
Chapter 5

The Zeta Function of an Algebraic
Number Field and Some Applications

At the end of Sect. 4.6 of Chap. 4, we left ourselves with the problem of
determining the finite nonempty subsets S of the positive integers such that
for infinitely many primes p, S is a set of non-residues of p. We observed
there that if S has this property then the product of all the elements in every
subset of S of odd cardinality is never a square. The object of this chapter is
to prove the converse of this statement, i.e., we wish to prove Theorem 4.12.
The proof of Theorem 4.12 that we present uses ideas that are closely related
to the ones that Dirichlet used in his proof of Theorem 4.5, together with
some technical improvements due to Hilbert. The key tool that we need is an
analytic function attached to algebraic number fields, called the zeta function
of the field. The definition of this function requires a significant amount of
mathematical technology from the theory of algebraic numbers, and so in
Sect. 5.1 we begin with a discussion of the results from algebraic number
theory that will be required, with Dedekind’s Ideal Distribution Theorem as
the final goal of this section. The zeta function of an algebraic number field
is defined and studied in Sect. 5.2; in particular, the Euler-Dedekind product
formula for the zeta function is derived here. In Sect. 5.3 a product formula
for the zeta function of a quadratic number field that will be required in the
proof of Theorem 4.12 is derived from the Euler-Dedekind product formula.
The proof of Theorem 4.12, the principal object of this chapter, is carried out
in Sect. 5.4 and some results which are closely related to that theorem are
also established there. In the interest of completeness, we prove in Sect. 5.5
the Fundamental Theorem of Ideal Theory, Theorem 3.16 of Chap. 3, since it
is used in an essential way in the derivation of the Euler-Dedekind product
formula.
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120 5 The Zeta Function of an Algebraic Number Field and Some Applications

5.1 Dedekind’s Ideal Distribution Theorem

We have already seen in Sects. 3.11 and 3.12 of Chap. 3 how the factorization
of ideals in a quadratic number field can be used to prove the Law of
Quadratic Reciprocity. The crucial fact on which that proof of quadratic reci-
procity relies is the Fundamental Theorem of Ideal Theory (Theorem 3.16),
the result which describes the fundamental algebraic structure of the ideals
in the ring R of algebraic integers in an algebraic number field F . As we
mentioned in Chap. 3, the Fundamental Theorem of Ideal Theory is due to
Richard Dedekind. In order to define and study the zeta function of F , we will
need another very important theorem of Dedekind which provides a precise
numerical measure of how the ideals of R are distributed in R according
to the cardinality of the quotient rings of R modulo the ideals. This result
is often called Dedekind’s Ideal Distribution Theorem, and the purpose of
this section is to develop enough of the theory of ideals in R so that we can
state the Ideal Distribution Theorem precisely. All of this information will
then be used in the next section to define the zeta function and establish the
properties of the zeta function that we will need to prove Theorem 4.12.

Let F denote an algebraic number field of degree n that will remain fixed in
the discussion until indicated otherwise, and let R denote the ring of algebraic
integers in F . In Sect. 3.11 of Chap. 3, we mentioned that every prime ideal of
R is maximal and that the cardinality of the quotient ring R/I of R is finite
for all nonzero ideals I of R. Consequently, the ideals of R are exceptionally
“large” subsets of R. We begin our discussion here by proving these facts as
part of the following proposition.

Proposition 5.1

(i) An ideal of R is prime if and only if it is maximal.
(ii) If I is a non-zero ideal of R then the cardinality of the quotient ring

R/I is finite.
(iii) If I is a prime ideal of R then there exists a rational prime q ∈ Z such

that I ∩ Z = qZ. In particular q is the unique rational prime contained
in I .

(iv) If I is a prime ideal of R and q is the rational prime in I then R/I
is a finite field of characteristic q, hence there exists a unique positive
integer d such that |R/I | = qd .

Proof The proof of statements (i) and (ii) of Proposition 5.1 depend on the
existence of an integral basis of R. A subset {α1, . . . , αk} of R is an integral
basis of R if for each α ∈ R, there exists a k -tuple (z1, . . . , zk ) of integers,
uniquely determined by α, such that

α =

k∑

i=1

ziαi .
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It is an immediate consequence of the definition that an integral basis
{α1, . . . , αk} is linearly independent over Z, i.e., if (z1, . . . , zk ) is a k -tuple

of integers such that
∑k

i=1 ziαi = 0 then zi = 0 for i = 1, . . . , k . R always
has an integral basis (the interested reader may consult Hecke [27], Sect. 22,
Theorem 64, for a proof of this), and it is not difficult to prove that every
integral basis of R is a basis of F as a vector space over Q; consequently, all
integral bases of R contain exactly n elements.

Now for the proof of (i). Let I be a prime ideal of R: we need to prove that
I is a maximal ideal, i.e., we take an ideal J of R which properly contains I
and show that J = R.

Toward that end, let {α1, . . . , αn} be an integral basis of R, and let 0 �=
β ∈ I . If

xm +

m−1∑

i=0

zix
i

is the minimal polynomial of β over Q then z0 �= 0 (otherwise, β is the root
of a nonzero polynomial over Q of degree less that m) and

z0 = −βm −
m−1∑

1

ziβ
i ∈ I ,

hence ±z0 ∈ I , and so I contains a positive integer a. We claim that each
element of R can be expressed in the form

aγ +

n∑

1

riαi ,

where γ ∈ R, ri ∈ [0, a − 1], i = 1, . . . ,n.
Assume this for now, and let α ∈ J \ I . Then for each k ∈ [1,∞),

αk = aγk +
n∑

1

rikαi , γk ∈ R, rik ∈ [0, a − 1], i = 1, . . . ,n,

hence the sequence (αk − aγk : k ∈ [1,∞)) has only finitely many values;
consequently there exist positive integers l < k such that

αl − aγl = αk − aγk .

Hence

αl (αk−l − 1) = αk − αl = a(γk − γl ) ∈ I (a ∈ I !).
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Because I is prime, either αl ∈ I or αk−l − 1 ∈ I . However, αl �∈ I because
α �∈ I and I is prime. Hence

αk−l − 1 ∈ I ⊆ J .

But k − l > 0 and α ∈ J (by the choice of α), and so −1 ∈ J . As J is an
ideal, this implies that J = R .

Our claim must now be verified. Let α ∈ R, and find zi ∈ Z such that

α =

n∑

i=1

ziαi .

The division algorithm in Z implies that there existmi ∈ Z, ri ∈ [1, a−1], i =
1, . . . ,n, such that zi = mia + ri , i = 1, . . . ,n. Thus

α = a
∑

i

miαi +
∑

i

riαi = aγ +
∑

i

riαi ,

with γ ∈ R.
We verify (ii) next. Let L �= {0} be an ideal of R. We wish to show that

|R/L| is finite. A propos of that, choose a ∈ L ∩ Z with a > 0 (that such
an a exists follows from the previous proof of statement (i)). Then aR ⊆ L,
hence there is a surjection of R/aR onto R/L, whence it suffices to show that
|R/aR| is finite.

We will in fact prove that |R/aR| = an . Consider for this the set

S =
{∑

i

ziαi : zi ∈ [0, a − 1]
}
.

We show that S is a set of coset representatives of R/aR; if this is true then
clearly |R/aR| = |S | = an . Thus, let α =

∑
i ziαi ∈ R. Then there exist

mi ∈ Z, ri ∈ [0, a − 1], i = 1, . . . ,n, such that zi = mia + ri , i = 1, . . . ,n.
Hence

α−
∑

i

riαi =
(∑

i

mi

)
a ∈ aR and

∑

i

riαi ∈ S ,

and so each coset of R/aR contains an element of S .
Let

∑
i aiαi ,

∑
i a

′
iαi be elements of S in the same coset. Then

∑

i

(ai − a′
i)αi = aα, for some α ∈ R.



5.1 Dedekind’s Ideal Distribution Theorem 123

Hence there exists mi ∈ Z such that

∑

i

(ai − a′
i)αi =

∑

i

miaαi ,

and so the linear independence (over Z) of {α1, . . . , αn} implies that

ai − a′
i = mia, i = 1, . . . ,n

i.e., a divides ai − a′
i in Z. Because |ai − a′

i | < a for all i , it follows that
ai − a′

i = 0 for all i . Hence each coset of R/aR contains exactly one element
of S .

In order to verify (iii), note first that the proof of statement (i) implies
that I ∩ Z �= {0} and I ∩ Z �= Z because 1 �∈ I . Hence I ∩ Z is a prime ideal
of Z, and is hence generated in Z by a unique prime number q.

Finally, we prove (iv) by concluding from Proposition 5.1(i) that I is a
maximal ideal of R: a standard result in elementary ring theory asserts that if
M is a maximal ideal in a commutative ring A with identity then the quotient
ring A/M is a field (Hungerford [29], Theorem III.2.20), hence R/I is a field,
and is finite by Proposition 5.1(ii).

To see that R/I has characteristic q, note first that I ∩ Z = qZ, and
so there is a natural isomorphism of the field Z/qZ into R/I such that the
identity in Z/qZ is mapped onto the identity of R/I . Because Z/qZ has
characteristic q, it follows that if 1̄ is the identity in R/I then q 1̄ = 0 in R/I ,
and q is the least positive integer n such that n 1̄ = 0 in R/I . Hence R/I has
characteristic q. QED

Remark It is a consequence of Theorem 3.16 and Proposition 5.1 that R
contains infinitely many prime ideals.

It follows from Proposition 5.1(ii) that if I �= {0} is an ideal of R then
|R/I | is finite. We set

N (I ) = |R/I |,

and call this the norm of I (we defined the norm of an ideal in this way
already in Sect. 3.11 of Chap. 3 for ideals in a quadratic number field). The
norm function N on nonzero ideals is multiplicative with respect to the ideal
product, i.e., we have

Proposition 5.2 If I and J are (not necessarily distinct) nonzero ideals of
R then

N (IJ ) = N (I )N (J ).

Proof Hecke [27], Sect. 27, Theorem 79. QED
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The multiplicativity of the norm function on ideals will play a crucial role
in the derivation of a very important product expansion formula for the zeta
function that will be done in the next section.

Now, let

I = the set of all nonzero ideals of R.

If n ∈ [1,∞), let

Z (n) = |{I ∈ I : N (I ) ≤ n}|.

The following proposition states a very important fact about the parameters
Z (n)!

Proposition 5.3 Z (n) < +∞, for all n ∈ [1,∞).

As a result of Proposition 5.3, (Z (1),Z (2),Z (3) . . . ) is a sequence of pos-
itive integers whose behavior determines how the ideals of R are distributed
throughout R in accordance with the cardinality of the quotient rings of
R. Useful information about the behavior of this sequence can hence be
converted into useful information about the distribution of the ideals in R,
and, as we shall see shortly, the Ideal Distribution Theorem gives very useful
information about the behavior of this sequence. We turn now to the

Proof of Proposition 5.3 Perhaps the most elegant way to verify Proposi-
tion 5.3 is to make use of the ideal class group of R. We defined this group in
Sect. 3.11 of Chap. 3, and for the benefit of the reader, we will recall how that
goes. First declare that the ideals I and J of R are equivalent if there exist
nonzero elements α and β of R such that αI = βJ . This defines an equivalence
relation on the set of all ideals of R, and the corresponding equivalence classes
are the ideal classes of R. If we let [I ] denote the ideal class which contains
the ideal I then we define a multiplication on the set of ideal classes by
declaring that the product of [I ] and [J ] is [IJ ]. It can be shown that when
endowed with this product (which is well-defined), the ideal classes of R form
an abelian group, called the ideal-class group of R. It is easy to see that the
set of all principal ideals of R is an ideal class, called the principal class, and
one can prove that the principal class is the identity element of the ideal-class
group. The ideal-class group is always finite, and the order of the ideal-class
group of R is called the class number of R.

We begin the proof of Proposition 5.3 by letting C be an ideal class of R
and for each n ∈ [1,∞), letting ZC (n) denote the set

{I ∈ C ∩ I : N (I ) ≤ n}.

We claim that |ZC (n)| is finite. In order to verify this, let J be a fixed
nonzero ideal in C−1 (the inverse of C in the ideal-class group), and let
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0 �= α ∈ J . Then there is a unique ideal I such that αR = IJ , and since
[I ] = C [IJ ] = C [αR] = C , it follows that I ∈ C ∩ I. Moreover, the map
αR → I is a bijection of the set of all nonzero principal ideals contained in
J onto C ∩ I. Proposition 5.2 implies that

N (αR) = N (I )N (J ),

hence

N (I ) ≤ n if and only if N (αR) ≤ nN (J ).

Hence there is a bijection of ZC (n) onto the set

J = {{0} �= αR ⊆ J : N (αR) ≤ nN (J )},

and so it suffices to show that J is a finite set.
That |J | is finite will follow if we prove that there is only a finite number

of principal ideals of R whose norms do not exceed a fixed constant. Suppose
that this latter statement is false, i.e., there are infinitely many elements
α1, α2, . . . of R such that the principal ideals αiR, i = 1, 2, . . . are distinct
and (N (α1R),N (α2R), . . . ) is a bounded sequence. As all of the numbers
N (αiR) are positive integers, we may suppose with no loss of generality that
N (αiR) all have the same value z .

We now wish to locate z in each ideal αiR. Toward that end, use the
Primitive Element Theorem (Hecke [27], Sect. 19, Theorem 52) to find θ ∈ F ,
of degree n over Q, such that for each element ν of F , there is a unique
polynomial f ∈ Q[x ] such that ν = f (θ) and the degree of f does not exceed
n − 1. For each i , we hence find fi ∈ Q[x ] of degree no larger than n − 1 and
for which αi = fi(θ). If θ1, . . . , θn , with θ1 = θ, are the roots of the minimal
polynomial of θ over Q, then one can show that

N (αiR) =
∣∣∣

n∏

k=1

fi(θk )
∣∣∣

(Hecke [27], Sect. 27, Theorem 76). Moreover, the degree di of αi over Q

divides n in Z, and if α
(1)
i , . . . , α

(di )
i , with α

(1)
i = αi , denote the roots of the

minimal polynomial of αi over Q , then the numbers on the list fi(θk ), k =

1, . . . ,n, are obtained by repeating each α
(j)
i n/di times (Hecke [27], Sect. 19,

Theorem 54). If c0 denotes the constant term of the minimal polynomial of
αi over Q , it follows that

n∏

k=1

fi(θk ) =
( di∏

k=1

α
(k)
i

)n/di

= ((−1)di c0)
n/di ∈ Z.
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Because fi (θk ) is an algebraic integer for all i and k , it hence follows that

z

αi
= ±

n∏

k=2

fi(θk ) ∈ R ∩ F = R,

whence z ∈ αiR, for all i .
If we now let {β1, . . . , βn} be an integral basis of R then the claim in the

proof of Proposition 5.1(i) shows that for each i there exists γi ∈ R and
zij ∈ [0, z − 1], j = 1, . . . ,n, such that

αi = zγi +
n∑

1

zijβj .

Because z ∈ αiR, it follows that

αiR = zR +
( n∑

1

zijβj

)
R, for all i .

However, the sum
∑n

1 zijβj can have only finitely many values; we conclude
that the ideals αiR, i = 1, 2, . . . cannot all be distinct, contrary to their
choice.

We now have what we need to easily prove that Z (n) is finite. Let
C1, . . . ,Ch denote the distinct ideal classes of R. The set of all the ideals of
R is the (pairwise disjoint) union of the Ci ’s hence {I ∈ I : N (I ) ≤ n} is the
union of JC1(n), . . . ,JCh

(n). Because each set JCi (n) is finite, so therefore
is |{I ∈ I : N (I ) ≤ n}| = Z (n). QED

We can now state the main result of this section:

Theorem 5.4 (Dedekind’s Ideal Distribution Theorem) The limit

lim
n→∞

Z (n)

n
= λ

exists, is positive, and its value is given by the formula

λ =
2r+1πeρ

w
√|d | h,

where

d = discriminant of F ,

e =
1

2
(number of complex embeddings of F over Q),
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h = class number of R,

r = unital rank of R,

ρ = regulator of F ,

w = order of the group of roots of unity in R.

Thus the number of nonzero ideals of R whose norms do not exceed n is
asymptotic to λn as n → +∞.

The establishment of Theorem 5.4 calls for several results from the theory
of algebraic numbers whose exposition would take us too far from what we
wish to do here, so we omit the proof and instead refer the interested reader
to Hecke [27], Sect. 42, Theorem 122. Although we will make no further use
of them, readers who are also interested in the definition of the discriminant
of F and the regulator of F , should see, respectively, the definition on p. 73
and the definition on p. 116 of Hecke [27]. We will define the parameter e and
the unital rank of R in the two paragraphs after the next one. The integers
d , e, h, r ,w , and the real number ρ are fundamental parameters associated
with F which govern many aspects of the arithmetic and algebraic structure
of F and R; Theorem 5.4 is a remarkable example of how these parameters
work in concert to do that.

Although the parameters which are used in the formula for the value of the
limit λ = limn→∞ Z (n)/n are rather complicated to define for an arbitrary
algebraic number field, they are much simpler to describe for a quadratic
number field, so as to gain a better idea of how they determine the asymptotic
behavior of the sequence Z (1),Z (2), . . . , we will take a closer look at what
they are for quadratic fields. Thus, let Q(

√
m) be the quadratic number field

determined by the square-free integer m �= 0 or 1. As we pointed out in
Sect. 3.11 of Chap. 3, the discriminant of Q(

√
m) is either m or 4m, if m is,

or respectively, is not, congruent to 1 mod 4.
In order to calculate the parameter e in Theorem 5.4, one needs to consider

the embeddings of an algebraic number field, i.e., the ring isomorphisms of
the field into the set of complex numbers which fixes each element of Q. An
embedding is said to be real if its range is a subset of the real numbers,
otherwise, the embedding is said to be complex. It can be shown that the
number of embeddings is equal to the degree of the field and that the number
of complex embeddings is even, and so e is well-defined in Theorem 5.4. It
follows that the quadratic field Q(

√
m) has precisely two embeddings: one is

the trivial embedding which maps each element of Q(
√
m) to itself, and the

other is the mapping on Q(
√
m) induced by the algebraic conjugate of

√
m

which sends the element q+ r
√
m for (q, r) ∈ Q×Q to the element q− r

√
m .

It follows that if m > 0 then there are no complex embeddings of Q(
√
m)

and if m < 0 then there are exactly 2 complex embeddings. Thus if m > 0
then e = 0 and if m < 0 then e = 1.

We have already defined the class number h, and so we turn next to the
unital rank r . This parameter is determined by the structure of the group of
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units in an algebraic number field. It can be shown that the group of units in
the ring of algebraic integers R in the algebraic number field F is isomorphic
to the direct sum of the finite cyclic group of roots of unity that are contained
in F and a free abelian group of finite rank r (Hecke [27], Sect. 34, Theorem
100). The rank r of this free-abelian summand is by definition the unital rank
of R. When we now let F = Q(

√
m), it can be shown that if m < 0 then the

group of units of Q(
√
m) has no free-abelian summand, and so r = 0 in this

case. On the other hand, if m > 0 then there is a unit 
 of R in the group
of units U (R) such that U (R) = {±
n : n ∈ Z}. If 
 is chosen to exceed
1 then it is uniquely determined as a generator of U (R) in this way and is
called the fundamental unit of R. It follows that when m > 0, the group of
units of R is isomorphic to the direct sum of the cyclic group of order 2 and
the free abelian group Z, hence the unital rank r is 1 in this case.

The regulator ρ of an algebraic number field F is also determined by the
group of units of R by means of a rather complicated formula that uses a
determinant that is calculated from a basis of the free-abelian summand of
the group of units. For a quadratic number field Q(

√
m) with m < 0, whose

group of units has no free-abelian summand, the regulator is taken to be 1,
and if m > 0 then the regulator of Q(

√
m) turns out to be log
, where 
 is

the fundamental unit of R.
If m > 0 then the group of roots of unity in Q(

√
m) is simply {−1, 1},

and so the order w of the group of roots of unity is 2. If m < 0 then it can
be shown that w is 2 when m < −4, it is 6 when m = −3, and it is 4 when
m = −1.

Taking all of this information into account, we see that for the quadratic
number field Q(

√
m), the conclusion of Theorem 5.4 can be stated as follows:

if m > 0 and 
 is the fundamental unit in R = R∩Q(
√
m) then

lim
n→∞

Z (n)

n
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 log
√
m

h, if m ≡ 1 mod 4,

log
√
m

h, if m �≡ 1 mod 4,

and if m < 0 then

lim
n→∞

Z (n)

n
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2π

w
√|m|h, if m ≡ 1 mod 4,

π

w
√|m|h, if m �≡ 1 mod 4,

where w is 2 when m < −4, 6 when m = −3, and 4 when m = −1. The Ideal
Distribution Theorem for quadratic number fields is in fact due to Dirichlet;
after a careful study of Dirichlet’s result, Dedekind generalized it to arbitrary
algebraic number fields.
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5.2 The Zeta Function of an Algebraic Number Field

We are now in a position to define and study the zeta function. Let F be
an algebraic number field of degree n and let R denote the ring of algebraic
integers in F , as before. Consider next the set I of all nonzero ideals of R. It
is a consequence of Proposition 5.3 that I is countable, and so if s ∈ C then
the formal series

∑

I∈I

1

N (I )s
(∗)

is defined, relative to some fixed enumeration of I. As we shall see, the zeta
function of F will be defined by this series. However, in order to do that
precisely and rigorously, a careful examination of the convergence of this
series must be done first. That is what we will do next.

If we let

L(n) = |{I ∈ I : N (I ) = n}|, n ∈ [1,∞),

then by formal rearrangement of its terms, we can write the series (∗) as
∞∑

n=1

L(n)

ns
. (∗∗)

The series (∗∗) is a Dirichlet series, i.e., a series of the form

∞∑

n=1

an
ns

,

where (an ) is a given sequence of complex numbers. The L-function of a
Dirichlet character is another very important example of a Dirichlet series.

We will determine the convergence of the series (∗) by studying the
convergence of the Dirichlet series (∗∗). This will be done by way of the
following proposition, which describes how a Dirichlet series converges.

Proposition 5.5 Let (an) be sequence of complex numbers, let

S (n) =

n∑

k=1

ak ,

and suppose that there exits σ ≥ 0,C > 0 such that

∣∣∣
S (n)

nσ

∣∣∣ ≤ C , for all n sufficiently large.
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Then the Dirichlet series

∞∑

n=1

an
ns

converges in the half-plane Re s > σ and uniformly in each closed and
bounded subset of this half-plane. Moreover, if

lim
n→∞

S (n)

n
= d

then

lim
s→1+

(s − 1)

∞∑

n=1

an
ns

= d .

Proof ( according to Hecke [27], Sect. 42, Lemmas (a), (b), (c)) Let m and h
be integers, with m > 0 and h ≥ 0, and let K ⊆ {s : Re s > σ} be a compact
(closed and bounded) set. Then

m+h∑

n=m

an
ns

=

m+h∑

n=m

S (n)− S (n − 1)

ns

=
S (m + h)

(m + h)s
− S (m − 1)

ms
+

m+h−1∑

n=m

S (n)
( 1

ns
− 1

(n + 1)s

)

=
S (m + h)

(m + h)s
− S (m − 1)

ms
+ s

m+h−1∑

n=m

S (n)

∫ n+1

n

dx

x s+1
.

If we now use the stipulated bound on the quotients S (n)/nσ, it follows that

∣∣∣
m+h∑

n=m

an
ns

∣∣∣ ≤ 2C

mRe s−σ
+ C |s |

∫ ∞

m

dx

xRe s−σ+1

=
2C

mRe s−σ
+

C |s |
Re s − σ

1

mRe s−σ
.

Because K is a compact subset of Re s > σ, it is bounded and lies at a
positive distance δ from Re s = σ, i.e., there is a positive constant C ′ such
that

Re s − σ ≥ δ and |s | ≤ C ′, for all s ∈ K .
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Hence there is a positive constant C ′′, independent of m and h, such that

∣∣∣
m+h∑

n=m

an
ns

∣∣∣ ≤ C ′′
(
1 +

1

δ

) 1

mδ
, for all s ∈ K .

As m and h are chosen arbitrarily and δ depends on neither m nor h, this
estimate implies that the Dirichlet series converges uniformly on K , and as
K is also chosen arbitrarily, it follows that the series converges to a function
continuous in Re s > σ.

We now assume that

lim
n→∞

S (n)

n
= d ;

we wish to verify that

lim
s→1+

(s − 1)
∞∑

n=1

an
ns

= d .

From what we have just shown, it follows that the Dirichlet series now
converges for s > 1. Let

S (n) = dn + εnn, where lim
n→∞ εn = 0,

ϕ(s) =

∞∑

n=1

an
ns

, s > 1.

Then for s > 1, we have that

|ϕ(s)− dζ(s)| = s
∣∣∣

∞∑

n=1

nεn

∫ n+1

n

dx

x s+1

∣∣∣

< s

∞∑

n=1

|εn |
∫ n+1

n

dx

x s
.

Let ε > 0, and choose an integer N and a positive constant A such that
|εn | < ε, for all n ≥ N , and |εn | ≤ A, for all n. Then

|(s − 1)ϕ(s)− d(s − 1)ζ(s)|

< As(s − 1)

N−1∑

n=1

∫ n+1

n

dx

x
+ εs(s − 1) +

∞∑

n=N

∫ n+1

n

dx

x s

= As(s − 1) logN + εs(s − 1)

∫ ∞

N

dx

x s
.
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Because the last expression has limit ε as s → 1, it follows that

lim
s→1+

(
(s − 1)ϕ(s)− d(s − 1)ζ(s)

)
= 0.

We now claim that

lim
s→1+

(s − 1)ζ(s) = 1;

if this is so, then

lim
s→1+

(s − 1)ϕ(s) = d ,

as desired. This claim can be verified upon noting that

∫ n+1

n

dx

x s
<

1

ns
<

∫ n

n−1

dx

x s
, for all n ∈ [2,∞) and for all s > 1.

Hence

1

s − 1
=

∫ ∞

1

dx

x s
<

∞∑

n=1

1

ns
= ζ(s) < 1 +

∫ ∞

1

dx

x s
=

s

s − 1
,

and so

1 < (s − 1)ζ(s) < s , for all s > 1,

from which the claim follows immediately. QED

Because each function an/n
s is an entire function of s , a Dirichlet series

which satisfies the hypotheses of Proposition 5.5 is a series of functions each
term of which is analytic in Re s > σ and which also converges uniformly on
every compact subset of Re s > σ. Hence the sum of the series is analytic in
Re s > σ.

We wish to apply Proposition 5.5 to the series (∗∗), and so we must study
the behavior of the sequence

Z (n) =

n∑

k=1

L(k).

It is here that we make use of Theorem 5.4; it follows from that theorem that
there is a positive constant λ such that

lim
n→∞

Z (n)

n
= λ,



5.2 The Zeta Function of an Algebraic Number Field 133

whence the sequence (Z (n)/n)∞n=1 is bounded. Therefore the hypotheses of
Proposition 5.5 are satisfied for an = L(n) with σ = 1, hence the series (∗∗)
converges to a function analytic in Re s > 1.

We now let s > 1. Because L(n) ≥ 0 for all n, the convergence of (∗∗) is
absolute for s > 1, hence we can rearrange the terms of (∗∗) in any order
without changing its value. It follows that the value of the series

∑

I∈I

1

N (I )s

for s > 1 is finite, is independent of the enumeration of I used to define the
series, and is given by the value of the Dirichlet series (∗∗).
Definition The (Dedekind-Dirichlet) zeta function of F is the function ζF (s)
defined for s > 1 by

ζF (s) =
∑

I∈I

1

N (I )s
.

Remark One can show without difficulty that if
∑

n an/n
s is a Dirichlet series

which satisfies the hypotheses of Proposition 5.5 then
∑

n an/n
s converges

absolutely in Re s > 1 + σ. If we apply this fact to the series (∗∗), it follows
that (∗∗) converges absolutely in Re s > 2. Hence the value of the series

∑

I∈I

1

N (I )s

for Re s > 2 is finite, is independent of the enumeration of I used to define
the series, and is given by the value of the series (∗∗). Although we will make
no use of this fact, it follows that the zeta function of F can be defined by
the series (∗∗) not only for s > 1, but also for Re s > 1, and when so defined,
is analytic in that half-plane.

For emphasis, we record in the following proposition the observation that
we made about the value of the zeta function of F in the paragraph which
immediately preceded its definition:

Proposition 5.6 If

L(n) = |{I ∈ I : N (I ) = n}|, n ∈ [1,∞),

then

ζF (s) =

∞∑

n=1

L(n)

ns
.
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For future reference, we also observe that Proposition 5.5 and Theorem 5.4
imply

Lemma 5.7 If ζF (s) is the zeta function of F and λ is the positive constant
in the conclusion of Theorem 5.4 then

lim
s→1+

(s − 1)ζF (s) = λ.

If F = Q then R = R∩Q = Z, hence the nonzero ideals of R in this case
are the principal ideals nZ, n ∈ [1,∞). Then

N (nZ) = |Z/nZ| = n,

and so

{I ∈ I : |N (I )| = n} = {nZ}.

Hence the zeta function of Q is

ζQ(s) =

∞∑

n=1

1

ns
,

the Riemann zeta function.
The next theorem gives a product formula for ζF (s) that is reminiscent of

the product formula for the Dirichlet L-function of a Dirichlet character that
we pointed out in Sect. 4.4 of Chap. 4. It is a very useful tool for analyzing
certain features of the behavior of ζF (s) and will play a key role in our proof
of Theorem 4.12.

Theorem 5.8 (Euler-Dedekind Product Formula for ζF ) Let Q
denote the set of all prime ideals of R. Then

ζF (s) =
∏

I∈Q

1

1−N (I )−s
, s > 1. (5.1)

Proof Note that because a prime ideal I of R is proper, N (I ) > 1, and so
each term of this product is defined for s > 1. In order to prove the theorem
we will need some standard facts about the convergence of infinite products,
which we record in the following definitions and Proposition 5.9.

Definitions Let (an) be a sequence of complex numbers such that an �= −1,
for all n. The infinite product

∞∏

1

(1 + an)
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converges if

lim
n→∞

n∏

1

(1 + ak )

exists and is finite, and it converges absolutely if

∞∏

1

(1 + |an |)

converges.

Proposition 5.9

(i)
∏

n(1 + an) converges absolutely if and only if the series
∑

n |an |
converges.

(ii) The limit of an absolutely convergent infinite product is not changed by
any rearrangement of the factors.

Proof See Nevanlinna and Paatero [42], Sects. 13.1, 13.2. QED

Returning to the proof of Theorem 5.8, we next consider the product on
the right-hand side of (5.1). Because N (I ) ≥ 2 for all I ∈ Q it follows that
for s > 1,

0 <
1

1−N (I )−s
− 1 =

N (I )−s

1−N (I )−s
≤ 2N (I )−s ,

hence

∑

I∈Q

( 1

1−N (I )−s
− 1

)
≤ 2

∑

I∈Q
N (I )−s < +∞

and so by Proposition 5.9, the product on the right-hand side of (5.1)
converges absolutely for s > 1 and its value is independent of the order
of the factors.

The next step is to prove that this product converges to ζF (s) for s > 1.
Let

Π(x ) =
∏

I∈Q:N (I )≤x

1

1−N (I )−s
;

this product has only a finite number of factors by Proposition 5.3 and

lim
x→+∞Π(x ) =

∏

I∈Q

1

1−N (I )−s
.
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We have that

1

1−N (I )−s
=

∞∑

n=0

1

N (I )ns
,

hence Π(x ) is a finite product of absolutely convergent series, which we can
hence multiply together and, in the resulting sum, rearrange terms in any
order without altering the value of the sum. Proposition 5.2 implies that
each term of this sum is either 1 or of the form

N (I α1
1 · · · I αr

r )−s ,

where (α1, . . . , αr ) is an r -tuple of positive integers, Ii is a prime ideal for
which N (Ii) ≤ x , i = 1, . . . , r , and all products of powers of prime ideals I
with N (I ) ≤ x of this form occur exactly once. Hence

Π(x ) = 1 +
∑ 1

N (I )s
,

where the sum here is taken over all ideals I of R such that all prime ideal
factors of I have norm no greater than x . Now the Fundamental Theorem
of Ideal Theory (Theorem 3.16) implies that all nonzero ideals of R have a
unique prime ideal factorization, hence

ζF (s)−Π(x ) =
∑ 1

N (I )s
,

where the sum here is taken over all ideals I �= {0} of R such that at least
one prime ideal factor of I has norm greater than x . Hence this sum does not
exceed

∑

n>x

L(n)

ns
,

and so

lim
x→+∞(ζF (s)−Π(x )) = lim

x→+∞

∑

n>x

L(n)

ns
= 0.

QED
If F = Q then the prime ideals of R = Z are the principal ideals generated

by the rational primes q ∈ Z, and so it follows from Theorem 5.8 that

ζ(s) =
∏

q

1

1− q−s
, s > 1, (5.2)

the Euler-product expansion of Riemann’s zeta.
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We are now going to use Theorem 5.8 to obtain a factorization of ζF
over rational primes that is the analog of the product expansion (5.2)
of the Riemann zeta function. In order to derive it, we first recall from
Proposition 5.1(iii) and (iv) that if I is a prime ideal of R then I contains
a unique rational prime q and there is a unique positive integer d such that
N (I ) is qd . The integer d is called the degree of I and we will denote it by
deg I . We can now state and prove

Theorem 5.10 If Q denotes the set of all prime ideals of R then the zeta
function ζF (s) of F has a product expansion given by

ζF (s) =
∏

q a rational prime

( ∏

I∈Q:q∈I

1

1− q−(deg I )s

)
, s > 1. (5.3)

Proof If n ∈ Z then the ideal nR is contained in a prime ideal of R
(Theorem 3.16) and so Proposition 5.1(iii) implies that Q can be expressed
as the pairwise disjoint union

⋃

q a rational prime

{I ∈ Q : q ∈ I }.

Hence as a consequence of Theorem 5.8 and Proposition 5.9(ii), we can
rearrange the factors in (5.1) so as to derive the expansion (5.3) for
ζF (s). QED

The ideal qR of R is contained in only finitely many prime ideals (because
of Theorem 3.16) and so each product inside the parentheses in (5.3) has
only a finite number of factors; these finite products are called the elementary
factors of ζF .

5.3 The Zeta Function of a Quadratic Number Field

As has been the case frequently in much of our previous work, quadratic
number fields provide interesting and important examples of various phe-
nomena of great interest and importance in algebraic number theory, and
zeta functions are no exception to this rule. In this section we will illustrate
how the decomposition law for the rational primes in a quadratic number
field, Proposition 3.17 from Sect. 3.11 of Chap. 3, and Theorem 5.10 can be
used to derive a very useful product expansion for the zeta function of a
quadratic number field. It is precisely this result that will be used to prove
Theorem 4.12 in the next section.
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For a square-free integer m �= 1, let F = Q(
√
m),R = R ∩ F . We recall

for our convenience what the decomposition law for the rational primes in R
says. First, let p be an odd prime. Then

(i) If χp(m) = 1 then pR factors into the product of two distinct prime
ideals, each of degree 1.

(ii) If χp(m) = 0 then pR is the square of a prime ideal I , and the degree
of I is 1.

(iii) If χp(m) = −1 then pR is prime in R of degree 2.

The decomposition of the prime 2 in R occurs as follows:

(iv) If m ≡ 1 mod 8 then 2R factors into the product of two distinct prime
ideals, each of degree 1.

(v) If m ≡ 2 or 3 mod 4 then 2R is the square of a prime ideal I , and the
degree of I is 1.

(vi) If m ≡ 5 mod 8 then 2R is prime in R of degree 2.

It follows from (i)–(vi) that if p is an odd prime in Z then the corresponding
elementary factor of ζF is

1

(1− p−s)2
, if χp(m) = 1,

1

1− p−s
, if χp(m) = 0,

1

1− p−2s
, if χp(m) = −1,

and the elementary factor corresponding to 2 is

1

(1− 2−s)2
, if m ≡ 1 mod 8,

1

1− 2−s
, if m ≡ 2 or 3 mod 4,

1

1− 2−2s
, if m ≡ 5 mod 8.

Observe next that each of the elementary factors corresponding to p can be
expressed as

1

1− p−s

1

1− χp(d)p−s
.
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Hence from the product expansion (5.2) of the Riemann zeta function and
the product expansion (5.3) of ζF (s) we deduce

Proposition 5.11 The zeta function of Q(
√
m) has the product expansion

ζQ(
√
m)(s) = θ(s)ζ(s)

∏

p

1

1− χp(m)p−s
, s > 1, (5.4)

where

θ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1− 2−s
, if m ≡ 1 mod 8,

1 , if m ≡ 2 or 3 mod 4,
1

1 + 2−s
, if m ≡ 5 mod 8.

We will use this factorization of ζQ(
√
m)(s) to prove, in due course, the

following lemma, the crucial fact that we will need to prove Theorem 4.12.

Lemma 5.12 If a ∈ Z is not a square then

∑

p

χp(a)p
−s

remains bounded as s → 1+.

Note that Lemma 5.12 is very similar in form and spirit to the hypothesis
of Lemma 4.7, which was a key step in Dirichlet’s proof of Theorem 4.5. We
will eventually see that this is no accident!

5.4 Proof of Theorem 4.12 and Related Results

We now have assembled all of the ingredients necessary for a proof of
Theorem 4.12. As we have already verified the “only if” implication in
Theorem 4.12, we hence let S be a nonempty finite subset of [1,∞) and
suppose that for each subset T of S such that |T | is odd,

∏

i∈T

i is not a square.

Let

X = {p : χp ≡ −1 on S}.

We must prove that X has infinite cardinality.
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Consider the sum

Σ(s) =
∑

(p)

(∏

i∈S

(
1− χp(i)

)) · 1

ps
, s > 1, (5.5)

where (p) means that the summation is over all primes p such that p divides
no element of S . Then

Σ(s) = 2|S | ∑

p∈X

1

ps
, s > 1,

hence if we can show that

lim
s→1+

Σ(s) = +∞, (5.6)

then the cardinality of X will be infinite.
In order to get (5.6), we first calculate that

∏

i∈S

(
1− χp(i)

)
= 1 +

∑

∅	=T⊆S

(−1)|T |χp

( ∏

i∈T

i
)
,

substitute this into (5.5) and interchange the order of summation to obtain

Σ(s) =
∑

(p)

1

ps
+

∑

∅	=T⊆S

(−1)|T |
(∑

(p)

χp

( ∏

i∈T

i
)
· 1

ps

)
.

Now divide {T : ∅ �= T ⊆ S} into U ∪ V ∪W , where

U =
{
∅ �= T ⊆ S : |T | is even and

∏

i∈T

i is a square
}
,

V =
{
∅ �= T ⊆ S : |T | is even and

∏

i∈T

i is not a square
}
,

W = {T ⊆ S : |T | is odd}.

Then

Σ(s) = (1 + |U |)
∑

(p)

1

ps
+

∑

T∈V

(∑

(p)

χp

( ∏

i∈T

i
)
· 1

ps

)

−
∑

T∈W

(∑

(p)

χp

( ∏

i∈T

i
)
· 1

ps

)

= Σ1(s) + Σ2(s)− Σ3(s).
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Because the range of the summation here is over all but finitely many primes,
Lemma 5.12, the definition of V and the hypothesis on S imply that Σ2(s)
and Σ3(s) remain bounded as s → 1+, and so (5.6) will follow once we prove
Lemma 5.12 and verify that

lim
s→1+

∑

(p)

1

ps
= +∞. (5.7)

We check (5.7) first. Because the summation range in (5.7) is over all but
finitely many primes, we need only show that

lim
s→1+

∑

p

1

ps
= +∞. (5.8)

To see (5.8), recall from the proof of Proposition 5.5 that

lim
s→1+

(s − 1)ζ(s) = 1,

hence

lim
s→1+

log ζ(s) = lim
s→1+

log
1

s − 1
+ lim

s→1+
log(s − 1)ζ(s) = +∞. (5.9)

Now let s > 1. The mean value theorem implies that

| log(1 + x )| ≤ 2|x | for |x | ≤ 1

2
,

and so

| log(1− q−s )| ≤ 2q−s , for all q ∈ P .

Because
∑

q q
−s <

∑∞
n=1 n

−s < ∞ it follows that the series

∑

q

log(1− q−s)

is absolutely convergent. Hence

log ζ(s) = log
(∏

q

1

1− q−s

)
(from (5.2))

= −
∑

q

log(1− q−s )
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=
∑

q

1

qs
+
∑

q

(
− log(1 − q−s)− 1

qs

)

=
∑

q

1

qs
+
∑

q

(∑

n≥2

1

nqns

)
,

where we use the series expansion log(1−x ) = −∑∞
1 xn/n, |x | < 1, to obtain

the last equation. Then

0 <
∑

n≥2

1

nqns
=

1

q2s

( ∞∑

n=0

1

(n + 2)qns

)

≤ 1

q2s

∞∑

n=0

q−ns

=
1

q2s
1

1− q−s

<
2

q2
, for all q ≥ 2 and for all s ≥ 1.

and so

0 <
∑

q

(∑

n≥2

1

nqns

)
< 2

∑

q

1

q2
< +∞ for all s ≥ 1.

It follows that

∑

q

1

qs
= log ζ(s) +H (s), H (s) bounded on s > 1,

hence this equation and (5.9) imply (5.8).
It remains only to prove Lemma 5.12. Let d �= 1 be a square-free integer.

Then it is a consequence of the factorization (5.4) of ζF ,F = Q(
√
d) in

Proposition 5.11 that

ζF (s) = θ(s)ζ(s)L(s), where L(s) =
∏

p

1

1− χp(d)p−s
.

By virtue of Lemma 5.7,

lim
s→1+

(s − 1)ζF (s) = λ > 0,
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hence

lim
s→1+

L(s) = lim
s→1+

1

θ(s)

(s − 1)ζF (s)

(s − 1)ζ(s)

=
λ

θ(1)
> 0,

and so

lim
s→1+

logL(s) is finite. (5.10)

Now let s > 1. Then

logL(s) = −
∑

p

log(1− χp(d)p
−s ) (5.11)

=
∑

p

∞∑

n=1

χp(d)
n

npns

=
∑

p

χp(d)p
−s +

∑

p

∞∑

n=2

χp(d)
n

npns
.

Because

∣∣∣∣∣
∑

p

∞∑

n=2

χp(d)
n

npns

∣∣∣∣∣ ≤
∑

p

∑

n≥2

1

npns
,

the second term on the right-hand side of the last equation in (5.11) can
be estimated as before to verify that it is bounded on s > 1. Hence (5.10)
and (5.11) imply that

∑

p

χp(d)p
−s is bounded as s → 1+. (5.12)

The integer d here can be any integer �= 1 that is square-free, but every
integer is the product of a square and a square-free integer, hence (5.12)
remains valid if d is replaced by any integer which is not a square. QED

The technique used in the proof of Theorem 4.12 can also be used to obtain
an interesting generalization of Basic Lemma 4.4 which answers the following
question: if S is a nonempty, finite subset of [1,∞) and ε : S → {−1, 1} is
a given function, when does there exist infinitely many primes p such that
χp ≡ ε on S? There is a natural obstruction to S having this property very
similar to the obstruction that prevents the conclusion of Theorem 4.12 from
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being true for S . Suppose that there exists a subset T �= ∅ of S such that∏
i∈T i is a square. If we choose i0 ∈ T and define

ε(i) =

{−1, if i = i0,

1, if i ∈ S \ {i0},

then χp �≡ ε on S for all sufficiently large p: otherwise there exits a p exceeding
all prime factors of the elements of T such that

−1 =
∏

i∈T

ε(i) = χp

( ∏

i∈T

i
)
= 1.

By tweaking the proof of Theorem 4.12, we will show that this is the only
obstruction to S having this property.

Theorem 5.13 Let S be a nonempty finite subset of [1,∞). The following
statements are equivalent:

(i) The product of all the elements in each nonempty subset of S is not a
square;

(ii) If ε : S → {−1, 1} is a fixed but arbitrary function, then there exist
infinitely many primes p such that χp ≡ ε on S.

Proof We have already observed that (i) follows from (ii), hence suppose
that S satisfies (i) and let ε : S → {−1, 1} be a fixed function. Consider the
sum

Σε(s) =
∑

(p)

(∏

i∈S

(
1 + ε(i)χp(i)

)) · 1

ps
, s > 1.

If

Xε = {p : χp ≡ ε on S}

then

Σε(s) = 2|S | ∑

p∈Xε

1

ps
.

Also,

Σε(s) =
∑

(p)

1

ps
+

∑

∅	=T⊆S

∏

i∈T

ε(i)
(∑

(p)

χp

( ∏

i∈T

i
)
· 1

ps

)
.
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Lemma 5.12 and the hypotheses on S imply that the second term on the
right-hand side of this equation is bounded as s → 1+, hence from (5.7) we
conclude that

lim
s→1+

Σε(s) = +∞,

and so Xε is infinite. QED

Definition Any set S satisfying statement (ii) of Theorem 5.13 will be said
to support all patterns.

Remark The proof of Theorems 4.12 and 5.13 follows exactly the same
strategy as Dirichlet’s proof of Theorem 4.5. One wants to show that a set
X of primes with a certain property is infinite. Hence take s > 1, attach
a weight of p−s to each prime p in X and then attempt to prove that the
weighted sum

∑

p∈X

1

ps

of the elements of X is unbounded as s → 1+. In order to achieve this (using
ingenious methods!), one writes this weighted sum as

∑
p 1/ps plus a term

that is bounded as s → 1+. The similarity of all of these arguments is no
accident; Theorem 5.13 is in fact also due to Dirichlet, and appeared in his
great memoir [11], Recherches sur diverses applications de l’analyse infinité-
simal à la théorie des nombres, of 1839–40, which together with [10] founded
modern analytic number theory. The proof of Theorem 5.13 given here is
a variation on Dirichlet’s original argument due to Hilbert [28], Sect. 80,
Theorem 111.

A straightforward modification of the proof of Theorem 4.9 can now be
used to establish

Theorem 5.14 If S is a nonempty, finite subset of [1,∞) such that for all
subsets T of S of odd cardinality,

∏
i∈T i is not a square, S and v : 2S → Fn

are defined by S as in the statement of Theorem 4.9, and d is the dimension of
the linear span of v(S) in Fn , then the density of the set {p : χp ≡ −1 on S}
is 2−d .

If p < q < r < s are distinct primes and we let, for example, S1 =
{p, pq, qr , rs} and S2 = {p, ps , pqr , pqrs}, then it follows from Theorem 5.14
and the row reduction of the incidence matrices of S1 and S2 that we
performed in Sect. 4.6 of Chap. 4 that the density of {p : χp ≡ −1 on S1} is
2−4 and the density of {p : χp ≡ −1 on S2} is 2−3. As we pointed out in
Sect. 4.6 of Chap. 4, a 2-dimensional subspace of F 4 contains only 3 nonzero
vectors, and so if S is a set of 4 nontrivial square-free integers such that S
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is supported on 4 primes then the density of {p : χp ≡ −1 on S} cannot be
2−2. But it is also true that all of the vectors in a 2-dimensional subspace
of F 4 must sum to 0 and so if S is a set of 3 nontrivial square-free integers
such that S is supported on 4 primes then {p : χp ≡ −1 on S} is in fact
empty. In order to get a set S from p, q, r , and s such that the density of
{p : χp ≡ −1 on S} is 2−2, S has to have 2 elements, and it follows easily
from Theorem 5.14 that S = {pq, qrs} is one of many examples for which the
density of {p : χp ≡ −1 on S} is 2−2.

A straightforward modification of the proof of Lemma 4.10 can also be
used to establish

Theorem 5.15 (Filaseta and Richman [18], Theorem 2) If S is a nonempty,
finite subset of [1,∞) such that the product of all the elements in each
nonempty subset of S is not a square and ε : S → {−1, 1} is a fixed but
arbitrary function, then the density of the set {p : χp ≡ ε on S} is 2−|S |.

5.5 Proof of the Fundamental Theorem of Ideal
Theory

Because the Fundamental Theorem of Ideal Theory was used at its full
strength in the proof of the Euler-Dedekind product expansion of the zeta
function (Theorem 5.8), and also because of the important role that it played
(although not at full strength) in the results on the factorization of ideals in
a quadratic number field from Chap. 3, we will present a proof of it in this
final section of Chap. 5. Our account follows the outline given by Ore in [43].

Let F be an algebraic number field of degree n and let R be the ring of
algebraic integers in F . We want to prove that every nonzero proper ideal of R
is a product of a finite number of prime ideals and also that this factorization
is unique up to the order of the prime-ideal factors. The strategy of our
argument is to prove first that each nonzero proper ideal of R contains a finite
product of prime ideals. We hence chose for each nonzero proper ideal I a
product of prime ideals with the smallest number of factors that is contained
in I , and then by use of appropriate mathematical technology that we will
develop, proceed by induction on this smallest number of prime-ideal factors
to prove that I is in fact equal to a product of prime ideals. Uniqueness will
then follow by further use of the mathematical technology that we will have
at our disposal. We proceed to implement this strategy.

Let I be an ideal of R, {0} �= I �= R.

Lemma 5.16 There exists a sequence of prime ideals P1, . . . ,Ps of R such
that I ⊆ Pi , for all i and P1 · · ·Ps ⊆ I .
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Proof If I is prime then we are done, with s = 1, hence suppose that I is
not prime. Then there exists a product βγ of elements of R which is in I and
β �∈ I , γ �∈ I . Let {α1, . . . , αn} be an integral basis of I , and set

J = (α1, . . . , αn , β), K = (α1, . . . , αn , γ).

Then

JK ⊆ I , I � J , I � K .

If J ,K are both prime then we are done, with s = 2. Otherwise apply this
procedure to each nonprime ideal that occurs, and continue in this way as
long as the procedure produces nonprime ideals. Note that after each step of
the procedure,

(i) the product of all the ideals obtained in that step is contained in I ,
(ii) I is contained in each ideal obtained in that step, and
(iii) each ideal obtained in that step is properly contained in an ideal from

the immediately preceding step.

Claim: this procedure terminates after finitely many steps.
If this is true then each ideal obtained in the final step is prime; otherwise

the procedure would continue by applying it to a nonprime ideal. If P1, . . . ,Ps

are the prime ideals obtained in the final step then this sequence of ideals
satisfies Lemma 5.16 by virtue of (i) and (ii) above.

Proof of the claim Suppose this is false. Then (ii) and (iii) above imply that
the procedure produces an infinite sequence of ideals J0, J1, . . . , Jn , . . . such
that J0 = I and Ji � Ji+1, for all i . We will now prove that I is contained
in only finitely many ideals, hence no such sequence of ideals is possible.

The proof of Proposition 5.1(i) implies that I contains a positive rational
integer a. We show that a belongs to only finitely many ideals.

Suppose that J is an ideal, with integral basis {β1, . . . , βn}, and a ∈ J .
Then we also have that

J = (β1, . . . , βn , a).

By the claim in the proof of Proposition 5.1(i), for each i , there is γi , δi ∈ R
such that βi = aγi + δi , and δi can take on only at most an values. But then

J = (aγ1 + δ1, . . . , aγn + δs) = (δ1, . . . , δn , a).

Because each δi assumes at most an values, it follows that J is one of only
at most an2 ideals. QED
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The statement of the next lemma requires the following definition:

Definition If J is an ideal of R then

J−1 = {α ∈ F : αβ ∈ R, for all β ∈ J}.

Lemma 5.17 If P is a prime ideal of R then P−1 contains an element of
F \R.

Proof Let x ∈ P . Lemma 5.16 implies that (x ) contains a product P1 · · ·Ps

of prime ideals. Choose a product with the smallest number s of factors.
Suppose that s = 1. Then P1 ⊆ (x ) ⊆ P . P1 maximal (Proposition 5.1(i))

implies that P = P1 = (x ). Hence 1/x ∈ P−1. Also, 1/x �∈ R; otherwise,
1 = x · 1/x ∈ P , contrary to the fact that P is proper.

Suppose that s > 1. Then P1 · · ·Ps ⊆ (x ) ⊆ P , and so the fact that P is
prime implies that P contains a Pi , say P1. P1 maximal implies that P = P1.
P2 · · ·Ps � (x ) by minimality of s , hence there exits α ∈ P2 · · ·Ps such that
α �∈ (x ), and so α/x �∈ R.

Claim: α/x ∈ P−1.
Let β ∈ P . We must prove that β(α/x ) ∈ R. To do that, observe that

(α)P ⊆ P2 · · ·PsP = P1 · · ·Ps ⊆ (x ),

and so there is a γ ∈ R such that αβ = xγ, i.e., β(α/x ) = γ. QED

The next lemma is the key technical tool that allows us to prove the
Fundamental Theorem of Ideal Theory; it will be used to factor an ideal into
a product of prime ideals and to show that this factorization is unique up to
the order of the factors. In order to state it, we need to extend the definition
of products of ideals to products of arbitrary subsets of R like so:

Definition If S and T are subsets of R then the product ST of S and T is

the set consisting of all sums of the form
∑

i

si ti , where (si , ti) ∈ S × T for

all i .

This product is clearly commutative and associative, and it agrees with
the product defined before when S and T are ideals of R.

Lemma 5.18 If P is a prime ideal of R and I is an ideal of R then P−1PI =
I .

Proof It suffices to show that P−1P = (1). It is straightforward to show that
J = P−1P is an ideal of R. As 1 ∈ P−1, it follows that P ⊆ J and so P
maximal implies that P = J or J = (1).
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Suppose that J = P . Let {α1, . . . , αn} be an integral basis of P , and use
Lemma 5.17 to find γ ∈ P−1, γ �∈ R. Then γαi ∈ P , for all i , and so

γαi =
∑

j

aijαj , where aij ∈ Z for all i , j .

As a consequence of these equations, γ is an eigenvalue of the matrix
[aij ], hence it is a root of the characteristic polynomial of [aij ], and this
characteristic polynomial is a monic polynomial in Z[x ]. As we showed in the
proof of Theorem 3.11, this implies that γ is an algebraic integer, contrary
to its choice. Hence P �= J , and so J = (1). QED

The Fundamental Theorem of Ideal Theory is now a consequence of the
next two lemmas.

Lemma 5.19 Every nonzero proper ideal of R is a product of prime ideals.

Proof Lemma 5.16 implies that every nonzero proper ideal of R contains a
product P1 · · ·Pr of prime ideals, where we choose a product with the smallest
number r of factors. The argument now proceeds by induction on r .

Let {0} �= I �= R be an ideal with r = 1, i.e., I contains a prime ideal P .
P maximal implies that I = P , and we are done.

Assume now that r > 1 and every nonzero, proper ideal that contains a
product of fewer than r prime ideals is a product of prime ideals.

Let {0} �= I �= R be an ideal that contains a product P1 · · ·Pr of
prime ideals, with r the smallest number of prime ideals with this property.
Lemma 5.16 implies that I is contained in a prime ideal Q . Hence P1 · · ·Pr ⊆
Q , and so Q contains a Pi , say P1. P1 maximal implies that Q = P1. Hence
I ⊆ P1. Then IP−1

1 is an ideal of R; I ⊆ IP−1
1 (1 ∈ P−1), and so IP−1

1 �= {0}.
IP−1

1 �= R; otherwise, P1 ⊆ I , hence I = P1, contrary to the fact that r > 1.
Lemma 5.18 implies that

P2 · · ·Pr = P−1
1 P1 · · ·Pr ⊆ IP−1

1 ,

hence by the induction hypothesis, IP−1
1 is a product P ′

1 · · ·P ′
k of prime ideals,

and so by Lemma 5.18 again,

I = (IP−1
1 )P1 = P ′

1 · · ·P ′
kP1

is a product of prime ideals. QED

Lemma 5.20 Factorization as a product of prime ideals is unique up to the
order of the factors.

Proof Suppose that P1 · · ·Pr = Q1 · · ·Qs are products of prime ideals, with
r ≤ s , say. Q1 · · ·Qs ⊆ Q1, hence P1 · · ·Pr ⊆ Q1 and so the fact that Q1 is a
prime ideal and the maximality of the Pi ’s imply, after reindexing one of the



150 5 The Zeta Function of an Algebraic Number Field and Some Applications

Pi ’s, that Q1 = P1. Then Lemma 5.18 implies that

P2 · · ·Pr = P−1
1 P1 · · ·Pr = Q−1

1 Q1 · · ·Qs = Q2 · · ·Qs .

Continuing in this way, we deduce, upon reindexing of the Pi ’s, that Pi = Qi ,
i = 1, . . . r , and also, if r < s , that

(1) = Qr+1 · · ·Qs .

But this equation implies that R = (1) ⊆ Qr+1, which is impossible as Qr+1

is a proper ideal. Hence r = s . QED

Dedekind’s own proof of The Fundamental Theorem of Ideal Theory in
[8], Chap. 4, Sect. 25, is a model of clarity and insight which amply repays
careful study. We strongly encourage the reader to take a look at it.
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