (7.19)

holds. This implies VN (x̂) ≤ VN (x) + η + ω(ε0) and since η > 0 was arbitrary we
obtain

VN (x̂) ≤ VN (x) + ω(ε0).

Since this inequality holds for all x, x̂ ∈ BR(x∗) ∩ X with ‖x − x̂‖ ≤ ε0, we get

|VN (x̂) − VN (x)| ≤ ω(ε0)

212 7 Feasibility and Robustness

for all such x and x̂ and thus the desired uniform continuity.
It remains to show (7.19). Since by assumption f is uniformly bounded, each

trajectory xu(k, x) with x ∈ BR(x∗) ∩ X satisfies xu(k, x0) ∈ Bρ(x∗) for some
sufficiently large ρ > 0, all k = 0, . . . , N and all u ∈ U

N (x0). We pick γ ∈ K
from Assumption 7.38(iii) for this ρ > 0. Without loss of generality we may assume
γ (r) ≥ r for all r ≥ 0.

Now fix x ∈ BR(x∗) ∩ X and η > 0 and abbreviate u = ux,η. Given x̂ ∈
X ∩ Bε0(x), we inductively construct a control sequence û as follows.

For k = 0, . . . , N − 1we set û(k) := u′ with u′ from
Assumption 7.38(iii) for x = xu(k, x), u = u(k) and x ′ = xû(k, x̂).

(7.20)

Note that we only need û(0), . . . , û(k − 1) in order to compute x ′ = xû(k, x̂).
Hence, (7.20) is well defined provided ‖xû(k, x̂) − xu(k, x)‖ ≤ ε′ holds for all
k = 0, . . . , N −1 for ε′ > 0 fromAssumption 7.38(iii). In this case, the construction
of û implies û ∈ U

N (x̂) and in particular xû(k, x̂) ∈ X
0.

We will now show by induction that we can ensure this inequality for k =
0, . . . , N − 1 if we choose ε0 so small that γ N−1(ε0) ≤ ε′ holds, where γ k is
defined inductively by γ 0(r) = r and γ k+1(r) = γ ◦ γ k(r).

To this end, by induction over k = 0, . . . , N − 1 we prove the inequality

‖xû(k, x̂) − xu(k, x)‖ ≤ γ k(ε0) ≤ γ N−1(ε0) ≤ ε′ (7.21)

For k = 0, (7.21) immediately follows. For the induction step k → k + 1, using
the abbreviations u′ = û(k), x = xu(k, x), u = u(k) and x ′ = xû(k, x̂) from (7.20),
we get

xû(k + 1, x̂) = f (x ′, u′) and xu(k + 1, x) = f (x, u).

Now the induction assumption yields x ′ ∈ Bγ k (ε0)(x) ⊆ Bε′(x), hence u′ from
Assumption 7.38(iii) exists and we obtain

‖ f (x ′, u′) − f (x ′, u′)‖ ≤ γ (γ k(ε0)) = γ k+1(ε0).

This proves (7.21) for k + 1. In order to prove (7.19) we now use the inequality

|�(x, u) − �(x ′, u′)| ≤ γ (‖x − x ′‖)

which follows from Assumption 7.38(iii). Combining this with (7.21) yields

|�(xu(k, x), u(k)) − �(xû(k, x̂), û(k))| ≤ γ k+1(ε0).

7.9 Robustness with State Constraints via Continuity of VN 213

Thus,

JN (x̂, û) =
N−1∑
k=0

�(xû(k, x̂), û(k)) ≤
N−1∑
k=0

(
�(xû(k, x̂), û(k)) + γ k+1(ε0)

)

=
N−1∑
k=0

�(xû(k, x̂), û(k)) + ω(ε0)

for

ω(r) =
N−1∑
k=0

γ k(r).

Since γ ∈ K implies γ k ∈ K and consequentlyω ∈ K and sinceω is independent
of x and η, this shows (7.19). �

With the help of Proposition 7.40we cannowprove our second robustness theorem
under state constraints. As in Sect. 7.6 we directly use the assumptions of Theorem
4.11 for ensuring stability, which can be guaranteed by, e.g., Theorems 6.20, 6.24 or
Corollary 6.21 in combinationwithAssumption 6.5 andLemma 6.6, using, of course,
the admissible control sequences related to the state constraints from Assumption
7.38 in the Controllability Assumption 6.5.

Theorem 7.41 (Practical stability using continuity of VN) Consider the NMPC
Algorithm 3.1 with state constraint sets X = X

N , . . . ,X0 ⊆ X for some vector
space X and with input constraints satisfying U(x) = U for all x ∈ X. Assume that
f is bounded and uniformly continuous in x on each closed ball Bρ(x∗) and that
� is uniformly continuous in x on each such ball, both uniformly in u ∈ U. Assume
furthermore that V = VN satisfies the assumptions of Theorem 4.11 with constant
reference x ref ≡ x∗ on S = X and that Assumption 7.38 holds.

Then the perturbed closed-loop system (7.7) is semiglobally practically asymp-
totically stable in the sense of Definition 7.24 on A = X.

Proof The state constraints ensure f (x, μN (x)) ∈ X
N−1 for all x ∈ X and thus

Bδ(f (x, μN (x))) ⊆ X by Assumption 7.38(i). Hence, in the absence of mea-
surement errors, i.e., for e = 0, and for d ≤ δ we obtain x̃μN (k, x) ∈ X for all
x̃μN (·, x) ∈ S(d,e)(x) and all x ∈ X.

Using this property and the uniform continuity of VN guaranteed by Proposition
7.40, for e = 0 the proof is analogous to the proof of Theorem 7.26 when all sets in
this proof are intersected by X and we use the a priori restriction d ≤ δ. Practical
asymptotic stability for e > 0 then follows as in the second part of the proof of
Theorem 7.36. �

214 7 Feasibility and Robustness

Remark 7.42 (i) As in the previous robustness results againwe did not use continuity
of μN .

(ii) The continuity proof of Proposition 7.40 does not immediately extend to
NMPC schemes with stabilizing terminal constraint set X0. If these are to be used,
then additional conditions on X0 need to be imposed.

(iii) Remarks 7.27(v) and 7.37(iii)–(v) apply accordingly to Theorem 7.41.

We end this chapter with a brief discussion of the robustness conditions introduced
in the last sections.

Without state constraints, Corollaries 7.28 and 7.29 show that robustness can be
expected under reasonable continuity conditions on the problem data.

In the presence of state constraints, however, things become quitemore restrictive:
Looking at the conditions (7.13), (7.14) and Assumption 7.38(ii) one sees that in all
cases the dynamics f must be able to map each point from the feasible set (i.e.,FN

in the case of (7.13) and (7.14) andX in the case of Assumption 7.38) into the interior
of the feasible set with some positive distance δ to its boundary. This requirement is
considerably stronger than the viability of the feasible set, which in turn is already a
rather restrictive assumption.

Comparing (7.13) with Assumption 7.38, (7.13) is less demanding in terms of
regularity of the value function VN , however, Assumption 7.38 allows for a sim-
pler and less restrictive choice of the constraint sets Xk compared to (7.14), which
have to shrink only from X

N to X
N−1 instead of for each pair Xk and X

k−1. This
makes the scheme easier to design and to implement; however, as the discussion of
Artstein’s circles after Example 7.39 shows, there are systems for which state con-
straint sets satisfying (7.13) can be constructed but forwhichAssumption 7.38 cannot
be satisfied. It is an open question whether there are examples for which the converse
is true.

In practice, for systemswith complex dynamics it seems doubtfulwhether onewill
ever be able to systematically construct constraint setsXk for which either condition
can be satisfied. Instead, in order to cover more realistic settings it seems desirable
to relax these conditions. This, however, may lead to complicated situations. For
instance, instead of requiring to be able to steer the system away from the boundary
of the state constraint set in one step, it appears more natural and less demanding to
be able to do so only after a larger number of steps. In the presence of perturbations,
however, this would mean that the system would leave the admissible set for a
couple of steps before it is able to enter this set again and it is not clear what kind
of conditions one would have to impose on the optimization problem (OCPN) in
order to guarantee that the NMPC closed loop will actually show this behavior. A
straightforward solution to this problem is to wait with the re-optimization until
the solution enters the admissible set again; this is, e.g., proposed by Michalska
and Mayne [18, Sect. 5] along with suitable conditions which guarantee that this
re-entering actually happens. However, during this time the system runs in open loop
and hence the controller cannot react to further unforeseen disturbances. Currently,
we are not aware of NMPC formulations which resolve this problem.

7.9 Robustness with State Constraints via Continuity of VN 215

Finally, we note that in all approaches presented here the perturbations and errors
are not explicitly taken into account in the design, i.e., in the optimization problem
(OCPN) and its variants. Alternative approaches are briefly discussed at the end of
Sect. 7.10, below.

7.10 Notes and Extensions

While recursive feasibility has long been recognized as an inherent property of the
feasible set XN of terminal constrained NMPC schemes—at least in the nominal
case—there are only few known approaches to deal with the feasibility problem
for schemes without stabilizing terminal conditions. The approach via exit sets in
Sect. 7.2 is a reformulation of results which appeared in Chap.5 of the PhD thesis of
Eric Kerrigan [11].2 It appears to be closely related to the study of target problems for
differential or difference inclusionswhen the closure of X\X is considered as a target.
More precisely, we conjecture that a discrete time version of the decomposition of the
dynamical behavior at the boundary ofX analogous to Quincampoix [21] can be used
in order to decide whether Assumption 7.9 is satisfied. Still, one can only speculate
whether this relation can be useful for designing appropriate state constraint sets X.

The approach of proving recursive feasibility for nonlinear MPC via stability in
Sect. 7.3 is an original contribution and has—to the best of our knowledge—not been
considered before. It does, however, bear similarities with the feasibility result for
linear MPC by Primbs and Nevistić [20, Theorem 3] and its proof. The essential
difference of the proof in [20] and our proof is the fact that we avoid the use of V∞
and that we do not require compactness of sublevel sets of V∞. For this reason our
proof also works for infinite-dimensional state spaces X . A variant of this result for
the case where Assumption 7.13 fails to hold near the boundary ofF∞ can be found
in Boccia, Grüne and Worthmann [2].

The discussion in Sect. 7.4 reflects our own personal experiences based on the
results developed in this book and numerous numerical simulations. Of course, other
researchers have made different experiences and we highly recommend reading the
complementary discussion by Mayne [17].

Regarding robustness, the fact that regularity properties of Lyapunov functions—
like the continuity used in Sects. 7.6 and 7.9—imply robustness is well known in the
control literature, see, for instance, Kellett, Shim and Teel [10] for an analysis in a
sampled data context. For NMPC schemes, this has been used before, e.g., in De
Nicolao, Magni and Scattolini [5] under the assumption that VN is C2. The proof
idea of Theorem 7.26 in Sect. 7.6 using mere continuity of VN was borrowed from
the stability analysis of nonlinear sampled data systems, cf., e.g., Nešić, Teel and
Kokotović [19].

Regularity properties of optimal value functions under state constraints are fre-
quently studied in optimal control. Assumption 7.38 and the proof of Proposition

2We only learned about this after the first edition of this book was published.

216 7 Feasibility and Robustness

7.40 in Sect. 7.6 were inspired by a continuous time construction by Soner [25]; we
are not aware of similar discrete time constructions in the literature. It should be
noted that the condition in discrete time is more demanding than the condition in
continuous time because in discrete time it is not possible to apply a control value
for an arbitrary short time interval which is crucial in the proof in [25].

The idea of ensuring robustness not via continuity of the optimal value function
but via tighter constraint sets as in Sect. 7.8 appears to be used for the first time
by Michalska and Mayne [18] in a continuous time setting. The definition of tight-
ening constraint sets satisfying (7.14) given here for our discrete time setting was
inspired by Limón, Alamo, and Camacho [14]. A refined version of this construction
allowing for suboptimal open-loop control sequences and discontinuous dynamics
was recently studied in Lazar and Heemels [13]. A closely related variant is the so-
called tube based MPC, cf. e.g., Langson, Chryssochoos, Raković and Mayne [12]
or Sect. 5.1 in the survey article by Limón, Alamo, Raimondo, Muñoz de la Peña,
Bravo, Ferramosca and Camacho [15]. In this area, also computational methods for
actually computing appropriate tightening state constraint sets have been investi-
gated. All these references typically use stabilizing terminal conditions and consider
only additive disturbances.

Definition 7.33 was introduced by Grimm, Messina, Tuna and Teel [8] who also
considered measurement errors and schemes without stabilizing terminal conditions
similar to the setting we used here. The same authors also constructed the examples
in Sect. 7.7, see [6]. The condition in [8] is more general than Definition 7.33 in
the sense that—roughly speaking—(7.13) is only required for k from a subset of
{0, . . . , N−1}. Here we decided to present a simplified version in order to emphasize
the main idea. The stability proof in [8] uses the techniques from [7], which were
already briefly discussed at the end of Sect. 6.1 and in Sect. 6.9, and also applies
to non positive definite stage costs under the detectability condition discussed in
Sect. 10.3.

While we consider the robustness approaches presented in the Sects. 7.6, 7.7,
7.8 and 7.9 as representative for many commonly used approaches, they are by no
means exhaustive; in fact, many more variants and related ideas can be found in the
literature. The interested reader may consult, e.g., Rawlings andMayne [23, Chap. 3]
or the survey papers by Magni and Scattolini [16] or by Limón et al. [15] as well
as the references therein. Furthermore, an alternative to using tightening constraints
was recently presented by Yu, Böhm, Chen and Allgöwer in [26]. Here the error
system describing the difference between the nominal and the perturbed system is
pre-compensated by an input-to-state stabilizing controller. This, however, comes at
the expense that this controller has to be designed before the NMPC scheme can be
set up.

All approaches discussed so far incorporate the state constraints as hard constraints
into the optimization. An alternative to this approach is by using what is often called
soft constraints. Here the state constraints are included into the NMPC formulation
by including suitable penalty terms in the cost function, which become sufficiently
large when the state constraint is violated. This approach is popular, e.g., in robotics

7.10 Notes and Extensions 217

in which the penalty terms are closely related to potential fields; see, e.g., Shim, Jin
Kim and Sastry [24]. While this approach appears to work well in practice, we are
not aware of rigorous NMPC feasibility results in the literature.

We end this discussion by remarking that there is an ample literature on NMPC
schemeswhich explicitly take the effect of disturbances into account in the prediction.
This allows for a much more refined treatment of different perturbation structures
and one may thus expect a better performance of the closed loop under perturbations
under less demanding conditions. However, the price to pay for this better perfor-
mance is that instead of a “simple” optimal control problem a dynamic game, i.e.,
a min-max problem has to be solved in each sampling instant. The complexity of
solving a dynamic min-max problem is considerably higher than solving an optimal
control problem; in particular, the interplay between the control and the perturbation
sequences needs to be modeled with care in order to obtain a reasonable solution. For
recent surveys on such methods we refer to, e.g., Raimondo, Limón, Lazar, Magni
and Camacho [22] (see also the discussion following this article in the same journal)
or Rawlings and Mayne [23, Chap. 3].

Problems

1. Consider the feasible set FN for a constraint set X ⊂ X and an optimization
horizon N ∈ N according to Definition 7.2. Assume that for a point x ∈ X

and some K ∈ N there exists an admissible control sequence u ∈ U
K (x) with

xu(K , x) ∈ FN . Prove that x ∈ FN+K holds.
2. Consider a symmetric matrix Q ∈ R

n×n and a constant C > 0 such that the
inequality |x�Qy| ≤ C‖x‖‖y‖ holds for all x, y ∈ R

n . Let ρ > 0 be given and
consider the set A = Bρ(0).

(a) Show that
ω(r) = 2Cρ r

is a modulus of continuity of the function W (x) = x�Qx on A.

(b) Compute a modulus of continuity of the function W (x) = (x�Qx)2 on A.

3. Verify the following facts that have been used in Example 7.31.

(a) For x ∈ R
2 with x2 > 0 and u ∈ R with u < 0 the step x+ = f (x, u)

defines a clockwise movement.
(b) For all c ∈ (0, 1), all circles Sr with r > rc = c/

√
1 − c2 and all points

x ∈ Sr ∩ X with x2 > r and x1 = c the relation f (x,−1) /∈ X holds. Use
this fact to conclude that for all initial values x ∈ Sr ∩ X with x2 > r it is
not possible to move clockwise toward 0.

(c) For all c < 1/2 and y′ ∈ Y ′ with ε > 0 sufficiently small the inequality
�(f (y′,−1)) > �(y′) holds.

218 7 Feasibility and Robustness

References

1. Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. 7(11), 1163–1173 (1983)
2. Boccia, A., Grüne, L., Worthmann, K.: Stability and feasibility of state constrained MPC

without stabilizing terminal constraints. Syst. Control Lett. 72, 14–21 (2014)
3. Camilli, F., Grüne, L., Wirth, F.: Control Lyapunov functions and Zubov’s method. SIAM J.

Control Optim. 47, 301–326 (2008)
4. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Texts

in Applied Mathematics, vol. 21. Springer, New York (1995)
5. De Nicolao, G., Magni, L., Scattolini, R.: On the robustness of receding-horizon control with

terminal constraints. IEEE Trans. Autom. Control 41(3), 451–453 (1996)
6. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Examples when nonlinear model predictive

control is nonrobust. Automatica 40(10), 1729–1738 (2004)
7. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local

control Lyapunov function, all is not lost. IEEE Trans. Autom. Control 50(5), 546–558 (2005)
8. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Nominally robust model predictive control

with state constraints. IEEE Trans. Autom. Control 52(10), 1856–1870 (2007)
9. Grüne, L., Nešić, D.: Optimization based stabilization of sampled-data nonlinear systems via

their approximate discrete-time models. SIAM J. Control Optim. 42, 98–122 (2003)
10. Kellett, C.M., Shim, H., Teel, A.R.: Further results on robustness of (possibly discontinuous)

sample and hold feedback. IEEE Trans. Autom. Control 49(7), 1081–1089 (2004)
11. Kerrigan, E.C.: Robust constraint satisfaction: Invariant sets and predictive control. PhD thesis,

University of Cambridge (2000)
12. Langson, W., Chryssochoos, I., Raković, S.V., Mayne, D.Q.: Robust model predictive control

using tubes. Automatica 40(1), 125–133 (2004)
13. Lazar, M., Heemels, W.P.M.H.: Predictive control of hybrid systems: input-to-state stability

results for sub-optimal solutions. Automatica 45(1), 180–185 (2009)
14. Limón, D., Alamo, T., Camacho, E.: Input-to-state stable MPC for constrained discrete-time

nonlinear systems with bounded additive uncertainties. In: Proceedings of the 41st IEEE Con-
ference on Decision and Control - CDC 2002, Las Vegas, Nevada, pp. 4619–4624 (2002)

15. Limón, D., Alamo, T., Raimondo, D.M., Muñoz de la Peña, D., Bravo, J.M., Ferramosca, A.,
Camacho, E.F.: Input-to-state stability: a unifying framework for robust model predictive con-
trol. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control.
Lecture Notes in Control and Information Sciences, vol. 384, pp. 1–26. Springer, erlin (2009)

16. Magni, L., Scattolini, R.: Robustness and robust design of MPC for nonlinear discrete-time
systems. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.) Assessment and Future Directions
of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences,
vol. 358, pp. 239–254. Springer, Berlin (2007)

17. Mayne, D.Q.: An apologia for stabilising terminal conditions in model predictive control. Int.
J. Control 86(11), 2090–2095 (2013)

18. Michalska,H.,Mayne,D.Q.: Robust receding horizon control of constrained nonlinear systems.
IEEE Trans. Autom. Control 38(11), 1623–1633 (1993)

19. Nešić, D., Teel, A.R., Kokotović, P.V.: Sufficient conditions for stabilization of sampled-data
nonlinear systems via discrete-time approximations. Syst. Control Lett. 38(4–5), 259–270
(1999)

20. Primbs, J.A.,Nevistić,V.: Feasibility and stability of constrainedfinite recedinghorizon control.
Automatica 36(7), 965–971 (2000)

21. Quincampoix, M.: Differential inclusions and target problems. SIAM J. Control Optim. 30(2),
324–335 (1992)

22. Raimondo, D.M., Limón, D., Lazar, M., Magni, L., Camacho, E.F.: Min-max model predictive
control of nonlinear systems: a unifying overview on stability. Europ. J. Control 15(1), 5–21
(2009)

23. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Pub-
lishing, Madison (2009)

References 219

24. Shim, D.H., Jin Kim, H., Sastry, S.: Decentralized nonlinear model predictive control of mul-
tiple flying robots. In: Proceedings of the 42nd IEEE Conference on Decision and Control -
CDC 2003, Maui, Hawaii, USA, pp. 3621–3626 (2003)

25. Soner, H.M.: Optimal control with state-space constraint. I and II. SIAM J. Control Optim.
24(3), 552–561, 1110–1122 (1986)

26. Yu, S., Böhm, C., Chen, H., Allgöwer, F.: Robust model predictive control with disturbance
invariant sets. In: Proceedings of the American Control Conference - ACC 2010, Baltimore,
Maryland, USA, pp. 6262–6267 (2010)

Chapter 8
Economic NMPC

Economic nonlinear model predictive control is the common name for NMPC
schemes in which the stage cost does not penalize the distance to a predefined equi-
librium, which was one of the key assumptions in Chaps. 5 and 6. Instead, the cost
can, in principle, model all kinds of quantities, like energy consumption, yield of a
substance, income of a firm, etc., which one would like to minimize or maximize. In
such a general setting, it is by nomeans clear that the moving horizonMPC paradigm
yields well-performing closed-loop solutions. It was first observed by Amrit, Angeli,
and Rawlings in 2012 (extending earlier work by Diehl, Amrit, and Rawlings) that
strict dissipativity is a sufficient systems theoretic property for ensuring proper per-
formance of economic MPC. In this chapter, we will rigorously establish stability
as well as averaged and non-averaged performance estimates for strictly dissipative
economic MPC problems, both with and without terminal conditions.

8.1 Setting

In terms of the problem formulation, the only difference between economic NMPC
and the stabilizing NPMC formulations we discussed in the previous chapters lies in
the stage cost �. More precisely, we drop the requirement (3.2) of � being positive
definite with respect to an a priori chosen equilibrium (x∗, u∗). In fact, we even
entirely drop the idea of stabilizing a prescribed equilibrium (x∗, u∗). This does not
mean that we abandon the concept of an equilibrium. On the contrary, equilibria will
still play an important role in our analysis. However, instead of a priori identifying
a “good” equilibrium (x∗, u∗) and then stabilizing it, we concentrate on optimal
equilibria that emerge from the interplay of the stage cost and the dynamics, i.e.,
which are implicitly defined by the optimal control problem (see Definition 8.2)
rather than given exogenously.

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_8

221

222 8 Economic NMPC

Example 8.1 An example, which will serve as an illustration for all results in this
section, is the 1d discrete-time system with dynamics and stage cost

x+ = 2x + u and �(x, u) = u2

and state and control constraint sets X = [−2, 2] and U(x) = U = [−3, 3], i.e.,
Y = [−2, 2] × [−3, 3]. Since the stage cost does not depend on x , the requirement
(3.2) is clearly violated.

The uncontrolled system is unstable, hence for initial values x0 �= 0 the solution
will leave the admissible set X if no control is used. Hence, control action is needed
in order to keep the system inside X. Interpreting the stage cost �(x, u) = u2 as the
energy of the current control action, the control objective can be formulated as “keep
the state inside X with minimal control effort.”

Due to the fact that in the general economic setting the stage cost is not sign
definite, the infinite horizon functional need not have a finite value. Hence, the infinite
horizon closed-loop performance

J cl
∞(x0, μ) :=

∞∑

k=0

�(xμ(k), μ(xμ(k)))

from Definition 4.10 (which in this chapter is considered only in the time-invariant
setting) often does not yield a well-defined performance criterion. For this reason,
we also consider the finite horizon closed-loop performance

J cl
K (x0, μ) :=

K−1∑

k=0

�(xμ(k), μ(xμ(k))) (8.1)

and the averaged infinite horizon performance

J
cl
∞(x0, μ) := lim sup

K→∞
1

K
Jcl
K (x0, μ).

Throughout this chapter, by (xe, ue) ∈ Y we denote an equilibrium of the system,
i.e., f (xe, ue) = xe. Of particular interest are optimal equilibria according to the
following definition.

Definition 8.2 An equilibrium (xe, ue) ∈ Y is called an optimal equilibrium, if it
yields the lowest value of the cost function among all admissible equilibria, i.e.,

�(xe, ue) ≤ �(x, u) for all (x, u) ∈ Y with f (x, u) = x .

Example 8.3 In Example 8.1, the equilibria are of the form (x,−x) with cost
�(x,−x) = x2. Thus, the (unique) optimal equilibrium is given by (xe, ue) = (0, 0).

8.1 Setting 223

The following lemma shows that an optimal equilibrium always exists when f
and � are continuous and Y is compact.

Lemma 8.4 If the constraint setY ⊂ X×U is compact and themaps � : X×U → R

and f : X × U → X are continuous, then there exists an optimal equilibrium, i.e.,
a pair xe ∈ X, ue ∈ U with f (xe, ue) = xe such that

�(xe, ue) = inf{�(x, u) | (x, u) ∈ Y, f (x, u) = x}.

Proof Since preimages of closed sets under continuous mappings are closed, the
set {(x, u) ∈ Y | f (x, u) = x} is closed, hence compact and thus the continuous
function � attains a minimum. �

As a consequence of this lemma, in contrast to assuming �(x∗, u∗) < �(x, u) for all
(x, u) ∈ Y \ (x∗, u∗), which we did in Chaps. 5 and 6, assuming the existence of an
optimal equilibrium is not an overly restrictive assumption.

8.2 Averaged Performance with Terminal Conditions

In this and in the following two sections, we choose the optimal control problem
(OCPN,e) in Algorithm 3.10 as

minimize JN (x0, u(·)) :=
N−1∑

k=0

�(xu(k, x0), u(k))

+ F(xu(N , x0))

with respect to u(·) ∈ U
N
X0

(x0) subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(8.2)

where U
N
X0

(x0) is defined as in the previous chapters, see Definition 3.2(ii). We note
that the only difference to (5.15) lies in the fact that the condition x∗ ∈ X0 is removed,
as we do not a priori fix a particular equilibrium x∗. We also note that the terminal
condition is only added to the open-loop functional JN (x0, u) used in the NMPC
Algorithm 3.10, but not to the closed-loop performance index J cl

K (x, μ) from (8.1),
which is still defined without terminal cost or constraints according to (8.1). As
before, the optimal value function is defined by

VN (x) := inf
u(·)∈UN

X0
(x)

JN (x, u(·))

224 8 Economic NMPC

and we assume the existence of an optimal control sequence for each feasible ini-
tial condition x in order to synthesize the NMPC feedback law μN according to
Algorithm 3.10.

The following assumption links an equilibrium—which will later be chosen as
an optimal equilibrium—to the terminal conditions. For its formulation, recall the
definition of the feasible sets XN from Definition 3.9(i).

Assumption 8.5 (Terminal conditions) (a) The set X0 is bounded and there is an
equilibrium (xe, ue) ∈ Y with xe ∈ X0 and F(xe) = 0, such that for each x ∈ X0

there exists u ∈ U with f (x, u) ∈ X0 and

F(f (x, u)) ≤ F(x) − �(x, u) + �(xe, ue)

(b) There exists N0 ∈ N and η > 0, such that XN0 contains the ball Bη(xe).

Observe that the requirement F(xe) = 0 in part (a) of this assumption can be made
without loss of generality because the inequality in (a) is invariant with respect to
adding a constant to F .

Obviously, Assumption 8.5(a) is a modification of Assumption 5.9 adapted to the
economic NMPC setting. It is easily seen that Lemmas 5.10 and 5.11 remain valid. In
particular, under Assumption 8.5, the feasible sets satisfy the inclusion XN0 ⊆ XN1

whenever N0 ≤ N1. We also note that Assumption 8.5(a) is satisfied in case of
equilibrium terminal conditions, i.e., when setting X0 = {xe} and F ≡ 0. Hence,
we do not treat equilibrium terminal conditions separately. Assumption 8.5(b) is
a nondegeneracy condition, which prevents that the feasible sets XN have empty
interior for any N ∈ N.

Under these assumptions, we can formulate the first result.

Theorem 8.6 Consider the NMPC Algorithm 3.10 with optimal control problem
(OCPN,e) = (8.2). Let Assumption 8.5(a) be satisfied, let N ≥ 2, and assume VN is
bounded from below on XN . Then, for any N ≥ 2 and any x ∈ XN the averaged
closed-loop performance satisfies the inequality

J
cl
∞(x, μN) ≤ �(xe, ue). (8.3)

Proof Similar to the proof of Lemma 5.4, one sees that Assumption 8.5(a) implies
the inequality

VN (x) ≤ VN−1(x) + �(xe, ue)

for all x ∈ XN−1. Using the dynamic programming principle, this inequality implies

�(x, μN (x)) ≤ VN (x)−VN−1(f (x, μN (x))) ≤ VN (x)−VN (f (x, μN (x)))+�(xe, ue)

8.2 Averaged Performance with Terminal Conditions 225

and we can conclude

J cl
K (x0, μN) =

K−1∑

k=0

�(xμN (k), μN (xμN (k)))

≤
K−1∑

k=0

[
VN (xμN (k)) − VN (xμN (k + 1)) + �(xe, ue)

]

= VN (x0) − VN (xμN (K)) + K�(xe, ue)

≤ VN (x0) − M + K�(xe, ue),

where M ∈ R is a lower bound on VN . This yields

J
cl
∞(x0, μN) ≤ lim sup

K→∞

(
VN (x0)

K
− M

K
+ �(xe, ue)

)
= �(xe, ue).

�

We note that the boundedness assumption on VN is satisfied if � is continuous, Y
is compact, and F is bounded from below, because in this case both � and F , and
thus also VN , are bounded from below.

Clearly, the estimate from Theorem 8.6 is particularly powerful if �(xe, ue) is the

best, i.e., the smallest possible value that J
cl
∞(x0, μN) can attain. The next definition

provides a property that is sufficient for this fact, as the subsequent Proposition 8.9
shows.

Definition 8.7 (Dissipativity and strict dissipativity) We say that an optimal control
problemwith stage cost � is strictly dissipative at an equilibrium (xe, ue) ∈ Y if there
exists a storage function λ : X → R bounded from below and satisfying λ(xe) = 0,
and a function ρ ∈ K∞ such that for all (x, u) ∈ Y the inequality

�(x, u) − �(xe, ue) + λ(x) − λ(f (x, u)) ≥ ρ(|x |xe) (8.4)

holds.
We say that an optimal control problem with stage cost � is dissipative at (xe, ue),

if the same conditions hold with ρ ≡ 0.

We note that the assumption λ(xe) = 0 can be made without loss of generality,
because adding a constant to λ does not invalidate (8.4).

The classical physical interpretation of the storage function is that λ(x) quantifies
the amount of energy stored in the systemat state x . The function s(x, u) := �(x, u)−
�(xe, ue) is called the supply rate and measures the (possibly negative) amount of
energy supplied to the system via the input u at state x . With this interpretation,
strict dissipativity means that a certain amount of energy, quantified by ρ(|x |xe), is
dissipated to the environment in each time step. Of course, in the context of general

226 8 Economic NMPC

optimal control problems considered in this chapter, the storage function and the
supply rate need not have an energy interpretation.

Example 8.8 (i) Any optimal control problem with stage cost satisfying �(x, u) −
�(xe, ue) ≥ ρ(|x − xe|) is strictly dissipative with λ ≡ 0. Hence, NMPC problems
satisfying the conditions of the stability theorems in Chaps. 5 and 6 are always strictly
dissipative. In this sense, strict dissipativity extends (and weakens) the assumptions
from the previous chapters.

(ii) It is straightforward to check that Example 8.1 is dissipative with λ ≡ 0 and
strictly dissipative with λ(x) = −x2/2, both at (xe, ue) = (0, 0). Note that the stor-
age function λ = −x2/2 is bounded from below since X is bounded. Indeed, for an
unbounded state constraint set X, the system would not be strictly dissipative. In this
example, the supply rate s(x, u) = �(x, u) = u2 does have an energy interpretation
and the storage function λ(x) shows that the equilibrium (xe, ue) is the state in which
the stored energy λ(x) becomes maximal.

Proposition 8.9 For an optimal control problem (OCPN) that is dissipative at
(xe, ue), the point (xe, ue) is an optimal equilibrium and the inequality

lim sup
K→∞

1

K

K−1∑

k=0

�(xu(k, x), u(k)) ≥ �(xe, ue) (8.5)

holds for all x ∈ X and all admissible control sequences u ∈ U
∞(x).

Proof Consider an arbitrary equilibrium (x, u) ∈ Y. Then the identity x = f (x, u)

and (8.4) imply

�(x, u) − �(xe, ue) = �(x, u) − �(xe, ue) + λ(x) − λ(f (x, u)) ≥ 0,

which yields �(xe, ue) ≤ �(x, u), and thus (xe, ue) is an optimal equilibrium.
Moreover, using again (8.4) and denoting by M a lower bound on λ we have

K−1∑

k=0

�(xu(k, x), u(k)) ≥
K−1∑

k=0

�(xe, ue) − λ(xu(k, x)) + λ(xu(k + 1, x))

= K�(xe, ue) − λ(x) + λ(xu(K , x))

≥ K�(xe, ue) − λ(x) + M.

for any u ∈ U
∞(x). This yields

lim sup
K→∞

1

K

K−1∑

k=0

�(xu(k, x), u(k)) ≥ lim sup
K→∞

(
�(xe, ue) − λ(x) − M

K

)
= �(xe, ue).

�

8.2 Averaged Performance with Terminal Conditions 227

Fig. 8.1 NMPC closed-loop
solution (solid) and
open-loop predictions
(dashed) for Example 8.1
with terminal constraint
X0 = {0} and horizon
N = 3. The solid line at
x = 2 indicates the upper
bound of the admissible set X

k
0 5 10 15 20 25

x
µ
N
(k

)
(s

ol
id

)
an

d
x
u
N
(·)

(d
as

he
d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N=3

The property expressed by inequality (8.5) is known as optimal operation at steady
state. It has been shown in [17] that under a controllability condition on the system,
the converse of Proposition 8.9 is also true, i.e., that optimal operation at a steady
state implies dissipativity.

An immediate consequence of Proposition 8.9 is the following corollary.

Corollary 8.10 Consider theNMPCAlgorithm3.10with dissipative optimal control
problem (OCPN,e) = (8.2). Then for all x ∈ XN

J
cl
∞(x, μN) = inf

u∈U∞(x)
lim sup
K→∞

1

K

K−1∑

k=0

�(xu(k, x), u(k)).

Hence, if dissipativity holds, then Theorem 8.6 ensures infinite horizon averaged
optimality of the NMPC closed loop.

Example 8.11 Since Example 8.1 is dissipative (see Example 8.8), theNMPC closed
loopmust be infinite horizon averaged optimal. Indeed, as Fig. 8.1 shows, the closed-
loop solution converges to the optimal equilibrium. Since the control (not shown in
the figure) does the same, �(xμN (k), μN (xμN (k))) → 0 as k → ∞ follows. This

implies J
cl
∞(x, μN) = 0, which is clearly optimal since � ≥ 0.

8.3 Asymptotic Stability with Terminal Conditions

One might conjecture that optimal operation at the steady state (xe, ue) implies that
closed-loop solutions satisfying (8.3) must also converge to xe. However, under the
assumptions imposed in Theorem 8.6 and Proposition 8.9, this is not necessarily
the case. To see this, it suffices to consider an optimal control problem with � ≡ 0.
Such a problem clearly satisfies all assumptions (with terminal cost F ≡ 0 and
storage function λ ≡ 0), yet every trajectory is an optimal trajectory and thus optimal
trajectories obviously need not converge to xe. In order to achieve this—and, in fact,
even asymptotic stability of xe—we need to assume strict dissipativity.

228 8 Economic NMPC

Similar to our reasoning in Chap. 5, we establish asymptotic stability by proving
the existence of a Lyapunov function. Here, however, the optimal value function VN

cannot be used for this purpose, because it is not sign definite and thus violates the
upper and lower bounds on V (n, ·) = VN (·) in Theorem 4.11. The remedy lies in
considering the optimal control problem with stage cost

�̃(x, u) := �(x, u) − �(xe, ue) + λ(x) − λ(f (x, u)) (8.6)

and terminal cost
F̃(x) := F(x) + λ(x).

These costs are usually called rotated or modified costs. The name “rotated cost”
stems from the fact that for linear f and strictly convex �, the graph of �̃ is obtained
by rotating the graph of �. The corresponding functional is given by

J̃N (x0, u(·)) =
N−1∑

k=0

�̃(xu(k, x0), u(k)) + F̃(xu(N , x0))

and the optimal value function by

ṼN (x0) := inf
u(·)∈UN

X0
(x0)

J̃N (x0, u(·)).

It is an easy exercise to check that the equalities �̃(xe, ue) = 0 and F̃(xe) = 0
and—under Assumption 8.5(a)—that the inequality

F̃(f (x, u)) ≤ F̃(x) − �̃(x, u) (8.7)

holds for each x ∈ X0 and the control u from Assumption 8.5(a). Moreover, for any
x ∈ XN and u ∈ U

N
X0

(x), one easily verifies the identity

J̃N (x, u) = JN (x, u) + λ(x) − N�(xe, ue). (8.8)

Since the last two terms in (8.8) are independent of u, this implies that the optimal
trajectories for JN and J̃N coincide and that the optimal value functions satisfy

ṼN (x) = VN (x) + λ(x) − N�(xe, ue). (8.9)

If the optimal control problem is strictly dissipative, �̃ satisfies �̃(x, u) ≥ ρ(|x |xe)
for all (x, u) ∈ Y and �̃(xe, ue) = 0. This immediately implies

ṼN (xe) = 0 and thus VN (xe) = N�(xe, ue) (8.10)

using (8.9) and λ(xe) = 0.

8.3 Asymptotic Stability with Terminal Conditions 229

The considerations above reveal that with rotated stage cost, the problem satisfies
all the properties of the stabilizing NMPC problem of Sect. 5.3. Since the optimal
trajectories for JN and J̃N coincide, so do the NMPC closed-loop trajectories for the
two problems. It is therefore not very surprising that ṼN is a Lyapunov function for
the NMPC closed-loop system. For the rigorous proof of this property, we need the
following continuity assumption on F , λ and VN in xe.

Assumption 8.12 (Continuity of F , λ and VN at xe) There exists γF , γλ, and γV ∈
K∞ such that the following properties hold.
(a) For all x ∈ X0 it holds that

|F(x) − F(xe)| ≤ γF (|x |xe).

(b) For all x ∈ X it holds that

|λ(x) − λ(xe)| ≤ γλ(|x |xe).

(c) For each N ∈ N and each x ∈ XN it holds that

|VN (x) − VN (xe)| ≤ γV (|x |xe).

Note that γV in (c) is independent of N . Wewill comment at the end of this section
on conditions under which (c) can be ensured.

Theorem 8.13 Consider the NMPCAlgorithm 3.10 with strictly dissipative optimal
control problem (OCPN,e)= (8.2). Let Assumptions 8.5(a) and 8.12 be satisfied. Then
the optimal equilibrium xe is asymptotically stable for the NMPC closed loop onXN .

Proof We show that the modified optimal value function ṼN is a Lyapunov function
for the closed-loop system in the sense of Theorem 4.11 for x ref(n) ≡ xe. To this
end, we first check inequality (4.14) with V = ṼN , � = �̃ and α = 1. As in the
proof of Theorem 8.6, from Assumption 8.5(a) we obtain �(x, μN (x)) ≤ VN (x) −
VN (f (x, μN (x))) + �(xe, ue), which we can rewrite as

VN (x) ≥ �(x, μN (x)) + VN (f (x, μN (x))) − �(xe, ue). (8.11)

Using (8.9) this implies

ṼN (x) = VN (x) + λ(x) − N�(xe, ue)

≥ �(x, μN (x)) + VN (f (x, μN (x))) − �(xe, ue) + λ(x) − N�(xe, ue)

= �(x, μN (x)) + ṼN (f (x, μN (x))) − λ(f (x, μN (x))) − �(xe, ue) + λ(x)

= �̃(x, μN (x)) + ṼN (f (x, μN (x))),

i.e., the desired inequality (4.14).

230 8 Economic NMPC

It remains to establish the inequalities

α1(|x |xe) ≤ ṼN (x) ≤ α2(|x |xe) and �̃(x, u) ≥ α3(|x |xe) (8.12)

for α1, α2, α3 ∈ K∞. The third inequality follows immediately from the definition
of �̃ and strict dissipativity for α3 = ρ from Definition 8.7. For the inequalities
involving α1 and α2, we first need to establish a lower bound for F̃ .

To this end, for each x ∈ X0 we denote the control u from (8.7) by μ0(x). Then
(8.7) and strict dissipativity implies

F̃(f (x, μ0(x))) ≤ F̃(x) − �̃(x, μ0(x)) ≤ F̃(x) − ρ(|x |xe).

By induction along the closed-loop solution for the feedback law μ0, we obtain

F̃(xμ0(K , x)) ≤ F̃(x) −
K−1∑

k=0

ρ(|xμ0(k, x)|xe).

This implies that xμ0(K , x) → xe as K → ∞, because otherwise the sum on the
right-hand sideof this inequality growsunboundedly,which implies F̃(xμ0(K , x)) →
−∞ and contradicts Assumption 8.12(a) and (b) since xμ0(K , x) is contained in the
bounded setX0. Again by Assumption 8.12(a) and (b), this implies F̃(xμ0(K , x)) →
F̃(xe) = 0 as K → ∞ from which we can finally conclude

F̃(x) ≥ lim
K→∞

K−1∑

k=0

ρ(|xμ0(k, x)|xe) ≥ ρ(|x |xe) ≥ 0.

From this, the definitions of J̃N and ṼN immediately imply ṼN (x) ≥ �̃(x, μN (x)) ≥
ρ(|x |xe), and thus the inequality for α1 in (8.12) with α1 = ρ.

Finally, since J̃N (xe, ue) = 0, we obtain ṼN (xe) = 0 and the second inequality
in (8.12) follows from (8.9) and Assumption 8.12(b) and (c) with α2 = γλ +γV . �

We end this section by discussing sufficient conditions for the bound on VN

required in Assumption 8.12(c). In the case of equilibrium terminal conditions, i.e.,
X0 = {xe} and F ≡ 0, this property can be ensured by the condition that xe is
reachable from every x ∈ XN with suitable bounded costs. In case � and f are
continuous, similar to Proposition 5.7 (ii), it is sufficient to assume that the control
sequence steering x to xe is sufficiently close to the constant control with value ue.
For details we refer to [3], particularly to part 2 of Assumption 2 in [3].

In case X0 contains a neighborhood of xe, a similar argument as that leading to
(5.20) yields the inequality

VN (x) ≤ F(x) + N�(xe, ue)

8.3 Asymptotic Stability with Terminal Conditions 231

while from (8.9) and ṼN ≥ 0 we obtain

VN (x) ≥ −λ(x) + N�(xe, ue).

Since from (8.10)wemoreover knowVN (xe) = N�(xe, ue), this impliesAssumption
8.12(c) for x ∈ X0 provided Assumption 8.12(a) and (b) hold. For x ∈ XN \ X0, the
inequality can be obtained similarly to the proof of Proposition 5.7.

Example 8.14 According to Example 8.8, the optimal control problem from Exam-
ple 8.1 is strictly dissipative. Moreover, one easily verifies that xe is reachable in
two steps from each x ∈ X with cost 4x2, which implies the upper bound on VN for
the terminal constraint set X0 = {0}. Hence, we expect the NMPC closed loop to be
asymptotically stable, which was already illustrated in Fig. 8.1.

8.4 Non-averaged and Transient Performance
with Terminal Conditions

The averaged performance result from Theorem 8.6 provides a useful estimate for
large times k. However, it also has two significant weaknesses. First, it does not
provide an advantage over a stabilizing NMPC algorithm. Indeed, for any combi-
nation of a continuous stage cost and a terminal condition for which the NMPC
closed-loop solution converges to xe and the corresponding control sequence con-
verges to ue, the value �(xμN (k), μN (xμN (k))) converges to �(xe, ue) from which

J
cl
∞(x, μN) = �(xe, ue) follows.Hence,Theorem8.6 states that the economicNMPC

scheme does not perform worse than a stabilizing one. Second, the averaged esti-
mate does not allow any statement about the finite time behavior of the closed-loop
trajectory. Indeed, on any finite time interval of arbitrary length, the closed-loop
trajectory could behave arbitrarily bad as long as eventually it converges to the equi-
librium. Clearly, this is not what we would expect an NMPC closed-loop trajectory
to do and it is also not consistent with what we see in numerical simulations, e.g., in
Fig. 8.1. Hence in this section, we derive estimates for the non-averaged infinite and
finite horizon performance J cl∞(x, μN) and J cl

K (x, μN), respectively. For the infinite
horizon estimate the additional condition �(xe, ue) = 0 will be imposed, in order
to make sure that the infinite sum in J cl∞(x, μN) converges. For the finite horizon
performance, such a condition is not needed. As we already know that—under the
conditions of Theorem 8.13—the equilibrium xe is asymptotically stable, the finite
horizon value J cl

K (x, μN) measures the performance of the solution during the tran-
sient phase, i.e., until it reaches a small neighborhood of xe. This is why we also call
this value transient performance.

Since J cl
K (x, μN) and J cl∞(x, μN) do not involve any terminal constraints or costs,

in our analysis we will also need to consider the optimal control problems (OCPN)
and (OCP∞) without terminal constraints and terminal costs (we only consider the
time-invariant infinite horizon problem (OCP∞) here). In order not to confuse these

232 8 Economic NMPC

problems with (8.2), in this section, we denote the functionals and the optimal value
functions of the unconstrained problems (OCPN) and (OCP∞) by J uc

N , V uc
N , J uc∞ and

V uc∞ , respectively. We emphasize that we use the same stage cost � in (8.2), (OCPN)
and (OCP∞). This implies that if one of the problems is strictly dissipative, then all
problems are. If this is the case, we also consider (OCPN) for the rotated cost �̃ and
denote the corresponding functional by J̃ uc

N . A straightforward computation reveals
that J uc

N and J̃ uc
N are related by the identity

J̃ uc
N (x, u) = J uc

N (x, u) + λ(x) − λ(xu(N , x)) − N�(xe, ue). (8.13)

Observe that compared to (8.8), the additional term λ(xu(N , x)) appears here due to
the absence of the terminal conditions.

In order to establish our theorems on transient performance, we will need a few
preparatory results. The first statement shows that the finite horizon optimal trajec-
tories most of the time stay close to the optimal equilibrium xe.

Proposition 8.15 Assume that the optimal control problem (OCPN) is strictly dis-
sipative with bounded storage function λ and ρ ∈ K∞. Then for each δ > 0, there
exists σδ ∈ L such that for all N , P ∈ N, x ∈ X and u ∈ U

N (x) with J uc
N (x, u) ≤

N�(xe, ue)+δ, the setQ(x, u, P, N) := {k ∈ {0, . . . , N−1} | |xu(k, x)|xe ≥ σδ(P)}
has at most P elements.

Proof We fix δ > 0 and claim that the assertion holds with σδ(P) := ρ−1((2M +
δ)/P) where M is a bound on |λ|. To prove this claim, assume that there are N , P ,
x and u such that J uc

N (x, u) ≤ N�(xe, ue) + δ but Q(x, u, P, N) contains at least
P + 1 elements. Then from (8.13) we can estimate

J̃ uc
N (x, u) ≤ J uc

N (x, u) + 2M − N�(xe, ue) ≤ 2M + δ.

On the other hand, (8.4), (8.6), and the fact thatQ(x, u, P, N) contains at least P+1
elements imply

J̃ uc
N (x, u) ≥

N−1∑

k=0

�̃(xu(k, x), u(k)) ≥
N−1∑

k=0

ρ(|xu(k, x)|xe) ≥
∑

k∈{0,...,N−1}
|xu (k,x)|xe >σδ (P)

ρ(σδ(P))

≥ (P + 1)ρ(σδ(P)) ≥ (P + 1)
2M + δ

P
> 2M + δ,

which is a contradiction. �
Werefer to the property described byProposition 8.15 as the turnpike property. For

an illustration, we refer to Fig. 8.2. In fact, there are various variants of the turnpike
property known in optimal control, of which the one described by Proposition 8.15 is
just a particular version. More information on this property can be found in Sect. 8.8.

We remark that the boundedness assumption on λ can be restrictive in case X is
unbounded. However for bounded subsets of the state constraint setX, it is not a very

8.4 Non-averaged and Transient Performance with Terminal Conditions 233

Fig. 8.2 Illustration of the
set Q(x, u, P, N) defined in
Proposition 8.15

Elements of Q(x, u, P, N)

Nk

σδ(P)

σδ(P)

xu(k, x)

xe

Fig. 8.3 Open-loop optimal
trajectories (without terminal
conditions) for Example 8.1
with different optimization
horizons N . The turnpike
property is clearly visible

k

0 5 10 15 20 25 30

x
u
N
,x
(k
,x

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Open-loop optimal trajectories for N = 2, 4, 6, . . . , 30

strong assumption. Hence, it can be assumed to hold if either X itself is bounded or
if near optimal trajectories are guaranteed to stay in a bounded subset of X.

Example 8.16 Since Example 8.1 is strictly dissipative with bounded storage func-
tion (cf. Example 8.8), we expect the system to have the turnpike property. The
numerical optimal trajectories depicted in Fig. 8.3 support this claim.

Next we derive upper and lower bounds for V uc∞ .

Lemma 8.17 Assume that the optimal control problem (OCPN) is strictly dissipative
with bounded storage function λ, that �(xe, ue) = 0 and that Assumptions 8.5(a) and
8.12 hold. Then there is C > 0 such that the inequalities

− C ≤ V uc
∞ (x) ≤ γV (|x |xe) (8.14)

hold for all x ∈ ⋃
N∈N XN with γV from Assumption 8.12(c).

Proof For x ∈ XN , using the control sequence u(k) = μN (xμN (k, x)) induced by
the closed loop, from (8.11) with �(xe, ue) = 0 for any K > 0, we obtain

J uc
K (x, u) =

K−1∑

k=0

�(xu(k, x), uk(x)) ≤ VN (x) − VN (xu(K , x)).

234 8 Economic NMPC

By asymptotic stability of xe for this solution we obtain xu(K , x) → xe, and
thus, since VN (xe) = N�(xe, ue) = 0 by (8.10), Assumption 8.12(c) yields
VN (xu(K , x)) → 0 as K → ∞. Using Assumption 8.12(c) and VN (xe) = 0,
this implies

V uc
∞ (x) ≤ lim sup

K→∞
J uc
K (x, u) ≤ VN (x) ≤ γV (|x |xe).

On the other hand, the fact that J̃ uc
N (x, u) ≥ 0, (8.13) and the boundedness of λ imply

J uc
N (x, u) ≥ −C for some C ≥ 0 and all x , u and N . This implies V uc∞ (x) ≥ −C .

�
Using the inequality ensured by this lemma, we can prove an infinite horizon

version of the turnpike property from Proposition 8.15.

Proposition 8.18 Assume that the optimal control problem (OCPN) is strictly dis-
sipative, X is bounded, �(xe, ue) = 0 and the inequalities (8.14) hold for all
x ∈ ⋃

N∈N0
XN . Then there exists σ∞ ∈ L such that for all P ∈ N, x ∈ X

and u ∈ U
∞(x) with J uc∞ (x, u) ≤ V uc∞ (x) + 1, the set Q(x, u, P,∞) := {k ∈

N0 | |xu(k, x)|xe ≥ σ∞(P)} has at most P elements.

Proof First note that by Lemma 8.17 and the assumption, we get

J uc
∞ (x, u) ≤ sup

x∈⋃
N∈N XN

V uc
∞ (x) + 1 ≤ sup

x∈X
γV (|x |xe) + 1 =: δ.

Now we can proceed as in the proof of Proposition 8.15: denoting by M a bound on
|λ|, from (8.13) and �(xe, ue) = 0 we obtain

J̃ uc
∞ (x, u) = lim sup

K→∞
J̃ uc
K (x, u) ≤ lim sup

K→∞
J uc
K (x, u) + 2M ≤ δ + 2M.

Setting σ∞(K) := ρ−1((2M + δ)/K), the assumption thatQ(x, u, P,∞) contains
more than P elements, again yields a contradiction to this inequality. �

We note that this theorem implies xu(k, x) → xe as k → ∞, because otherwise
Q(x, u, P,∞) would contain infinitely many elements for sufficiently large P ∈ N.
Using this fact, we can improve the lower bound on V uc∞ from Lemma 8.17.

Lemma 8.19 Under the assumptions of Proposition 8.18, the inequality V uc∞ (x) ≥
−λ(x) holds for all x ∈ ⋃

N∈N0
XN .

Proof Let u ∈ U
∞(x) be such that J uc∞ (x, u) ≤ V uc∞ (x) + ε for an ε ∈ (0, 1).

As explained above, Proposition 8.18 implies that xu(k, x) → xe as k → ∞. The
definition of V uc∞ and (8.13) then imply that

V uc
∞ (x) + ε ≥ lim sup

K→∞
J uc
K (x, u)

= lim sup
K→∞

(
− λ(x) + J̃ uc

K (x, u)︸ ︷︷ ︸
≥0

+ λ(xu(K , x)︸ ︷︷ ︸
→λ(xe)=0

)
≥ −λ(x).

8.4 Non-averaged and Transient Performance with Terminal Conditions 235

This implies the assertion since ε ∈ (0, 1) was arbitrary. �

Our final preparatory result is needed for estimating the finite horizon transient
performance. It thus concerns the optimal value of the problemwith control functions
u that steer a given initial value x ∈ X to the closed ball Bκ(xe) with radius κ > 0
around xe. In order to simplify the notation, we briefly write

U
K
κ (x) := U

K
Bκ (xe)

(x) (8.15)

using the notation from Definition 3.9 with Bκ(xe) in place of X0. We remark that
Theorem 8.13 yields the existence of a β ∈ KL such that for all x ∈ XN and all
K with β(|x |xe , K) ≤ κ the control u obtained from the MPC feedback law via
u(k) = μN (xμN (k, x)) is contained in U

K
κ (x). This, in particular, shows that this set

is nonempty for sufficiently large K .

The next lemma shows that the infimum of J uc
K (x, u) over u ∈ U

K
κ (x) and the cor-

responding approximately optimal trajectories behave similar to those of the infinite
horizon problem.More precisely, part (a) of the following lemma is similar to Lemma
8.17, part (b) to Lemma 8.19, and part (c) to Proposition 8.18. Note that since we
only consider finite horizon problems here, we do not need to assume �(xe, ue) = 0.

Lemma 8.20 Assume that the optimal control problem (OCPN) is strictly dissipative
with bounded storage function λ and that Assumptions 8.5(a) and 8.12 hold. Fix κ0 >

0 and let β be a KL -function characterizing the asymptotic stability of the closed
loop, whose existence is guaranteed by Theorem 8.13. Then for any κ ∈ (0, κ0], any
x ∈ ⋃

N∈N0
XN , and K0 ∈ N minimal with β(|x |xe , K0) ≤ κ , the following holds.

(a) For all K ≥ K0 the inequality

inf
u∈UK

κ (x)
J uc
K (x, u) − K�(xe, ue) ≤ γV (|x |xe) + γV (κ)

holds with γV ∈ K∞ from Assumption 8.12(c).
(b) For all K ∈ N with U

K
κ (x) �= ∅ the inequality

−γλ(|x |xe) − γλ(κ) ≤ inf
u∈UK

κ (x)
J uc
K (x, u) − K�(xe, ue)

holds with γλ from Assumption 8.12(b).
(c) If in addition X is bounded, then there exists σ ∈ L such that for all K ≥ K0,

all P ∈ N and any u ∈ U
K
κ (x) with J uc

K (x, u) ≤ infu∈UK
κ (x) J uc

K (x, u) + 1 there is
k ≤ min{P, K − 1} such that |xu(k, x)|xe < σ(min{P, K − 1}).
Proof (a) The proof of this inequality works similarly to the first part of the proof
of Lemma 8.17. For x ∈ XN , we choose the control u obtained from the MPC
feedback law via u(k) = μN (xμN (k, x)). By Theorem 8.13 and the choice of K0,

236 8 Economic NMPC

this control lies in U
K
κ (x). As in the proof of Lemma 8.17, from (8.11)—now with

�(xe, ue) �= 0—for this u we get

J uc
K (x, u) ≤ VN (x) − VN (xu(K , x)) + K�(xe, ue)

and from Assumption 8.12(c) and |xu(K , x)|xe < κ , we obtain the assertion.
(b) Let ε > 0 and take a control uε ∈ U

K
κ (x) with infu∈UK

κ (x) J uc
K (x, u) + ε ≥

J uc
K (x, uε). Then by (8.13), Assumption 8.12(b) and λ(xe) = 0, and recalling that

strict dissipativity implies J̃ uc
K (x, uε) ≥ 0 we get

inf
u∈UK

κ (x)
J uc
K (x, u) + ε ≥ J uc

K (x, uε)

= −λ(x)︸ ︷︷ ︸
≥−γλ(|x |xe)

+ J̃ uc
K (x, uε)︸ ︷︷ ︸

≥0

+ λ(xuε
(K , x))︸ ︷︷ ︸

≥−γλ(κ)

+K�(xe, ue)

≥ −γλ(|x |xe) − γλ(κ) + K�(xe, ue).

This implies (b) since ε > 0 was arbitrary.
(c) The assumptions and (a) imply that Proposition 8.15 can be applied with

δ = supx∈X γ (|x |xe) + γ (κ0) + 1 for all x ∈ X and all κ ∈ (0, κ0]. We set
σ = σδ from this proposition. Since the setQ(x, u,min{P, K − 1}, K) has at most
min{P, K−1} elements, there exists at least one k ∈ {0, . . . ,min{P, K−1}}with k /∈
Q(x, u,min{P, K − 1}, K), which thus satisfies |xu(k, x)|xe ≤ σ(min{P, K − 1}).

�
We now have all the tools to prove the two main theorems of this section. The first

theorem gives an upper bound for the non-averaged infinite horizon performance
of the NMPC closed-loop trajectory. We recall that when considering the infinite
horizon problem, we demand �(xe, ue) = 0. Taking into account the inequality
V uc∞ (x) ≤ J cl∞(x, μN) that follows immediately from the definition of these functions,
the theorem shows that economic MPC delivers an approximately (non-averaged)
infinite horizon optimal closed-loop solution for which the approximation error tends
to 0 as the horizon N tends to infinity.

Theorem 8.21 Consider the NMPCAlgorithm 3.10 with strictly dissipative optimal
control problem (OCPN,e) = (8.2). Assume that X is bounded, that �(xe, ue) = 0
and that Assumptions 8.5 and 8.12 hold. Then there exists δ1 ∈ L such that the
inequalities

J cl
∞(x, μN) ≤ VN (x) ≤ V uc

∞ (x) + δ1(N)

hold for all x ∈ XN .

Proof In order to prove the first inequality, from (8.11) we obtain �(x, μN (x)) ≤
VN (x) − VN (f (x, μN (x))). This implies for any K ∈ N

JclK (x, μN) =
K−1∑

k=0

�(xμN (k, x), μN (xμN (k, x))) ≤ VN (x) − VN (xμN (K , x)). (8.16)

8.4 Non-averaged and Transient Performance with Terminal Conditions 237

Now from Theorem 8.13 we know that |xμN (k, x)|xe ≤ β(|x |xe , k) ≤ β(M, k) =:
ν(k), where M := maxx,y∈X d(x, y). Note that ν ∈ L . Moreover, by (8.10) we have
VN (xe) = N�(xe, ue) = 0 and from Assumption 8.12(c) we know the existence of
γV ∈ K with |VN (x)| = |VN (x)−VN (xe)| ≤ γV (|x |xe) for all x ∈ X. Together this
yields

|VN (xμN (K , x))| ≤ γV (ν(K)).

Since γV (ν(K)) → 0 for K → ∞, this inequality together with (8.16) yields the
first inequality by letting K → ∞.

For the second inequality, we note that it is sufficient to prove the inequality
for all sufficiently large N , because by boundedness of VN and V uc∞ , for small N
the inequality can always be satisfied by choosing δ1(N) sufficiently large without
violating the requirement δ1 ∈ L . Consider σ∞ from Proposition 8.18, pick N0

and η from Assumption 8.5(b), choose N1 such that σ∞(N1) < η, fix 0 < ε < 1
and choose an admissible control uε satisfying J uc∞ (x, uε) ≤ V uc∞ (x) + ε. Then for
N ≥ 2N1, we use Proposition 8.18 with P = N/2�. We thus obtain the existence
of k ∈ {0, . . . , P − 1} such that |xuε

(k, x)|xe < σ∞(P) ≤ σ∞(N1) < η, implying
xu(k, x) ∈ XN1 ⊆ XN2 and thus uε ∈ U

k
XN2

(x) for all N2 ≥ N1. Particularly, this

holds for N2 = N − k, implying uε ∈ U
k
XN−k

(x). Now from Assumption 8.12(c)
applied to VN−k , we can conclude (again using VN (xe) = 0)

|VN−k(xuε
(k, x))| ≤ γV (σ∞(P)).

Moreover, Lemma 8.19 and the bound on λ yield

Vuc∞ (x) + ε ≥ Juc∞ (x, uε) ≥ Juck (x, uε) + V∞(xuε (k, x)))

≥ Juck (x, uε) − λ(xuε (k, x)) ≥ Juck (x, uε) − γλ(σ∞(P)).

Together with the dynamic programming principle (3.15) these inequalities imply

VN (x) = inf
u∈Uk

XN−k
(x)

{J uc
k (x, u) + VN−k(xu(k, x))} ≤ J uc

k (x, uε) + VN−k(xuε
(k, x))

≤ V uc
∞ (x) + γV (σ∞(P)) + γλ(σ∞(P)) + ε.

Since ε > 0 was arbitrary, this proves the assertion for δ1(N) = γV (σ∞(N/2�)) +
γλ(σ∞(N/2�)). �

Since xe is asymptotically stable for the NMPC closed-loop trajectories, the
closed-loop solutions converge toward xe as k → ∞. More precisely, given a time
K , by Theorem 8.13 the solutions are guaranteed to satisfy xμN (k, x) ∈ Bκ(xe) for
all k ≥ K and κ = β(|x |xe , K) for β from Theorem 8.13. We denote the time span
{0, . . . , K − 1} during which the system is (possibly) outside Bκ(xe) as transient
time and the related finite horizon functional J uc

K (x, u) as transient performance. The
next theorem then shows that among all possible trajectories from x to Bκ(xe), the
NMPC closed loop has the best transient performance up to error terms vanishing as

238 8 Economic NMPC

K → ∞ and N → ∞. Again, in order to simplify the notation, we use U
K
κ (x) from

(8.15). We remark that unlike the previous theorem, here we do not need to assume
�(xe, ue) = 0.

Theorem 8.22 Consider the NMPCAlgorithm 3.10 with strictly dissipative optimal
control problem (OCPN,e) = (8.2). Assume that X is bounded and that Assumptions
8.5 and 8.12 hold. Then there exist δ1, δ2 ∈ L such that for all x ∈ XN the inequality

J cl
K (x, μN) ≤ inf

u∈UK
κ (x)

J uc
K (x, u) + δ1(N) + δ2(K)

holds with κ = β(|x |xe , K) and β ∈ KL characterizing the asymptotic stability of
the closed loop guaranteed by Theorem 8.13.

Proof We can without loss of generality assume �(xe, ue) = 0, because the claimed
inequality is invariant under adding constants to �. Moreover, similar to the proof
of Theorem 8.21, it is sufficient to prove the inequality for all sufficiently large K
and N , because by boundedness of all functions involved for small N and K the
inequality can always be achieved by choosing δ1(N) and δ2(K) sufficiently large.
As in the first step of the previous proof, we obtain |VN (xμN (K , x))| ≤ γV (ν(K)).
It is thus sufficient to show the existence of δ1, δ̃2 ∈ L with

VN (x) ≤ inf
u∈UK

κ (x)
J uc
K (x) + δ1(N) + δ̃2(K) (8.17)

for all x ∈ XN because then the assertion follows from (8.16) with δ2 = γV ◦ ν + δ̃2.
In order to prove (8.17), consider σ from Lemma 8.20(c), which we apply with

P = N/2� and pick uε ∈ U
K
κ (x) with J uc

K (x, uε) ≤ infu∈UK
κ (x) J uc

K (x, u) + ε with
an arbitrary but fixed ε ∈ (0, 1). This yields the existence of k ∈ {0, . . . , N/2�},
k ≤ K − 1 with |xuε

(k, x)|xe ≤ σ(min{P, K − 1}). Since uε steers x to Bκ(xe),
the shifted sequence uε(k + ·) lies in U

K−k
κ (xuε

(k, x)), implying that this set is
nonempty. Hence, we can apply Lemma 8.20(b) in order to conclude J uc

K−k(xuε
(k, x),

uε(k + ·)) ≥ −γλ(σ (min{N , K − 1})) − γλ(κ). This implies

inf
u∈UK

κ (x)
J uc
K (x, u) + ε ≥ J uc

K (x, uε) = J uc
k (x, uε) + J uc

K−k(xuε
(k, x), uε(k + ·))

≥ J uc
k (x, uε) − γλ(σ (min{N , K − 1})) − γλ(κ)

Moreover, by choosing N and K sufficiently largewecan ensureσ(min{P, K−1})<η

for η from Assumption 8.5(b), implying uε ∈ U
k
XQ

(x) for all Q ≥ N0 and N0 from
Assumption 8.5(b). Particularly, choosing N ≥ 2N0 implies N − k ≥ N0 and thus
uε ∈ U

k
XN−k

(x).
Using this relation, the inequality derived above, the dynamic programming prin-

ciple (3.15) and Assumption 8.12(c) for VN−k we obtain

8.4 Non-averaged and Transient Performance with Terminal Conditions 239

Fig. 8.4 Value of
J clK (x, μN) for K = 30,
x = 1.9 and varying N with
terminal constraint X = {0}

N

2 3 4 5 6 7 8 9 10

J
cl 30
(1
. 9
,µ

N
)

10.8

10.82

10.84

10.86

10.88

10.9

10.92

10.94

10.96

10.98

11

VN (x) = inf
u∈Uk

XN−k
(x)

{Juck (x, u) + VN−k(xu(k, x))} ≤ Juck (x, uε) + VN−k(xuε (k, x))

≤ inf
u∈UK

κ (x)
JucK (x, u) + γλ(σ (min{P, K − 1})) + γλ(κ) + ε

+ γV (σ (min{P, K − 1})).

This shows the desired inequality (8.17) for

δ1(N) = γV (σ (N/2�)) + γλ(σ (N/2�)),

and using the choice of κ ,

δ̃2(K) = γV (σ (K − 1)) + γλ(σ (K − 1)) + γλ(β(M, K))

with M = maxx,y∈X d(x, y) and β ∈ KL characterizing the asymptotic stability of
the closed loop. �

Example 8.23 Figure8.4 illustrates how J cl
K (x, μN) depends on N for Example 8.1.

The value K = 30 is so large that the effect of the term δ2(K) is negligible and not
visible in the figure, hence J cl

K (x, μN) converges to infu∈UK
κ (x) J uc

K (x, u) for increas-
ing N .

8.5 Averaged Optimality Without Terminal Conditions

In this and in the subsequent sections, we discuss the case in which we do not
impose terminal conditions on the problem, i.e., we consider the NMPC Algorithm
with optimal control problem (OCPN). The corresponding functionals and optimal
value functions will, as usual, be denoted by JN and VN and their infinite horizon
counterparts by J∞ and V∞, i.e., we do not use the superscript notation J uc

N , etc.,
anymore in the sequel. The results are presented in parallel to Sects. 8.2–8.4.

240 8 Economic NMPC

Since we do not impose any terminal conditions, we do not need Assumptions 8.5
and 8.12(a) anymore. However, we still need Part (b) and (a relaxed version of) Part
(c) of Assumption 8.12, where the latter now refers to the optimal value function of
the unconstrained problem (OCPN).

Assumption 8.24 (Continuity of λ and VN at xe) There exist γλ and γV ∈ K∞ and
ω ∈ L such that the following properties hold.
(a) For all x ∈ X it holds that

|λ(x) − λ(xe)| ≤ γλ(|x |xe).

(b) For each N ∈ N and each x ∈ X it holds that

|VN (x) − VN (xe)| ≤ γV (|x |xe) + ω(N).

Note that (b) implies viability of X, which we assume for simplicity in this section.
If desired, this condition could be relaxed using techniques similar to those from
Sect. 7.3, where the turnpike property replaces the stability assumption (see [8] for
details in a continuous time setting). One method of ensuring the continuity from (b)
without requiring explicit knowledge of VN is by assuming strict dissipativity and
local controllability around xe, see [18] or [10, Sect. 6].

We observe that Propositions 8.15 and 8.18 remain valid, as the assumptions,
statements and proofs do not involve any terminal constraints or costs. Based on
these two propositions, we can prove the following two auxiliary results, which lead
to the main result of this section. In what follows, we denote by u�∞ and u�

N the
optimal control sequences for (OCP∞) and (OCPN), respectively, for initial value
x ∈ X.

Lemma 8.25 If Assumption 8.24 and the assumptions of Proposition 8.15 hold, then
the equation

VN (x) = JM(x, u�
N) + VN−M(xe) + R1(x, M, N) (8.18)

holds with |R1(x, M, N)| ≤ γV (σδ(P)) + ω(N − M) for all x ∈ X, all N ∈ N,
all P ∈ N and all M /∈ Q(x, u�

N , P, N), with σδ from Proposition 8.15 with δ =
γV (|x |xe) + ω(N).

Proof Observe that using the constant control u ≡ ue, we can estimate VN (xe) ≤
JN (xe, u) = N�(xe, ue). Thus, using Assumption 8.24 we get JN (x, u�

N) ≤
N�(xe, ue)+γV (|x |xe)+ω(N), hence Proposition 8.15 applies to the optimal trajec-
tory with δ = γV (|x |xe) + ω(N). This in particular ensures |xu�

N
(M, x)|xe ≤ σδ(P)

for all M /∈ Q(x, u�
N , P, N).

Now the dynamic programming principle (3.16) yields

VN (x) = JM(x, u�
N) + VN−M(xu�

N
(M, x)).

8.5 Averaged Optimality Without Terminal Conditions 241

Hence, (8.18) holds with R1(x, M, N) = VN−M(xu�
N
(M, x)) − VN−M(xe). Then

for any P ∈ N and any M /∈ Q(x, u�
N , P, N), this implies |R1(x, M, N)| ≤

γV (|xu�
N
(M, x)|xe) + ω(N − M) ≤ γV (σδ(P)) + ω(N − M) and thus the asser-

tion. �

Lemma 8.26 If Assumption 8.24 and the assumptions of Proposition 8.15 hold, then
the equation

VN (x) = VN−1(x) + �(xe, ue) + R2(x, N)

holds with |R2(x, N)| ≤ ν2(|x |xe , N) = 2γV (σδ(N/2�)) + 2ω(N/2� − 1) for all
x ∈ X, all N ∈ N and σδ from Proposition 8.15 with δ = γV (|x |xe) + ω(N − 1).

Proof Given x ∈ X, consider the optimal control u�
N−1 for horizon length N −1 and

σδ from Proposition 8.15 with δ = γV (|x |xe). Then Lemma 8.25 applied with N − 1
in place of N and P = N/2� implies the existence of M ∈ {0, . . . , N/2� − 1}
with

VN−1(x) = JM(x, u�
N−1) + VN−M−1(x

e) + R1(x, M, N − 1)

with |R1(x, M, N − 1)| ≤ γV (σδ(N/2�)) + ω(N/2� − 1). The construction in
the proof of Lemma 8.25 moreover yields |xu�

N−1
(M, x)|xe ≤ σδ(N/2�). Using

u(k) = u�
N−1(k) for k = 0, . . . , M − 1 and u(M + k) = u�

N−M(k) with the optimal
control u�

N−M for initial value xu�
N
(M, x) and horizon N −M for k = M, . . . , N −1,

yields

JN (x, u) = JM (x, u�
N−1) + VN−M (xu�

N
(M, x)) = JM (x, u�

N−1) + VN−M (xe) + R̂1(x, M, N)

with |R̂1(x, M, N)| ≤ γV (σδ(N/2�)) + ω(N/2�). Since for initial value xe, we
can always stay at the equilibrium for one step and use the optimal control for
initial value xe for the remaining horizon, we obtain the inequality VN−M(xe) ≤
�(xe, ue) + VN−M−1(xe). Together this yields

VN (x) ≤ JN (x, u) = JM(x, u�
N−1) + VN−M(xe) + R̂1(x, M, N)

≤ JM(x, u�
N−1) + �(xe, ue) + VN−M−1(x

e) + R̂1(x, M, N)

= VN−1(x) + �(xe, ue) − R1(x, M, N − 1) + R̂1(x, M, N),

and thus the claim with R2(x, N) = R̂1(x, M, N) − R1(x, M, N − 1). �

Now we can state the theorem on the infinite horizon average performance.

Theorem 8.27 Consider the NMPC Algorithm 3.1 with strictly dissipative optimal
control problem (OCPN) with bounded storage function λ. Let Assumption 8.24 hold
and assume VN is bounded from below on X. Then, for any N ≥ 2 and any x ∈ X

the averaged closed-loop performance satisfies the inequality

J
cl
∞(x, μN) ≤ �(xe, ue) + δ1(N) (8.19)

242 8 Economic NMPC

with δ1(N) ≤ 2γV (σδ(N/2�)) + 2ω(N/2� − 1) for σδ from Proposition 8.15 with
δ = γV (|x |xe) + ω(N − 1) and γV and ω from Assumption 8.24.

Proof Abbreviate xμN (k) = xμN (k, x). From the dynamic programming principle
(3.16) and Lemma 8.26 applied with x = xμN (k + 1), we obtain

�(xμN (k), μN (xμN (k))) = VN (xμN (k)) − VN−1(xμN (k + 1))

≤ VN (xμN (k)) − VN (xμN (k + 1)) + �(xe, ue) + ν2(N).

Thus we obtain

J
cl
∞(x, μN) = lim sup

K→∞
1

K

K−1∑

k=0

�(xμN (k), μN (xμN (k)))

= lim sup
K→∞

1

K

K−1∑

k=0

(
VN (xμN (k)) − VN (xμN (k + 1)) + �(xe, ue) + ν2(N)

)

= �(xe, ue) + ν2(N) + lim sup
K→∞

VN (x0) − VN (xμN (K))

K

≤ �(xe, ue) + ν2(N) + lim sup
K→∞

VN (x0) + M

K
= �(xe, ue) + ν2(N)

where−M is a lower bound on VN on X. This shows the claim with δ1(N) = ν2(N).
�

The difference between this and the corresponding result with terminal conditions
is that we get the error term δ1(N) on the right-hand side of the estimate, which does,
however, tend to 0 as N → ∞.

Example 8.28 Figure8.5 shows J
cl
∞(x, μN) for Example 8.1 depending on N . The

plot in the logarithmic scale shows that the value converges to the optimal value
�(0, 0) = 0 exponentially fast, hence the error δ1(N) also vanishes exponentially fast.
This is actually not a coincidence. However, an analysis of the rate of convergence
is beyond the scope of this chapter. We refer to [14] for details.

Fig. 8.5 Value of

J
cl
∞(x, μN) for x = 1.9

without terminal conditions
depending on N

N

2 4 6 8 10 12 14

J
cl ∞

(1
.9
, µ

N
)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

8.6 Practical Asymptotic Stability Without Terminal Conditions 243

8.6 Practical Asymptotic Stability Without Terminal
Conditions

Nowwe turn to analyzing the stability properties of the NMPC closed-loop solutions
without terminal conditions. As in the case with terminal conditions, our goal is to
assume strict dissipativity and to use the optimal value function for the modified
stage cost �̃ from (8.6) as a Lyapunov function, but now without imposing terminal
conditions. The crucial difference is that while the problem with modified stage cost
�̃ is still a stabilizing problem (hence the theory from Chap.6 could be applied),
without terminal conditions the optimal trajectories of the original and the modified
problem no longer coincide.

In order to see why, we refer to the optimal control problem (OCPN) with stage
cost �̃ as (ÕCPN) and, as before, denote the corresponding functional and the optimal
value function by J̃N and ṼN . Due to the fact that we no longer impose terminal
conditions, the relations between VN and ṼN are not the same as in Sect. 8.3. For JN
and J̃N , instead of (8.8) we now have (8.13), which in the notation of this section
reads

J̃N (x, u) = JN (x, u) + λ(x) − λ(xu(N , x)) − N�(xe, ue). (8.20)

Unfortunately, in contrast to (8.8), this equation does not allow for an easy derivation
of a relation between the optimal value functions of the form (8.9), because of
the additional u-dependent term λ(xu(N , x)) on the right-hand side of (8.20). A
first consequence of this fact is that the continuity Assumption 8.24(b) does not
immediately carry over to ṼN . Hence, we need to introduce this as an independent
assumption.

Assumption 8.29 (Continuity of ṼN at xe) There exists γṼ ∈ K∞ such that for
each N ∈ N and each x ∈ X it holds that

|ṼN (x) − ṼN (xe)| ≤ γṼ (|x |xe).

In case strict dissipativity holds, �̃ is positive definite w.r.t. the equilibrium xe, hence
we obtain ṼN (xe) = 0 and ṼN (x) ≥ 0 for all x ∈ X. Thus, the inequality in Assump-
tion 8.29 is equivalent to ṼN (x) ≤ γṼ (|x |xe)+ω(N), which can be guaranteed using
the conditions discussed in Chap. 6.

Unlike continuity, a straightforward check of Definition 8.7 (with storage function
λ ≡ 0) shows that strict dissipativity carries over from (OCPN) to (ÕCPN), even with
the same ρ. Thus, in particular, all the previous lemmas that apply to (OCPN) in
case of strict dissipativity also apply to (ÕCPN). As a general rule, we denote all
parameters, sets etc., referring to (ÕCPN) with a tilde, e.g., the set Q(x, u, N , P)

from Proposition 8.15 will be denoted by Q̃(x, u, N , P) when this proposition is
applied to (ÕCPN).

244 8 Economic NMPC

As already mentioned above, from the definition we cannot directly deduce a
simple relation like (8.9) between VN and ṼN . The reason why we can still use ṼN as
an—at least practical—Lyapunov function lies in the fact that we can still establish
an approximate version of (8.9). To this end, we first need the following preparatory
lemma.

Lemma 8.30 If Assumption 8.24 and the assumptions of Proposition 8.15 hold, then
the equation

VN (xe) = M�(xe, ue) + VN−M(xe) − R3(x, P, N)

holdswith 0 ≤ R3(x, P, N) ≤ γV (σδ(P))+ω(N−M)+γλ(σδ(P)) for all N , P ∈ N

and for all M /∈ Q(x, u�
N , N , P), where u�

N ∈ U
N (xe) is the optimal control of

(OCPN) for initial value xe and σδ is from Proposition 8.15 with δ = γV (|x |xe) +
ω(N).

Proof The inequality VN (xe) ≤ M�(xe, ue)+ VN−M(xe) follows from the dynamic
programming principle (3.15) using the control u ≡ ue. For the opposite inequality,
consider the optimal control u�

N ∈ U
N (xe) for initial value xe. As in the proof of

Lemma 8.25, we can apply Proposition 8.15 with δ = γV (|x |xe) + ω(N) in order to
conclude that for each M /∈ Q(x, u�

N , N , P) we have

VN (xe) =
M−1∑

k=0

�(xu�
N
(k), u�

N (k)) + VN−M (xu�
N
(M))

= −λ(xe) + λ(xu�
N
(M)) + M�(xe, ue) +

M−1∑

k=0

�̃(xu�
N
(k), u�

N (k))
︸ ︷︷ ︸

≥0

+VN−M (xu�
N
(M))

≥ M�(xe, ue) + VN−M (xe) +
[
VN−M (xu�

N
(M)) − VN−M (xe)

]
+

[
λ(xu�

N
(M)) − λ(xe)

]

≥ M�(xe, ue) + VN−M (xe) − γV (σδ(P)) − ω(N − M) − γλ(σδ(P)),

which shows the claim. �

Now we can prove the approximate relation of the form (8.9) between ṼN and
VN .

Lemma 8.31 If Assumptions 8.24 and 8.29 aswell as the assumptions of Proposition
8.15 hold, then the equation

ṼN (x) = VN (x) + λ(x) − VN (xe) + R4(x, N)

holds with |R4(x, N)| ≤ ν4(|x |xe , N) with

8.6 Practical Asymptotic Stability Without Terminal Conditions 245

ν4(|x |xe , N) = max{γV (σ̃δ̃(N/3�)) + γV (σδ(N/3�)) + γṼ (σ̃δ̃(N/3�))
+ γλ(σδ(N/3�)) + γλ(σ̃δ̃(N/3�)) + 3ω(N/3�),

γṼ (σδ(N/3�)) + γV (σδ(N/3�)) + γλ(σδ(N/3�))
+2ω(N/3�)}

with σδ and σ̃δ̃ from Proposition 8.15 applied to (OCPN) and (ÕCPN), respectively,
with δ = γV (|x |xe) + ω(N) and δ̃ = γṼ (|x |xe).
Proof Fix x ∈ X and let u�

N and ũ�
N ∈ U

N (x) denote the optimal control min-
imizing JN (x, u) and J̃N (x, u), respectively. We note that if (OCPN) is strictly
dissipative then (ÕCPN) is strictly dissipative, too, with bounded storage function
λ ≡ 0 and same ρ ∈ K∞. Moreover, VN (x) ≤ N�(xe, ue) + γV (|x |xe) + ω(N)

and ṼN (x) ≤ N �̃(xe, ue) + γṼ (|x |xe), since VN (xe) ≤ N�(xe, ue) and ṼN (xe) = 0.
Hence, Proposition 8.15 applies to the optimal trajectories for both problems, yielding
σδ ∈ L and Q(x, u�

N , P, N) for (OCPN) and σ̃δ̃ and Q̃(x, ũ�
N , P, N) for (ÕCPN).

For all M /∈ Q̃(x, ũ�
N , P, N), we can estimate

VN (x) ≤ JM(x, ũ�
N) + VN−M(xũ�

N
(M))

≤ JM(x, ũ�
N) + VN−M(xe) + γV (σ̃δ̃(P)) + ω(N − M)

≤ J̃M(x, ũ�
N) − λ(x) + λ(xe) + M�(xe, ue) + VN−M(xe) + γV (σ̃δ̃(P))

+ γλ(σ̃δ̃(P)) + ω(N − M)

≤ ṼN (x) − R̃1(x, P, N) − λ(x)

+ VN (xe) + R3(x, P, N) + γV (σ̃δ̃(P)) + γλ(σ̃δ̃(P)) + ω(N − M),

wherewe have applied the dynamic programming principle (3.15) in the first inequal-
ity, Proposition 8.15 for (ÕCPN) and Assumption 8.24(b), respectively, Assumption
8.24(a) and (8.20) in the second and third inequality and Lemma 8.25 (applied to
(ÕCPN), hence with remainder term denoted by R̃1) and Lemma 8.30 (applied to
(OCPN)) in the last step. Moreover, λ(xe) = 0 and ṼN (xe) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities
as above, we get

ṼN (x) ≤ VN (x) − R1(x, P, N) + λ(x) − VN (xe) + γṼ (σδ(P)) + γλ(σδ(P))

+ ω(N − M)

for all M /∈ Q(x, u�
N , P, N). Here we can omit the negative−R3-term. Now, choos-

ing P = N/3�, the union Q(x, ũ�
N , P, N) ∪ Q(x, u�

N , P, N) has at most 2N/3
elements, hence there exists M ≤ 2N/3 for which both inequalities hold. This yields
N − M ≥ N/3� and thus

246 8 Economic NMPC

|R1(x, P, N)| ≤ γV (σδ(N/3�)) + ω(N/3�),
|R̃1(x, P, N)| ≤ γṼ (σ̃δ̃(N/3�)) + ω(N/3�) and
R3(x, P, N) ≤ γV (σδ(N/3�)) + ω(N/3�) + γλ(σδ(N/3�)),

which shows the claim. �

The following proposition shows in which sense ṼN is a Lyapunov function for
the system. This will be used in the subsequent theorem in order to prove semiglobal
practical asymptotic stability of the closed loop.

Proposition 8.32 Consider the NMPC Algorithm 3.1 with strictly dissipative opti-
mal control problem (OCPN) with bounded storage function λ and ρ ∈ K∞ and let
Assumptions 8.24 and 8.29 hold. Then for each � > 0 there exists δ1 ∈ L such that
for all N ≥ 2 the optimal value function ṼN of (ÕCPN) is a Lyapunov function for
the closed loop on S = Y \ P for the forward invariant sets Y = Ṽ−1

N ([0,�]) and
P = Ṽ−1

N ([0, δ1(N)]).
Proof We have to check that Definition 2.18 is satisfied and that Y and P are forward
invariant. The lower bound in (2.37) follows with α1 = ρ because strict dissipativity
implies �̃(x, u) ≥ ρ(|x |xe), and thus

ṼN (x) = inf
u∈UN (x)

N−1∑

k=0

�̃(xu(k, x), u(k)) ≥ inf
u∈UN (x)

N−1∑

k=0

ρ(|xu(k, x)|xe) ≥ ρ(|x |xe).

The upper bound in (2.37) follows from Assumption 8.29 and ṼN (xe) = 0 with
α2 = γṼ .

In order to obtain inequality (2.38), we abbreviate x+ = f (x, μN (x)). Now,
for all x ∈ Y we obtain ṼN (x) ≤ �, which implies |x |xe ≤ ρ−1(�). In order to
obtain a similar estimate for |x+|xe , we observe that ṼN (x) ≤ � implies VN (x) ≤
� − λ(x) + M + N�(xe, ue), where M > 0 denotes a bound on λ. Thus, Theorem
3.17 and strict dissipativity yield

VN−1(x
+) = VN (x) − �(x, μN (x)) ≤ VN (x) + λ(x) − λ(x+) − �(xe, ue)

≤ � − λ(x+) + M + (N − 1)�(xe, ue).

This implies

ṼN−1(x
+) ≤ VN−1(x

+) + λ(x+) + M − (N − 1)�(xe, ue) ≤ � + 2M

and we can conclude that |x+|xe ≤ ρ−1(� + 2M). Hence, we can compute

8.6 Practical Asymptotic Stability Without Terminal Conditions 247

ṼN (x+) = VN (x+) + λ(x+) − VN (xe) + R4(x
+, N)

= VN−1(x
+) + �(xe, ue) + λ(x+) − VN (xe) + R2(x

+, N) + R4(x
+, N)

= VN (x) − �(x, μN (x)) + �(xe, ue) + λ(x+) − VN (xe)

+ R2(x
+, N) + R4(x

+, N)

= ṼN (x)−�(x, μN (x)) + �(xe, ue) + λ(x+) − λ(x)︸ ︷︷ ︸
=−�̃(x,μN (x))

+ R2(x
+, N) + R4(x

+, N) − R4(x, N).

where we used Lemma 8.31 for x = x+ for the first equality, Lemma 8.26 for the
second, Eq. (3.20) for the third and Lemma 8.31 in the last step. Defining ν(N) =
ν2(ρ

−1(� + 2M), N) + 2ν4(ρ−1(� + 2M), N) with ν2 and ν4 from Lemmas 8.26
and 8.31, respectively, we thus obtain

ṼN (x+) ≤ ṼN (x) − ρ(|x |xe) + ν(N) ≤ ṼN (x) − χ(ṼN (x)) + ν(N) (8.21)

for χ := ρ ◦ α−1
2 (r). Now we set δ1(N) = max{χ−1(2ν(N)), χ−1(ν(N)) + ν(N)}.

Then for all x ∈ S = Y \ P we obtain ṼN (x) ≥ δ1(N) and thus χ(ṼN (x)) ≥ 2ν(N),
which implies

ṼN (x+) ≤ ṼN (x) − χ(ṼN (x))/2 ≤ ṼN (x) − χ(α1(|x |xe))/2

and thus (2.38) with αV (r) = χ(α1(r))/2. This inequality also shows forward invari-
ance of Y since x ∈ Y implies ṼN (x) ≤ �, hence ṼN (x+) < ṼN (x) ≤ � and thus
x+ ∈ Y .

Finally to prove forward invariance of P, we recall that x ∈ P if and only if
ṼN (x) ≤ δ1(N). Now we pick x ∈ P and distinguish two cases.

Case 1: χ(ṼN (x)) ≥ ν(N). In this case from (8.21), we obtain

ṼN (x+) ≤ ṼN (x) − χ(ṼN (x)) + ν(N) ≤ ṼN (x) ≤ δ1(N).

Case 2: χ(ṼN (x)) < ν(N). In this case from (8.21) we obtain

ṼN (x+) ≤ ṼN (x) − χ(ṼN (x)) + ν(N) ≤ ṼN (x) + ν(N)

< χ−1(ν(N)) + ν(N) ≤ δ1(N).

Hence, in both cases we get ṼN (x+) ≤ δ1(N) and thus x+ ∈ P, which proves the
forward invariance of P. �

We note that for small values of N the inequality δ1(N) ≥ � may hold, in which
case the set S on which ṼN is a Lyapunov function is empty.

The final theorem on practical asymptotic stability is now an easy consequence
of Proposition 8.32. To this end, recall the notion of semiglobal practical stability
from Definition 6.33(ii).

248 8 Economic NMPC

k

0 5 10 15 20 25 30 35

x
µ
N
(k

)
(s

ol
id

)
an

d
x
u
N
(·)

(d
as

he
d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N=5

k

0

x
µ
N
(k

)
(s

ol
id

)
an

d
x
u
N
(·)

(d
as

he
d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N=10

0 5 10 15 20 25 30 35 40

Fig. 8.6 NMPC closed-loop solution (solid) and open-loop predictions (dashed) for Example 8.1
without terminal conditions and horizon N = 5 (left) and N = 10 (right). The solid line at x = 2
indicates the upper bound of the admissible set X

Theorem 8.33 Consider the NMPC Algorithm 3.1 with strictly dissipative optimal
control problem (OCPN) with bounded storage function λ and ρ ∈ K∞ and let
Assumptions 8.24 and 8.29 hold. Then the equilibrium xe is semiglobally practically
asymptotically stable on X with respect to the optimization horizon N.

Proof Fixing � > δ > 0, the assertion follows immediately from Proposition 8.32,
Theorem 2.20 and Lemma 6.34 when choosing� = α2(�) (implyingB�(xe) ⊂ Y)
and Nδ,� > 0 so large that ρ(δ(Nδ,�)) ≤ δ holds for δ from Definition 6.33(ii) and
δ(N) from Proposition 8.32 (implying P ⊂ Bδ(xe)). �

We remark that Theorem 8.33 provides an extension of Theorem 6.37 to the
economic case. Indeed, the assumptions of Theorem 6.37 imply those of Theorem
8.33 (particularly, strict dissipativity holds with λ ≡ 0 and ρ = α3) and the assertions
of the two theorems are identical.

Example 8.34 Figure8.6 shows the trajectories (open-loop dashed, NMPC closed-
loop solid) of Example 8.1 without terminal conditions for N = 5 and N = 10.
One clearly sees the practical asymptotic stability of the closed loop and the turnpike
phenomenon for the open-loop trajectories.

8.7 Non-averaged and Transient Performance Without
Terminal Conditions

Our final results in this chapter concern the adaptation of the results from Sect. 8.4 to
the case without terminal conditions. In order to generalize Theorem 8.21, we need
the following continuity assumption on the infinite horizon optimal value function
and the two subsequent auxiliary results.

8.7 Non-averaged and Transient Performance Without Terminal Conditions 249

Assumption 8.35 (Continuity of V∞ at xe) There exists γV∞ ∈ K∞ such that for
each x ∈ X it holds that

|V∞(x) − V∞(xe)| ≤ γV∞(|x |xe).

Lemma 8.36 If Assumption 8.35 and the assumptions of Proposition 8.18 hold, then
the equation

V∞(x) = JM(x, u�
∞) + V∞(xe) + R5(x, M) (8.22)

holds with |R5(x, M)| ≤ γV∞(σ∞(P)) for all x ∈ X, all P ∈ N and all M /∈
Q(x, u�∞, P,∞), where u�∞ ∈ U

∞(x) denotes the infinite horizon optimal control
for initial value x and σ∞ is from Proposition 8.18.

Proof The dynamic programming principle (4.6) yields

V∞(x) = JM(x, u�
∞) + V∞(xu�∞(M, x)).

Hence, (8.22) holds with R5(x, M) = V∞(xu�∞(M, x)) − V∞(xe). Then for any
P ∈ N and M /∈ Q(x, u�∞, P,∞) we obtain |R5(x, M)| ≤ γV∞(‖xu�∞(M, x) −
xe‖) ≤ γV∞(σ∞(P)) and thus the assertion. �

Lemma 8.37 If Assumptions 8.24 and 8.35 and the assumptions of Propositions
8.15 and 8.18 hold, then the equation

JM(x, u�
∞) = JM(x, u�

N) + R6(x, M, N) (8.23)

holds with |R6(x, M, N)| ≤ max{γV (σδ(P)) + γV (σ∞(P)) + 2ω(N − M), γV∞
(σ∞(P)) + γV∞(σδ(P))} for all P ∈ N, all x ∈ X and all M ∈ {0, . . . , N } \
(Q(x, u�

N , P, N) ∪ Q(x, u�∞, P,∞)), with σ∞ from Proposition 8.18 and σδ from
Proposition 8.15 with δ = |x |xe .
Proof The finite horizon dynamic programming principle (3.15), (3.16) implies that
u = u�

N minimizes the expression JM(x, u) + VN−M(xu(M, x)). Together with the
error term R1 fromLemma8.25 and R̂1(x, M, N) = VN−M(xu�∞(M, x))−VN−M (xe)
this yields

JM(x, u�
N) + VN−M(xe) = JM(x, u�

N) + VN−M(xu�
N
(M, x)) − R1(x, M, N)

≤ JM(x, u�
∞) + VN−M(xu�∞(M, x)) − R1(x, M, N)

= JM(x, u�
∞) + VN−M(xe) − R1(x, M, N) + R̂1(x, M, N).

Similar to the proof of Lemma 8.25 one sees that |R̂1(x, M, N)| ≤ γV (σ∞(P)) +
ω(N − M) for all M /∈ Q(x, u�∞, P,∞).

250 8 Economic NMPC

Conversely, the infinite horizon dynamic programming principle (4.6) implies that
u�∞ minimizes the expression JM(x, u�∞) + V∞(xu�∞(M, x)). Using the error terms
R5 from Lemma 8.36 and R̂5(x, M, N) = V∞(xu�

N
(M, x)) − V∞(xe) we obtain

JM(x, u�
∞) + V∞(xe) = JM(x, u�

∞) + V∞(xu�∞(M, x)) − R5(x, M)

≤ JM(x, u�
N) + V∞(xu�

N
(M, x)) − R5(x, M)

= JM(x, u�
N) + V∞(xe) − R5(x, M) + R̂5(x, M, N).

As in the proof of Lemma 8.25 one sees that Proposition 8.15 applies to xu� (·, x)
with δ = γV (|x |xe). Hence, similar to the proof of Lemma 8.36 one obtains
|R̂5(x, M, N)| ≤ γV∞(σδ(P)) for all M /∈ Q(x, u�

N , P, N). Together with the esti-
mates for R1 and R5 from Lemmas 8.25 and 8.36 this yields

|R6(x, M, N)| = |JM(x, u�
∞) − JM(x, u�

N)|
≤ max{|R1(x, M, N)| + |R̂1(x, M, N)|, |R5(x, M)| + |R̂5(x, M, N)|}
≤ max{γV (σδ(P)) + γV (σ∞(P)) + 2ω(N − M), γV∞(σ∞(P)) + γV∞(σδ(P))}

and thus the claim. �

Now we can establish a version of Theorem 8.21 for economic NMPC without
terminal conditions. We will discuss after the proof how Theorem 8.38 relates to
Theorem 8.21.

Theorem 8.38 Consider the NMPC Algorithm 3.1 with strictly dissipative optimal
control problem (OCPN)with bounded storage function λ, assume that �(xe, ue) = 0
and X is bounded and let Assumptions 8.24 and 8.35 hold. Then the inequality

J cl
K (x, μN) + V∞(xμN (K)) ≤ V∞(x) + K δ1(N) (8.24)

holds for all K ∈ N and all sufficiently large N ∈ N with

δ1(N) := 2γV (σδ((N − 1)/8�)) + 2γV (σ∞((N − 1)/8�))
+ 2γV∞(σδ((N − 1)/8�)) + 4γV∞(σ∞((N − 1)/8�)) + 4ω(N/2�)

with σ∞ from Proposition 8.18 and σδ from Proposition 8.15 with δ = supx∈X |x |xe .
Proof We pick x ∈ X and abbreviate x+ := f (x, μN (x)). For the corresponding
optimal control u�

N Corollary 3.16 yields that u�
N (· + 1) is an optimal control for

initial value x+ and horizon N − 1. Hence, for each M ∈ {1, . . . , N } we obtain

�(x, μN (x)) = VN (x) − VN−1(x
+) = JN (x, u�

N) − JN−1(x
+, u�

N (· + 1))

= JM(x, u�
N) − JM−1(x

+, u�
N (· + 1)),

8.7 Non-averaged and Transient Performance Without Terminal Conditions 251

where the last equality follows from the fact that the omitted terms in the sums
defining JM(x, u�

N) and JM−1(x+, u�
N (· + 1)) coincide. Using Lemma 8.36 for N , x

and M and for N − 1, x+ and M − 1, respectively, yields

V∞(x) − V∞(x+) = JM(x, u�
∞) + V∞(xe) + R6(x, M)

− JM−1(x
+, u�

∞) − V∞(xe) − R5(x
+, M − 1)

= JM(x, u�
∞) − JM−1(x

+, u�
∞) + R5(x, M) − R5(x

+, M − 1).

Putting the two equations together and using Lemma 8.37 yields

�(x, μN (x)) = V∞(x) − V∞(x+) + R7(x, M, N). (8.25)

with

R7(x, M, N) = −R6(x, M, N)+R6(x
+, M−1, N−1)−R5(x, M)+R5(x

+, M−1).

From Lemmas 8.36 and 8.37, we obtain the bound

|R7(x, M, N)| ≤ 2γV (σδ(P)) + 2γV (σ∞(P)) + 2γV∞(σδ(P)) + 4γV∞(σ∞(P))

+4ω(N − M)

provided we choose M ∈ {1, . . . , N }with M /∈ Q(x, u�
N , P, N)∪Q(x, u�∞, P,∞)

and M − 1 /∈ Q(x+, u�
N (· + 1), P, N − 1) ∪ Q(x+, u�∞(· + 1), P,∞). Since each

of the four Q sets contains at most P elements, their union contains at most 4P
elements and hence if N > 8P then there is at least one such M with M ≤ N/2.

Thus, choosing P = (N − 1)/8� yields the existence of M ≤ N/2 such that

|R7(x, M, N)| ≤ δ1(N). (8.26)

Applying (8.25), (8.26) for x = xμN (k, x), k = 0, . . . , K − 1, we can conclude

J cl
K (x, μN) =

K−1∑

k=0

�(xμN (k, x), μN (xμN (k, x)))

≤
K−1∑

k=0

(
V∞(xμN (k, x)) − V∞(xμN (k + 1, x)) + δ1(N)

)

≤ V∞(x) − V∞(xμN (K , x)) + K δ1(N).

This proves the claim. �

The interpretation of (8.24) is as follows. If we follow the NMPC closed-loop
trajectory up to some time K and then continue by using the infinite horizon optimal
trajectory starting at xμN (K , x), then the value of the overall trajectory exceeds the

252 8 Economic NMPC

infinite horizon optimal value by at most K δ(N). Although seemingly different, it is
indeed closely related to Theorem 8.21 because of the following fact: the inequality
from Theorem 8.21 holds for all x ∈ X if and only if

J cl
K (x, μN) + V∞(xμN (K , x)) ≤ V∞(x) + δ1(N) (8.27)

holds for all x ∈ X and all K ≥ 1. This is because J cl
K (x, μN) + V∞(xμN (K , x)) ≤

J cl∞(x, μN) for all K ≥ 1, hence Theorem 8.21 implies (8.27). Conversely, since the
assumptions of Theorem 8.21 imply V∞(xμN (K , x)) → V∞(xe) = 0 for K → ∞,
the validity of (8.27) for all K ≥ 1 implies the inequality from Theorem 8.21 by
letting K → ∞. Comparing (8.24) with (8.27) one immediately sees the difference
between the case with and without terminal conditions: without terminal conditions
we get the additional factor K in front of the error term, which implies that for large
K the error may increase and that for K → ∞ and fixed N the solution may be
far from optimal. A numerical illustration of this effect can be found in Example
8.40(iii), below. However, note that the estimate from Theorem 8.27 shows that the
averaged value still behaves well for K → ∞, hence the behavior of the trajectories
cannot completely deteriorate.

Finally, we formulate and prove the counterpart of Theorem 8.22 for the case
without terminal conditions. To this end, recall the definition of U

K
κ (x) from (8.15).

Theorem 8.39 Consider the NMPCAlgorithm 3.10 with strictly dissipative optimal
control problem (OCPN,e) with bounded storage function λ and ρ ∈ K∞, let X be
bounded and let Assumptions 8.24 and 8.29 hold. Then there exist δ1, δ2, δ3 ∈ L
such that for all x ∈ XN the inequality

J cl
K (x, μN) ≤ inf

u∈UK
κ (x)

JK (x, u) + δ1(N) + K δ2(N) + δ3(K)

holds with κ = max{β(|x |xe , K), ρ−1(δ(N))}, with β and δ from Theorem 8.33.

Proof First observe that the assumptions of this theorem include those of Theorem
8.33. Hence, from the proof of Theorem 8.33 we obtain the identity

�̃(x, μN (x)) = ṼN (x)−ṼN (f (x, μN (x)))+R2(x, N)+R4(f (x, μN (x), N)+R4(x(N))

with |R2(x, N) + R4(f (x, μN (x), N) + R4(x(N))| ≤ ν2(a, N) + 2ν4(a, N) =:
δ2(N),withν2 andν4 fromLemmas8.26 and8.31, respectively, anda = supx∈X |x |xe .
Summing this cost along the closed-loop trajectory yields

K−1∑

k=0

�̃(xμN (k, x), μN (xμN (k, x))) ≤ ṼN (x) − ṼN (xμN (K)) + K δ2(N). (8.28)

Now the dynamic programming principle (3.15) and Assumption 8.29 yield for all
K ∈ {1, . . . , N } and all u ∈ U

K
κ (x)

8.7 Non-averaged and Transient Performance Without Terminal Conditions 253

J̃K (x, u) = J̃K (x, u) + ṼN−K (xu(K , x))︸ ︷︷ ︸
≥ṼN (x)

− ṼN−K (xu(K , x))︸ ︷︷ ︸
≤γṼ (κ)

≥ ṼN (x) − γṼ (κ).

(8.29)
Due to the non-negativity of �̃, for K ≥ N we get J̃K (x, u) ≥ ṼN (x) for all u ∈
U

K (x). Hence (8.29) holds for all K ∈ N. Moreover, we have ṼN (x) ≥ 0. Using
(8.28), (8.29) and (8.13) and the definition of δ2, for all u ∈ U

K
κ (x) we obtain

JclK (x, μN (x)) =
K−1∑

k=0

�̃(xμN (k, x), μN (xμN (k, x))) − λ(x) + λ(xμN (K , x))

≤ ṼN (x) − ṼN (xμN (K , x)) + K δ2(N) − λ(x) + λ(xμN (K , x))

≤ J̃K (x, u) + γṼ (κ) − ṼN (xμN (K , x)) + K δ2(N) − λ(x) + λ(xμN (K , x))

= JK (x, u) + γṼ (κ) − ṼN (xμN (K , x)) + K δ2(N) − λ(xu(K , x)) + λ(xμN (K , x))

≤ JK (x, u) + γṼ (κ) + K δ2(N) + 2γλ(κ).

Using the definition of κ we can estimate and define

γṼ (κ) + 2γλ(κ) ≤ sup
x∈X

γṼ (β(|x |xe , K)) + 2γλ(β(|x |xe , K))

︸ ︷︷ ︸
=:δ3(K)

+ γṼ (ρ−1(δ(N))) + 2γλ(ρ
−1(δ(N)))︸ ︷︷ ︸

=:δ1(N)

,

which finishes the proof. �

Example 8.40 (i) Figure8.7 illustrates how J cl
K (x, μN) depends on N in Exam-

ple 8.1. As in Fig. 8.4, the value K = 30 is so large that the effect of the term
δ2(K) is negligible and not visible in the figure, hence J cl

K (x, μN) converges to
infu∈UK

κ (x) J uc
K (x, u) for increasing N .

(ii)We note that the error estimates in Theorems 8.38 and 8.39 depend on the lower
bound on the storage function λ, which enters in several of the previous estimates.

Fig. 8.7 Value of
J clK (x, μN) for K = 30,
x = 1.9 and varying N
without terminal conditions

N

2 3 4 5 6 7 8 9 10

J
cl 30
(1
.9
,µ

N
)

0

10

20

30

40

50

60

70

254 8 Economic NMPC

N

J
cl 30
(1
.9
,µ

N
)

0

20

40

60

80

100

120

N

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

J
cl 30
(1
.9
,µ

N
)

0

20

40

60

80

100

120

Fig. 8.8 Value of J clK (x, μN) for K = 30, x = 1.9 and varying N without terminal conditions for
X = [−2, 2] on the left and X = [−3, 3] on the right

K
0 5 10 15 20 25

J
cl K
(1
.9
, µ

5)

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

no terminal conditions
terminal conditions

K
0 5 10 15 20 25

J
cl K
(1
.9
,µ

5)

8

8.5

9

9.5

10

10.5

11

no terminal conditions
terminal conditions

Fig. 8.9 Value of J clK (x, μN) for varying K , x = 1.9 and N = 5 on the left and N = 10 on the
right, both with and without terminal conditions X0 = {0} and F ≡ 0

This dependence is actually visible when computing J cl
K (x, μN) via numerical sim-

ulations. In Example 8.1, the bound on λ increases with increasing X (cf. Example
8.8). Figure8.8 shows that increasing the state constraint set from X = [−2, 2] to
X = [−3, 3] indeed considerably increases the error, although the optimal trajecto-
ries and thus the limiting values for J cl

K (x, μN) for N → ∞ are independent of the
choice of X.

(iii) Finally, we observe that the main structural difference between Theorems
8.22 and 8.39 lies in the factor K in the error estimate in Theorem 8.39 without
terminal conditions. This predicts a deterioration of the value J cl

K (x, μN) for fixed N
and growing K in the case without terminal conditions, which should not appear if
terminal conditions are used. This effect can again be seen in numerical simulations
for Example 8.1, see Fig. 8.9. Here the increase of J cl

K (x, μN) for increasing K is
clearly visible in the left figure, i.e., for N = 5. In the right figure, N has been
increased to N = 10, due to which the δ2(N)-term in Theorem 8.39 becomes so
small that its effect is not visible anymore for the range of K depicted in the figure.

8.8 Notes and Extensions 255

8.8 Notes and Extensions

The first paper to analyze economic NPMC in the sense of this chapter is—to our
knowledge—the reference [2] by Angeli, Amrit, and Rawlings from 2009, although
special cases for this setting were discussed before in Rawlings, Bonné, Jørgensen,
Venkat and Jørgensen [21], and in Rawlings and Amrit [20]. The first property to be
established was the averaged infinite horizon optimality under equilibrium terminal
constraints. The observation that strict dissipativity is the “right” property in order
to ensure asymptotic stability was first made by Diehl, Amrit and Rawlings in [5],
where strict duality, i.e., strict dissipativity with a linear storage function, was used.
The extension to the nonlinear version of strict dissipativity was thenmade byAngeli
and Rawlings in [4]. The terminal cost of the form of Assumption 8.5 was introduced
by Amrit, Rawlings and Angeli in [1] and a consolidated presentation of asymptotic
stability and averaged optimality under terminal conditions was given by the same
authors in 2012 in [3]. The non-averaged performance result under terminal condi-
tions was finally developed by Grüne and Panin in 2015 [13]. The corresponding
results without terminal conditions were developed in 2013 in Grüne [10] (aver-
aged performance) and in 2014 by Grüne and Stieler [14] (asymptotic stability and
non-averaged performance).

The results described in this chapter can be extended and modified in various
ways. There is a huge body of literature dealingwith variants of economicNMPC that
combine an economic optimization objective and additional objectives or constraints
that ensure stability of the closed loop. For an overview on these approaches, we
refer to the survey by Ellis, Duranda and Christofides [7]. In the context of average
performance criteria, it appears natural to also consider averaged constraints, which
can, for instance, be used to provide a bound on the average energy consumption
during the runtime of a process. Results in this direction can be found, e.g., in
Müller, Angeli and Allgöwer [16]. In general, it is by no means clear that a system
is necessarily optimally operated at an equilibrium. Hence, there have been various
attempts to generalize this assumption, for instance to optimal periodic orbits, see,
e.g., Angeli, Amrit and Rawlings [2] or Müller and Grüne [18] or Zanon et al. [27].
Finally, some of the results in this chapter have also been transferred to the continuous
time setting, see, e.g., Faulwasser et al. [9] and [8].

The fact that (strict) dissipativity turned out to be an important property for ensur-
ing averaged optimality and asymptotic stability (and later also non-averaged per-
formance estimates) has led to a renewed research activity on this classical systems
theoretic property, which was introduced by Willems in 1971/1972 [23–25]. Under
appropriate controllability conditions, several relations to properties considered in
this chapter have been obtained. Particularly, remarkable results are that dissipativity
is a necessary and sufficient condition for optimal operation at steady state (8.5), see
Müller, Angeli and Allgöwer [17], and that strict dissipativity is a necessary and suf-
ficient condition for the turnpike property described by Proposition 8.15, see Grüne
and Müller [12]. Despite the importance of (strict) dissipativity, it is remarkable that
parts of the results in this chapter can also be established without this property. This

256 8 Economic NMPC

is obtained by directly using the turnpike properties from Propositions 8.15 and 8.18,
see Grüne [11].

The turnpike property as described by these propositions is in fact much more
thanmerely an auxiliary property for analyzingNMPC schemes. It has been observed
and analyzed in mathematical economy for more than 70 years, starting from von
Neumann [19], via Dorfman, Samuelson and Solow [6], andMcKenzie [15] to recent
surveys, e.g., by Trélat and Zuazua [22] and amonograph by Zaslavski [26].We refer
to these references for further information.

Problems

1. Assume that the stage cost � : X × U → R is continuous and μ is a feedback
law for which the closed-loop solution satisfies xμ(k) → xe and μ(xμ(k)) → ue

as k → ∞. Prove that under these conditions

J
cl
∞(x, μ) = �(xe, ue)

holds. Can you also make an statement about J cl
K (x, μ) under these conditions?

2. Verify that the assumptions of Theorem 6.37 imply those of Theorem 8.33. Is the
converse also true?

3. The following optimal control problem is a deterministic version of the Brock–
Mirman growth model from mathematical economy.

x+ = u, �(x, u) = − ln(Axα − u)

with parameters A ∈ [1, 10], α ∈ [0.1, 0.5] and X = U = [0.05, 25].
(a) Compute the optimal equilibrium depending on A and α.
(b) Check that the problem is strictly dissipative with storage function λ(x) =

pe(x − xe) with pe = α
α−1
√

αA/(1 − α).

Hint: Convince yourself that for a continuous and strictly convex function g :
R → R with minimum g(xmin) = 0 there exists a function γ ∈ K∞ with
g(x) ≥ γ (|x |xmin) for all x ∈ R.

4. Use theMATLAB� routine nmpc.m in order to implement the economic NMPC
problem from Problem 3.

(a) Implement equilibrium terminal constraints X0 = {xe} and verify that the
closed-loop solutions indeed converge toward the optimal equilibrium.

(b) Simulate the closed-loop trajectories without terminal constraints and esti-
mate the limit

lim
k→∞ �(xμN (k, x), μN (xμN (k, x))).

Problems 257

Compute the distance of this limit to �(xe, ue) and verify that the distance
tends to 0 as N increases. What can you say about the rate of convergence?

(c) Define stabilizing costs �stab that are positive definite w.r.t. xe and denote
the resulting NMPC feedback by μstab

N . Simulate closed-loop trajectories for
varying N and evaluate the summed economic cost J cl

K (x, μstab
N) (with �

from Problem 3) for different N and K along these trajectories. Compare the
resulting values with those for the trajectories from (a) and (b).

References

1. Amrit, R., Rawlings, J.B., Angeli, D.: Economic optimization using model predictive control
with a terminal cost. Ann. Rev. Control 35(2), 178–186 (2011)

2. Angeli, D., Amrit, R., Rawlings, J.B.: Receding horizon cost optimization for overly con-
strained nonlinear plants. In: Proceedings of the 48th IEEE Conference on Decision and
Control—CDC 2009, pp. 7972–7977. Shanghai, China (2009)

3. Angeli, D., Amrit, R., Rawlings, J.B.: On average performance and stability of economicmodel
predictive control. IEEE Trans. Autom. Control 57(7), 1615–1626 (2012)

4. Angeli, D., Rawlings, J.B.: Receding horizon cost optimization and control for nonlinear plants.
In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems—NOLCOS 2010,
pp. 1217–1223. Bologna, Italy (2010)

5. Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model
predictive control. IEEE Trans. Autom. Control 56(3), 703–707 (2011)

6. Dorfman, R., Samuelson, P.A., Solow, R.M.: Linear Programming and Economic Analysis.
Dover Publications, New York (1987). (Reprint of the 1958 original)

7. Ellis, M., Duranda, H., Christofides, P.D.: A tutorial review of economic model predictive
control methods. J. Proc. Control 24(8), 1156–1178 (2014)

8. Faulwasser, T., Bonvin, D.: On the design of economic NMPC based on approximate turnpike
properties. In: Proceedings of the 54th IEEEConference onDecision and Control—CDC2015,
pp. 4964–4970 (2015)

9. Faulwasser, T., Korda, M., Jones, C.N., Bonvin, D.: Turnpike and dissipativity properties in
dynamic real-time optimization and economic MPC. In: Proceedings of the 53rd IEEE Con-
ference on Decision and Control—CDC 2014, pp. 2734–2739 (2014)

10. Grüne, L.: Economic receding horizon control without terminal constraints. Automatica 49(3),
725–734 (2013)

11. Grüne, L.: Approximation properties of receding horizon optimal control. Jahresbericht der
Deutschen Mathematiker Vereinigung 118(1), 3–37 (2016)

12. Grüne, L., Müller, M.A.: On the relation between strict dissipativity and turnpike properties.
Syst. Control Lett. 90, 45–53 (2016)

13. Grüne, L., Panin, A.: On non-averaged performance of economic MPC with terminal condi-
tions. In: Proceedings of the 54th IEEE Conference on Decision and Control—CDC 2015, pp.
4332–4337. Osaka, Japan (2015)

14. Grüne, L., Stieler, M.: Asymptotic stability and transient optimality of economic MPC without
terminal conditions. J. Proc. Control 24(8), 1187–1196 (2014)

15. McKenzie, L.W.: Optimal economic growth, turnpike theorems and comparative dynamics. In:
Handbook of Mathematical Economics, vol. III, Handbooks in Economic, vol. 1, pp. 1281–
1355. North-Holland, Amsterdam (1986)

16. Müller, M.A., Angeli, D., Allgöwer, F.: Transient average constraints in economic model pre-
dictive control. Automatica 50(11), 2943–2950 (2014)

17. Müller,M.A.,Angeli,D.,Allgöwer, F.:Onnecessity and robustness of dissipativity in economic
model predictive control. IEEE Trans. Autom. Control 60(6), 1671–1676 (2015)

258 8 Economic NMPC

18. Müller, M.A., Grüne, L.: Economic model predictive control without terminal constraints for
optimal periodic behavior. Automatica 70, 128–139 (2016)

19. von Neumann, J.: A model of general economic equilibrium. Rev. Econ. Stud. 13(1), 1–9
(1945)

20. Rawlings, J.B., Amrit, R.: Optimizing process economic performance using model predic-
tive control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive
Control. Lecture Notes in Control and Information Science, vol. 384, pp. 119–138. Springer,
Heidelberg (2009)

21. Rawlings, J.B., Bonné, D., Jørgensen, J.B., Venkat, A.N., Jørgensen, S.B.: Unreachable set-
points in model predictive control. IEEE Trans. Autom. Control 53(9), 2209–2215 (2008)

22. Trélat, E., Zuazua, E.: The turnpike property in finite-dimensional nonlinear optimal control.
J. Differ. Equ. 258(1), 81–114 (2015)

23. Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati equation.
IEEE Trans. Autom. Control 16(6), 621–634 (1971)

24. Willems, J.C.: Dissipative dynamical systems. I. General theory. Arch. Ration. Mech. Anal.
45(5), 321–351 (1972)

25. Willems, J.C.: Dissipative dynamical systems. II. Linear systems with quadratic supply rates.
Arch. Ration. Mech. Anal. 45(5), 352–393 (1972)

26. Zaslavski, A.: Turnpike Phenomenon and Infinite Horizon Optimal Control. Springer Interna-
tional Publishing, Heidelberg (2014)

27. Zanon, M., Grüne, L., Diehl, M.: Periodic optimal control, dissipativity andMPC. IEEE Trans.
Autom. Control. http://dx.doi.org/10.1109/TAC.2016.2601881. Printed version to appear

http://dx.doi.org/10.1109/TAC.2016.2601881

Chapter 9
Distributed NMPC

For large-scale systems such as street traffic, cyber- physical production systems or
energy grids on an operational level, the MPC approach introduced in Chap.3 is
typically inapplicable in real time. Moreover, communication restrictions or privacy
considerations may render the centralized solution of the optimal control problem in
each step of the NMPC scheme impossible. To cope with these issues, the optimal
control problem is split into subproblems, which are simpler to solve but may be
linked by dynamics, cost functions or constraints. As the examples indicate, each
subproblemmaybe seen as an independent unit. If these units are not coordinated, i.e.,
if there exists no data exchange and if inputs from connected units are considered as
disturbances, the problem is referred to as decentralized. Including communication,
the problem is called distributed and can again be split into subclasses of cooper-
ative and noncooperative control. Within this chapter, we impose the assumption
of flawless communication to analyze both stability and performance of the overall
system for the distributed case. Additionally, we briefly sketch how to analyze the
robustness of the distributed setting. Last, we discuss basic coordination methods on
the tactical control layer to solve the distributed problem and relate these methods
to our stability results.

9.1 Background and Problem Formulation

Instead of considering only one system (2.1), in this chapter we consider a set of
nonlinear discrete time systems

x p(n + 1) = f p(x p(n), u p(n), i p(n)), p ∈ P := {1, . . . , P}, n ∈ N0 (9.1)

where states and controls satisfy x p(n) ∈ X p and u p(n) ∈ U p. In analogy to (9.1),
we extend all of our notation introduced in Chaps. 2 and 3 by a superscript p to refer
to the respective single system. For instance, for all p ∈ P the sets X p and U p

denote the state and control value space of the p-th system, respectively. The second

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_9

259

260 9 Distributed NMPC

extension within (9.1) is the variable i p(n) ∈ I p. The latter will allow us to link the
set of systems on all levels and is therefore called neighboring data and neighboring
data set respectively. Note that the set depends on the chosen element p ∈ P and
may also vary over time.

Example 9.1 Reconsider our Example 2.2 with dynamics

(
x1(n + 1)
x2(n + 1)

)
=

(
x1(n) + x2(n) + u(n)/2

x2(n) + u(n)

)
.

We can split the system into two subsystems by choosing x1 = x1, x2 = x2 and
u2 = u. Leaving u1 undefined, we obtain

x1(n + 1) = x1(n) +
from subsystem 2︷ ︸︸ ︷
x2(n) + u2(n) /2

x2(n + 1) = x2(n) + u2(n).

For our choice of variables, subsystem 2 is independent from subsystem 1, yet to
evaluate subsystem 1 we require i1(n) to contain x2(n) and u2(n) from subsystem 2.
Note that the connection depends on how the control input from the overall system
is assigned to the subsystems. By choosing u1 = u and leaving u2 undefined, both
subsystems are dependent on the respective other.

The reason to focus on various systems instead of only one is due to the drastic
increase in the complexity of control systems observed during the past years, which
is driven by a top-down and a bottom-up approach: Regarding top-down, plants and
processes are extended by including adjacent components or tasks leading to a larger
dynamics. This direction is driven by a central entity to increase the performance of
the overall system by integrating boundary components. Typical examples for which
this phenomenon occurs are shop floors, production lines [32], or supply chains [11,
12]. In the bottom-up approach, the coupling of systems is driven by information and
communication technology and the evolution of cyber-physical systems, in which a
central entity may or may not exist. In contrast to embedded systems, cyber-physical
system are open in terms of interaction via, e.g., communication or other interfaces.
Utilizing the latter, cyber-physical systems can be interfaced with one another to
optimize performance in some sense, e.g., energy efficiency, maximal output, shared
resources, or capacity utilization. Here, a typical example is given by street traffic
[5] or distributed energy generation [34].

Yet, although models are identical, these two lines are subject to a very different
way of thinking. The first approach is economically driven and resembles a top-
down idea by integrating all aspects into one big problem. Each of these problems
can be seen as an island, which is operated optimally, but remains isolated from
any other island. Connecting all islands to follow a common goal will render the
problem to be too large to solve it centrally, so it needs to be split and coordinated
to retain centrally controlled properties like ensuring that a certain performance

9.1 Background and Problem Formulation 261

criterion is met in the best possible way. The second approach, however, is driven
by technology and shows a bottom-up structure. Since the systems typically also
represent economically independent entities, who cannot divulge information about
their dynamics, constraints, and objectives, the splitting of the problem is already
fixed and a common goal may initially not exist. The problem in that case is to
identify a coordination scheme to improve local properties.

In both cases, the resulting dynamics for the set of systems (9.1) is given by (2.1)

xu(n + 1) = f (xu(n), u(n))

with state x(n) = (x1(n)�, . . . , x P(n)�)� ∈ X = X1 × · · · × X P and control
u(n) = (u1(n)�, . . . , uP(n)�)� ∈ U = U 1 ×· · ·×U P . Within this chapter, we call
(2.1) the (overall) system, (9.1) the set of subsystems, and refer to p as a subsystem.

A basic scheme to solve such a problem using NMPC on a local level is given in
the following algorithm.Here and inwhat follows, “local” refers to objects associated
to one of the subsystems.

Algorithm 9.2 (Basic NMPC algorithm for local problems)
At each sampling time tn , n = 0, 1, 2 . . .:

(1) For each subsystem p ∈ P measure the state x p(n) of the subsystem and set
x p
0 := x p(n).

(2) For each subsystem p ∈ P solve the local optimal control problem incorporating
available neighboring data i , denote the obtained admissible local optimal control
sequence by u p,�(·) and communicate with other subsystems.

(3) For each subsystem p ∈ P define the NMPC-feedback valueμ
p
N (x p(n), i p) :=

u p,�(0) and use this control value in the next sampling period.

Within the next Sect. 9.2,wewill formally introduce the local optimal control problem
for each subsystem. Connecting these subsystems, we present different communica-
tion strategies in Sect. 9.3 to complete Algorithm 9.2.

9.2 Classification of Connectedness

Considering the two evolution lines, we can already see that the subsystems in (9.1)
may be connected in different ways. Recalling our problems (OCPN,e) and (OCPnN,e)
from Chap.3, connections may appear in the cost function JN , the set of admissible
control sequences U

N
X0
, and in the dynamics f itself. In order to explicitly state

the dependencies between the problems, we must first introduce this decomposition
rigorously. Our main tool in this context are the following projections:

Definition 9.3 Given a vector space S, let π : S → S be a linear map which is
idempotent, that is π ◦ π = π . We call π a projection of S onto Im(π) (along
Ker(π)) where Im(π) and Ker(π) denote the image and kernel of π .

262 9 Distributed NMPC

Using a set of projections we define a decomposition of a vector space:

Definition 9.4 Consider a vector space S, a setP = {1, . . . , P} where P ∈ N, and
a set of projections (π p)p∈P where Sp := Im(π p) is a subspace of S for all p ∈ P
to be given. If the conditions

〈(Sp)p∈P〉 = S and Sq ∩ 〈(Sp)p∈P,p 	=q〉 = {0} for all q ∈ P

hold, then the set (Sp)p∈P is called a decomposition of S.

A decomposition allows us to rewrite the dynamics of a control system (2.1) as
a set of subsystems operating on the subspaces of the decomposed state and control
spaces. Here, the idea is to apply projections to the state and control space to separate
the dynamics. To this end, we utilize projections π

p
X : X → X and π

p
U : U → U for

all p ∈ P such that Im(π
p
X) = X p and Im(π

p
U) = U p hold according to Definition

9.4. These projections allow us to split state and control space into three components
[X p, X̃ p, X

p] and [U p, Ũ p,U
p]. While x p ∈ X p and u p ∈ U p are our primary

variables of interest, we may interpret x̃ p ∈ X̃ p and ũ p ∈ Ũ p as the states and
controls of neighbors necessary to evaluate the projected dynamic π

p
X ◦ f correctly.

Here, the controls ũ p ∈ Ũ p are computed by different local controllers and need to
be communicated to subsystem p to evaluate the dynamics properly. In contrast to
that, π p

X ◦ f is independent of x p ∈ X
p
and u p ∈ U

p
, which are therefore referred

to as independent states and controls. To use the vocabulary of parallel programming,
x p(n) ∈ X p and u p(n) ∈ U p are local or private variables while x̃ p(n) ∈ X̃ p,
x p(n) ∈ X

p
, ũ(n) ∈ Ũ p and u p(n) ∈ U

p
are interface or public variables.

Now, we can rewrite the mapping of system (2.1) as

f : (X p × X̃ p × X
p
) × (U p × Ũ p ×U

p
) → (X p × X̃ p × X

p
).

Coming back to our introduction of the subsystemdynamics in (9.1), we utilizeπ
p
X ◦ f

being independent of x p ∈ X
p
and u p ∈ U

p
to obtain that we only require data from

the set (X̃ p×Ũ p). Since by definition of a decompositionwe have X = X1×· · ·×X P

and U = U 1 × · · · ×U P , there exists an index set I p = {p1, . . . , pm} ⊂ P \ {p}
such that (X̃ p × Ũ p) ⊂ (X p1 × · · · × X pm) × (U p1 × · · · × U pm). We call I p

neighboring index set and the required data neighboring data:

Definition 9.5 Consider a neighboring index set I p(n) of subsystem p ∈ P . We
call the set

i p(n) = {(q, nq , x
q(·), uq(·)) | q ∈ I p(n)} ∈ I p (9.2)

neighboring data containing the index of the neighboring subsystem q, the sending
time stamp nq and the planned state and control sequences xq(·) and uq(·) computed
at time instant nq to subsystem p. The neighboring data set is given by I p = 2Q

with Q = (P \ {p}) × N0 × XN+1 ×UN .

9.2 Classification of Connectedness 263

Within Definition 9.5 the neighboring data is introduced to contain state and control
sequences of length N , which is suitable for the evaluation of the dynamics for the
MPC open loop. Setting N = 1, we can perform an instantaneous evaluation of the
dynamics. To illustrate the latter, we reconsider Example 9.1.

Example 9.6 For Example 9.1 we obtainI 1(n) = {2} andI 2(n) = ∅. To compute
xu(n + 1), we require the information contained in the neighboring data i1(n) ={(
2, n, x2(n), u2(n)

)}
. Note that if we want to compute the trajectory of subsystem

1 over a finite horizon as, e.g., from n to n + N in our problem (OCPN), then we
require the state and control trajectories of subsystem 2, i.e., the neighboring data
i1(n) = {(

2, n, x2(·), u2(·))}.
Remark 9.7 For simplicity, we did not include information about the length of the
sequences xq(·), uq(·) in the neighboring data. By convention, we assume that the
horizon length N of each subsystem is identical. As this shall be the case for all
subsystems, we implicitly require the horizon to be equal for all subsystems. An
extension of (9.2) to

i p(n) = {(q, nq , Nq , xq(·), uq(·)) | q ∈ I p(n)} ∈ I p (9.3)

is possible to allow for different optimization horizons in the subsystems.

Remark 9.8 Depending on the implementation of a coordinating algorithm, different
neighboring data structures and also different data sources may be used. In Sect. 9.5,
the dual decomposition method shown in Algorithm 9.41 sends the Lagrange mul-
tiplier λ and external data z(·) in a packet (0, n, λ) to coordinate subsystems via a
central entity. Also other choices of variables to be exchanged are possible, cf., e.g.,
[29] where the authors used outputs of the subsystems.

Now, we formally obtain f p : X p ×U p × I p → X p via

f p(x p, u p, (̃x p, ũ p)) := ϒ ◦ π
p
X ◦ f (σX p

−1(x p, x̃ p, 0), σU p
−1(u p, ũ p, 0)) (9.4)

for permutations σX p : X → X p × X̃ p × X
p
with σX p (x) = (x p, x̃ p, x p) and σU p :

U → U p × Ũ p × U
p
with σU p (u) = (u p, ũ p, u p) and parameters d, d p denoting

the dimension of the vector spaces X and X p respectively. As π
p
X is a projection to a

subspace of X , we extract the subspace dynamic by applying ϒ : X → X p, which
is a bijective map from the image of π(X p) to the span 〈e1, . . . , ed p 〉. Since we can
define f p for all p ∈ P in a similar manner, the following holds trivially:

Corollary 9.9 Suppose a system (2.1), a set P = {1, . . . , P} as well as projec-
tions

(
π

p
X

)
p∈P ,

(
π

p
U

)
p∈P inducing decompositions 〈(X p)p∈P〉 and 〈(U p)p∈P〉 to

be given. Then we can rewrite system (2.1) as a set of subsystems (9.1) using (9.4)
for all p ∈ P .

Remark 9.10 Note that the choice of the projections is not fixed, so we may want
to keep the dimension of the respective subsets X̃ p, Ũ p to be as small as possible.

264 9 Distributed NMPC

Additionally, f p(·, ·, ·) does not depend on the choice of variables on the subspaces
X

p
and U

p
. Hence, to reduce computing time and communication load, these sub-

spaces should be chosen to be maximal.

To illustrate the implications of a proper choice of the projection, we utilize our
basic examples from Chap.2.

Example 9.11 Reconsider our Example 2.1 with two subsystems and overall
dynamics

x(n + 1) =
(
x1(n + 1)
x2(n + 1)

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

=:A

(
x1(n)

x2(n)

)
+

(
u1(n)

u2(n)

)
︸ ︷︷ ︸

=:B

=: f (x(n), u(n)).

For this linear example, we can utilize the structure of A to define

π1
X :=

(
1 0
0 0

)
and π2

X :=
(
0 0
0 1

)

to obtain the state sets X1 = Im(π1
X) = 〈e1〉 ∼= R and X2 = Im(π2

X) = 〈e2〉 ∼= R

and the dynamics of the original subsystems

x1(n + 1) = [1, 0] · π1
X ◦ f (x(n), u(n)) = x1(n) + u1(n)

x2(n + 1) = [0, 1] · π2
X ◦ f (x(n), u(n)) = x2(n) + u2(n).

Example 9.12 Utilizing two instances of Example 2.2, we get

⎛
⎜⎜⎝
x11(n + 1)
x12(n + 1)
x21 (n + 1)
x22 (n + 1)

⎞
⎟⎟⎠

︸ ︷︷ ︸
=x(n+1)

=

⎛
⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x11(n)

x12(n)

x21 (n)

x22 (n)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
1/2 0
1 0
0 1/2
0 1

⎞
⎟⎟⎠

(
u1(n)

u2(n)

)

︸ ︷︷ ︸
=: f (x(n),u(n))

.

If we consider

π1
X :=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ and π2

X :=

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

then we do not reobtain the original instances but instead the virtual subsystems

9.2 Classification of Connectedness 265

x1(n + 1) =
⎛
⎝1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠ · π1

X ◦ f (x(n), u(n)) =
⎛
⎝x11(n) + x12(n) + 1/2u1(n)

x12(n) + u1(n)

x13(n) + x21(n) + 1/2u2(n)

⎞
⎠

x2(n + 1) = [0, 0, 0, 1] · π2
X ◦ f (x(n), u(n)) = x21(n) + u2(n).

Hence, in order to evaluate subsystem 1, we require the knowledge of the state x21 =
x22 and the control u

2 = u2 of subsystem 2, i.e., we must have (2, n, x22 (n), u2(n)) ∈
i1(n).

Remark 9.13 Ideally, one wishes to decompose system (2.1) into a set of subsystems
(9.1) such that the subsystems are completely independent from each other, i.e.,

x p(n + 1) = f p(x p(n), u p(n),∅).

Such a decomposition may arise naturally if a set of coupled systems shall be con-
trolled, see, e.g., [9, 17, 35], and may allow for a fully parallel evaluation of the
dynamics. Alternatively, the system (2.1) may be decomposed as in [16, 24] such
that no control of a neighboring system has to be considered, that is

x p(n + 1) = f p(x p(n), u p(n), (̃x p(n),∅)).

Having dealt with the dynamics, we now focus on the constraints and their local
integration. Considering the set of admissible control sequences, our aim is to com-
pute local controls u p such that none of the constraints imposed by other subsystems
are violated, i.e., that they satisfy the condition u ∈ U

N locally. To this end, we
introduce the notion of partial constraint sets by “projecting” the constraint sets X
and U to the respective spaces of a subset of systems.

Definition 9.14 Consider the vector space S, the setP = {1, . . . , P}where P ∈ N,
and a decomposition (Sp)p∈P of S to be given. For a subsetI p = {p1, . . . , pm} ⊂
P \ {p} we callQ = Q(p) := {p} ∪I p the partial index set. Then, the partial set
is defined as

SQ = Sp × Sp1 × · · · × Spm

and we denote elements of SQ by sQ = (s p, s p1 , . . . , s pm). Accordingly, given a
constraint set S ⊂ S the partial constraint set is defined by

S
Q := {sQ ∈ SQ | there exists s̃ ∈ Swith s̃i = s for all i ∈ Q}.

Here, we choose to distinguish between p andI p to explicitly account for data from
subsystems q 	= p required in the evaluation of local constraints.

Similar to the dynamics, the idea is now to show that considering local evaluations
resembles the overall result.

266 9 Distributed NMPC

Proposition 9.15 Consider a vector space S with a setS ⊂ S, a setP = {1, . . . , P}
where P ∈ N, and a decomposition (Sp)p∈P of S in the sense of Definition 9.4 to
be given. Then, there exist sets (I p)p∈P such that condition s ∈ S is equivalent to

sQ ∈ S
Q, for all p ∈ P := {1, . . . , P} with Q = Q(p). (9.5)

Proof Follows trivially by choosing I p = {1, . . . , P} \ {p} for all p ∈ P . �

From Proposition 9.15 it is clear that the constraint x ∈ X can be checked locally
at subsystem p if the constraint set itself or the respective constraint functions GS

i :
X × U → R, i ∈ E S = {1, . . . , pg} and HS

i : X × U → R, i ∈ I S = {pg +
1, . . . , pg + ph} with rg, rh ∈ N0 and all required data from other subsystems are
available at subsystem p. In contrast to the construction of (I p)p∈P in the proof, we
are interested in a set ofminimal sets (I p)p∈P to reduce the knowledge requirements
of subsystem p. Hence, to use this rather abstract definition to decompose U

N
X0

effectively, we need to know for each p ∈ P which of the subsystems have to be
considered. Note that we require this data to evaluate the condition u ∈ U

N
X0

in the
optimization, i.e., at a fixed closed-loop time instant. To check the constraints for
the predictions, we require future open-loop data. To allow for changing network
topologies over time like the distribution of cars on a road network, we allow the
set of neighboring subsystems to be time variant I p(n), cf. Fig. 9.1. Additionally,
we allow the case that even if data regarding a subsystem q ∈ P \ {p} is known
to subsystem p ∈ P , that data may be ignored in the calculation of the control.
Consequently, the set of neighbors that communicate with system p and the set of
neighbors that is used by subsystem p to compute its control may differ. Figure9.2
visualizes this difference in communication and dependencies via graphs.

x1 x2 x3

x4

Time instant n

x1 x2 x3

x4

Time instant n+1

Fig. 9.1 Example of a communication graph between systems x p , p ∈ P at time instants n and
n + 1

9.2 Classification of Connectedness 267

x1 x2 x3

x4

Time instant n

x1 x2 x3

x4

Time instant n

Fig. 9.2 Example of the difference between a communication and a dependency graph between
subsystems x p , p ∈ P at time instant n

x1(0)

δ

x1(1) x1(2) x1(3)

x2(0)

δ

x2(1)x2(2)x2(3)

x1(0)

δ

x1(1) x1(2) x1(3) x1(4)

x2(0)

δ

x2(1)x2(2)x2(3)x2(4)

Fig. 9.3 Sketch for Example 9.16 with N = 4 (top) and N = 5 (bottom)

Example 9.16 Reconsider our Example 9.11 and assume the controls to be bounded
via u p(n) ∈ [−1, 1], p ∈ {1, 2}. Additionally, we introduce the constraint |x1−x2| ≥
δ > 0, which can be seen as a safety distance between the two vehicles. Using initial
values x1(0) = −4.4 = −x2(0), N = 4, δ = 1 and u1(n) = 1 = −u2(n) for
n = 0, 1, 2, 3, the trajectories are sketched in Fig. 9.3(top). In this case, the constraint
|x1−x2| ≥ δ > 0 is always satisfied, whichmay be determined by the systems using,
e.g., sensor data. Thus, we can choose to drop both the constraint and the respective
neighboring data from the local evaluation. However, if we increase the horizon
length to N = 5, the subsystems are coupled via the constraint |x1 − x2| ≥ δ.

Remark 9.17 Note that in contrast to links in dynamics, a coordination algorithm
may allow for different lengths of neighboring data in case of links in constraints.

268 9 Distributed NMPC

In Sect. 9.5, we will consider the method by Richards and How, cf. Algorithm 9.36,
which uses fixed order of subsystems and neighboring data of equal lengths N from
time steps n for q < p and from time step n − 1 for q > p. Hence, the constraints
induced by neighbors q > p at open-loop time step N are not defined and allow for
a certain degree of freedom. In general, this may lead to infeasibility of the solution,
yet the scheme of Algorithm 9.36 is arranged such that recursive feasibility can be
shown.

Here, we do not specify how the neighboring index setI p(n) is obtained, but only
specify those data which is needed in order to check the constraints. In Sect. 9.3, we
will consider different communication schemes and analyze the respective network
loads.

Now, for a given neighboring index set I p(n), we can use the induced partial
state constraint set and the neighboring data available to subsystem p to define the
feasible set and the set of admissible controls from which the control sequence u p(·)
can be chosen in analogy to Definition 3.9. We formulate the definition for terminal
constraint set X0 ⊆ X, noting that the case without terminal constraints is included
by setting X0 = X.

Definition 9.18 Suppose a time instantn ∈ N0, decompositions (X p)p∈P , (U p)p∈P
of X , U and respective projections

(
π

p
X

)
p∈P ,

(
π

p
U

)
p∈P in the sense of Definition

9.4 to be given, inducing the set of subsystems (9.1) via (9.4). For each subsystem
p ∈ P with initial value x p

0 and neighboring data i p from subsystems q ∈ I p, we
define the feasible set via

X
p
N (i p) := {

x p
0 ∈ X

p(i p) |∃ (
u p(·), (uq (·))q∈I p

) ∈ U
Q,N (x p

0 , i p) (9.6)

with
(
x p
u p (N , x p

0 , i p), (xquq (N , xq0 , iq))q∈I p
) ∈ X

Q
0 (i p)

}

where UQ,N and XQ
0 withQ = {p} ∪I p are the partial control and state constraint

sets. Moreover, for each x p
0 ∈ X

p
N we call

U
p,N
X

p
0

(x p
0 , i p) :=

{
u p(·) ∈ U

p,N (x p
0 , i p) | (x p

u p (N , x p
0 , i p), (xquq (N , xq0 , iq))q∈I p

) ∈ X
Q
0 (i p) (9.7)

with
(
uq (·))q∈I p

}

set of admissible control sequences for agent p.

As indicated before, the local evaluation of the constraints depends on the neigh-
boring data. Consequently, if to be evaluated exactly, also the feasible set and the
set of admissible control sequences require this data. To stress this dependency,
which will be of particular importance in terms of communication, the latter sets are
parametrized in terms of the neighboring data.

Note that we can extend the notation in Definition 9.18 to cover the time variant
case as well. For simplicity of exposition, however, we concentrate on the time
invariant case.

9.2 Classification of Connectedness 269

Last, we consider the cost function JN and suppose decompositions (X p)p∈P ,
(U p)p∈P of X , U to be given. Then, we rewrite the cost function via

JN (x0, u(·)) =
P∑

p=1

J p
N (x p

0 , u p(·), i p) with

J p
N (x p

0 , u p(·), i p) =
N−1∑
k=0

ωN−k	
p(x p

u p (k, x0, i
p), u p(k), i p) + F p(x p

u p (N , x0, i
p), i p) (9.8)

and refer to J p
N as the cost function of subsystem p ∈ P . Note that the separation

is always possible since we could simply set J p
N to (1/P)JN and 	p to (1/P)	,

respectively.

Example 9.19 Reconsider Example 9.11, now with P subsystems and with cost
function

JN (x0, u(·)) =
N−1∑
k=0

⎛
⎝ P∑

p=1

‖x p
u p (k, x

p
0 , i p) − x p

∗ ‖2 + ‖u p(k)‖2
⎞
⎠

︸ ︷︷ ︸
=	(xu(k,x0),u(k))

+
P∑

p=1

‖x p
u p (N , x p

0 , i p) − x p
∗ ‖2

︸ ︷︷ ︸
=F(xu(N ,x0))

.

Then the choice 	p(x p, u p, i p) = ‖x p − x p
∗ ‖2 + ‖u p‖2, F p(x p, i p) = ‖x p − x p

∗ ‖2
requires minimal neighboring data, i.e., I = ∅.
Remark 9.20 As a convention, we assume that summands of the cost function con-
taining x p or u p shall be included in the cost function J p

N . This is typically the case to
minimize communication. Note that this means that summands depending on more
than one subsystem will appear in more than one local cost function and have to be
weighed appropriately in order to ensure (9.8).

Example 9.21 Again consider Example 9.11 with three subsystems each driven by
the dynamics from Example 2.1. For the cost function

JN (x0, u(·)) =
N−1∑
k=0

⎛
⎝‖x1(k) − x1∗‖2 + ‖x1(k) − x2(k) − δ‖2 + ‖x2(k) − x3(k) − δ‖2

+
P∑

p=1

‖u p(k)‖2
⎞
⎠

+ ‖x1(N) − x1∗‖2 + ‖x1(N) − x2(N) − δ‖2 + ‖x2(N) − x3(N) − δ‖2

270 9 Distributed NMPC

with δ > 0 the choice

	1(x1, u1, i1) = ‖x1 − x1∗‖2 + ‖x1 − x2 − δ‖2 + ‖u1‖2
	2(x2, u2, i2) = ‖x1 − x2 − δ‖2 + ‖x2 − x3 − δ‖2 + ‖u2(k)‖2
	3(x3, u3, i3) = ‖x2 − x3 − δ‖2 + ‖u3‖2

F1(x1, i1) = ‖x1 − x1∗‖2 + ‖x1 − x2 − δ‖2
F2(x2, i2) = ‖x1 − x2 − δ‖2 + ‖x2 − x3 − δ‖2
F3(x3, i3) = ‖x2 − x3 − δ‖2 + ‖x3 − x3∗‖2

does not satisfy (9.8).

To derive the separation and the required weights, we rewrite the cost function in
additive form

JN (x0, u(·)) =
N−1∑
k=0

ωN−k

m	∑
j=1

	 j (xu(k, x0), u(k)) +
mF+m	∑
j=m	

Fj (xu(N , x0)) (9.9)

where m	, mF denote the number of additive terms of the stage and terminal costs.
The idea to obtain (9.8) is to follow Remark 9.20 and assign summands to respective
subsystems. Similar to the dynamics, we can then derive the functions 	p and F p.
Last, the reciprocal of the number of assignments of each summand can be used as
corresponding weight in 	p and F p.

Starting with the assignment, for each p ∈ P we split the state and control
space into three parts using permutations σX p : X → X p × X̃ p × X

p
, and σU p :

U → U p × Ũ p × U
p
. Now, we identify that only those components j depend on

(x p, u p) ∈ X p ×U p, for which

	 j (σ
−1
X p (x p, 0, 0), σ−1

U p (u p, 0, 0)) 	= 	 j (σ
−1
X p (0, 0, 0), σ−1

U p (0, 0, 0))

Fj (σ
−1
X p (x p, 0, 0)) 	= Fj (σ

−1
X p (x p, 0, 0))

holds for some (x p, u p) ∈ X p × U p. For each p ∈ P , we collect the respective
components j in the set M p. For each j ∈ M p, we obtain the sets X

p
j and U

p
j as

the maximal subsets such that

	 j (σ
−1
X p (x p, x̃ p, x p), σ−1

U p (u p, ũ p, u p)) = 	 j (σ
−1
X p (x p, x̃ p, 0), σ−1

U p (u p, ũ p, 0))

Fj (σ
−1
X p (x p, x̃ p, x p)) = Fj (σ

−1
X p (x p, x̃ p, 0))

holds for all (x p, x̃ p, x p) ∈ X p × X̃ p
j × X

p
j , (u

p, ũ p, u p) ∈ U p × Ũ p
j ×U

p
j , which

implicitly defines X̃ p
j and Ũ p

j . To derive the functions 	p and F p, the latter sets
allow us to obtain the neighboring index set. To deriveI p, we use the definition of a
decomposition for our state and control sets X = X1×· · ·×X P andU = U 1×· · ·×
U P and for each j ∈ M p we obtain the index set I p

j = {p1, . . . , pm} ⊂ P \ {p}

9.2 Classification of Connectedness 271

as the set with least possible entries satisfying (X̃ p
j × Ũ p

j) ⊂ (X p1 × · · · × X pm) ×
(U p1 × · · · × U pm). Combining the index sets, we obtain the neighboring index set
via I p := ⋃

j∈M p I
p
j .

Recalling Example 9.21, we now set

	p(x p, u p, i p) =
∑
j∈M p

ω j	 j (σ
−1
X p (x p, x̃ p, 0), σ−1

U p (u p, ũ p, 0)) (9.10)

F p(x p, i p) =
∑
j∈M p

ω j Fj (σ
−1
X p (x p, x̃ p, 0)). (9.11)

Last, we obtain the weights ω j such that (9.8) holds from the construction of
	p and F p. For each j ∈ M p we require data from subsystem p and from
(I p

j)

neighbors. In turn, each term j ∈ {1, . . . ,m	 + mF } in (9.9) is also contained in
the costs (9.10) and (9.11) of
(I p

j) + 1 subsystems. This connection allows us to
derive the following:

Proposition 9.22 Consider costs (9.10), (9.11) and sets M p and I p
j , j ∈ M p,

to be given for each p ∈ P . Then (9.8) holds for costs (9.10), (9.11) with ω j =
1/(
(I p

j) + 1).

Example 9.23 Reconsider Example 9.21. Setting

	1(x1, u1, i1) = ‖x1 − x1∗‖2 + 1

2
‖x1 − x2 − δ‖2 + ‖u1‖2

	2(x2, u2, i2) = 1

2
‖x1 − x2 − δ‖2 + 1

2
‖x2 − x3 − δ‖2 + ‖u2(k)‖2

	3(x3, u3, i3) = 1

2
‖x2 − x3 − δ‖2 + ‖u3‖2

F1(x1, i1) = ‖x1 − x1∗‖2 + 1

2
‖x1 − x2 − δ‖2

F2(x2, i2) = 1

2
‖x1 − x2 − δ‖2 + 1

2
‖x2 − x3 − δ‖2

F3(x3, i3) = 1

2
‖x2 − x3 − δ‖2 + ‖x3 − x3∗‖2

yields

3∑
p=1

	p(x p, u p, i p) = 	(x, u)

3∑
p=1

F p(x p, i p) = F(x).

272 9 Distributed NMPC

The design procedure can also be applied in the time variant case of problem
(OCPnN) and (OCPnN,e). For simplicity of exposition, we omit this extension here.

Remark 9.24 Note that considering improper weights modifies the shape of the cost
function JN , e.g., if we simply sum the subsystem costs with equal weights, then
intensively linked subsystems are overrated. Hence, thinking of search directions in
the overall state space, the latter can lead to different results in the coordination.

Remark 9.25 In the so-called additive case we have

JN (x0, u(·)) =
N−1∑
k=0

P∑
p=1

	p(x p
u p (k, x

p
0 , i p), u p(k)) +

P∑
p=1

F p(x p
u p (N , x0, i

p)),

which allows us to split the cost function to

J p
N (x p

0 , u p(·), i p) =
N−1∑
k=0

	p(x p
u p (k, x

p
0 , i p), u p(k)) + F p(x p

u p (N , x0)).

Hence, each of these parts of the cost function is evaluated by only one subsystem
leading to ω j = 1 in Corollary 9.22.

Combining the dynamics, the constraints and the cost functions, we can now formu-
late the optimal control problem (OCPN) locally, which give us the following:

minimize J p
N (x p0 , u p(·), i p) :=

N−1∑
k=0

ωN−k	
p(x pu p (k, x p0 , i p), u p(k), i p))

+F p(x pu p (N , x0, i
p), i p)

with respect to u p(·) ∈ U
p,N
X
p
0

(x p0 , i p) subject to

x pu p (0, x p0 , i p) = x p0 , x pu p (k + 1, x p0 , i p) = f p(x pu p (k, x p0 , i p), u p(k), i p)

(OCPpN)

In the next section, we focus on the integration of (OCPpN)and communication
into our basic Algorithm 9.2.

9.3 Problem Classes for Different Levels of Connectedness

In the previous section, we derived the local optimal control problem (OCPpN). Pro-
vided a correct separation of the overall problem was obtained and the respective
data from neighboring subsystems is available, these local problems may allow us
to obtain the optimal solution of the overall problem (OCPN,e) by solving the local
ones.

9.3 Problem Classes for Different Levels of Connectedness 273

Clearly, the optimal solution of (OCPN,e) represents a benchmark for other solu-
tions. In the literature, it is also referred to as centralized solution. Besides optimality
of the open loop, the centralized solution allows us to carry over the concepts of sta-
bility and performance of the closed loop to the case of a set of subsystems (9.1). As
there is only one system, there is no need for communication, so the only drawback
is the complexity of the problem (OCPN,e) for large system sizes.

While the centralized problem is perfectly coordinated in terms of cost function,
dynamics, and constraints, the so-called decentralized case is the exact opposite.
Here, the problem (OCPN,e) is split into subproblems (OCPpN), p ∈ P , which are
solved without any exchange of data, i.e., I p(n) = ∅ = i p. As a consequence, the
local problem reads

minimize J p
N (x0, u(·)) :=

N−1∑
k=0

ωN−k	
p(x pu p (k, x p0), u p(k)))

+F p(x pu p (N , x0))

with respect to u p(·) ∈ U
p,N
X
p
0

(x p0), subject to

x pu p (0, x p0) = x p0 , x pu p (k + 1, x p0) = f p(x pu p (k, x p0), u p(k))

While the communication demand of the decentralized approach is zero, the eval-
uation of f p, Up,N

X
p
0

and J p
N may result in different errors. For one, if the dynamics of

subsystems are linked, then themissing state and input information has to be replaced
by estimates or default values and thus the evaluation is subject to model errors. In
case of linkswithin the set of admissible controlsUp,N

X
p
0
, the equivalence of constraints

depicted in Proposition 9.15 is compromised and may result in infeasibility of the
overall solution. Last, a broken connection within the cost function J p

N may lead to
poor performance, and in case of linked dynamics also to loss of stability [8].

Example 9.26 Reconsider Example 9.1. In the decentralized case, the velocity of
the vehicle given by x2 is computed correctly, but replacing the state and input of
the second subsystem in the first by the default value 0, the position is constant with
x1(n) = x10 for all n ∈ N. This leads to the modeling error

e(n) = ‖xdecentralized(n) − xcentralized(n)‖2 = (x2(n) + u(n)/2)2

=
(
x2(0) +

n−1∑
k=0

3

2
u(k) + u(n)/2

)2

.

Example 9.27 Given Example 9.16, a decentralized setting disregards the constraint
|x1 − x2| ≥ δ. From Fig. 9.3, we then observe that this broken link causes the overall
solution to be infeasible for N ≥ 5.

Example 9.28 Reconsider Example 9.23. Replacing all unkown terms in the cost
function by the default value 0, the cost functions are given by

274 9 Distributed NMPC

J 1
N (x10 , u

1(·)) =
N−1∑
k=0

‖x1u(k, x10)‖2 + ‖u1(k)‖2 + ‖x1u(N , x10)‖2

J 2
N (x20 , u

2(·)) =
N−1∑
k=0

‖u2(k)‖2

J 3
N (x30 , u

3(·)) =
N−1∑
k=0

‖u3(k)‖2.

Hence, the closed-loop solution derived from Algorithm 9.2 with optimal control
problem (OCPpN)will steer subsystem 1 to zero. Since u2 ≡ 0 ≡ u3 is the optimal
solution for subsystems 2 and 3, these subsystemswill remain at their initial positions
x20 and x30 .

Between these two extremes centralized and decentralized, there are mixtures of
connections between the local problems (OCPpN)with links in dynamics, constraints,
and cost function.These local optimal control problems canbe sorted into twoclasses,
the so-called cooperative and noncooperative problems. In the literature, there are
different meanings of these terms. Here we refer to a scheme as noncooperative, if
each subsystem only aims at minimizing its own local cost function without taking
care of the objectives of other subsystems. Unlike the decentralized case, the neigh-
boring subsystemsmay provide information to the other systems, which may be used
in the optimization, but as far as the optimization is concerned, all subsystems only
“mind their own business.” As a consequence, the local controllers optimize to local
goals only and anticipate network interactions only locally [4, 11]. The performance
of the overall system is optimal at a so-called Nash equilibrium. The latter describes
a point, which is by local measures optimal for each of the subsystems, i.e., changing
their control strategy would increase their costs. Yet, if more than just one subsys-
tem was to change its control strategy, then an improvement of the costs may be
possible both locally and globally. In particular, the Nash equilibrium can be far
from the optimal point of operation given by the centralized solution [33]. Consider-
ing the isolated cost function can be seen as an egoistic goal, and in the worst case,
the respectively computed control may lead to instability of the overall system [26].
Despite these shortcomings, the noncooperative case is of high interest for street
traffic [9, 23] to overcome limitations of decentralized control.

In the cooperative case, the local controller incorporates the effect of local control
choices on the objectives of all subsystems, which are connected to it. To this end,
the cost function can, e.g., be a common objective for all subsystems resembling the
centralized cost, or the information on other subsystems’ goals can be incorporated
via information on Lagrange multipliers, as in dual decomposition approaches. In
the upcoming Sect. 9.5, we illustrate both ideas by presenting the serial method of
Richards and How, and the parallel dual decomposition method in Algorithms 9.2
and 9.41, respectively. Now, the aim of the local controllers is not to reduce the local
costs, but to decrease the costs of the overall system. Again, the performance of the
overall system is optimal at a Nash equilibrium, which may still be far from the

9.3 Problem Classes for Different Levels of Connectedness 275

optimum of the centralized solution [33], although under suitable structural assump-
tions better performance than for the noncooperative case canbe expected.Obviously,
for evaluating the performance of the common goal, information from the neighbor-
ing subsystems is needed, which may not be available in inter-company problems.
Moreover, a subsystem may perform better in terms of its local costs if the common
goal is ignored, cf., e.g., subsystems 2 and 3 in Examples 9.23 and 9.28. Due to
these reasons, cooperative control is typically applied for problems for which there
is only one (economic or idealistic) independent entity responsible for the guiding
the system. This holds true, e.g., for companies running large plants like in chemical
engineering [32] or in supply chains [12].

Remark 9.29 Within the setting of cooperative control, there exists a special case
where the dynamics are independent, the constraints are coupled and the subsystems
interact using both local and common costs, cf. [31]. This is referred to as coopetitive
scenario and canbe found in, e.g.,market economics,where subsystemsmaycompete
with some of their neighbors [13].

The cooperative and noncooperative problems are combined in the so-called class
of distributed problems. As the properties of centralized and decentralized problems
can be analyzed using techniques outlined in the previous Chaps. 5 and 6, we focus
on the distributed setting now. A respective algorithm incorporating the different
possible connections then reads

Algorithm 9.30 (Distributed NMPC algorithm for local problems)
At each sampling time tn , n = 0, 1, 2 . . .

(1) For each subsystem p ∈ P measure the state x p(n) of the subsystem and set
x p
0 := x p(n).

(2) For each subsystem p ∈ P do

(a) Obtain neighboring index set I p(n) and collect data i p.

(b) Solve the local optimal control problem (OCPpN)

minimize J p
N (x p0 , u p(·), i p) :=

N−1∑
k=0

ωN−k	
p(x pu p (k, x p0 , i p), u p(k), i p))

+F p(x pu p (N , x p0 , i p), i p)

with respect to u p(·) ∈ U
p,N
X
p
0

(x p0 , i p) subject to

x pu p (0, x p0 , i p) = x p0 , x pu p (k + 1, x p0 , i p) = f p(x pu p (k, x p0 , i p), u p(k), i p)

and denote the obtained admissible local optimal control sequence by u p(·).

(c) Send data (p, x p(·), u p(·)) to all subsystems q ∈ P \ {p}.
until u p(·) and i p has converged for all p ∈ P .

276 9 Distributed NMPC

(3) For each subsystem p ∈ P define the NMPC-feedback valueμ
p
N (x p(n), i p) :=

u p(0) and use this control value in the next sampling period.

Remark 9.31 In the linear case, the differences between the cooperative and the
noncooperative case can be analyzed and illustrated elegantly using arguments from
linear algebra. A very nice compendium can be found in [25, Chaps. 6.2 and 6.3].

To arrive at a converged or approximately converged solution, iterative and non-
iterative methods are known in the literature, which we will consider exemplarily in
Sect. 9.5. Algorithm 9.30 accounts for both approaches by the convergence require-
ment in Step (2). We will now use the outlined scheme to analyze stability of the
distributed setting.

9.4 Asymptotic Stability and Convergence

In this section, we investigate the stability of the closed-loop trajectories generated
by Algorithm 9.30. Since in general we do not assume that the distributed or decen-
tralized optimization in Step (2) of the algorithm yields an optimal control for the
overall system, the results will be weaker than those in Chaps. 5 and 6. It will turn
out that in general we can only ensure that the closed-loop solution converges to the
desired equilibrium, but not that the closed loop is stable. That means, we can only
guarantee that xμN (n, x0) converges to x∗, but not that the distance |xμN (n, x0)|x∗ is
bounded from above by a K L -function β. Moreover, since we did not yet specify
how exactly the optimization in Step (2) of Algorithm 9.30 works, we formulate the
results based on relatively abstract assumptions. Details of the implementation, e.g.,
whether terminal conditions or not are used in order to guarantee these assumptions,
will be discussed in the subsequent section for particular implementations of Step (2).

Here, we use the following notation. With x p
n = x p(n) we denote the initial

conditions for the optimization in time step n and we write xn = (x1n , . . . , x
p
n). Note

that in the nominal setting the identity xn = xμN (n, x0) holds. The symbols i pn and
u p
n denote the control and the neighboring data delivered by Step (2) of Algorithm

9.30 upon convergence in the nth time step. To ensure that the optimization delivers
a feasible solution, we impose the following assumption.

Assumption 9.32 In Algorithm 9.30, for each xn = (
x1n , . . . , x

p
n
) ∈ X measured in

Step 1 there exist i p for all p ∈ P such thatUp,N
X

p
0

(x p
n , i p) 	= ∅ and Step 2 terminates

successfully.

We note that the assumption consists of two statements: on the one hand, it assumes
that a feasible solution exists, and on the other hand that the algorithm is able to find
it. In the next section, we will see sufficient conditions regarding the problem and
the algorithm under which Assumption 9.32 holds.

9.4 Asymptotic Stability and Convergence 277

The open-loop functionals corresponding to the controls delivered by Step (2) of
Algorithm 9.30 are abbreviated to

J p
N ,n := J p

N (x p
n , u p

n (·), i pn).

Moreover, we write JN ,n := ∑P
p=1 J

p
N ,n and recall that 	(x, u) = ∑P

p=1
	p(x p, u p, i p). With this notation, we can formulate the following convergence the-
orem. In its assumptions, the fact that we cannot expect optimality of the controls
computed in Step (2) of Algorithm 9.30 is reflected by assuming a lower bound on
JN ,n in the first part only. In case we can guarantee a certain quality of the solution,
it makes sense to impose an upper bound, which is done in inequality (9.15) in the
second part of the theorem.

Theorem 9.33 (Convergence in the distributed setting) Consider the NMPC Algo-
rithm 9.30 and suppose that Assumption 9.32 holds. Moreover, suppose there exist
α1, α3 ∈ K∞ and α > 0 such that for all initial conditions x0 ∈ X, all time instants
n ∈ N0 and all (x, u) ∈ Y the inequalities

α1(|x |x∗) ≤ JN ,n and α3(|x |x∗) ≤ 	(x, u) (9.12)

JN ,n ≥ α	(xn, μN (xn)) + JN ,n+1 (9.13)

hold.
Then for each x0 ∈ X the nominal NMPC closed-loop trajectory xμN (n, x0) =

(x1
μ1

N
(n, x10), . . . , x

p
μ

p
N
(n, x p

0)) converges to x∗ and the inequality

J cl
∞(x0, μN) ≤ JN ,0/α (9.14)

holds.
If, in addition, there exists α2 ∈ K∞ such that for all initial conditions x0 ∈ X

and all time instants n ∈ N0 the inequality

JN ,n ≤ α2(|xn|x∗) (9.15)

holds, then there exists β ∈ K L such that the nominal closed-loop trajectories
satisfy

|xμN (n, x0)|x∗ ≤ β(|x0|x∗ , n)

for all x0 ∈ X and all n ∈ N0.

Proof From the assumptions, it immediately follows that JN ,n is nonnegative and
satisfies

JN ,n+1 ≤ JN ,n − αα3(|xμN (n, x0)|x∗),

where we used that for the nominal closed-loop system the identity xn = xμN (n, x0)
holds.Hence, JN ,n is strictly decreasing inn andbounded frombelowby0.Therefore,

278 9 Distributed NMPC

it converges to some value JN ,∞ as n → ∞. Since every convergent sequence is
a Cauchy sequence, we have that for every ε > 0 there exists n0 ∈ N such that
αα3(|xμN (n, x0)|x∗) ≤ |JN ,n − JN ,n+1| ≤ ε holds for all n ≥ n0, which yields
α3(|xμN (n, x0)|x∗) → 0 as n → ∞. Since K∞ functions can only converge to 0
if their argument converges to 0, we can conclude |xμN (n, x0)|x∗ → 0 and thus the
desired convergence.

Using (9.13) and again xn = xμN (n, x0) inductively for n = 0, . . . , K − 1, we
obtain

α

K−1∑
n=0

	(xμN (n, x0), μN (xμN (n, x0))) ≤ JN ,0 − JN ,K ≤ JN ,0.

Hence (9.14) follows for K → ∞.
Under the additional inequality (9.15), we can construct β ∈ KL exactly as in

the proof of Theorem 2.19. Just as in the proof of this theorem we can then establish
the claimed inequality. �

One way of ensuring the inequalities (9.12)–(9.15) is by assuming them to hold
for all subsystems. This is made precise in the following corollary:

Corollary 9.34 Consider the NMPC Algorithm 9.30 and suppose that Assumption
9.32 holds. Moreover, suppose there for each p ∈ P there exist α

p
1 , α

p
3 ∈ K∞ and

α > 0 such that for all initial conditions x0 ∈ X, all time instants n ∈ N0 and all
x p ∈ X p, u p ∈ U p and i p ∈ I p(n) the inequalities

α
p
1 (|x |x∗) ≤ J p

N ,n and α
p
3 (|x |x∗) ≤ 	p(x p, u p, i p) (9.16)

J p
N ,n ≥ α	p(x p

n , μ
p
N (x p

n , i pn), i pn) + J p
N ,n+1 (9.17)

hold.
Then for each x0 ∈ X the nominal NMPC closed-loop trajectory xμN (n, x0) =

(x1
μ1

N
(n, x10), . . . , x

p
μ

p
N
(n, x p

0)) converges to x∗ and the inequality

J cl
∞(x0, μN) ≤ JN ,0/α

holds.
If, in addition, for each p ∈ P there exists α

p
2 ∈ K∞ such that for all initial

conditions x0 ∈ X and all time instants n ∈ N0 the inequality

J p
N ,n ≤ α

p
2 (|xn|x∗) (9.18)

holds, then there exists β ∈ K L such that the nominal closed-loop trajectories
satisfy

|xμN (n, x0)|x∗ ≤ β(|x0|x∗ , n)

for all x0 ∈ X and all n ∈ N0.

9.4 Asymptotic Stability and Convergence 279

Proof Conditions (9.16)–(9.18) imply (9.12)–(9.15) with αi = ∑P
p=1 α

p
i . Hence,

the assertion follows from Theorem 9.33. �

Corollary 9.34 allows us to check the conditions for convergence and asymptotic
stability at the subsystem level. While this may simplify the analysis for certain
classes of algorithms, it poses considerably stronger conditions. The reason for this
is that assumptions on the overall system level allow for increases in J p

N ,n for some
subsystems p ∈ P in some regions ofXp

N as long as such an increase is compensated
by a decrease in JqN ,n for other subsystems q ∈ P such that the overall cost JN ,n

still decreases. In terms of convergence, the impact of the increase in J p
N ,n can then

be neglected. In some situations, it may be unavoidable that J p
N ,n increases for some

subsystems p ∈ P . An example for such a situation is the following:

Example 9.35 Consider the symmetric setting of two cars attempting to cross a
one-lane bridge, where the dynamics is given by

x p(n + 1) = f p(x p(n), u p(n)) = x p(n) + u p(n)

with x p ∈ Z
2 and u p ∈ U

p = {−1, 0, 1}2 for p ∈ {1, 2}. We impose the local
constraint of the bridge

x p
1 = 0 =⇒ x p

2 = 0

and the connecting collision and passing constraints

x1 	= x2 ∧ f 1(x1, u1) 	= x2 ∧ f 2(x2, u2) 	= x1,

cf. Fig. 9.4 for a sketch. Regarding the cost function, we consider the case without
terminal conditions and use J p(x p, u p(·)) = ∑N−1

k=0 ‖x p
u p (k, x p) − x p

∗ ‖21 with x1∗ =
(−2, 0)� and x2∗ = (2, 0)� with symmetric initial values x10 = (1, 0)� and x20 =
(−1, 0)�. In this setting, one car has to hold its position and move aside in the next
step—thereby increasing its costs—to let the other car pass. Here, we assumewithout
loss of generality that car p = 2 waits andmoves aside, cf. Fig. 9.5 for an illustration.
Now we analyze the results obtained for the optimal solution. The respective cost
function values are given in Table9.1. We observe that the assumption regarding
the decrease of the value function J 2

N ,n is satisfied for N ≥ 4. This is because for
larger horizons, the additional cost of stepping aside is compensated by being able
to cross the bridge afterwards. However, from a computational point of view, it is
always desirable to choose the optimization horizon as short as possible and one
observes that the subsystems approach their targets also for N ∈ {2, 3}, although the
cost of System 2 does not decrease in every step. This is because the increase (or
nondecrease) in J 2

N ,n for n ∈ {0, 1} and the respective horizons can be compensated
by the reduction in J 1

N ,n , see the last column of Table9.1, which shows a strict
decrease in the combined value function.

280 9 Distributed NMPC

-2 -1 0 1 2
xp1

-1

0

1
xp 2

(a) Feasible moves of x2 if x1
is off the bridge

-2 -1 0 1 2
xp1

-1

0

1

xp 2

(b) Feasible moves of x2 if x1
enters bridge

-2 -1 0 1 2
xp1

-1

0

1

xp 2

(c) Optimal solution

Fig. 9.4 Feasible moves and optimal solution for p = 1 (red) and p = 2 (blue)

-2 -1 0 1 2
xp1

-1

0

1

xp 2

(a) Optimal solution for n= 1
and N = 1

-2 -1 0 1 2
xp1

-1

0

1

xp 2

x1(0)

x1(1)x2(0)=x2(1)=x1(2)

x2(2)

(b) Optimal solution for n= 0
and N = 2

-2 -1 0 1 2
xp1

-1

0

1

xp 2

x1(0)=x2(5)

x1(1)=x2(4)x2(0)=x2(1)=x1(2)=x2(3)

x1(3)

x2(2)

x2(6)

(c) Global optimal solution

Fig. 9.5 Optimal open- and closed-loop trajectories for p = 1 (red) and p = 2 (blue)

Table 9.1 Development of cost function

n J 2N ,n J 1N ,n + J 2N ,n

N = 2 N = 3 N = 4 N = 5 N ≥ 6 N = 2

0 18 28 37 41 42 31

1 19 28 32 33 33 24

2 19 23 24 24 24 20

3 13 14 14 14 14 13

4 5 5 5 5 5 5

5 1 1 1 1 1 1

≥6 0 0 0 0 0 0

In case of communication errors, we have to take robustness into account to show
semiglobal practical asymptotic stability of the system.We have to particularly focus
on implications regarding the dynamics and the constraints, whichmay lead tomodel
errors and infeasibility. We have to assure that viability of the sets Xp(i p) as i p is
retained under perturbations, i.e., that the gain is sufficiently strong regarding the
dynamics and the constraints. If the latter holds, then each perturbed subsystem
is semiglobally practically asymptotically stable in the sense of Definition 7.24.
This allows us to apply Corollary 9.34 to show semiglobally practically asymptotic
stability of the overall system.

9.5 Communication and Coordination Schemes 281

9.5 Communication and Coordination Schemes

After considering convergence and asymptotic stability in an abstract setting, we
shift our focus to actual implementations of distributed NMPC schemes. Here, we
present two different schemes, which can be seen as prototypes for more advanced
methods: The scheme by Richards and How [27, 28] and the dual decomposition
approach [2, 16]. Our aim in this section is to verify that Assumption 9.32 and the
assumptions of Theorem 9.33 hold for these implementations.

The fundamental difference between the two schemes lies in their coordination
and their communication schedule. The scheme by Richards and How is sequential
in nature, i.e., the subsystems are in a fixed order p1 < · · · < pP . At each sampling
instant, the subsystems compute their optimal solutions sequentially in this order
and send their results to all other subsystems. Hence, each system is waiting until all
systems which are earlier in the order have finished their computations and commu-
nicated their results. As a result, each subsystem computes and sends once in every
sampling period.

In contrast to that, the dual decomposition approach is parallel in nature. Here,
each subsystem computes a new iterate and sends its data to a central server. The
server then computes a gradient step for coordination and sends its results to all
subsystems. After receiving the new data from the server, the procedure is iterated
until a stopping criterion is satisfied. Hence, there are multiple computation and
communication instants per sampling period.

The difference in the communication schedule between these methods displayed
below in Algorithms 9.36 and 9.41 is depicted in Figs. 9.6 and 9.7, respectively.

While the scheme by Richards and How exhibits communication between the
subsystems only, the dual decomposition requires the coordinating server as an addi-
tional component. Moreover, there is only one communication instant per sampling
period in the scheme byRichards andHow,whereas dual decompositionmay include
multiple communication instants per sampling period.

We first describe the scheme by Richards and How. For simplicity of exposition,
we assume that solving the local optimal control problem (OCPpN)as well as the

Subsystem xp n

...

Subsystem xq n

Sampling instant k Sampling instant k+1

Fig. 9.6 Communication structure for scheme of Richards and How

282 9 Distributed NMPC

Subsystem xp n

...

Subsystem xq n

Server n

Sampling instant Sampling instant

Communication instants

Fig. 9.7 Communication schedule for dual decomposition

communication is instantaneous. In case of significant delays, compensationmethods
as described in Sect. 10.6 or in [15, 36] may be applied.

Due to the sequential structure, where each subsystem is optimizing and commu-
nicating only once per sampling instant, it is not possible to generate neighboring
data i p over the whole optimization horizon N in this scheme. Hence, an evalua-
tion of linked dynamics or costs of subsystem p is not possible if these depend on
neighboring data. Indeed, when the pth system in the sequential order determines
its control, it may access current neighboring data for all the systems q < p, while
for q > p only data from the past sampling instant is available. Due to the shift
of the horizon, these sequences contain N − 1 instead of N elements required to
compute the prediction. For this reason—just as in the original paper by Richards
and How [27]—we restrict ourselves to systems which are only coupled via con-
straints. Hence, the neighboring data does not appear as an argument in x p

u p , 	 and
J p
N .
To cope with missing neighboring data in the evaluation of Up,N

X
p
0

(x p
0 , i p), we

proceed as follows: we define a set of neighboring data ĩ p of length N by Ĩ p(i p).
This set contains all the neighboring data which extends the data from i p consistently.
More precisely, we define that ĩ p = {(q̃, ñq , x̃q(·), ũq(·)) | q ∈ I p(n)} ∈ Ĩ p(i p)
holds if and only if for all q ∈ I p(n) the identities q̃ = q, ñq = nq as well as
ũq(k) = uq(k) and x̃q(k) = xq(k) hold for all k = 0, . . . , N − 1 for which uq(k) or
xq(k), respectively, is defined. For those i p containing control sequences which are
not defined for all k = 0, . . . , N − 1, we extend Definition 9.18 of Up,N

X
p
0

(x p
0 , i p) via

U
p,N ,ext
X

p
0

(x p
0 , i p) :=

{
u p ∈ U

p,n | there is ĩ p ∈ Ĩ p(i p) with u p ∈ U
p,N
X

p
0

(x p
0 , ĩ p)

}
.

(9.19)

9.5 Communication and Coordination Schemes 283

In words, u p ∈ U
p,N ,ext
X

p
0

(x p
0 , i p) holds if and only if there exist solutions for the

neighboring systems, which are consistent with the available neighboring data, and
which together with u p satisfy all constraints of system p.

Algorithm 9.36 (Serial Distributed NMPC algorithm, Richards and How)
Initialization: At each sampling time t0:

(1) For each subsystem p ∈ P measure the state x p(0) of the subsystem and set
x p
0 := x p(0).

(2) For each subsystem p ∈ P find control sequences u p ∈ U p,N such that

((
x1u1(k, x

1
0), . . . , x

P
uP (k, x P

0)
)
,
(
u1(k), . . . , u p(k)

)) ∈ Y for k = 0, . . ., N − 1(
x1u1(N , x10), . . . , x

P
uP (N , x P

0)
) ∈ X0

and send (p, 0, x p(·), u p(·)) to all other subsystems.
(3) For each subsystem p ∈ P define the NMPC-feedback value μ

p
N (x p

0) := u p(0)
and use this control value in the next sampling period.

Feedback loop: At each sampling time tn , n = 1, 2 . . .:

(1) For each subsystem p ∈ P measure the state x p(n) of the subsystem and set
x p
0 := x p(n).

(2) For each subsystem p ∈ P do sequentially

(a) Collect neighboring data and set

i p := ((
1, n, x1(·), u1(·)) , . . . ,

(
p − 1, n, x p−1(·), u p−1(·)) ,(

p + 1, n − 1, x p+1(·), u p+1(·)) , . . . ,
(
P, n − 1, x P(·), uP(·))) .

(b) Solve the local optimal control problem

minimize J p
N (x p0 , u p(·)) :=

N−1∑
k=0

ωN−k	
p(x pu p (k, x p0), u p(k)))

+F p(x pu p (N , x p0 , i p))

with respect to u p(·) ∈ U
p,N ,ext
X
p
0

(x p0 , i p) subject to

x pu p (0, x p0) = x p0 , x pu p (k + 1, x p0) = f p(x pu p (k, x p0), u p(k))

and denote the obtained admissible local optimal control sequence by u p
n (·).

(c) Send data (p, n, x p(·, x p
0), u p(·)) to all subsystems q ∈ P \ {p}.

(3) For each subsystem p ∈ P define the NMPC-feedback value μ
p
N (x p

0 , i p) :=
u p
n (0) and use this control value in the next sampling period.

284 9 Distributed NMPC

As outlined before, if the systems are coupled not only via the constraints but
also via the dynamics or the cost function, then the neighboring data for subsystems
q > p is not complete. Filling these gaps with default values or estimates may lead to
respective errors. To retain stability, the model error must be small enough to satisfy
the conditions outlined at the end of Sect. 9.4. Regarding links in the constraints,
Algorithm 9.36 implements a first-come first-serve fashion, i.e., subsystem p < q
imposes constraints on subsystem q by choosing its control first. We also note that
finding an initial feasible solution in Step (2) of the Initialization can be a difficult
task, which may require additional coordination between the subsystems.

An important feature of Algorithm 9.36 is that—given we can find an initial
feasible solution—we can show Assumption 9.32 to hold. Here, we start by showing
that if the sets of admissible controls U

p,N
X

p
0

(x p(n), i p) are never empty, then the
closed-loop solution will remain feasible.

Proposition 9.37 Consider Algorithm 9.36 and suppose the initialization is suc-
cessful and U

p,N ,ext
X

p
0

(x p(n), i p) 	= ∅ holds for all n ∈ N. Then

x(n) = (
x1(n), . . . , x P(n)

) ∈ X

holds for all n ∈ N0.

Proof The successful initialization implies that the assertion holds for n = 0. Now
we assume x(n) ∈ X to hold for some n ≥ 1 and U

p,N ,ext
X

p
0

(x p(n), i p) 	= ∅ for all

p ∈ P . Hence, u p
n (·) and μp(x p(n), i p) are well defined and

(x1u1,� (1, x
1(n), i1), . . . , x P

uP,� (1, x P(n), i P)) ∈ X

holds. By definition of the closed loop, we therefore obtain x(n + 1) ∈ X, which
allows to apply the steps iteratively. �

Next, we will utilize the assumptions stated in Theorems 5.5, 5.13, or 6.20 in the
context of Algorithm 9.36. The structure of the algorithm will allow us to show
that by Step 2 of Algorithm 9.36 we have U

p,N ,ext
X

p
0

(x p
0 , i p) 	= ∅ and the resulting

closed-loop solutions converge to x∗. As neighboring data i p may change from one
sampling instant to the next, one of the main problems to be solved in this context is
that the set U p,N ,ext

X
p
0

(x p
0 , i p) may change as well.

In case terminal conditions are imposed, we will utilize structural properties of
X0 andU(x) and a local version of the Assumptions 5.1 and 5.9 in order to overcome
this problem. These are summarized in the following assumption:

Assumption 9.38 (i) The terminal constraint set is of the form

X0 = X
1
0 × X

2
0 × · · · × X

P
0 (9.20)

9.5 Communication and Coordination Schemes 285

(ii) The control constraint set is of the form

U(x) = U
1(x1) × U

2(x2) × · · · × U
P(x P) (9.21)

(iii) For each p ∈ P and each x p ∈ X
p
0 there is ux p ∈ U

p(x p) with f p(x p, ux p) ∈
X

p
0 and

F p(f p(x p, ux p)) + 	p(x p, ux p) ≤ F p(x p). (9.22)

We note that this assumption also applies in the case X0 = {x∗} and F p ≡ 0 for
all p ∈ P , in which case (i) and (iii) are automatically satisfied provided u∗ is an
admissible control value and 	p(x p

∗ , u p
∗) = 0.

This assumption implies the following: consider a state x ∈ X with x p ∈ X
p
0 and

let u ∈ U(x) be a control value with f (x, u) ∈ X0. Then, for subsystem p the control
value u p = ux p ∈ U

p(x p) is admissible, keeps the state x p inside Xp
0 and satisfies

inequality (9.22). This fact will be exploited in the proof of Proposition 9.39(1) and
(2).

In the case without terminal conditions, we introduce the following sets of admis-
sible control sequences in order to copewith the time dependency ofUp,N ,ext

X
p
0

(x p
0 , i p).

Suppose an initial condition x p
0 , neighboring data i p, a control function u p ∈

U
p,K ,ext
X

p
0

(x p
0 , i p) to be given. Then, for K ∈ N and time indices l ∈ N, m ∈ N0

with m ≤ K we define

Ũ
p,l,ext
X

p
0

(x p
0 , i p, u p,m) :=

{
ũ p ∈ U p,l | (u p(0), . . . , u p(m − 1), ũ p(0), . . . , ũ p(l − 1)) ∈ U

p,m+l,ext
X

p
0

(x p
0 , i p)

}
.

This set contains all control sequences ũ p of length l, which are admissible for l
steps into the future given that control u p was used up to time instant m.

Since the respective proofs use similar arguments, we condense the result for
Algorithm 9.36 in the following proposition covering the cases with terminal con-
straints, terminal costs and without terminal conditions.

Proposition 9.39 (Convergence of Serial Distributed NMPC) Consider Algorithm
9.36 with optimization horizon N and ωk = 1 for k = 0, . . . , N − 1, and suppose
the initialization to be successful with resulting control functions u p

0 . Assume that
(x∗, u∗) ∈ Y is an equilibrium with 	(x∗, u∗) = 0 and that there exist functions
α
p
3 ∈ K∞ such that 	p(x p, u p) ≥ α

p
3 (|x |x p∗) holds for all x p ∈ X p, u p ∈ U p and all

p ∈ P . Additionally, suppose either of the following:

(1) The problem (OCPpN)uses the terminal conditions X
p
0 = {x p

∗ } and F p ≡ 0 for
all p ∈ P and Assumption 9.38(ii) holds.

(2) The problem (OCPpN)uses terminal constraints satisfying Assumption 9.38.

286 9 Distributed NMPC

(3) The problem (OCPpN)does not use terminal constraints, i.e., X0 = X, and there
exist functions BK ∈ K∞ for K = 2, . . . , N satisfying the following three
conditions.

(i) Before the minimization in Step (2)(b) of Algorithm 9.36 the inequality

inf
ũ p∈Ũp,l,ext

X
p
0

(x p
0 ,i p,u p

n−1(·+1),m)

Jl(xu p
n−1(·+1)(m, x p

0), ũ p) ≤ Bl(|xu p
n−1(·+1)(m, x p

0)|x p∗)

holds for all l = 2, . . . , N and m = N − l
(ii) After the minimization in Step (2)(b) of Algorithm 9.36 the inequality

inf
ũ p∈Ũp,l,ext

X
p
0

(x p
0 ,i p,u p

n ,m)

Jl(xup
n
(m, x p

0), ũ p) ≤ Bl(|xup
n
(m, x p

0)|x p∗)

holds for all l = 2, . . . , N and m = N − l
(iii) The value α from Theorem 6.15 satisfies α ∈ (0, 1]

Then Assumption 9.32 holds and conditions (9.16) and (9.17) of Corollary 9.34 are
satisfied. Hence, the closed-loop solutions are well defined and converge to x∗.

Proof In Cases (1) and (2) we first show that Assumption 9.32 holds by induction
over n. For n = 0, this follows immediately from the assumption that the initialization
was successful. For n → n+1, note that the choice of the terminal constraints yields
x p
u p
n
(N , x p

n) ∈ X
p
0 .Nowbyassumptionweknow that the neighboringdata providedby

subsystem p has been taken into account in the optimization of all other subsystems.
Hence, at sampling instant n+1 the control sequence ũ p = (u p

n (1), . . . , u
p
n (N −1))

is still admissible for x p
n+1 = x p

u p
n
(1, x p

n) and yields x p
ũ p (N−1, x p

n+1) = x p
u p
n
(N , x p

n) ∈
X

p
0 . Moreover, all predictions for subsystems q 	= p contained in the neighboring

data end up in X
q . From the discussion after Assumption 9.38 it follows that the

control (u p
n (1), . . . , u

p
n (N −1), ux p)with ux p from Assumptions 9.38(iii) with x p =

x p
u p
n
(N , x p

n) is admissible for initial condition xn+1, i.e., it lies in U
p,N ,ext
X

p
0

(xn+1, i p).
Thus, this set is not empty and the optimization for subsystem p will find an optimal
control sequence u p

n+1 from this set.
To show that the assumptions of Corollary9.34 apply, first note that by definition

of J p
N ,n the lower bound on J p

N ,n in (9.16) holds with α
p
1 = α

p
3 . Now inequality (9.17)

follows for α = 1 with the same arguments as in the proof of Theorems 5.5 and 5.13
using Assumption 9.38(iii) and straightforward extensions of Lemmas 5.4 and 5.12
to the individual subsystems, respectively.

In Case (3), Assumption 9.32 holds because condition (i) implicitly demands that
the set Ũp,l,ext

X
p
0

(x p
0 , i p, u p

n−1(· + 1),m) is not empty. For l = N and m = 0, however,

this set coincides with Ũ
p,N ,ext
X

p
0

(x p
0 , i p) which is thus not empty and the algorithm

will find u p
n from this set.

9.5 Communication and Coordination Schemes 287

Inequalities in (i) and (ii) ensure that the values λk = 	p(xup
n
, u p

n) and ν =
J p
N (x p

n , u p
n) satisfy the constraints (6.11) and (6.12). More precisely, (i) ensures the

inequalities (6.12) while (ii) ensure the inequalities (6.11) (for a more detailed ex-
planation of this fact we refer to [17, Theorems 5.2 and 5.3], noting that (i) and
(ii) coincide with Conditions (i) and (ii) in [17, Theorem 5.3]). Now, the assertion
follows by a straightforward adaptation of the proof of Theorem 6.15. �

Remark 9.40 We can extend these results to the time varying case. To this end, in
Case (1) of Proposition 9.39 we replace Xp

0 = {x p
∗ } by X

p
0 (n) = {x p,ref(n)}.

In Case (2) of Proposition 9.39, we can cover the time varying setting by utilizing
the tracking reference x p,ref. This allows us to replace Xp

0 by X
p
0 (n) and generalize

the conditions in Assumption 5.9 according to Remark 5.17.
Last, in Case (3) of Proposition 9.39, the functionals Jl become time varying.

However, this does not affect the reasoning as long as the functions BK do not
depend on the current time.

An obvious advantage of Algorithm 9.36 is that it can be based on local optimal
control problem (OCPpN)with and without terminal conditions and does not require
any particular properties of the involved functions. The method, however, also shows
severe drawbacks. For one, it is sequential by nature. In a realistic application, the
computing times to solve the problems (OCPpN)would add up with the number of
subsystems. Hence, the algorithm is well applicable for small P . Although it was
shown in [28, Sect. 7] that the computing times using Algorithm 9.36 are lower than
the necessary time to solve the respective centralized problem, the scaling problem
remains. Second, the conditions needed for obtaining convergence in Proposition
9.39 are very demanding. In the terminal conditioned case, the initialization requires
to find a feasible solution for all subsystems p ∈ P . More precisely, the terminal
conditions shift the complete coordination problem into the initialization phase, that
is finding a feasible solution for all subsystems which arrives in the terminal set at the
end of the prediction horizon. This taskwill in general require additional coordination
between the subsystems which compromises the relatively low coordination effort
in Step (2) of the algorithm. In the case without terminal conditions, the solutions
do not need to reach the terminal constraint sets, which renders the initialization less
demanding. Here, however, the conditions (3)(i) and (ii) in Proposition 9.39 are very
demanding. We essentially require each subsystem p to be flexible enough to find an
admissible extension of its prediction from the last step,which can be “squeezed” into
the already decidedmoves of the subsystems q < p. Moreover, such solutions do not
only need to exist, but in addition they also need to satisfy the inequalities demanded
in (3)(i) and (ii). While for simple systems this can be rigorously verified (see, e.g.,
Sect. 6 in [17]), for more complex systems this appears to be a very difficult task.
Finally, regardless of whether terminal conditions are imposed, the stability analysis
of Algorithm 9.36 has the disadvantage that it relies on Corollary 9.34, i.e., each
local value JN ,n must decrease. Hence, we cannot verify stability in situations like
those illustrated in Example 9.35.

288 9 Distributed NMPC

After the discussion of the sequential approach of Richards and How, we now
briefly outline the dual decompositionmethod. As already stated before, this method
is (almost) completely parallel, i.e., all subproblems are solved at the same time. To
introduce the method, we restrict ourselves to problems with X = R

d and U = R
m ,

where the set UN
X0

(x0) can be represented by linear equalities, i.e.,

minimize JN (x0, u(·))
with respect to u(·) subject to Qx0 + Ru(·) = c

(9.23)

where the matrices Q and R together with the vector c (all of appropriate dimen-
sions) represent the constraints u(·) ∈ U

N
X0

(x0). We note that for representing these
constraints in form of an equation, this equation needs to contain all information
about the dynamics of the system. Hence, the linear form of the equation in the last
line in (9.23) implies that the formulation is limited to linear dynamics and con-
straints, which we have done in order to simplify the presentation. In general, dual
decomposition demands suitable convexity properties of the optimization problem
to be solved. Therefore, the approach is not strictly limited to linear dynamics and
constraints, but the type of nonlinearities that can be considered is rather limited.
As a consequence, nonlinear constraints and dynamics must be approximated by
linearizations, which is an obvious drawback of the method.

We also assume the cost function JN to be additively separable, i.e., that

JN (x0, u(·)) =
P∑

p=1

J p
N (x p

0 , u p(·))

holds,where J p
N can be evaluatedwithout the knowledge of xq (·) and uq(·) for q 	= p.

This is clearly restrictive, however, the assumption can always be satisfied by intro-
ducing auxiliary optimization variables xq,p(·) and uq,p(·) in subsystem p, which
represent the state and control of subsystem q, and adding respective constraints
which enforce xq,p(·) = xq(·) and uq,p(·) = uq(·).

For an illustration of this procedure, consider Example 9.1. Here we have two
subsystems with dynamics

f 1(x1, x2, u2) = x1 + x2 + u2/2

f 2(x2, u2) = x2 + u2

and thus the knowledge of x2(·) and u2(·) is needed in order to compute a prediction
x1u(·). Introducing the auxiliary state x2,1 and control u2,1, we can express the new
dynamics for subsystem 1 as

f 1(x1, x2,1, u2,1) = x1 + x2,1 + u2,1/2.

9.5 Communication and Coordination Schemes 289

All elements of the sequences x2,1(·) and u2,1(·) become new optimization variables,
which are subject to the additional constraints

x2,1(·) = x2(·), x2,1(·) = x2(·).

This connection is expressed as part of the constraint equation in (9.23).
The basis for applying dual decomposition is the separation of the minimization

and constraint satisfaction into two steps. Consequently, the minimization of the J p
N

can be done completely in parallel. The separation is achieved by the so-called dual
ascent method, which is based on the Lagrange function

L (x0, u(·), λ) = JN (x0, u(·)) + λ� (Qx0 + Ru(·) − c)

with dual

g(λ) = inf
u(·)

L (x0, u(·), λ) . (9.24)

In the literature, (9.23) is typically referred to as primal problem,whereasminimizing
(9.24) is called dual problem. By strong duality [3, Appendix B.4], we have that the
optimal cost function values of these two problems are identical. Moreover, we can
derive a minimizer u�(·) of (9.23) via

u�(·) = argmin
u(·)

L(x0, u(·), λ�),

if there exists a unique solution λ� = argminλg(λ).
Instead of solving the two problems (minimization of g and minimization of L)

separately, we now compute the solution iteratively using a two stage scheme, the
so-called dual ascent method. In the first stage, the primal variable is updated to
approach a minimizer satisfying the constraints

uk+1(·) := argmin
u(·)

L
(
xu(·, x0), u(·), λk

)
. (9.25)

In the second step, the Lagrange multiplier, i.e., the price of violating the constraints
is adjusted using

λk+1 := λk + ρk
(
Qx0 + Ruk+1(·) − c

)
(9.26)

where ρk > 0 is the step size. Effectively, (9.26) is a step of a steepest ascent method
for solving the dual problem, hence the name dual ascent.

Dual decomposition refers to the technique of decomposing the Lagrangian to
solve (9.25) in parallel for the subsystems p ∈ P . To this end, we split the matrices

Q = [
Q1 · · · QP

]
and R = [

R1 · · · RP
]

290 9 Distributed NMPC

such that we obtain

Qx0 =
P∑

p=1

Qpx p
0 and Ru(·) =

P∑
p=1

Rpu p(·).

Then, defining the Lagrangian of the pth subsystem as

L p
(
x p
0 , u p(·), λ) = JN (x0, u(·)) + λ�

(
Qpx p

0 + Rpu p(·) − 1

P
c

)
(9.27)

one easily sees that

L (x0, u(·), λ) =
P∑

p=1

L p
(
x p
0 , u p(·), λ)

.

Since the problems of minimizing L p
(
x p
0 , u p(·), λ)

with respect to u p(·) are com-
pletely decoupled, they can be carried out in parallel on subsystem level. This leads
to the following algorithm:

Algorithm 9.41 (Parallel Distributed NMPC algorithm, Dual Decomposition)
At each sampling time tn , n = 0, 1, 2 . . .:
At subsystem:

(1) For each subsystem p ∈ P measure the state x p(n) of the subsystem and set
x p
0 := x p(n), λ0 := 0 and k := 0.

(2) For each subsystem p ∈ P do

(2a) Collect data (0, n, λk) containing external data and Lagrange multiplier
(2b) Compute a minimizer for the Lagrangian (9.27) of the local optimal control

problem

u p,k+1(·) := argmin
u p(·)

L p
(
x p
0 , u p(·), λk

)

and denote the obtained control sequence by u p
n (·).

(2c) Send data
(
p, n, x p

0 , u p,k+1(·)) to central entity.

At central entity:

(3a) Collect subsystem data

i p,k+1 = (
p, n, x p

0 , u p,k+1
)

for all p ∈ P.

(3b) Update Lagrange multiplier

9.5 Communication and Coordination Schemes 291

λk+1 := λk + ρk
(
Qx0 + Ru(·)k+1 − c

)

(3c) Send Lagrange multiplier as data package (0, n, λk+1) to all subsystems
p ∈ P . Set k := k + 1 and go to (2) unless a termination criterion is sat-
isfied.

At subsystem:

(4) For each subsystem p ∈ P define the NMPC-feedback value μ
p
N

(
x p
0

) :=
u p
n (·)(0) and use this control value in the next sampling period.

Under suitable conditions, convergence of the loop in (2), (3) toward a solution
of (9.23) can be ensured. Here we do not go into details but only refer to, e.g., [1,
Chap. 6] or [2, Sect. 2 and the references therein]. For an analysis of a continuous
time version of a dual decomposition algorithm, see also [24].

Provided that the dual decomposition algorithm delivers a solution to the central-
ized problem, the stability and suboptimality analysis of Algorithm 9.41 is straight-
forward. Indeed, since the resulting solutions are identical to the centralized ones,
each of the stability and suboptimality results from Chaps. 5–8 applied to the cen-
tralized problem satisfies the respective assumptions.

From the construction of Algorithm 9.41, we directly see that all subsystems are
computing their minimizers in parallel. Therefore, there is no fixed order of sub-
systems rendering them to be equal, which is different from Algorithm 9.36 where
subsystems are ordered. If the dynamics of the subsystems are coupled, then par-
allel execution of the optimization typically renders neighboring data to be invalid,
i.e., for each iterate k of the optimization we have a mismatch between the pre-
dicted states xq(·) and its estimate the xq,p(·) in subsystem p. The coupling via the
Lagrange multipliers, however, causes this mismatch to converge to 0 as the iteration
proceeds. Moreover, during the initial phase (i.e., the first local optimization at time
t0), the algorithm is not required to find a feasible solution in one step, but for a
non-feasible solution feasibility will be restored in the dual decomposition iteration
(2)–(3). Hence, the initial step in Algorithm 9.41 is less demanding than in Algorithm
9.36.

Besides the considerable structural assumptions on the problemwhich are needed
in order to guarantee convergence, the drawbacks ofAlgorithm 9.41 are its communi-
cation load and the additional central entity. In contrast to Algorithm 9.36, each sub-
systemmay send data multiple times within each sampling interval, cf. Fig. 9.7. For a
large number of participating subsystems, this may lead to congestion in the commu-
nication channel and respective delays and packet dropouts. Hence, the scheme may
not be real-time computable or result in infeasible solutions. The additional central
entity is easy to implement for small problems in plants or local energy networks.
Yet, it is particularly difficult to realize for large-scale systems such as in street traffic.
Here, a vast number of road side units would have to be deployed to form a backbone
communication system, which is a major infrastructure investment.

292 9 Distributed NMPC

9.6 Notes and Extensions

Within this chapter, we presented distributed NMPC as a problem driven by two
recent developments: on one side, distributed settings such as traffic, production, or
energy systems require improved coordination and usage of shared resources due
to economic or ecologic pressure. On the other side, centralized solutions become
more complex and real-time requirements cause researchers to design distributed
implementations to lower the computational burden. In both cases, links in dynamics,
costs, and constraints may arise, which need to be considered in order to guarantee
stability of the overall system. In what follows, we mention works which extend and
complement this chapter analytically and algorithmically.

Within the literature, many articles focus on particular combinations of links in
dynamics, costs, and constraints between subsystems. Insights into the analytical
part are given, as mentioned, in the compendium of Rawlings and Mayne [25] for
the linear case in discrete time, where the authors display interactions and links
between game theory, control theory, and distributed optimization. In the work of
Farina, Betti, and Scattolini [14], the entire range of links in dynamics, costs, and
constraints is considered for the linear continuous time setting. Regarding links in
costs and constraints, Camponogara and Scherer [6] extended the linear discrete
time case to dynamics with outputs. The introduced output constraints are essential
to model systems, for which we cannot measure the entire state such as production
or traffic systems. Last, the case of nonseparable costs and coupled constraints was
elaborated by Chiang, Nedic and Scaglione [7].

Within this chapter we presented the foundations of distributed MPC in a perfect
setting, i.e., with perfect communication and evaluation capabilities, which is also a
typical setting within the literature [2, 25, 28]. In particular, we assumed that each
subsystem can communicate with any other subsystem without delays, corruptions,
or losses of data and as often as required by the coordination scheme. In [9], Dold
and Stursberg proposed an extension of the robustness approach by Kerrigan [18]
using robust strong feasibility to the distributed case of linear discrete time systems
with links in constraints and costs.

From the algorithmic point of view, many new methods have been proposed
extending both the serial approach by Richards and How [27, 28] and the dual
decomposition approach and its variants [2]. Regarding the latter, main motivation
for our description was given by Giselsson and Rantzer [16], who analyzed the
usage of dual decomposition for linear MPC problems. Müller, Reble and Allgöwer
[21] extended the setting of Richards and How and considered the nonlinear discrete
time setting with links in costs and constraints. Instead of solely focusing on stability,
they also considered the cooperative tasks of consensus and synchronization. In [29],
Savorgnan, Romani, Kozma, and Diehl proposed an extension of multiple shooting
in the direction of dual decomposition approach and the methods of multipliers
for nonlinear dynamics coupled by inputs and outputs, which allows for structure
exploitation and a respective speedup in the computing time. Considering a spatial
instead of time separation, Kouzoupis, Quirynen, Houska, and Diehl [19] proposed

9.6 Notes and Extensions 293

an alternative to the methods of multipliers to improve distributed solution methods
for problems with linked constraints and costs. O’Donoghue, Stathopoulos and Boyd
[22] split the operations of the method of multipliers and showed that under certain
conditions an implementation using FPGAs is possible, which allows for very high
sampling rates.

The last issue which is not covered in this chapter is the optimal choice regard-
ing the partitioning of the overall system. Regarding naturally distributed systems,
Scattolini [30] outlined a hierarchical structure to cope with the communication
load, but left the subsystem structure intact. Motee and Sayyar-Rodsari [20] describe
a method to optimally partition the dynamics, which they balance against the cost of
the closed loop.

Problems

1. Reconsider Example 9.11 with dynamics

x(n + 1) =
(
x1(n + 1)
x2(n + 1)

)
=

(
1 0
0 1

) (
x1(n)

x2(n)

)
+

(
u1(n)

u2(n)

)
=: f (x(n), u(n)).

constraints |x1 − x2| ≥ δ > 0 and costs

JN (x0, u(·)) =
N−1∑
k=0

⎛
⎝ P∑

p=1

‖x p
u p (k, x

p
0 , i p) − x p

∗ ‖2 + ‖u p(k)‖2
⎞
⎠

+
P∑

p=1

‖x p
u p (N , x p

0 , i p) − x p
∗ ‖2

with x10 	= x20 and x1∗ = x2∗ . Show that Assumption 9.32 holds and explain why
Theorem 9.33 still fails to apply.

2. Consider the inverted pendulum from Example 2.10 with dynamics

ẋ1(t) = x2(t)

ẋ2(t) = u(t)

ẋ3(t) = x4(t)

ẋ4(t) = −g

l
sin(x3(t)) − u(t) cos(x3(t)) − kL

l
x4(t)|x4(t)| − kRsgn(x4(t))

Extending the single pendulum to a p pendulum (for each pendulum the tip
is attached to the end of the previous pendulum) and separating cart and each
pendulum into subsystems, show that the Algorithm of Richards and How can
only be applied for one order of subsystems.

294 9 Distributed NMPC

3. Consider two cars modeled as points in the plane with dynamics

x p(n + 1) = x p(n) + u p(n)

where x p(n) ∈ R
2 and u p(n) ∈ [−δ, δ] ⊂ R

2. Assume that the constraints are
given by ‖x1(n) − x2(n)‖2 ≥ 1 and the cost function is defined via

J p
N (x p, u p) =

N−1∑
k=0

‖x p
u p (k; x p

0) − x p
∗ ‖2

‖x1∗ − x2∗‖2 ≥ 1. Given δ = 1, what is the minimal horizon N such that for each
p we observe a decrease in J p

N for all feasible initial values? Does the minimal
horizon change for smaller δ?

References

1. Bertsekas, D.P.: Nonlinear Programming, 2nd edn, Athena Scientific, Belmont (2003)
2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical

learning via the alternation direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1–122 (2011)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge
(2004)

4. Camponogara, E., Jia, D., Krogh, B., Talukdar, S.: Distributed model predictive control. IEEE
Control Syst. Mag. 22, 44–52 (2002)

5. Camponogara, E., de Lima, M.: Distributed optimization for MPC of linear networks with
uncertain dynamics. IEEE Trans. Autom. Control 57(3), 2613–2618 (2012)

6. Camponogara, E., Scherer, H.: Distributed optimization for model predictive control of linear
dynamic networks with control-input and output constraints. Autom. Sci. Eng. 8(1), 233–242
(2011)

7. Chang, T.H., Nedic, A., Scaglione, A.: Distributed constrained optimization by consensus-
based primal-dual perturbation method. IEEE Trans. Autom. Control 59(6), 1524–1538 (2014)

8. Cui, H., Jacobsen, E.: Performance limitations in decentralized control. J. Process Control
7(12), 485–494 (2002)

9. Dold, J., Stursberg, O.: Distributed predictive control of communicating and platooning vehi-
cles. In: Proceedings of the 48th IEEE Conference on Decision and Control held jointly with
the 28th Chinese Control Conference CDC/CCC2009, pp. 561–566 (2009)

10. Dold, J., Stursberg, O.: Distributed Predictive Control of Communicating and Platooning Ve-
hicles. In: Proceedings of the 48th IEEE Conference on Decision and Control held jointly with
the 28th Chinese Control Conference CDC/CCC 2009, pp. 561–566 (2009)

11. Dunbar, W.: Distributed receding horizon control of dynamically coupled nonlinear systems.
IEEE Trans. Autom. Control 52(7), 1249–1263 (2007)

12. Dunbar, W., Desa, S.: Assessment and future directions of nonlinear model predictive control,
chap. DistributedMPC for Dynamic Supply ChainManagement, pp. 607–615. Springer, Berlin
(2007)

13. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Con-
nected World. Cambridge University Press, Cambridge (2010)

14. Farina, M., Betti, G., Scattolini, R.: Distributed predictive control of continuous-time systems.
Syst. Control Lett. 74, 32–40 (2014)

References 295

15. Findeisen, R., Allgöwer, F.: Computational Delay in Nonlinear Model Predictive Control. In:
Proceedings of the International Symposium on Advanced Control of Chemical Processes
(2004)

16. Giselsson, P., Rantzer, A.: Distributed Model Predictive Control with Suboptimality and Sta-
bility Guarantees. In: Proceedings of the 49th IEEE Conference on Decision and Control
CDC2010, pp. 7272–7277 (2010)

17. Grüne, L., Worthmann, K.: A distributed NMPC scheme without stabilizing terminal con-
straints. In: Johansson, R., Rantzer, A. (eds.) Distributed Decision Making and Control, pp.
261–287. Springer, New york (2012)

18. Kerrigan, E.C.: Robust constraint satisfaction: Invariant sets and predictive control. PhDThesis,
University of Cambridge (2000)

19. Kouzoupis, D., Quirynen, R., Houska, B., Diehl, M.: A block based ALADIN scheme for
highly parallelizable direct optimal control. In: Proceedings of the 2016 American Control
Conference, Boston, USA, pp. 1124–1129 (2016)

20. Motee, N., Sayyar-Rodsari, B.: Optimal partitioning in distributedmodel predictive control. In:
Proceedings of the 2003 American Control Conference, vol. 6, pp. 5300–5305. IEEE (2003)

21. Müller, M.A., Reble, M., Allgöwer, F.: Cooperative control of dynamically decoupled systems
via distributed model predictive control. Int. J. Robust Nonlinear Control 22(12), 1376–1397
(2012)

22. O’Donoghue, B., Stathopoulos, G., Boyd, S.: A splitting method for optimal control. IEEE
Trans. Control Syst. Technol. 21(6), 2432–2442 (2013)

23. Pannek, J.: Parallelizing a state exchange strategy for noncooperative distributed NMPC. Syst.
Control Lett. 62(1), 29–36 (2013)

24. Rantzer, A.: Dynamic dual decomposition for distributed control. Proc. Am. Control Conf.
2009, 884–888 (2009)

25. Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill Publishing,
Madison (2009)

26. Rawlings, J., Stewart, B.: Coordinating multiple optimization-based controllers: New oppor-
tunities and challenges. J. Process Control 18(9), 839–845 (2008)

27. Richards, A., How, J.: A Decentralized Algorithm for Robust Constrained Model Predictive
Control. In: Proceedings of the American Control Conference, pp. 4261–4266 (2004)

28. Richards, A., How, J.: Robust distributed model predictive control. Int. J. Control 80(9), 1517–
1531 (2007)

29. Savorgnan, C., Romani, C., Kozma, A., Diehl, M.: Multiple shooting for distributed systems
with applications in hydro electricity production. J. Process Control 21(5), 738–745 (2011)

30. Scattolini, R.: Architectures for distributed and hierarchical model predictive control a review.
J. Process Control 19(5), 723–731 (2009)

31. Singh, V., Atrey, P., Kankanhalli, M.: Coopetitive multi-camera surveillance using model pre-
dictive control. Mach. Vis. Appl. 19(5), 375–393 (2008)

32. Stewart, B., Venkat, A., Rawlings, J.,Wright, S., Pannocchia, G.: Cooperative distributedmodel
predictive control. Syst. Control Lett. 59(8), 460–469 (2010)

33. Venkat, A.: Distributed model predictive control: Theory and applications. PhD Thesis in
Chemical Engineering, University of Wisconsin-Madison (2006)

34. Venkat, A., Hiskens, I., Rawlings, J.,Wright, S.: DistributedMPC strategies with application to
power system automatic generation control. IEEE Trans. Control Syst. Technol. 16(6), 1192–
1206 (2008)

35. Venkat, A., Rawlings, J., Wright, S.: Stability and Optimality of Distributed Model Predictive
Control. In: 44th IEEE Conference on Decision and Control and European Control Conference
CDC-ECC ’05, pp. 6680–6685 (2005)

36. Zavala, V.M., Biegler, L.T.: The advanced-step NMPC controller: optimality, stability and
robustness. Automatica 45(1), 86–93 (2009)

Chapter 10
Variants and Extensions

The results developed so far in this book can be extended in many ways. In this
chapter, we present a selection of possible variants and extensions. Some of these
introduce new combinations of techniques developed in the previous chapters, others
relax some of the previous assumptions in order to obtain more general results or
strengthen assumptions in order to derive stronger results. In order to make the
presentation concise,we limit ourselves to stabilizingNMPCas presented inChaps. 5
and 6. Several sections contain algorithmic ideas which can be added on top of the
basic NMPC schemes from the previous chapters. Parts of this chapter contain results
which are somewhat preliminary and are thus subject to further research. Some
sections have a survey-like style and, in contrast to the other chapters of this book,
proofs are occasionally only sketched with appropriate references to the literature.

10.1 Schemes with Mixed Terminal Conditions

The previous Chaps. 5 and 6 have featured two extreme cases, namely NMPC
schemes with terminal constraints X0 and costs F on the one hand and schemes
without both X0 and F on the other hand. However, it appears natural also to con-
sider terminal conditions of intermediate or mixed type, namely schemes in which
(nonequilibrium) terminal constraint sets X0 but no terminal costs F are used and
schemes in which terminal costs F but no terminal constraints sets X0 are used.

Schemes with terminal constraints X0 but without terminal costs F appear as a
special case of Algorithm3.10 (or its time varying counterpart 3.11) with (OCPN,e)
= (5.15) and F ≡ 0. For this setting, it is not reasonable to expect that Assump-
tion5.9(ii) holds. Consequently, the argument used in the proof of Theorem5.13 does
not apply; in fact, we are not aware of results in the literature analyzing such schemes
with the techniques from Chap.5.

Fortunately, the stability analysis in Chap.6 provides a remedy to this prob-
lem. Observe that the main structural assumption on the optimal control sequences

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_10

297

298 10 Variants and Extensions

needed in the fundamental Lemmas6.10 and 6.11 in Chap.6 is that each admissible
control sequence u ∈ U

N (x) can be extended to an admissible control sequence
û ∈ U

N+K (x) for each K ≥ 1. Since Lemma5.2(i) ensures this property for UN
X0

(x)
provided X0 is viable, we can incorporate the terminal constraint set X0 into the
analysis from Chap.6.

As a consequence, using the optimal value function with terminal constraints
u ∈ U

N
X0

(x) in Assumption6.3 or replacing U
N (x) by U

N
X0

(x) in Assumption6.5
and assuming Assumption5.9(i), i.e., viability of X0, all results in Chap.6 carry
over to the scheme with terminal constraint set. In particular, the stability results
Theorem6.20, Corollary6.21, Theorems6.24 and 6.37 remain valid. However, as in
Theorem5.13, the resulting controllerμN is only defined on the feasible setXN from
Definition3.9.

This combined scheme inherits certain advantages and disadvantages from both
schemes. From the terminal constrained scheme, we inherit that the resulting con-
troller μN is only defined on the feasible set XN . On the other hand, as discussed
before Lemma5.3, we do not need to assume viability of X but only for the termi-
nal constraint set X0, which thus provides an alternative to the recursive feasibility
results without assuming viability of X in Sects. 7.1, 7.2 and 7.3.

From the unconstrained scheme we inherit the advantage that no terminal cost
satisfying Assumption5.9(ii) needs to be constructed. On the other hand, we need
to ensure that the assumptions of one of the mentioned stability results from Chap.6
hold whose rigorous verification may be involved, cf. also Sect. 6.6. For a more com-
prehensive discussion on advantages and disadvantages of different NMPC schemes
we refer to Sect. 7.4.

Away of imposing terminal constraints without terminal costs which can be found
in the literature is via so called contractive constraints. Here the terminal constraint
set depends on the initial value x0 of the optimal control problem (OCPN,e) via

X0 = {x ∈ X | |x |x∗ ≤ γ |x0|x∗ }

for some constant γ ∈ (0, 1), see e.g., the book of Alamir [1] or the works of de
Oliveira Kothare and Morari [23] and De Nicolao, Magni and Scattolini [3]. How-
ever, for these constraints stability is only guaranteed if either the whole optimal
control sequence (as opposed to only the first element) is applied or if the optimiza-
tion horizon is treated as an optimization variable and the contractivity condition is
incorporated into the optimization objective, see [1, Chap. 4]. Since these approaches
do not conformwith theMPC paradigm used throughout this book, we do not discuss
their analysis in detail.

Schemes with terminal cost F but without terminal constraintX0 have been inves-
tigated in several places in the literature, for instance in Grimm, Messina, Tuna and
Teel [9] and Jadbabaie and Hauser [19] (for more information on these references
see also the discussions at the end of Sect. 6.1 and in Sect. 6.9). In both references,
stability results for such schemes are derived in which only positive definiteness of F
is assumed. Roughly speaking, these references show that the addition of F does not

10.1 Schemes with Mixed Terminal Conditions 299

destroy stability.While the authors emphasize the potential positive effects of adding
such costs, they do not rigorously analyze these positive effects. In contrast to this,
in the work of Parisini and Zoppoli [28] the specific properties of the terminal cost
described in Remark5.15 were exploited in order to show stability. The proof in [28]
uses that under suitable conditions and for sufficiently large optimization horizon N
for all initial values from a given region the open-loop optimal trajectories end up in
the terminal constraint set without actually imposing this as a condition. The same
proof idea has been generalized later by Limón, Alamo, Salas and Camacho [21] for
a more general terminal cost.

Here, we outline an approach from Grüne and Rantzer [16] which we combine
with the analysis technique fromChap.6. This approach rigorously shows the positive
effect of adding a terminal cost also in the absence of terminal constraints. In contrast
to [28] or [21], the stability property is not restricted to sets of initial values for which
the open-loop optimal trajectories end up in a terminal constraint set. However, the
fact that this happens for a set of initial values around the origin will be used in
our proof. We start from a terminal cost function F satisfying Assumption5.9(ii)
with a forward invariant neighborhood X0 of x∗, however, we will not use X0 as a
terminal constraint set. Instead, we assume that F ≡ c > 0 holds on the boundary
∂X0 with c ≥ supx∈X0

F(x). This is, for instance, satisfied if F is constructed from
a linearization via linear-quadratic techniques according to Remark5.15 and X0 is a
sublevel set of F . Then, we may extend F continuously to the whole setX by setting
F(x) := c for all x ∈ X \ X0.

With this setting, we obtain the following theorem:

Theorem 10.1 (Stability with mixed terminal conditions) Let the assumptions of
Theorem6.37 be satisfied for the NMPC Algorithm3.1 without terminal conditions.
Let F : X → R

+
0 and assume that Assumption5.9 holds for some set X0 containing

a ball Bη(x∗) for some η > 0. Assume, furthermore, that that F ≡ c holds outside
X0 with c ≥ supx∈X0

F(x) and that F(x) ≤ α̃2(|x |x∗) holds for all x ∈ X0 and some
α̃2 ∈ K∞. Consider the NMPC Algorithm3.10 with (OCPN,e) = (5.15) for this F
but without terminal constraints, i.e., with X0 = X in (5.15).

Then, the nominal NMPC closed-loop system (3.5) with NMPC feedback law μN

is semiglobally asymptotically stable on X with respect to the parameter N in the
sense of Definition6.33(i).

Proof We consider the following three optimal control problems

(a) (5.15) with X0 = X, which generates μN in this theorem
(b) (5.15) with X0 from Assumption5.9 for F , which generates μN in Theorem5.5
(c) (OCPN), which generates μN in Theorem6.20

and denote the respective optimal value functions by V (a)
N , V (b)

N and V (c)
N . For each

x ∈ X we obtain the inequalities V (c)
N (x) ≤ V (a)

N (x) ≤ V (c)
N (x) + c and, for x ∈ XN

(where XN denotes the feasible set from Definition3.9 for Problem (b)), we have
V (a)
N (x) ≤ V (b)

N (x).

300 10 Variants and Extensions

In order to show semiglobal asymptotic stability, i.e., Definition6.33(i), we fix
� > 0. For an arbitrary x ∈ X we consider the optimal control u� for Problem (a)
(which impliesμN (x) = u�(0) forμN from this theorem) and distinguish two cases:

(i) xu� (N , x) ∈ X0: This implies u� ∈ U
N
X0

(x) and hence x ∈ XN and V (a)
N (x) =

V (b)
N (x). Using xu� (1, x) = f (x, μN (x)) ∈ XN and V (a)

N ≤ V (b)
N on XN , the proof of

Theorem5.5 yields

V (a)
N (x) = V (b)

N (x) ≥ �(x, μN (x)) + V (b)
N (f (x, μN (x)))

≥ �(x, μN (x)) + V (a)
N (f (x, μN (x))). (10.1)

This inequality will be used below in order to conclude asymptotic stability. Before
we turn to case (ii), we show that case (i) applies to all points x ∈ Bδ(x∗) for some
δ > 0.

Since (5.20) shows V (b)
N (x) ≤ F(x) on X0, we obtain V (a)

N (x) ≤ V (b)
N (x) ≤

α̃2(|x |x∗) for x ∈ Bη(x∗) ⊆ X0. For δ = min{η, α̃−1
2 (c/2)} this implies V (a)

N (x) ≤
c/2 for all x ∈ Bδ(x∗). On the other hand, xu� (N , x) /∈ X0 implies F(xu� (N , x)) = c
and thus V (a)

N (x) ≥ c. Hence, case (i) occurs for all x ∈ Bδ(x∗).
(ii) xu� (N , x) /∈ X0: This implies F(xu� (N , x)) = c and thus V (a)

N (x) = V (c)
N (x)+

c. This implies that u� is an optimal control for V (c)
N (x) and from the proof of

Theorem6.37 we obtain that (5.1), i.e.,

V (c)
N (x) ≥ �(x, μN (x)) + αV (c)

N (f (x, μN (x)))

holds for all x ∈ Y = S \ P with S and P chosen as in the proof of Theorem6.37.
The sets S and P are forward invariant and by choosing N ∈ N sufficiently large we
obtain α > 0, B�(x∗) ⊆ S and P ⊂ Bδ(x∗) for � fixed above and δ defined
at the end of case (i). Since V (a)

N (x) = V (c)
N (x) + c and V (a)

N (f (x, μN (x))) ≤
V (c)
N (f (x, μN (x))) + c we obtain

V (a)
N (x) ≥ �(x, μN (x)) + αV (a)

N (f (x, μN (x))) (10.2)

for all y ∈ Y and some α > 0.
Now, the choice of N and P implies that for x ∈ S \ Bδ(x∗) inequality (10.2)

holds while for x ∈ Bδ(x∗) inequality (10.1) holds. This implies that Theorem4.14
is applicable with S(n) = S which yields semiglobal practical stability using
Lemma6.34(i). �

ComparingTheorem10.1withTheorem6.37, one sees that the benefit of including
the terminal cost F is that here we obtain semiglobal asymptotic stability while
without F we can only guarantee semiglobal practical asymptotic stability. Loosely
speaking, the unconstrained scheme guarantees stability up to the neighborhood
Bδ(x∗) while F ensures asymptotic stability inside this neighborhood.

10.2 Unconstrained NMPC with Terminal Weights 301

10.2 Unconstrained NMPC with Terminal Weights

Our next extension analyzes the effect of inclusion of terminal weights in (OCPN),
i.e., in NMPC schemes without stabilizing terminal conditions. Both in numerical
simulations and in practice one can observe that adding terminal weights can improve
the stability behavior of the NMPC closed loop. Formally, adding terminal weights
can be achieved by replacing the optimization criterion in (OCPN) by

JN (x0, u(·)) :=
N−2∑

k=0

�(xu(k, x0), u(k)) + ω�(xu(N − 1, x0), u(N − 1)) (10.3)

for some ω ≥ 1. For ω = 1 we thus obtain the original problem (OCPN). This
extension is a special case of (OCPN,e) in which we specifyX0 = X, F ≡ 0, ω1 = ω

andω2 = ω3 = · · · = ωN = 1. In a similar way, such a terminal weight can be added
to the respective time variant problem (OCPn

N) leading to a special case of (OCP
n
N,e).

Thus, all results developed in Chap.3 apply to this problem. Given that the optimal
control value u(N − 1) in (10.3) will minimize �(xu(N − 1, x0), u(N − 1)), this
approach is identical to choosing F(x) = ω�∗(x) and N = N − 1 in the terminal
cost approach discussed in the previous section, with �∗ from (6.2). However, the
specific structure of the terminal cost allows for applying different andmore powerful
analysis techniques which we explain now.

The terminal weight leads to an increased penalization of �(xu(N −1, x0), u(N −
1)) in JN and thus to an increased penalization of the distance of xu(N − 1, x0)
to x∗. Thus, for ω > 1 the optimizer selects a finite time optimal trajectory whose
terminal state xu� (N − 1, x0) has a smaller distance to x∗. Since our goal is that the
NMPC-feedback law μN steers the trajectory to x∗, this would intuitively explain
better stability behavior.

Formally, however, the analysis is not that easy because in closed loop we never
actually apply u�(1), . . . , u�(N − 1) and the effect of ω on u�(0) is not that obvious.
Hence, we extend the technique developed in Chap.6 in order to analyze the effect
of ω. To this end, we change the definition (6.7) of BN to

BN (r) :=
N−2∑

n=0

β(r, n) + ωβ(r, N − 1).

With this definition, all results in Sect. 6.3 remain valid for the extended problem.
Proposition6.13 remains valid, too, if we change (6.11) to

N−2∑

n=k

λn + ωλN−1 ≤ BN−k(λk), k = 0, . . . , N − 2.

302 10 Variants and Extensions

Fig. 10.1 Suboptimality
index α depending on
terminal weight ω

0 5 10 15 20
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

ω

α

If, furthermore, in the subsequent statements we replace
∑N−1

n=0 λn by
∑N−2

n=0 λn +
ωλN−1, then it can be shown that Proposition6.18 remains valid if we replace (6.18)
by

αω
N := 1 −

(γN − 1)(γ2 − ω)
N∏
i=3

(γi − 1)

N∏
i=2

γi − (γ2 − ω)
N∏
i=3

(γi − 1)

. (10.4)

The proof is similar to the proof of Proposition6.18 and can be found in Grüne,
Pannek, Seehafer and Worthmann [15].

With this expression, Theorem6.20 and its corollaries remain valid, except for the
inequalities VN (x)/α ≤ V∞(x)/α and CVN (x) ≤ CV∞(x), which do in general no
longer hold because of the additional weight which is present in VN but not in V∞.

Figure10.1 shows the values from (10.4) for an exponential β of type (6.4) with
C = 2 and σ = 0.55, optimization horizon N = 5 and terminal weights ω =
1, 2, . . . , 20. The figure illustrates that our analysis reflects the positive effect the
terminal weight has on the stability: while for ω = 1, 2 we obtain negative values for
α and thus stability cannot be ensured, for ω ≥ 3 stability is guaranteed. However,
one also sees that for ω ≥ 10 the value of α is decreasing, again. For more examples
for the effect of terminal weights, we refer to [15] and Example10.14, below.

10.3 Nonpositive Definite Stage Cost

In many regulator problems, one is not interested in driving the whole state to a
reference trajectory or point. Rather, often one is only interested in certain output
quantities. The following example illustrates such a situation.

10.3 Nonpositive Definite Stage Cost 303

Fig. 10.2 MPC closed-loop
trajectory with N = 5

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

Example 10.2 We reconsider Example2.2, i.e.,

(
x+
1
x+
2

)
=

(
x1 + x2 + u/2
x2 + u

)
=: f (x, u)

with stage cost
�(x, u) = x21 + u2.

In contrast to our standing assumption (3.2), no matter how we choose x∗ ∈ R
2, this

function does not satisfy �(x, u) > 0 for all x ∈ X and u ∈ U with x �= x∗. Instead,
following the interpretation of x1 and x2 as position and velocity of a vehicle in a
plane, the stage cost only penalizes the distance of the position x1 from 0 but not the
velocity.

However, the only way to put the system at rest with x1 = 0 is to set x2 = 0.
Hence, one may expect that the NMPC controller will “automatically” steer x2 to
0, too. The numerical simulation shown in Fig. 10.2 (performed with optimization
horizon N = 5 without stabilizing terminal conditions and with state constraints
X = [−1, 1]2 and control constraints U = [−1/4, 1/4]) confirms that this is exactly
what happens: the system is perfectly stabilized at x∗ = 0 even though the stage cost
does not “tell” the optimization problem to steer x2 to 0.

How can this behavior be explained theoretically? The decisive difference of �

from this example to � used in the theorems in the previous chapters is that the lower
bound �(x, u) ≥ α3(|x |x∗) imposed in all our results is no longer valid. In other
words, the stage cost is no longer positive definite.

Oneway to copewith this differencewould be to interpret the resulting problem as
an economic NMPC problem in the sense of Chap.8. Here, however, we proceed in
a more classical way and employ suitable observability and detectability conditions.

304 10 Variants and Extensions

For NMPC schemes with stabilizing terminal conditions satisfying Assump-
tion5.9, the notion of input/output-to-state stability (IOSS) provides a way to deal
with this setting. IOSS can be seen as a nonlinear detectability condition which
ensures that the state converges to x∗ if both the output and the input converge to
their steady state values, which can in turn be guaranteed by suitable bounds on �.
We sketch this approach for time invariant reference x ref ≡ x∗ with corresponding
control value u∗ satisfying f (x∗, u∗) = x∗.

To this end, we relax the assumptions of Theorem5.13 as follows: instead of
assuming (5.2) we consider an output function h : X → Y for another metric space
Y . In Example10.2 we have X = R

2, Y = R and h(x) = x1.
Now, we change (5.2) to

α1(|h(x)|y∗) ≤ VN (x) ≤ α2(|x |x∗) and �(x, u) ≥ α3(|h(x)|y∗) + α3(|u|u∗)

(10.5)

with y∗ = h(x∗) and |h(x)|y∗ = dY (h(x), y∗), where dY (·, ·) is the metric on Y . Fur-
thermore, we assume that the system with output y = h(x) is IOSS in the following
sense: There exist β ∈ KL and γ1, γ2 ∈ K∞ such that for each x ∈ X and each
admissible control u ∈ U

∞(x) the inequality

|xu(n, x)|x∗ ≤ max

{
β(|x |x∗ , n), γ1

(
max

k=0,...,n−1
|u(k)|u∗

)
, γ2

(
max

k=0,...,n−1
|y(k)|y∗

)}

holds for all n ∈ N0 with y(k) = h(xu(k, x)).
With these changed assumptions, the assertion of Theorem5.13 remains valid.

The proof relies on the fact that the function VN still satisfies

VN (x) ≥ �(x, μN (x)) + VN (f (x, μN (x))).

This implies that VN (xμN (n, x)) is monotone decreasing in n and since it is bounded
from below by 0 it converges to some value as n → ∞, although not necessarily to
0. However, similar to the proof of Theorem 9.33 the convergence of VN (xμN (n, x))
implies convergence of �(xμN (n, x), μN (xμN (n, x))) → 0 which by means of the
last inequality in (10.5) yields h(xμN (n, x)) → 0 and μN (xμN (n, x)) → 0. Now
the IOSS property can be used to conclude asymptotic stability of the closed loop.
For more details of this approach, we refer to the book of Rawlings and Mayne [29,
Sect. 2.7 and the references therein].

While the approach just sketched relies on stabilizing terminal conditions, the
simulation in Example10.2 shows that asymptotic stability can also be expected
without such conditions. For this setting, a stability proof was given in the work of
Grimm, Messina, Tuna and Teel [9] and the main result in this reference extends
Theorem6.37. Again, a detectability condition is used, but this time it is formulated
via a suitable auxiliary functionW : we assume the existence of a functionW : X →
R

+
0 which satisfies the inequalities

10.3 Nonpositive Definite Stage Cost 305

W (x) ≤ αW (|x |x∗)

W (f (x, u)) − W (x) ≤ −αW (|x |x∗) + γW (�(x, u))
(10.6)

for all x ∈ X, u ∈ U(x) and suitable functions αW , αW , γW ∈ K∞. In turn, we
remove the lower bound α3(|x |x∗) ≤ �∗(x) for �∗ from (6.2) from the assumptions
of Theorem6.37. Observe that whenever this lower bound holds, the detectability
condition is trivially satisfied with W ≡ 0, γW (r) = r and αW = α3. We note that
the requirements on the function W are similar but not identical to the conditions
on the storage function λ in the strict dissipativity condition (8.4). On the one hand,
the requirements 0 ≤ W (x) ≤ αW (|x |x∗) are stronger than the requirements on λ

and do not apply, e.g., to the storage function from Example8.8(ii). On the other
hand, the function γW gives additional flexibility in finding W compared to finding
λ satisfying (8.4).

Under these modified assumptions, it is shown in [9, Theorem 1] that the semi-
global practical stability assertion of Theorem6.37 remains valid. Furthermore, [9,
Corollarys 2 and 3] provide counterparts to Theorems6.24 and 6.35 which prove
semiglobal and “real” asymptotic stability, respectively. In contrast to the IOSS-
based result for stabilizing terminal conditions, the proof of [9, Theorem 1] yields a
Lyapunov function constructed from the optimal value function VN and the function
W from the detectability condition. In the simplest case, which occurs under suitable
bounds on the involvedK∞-functions, this Lyapunov function is given by VN +W .
In general, a weighted sum has to be used.

In Example10.2, numerical evaluation suggests that the detectability condition is
satisfied forW (x) = max{−|x1x2|+ x22 , 0}/2 and γW (r) = r . Plots of the difference
W (x) − W (f (x, u)) + �(x, u) in MAPLEtm indicate that this expression is positive
definite and can hence be bounded frombelowby some functionαW (|x |x∗); a rigorous
proof of this property is, however, missing up to now.

As discussed in Sect. 6.9, the analysis in [9] uses a condition of the form VN (x) ≤
αV (r) in order to show stability which, compared to our Assumptions6.3 or 6.5,
has the drawback to yield fewer information for the design of “good” stage costs
�. Furthermore, suboptimality estimates are not easily available. It would hence be
desirable to extend the statement and proof of Theorem6.20 to the case of nonpositive
definite stage costs. Oneway to achieve is to use themethods developed for economic
NMPC fromChap.8. Indeed, if we are able to find a functionW : X → R

+
0 satisfying

(10.6) with γW (r) = r , thenW is a storage function characterizing strict dissipativity
in the sense of Definition8.7 and we can apply the theorems from Chap.8. It would
be interesting to see whether a similar reasoning is possible also in case γW (r) �= r .

In this context, we would like to emphasize once again that even if the stage cost
� only depends on an output y, the resulting NMPC-feedback law is still a state
feedback law because the full state information is needed in order to compute the
prediction xu(·, x0) for x0 = x(n).

306 10 Variants and Extensions

10.4 Multistep NMPC-Feedback Laws

Next, we investigate what happens if instead of only the first control value u�(0) we
implement the firstm values u�(0), . . . , u�(m−1) before optimizing again. Formally,
we can write this NMPC variant as a multistep feedback law

μN (x, k) := u�(k), k = 0, . . . ,m − 1,

where u� is an optimal control sequence for problem (OCPN,e) (or one of its variants)
with initial value x0 = x . The resulting generalized closed-loop system then reads

x(n + 1) = f (x(n), μN (x([n]m), n − [n]m)), (10.7)

where [n]m denotes the largest product km, k ∈ N0, with km ≤ n. The value
m ∈ {1, . . . , N − 1} is called the control horizon.

When using stabilizing terminal conditions, the respective stability proofs from
Chap.5 are easily extended to this setting which we illustrate for Theorem5.13.
Indeed, from VN (x) ≤ VN−1(x) one immediately gets the inequality VN (x) ≤
VN−m(x) for each m ∈ {1, . . . , N − 1} and each x ∈ XN−m . Proceeding as in the
proof of Theorem5.13 using equality (3.20) inductively for N , N −1, . . ., N −m+1
and VN (x) ≤ VN−m(x) one obtains

VN (x) ≥
m−1∑

k=0

�(xμN (k, x), μN (k, x)) + VN (xμN (m, x)).

This shows that VN is a Lyapunov function for the closed-loop system at the times 0,
m, 2m, Since a similar argument shows that VN (xμN (k, x)) is bounded by VN (x)
for k = 1, . . . ,m − 1, this proves asymptotic stability of the closed loop.

Without stabilizing terminal conditions, our analysis can be adjusted to the mul-
tistep setting, too, by extending Proposition6.18 as well as the subsequent stability
results, accordingly. The respective extension of Formulas (6.18) and (10.4) (includ-
ing both control horizons m ≥ 1 and terminal weights ω ≥ 1) is given by

αω
N ,m = 1 −

(γm+1 − ω)
N∏

i=m+2
(γi − 1)

N∏
i=N−m+1

(γi − 1)

(
N∏

i=m+1
γi − (γm+1 − ω)

N∏
i=m+2

(γi − 1)

) (
N∏

i=N−m+1
γi −

N∏
i=N−m+1

(γi − 1)

) .

Again, the proof proceeds along the lines of the proof of Proposition6.18 but
becomes considerably more involved, cf. the paper by Grüne, Pannek, Seehafer and
Worthmann [15].

It is worth noting that these extended stability and performance results remain
valid if m is time varying, i.e., if the control horizon is changed dynamically, e.g.,

10.4 Multistep NMPC-Feedback Laws 307

Fig. 10.3 Suboptimality
index α depending on
control horizon m

0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

0.4

m

α

by a network induced perturbation. This has interesting applications in NMPC for
networked control systems, cf. the work of Grüne, Pannek and Worthmann [17].

Figure10.3 shows how α = αω
N ,m depends on m for an exponential β of type

(6.4) with C = 2 and σ = 0.75, optimization horizon N = 11, terminal weight
ω = 1 and control horizons m = 1, . . . , 10. Here, one observes two facts: first, the
α-values are symmetric, i.e., αω

N ,m = αω
N ,N−m and second, the values increase until

m = (N − 1)/2 and then decrease, again. This is not a particular feature of this
example. In fact, it can be rigorously proved for a general class of β ∈ KL 0; see
[15] for details.

It is interesting to compare Fig. 10.3 with α-values which have been obtained
numerically from an NMPC simulation for the linear inverted pendulum, cf. Exam-
ple2.10 and Appendix A.2 or [17] for the precise description of the problem.
Figure10.4 shows the resulting values for a set of different initial values. These
values have been computed by Algorithm10.8 described in Sect. 10.7, below.

While the monotonicity is—at least approximately—visible in this example, the
perfect symmetry from Fig. 10.3 is not reflected in Fig. 10.4. A qualitatively similar
behavior can be observed for the nonlinear inverted pendulum, see Example10.14,
below. In fact, so far we have not been able to find an example forwhich the symmetry
could be observed in simulations. This may be due to the fact that our stability
estimate is tight not for a single system but rather for the whole class of systems
satisfying Assumption6.5, cf. Theorem6.27. Our numerical findings suggest that
the conservativity induced by this “worst case approach” is higher for small m than
for large m. This is also supported by Monte Carlo simulations performed by Grüne
in [10].

An obvious drawback of multistep NMPC is that the corresponding feedback law
is evaluated less often. Hence, the control loop is closed less often which may make
the system less robust with respect to perturbations. A remedy to this problem is
to re-compute the remaining part of the optimal control sequence in each sampling

308 10 Variants and Extensions

Fig. 10.4 Numerically
measured values for α for a
linear inverted pendulum and
various initial values. The
thick line represents the
minimum

1 2 3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

control horizon m

su
bo

pt
im

al
ity

 d
eg

re
e

α

instant, i.e., to update the tail of the optimal control based on the knowledge of
the current state. This amounts to solving an optimal control problem with short-
ened horizon. In contrast to a re-optimization of the problem with full optimization
horizon, the computational effort of computing such an update will only be large if
the state is perturbed, because in the absence of perturbations the updated control
sequence will coincide with the original one. In case the perturbations are suffi-
ciently small, the computational effort can be further reduced by using sensitivity
based approximation techniques instead of a full optimization for the updated. For
other computational approaches based on sensitivity techniques see Sect. 12.5. Com-
pared to these approaches, the main advantages of the multistep update technique are
that it allows for a rigorous analysis of the benefits of the updates using an extension
of the techniques from Chap.6 and that it also works for larger sampling times. For
details, we refer to Palma [26] and Grüne and Palma [11] and the discussion at the
end of Sect. 12.5.

10.5 Fast Sampling

Let us now turn to the special case of sampled data systems. In this case, according
to (2.12) the discrete time solution xu(n, x0) represents the continuous time solution
ϕ(t, 0, x0, v) at sampling times t = nT . In this setting, it is natural to define the
optimization horizon not in terms of the discrete time variable n but in terms of the
continuous time t . Fixing an optimization horizon Topt > 0 and picking a sampling
period T > 0 where we assume for simplicity of exposition that Topt is an integer
multiple of T , the discrete time optimization horizon becomes N = Topt/T , cf. also
Sect. 3.5.

Having introduced this notation, an interesting question is what happens to sta-
bility and performance of the NMPC closed loop if we keep Topt fixed but vary the

10.5 Fast Sampling 309

sampling period T . In particular, it is interesting to see what happens if we sample
faster and faster, i.e., if we let T → 0. Clearly, in a practical NMPC implementation
we cannot arbitrarily reduce T because we need some time for solving the optimal
control problem (OCPN) or its variants online. Still, in particular, in the case of zero
order hold it is often desirable to sample as fast as possible in order to approximate
the ideal continuous time control signal as good as possible, cf., e.g., the paper of
Nešić and Teel [24], and thus one would like to make sure that this does not have
negative effects on the stability and performance of the closed loop.

In the case of equilibrium endpoint constraint from Sect. 5.2 it is immediately
clear that the stability result itself does not depend on T , however, the feasible set
XN may change with T . In the case of zero order hold, i.e., when the continuous
time control function ν is constant on each sampling interval [nT, (n + 1)T), cf.
the discussion after Theorem2.7, it is easily seen that each trajectory for sampling
period T is also a trajectory for each sampling period T/k for each k ∈ N. Hence,
the feasible set XkN for sampling period T/k always contains the feasible set XN

for sampling period T , i.e., the feasible set cannot shrink for k → ∞ and hence for
sampling period T/k we obtain at least the same stability properties as for sampling
period T .

In the case of Lyapunov function terminal costs F as discussed in Sect. 5.3 either
the terminal costs or the stage costs need to be adjusted to the sampling period T
in order to ensure that Assumption5.9 remains valid. One way to achieve this is
to choose a stage cost in integral form (3.4) and the terminal cost F such that the
following condition holds: for each x ∈ X0 and some T0 > 0 there exists a continuous
time control v satisfying ϕ(t, 0, x, v) ∈ X0 and

F(ϕ(t, 0, x, v)) − F(x) ≤ −
∫ t

0
L(ϕ(τ, 0, x, v), v(τ))dτ (10.8)

for all t ∈ [0, T], cf. also the PhD thesis of Findeisen [6, Sect. 4.4.2]. Under this con-
dition one easily checks that Assumption5.9 holds for � from (3.4) and all T ≤ T0,
provided the control function v in (10.8) is of the form v|[nT,(n+1)T)](t) = u(n)(t)
for an admissible discrete time control sequence u(·) with u(n) ∈ U . If U =
L∞([0, T],Rm) then this last condition is not a restriction but if we use some smaller
space for U (as in the case of zero order hold, cf. the discussion after Theorem2.7),
then this may be more difficult to achieve, see also [6, Remark 4.7].

Since the schemes from Chap.6 do not use stabilizing terminal constraintsX0 and
terminal costs F , the difficulties just discussed vanish. However, the price to pay for
this simplification is that the analysis of the effect of small sampling periods which
we present in the remainder of this section is somewhat more complicated. Here, we
will first discuss the Controllability Assumption6.5 under sampling and then extend
this assumption.

Fixing Topt and letting T → 0 we obtain that N = Topt/T → ∞. Looking at
Theorem6.24, this is obviously a good feature, because this theorem states that the
larger N becomes, the better the performance will be. However, we cannot directly

310 10 Variants and Extensions

apply this theorem because we have to take into account that β in the Controllability
Assumption6.5 will also depend on T .

In order to facilitate the analysis, let us assume that in our discrete time NMPC
formulation we use a stage cost � that only takes the states ϕ(nT, 0, x0, v) at the
sampling instants and the respective control values into account.1 For the continuous
time system, the controllability assumption can be formulated in discrete time. We
denote the set of admissible continuous time control functions (in analogy to the
discrete time notation) by V

τ (x). More precisely, for the admissible discrete time
control values U(x) ⊆ U ⊆ L∞([0, T],Rm) (recall that these “values” are actually
functions on [0, T], cf. the discussion after Theorem2.7) and any τ > 0 we define

V
τ (x) :=

⎧
⎨

⎩v ∈ L∞([0, τ],Rm)

∣∣∣∣∣∣

there exists u ∈ U
N (x) with N ≥ τ/T + 1

such that u(n) = v|[nT,(n+1)T](· + nT)

holds for all n ∈ N0 with nT < τ

⎫
⎬

⎭ .

Then, the respective assumption reads as follows.

Assumption 10.3 (Controllability assumption)We assume that the continuous time
system is asymptotically controllable with respect to � with rate β ∈ KL 0, i.e., for
each x ∈ X and each τ > 0 there exists an admissible control function vx ∈ V

τ (x)
satisfying

�(ϕ(t, 0, x, vx), vx (t)) ≤ β(�∗(x), t)

for all t ∈ [0, τ].
For the discrete time system (2.18) satisfying (2.12) the Controllability Assump-
tion10.3 translates to the discrete time Assumption6.5 as

�(xux (n, x), ux (n)) ≤ β(�∗(x), nT).

In the special case of exponential controllability, β in Assumption10.3 is of the form

β(r, t) = Ce−λt r (10.9)

forC ≥ 1 and λ > 0. Thus, for the discrete time system, the Controllability Assump-
tion6.5 becomes

�(xux (n, x), ux (n)) ≤ Ce−λnT �∗(x) = C
(
e−λT

)n
�∗(x)

and we obtain aKL 0-function of type (6.4) with C from (10.9) and σ = e−λT .
Summarizing, if we change the sampling period T then not only the discrete time

optimization horizon N but also the decay rate σ in the exponential controllability

1Integral costs (3.4) can be treated, too, but this is somewhat more technical, cf. Grüne, von Lossow,
Pannek and Worthmann [14, Sect. 4.2].

10.5 Fast Sampling 311

Fig. 10.5 Suboptimality
index α from (6.18) for fixed
Topt and varying sampling
period T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

T

α

property will change, more precisely we have σ → 1 as T → 0. When evaluating
(6.18) with the values resulting from (6.7), i.e.,

γk =
k−1∑

j=0

Ce−λ jT ,

it turns out that the convergence σ → 1 counteracts the positive effect of the growing
optimization horizons N → ∞. In fact, the negative effect of σ → 1 is so strong
that α diverges to −∞ as T → 0. Figure10.5 illustrates this fact (which can also be
proven rigorously, cf. [14]) for C = 2, λ = 1 and Topt = 5.

This means that whenever we choose the sampling period T > 0 too small, then
performance may deteriorate and eventually instability may occur. This predicted
behavior is not consistent with observations in numerical examples. How can this be
explained?

The answer lies in the fact that our stability and performance estimate is only
tight for one particular system in the class of systems satisfying Assumption6.5, cf.
Theorem6.27 and the discussion preceding this theorem, and not for the whole class.
In particular, the subclass of sampled data systems satisfying Assumption6.5 may
well behave better than general systems. Thus, we may try to identify the decisive
property which makes sampled data systems behave better and try to incorporate this
property into our computation of α.

To this end, note that so far we have not imposed any continuity properties of
f in (2.1). Sampled data systems, however, are governed by differential equations
(2.6) for which we have assumed Lipschitz continuity in Assumption2.4. Let us
assume for simplicity of exposition that the Lipschitz constant in this assumption is
independent of r . Then, for a large class of stage costs � the following property for
the continuous time system can be concluded from Gronwall’s Lemma, cf. [14] for
details.

312 10 Variants and Extensions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

T

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

T

α

Fig. 10.6 α for fixed Topt and varying sampling period T without Assumption10.4 (lower graphs)
and with Assumption10.4 (upper graphs) with L = 2 (left) and L = 10 (right)

Assumption 10.4 (Growth condition) There exists a constant L > 0 such that for
each x ∈ X and each τ > 0 there exists an admissible control function vx ∈ V

τ (x)
satisfying

�(ϕ(t, 0, x, vx), vx (t)) ≤ eLt�∗(x)

for all t ∈ [0, τ].
The estimates on � induced by this assumption can now be incorporated into the

analysis in Chap.6 by including the additional bound in the computation of BK in
(6.7). As a result, the values γk in Formula (6.18) change to

γk = min

⎧
⎨

⎩

k−1∑

j=0

Ce−λ jT ,

k−1∑

j=0

eL jT

⎫
⎬

⎭ .

The effect of this change is clearly visible in Fig. 10.6. The α-values from (6.18) no
longer diverge to −∞ but rather converge to a finite—and for the chosen parameters
also positive—value as T → 0. Again, this convergence behavior can be rigorously
proved, for details we refer to [14].

10.6 Compensation of Computation Times

Throughout the previous chapters we assumed that the solution of the optimal control
problems (OCPN,e) and its variants inStep (2) of theAlgorithms3.1, 3.7, 3.10 and3.11
can be obtained instantaneously, i.e., with negligible computation time. Clearly, this
is not possible in general, as the algorithms for solving such problems, cf. Chap.12
for details, need some time to compute a solution. If this time is large compared to the
sampling period T , the computational delay caused by Step (2) is not negligible and

10.6 Compensation of Computation Times 313

Fig. 10.7 Scheme of the NMPC closed-loop components

needs to be considered. Oneway for handling these delays would be to interpret them
as perturbations and use techniques similar to the robustness analysis in Sects. 7.5–
7.9. In this section,we pursue another idea inwhich a delay compensationmechanism
is added to the NMPC scheme.

Taking a look at the structure of the NMPC algorithm from Chap.3, we see
that Steps (1)–(3) correspond to different physical tasks: measuring, computing and
applying the control. These tasks are operated by individual components as shown
schematically in Fig. 10.7. Note that in the following actuator, sensor and controller
are not required to be physically decomposed, however, this case is also not excluded.

While it is a necessity to consider different clocks in a decomposed setting, it may
not be the case if the components are physically connected. Here, we assume that
every single component possesses its own clock and, for simplicity of exposition, that
these clocks are synchronized (see the work of Varutti and Findeisen [31, Sect. III.C]
for a possible way to relax this assumption). To indicate that a time instant n is
considered with respect to a certain clock, we indicate this by adding indices s for
the sensor, c for the NMPC controller and a for the actuator.

The idea behind the compensation approach is to run the NMPC controller com-
ponent with a predefined time offset. This offset causes the controller to compute a
control ahead of time, such that the computed control value is readily available at
the time it is supposed to be applied, cf. Fig. 10.8. In this figure, τc denotes the actual
computational delay and τmax

c denotes the predefined offset. In order to be operable,
this offset needs to be chosen such that it is larger than the maximal computing time
required to solve the optimal control problem in Step (2) of the considered NMPC
algorithm. At time nc, this optimal control problem is solved with a prediction x̃(na)
of the initial value x(na) based on the available measurement x(nc) = x(ns). This
prediction is performed using the samemodel which is used for theNMPCprediction
in (OCPN,e) or its variants, i.e., using (2.1).

In order to perform this prediction, the control values μN (n, x(n)), n ∈
{ns, . . . , na} which are to be applied at the plant during the time interval [ns, na]
and which have been computed before by the NMPC controller are needed and are
therefore buffered. Thus, we extend the scheme given in Fig. 10.7 by adding the
required predictor to the controller. The structure of the resulting scheme is shown
in Fig. 10.9.

314 10 Variants and Extensions

Fig. 10.8 Operation of time decoupled NMPC scheme

Fig. 10.9 Scheme of the time decoupled NMPC closed-loop components

Observe that in this scheme, we buffer the control values twice: within the pre-
dictor, but also at the actuator since the computation of μ(na, x(na)) will be finished
ahead of time if τc < τmax

c , which is the typical case. Alternatively, one could use
only one buffer at the controller and send each control value “just in time”. Using
two buffers has the advantage that further delays induced, e.g., by network delays
between the controller and the actuator can be compensated; see also the discussion
at the end of this section.

The corresponding algorithm has the following form. Since all NMPC algorithms
stated in Chap.3 can be modified in a similar manner, we only show the algorithm
for the most general form given in Algorithm3.11:

Algorithm 10.5 (Time decoupled NMPC algorithm for time varying reference)
At each sampling time tn , n = 0, 1, 2, . . .:

(1) Measure the state x(ns) := x(n) ∈ X of the system and send pair (ns, x(ns))
to controller

(2a) Delete pair (nc − 1, μN (nc − 1, x(nc − 1))) from buffer Bc and compute
predicted state x̃(nc + τmax

c) from the measured state x(nc)
(2b) Set ñ := nc + τmax

c , x0 = x̃(ñ) and solve the optimal control problem

10.6 Compensation of Computation Times 315

minimize JN (ñ, x0, u(·)) :=
N−1∑

k=0

ωN−k�(ñ + k, xu(k, x0), u(k))

+ F(ñ + N , xu(N , x0))

with respect to u(·) ∈ U
N
X0

(ñ, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPn
N,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(ñ, x0).
(2c) Add pair (ñ, μN (ñ, x̃(ñ))) := (ñ, u�(0)) to Buffer Bc and send it to actuator
(3a) Delete pair (na − τmax

c − 1, μN (na − τmax
c − 1, x̃(na − τmax

c − 1))) and add
received pair (na, μN (na, x̃(na))) to buffer Ba

(3b) Use μN (na − τmax
c , x̃(na − τmax

c)) in the next sampling period

At a first glance, writing this algorithm using three different clocks and sending
time stamped information in Steps (1) and (2c) may be considered as overly compli-
cated, given that ns in Step (1) is always equal to nc in Step (2a) and nc in Step (2c)
always equals na in Step (3a). However, this way of writing the algorithm allows us
to easily separate the components—sensor, predictor/controller and actuator—of the
NMPC scheme and to assume that the “sending” in Steps (1) and (2c) is performed
via a digital network. Then, we can assign Step (1) to the sensor, Steps (2a)–(2c) to
the controller and Steps (3a) and (3b) to the actuator. Assuming that all transmissions
between the components can be done with negligible delay, we can run these three
steps as separate algorithms in parallel. Denoting the real-time by n, the resulting
scheduling structure is sketched in Fig. 10.10 for τmax

c = 2. For comparison, the struc-
ture of the NMPCAlgorithm3.11 without prediction is indicated by the dashed lines.

Since the algorithm is already applicable to work in parallel, it can be extended to
a more complex networked control context in which transmission delays and packet
loss may occur. To this end, such delays have to be considered in the prediction
and an appropriate error handling must be added for handling dropouts, see, e.g.,

Fig. 10.10 Comparison of scheduling structure between NMPC Algorithms3.11 (dashed lines)
and 10.5 (solid lines) with τmax

c = 2T

316 10 Variants and Extensions

the paper by Grüne, Pannek and Worthmann [18]. In the presence of transmission
delays and dropouts, we cannot expect that all control values are actually available
at the actuator when they are supposed to be applied. Using NMPC, this can be
compensated easily using the multistep feedback concept and the respective stability
results from Sect. 10.4 as presented by Grüne et al. in [17].

Besides [18], which forms the basis for the presentation in this section, model
based prediction for compensating computational delay in NMPC schemes has been
considered earlier, e.g., in theworks ofChen,Ballance andO’Reilly [2] andFindeisen
and Allgöwer [7]. Note that the use of the nominal model (2.1) for predicting future
states may lead to wrong predictions in case of model uncertainties, disturbances,
etc. In this case, the predicted state x̃(ñ)may differ from the actual state x(na) at time
na = ñ and hence (OCPN,e) is solvedwith awrong initial value. This error is analyzed
by Findeisen et al. in [33] and in the paper of Zavala and Biegler [32] a method for
correcting this mismatch based on NLP sensitivity techniques is presented, cf. also
Sect. 12.5.

10.7 Online Measurement of α

In the analysis of NMPC schemes without stabilizing terminal conditions in Chap. 6,
one of the central aims was to establish conditions to rigorously guarantee the exis-
tence of α ∈ (0, 1] such that the inequality

VN (n, x) ≥ α�(n, x, μN (n, x)) + VN (n + 1, f (x, μN (n, x))) (5.1)

holds for all x ∈ X and n ∈ N0. While Theorem6.15 and Proposition6.18 provide
computational methods for estimating α from the problem data, the assumptions
needed for these computations—in particular Assumptions6.3 or 6.5—may be dif-
ficult to check.

In this section, we present methods from Grüne and Pannek [12] and Pannek [27]
which allow for the online computation or estimation of α along simulated NMPC
closed-loop trajectories. There are several motivations for proceeding this way. First,
as already mentioned, it may be difficult to check the assumptions needed for the
computation of α using Theorem6.15 or Proposition6.18. Although a simulation-
based computation of α for a selection of closed-loop trajectories cannot rigorously
guarantee stability and performance for all possible closed-loop trajectories, it may
still give valuable insight into the performance of the controller. In particular, the
information obtained from such simulations may be very useful in order to tune the
controller parameters, in particular the optimization horizon N and the stage cost �.

Second, requiring (5.1) to hold for all x ∈ X may result in a rather conservative
estimate for α. As we will see in Proposition10.6, below, for assessing the perfor-
mance of the controller along one closed-loop trajectory it is sufficient that (5.1)
holds only for those points x ∈ X which are actually visited by this trajectory.

10.7 Online Measurement of α 317

Finally, the knowledge of α may be used for an online adaptation of the opti-
mization horizon N ; some ideas in this direction are described in the subsequent
Sect. 10.8.

Our first result shows that for assessing stability and performance of the NMPC
controller along one specific closed-loop trajectory it is sufficient to find α such that
(5.1) holds for the points actually visited by this trajectory.

Proposition 10.6 (A posteriori suboptimality estimate) Consider the feedback law
μN : N0 × X → U computed from Algorithm3.7 and the closed-loop trajectory
x(·) = xμN (·) of (3.9) with initial value x(0) ∈ X at initial time 0. If the optimal
value function VN : N0 × X → R

+
0 satisfies

VN (n, x(n)) ≥ VN (n + 1, x(n + 1)) + α�(n, x(n), μN (n, x(n))) (10.10)

for some α ∈ (0, 1] and all n ∈ N0, then

αV∞(n, x(n)) ≤ α J∞(n, x(n), μN) ≤ VN (n, x(n)) ≤ V∞(n, x(n)) (10.11)

holds for all n ∈ N0.
If, in addition, there exist α1, α2, α3 ∈ K∞ such that (5.2) holds for all (n, x) ∈

N0 × X with n ∈ N0 and x = x(n), then there exists β ∈ KL which only depends
on α1, α2, α3 and α such that the inequality

|x(n)|xref(n) ≤ β(|x(0)|xref(0), n)

holds for all n ∈ N0, i.e., x behaves like a trajectory of an asymptotically stable
system.

Proof The proof of (10.11) is similar to the proof of Theorem4.11.
The existence of β follows with the same construction as in the proof of Theo-

rem2.19, observing that the definition of β in this proof only depends on α1, α2 and
αV = α α3 and not on the specific form of V = VN . �

Proposition10.6 gives us a way to compute α from the data available at runtime
and guarantees the performance estimate (10.11) as well as—under the additional
assumption that (5.2) holds—asymptotic stability-like behavior for the considered
closed-loop trajectory if α > 0. Moreover, under this additional assumption (10.10)
immediately implies that VN strictly decreases along the trajectory, i.e., it behaves
like a Lyapunov function.

Since the values of α for which (5.1) holds for all x ∈ X and for which (10.10)
holds along a specific trajectory xμN will be different in general, we introduce the
following definition:

318 10 Variants and Extensions

Definition 10.7 (1) We call α := max{α | (5.1) holds for all x ∈ X} the global
suboptimality degree.

(2) For fixed x ∈ X the maximal value of α satisfying (5.1) for this x is called
local suboptimality degree in x .

(3) Given a closed-loop trajectory xμN (·) of (3.9) with initial time 0 we call
α := max{α | (10.10) holds for all n ∈ N0 with x(·) = xμN (·) } the closed-loop
suboptimality degree along xμN (·).

An algorithm to evaluate α from (10.10) can easily be obtained and integrated
into Algorithm3.7:

Algorithm 10.8 (NMPC algorithm for time varying reference x ref with a posteriori
suboptimality estimate)

Set α = 1. At each sampling time tn , n = 0, 1, 2, . . .:

(1) Measure the state x(n) ∈ X of the system
(2) Set x0 = x(n) and solve the optimal control problem

minimize JN (n, x0, u(·)) :=
N−1∑

k=0

�(n + k, xu(k, x0), u(k))

with respect to u(·) ∈ U
N (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPn
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N (x0).

(3) Define the NMPC-feedback value μN (n, x(n)) := u�(0) ∈ U and use this
control value in the next sampling period

(4) If n ≥ 1 compute α via

αl = VN (n−1,x(n−1))−VN (n,x(n))

�(n−1,x(n−1),μN (n−1,x(n−1)))

α = min {α, αl}

Proposition10.6 and Algorithm10.8 are easily extended to the multistep NMPC
case described in Sect. 10.4. In this case, (10.10) is replaced by

VN (n, x(n)) ≥ VN (n + m + 1, x(n + 1)) + α

m∑

k=0

�(n + k, xu(k, x(n)), u�(k, x(n)))

and the definition of αl in Step (4) is changed, accordingly.
Note that in Step (4) of Algorithm10.8, the computation of αl does not provide

the value of α in (10.10) for the current time instant n but for n − 1. This is why
we call α from Algorithm10.8 an a posteriori estimate. The distinction between
the current value of αl and α in Step (4) is required in order to be consistent with
Proposition10.6 since αl corresponds to the local suboptimality degree in x(n − 1)

10.7 Online Measurement of α 319

while the suboptimality degree according to Proposition10.6 is the minimum over
all αl along the closed loop.

While Algorithm10.8 is perfectly suited in order to evaluate the performance of
an NMPC controller via numerical simulations, its a posteriori nature is not suitable
if we want to use the estimated α in order to adjust the optimization horizon N . For
instance, if we detect that at some time n the value of α in (10.10) is too small—or
even negative—then wemay want to increase N in order to increase α (see Sect. 10.8
for more details on such procedures). However, in Algorithm10.8 the value of α in
(10.10) only becomes available at time n + 1, which is too late in order to adjust N .

A simple remedy for this problem is to solve at time n a second optimal control
problem (OCPn

N) with initial value xu(1, x(n)) and initial time n := n+1. However,
since solving the problem (OCPn

N) is the computationally most expensive part of the
NMPC algorithm, this solution would be rather inefficient.

In order to obtain an a priori estimate with reduced additional computing costs, a
fewmore insights into the local NMPC problem structure are required. Themain tool
we are going to use is the following lemma.

Lemma 10.9 Consider the feedback law μN : N0 × X → U computed from Algo-
rithm3.7 and the closed-loop trajectory x(·) = xμN (·) of (3.9) with initial value
x(0) = x0 ∈ X at initial time 0. If

VN (n + 1, x(n + 1)) − VN−1(n + 1, x(n + 1)) ≤ (1 − α)�(n, x(n), μN (n, x(n)))

(10.12)

holds for some α ∈ [0, 1] and some n ∈ N0, then (10.11) holds for this n.

Proof Using the dynamic programming principle (3.16) with K = 1 we obtain

VN (n, x(n)) = �(n, x(n), μN (n, x(n))) + VN−1(n + 1, x(n + 1))

≥ �(n, x(n), μN (n, x(n))) + VN (n + 1, x(n + 1))

− (1 − α)�(n, x(n), μN (n, x(n)))

= VN (n + 1, x(n + 1)) + α�(n, x(n), μN (n, x(n)))

Hence, (10.10) holds and Proposition10.6 guarantees the assertion. �

Now,wewould not gainmuch ifwe tried to computeα using (10.12) directly, since
we would again need the future information VN (n+1, x(n+1)), i.e., the solution of
another optimal control problem (in contrast to that VN−1(n+1, x(n+1)) is readily
available at time n since by the dynamic programming principle it can be computed
from VN (n, x(n)) and �(x(n), μN (x(n)))). There is, however, a way to reduce the
size of the additional optimal control problem that needs to be solved. To this end,
we introduce the following assumption which will later be checked numerically in
our algorithm.

320 10 Variants and Extensions

Assumption 10.10 For given N , N0 ∈ N, N ≥ N0 ≥ 2, there exists a constant γ >

0 such that for the optimal open-loop solution xu� (·, x(n)) of (OCPn
N) inAlgorithm3.7

the inequalities

VN0(n + N − N0, xu� (N − N0, x(n)))

γ + 1

≤ max
j=N−N0,...,N−2

�(n + j, xu(n + j, x(n)), μN− j−1(n + j, xu� (j, x(n))))

Vk(n + N − k, xu� (N − k, x(n)))

γ + 1

≤ �(n + N − k, xu� (N − k, x(n)), μk(n + N − k, xu� (N − k, x(n))))

hold for all k ∈ {N0 + 1, . . . , N } and all n ∈ N0.

Note that computing γ for which this assumption holds requires only the com-
putation of μ j for j = 1, . . . , N0 − 1 in the first inequality, since μk in the second
inequality can be obtained from u� via (3.23). This corresponds to solving N0 − 2
additional optimal control problems which may look like a step backward, but since
these optimal control problems are defined on a significantly smaller horizon, the
computing costs are actually reduced. In fact, in the special case that �does not depend
on u, no additional computations have to be performed, at all. In this assumption, the
value N0 is a design parameter which affects the computational effort for checking
Assumption10.10 as well as the accuracy of the estimate for α obtained from this
assumption.

Under Assumption10.10, we can relate the minimal values of two optimal control
problems with different horizon lengths.

Proposition 10.11 Suppose that Assumption10.10 holds for N ≥ N0 ≥ 2. Then

(γ + 1)N−N0

(γ + 1)N−N0 + γ N−N0+1
VN (n, x(n)) ≤ VN−1(n, x(n))

holds for all n ∈ N0.

Proof In the following,we use the abbreviation xu(j) := xu(j, x(n)), j = 0, . . . , N ,
since all our calculations use the open-loop trajectory with fixed initial value x(n).
Set ñ := N − k. Using the principle of optimality and Assumption10.10 we obtain

Vk−1(n + ñ + 1, f (xu(ñ), μk(n + ñ, xu(ñ)))) ≤ γ �(n + ñ, xu(ñ), μk(n + ñ, xu(ñ))) (10.13)

for all k ∈ {N0 + 1, . . . , N } and all n ∈ N0.
We abbreviate ηk = (γ+1)k−N0

(γ+1)k−N0+γ k−N0+1 and prove the main assertion ηkVk(n +
ñ, xu(ñ)) ≤ Vk−1(n + ñ, xu(ñ)) by induction over k = N0, . . . , N . By choosing
xu(0) = x(n) with n being arbitrary but fixed we obtain

10.7 Online Measurement of α 321

VN0(n + N − N0, xu(N − N0))

≤ (γ + 1) max
j=2,...,N0

�(n + N − j, xu(N − j), μ j−1(n + N − j, xu(N − j)))

≤ (γ + 1)
N0∑

j=2

�(n + N − j, xu(N − j), μ j−1(n + N − j, xu(N − j)))

= 1

ηN0

VN0−1(n + N − N0, xu(N − N0)).

For the induction step k → k+1 the following holds using (10.13) and the induction
assumption

Vk(n + ñ, xu(ñ))

= Vk−1(n + ñ + 1, f (xu(ñ), μk(n + ñ, xu(ñ)))) + �(n + ñ, xu(ñ), μk(n + ñ, xu(ñ)))

≥ ηk

(
1 + 1 − ηk

γ + ηk

)
Vk(n + ñ + 1, f (xu(ñ), μk(n + ñ, xu(ñ))))

+
(
1 − γ

1 − ηk

γ + ηk

)
�(n + ñ, xu(ñ), μk(n + ñ, xu(ñ)))

= ηk
γ + 1

γ + ηk
(Vk(n + ñ + 1, f (xu(ñ), μk(n + ñ, xu(ñ))))

+ �(n + ñ, xu(ñ), μk(n + ñ, xu(ñ))))

using the dynamic programming principle (3.16) with K = 1 in the last step. Hence,
we obtain Vk(n + ñ, xu(ñ)) ≥ ηk

γ+1
γ+ηk

Vk+1(n + ñ, xu(ñ)) with

ηk
γ + 1

γ + ηk
= (γ + 1)k−2

(γ + 1)k−2 + γ k−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γ k−1

= (γ + 1)k−1

(γ + 1)k−1 + γ k
= ηk+1.

If we choose k = N then we get ñ = 0. Inserting this into our induction result we
can use xu(0) = xu(0, x(n)) = x(n) and the assertion holds. �

Finally, we can now use Proposition10.11 within the NMPC closed loop. This
allows us to verify Condition (10.12) and to estimate α directly from Assump-
tion10.10.

Theorem 10.12 (A priori suboptimality estimate) Consider γ > 0 and N, N0 ∈ N,
N ≥ N0 such that (γ + 1)N−N0 > γ N−N0+2 holds. If Assumption10.10 is fulfilled
for these γ , N and N0, then the estimate (10.11) holds for all n ∈ N0 where

α := (γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0
. (10.14)

Proof From Proposition10.11 we know

VN (n, x(n)) − VN−1(n, x(n)) ≤ γ N−N0+1

(γ + 1)N−N0
VN−1(n, x(n)).

322 10 Variants and Extensions

Setting j = n − 1, we can reformulate this and obtain

VN (j + 1, x(j + 1)) − VN−1(j + 1, x(j + 1)) ≤
≤ γ N−N0+1

(γ + 1)N−N0
VN−1(j + 1, f (xu(0, x(j)), μN (j, xu(0, x(j)))))

using the dynamics of the optimal open-loop solution. Now, we can use (10.13) with
k = N and get

VN (j + 1, x(j + 1)) − VN−1(j + 1, x(j + 1)) ≤ γ N−N0+2

(γ + 1)N−N0
�(j, x(j), μN (j, x(j))).

Hence, the assumptions of Lemma10.9 are fulfilled with

α = 1 − γ N−N0+2

(γ + 1)N−N0
= (γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0

and the assertion follows. �

Similar to the Proposition10.6, the required values of γ and α are easily com-
putable and allow to extend Algorithm3.7 in a similar manner as we did in Algo-
rithm10.8.

Algorithm 10.13 (NMPC algorithm for time varying reference x ref with a priori
suboptimality estimate)

Set α = 1. At each sampling time tn , n = 0, 1, 2, . . .:

(1) Measure the state x(n) ∈ X of the system
(2) Set x0 = x(n) and solve the optimal control problem

minimize JN (n, x0, u(·)) :=
N−1∑

k=0

�(n + k, xu(k, x0), u(k))

with respect to u(·) ∈ U
N (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPn
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N (x0).

(3) Define the NMPC-feedback value μN (n, x(n)) := u�(0) ∈ U and use this
control value in the next sampling period

(4) Compute α via

Find the minimal γ which satisfies the inequalities
in Assumption 10.10 for the current n and set

α = min
{
α,

(γ+1)N−N0−γ N−N0+2

(γ+1)N−N0

}

10.7 Online Measurement of α 323

Note that checking the additional condition (γ + 1)N−N0 > γ N−N0+2 from Theo-
rem10.12 is unnecessary, since a violation would lead to a negative α in which case
asymptotic stability cannot be guaranteed by means of Theorem10.12, anyway.

Similar to Proposition10.6, the results fromTheorem10.12 are easily carried over
to the multistep NMPC case described in Sect. 10.4 by extending Assumption10.10.

Example 10.14 To illustrate these results, we consider the inverted pendulum on a
cart problem from Example2.10 with parameters g = 9.81, l = 10 and kR = kL =
0.01 and control constraint set U = [−15, 15]. Our aim is to stabilize one of the
upright positions x ∈ S := {((k+1)π, 0, 0, 0)� | k ∈ 2Z}. For this example, we will
provide online measurements of α using Algorithm10.8. For one fixed initial value
and varying terminal weights ω, cf. Sect. 10.2, and control horizons, cf. Sect. 10.4.
For a comparison of Algorithms10.8 and 10.13 we refer to [12, 27].

In order to obtain a suitable cost function, we follow the guidelines from Sect. 6.6
and construct a cost function for which—at least in the first two components—the
overshoot of � along a typical stable trajectory becomes small. To this end, we have
used the geometry of the vector field of thefirst twodifferential equations representing
the pendulum, see Fig. 10.11a and shaped the cost function such that it exhibits local
maxima at the downward equilibria and “valleys” along the stable manifolds of the
upright equilibria to be stabilized. The resulting cost function � is of the integral type
(3.4) with

L(x, u) :=10−4u2 +
(
3.51 sin(x1 − π)2 + 4.82 sin(x1 − π)x2

+ 2.31x22 + 0.1
(
(1 − cos(x1 − π)) · (1 + cos(x2)

2)
)2

+ 0.01x23 + 0.1x24
)2

,

cf. Fig. 10.11b. Using the terminal weights from Sect. 10.2, the cost functional
becomes

JN (x0, u) =
N−2∑

i=0

�(x(i), u(i)) + ω�(x(N − 1), u(N − 1)).

This way of adjusting the cost function to the dynamics allows us to considerably
reduce the length of the optimization horizon for obtaining stability in the NMPC
scheme without stabilizing terminal conditions compared to simpler choices of �.
However, for the initial value x0 = (2π+1.5, 0, 0, 0) and sampling period T = 0.05,
which have been used in the subsequent computations, we still need a rather large
optimization horizon of N = 70 to obtain stability of the closed loop.

Since the cost function is 2π–periodic it does not penalize the distance to a specific
equilibrium in S; rather, it penalizes the distance to the whole set. For a better
comparison of the solutions for different parameters we want to force the algorithm
to stabilize one specific upright position in S. To this end, we add box–constraints to
X limiting the x1-component to the interval [−π + 0.01, 3π − 0.01]. The tolerances

324 10 Variants and Extensions

(a) Vector field of the inverted pendulum on a
cart example 2.10. Here, the first two compo-
nents are displayed which represent the pendu-
lum.

(b) Contour plot of the cost function .
Similar to Fig. 10.11a, only the depen-
dency on the first two components is dis-
played.

Fig. 10.11 Vector field and cost function

2 4 6 8 10 12 14 16 18 201
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

control horizon

su
bo

pt
im

al
ity

 d
eg

re
e

α ω = 1
ω = 5
ω = 10

0
5

10
15

20

0

5

10
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

control horizon N
terminal weight ω

su
bo

pt
im

al
ity

 d
eg

re
e

α

Fig. 10.12 Computed value for αω
70,m for the nonlinear inverted pendulum Example2.10 with

control horizons m ∈ {1, . . . , 20} and terminal weights ω ∈ {1, . . . , 10}

of the optimization routine and the differential equation solver are set to 10−6 and
10−7, respectively. The NMPC closed-loop trajectories displayed in Fig. 10.12 are
simulated for terminal weights ω = 1, . . . , 10, cf. Sect. 10.2 and control horizons
m = 1, . . . , 10, cf. Sect. 10.4. The resulting α-values from Algorithm10.8, denoted
by αω

N ,m , are shown in Fig. 10.12.
Note that for ω = 1 the α values are negative for control horizons m = 1, . . . , 4.

Still, larger control horizons exhibit a positiveα value such that stability is guaranteed.
This is in accordance with the theoretical results from Sect. 10.4, even though these
simulation-based results do not share themonotonicity of the theoretical bounds from
Fig. 10.3.Additionally, an increase ofα can be observed for all control horizonsm ifω

10.7 Online Measurement of α 325

is increased. This confirms the stabilizing effect of terminal costs shown theoretically
in Sect. 10.2, cf. Fig. 10.1.

Summarizing, these results show that the onlinemeasurement of α yields valuable
insights into the performance analysis ofNMPCschemeswithout terminal conditions
and thus nicely complements the theoretical results from Chap.6 and Sects. 10.2 and
10.4.

10.8 Adaptive Optimization Horizon

In the previous Sect. 10.7 we have shown how the suboptimality degree α can be
computed at runtime of the NMPC scheme without stabilizing terminal constraints.
If the horizon length N is not chosen adequately, then it is likely that during runtime a
value α < 0 is obtained. In this case, stability of the closed loop cannot be guaranteed
by Proposition10.6 or Theorem10.12. However, the ability to compute α for each
point x(n) on the closed-loop trajectory using the techniques fromSect. 10.7 naturally
leads to the idea of adapting the optimization horizon N at each time n such that
stability and desired performance can be guaranteed. In this section, we will show
some algorithms for this purpose, taken fromPannek [27]. Here, we restrict ourselves
to the basic idea and refer to [27] for more sophisticated approaches.

The fundamental idea of such an adaptive algorithm is rather simple: introducing
a stability and suboptimality threshold α > 0, at each sampling instant n we prolong
the optimization horizon if α for the current horizon is smaller than α. If α > α

holds, then we may reduce N in order to save computational time. This leads to the
following algorithm.

Algorithm 10.15 (Adaptive horizon NMPC algorithm for time varying reference)
Set N0 > 0 and α > 0. At each sampling time tn , n = 0, 1, 2, . . .:

(1) Measure the state x(n) ∈ X of the system
(2) While α > α

(a) Set x0 = x(n), N = Nn and solve the optimal control problem

minimize JN (n, x0, u(·)) :=
N−1∑

k=0

�(n + k, xu(k, x0), u(k))

with respect to u(·) ∈ U
N (x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPn
N)

Denote the obtained optimal control sequence by u�(·) ∈ U
N (x0).

(b) Compute α via Proposition10.6 or Theorem10.12
(c) If α > α call reducing strategy for Nn , else call increasing strategy for

Nn; obtain u�(·) for the new N = Nn and an initial guess for Nn+1

326 10 Variants and Extensions

(3) Define the NMPC-feedback value μN (n, x(n)) := u�(0) ∈ U and use this
control value in the next sampling period

Here, the initial guess Nn+1 in Step (2c) will typically be Nn+1 = Nn , however, as
we will see below, in the case of reducing Nn the choice Nn+1 = Nn − 1 is more
efficient, cf. the discussion after Proposition10.18.

If this algorithm is successful in ensuring α ≥ α for each n, then the assumptions
of Proposition10.6 or Theorem10.12 are satisfied. However, these results require
the optimization horizon N to be fixed and hence do not apply to Algorithm10.15
in which Nn changes with time.

To cope with this issue, we generalize Proposition 10.6 to varying optimization
horizons. To this end, for each x ∈ X and N ∈ N we denote the maximal α from
(10.10) by α(N). We then introduce the following assumption which guarantees that
for any horizon N satisfying α(N) ≥ α the controller shows a bounded guaranteed
performance if the horizon length is increased.

Assumption 10.16 Given n ∈ N0, x ∈ X, N < ∞ and a value α ∈ (0, 1) with
α(N) ≥ α, we assume that there exist constantsCl,Cα > 0 such that the inequalities

Cl�(n, x, μN (n, x)) ≤ �(n, x, μÑ (n, x))
VÑ (n, x) − VÑ (n + 1, f (x, μN (n, x))

VÑ (n, x) − VÑ (n + 1, f (x, μÑ (n, x))
(10.15)

Cαα(N) ≤ α(Ñ) (10.16)

hold for all Ñ ≥ N .

The reason for Assumption10.16 is that it is possible that the performance of
the controller μN may not improve monotonically as N increases; see Di Palma
and Magni [4]. Consequently, we cannot expect α(Ñ) ≥ α(N) for Ñ > N . Still, we
need to ensure that α(Ñ) does not become too small compared to α(N), in particular,
α(Ñ) should not drop below zero if the horizon length is increased; this is ensured by
(10.15). Furthermore, we need an estimate for the dependence of �(n, x, μN (n, x))
on N which is given by (10.16). Unfortunately, for both inequalities so far we were
not able to provide sufficient conditions in terms of the problem data, like, e.g.,
boundedness or a controllability conditions similar to Assumptions6.3 or 6.5. Still,
numerical evaluation for several examples showed that these inequalities are satisfied
and that Cl and Cα attain reasonable values.

Using Assumption10.16, we obtain a stability and performance estimate of the
closed loop in the context of changing horizon lengths similar to Proposition 10.6.
Since the closed-loop control resulting from Algorithm10.15 now depends on a
sequence of horizons (Nn)n∈N0 we obtain a sequence of control laws (μNn)n∈N0 . The
closed-loop trajectory generated by this algorithm is then given by

x(n + 1) = f (x(n), μNn (n, x(n))). (10.17)

10.8 Adaptive Optimization Horizon 327

Theorem 10.17 Consider the sequence of feedback laws (μNn) computed fromAlgo-
rithm10.15 and the corresponding closed-loop trajectory x(·) from (10.17). Assume
that for optimal value functions VNn : N0 × X → R

+
0 of (OCPn

N) with N = Nn the
inequality

VNn (n, x(n)) ≥ VNn (n + 1, x(n + 1)) + α�(n, x(n), μNn (n, x(n))) (10.18)

holds for all n ∈ N0 and that Assumption10.16 is satisfied for all triplets (n, x, N) =
(n, x(n), Nn), n ∈ N0, with constants C

(n)
l , C (n)

α . Then

αCV∞(n, x(n)) ≤ αC J
cl
∞(n, x(n), μ(Nn)) ≤ VN � (n, x(n)) ≤ V∞(n, x(n)) (10.19)

holds for all n ∈ N0 where αC := min
i∈N≥n

C (i)
α C (i)

l α.

Proof Given (i, x(i), Ni) for some i ∈ N0, Assumption10.16 for (n, x, N) =
(i, x(i), Ni) guarantees α(Ni) ≤ α(Ñ)/C (i)

α for Ñ ≥ Ni . Choosing Ñ = N �,
we obtain α ≤ α(Ni) ≤ α(N �)/C (i)

α using the relaxed Lyapunov inequality (10.18).
Multiplying by the stage cost �(i, x(i), μNi (i, x(i))), we can conclude

α�(i, x(i), μNi (i, x(i))) ≤ α(N�)

C(i)
α

�(i, x(i), μNi (i, x(i)))

= VN � (i, x(i)) − VN � (i + 1, f (x(i), μN � (i, x(i)))

C(i)
α �(i, x(i), μN � (i, x(i)))

�(i, x(i), μNi (i, x(i)))

≤ VN � (i, x(i)) − VN � (i + 1, f (x(i), μNi (i, x(i)))

C(i)
α C(i)

l

using (10.18) and (10.15). In particular, the latter condition allows us to use an
identical telescope sum argument as in the proof of Proposition10.6 since it relates
the closed-loop varying optimization horizon to a fixed one. Hence, summing the
stage costs along the closed-loop trajectory reveals

αC

K∑

i=n

�(i, x(i), μNi (i, x(i))) ≤ VN � (n, x(n)) − VN � (K + 1, x(K + 1))

where we defined αC := mini∈[n,...,K] C (i)
α C (i)

l α. Since VN � (K + 1, x(K + 1)) ≥ 0
holds, we can neglect it in the last inequality. Taking K to infinity yields

αCV
μ(Ni)∞ (n, x(n)) = αC lim

K→∞

K∑

i=n

�(i, x(i), μNi (i, x(i))) ≤ VN � (n, x(n)).

Since the first and the last inequality of (10.19) hold by definition of VN and V∞, the
assertion follows. �

328 10 Variants and Extensions

If the conditions of this theorem hold, then stability-like behavior of the closed
loop can be obtained analogously to Proposition 10.6.

Having shown the analytical background, we now present adaptation strategies
which can be used for increasing or reducing the optimization horizon N in Step
(2c) of Algorithm 10.15. For simplicity of exposition, we restrict ourselves to two
simple strategies and consider a posteriori estimates based variants only. Despite their
simplicity, thesemethods have shown to be reliable and fast in numerical simulations.
A more detailed analysis, further methods, and comparisons can be found in [27].
The following proposition yields the basis for a strategy for reducing Nn

Proposition 10.18 Consider the optimal control problem (OCPn
N) with initial value

x0 = x(n), Nn ∈ N, and denote the optimal control sequence by u�. For fixed
α ∈ (0, 1), suppose there exists an integer i ∈ N0, 0 ≤ i < N such that

VNn−i (n + i + 1, xu� (i + 1, x(n))) + α�(n + i, xu� (i, x(n)), μNn−i (n + i, xu� (i, x(n))))

≤ VNn−i (n + i, xu� (i, x(n))) (10.20)

holds for all0 ≤ i ≤ i . Then, setting Nn+i = Nn−i andμNn+i (n+i, x(n+i)) = u�(i)
for 0 ≤ i ≤ i − 1, inequality (10.18) holds for n = n, . . . , n + i − 1.

Proof The proof follows immediately from the fact that for μNn+i (n+ i, x(n+ i)) =
u�(i) the closed-loop trajectory (10.17) satisfies x(n + i) = xu� (i, x(n)). Hence,
(10.18) follows from (10.20). �

Observe that Proposition10.18 is quite similar to the results from Sect. 10.4, since
μNn+i (n + i, x(n + i)) as defined in this theorem coincides with the multistep feed-
back law from Sect. 10.4. Thus, Proposition10.18 guarantees that if i > 1, then the
multistep NMPC feedback from Sect. 10.4 can be applied withm = i steps such that
the suboptimality threshold α can be guaranteed. With the choice Nn+i = Nn − i ,
due to the principle of optimality we obtain that the optimal control problems within
the next i − 1 NMPC iterations are already solved since μNn+i (n + i, x(n + i)) can
be obtained from the optimal control sequence u�(·) ∈ U

N (x(n)) computed at time
n. This implies that the most efficient way for the reducing strategy in Step (2c) of
Algorithm10.15 is not to reduce Nn itself but rather to reduce the horizons Nn+i by
i for the subsequent sampling instants n + 1, . . . , n + i , i.e., we choose the initial
guess in Step (2c) as Nn+1 = Nn − 1. Still, if the a posteriori estimate is used, the
evaluation of (10.20) requires the solution of an additional optimal control problem
in each step in order to compute VNn−i (n + i + 1, xu� (i + 1, x(n))).

In contrast to this efficient and simple shortening strategy, it is quite difficult
to obtain efficient methods for prolonging the optimization horizon N in Step (2c)
of Algorithm 10.15. In order to understand why this is the case, we first introduce
the basic idea behind any such prolongation strategy: at each sampling instant we
iteratively increase the horizon Nn until (10.18) is satisfied and use this horizon for
the next NMPC step. In order to ensure that iteratively increasing Nn will eventually
lead to a horizon for which (10.18) holds, we make the following assumption.

10.8 Adaptive Optimization Horizon 329

Assumption 10.19 Given α ∈ (0, 1), for all x0 ∈ X and all n ∈ N0 there exists a
finite horizon length N = N (n, x0) ∈ N such that (10.18) holds with α(Nn) ≥ α for
x(n) = x0 and Nn ≥ N .

Assumption10.19 can be seen as a performance assumption which requires the
existence of a horizon length Nn such that the predefined threshold α can be satisfied.
If no such horizon exists, no prolongation strategy can be designed which can guar-
antee closed-loop suboptimality degree α > α. Assumption10.19 is, for instance,
satisfied if the conditions of Theorem6.24 hold.

The following proposition shows that under this assumption any iterative strategy
which increases the horizon will terminate after finitely many steps with a horizon
length N for which the desired local suboptimality degree holds.

Proposition 10.20 Consider the optimal control problem (OCPn
N) with initial value

x0 = x(n) and Nn ∈ N. For fixed α ∈ (0, 1) suppose that Assumption10.19 holds.
Then, any algorithm which iteratively increases the optimization horizon Nn and
terminates if (10.18) holds will terminate in finite time with an optimization horizon
Nn for which (10.18) holds. In particular, Theorem10.17 is applicable provided
Assumption10.16 holds.

Proof The proof follows immediately from Assumption10.19. �

Unfortunately, if (10.18) does not hold it is in general difficult to assess by how
much Nn should be increased such that (10.18) holds for the increased Nn . The
most simple strategy of increasing Nn by one in each iteration shows satisfactory
results in practice, however, in the worst case it requires us to check (10.18) N −
Nn + 1 times at each sampling instant. In contrast to the shortening strategy, the
principle of optimality cannot be used here to establish a relation between the optimal
control problems for different Nn and,moreover, these problemsmayexhibit different
solution structures which makes it a hard task to provide a suitable initial guess for
the optimization algorithm, see also Sect. 12.5.

In order to come up with more efficient strategies, different methods have been
developed [27]which utilize the structure of the suboptimality estimate itself to deter-
mine by howmuch Nn should be increased. Compared to thesemethods, however, the
performance of the simple strategy of increasing Nn by one is still acceptable. In the
following example we illustrate the performance of this strategy for Example2.11.

Example 10.21 For the ARP system (2.19)–(2.26) we have already analytically
derived a continuous time tracking feedback in (2.28). However, this feedback law
performs poorly under sampling, in particular, for the sampling period T = 0.2
which we consider here we obtain an unstable closed-loop sampled data system.

In order to obtain a sampled data feedback law which shows better performance
we use the digital redesign technique proposed by Nešić and Grüne in [25]: given a
signal v(t) to track, we numerically simulate the continuous time controlled system in
order to generate the output x ref which in turn will be used as the reference trajectory
for an NMPC tracking problem. The advantage of proceeding this way compared to

330 10 Variants and Extensions

the direct formulation of an NMPC tracking problem lies in the fact that—according
to our numerical experience—the resulting NMPC problem is much easier to solve
and in particular requires considerably smaller optimization horizons in order to
obtain a stable NMPC closed loop.

Specifically, we consider the piecewise constant reference function

v(t) =
{
10, t ∈ [0, 5) ∪ [9, 10)
0, t ∈ [5, 9) ∪ [10, 15)

for the x5–component of the trajectory of the system. In order to obtain short transient
times for the continuous time feedback, we set the design parameters ci in (2.28) to
(c0, c1, c2, c3) = (10000, 3500, 500, 35). Then, we incorporate the resulting trajec-
tory displayed in Fig. 10.13 as reference x ref(·) in the NMPC algorithm. Since our
goal is to track the reference with the x5–component of the trajectory, we use the
simple quadratic cost function

J (x0, u) =
N∑

j=0

∫ t j+1

t j

|x5,u(t, x0) − x5,ref(t)|dt

within the adaptive horizon NMPC Algorithm10.15. Moreover, we select the sam-
pling period T = 0.2 and fix the initial value x(0) = (0, 0, 0, 0, 10, 0, 0, 0) for both
the continuously and the sampled–data controlled system.

Using the aposteriori and apriori estimation techniqueswithin the adaptiveNMPC
Algorithm10.15, we obtain the evolutions of horizons Nn along the closed loop for
the suboptimality bound α = 0.1 as displayed in Fig. 10.14. Comparing the horizons
chosen by the a priori and the a posteriori estimates, one sees that the a posteriori
algorithms yields smaller optimization horizons which makes the resulting scheme
computationally more efficient, however, at the expense that the evaluation of the a
posteriori criterion itself is computationally more demanding; see also Fig. 10.15.

It is also interesting to compare these horizons to the standard NMPC Algo-
rithm3.7 with fixed N which needs a horizon of N = 6 in order to guarantee α ≥ α

along the closed loop. Here, one observes that the required horizon Nn for the adap-
tive NMPC approach is typically smaller than N = 6 for both the a posteriori and

Fig. 10.13 The figure
displays the reference
function for the continuous
time feedback (solid) and
state trajectory using the
continuous time feedback
(dashed). The latter will be
used as reference function
within the NMPC algorithm

10.8 Adaptive Optimization Horizon 331

Fig. 10.14 Optimization
horizons computed by the
adaptive NMPC
Algorithm10.15 for the ARP
problem using the a
posteriori estimate (solid)
and the a priori estimate
(dashed)

Fig. 10.15 Computing times
of the adaptive NMPC
Algorithm10.15 for the ARP
problem using the a
posteriori estimate (solid)
and the a priori estimate
(dashed)

the a priori estimate based variant. One also observes that the horizon is increased
at the jump points of the reference function v(·), which is the behavior one would
expect in a “critical” situation and nicely reflects the ability of the adaptive horizon
algorithm to adapt to the new situation.

Although the algorithm chooses to modify the horizon length throughout the run
of the closed loop, one can barely see a difference between the resulting x5 trajectories
and the (dashed) reference trajectory given in Fig. 10.13. For this reason, we do not
display the closed-loop solutions. Instead, we additionally plotted the computing
times of the two adaptive NMPC variants in Fig. 10.15. Again, one can immediately
see the spikes in the graph right at the points in which v(·) jumps. This figure also
illustrates the disadvantage of the algorithm of having to solve multiple additional
optimal control problems whenever N is increased, which clearly shows up in the
higher computation times at these points, in particular for the computationally more
expensive a posteriori estimation.

While the adaptive optimization horizon algorithm produces good results in this
example, we would like to mention that there are other examples—e.g., the swing-up
of the inverted pendulum—for which the algorithm performs less convincing. We
conjecture that a better understanding of Assumption10.16 may provide the insight
needed in order to tell the situations in which the adaptive algorithms provides good
results from those in which it does not.

332 10 Variants and Extensions

10.9 Nonoptimal NMPC

In the case of limited computational resources and/or fast sampling, the time available
for solving the optimization problems (OCPN) or its variants may not be sufficient
to obtain an arbitrary accurate solution. Typically, the algorithms for solving these
problems, i.e., for obtaining u� and thus μN (x(n)) = u�(0), work iteratively2 and
with limited computation time may we may be forced to terminate this algorithm
prior to convergence to the optimal control sequence u�.

It is therefore interesting to derive conditions which ensure stability and perfor-
mance estimates for the NMPC closed loop in this situation. To this end, we modify
Algorithm3.1 as follows.

Algorithm 10.22 We replace Steps (2) and (3) of Algorithm3.1 (or its variants) by
the following:

(2’) For initial value x0 = x(n), given an initial guess u0n(·) ∈ UN we iteratively
compute u j

n(·) ∈ UN by an iterative optimization algorithm such that

JN (x0, u
j+1
n (·)) ≤ JN (x0, u

j
n(·)).

We terminate this iteration after j∗ ∈ N iterations, set un(·) := u j∗
n (·) and

ṼN (n) := JN (x0, un(·)).
(3’) Define the NMPC-feedback valueμN (x(n)) := un(0) ∈ U and use this control

value in the next sampling period

One way to ensure proper operation of such an algorithm is by assuming that the
sampling period is so small such that the optimal control from sampling instant n−1
is still “almost optimal” at time n. In this case, one iteration starting from u0n = un−1,
i.e., j∗ = 1, may be enough in order to be sufficiently close to an optimal control, i.e.,
to ensure JN (x(n), u1n) ≈ VN (x(n)). This procedure is, e.g., investigated by Diehl,
Findeisen, Allgöwer, Bock and Schlöder in [5].

An alternative but conceptually similar idea is presented in work of Graichen and
Kugi [8]. In this reference, a sufficiently large number of iterations j∗ is fixed and
conditions are given under which the control sequences u j∗

n become more and more
optimal as n increases, i.e., they satisfy JN (x(n), u j∗

n) ≈ VN (u�) for sufficiently
large n. Using suitable bounds during the transient phase in which this approximate
optimality does not yet hold then allows the authors to conclude stability estimates.

While these results use that u j∗
n is close to u� in an appropriate sense, here we

investigate the case in which u j∗
n may be far away from the optimal solution. As we

will see, asymptotic stability in the sense of Definition2.14 is in general difficult to
establish in this case. However, it will still be possible to prove the following weaker
property, which we already encountered in Theorem 9.33.

2For more information on these algorithms see Chap.12 and for numerical aspects of the theory in
this section in particular Sect. 12.6.

10.9 Nonoptimal NMPC 333

Definition 10.23 Given a set S ⊆ X, we say that the NMPC closed loop (2.5) is
attractive on S if for each x ∈ S the convergence

lim
k→∞ xμN (k, x) = x∗

holds.

Contrary to asymptotic stability, a merely attractive solution xμN which starts
close to the equilibrium x∗ may deviate far from it before it eventually converges
to x∗. In order to exclude this undesirable behavior, one may wish to require the
following stability property in addition to attraction.

Definition 10.24 Given a set S ⊆ X, we say that the NMPC closed loop (2.5) is
stable on S if there exists αS ∈ K such that the inequality

|xμN (k, x)|x∗ ≤ αS(|x |x∗)

holds for all x ∈ S and all k = 0, 1, 2,

It is well-known that under suitable regularity conditions attractivity and stability
imply asymptotic stability; see, e.g., the book of Khalil [20, Chap. 4]. Since this is
not the topic of this book, we will not go into technical details here and rather work
with the separate properties attractivity and stability in the remainder of this section.

The following variant of Proposition10.6 will be used in order to ensure attrac-
tivity and stability.

Proposition 10.25 Consider the solution x(n) = xμN (n, x0) of the NMPC closed
loop (2.5), a set S ⊆ X and a value α ∈ (0, 1]. Assume that � satisfies

�∗(x) ≥ α3(|x |x∗) (10.21)

for some α3 ∈ K∞ and all x ∈ S and that for each x0 ∈ S there exists a function
ṼN : N0 → R

+
0 which for all n ∈ N0 satisfies

ṼN (n) ≥ ṼN (n + 1) + α�(x(n), μN (x(n))). (10.22)

Then the closed loop (2.5) is attractive on S and the inequality

J cl
∞(x0, μN) ≤ ṼN (0) (10.23)

holds for J cl∞(x0, μN) from Definition4.10.

334 10 Variants and Extensions

If, in addition, there exists α̃2 ∈ K∞ independent of x0 such that the functions ṼN

satisfy
ṼN (0) ≤ α̃2(|x(0)|x∗), (10.24)

then the closed loop (2.5) is stable on S.

Proof Iterating inequality (10.22) for n = 0 . . . , k and using ṼN (n) ≥ 0 yields

k∑

n=0

�(x(n), μN (x(n))) ≤ ṼN (0) − ṼN (k + 1) ≤ ṼN (0).

Letting k → ∞ we obtain

J cl
∞(x, μN) = lim

k→∞

k∑

n=0

�(x(n), μN (x(n))) ≤ ṼN (0),

i.e., (10.23). Now, nonnegativity of � implies limn→∞ �(x(n), μN (x(n))) = 0 and
thus (10.21) implies x(n) → 0, i.e., attractivity.

In order to prove stability under the additional assumption (10.24), observe that
(10.22) together with the nonnegativity of ṼN and (10.21) implies

ṼN (n) ≥ α�(x(n), μN (x(n))) ≥ α α3(|x(n)|x∗) =: α̃1(|x(n)|x∗).

Furthermore, (10.22) implies that ṼN (n) is decreasing in n. Using these properties,
stability immediately follows from

|x(n)|x∗ ≤ α̃−1
1 (ṼN (n)) ≤ α̃−1

1 (ṼN (0)) ≤ α̃−1
1 (α̃2(|x0|x∗)) =: αS(|x0|x∗).

�

The precise conditions on u j
n and un in Algorithm 10.22 which ensure attractivity,

stability and suboptimality estimates now depend on whether stabilizing terminal
conditions are used or not.Wefirst consider the case of stabilizing terminal conditions
which was investigated, e.g., by Michalska and Mayne [22], Scokaert, Mayne and
Rawlings [30] and Rawlings and Mayne [29, Sect. 2.8] which all use conceptually
similar ideas. Here, we follow the latter reference.

The approach in [29, Sect. 2.8] can be written as a variant of Theorem5.13. In
particular, we assume that Assumption5.9 is satisfied. In order to obtain a more
convenient notation, on the terminal constraint set X0 we define a map κ : X0 → U

which assigns to each x ∈ X0 the control value ux ∈ U(x) from Assumption5.9(ii).
With this notation, the corresponding theorem reads as follows.

Theorem 10.26 (Stability for nonoptimal NMPC) Assume that the conditions of
Theorem5.13 are satisfied. Consider Algorithm3.10 with Steps (2) and (3) replaced

10.9 Nonoptimal NMPC 335

by Steps (2’) and (3’) of Algorithm10.22 under the following assumptions for a set
S ⊆ XN .

(i) For n = 0, we are able to find an admissible initial guess u00(·) ∈ U
N
X0

(x0) for
each initial value x0 = x(0) ∈ S.

(ii) For n = 1, 2, . . ., the initial guess u0n(·) is chosen as u0n(k) = un−1(k + 1),
k = 0, . . . , N − 2 and u0n(N − 1) = κ(xu0n (N − 1, x0)).

(iii) For all n = 0, 1, 2, . . . the control sequences un(·) = u j∗
n (·) satisfy u j∗

n (·) ∈
U

N
X0

(x0), i.e., they are admissible.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

J cl
∞(x0, μN) ≤ ṼN (0)

holds. If, in addition, there exists α̃3 ∈ K∞ such that the inequality JN (x0, u00(·)) ≤
α̃3(|x0|x∗) holds for u

0
0(·) from (i), then 2.5 is also stable on S.

Proof First note that (i) ensures that u00 is admissible at time n = 0 and that (iii)
ensures that u0n in (ii) is admissible for n = 1, 2, . . ., cf. also Lemma5.10(i).

We abbreviate x(n) = xμn (n). Then, (ii) and the same computation as in the proof
ofLemma5.12 yield the inequality JN (x(n+1), u0n+1(·)) ≤ JN−1(x(n+1), un(·+1))
for each n ≥ 0. On the other hand, the definition of JN in Algorithm3.10 implies

ṼN (n) = JN (x(n), un(·)) = �(x(n), un(0)) + JN−1(f (x(n), un(x)), un(· + 1)).

The identities f (x(n), un(x)) = x(n + 1), un(0) = μN (x(n)) and the inequality
ṼN (n + 1) ≤ JN (x(n + 1), u0n+1(·)) then lead to

ṼN (n) ≥ �(x(n), un(0)) + JN (x0, u
0
n(·)) ≥ �(x(n), μN (x(n))) + ṼN (n + 1),

i.e., (10.22). Now all properties follow directly from Proposition10.25. �

Remark 10.27 (i) If the assumptions of Proposition5.14(ii) hold, then for x0 ∈ X0,
the additional stability condition JN (x0, u00(·)) ≤ α̃3(|x |x∗) can be guaranteed if we
define u00(·) by u00(k) := κ(xu00(k, x0)), k = 0, . . . , N − 1. From Assumption5.9(ii)
it follows that this choice implies JN (x0, u00(·)) ≤ F(x0) ≤ α̃2(|x |x∗) and thus the
desired inequality follows with α̃3 = α̃2. Hence, this choice guarantees stability
locally around x∗.

One may also apply this definition to u0n in (ii) for those n in which x(n) ∈ X0

holds. This way, stability is ensured at least for the tail of the resulting closed-loop
trajectory. If we use this choice of u0n and do not perform the iterative optimization in
Step (2’) of Algorithm10.22, i.e., if we choose j∗ = 0, then we obtain an algorithm
similar to the so called dual mode strategy from [22].

(ii) Iterative optimizations algorithms are usually designed such that the interme-
diate results satisfy the desired constraints as soon as the algorithm has succeeded
in finding an admissible solution, see Sect. 12.6 for details. Since condition (ii) in

336 10 Variants and Extensions

Theorem10.26 ensures that we already initialize the iterative optimization with an
admissible solution,most commonoptimization algorithmswill yield solutionsu j∗

n (·)
satisfying condition (iii) of Theorem10.26 regardless of how j∗ is chosen.

(iii) Theorem10.26 yields attractivity for arbitrary j∗ ∈ N0. In particular, it applies
to j∗ = 0, i.e., to the case in which we do not optimize at all. This means that
attractivity follows readily from the stabilizing terminal conditions and the particular
construction of the initial guesses. An important consequence of this property is that
we can fix j∗ a priori, e.g., determined by the available computation time, which
makes this approach suitable for real-time NMPC schemes.

Without stabilizing terminal conditions, stability is inherited from optimality and
we can no longer expect attractivity or stability for arbitrary j∗. Instead, we need to
make sure that u j∗

n is at least “good enough” to ensure (10.22). This is the idea of the
following algorithm for determining j∗ taken from Grüne and Pannek [13].

Algorithm 10.28 Given α ∈ (0, 1), in Step (2’) of Algorithm10.22 we iterate over
u j
n(·) ∈ U

N (x(n)) for j = 1, 2, . . . until the termination criterion

JN (x(n), u j∗
n (·) ≤ ṼN (n − 1) − α�(x(n − 1), un−1(0)) (10.25)

is satisfied.

The following theorem shows attractivity, suboptimality and stability for this
algorithm.

Theorem 10.29 (Stability for nonoptimal NMPC) Consider a set S ⊆ XN , α ∈
(0, 1] and Algorithm3.1 with Steps (2) and (3) replaced by Steps (2’) and (3’) of
Algorithm10.22. Assume that Algorithm10.28 is used in Step (2’) of Algorithm10.22
and that (10.25) is feasible for each n ∈ N, i.e., that for each n ∈ N there exists
u j∗
n ∈ U

N (x(n)) such that (10.25) holds. Assume furthermore that (10.21) holds for
the stage cost �.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

J cl
∞(x, μN) ≤ ṼN (0)

holds. If, in addition, there exists α̃3 ∈ K∞ such that the inequality JN (x0, u00(·)) ≤
α̃3(|x |x∗) holds for the initial guess u00(·) in Step (2’) of Algorithm 10.22 for each
x(0) ∈ S, then (2.5) is also stable on S.

Proof Under the stated assumptions, all properties follow directly from Proposi-
tion10.25. �

Remark 10.30 In contrast towhat was observed in Remark10.27(iii) for the terminal
conditioned scheme, here we cannot in general fix j∗ a priori. Indeed, the number of
iterations of the optimization algorithm which are needed until (10.25) is satisfied
depends on various factors—particularly on the choice of un−1 and u0n—and is in

10.9 Nonoptimal NMPC 337

Fig. 10.16 Angle of the
pendulum x1 for varying α

5 6 7 8 9 10 11 12 13 14 15−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

x 1
α = 0.1
α = 0.5
α = 0.9
α = 0.95

general unknown before the optimization is started. We assume that for sufficiently
small sampling periods techniques similar to theworks ofDiehl, Findeisen,Allgöwer,
Bock and Schlöder [5] or Graichen and Kugi [8] can be used in order to bound the
number of needed iterations when setting u0n = un−1 but this has not yet been
investigated rigorously.

In the general case, the feasibility assumption for (10.25) in Theorem10.29 may
not even be satisfied. Before we investigate this issue, we illustrate the performance
of this algorithm by a numerical example.

Example 10.31 We consider the nonlinear pendulum from Example2.10, where the
task is now to stabilize the downward equilibrium x∗ = (0, 0, 0, 0)T . Figures10.16
and 10.17 below show parts of the closed-loop trajectories of x1 and x3 using Algo-
rithms10.22 and 10.28 in Step (2’) for varying α. The stage cost is of type (3.4)
with

L(x, u) =100 sin2(0.5x1) + x22 + 10.0x23 + x24 + u2,

and sampling period T = 0.15 and the NMPC algorithm was run with optimization
horizon N = 17 and input constraints U = [−1, 1] using a recursive discretization
and a line–search SQP method to solve the resulting optimization problem, see
Chap.12 for details on such methods.

One can see clearly from Figs. 10.16 and 10.17 that the closed-loop system is
stable for all values of α. Moreover, one can nicely observe the improvement of the
closed-loop behavior visible in the decreasing time until the system comes to rest for
increasing values of α.

This is also reflected in the total closed-loop costs: While for α = 0.1 the costs
sum up to V μ̃N∞ (x0) ≈ 2512.74, we obtain a total cost of V μ̃N∞ (x0) ≈ 2485.83 for
α = 0.95.Note that themajority of the costs, i.e., approximately 2435, is accumulated
on the interval [0, 5] on which the trajectories for different α are almost identical
and which is therefore not displayed in Figs. 10.16 and 10.17. However, the choice

338 10 Variants and Extensions

Fig. 10.17 Position of the
cart x3 for varying α

5 6 7 8 9 10 11 12 13 14 15
−2

−1.5

−1

−0.5

0

0.5

t

x 3

α = 0.1
α = 0.5
α = 0.9
α = 0.95

of α has a visible impact on the closed-loop performance in the remaining part of
the interval.

Regarding the computational cost, the total number of SQP steps which are exe-
cuted during the run of the NMPC procedure reduces from 455 for α = 0.95 and 407
for α = 0.9, to 267 and 246 for α = 0.5 and α = 0.1, respectively. Hence, we obtain
an average of approximately 2.5 – 4.5 optimization iterations per MPC step over
the entire interval [0, 15], while using standard termination criteria 9.5 optimization
iterations per NMPC step are required.

A closer look at the numerical simulation in this example reveals that for each
α there were some sampling instants n at which it was not possible to satisfy the
suboptimality based termination criterion (10.25). In this case, we simply iterated
the SQP optimization routine until convergence.

While this fact is not visible in Figs. 10.16 and 10.17 and obviously does not
affect stability and performance in our example, this observation raises the question
whether (10.25) is feasible, i.e., whether at time n we can ensure the existence of u j∗

n

such that (10.25) is satisfied regardless of how un−1 was chosen, before. In order to
analyze this question, let us suppose that Assumption6.3 holds. Then, observing that
for optimal controls (10.25) coincides with (5.1), Theorem6.15 yields that (10.25)
is feasible if un−1 is an optimal control sequence and α in (10.25) is smaller than α

from (6.14). However, even with this choice of α in (10.25), condition (10.25) may
not be feasible for nonoptimal control sequences un−1.

In order to understand why this is the case we investigate how Proposition6.13—
which provides the crucial ingredient for deriving (6.14)—changes if the optimal
control sequence u� in this proposition is replaced by a nonoptimal control sequence
un−1. To this end, we fix n ∈ N and set x = xμN (n) and u = un−1. Now, first
observe that the inequalities in (6.12) remain valid regardless of the optimality of
u�. All inequalities in (6.11), however, require optimality of the control sequence u�

generating the λn . In order to maintain at least some of these inequalities we can pick
an optimal control sequence u� for initial value xu(1, x) and horizon length N−1 and

10.9 Nonoptimal NMPC 339

define a control sequence ũ via ũ(0) = u(0), ũ(n) = u�(n − 1), n = 1, . . . , N − 1.
Then, abbreviating

λ̃n = �(xũ(n, x), ũ(n)), n = 0, . . . , N − 1 and

ν̃ = VN (xu(1, x)) = VN (xũ(1, x)),
(10.26)

we arrive at the following version of Proposition6.13.

Proposition 10.32 Let Assumption6.3 hold. Then the inequalities

N−1∑

n=k

λ̃n ≤ BN−k(λ̃k) and ν̃ ≤
j−1∑

n=0

λ̃n+1 + BN− j (λ̃ j+1) (10.27)

hold for k = 1, . . . , N − 2 and j = 0, . . . , N − 2.

Proof Analogous to the proof of Proposition6.13. �

The subtle but crucial difference of (10.27) to (6.11), (6.12) is that the left inequal-
ity in (10.27) is not valid for k = 0. As a consequence, λ̃0 does not appear in any
of the inequalities, thus for any λ̃1, . . . , λ̃n and ν̃ satisfying (10.27) and any δ > 0
the values δλ̃1, . . . , δλ̃n and δν̃ satisfy (10.27), too. Hence, unless (10.27) implies
ν̃ ≤ ∑N−1

n=0 λ̃n—which is a very particular case—replacing (6.11), (6.12) in (6.14) by
(10.27) will lead to the optimal value α = −∞. Consequently, feasibility of (10.25)
cannot be concluded for any positive α.

The following example shows that this undesirable result is not simply due to an
insufficient estimate for α but that infeasibility of (10.25) can indeed happen.

Example 10.33 Consider the 1d system

x+ = x/2 + u (10.28)

with �(x, u) = |x |, input constraint u ≥ 0 and optimization horizon N = 3. A simple
computation using ux ≡ 0 shows that for this systemAssumption6.5 is satisfied with
β(r, k) = Cσ kr with C = 1 and σ = 1/2. Hence, Corollary6.21 applies to the BN

from (6.7) and we can use (6.18) in order to compute that for N = 3 inequality
(5.1) holds for α = 7/8. If un−1 in the termination criterion (10.25) is chosen as the
optimal control u�, then (10.25) implies that (5.1) is feasible for this α.

For x(n − 1) = 0, it is obvious that the control u� ≡ 0 is optimal. Using the
nonoptimal control given by un−1(0) = ε > 0 and un−1(1) = un−1(2) = 0 and
yields the trajectory xun−1(0) = x(n − 1) = 0, xun−1(k) = ε2−k+1, k = 1, 2, which
implies x(n) = ε and

J3(x(n − 1), un−1) =
1∑

k=0

ε2−k = 3ε/2.

340 10 Variants and Extensions

On the other hand, for the initial value x(n) = ε it is easily seen that for each control
un the inequality

J3(x(n), un) ≥
2∑

k=0

ε2−k = 7ε/4 > 3ε/2 = JN (x(n − 1), un−1)

holds. Hence, for this choice of un−1 the inequality (10.25) is not feasible for any
α > 0.

Clearly, in order to rigorously ensure attraction and guaranteed performance one
should derive conditions which exclude these situations and we briefly discuss two
possible approaches for this purpose.

One way to guarantee feasibility of (10.25) is to add the missing inequality in
(10.27) (i.e., the left inequality for k = 0) as an additional constraint in the opti-
mization. This guarantees feasibility of (10.25) for any α smaller than the value
from (6.18). One drawback of this approach is that—similar to the terminal con-
ditioned case—an additional constraint in the optimization is needed which needs
to be ensured for all j ≥ 1 or at least for j∗. This makes the optimization more
demanding, since in contrast to Remark 10.27(ii) here we do not have a canonical
candidate for an admissible solution which can be used for initializing the iterative
optimization. Another drawback is that the value BN (λ̃0) fromAssumption6.3 needs
to be determined either by an a priori analysis or by a try-and-error procedure.

Another way to guarantee feasibility is to choose � in such a way that there exists
γ > 0 for which

γ �(x, u) ≥ �∗(f (x, u)) (10.29)

holds for all x ∈ X and all u ∈ U . Then from (10.29) and Assumption6.3 for
x = f (x(n − 1), ũn−1(0)) we get

N−1∑

k=0

λ̃k ≤ λ̃0 + BN−1(�
∗(f (x(n − 1), ũn−1(0)))) ≤ λ̃0 + BN−1(γ λ̃0).

Replacing β(r, 0) by max{β(r, t), β̃(r, t)}with β̃(r, 0) = β(γ r, 0)+r and β̃(r, k) =
β(γ r, k) for k ≥ 1, this right hand side is ≤ BN (λ̃0) which again yields the left
inequality in (10.27) for k = 0 and thus feasibility of (10.25). Note that (10.29)
holds for our example (10.28) if we change �(x, u) = |x | to �(x, u) = |x | + |u|/γ .
For this � and the points and control sequences considered in the example, we obtain

J3(x(n − 1), un−1) = 3ε/2 + ε = 5ε/2

from which one computes that (10.25) is now feasible.
The advantage of this method is that no additional constraints have to be imposed

in the optimization. Its disadvantages are that constructing � satisfying (10.29) may
be complicated for more involved dynamics and that the bounds BK from Assump-

10.9 Nonoptimal NMPC 341

tion6.3 will in general increase for the re-designed �. As outlined in Sect. 6.6, this
may lower the NMPC closed-loop performance and cause the need for larger opti-
mization horizons N in order to obtain stability.

An in depth study of these approaches and in particular their algorithmic imple-
mentation and numerical evaluation will be the topic of further research.

References

1. Alamir, M.: Stabilization of Nonlinear Systems using Receding-horizon Control Schemes.
Lecture Notes in Control and Information Sciences, vol. 339. Springer, London (2006)

2. Chen, W., Ballance, D.J., O’Reilly, J.: Model predictive control of nonlinear systems: compu-
tational delay and stability. IEE Proc. Control Theory Appl. 147(4), 387–394 (2000)

3. DeNicolao, G.,Magni, L., Scattolini, R.: Stability and robustness of nonlinear receding horizon
control. In: Nonlinear Predictive Control, pp. 3–23. Birkhäuser (2000)

4. Di Palma, F., Magni, L.: On optimality of nonlinear model predictive control. Syst. Control
Lett. 56(1), 58–61 (2007)

5. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the
real-time iteration scheme for nonlinear model predictive control. IEE Proc. Control Theory
Appl. 152, 296–308 (2005)

6. Findeisen, R.: Nonlinear Model Predictive Control: A Sampled-Data Feedback Perspective.,
PhD thesis, University of Stuttgart, VDI-Verlag, Düsseldorf (2004)

7. Findeisen, R., Allgöwer, F.: Computational delay in nonlinear model predictive control. In:
Proceedings of the International Symposium on Advanced Control of Chemical Processes,
Hong Kong, China, Paper No. 561 (2003)

8. Graichen, K., Kugi, A.: Stability and incremental improvement of suboptimal MPC without
terminal constraints. IEEE Trans. Automat. Control 55, 2576–2580 (2010)

9. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local
control Lyapunov function, all is not lost. IEEE Trans. Autom. Control 50(5), 546–558 (2005)

10. Grüne, L.: Worst case vs. average performance estimates for unconstrained NMPC schemes.
PAMM 10, 607–608 (2010)

11. Grüne, L., Palma, V.G.: Robustness of performance and stability for multistep and updated
multistep MPC schemes. Discrete Cont. Dyn. Syst. A 35(9), 4385–4414 (2015)

12. Grüne, L., Pannek, J.: Practical NMPC suboptimality estimates along trajectories. Syst. Control
Lett. 58(3), 161–168 (2009)

13. Grüne, L., Pannek, J.:Analysis of unconstrainedNMPCschemeswith incomplete optimization.
In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems - NOLCOS 2010,
Bologna, Italy, pp. 238–243 (2010)

14. Grüne, L., von Lossow, M., Pannek, J., Worthmann, K.: MPC: implications of a growth con-
dition on exponentially controllable systems. In: Proceedings of the 8th IFAC Symposium on
Nonlinear Control Systems - NOLCOS 2010, Bologna, Italy, pp. 385–390 (2010)

15. Grüne, L., Pannek, J., Seehafer, M.,Worthmann, K.: Analysis of unconstrained nonlinearMPC
schemes with varying control horizon. SIAM J. Control Optim. 48, 4938–4962 (2010)

16. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers.
IEEE Trans. Automat. Control 53, 2100–2111 (2008)

17. Grüne, L., Pannek, J., Worthmann, K.: A networked unconstrained nonlinear MPC scheme. In:
Proceedings of the European Control Conference - ECC 2009, Budapest, Hungary, pp. 91–96
(2009)

18. Grüne, L., Pannek, J., Worthmann, K.: A prediction based control scheme for networked sys-
temswith delays and packet dropouts. In: Proceedings of the 48th IEEEConference onDecision
and Control - CDC 2009, Shanghai, China, pp. 537–542 (2009)

342 10 Variants and Extensions

19. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal
cost. IEEE Trans. Automat. Control 50(5), 674–678 (2005)

20. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)
21. Limón, D., Alamo, T., Salas, F., Camacho, E.F.: On the stability of constrained MPC without

terminal constraint. IEEE Trans. Automat. Control 51(5), 832–836 (2006)
22. Michalska,H.,Mayne,D.Q.: Robust receding horizon control of constrained nonlinear systems.

IEEE Trans. Automat. Control 38(11), 1623–1633 (1993)
23. de Oliveira Kothare, : S.L., Morari, M.: Contractive model predictive control for constrained

nonlinear systems. IEEE Trans. Automat. Control 45(6), 1053–1071 (2000)
24. Nešić, D., Teel, A.R.: A framework for stabilization of nonlinear sampled-data systems based

on their approximate discrete-time models. IEEE Trans. Automat. Control 49(7), 1103–1122
(2004)

25. Nešić, D., Grüne, L.: A receding horizon control approach to sampled-data implementation of
continuous-time controllers. Syst. Control Lett. 55, 660–672 (2006)

26. Palma, V.G.: Robust Updated MPC Schemes. PhD thesis, Universität Bayreuth (2015). https://
epub.uni-bayreuth.de/2056/

27. Pannek, J.: Receding Horizon Control: A Suboptimality-based Approach. PhD thesis, Univer-
sity of Bayreuth, Germany (2009)

28. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural
approximation. Automatica 31(10), 1443–1451 (1995)

29. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Pub-
lishing, Madison (2009)

30. Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasi-
bility implies stability). IEEE Trans. Autom. Control 44(3), 648–654 (1999)

31. Varutti, P., Findeisen, R.: Compensating network delays and information loss by predictive
control methods. In: Proceedings of the European Control Conference - ECC 2009. Budapest,
Hungary, pp. 1722–1727 (2009)

32. Zavala, V.M., Biegler, L.T.: The advanced-step NMPC controller: optimality, stability and
robustness. Automatica 45(1), 86–93 (2009)

33. Findeisen,R.,Grüne, L., Pannek, J.,Varutti, P.: Robustness of prediction based delay compensa-
tion for nonlinear systems. In: IFAC Proceedings Volumes 44(1) (18th IFACWorld Congress),
pp. 203–208 (2011)

https://epub.uni-bayreuth.de/2056/
https://epub.uni-bayreuth.de/2056/

Chapter 11
Numerical Discretization

This chapter is particularly devoted to sampled data systems, which need to be
discretized in order to be able to solve the optimal control problem within the NMPC
algorithm numerically. We present suitable methods, discuss the convergence theory
for one step methods and give an introduction into step size control algorithms.
Furthermore,we explain how thesemethods can be integrated intoNMPCalgorithms,
investigate how the numerical errors affect the stability of the NMPC controller
derived from the numerical model and show which kind of robustness is needed in
order to ensure a practical kind of stability.

11.1 Basic Solution Methods

In order to define the setting, we start by summarizing the main concepts from Sect.
2.2. As already mentioned there, in most applications the discrete time system (2.1)
is obtained from sampling a continuous time system

ẋ(t) = fc(x(t), v(t)) (2.6)

with x(t) ∈ R
d and v(t) ∈ R

m . More precisely, given a subsetU ⊆ L∞([0, T],Rm),
i.e., each u ∈ U is a continuous time control function defined on the sampling interval
[0, T], we define the discrete time dynamics f in (2.1) by

x+ = f (x, u) := ϕ(T, 0, x, u) (2.8)

where ϕ(T, 0, x, u) is the solution of (2.6) with v = u satisfying the initial condition
ϕ(0, 0, x, u) = x . Here, we tacitly assume that for all admissible initial values x ∈
X ⊆ X = R

d and all admissible controls u ∈ U(x) ⊆ U the solution ϕ(t, 0, x, u)

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_11

343

344 11 Numerical Discretization

exists for t ∈ [0, T]. This waywe obtain a discrete time system (2.1) whose solutions
for each control sequence u(·) ∈ U

N (x) satisfy

ϕ(tn, t0, x0, v) = xu(n, x0), n = 0, 1, 2, . . . , N , (2.7)

for all sampling times tn = nT , n = 0, . . . , N , and the continuous time control
function v given by

v(t) = u(n)(t − tn) for almost all t ∈ [tn, tn+1] and all n = 0, . . . , N − 1, (2.13)

cf. Theorem 2.7.
Since a closed formula for f defined in (2.8) will only be available in exceptional

cases, it is in general necessary to use numerical schemes in order to compute a
numerical approximation of f . This way, instead of an analytical formula we obtain
an algorithm which can be used in order to compute the predictions needed in the
optimal control problem and its variants. For the exposition in this chapter we restrict
ourselves to sampling with zero order hold in which each element u(n) of the control
sequence is a constant function from [0, T] to Rm . This amounts to defining

U := {u : [0, T] → R
m | there exists u0 ∈ R

m with u(t) = u0 for all t ∈ [0, T]}.

Observe that each element in U is uniquely defined by the value u0 ∈ R
m . Accord-

ingly, we identifyU withRm and regard each u ∈ U as a value inRm . Henceforth, we
will again use the symbol u (instead of u0) for this value. The resulting continuous
time control function v in (2.7) is then piecewise constant on the sampling intervals,
cf. also Fig. 2.3 and the discussion after Theorem 2.7. Recall from Remark 2.8 that
the overlap of the sampling intervals at the sampling times tn does not pose a problem
in the definition of v in (2.13).

In the following, we give an introduction into numerical methods for ordinary
differential equations and their analysis. In particular, we give details on so-called
one step methods and show convergence results and requirements. Moreover, we
sketch the basic idea of the very useful step size control algorithms. These algorithms
allow us to externally define an error tolerance level for the solution and produce
an adaptive time grid which is computationally much more efficient than using a
sufficiently fine uniform grid, a requirement that is frequently found in the sampled
data literature. For references to textbooks which cover the material presented here
more comprehensively and in more detail we refer to Sect. 11.6.

For computing f in (2.8) it is sufficient to solve (2.6) on the interval [0, T] on
which u ∈ U in (2.8) is constant. Hence, the right-hand side in (2.8) does not depend
on t and—more importantly—does not exhibit discontinuities on the interval [0, T].
For this reason, standard numerical techniques can be applied. Still, the solution
depends on the constant control value u which will be reflected in the subsequent
notation.

11.1 Basic Solution Methods 345

Before we can develop solution methods for ordinary differential equations, we
need to define some general concepts. As we have pointed out before, the fundamen-
tal idea of almost all numerical solution methods is to replace the analytic solution
ϕ(t, 0, x, u) for t ∈ [0, T] by an approximation. Throughout the rest of this chapter,
we denote this approximation by ϕ̃(t, 0, x, u). The following definition states for
which t such an app roximation is defined and what convergence of such an approx-
imation means.

Definition 11.1 (i) A set G = {τ0, τ1, . . . , τM } of time instants with 0 = τ0 <

τ1 < . . . < τM = T is called a time grid on the interval [0, T]. The values
hi := τi+1 − τi and h := maxi=0,...,M−1 hi are called step sizes and maximal
step size, respectively.

(ii) A function ϕ̃ : G × G × R
d ×U → R

d is called grid function.
(iii) Assume that the solution ϕ(t; τ0, x0, u) of (2.6) exists for t ∈ [0, T]. Then a

family of grid functions ϕ̃ j , j ∈ N, on time grids G j on the interval [0, T] with
maximal step sizes h j is called (discrete) approximation of ϕ(t; τ0, x0, u) (2.6),
if it is convergent, i.e.,

max
τi∈G j

‖ϕ̃ j (τi ; τ0, x0, u) − ϕ(τi ; τ0, x0, u)‖ → 0 as h j → 0.

The convergence of the approximation is said to be of order p > 0 if for all
compact sets K ⊂ R

d , Q ⊂ U there exists a constant M > 0 such that

max
τi∈G j

‖ϕ̃ j (τi ; τ0, x0, u) − ϕ(τi ; τ0, x0, u)‖ ≤ Mh
p
j (11.1)

holds for all x0 ∈ K , all u ∈ Q and all sufficiently fine grids G j on [0, T].
Less technically speaking, an approximation ϕ̃(τi , 0, x, u) is a grid function

defined on G which approximates the values of the true solution at the grid points
and becomes the more accurate the finer the grid becomes. Moreover, the larger the
order of convergence p is, the faster the approximation will converge toward the
exact solution for h → 0.

The most simple class of numerical methods to compute a discrete approximation
satisfying Definition 11.1 are so-called one stepmethods. Although simple to design,
thesemethods are nonetheless well suited even for rather complicated problems. One
step methods compute the grid function ϕ̃ iteratively via

ϕ̃(τ0; τ0, x0, u) := x0, ϕ̃(τi+1; τ0, x0, u) := Φ(ϕ̃(τi ; τ0, x0, u), u, hi) (11.2)

for i = 0, . . . , M − 1 starting from the given initial value x0. Here Φ is a mapping

Φ : Rd × U × R → R
d

which should be easy to implement and cheap to evaluate on a computer and, of
course, provide a convergent approximation in the sense of Definition 11.1(iii).

346 11 Numerical Discretization

In order to design such amapΦ,weuse that the solution of the differential equation
(2.6) for two consecutive grid points τi and τi+1 satisfies the integral equation

ϕ(τi+1; τ0, x0, u) = ϕ(τi ; τ0, x0, u) +
τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt.

Approximating the integral expression by the rectangle rule we obtain

τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt ≈ (τi+1 − τi) fc(ϕ(τi ; τ0, x0, u), u) = hi fc(ϕ(τi ; τ0, x0, u), u)

Inserting this approximation into the above integral equation then yields

ϕ(τi+1; τ0, x0, u) ≈ ϕ(τi ; τ0, x0, u) + hi fc(ϕ(τi ; τ0, x0, u), u).

Now we define an approximate solution ϕ̃ by requiring that it exactly solves this
approximate equation, i.e.,

ϕ̃(τi+1; τ0, x0, u) = ϕ̃(τi ; τ0, x0, u) + hi fc(ϕ̃(t; 0, x0, u), u). (11.3)

This is exactly the iteration in (11.2) with

Φ(x, u, h) := x + h fc(x, u).

This one stepmethod is called theEuler scheme.Now, ifwe assume ϕ̃(τi ; τ0, x0, u) ≈
ϕ(τi ; τ0, x0, u), then we see that

ϕ̃(τi+1; τ0, x0, u) ≈ ϕ(τi ; 0, x0, u) + hi fc(ϕ(τi ; τ0, x0, u), u)

≈ ϕ(τi ; τ0, x0, u) +
τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt = ϕ(τi+1; τ0, x0, u)

which suggests that this method yields an approximation in the sense of Definition
11.1(iii). Formally, we will prove this property for general one step methods in
Theorem 11.5 below. Before we turn to the convergence analysis, we present an
important class of solution methods which follow from a generalization of the Euler
approximation idea to solve the integral equation.

The idea to generalize the Euler method is to use a higher order approximation
for the integral. For example, one can approximate the integral by the trapezoidal
rule instead of the rectangle rule, which leads to the approximation

11.1 Basic Solution Methods 347

ϕ(τi+1; τ0, x0, u) ≈ ϕ(τi ; τ0, x0, u)

+ hi
2

(
fc(ϕ(τi ; τ0, x0, u), u) + fc(ϕ(τi+1; τ0, x0, u), u)

)
.

When trying to use this approximation in order to define ϕ̃ analogous to (11.3),
above, we run into the problem that the unknown value ϕ̃(τi+1; τ0, x0, u) appears
on the right hand side. We can avoid this if we use the Euler scheme in order to
approximate

fc(ϕ(τi+1; τ0, x0, u), u) ≈ fc(ϕ(τi ; τ0, x0, u) + hi fc(ϕ(τi ; τ0, x0, u))).

Proceeding this way we end up with the so-called Heun method

Φ(x, v, h) := x + h

2

(
fc(x, u) + fc(x + h fc(x, u), u)

)
.

Observe that in this formula the value fc(x, u) appears twice and that the scheme uses
nested evaluations of the vector field fc. The formalism of Runge–Kutta methods
now gives a systematic way to formalize this nested structure. We first illustrate this
formalism using the Heun method, for which it reads

k1 := fc(x, u)

k2 := fc(x + hk1, u)

Φ(x, u, h) := x + h

(
1

2
k1 + 1

2
k2

)

The advantage of this formalism is that one can easily add new function evaluations
or modify the weighted combination. This leads to the following general form.

Definition 11.2 An s-stage (explicit) Runge–Kutta method is given by

ki := f

⎛
⎝x + h

i−1∑
j=1

ai j k j

⎞
⎠ for i = 1, . . . , s

Φ(x, u, h) := x + h
s∑

i=1

biki .

The value ki = ki (x, u, h) is called the i th stage of the method.

The methods thus defined depend on the parameters ai j and bi . If the vector
field explicitly depends on t—which is not the case in our setting—then additional

348 11 Numerical Discretization

Table 11.1 Butcher tableaus for the Euler, Heun, and classical Runge–Kutta method (left to right)

0

1

0
1 1

1
2

1
2

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

parameters ci are used in the definition.More compactly, these parameters arewritten
as so-called Butcher tableaus of the form

c1
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as s−1

b1 b2 · · · bs−1 bs

Table 11.1 shows Butcher tableaus corresponding to the Euler scheme (left), the
Heun scheme (middle) and the so-called classical Runge–Kutta scheme with s = 4
stages proposed by Carl Runge and Martin Kutta in 1895 (right).

Remark 11.3 Models based on partial differential equations, like the one discussed
in Example 6.32, require discretization techniques different from the one discussed
here. In particular, apart from the discretization in time also a discretization in space
has to be performed. Popular techniques for this purpose are finite difference or finite
elementmethods and the interested reader is referred to the large amount of textbooks
on this topic, like, e.g., the books by LeVeque [9] or Braess [1] respectively.

11.2 Convergence Theory

Having defined one step methods we now show that the resulting approximations
actually converge toward the solution. To this end, we define the error at time τi ∈ G
as

e(τi) := ‖ϕ̃(τi ; τ0, x, u) − ϕ(τi ; τ0, x, u)‖.

The main idea to show convergence is to use the triangle inequality in order to
separate the error sources in the iteration (11.2) into the error caused by the previously
accumulated error (a) and the local error (b). Abbreviating ϕ(τi) = ϕ(τi ; τ0, x0, u)

and ϕ̃(τi) = ϕ̃(τi ; τ0, x0, u), this leads to the estimate

11.2 Convergence Theory 349

Fig. 11.1 Illustration of the
separation of errors

τ0 τ1 τ2 τ3

x0

ϕ (τ1)

ϕ (τ2)

ϕ (τ3)

ϕ̃ (τ1)

ϕ̃ (τ2)

ϕ̃ (τ3)

Φ(ϕ (τ2), u, h2)

(a)

(b)
e(τ3)

e(τi+1) = ‖ϕ̃(τi+1) − ϕ(τi+1)‖ = ‖Φ(ϕ̃(τi), u, hi) − ϕ(τi+1)‖
≤ ‖Φ(ϕ̃(τi), u, hi) − Φ(ϕ(τi), u, hi)‖︸ ︷︷ ︸

accumulated error (a)

+ ‖Φ(ϕ(τi), u, hi) − ϕ(τi+1)‖︸ ︷︷ ︸
local error (b)

.

(11.4)

The idea is sketched in Fig. 11.1 for i = 2.
In order to prove convergence we will use the following conditions which guar-

antee that both errors (a) and (b) remain small.

Definition 11.4 (i) A one step method satisfies the Lipschitz condition if for all
compact subsets K ⊂ R

d and Q ⊂ U there exists a constant Λ > 0 such that
for all sufficiently small h > 0 the inequality

‖Φ(x1, u, h) − Φ(x2, u, h)‖ ≤ (1 + Λh)‖x1 − x2‖ (11.5)

holds for all x1, x2 ∈ K and all u ∈ Q.
(ii) A one step method is called consistent with order of consistency p > 0 if for all

compact subsets K ⊂ R
d and Q ⊂ U there exists a constant C > 0 such that

for all sufficiently small h > 0 the inequality

‖Φ(x, u, h) − ϕ(h; 0, x, u)‖ ≤ Chp+1 (11.6)

holds for all x ∈ K and all u ∈ Q.

Inequality (11.5) guarantees that the propagation of previous errors within a one
step method, i.e., term (a), stays bounded. The consistency condition (11.6), on the
other hand, ensures that the local error (b) remains small.

One can easily show that the previously introduced Euler approximation as well
as all explicit Runge–Kutta methods satisfy the Lipschitz condition (11.5) if the
vector field fc satisfies the Lipschitz condition fromAssumption 2.4. The consistency
condition (11.6), on the other hand, cannot be checked that easily in general. In order

350 11 Numerical Discretization

to verify that a method Φ exhibits an order of consistency p ≥ 1, one utilizes the
Taylor approximation of the method with respect to the step size h in h = 0, i.e.,

Φ(x, u, h) = x +
p∑

i=1

hi

i !
∂ i

∂hi

∣∣∣∣
h=0

Φ(x, u, h) + O(h p+1) (11.7)

and compares it to the Taylor approximation of the exact solution ϕ(h; 0, x, u) with
respect to h in h = 0. It turns out that this Taylor approximation can be computed
without actually using the—in general unknown—solution ϕ. To this end, we use
the higher order Lie derivative Li

fc
, i ∈ N0, with respect to the vector field fc which

for arbitrary smooth vector fields g : Rd ×U → R
d is defined inductively by

L0
fc g(x, u) = g(x, u), Li

fc g(x, u) =
(

∂

∂x
Li−1

fc
g(x, u)

)
fc(x, u).

Using the Lie derivative, the Taylor approximation of ϕ reads

ϕ(h; 0, x, u) = x +
p∑

i=1

hi

i ! L
i−1
fc

fc(x, u) + O(h p+1). (11.8)

Then, if the p summands in (11.7) and (11.8) coincide, the scheme is consistent with
order p. In particular, if Φ can be written as

Φ(x, u, h) = x + hψ(x, u, h)

with a continuous function ψ satisfying ψ(x, u, 0) = fc(x, u), then it follows that
the order of consistency is at least p = 1.

Using this technique one can show that the order of consistency of the classical
Runge–Kutta method is p = 4. More generally, the comparison of the summands
can be used in order to derive conditions on the coefficients of arbitrary Runge–
Kutta schemes for any consistency order p ≥ 1. Unfortunately, the number of these
condition grows exponentially with p, hence for p ≥ 10 it is almost impossible to
use them for constructing appropriate Runge–Kutta methods.

Note that in order to guarantee the order of consistency p the vector field fc needs
to be p times continuously differentiable with respect to x in order to ensure that
approximation (11.8) holds. If the vector field depends on t , then it also needs to be p
times continuously differentiable with respect to t on the interval [τi , τi+1] if wewant
to apply (11.6) on this interval. This is no problem as long as [τi , τi+1] ⊆ [0, T]which
is always the case in this section. However, if we consider sampled data systems,
i.e., (2.6) with v from (2.13) on an interval [τi , τi+1] with tn ∈ (τi , τi+1) for some
sampling time tn , this becomes a major issue since the control v and thus the map
t �→ fc(x, v(t)) is in general discontinuous and thus in particular nonsmooth at the
sampling times. We will discuss this issue in Sect. 11.4, below.

11.2 Convergence Theory 351

After discussing the assumptions and how these assumptions can be checked, we
are now ready to state the main result of this section.

Theorem 11.5 If a one step method Φ satisfies the Lipschitz condition (11.5) and
the consistency condition (11.6) with order p, then the approximation ϕ̃ from 11.2
is convergent in the sense of Definition 11.1(iii) with order of convergence p.

Proof We will show (11.1) for each grid G on [0, T] with h > 0 sufficiently small.
For simplicity of notation, we drop the index j in (11.1). To this end, fix two compact
sets K ⊂ R

d and Q ⊂ U . Then the set

K1 := {ϕ(t; 0, x0, u) | t ∈ [0, T], x0 ∈ K , u ∈ Q}

is again compact, since ϕ is continuous in all variables and images of compact sets
under continuous maps are again compact. We choose some δ > 0 and consider the
compact set

K2 := Bδ(K1) =
⋃
x∈K1

Bδ(x)

which contains exactly those points x ∈ R
d which have a distance less or equal δ to

a point on a solution x(t; 0, x0, u) with x0 ∈ K and u ∈ Q. Let Λ > 0 and C > 0 be
the constants in the Lipschitz condition (11.5) and the consistency condition (11.6),
respectively, for K = K2 and the set Q fixed above.

We first prove (11.1) under the following condition, which we will verify after-
wards.

For all gridsG with sufficiently small h > 0, all initial
values x0 ∈ K and all u ∈ Q the grid function ϕ̃ from
(11.2) satisfiesϕ(τi , τ0, x0, u) ∈ K2 for all τi ∈ G .

(11.9)

For proving (11.1) we choose x0 ∈ K and u ∈ Q and abbreviate ϕ(t) =
ϕ(t; τ0, x0, u) and ϕ̃(τi) = ϕ̃(τi ; τ0, x0, u). With

e(τi) := ‖ϕ̃(τi) − ϕ(τi)‖

we denote the error at time τi ∈ G . Then from (11.4) we obtain

e(τi+1) ≤ ‖Φ(ϕ̃(τi), u, hi) − Φ(ϕ(τi), u, hi) + ‖Φ(ϕ(τi), u, hi) − ϕ(τi+1)‖[0]
≤ (1 + Λhi−1)‖ϕ̃(τi−1) − ϕ(τi−1)‖ + Chp+1

i−1 [0]
= (1 + Λhi−1)e(τi−1) + Chp+1

i−1 ,

using (11.5) and (11.6) for K = K2 in the second inequality. These inequalities apply
since the construction of K1 and K2 implies ϕ(τi) ∈ K1 ⊂ K2 and (11.9) ensures
ϕ̃(τi) ∈ K2.

By induction over i we now show that this inequality implies the estimate

352 11 Numerical Discretization

e(τi) ≤ Ch
p 1

Λ
(exp(Λ(τi − τ0)) − 1).

For i = 0 this inequality follows immediately. For i − 1 → i we use

exp(Λhi) = 1 + Λhi + Λ2h2i
2

+ . . . ≥ 1 + Λhi

which together with the induction assumption yields

e(τi) ≤ (1 + Λhi−1)e(τi−1) + Chp+1
i−1 [0]

≤ (1 + Λhi−1)Ch
p 1

Λ
(exp(Λ(τi−1 − τ0)) − 1) + hi−1 Chp

i−1︸ ︷︷ ︸
≤Ch

p

[0]

= Ch
p 1

Λ

(
hi−1Λ + (1 + Λhi−1)(exp(Λ(τi−1 − τ0)) − 1)

)
[0]

= Ch
p 1

Λ

(
hi−1Λ + (1 + Λhi−1) exp(Λ(τi−1 − τ0)) − 1 − Λhi−1

)
[0]

= Ch
p 1

Λ

(
(1 + Λhi−1) exp(Λ(τi−1 − τ0)) − 1

)
[0]

≤ Ch
p 1

Λ

(
exp(Λhi−1) exp(Λ(τi−1 − τ0)) − 1

)
[0]

= Ch
p 1

Λ
(exp(Λ(τi − τ0)) − 1).

Since τ0 = 0 this implies (11.1) with M = C(exp(ΛT) − 1)/Λ.
It remains to show that condition (11.9) is satisfied. We show that this assumption

holds for all grids G whose maximal step size satisfies

Ch
p ≤ δΛ

exp(Λ(T − τ0)) − 1
.

To this end, we consider a numerical solution ϕ̃(τi) = ϕ̃(τi , τ0, x0, u) for some
x0 ∈ K and u ∈ Q and show ϕ̃(τi) ∈ K2 by induction. Since ϕ̃(τ0) = x0 ∈ K ⊂ K2

the assertion holds for i = 0.
For the induction step i−1 → i assume that the induction assumption ϕ̃(τk) ∈ K2

holds for k = 0, 1, . . . , i − 1. We have to show ϕ̃(τi) ∈ K2. Observe, that for the
inequality

e(τi) ≤ Ch
p 1

Λ
(exp(Λ(T − τ0)) − 1)

to hold it is sufficient that ϕ̃(τk) ∈ K2 holds for k = 0, 1, . . . , i − 1. By choice of h
we thus obtain e(τi) ≤ δ, i.e.,

‖ϕ̃(τi) − ϕ(τi)‖ ≤ δ.

11.2 Convergence Theory 353

Since by construction of K1 we have ϕ(τi) ∈ K1, it follows that ϕ̃(τi) ∈ Bδ(ϕ(τi)) ⊂
K2, i.e., the desired property. �

11.3 Adaptive Step Size Control

The convergence theorem from the previous section shows that the presented one
step methods are applicable to solve the underlying continuous time dynamics of the
form (2.6) of a problem. Yet, so far we can only guarantee those methods to exhibit
small errors if each time step hi in the grid G is sufficiently small since the error
bound in (11.1) depends on h = max hi . In the literature, it is occasionally proposed
to use the grid induced by the sampling times as computational grid, i.e., to choose
τn = tn = nT . This, however, results in h = T and thus requires the sampling period
T to be small in order to obtain an accurate approximation. Apart from the fact that
it may not be desirable to use very small sampling periods, there are subtle pitfalls
regarding stability of the closed-loop system when the accuracy of the approximate
model and the sampling rate are linked, see the discussion in Sect. 11.6.

Away to avoid linking h and T is to use a constant step size hi ≡ h with h = T/K
for some K ∈ N. Adjusting h appropriately, we can make the error term in (11.1)
arbitrarily small without changing T . This, however, leads to equidistant grids which
are known to be computationally inefficient since they do not reflect the properties
of the solution. A much more efficient way is to choose the time steps hi adapted to
the solution, i.e., we allow for large hi if the error is small and use small hi when
large errors are observed. However, we surely do not want to manually adapt the step
sizes to every situation the NMPC controller may face since this would render such
an algorithm to be inapplicable.

In order to obtain an efficient way to construct an adaptive grid G , we consider
step size control algorithms. Such methods are well established in the numerics of
ordinary differential equations. In this section, we explain the central idea behind
step size control algorithms. The key idea is to use two different one step methods
Φ1,Φ2 with different orders of consistency p1 < p2 in order to compute a step length
hi = τi+1 − τi at time τi for the next time step which guarantees a predefined local
error bound tolODE. Here, by p1 < p2 we mean that forΦ = Φ1 the inequality (11.6)
cannot hold for p = p2, i.e., no matter how C is chosen (11.6) will be violated for
all sufficiently small h. As in the previous sections, we consider the solution of (2.6)
on one sampling interval [0, T] on which the control u is constant.

In (11.4) we used the auxiliary term Φ(ϕ(τi ; τ0, x, u), u, hi) in order to quantify
the local error. Since the value of ϕ(τi ; 0, x, u) is not available at runtime of a one
step method, we cannot use it to guarantee the local error (a) to satisfy

‖Φ(ϕ(τi ; τ0, x, u), u, hi) − ϕ(τi ; τ0, x, v)‖ ≤ tolODE.

To circumvent this problem, in the triangle inequality for estimating e(τi+1)we insert
the term ϕ(τi+1; τi , ϕ̃(τi ; τ0, x, u), u) instead of Φ(ϕ(τi ; τ0, x, u), u, hi). Using that
by the cocycle property we have ϕ(τi+1; τ0, x, u) = ϕ(τi+1; τi , ϕ(τi ; τ0, x, u), u),
this leads to the inequality

354 11 Numerical Discretization

‖ϕ̃(τi+1; τ0, x, u) − ϕ(τi+1; τ0, x, u)‖ ≤
≤ ‖Φ(ϕ̃(τi ; τ0, x, u), u, hi) − ϕ(τi+1; τi , ϕ̃(τi ; τ0, x, u), u)‖

+ ‖ϕ(τi+1; τi , ϕ̃(τi ; τ0, x, u), u) − ϕ(τi+1; τi , ϕ(τi ; τ0, x, u), u)‖.

In this sum, the second term essentially depends on the error of the approximation
at time instant τi , which is independent of the choice of hi = τi+1 − τi . Hence,
for choosing hi we only consider the first summand. More precisely, we attempt to
choose hi such that the tolerable error bound

‖Φ(ϕ̃(τi ; τ0, x, u), u, hi) − ϕ(τi+1; ti , ϕ̃(τi ; τ0, x, u), u)‖ ≤ tolODE

is satisfied.
When trying to implement this method, one faces the problem that the value

ϕ(τi+1; ti , ϕ̃(τi ; τ0, x, u), u) is not known. This is where the idea of using two meth-
odsΦ1 andΦ2 with different orders of consistency p2 > p1 is used. SettingΦ = Φ1

and approximating ϕ(τi+1; ti , ϕ̃(τi ; τ0, x, u), u) by themore accuratemethodΦ2 one
can show the following theorem.

Theorem 11.6 Consider two one step methods Φ1, Φ2 with orders of consistency
p1, p2 satisfying p2 ≥ p1 + 1. Then there exist constants k1, k2 > 0 such that for all
sufficiently small hi > 0 the computable error

ε := ‖Φ1(ϕ̃(τi ; 0, x, u), u, hi) − Φ2(ϕ̃(τi ; 0, x, u), u, hi)‖ (11.10)

and the local error of the one step method Φ1

ε := ‖Φ1(ϕ̃(τi ; 0, x, u), u, hi) − ϕ(τi+1; τi , ϕ̃(τi ; 0, x, u), u)‖

satisfy the inequality

k1ε ≤ ε ≤ k2ε.

Proof First we define the errors

ηi, j := Φ j (ϕ̃(τi ; 0, x, u), u, hi) − ϕ(τi+1; τi , ϕ̃(τi ; 0, x, u), u)

for both one step methods Φ j , j = 1, 2. By Definition 11.4(ii) we obtain the local

error bounds εi, j := ‖ηi, j‖ ≤ C jh
pj+1
i . Using p2 ≥ p1 + 1 and the fact that this

implies εi,1 ≥ Chp2+1
i for all C > 0 and all sufficiently small hi > 0, we can

conclude θ := εi,2/εi,1 < 1 if hi is chosen sufficiently small since θ → 0 as hi → 0.
We fix θ0 < 1, consider hi > 0 such that θ < θ0 < 1 holds and define

η := Φ1(ϕ̃(τi ; 0, x, u), u, hi) − Φ2(ϕ̃(τi ; 0, x, u), u, hi) = ηi,1 − ηi,2.

11.3 Adaptive Step Size Control 355

Then we have

(1 − θ)εi,1 = (1 − θ)‖ηi,1‖ =
(
1 − ‖ηi,1 − η‖

‖ηi,1‖
)

‖ηi,1‖ =
= ‖ηi,1‖ − ‖ηi,1 − η‖ ≤ ‖η‖ = ε

which yields the lower bound k1 = 1 − θ0 and

ε = ‖η‖ ≤ ‖ηi,1‖ + ‖ηi,1 − η‖ =
(
1 + ‖ηi,1 − η‖

‖ηi,1‖
)

‖ηi,1‖ =
= (1 + θ)‖ηi,1‖ = (1 + θ)εi,1

giving the upper bound k2 = 1 + θ0. �

Using Theorem 11.6 we can now compute a suitable step size hi if we additionally
assume that the local error is of the form εi,1 ≈ ci h

p1+1
i for small hi . Note that for

Runge–Kutta methods this assumption is satisfied if the vector field f is p1+2 times
continuously differentiable. In this case, ci is given by the coefficient of the h p1+1

i
term in the Taylor approximation of the method.

For small step sizes it follows from the proof of Theorem 11.6 that k1 ≈ k2 ≈ 1,
i.e., ε ≈ εi,1 ≈ ci h

p1+1
i which gives us the estimate ci ≈ ε/h p1+1

i for the coefficient
ci . Hence, the error tolerance tolODE is satisfied (approximately) for the step size

tolODE = ci h
p1+1
i,new = ε

h p1+1
i

h p1+1
i,new ⇐⇒ hi,new = p1+1

√
fac

tolODE
ε

hi (11.11)

Since all these equalities are only satisfied approximately, a security factor fac ∈
(0, 1) has been introduced to compensate for these approximation errors. For this
factor, fac = 0.9 is a typical choice in many algorithms.

A schematic implementation of a one step scheme with adaptive step size is
given in Algorithm 11.7, below. This algorithm combines the iteration (11.2) with
the computation of the step size hi described above. Here, we solve (2.6) on one
sampling interval [0, T] using the length T of the sampling interval as an initial
choice for the first step size h0. For large T , one may alternatively choose h0 < T . In
each step the error ε is computed. If ε exceeds the tolerance tolODE, then the step is
rejected and repeated using the new step size from (11.11). If ε maintains the desired
tolerance, then the step is accepted and the new step size from (11.11) is used as an
initial choice for the next time step.

Algorithm 11.7 Suppose an initial value x , a control value u, a tolerance tolODE,
and sampling period T are given.

(1) Set ϕ̃(0; 0, x, v) = x , i = 0, τ0 = 0, h0 = T
(2) If τi = T stop; If τi + hi > T set hi = T − τi

356 11 Numerical Discretization

(3) Set τi+1 = τi +hi and computeΦ1(ϕ̃(τi+1; t j , x, v), v, hi),Φ2(ϕ̃(τi+1; t j , x, v),

v, hi)
(4) Compute ε and hi,new according to (11.10), (11.11)
(5) If ε > tolODE set hi = hi,new and goto (3)
(6) If ε ≤ tolODE set ϕ̃(τi+1; τ0, x, u) = Φ2(ϕ̃(τi+1; τ0, x, u), u, hi), hi+1 = hi,new,

i = i + 1 and goto (2)

In practical implementations, this basic algorithm is often refined in various ways.
For instance, the new step size may be derived on the basis of a weighted sum of
the absolute and the relative error instead of using only the absolute error as above.
Upper and lower bounds for the time step hi as well as for the ratio between hi and
hi+1 are also frequently used in practice.

Although the evaluation of two methods Φ1 and Φ2 and their possibly repeated
evaluation in every step seems to be computationally more demanding, step size con-
trol algorithms are usually muchmore efficient than the use of equidistant time grids.
This is due to two different aspects: on the one hand, there typically exist regions
which allow for larger time steps and thus allow for a faster progress of the adap-
tive iteration procedure. On the other hand, the additional effort of simultaneously
evaluating two methods can be reduced significantly by embedding these methods
into each other. This means that the less accurate Runge–Kutta method Φ1 uses the
same stages ki , cf. Definition 11.2, as the more accurate methods Φ2 and thus the
stages ki only need to be evaluated once for both methods. One standard embedded
method is the Dormand–Prince method of order (4)5, also called DoPri5, in which
Φ1 has order p1 = 4 and Φ2 is of order p2 = 5. The Butcher tableau is displayed in
Table 11.2. The second last line specifies the coefficients bi for Φ1 and the last line
the bi for Φ2.

With the same induction as in the proof of Theorem 11.5, one sees that if the
local errors maintain the tolerances tolODE = εhi for some ε > 0, then the overall
error at time T can be estimated as e(T) ≤ ε(exp(ΛT) − 1)/Λ and thus scales
linearly with ε. It should, however, be mentioned that adaptive step size selection
schemes usually do not rigorouslymaintain the specified error tolerance. The reason
for this is that Theorem 11.6 and the derivation of (11.11) require hi to be sufficiently
small. Suitable upper bounds which quantify this “sufficiently small” are, however,
difficult to obtain without an extensive a priori analysis of the individual system and
can therefore not be enforced in practice. Hence, the step size selection algorithm
may select large step sizes for which the error estimation is no longer valid and
thus the desired accuracy is no longer guaranteed. Thus, in general only equidistant
grids with sufficiently small maximal step size h provide rigorous error bounds. Still,
numerical experience shows that in the vast majority of examples error estimation-
based adaptive step size algorithms like Algorithm 11.7 perform very reliably.

11.3 Adaptive Step Size Control 357

Table 11.2 Butcher tableau of the DoPri(4)5 method

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

− 56
15

32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168

− 355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
85

35
384

0 500
1113

125
192

− 2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

11.4 Using the Methods Within the NMPC Algorithms

Looking at the NMPC Algorithm 3.11 and its variants, we see that in every iteration
an optimal control problem has to be solved. To this end, the optimization algorithm
needs to be able to compute the solution xu and to evaluate the functional JN . In
fact, there are various ways for incorporating xu into the optimization algorithm, for
details see Sect. 12.1. However, no matter which method from this section we use,
we need to be able to evaluate ϕ(T, 0, x, u) in (2.8) numerically.

To this end, we replace the unknown map ϕ(T, 0, x, u) in (2.8) by its approxima-
tion ϕ̃(T, 0, x, u) from Algorithm 11.7. This way we end up with the definition

x+ = f (x, u) := ϕ̃(T, 0, x, u). (11.12)

Iterating this map according to (2.2), which amounts to calling Algorithm 11.7 N
times with initial values xu(n, x) and control values u(n), n = 0, . . . , N − 1, we
can then obtain an approximate predicted solution trajectory. Proceeding this way,
one should keep in mind that the numerical scheme provides only an approximation
of the exact solution. The effects of the approximation errors will be discussed in
Sect. 11.5, below.

358 11 Numerical Discretization

When the stage cost � is defined via the integral formula (3.4) with running cost
L , then we can efficiently include the numerical evaluation of the integral

�(x, u) =
∫ T

0
L(ϕ(t, 0, x, u), u)dt

into the computation of ϕ̃. Here, we have removed the argument t from u because—
following the convention in this chapter—u is constant on the sampling interval
[0, T]. In order to compute the integral, consider the augmented ordinary differential
equation

ẋ(t) = f (x(t), u) (11.13)

with

x(t) =
(
x(t)
y(t)

)
∈ R

d × R and f (x, u) =
(

fc(x, u)

L(x, u)

)
.

Solving (11.13) with initial condition x = (x, 0) we obtain the solution

ϕ(T, x, u) =
(

ϕ(T, x, u)

�(x, u)

)
.

Thus, solving (11.13) numerically yields a numerical solution whose first n com-
ponents equal ϕ̃(T, x, u) and whose (n + 1)st component approximates �(x, u).
Proceeding this way we avoid the use of a separate numerical integration formula,
in particular, we do not have to store the intermediate values ϕ̃(τi , x, u) for a sub-
sequent numerical integration of L . Furthermore, the adaptive step size algorithm
ensures that � is approximated with the same accuracy as the solution ϕ.

As we will see in detail in Sect. 12.1, one way to incorporate the dynamics of the
system into the numerical optimization algorithm is to externally compute the whole
trajectory xu(·, x0), an approach called recursive elimination. In order to compute
this trajectory, instead of defining f via (11.12) and then iterating f according to
(2.2) one could apply a numerical one step method directly on the interval [0, NT].
This way we obtain a numerical approximation of xu (and of JN if we include the
computation of �) on [0, NT] invoking Algorithm 11.7 only once. However, this has
to be done with care. As already mentioned, in order to guarantee consistency with
order p of the numerical schemes, it is important that themap (t, x) �→ fc(x, v(t)) in
(2.6) is p times continuously differentiable. Formally, this can be shown by extending
the Formulas (11.7) and (11.8) to time varying vector fields fc.

However, we can also give an informal explanation of this fact: when considering
the solution of (2.6) with zero-order hold, then the control function v is discontinu-
ous at the sampling times tn . Consequently, the solution ϕ(t, 0, x, v) is not differen-
tiable for t = tn , as sketched in Fig. 11.2. Since we cannot approximate nonsmooth
functions by a Taylor approximation, Formula (11.8) will not hold if we replace
ϕ(h, 0, x, u) by ϕ(τi + hi , τi , x, v) with tn ∈ (τi , τi + hi) = (τi , τi+1) for some
sampling time tn . Thus, we have to make sure that this situation does not happen.

11.4 Using the Methods Within the NMPC Algorithms 359

t

/v

v(·)

(·,0,x,v)

ti ti+1 ti+2 ti+3 ti+4

Fig. 11.2 Approximation of the sampled data solution

Defining the set of sampling times

T := {tn ∈ R | tn = nT, n = 0, . . . , N } (11.14)

and using the time grid

G := {τi ∈ [0, NT] | τi is a discretization time in the one step method}, (11.15)

in order to exclude the existence of i and nwith tn ∈ (τi , τi +hi) = (τi , τi+1)we need
to make sure that the inclusionT ⊂ G holds. This assumption is not very restrictive,
however, in order to ensure it we need to appropriately adjust Algorithm 11.7.

11.5 Numerical Approximation Errors and Stability

Defining the discrete dynamics f via the numerical approximation ϕ̃, cf. (11.12),
introduces errors in the predictions xu in the optimal control problems and its variants.
In this section, we shift our focus from analyzing the effects of these errors on the
open loop toward their effect on the closed loop. To this end, we utilize the techniques
from Sects. 7.5–7.9 and – similar to these sections – restrict ourselves to constant
reference x ref ≡ x∗ in order to simplify the exposition. For the extension to time
varying x ref we refer to the remarks following the main results in Sects. 7.5–7.9.

As a general assumption we suppose that for each ε > 0 we can compute a
numerical approximation ϕ̃ε which satisfies

‖ϕ̃ε(T, 0, x, u) − ϕ(T, 0, x, u)‖ ≤ ε (11.16)

for some ε > 0, all x ∈ X and u ∈ U(x). As discussed at the end of Sect. 11.3,
such an estimate is rigorously ensured for ϕ̃ε generated by one step methods on

360 11 Numerical Discretization

equidistant grids with sufficiently small h > 0 but can typically also be expected
for ϕ̃ from the adaptive step size Algorithm 11.7 by adjusting the tolerance tolODE
appropriately. Observe that since (11.1) only holds for x and u from compact sets,
in the case of equidistant grids we may have to adjust h > 0 to x and u in order to
ensure (11.16) if X or U(x) are noncompact. In case of Algorithm 11.7 the step size
will be automatically adjusted by the step size selection mechanism.

Given that ϕ̃ε is an approximation of the true solutionϕ it seems natural to consider
ϕ̃ε as a perturbed version of ϕ. However, since by definition the model used in the
NMPC algorithm—i.e., the numerical approximation ϕ̃ε—is the nominal model, we
need the converse interpretation in order to apply the results from Sects. 7.5–7.9.
In what follows we show that the closed loop obtained from the exact sampled data
system (2.8) can be considered as a perturbed system in the sense of Sect. 7.5. To
this end, we consider the following setting.

TheNMPCalgorithm is runwith the numerically approximated discrete dynamics

f (x, u) = f ε(x, u) := ϕ̃ε(T, 0, x, u) (11.17)

as a nominalmodel. The resultingNMPC-feedback law is denoted byμε
N x

ε
με

N
and x̃ε

με
N

we denote the corresponding nominal and perturbed NMPC closed-loop trajectory
from (3.5) and (7.7) with f = f ε = ϕ̃ε and μN = με

N , respectively, i.e.,

xε
με

N
(n + 1) = f ε(xε

με
N
(n), με

N (xε
με

N
(n)))

and

x̃ε
με

N
(n + 1) = f ε(x̃ε

με
N
(n), με

N (x̃ε
με

N
(n) + e(n))) + d(n).

The closed-loop system obtained from applying the numerically computed NMPC-
feedback με

N to the exact model f = ϕ from (2.8) according to (3.5), i.e.,

xexμε
N
(n + 1) = f (xexμε

N
(n), με

N (xexμε
N
(n))),

will be called the exact closed-loop system. The resulting trajectories will be denoted
by xexμε

N
.

Note that the same NMPC-feedback law με
N—computed from f = f ε = ϕ̃ε—is

used in (3.5) for generating xε
με

N
and xexμε

N
. The difference between the two trajectories

only lies in the map f in (3.5) which is given by f = f ε = ϕ̃ε for xε
με

N
and by f = ϕ

for xexμε
N
. Using this notation we obtain the following result.

Lemma 11.8 (Perturbed solution) Consider the discrete time dynamics f = f ε

from (11.17) obtained from a numerical approximation ϕ̃ε satisfying (11.16), an
NMPC-feedback lawμε

N withμε
N (x) ∈ U(x) and the solution xε

με
N
of the correspond-

ing closed-loop system (3.5). Consider, furthermore, the solution xexμε
N
of the exact

closed-loop system.

11.5 Numerical Approximation Errors and Stability 361

Then for each x0 ∈ X there exists a perturbation sequence d(·) ∈ (Rd)∞ with
‖d(n)‖ ≤ ε such that the solution x̃ε

με
N
(n, x0) of the perturbed system (7.7) with

f = f ε and e ≡ 0 satisfies

xexμε
N
(n, x0) = x̃ε

με
N
(n, x0)

for all n ∈ N0.

Proof Define

d(n) := ϕ(T, 0, xexμε
N
(n, x0), μ

ε
N (xexμε

N
(n, x0))) − ϕ̃ε(T, 0, xexμε

N
(n, x0), μ

ε
N (xexμε

N
(n, x0)))

for all n ∈ N0. Then (11.16) with x = xexμε
N
(n, x0) and u = με

N (xexμε
N
(n, x0)) implies

‖d(n)‖ ≤ ε for all n ∈ N0. We show the desired identity by induction over n.
For n = 0 we obtain xexμε

N
(0, x0) = x0 = x̃ε

με
N
(0, x0). For n → n + 1 assume that

xexμε
N
(n, x0) = x̃ε

με
N
(n, x0) holds. Then we get

xexμε
N
(n + 1, x0) = ϕ(T, 0, xexμε

N
(n, x0), μ

ε
N (xexμε

N
(n, x0)))

= ϕ̃ε(T, 0, xexμε
N
(n, x0), μ

ε
N (xexμε

N
(n, x0))) + d(n)

= f ε(xexμε
N
(n, x0), μ

ε
N (xexμε

N
(n, x0))) + d(n)

= f ε(x̃ε
με

N
(n, x0), μ

ε
N (x̃ε

με
N
(n, x0))) + d(n) = x̃ε

με
N
(n + 1, x0).

This shows the assertion. �

Lemma 11.8 shows that the closed-loop solution for the discrete time model
obtained from the exact sampled data system (2.8) can be interpreted as a per-
turbed solution of the discrete timemodel obtained from the numerical approximation
(11.17). The size of the perturbation d(·) directly corresponds to the numerical error
(11.16).

This lemma enables us to use all results from Sects. 7.5–7.9 in order to con-
clude stability properties for xexμε

N
. The appropriate stability property is given by the

following definition, cf. Definition 7.24.

Definition 11.9 Consider the exact closed-loop system (2.5) with f = ϕ from (2.8)
with με

N computed from f = f ε = ϕ̃ε from (11.17) satisfying (11.16) for some
ε > 0. Given a set A ⊆ X such that the optimal control problem defining με

N is
feasible for all x0 ∈ A, we say that x∗ is semiglobally practically asymptotically
stable on A with respect to the numerical error ε if there exists β ∈ such that the
following property holds: for each δ > 0 and Δ > δ there exists ε > 0, such that for
each initial value x0 ∈ A with |x0|x∗ ≤ Δ and each ε ∈ (0, ε] the solution xexμε

N
(·, x0)

satisfies xexμε
N
(k, x0) ∈ A and

|xexμε
N
(k, x0)|x∗ ≤ max{β(|x0|x∗ , k), δ}

362 11 Numerical Discretization

for all k ∈ N0.

The following theorem now gives conditions under which this stability property
holds.

Theorem 11.10 (Stability for perturbed solution) Consider the NMPC-feedback
laws με

N obtained from one of the NMPC algorithms from Theorems 7.26 and 7.36
or 7.41 with f = f ε = ϕ̃ε from (11.17). Assume that (11.16) holds and that there is
ε0 > 0 such that one of the following assumptions is satisfied for all ε ∈ (0, ε0].
(i) In case of Theorem 7.26, assume that α, α1, α2, α3 in Theorem 4.11 as well as

ωV and ω f can be chosen independently of ε > 0.
(ii) In case of Theorem 7.36, assume that α, α1, α̃ in Theorem 6.20, β from Assump-

tion 7.35 and η in Definition 7.33 can be chosen independently of ε > 0.
(iii) In case of Theorem 7.41, assume that α, α1, α2, α3 in Theorem 4.11, δ, γ , ε′ in

Assumption 7.38 and the bound on f as well as the moduli of continuity of f
and � can be chosen independently of ε > 0.

Then the exact closed-loop system (2.5) with f = ϕ from (2.8) is semiglobally
practically asymptotically stable with respect to ε from (11.16) in the sense of Defi-
nition 11.9 on the set A specified in the respective theorem.

Proof The respective theorems ensure semiglobal practical asymptotic stability for
all perturbed trajectories x̃ε

με
N
with respect to d and e in the sense of Definition 7.24.

An inspection of the proofs of the respective theorems then reveals that the uniformity
assumptions (i)–(iii) guarantee that for given δ and Δ the bounds d and e and the
function β ∈ in Definition 7.24 are independent of ε > 0.

Fixing δ and Δ we thus find d > 0 such that each perturbed solution x̃ε
με

N
with

perturbations ‖d(n)‖ ≤ d and e ≡ 0 satisfies the conditions of Definition 7.24 for
all ε ∈ (0, ε0]. Setting ε = min{d, ε0} and using that by Lemma 11.8 the exact
closed-loop trajectory xexμε

N
equals one of the trajectories x̃ε

με
N
with d = ε and e = 0,

we obtain that xexμε
N
satisfies the conditions of Definition 11.9 for the given δ and Δ

and all ε ∈ (0, ε]. This yields the assertion. �

Note that Theorem 11.10 only guarantees the stability of the discrete time closed-
loop system (2.5) with f from (2.8) but not for the sampled data closed loop (2.30).
In order to conclude stability properties of (2.30) the techniques from Sect. 2.4 can be
used. While Theorem 2.27 and its assumptions are formulated for the case of “real”
asymptotic stability, its statement, and proof can be straightforwardly extended to
the semiglobal practical setting of Definition 11.9. Recall from Remark 4.13 that the
assumptions of Theorem 2.27 are satisfied for suitable integral costs (3.4). Although
we have not rigorously analyzed the effect of the error induced by the numerical
approximation of such integral costs, we conjecture that the estimates in Remark
4.13 remain valid in a suitable approximate sense if these errors are sufficiently
small.

11.5 Numerical Approximation Errors and Stability 363

Since numerical approximations are used in virtually all NMPC algorithms for
sampled data systems, Theorem 11.10 implies that all such algorithms need appro-
priate robustness—either inherently as in case (i) or by an appropriate design of
the state constraints as in cases (ii) and (iii) of Theorem 11.10—in a uniform way
with respect to ε in order to ensure semiglobal practical stability in the presence of
numerical errors. In practice, however, this is hardly ever rigorously ensured. The
reason for this is that for good numerical methods numerical errors are usually very
small compared to other error sources like model errors, external perturbations, etc.
Although even very small errors may in the worst case be destabilizing, as illustrated
by Example 7.31, it is not very likely that this indeed happens and—also according to
our experience—such phenomena are hardly ever observed in simulations or practi-
cal examples. Hence, unless robustness is needed in order to cope with error sources
which are significantly larger than the numerical errors discussed in this chapter, for
most practical purposes it seems justified to neglect the robustness issue, provided,
of course, the numerical errors are indeed sufficiently small. Still, one has to keep
in mind that proceeding this way does not rigorously ensure stability of the exact
closed-loop system.

11.6 Notes and Extensions

Thematerial contained in Sects. 11.1–11.3 can be found inmany textbooks on numer-
ical analysis for ordinary differential equations, like, e.g., the books by Deuflhard an
Bornemann [2], Hairer, Nørsett and Wanner [8] or Stoer and Bulirsch [11]. Clearly,
the presentation in this chapter cannot replace any of these textbooks and aims at
giving an introduction into the subject rather than a comprehensive treatment.

Among the many topics we have not covered in this chapter we would in particu-
lar like to mention stiff problems and differential algebraic equations (DAEs), often
called descriptor systems in systems theory. While stiff problems “look” like normal
ordinary differential equations, they are very difficult to solve with the explicit meth-
ods presented in Sect. 11.1. For stiff equations, which often appear when modeling
technical systems, an adaptive step size algorithm like Algorithm 11.7 will typically
select very small time steps even though the solution is almost constant. Explaining
the precise mathematical reasons for this behavior goes beyond these notes, but we
would at least like to mention that so-called implicit methods perform much better
for stiff equations. DAEs are ordinary differential equations with additional algebraic
constraints, often given implicitly. DAEs appear as models, e.g., in mechanics and
electrical engineering and NMPC is perfectly suited for handling DAES, however,
the solution methods presented in this chapter do not apply to such equations and
specialized numerical schemes are needed, which are again often of the implicit type.
While also covered in some standard textbooks, there is a large amount of literature
particularly devoted to stiff and DAE problems, as, e.g., Hairer and Wanner [7], and
we refer the reader to such books for more details.

As Examples 2.12 and 6.32 show, NMPC is also suitable for infinite-dimensional
systems generated by controlled PDEs. NMPC for PDEs requires the solution of an

364 11 Numerical Discretization

optimal control problem for PDEs in each step. The monograph by Troeltzsch [12]
provides a good introduction into such problems. A simple way to approach this
problem numerically is to proceed similar as described for the ordinary differential
equations in this chapter with an additional spatial discretization by, e.g., a finite
difference method (which is what we used in Example 6.32), see, e.g., LeVeque
[9] or a finite element method, see, e.g., Braess [1]. However, it is by no means
clear whether this is the most efficient way of approaching the problem numerically;
in fact, the development of suitable numerical schemes is currently a very active
research area. Furthermore, we are not aware of a rigorous analysis of the effects of
spatial discretization errors in NMPC controller design.

The need to use numerical approximations and the consequences for the stability
analysis discussed in Sect. 11.5 are largely ignored in the NMPC literature. An
exception to this rule are the papers by Gyurkovics and Elaiw [5, 6], which are
in the same spirit as cases (i) and (iii) of Theorem 11.10 in the sense that they
exploit uniform continuity properties, in particular of the optimal value function VN .
However, these results require Lyapunov function terminal costs and do not consider
state constraints as in cases (ii) and (iii) of Theorem 11.10.

More generally, the problem considered in Sect. 11.5 can be seen as a special case
of a nonlinear controller design based on approximate models. A comprehensive
treatment of this topic in a rather general setting can be found in Nešić and Teel [10].
An application to infinite horizon optimal control based feedback design was given
in Grüne and Nešić [4]. The idea to treat numerical errors as perturbations is classical
in numerical analysis. In a control theoretic framework this idea was used extensively
in the monograph Grüne [3]. All these approaches are similar to our approach in the
sense that the stability property of the approximate system is required to be robust in
some suitable sense, that the robustness can be quantified and that this quantitative
measure of the robustness is independent of the numerical accuracy. In all cases the
obtained stability property is semiglobal practical stability, just as in Theorem 11.10.
State constraints are, however, again not considered in these references.

Nešić and Teel [10] also nicely illustrate the pitfalls of feedback design based on
approximate models by means of simple examples and discuss the case in which the
numerical accuracy is linked to the sampling period T . Roughly speaking, in this case
uniform continuity of the Lyapunov function under consideration is not sufficient in
order to ensure stability of the exact closed-loop system. Rather, a stronger prop-
erty like Lipschitz continuity with Lipschitz constant independent of the numerical
accuracy ε is needed in this case.

There are numerous issues related to numerical errorswehave not addressed in this
chapter. For instance, numerical errors may lead to the situation that the inequalities
in Assumption 5.9(ii) or Assumptions 6.3 or 6.5 are only satisfied up to an error term
ε, which has to be taken into account in the results relying on these assumptions.
While we conjecture that in both cases the respective proofs can be modified in order
to obtain at least semiglobal practical asymptotic stability of xε

με
n
, we are not aware

of respective results in the literature. Hence, this area certainly offers a number of
open questions for future research.

Problems 365

Problems

1. Prove that the solution ϕ(t, 0, x0, u) of (2.6) with t ∈ [0, T] and constant control
function u satisfies the integral equation

ϕ(τi+1; τ0, x0, u) = ϕ(τi ; τ0, x0, u) +
τi+1∫

τi

fc(ϕ(t; τ0, x0, u), u)dt.

for all τi , τi+1 ∈ [0, T] with τi+1 > τi .
2. Prove that the Euler and the Heun scheme satisfy the Lipschitz condition (11.5)

if the vector field fc satisfies the Lipschitz condition from Assumption 2.4.
3. Given the control system ẋ(t) = x(t) + u(t) with stage cost �(x, u) = x2 + u2.

(a) Consider the NMPCAlgorithm 3.1 with N = 2 and f generated by the Euler
method with G = T for (11.14) and (11.15). Prove that the control μN (x)
converges tends to zero as T → 0 for each x ∈ R.

(b) Consider the same situation as in (a) but with the grid

G := {τi = iT/k | i = 0, . . . , Nk}

with k ∈ N. Does the control value μN (x) converge if T > 0 is fixed and k
tends to infinity?

4. Consider the differential equation

ẋ1(t) = −x2(t)

ẋ2(t) = x1(t)

whose solution shall be used to generate a time varying reference for an NMPC
algorithm.

(a) Using a transformation to polar coordinates, compute the analytical solution
of the system.

(b) Show that the numerical solution of the system using Euler’s method will
deviate from the analytical solution from (a) for every step size h > 0 and
every initial value x0 �= (0, 0)�.

(c) Applying the transformation to polar coordinates, show that the occurring
error from (b) can be avoided if the resulting differential equation is solved
using Euler’s method.

5. Consider the continuous time control system

ẋ1(t) = −x2(t) + v(t)

ẋ2(t) = x1(t)

366 11 Numerical Discretization

where u shall be computed via NMPC to track the (exact) time varying reference
solution from Problem 4.

(a) Show that this system is (uniformly) asymptotically controllable in the sense
of Definition 4.2 for control functions which are piecewise constant on each
interval [iT, (i + 1)T) for arbitrary sampling time T > 0.

(b) Consider the approximate discrete time system (11.12) with ϕ̃ obtained from
applying the Euler method with step size h = T/k for arbitrary k ∈ N to the
(non transformed) differential equation. Show that this approximate system is
not asymptotically controllable regardless how T > 0 and k ∈ N are chosen.

Hint for (b): A necessary condition for asymptotic controllability is that the ref-
erence is a solution of the system.

References

1. Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007) (Theory,
fast solvers, and applications in elasticity theory. Translated from the German by Larry L.
Schumaker)

2. Deuflhard, P., Bornemann, F.: ScientificComputingwithOrdinaryDifferential Equations. Texts
in AppliedMathematics, vol. 42. Springer, NewYork (2002) (Translated from the1994German
original by Werner C. Rheinboldt)

3. Grüne, L.: Asymptotic Behavior of Dynamical and Control Systems under Perturbation and
Discretization. Lecture Notes in Mathematics, vol. 1783. Springer, Berlin (2002)

4. Grüne, L., Nešić, D.: Optimization based stabilization of sampled-data nonlinear systems via
their approximate discrete-time models. SIAM J. Control Optim. 42, 98–122 (2003)

5. Gyurkovics, E., Elaiw, A.M.: Stabilization of sampled-data nonlinear systems by receding
horizon control via discrete-time approximations. Automatica 40(12), 2017–2028 (2004)

6. Gyurkovics, E., Elaiw,A.M.:Conditions forMPCbased stabilization of sampled-data nonlinear
systems via discrete-time approximations. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.)
Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in
Control and Information Sciences, vol. 358, pp. 35–48. Springer, Berlin (2007)

7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Com-
putational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)

8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, 2nd edn.
Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin (1993)

9. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM, Philadelphia (2007)

10. Nešić, D., Teel, A.R.: A framework for stabilization of nonlinear sampled-data systems based
on their approximate discrete-time models. IEEE Trans. Automat. Control 49(7), 1103–1122
(2004)

11. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Texts in Applied Mathematics,
vol. 12, 3rd edn. Springer, New York (2002) (Translated from the German by R. Bartels, W.
Gautschi and C. Witzgall)

12. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathe-
matics, vol. 112. American Mathematical Society, Providence (2010) (Theory, methods and
applications. Translated from the 2005 German original by Jürgen Sprekels)

Chapter 12
Numerical Optimal Control
of Nonlinear Systems

In this chapter, we focus on numerically solving the constrained finite horizon non-
linear optimal control problems occurring in each iterate of the NMPC procedure.
To this end, we first state standard discretization techniques to obtain a nonlinear op-
timization problem in standard form. Utilizing this form, we outline basic versions
of the two most common solution methods for such problems, that is, Sequential
Quadratic Programming (SQP) and Interior Point Methods (IPM). Furthermore, we
investigate interactions between the differential equation solver, the discretization
technique, and the optimization method and present several NMPC specific details
concerning the warm start of the optimization routine. Finally, we discuss NMPC
variants relying on inexact solutions of the finite horizon optimal control problem.

12.1 Discretization of the NMPC Problem

The most general NMPC problem formulation is given in Algorithm 3.11 and will be
the basis for this chapter. In Step (2) of Algorithm 3.11 we need to solve the optimal
control problem

minimize JN (n, x0, u(·)) :=
N−1∑

k=0

ωN−k�(n + k, xu(k, x0), u(k))

+ FJ (n + N , xu(N , x0))

with respect to u(·) ∈ U
N
X0

(n, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k))

(OCPn
N,e)

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6_12

367

368 12 Numerical Optimal Control of Nonlinear Systems

We will particularly emphasize the case in which the discrete time system (2.1)
is induced by a sampled data continuous time control systems

ẋ(t) = fc(x(t), v(t)), (2.6)

however, all results also apply to discrete time models not related to a sampled data
system. Throughout this chapter we assume X = R

d and U = R
m . Furthermore, we

rename the terminal cost F in (OCPn
N,e) to FJ because we will use the symbol F

with a different meaning, below.
So far, in Chap. 11 We have shown how the solution xu(k, x0) of the discrete

time system (2.1) in the last line of (OCPn
N,e) can be obtained and evaluated using

numerical methods for differential equations, but not how the minimization problem
(OCPn

N,e) can be solved.
The purpose of this chapter is to fill this gap. In particular, we first show how

problem (OCPn
N,e) can be reformulated to match the standard problem in nonlinear

optimization
minimize F(z)
with respect to z ∈ R

nz

subject to G(z) = 0 and H(z) ≥ 0
(NLP)

with maps F : R
nz → R, G : R

nz → R
rg and H : R

nz → R
rh .

Even though (OCPn
N,e) is already a discrete time problem, the process of converting

(OCPn
N,e) into (NLP) is called discretization. Here, we will stick with this commonly

used term even though in a strict sense we only convert one discrete problem into
another.

As we will see, the (NLP) problem related to (OCPn
N,e) can be formulated in differ-

ent ways. The first variant, called full discretization, incorporates the dynamics (2.1)
as additional constraints into (NLP). This approach is very straightforward but causes
large computing times for solving the problem (NLP) due to its dimensionality, un-
less special techniques for handling these constraints can be used on the optimization
algorithm level, cf. the paragraph on condensing in Sect. 12.4, below. The second
approach is designed to deal with this dimensionality problem. It eliminates the
additional constraints by recursively computing xu(k, x0) from the dynamics (2.1)
outside of the optimization problem (NLP) and is hence called recursive elimination.
Proceeding this way, the dimension of the optimization variable z and the number
of constraints p is reduced significantly. However, in this method it is difficult to
incorporate preexisting knowledge on optimal solutions, as derived, e.g., from the
reference, to the optimizer. Furthermore, computing xu(k, x0) on large time intervals
may lead to a rather sensitive dependence of the solution on the control u(·), which
may cause numerical problems in the algorithms for solving (NLP). To overcome
these problems, we introduce a third problem formulation, called multiple shooting,
which is closely related to concept of shooting methods for differential equations
and can be seen as a compromise between the two other methods.

After we have given the details of these discretization techniques, methods for
solving the optimization problem (NLP) and their applicability in the NMPC context

12.1 Discretization of the NMPC Problem 369

will be discussed in the subsequent sections. In order to illustrate certain effects, we
will repeatedly consider the following example throughout this chapter.

Example 12.1 Consider the inverted pendulum on a cart problem from Example 2.10
with initial value x0 = (2, 2, 0, 0), sampling period T = 0.1 and cost functional

JN (x0, u) :=
N−1∑

i=0

�(x(i), u(i))

where the stage costs � are of the integral type (3.4) with

L(x, u) :=
(

3.51 sin(x1 − π)2 + 4.82 sin(x1 − π)x2

+ 2.31x2
2 + 2

(
(1 − cos(x1 − π)) · (1 + cos(x2)

2)
)2

+ x2
3 + x2

4 + u2
)2

.

We impose constraints on the state and the control vectors by defining

X := R × R × [−5, 5] × [−10, 10]
U := [−5, 5]

but we do not impose stabilizing terminal conditions. All subsequent computations
have been performed with the default tolerance 10−6 in the numerical solvers in-
volved, cf. Sect. 12.4 for details on these tolerances.

As we have seen in the previous chapters, the horizon length can be a critical
component for the stability of an NMPC controlled system. In particular, the NMPC
closed loop may be unstable if the horizon length is too short as shown in Fig. 12.1. In

Fig. 12.1 Closed-loop trajectories x1(·) for small optimization horizons N

370 12 Numerical Optimal Control of Nonlinear Systems

Fig. 12.2 Closed-loop trajectories x1(·) for medium size optimization horizons N

this and in the subsequent figures we visualize closed-loop trajectories for different
optimization horizons as a surface in the (t, N)-plane. Looking at the figure one sees
that for very small N the trajectory simply swings around the downward equilibrium.
For N ≥ 12, the NMPC controller is able to swing up the pendulum to one of the
upright equilibria (π, 0, 0, 0) or (−π, 0, 0, 0) but is not able to stabilize the system
there.

As expected from Theorem 6.24, for larger optimization horizons the closed-loop
solution tends toward the upright equilibrium (−π, 0, 0, 0) as shown in Fig. 12.2.

If we further increase the optimization horizon, then it can be observed that
the algorithm chooses to stabilize the upright equilibrium (π, 0, 0, 0) instead of
(−π, 0, 0, 0) as illustrated in Fig. 12.3. Moreover, for some horizon lengths N , sta-
bility is lost. Particularly, for N between 50 and 55 the behavior is similar to that
for N ∈ {12, 13, 14}: the controller is able to swing up the pendulum to an up-
right position but unable to stabilize it there. As a consequence, it appears that the
NMPC algorithm cannot decide which of the upward equilibria shall be stabilized
and the trajectories repeatedly move from one to another, i.e., the x1-component of
the closed-loop trajectory remains close to one of these equilibria only for a short
time.

This behavior contradicts what we would expect from the theoretical result from
Theorem 6.24 and can hence only be explained by numerical problems in solving
(OCPn

N,e) due to the large optimization horizon. Since by now we do not have the
means to explain the reason for this behavior, we postpone this issue to Sect. 12.4.
In particular, the background of this effect will be discussed after Example 12.28
where we also outline methods to avoid this effect.

As a result, we obtain that numerically the set of optimization horizon N for
which stability can be obtained is not only bounded from below—as expected from
the theoretical result in Theorem 6.24—but also from above. Unfortunately, for a
general example it is a priori not clear if the set of numerically stabilizing horizons

12.1 Discretization of the NMPC Problem 371

Fig. 12.3 Closed-loop trajectories x1(·) for large optimization horizons N

is nonempty, at all. Furthermore, as we will see in this chapter, also the minimal
optimization horizon which numerically stabilizes the closed-loop system may vary
with the used discretization technique. This is due to the fact that for N close to the
theoretical minimal stabilizing horizon and for the NMPC variant without stabilizing
terminal conditions considered here, the value α in (5.1) is close to 0 and hence
small numerical inaccuracies may render α negative and thus destabilize the system.
Since different discretizations lead to different numerical errors, it is not entirely
surprising that the minimal stabilizing horizon in the numerical simulation depends
on the chosen discretization technique, as Example 12.2 will show.

Full Discretization

In order to obtain an optimization problem in standard form (NLP) the full discretiza-
tion technique is the simplest and most common one. Recall that the discrete time
trajectory xu(k, x0) in (OCPn

N,e) is defined by the dynamics (2.1) via

xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k)), (2.2)

where in the case of a continuous time system the map f is obtained from a numerical
approximation via (11.12).

Clearly, each control value u(k), k ∈ {0, . . . , N − 1} is an optimization variable
in (OCPn

N,e) and will hence also be an optimization variable in (NLP). The idea of
the full discretization is now to treat each point on the trajectory xu(k, x0) as an
additional independent d-dimensional optimization variable. This implies that we
need additional conditions which ensure that the resulting optimal choice of the
variables xu(k, x0) obtained from solving (NLP) is a trajectory of (2.1). To this end,
we include the equations in (2.2) as equality constraints in (NLP). This amounts to
rewriting (2.2) as

372 12 Numerical Optimal Control of Nonlinear Systems

xu(k + 1, x0) − f (xu(k, x0), u(k)) = 0 for k ∈ {0, . . . , N − 1} (12.1)

xu(0, x0) − x0 = 0 (12.2)

Next, we have to reformulate the constraints u(·) ∈ U
N
X0

(x0). According to Definition
3.2 these conditions can be written explicitly as

xu(k, x0) ∈ X k ∈ {0, . . . , N }
and u(k) ∈ U(xu(k, x0)) k ∈ {0, . . . , N − 1}

and in the case of stabilizing terminal conditions we get the additional condition

xu(N , x0) ∈ X0.

For simplicity of exposition, we only consider the case of time-invariant state con-
straints. The setting is, however, easily extended to the case of time-varying con-
straints X

k as introduced in Sect. 7.8.
Here and in the following, we assume X, U(x) and—if applicable—X0 to be

characterized by Definition 3.6, i.e., by a set of functions GS
i : R

d × R
m → R, i ∈

E S = {1, . . . , pg}, and H S
i : R

d × R
m → R, i ∈ I S = {1, . . . , ph} via equality and

inequality constraints of the form

GS
i (xu(k, x0), u(k)) = 0, i ∈ E S, k ∈ Ki ⊆ {0, . . . , N } (12.3)

H S
i (xu(k, x0), u(k)) ≥ 0, i ∈ I S, k ∈ Ki ⊆ {0, . . . , N }. (12.4)

The index sets Ki , i ∈ E S ∪ I S in these constraints formalize that some of the
conditions may not be required for all times k ∈ {0, . . . , N }. For instance, the terminal
constraint condition xu(N , x0) ∈ X0 is only required for k = N , hence the sets Ki

corresponding to the respective conditions would be Ki = {N }. In order to simplify
the notation we have included u(N) into these conditions even though the functional
JN in (OCPn

N,e) does not depend on this variable. However, since the functions H S
i

and GS
i in (12.3) and (12.4) do not need to depend on u, this can be done without

loss of generality.
Summarizing, we obtain the constraint function G in (NLP) from Eqs. (12.1),

(12.2), (12.3) and H in (NLP) from Eq. (12.4). The remaining components of the
optimization problem is the optimization variable, which is defined as

z := (xu(0, x0)
�, . . . , xu(N , x0)

�, u(0)�, . . . , u(N − 1)�)� (12.5)

and the cost function F , which we obtain straightforwardly as

F(z) :=
N−1∑

k=0

ωN−k�(n + k, xu(k, x0), u(k)) + FJ (n + N , xu(N , x0)). (12.6)

12.1 Discretization of the NMPC Problem 373

Hence, the fully discretized problem (OCPn
N,e) is of the form

minimize F(z) :=
N−1∑

k=0

ωN−k�(n + k, xu(k, x0), u(k))

+FJ (n + N , xu(N , x0))

with respect to
z := (xu(0, x0)�, . . . , xu(N , x0)�, u(0)�, . . . , u(N − 1)�)� ∈ R

nz

subject to G(z) =
⎡

⎢⎣

[
GS

i (xu(k, x0), u(k))
]

i∈E S ,k∈Ki
[xu(k + 1, x0) − f (xu(k, x0), u(k))]k∈{0,...,N−1}
xu(0, x0) − x0

⎤

⎥⎦ = 0

and H(z) =
[

H S
i (xu(k, x0), u(k))

]

i∈I S ,k∈Ki
≥ 0

Similar to Definition 3.6 we write the equality and inequality constraints as G =
(G1, . . . , Grg) and H = (Hrg+1, . . . , Hrg+rh) with rg := (N + 2) · d +∑i∈E S �Ki

and rh :=∑i∈I S �Ki where �Ki denotes the number of elements of the set Ki . The
corresponding index sets are denoted byE = {1, . . . , rg} andI = {rg + 1, . . . , rg +
rh}.

The advantage of the full discretization is the simplicity of the transformation
from (OCPn

N,e) to (NLP). Unfortunately, it results in a high-dimensional optimiza-
tion variable z ∈ R

(N+1)·d+N ·m and a large number of both equality and inequality
constraints rg and rh . Since computing times and accuracy of solvers for problems
of type (NLP) depend massively on the size of these problems, this is highly un-
desirable. One way to solve this problem is to handle the additional constraints by
special techniques in the optimization algorithm, cf. the paragraph on condensing
in Sect. 12.4, below. Another way is to reduce the number of optimization variables
directly in the discretization procedure, which is what we describe next.

Recursive Elimination

In the previous section, we have seen that the full discretization of (OCPn
N,e) leads to a

high-dimensional optimization problem (NLP). The discretization technique which
we present now avoids this problem and minimizes the number of components within
the optimization variable z as well as in the equality constraints G.

The methodology of the recursive elimination is inspired by the (hierarchical)
divide and conquer principle. According to this principle, the problem is broken
down into subproblems which can then be treated by specialized solution methods.
The fundamental idea of the recursive elimination is to decouple the dynamics of the
control system from the optimization problem (NLP).

At the control system level in the hierarchy displayed in Fig. 12.4, a specialized
solution method—for instance a numerical solver for an underlying ordinary differ-
ential equation—can be used to evaluate the dynamics of the system for given control
sequences u(·). These control sequences correspond to values that are required by
the solver for problem (NLP). Hence, the interaction between these two components
consists in sending control sequences u(·) and initial values x0 from the (NLP) solver
to the solver of the dynamics which in turn sends computed state sequences xu(·, x0)

back to the (NLP) solver, cf. Fig. 12.5.

374 12 Numerical Optimal Control of Nonlinear Systems

Solver for dynamics

Solver for problem (NLP)

Control system (2.1)

Problem (NLP)

Problem (OCP n
N,e)

Fig. 12.4 Hierarchy

Control system (2.1)

Problem (NLP)

Problem (OCP n
N,e)

JN(n, ·, ·), G(·, ·), H(·, ·), x0

f (·, ·)

u(·), x0xu(·,x0)

Fig. 12.5 Communication of data between the elements of the computing hierarchy

Formally, the optimization variable z reduces to

z := (u(0)�, . . . , u(N − 1)�)� (12.7)

The constraint functions GS
i : R

d × R
m → R, i ∈ E S , and H S

i : R
d × R

m → R, i ∈
I S according to (12.3), (12.4) can be evaluated after computing the solution xu(·, x0)

by the solver for the dynamics. This way we do not have to consider Eqs. (12.1),
(12.2) in the constraint function G. Hence, the equality constraints in (NLP) are given
by G = [GS

i] with GS
i from (12.3). The inequality constraints H which are given by

(12.4) and the cost function F from (12.6) remain unchanged compared to the full
discretization. In total, the problem with recursive elimination (OCPn

N,e) takes the
form

minimize F(z) :=
N−1∑

k=0

ωN−k�(n + k, xu(k, x0), u(k))

+FJ (n + N , xu(N , x0))

with respect to z := (u(0)�, . . . , u(N − 1)�)� ∈ R
nz

subject to G(z) = [GS
i (xu(k, x0), u(k))

]
i∈E S ,k∈Ki

= 0

and H(z) = [H S
i (xu(k, x0), u(k))

]
i∈I S ,k∈Ki

≥ 0

Taking a look at the dimensions of the optimization variable and the equality
constraints, we see that using the recursive elimination the optimization variable
consists of N · m scalar components and the number of equality constraints is reduced
to the number of conditions in (12.3), that is, rg :=∑i∈E S �Ki . Hence, regarding the
number of optimization variables and constraints, this discretization is optimal.

12.1 Discretization of the NMPC Problem 375

Still, this method has some drawbacks compared to the full discretization. As we
will see in the following sections, the algorithms for solving (NLP) proceed itera-
tively, i.e., starting from an initial guess z0 they compute a sequence zk converging
to the minimizer z�. The convergence behavior of this iteration can be significantly
improved by providing a good initial guess z0 to the algorithm. If, for instance, the
initial value x0 is close to the reference solution x ref , then x ref itself is likely to be
such a good initial guess. However, since in the recursive elimination the trajectory
xu(k, x0) is not a part of the optimization variable z, there is no easy way to use this
information.

Another drawback is that the solution xu(k, x0) may depend very sensitively on
the control sequence u(·), in particular when N is large. For instance, a small change
in u(0) may lead to large changes in xu(k, x0) for large k and consequently in F(z),
G(z), and H(z), which may cause severe problems in the iterative optimization
algorithm. In the full discretization, the control value u(0) only affects xu(0, x0) and
thus those entries in F , G, and H corresponding to k = 0, i.e., the functions F(z),
G(z), and H(z) depend much less sensitively on the optimization variables.

For these reasons, we now present a third method, which can be seen as a com-
promise between the full discretization and the recursive elimination.

Multiple Shooting

The idea of the so-called multiple shooting as introduced in Bock [5] is derived from
the solution of boundary value problems of differential equations, see, e.g., Stoer
and Bulirsch [40]. Within these boundary value problems one tries to find initial
values for trajectories which satisfy given terminal conditions. The term shooting
has its origins in the similarity of this problem to a cannoneers problem of finding
the correct setting for a cannon to hit a target.

The idea of this discretization is to include some components of some state vectors
xu(k, x0) as independent optimization variables in the problem. These variables are
treated just as in the full discretization except that we do not do this for all k ∈
{0, . . . , N − 1} but only for some time instants and that we do not necessarily include
all components of the state vector xu(k, x0) as additional optimization variables but
only some. These new variables are called the shooting nodes and the corresponding
times will be called the shooting times.

Proceeding this way, we may then provide useful information, e.g., from the
reference trajectory x ref(·) as described at the end of the discussion of the recursive
elimination for obtaining a good initial guess for the iterative optimization. Much
like the cannoneer we aim at hitting the reference trajectory, the only difference is
that we do not only want to hit the target at the end of the (finite) horizon but to stay
close to it for the entire time interval which we consider within the optimization.

This motivates to set the state components at the shooting nodes to a value which
may violate the dynamics of the system (2.1) but is closer to the reference trajectory.
This situation is illustrated in Fig. 12.6 and gives a good intuition why the multiple
shooting initial guess is preferable from an optimization point of view.

Unfortunately, we have to give up the integrity of the dynamics of the system
to achieve this improvement in the initial guess, i.e., the trajectory pieces starting

376 12 Numerical Optimal Control of Nonlinear Systems

xref(·)

Optimization Horizon

x0

Fig. 12.6 Resulting trajectories for initial guess u using no multiple shooting nodes (solid), one
shooting node (dashed) and three shooting nodes (gray dashed)

in the respective shooting nodes can in general not be “glued” together to form a
continuous trajectory. In order to solve this problem, we have to include additional
equality constraints similar to (12.1), (12.2).

For the formal description of this method, we denote the vector of multiple shoot-
ing nodes by s := (s1, . . . , srs

) ∈ R
rs where si is the new optimization variable cor-

responding to the i th multiple shooting node. The shooting times ς : {1, . . . , rs} →
{0, . . . , N } and indices ι : {1, . . . , rs} → {1, . . . , d} then define the time and the
component of the state vector corresponding to si via

xu(ς(j), x0)ι(j) = s j .

This means that the components xu(k, x0)i , i = 1, . . . , d, of the state vector are
determined by the iteration

xu(k + 1, x0)i = s j

if there exists j ∈ {1, . . . , rs} with ς(j) = k + 1 and ι(j) = i and

xu(k + 1, x0)i = f (xu(k, x0), u(k))i

with initial condition xu(0, x0)i = s j if there exists j ∈ {1, . . . , rs} with ς(j) = 0
and ι(j) = i and xu(0, x0)i = (x0)i , otherwise. The shooting nodes si now become
part of the optimization variable z which hence reads

z := (u(0)�, . . . , u(N − 1)�, s�)�. (12.8)

As in the full discretization we have to ensure that the optimal solution of (NLP)
leads to values si for which the state vectors xu(k, x0) thus defined form a trajectory
of (2.1). To this end, we define the continuity condition for all shooting nodes s j ,
j ∈ {1, . . . , rs} with ς(j) ≥ 1 analogously to (12.1) as

s j − f (xu(ς(j) − 1, x0), u(ς(j) − 1)))ι(j) = 0, (12.9)

12.1 Discretization of the NMPC Problem 377

and for all j ∈ {1, . . . , rs} with ς(j) = 0 analogously to (12.2) as

s j − (x0)ι(j) = 0. (12.10)

These so-called shooting constraints are included as equality constraints in (NLP).
Since the conditions (12.9) and (12.10) are already in the form of equality constraints
which we require for our problem (NLP), we can achieve this by defining G to consist
of the equalities (12.3), (12.9), and (12.10). As for the recursive elimination, the set
of inequality constraints as well as the cost function are still identical to those given
by the full discretization. As a result, the multiple shooting discretization of problem
(OCPn

N,e) is of the form

minimize F(z) :=
N−1∑

k=0

ωN−k�(n + k, xu(k, x0), u(k))

+FJ (n + N , xu(N , x0))

with respect to z := (u(0)�, . . . , u(N − 1)�, s�)� ∈ R
nz subject to

G(z) =
⎡

⎢⎣

[
GS

i (xu(k, x0), u(k))
]

i∈E S ,k∈Ki[
s j − f (xu(ς(j) − 1, x0), u(ς(j) − 1)))ι(j)

]
j∈{1,...,rs },ς(j)≥1[

s j − (x0)ι(j)
]

j∈{1,...,rs },ς(j)=0

⎤

⎥⎦ =

0
and H(z) = [H S

i (xu(k, x0), u(k))
]

i∈I S ,k∈Ki
≥ 0

Comparing the size of the optimization problem discretized by multiple shooting
to the one with recursive elimination, we see that the dimension of the optimization
variable and the number of equality constraints is increased by rs . An appropriate
choice of this number as well as for the values of the shooting nodes and times is
crucial in order to obtain an improvement of the NMPC closed loop, as the following
example shows.

Example 12.2 Consider the inverted pendulum on a cart problem from Example
12.1. For this example, numerical experience shows that the most critical trajectory
component is the angle of the pendulum x1. In the following, we discuss and illustrate
the efficient use and effect of multiple shooting nodes for this variable.

(i) If we define every sampling instant in every dimension of the problem to be
a shooting node, then multiple shooting coincides with the full discretization.
Proceeding this way slows down the optimization process significantly due to
the enlarged dimension of the optimization variable. Unless the computational
burden can be reduced by exploiting the special structure of the shooting nodes
in the optimization algorithm, cf. the paragraph on condensing on Sect. 12.4,
below, this implies that the number of shooting nodes should be chosen as
small as possible. On the other hand, using shooting nodes we may be able to
significantly improve the initial guess of the control. Therefore, in terms of the
computing time, a balance between improving the initial guess and the number
of multiple shooting nodes must be found.

(ii) If the state trajectories evolve slowly, i.e., in regions where the dynamics is
slow, the use of shooting nodes may obstruct the optimization since there may

378 12 Numerical Optimal Control of Nonlinear Systems

not exist a trajectory which links two consecutive shooting nodes. In this case,
the optimization routine wastes iteration steps trying to adapt the value of the
shooting nodes and may be unable to find a solution. Ideally, the shooting nodes
are chosen close to the optimal transient trajectory, which is, however, usually
not known at runtime. Using shooting nodes on the reference, instead, may be a
good substitute but only if the initial value is sufficiently close to the reference
or if the shooting times are chosen sufficiently large in order to enable the
trajectory to reach a neighborhood of the reference.

(iii) Using inappropriate shooting nodes may not only render the optimization rou-
tine slow but may lead to unstable solutions even if the problem without shooting
nodes showed stable behavior. On the other hand, choosing good shooting nodes
may have a stabilizing effect.

In the following, we illustrate the effects mentioned in (iii) for the horizons
N = 14, 15 and 20. We compute the NMPC closed-loop trajectories for the in-
verted pendulum on a cart problem on the interval [0, 20] where in each optimiza-
tion we use one shooting node for the first state dimension x1 at different times
ς(1) ∈ {0, . . . , N − 1}, and the corresponding initial value to x1 = s1 = −π . In a
second test, we use two shooting nodes for the first state dimension with differ-
ent (ς(1), ς(2)) ∈ {0, . . . , N − 1}2 again with s1 = s2 = −π . Here, the closed-loop
costs in the following figures are computed by numerically evaluating

200∑

k=0

�(xμN (k, x0), μN (xμN (k, x0)))

in order to approximate J cl∞ from Definition 4.10. Darker colors in the Figs. 12.7b–
12.9b indicate higher closed-loop costs.

As we can see from Fig. 12.7a, the state trajectory is stabilized for N = 14 if we
add a shooting node for the first differential equation. Hence, using a single shooting
node, we are now able to stabilize the problem for a reduced optimization horizon
N . Yet, the stabilized equilibrium is not identical for all values ς(1), i.e., for ς(1) ∈
{t0, . . . , t2} the equilibrium (π, 0, 0, 0) is chosen which in our case corresponds to
larger closed-loop costs in comparison to the solutions approaching (−π, 0, 0, 0).
Similarly, all solutions converge to an upright equilibrium if we use two shooting
nodes. Here, Fig. 12.7b shows the corresponding closed-loop costs which allow us
to see that for small values of ς(i), i = 1, 2, the x1 trajectory converges toward
(π, 0, 0, 0).

As we see, for N = 14 the shooting nodes may change the closed-loop behavior.
A similar effect happens for the horizon N = 15. For the case without shooting
nodes, the equilibrium (−π, 0, 0, 0) is stabilized, cf. Fig. 12.2. If shooting nodes are
considered, we obtain the results displayed in Fig. 12.8.

Here, we observe that choosing the shooting time ς(1) ∈ {0, 1, 3} results in sta-
bilizing (π, 0, 0, 0) while for all other cases the x1 trajectory converges toward
(−π, 0, 0, 0). Still, for ς(1) ∈ {5, . . . , 9} the solutions differ significantly from the

12.1 Discretization of the NMPC Problem 379

(a) x1(·) trajectories using one shooting node (b) Closed-loop costs using two shooting
nodes

Fig. 12.7 Results for a varying shooting nodes for horizon length N = 14

(a) x1(·)trajectories using one shooting node Closed-loop costs using two shooting
nodes

(b)

Fig. 12.8 Results for a varying shooting nodes for horizon length N = 15

solution without shooting nodes which also affects the closed-loop costs. As indi-
cated by Fig. 12.8b, a similar effect can be experienced if more than one shooting
node is used. Hence, by our numerical experience, the effect of stabilizing a chosen
equilibrium by adding a shooting node can only be confirmed if ς(1) is set to a time
instant close to the end of the optimization horizon.

This is further confirmed by Fig. 12.9 which illustrates the results for N = 20.
Here, one also sees that adding shooting nodes which may also lead to instability of
the closed loop.

Moreover, we like to stress the fact that adding shooting nodes to a problem
may cause the optimization routine to stabilize a different equilibrium than intended.
Although all equilibria with x1 = (2k + 1)π , k ∈ Z, correspond to the same physical
upright position and yield the same value in the stage cost, one may expect that setting

380 12 Numerical Optimal Control of Nonlinear Systems

(a) x1 (·) trajectories using one shooting node (b) Closed-loop costs using two shooting
nodes

Fig. 12.9 Results for a varying shooting nodes for horizon length N = 20

shooting nodes to the value x1 = −π forces the closed-loop trajectory to approach
this particular equilibrium. As we have seen in Figs. 12.7a, 12.8a and 12.9a, this is not
always the case since some trajectories approach (π, 0, 0, 0), even though this leads
to higher closed-loop costs. In particular, Fig. 12.8 shows nicely that even though
the equilibrium (−π, 0, 0, 0) is stabilized without using shooting nodes, fixing a
shooting node x1 = −π obstructs the computation of the optimal solution. Hence,
the values of the shooting nodes have to be selected with care since different choices
may result in closed-loop trajectories with different costs and computing times and
may have both stabilizing or destabilizing effects.

12.2 Unconstrained Optimization

Now that we have discretized the optimal control problem (OCPn
N,e) and transformed

it into a nonlinear optimization problem (NLP) in standard form, our aim is to com-
pute a minimizer z, which then gives us an optimal control u for our original problem.
In this section, we discuss the foundations of all optimization techniques; details for
methods like the popular Sequential Quadratic Programming (SQP) or Interior-Point
Methods (IPM) are then given in the subsequent section. On the one hand, this allows
us to characterize the main principles of such algorithms. On the other hand, it reveals
an abstract method, exposes the computationally expensive parts of such algorithms
and allows for rearranging the ordering of these steps to reduce the computational
cost.

Although the problem (NLP) is actually a constrained optimization problem, in
this section we present solution methods for dealing with unconstrained optimization
problems since the basic principles, as we will see in Sect. 12.3, are similar to those in
constrained optimization. Since there do not exist any restrictions on the optimization

12.2 Unconstrained Optimization 381

variable z, the unconstrained optimization problem is a special case of the standard
(NLP) problem and is given by

minimize F(z)
with respect to z ∈ R

nz

Due to the sheer size of such a problem, in practice we need to solve it on a computer.
The computer, however, cannot deal with this problem in an abstract way, it can only
evaluate the given functions like the cost function F and possibly its derivative for
finitely many z. Hence, the goal in constructing a solution method for any (NLP)
problem is to find a strategy for choosing these evaluation points in order to reliably
identify a solution of (NLP). While the identification of and the search strategy for a
solution are primary goals for a solution method, one still has to keep in mind some
secondary goals like computing time, required memory storage, and the number of
required function evaluations whose detailed analysis is beyond the scope of this
chapter but can be found in the standard literature for nonlinear optimization.

Focussing on the primary goals, we first need to characterize a solution of a
problem (NLP) and how it can be checked whether a given point z ∈ R

nz is a solution.
In principle, we are interested in so-called global minimizers.

Definition 12.3 A point z� ∈ R
nz is a global minimizer of the function F : R

nz → R

if F(z�) ≤ F(z) holds for all z ∈ R
nz .

Unfortunately, for general nonlinear—and in particular nonconvex—problems
such global minimizers are hard to find in practice since we only have local knowledge
of the function F and its derivative d

dz F . Due to this local knowledge and our intention
to evaluate only a small number of vectors z, we cannot cover the entire definition
space of F . As a consequence, if we construct an algorithm under these restrictions
we can never be sure if we reached a global minimizer. Nevertheless we are often
able to identify a so-called local minimizer.

Definition 12.4 A point z� ∈ R
nz is a local minimizer of the function F : R

nz → R

if there exists a neighborhood N of z� such that F(z�) ≤ F(z) holds for all z ∈ N .

In some cases not all hopes for identifying a global minimizer are lost since we
may have additional information on the function F . For example, if F is convex,
then every local minimizer is also a global minimizer. But even if we know that F is
convex, we still need to find such a minimizer. In order not to have to check all values
z in a certain area, we will assume the function F to be at least twice continuously
differentiable, which allows us to use a more practicable way of locating a minimizer
using Taylor’s theorem. Here and in the following we denote derivatives using the
following notation which is common in nonlinear optimization. For a continuously
differentiable function g = (g1, . . . , gp) : R

nz → R
p we use the gradient notation

for the Jacobian matrix

∇zg(z) =

⎛

⎜⎜⎝

∂g1

∂z1
· · · ∂gp

∂z1

...
...

∂g1

∂zn
· · · ∂gp

∂zn

⎞

⎟⎟⎠

382 12 Numerical Optimal Control of Nonlinear Systems

which we abbreviate to ∇g if there is no ambiguity. For a twice continuously differ-
entiable function g : R

nz → R we write the so-called Hessian as

∇2
zzg(z) =

⎛

⎜⎜⎝

∂2g
∂z1z1

· · · ∂2g
∂z1znz

...
...

∂2g
∂znz z1

· · · ∂2g
∂znz znz

⎞

⎟⎟⎠

which we abbreviate to ∇2g if there is no danger of confusion.

Theorem 12.5 (Taylor’s theorem for order 1 and 2) Consider a function F : R
nz →

R which is continuously differentiable and a direction vector d ∈ R
nz . Then we have

F(z + d) = F(z) + ∇F(z + td)�d (12.11)

for some t ∈ (0, 1). If F is twice continuously differentiable, then we also have

F(z + d) = F(z) + ∇F(z)�d + 1

2
d�∇2 F(z + td)d (12.12)

for some t ∈ (0, 1).

Proof Using the fundamental theorem of calculus, we have

F(z + d) = F(z) +
1∫

0

d

dt
F(z + td)dt.

By the mean value theorem, there exist a t ∈ (0, 1) with

1∫

0

d

dt
F(z + td)dt = d

dt
F(z + td) = ∇F(z + td)�d,

where we used the chain rule for the second equality. This shows (12.11). By partial
integration, we further obtain

1∫

0

d

dt
F(z + td)dt = d

dt

∣∣∣∣
t=0

F(z + dt) +
1∫

0

(1 − t)
d2

dt2
F(z + td)dt

and again using the mean value theorem we get

1∫

0

(1 − t)
d2

dt2
F(z + td)dt = d2

dt2
F(z + t ′d)

1∫

0

(1 − t)dt = 1

2

d2

dt2
F(z + t ′d)

12.2 Unconstrained Optimization 383

for some t ′ ∈ (0, t). Since by the chain rule we have

d

dt

∣∣∣∣
t=0

F(z + dt) = ∇F(z)�d and
1

2

d2

dt2
F(z + t ′d) = 1

2
d�∇2 F(z + t ′d)d

this shows (12.12). �

The advantage of Taylor’s theorem is that it allows us to introduce knowledge on
the gradient ∇F(z�) and the Hessian ∇2 F(z�) into the search for a local minimizer
z�. In particular, first-order necessary conditions are derived very easily.

Theorem 12.6 Consider a vector z� ∈ R
nz and a function F : R

nz → R where F
is continuously differentiable in an open neighborhood of z� and z� ∈ R

nz is a local
minimizer of F. Then we have ∇F(z�) = 0.

Proof Suppose ∇F(z�) �= 0 and set d := −∇F(z�). Then, we get d�∇F(z�) =
−‖∇F(z�)‖2 < 0. Since ∇F is continuous in a neighborhood of z�, there exists
a scalar T > 0 such that d�∇F(z� + td) < 0 holds for all t ∈ [0, T]. By (12.11),
for any t ∈ (0, T] we have F(z� + td) = F(z�) + td�∇F(z� + td) for some t ∈
(0, t). This implies F(z� + td) < F(z�) for all t ∈ (0, T] which contradicts the local
minimizer property of z�. �

In a similar manner, information on the Hessian can be used to derive second-order
necessary conditions from Eq. (12.12).

Theorem 12.7 Consider a vector z� ∈ R
nz and a function F : R

nz → R where F is
twice continuously differentiable in an open neighborhood of z� and z� ∈ R

nz is a
local minimizer of F. Then we have ∇F(z�) = 0 and the Hessian ∇2 F(z�) is positive
semidefinite.

Proof From Theorem 12.6 we know that ∇F(z�) = 0. Now, suppose ∇2 F(z�) is
not positive semidefinite and choose a vector d such that d�∇2 F(z�)d < 0 holds.
Using continuity of ∇2 F(z�) in a neighborhood of z�, we know that there exists a
scalar T > 0 such that d�∇2 F(z� + td)d < 0 holds for all t ∈ [0, T]. Hence, using
(12.12), for any t ∈ (0, T] and some t ∈ (0, t) we obtain

F(z� + td) = F(z�) + t∇F(z�)�d + 1

2
td�∇2 F(z� + td)dt < F(z�).

Similar to the proof of Theorem 12.6, F is strictly decreasing along the direction d
which contradicts the local minimizer property of z�. �

The results from Theorems 12.6 and 12.7 reveal guidelines to what we are looking
for, i.e., which properties a local minimizer must fulfill. However, these results cannot
be used to identify a local minimizer once we have found a candidate satisfying the
previous conditions. In order to perform such a check, the following theorem can be
used.

384 12 Numerical Optimal Control of Nonlinear Systems

Theorem 12.8 Consider a vector z� ∈ R
nz and a function F : R

nz → R where F is
twice continuously differentiable in an open neighborhood of z�. If ∇F(z�) = 0 and
∇2 F(z�) is positive definite, then z� is a local minimizer of F.

Proof Due to F being twice continuously differentiable there exists a radius r > 0
such that ∇2 F(z) is positive definite for all z ∈ {z | ‖z − z�‖ < r}. Now take any
vector d ∈ R

nz with ‖d‖ < r , then we have z� + d ∈ {z | ‖z − z�‖ < r} and

F(z� + d) = F(z�) + d�∇F(z�) + 1

2
d�∇2 F(z� + td)d

= F(z�) + 1

2
d�∇2 F(z� + td)d

for some t ∈ (0, 1). Since (z� + td) ∈ {z | ‖z − z�‖ < r}, we have d�∇2 F(z� +
td)d > 0 and therefore F(z� + d) > F(z�) holds showing the assertion. �

Before we consider constraints we give a short description of the standard strate-
gies for nonlinear optimization, the line-search and the trust-region strategy. Both
methods have in common that they approximately compute local minimizers by it-
eratively computing values zk converging to z�. Hence, an initial guess z0 needs to
be supplied by the user for starting the iteration. A good initial guess, i.e., a vector
close to a minimizer, can usually only be obtained by utilizing knowledge on the
process. If such knowledge is not at hand, the starting point can be chosen arbitrarily,
however, the convergence speed of the sequence zk toward a minimizer is drastically
reduced in general.

Within the line-search strategy, the approximation method computes a direction
dk in its kth step and searches along the vector dk starting from the current iterate
zk for a new iterate zk+1 = zk + αkdk with lower cost function value F(zk+1). Here,
the direction dk is typically obtained from minimizing a model function mk which
catches the local behavior of the cost function F at the current iterate zk and is easy
to minimize numerically. Often, quadratic functions of the form

mk(zk + dk) = F(zk) + d�
k ∇F(zk) + 1

2
d�

k Bkdk

are used for this purpose, where Bk is either the Hessian ∇2 F(zk) or an approximation
of it. The corresponding step length αk > 0 can then, e.g., be determined by solving
the one-dimensional minimization problem

min
αk>0

F(zk + αkdk). (12.13)

Once an (approximated) solution to the step length problem has been found, a new
search direction and a new step length are computed and the scheme is applied
iteratively.

In contrast to the line-search approach, the trust-region method takes the only local
approximation properties of the model function mk into account when minimizing

12.2 Unconstrained Optimization 385

this function in order to determine dk . Since mk can only be guaranteed to be a good
approximation close to zk—i.e., it can only be “trusted” in a neighborhood of zk—the
search region for a minimizer of mk is restricted to a so-called trust-region which is
usually given by a ball BΔ(zk). Hence, the problem consists in computing a suitable
next iteration candidate by solving

min
dk

mk(zk + dk) where zk + dk ∈ BΔ(zk). (12.14)

If the candidate zk + dk does not show a sufficient decrease in the cost function F ,
then the trust-region is considered to be too large. Hence, the radius Δ is reduced
and the new minimization problem (12.14) is solved again. Like in the line-search
approach, the model function mk in (12.14) is often generated by quadratic functions.

Taking an abstract look on both line-search and trust-region method, the difference
between those two approaches lies in the ordering of the basic steps, i.e., finding a
search direction and a suitable step length. While the line-search method fixes the
search direction first and then computes a step length αk , the trust-region method
first defines the maximal step length Δ and then searches for a minimizer using the
model mk .

12.3 Constrained Optimization

So far we have dealt with unconstrained optimization problems and shown the funda-
mental results and basic algorithmic ideas which can be used to solve such problems.
In the NMPC algorithm, however, we face the constrained nonlinear optimization
problem

minimize F(z)
with respect to z ∈ R

nz

subject to Gi (z) = 0 for all i ∈ E and Hi (z) ≥ 0 for all i ∈ I
(NLP)

in every step of the NMPC iteration where the functions F , G, and H are defined
by one of the discretizations of the problem (OCPn

N,e) described in Sect. 12.1. Note
that all three discretizations lead to a problem of type (NLP), hence all subsequent
results hold for either of these discretizations.

The index sets in (NLP) are given by E = {1, . . . , rg} andI = {rg + 1, . . . , rg +
rh}, respectively, and the functions Gi and Hi are called equality and inequality
constraints, respectively. These constraints induce the following feasible set, which
will be important for our upcoming analysis.

Definition 12.9 For a problem (NLP) the set

Ω = {z | Gi (z) = 0, i ∈ E ; Hi (z) ≥ 0, i ∈ I } (12.15)

is called the feasible set and the elements z ∈ Ω are called feasible points.

386 12 Numerical Optimal Control of Nonlinear Systems

Since a minimizer for the problem (NLP) has to be an element of Ω by definition,
we have to modify the definition of a local minimizer in the context of constrained
optimization problems which we want to approximate later:

Definition 12.10 A point z� ∈ R
nz is a local minimizer of the problem (NLP) if there

exists a neighborhood N of z� such that F(z�) ≤ F(z) holds for all z ∈ N ∩ Ω .

In a similar way as for unconstrained optimization problems, we now want to de-
rive necessary and sufficient conditions which will allow us to construct numerical
methods to compute a local minimizer z� of a problem (NLP). As we have seen in
the previous Sect. 12.2, the mathematical background of the necessary and sufficient
conditions given in Theorems 12.6, 12.7 and 12.8 is Taylor’s Theorem 12.5 stating
results for a linear or quadratic approximation. In constrained optimization, the func-
tions G and H will now also be replaced by suitable approximations. Here, we use
linear approximations

G(z + d) ≈ G(z) + ∇G(z)�d and H(z + d) ≈ H(z) + ∇H(z)�d

for this purpose. This, however, only makes sense if the geometry of the feasible set
Ω is—at least locally—reflected properly when G and H are replaced by approxi-
mations. To this end so-called constraint qualifications are imposed, which we are
going to deal with next.

Before we state the popular linear independent constraint qualification (LICQ),
we need some definitions. We first introduce the tangent cone TΩ(z) to the feasible
set Ω .

Definition 12.11 A vector v ∈ R
nz is called tangent vector to Ω at a point z ∈ Ω if

there exists a sequence of feasible points (zk)k∈N with zk → z, zk ∈ Ω and a sequence
of positive scalars (tk)k∈N with tk → 0 such that

lim
k→∞

zk − z

tk
= v (12.16)

holds. The set of all tangent vectors to Ω at z is called the tangent cone and is denoted
by TΩ(z).

Note that TΩ only depends on the geometry of Ω . The set TΩ(z) can be seen
as a local approximation of all feasible directions at a given feasible point z ∈ Ω .
The feasible directions are all vectors d ∈ R

nz for which z + αd ∈ Ω holds for all
sufficiently small α > 0 and the definition of TΩ implies that each feasible direction
is contained in TΩ(z). Conversely, for each element v ∈ TΩ(z) and each ε > 0 there
exists a feasible direction d with ‖d − v‖ < ε.

Obviously, all equality constraints Gi restrict these feasible directions but not nec-
essarily all inequality constraints: if Hi (z) > 0 holds, then since Hi is continuous we
get Hi (z + αd) > 0 for all d ∈ R

nz provided α > 0 is sufficiently small. If, however,
Hi (z) = 0 holds, then an arbitrarily small change of z in the “wrong” direction may

12.3 Constrained Optimization 387

lead to Hi (z + αd) < 0. Hence, all inequality constraints Hi with Hi (z) = 0 and all
equality constraints Gi may restrict feasible moving directions. These constraints
are called active and their indices are characterized by the following definition.

Definition 12.12 The active set A (z) at any feasible point z consists of the equality
constraint indices from E together with the indices of the inequality constraints
i ∈ I where Hi (z) = 0 holds, that is, A (z) := E ∪ {i ∈ I | Hi (z) = 0}.

Using the active set we can now define a set of “linearized” feasible directions
obtained from the linearizations of H .

Definition 12.13 For a feasible point z ∈ Ω and the active set A (z) we call the set

F (z) =
{

v ∈ R
nz

∣∣∣∣
ν�∇Gi (z) = 0 for all i ∈ E and
ν�∇Hi (z) ≥ 0 for all i ∈ A (z) ∩ I

}
(12.17)

the set (or cone) of linearized feasible directions.

Note that in general we have TΩ(z) ⊆ F (z), see Fletcher [20, Lemma 9.2.1].
For the proof of necessary optimality conditions based on the linearizations of the
Gi and Hi as well as for using the linearized Gi and Hi in our algorithms it is now
important to see that these sets coincide. The idea of constraint qualifications is to
guarantee that these sets indeed coincide, i.e., that the geometry of TΩ is captured
by the linearizations of Gi and Hi . Although there is quite a range of different con-
straint qualifications, see, e.g., the book of Mangasarian [30], the linear independence
constraint qualification is probably the most popular one.

Definition 12.14 Consider a feasible point z and the active set A (z). Suppose that
F , G and H are continuously differentiable. If the elements of the gradient set
{∇Gi (z) | i ∈ E } ∪ {∇Hi (z) | i ∈ A (z) ∩ I } are linearly independent then we say
that the linear independence constraint qualification (LICQ) holds.

Under this condition we obtain TΩ(z) = F (z), see Fletcher [20, Lemma 9.2.1].
Now we want to proceed as in the unconstrained case, i.e., give characterizations

of minimizers of the cost function F amongst the feasible points z ∈ Ω . Note that in
the constrained case we cannot simply use Taylor’s Theorem 12.5 to conclude that
if z� ∈ Ω is a local minimizer for the problem (NLP) then we have ∇F(z�) = 0.

Example 12.15 In order to see that Taylor’s Theorem 12.5 cannot be used in the
constrained case, consider the example of minimizing F(z) = z over Ω = [−1, 1].
Obviously z = −1 is a local minimizer, yet we have ∇F(−1) = 1.

The problem with applying Theorem 12.6 in the constrained case is that no
boundaries of the constraints sets are included in the analysis in this theorem. In
constrained optimization, however, we often face the situation of a minimizer lying
on the boundary of the feasible set Ω , cf. Example 12.15. To deal with this matter,
the following auxiliary function L : R

nz × R
rg+rh → R, the so called Lagrangian is

388 12 Numerical Optimal Control of Nonlinear Systems

introduced. For its definition, we combine the constraints Gi and Hi into one function
C : R

nz → R
rg+rh given by

C : z �→
[

(Gi (z))i∈E
(Hi (z))i∈I

]

and define as a modification of the cost function F by

L(z, λ) := F(z) − λ�C(z). (12.18)

The idea behind this definition is that the additional term −λ�C(z) penalizes viola-
tions of the state constraints. The vector λ ∈ R

rg+rh is called Lagrange multiplier.
Similar to Theorem 12.6, we can now state a first-order necessary optimal-

ity condition—usually called KKT (Karush–Kuhn–Tucker) condition—in the con-
strained case using the Lagrangian (12.18) which will serve as a guideline to find
local minimizers, see Fletcher [20, Theorem 9.1.1].

Theorem 12.16 (KKT condition) Consider the problem (NLP) with local mini-
mizer z� ∈ Ω . Moreover suppose the functions F, G, and H to be continuously
differentiable and the (LICQ) to hold at z�. Then there exists a Lagrange multiplier
λ� ∈ R

rg+rh such that the following conditions hold.

∇z L(z�, λ�) = 0 (12.19)

Gi (z
�) = 0 ∀i ∈ E (12.20)

Hi (z
�) ≥ 0 ∀i ∈ I (12.21)

λ�
i ≥ 0 ∀i ∈ I (12.22)

λ�
i Gi (z

�) = 0 ∀i ∈ E (12.23)

λ�
i Hi (z

�) = 0 ∀i ∈ I . (12.24)

The identity (12.24) is a so-called complementarity condition, which says that ei-
ther λ�

i = 0 or Hi (z�) = 0 must hold. A special case which is important for nonlinear
optimization algorithms is the following.

Definition 12.17 (Strict complementarity) Consider the problem (NLP) with local
minimizer z� ∈ Ω and Lagrange multiplier λ� ∈ R

rg+rh satisfying (12.19)–(12.24).
Then we say that the strict complementarity condition holds if λ�

i > 0 for all i ∈
I ∩ A (z�).

We will use this condition when discussing interior-point methods, below.
Interpreting the KKT conditions, we see that they connect the gradient of the cost

function to active constraints. In particular, Theorem 12.16 states that for a given
minimizer z� moving along an arbitrary vector v ∈ F (z�) either increases the value
of the first-order approximation of the cost function, i.e., v�∇F(z�) > 0, or keeps
its value at the same level in the case v�∇F(z�) = 0.

12.3 Constrained Optimization 389

In the second case—the so-called “critical” case v�∇F(z�) = 0—it is unknown
if the cost function value is increasing or decreasing along v. Here second-order
conditions come into play and the curvature information can be used to obtain more
information about change of F along these directions, see Fletcher [20, Theorem
9.3.1] for a corresponding proof.

Theorem 12.18 (Second-order necessary conditions) Consider the problem (NLP)
with local minimizer z� ∈ Ω . Suppose the functions F, G and H to be continuously
differentiable and the (LICQ) to hold at z�. Let λ∗ ∈ R

rg+rh be a Lagrange multiplier
satisfying the KKT conditions (12.19)–(12.24). Then the inequality

v�∇2
zz L(z�, λ�)v ≥ 0 (12.25)

holds for all

v ∈ C (z�, λ�) :=
{

v ∈ F (z�)

∣∣∣∣
v�∇Hi (z�) = 0 for all
i ∈ A (z�) ∩ I with λ�

i > 0

}
. (12.26)

The set C is also called the critical cone. It contains all directions which leave
the active inequality constraints with λi > 0 as well as all equality constraints active
if one moves a sufficiently small step along these directions. This, however, does
not need to hold for those active inequality constraints with λi = 0. In particular, we
have the equivalence

v ∈ C (z�, λ�) ⇐⇒
⎧
⎨

⎩

∇Gi (z�)�v = 0, for all i ∈ E ,

∇Hi (z�)�v = 0, for all i ∈ A (z�) ∩ I with λ�
i > 0,

∇Hi (z�)�v ≥ 0, for all i ∈ A (z�) ∩ I with λ�
i = 0.

Now, we want to get a converse result, i.e., we want to check whether a given feasible
point is actually a local minimizer. As it turns out, the only differences between the
previous necessary conditions and the sufficient conditions presented next is that
the constraint qualification is not required whereas inequality (12.25) needs to be
strengthened to a strict inequality, cf. Fletcher [20, Theorem 9.3.2]:

Theorem 12.19 (Second-order sufficient conditions) Consider a feasible point z� ∈
Ω and suppose a Lagrange multiplier λ� ∈ R

rg+rh to exist satisfying (12.19)–(12.24).
If we have

v�∇2
zz L(z�, λ�)v > 0 (12.27)

for all v ∈ C (z�, λ�) with v �= 0, then z� is a strict local minimizer of problem (NLP).

We will now focus on the currently common approaches to solve nonlinear con-
strained optimization problems (NLP), these are the so-called Sequential Quadratic
Programming (SQP) based on the active set A and the Interior-Point Method (IPM).
In the remainder of this section, we describe the main ideas of these strategies. This

390 12 Numerical Optimal Control of Nonlinear Systems

description cannot replace a thorough treatment as provided, e.g., in the books by
Bryson and Ho [8], Fletcher [20] or Nocedal and Wright [32], which were also our
main sources for writing this section. Still, we decided to include this description be-
cause we consider it useful for the discussion of certain numerical aspects of NMPC
algorithms in the subsequent Sects. 12.4–12.6.

Active Set SQP Methods

Following the approach outlined at the end of Sect. 12.2, the basic idea of solving
(NLP) in the constrained case would be to iteratively determine search directions
dk by solving an auxiliary quadratic optimization problem which approximates F
close to zk , following either the line-search or the trust-region approach. Since we
want to use the necessary conditions from Theorem 12.16, we will also construct a
sequence λk , which is supposed to converge to the Lagrange multiplier λ∗ in Theorem
12.16. However, when proceeding this way, the inequality constraints in (NLP) pose
a severe problem because they are difficult to handle in a quadratic optimization
problem. There are two ways to overcome this problem. One is to transform the
inequality constraints into equality constraints via so-called slack variables; we will
use this method later in the context of interior-point methods. The drawback of this
approach is that each slack variable is an additional optimization variable and thus
the dimension of the problem may grow significantly.

The alternative which we describe now is the so-called active set methods. Here,
the fundamental idea is to consider a so-called working set Wk which contains some
of the inequality and all equality constraints for the current iteration point zk . All
constraints within the working set are then treated as equality constraints and the
resulting quadratic problem is solved. The working set Wk can be seen as an approx-
imation to the active set A (zk) and is updated in each iteration step. We require that
the gradients of the constraints contained in the working set are linearly independent,
even if the full set of active constraints at that point has linearly dependent gradients.

In this setting, the quadratic problem to be solved in each step for determining dk

is obtained from an approximation of the nonlinear problem

minimize F(z)
with respect to z ∈ R

nz

subject to Ci (z) = 0 for all i ∈ Wk

(ECP)

around the current iterate zk . Here Ci denotes the components of the combined
constraint function C in (12.18) and we assume F and Ci (i.e., G and H) to be twice
continuously differentiable. The linear independence requirement for the gradients
of the constraints in the working set implies that the (LICQ) condition holds for
(ECP).

Note that we do not intend to solve (ECP) but rather use it for constructing an
approximation in order to determine dk . One way to obtain such an approximation
is to apply Newton’s method to the KKT conditions for (ECP). To formulate these
conditions we use the notation λ̃Wk in order to denote a Lagrange multiplier in R

rg+rh

with λ̃
Wk
i = 0 for i /∈ Wk . This way we can use the Lagrangian (12.18) from the

12.3 Constrained Optimization 391

original problem (NLP) for (ECP). With λWk we denote the vector consisting of
those components of λ̃Wk corresponding to indices in Wk , i.e.,

λWk = [(λ̃Wk
i)i∈Wk].

Denoting the number of elements in Wk by rWk , the vector λWk is an element of R
rWk .

Note that λWk is uniquely determined by λ̃Wk and vice versa. Furthermore, we use
the notation

CWk (z) = [(Ci (z))i∈Wk]

in order to denote the vector of constraints corresponding to the indices in Wk . With
this notation, the KKT conditions for (ECP) read

M(z, λ̃Wk) :=
(∇z L(z, λ̃Wk)

CWk (z)

)
= 0. (12.28)

If we apply Newton’s method to this problem, then a step of the resulting iteration
is given by

(
znew

λWk ,new

)
=
(

z
λWk

)
−
(
∇z,λWk M(z, λ̃Wk)

)−1
(∇z L(z, λ̃Wk)

CWk (z)

)
(12.29)

with

∇z,λWk M(z, λ̃Wk) =
[∇zz L(z, λ̃Wk) −∇CWk (z)�

∇CWk (z) 0

]
.

Hence, if sufficient conditions for locally quadratic convergence of the resulting se-
quence are fulfilled, with this iteration we are able to numerically compute a solution
of the problem (ECP). Since we assumed F , G, and H to be twice continuously
differentiable, we only have to check whether the Jacobian of M(z, λ̃Wk) given in
(12.28) is invertible. As we will see in Lemma 12.22, below, invertibility of this
matrix follows at least locally around a minimizer z� of (ECP) from the (LICQ) con-
dition provided z� satisfies the sufficient conditions from Theorem 12.18 for (ECP).
Hence, under these conditions quadratic convergence can be guaranteed.

As already mentioned, we do not want to perform the iteration from Newton’s
method in order to solve (ECP). Rather, we would like to apply only one step of this
iteration and then update the working set Wk if needed. While Newton’s method is
very useful for the convergence analysis, cf. Remark 12.23, it turns out that for the
actual algorithm it is convenient to replace Newton’s iteration by a different method,
which is more closely related to the quadratic approximation idea outlined above.

To this end, let us assume that in the kth iteration of the iterative algorithm for
solving (NLP) we are given iterates zk , λk and a working set Wk . Similar to the
definition of λ̃Wk , above, we define λ̃

Wk
k to be the vector which coincides with λk for

all components i ∈ Wk and whose components are zero for all i /∈ Wk . We call λ̃
Wk
k

the full multiplier for working set Wk .

392 12 Numerical Optimal Control of Nonlinear Systems

Now we replace the cost function F in (ECP) by its Lagrangian L . The reason for
using L instead of F will become clear in the discussion after Lemma 12.22, below.
Then, we approximate the resulting optimization problem by a quadratic program
with linear inequality constraints. This amounts to approximating the Lagrangian L
close to zk by the quadratic function

L(zk + dk, λ̃
Wk
k) ≈ L(zk, λ̃

Wk
k) + ∇z L(zk, λ̃

Wk
k)�dk + 1

2
d�

k ∇2
zz L(zk, λ̃

Wk
k)dk

and to replacing the equality constraints Ci (zk + dk) = 0 by their linearizations

Ci (zk + dk) ≈ Ci (zk) + ∇Ci (zk)dk = 0

for all i ∈ Wk . For all dk satisfying these constraints a little computation shows
the identity L(zk, λ̃

Wk
k) + ∇L(zk, λ̃

Wk
k)dk = F(zk) + ∇F(zk)dk , which we can insert

into the approximation of L(zk + dk, λ̃
Wk
k). This way, we arrive at the following

quadratic optimization problem:

minimize F(zk) + ∇F(zk)
�dk + 1

2
d�

k ∇2
zz L(zk, λ̃

Wk
k)dk

with respect to dk ∈ R
nz

subject to Ci (zk) + ∇Ci (zk)
�dk = 0 for all i ∈ Wk

(EQP)

The Lagrange multiplier for the optimal solution dk of (EQP) according to The-
orem 12.16 will be denoted by λ

(EQP)
k . The key idea of the (SQP) algorithm is to use

these values in order to update zk and λk according to1

zk+1 = zk + dk and λk+1 = λ̃
(EQP)
k . (12.30)

Here λ̃
(EQP)
k denotes the vector in R

rg+rh whose components (λ̃
(EQP)
k)i are defined by

the relations

[(λ̃(EQP)
k)i, i∈Wk] = λ

(EQP)
k and (λ̃

(EQP)
k)i = 0 for i /∈ Wk, (12.31)

i.e., we extend the vector λ
(EQP)
k whose dimension equals the number of indices

in Wk to a vector in R
rg+rh by inserting zeros in the components corresponding to

constraints which are not included in Wk . A motivation for the choice of zk+1 and
λk+1 in (12.30) will be given in the discussion after Lemma 12.22, below, and the
problem of determining Wk+1 as well as suitable step lengths αk will be considered
after we have formulated the basic active set (SQP) algorithm in Algorithm 12.24.

Before we do this, we show how (EQP) can be solved by applying the necessary
and sufficient conditions from Theorems 12.16 and 12.18, respectively, to (EQP).

Lemma 12.20 If λ
(EQP)
k denotes the Lagrange multiplier corresponding to the opti-

mal solution dk of (EQP), then we have

1Appropriate step lengths αk will be added to these updates, below.

12.3 Constrained Optimization 393

∇2
zz L(zk, λ̃

Wk
k)dk + ∇F(zk) = ∇CWk (zk)

�λ
(EQP)
k . (12.32)

Proof This is an immediate conclusion of Theorem 12.16. �

Combining (12.32) with the constraints in (EQP) we arrive at the following char-
acterization of the solution of (EQP).

Lemma 12.21 Given the iterates zk , λk , Wk and the corresponding full multiplier
λ̃
Wk
k for working set Wk , the optimal solution dk of (EQP) and the corresponding

Lagrange multiplier λ(EQP) fulfill the linear equation system

[∇2
zz L(zk, λ̃

Wk
k) −∇CWk (zk)

�
∇CWk (zk) 0

](
dk

λ
(EQP)
k

)
+
(∇F(zk)

CWk (zk)

)
= 0. (12.33)

Proof The stated linear equation system is a combination of the constraints of prob-
lem (EQP) and (12.32). �

For the numerical solution it would be more convenient if the matrix in (12.33)
was symmetric. Since the Hessian ∇2

zz L(zk, λ̃
Wk
k) is symmetric, this can be easily

achieved by multiplying ∇CWk (zk) and CWk (zk) in (12.33) by −1.
The next lemma gives conditions under which (12.33) has a unique solution.

Lemma 12.22 Consider a minimizer z� with Lagrange multiplier λ̃Wk ,� of (ECP)
with working set Wk . Assume that (ECP) satisfies the (LICQ) condition and that z�

satisfies the sufficient conditions from Theorem 12.18 for (ECP). Then there exist
neighborhoods Nz of z� and Nλ of λ̃Wk ,� such that there exists a unique solution of
(12.33) for all zk ∈ Nz and λ̃

Wk
k ∈ Nλ.

Proof In order to prove the assertion we show that the matrix

A0 =
[∇2

zz L(z�, λ̃Wk ,�) −∇CWk (z�)�
∇CWk (z�) 0

]

is invertible. This implies the assertion because all expressions in this matrix are
continuous, hence the invertibility extends to neighborhoods of z� and λ̃Wk ,�.

In order to prove invertibility of A0 we show

A0

(
v
w

)
=
(∇2

zz L(z�, λ̃Wk ,�)v − ∇CWk (z�)�w
∇CWk (z�)v

)
�= 0,

for all vectors v, w of appropriate dimension with (v�, w�) �= 0. If ∇CWk (z�)v �= 0,
then we are done. Otherwise, we have ∇CWk (z�)v = 0 and thus either v = 0 or
v ∈ C (z�, λ̃Wk ,�), where C is the critical cone for (ECP). If v = 0, then w �= 0 must
hold and since by (LICQ) the matrix ∇CWk (z�) has full column rank we obtain

∇2
zz L(z�, λ̃Wk ,�)v − ∇CWk (z�)�w = −∇CWk (z�)�w �= 0.

394 12 Numerical Optimal Control of Nonlinear Systems

If v �= 0 then v ∈ C (z�, λ̃Wk ,�) must hold and by the positive definiteness (12.27) we
obtain v�∇2

zz L(z�, λ̃Wk ,�)v > 0 which implies

v� (∇2
zz L(z�, λ̃Wk ,�)v − ∇CWk (z�)�w

)
= v�∇2

zz L(z�, λ̃Wk ,�)v
︸ ︷︷ ︸

>0

− v�∇CWk (z�)w︸ ︷︷ ︸
=w�∇CWk (z�)v=0

> 0,

and thus
∇2

zz L(z�, λ̃Wk ,�)v − ∇CWk (z�)�w �= 0.

Hence, in all cases we get A0(v�, w�)� �= 0, which shows the desired invertibility
of A0. �

Comparing the system of linear equations (12.33) derived from (EQP) and New-
ton’s iteration (12.29) one makes the—at the first glance surprising—observation
that both are identical if in (12.33) we set zk = z, dk = (znew − z), λ̃

Wk
k = λ̃Wk and

λ
(EQP)
k = λWk ,new. However, this identity is not really a coincidence. In fact, the par-

ticular cost function in (EQP) was chosen exactly for the purpose to obtain this
identity.

Remark 12.23 Interpreting the quadratic problem (EQP) as a Newton iteration is
very useful for the analysis of the convergence speed of the algorithms. Furthermore,
it provides the motivation for the choice zk+1 = zk + dk and λk+1 = λ̃

(EQP)
k in (12.30),

as these are exactly the values znew and λ̃Wk ,new from Newton’s iteration.
Convergence issues will not be treated in detail here, but we would like to mention

that the two properties one would like to have is that the sequences zk , λk converge to
a KKT point, which follows from Newton’s method provided this method converges.
Additionally, one would like to ensure that the cost function F decreases along the
search direction dk if dk �= 0. This decrease property allows to conclude that the limit
is a candidate for a local minimizer without having to check second-order conditions.

The formulation of the iteration via (EQP) allows to obtain this decrease property
under the conditions of Lemma 12.22 for zk and λ̃

Wk
k in a neighborhood of z� and

λ̃
Wk ,�
k . This is because dk �= 0 implies

1

2
d�

k ∇2
zz L(zk, λ̃

Wk
k)dk + ∇F(zk)dk < 0 (12.34)

since otherwise dk = 0 would be the optimal solution. The positive definiteness
of ∇2

zz L(z�, λ̃
Wk ,�
k) for directions dk ∈ C (z�, λ̃Wk ,�) implies positivity of the first

summand in (12.34) for zk and λ̃
Wk
k close to these optimal values, hence we obtain

∇F(zk)dk < 0. Thus, for α > 0 sufficiently small we get

F(zk + αdk) = F(zk) + ∇F(zk)αdk + O(α2) < F(zk),

12.3 Constrained Optimization 395

i.e., decrease of F along dk . This property is important because it shows that if we
restrict the step zk+1 := zk + dk in (12.30) to zk+1 := zk + αkdk then we can still
expect decrease of the cost function.

There are different ways to couple the solution of (EQP) with the update of the
working set. The approach we explain here relies on the fact that what we actually
want to solve in each iteration of the algorithms is the following inequality constrained
quadratic program.

minimize F(zk) + ∇F(zk)
�dk + 1

2
d�

k ∇2
zz L(zk, λk)dk

with respect to dk ∈ R
nz

subject to Gi (zk) + ∇zGi (zk)
�dk = 0 for all i ∈ E

and Hi (zk) + ∇Hi (zk)
�dk ≥ 0 for all i ∈ I

(IQP)

We will utilize the solution of this program in order to determine the search
direction dk as well as the new working set Wk+1. Before we explain the details of
this procedure, we give the basic outline of an active set (SQP) algorithm. In this
basic version we do not yet include the step length αk , which will be discussed after
Algorithm 12.25, below.

Algorithm 12.24 (Basic active set (SQP) algorithm) Suppose a pair of initial values
(z0, λ0) and an initial working set W0 ⊆ A (z0) to be given and set k := 0.
While convergence test is not satisfied do

1. Compute F(zk), ∇F(zk), ∇2
zz L(zk, λk), C(zk) and ∇C(zk)

2. Solve (IQP) using (EQP) and Wk and obtain dk , λ
(EQP)
k and Wk+1

3. Set zk+1 := zk + dk , λk+1 := λ̃
(EQP)
k according to (12.31)

4. Set k := k + 1

As convergence test, here one typically checks whether the necessary conditions
from Theorem 12.16 are satisfied up to some user-defined tolerance tolOPT.

Furthermore, it should be noted that usually in (SQP) methods one avoids com-
puting the Hessian ∇2

zz L(z�, λ̃
Wk
k) of the cost function and utilizes computationally

cheaper update techniques for obtaining suitable approximations, instead. We will
not discuss this topic here and refer to, e.g., Nocedal and Wright [32] for details.

Now we discuss the details of Step 2 of this algorithm. The solution of (IQP) is
obtained by iteratively solving problems of type (EQP) and updating the working
set Wk . This defines another iteration inside the iteration of Algorithm 12.24 whose
iteration index we denote by q. In this inner iteration, we iteratively determine vectors
dq

k and working sets W q
k , q = 0, 1, We start this iteration with the working set

W 0
k = Wk and initial value d0

k which we assume to be feasible for all constraints in
(IQP). This iteration will terminate after a finite number of steps q� with the optimal
value dk = dq�

k of (IQP). The corresponding working set W q�

k will be the active
set of problem (IQP) and will be used as Wk+1 in Algorithm 12.24. The Lagrange
multipliers λ

(EQP)
k needed in Algorithm 12.24 are obtained from the last solution of

(EQP) in this iteration. The resulting algorithm will be given in Algorithm 12.25,

396 12 Numerical Optimal Control of Nonlinear Systems

below. Before we formulate this algorithm, we will now discuss the details of its
different steps.

For its use within this iteration, we rewrite the problem (EQP) in order to take the
previous iterate dq

k into account.

minimize F(zk) + ∇F(zk)
�(pq + dq

k)

+1

2
(pq + dq

k)�∇2
zz L(zk, λ̃

Wk
k)(pq + dq

k)

with respect to pq ∈ R
nz

subject to Ci (zk) + ∇Ci (zk)
�(pq + dq

k) = 0 for all i ∈ W q
k

(EQPq)

Here, for each q we assume that dq
k is feasible for the constraints in (IQP) and for

(EQP) with working set Wk = W q
k . This implies that the constraints in (EQPq) can

equivalently be written as ∇Ci (zk)
� pq = 0. In order to simplify the presentation we

assume that the problem (EQPq) is strictly convex, i.e., that (pq)�∇2
zz L(zk, λ̃

Wk
k)pq >

0 holds for all pq �= 0 with ∇Ci (zk)
� pq = 0.

We denote the optimal solution of (EQPq) by pq,�. From this optimal solution
we want to construct dq+1

k and a new working set W q+1
k , such that dq+1

k is again
feasible for (IQP) and feasible for (EQP) with Wk = W q+1

k . To this end, we need to
develop rules for adding and removing constraints from the working set W q

k such
that eventually (EQPq) delivers an optimal solution of (IQP).

We first consider the problem of adding constraints which is closely related to
the definition of dq+1

k . Using the previous iterate dq
k and the optimal solution pq,� of

(EQPq) we define

dq+1
k := dq

k + αq pq,� (12.35)

and compute the maximal αq ∈ [0, 1] such that dq+1
k is feasible for all constraints

in (IQP). Note that if dq
k satisfies the constraints contained in the working set

W q
k , then these constraints are also satisfied for dq+1

k for all αq ∈ [0, 1]. This is
because Ci (zk) + ∇Ci (zk)

�(pq,� + dq
k) = 0 and Ci (zk) + ∇Ci (zk)

�dq
k = 0 imply

∇Ci (zk)
� pq,� = 0 and thus

Ci (zk) + ∇Ci (zk)
�(dq

k + αq pq,�) = Ci (zk) + ∇Ci (zk)
�dq

k + αq∇Ci (zk)
� pq,� = 0.

Hence, for the computation of αq we only need to consider the constraints Hi not
contained in W q

k . If ∇Hi (zk)pq,� ≥ 0 holds for i /∈ W q
k , then we have

Hi (zk) + ∇Hi (zk)
� · (dq

k + αq pq,�) ≥ Hi (zk) + ∇Hi (zk)
�dq

k ≥ 0

since we assumed dq
k to be feasible for (IQP). Hence, αq ≥ 0 can be chosen freely.

In the case ∇Hi (zk)
� pq,� < 0, we obtain Hi (zk) + ∇Hi (zk)

� · (dq
k + αq pq,�) ≥ 0

only if

12.3 Constrained Optimization 397

αq ≤ −Hi (zk) − ∇Hi (zk)
�dq

k

∇Hi (zk)� pq,�

holds true. In order to maximize αq we define

αq := min

{
1, min

i /∈W q
k ,∇Hi (zk)�dq

k <0

−Hi (zk) − ∇Hi (zk)
�dq

k

∇Hi (zk)� pq,�

}
(12.36)

Note that αq = 0 is possible since there might exist an active constraint which is
not an element of the working set W q

k and exhibits ∇Hi (zk)
� pq,� < 0. We call

the constraints Hi (zk) for which the minimum is achieved blocking constraints and
denote the set of blocking constraints by

C q :=
{

j /∈ W q
k

∣∣∣∣ α
q = −Hj (zk) − ∇Hj (zk)

�dq
k

∇Hj (zk)� pq,�

}
. (12.37)

If αq can be chosen to 1, then none of the constraints not contained in W q
k is active

for dq+1
k and we can setW q+1

k := W q
k . If αq < 1, however, then we know that at least

one constraint is active for dq+1
k which is not contained in W q

k . Hence, we construct
W q+1

k by adding one of the blocking constraints to W q
k .

We can iterate this procedure until the resulting algorithm reaches a point dq
k which

minimizes the quadratic objective function in (EQPq) over its current working set
W q

k . This situation can be easily identified since in the optimum we obtain pq,� = 0.
Once such a point dq

k is reached, we can decide which of the equality constraints in
W q

k ∩ I should be removed from W q
k because we can only obtain a better solution

by imposing the inequality constraints Hi (zk) + ∇Hi (zk)(pq + dq
k) ≥ 0 instead of

the equality constraint Hi (zk) + ∇Hi (zk)(pq + dq
k) = 0. Looking at the necessary

conditions from Theorem 12.16, the constraints corresponding to negative compo-
nents of the Lagrange multiplier λ

(EQPq)
k are natural candidates for this. However,

since a constraint is not checked anymore in the algorithm once the index i is re-
moved from W q+1

k , we would also like to ensure that that it remains satisfied in the
next step, i.e., that it is not immediately reinserted. Fortunately, as we will show
next, the negativity of the respective component of the Lagrange multiplier λ

(EQPq)
k

guarantees that this indeed happens.
To this end, consider the iterate dq

k yielding pq,� = 0 in (EQPq) for working
set W q

k and the corresponding multiplier λ
(EQPq)
k . With (λ

(EQPq)
k) ji , we denote the

component of the multiplier corresponding to the constraint index i ∈ W q
k and we

assume (λ
(EQPq)
k) ji < 0 for some i ∈ W q

k ∩ I .
Consider then the solution pq+1,� of (EQPq+1) for working set W q+1

k = W q
k \ {i}

with dq+1
k = dq

k and corresponding multiplier λ
(EQPq+1)
k . From Lemma 12.20 we then

obtain
∇2

zz L(zk, λ̃
Wk
k)dq

k + ∇F(zk) = ∇CWk (zk)
�λ

(EQPq)
k

398 12 Numerical Optimal Control of Nonlinear Systems

and
∇2

zz L(zk, λ̃
Wk
k)(dq

k + pq+1,�) + ∇F(zk) = ∇CW q+1
k (zk)

�λ
(EQPq+1)
k

Subtracting the first from the second equation and using Ci = Hi for i ∈ I we
obtain

∇2
zz L(zk, λ̃

Wk
k)pq+1,� = ∇CW q+1

k (zk)
�(λ

(EQPq+1)
k − [(λ(EQPq)

k) j �= ji])
− ∇Hi (zk)(λ

(EQPq)
k) ji .

Multiplying from the left with (pq+1,�)� then yields

(pq+1,�)�∇2
zz L(zk , λ̃

Wk
k)pq+1,� = (pq+1,�)�∇CW

q+1
k (zk)

�(λ
(EQPq+1)
k − [(λ(EQPq)

k) j �= ji])
− (pq+1,�)�∇ Hi (zk)(λ

(EQPq)
k) ji .

Since the constraints in (EQPq+1) together with the feasibility of dq
k imply the identity

(pq+1,�)�∇CW q+1
k (zk) = 0 we thus get

(pq+1,�)�∇Hi (zk)(λ
(EQPq)
k) ji = −(pq+1,�)�∇2

zz L(zk, λ̃
Wk
k)pq+1,�.

Hence, the positive definiteness assumption on ∇2
zz L(zk, λ̃

Wk
k) together with the in-

equality (λ
(EQPq)
k) ji < 0 yields

(pq+1,�)�∇Hi (zk) > 0.

Consequently, Hi grows along the search direction pq+1,� and may hence be omitted
in W q+1

k without violating the corresponding inequality constraint in the next step.
In practice, not just any index i is chosen but the one corresponding to the most

negative (λ
(EQPq)
k) ji which is motivated by sensitivity aspects.

Combining all we have derived so far, we end up with the following algorithm for
solving (IQP) to be inserted in Step 2 of Algorithm 12.24.

Algorithm 12.25 (Active set (IQP) algorithm) Suppose a pair of values (zk, λk) as
well as the derivatives ∇F(zk), ∇2

zz L(zk, λk), ∇C(zk), the function values F(zk),
C(zk) and a working set Wk ⊆ A (zk) to be given.

I. Set q := 0, W 0
k := Wk and find a starting point d0

k feasible for (IQP) and (EQP)
II. While not terminated

a. Solve (EQPq) to obtain pq,� and λ
(EQPq)
k

b. If pq,� = 0
• If (λ

(EQPq)
k) ji ≥ 0 for all i ∈ W q

k ∩ I :
terminate with dk = dq

k , λ
(EQP)
k = λ

(EQPq)
k and Wk+1 = W q

k

Else: Set i := argmin
i∈W q

k ∩I
(λ

(EQPq)
k) ji , dq+1

k = dq
k , W q+1

k := W q
k \ { j}

Else

12.3 Constrained Optimization 399

• Compute αq from (12.36) and C q from (12.37)
• Set dq+1

k := dq
k + αq pq,�

• If C q �= ∅: choose i ∈ C q and set W q+1
k := W q

k ∪ {i}
Else: Set W q+1

k := W q
k

c. Set k := k + 1

One can show that, apart from certain exceptional cases, this algorithm terminates
after a finite number of iterations if (IQP) is strictly convex, for details see [32,
Sect. 16.4]. Since the solution satisfies the first-order necessary conditions for (IQP),
under strict convexity it follows that upon termination the vector dk is the optimal
solution of (IQP). From our construction of the dq

k it additionally follows that this
dk is the optimal solution of (EQP) with working set Wk+1. Methods for finding the
feasible starting point p0

k in Step I are discussed in [32, Sect. 16.4], too. Since dk−1

is feasible for zk−1 and Wk and since zk is typically quite close to zk−1, the vector
d0

k = dk−1 is usually a good initial guess.
Moreover, this algorithm allows us to maintain the linear independence property

of constraints which are contained in W q
k . In particular, if the gradients of the active

constraints of the initial value are linearly dependent, then we can consider a subset
of linear independent constraints. During the iteration we have to add the blocking
constraints. Since the normals of these constraints cannot be represented by a linear
combination of the normals of the constraints contained in the working setW j

k , linear
independence is preserved if one constraint is added. Last, the deletion of a constraint
from the working set W j

k clearly does not lead to linear dependency of the remaining
constraint normals.

As already mentioned before, in general it is not a good choice to use zk+1 :=
zk + dk in Algorithm 12.24. One reason for this is that dk is obtained from minimizing
a quadratic approximation of F near zk , hence F(zk + dk) may differ considerably
from the value of this approximation if dk is large. In unconstrained optimization, one
would hence determine the new zk+1 by solving the one-dimensional minimization
problem (12.13) in the line-search approach or one would restrict dk by using the
trust-region approach (12.14). In both cases, the decrease of the original nonlinear
cost function F is used in order to measure the progress of the algorithm.

In constrained optimization, one also needs to take the constraints into account
when measuring this progress. In order to achieve this, one does not use F for
determining zk+1 but rather a function which defines a trade off between decrease of
F and the violation of the constraints, the so-called merit function. In this function
not only the constraints in the current working set Wk+1 but all constraints in (NLP)
are taken into account.

Merit functions are used in both the line-search and trust-region approach, how-
ever, the way this function is used is different in both approaches. For trust-region
methods the merit function determines if the step is accepted or rejected and if the
trust-region radius needs to be adapted. In contrast to that, in the line-search setting
the merit function is used to control the step length itself.

400 12 Numerical Optimal Control of Nonlinear Systems

In the following, we consider the merit function

L̃(z, μ) := F(z) + μ‖A(z)‖1 (12.38)

with a positive parameter μ > 0 and A(z) defined by

Ai (z) =
{

Gi (z), i ∈ E
minsi ≥0 Hi (z) − si , i ∈ I .

The variables si , i ∈ I are called slack variables and convert the inequality con-
straints Hi (z) ≥ 0 into equality constraints minsi ≥0 Hi (z) − si = 0. Indeed, using A
the conditions Gi (z) = 0, i ∈ E and Hi (z) ≥ 0, i ∈ I are now compactly expressed
as A(z) = 0.

Note that this choice of a merit function is not necessarily the best and different
function have been considered in the literature as well, see, e.g., the papers of Han
[28], Powell [34] and Schittkowski [37, 38]. For simplicity of exposition, however, we
exclusively consider (12.38). The merit function L̃ from (12.38) has the important
property that it decays along the search direction dk from Algorithm 12.24 if the
working set Wk+1 coincides with the active set of (NLP) and the parameter μ is
sufficiently large, see [32, Lemma 18.2]. This means that as long as there are no
active constraints missing in the current working set, decrease of the merit function
is guaranteed and the algorithm will show progress. Furthermore, one can show that
even though L̃ will in general not be differentiable due to the nonsmoothness of
‖A(z)‖1, the directional derivative D(L̃(z, μ), dk) along the search direction dk in
Algorithm 12.24 does exist.

For the line-search approach, this motivates the following strategy to determine
the new iterate zk+1 = zk + αkdk in Step 3 of Algorithm 12.24: Instead of solving a
one-dimensional optimization problem, we use the information from the directional
derivative in order to obtain a computationally less expensive criterion for computing
αk using a fixed parameter η ∈ (0, 1/2)

3a. Determine μ > 0 such that D(L̃(z, μ), dk) < 0
3b. Find αk satisfying L̃ (zk + αkdk, μ) ≤ L̃ (zk, μ) + ηαk D

(
L̃ (zk, μ) ; dk

)

3c. Set zk+1 := zk + αkdk and update λk+1

Here, the update of λk+1 can be done by using the step width αk in order to define
λk+1 = λk + αk(λ̃

(EQP)
k − λk). Alternatively, cf. [32, Sect. 18.3], one can determine

λk+1 by solving the least squares problem

min
λ

‖∇F(zk+1) − CWk+1(zk+1)λ‖2
2. (12.39)

The computation of μ in Step 3a. can be done in various ways, e.g., based on a
quadratic approximation of L̃ or by using the multiplier λ

(EQP)
k .

In the trust-region approach, one solves (IQP) under the additional constraint
‖dk‖2 ≤ Δk . In the solution method for (IQP) discussed after Algorithm 12.24 this

12.3 Constrained Optimization 401

amounts to including the constraint ‖pq + dq
k ‖2 ≤ Δk in (EQPq). Unfortunately,

due to the additional constraint the problem may arise that the constraints Ci (zk) +
∇Ci (zk)

�(pq + dq
k) = 0 cannot be satisfied anymore.

There exists a wide variety of trust-region approaches, for sake of simplicity,
however, we now only consider the so-called relaxation approach. In this approach,
the original constraints in problem (EQPq) are modified by a relaxation (or residual)
vector rk , that is,

Ci (zk) + ∇Ci (zk)
�(pq + dq

k) = rk,i , (12.40)

where rk can be computed from

rk := C(zk) + ∇C(zk)
�ck (12.41)

for ck being the solution of

minimize ‖C(zk) + ∇C(zk)ck‖2
2 (12.42)

with respect to ck ∈ R
d subject to ‖ck‖2 ≤ 0.8Δk

The safeguard factor 0.8 guarantees existence of a consistent solution of the relaxed
problem. Since here we work with Euclidean norms, we modify the merit function
to

L̃(zk, μ) := F(zk) + μ‖A(zk)‖2

In order to determine whether the trust-region radius Δk should be reduced or not,
one compares the decrease of the merit function L̃ with the decrease of a quadratic
approximation Qμ of L̃ . This defines the ratio

ρk := L̃(zk, μ) − L̃(zk + dk, μ)

Qμ(0) − Qμ(dk)
(12.43)

which is large if the quadratic model Qμ is close to the nonlinear function L̃ and
becomes the smaller the more these functions differ. Since a large difference indi-
cates that the values of the nonlinear problem and its quadratic approximation differ
significantly at zk + dk , this will be used as a criterion for reducing the trust-region
radius Δk .

Hence, implementing the trust-region idea leads to the following modification of
the Steps 2 and 3 in Algorithm 12.24, in which we use fixed parameters η ∈ (0, 1/2)

and γ ∈ (0, 1) and an initial estimate Δ0 > 0 for the trust-region radius.

2a. Solve problem (12.42) for ck and compute rk from (12.41)
2b. Solve (IQP) using the modified constraints (12.40) and ‖dk‖ ≤ Δk in (EQPq) to

obtain dk , λ
(EQP)
k and Wk+1

402 12 Numerical Optimal Control of Nonlinear Systems

3a. Determine μ > 0 such that D(L̃(zk, μ), dk) < 0
3b. Compute ρk according to (12.43)
3c. If ρk > η: Set zk+1 := zk + dk , λk+1 = λ̃

(EQP)
k and choose Δk+1 ≥ Δk

Else: Set zk+1 := zk and choose Δk+1 ≤ γ ‖dk‖
Both for the line-search and the trust-region case, the algorithms just given mainly

outline the main idea of these approaches and we refer to the optimization literature
for all implementational details.

Interior-Point Methods

In contrast to active set methods, interior-point methods generate a sequence zk

which always lies in the interior of the feasible set Ω . For generating this sequence,
in each iterate the entire set of inequality constraints H is used. To this end, these
inequality constraints are transformed into equality constraints using slack variables,
similar to the definition of A in the merit function (12.38). This way the number of
constraints to be considered in each iteration may become considerably larger and
thus the computational effort in each iteration grows. On the other hand, one avoids
the potentially time-consuming identification of the working set. Which of the two
advantages is predominant crucially depends on the problem to be solved and can
only be assessed on a case by case basis.

Once the constraints are reformulated, the fundamental idea of interior point
algorithms is to modify the problem under consideration such that all inequality
constraints are always active. In the literature, there are two main ways to achieve this
goal, the so-called continuation method and the barrier method. These approaches,
however, lead to very similar KKT equation systems.

In the continuation (or homotopy) method, the problem

minimize F(z)
with respect to z ∈ R

nz , s ∈ R
ns

subject to Gi (z) = 0 for all i ∈ E ,
Hi (z) − si = 0 for all i ∈ I and si ≥ 0

(IPM)

is considered where s ∈ R
ns are slack variables filling the gap to modify inactive

constraints to be active. The Lagrangian for the problem (IPM) is given by

L(z, s, v, w) = F(z) − v�G(z) − w�(H(z) − s). (12.44)

Using that at the minimum the equality H(z) = s must hold, for this problem the
KKT conditions from Theorem 12.16 can be written as

∇F(z) − ∇G(z)�v − ∇H(z)�w = 0 (12.45)

Sw − μe = 0 (12.46)

G(z) = 0 (12.47)

H(z) − s = 0 (12.48)

12.3 Constrained Optimization 403

with s ≥ 0, w ≥ 0 and μ = 0, using the vector e := (1, 1, . . . , 1)� and the matrices
S := diag(s) and W := diag(w) to simplify the notation.

Here, the additional parameter μ is introduced as a perturbation parameter in
order to enforce the solution to stay away from the boundary of Ω by setting μ > 0.
More precisely, we consider a sequence of (perturbed) KKT conditions with positive
perturbation parameters μ j where μ j → 0 as j → ∞. The strict positivity of μ j in
each iterate forces the slack variable s and the multiplier w to be positive and thus
the iterates to stay in the interior of Ω . Similar to the previously mentioned (SQP)
methods, the hope is that the limit of the generated sequence satisfies the KKT
conditions for problem (IPM) and, if a merit function decreases along the iterates,
that the limit is actually a minimizer.

The second, so-called barrier approach consists of a so-called self concordant
barrier function used to encode the feasible set {s ≥ 0} via

minimize F(z) − μ

ns∑

i=1

log si

with respect to z ∈ R
nz , s ∈ R

ns

subject to Gi (z) = 0 for all i ∈ E
and Hi (z) − s = 0 for all i ∈ I

again with parameter μ > 0. In contrast to the homotopy approach where we ex-
plicitly stated the constraint s ≥ 0, here it is not necessary to add this constraint to
the barrier approach problem since minimization of the barrier term −μ

∑ns
i=1 log si

prevents components of s from becoming too close to zero. As for the continuation
method, the idea of the barrier approach is to generate approximate solutions for a
sequence of positive parameters μ which converges to zero.

Applying Theorem 12.16 to the barrier problem, we obtain the conditions

∇F(z) − ∇G(z)�v − ∇H(z)�w = 0 (12.49)

−μS−1e + w = 0 (12.50)

G(z) = 0 (12.51)

H(z) − s = 0 (12.52)

which are identical to (12.45)–(12.48) except for (12.50) which is moreover nonlinear
in s. However, multiplying (12.50) by S we can easily convert this condition into
(12.46).

Similar to the (SQP) problem, the ideas of line-search and the trust-region ap-
proach can be applied to the (IPM) problem as well. Before discussing these meth-
ods, we first look at the application of Newton’s method for solving (IPM). Applying
Newton’s method to (12.45)–(12.48) we obtain the system of equations

404 12 Numerical Optimal Control of Nonlinear Systems

⎛

⎜⎜⎝

∇2
zz L(z, s, v, w) 0 −∇G(z)� −∇H(z)�

0 W 0 S
∇G(z) 0 0 0
∇H(z) −Id 0 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

dz

ds

dv

dw

⎞

⎟⎟⎠ (12.53)

= −

⎛

⎜⎜⎝

∇F(z) − ∇G(z)�v − ∇H(z)�w
Sw − μe

G(z)
H(z) − s

⎞

⎟⎟⎠

which is also called primal-dual system (the so-called primal system arises from
(12.49)–(12.52) in a similar manner). After computing the step (dz, ds, dv, dw) the
new state iterate can be obtained via

zk+1 = zk + αmax
s dz sk+1 = sk + αmax

s ds (12.54)

vk+1 = vk + αmax
w dv wk+1 = wk + αmax

w dw

where

αmax
s = max {α ∈ (0, 1] | s + αds ≥ (1 − τ)s} (12.55)

αmax
w = max {α ∈ (0, 1] | w + αdw ≥ (1 − τ)w}

with τ ∈ (0, 1), typically 0.995. The latter condition is called fraction to boundary
rule since it prevents the state and slack variables z and s to reach their lower bounds
too fast. Note that the matrix in (12.53) is regular throughout the iteration for zk in
a neighborhood of an optimal solution which satisfies the second-order sufficient
conditions from Theorem 12.19 and the strict complementarity condition from Defi-
nition 12.17. In particular, if the strict complementarity condition holds at a solution
z�, then for every index i we see that either zi or si remains bounded away from
zero as the iterates approach z�, which guarantees that the second block row of the
matrix in (12.53) has full row rank. Hence, the interior-point approach itself is not
ill conditioned and will not show singularities.

In a practical implementation, the matrix in (12.53) is not used. This is due to the
fact that transforming the equation system (12.53) into

⎛

⎜⎜⎝

∇2
zz L(z, s, v, w) 0 −∇G(z)� −∇H(z)�

0 � 0 Id
−∇G(z) 0 0 0
−∇H(z) Id 0 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

dz

ds

dv

dw

⎞

⎟⎟⎠ (12.56)

= −

⎛

⎜⎜⎝

∇F(z) − ∇G(z)�v − ∇H(z)�w
w − μS−1e

−G(z)
−H(z) + s

⎞

⎟⎟⎠

12.3 Constrained Optimization 405

for � = S−1W (or � = μS−2 for the primal case), we obtain a symmetric form
which can be dealt with much more effectively.

Moreover, the nonconvex case and the fact that the matrix in (12.56) may be
singular—if the conditions discussed after (12.55) are not satisfied—have to be
treated in order to approximate minimizers instead of mere KKT points and to render
the approach applicable, i.e., the matrix to be invertible.

In order to ensure the approximation of a minimizer, as for the (SQP) algorithm (cf.
Remark 12.23) we want to ensure that the value of the merit function is decreasing
during the iteration. To this end, one can show that (dz, ds, dv, dw) is a descent
direction of (12.56) if

(∇2
zz L(z, s, v, w) 0

0 �

)
is positive definite on the null space of

(−∇G(z) 0
−∇H(z) Id

)
.

Here, � is positive definite by construction, but ∇2
zz L(z, s, v, w) may be indefinite. To

compensate for this deficiency, one can replace the Hessian by ∇2
zz L(z, s, v, w) + δId

where δ > 0 is sufficiently large to ensure positive definiteness. The size of this
modification is a priori unknown but can be obtained by successively enlarging δ.
Additionally, a possible rank deficiency of ∇G(z) must be considered. In the primal-
dual matrix

⎛

⎜⎜⎝

∇2
zz L(z, s, v, w) + δId 0 −∇G(z)� −∇H(z)�

0 � 0 Id
−∇G(z) 0 γ Id 0
−∇H(z) Id 0 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

dz

ds

dv

dw

⎞

⎟⎟⎠ (12.57)

= −

⎛

⎜⎜⎝

∇F(z) − ∇G(z)�v − ∇H(z)�w
w − μS−1e

−G(z)
−H(z) + s

⎞

⎟⎟⎠

this is done by including a regularization parameter γ > 0.
Since the iteration (12.54) does not terminate in finite time, we impose the fol-

lowing error function

E(z, s, v, w;μ) = max{‖∇F(z) − ∇G(z)�v − ∇H(z)�w‖, (12.58)

‖Sw − μe‖, ‖G(z)‖, ‖H(z) − s‖} (12.59)

for some vector norm ‖ · ‖ which will be used for defining a termination criterion.
Then, we obtain the following algorithm.

Algorithm 12.26 (Basic interior-point algorithm) Suppose a pair of initial values
(z0, s0) to be given and set k := 0.
Compute multipliers v0 and w0, define parameters μ0 > 0, σ, τ ∈ (0, 1)

406 12 Numerical Optimal Control of Nonlinear Systems

While convergence test not satisfied

1. While E(zk, sk, vk, wk;μk) ≥ μk

a. Compute search direction d = (dz, ds, dv, dw) by solving (12.57)
b. Determine αmax

s , αmax
w via (12.55)

c. Obtain new iterate (zk+1, sk+1, vk+1, wk+1) from (12.54)
d. Set μk+1 := μk and k := k + 1

2. Choose μk ∈ (0, σμk)

Again, for the convergence test it is checked whether the KKT conditions from
Theorem 12.16 are satisfied up to some user defined tolerance tolOPT.

For this algorithm, we can show the following result:

Theorem 12.27 (Convergence of interior-point algorithm) Suppose F, G and H to
be continuously differentiable functions and Algorithm 12.26 to generate a sequence
(zk)k=0,...,∞ for a parameter sequence μk → 0 as k → ∞. Then all points z� with
liml→∞ zk j = z� for some subsequence kl are feasible. If additionally the (LICQ)
condition holds at z�, then the KKT conditions from Theorem 12.16 hold at z�.

Proof Let ẑ be the limit point of the sequence zkl from Algorithm 12.26. Since μk →
0 holds, the error function (12.58) converges to zero, and we have that Gi (zk) → 0
and Hi (zk) − sk → 0. Since G and H are continuous, it follows that G(ẑ) = 0,
H(ẑ) ≥ 0 and ŝ = H(ẑ) ≥ 0 showing the first assertion.

Since the error function (12.58) converges to zero and ŝi = Hi (ẑ) > 0 for all
i /∈ A (ẑ), we obtain [wkl]i → 0 for all i /∈ A (ẑ). Again using that the error function
converges to 0 this implies

∇F(zkl) −
∑

i∈E
[vkl]i∇Gi (zkl) −

∑

i∈A (ẑ)

[wkl]i∇Hi (zkl) → 0 (12.60)

Since by (LICQ) the vectors ∇Gi (ẑ), i ∈ E and ∇Hi (ẑ), i ∈ A (ẑ) are linearly in-
dependent and ∇F and ∇H are continuous, the vectors ∇Gi (zkl) and ∇Hi (zkl) are
linearly independent for all sufficiently large kl , too. It follows that [vkl]i and [wkl]i

in (12.60) are unique and depend continuously on zkl , hence they converge to some
(v̂, ŵ) ≥ 0. Using continuity of the expressions in the error function, it follows that
the KKT conditions are satisfied for ẑ with λ̂ = (v̂�, ŵ�)� as Lagrange multiplier.
This proves the second assertion. �

Similar to the Line-Search (SQP) Algorithm, a merit function is imposed in the
(IPM) variant of a line-search which may be of the form

L̃(z, s, ν) = F(z) − μ

ns∑

i=1

log si + ν‖G(z)‖ + ν‖H(z) − s‖ (12.61)

where the penalty parameter ν needs to be updated throughout the iteration. Note that
we do not have to reprove results concerning descent of the cost function along the

12.3 Constrained Optimization 407

computed direction since results shown for the (SQP) case carry over to the (IPM)
case. The line-search iteration is given by

zk+1 = zk + αsdz sk+1 = sk + αsds (12.62)

vk+1 = vk + αwdv wk+1 = wk + αwdw

where the step lengths are chosen to satisfy

αs ∈ (0, αmax
s], αw ∈ (0, αmax

w] (12.63)

and

L̃(zk+1, sk+1, ν) ≤ L̃(zk, sk, ν) + ηαs DL̃(zk, sk, ν; (dz, ds)) (12.64)

for some η ∈ (0, 1). To incorporate the changes due to the introduction of the merit
function (12.61), we modify Algorithm 12.26 by defining the fixed parameter η ∈
(0, 1) and changing Steps 1b to 1d as follows.

1b. Compute αmax
s , αmax

w via (12.55)
1c. Determine αs , αw such that (12.63) and (12.64) hold
1d. Obtain new iterate (zk+1, sk+1, vk+1, wk+1) from (12.62)

Similar to the (SQP) method we can also formulate a trust-region version of the
(IPM) algorithm in which a trust-region ball constraint ‖(dz, d̃s)‖2 ≤ Δk is added
with d̃s = S−1

k ds . This constraint ensures that the quadratic approximation is not
treated as a global model, but only in a small neighborhood of zk . The model problem
itself is given by

minimize ∇F(zk)
�dz + 1

2
d�

z ∇2
zz L(zk , s, v, w)dz − μe�d̃s + 1

2
d̃�

s Sk�k Sk d̃s

with respect to dz ∈ R
nz , ds ∈ R

ns

subject to ∇G(zk)dz + G(zk) = rGk ,
∇ H(zk)dz − Sk d̃s + (H(zk) − sk) = rHk ,
‖(dz, d̃s)‖2 ≤ Δk and d̃s ≥ τe.

where the descent direction d̃s is bounded away from zero by a parameter τ ∈ (0, 1).
To compute the residuals rGk , rHk a subproblem similar to (12.42) is derived, but now
the variable ck = (cz, cs) is considered:

Minimize ‖∇G(zk)cz + G(zk)‖2
2 + ‖∇H(zk)cz − Skcs + (H(zk) − s)‖2

2 (12.65)

with respect to ck ∈ R
nz+ns subject to ‖ck‖2 ≤ 0.8Δ and cs ≥ −τ

2
e

Then, the radii rG and rH are given by

rGk = ∇G(zk)cz + G(zk), rHk = ∇H(zk)cz − Skcs + (H(zk) − sk). (12.66)

408 12 Numerical Optimal Control of Nonlinear Systems

Again similar to the (SQP) case, cf. (12.43), a step is accepted if for the direction
(dz, ds) the ratio ρ of the reduction of the merit function L̃ with respect to the
predicted reduction using a quadratic model Qν of the merit function L̃

ρ = L̃(z, s, ν) − L̃(z + dz, s + ds, ν)

Qν(0) − Qν(dz, ds)
(12.67)

is at least ρ ≥ η where ν needs to be chosen sufficiently large.
To incorporate the trust-region idea into Algorithm 12.26, we introduce the fixed

parameter η ∈ (0, 1) and modify Steps (1a) to (1c):

1a. Evaluate normal step ck from (12.65) and radii rG , rH via (12.66)
1b. Compute solution dz , d̃s for quadratic model of (IPM) and retrieve ds = Sd̃s

1c. Obtain ρ from (12.67)
If ρ ≥ η: Set zk+1 = zk + dz , sk+1 = sk + ds , update multipliers vk , wk and
choose Δk+1 ≥ Δk

Else: Set zk+1 = zk , sk+1 = sk , vk+1 = vk , wk+1 = wk and choose Δk+1 < Δk

Here, the update of the Lagrange multipliers can be done similar to the least
squares approach outlined in (12.39).

Note that there also exist other types of solvers for the general (NLP) problem
like penalty and augmented Lagrangian methods which we do not discuss here.
Additionally, there exists a wide variety of solvers for quadratic problems which we
did not mention here but which are of particular interest: on the one hand, quadratic
problem solvers are required within (SQP) and (IPM) algorithms. On the other hand,
many practical problems directly lead to a quadratic cost function.

Additionally, many extensions, modifications, and improvements for the presented
algorithms have been developed whose explanation is beyond the scope of this sec-
tion; some of these are given in a short overview in Sect. 12.7.

12.4 Implementation Issues in NMPC

So far, we discussed the numerical components which are typically part of an NMPC
algorithm and whose interplay is sketched in Fig. 12.10. Our aim now is to combine
these components, i.e., the differential equation solver from Chap. 11, the discretiza-
tion technique from Sect. 12.1 and the optimizer from Sect. 12.3, and to analyze the
interactions and effects between them.

Since the interaction heavily depends on the used implementation, one cannot
give a complete analysis. Therefore, the aim of this section is to give some guidelines
regarding the interplay of the components with respect to certain key parameters such
as the tolerance values for the optimization and integration, the horizon length or the
number of multiple shooting nodes.

12.4 Implementation Issues in NMPC 409

Control system (2.1)

Problem (NLP)

Problem (OCP n
N,e)

NMPC

Discretization

generates sequence

Chap. 11

Sect. 12.2–12.3

Sect. 12.1

Chap. 3–7

Fig. 12.10 Architecture of NMPC solver

Structure of the Derivatives

We start by analyzing the connection between the discretization and the optimiza-
tion method. As we have seen in Sect. 12.3, both the (SQP) and the (IPM) algorithms
require derivatives of the cost function and the Jacobian of the constraints in order
to compute a search direction dk . Since for many examples algebraic expressions for
these function are not at hand, these derivatives need to be computed numerically.
To this end, in the continuous time case one may numerically solve the variational
equation (cf. Hairer and Wanner [27, Sect. I.14]). Alternatively, one may directly
approximate all derivatives by difference quotients with respect to every component
of the optimization variable z. Here we follow this second approach which approxi-
mates the directional derivative of a function g : R

nz → R
p at a point z in direction

v via

∇g(z)�v = lim
t→0

g(z + t · v) − g(z)

t
≈ g(z + t · v) − g(z)

t
(12.68)

for small t > 0. Here, the step length t should be chosen depending on the used
computer, i.e., its floating point accuracy. Using the i th unit vector v = ei , we thus
obtain an approximation of the i th row of the Jacobi matrix ∇g(z).

Note that if g involves the solution of a continuous time optimal control problem
using the methods from Chap. 11, then the computation of the difference quotient
(12.68) may depend sensitively on the time grids used to compute g(z + t · v) and
g(z). To circumvent this problem, a synchronized evaluation of f for the nominal
vector z and for the disturbed vectors z + t · v using the same grid for both compu-
tations can be used.

A similar problem arises from a possible integral type cost function (3.4) with
running cost L , which has to be evaluated along the trajectory. To this end, we use
the technique described in Sect. 11.4, i.e., we include the integral as an additional
component in the ordinary differential equation and use the same discretization for

410 12 Numerical Optimal Control of Nonlinear Systems

Optimization variable z

Control vectors u(n) Shooting nodes s

C
on

st
ra

in
ts

C
on

st
ra

in
ts

fr
om

(1
2.

3)
,(

12
.4

)
S

ho
ot

in
g

co
ns

tr.

rs ×N ·m rs × rs

N · r×N ·m N · r× rs

Fig. 12.11 Structure of the Jacobian of the constraints ∇zC(z)�

the evaluation of this integral and the dynamics of the problem, see also the paper of
Gyurkovics and Elaiw [26] for a detailed analysis in an NMPC context.

Most if not all common optimization algorithms use an approximation B(z) of
the Hessian ∇zz L of the cost function which can be obtained, e.g., by so-called DFP
(Davidon-Fletcher-Powell) [11, 21] or BFGS (Broydon-Fletcher-Goldfarb-Shanno)
updates [7, 19, 22, 39]. For this reason, the computationally most expensive part
within each step of the optimization algorithm is the evaluation of the Jacobian
∇C(z) of the constraints. We now consider this problem in some more depth for
the multiple shooting method. In the following, r = rg + rh denotes the number
of constraints and—as before—rs the number of shooting nodes. Using that the
optimization variable z ∈ R

nz is of the form z = (u(0)�, . . . , u(N − 1)�, s�)�, this
Jacobi matrix has the structure sketched in Fig. 12.11.

This figure indicates that the number of function evaluations is growing quadrat-
ically in the horizon length N , which is therefore the dominating parameter for the
computing time of the optimization algorithm. For this reason, setting up an NMPC
scheme which is stable for small optimization horizon N—for instance by choosing a
good cost function in the sense of Sect. 6.6, by adding terminal weights as described
in Sect. 10.2 or by using the adaptation techniques of Sect. 10.8—will in general
significantly reduce the computational effort.

12.4 Implementation Issues in NMPC 411

Fig. 12.12 Dependence of
xu(k, x0) on u(n)

Predicted system states xu(k,x0) k

C
on

tr
ol

 v
al

ue
s
u(
n)

n

unaffected by control

affected by control

Regardless of the length of the horizon, a recomputation of the Jacobian ∇C(z) has
to be performed for a large number of the iteration steps within any of the presented
minimization routines. Hence, an efficient implementation to evaluate this matrix is
required. Additionally, efficient (SQP) and (IPM) implementations usually update
only a few entries of the Jacobian whereas for the other entries the linearization is
considered to be sufficiently accurate. This implies that an efficient implementation of
the evaluation of the Jacobian should perform only those evaluations of the dynamics
of the system needed for the entries of the Jacobian which are actually requested by
the optimization algorithm.

We now sketch such an efficient evaluation which is based on the following
observation: if we look at the way the predicted states xu(k, x0) depend on the control
values u(n), one observes the triangular structure sketched in Fig. 12.12 in which the
arrows indicate increasing indices k and n.

This structure is due to that fact that changing u(n) does not affect the state
trajectory values xu(k, x0) for k ∈ {0, . . . , n}.

Our proposed efficient implementation builds upon this observation. Assume that
the columns of ∇C(z)� colored in dark gray in Fig. 12.13 have to be recomputed.
To this end, we need to evaluate the nominal function C(z) as well as the perturbed
values C(z + tei) for those i corresponding to the dark gray columns. Each of these
evaluations requires the computation of a trajectory following the rules described
before (12.8). Since z = (u(0)�, . . . , u(N − 1)�, s�)�, each ei either corresponds
to an entry of a control vector u(n) or to a shooting node sk . Let us first consider
those ei which correspond to entries of control vectors and denote the time index of
the corresponding control vectors by ni . Then, the definition of z yields that i1 ≥ i2

implies ni1 ≥ ni2 .

412 12 Numerical Optimal Control of Nonlinear Systems

Optimization variable z

Control vectors u(n) Shooting nodes s

C
on

st
ra

in
ts (1
2.

3)
,(

12
.4

)
S

ho
ot

in
g

co
ns

tr.
C

on
st

ra
in

ts
 fr

om

Fig. 12.13 Efficient implementation for computing the Jacobian ∇zC(z)�

The structure from Fig. 12.12 now implies that the nominal trajectory xu cor-
responding to z and the perturbed trajectory xu′ corresponding to z + tei satisfy
xu(k) = xu′(k) for k = 0, . . . , ni . This means that these values can be reused for xu′

and do not need to be recomputed. Hence, for each perturbed trajectory to be com-
puted one could copy the nominal trajectory and then change only those entries which
do not coincide. While this approach is already very efficient in terms of the number
of function evaluations, it is not efficient in terms of memory access because we need
to make many copies of the nominal trajectory. Since memory access is one of the
bottle necks in modern computers, this procedure will be quite time consuming.

To solve this problem we use a second implication of Fig. 12.12: consider two
perturbed trajectories xu1 and xu2 corresponding to z + tei1 and z + tei2 with i1 ≥ i2.
Then the time indices of the corresponding control vectors satisfy ni1 ≥ ni2 and
consequently the triangular structure from Fig. 12.12 yields the identity xu1(k) =
xu2(k) holds for k = 0, . . . , ni . This means that when computing xu2(k), instead
of using the values of the nominal trajectory xu we may also use the values of
any perturbed trajectory xu1 with i1 ≥ i2. Thus, if we schedule the computations of
C(z + tei) such that the indices i are monotone decreasing, then we can compute
each perturbed trajectory by modifying the perturbed trajectory computed before,

12.4 Implementation Issues in NMPC 413

i.e., we can compute all entries in the Jacobian by working on a single copy of the
nominal trajectory instead of having to make many copies.

The indices ei corresponding to shooting nodes can be treated in the same manner
observing that again the change of a shooting node only affects the solution at times
greater or equal than the shooting time.

The resulting scheduling of the computations is indicated by the arrows in
Fig. 12.13. The two thicker arrows pointing to the right correspond to the computa-
tion of the nominal trajectory for the control and the shooting values, respectively,
and the thinner arrows pointing to the left indicate the order of the computations of
the perturbed trajectories w.r.t. the indices of the corresponding ei .

An alternative to this efficient sequential scheduling is given by parallelization
of the computations of the perturbed trajectories. Except for the evaluation of the
nominal trajectory, all evaluations of the dynamics (2.1) (or (2.8) in the continuous
time case) required to compute ∇C(z) and ∇F(z) are fully decoupled and may be
executed in parallel. Hence, if the problem is large and many cores can be used to
parallelize these computations, a significant speedup can be expected.

Condensing

As outlined in the discussion of Fig. 12.11, the computation of the Jacobian of the
constraints massively depends on the number of optimization variables of the dis-
cretized optimal control problem. Hence, according to Sect. 12.1 the minimal number
of optimization variables is N · m for control values u ∈ R

m . Adding multiple shoot-
ing nodes increases the number of optimization variables but may also improve the
numerical solutions, cf. Example 12.2. In the following, we present an approach
which allows us to reduce the additional numerical effort induced by using shooting
nodes and which has become quite popular in the NMPC community, the so-called
condensing of constraints, see, e.g., the PhD thesis of Diehl [12] or the paper by
Bock and Plitt [6].

In order to simplify the exposition, here we apply the method to the full discretiza-
tion technique which can be regarded as a special case of the multiple shooting tech-
nique in which each component of the solution vector at each sampling instant is a
shooting node. To simplify notation, we now define s j to be a vector of dimension
d, which allows us to get rid of the index function ι(·), and we set the index function
ς(·) to be the identity function. According to this change, the equality constraints
induced by the continuity conditions (12.9) take the form

S(z) :=
[[

s j+1 − f
(
s j , u(j))

)]
j∈{0,...,N−1}

]
= 0.

Using a Newton like approach for the KKT conditions from Theorem 12.16, as
outlined for the active set and interior-point methods in Sect. 12.3, we obtain the
linearized continuity condition

S(z) + ∇z S(z)�Δs = 0 (12.69)

414 12 Numerical Optimal Control of Nonlinear Systems

where Δs denotes the part of the search direction d corresponding to the shooting
nodes. Within this equation, the Jacobian of S(z) takes the sparse form

∇z S(z)� =

⎛

⎜⎜⎜⎜⎜⎝

− ∂ f (s0,u(0))

∂s0
1 0 · · · · · · 0

0 − ∂ f (s1,u(1))

∂s1
1 0 · · · ...

...
. . .

. . .
. . . 1 0

0 · · · · · · 0 − ∂ f (sN−1,u(N−1))

∂sN−1
1

⎞

⎟⎟⎟⎟⎟⎠
.

This allows us to compute Δs from (12.69) via

⎛

⎜⎝
Δs1
...

ΔsN

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎝

∂ f (s0,u(0))

∂s0
0 · · · 0

0 ∂ f (s1,u(1))

∂s1
0

...

...
. . .

. . . 0
0 · · · 0 ∂ f (sN−1,u(N−1))

∂sN−1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
Δs0
...

ΔsN−1

⎞

⎟⎠− S(z),

i.e., Δs1, . . . , ΔsN can be computed from Δs0 which is in the search direction for the
shooting node corresponding to the initial value. Hence, if we solve (12.69) outside
the discretized optimal control problem, then the fully discretized problem reduces
to a shooting discretization in which only the components of the initial value are
considered to be shooting nodes, i.e., rs = d. Note that the dynamics of the system
still have to be evaluated using the initial values given by the shooting nodes of
the original problem. However, apart from this technical difference, the condensing
technique allows us to use a full discretization of the optimal control problem while
the complexity of the problem handed over to the optimization algorithm is reduced
to a multiple shooting approach with only d instead of d · (N + 1) shooting nodes.

A useful side effect of using the full discretization we would like to mention is
that all evaluations of the dynamics (2.1) (or (2.8) in the continuous time case) are
fully decoupled. Hence, computing all components of the (discretized) optimization
problem can be done in parallel, which may lead to a significant speedup in generating
the iterates of the optimization problem.

Optimality and Computing Tolerances

Let us now turn to the investigation of the interplay of the different numerical accu-
racies in the optimization method and the differential equation solver. In particular,
we analyze the impact of the user dependent choices of tolerance values for these
two components on the stability of the closed-loop system on the one hand, and on
the resulting computing time on the other hand. For the differential equations solver,
the tolerance tolODE is the parameter discussed in Sect. 11.3. For the optimization
routine, the parameter tolOPT is the accuracy up to which the sufficient KKT con-
ditions of Theorem 12.16 are satisfied. Both tolOPT and tolODE are assumed to be
small in this section. The situation in which the optimization is terminated before the

12.4 Implementation Issues in NMPC 415

necessary conditions are approximately satisfied, which was theoretically investi-
gated in Sect. 10.9 will be discussed in Sect. 12.6.

To illustrate effects of different choices for the tolerance levels, let us first give
the following example.

Example 12.28 Consider the inverted pendulum Example 12.1. As tolerances for
the differential equation solver and the optimization algorithm we consider the grid
of parameters

(tolOPT, tolODE) ∈ {10−8, 10−7, . . . , 10−1}2

in order to evaluate the NMPC controller μN . The resulting closed-loop trajectory
xμN (·, x0) was computed on the interval [0, 20] with sampling period T = 0.1, initial
value x0 = (2, 2, 0, 0) and numerical accuracy tolODE = 10−10. By using a much
smaller tolerance for computing xμN (·, x0) we “emulate” the setting of Sect. 11.5 in
which the computation of μN is affected by numerical errors and the closed-loop
solution is obtained by using the numerically computed μN and the exact dynamics.

Let us first consider one of the critical cases mentioned in Example 12.1 and set the
horizon length to N = 53. In this case, the numerical results in Fig. 12.14 illustrate
that the parameters (tolOPT, tolODE) should be chosen carefully due to their effects
on the closed loop. The closed-loop costs in the following figures are computed as
in Example 12.2.

Here, Fig. 12.14a shows that for some pairs (tolOPT, tolODE) the closed-loop costs
are significantly higher. If we analyze the corresponding closed-loop trajectories,
these costs correspond to solutions which are driven to the downward position
(−2π, 0, 0, 0) for tolOPT = 10−1 and several values considered for tolODE, cf. the
dotted lines in Fig. 12.14b. All other pairs, however, do “mainly” cause the pendu-
lum to tend toward an upright position. However, these positions vary in two ways.

0 5 10 15 20
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Time

x 1
(t)

Closed-loop cost (b) x (·) trajectories(a)

Fig. 12.14 Exceptional closed-loop costs for N = 53 and various optimization and differential
equation solver tolerances

416 12 Numerical Optimal Control of Nonlinear Systems

For one, the x1-component of the closed-loop trajectory does not converge to the
same upright position, similar to what we observed in Example 12.2. And, more
importantly, once an upright position is reached, the trajectory may become unstable
and move to another upright position, an effect we already observed in Example 12.1.
In this case, the observed closed-loop costs increase due to the repeated transitions
between different upright positions, see again Fig. 12.14a.

The reasons for this unpredictable behavior can be found in the implementation
and the unstable nature of the equilibrium which we want to stabilize. One source of
errors is the tolerance tolODE used in computing μN . Since the closed-loop trajectory
is always computed with accuracy tolODE = 10−10 and the open-loop predictions
are computed with different tolerance levels of the differential equation solver, the
solutions deviate slightly. Consequently, according to Theorem 11.10, we can only
expect practical asymptotic stability and the radius δ of the neighborhood to which the
solutions converge according to Definition 11.9 will grow with the tolerance tolODE

used in the computation of μN (and most likely also with tolOPT, even though this
was not rigorously analyzed in Sect. 11.5). Once δ becomes too large, the pendulum
may leave a neighborhood of the upright equilibrium and move to another upright
position.

Another source of errors stems from the fact that the optimization algorithm does
not yield a globally optimal solution. In fact, since the problem is nonconvex we can
in general never guarantee to obtain a globally optimal solution, but the growth of
the closed-loop costs in Fig. 12.14a for increasing tolOPT indicates that this is more
likely for larger tolOPT. In contrast to numerical errors in the solution of the ordinary
differential equation, this problem can be dealt with in various ways.

For example, additional constraints can be added once a trajectory is close to
the equilibrium in order to exclude the open-loop trajectory from moving to other
equilibria. Alternatively, the initial guess of the control may be changed when starting
of the optimization such that the initial solution stays close to the equilibrium. A third
possibility is to add shooting nodes and set their values to the desired equilibrium,
as already discussed in the introduction to multiple shooting in Sect. 12.1. This is
less restrictive than adding constraints and incorporates the aspect of modifying the
initial guess at the same time. As discussed in Example 12.2(ii), introducing shooting
nodes may obstruct the optimization routine. Close to the equilibrium, however, we
have never experienced such effects during our numerical experiments.

Although too large choices of the tolerance levels may have destabilizing effects,
from a computation time point of view it is in general desirable to choose these
values as large as possible in order to speed up the computation required for each
NMPC iterate. In particular, for larger tolerance levels less steps within the differential
equation solver as well as the optimization method are required to satisfy these
tolerance levels. Unfortunately, inaccuracies in the differential equation solver may
obstruct the optimization method and vice versa. Still, if we want to accelerate the
NMPC algorithm, this tuning parameters should be considered closely. To illustrate
these interactions, we continue with Example 12.28.

12.4 Implementation Issues in NMPC 417

(a) Closed-loop costs (b) Computing times

Fig. 12.15 Comparison of closed-loop costs and computing times for N = 15 and various opti-
mization and differential equation solver tolerances

Example 12.29 In the following, we compare the closed-loop behavior and the com-
puting time for various tolerance levels. In Fig. 12.15, we show the limit case N = 15
for the optimization horizon. Figure 12.15a, b allow us to conclude that tolerance
level tolOPT may be eased to 10−2 without increasing the closed-loop cost signif-
icantly or affecting the stability of the closed loop while the computing times are
lowered. Our default initial setting for (tolOPT, tolODE) is the pair (10−6, 10−6), but
already for (tolOPT, tolODE) = (10−3, 10−4) the computing time can be reduced by
approximately 35 %.

There are several guidelines which can be drawn from this example, and which
have shown to be reasonable in our numerical experiments.

First, the horizon length should always be chosen to be as small as possible
before different tolerance levels are considered. The reasons for this are twofold: For
one, the additional complexity of an enlarged horizon always leads to an increase
in the computing time to solve the optimal control problem. While this may be
compensated by increasing the tolerance levels of the optimizer and the differential
equation solver, another aspect comes into play which we have not yet discussed:
increasing the tolerance level of the differential equation solver may heavily corrupt
the numerical evaluation of the derivatives needed in the optimization algorithm.
For this reason, the optimization iteration may be unable to converge toward a point
satisfying the KKT conditions of Theorem 12.16 with accuracy less than tolOPT.

As a consequence, the tolerance levels should always satisfy tolOPT � tolODE.
Here, we use this imprecise formulation on purpose since properties of the differential
equation like its rate of change or simple its scale influence the “best” relation between
these two tolerance parameters. Yet, it is usually reasonable to set the tolerance
level of the differential equation solver to be smaller than the tolerance level of the
optimization method.

418 12 Numerical Optimal Control of Nonlinear Systems

12.5 Warm Start of the NMPC Optimization

In the previous section, we concentrated on solving Step (2) of Algorithm 3.11 which
is computationally quite demanding. Although it is not obvious from the algorithm
itself, the consecutive Step (3) can be used to significantly reduce the time required to
solve the subsequent problem of type (OCPn

N,e). More precisely, the optimal solution
u� of (OCPn

N,e) at time n can be efficiently used in order to construct an initial guess
for (OCPn

N,e) at time n + 1. In order to see how this can be done, one needs to
take a closer look to the time evolution of the NMPC problem itself as displayed
in Figs. 12.16 and 12.17 for a sampled data continuous time system with sampling
period T . For better visibility, in these figures we have plotted the whole continuous
time trajectory instead of only the discrete values of xu(·, x0).

Figure 12.16 schematically sketches the step of solving the problem (OCPn
N,e)

for a given initial value x0 for the nth iterate of the NMPC procedure. As a result, a
prediction of the trajectory xu(·, x0) on the considered time horizon and a minimizing
control sequence u�(·) ∈ U

N (x0) are obtained.
Now, according to Step (3) of Algorithm 3.11, the first element of the control

sequence u�(·) is used as control value in the next sampling period, see Fig. 12.17
for a schematic sketch. However, the algorithm does not say what should be done
with the remainder of the control sequence. The simplest approach is to discard
these values and go to the next iterate. Yet, as obvious from Fig. 12.17, the sequence
contains a lot of information on the prediction at time n + 1.

Hence, this information should be reused in the subsequent (n + 1)st NMPC step.
In particular, one has to keep in mind that in most cases an iterative solver is used
to compute the optimal control u�(·) for problem (OCPn

N,e). As mentioned in the
previous Sect. 12.3, one can only guarantee local convergence for such solvers, i.e.,
a good initial guess is required. Furthermore, supplying a good initial guess will

x/u

x(·)

μN(·)
xu(·,x0)u (·)

t

Horizon of length N ·T

n n+1 n+N

T

Fig. 12.16 Step (2) of Algorithm 3.11

12.5 Warm Start of the NMPC Optimization 419

x/u

x(·)

μN(·)
xu(·,x0)u (·)

t

Horizon of length N ·T

n n+1 n+2 n+N +1

T

u (0)

Fig. 12.17 Step (3) of Algorithm 3.11

reduce the number of iterations to be performed by both the (IPM) and the (SQP)
method.

In what follows we will explain three methods to address the “good initial guess”
problem.

Initial Value Embedding

The initial value embedding technique proposed by Diehl, Bock, Schlöder, Findeisen,
Nagy and Allgöwer [13] is used for optimal control problems (OCPN,e) discretized
with full discretization or with recursive elimination and solved using (SQP) meth-
ods. The approach utilizes the fact that the subsequent problem differs only in the
initial value x0. In particular, taking a closer look at the problem (NLP) using full
discretization, one can see that the problem depends linearly on the x0 in the equality
constraint

xu(0, x0) − x0 = 0 (12.70)

where xu(0, x0) is the first entry of the optimization vector z as displayed in (12.5).
Now, if the (SQP) solver handling the subsequent problem (OCPN,e) with time index
n + 1 is initialized via

z0 := z� = (xu� (0, x0)
�, . . . , xu� (N , x0)

�, u�(0)�, . . . , u�(N − 1)�)�

where z� is the optimal solution of the nth problem (OCPN,e), then most of the data
of the previous linear problem

[∇2
zz L(z�, λ̃Wk ,�) −∇CWk (z�)�
∇CWk (z�) 0

](
d�

λ̃(EQP),�

)
+
(∇F(z�)

CWk (z�)

)
= 0 (12.71)

420 12 Numerical Optimal Control of Nonlinear Systems

solved at time n, cf. Algorithm 12.25, can be reused for the first (SQP) step at time
n + 1. This is because only those very few entries in (12.71) which depend on the
new initial value xnew

0 at time n + 1 need to be updated. Hence, the approximation in
the first (SQP) step at time n + 1 is almost readily computed. Note, however that this
advantage only holds for the full discretization, since for the problem with recursive
elimination all values in (12.71) depend on x0 and thus all gradients need to be
recomputed. The impact of the latter issue can be reduced if the entire sensitivity
matrix in (12.71) is precomputed and the derivative regarding x0 is added online as
the measurement is received, or if the latter is included in the quadratic problem
(EQP). Furthermore, this procedure becomes less efficient in the case of nonconstant
reference x ref because in this case � and thus F change with time and the respective
gradients have to be recomputed, too.

If, moreover, x0 and xnew
0 differ only slightly, as it is the case for small sampling

periods, then the remaining entries in (12.71) may still be sufficiently accurate in
order to allow for an accurate solution of (OCPN,e) for the new initial value xnew

0 .
In this case, a single (SQP) iteration is sufficient in order to deliver a sufficiently
accurate solution at time n + 1. Furthermore, since the constraint (12.70) is linear in
x0 = xnew

0 , the infeasibility introduced by inserting xnew
0 will be removed after this

single iteration.
An interesting application of the initial value embedding technique is the so-called

real-time iteration introduced by Diehl [12]. While real-time iterations were used to
update solutions, the explicit usage of initial value embedding was proposed later
in in the articles of Bock, Diehl, Kühl, Kostina, Schlöder and Wirsching [4] and
Ferreau, Bock and Diehl [17]. In this approach one updates the control sequence
several times in one sampling interval, assuming, of course that the used hardware
(sensors, actuators, etc.) allows for a faster sampling of the control variable u. The
structure of the resulting scheme does not fully comply with the theoretical analysis in
the previous chapters, but we conjecture that it can be analyzed by suitably extending
the multirate sampling approach discussed before Remark 2.9.

In the real-time iteration, one considers the initial condition x0 as a parameter of
the nonlinear optimization problem resulting from a full discretization. In addition,
a scalar parameter τ ∈ [0, 1] representing the time between two NMPC sampling
instants is introduced to obtain

minimize F(τ, ẑ)
with respect to ẑ ∈ R

nz

subject to Gi (τ, ẑ) = 0 for all i ∈ E
and Hi (τ, ẑ) ≥ 0 for all i ∈ I

Here, τ = 0 represents the discretized minimization problem of the nth problem
(OCPN,e) and τ = 1 the problem at time instant n + 1. The parametric formulation
now allows for different ways of updating the control μN in between the standard
NMPC time instants n and n + 1 by repeatedly solving (SQP) subproblems with
partially updated data. These updating strategies can ordered in terms of the relative
time τ as indicated in Table 12.1.

12.5 Warm Start of the NMPC Optimization 421

Table 12.1 Multilevel NMPC control update possibilities using parametric quadratic programming

Step size Required updates

A ΔτA ≪ 1 Linear MPC

B ΔτB � 1 CWk (τ + ΔτB , ẑ),
∇F(τ + ΔτB , ẑ)

Feasibility
improvement

C ΔτC < 1 CWk (τ + ΔτC , ẑ),
∇F(τ + ΔτC , ẑ), λ̃Wk ,�

Optimality
improvement

D ΔτD = 1 CWk (τ + ΔτD, ẑ),
∇F(τ + ΔτD, ẑ), λ̃Wk ,�,
∇CWk (τ + ΔτD, ẑ)
∇2

zz L(τ + Δτ, z�, λ̃Wk ,�)

Single SQP step

τ = 0 τ = 1
D DCB B

A A A A A A A A A A A A A A A A

ΔτA

ΔτB ΔτC

ΔτD

Fig. 12.18 Example of a multilevel scheme

The different update modes A, B, C, and D are then performed according to a
schedule like, e.g., the one in Fig. 12.18. The time Δτ between two updates needs to
be large enough such that the required updates can be performed.

The different modes A, B, C, and D can also be interpreted in terms of the kind
of improvement they induce for the optimization problem.

In Mode A, a new measurement xnew
0 is incorporated into the optimization problem

but the remaining data in the discretized problem are kept entirely frozen. This
corresponds to a linear MPC setup in which the linearization is inherited from the
last (SQP) step.

Mode B aims at improving feasibility of a solution by evaluating/approximating
local copies of the gradient of the cost function and the vector of constraints using
the new measurement xnew

0 . Note that ∇F(τ + ΔτB, ẑ) does not necessarily have to
be reevaluated but can be approximated using the Hessian ∇2

zz L(0, ẑ, λ̃Wk ,�). For this
setting one can show that the optimization variable converges locally to a suboptimal
but feasible point of the discretized optimal control problem.

The third Mode C introduces a new local Lagrange multiplier λ̃Wk ,� of the active
constraints. Since the Lagrange multipliers can be interpreted as a penalization of the
constraints, updating the Lagrange multiplier leads to a more adequate penalization
and thus a repeated evaluation of (12.71) given the new measurement xnew

0 and

422 12 Numerical Optimal Control of Nonlinear Systems

the new λ̃Wk ,� leads to an improvement in terms of optimality. Here, the gradient
∇F(τ + ΔτC , ẑ) and the Jacobian ∇CWk (τ + ΔτC , ẑ) are updated, too, in order
to incorporate the effect of the changing multiplier. This update can be computed
efficiently, e.g., via the reverse mode of the automatic differentiation, see the work
of Griewank and Walther [25]. The updated ∇CWk is, however, not inserted into
equation (12.71) because otherwise the matrix in (12.71) would change and would
have to be factorized causing significant computational effort. Still, it can be shown
that a sequence generated in the manner described above locally converges to a KKT
point of the discretized optimal control problem.

Last, the Mode D corresponds to a single (SQP) step which is in most cases
sufficient to generate an approximately optimal solution of the discretized optimal
control problem (OCPN,e). If, however, the linearization happens to be not accurate
enough, this deficiency can be overcome easily via refining the hierarchical scheme
shown in Fig. 12.18 by inserting more Mode D steps.

We like to point out that in Modes A, B, and C it is not necessary to factorize
the matrix in (12.71) again. Hence, the solution of (12.71) requires only a single
backsolve which is orders of magnitudes faster than the factorization which needs to
be performed in Mode D.

On a lower level, a parametrization of the quadratic approximation of nonlinear
optimization problem (NLP) can be considered, which allows the usage of parametric
active set methods, cf. Best [3]. In that case, the parameter τ introduces a linear affine
homotopy into the problem (IQP) giving

minimize ∇F(τ, ẑ)�d + 1
2 d�∇2

zz L(τ, ẑ, λ)d
with respect to ẑ ∈ R

nz

subject to Gi (τ, ẑ) + ∇zGi (τ, ẑ)�d = 0 for all i ∈ E
and Hi (τ, ẑ) + ∇Hi (τ, ẑ)�d ≥ 0 for all i ∈ I .

The main difference between these two approaches is that real-time iterations are
allocated on the level of the constrained nonlinear problem, whereas the parametric
active set methods act on the linear quadratic approximation of the latter. Since in
real-time iterations typically only one linear quadratic approximation is solved, these
problems are rather similar. However, real-time iterations allow for further iteration
steps with different linearization points, which is not possible for parametric active
set methods.

Sensitivity-Based Warm Start

The second technique applies to (IPM) and is called sensitivity-based warm start,
see, e.g., the article of Zavala and Biegler [41]. Similar to the initial value embed-
ding described before, it focuses on a fast approximation for neighboring problems
around the nominal solution xu(·, x0) used for the optimization at time instant n.
Since the problem is parametric in the initial value x0, a standard sensitivity result
can be applied. This result guarantees—under suitable conditions—the existence of
Lipschitz constants Lx , L F such that

12.5 Warm Start of the NMPC Optimization 423

‖xu� (N , x0) − xũ� (N , x̃0)‖ ≤ Lx‖x0 − x̃0‖
‖F(z�) − F(z̃�)‖ ≤ L F‖x0 − x̃0‖

holds, cf. the work of Fiacco [18] for further details. In particular, this results guar-
antees the existence of a neighboring solution xũ� (·, x̃0) for x̃0 ≈ x0.

If additionally the penalty parameter μ of the (IPM) in the current NMPC step is
sufficiently small, then the KKT conditions (12.45)–(12.48) can be expressed in a
parameter dependent form by φ(z�, x0) = 0. Now we freeze the primal-dual iteration
matrix from (12.57) to

K �(x0) :=

⎛

⎜⎜⎝

∇2
zz L(z�, s, v, w) 0 −∇G(z�)� −∇H(z�)�

0 � 0 Id
−∇G(z�) 0 γ Id 0
−∇H(z�) Id 0 0

⎞

⎟⎟⎠ .

Utilizing the existence result, we compute the solution of the frozen primal-dual
system (12.53)

K �(x0)Δz = −(φ(z�, xnew
0) − φ(z�, x0)) = −φ(z�, xnew

0). (12.72)

Since the primal-dual system (12.57) arose from applying Newton’s method to the
KKT conditions, solving (12.72) corresponds to a Newton step from the optimal
solution z� toward the neighboring solution z̃ for x̃0 = xnew

0 . Hence, for the new
iterate ẑ := z� + Δz we have

‖ẑ − ẑ�‖ ≤ Lz‖x0 − xnew
0 ‖2

for some constant Lz > 0 where ẑ� represents the optimal solution for the neighboring
problem (OCPN,e) with initial value xnew

0 . Furthermore, since the KKT matrix K �(x0)

is already available and its factorization has been computed for the current NMPC
step n, only a single backsolve needs to be performed to determine ẑ. In fact, this
approach is similar to the technique for compensating measurement errors mentioned
at the end of Sect. 10.6. Here, however, we use the first-order approximation ẑ, as an
initial guess for the fully discretized problem (OCPN,e).

We can use even more “old” information from the previous time step if we con-
sider the problem with new initial value as a perturbation of the old problem with
perturbation (xnew

0 − x0). If the active set does not change under the perturbation
(xnew

0 − x0), then the penalty parameter μ can be fixed to a small value and the KKT
matrix K �(x0) can be reused to perform fixed-point iterations on the system

K �(x0)Δzi = −φ(zi , xnew
0)

with initial value z0 = z�. These iterations not only reduce the primal and dual infea-
sibility of the perturbed problem, but if the perturbation (xnew

0 − x0) is sufficiently

424 12 Numerical Optimal Control of Nonlinear Systems

small, the iteration converges to the solution of the perturbed problem. For large
perturbations, however, the KKT matrix needs to be reevaluated and re-factorized.

If the perturbation (xnew
0 − x0) leads to a change in the active set, then the lin-

earization of the complementarity relaxation (12.46) which is contained in the frozen
KKT matrix K �(x0) will drive the first Newton iteration outside of the feasible set
and the sensitivity approximation is inconsistent. To avoid this problem, on could
reuse the factorization of K �(x0) using a Schur complement scheme to correct the
active set which is equivalent to an active set (SQP) iteration.

Shift Method

Both initial value embedding technique and sensitivity method require the optimal
control problem to be fully discretized and are restricted to problems of the form
(OCPN,e) whereas the last approach we present now, the so-called shift method, can
be combined with any discretization method and also with the time varying problem
(OCPn

N,e). The method utilizes the time similarity of two consecutive NMPC steps
instead of the state similarity of x0 and xnew

0 exploited by the other approaches. In
particular, we do not need to assume that xnew

0 is close to x0, hence the method also
works for large sampling periods.

In the shift approach, the internally computed optimal open-loop trajectory
xu� (·, x0) and the control u�(·) are shifted in time by removing the first entries
xu� (0, x0) and u�(0). The initial guess for the subsequent NMPC step is then given
by

z0 := (xu� (1, x0), . . . , xu� (N , x0)
�, x�, u�(1)�, . . . , u�(N − 1)�, u�)� (12.73)

in the case of the full discretization, or by

z0 := (u�(1)�, . . . , u�(N − 1)�, u�)� and x0 := xu� (1, x0) (12.74)

in case of the recursive elimination technique. Since the original optimal sequences
contain (N + 1) state and N control vectors, we have to add one additional element
at the end of each sequence after the shift. In the sequences above, these are denoted
by x ∈ R

d and u ∈ R
m and we will discuss different ways for choosing these values

below.
Since the approach does not rely on first-order information available from the

previous step but rather on the nonlinear prediction of the model itself, its advantage
is that it is indeed a nonlinear update. Moreover, the shift operation can easily be
extended to cover the Lagrange multipliers λ� as well as the vectors of constraints
G, H , the gradient of the cost function ∇F , the Jacobian of the constraints ∇G,
∇H and the Hessian of the cost function ∇2

zz L . Similar to the state and the control
trajectories these components of the discretized optimal control problem require a
new last component.

In order to obtain values for x and u we sketch three approaches: The first approach
simply copies the last entry of the trajectories and sets

12.5 Warm Start of the NMPC Optimization 425

x := xu� (N , x0) and u := u�(N − 1).

This choice is reasonable if the process is close to its steady state. In general, however,
it will result in an infeasible initial guess z0.

The second approach computes the values x and u by solving the problem
(OCPn

N,e) with horizon N = 1 and initial value x0 = xu� (N , x0). Implicitly, the con-
straints of the additional optimal control problem will force its solution to be feasible,
hence also the new initial guess z0 for the subsequent NMPC step is feasible.

The third approach can be used in the case of terminal conditioned schemes if
Assumption 5.9(i) holds and a formula ux = κ(x) for the control value ux from this
assumption is available to the NMPC algorithm. In this case, we can proceed as in
Theorem 10.26 and set ū = κ(xu0

n
(N − 1, x0)) and x := f (xu� (N , x0), ū).

Here, we like to stress the fact that this update can be processed prior to obtaining
a new measurement xnew

0 . Hence, this technique can also be combined with the initial
value embedding technique and sensitivity method. To this end, first the shift method
is applied and once the new measurement is available one defines

z0 := (xnew
0 , xu� (2, x0), . . . , xu� (N , x0)

�, x�, u�(1)�, . . . , u�(N − 1)�, u�)�.

or

z0 := (u�(1)�, . . . , u�(N − 1)�, u�)� and x0 := xnew
0

respectively and proceeds with one of the previously mentioned strategies.
If the sampling time is sufficiently short, one can expect that the shifted control

sequence is very close to the optimal control in the next sampling interval. In this
case, a single SQP iteration may be sufficient in order to obtain a new optimal
control with sufficient accuracy. This idea can indeed be made rigorous, as shown by
Diehl, Findeisen, Allgöwer, Bock and Schlöder in [14]. In fact, this approach is not
restricted to SQP-type optimization algorithms. Conceptually similar results have
been obtained for general classes of optimization method including gradient-based
steepest descent methods. For details we refer to, e.g., Graichen and Kugi [24], see
also the discussion in Sect. 10.9.

In this context, we recall the multistep update technique described at the end of
Sect. 10.4, which can also be implemented using sensitivity techniques or with a
limited number of optimization iterations. Since in the multistep update technique
the optimization is performed only for the remaining part of the optimal control, i.e.,
on a shortened horizon, a shift is not necessary. Hence, there is no error from shifting
the initial guess which is why this method also works well for larger sampling times
and allows for a simpler analysis. A disadvantage of the updated multistep approach
on the other hand is that the full reoptimization after the end of the m steps can be
computationally expensive.

426 12 Numerical Optimal Control of Nonlinear Systems

12.6 Nonoptimal NMPC

In Sect. 10.9 we introduced Algorithms 10.22 and 10.28 which use nonoptimal open-
loop predictions instead of optimal ones within the NMPC Algorithm 3.1. While in
theory it is much more convenient to use optimal controls, from a numerical point of
view we can only expect the solution computed by one of the algorithms in Sect. 12.3
to be locally optimal with a predefined optimality tolerance. Therefore, (almost) all
numerical results are nonoptimal. While small deviations from optimality can be
considered as perturbations, cf. Examples 12.28 and 12.29, large deviations need to
be analyzed in a different way.

Common optimization routines check (at least) two termination criteria, that is, a
KKT-based optimality criterion and a maximal number of allowable iterations. The
latter condition is similar to terminating the iteration after j∗ steps in Algorithm 10.22.
Since an optimization algorithm will not make further progress once the optimality
criterion is satisfied, setting the maximal number of iterations to j∗ can be regarded
as equivalent to Algorithm 10.22, even though the maximal number of iterations only
affects the solution if the optimization routine has not been terminated by the KKT
criterion before. This is the algorithm we use in Example 12.30, below.

Compared to the termination criterion via decrease of the value function (10.25),
this is a much less sophisticated approach. Yet, we like to emphasize that such
a “brute force” restriction of the number of iterations might be necessary from a
practical point of view in order to bound the computing times within each iterate of
the NMPC algorithm. Such bounds may, in turn, be needed in order to guarantee that
the computation is finished before the control must be implemented. Note that even
if a compensation technique for the computation times as discussed in Sect. 10.6 is
used, the optimization must be finished within an a priori fixed amount of time.

As the following numerical example will show, in the NMPC setting it is quite
likely that an optimization algorithm is able to find an optimal solution within only a
few iterations. Yet, it also shows that the number of iterations j∗ in Algorithm 10.22
should be set carefully.

Example 12.30 Consider once more the inverted pendulum on a cart problem from
Example 12.1. We analyze the impact of terminating the optimization algorithm
after a maximal number of iterations j∗. The following Fig. 12.19 shows results
for the set of horizon lengths N ∈ {15, . . . , 28} and the set of maximal numbers
of iterations {1, . . . , 100}. Again, the closed-loop costs in the following figures are
computed as in Example 12.2. For this setting, we obtain that if the maximal number
of iterations is chosen to be small, then the closed-loop system does not converge
toward an upright position which corresponds to the large closed-loop costs displayed
in Fig. 12.19a. Moreover, if the horizon N is chosen large, then the maximal number
of iterations is required to be slightly larger than for small horizons. For N = 15,
the receding horizon controller using up to two optimization iterations per NMPC
iterate stabilizes the closed loop in an upright position. For N = 28, however, seven
optimization iterations per NMPC iterate are required.

12.6 Nonoptimal NMPC 427

(a) Closed-loop costs (b) Computing times

Fig. 12.19 Closed-loop costs and computing times for various maximal numbers of iterations of
the minimization routine and horizon lengths N

As a consequence, we obtain an additional indicator why the parameter N should
be chosen as small as possible to accelerate the receding horizon control algorithm:
For one, small horizon lengths require less steps of the optimization method and
therefore the computing time is reduced, see Fig. 12.19b. Additionally, each step in
the iterative optimization can be performed faster as discussed after Fig. 12.11 which
further reduces the computing time, again see Fig. 12.19b.

When choosing the maximal number of iterations j∗ one has to take an algorithmic
detail of the optimization algorithm into account which we have not yet discussed.
Often, optimization routines allow for increases in the cost function to compensate
for the so-called Maratos effect, cf. the PhD thesis of Maratos [31] and the article of
Powell [35], which describes the possible obstruction of the optimization algorithm
by the merit function (12.38). If no measures are taken, the merit function may slow
down the convergence by rejecting steps which else make good progress toward a
solution. To avoid the Maratos effect, typically either a second-order correction of the
search direction as presented by Coleman and Conn [10] or a nonmonotone strategy,
given by Chamberlain, Powell, Lemarechal and Pedersen [9], which allows for an
increase in the merit function are used. These two approaches differ significantly:
The second-order correction aims at improving the merit function and hence, the
satisfaction of the constraints of the original problem. The nonmonotone strategy
tries to enhance feasibility and optimality at the same time by allowing for temporary
increases in the merit function. Allowing for an increase in the cost function may lead
to the situation that even if a number of iterations has been performed, the currently
best solution obtained so far may still be the initial guess. Thus, the maximal number
of iterations j∗ should be chosen larger than the allowed number of trial steps used
in the Maratos compensation algorithms.

As an alternative to terminating the optimization after j∗ iterations steps one
could also use a time dependent termination criterion. Such an approach, however,
may be critical since a priori it is not clear how many iterations can be executed
by the optimization routine in the given time. In particular, the resulting number of

428 12 Numerical Optimal Control of Nonlinear Systems

iterations may be too small in order to cover the trial steps just discussed. Hence, a
time-dependent termination criterion needs to be tuned carefully.

Regardless of whether a fixed number of iterations j∗ or a more sophisticated ter-
mination criterion like (10.25) is used, apart from suboptimality affecting stability of
the closed loop, the feasibility of the nonoptimal open-loop solutions is an important
issue. Recall that in Algorithm 10.22 we require the open-loop control u j�

n (·) and the
corresponding trajectory xu j�

n
(·, x(n)) to satisfy all constraints of the optimal control

problem and in Theorem 10.26 we assumed u0
0(·) ∈ U

N
X0

(x0) to hold which is a quite
strong assumption. This is due to the fact that most systems are far too complicated
to intuitively come up with such an initial guess.

Example 12.31 Again consider the inverted pendulum Example 12.1 and the initial
value to be set to the stable downward position x0 = (0, 0, 0, 0). While for small j
it is clear that uN (j, x0) = ±5 is optimal in order to swing up the pendulum with
maximal energy, at some time instant j0 a switching of the control value has to
occur in order to swing the pendulum into the opposite direction. However, both the
determination of the switching time and the values of the open-loop control after
the switching is a difficult task if feasibility of the given state constraints is to be
guaranteed. Thus, obtaining an initial guess for optimization horizons N > j0 is in
general a difficult task.

In case a heuristic derivation of u0
0 is not possible, one may generate a feasible

initial control u0
0 is by using the optimization problem, itself. This is due to the fact

that the nonlinear optimization methods presented in Sect. 12.3 can be started with
an infeasible initial guess z0 and still deliver a feasible solution z�. Hence, before
starting Algorithm 10.22 we can solve (OCPn

N,e) in order to determine u0
0, provided,

of course that the optimization algorithm is able to find a feasible solution.
It may, however, happen that even when starting from a feasible initial guess z0 the

optimization algorithm may compute intermediate iterates zk which are infeasible. In
order to understand why this may happen, let us look once again at the merit function

L̃(z, μ) := F(z) + μ‖A(z)‖1

defined in (12.38). By the definition of this function the violation of one or more
constraints corresponds to L̃(z, μ) > F(z) for μ > 0. Therefore, the decrease condi-
tion of the merit function used in both the line-search and the trust-region algorithms
ensures that the search direction dk is supposed to lead to an improvement of op-
timality in terms of the cost function F , but also to an improvement of feasibility.
Note, however that it is quite possible that a search direction dk causes a reduction of
L̃(zk+1, μ) while ‖A(zk+1)‖1 ≥ ‖A(zk)‖1 holds. To prevent this, the choice of μ, in
particular its initial value μ0 becomes the critical component. Within the presented
(SQP) and (IPM) algorithms of Sect. 12.3, μ is chosen such that a decrease in L̃ can
be guaranteed. As a consequence, intermediate solutions may improve optimality in
expense of larger violations of constraints before (eventually) tending back to the
feasible set. For this reason, even if previous iterates are feasible, the current step

12.6 Nonoptimal NMPC 429

may generate an infeasible iterate. This may happen for both the line-search and the
trust-region algorithms unless specialized algorithms are used, as, e.g., the method
proposed by Panier and Tits [33].

Common implementations of optimization algorithms do often not use such spe-
cialized methods. Instead, a rather simple mechanism is employed in order to solve
this infeasibility issue: during the iteration, feasibility of an iterate and the cor-
responding cost function value are compared. If more than one feasible iterate is
found, then the one with the minimal cost function value is returned. If no feasible
iterate is found, the method returns an error message, and in most cases the iterate
which causes the least constraint violation. Hence, if we terminate one such algorithm
before the KKT-based optimality conditions are satisfied, then a feasible solution is
returned if a feasible iterate has been encountered during the run of the optimization
routine.

The easiest way to ensure the existence of such a solution surely is to start the
optimization using a feasible initial guess z0. As outlined before, this may be a difficult
task when starting the NMPC scheme at time n = 0; hence if no good heuristic guess
for u0

0 is available at startup then in general one has to hope that the optimization
routine is able to find a feasible solution.

For n ≥ 1, however, we can exploit the fact that the optimal control problems in
two consecutive NMPC steps are quite similar. We can use this similarity to obtain
a feasible initial guess via the shift methods presented in Sect. 12.5. In particular,
as discussed in the paragraph on shift methods in Sect. 12.5, the second and third
approach presented in this paragraph will always provide a feasible initial guess z0 if
the shifted initial value xu� (1, x0) and the new measurement xnew

0 are identical. Note
that this is exactly the argument used in the proof of Theorem 10.26 in which the
third shift strategy from Sect. 12.5 was applied.

Unfortunately, for all other described restarting methods in Sect. 12.5 feasibility
of the initial guess cannot be guaranteed, in general. However, the initial value em-
bedding and the sensitivity-based warm start technique only cause the d constraints
corresponding to the initial value shooting node

xu(0, x0) − x0 = 0

to be violated. Since this condition depends linearly on x0, the infeasibility problem
is resolved after only one iterate provided the linearization of the discretized problem
is accurate enough, i.e., the difference between x0 and xnew

0 is sufficiently small. If
this is not the case, then one may still expect the infeasibility problem to be resolved
in only a handful of iteration steps.

Summarizing, once a feasible initial solution is found, there are ways to imple-
ment the optimization iteration such that the two termination criteria discussed in
Sect. 10.9, i.e., terminating after j∗ iteration steps, see Algorithm 10.22, or terminat-
ing after condition

JN (x(n), u j∗
n (·) ≤ ṼN (n − 1) − α�(x(n − 1), un−1(0))

as in Algorithm 10.28, can be expected to be reached with feasible control sequences.

430 12 Numerical Optimal Control of Nonlinear Systems

12.7 Notes and Extensions

In Sect. 12.1 we have shown three discretization techniques which allow us to convert
an optimal control problem into a optimization problem in standard form (NLP).
These methods are more or less standard in NMPC and are well suited for the case
of zero-order hold control since the error induced by the discretization of the control
is zero due to the knowledge of the switching points of the control. If other types
of control functions are considered, one can show convergence of the discretized
optimal control toward the continuous optimal control for the Euler discretization,
cf. Malanowski, Büskens and Maurer [29]. Alternatively, higher order discretization
techniques can be used, see, e.g., Dontchev, Hager and Veliov [16].

For the nonlinear optimization problem in standard form (NLP), we sketched the
analytical background of nonlinear optimization and presented both most common
algorithms for nonlinear optimization problems—(SQP) and (IPM)—in both the line-
search and the trust-region setting in Sects. 12.2 and 12.3. Yet, since we only want
to point out the special properties of the NMPC setting for nonlinear optimization
algorithm, we skipped all modifications which can be used to speed up the iteration
of such methods. Amongst the most popular modifications we mentioned the DFP
(Davidon-Fletcher-Powell) [11, 21] or BFGS (Broydon-Fletcher-Goldfarb-Shanno)
updates [7, 19, 22, 39] methods to update the Hessian in Sect. 12.4 as well as the
second-order correction method of the search direction as presented by Coleman and
Conn [10] or the nonmonotone strategy given by Chamberlain, Powell, Lemarechal
and Pedersen [9] from Sect. 12.6 to compensate for the Maratos effect, cf. the PhD
thesis of Maratos [31] and the article of Powell [35]. A good survey for these and other
methods be found in, e.g., the monograph of Nocedal and Wright [32]. For simplicity
of exposition, we also did not discuss convergence theory of such algorithms for the
more general nonconvex case, see, e.g., Gould, Orban and Toint [23], which can be
handled by common implementations as well. Since there exists a wide range of
available implementations, we only state a short and incomplete list here:

Name Website
SNOPT http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm

NLPQLP http://www.ai7.uni-bayreuth.de/nlpqlp.htm

HQP http://hqp.sourceforge.net

IPOPT http://www.coin-or.org/ipopt

LOQO http://www.princeton.edu/∼rvdb/loqomenu.html

KNITRO http://www.ziena.com

WORHP http://www.worhp.de

Additionally, we like to note that apart from the first-discretize-then-optimize
(direct) approach featured in this chapter, there also exist so-called indirect methods to
solve optimal control problems. These methods are based on Pontryagin’s maximum
principle and compute the optimal control from the resulting analytical boundary
value problem via shooting or collocation methods, see, e.g., Bryson and Ho [8].

12.7 Notes and Extensions 431

This typically requires a good initial guess for the Lagrange multipliers which is
why these methods are rarely used for NMPC. An exception to this rule is Bell,
Limebeer and Sargent [2], in which the authors investigate such a method for an
NMPC problem governed by a differential algebraic equation (DAE).

In the remaining Sects. 12.4 to 12.6 we discussed several issues of NMPC from
both the implementation as well as the analytical side. In particular, we on the one
hand focused on the internal structure of each discretized optimal control problem
which led us to the idea of condensing described in Diehl [12] and Bock and Plitt [6]
and the triangular structure of the Jacobian of the constraints. These observations are
particularly useful if one considers parallel algorithms to evaluate these matrices. On
the other hand, we have shown how the relationship between two consecutive NMPC
iterates can be used to generate a good initial guess. The idea of the initial value em-
bedding and the hierarchical NMPC approach have been taken from Diehl, Bock,
Schlöder, Findeisen, Nagy and Allgöwer [13] and Albersmeyer, Beigel, Kirches,
Wirsching, Bock and Schlöder [1] respectively, whereas a detailed analysis of the
sensitivity-based warm start can be found in Zavala and Biegler [41]. A classification
of the respective methods including numerical tricks can be found in Diehl, Ferreau
and Haverbeke [15]. Stability for the combination of the shift method and the initial
value embedding has been shown in [14], yet we are not aware of respective results
regaring the sensitivity-based warm start. Considering implementations, there ex-
ist several commercial and academic NMPC packages. In the following table, we
summarize several examples:

Name Website
Acado http://www.acadotoolkit.org

GRAMPC https://sourceforge.net/projects/grampc

Jmodelica http://jmodelica.org

MPC Tools http://jbrwww.che.wisc.edu/software/mpctools

μAO-MPC http://ifatwww.et.uni-magdeburg.de/syst/muAO-MPC

BLOM http://www.mpclab.net/trac

jMPC Toolbox http://www.i2c2.aut.ac.nz/Resources/Software/
jMPCToolbox.html

PlantPAx MPC http://discover.rockwellautomation.com/plantpaxmpc

BrainWave http://www.andritz.com/aa-brainwave

DMCplus http://www.aspentech.com/products/
advanced-process-control/DMCplus

SORTiA-MPC http://www.azbil.com

PlantTriage http://www.expertune.com/PlantTriage.aspx

Predict and Control http://www.abb.com

Matlab MPC Toolbox http://www.mathworks.com/products/mpc

A list of commercial packages is also given in Qin and Badgwell [36].

432 12 Numerical Optimal Control of Nonlinear Systems

Problems

1. Consider the constraint set Ω = {(z1, z2, z3) | z2
3 ≥ z2

1 + z2
2}. Show that while Ω

is a set with nonsmooth boundary, the set itself is described by a smooth function.
2. One can trivially construct an example of a feasible set Ω and a feasible point z� at

which the LICQ (see Definition 12.14) is satisfied but the constraints are nonlinear.
Prove whether or not the reverse situation holds, i.e., the active constraints are
linear but the LICQ is not satisfied.

3. Consider the constraints
z2 ≤ z3

1 and z2 ≥ 0.

Show that at z = (0, 0) we have TΩ(z) � F (z).
4. Similar to the idea of Condensing in Sect. 12.4 suppose that s j is a vector of

dimension d allowing to get rid of the index function ι(·) and that the index
functionς(·) : {0, . . . , rs − 1} → {0, . . . , N } is strictly monotonically increasing
with ς(0) = 0. Consider the corresponding linearized continuity condition

S(z) + ∇z S(z)�Δs = 0 (12.75)

where again Δs denotes the part of the search direction d corresponding to the
shooting nodes. Show that Δs1, . . ., Δsrs−1 can be computed from Δs0 which is
the search direction for the shooting node corresponding to the initial value.
Hint: Reformulate the continuity condition

[
s j+1 − f (xu(ς(j + 1) − 1, x0), u(ς(j + 1) − 1)))

]
j∈{0,...,rs−1} = 0,

(12.76)
to get rid of all state vectors xu(k, x0) which are not shooting node vectors, i.e.,
for which ς(j) �= k.

5. Formulate the optimization problem in standard form for problem (OCPn
N,e) using

(a) recursive elimination and an additional endpoint constraint X0(n) = {x∗}.
(b) multiple shooting with shooting vector sN ∈ R

d with initial value sN = x∗
inducing the constraints

S(z) = [sN − f (xu(N − 1, x0), u(N − 1)))] = 0.

Using either of the presented optimization methods, show that the iterates will
not coincide in general.

References

1. Albersmeyer, J., Beigel, D., Kirches, C., Wirsching, L., Bock, H.G., Schlöder, J.: Fast non-
linear model predictive control with an application in automotive engineering. In: Magni, L.,

References 433

Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control. Lecture Notes in
Control and Information Sciences, vol. 384, pp. 471–480. Springer, Berlin (2009)

2. Bell, M.L., Limebeer, D.J.N., Sargent, R.W.H.: Robust receding horizon optimal control. Com-
put. Chem. Eng. 20, 781–786 (1996) (Supplement 2, European Symposium on Computer Aided
Process Engineering 6)

3. Best, M.J.: An algorithm for the solution of the parametric quadratic programming problem.
Applied Mathematics and Parallel Computing, pp. 57–76 (1996)

4. Bock, H., Diehl, M., Kühl, P., Kostina, E., Schlöder, J., Wirsching, L.: Numerical methods for
efficient and fast nonlinear model predictive control. In: Findeisen, R., Allgöwer, F., Biegler,
L.T. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture
Notes in Control and Information Sciences, vol. 358, pp. 163–179. Springer, Berlin (2007)

5. Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert,
K.H., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems. Springer Series
in Chemical Physics, vol. 18, pp. 102–125. Springer, Heidelberg (1981)

6. Bock, H.G., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control
problems. In: Proceedings of the 9th IFAC World Congress Budapest, Pergamon, Oxford, pp.
242–247 (1984)

7. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. II. The
new algorithm. J. Inst Math. Appl. 6, 222–231 (1970)

8. Bryson, A.E., Ho, Y.C.: Applied optimal control. Hemisphere Publishing Corp. Washington,
D. C. Optimization, estimation, and control, Revised printing(1975)

9. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique
for forcing convergence in algorithms for constrained optimization. Math. Program. Stud. 16,
1–17 (1982) (Algorithms for constrained minimization of smooth nonlinear functions)

10. Coleman, T.F., Conn, A.R.: Second-order conditions for an exact penalty function. Math.
Program. 19(2), 178–185 (1980)

11. Davidon, W.C.: Variable metric method for minimization. Research and Dev. Rep. ANL-5990
(Rev.), Argonne Nat. Lab. (1959)

12. Diehl, M.: Real-time optimization for large scale nonlinear processes. PhD thesis, University
of Heidelberg (2001)

13. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time opti-
mization and nonlinear model predictive control of processes governed by differential-algebraic
equations. Journal of Process Control 12(4), 577–585 (2002)

14. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the
real-time iteration scheme for nonlinear model predictive control. IEE Proc. Control Theory
Appl. 152, 296–308 (2005)

15. Diehl, M., Ferreau, H., Haverbeke, N.: Efficient Numerical Methods for Nonlinear MPC and
Moving Horizon Estimation, vol. 384, pp. 391–417. Springer, Heidelberg (2009)

16. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in
control constrained optimal control. SIAM J. Numer. Anal. 38(1), 202–226 (2000) (electronic)

17. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations
of explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

18. Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Math-
ematics in Science and Engineering, vol. 165. Academic Press Inc., Orlando (1983)

19. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970)
20. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley-Interscience, New York (2001)
21. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput.

J. 6, 163–168 (1963)
22. Goldfarb, D.: A family of variable metric methods derived by variational means. Math. Comput.

24, 23–26 (1970)
23. Gould, N.I.M., Orban, D., Toint, P.L.: Numerical methods for large-scale nonlinear optimiza-

tion. Acta Numer. 14, 299–361 (2005)
24. Graichen, K., Kugi, A.: Stability and incremental improvement of suboptimal MPC without

terminal constraints. IEEE Trans. Autom. Control 55, 2576–2580 (2010)

434 12 Numerical Optimal Control of Nonlinear Systems

25. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic
differentiation, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
(2008)

26. Gyurkovics, E., Elaiw, A.M.: Conditions for MPC based stabilization of sampled-data nonlinear
systems via discrete-time approximations. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.)
Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in
Control and Information Sciences, vol. 358, pp. 35–48. Springer, Berlin (2007)

27. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Com-
putational Mathematics, vol. 14, 2 edn. Springer, Berlin (1996)

28. Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl.
22(3), 297–309 (1977)

29. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal
control problems. In: Mathematical Programming with Data Perturbations. Lecture Notes in
Pure and Applied Mathematics, vol. 195, pp. 253–284. Dekker, New York (1998)

30. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill Book Co., New York (1969)
(Reprinted by SIAM Publications 1995)

31. Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization
problems. PhD thesis, University of London (1978)

32. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations
Research and Financial Engineering. Springer, New York (2006)

33. Panier, E.R., Tits, A.L.: A superlinearly convergent feasible method for the solution of inequal-
ity constrained optimization problems. SIAM J. Control Optim. 25(4), 934–950 (1987)

34. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Nu-
merical Analysis (Proceedings of the 7th Biennial Conference, University of Dundee, Dundee,
1977), pp. 144–157. Lecture Notes in Mathematics, vol. 630. Springer, Berlin (1978)

35. Powell, M.J.D.: Convergence properties of algorithms for nonlinear optimization. SIAM Rev.
28(4), 487–500 (1986)

36. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control
Eng. Pract. 11, 733–764 (2003)

37. Schittkowski, K.: The nonlinear programming method of Wilson, Han, and Powell with an
augmented Lagrangian type line search function. I. Convergence analysis. Numer. Math. 38(1),
83–114 (1981/82)

38. Schittkowski, K.: On the convergence of a sequential quadratic programming method with an
augmented Lagrangian line search function. Math. Op. Stat. Ser. Optim. 14(2), 197–216 (1983)

39. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Com-
put. 24, 647–656 (1970)

40. Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Texts in Applied Mathematics, vol.
12, 3rd edn. Springer, New York (2002) (Translated from the German by R. Bartels, W. Gautschi
and C. Witzgall)

41. Zavala, V.M., Biegler, L.T.: Nonlinear programming strategies for state estimation and model
predictive control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Pre-
dictive Control, Lecture Notes in Control and Information Sciences, vol. 384, pp. 419–432.
Springer, Berlin (2009)

Appendix A
NMPC Software Supporting This Book

The NMPC simulations in this book were computed with two different software
packages. For the computationally less demanding examples, we have developed a
MATLAB routine nmpc.m which provides a straightforward implementation of the
NMPC Algorithm 3.11. For the more complicated Examples 2.10, 2.11 and 2.12 we
have used the C++ software YANE by Jürgen Pannek and Thomas Jahn, cf. www.
nonlinearmpc.com. This appendix provides a brief introduction to these software
packages. Moreover, we briefly explain additional MATLAB� and MAPLEtm code
which has been used for several computations and for generating the figures in this
book. All the software described in this appendix is available from the webpage

www.nmpc-book.com

A.1 The MATLAB NMPC Routine

The MATLAB M-File nmpc.m provides a straightforward implementation of the
NMPC Algorithm 3.11. Upon call of

function [t, x, u] = nmpc(runningcosts , terminalcosts , ...
constraints , terminalconstraints , ...
linearconstraints , system , ...
mpciterations , N, T, tmeasure , xmeasure , u0 , ...
varargin)

the function executes a simulationof theNMPCclosed loop for a user-definednumber
of mpciterations closed-loop steps. Internally, the steps Algorithm 3.11 and its
variants are implemented in different auxiliary function which are easily extended
to more complex settings.

(1) In function measureInitialValue, a new measurement of the initial value x0 =
x(n) is obtained by copying the value xu� (1, x(n − 1)) of the optimal predicted
trajectory computed at time n − 1. This means that the routine simulates the

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6

435

www.nonlinearmpc.com
www.nonlinearmpc.com
www.nmpc-book.com

436 Appendix A: NMPC Software Supporting This Book

nominal closed-loop system. If measurement errors are to be simulated then this
routine can be modified accordingly.

(2) The solution of the problem (OCPnN,e) is computed in the function solveOptimal-
ControlProblem. Here, the problem (OCPnN,e) is transformed to a static nonlin-
ear constrained optimization problem (NLP) via a recursive discretization, see
Sect. 12.1 for details. The transformed problem is then solved via the MATLAB
optimization method fmincon, which—depending on the chosen options—uses
one of the algorithms described in Sect. 12.3. The initial guess of the control
sequence is computed in the function shiftHorizon via the shift technique from
Sect. 12.5.

(3) Lastly, the NMPC feedback μN (n, x(n)) is implemented via the function apply-
Control which evaluates the dynamics of the system for the control computed
by the optimization method in Step (2). Here the same dynamics as in the com-
putation of the predictions is used. This could be changed if modeling errors or
external perturbations shall be simulated.

For all simulations in this book which were carried out with nmpc.m we provide
ready to use M-Files on our webpage whose names correspond to the number of the
example in this book, e.g., the M-File example_6_26.m contains the simulation in
Example 6.31. These M-Files may also be used as templates for building new exam-
ples by suitably adjusting the functions defining problem (OCPnN,e). The following
table provides a list of the ingredients of problem (OCPnN,e) and the corresponding
functions in the MATLAB implementation.

Ingredient in (OCPnN,e) Function in implementation

�(n, x, u) runningcosts(t, x, u)
F(n, x) terminalcosts(t, x)
X, U(x) linearconstraints(t, x, u)

constraints(t, x, u)
X0 terminalconstraints(t, x)
f (n, x, u) system(t, x, u, T)

Together with the length of the horizon N , the sampling interval T and initial values
for the time t0, the (closed-loop) state x0 and the control u, the functions in the right
column of this table are supplied as arguments to nmpc. During the run of nmpc,
these functions are called by the optimization routine once for each summand in
JN in (OCPN,e) with t containing the current sampling time—t = (n + k)T in
the notation of (OCPnN,e)—and x, u containing the corresponding state and control
vectors xu(k) and u(k).

Observe that in the implementation the sets of admissible control sequences
U

N (x0) or U
N
X0

(x0) do not need to be provided explicitly. Rather, the state and
control constraint sets X, U(x) and—if applicable—the terminal constraints set X0

are provided in the implicit form of Definition 3.6. Here MATLAB’s optimization

Appendix A: NMPC Software Supporting This Book 437

routine fmincon distinguishes between linear and nonlinear equality and inequality
constraints; the declaration of the respective functions linearconstraints and con-
straints follows the usual MATLAB convention. For instance, for adding an equi-
librium terminal constraint of the form X0 = {x∗} one may use the function
GS

i (x) = ‖x − x∗‖22. For, e.g., x∗ = (1, 2)� this amounts to defining the array ceq
in terminalconstraints as ceq = [norm(x-[1, 2],2)∧2];. More details can
be found in the MATLAB help for fmincon.

The NMPC implementation given in nmpc.m can also be configured more specif-
ically to match the needs of a certain example. To this end, additional inputs can be
used to specify, e.g., the optimization method and its optimality tolerance or output
functions. Additionally, the core routine nmpc can also deal with continuous time
dynamics and the user may set tolerances for the differential equation solver differ-
ently for the open- and the closed-loop dynamics. Last, example specific output can
be generated by suppliable output functions. For details we refer to the comments
and the help text in the file.

A.2 Additional MATLAB and MAPLE Routines

In addition to nmpc.m and the example files using this routine, we provide several
other MATLAB routines which we used for computations as well as for several
figures. Most of these M-Files are related to the Optimization Problem (6.16). The
file mpcalpha_cn.m solves this problem and thus computes the suboptimality index
α for an NMPC problem satisfying the Controllability Assumption 6.5 with

β(r, n) = cnr (A.1)

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0 for all n ≥ n0, i.e., finite time
controllability with linear overshoot bound. The case of exponential controllability

β(r, n) = Cσ nr (A.2)

for real constants C ≥ 1 and σ ∈ (0, 1) can be handled via this function as well by
setting cn = Cσ n . Tomake evaluations for the exponential case more convenient, the
function mpcalpha_Csigma in filempcalpha_Csigma.m automatically computes
the required sequence cn from the input data C and σ and calls mpcalpha_cn to
derive α.

Upon call of

function [alpha , lambda] = mpcalpha_cn(c,N,varargin)

the linear Optimization Problem (6.16) is constructed from the input data c and the
horizon length N for the case of finite time controllability. Here, c is expected to be a
vector containing the values cn from (6.5). If the supplied vector c is shorter than the

438 Appendix A: NMPC Software Supporting This Book

horizon N , it is automatically filled up with zeros. In a second step, the MATLAB
routine linprog is applied to compute the desired values of α and λ0, . . . , λN−1

for the constructed linear optimization problem. For exponential controllability, the
respective call is

function [alpha , lambda] = mpcalpha_Csigma(C,sigma ,N,varargin)

with C and σ from (6.4).
In both functions, as an additional argument the user may supply an integer m

denoting the number of control elements of the open-loop control to be implemented,
cf. Sect. 10.4. Without defining m the case of classical MPC (m = 1) is imposed.
Similarly, an endweight different fromω = 1 as outlined in Sect. 10.2 can be defined.
Lastly, different levels of output of the function can be chosen. In particular, with
parameter output ≥ 1 the optimal sequence λ0, . . . , λN is displayed graphically.

For creating figures, we additionally provide the files alpha_m_plot.m and al-
pha_omega_plot.m. Upon call of

function alpha_m_plot(C,sigma ,N,m,varargin)

function alpha_omega_plot(C,sigma ,N,m,endweight ,varargin)

these functions generate plots of the suboptimality indexα with respect to the number
of control horizons m or with respect to the endweight ω, respectively. For exam-
ples of how to use these functions we refer to the M-Files example_fig_7_1.m and
example_fig_7_3.m which were used in order to compute Figs. 10.1 and 10.3.

Figure10.4 was computed for a linear inverted pendulum using Algorithm 3.1
with running cost

�(x, u) = 2‖x‖1 + 4‖u‖1,

sampling period T = 0.5, optimization horizon N = 10 and linear constraints.
Such an optimal control problem can be transformed into a static linear optimiza-
tion problem and can thus be solved with a linear optimization routine which is
considerably faster than a nonlinear optimization method. This is what is done in
example_fig_7_4.m, where MATLAB’s linear optimization routine linprog is used
for solving the resulting linear optimization problem. While we encourage testing
this program, we like to note that the runtime of the program may easily exceed one
day for a large number of initial values.

Finally, our webpage also provides a number ofMAPLEworksheets (forMAPLE
12 or newer), which were used for several numeric and symbolic computations
throughout this book. Like our M-Files, the worksheets are named according to
the example or figure they refer to. Each of these worksheets is comprehensively
explained by comments in the files which is why we refrain from giving further
explanation here.

Appendix A: NMPC Software Supporting This Book 439

A.3 The C++ NMPC Software

While the MATLAB implementation is quite nice for tutorial purposes, we solved
the more complicated Examples 2.10, 2.11 and 2.12 via the C++ NMPC software
YANE which can be downloaded from www.nonlinearmpc.com.

Unpacking any of the files via

tar -xvf"package_filename ".tar.gz

will create a new folder containing the source code files. Within this folder, a new
subfolder build for compiling the source code should be generated to avoid over-
writing the CMake compilation and installation routines. Now, the configuration file
for CMake needs to be generated from within the created subfolder build. Here,
user-specific options can be supplied, e.g., a local installation path:

cmake -DCMAKE_INSTALL_PREFIX =" installation_path "../

Once the configuration is complete, the package can be compiled and installed via

make
make install

Note that depending on the chosen installation_path the install commandmay require
superuser rights. Moreover, the environment variables used by the C++ compiler of
the system must contain the installation path which can be added via

export LD_LIBRARY_PATH =" installation_path "/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH =" installation_path "/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_PATH =" installation_path "/ include:

$CPLUS_INCLUDE_PATH

A tutorial of the C++ implementation as well as explanations of the classes and
methods can be found at www.nonlinearmpc.com.

In a similar manner the example archive which can be downloaded from our
homepage www.nmpc-book.com can be unpacked and compiled but does not have
to be installed. The archive is structured as follows:

www.nonlinearmpc.com
www.nonlinearmpc.com
www.nmpc-book.com

440 Appendix A: NMPC Software Supporting This Book

Apart from the C++ files, each subdirectory contains a file CMakeLists.txt which
provide information required by CMake to compile the package. If additional
examples shall be implemented, these files need to be adapted accordingly, see,
e.g., www.cmake.org for further information.

Compiling the package generates several executables which can be found in the
subdirectory build/Examples—assuming that CMake is called within the subdirec-
tory build. Upon execution, each file generates a problem-specific screen output. For
additional file outputs of the computed trajectories, we again refer to the documen-
tation of the YANE software.

www.cmake.org

Appendix B
Glossary

The following table gives an overview of the notation we used throughout this book.
Note that auxiliary notations introduced within proofs or used only within a single
example are not displayed here.

Acronyms

(ECP) Equality constrained nonlinear optimization problem, p. 390
(EQP) Equality constrained quadratic optimization problem, p. 395
(EQPq) Equality constrained quadratic subproblem of (IQP), p. 395
IOSS Input/output-to-state stability, p. 302
(IPM) Interior point method, p. 380
(IQP) Inequality constrained quadratic optimization problem, p. 394
ISS Input-to-state stability, p. 193
LICQ Linear independent constraint qualification, p. 386
LQR Linear-quadratic regulator, p. 104
MPC Model predictive control, p. 4
(NLP) Nonlinear optimization problem, p. 371
NMPC Nonlinear model predictive control, p. iii
(OCPN) Finite horizon optimal control problem, p. 46
(OCPnN) Finite horizon time-varying optimal control problem, p. 53
(OCP∞) Infinite horizon optimal control problem, p. 71
(OCPn∞) Infinite horizon time-varying optimal control problem, p. 71
(OCPN,e) Extended finite horizon optimal control problem, p. 56
(OCPn,eN) Extended finite horizon time-varying optimal control problem, p. 56
(OCPpN) Local finite horizon optimal control problem, p. 272
(SQP) Sequential quadratic programming, p. 380

Sets and Spaces

A ⊆ X Subset of the state space in Definition 7.24, p. 193
A (z) ⊆ E ∪ I Active set of constraints, p. 386
Br (x) Open ball centered at x with radius r, p. 29

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6

441

442 Appendix B: Glossary

Br (x) Closed ball centered at x with radius r, p. 97
C (z∗, λ∗) Critical cone, p. 388
Ek ⊆ X Exit set, p. 179
E ⊂ N Index set of equality constraints of an optimization problem, p. 373
E S ⊂ N Index set of equality constraints describing sets, p. 52
FN ⊆ X Feasible set without terminal constraints for horizon N, p. 178
F∞ ⊆ X Infinite horizon feasible set, also called viability kernel, p. 178
F (z) ⊆ R

nz Linearized feasible directions, p. 386
G ⊆ R Time grid, p. 345
I ⊆ R Open interval, p. 16
I p Set of neighboring data of subsystem p, p. 259
I ⊂ N Index set of inequality constraints of an optimization problem, p. 373
I s ⊂ N Index set of inequality constraints describing sets, p. 52
I p = (p1, . . . , pm) ⊂ P\{p} Set of neighbors of subsystem p, p. 261
K Class of continuous functions α:R+

0 → R
+
0 which are strictly increasing with

α(0) = 0, p. 29
K∞ Class of functions α ∈ K which are unbounded, p. 29
K L Class of continuous functions β: R+

0 × R
+
0 → R

+
0 with β(., t) ∈ K and

β(r, .) ∈ L , p. 29
K L0 Class of continuous functions β :R+

0 ×R
+
0 → R

+
0 with limt→∞β(r, t) = 0

for each r > 0 and β(., t) ∈ K∞ or β(., t) ≡ 0, p. 125
L Class of continuous functions δ :R+

0 → R
+
0 which are strictly decreasing with

limt→∞δ(t) = 0, p. 29
L∞(R,Rm) Space of locally Lebesgue integrable functions from R to Rm , p. 17
N Natural numbers, p. 13
N0 Natural numbers including zero, p. 13
N∞ Natural numbers including ∞, p. 13
P ⊂ X Practical stability region, p. 31
P(n) ⊂ X Time-varying practical stability region, p. 32
P Index set of subsystems p, p. 259
Q := {p} ∪ I p ⊂ P Partial index set for subsystem p, p. 265
R Real numbers, p. 13
R

+
0 Nonnegative real numbers, p. 29

S ⊆ X Domain of a Lyapunov function, p. 33
S(n) ⊆ X State space component of the domain of a time-varying Lyapunov func-

tion, p. 36
S ⊆ N0 × X Domain of a time-varying Lyapunov function, p. 36
S(d,e)(x0) Set of all perturbed trajectories with bounded perturbation and measure-

ment errors, p. 192
(Sp)p∈P Decomposition of S for index set P , p. 261
T
(z) ⊆ R

nz Tangent cone, p. 385
U Control value space p, p. 13
UN Set of finite horizon control sequences, p. 13
U∞ Set of infinite horizon control sequences, p. 13
U(x) ⊆ U Control constraint set, p. 48

Appendix B: Glossary 443

U
N (x) ⊆N Set of admissible finite horizon control sequences, p. 47

U
∞(X) ⊆ U

∞ Set of admissible infinite horizon contro sequences, p. 48
U

N
X0

(x),UN
X0

(n, x) ⊆ UN Set of admissible finite horizon control sequences for
terminal constraint set X0, p. 55

U p Control value space of subsystem p, p. 259
˜U p Neighboring control value space of subsystem p required for evaluation, p.

261
U

p
Neighboring control value space of subsystem p not required for evaluation,

p. 261
U

p ⊆ U p Control constraint set for subsystem p, p. 277
U

p,N (x p
0 , i p) ⊆ U p,N Set of admissible finite horizon control sequences for sub-

system p, p. 268
U

p,N
X

p
0

(x P
0 , i p) ⊆ U p,N Set of admissible finite horizon control sequences for ter-

minal constraint set XP
0 for subsystem p, p. 309

V
τ (x) ⊆ L∞([0, τ],Rm) Set of admissible continuous time control functions,
p. 309

V−1
N ([0, L]) sublevel set of VN ,V

−1
N ([0, L]) := {x ∈ X|VN (x) ∈ [0, L]}, p. 389

WK ⊆ E ∪ I Working set of optimization algorithm, p. 396
W q

K ⊆ E ∪ I Working set of problem (EQPq), p. 13
X State space, p. 48
X ⊆ X State constraint set, p. 54
X0,XN (n) ⊂ X Terminal constraint set, p. 55
XN ,XN (n) ⊂ X Feasible set for terminal constraint set X0 and horizon N, p. 55
X

k ⊆ X Time dependent state constraint set p. 204
X p State space of subsystem p, p. 259
X

P State constraint set for subsystem p, p. 260
˜XP Neighboring state space of subsystem p required for evaluation, p. 261
X

P
0 ⊂ X P Terminal constraint set for subsystem p, p. 286

X
P

Neighboring state space of subsystem p not required for evaluation, p. 261
X

P
N (i P) ⊂ X P Feasible set for terminal constraint set XP

0 for subsystem p, p. 268
Y ⊆ X Forward invariant subset of the state space, p. 30
Y (n) ⊆ X Forward invariant family of subsets of the state space, p. 32
Y Output space, p. 304
Y ⊆ X ×U Set of admissible pairs, p. 48

 ⊂ R

nz Feasible set of an optimization problem, p. 385

Variables

αk ∈ [0, 1] Step length in optimization algorithm, p. 384
α ∈ (0, 1] Suboptimality parameter, p. 80
α ∈ (0, 1) Suboptimality threshold, p. 325
γk ∈ R

+
0 Auxiliary values in Formula 6.18, γk = BK (r)/r , p. 133

 ∈ R
+
0 Radius of semi-global asymptotic stability region, p. 154

δ ∈ R
+
0 Radius of practical asymptotic stability region, p. 154

δ ∈ R
+
0 Radius of feasible ball around x∗, p. 185

444 Appendix B: Glossary

λ ∈ R
+
0 Weight of control penalization in stage cost, p. 46

λk ∈ R
+
0 Stage cost values along an optimal trajectory, p. 13

λ ∈ R
dc Lagrange multiplier in optimization problem, p. 287

λ ∈ R
rg+rh Lagrange multiplier in optimization problem, p. 387

λ∗ ∈ R
rg+rh Optimal Lagrange multiplier in optimization problem, p. 387

λWk ∈ R
rWK Lagrange multiplier for working set Wk , p. 390

˜λWk ∈ R
rg+rh Full Lagrange multiplier for working set Wk , p. 390

˜λWk,∗ ∈ R
rg+rh Full optimal Lagrange multiplier of problem (ECP), p. 392

λ
(EQP)
k ∈ R

rWK Optimal Lagrange multiplier of problem (EQP), p. 392
˜λk

(EQP) ∈ R
rg+rh Full optimal Lagrange multiplier of problem (EQP), p. 392

ν ∈ R
+
0 Value of the optimal value function VN (xu∗(1, x)), p. 157

σ ∈ (0, 1) Decay rate in exponential controllability, p. 126
τc ∈ R

+
0 Computing time required to solve an optimal control problem, p. 47

τmax
c ∈ R

+
0 Maximal allowable computing time, p. 313

ωN−k ∈ R
+
0 Weights in cost functional, p. 55

Q ∈ R
d×dc Linearization for local constraints regarding states xu(·,x0), p. 289

R ∈ R
m×dc Linearization for local constraints regarding controls u(·), p. 289

c ∈ R
dc Right hand side for local constraints, p. 289

C ∈ R
+
0 Overshoot parameter in exponential controllability, p. 126

cn ∈ R
+
0 Coefficients for finite time controllability, p. 126

d ∈ R
+
0 Upper bound of additive perturbation sequence d : N0 → X , p. 192

dk ∈ R
nz Search direction in optimization algorithm, p. 383

dq
k ∈ R

nz Iterates for computing dk via problem (EQPq), p. 395
e ∈ R

+
0 Upper bound of measurement error sequence e : N0 → X , p. 192

hi ∈ R
+ Step size for time grid and one step method, p. 345

hi ∈ R
+ Maximal step size for time grid and one step method, p. 344

i P(n) ∈ I P Neighboring data of subsystem, p. 262
N ∈ N Neighboring data of subsystem, p. 46
Nn ∈ N Adapted optimization horizon, p. 326
nz ∈ N Dimension of optimization variable of an optimization problem, p. 367
pq ∈ R

nz Optimization variable in problem (EQPq), p. 396
p ∈ P Index of subsystems, p. 259
pg ∈ N0 Number of equality constraints describing a set, p. 52
p ∈ N Number of subsystems p ∈ P , p. 261
ph ∈ N0 Number of inequality constraints describing a set, p. 52
rg ∈ N0 Number of equality constraints of an optimization problem, p. 265
rh ∈ N0 Number of inequality constraints of an optimization problem, p. 265
rs ∈ N0 Number of shooting nodes, p. 376
rWk ∈ N0 Number of elements in the working set Wk , p. 390
s ∈ R

rs Shooting node values, p. 376
t0 ∈ R Initial time of a trajectory, p. 16
tn ∈ R Sampling times, p. 17
T ∈ R

+ Sampling period, p. 17
Topt ∈ R

+ Optimization horizon in continuous time, p. 64

Appendix B: Glossary 445

u ∈ U Control value, p. 13
u∗ ∈ U Control value in equilibrium, p. 46
ue ∈ U Control value in optimal equilibrium, p. 220
u p ∈ U Control value of subsystem, p. 262
ũ p ∈ ˜U p Neighboring control of the subsystem p required for evaluation, p. 261
u p ∈ U

p
Neighboring control of the subsystem p not required for evaluation, p.

261
x ∈ X State of the system, p. 13
x+ ∈ X State at the next time instant, p. 13
x0 ∈ X Initial value of a trajectory, p. 13
x p

∗ ∈ X p Equilibrium for subsystem p, to be stabilized, p. 269
x p,ref : N0 → X p Reference trajectory for subsystem p, to be stabilized, p. 286
x∗ ∈ X Equilibrium, to be stabilized, p. 28
xe ∈ X Optimal equilibrium, p. 220
x p ∈ X p State of the subsystem p, p. 262
x p
0 ∈ X p Initial value of a trajectory of subsystem p, p. 271
x̃ p ∈ X̃ p Neighboring states of the subsystem p required for evaluation, p. 261
x̄ p ∈ X̄ p Neighboring states of the subsystem p not required for evaluation, p. 261
z ∈ R

nz Optimization variable of the optimization problem, p. 37
z� ∈ R

nz Optimal solution of optimization problem, p. 374
zk ∈ R

nz Iterates of optimization variable,z0 is the initial guess, p. 374

Functions

|z1|z2 Distance between z1, z2 ∈ Z , brief notation for |z1|z2 = dZ (z1, z2), p. 30
||x || Norm of x in a vector space, p. 2
α1 ∈ K∞ Lower bound of a Lyapunov function V, p. 33
α2 ∈ K∞ Upper bound of a Lyapunov function V, p. 33
α3 ∈ K∞ Lower bound of the minimal stage cost function l∗, p. 135
α4 ∈ K∞ Upper bound of the minimal stage cost function l∗, p. 135
αV ∈ K∞ Bound of the decrease of a Lyapunov function V, p. 33
ᾱW ∈ K∞ Upper bound of W in detectability condition, p. 304
αW ∈ K∞ Bound for the decrease of W in detectability condition, p. 304
β ∈ K L Comparison function used for stability analysis, p. 30
γW ∈ K∞ Bound for the increase of W in detectability condition, p. 304
i : {1, . . . , rs} → {1, . . . , d} Shooting state index function, p. 376
κ : X0 → U Local feedback map on terminal constraint set X0, p. 334
λ : X → R Storage function, p. 223
μ : X → U State feedback law, p. 15
μ : N0 × X → U Time-varying state feedback law, p. 32
μN : X → U NMPC-feedback law, p. 48
μN : N0 × X → U Time-varying NMPC-feedback law, p. 55
με

N : X → U NMPC-feedback law computed from numerical model f ε, p. 360
μ∞ : N0 × X → U Infinite horizon optimal feedback law, p. 77
μ

p
N : X p × I p → U p Local NMPC-feedback law, p. 261

446 Appendix B: Glossary

μα : N0 × X → U Suboptimal asymptotically stabilizing feedback law, p. 84
π : S → S Idempotent linear map or projection, p. 261
ϕ(·, t0, x0, v) : R → R

d Continuous time open-loop trajectory, p. 16
(π p)p∈P with π p : S → S Set of idempotent linear maps or projections, p. 261
π P
X : X → X Projection with such that Im(π P

X) = X p, p. 261
π P
X : X → X Projection with such that Im(π P

U) = U p, p. 261
ϕ̃(·, t0, x0, v) : G → R

d Numerical approximation of ϕ(·, t0, x0, v), p. 344
Φ : Rd × U × R → R

d Numerical one step method, p. 345
ζ : {1, . . . , rs} → {0, . . . , N } Shooting time index function, p. 376
ω ∈ K Modulus of continuity, p. 194
BK : R+

0 → R
+
0 Upper bound of the cost functional JN , p. 126

C : Rnz → R
rg+rh Constraint function of an optimization problem, p. 387

CWk : Rnz → R
rk Constraint function for working set Wk , p. 390

dZ : Z × Z → R
+
0 Metric on a metric space Z, p. 13

d : N0 → X Perturbation sequence, p. 192
e : N0 → X Measurement error sequence, p. 192
e : G → R

+
0 Approximation error of one step method, p. 348

F : X → R
+
0 , F : N0 × X → R

+
0 Terminal cost function, also denoted FJ in

Chap.12, p. 55
F : Rnz → R

+
0 Cost function of an optimization problem, p. 372

F̃ : X ×U → R
+
0 Rotated or modified terminal cost function, p. 226

F p : X p × I p → R
+
0 Terminal cost function for subsystem, p. 268

f : X ×U → X Transition map of a discrete time control system, p. 13
f ε : X ×U → X Numerically approximated transition map, p. 363
fc : Rd × R

m → R
d Vector field of a continuous time control system, p. 16

f p : Rd p × R
mp → R

mp
Transitionmap of th pth discrete time control subsystem,

p. 262
g : X → X Transition map of a discrete time system, p. 29
g : N0 × X → X Transition map of a time-varying discrete time system, p. 33
GS

i : X ×U → R Equality constraint function of a set, p. 53
HS
i : X ×U → R Inequality constraint function of an optimization problem, p.
53

h : X → Y Output function, p. 305
JN : X ×UN → R

+
0 Finite horizon cost functional, p. 47

J̃N : X ×UN → R
+
0 Rotated or modified finite horizon cost functional, p. 226

J∞ : N0 × X ×U∞ → R
+
0 Infinite horizon cost functional, p. 72

J cl∞(·, ·, μ) : N0 × X → R
+
0 Infinite horizon cost of closed-loop trajectory, p. 80

J̄ cl∞(·, μ) : X → R
+
0 Averaged infinite horizon cost of closed-loop trajectory, p.

223
J cl
N (·, μ) : X → R

+
0 Finite horizon cost of closed-loop trajectory, p. 223

J uc
N : X ×UN → R

+
0 , J uc∞ : X ×UN → R

+
0 Cost functionals without terminal

conditions (Sect. 8.4 only), p. 229
J p
N : X p ×U p,N × I p → R

+
0 Finite horizon cost functional for subsystem, p. 268

� : X ×U → R
+
0 Stage cost function, p. 47

Appendix B: Glossary 447

� : N0 × X ×U → R
+
0 Time-varying stage cost function, p. 53

�� : X → R
+
0 Minimal stage cost function, p. 125

�� : N0 × X → R
+
0 Minimal time-varying stage cost function, p. 143

�̃ : X ×U → R
+
0 Rotated or modified stage cost function, p. 225

�̃ : X ×U → R
+
0 Stage cost function for inverse optimality, p. 113

�p : X p ×U p × I p → R
+
0 Stage cost function for subsystem, p. 272

L : X ×U → R
+
0 Running cost function of an integral form stage cost, p. 46

L : Rnz × R
rg+rh → R Lagrangian of an optimization problem, p. 387

L : XN+1 ×UN → R Lagrangian of an optimization problem, p. 288
M : Rnz × R

nz+ → R
2nz KKT condition vector of problem (ECP), p. 391

S : Rnz → R
nN Equality constraint function in multiple shooting nodes, p. 395

u : {0, . . . , N − 1} → U Finite horizon control sequence, p. 14
u : N0 → U Infinite horizon control sequence, p. 13
u� : {0, . . . , N − 1} → U Finite horizon optimal control sequence, p. 48
u� : N0 → U Infinite horizon optimal control sequence, p. 70
uref : N0 → U Reference control sequence, p. 70
ux : {0, . . . , N − 1} → U Control sequence in controllability assumption, p. 125
u j
n : {0, . . . , N − 1} → U Control sequence provided by iterative optimization
method, p. 331

u p,� : {0, . . . , N − 1} → U p Finite horizon optimal control sequence of subsys-
tem, p. 261

v : R → R
m Control function in continuous time, p. 16

V : S → R
+
0 Lyapunov function, p. 33

V : S → R
+
0 Time-varying Lyapunov function, p. 36

VN : N0 × X → R
+
0 Finite horizon optimal value function, p. 59

ṼN : X → R
+
0 Rotated or modified finite horizon optimal value function, p. 226

V∞ : N0 × X → R
+
0 Infinite horizon optimal value function, p. 70

V uc
N : X → R

+
0 , V uc∞ : X → R

+
0 Optimal value functions without terminal condi-

tions (Sect. 8.4 only), p. 229
W : X → R

+
0 Auxiliary function in detectability condition, p. 304

xu(·, x0), xu : {0, . . . , K − 1} → X Predicted or open-loop trajectory, p. 14
xμN (·, x0), xμN : N0 → X Nominal NMPC closed-loop trajectory, p. 48
x̃μN (·, x0), x̃μN : N0 → X Perturbed NMPC closed-loop trajectory, p. 192
xε

με
n
(·, x0), xε

με
n
: N0 → X Numerical NMPC closed-loop trajectory, p. 360

x̃ε
με
n
(·, x0), x̃ε

με
n
: N0 → X Perturbed numerical NMPC closed-loop trajectory, p.

360
xexμε

n
(·, x0), xexμε

n
: N0 → X Exact closed-loop trajectory with numerical NMPC-

feedback law με
N , p. 360

x ref : N0 → X Reference trajectory, to be stabilized, p. 28
x p
u p (·, x p

0 , i p), x p
u p : {0, . . . , K − 1} → X

p Predicted or open-loop trajectory of
subsystem, p. 268

Index

A
Active set, 387

algorithm, see Optimization algorithm
approximation, 390
change, 424
LICQ, see Constraint qualification

Admissible
control sequence, 48, 55, 72, 177, 204,
261, 265, 268, 286, 335

control value, 48
feedback, 48, 51, 63, 80, 179
pair, 48
state, 48, 72
trajectory, 48, 186, 204, 276

Algorithm
differential equations , see Differential
equation solver

NMPC, see NMPC algorithm
optimization, see Optimization algo-
rithm

step size control, see Differential equa-
tion solver

Approximation
differential equation, see Differential
equation solver

discrete time, see Transition map
error, see Error
Hessian, 384, 395, 405, 410
linear, 386, 388, 423
local, 261, 384, 386
quadratic, 386, 390, 399–401, 407
sensitivity, 424
value function, 66

Attraction, 31, 333, 335, 336, 340
rate, 30, 32, 82

Attractivity, see Attraction
Automatic differentiation, 422

Averaged performance, see Performance

B
Barrier method, 403
Bellman’s optimality principle, seeDynamic

programming
Boundedness

uniform incremental, 38
uniform over T , 37, 39, 83

C
Caratheodory’s Theorem, 16
Closed loop

cost, 72, 91, 96, 103, 107, 109, 135, 136,
138, 155, 160, 278, 317, 327, 338

nominal, see Trajectory
perturbed, see Trajectory

Cocycle property, 13, 20
Collocation, 430
Comparison function, 29
Complementarity condition, 388, 404, 424
Computing time, 47, 312, 368, 377, 380, 414,

426
Concatenation, 34, 187
Condensing, 368, 413, 431
Cone

critical, 389, 393
linearized feasible directions, 387
tangent, 386

Consistency, seeDifferential equation solver
Constraint

active, 387, 389, 397, 402, 421
active set, see Active set
additional, 185, 187
blocking, 397, 399

© Springer International Publishing Switzerland 2017
L. Grüne and J. Pannek, Nonlinear Model Predictive Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-46024-6

449

450 Index

condensing, see Condensing
contractive, 298
control, 48, 51, 121, 372
endpoint, 92, 180, 188, 309
equality, 52, 372, 374, 377, 385, 424
induced by dynamics, 371
induced by shooting node, 377, 413
inequality, 52, 372, 374, 377, 385, 390,
402, 424

initial value, see Initial value
Jacobian, see Jacobian
linearization, 387, 392, 411, 421, 422,
429

number of, 368, 374, 377
set of equality constraints, 52, 266
set of inequality constraints, 52, 266
slack variable, see Slack variable
state, 48, 121, 135, 179, 261, 372

time varying, 204
terminal, 53, 54, 100, 180, 199, 204, 209,
224, 286, 297, 334, 372, see also Ter-
minal condition

tightening, 205, 210
trust-region, 400, 407
violation, 388, 398, 428
working set, seeWorking set

Constraint qualification
LICQ, 387, 390, 391, 406

Continuity condition, 198, 214
discretization, 371, 376, 413
sufficient, 209
uniform, 209, 211

Control
constraint, see Constraint
feedback, see Feedback
function

admissible, 310
measurable, 17, 28, 128

horizon, 65, 306, 323
non-optimal, 332, 426
optimal sequence, 47, 59, 64, 72, 78, 129,
418
existence, 59, 86

redesign, 24, 329
reference, see Reference
sequence, 13, 20, 58, 373

admissible, 47, 48, 55, 72, 177, 204,
276, 286, 336
admissible extension, 93, 298

suboptimal, see Suboptimality
value, 13

admissible, 48
Control system

approximation, 344, 357, 359, 360
of the solution, 345

augmented, 358, 409
continuous time, 16, 37, 46, 124, 198,
308, 311, 343, 368

discrete time, 13, 124, 310, 368
distributed, 259, 263, 275, 283, 290
networked, 307, 315
open-loop, see Trajectory
output, 10, 66, 304

Controllability
assumption, 45, 72, 79, 85, 124, 126, 129,
144, 184, 206, 310

asymptotic, 79, 85, 98, 125, 189
uniform, 72, 209

decay rate, 126, 144
exponential, 124, 126, 133, 136, 144, 310
finite time, 99, 126, 133, 189
overshoot, 126, 144
small control property, 72, 79, 85

Convergence
differential equation solver, seeDifferen-
tial equation solver

optimization, see Optimization
Cost function, 45

decentralized, 273
decrease, 385, 394, 406
discretized, 372, 374, 377
distributed, 269, 275, 278, 283
gradient, 381, 383
Hessian, 383, 384, 424
running cost, 46, 53, 65, 82, 358, 409
stage cost, 46, 73, 93

design, 127, 144, 188, 305, 316
distributed, 271, 283
integral form, 46, 53, 65, 82, 358, 409
inverse optimality, 113
minimal, 125, 130, 132, 140, 144,

185, 301
non-positive definite, 216, 302
numerical evaluation, 358
time varying, 53

terminal, 224
terminal cost, 53, 55, 99, 100, 297, 309,
368
quasi-infinite horizon, 101

weight, 53, 55, 301, 305, 410
Cost functional

bound, 126, 132, 137, 301
finite horizon, 54, 56
infinite horizon, 72, 80, 107

Index 451

D
Delay compensation, 312
Detectability condition, 173, 216, 304
Differential equation solver, 343, 373, 408

adaptive, 353
consistency, 349, 351

order, 349–351
convergence, 345, 348, 351

order, 345, 351
differential algebraic equation, 363, 431
error, see Error
finite difference, 150, 364
finite element, 364
implicit, 363
local error, 353
one step method, 344, 345
partial differential equation, 364
Runge–Kutta method, 347, 349
step size, 345
step size control, 353

algorithm, 355, 357, 360
tolerance, see Tolerance
usage in NMPC, 357, 359

Direction
feasible, see Feasible
search, 290, 384, 390, 409, 414

Directional derivative, 409
Discretization of differential equation, see

Differential equation solver
Discretization of optimal control problem

combination with shift method, 424
condensing, see Condensing
full, 371, 419
in NMPC, 408
multiple shooting, 375, 413
overview, 367
recursive, 373, 419

Dissipativity, 225
strict, 225

Disturbance, see Perturbation
Dynamic programming, 4

principle, 58, 63, 74, 105, 203
relaxed, 80, 91

E
Equilibrium, 30, 33, 93, 127

endpoint constraint, 92, 180, 188, 286,
309

optimal, 222
Error

measurement, 192–194, 204, 423
initial, 193

modeling, 16, 192, 273
numerical, 192, 193, 348, 353, 355, 361,
371, 416

source, 192, 348, 363, 416
tolerance, see Tolerance

Example
ARP, 24, 329
Artstein’s circles, 200, 205, 211
car, 14, 19, 49, 147, 210, 303
inverted pendulum, 22, 307, 323, 337,
369, 377, 415, 416, 426

nonlinear 1d control system, 127, 137
parabolic PDE, 27, 149
simple 1d control system, 14, 96, 161,
264, 267

Exit set, 180, 181, 215

F
Feasibility, 49, 55, 177, 179, 189, 193, 338,

340
assumption, 182, 185, 337
improvement, 421, 427, 428
recursive, 51, 94, 139, 179, 182, 187, 276,
286

robust-optimal, see Robustness
using exit sets, 180
using stability, 184

Feasible
direction, 386, 389, 395

linearized, 387
point, 179, 385–387, 389, 421
set, see Feasible set
solution, 425, 428

Feasible set
of optimization problem, 385, 387, 402,
403

with terminal constraints, 55, 93, 124,
298, 309

without terminal constraints, 179, 181,
185

Feedback
admissible, 48, 51, 63, 80, 179
computed from numerical model, 360
distributed, 261, 276, 283, 291
finite horizon optimal, 63, 64
infinite horizon optimal, 77, 78, 113, 364
local, 334
multistep, 306, 316, 318
non-robust, 199
performance, see Performance
robust, see Robustness
stabilization, 73, 185

452 Index

stabilizing, see Stability
state, 10, 47, 305
suboptimal, see Suboptimality
zero-order hold, 21

G
Growth condition, 127, 312

H
Hessian, 382, 393, 424

approximation, see Approximation
cost function, see Cost function
second-order conditions, 383
update, see Update

Horizon
adaptation, 325, 410
control, see Control
dependency on stage cost, 144
impact on optimization routine, 369, 408
infinite, 71, 80, 104, 111, 364
initial guess, see Initial guess
length, 45, 55, 59, 65, 93, 107, 124, 135,
182, 316, 320, 370, 410, 417

optimization, 65
performance assumption, 329
prediction, 65
prolongation, 329
shortening, 328
sufficiently large, 138, 154, 188, 191

I
Infeasibility, 178, 191, 339, 429

initial guess, see Initial guess
Initial condition, 20, 29, 32, 47, 80, 343, 358
Initial guess

control, 47, 283, 373, 376, 418, 419, 422,
424
admissible, 335

feasible, 399, 425, 429
infeasible, 420, 425, 428
Lagrange multiplier, see Lagrange mul-
tiplier

optimization horizon, 328
optimization variable, see Optimization
search direction, 395
step size, 355
trust-region radius, 401

Initial state, see Initial value
Initial time, 16, 32, 54, 72, 424
Initial value, 13, 54, 72, 179, 373, 418, 424

admissible, 72

constraint, 419
embedding, 419, 425
in viability kernel, 184
shooting, 376, 414
wrong, 316

Invariance
family of sets, 32, 33, 36, 81, 83
forward, 30, 31, 33, 35, 49, 94, 101, 155,
179, 299

IOSS, see Stability, input/output-to-state
ISS, see Stability, input-to-state

J
Jacobian

constraints, 381, 410, 424
efficient evaluation, 411
Newton’s method, 391
recomputation, see Update
structure, 409, 413

L
Lagrange multiplier, 290, 388

initial guess, 395, 424, 431
local, 421
optimal, 390, 392
update, see Update
working set, 390, 393

Lagrangian, 289, 387, 392, 402
augmented, 408

LICQ, see Constraint qualification
Lie derivative, 350
Line-search, see Optimization algorithm
Linear MPC, seeMPC
Linearization, 104, 107, 124, 137, 299, 387,

411, 422
Lipschitz condition, 16, 311, 349, 351, 364,

422
Lyapunov function, 33, 35, 79, 83, 203, 215,

229, 246, 305, 306, 317
control, 86, 128
converse theorem, 41
terminal cost, 99, 188, 309
time varying, 36, 37

M
Merit function, 399, 401–403, 406, 427

decrease, 400, 405
infeasibility, 428
Maratos effect, see Optimization
nonmonotone strategy, 427
second-order correction, 427

Index 453

Metric, 13, 46, 304
Metric space, 13, 46, 86, 304
Minimization

constrained problem, 368, 385, 390, 392,
395, 396, 402, 403, 407, 420, 422

discretized problem, 373, 374, 377, 420
finite horizon problem, 47, 54, 56, 93, 99,
100, 272, 315, 318, 322, 325, 368

infinite horizon problem, 104
solution, 401
suboptimality estimate, 132, 139, 157
unconstrained problem, 381

Minimizer, 47, 385
approximate, 59, 395, 398, 405
candidate, 383, 385, 388, 394
convergence speed, 384, 394, 405
global, 381
local, 381, 383, 384, 386, 387, 403, 416,
426
strict, 389

Model, see Control system
Modulus of continuity, 195, 198, 205, 362
MPC

linear, 4, 65, 215, 421

N
Newton’s method, 390, 391, 394, 403, 423
NMPC algorithm, 45, 86, 367, 416, 418

adaptive horizon, 325, 328
basic, 47

time varying, 53
decoupled, 313, 314
differential equation solver, 357
distributed, 261, 275, 283, 290
dual mode, 116, 335
economic, 223, 239
explicit, 66
extended, 56

time varying, 56
min-max, 217
non-optimal, 332, 336, 426
quasi-infinite horizon, 101
real-time iteration, 420
with suboptimality estimate, 318, 322

Norm, 13, 46, 53, 65, 141, 192, 401, 405

O
One step method, see Differential equation

solver
Operating range, 179, 189
Optimal

control sequence, see Control

equilibrium, see Equilibrium
operation at steady state, 227
robust, see Robustness

Optimal control problem
finite horizon, 47, 54, 56, 93, 99, 100,
315, 318, 322, 325, 368

infinite horizon, 71, 74, 80, 104, 109
linear-quadratic, 82, 86, 88, 104, 106,
107, 127, 299

local, 272
LQR, see linear-quadratic

Optimality
global, seeMinimizer
improvement, 385, 394, 399, 405, 422,
428

inverse, 107, 113
local, seeMinimizer
termination, 426
tolerance, see Tolerance

Optimization, 15, 29, 47, 52, 191
algorithm, see Optimization algorithm
barrier method, 402, 403
consistent solution, 401
constrained, 385, 390, 402
constraints, see Constraint
continuation method, 402
convex, 381, 396, 399, 430
cost function, see Cost function
fraction to boundary rule, 404
indirect method, 430
initial guess, 48, 326, 329, 336, 375, 377,
384, 399, 416, 418, 419, 422, 424, 427

(IPM), see Optimization algorithm
iteration step, 378, 391, 395, 404, 420,
423

local quadratic convergence, 391, 418
Maratos effect, 427
merit function, seeMerit function
necessary condition, 383, 388–390, 402,
415, 423, 426

neighboring solution, 423
nonconvex, 405, 416
number of iterations, 332, 336, 419, 426,
429

one-dimensional problem, 384
penalty parameter, 406, 423
perturbed necessary condition, 403
perturbed problem, 424
quadratic model, 401, 408
quadratic problem, 390, 394, 408
residual, 401, 407
search direction, see Direction
slack variable, see Slack variable

454 Index

solution, 381, 391, 393, 419, 422, 423,
426

(SQP), see Optimization algorithm
step length, 384, 392, 396, 397, 399, 407
structure of derivatives, 409
sufficient condition, 384, 389, 404
termination, 395, 399, 405, 414, 429
tolerance, see Tolerance
unconstrained, 380
variable, 368, 372, 373, 376, 419

Optimization algorithm
active set, 390, 413
active set parametric, 422
active set (IQP), 398
active set (SQP), 395
interior point method (IPM), 380, 389,
402, 405, 413, 422

line-search, 384, 399, 400, 403, 406, 428
line-search (SQP), 400
sequential quadratic programming
(SQP), 380, 389, 392, 413, 419

trust-region, 384, 399, 400, 403, 407, 428
trust-region (SQP), 401

Output, see Control system, output

P
Parallelization, 290, 315, 413, 414, 431
Penalty method, 408
Performance, 135, 144, 189, 317, 325, 340

assumption, 326, 329
averaged, 224, 241
closed loop, 54, 80, 107, 338
estimate, see Suboptimality
non-averaged, 236, 250
transient, 238, 252

Perturbation, 31, 192, 193, 313, 316, 421,
423, 426

additive, 193
constraint, 411
parameter, 403
sequence, 193, 194, 361
trajectory, see Trajectory

Pontryagin’s maximum principle, 4, 430
Prediction, 15, 47, 53, 96, 272, 275, 283, 313,

344, 357, 359, 418
for delay compensation, 313
horizon length, see Horizon
model, 46, 192, 313, 316, 424

R
Reference

constant, 29, 45, 72, 92, 100, 192, 195,
198, 213, 304, 359

continuous time, 53
control sequence, 53, 72, 79, 84
cost function, 45, 46, 53, 65, 144
set, 65
terminal set, 100, 188
time varying, 32, 36, 53, 99, 106, 154,
198, 287, 314, 318, 322, 325, 420

trajectory, 29, 36, 72, 79, 84, 302, 375,
378

Riccati equation, 66, 104, 106–108
fake, 116

Robustness, 16, 113, 192
non-robust example, 199, 205
optimal feasible, 205
stability, see Stability, robust
w.r.t. numerical error, 363, 416
with state constraints, 204, 209
without state constraints, 194

Running cost, see Cost function, running
cost

S
Sampled data system, see System
Sampling, 16

fast, 66, 113, 308, 332
instant, 45, 53, 313, 338, 377, 413
intersampling behavior, 46
interval, 21, 46, 309, 343, 353
multirate, 21, 420
period, 17, 37, 39, 47, 82, 309, 311, 312,
337, 424

time, 17, 20, 37, 51, 344, 350, 353, 359
zero order hold, 21, 39, 309, 344

Sensitivity, 398
based warm start, 316, 422, 425, 429
inconsistent approximation, 424

Shift method, 424, 429, 431
Shooting, 368, 430

boundary value problem, 375
constraint, see Constraint
dimension index, 376
initial guess, 378
multiple, see Discretization of optimal
control problem

node, 375, 376, 413, 416, 429
time, 375, 376

Slack variable, 400, 402, 404
Sontag’s KL -Lemma, 73, 128
Stability, 29, 31, 91, 135, 188, 189, 333

Index 455

asymptotic, 30, 33, 36, 79, 81, 84, 96,
103, 135, 138, 155, 187, 278, 304, 306,
317, 328, 335, 336
continuous time, 39, 82, 83
nonuniform, 32
P-practical, 31, 35, 37, 84
P-practical uniform, 33
uniform, 32

continuous time asymptotic, 362
effect of numerical error, 359
in the sense of Lyapunov, 31
input-to-state, 29, 41, 194
input/output-to-state, 304
non-optimal, 86, 332, 426
P-practical asymptotic, 155
robust, 193–195, 198, 206, 213, 416
semiglobal asymptotic

w.r.t. horizon N , 154, 299
semiglobal practical asymptotic

w.r.t. horizon N , 155, 159, 248, 305
w.r.t. numerical error, 361–363
w.r.t. perturbation, see Stability, ro-

bust
unstable, 139, 147

Stage cost, see Cost function, stage cost
State

admissible, 48, 72
augmented, 65
constraint, seeConstraint, seeConstraint
feedback, see Feedback, state
forward invariant set, see Invariance
initial, see Initial value
measurement, 10, 47, 54, 56, 261, 275,
283, 314, 318, 322, 325

space, 13, 192, 198
Step size control, see Differential equation

solver
Strict dissipativity, see Dissipativity
Submultiplicativity, 128, 133, 139, 144, 169,

171
Suboptimality, 91, 107, 188, 325

estimate, 81, 84, 91, 96, 103, 109, 113,
135, 136, 138, 155, 160, 189, 278, 305,
316, 317, 327, 337, 371
a posteriori, 317, 318, 327
a priori, 321, 322

feedback, 84
formula, 130, 133, 134, 144, 163, 306,
312

non-optimal, 336, 426
stability condition, 136
terminal weight, 301
tightness, 139, 311

System
closed loop, see Trajectory
continuous time, see Control system
discrete time, see Control system
infinite dimensional, 27, 40, 59, 149, 199,
215, 363

sampled data, 16, 20, 37, 39, 46, 51, 82,
113, 128, 198, 215, 308, 350, 360, 362,
368, 418

sampled data closed loop, see Trajectory

T
Tangent cone, see Cone
Taylor

approximation, 350, 355, 358, 392
theorem, 381, 382, 386, 387

Terminal conditions, 50, 55, 91, 188, 197,
199, 224, 304, 306

Terminal constraint, see Constraint
Terminal cost function, see Cost function
Time grid, 345, 351, 409

adaptive, 353, 356
equidistant, 360
grid function, 345
in NMPC algorithm, 359
step size, 345

maximal, 345, 352
sufficiently small, 353, 360

Tolerance
differential equation solver, 344, 354–
356, 358, 360, 408, 414

optimization routine, 373, 395, 406, 408,
414, 426

Trajectory
admissible, 48, 186, 194, 204
closed loop

nominal, 47, 54, 80, 84, 96, 103, 107,
109, 135, 147, 194, 277, 278, 299, 316,
317, 325, 360
perturbed, 192, 193, 195, 198, 199,

206, 213, 360
sampled data, 37, 39, 82, 83
unstable, 139, 147

continuous time, 17, 37, 46, 51, 82, 83,
343, 353

discrete time, 13, 20
infeasible, 178
non-optimal, 171, 332, 428
numerical, 360
open loop, 93, 96, 109, 124, 129, 157,
192, 198, 205, 299, 357, 371, 375, 411,
412, 418, 422, 424

456 Index

optimal, 59, 64, 72, 78, 130
reference, see Reference

Transition map, 13, 29, 32
approximation, 22, 344, 345, 357, 359,
360, 371

Trust-region, see Optimization algorithm
radius, 385, 401, 407

update, see Update
Turnpike property, 232, 234, 256

U
Update

active set, 390
Hessian of cost function, 395, 410
initial value, 420
Jacobian of cost function, 411, 422
Lagrange multiplier, 289, 395, 400, 402,
406–408

nonlinear, 424
optimization variable, 392, 395, 400,
402, 406–408

real-time iteration, 420

search direction, 399
trust-region radius, 402, 408
working set, 391, 395, 398

V
Value function

bounds, 73, 92, 97, 103, 126, 185, 304
continuity, 204
finite horizon, 59, 92, 122, 187, 305
infinite horizon, 72, 104, 109, 122
uniformly continuous, 211, 213

Vector space, 192
Viability, 49, 72, 100, 139, 298

assumption, 49, 50, 122, 214
kernel, 179, 184, 191
terminal constraint set, 189

W
Working set, 390, 395, 396

update, see Update

	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Introduction
	1.1 What Is Nonlinear Model Predictive Control?
	1.2 Where Did NMPC Come From?
	1.3 How Is This Book Organized?
	1.4 What Is Not Covered in This Book?
	References

	2 Discrete Time and Sampled Data Systems
	2.1 Discrete Time Systems
	2.2 Sampled Data Systems
	2.3 Stability of Discrete Time Systems
	2.4 Stability of Sampled Data Systems
	2.5 Notes and Extensions
	References

	3 Nonlinear Model Predictive Control
	3.1 The Basic NMPC Algorithm
	3.2 Constraints
	3.3 Variants of the Basic NMPC Algorithms
	3.4 The Dynamic Programming Principle
	3.5 Notes and Extensions
	References

	4 Infinite Horizon Optimal Control
	4.1 Definition and Well Posedness of the Problem
	4.2 The Dynamic Programming Principle
	4.3 Relaxed Dynamic Programming
	4.4 Notes and Extensions
	References

	5 Stability and Suboptimality Using Stabilizing Terminal Conditions
	5.1 The Relaxed Dynamic Programming Approach
	5.2 Equilibrium Endpoint Constraint
	5.3 Lyapunov Function Terminal Cost
	5.4 Suboptimality and Inverse Optimality
	5.5 Notes and Extensions
	References

	6 Stability and Suboptimality Without Stabilizing Terminal Conditions
	6.1 Setting and Preliminaries
	6.2 Bounds on VN and Asymptotic Controllability with Respect to ell
	6.3 Implications of the Bound on VN
	6.4 Computation of α
	6.5 Main Stability and Performance Results
	6.6 Design of Good Stage Costs ell
	6.7 Semiglobal and Practical Asymptotic Stability
	6.8 Proof of Proposition 6.18
	6.9 Notes and Extensions
	References

	7 Feasibility and Robustness
	7.1 The Feasibility Problem
	7.2 Feasibility of Unconstrained NMPC Using Exit Sets
	7.3 Feasibility of Unconstrained NMPC Using Stability
	7.4 Comparing NMPC with and Without Terminal Conditions
	7.5 Robustness: Basic Definition and Concepts
	7.6 Robustness Without State Constraints
	7.7 Examples for Nonrobustness Under State Constraints
	7.8 Robustness with State Constraints via Robust-Optimal Feasibility
	7.9 Robustness with State Constraints via Continuity of VN
	7.10 Notes and Extensions
	References

	8 Economic NMPC
	8.1 Setting
	8.2 Averaged Performance with Terminal Conditions
	8.3 Asymptotic Stability with Terminal Conditions
	8.4 Non-averaged and Transient Performance with Terminal Conditions
	8.5 Averaged Optimality Without Terminal Conditions
	8.6 Practical Asymptotic Stability Without Terminal Conditions
	8.7 Non-averaged and Transient Performance Without Terminal Conditions
	8.8 Notes and Extensions
	References

	9 Distributed NMPC
	9.1 Background and Problem Formulation
	9.2 Classification of Connectedness
	9.3 Problem Classes for Different Levels of Connectedness
	9.4 Asymptotic Stability and Convergence
	9.5 Communication and Coordination Schemes
	9.6 Notes and Extensions
	References

	10 Variants and Extensions
	10.1 Schemes with Mixed Terminal Conditions
	10.2 Unconstrained NMPC with Terminal Weights
	10.3 Nonpositive Definite Stage Cost
	10.4 Multistep NMPC-Feedback Laws
	10.5 Fast Sampling
	10.6 Compensation of Computation Times
	10.7 Online Measurement of α
	10.8 Adaptive Optimization Horizon
	10.9 Nonoptimal NMPC
	References

	11 Numerical Discretization
	11.1 Basic Solution Methods
	11.2 Convergence Theory
	11.3 Adaptive Step Size Control
	11.4 Using the Methods Within the NMPC Algorithms
	11.5 Numerical Approximation Errors and Stability
	11.6 Notes and Extensions
	References

	12 Numerical Optimal Control of Nonlinear Systems
	12.1 Discretization of the NMPC Problem
	12.2 Unconstrained Optimization
	12.3 Constrained Optimization
	12.4 Implementation Issues in NMPC
	12.5 Warm Start of the NMPC Optimization
	12.6 Nonoptimal NMPC
	12.7 Notes and Extensions
	References

	Appendix A NMPC Software Supporting This Book
	Appendix B Glossary
	Index

