
Chapter 2

Basic Facts

In this chapter, we lay the foundations for all of the work that will be done
in subsequent chapters. Section 2.1 defines the Legendre symbol and verifies
its basic properties, proves Euler’s criterion, and deduces some corollaries
which will be very useful in many situations in which we will find ourselves.
Motivated by the solutions of a quadratic congruence modulo a prime which
we discussed in Chap. 1, we formulate what we will call the Basic Problem
and the Fundamental Problem for Primes in Sect. 2.2. In Sect. 2.3, we state
and prove Gauss’ Lemma for residues and non-residues and use it to solve
the Fundamental Problem for the prime 2.

2.1 The Legendre Symbol, Euler’s Criterion,
and Other Important Things

In this section, we establish some fundamental facts about residues and non-
residues that will be used repeatedly throughout the rest of these notes.

Proposition 2.1 In every complete system of ordinary residues modulo p,
there are exactly (p − 1)/2 quadratic residues.

Proof It suffices to prove that in [1, p−1] there are exactly (p−1)/2 quadratic
residues. Note first that 12, 22, . . . , (p−1

2 )2 are all incongruent mod p (if 1 ≤
i , j < p/2 and i2 ≡ j 2 mod p then i ≡ j hence i = j or i ≡ −j , i.e., i+ j ≡ 0.
But 2 ≤ i + j < p, and so i + j ≡ 0 is impossible).

Let S denote the set of minimal non-negative ordinary residues mod p of
12, 22, . . . , (p−1

2 )2. The elements of S are quadratic residues of p and |S| =
(p − 1)/2. Suppose that n ∈ [1, p − 1] is a quadratic residue of p. Then
there exists r ∈ [1, p − 1] such that r2 ≡ n. Then (p − r)2 ≡ r2 ≡ n and
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{r , p − r}∩ [1, (p − 1)/2] �= ∅. Hence n ∈ S, whence S = the set of quadratic
residues of p inside [1, p − 1]. QED

Remark The proof of Proposition 2.1 provides a way to easily find, at least
in principle, the residues of any prime p. Simply calculate the integers
12, 22, . . . , (p−1

2 )2 and then reduce mod p. The integers that result from this
computation are the residues of p inside [1, p − 1]. This procedure also finds
the modular square roots x of a residue r of p, i.e., the solutions to the
congruence x 2 ≡ r mod p. For example, in just a few minutes on a hand-held
calculator, one finds that the residues of 17 are 1, 2, 4, 8, 9, 13, 15, and 16,
with corresponding modular square roots ±1, ±6, ±2, ±5, ±3, ±8, ±7,
and ±4, and the residues of 37 are 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25,
26, 27, 28, 30, 33, 34, and 36, with corresponding modular square roots
±1, ±15, ±2, ±9, ±3, ±11, ±14, ±7, ±4, ±13, ±5, ±10, ±8, ±18, ±17,
±12, ±16, and ±6. Of course, for large p, this method quickly becomes
impractical for the calculation of residues and modular square roots, but
see Sect. 4.9 of Chap. 4 for a practical and efficient way to perform these
calculations for large values of p.

N.B. In the next proposition, all residues and non-residues are taken with
respect to a fixed prime p.

Proposition 2.2

(i) The product of two residues is a residue.
(ii) The product of a residue and a non-residue is a non-residue.
(iii) The product of two non-residues is a residue.

Proof

(i) If α, α′ are residues then x 2 ≡ α, y2 ≡ α′ imply that (xy)2 ≡ αα′ mod p.
(ii) Let α be a fixed residue. The integers 0, α, . . . , (p− 1)α are incongruent

mod p, hence are a complete system of ordinary residues mod p.
If R denotes the set of all residues in [1, p − 1] then by Proposi-
tion 2.2(i), {αr : r ∈ R} is a set of residues of cardinality (p − 1)/2,
hence Proposition 2.1 implies that there are no other residues among
α, 2α, . . . , (p − 1)α, i.e., if β ∈ [1, p − 1] \ R then αβ is a non-residue.
Statement (ii) is an immediate consequence of this.

(iii) Suppose that β is a non-residue. Then 0, β, 2β, . . . , (p−1)β is a complete
system of ordinary residues mod p, and by Proposition 2.2(ii) and
Proposition 2.1, {βr : r ∈ R} is a set of non-residues and there are
no other non-residues among β, 2β, . . . , (p − 1)β. Hence β′ ∈ [1, p −
1] \ R implies that ββ′ is a residue. Statement (iii) is an immediate
consequence of this. QED

The following definition introduces the most important piece of mathe-
matical technology that we will use to study residues and non-residues.
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Definition The Legendre symbol χp of p is the function χp : Z → [−1, 1]
defined by

χp(n) =

⎧
⎨

⎩

0, if p divides n,

1, if gcd(p, n) = 1 and n is a residue of p,

−1, if gcd(p, n) = 1 and n is a non-residue of p.

The next proposition asserts that χp is a completely multiplicative
arithmetic function of period p. This fact will play a crucial role in much
of our subsequent work.

Proposition 2.3

(i) χp(n) = 0 if and only if p divides n, and if m ≡ n mod p then χp(m) =
χp(n)(χp is of period p).

(ii) For all m, n ∈ Z, χp(mn) = χp(m)χp(n)(χp is completely multiplica-
tive).

Proof

(i) If m ≡ n mod p then p divides m (respectively, m is a residue/non-
residue of p) if and only if p divides n (respectively, n is a residue/non-
residue of p). Hence χp(m) = χp(n).

(ii) χp(mn) = 0 if and only if p divides mn if and only if p divides m or n
if and only if χp(m) = 0 or χp(n) = 0 if and only if χp(m)χp(n) = 0.

Because χp(n
2) =

(
χp(n)

)2
, we may assume that m �= n. Then χp(mn) =

1 (respectively, χp(mn) = −1) if and only if gcd(mn, p) = 1 and mn is a
residue (respectively, mn is a non-residue) of p if and only if gcd(m, p) = 1 =
gcd(n, p) and, by Proposition 2.2, m and n are either both residues or both
non-residues of p (respectively, {m, n} contains a residue and a non-residue
of p) if and only if χp(m)χp(n) = 1 (respectively, χp(m)χp(n) = −1). QED

Remark on Notation As a consequence of Proposition 2.3, χp defines a
homomorphism of the group of units in the ring Z/pZ into the circle group,
i.e., χp is a character of the group of units. This is the reason why we
have chosen the character-theoretic notation χp(n) for the Legendre symbol,

instead of the more traditional notation

(
n

p

)

. When p is replaced by an

arbitrary integer m ≥ 2, we will have more to say later (see Sect. 4.4 of
Chap. 4) about characters on the group of units in the ring Z/mZ and their
use in what we will study here.

The next result determines the quadratic character of −1.

Theorem 2.4

χp(−1) =

{
1, if p ≡ 1 mod 4,

−1, if p ≡ −1 mod 4.
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This theorem is due to Euler [16], who proved it in 1760. It is of
considerable importance in the history of number theory because in 1795,
the young Gauss (at the ripe old age of 18!) rediscovered it. Gauss was so
struck by the beauty and depth of this result that, as he testifies in the
preface to Disquisitiones Arithmeticae [19], “I concentrated on it all of my
efforts in order to understand the principles on which it depended and to
obtain a rigorous proof. When I succeeded in this I was so attracted by these
questions that I could not let them be.” Thus began Gauss’ work in number
theory that was to revolutionize the subject.

Proof of Theorem 2.4 The proof that we give is Euler’s own. It is based on

Theorem 2.5 (Euler’s Criterion) If a ∈ Z and gcd(a, p) = 1 then

χp(a) ≡ a(p−1)/2 mod p.

If we apply Euler’s criterion with a = −1 then

χp(−1) ≡ (−1)(p−1)/2 mod p.

Hence χp(−1)− (−1)(p−1)/2 is either 0 or ±2 and is divisible by p, hence

χp(−1) = (−1)(p−1)/2,

and so χp(−1) = 1 (respectively, −1) if and only if (p − 1)/2 is even
(respectively, odd) if and only if p ≡ 1 mod 4 (respectively, p ≡ −1 mod 4).
This verifies Theorem 2.4.

Proof of Theorem 2.5 This is an interesting application of Wilson’s theorem,
which asserts that

if q is a prime then (q − 1)! ≡ −1 mod q, (∗)

and was in fact first stated by Abu Ali al-Hasan ibn al-Haytham in 1000 AD,
over 750 years before it was attributed to John Wilson, whose name it now
bears. We will use Wilson’s theorem to first prove Theorem 2.5; after that
we then verify Wilson’s theorem.

Suppose that χp(a) = 1, and so x 2 ≡ a mod p for some x ∈ Z. Note now
that 1 = gcd(a, p) implies that 1 = gcd(x 2, p), and so 1 = gcd(x , p) (p is
prime!), hence by Fermat’s little theorem,

a(p−1)/2 ≡ (x 2)(p−1)/2 = x p−1 ≡ 1 mod p.

Suppose that χp(a) = −1, i.e., a is a non-residue. For each i ∈ [1, p − 1],
there exists j ∈ [1, p − 1] uniquely determined by i , such that

ij ≡ a mod p
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(Z/pZ is a field) and i �= j because a is a non-residue. Hence we can group
the integers 1, . . . , p − 1 into (p − 1)/2 pairs, each pair with a product ≡ a
mod p. Multiplying all of these pairs together yields

(p − 1)! ≡ a(p−1)/2 mod p,

and so (∗) implies that

−1 ≡ a(p−1)/2 mod p.

QED

Proof of Wilson’s Theorem The implication (∗) is clearly valid when q = 2, so
assume that q is odd. Use Proposition 1.2 to find for each integer a ∈ [1, q−1]
an integer ā ∈ [1, p − 1] such that aā ≡ 1 mod q. The integers 1 and q − 1
are the only integers in [1, q− 1] that are their own inverses mod q, hence we
may group the integers from 2 through q − 2 into (q − 3)/2 pairs with the
product of each pair congruent to 1 mod q. Hence

2 · 3 · · · (q − 3)(q − 2) ≡ 1 mod q.

Multiplication of both sides of this congruence by q − 1 yields

(q − 1)! = 1 · 2 · · · (q − 1) ≡ q − 1 ≡ −1 mod q.

QED

Remark The converse of Wilson’s theorem is also valid.

2.2 The Basic Problem and the Fundamental
Problem for a Prime

From our discussion in Chap. 1, if d is the discriminant of ax 2 + bx + c and
if neither a nor d is divisible by p then

ax 2 + bx + c ≡ 0 mod p

has a solution if and only if d is a residue of p. This motivates what we will
call the

Basic Problem If d ∈ Z, for what primes p is d a quadratic residue of p?
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We now present a strategy for solving this problem which employs
Proposition 2.3 as the basic tool. Things can be stated precisely and concisely
if we use the following

Notation: if z ∈ Z, let

X±(z ) = {p : χp(z )= ± 1},
πodd(z )(resp., πeven(z )) = {q ∈ π(z ):q has odd (resp., even)multiplicity in z}.

We point out here how to read the ± signs. If ± signs occur simultaneously
in different places in an equation, formula, definition, etc., then the + sign
is meant to be taken simultaneously in all occurrences of ± and then the −
sign is also to be taken simultaneously in all occurrences of ±. For example,
the equation X±(z ) = {p : χp(z ) = ±1} above asserts that X+(z ) = {p :
χp(z ) = 1} and X−(z ) = {p : χp(z ) = −1}. We follow this convention in the
sequel.

Suppose first that d > 0, with gcd(d , p) = 1. If πodd(d) = ∅ then d is
a square, so d is trivially a residue of p. Hence assume that πodd(d) �= ∅.
Proposition 2.3 implies that

χp(d) =
∏

q∈πodd(d)

χp(q).

Hence

χp(d) = 1 iff |{q ∈ πodd(d) : χp(q) = −1}| is even . (2.1)

Let

E = {E ⊆ πodd(d) : |E | is even}.

If E ∈ E , let RE denote the set of all p such that

χp(q) =

{−1, if q ∈ E ,

1, if q ∈ πodd(d) \ E .

Then (2.1) implies that

X+(d) =
( ⋃

E∈E
RE

)
\ πeven(d), (2.2)

and this union is pairwise disjoint. Moreover

RE =
( ⋂

q∈E

X−(q)
)
∩
( ⋂

q∈πodd(d)\E
X+(q)

)
. (2.3)
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Suppose next that d < 0. Then d = (−1)(−d), hence

χp(d) =
∏

q∈{−1}∪πodd(d)

χp(q). (2.4)

If we let

E−1 = {E ⊆ {−1} ∪ πodd(d) : |E | is even},
then by applying (2.4) and an argument similar to the one that yielded (2.2)
and (2.3) for X+(d), d > 0, we also deduce that for d < 0,

X+(d) =
( ⋃

E∈E−1

RE

)
\ πeven(d), (2.5)

where

RE =
( ⋂

q∈E

X−(q)
)
∩
( ⋂

q∈({−1}∪πodd(d))\E
X+(q)

)
,E ∈ E−1. (2.6)

In order to show more concretely how this strategy for the solution of
the basic problem is implemented, suppose as an example that we wish to
determine X+(±126). First, factor ±126 as ±2 · 32 · 7. It follows from this
factorization that

πodd(±126) = {2, 7}, πeven(±126) = {3},

hence

E = {∅, {2, 7}}, E−1 = {∅, {−1, 2}, {−1, 7}, {2, 7}}.

It now follows from (2.2) and (2.3) that

X+(126) = (R∅ ∪R{2,7}) \ {3}

=
((

X+(2) ∩ X+(7)
) ∪ (

X−(2) ∩ X−(7)
)) \ {3},

and from (2.5) and (2.6) that

X+(−126) = (R∅ ∪ R{−1,2} ∪R{−1,7} ∪ R{2,7}) \ {3}

=
((

X+(−1) ∩ X+(2) ∩ X+(7)
) ∪ (

X−(−1) ∩ X−(2) ∩ X+(7)
)

∪ (
X−(−1) ∩ X+(2) ∩ X−(7)

) ∪ (
X+(−1)

∩X−(2) ∩ X−(7)
)) \ {3}.
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In order to finish this calculation of X+(±126), we must now calculate
X+(2)∩X+(7), X−(2)∩X−(7), X+(−1)∩X+(2)∩X+(7), X−(−1)∩X−(2)∩
X+(7), X−(−1) ∩ X+(2) ∩ X−(7), and X+(−1) ∩ X−(2) ∩ X−(7), which in
turn requires the calculation of X±(−1), X±(2), and X±(7). Theorem 2.4
and formulae (2.2), (2.3), (2.5), and (2.6) hence reduce the solution of the
Basic Problem to the solution of the

Fundamental Problem for Primes. If q is prime, calculate X±(q).

The Fundamental Problem for odd primes and the Basic Problem will be
completely solved in Sects. 4.1 and 4.2 of Chap. 4. The Fundamental Problem
for the prime 2 will be completely solved in the next section.

2.3 Gauss’ Lemma and the Fundamental Problem
for the Prime 2

The next theorem, along with Theorems 2.4 and 2.5, will be used many times
in our subsequent work.

Theorem 2.6 χp(2) = (−1)(p
2−1)/8.

Theorem 2.6 solves the Fundamental Problem for the prime 2. It is easy
to see that (p2 − 1)/8 is even (odd) if and only if p ≡ 1 or 7 mod 8 (p ≡ 3 or
5 mod 8). Hence

X+(2) = {p : p ≡ 1 or 7 mod 8},
X−(2) = {p : p ≡ 3 or 5 mod 8}.

The proof of Theorem 2.6 will use a basic result in the theory of quadratic
residues called Gauss’ lemma (this lemma was first used by Gauss in his third
proof of the Law of Quadratic Reciprocity [20], which proof we will present in
Chap. 3). We will first state Gauss’ lemma, then use it to prove Theorem 2.6,
and then we will prove Gauss’ lemma.

Toward that end, then, let a ∈ Z, gcd(a, p) = 1. Consider the minimal
positive ordinary residues mod p of the integers a, . . . , 1

2 (p−1)a. None of these
ordinary residues is p/2, as p is odd, and they are all distinct as gcd(a, p) = 1,
hence let

u1, . . . , us be those ordinary residues that are > p/2,

v1, . . . , vt be those ordinary residues that are < p/2.
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N.B. s + t = 1
2 (p − 1). We then have

Theorem 2.7 (Gauss’ Lemma)

χp(a) = (−1)s .

Proof of Theorem 2.6 Let σ be the number of minimal positive ordinary
residues mod p of the integers in the set

1 · 2, 2 · 2, . . . , 1
2
(p − 1) · 2 (2.7)

that exceed p/2. Gauss’ lemma implies that

χp(2) = (−1)σ.

Because each integer in (2.7) is less than p, σ = the number of integers in the
set (2.7) that exceed p/2. An integer 2j , j ∈ [1, (p − 1)/2] does not exceed
p/2 if and only if 1 ≤ j ≤ p/4, hence the number of integers in (2.7) that do
not exceed p/2 is [p/4], where [x ] denotes the greatest integer not exceeding
x . Hence

σ =
p − 1

2
−
[p

4

]
.

To prove Theorem 2.6, it hence suffices to prove that

for all odd integers n,
n − 1

2
−
[n

4

]
≡ n2 − 1

8
mod 2. (2.8)

To see this, note first that the congruence in (2.8) is true for a particular
integer n if and only if it is true for n + 8, because

(n + 8)− 1

2
−
[n + 8

4

]
=

n − 1

2
+ 4−

([n

4

]
+ 2

)
≡ n − 1

2
−
[n

4

]
mod 2,

(n + 8)2 − 1

8
=

n2 − 1

8
+ 2n + 8 ≡ n2 − 1

8
mod 2.

Thus (2.8) holds if and only if it holds for n = ±1,±3, and it is easy to check
that (2.8) holds for these values of n. QED

Proof of Theorem 2.7 Let ui , vi be as defined before the statement of Gauss’
lemma. We claim that

{p − u1, . . . , p − us , v1, . . . , vt} = [1,
1

2
(p − 1)]. (2.9)
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To see this, note first that if i �= j then vi �= vj , ui �= uj hence p−ui �= p−uj .
It is also true that p−ui �= vj for all i , j ; otherwise p ≡ a(k+ l) mod p, where
2 ≤ k + l ≤ p−1

2 + p−1
2 = p − 1, which is impossible because gcd(a, p) = 1.

Hence

|{p − u1, . . . , p − us , v1, . . . , vt}| = s + t =
p − 1

2
. (2.10)

But 0 < vi < p/2 implies that 0 < vi ≤ (p − 1)/2 and p/2 < ui < p, hence
0 < p − ui ≤ (p − 1)/2, and so

{p − u1, . . . , p − us , v1, . . . , vt} ⊆ [1,
1

2
(p − 1)]. (2.11)

As |[1, 12 (p − 1)]| = 1
2 (p − 1), (2.9) follows from (2.10) and (2.11).

It follows from (2.9) that

s∏

1

(p − ui)

t∏

1

vi =
(p − 1

2

)
!.

Because

p − ui ≡ −ui mod p

we conclude from the preceding equation that

(−1)s
s∏

1

ui

t∏

1

vi ≡
(p − 1

2

)
! mod p. (2.12)

Because u1, . . . , us , v1, . . . , vt are the least positive ordinary residues of
a, . . . , 1

2 (p − 1)a, it is a consequence of (2.12) that

(−1)sa(p−1)/2
(p − 1

2

)
! ≡

(p − 1

2

)
! mod p. (2.13)

But p and (p−1
2 )! are relatively prime, and so (2.13) implies that

(−1)sa(p−1)/2 ≡ 1 mod p

i.e.,

a(p−1)/2 ≡ (−1)s mod p.
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By Euler’s criterion (Theorem 2.5),

a(p−1)/2 ≡ χp(a) mod p,

hence

χp(a) ≡ (−1)s mod p.

It follows that χp(a)− (−1)s is either 0 or ±2 and is also divisible by p and
so

χp(a) = (−1)s .

QED

We now need to solve the Fundamental Problem for odd primes. This
will be done in Chap. 4 by using a result which Gauss called the theorema
aureum, the “golden theorem”, of number theory. We will discuss that result
extensively in the next chapter.
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