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Preface

Although number theory as a coherent mathematical subject started with
the work of Fermat in the 1630s, modern number theory, i.e., the systematic
and mathematically rigorous development of the subject from fundamental
properties of the integers, began in 1801 with the appearance of Gauss’
landmark treatise Disquisitiones Arithmeticae [19]. A major part of the
Disquisitiones deals with quadratic residues and non-residues: if p is an odd
prime, an integer z is a quadratic residue (respectively, a quadratic non-
residue) of p if there is (respectively, is not) an integer x such that x 2 ≡ z
mod p. As we shall see, quadratic residues arise naturally as soon as one wants
to solve the general quadratic congruence ax 2 + bx + c ≡ 0 mod m, a �≡
0 mod m, and this, in fact, motivated some of the interest which Gauss
himself had in them. Beginning with Gauss’ fundamental contributions, the
study of quadratic residues and non-residues has subsequently led directly to
many of the key ideas and techniques that are used everywhere in number
theory today, and the primary goal of these lecture notes is to use this
study as a window through which to view the development of some of those
ideas and techniques. In pursuit of that goal, we will employ methods from
elementary, analytic, and combinatorial number theory as well as methods
from the theory of algebraic numbers.

In order to follow these lectures most profitably, the reader should have
some familiarity with the basic results of elementary number theory. An
excellent source for this material (and much more) is the text [30] of Kenneth
Ireland and Michael Rosen, A Classical Introduction to Modern Number
Theory. A feature of this text that is of particular relevance to what we discuss
is Ireland and Rosen’s treatment of quadratic and higher-power residues,
which is noteworthy for its elegance and completeness as well as for its
historical perspicacity. We will in fact make use of some of their work in
Chaps. 3 and 7.

Although not absolutely necessary, some knowledge of algebraic number
theory will also be helpful for reading these notes. We will provide complete
proofs of some facts about algebraic numbers and we will quote other facts

vii



viii Preface

without proof. Our reference for proof of the latter results is the classical
treatise of Erich Hecke [27], Vorlesungen über die Theorie der Algebraischen
Zahlen, in the very readable English translation by G. Brauer and J.
Goldman. About Hecke’s text André Weil [58, foreword] had this to say:
“To improve upon Hecke, in a treatment along classical lines of the theory
of algebraic numbers, would be a futile and impossible task.” We concur
enthusiastically with Weil’s assessment and highly recommend Hecke’s book
to all those who are interested in number theory.

We next offer a brief overview of what is to follow. The notes are arranged
in a series of ten chapters. Chapter 1, an introduction to the subsequent
chapters, provides some motivation for the study of quadratic residues and
non-residues by consideration of what needs to be done when one wishes to
solve the general quadratic congruence mentioned above. We briefly discuss
the contents of the Disquisitiones Arithmeticae, present some biographical
information about Gauss, and also record some basic results from elementary
number theory that will be used frequently in the sequel. Chapter 2 provides
some useful facts about quadratic residues and non-residues upon which the
rest of the chapters are based. Here we also describe a procedure which
provides a strategy for solving what we call the Basic Problem: if d is an
integer, find all primes p such that d is a quadratic residue of p. The Law of
Quadratic Reciprocity is the subject of Chap. 3. We present seven proofs
of this fundamentally important result (five in Chap. 3, one in Chap. 7,
and one in Chap. 8), which focus primarily (but not exclusively) on the
ideas used in the proofs of quadratic reciprocity which Gauss discovered.
Chapter 4 discusses some interesting and important applications of quadratic
reciprocity, having to do with the solution of the Basic Problem from
Chap. 2 and with the structure of the finite subsets S of the positive integers
possessing at least one of the following two properties: for infinitely many
primes p, S is a set of quadratic residues of p, or for infinitely many primes p,
S is a set of quadratic non-residues of p. Here the fundamental contributions
of Dirichlet to the theory of quadratic residues enter our story and begin
a major theme that will play throughout the rest of our work. Chapter 4
concludes with an interesting application of quadratic residues in modern
cryptology, to so-called zero-knowledge or minimal-disclosure proofs. The
use of transcendental methods in the theory of quadratic residues, begun
in Chap. 4, continues in Chap. 5 with the study of the zeta function of an
algebraic number field and its application to the solution of some of the
problems taken up in Chap. 4. Chapter 6 gives elementary proofs of some of
the results in Chap. 5 which obviate the use made there of the zeta function.
The question of how quadratic residues and non-residues of a prime p are
distributed among the integers 1, 2, . . . , p − 1 is considered in Chap. 7, and
there we highlight additional results and methods due to Dirichlet which
employ the basic theory of L-functions attached to Dirichlet characters
determined by certain moduli. Because of the importance that positivity of
the values at s = 1 of Dirichlet L-functions plays in the proof of the results
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of Chap. 7, we present in Chap. 8 a discussion and proof of Dirichlet’s class-
number formula as a way to definitively explain why the values at s = 1 of
L-functions are positive. In Chap. 9 the occurrence of quadratic residues and
non-residues as arbitrarily long arithmetic progressions is studied by means
of some ideas of Harold Davenport [5] and some techniques in combinatorial
number theory developed in recent work of the author [62, 63]. A key issue
that arises in our approach to this problem is the estimation of certain
character sums over the field of p elements, p a prime, and we address
this issue by using some results of Weil [57] and Perel’muter [44]. Our
discussion concludes with Chap. 10, where the Central Limit Theorem from
the theory of probability and a theorem of Davenport and Paul Erdös [7]
are used to provide evidence for the contention that as the prime p tends to
infinity, quadratic residues of p are distributed randomly throughout certain
subintervals of the set {1, 2, . . . , p − 1}.

These notes are an elaboration of the contents of a special-topics-in-
mathematics course that was offered during the summer semesters of 2014
and 2015 at Oakland University. I am very grateful to my colleague Meir
Shillor for suggesting that I give such a course and for thereby providing
me with the impetus to think about what such a course would entail.
I am also very grateful to my colleagues Eddie Cheng and Serge Kruk, the
former for giving me very generous and valuable assistance with numerous
LaTeX issues which arose during the preparation of the manuscript and
the latter for formatting all of the figures in the text. I thank my students
Saad Al Najjar, Amelia McIlvenna, and Julian Venegas for reading an early
version of the notes and offering several insightful comments which were very
helpful to me. My sincere and heartfelt appreciation is also tendered to the
anonymous referees for many comments and suggestions which resulted in
a very substantial improvement in both the content and exposition of these
notes. Finally, and above all others, I am grateful beyond words to my dear
wife Linda for her unstinting love, support, and encouragement; this humble
missive is dedicated to her.

Rochester, MI, USA Steve Wright
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Chapter 1

Introduction: Solving the General
Quadratic Congruence Modulo a Prime

The purpose of this chapter is to define quadratic residues and non-residues
and to use the solution of the general quadratic congruence modulo a
prime to indicate one reason why the study of quadratic residues and non-
residues is interesting and important. This is done in Sect. 1.1. The primary
source for essential information about quadratic residues is the Disquisitiones
Arithmeticae of Carl Friedrich Gauss, one of the most important books about
number theory ever written. Because of its singular prominence for number
theory and also for what we will do in these lecture notes, the contents of
the Disquisitiones are discussed briefly in Sect. 1.2, and some biographical
facts about Gauss are also presented. Notation and terminology that will be
employed throughout the sequel are recorded in Sect. 1.3, as well as a few
basic facts from elementary number theory that will be used frequently in
subsequent work.

1.1 Linear and Quadratic Congruences

One of the central problems of number theory, both ancient and modern,
is finding solutions (in the integers) of polynomial equations with integer
coefficients in one or more variables. In order to motivate our study, consider
the equation

ax ≡ b mod m,

a linear equation in the unknown integer x . Elementary number theory
provides an algorithm for determining exactly when this equation has a
solution, and for finding all such solutions, which essentially involves nothing
more sophisticated than the Euclidean algorithm (see Proposition 1.4 below
and the comments after it).

© Springer International Publishing Switzerland 2016
S. Wright, Quadratic Residues and Non-Residues, Lecture Notes
in Mathematics 2171, DOI 10.1007/978-3-319-45955-4 1
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2 1 Introduction: Solving the General Quadratic Congruence Modulo a. . .

When we consider what happens for the general quadratic congruence

ax 2 + bx + c ≡ 0 mod m, a �≡ 0 mod m, (1.1)

things get more complicated. In order to see what the issues are, note first
that

(2ax + b)2 ≡ b2 − 4ac mod 4am

iff 4a2x 2 + 4abx + 4ac ≡ 0 mod 4am

iff 4a(ax 2 + bx + c) ≡ 0 mod 4am

iff ax 2 + bx + c ≡ 0 mod m.

Hence (1.1) has a solution if and only if

2ax ≡ s − b mod 4am, (1.2)

where s is a solution of

s2 ≡ b2 − 4ac mod 4am. (1.3)

Now (1.2) has a solution if and only if s − b is divisible by 2a, the greatest
common divisor of 2a and 4am, and so it follows that (1.1) has a solution
if and only if (1.3) has a solution s such that s − b is divisible by 2a. We
have hence reduced the solution of (1.1) to finding solutions s of (1.3) which
satisfy an appropriate divisibility condition.

Our attention is therefore focused on the following problem: if n and z are
integers with n ≥ 2, find all solutions x of the congruence

x 2 ≡ z mod n. (1.4)

Let

n =

k∏
i=1

pαi

i

be the prime factorization of n, and let Σi denote the set of all solutions of
the congruence

x 2 ≡ z mod pαi

i , i = 1, . . . , k .
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Let s = (s1, . . . , sk ) ∈ Σ1 × · · · × Σk , and let σ(s) denote the simultaneous
solution, unique mod n, of the system of congruences

x ≡ si mod pαi

i , i = 1, . . . , k ,

obtained via the Chinese remainder theorem (Theorem 1.3 below). It is then
not difficult to show that the set of all solutions of (1.4) is given precisely by
the set

{σ(s) : s ∈ Σ1 × · · · × Σk}.

Consequently (1.4), and hence also (1.1), can be solved if we can solve the
congruence

x 2 ≡ z mod pα, (1.5)

where p is a fixed prime and α is a fixed positive integer.
In articles 103 and 104 of Disquisitiones Arithmeticae [19], Gauss gave a

series of beautiful formulae which completely solve (1.5) for all primes p and
exponents α. In order to describe them, let σ ∈ {0, 1, . . . , pα − 1} denote a
solution of (1.5).

I. Suppose first that z is not divisible by p. If p = 2 and α = 1 then σ = 1.
If p is odd or p = 2 = α then σ has exactly two values ±σ0. If p = 2 and
α > 2 then σ has exactly four values ±σ0 and ±σ0 + 2α−1.

II. Suppose next that z is divisible by p but not by pα. If (1.5) has a solution
it can be shown that the multiplicity of p as a factor of z must be even,
say 2μ, and so let z = z1p

2μ. Then σ is given by the formula

σ′pμ + ipα−μ, i ∈ {0, 1, . . . , pμ − 1},

where σ′ varies over all solutions, determined according to I, of the
congruence

x 2 ≡ z1 mod pα−2μ.

III. Finally if z is divisible by pα, and if we set α = 2k or α = 2k − 1,
depending on whether α is even or odd, then σ is given by the formula

ipk , i ∈ {0, . . . , pα−k − 1}.

We will focus on the most important special case of (1.5), namely when p
is odd and α = 1, i.e., the congruence

x 2 ≡ z mod p (1.6)



4 1 Introduction: Solving the General Quadratic Congruence Modulo a. . .

(note that when p is odd, the solutions of (1.5) in cases I and II are determined
by the solutions of (1.6) for certain values of z ). The first thing to do here is
to observe that the ring determined by the congruence classes of integers mod
p is a field, and so (1.6) has at most two solutions. We have that x ≡ 0 mod
p is the unique solution of (1.6) if and only if z is divisible by p, and if s0 �≡ 0
mod p is a solution of (1.6) then so is −s0, and s0 �≡ −s0 mod p because p is
an odd prime. These facts are motivation for the following definition:

Definition If p is an odd prime and z is an integer not divisible by p, then
z is a quadratic residue ( respectively, quadratic non-residue) of p if there is
(respectively, is not) an integer x such that x 2 ≡ z mod p.

As a consequence of our previous discussion and Gauss’ solution of (1.5),
solutions of (1.1) will exist only if (among other things) for each (odd) prime
factor p of 4am, the discriminant b2 − 4ac of ax 2 + bx + c is either divisible
by p or is a quadratic residue of p. This remark becomes even more emphatic
if the modulus m in (1.1) is a single odd prime p. In that case,

(2ax + b)2 ≡ b2 − 4ac mod p iff ax 2 + bx + c ≡ 0 mod p,

from whence the next proposition follows immediately:

Proposition 1.1 Let p be an odd prime.The congruence

ax 2 + bx + c ≡ 0 mod p, a �≡ 0 mod p, (1.7)

has a solution if and only if

x 2 ≡ b2 − 4ac mod p (1.8)

has a solution, i.e., if and only if either b2 − 4ac is divisible by p or b2 − 4ac
is a quadratic residue of p. Moreover, if (2a)−1 is the multiplicative inverse
of 2a mod p (which exists because p does not divide 2a; see Proposition 1.2
below) then the solutions of (1.7) are given precisely by the formula

x ≡ (±s − b)(2a)−1 mod p,

where ±s are the solutions of (1.8).

We take it as self-evident that the solution of the general quadratic congru-
ence (1.1) is one of the most fundamental and most important problems in the
theory of Diophantine equations in two variables. By virtue of Proposition 1.1
and the discussion which precedes it, quadratic residues and non-residues play
a pivotal role in the determination of the solutions of (1.1). We hope that
the reader will now agree: the study of quadratic residues and non-residues
is important and interesting!
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1.2 The Disquisitiones Arithmeticae

As we pointed out in the preface, modern number theory, that is, the
systematic and mathematically rigorous development of the subject from
fundamental properties of the integers, began in 1801 with the publication
of Gauss’ great treatise, the Disquisitiones Arithmeticae. Because of its first
appearance here in our story, and especially because it plays a dominant role
in that story, we will now briefly discuss some of the most important aspects
of the Disquisitiones. The book consists of seven sections divided into 366
articles. The first three sections are concerned with establishing basic results
in number theory such as the Fundamental Theorem of Arithmetic (proved
rigorously here for the first time), Fermat’s little theorem, primitive roots
and indices, the Chinese remainder theorem, and Wilson’s theorem. Perhaps
the most important innovation in the Disquisitiones is Gauss’ introduction in
Sect. I, and its systematic use throughout the rest of the book, of the concept
of modular congruence. Gauss shows how modular congruence can be used to
give the study of divisibility of the integers a comprehensive and systematic
algebraic formulation, thereby greatly increasing the power and diversity of
the techniques in number theory that were in use up to that time. Certainly
one of the most striking examples of the power of modular congruence is
the use that Gauss made of it in Sect. IV in his investigation of quadratic
residues, which culminates in the first complete and correct proof of the Law
of Quadratic Reciprocity, the most important result of that subject. We will
have much more to say about quadratic reciprocity in Chap. 3.

By far the longest part of the Disquisitiones, over half of the entire volume,
is taken up by Sect. V, which contains Gauss’ deep and penetrating analysis
of quadratic forms. If (a, b, c) ∈ Z×Z×Z, the function defined on Z×Z by

(x , y) → ax 2 + bxy + cy2

is called a (binary) quadratic form. We frequently repress the functional
dependence on (x , y) and hence also refer to the polynomial ax 2 + bxy + cy2

as a quadratic form. In Sect. V, Gauss first develops a way to systematically
classify quadratic forms according to their number-theoretic properties and
then investigates in great depth the algebraic and number theoretic structure
of quadratic forms using the properties of this classification. Next, he defines
an operation, which he called the composition of forms, on the set of forms
ax 2 + bxy + cy2 whose discriminate b2 − 4ac is a fixed value. The set of
all quadratic forms whose discriminants have a fixed value supports a basic
equivalence relation which partitions this set of forms into a finite number of
equivalence classes (Sect. 3.12, Chap. 3), and composition of forms turns this
set of equivalence classes into what we would today call a group. Of course
Gauss did not call it that, as the group concept was not formulated until
much later; however, he did make essential use of the group structure which
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the composition of forms possesses. Gauss then proceeds to use composition
of forms together with the methods that he developed previously to establish
additional results concerning the algebraic and number-theoretic structure of
forms. We will see in Sect. 3.12 of Chap. 3 how some of the elements of Gauss’
theory of quadratic forms arises in our study of quadratic reciprocity, and we
will also make use of some of the basic theory of quadratic forms in Chap. 8.

Section VI of the Disquisitiones is concerned with applications of primitive
roots, quadratic residues, and quadratic forms to the structure of rational
numbers, the solution of modular square-root problems, and primality testing
and prime factorization of the integers. Finally, in Sect. VII, Gauss presents
his theory of cyclotomy, the study of divisions of the circle into congruent arcs,
which culminates in his famous theorem on the determination of the regular
n-gons which can be constructed using only a straightedge and compass.

It is appropriate at this juncture to say a few words about Gauss himself.
Carl Friedrich Gauss was born in 1777 in Brunswick, a city in the north
of present-day Germany, lived for most of his life in Göttingen, and died
there in 1855. Gauss’ exceptional mathematical talent was clear from a
very early age. Because he was such a gifted and promising young student,
Gauss was introduced in 1791 to the Duke of Brunswick, who became a
prominent patron and supporter of Gauss for many years (see, in particular,
the dedication in the Disquisitiones which Gauss addressed to the Duke).
In 1795, Gauss matriculated at the University of Göttingen, left in 1798
without obtaining a degree, and was granted a doctoral degree from the
University of Helmstedt in 1799. After his celebrated computation of the
orbit of the asteroid Ceres in 1801 Gauss was appointed director of the
newly opened observatory at the University of Göttingen in 1807, which
position he held for the rest of his life. In addition to his ground-breaking
work in number theory, Gauss made contributions of fundamental importance
to geometry (differential geometry and non-Euclidean geometry), analysis
(elliptic functions, elliptic integrals, and the theory of infinite series), physics
(potential theory and geomagnetism), geodesy and astronomy (celestial
mechanics and the computation of the orbits of celestial bodies), and statistics
and probability (the method of least squares and the normal distribution).

1.3 Notation, Terminology, and Some Useful
Elementary Number Theory

We now fix some notation and terminology that will be used repeatedly
throughout the sequel. The letter p will always denote a generic odd prime,
the letter q, unless otherwise specified, will denote a generic prime (either
even or odd), P is the set of all primes, Z is the set of all integers, Q is the
set of all rationals, and R is the set of all real numbers. Ifm, n ∈ Z withm ≤ n
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then [m, n] is the set of all integers at least m and no more than n, listed in
increasing order, [m,∞) is the set of all integers exceeding m − 1, also listed
in increasing order, and gcd(m, n) is the greatest common divisor of m and n.
If n ∈ [2,∞) then U (n) will denote the set {m ∈ [1, n − 1] : gcd(m, n) = 1}.
If z is an integer then π(z ) will denote the set of all prime factors of z . If A is
a set then |A| will denote the cardinality of A, 2A is the set of all subsets of A,
and ∅ denotes the empty set. Finally, we will refer to a quadratic residue or
quadratic non-residue as simply a residue or non-residue; all other residues of
a modulus m ∈ [2,∞) will always be called ordinary residues. In particular,
the minimal non-negative ordinary residues modulo m the elements of the
set [0,m − 1].

We also recall some facts from elementary number theory that will be
useful in what follows. For more information about them consult any standard
text on elementary number theory, e.g., Ireland and Rosen [30] or Rosen [48].

If m is a positive integer and a ∈ Z, recall that an inverse of a modulo m
is an integer α such that aα ≡ 1 mod m.

Proposition 1.2 If m is a positive integer and a ∈ Z then a has an inverse
modulo m if and only if gcd(a,m) = 1. Moreover, the inverse is relatively
prime to m and is unique modulo m.

Theorem 1.3 (Chinese Remainder Theorem) If m1, . . . ,mr are pair-
wise relatively prime positive integers and (a1, . . . , ar ) is an r-tuple of integers
then the system of congruences

x ≡ ai mod mi , i = 1, . . . , r ,

has a simultaneous solution that is unique modulo
∏r

i=1 mi . Moreover, if

Mk =
∏
i �=k

mi ,

and if yk is the inverse of Mk mod mk (which exits because gcd(mk ,Mk ) = 1)
then the solution is given by

x ≡
r∑

k=1

akMkyk mod

r∏
i=1

mi .

Recall that a linear Diophantine equation is an equation of the form

ax + by = c,

where a, b, and c are given integers and x and y are integer-valued unknowns.

Proposition 1.4 Let a, b, and c be integers and let gcd(a, b) = d. The
Diophantine equation ax + by = c has a solution if and only if d divides c. If
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d divides c then there are infinitely many solutions (x , y), and if (x0, y0) is a
particular solution then all solutions are given by

x = x0 + (b/d)n, y = y0 − (a/d)n, n ∈ Z.

Given the Diophantine equation ax + by = c with c divisible by d =
gcd(a, b), the Euclidean algorithm can be used to easily find a particular
solution (x0, y0). Simply let k = c/d and use the Euclidean algorithm to
find integers m and n such that d = am + bn; then (x0, y0) = (km, kn)
is a particular solution, and all solutions can then be found by using
Proposition 1.4. The simple first-degree congruence ax ≡ b mod m can thus
be easily solved upon the observation that this congruence has a solution x
if and only if the Diophantine equation ax +my = b has the solution (x , y)
for some y ∈ Z.



Chapter 2

Basic Facts

In this chapter, we lay the foundations for all of the work that will be done
in subsequent chapters. Section 2.1 defines the Legendre symbol and verifies
its basic properties, proves Euler’s criterion, and deduces some corollaries
which will be very useful in many situations in which we will find ourselves.
Motivated by the solutions of a quadratic congruence modulo a prime which
we discussed in Chap. 1, we formulate what we will call the Basic Problem
and the Fundamental Problem for Primes in Sect. 2.2. In Sect. 2.3, we state
and prove Gauss’ Lemma for residues and non-residues and use it to solve
the Fundamental Problem for the prime 2.

2.1 The Legendre Symbol, Euler’s Criterion,
and Other Important Things

In this section, we establish some fundamental facts about residues and non-
residues that will be used repeatedly throughout the rest of these notes.

Proposition 2.1 In every complete system of ordinary residues modulo p,
there are exactly (p − 1)/2 quadratic residues.

Proof It suffices to prove that in [1, p−1] there are exactly (p−1)/2 quadratic
residues. Note first that 12, 22, . . . , (p−1

2 )2 are all incongruent mod p (if 1 ≤
i , j < p/2 and i2 ≡ j 2 mod p then i ≡ j hence i = j or i ≡ −j , i.e., i+ j ≡ 0.
But 2 ≤ i + j < p, and so i + j ≡ 0 is impossible).

Let S denote the set of minimal non-negative ordinary residues mod p of
12, 22, . . . , (p−1

2 )2. The elements of S are quadratic residues of p and |S| =
(p − 1)/2. Suppose that n ∈ [1, p − 1] is a quadratic residue of p. Then
there exists r ∈ [1, p − 1] such that r2 ≡ n. Then (p − r)2 ≡ r2 ≡ n and

© Springer International Publishing Switzerland 2016
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{r , p − r}∩ [1, (p − 1)/2] �= ∅. Hence n ∈ S, whence S = the set of quadratic
residues of p inside [1, p − 1]. QED

Remark The proof of Proposition 2.1 provides a way to easily find, at least
in principle, the residues of any prime p. Simply calculate the integers
12, 22, . . . , (p−1

2 )2 and then reduce mod p. The integers that result from this
computation are the residues of p inside [1, p − 1]. This procedure also finds
the modular square roots x of a residue r of p, i.e., the solutions to the
congruence x 2 ≡ r mod p. For example, in just a few minutes on a hand-held
calculator, one finds that the residues of 17 are 1, 2, 4, 8, 9, 13, 15, and 16,
with corresponding modular square roots ±1, ±6, ±2, ±5, ±3, ±8, ±7,
and ±4, and the residues of 37 are 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25,
26, 27, 28, 30, 33, 34, and 36, with corresponding modular square roots
±1, ±15, ±2, ±9, ±3, ±11, ±14, ±7, ±4, ±13, ±5, ±10, ±8, ±18, ±17,
±12, ±16, and ±6. Of course, for large p, this method quickly becomes
impractical for the calculation of residues and modular square roots, but
see Sect. 4.9 of Chap. 4 for a practical and efficient way to perform these
calculations for large values of p.

N.B. In the next proposition, all residues and non-residues are taken with
respect to a fixed prime p.

Proposition 2.2

(i) The product of two residues is a residue.
(ii) The product of a residue and a non-residue is a non-residue.
(iii) The product of two non-residues is a residue.

Proof

(i) If α, α′ are residues then x 2 ≡ α, y2 ≡ α′ imply that (xy)2 ≡ αα′ mod p.
(ii) Let α be a fixed residue. The integers 0, α, . . . , (p− 1)α are incongruent

mod p, hence are a complete system of ordinary residues mod p.
If R denotes the set of all residues in [1, p − 1] then by Proposi-
tion 2.2(i), {αr : r ∈ R} is a set of residues of cardinality (p − 1)/2,
hence Proposition 2.1 implies that there are no other residues among
α, 2α, . . . , (p − 1)α, i.e., if β ∈ [1, p − 1] \ R then αβ is a non-residue.
Statement (ii) is an immediate consequence of this.

(iii) Suppose that β is a non-residue. Then 0, β, 2β, . . . , (p−1)β is a complete
system of ordinary residues mod p, and by Proposition 2.2(ii) and
Proposition 2.1, {βr : r ∈ R} is a set of non-residues and there are
no other non-residues among β, 2β, . . . , (p − 1)β. Hence β′ ∈ [1, p −
1] \ R implies that ββ′ is a residue. Statement (iii) is an immediate
consequence of this. QED

The following definition introduces the most important piece of mathe-
matical technology that we will use to study residues and non-residues.



2.1 The Legendre Symbol, Euler’s Criterion, and Other Important. . . 11

Definition The Legendre symbol χp of p is the function χp : Z → [−1, 1]
defined by

χp(n) =

⎧
⎨
⎩

0, if p divides n,

1, if gcd(p, n) = 1 and n is a residue of p,

−1, if gcd(p, n) = 1 and n is a non-residue of p.

The next proposition asserts that χp is a completely multiplicative
arithmetic function of period p. This fact will play a crucial role in much
of our subsequent work.

Proposition 2.3

(i) χp(n) = 0 if and only if p divides n, and if m ≡ n mod p then χp(m) =
χp(n)(χp is of period p).

(ii) For all m, n ∈ Z, χp(mn) = χp(m)χp(n)(χp is completely multiplica-
tive).

Proof

(i) If m ≡ n mod p then p divides m (respectively, m is a residue/non-
residue of p) if and only if p divides n (respectively, n is a residue/non-
residue of p). Hence χp(m) = χp(n).

(ii) χp(mn) = 0 if and only if p divides mn if and only if p divides m or n
if and only if χp(m) = 0 or χp(n) = 0 if and only if χp(m)χp(n) = 0.

Because χp(n
2) =

(
χp(n)

)2
, we may assume that m �= n. Then χp(mn) =

1 (respectively, χp(mn) = −1) if and only if gcd(mn, p) = 1 and mn is a
residue (respectively, mn is a non-residue) of p if and only if gcd(m, p) = 1 =
gcd(n, p) and, by Proposition 2.2, m and n are either both residues or both
non-residues of p (respectively, {m, n} contains a residue and a non-residue
of p) if and only if χp(m)χp(n) = 1 (respectively, χp(m)χp(n) = −1). QED

Remark on Notation As a consequence of Proposition 2.3, χp defines a
homomorphism of the group of units in the ring Z/pZ into the circle group,
i.e., χp is a character of the group of units. This is the reason why we
have chosen the character-theoretic notation χp(n) for the Legendre symbol,

instead of the more traditional notation

(
n

p

)
. When p is replaced by an

arbitrary integer m ≥ 2, we will have more to say later (see Sect. 4.4 of
Chap. 4) about characters on the group of units in the ring Z/mZ and their
use in what we will study here.

The next result determines the quadratic character of −1.

Theorem 2.4

χp(−1) =

{
1, if p ≡ 1 mod 4,

−1, if p ≡ −1 mod 4.
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This theorem is due to Euler [16], who proved it in 1760. It is of
considerable importance in the history of number theory because in 1795,
the young Gauss (at the ripe old age of 18!) rediscovered it. Gauss was so
struck by the beauty and depth of this result that, as he testifies in the
preface to Disquisitiones Arithmeticae [19], “I concentrated on it all of my
efforts in order to understand the principles on which it depended and to
obtain a rigorous proof. When I succeeded in this I was so attracted by these
questions that I could not let them be.” Thus began Gauss’ work in number
theory that was to revolutionize the subject.

Proof of Theorem 2.4 The proof that we give is Euler’s own. It is based on

Theorem 2.5 (Euler’s Criterion) If a ∈ Z and gcd(a, p) = 1 then

χp(a) ≡ a(p−1)/2 mod p.

If we apply Euler’s criterion with a = −1 then

χp(−1) ≡ (−1)(p−1)/2 mod p.

Hence χp(−1)− (−1)(p−1)/2 is either 0 or ±2 and is divisible by p, hence

χp(−1) = (−1)(p−1)/2,

and so χp(−1) = 1 (respectively, −1) if and only if (p − 1)/2 is even
(respectively, odd) if and only if p ≡ 1 mod 4 (respectively, p ≡ −1 mod 4).
This verifies Theorem 2.4.

Proof of Theorem 2.5 This is an interesting application of Wilson’s theorem,
which asserts that

if q is a prime then (q − 1)! ≡ −1 mod q, (∗)

and was in fact first stated by Abu Ali al-Hasan ibn al-Haytham in 1000 AD,
over 750 years before it was attributed to John Wilson, whose name it now
bears. We will use Wilson’s theorem to first prove Theorem 2.5; after that
we then verify Wilson’s theorem.

Suppose that χp(a) = 1, and so x 2 ≡ a mod p for some x ∈ Z. Note now
that 1 = gcd(a, p) implies that 1 = gcd(x 2, p), and so 1 = gcd(x , p) (p is
prime!), hence by Fermat’s little theorem,

a(p−1)/2 ≡ (x 2)(p−1)/2 = x p−1 ≡ 1 mod p.

Suppose that χp(a) = −1, i.e., a is a non-residue. For each i ∈ [1, p − 1],
there exists j ∈ [1, p − 1] uniquely determined by i , such that

ij ≡ a mod p
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(Z/pZ is a field) and i �= j because a is a non-residue. Hence we can group
the integers 1, . . . , p − 1 into (p − 1)/2 pairs, each pair with a product ≡ a
mod p. Multiplying all of these pairs together yields

(p − 1)! ≡ a(p−1)/2 mod p,

and so (∗) implies that

−1 ≡ a(p−1)/2 mod p.

QED

Proof of Wilson’s Theorem The implication (∗) is clearly valid when q = 2, so
assume that q is odd. Use Proposition 1.2 to find for each integer a ∈ [1, q−1]
an integer ā ∈ [1, p − 1] such that aā ≡ 1 mod q. The integers 1 and q − 1
are the only integers in [1, q− 1] that are their own inverses mod q, hence we
may group the integers from 2 through q − 2 into (q − 3)/2 pairs with the
product of each pair congruent to 1 mod q. Hence

2 · 3 · · · (q − 3)(q − 2) ≡ 1 mod q.

Multiplication of both sides of this congruence by q − 1 yields

(q − 1)! = 1 · 2 · · · (q − 1) ≡ q − 1 ≡ −1 mod q.

QED

Remark The converse of Wilson’s theorem is also valid.

2.2 The Basic Problem and the Fundamental
Problem for a Prime

From our discussion in Chap. 1, if d is the discriminant of ax 2 + bx + c and
if neither a nor d is divisible by p then

ax 2 + bx + c ≡ 0 mod p

has a solution if and only if d is a residue of p. This motivates what we will
call the

Basic Problem If d ∈ Z, for what primes p is d a quadratic residue of p?
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We now present a strategy for solving this problem which employs
Proposition 2.3 as the basic tool. Things can be stated precisely and concisely
if we use the following

Notation: if z ∈ Z, let

X±(z ) = {p : χp(z )= ± 1},

πodd(z )(resp., πeven(z )) = {q ∈ π(z ):q has odd (resp., even)multiplicity in z}.

We point out here how to read the ± signs. If ± signs occur simultaneously
in different places in an equation, formula, definition, etc., then the + sign
is meant to be taken simultaneously in all occurrences of ± and then the −
sign is also to be taken simultaneously in all occurrences of ±. For example,
the equation X±(z ) = {p : χp(z ) = ±1} above asserts that X+(z ) = {p :
χp(z ) = 1} and X−(z ) = {p : χp(z ) = −1}. We follow this convention in the
sequel.

Suppose first that d > 0, with gcd(d , p) = 1. If πodd(d) = ∅ then d is
a square, so d is trivially a residue of p. Hence assume that πodd(d) �= ∅.
Proposition 2.3 implies that

χp(d) =
∏

q∈πodd(d)

χp(q).

Hence

χp(d) = 1 iff |{q ∈ πodd(d) : χp(q) = −1}| is even . (2.1)

Let

E = {E ⊆ πodd(d) : |E | is even}.

If E ∈ E , let RE denote the set of all p such that

χp(q) =

{
−1, if q ∈ E ,

1, if q ∈ πodd(d) \ E .

Then (2.1) implies that

X+(d) =
( ⋃

E∈E
RE

)
\ πeven(d), (2.2)

and this union is pairwise disjoint. Moreover

RE =
( ⋂

q∈E

X−(q)
)
∩
( ⋂

q∈πodd(d)\E
X+(q)

)
. (2.3)
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Suppose next that d < 0. Then d = (−1)(−d), hence

χp(d) =
∏

q∈{−1}∪πodd(d)

χp(q). (2.4)

If we let

E−1 = {E ⊆ {−1} ∪ πodd(d) : |E | is even},

then by applying (2.4) and an argument similar to the one that yielded (2.2)
and (2.3) for X+(d), d > 0, we also deduce that for d < 0,

X+(d) =
( ⋃

E∈E−1

RE

)
\ πeven(d), (2.5)

where

RE =
( ⋂

q∈E

X−(q)
)
∩
( ⋂

q∈({−1}∪πodd(d))\E
X+(q)

)
,E ∈ E−1. (2.6)

In order to show more concretely how this strategy for the solution of
the basic problem is implemented, suppose as an example that we wish to
determine X+(±126). First, factor ±126 as ±2 · 32 · 7. It follows from this
factorization that

πodd(±126) = {2, 7}, πeven(±126) = {3},

hence

E = {∅, {2, 7}}, E−1 = {∅, {−1, 2}, {−1, 7}, {2, 7}}.

It now follows from (2.2) and (2.3) that

X+(126) = (R∅ ∪R{2,7}) \ {3}

=
((

X+(2) ∩ X+(7)
)
∪
(
X−(2) ∩ X−(7)

))
\ {3},

and from (2.5) and (2.6) that

X+(−126) = (R∅ ∪ R{−1,2} ∪R{−1,7} ∪ R{2,7}) \ {3}

=
((

X+(−1) ∩ X+(2) ∩ X+(7)
)
∪
(
X−(−1) ∩ X−(2) ∩ X+(7)

)

∪
(
X−(−1) ∩ X+(2) ∩ X−(7)

)
∪
(
X+(−1)

∩X−(2) ∩ X−(7)
))

\ {3}.
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In order to finish this calculation of X+(±126), we must now calculate
X+(2)∩X+(7), X−(2)∩X−(7), X+(−1)∩X+(2)∩X+(7), X−(−1)∩X−(2)∩
X+(7), X−(−1) ∩ X+(2) ∩ X−(7), and X+(−1) ∩ X−(2) ∩ X−(7), which in
turn requires the calculation of X±(−1), X±(2), and X±(7). Theorem 2.4
and formulae (2.2), (2.3), (2.5), and (2.6) hence reduce the solution of the
Basic Problem to the solution of the

Fundamental Problem for Primes. If q is prime, calculate X±(q).

The Fundamental Problem for odd primes and the Basic Problem will be
completely solved in Sects. 4.1 and 4.2 of Chap. 4. The Fundamental Problem
for the prime 2 will be completely solved in the next section.

2.3 Gauss’ Lemma and the Fundamental Problem
for the Prime 2

The next theorem, along with Theorems 2.4 and 2.5, will be used many times
in our subsequent work.

Theorem 2.6 χp(2) = (−1)(p
2−1)/8.

Theorem 2.6 solves the Fundamental Problem for the prime 2. It is easy
to see that (p2 − 1)/8 is even (odd) if and only if p ≡ 1 or 7 mod 8 (p ≡ 3 or
5 mod 8). Hence

X+(2) = {p : p ≡ 1 or 7 mod 8},

X−(2) = {p : p ≡ 3 or 5 mod 8}.

The proof of Theorem 2.6 will use a basic result in the theory of quadratic
residues called Gauss’ lemma (this lemma was first used by Gauss in his third
proof of the Law of Quadratic Reciprocity [20], which proof we will present in
Chap. 3). We will first state Gauss’ lemma, then use it to prove Theorem 2.6,
and then we will prove Gauss’ lemma.

Toward that end, then, let a ∈ Z, gcd(a, p) = 1. Consider the minimal
positive ordinary residues mod p of the integers a, . . . , 1

2 (p−1)a. None of these
ordinary residues is p/2, as p is odd, and they are all distinct as gcd(a, p) = 1,
hence let

u1, . . . , us be those ordinary residues that are > p/2,

v1, . . . , vt be those ordinary residues that are < p/2.
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N.B. s + t = 1
2 (p − 1). We then have

Theorem 2.7 (Gauss’ Lemma)

χp(a) = (−1)s .

Proof of Theorem 2.6 Let σ be the number of minimal positive ordinary
residues mod p of the integers in the set

1 · 2, 2 · 2, . . . , 1
2
(p − 1) · 2 (2.7)

that exceed p/2. Gauss’ lemma implies that

χp(2) = (−1)σ.

Because each integer in (2.7) is less than p, σ = the number of integers in the
set (2.7) that exceed p/2. An integer 2j , j ∈ [1, (p − 1)/2] does not exceed
p/2 if and only if 1 ≤ j ≤ p/4, hence the number of integers in (2.7) that do
not exceed p/2 is [p/4], where [x ] denotes the greatest integer not exceeding
x . Hence

σ =
p − 1

2
−
[p
4

]
.

To prove Theorem 2.6, it hence suffices to prove that

for all odd integers n,
n − 1

2
−
[n
4

]
≡ n2 − 1

8
mod 2. (2.8)

To see this, note first that the congruence in (2.8) is true for a particular
integer n if and only if it is true for n + 8, because

(n + 8)− 1

2
−
[n + 8

4

]
=

n − 1

2
+ 4−

([n
4

]
+ 2
)
≡ n − 1

2
−
[n
4

]
mod 2,

(n + 8)2 − 1

8
=

n2 − 1

8
+ 2n + 8 ≡ n2 − 1

8
mod 2.

Thus (2.8) holds if and only if it holds for n = ±1,±3, and it is easy to check
that (2.8) holds for these values of n. QED

Proof of Theorem 2.7 Let ui , vi be as defined before the statement of Gauss’
lemma. We claim that

{p − u1, . . . , p − us , v1, . . . , vt} = [1,
1

2
(p − 1)]. (2.9)
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To see this, note first that if i �= j then vi �= vj , ui �= uj hence p−ui �= p−uj .
It is also true that p−ui �= vj for all i , j ; otherwise p ≡ a(k+ l) mod p, where
2 ≤ k + l ≤ p−1

2 + p−1
2 = p − 1, which is impossible because gcd(a, p) = 1.

Hence

|{p − u1, . . . , p − us , v1, . . . , vt}| = s + t =
p − 1

2
. (2.10)

But 0 < vi < p/2 implies that 0 < vi ≤ (p − 1)/2 and p/2 < ui < p, hence
0 < p − ui ≤ (p − 1)/2, and so

{p − u1, . . . , p − us , v1, . . . , vt} ⊆ [1,
1

2
(p − 1)]. (2.11)

As |[1, 12 (p − 1)]| = 1
2 (p − 1), (2.9) follows from (2.10) and (2.11).

It follows from (2.9) that

s∏
1

(p − ui)

t∏
1

vi =
(p − 1

2

)
!.

Because

p − ui ≡ −ui mod p

we conclude from the preceding equation that

(−1)s
s∏
1

ui

t∏
1

vi ≡
(p − 1

2

)
! mod p. (2.12)

Because u1, . . . , us , v1, . . . , vt are the least positive ordinary residues of
a, . . . , 1

2 (p − 1)a, it is a consequence of (2.12) that

(−1)sa(p−1)/2
(p − 1

2

)
! ≡
(p − 1

2

)
! mod p. (2.13)

But p and (p−1
2 )! are relatively prime, and so (2.13) implies that

(−1)sa(p−1)/2 ≡ 1 mod p

i.e.,

a(p−1)/2 ≡ (−1)s mod p.
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By Euler’s criterion (Theorem 2.5),

a(p−1)/2 ≡ χp(a) mod p,

hence

χp(a) ≡ (−1)s mod p.

It follows that χp(a)− (−1)s is either 0 or ±2 and is also divisible by p and
so

χp(a) = (−1)s .

QED

We now need to solve the Fundamental Problem for odd primes. This
will be done in Chap. 4 by using a result which Gauss called the theorema
aureum, the “golden theorem”, of number theory. We will discuss that result
extensively in the next chapter.



Chapter 3

Gauss’ Theorema Aureum : The Law
of Quadratic Reciprocity

Proposition 1.1 of Chap. 1 shows that the solution of the general second-
degree congruence ax 2+bx +c ≡ 0 mod p for an odd prime p can be reduced
to the solution of the congruence x 2 ≡ b2 − 4ac mod p, and we also saw how
the solution of x 2 ≡ n mod m for a composite modulus m can be reduced by
way of Gauss’ algorithm to the solution of x 2 ≡ q mod p for prime numbers
p and q. In this chapter, we will discuss a remarkable theorem known as
the Law of Quadratic Reciprocity, which provides a very powerful method
for determining the solvability of congruences of this last type. The theorem
states that if p and q are distinct odd primes then the congruences x 2 ≡ q
mod p and x 2 ≡ p mod q are either both solvable or both not solvable,
unless p and q are both congruent to 3 mod 4, in which case one is solvable
and the other is not. As a simple but never the less striking example of the
power of this theorem, suppose one wants to know if x 2 ≡ 5 mod 103 has any
solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law
asserts that x 2 ≡ 5 mod 103 and x 2 ≡ 103 mod 5 are both solvable or both
not. But solution of the latter congruence reduces to x 2 ≡ 3 mod 5, which
clearly has no solutions. Hence neither does x 2 ≡ 5 mod 103.

The first rigorous proof of the Law of Quadratic Reciprocity is due to
Gauss. He valued this theorem so much that he referred to it as the theorema
aureum, the golden theorem, of number theory, and in order to acquire
a deeper understanding of its content and implications, he searched for
various proofs of the theorem, eventually discovering eight different ones.
After discussing what type of mathematical principle a reciprocity law might
seek to encapsulate in Sect. 3.1 of this chapter, stating the Law of Quadratic
Reciprocity precisely in Sect. 3.2, and discussing some of the mathematical
history which led up to it in Sect. 3.3, we follow Gauss’ example by presenting
five different proofs of quadratic reciprocity in the remaining ten sections.
Each of these proofs is chosen to highlight the ideas behind the techniques
which Gauss himself employed and to indicate how some of the more modern
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approaches to quadratic reciprocity are inspired by the work of Gauss. For a
more detailed summary of what we do in Sects. 3.5–3.13, consult Sect. 3.4.

3.1 What is a Reciprocity Law?

We will motivate why we would want an answer to the question entitling this
section by first asking this question: what positive integers n are the sum of
two squares? This is an old problem that was solved by Fermat in 1640. We
can reduce to the case when n is prime by first observing, as Fermat did,
that if a prime number q divides a sum of two squares, neither of which is
divisible by q, then q is the sum of two squares. Using the identity

(a2 + b2)(c2 + d2) = (ad − bc)2 + (ac + bd)2,

which shows that the property of being the sum of two squares is preserved
under multiplication, it can then be easily shown that n is the sum of two
squares if and only if n is either a square or each prime factor of n of odd
multiplicity is the sum of two squares. Because 2 = 12 + 12, we hence need
only consider odd primes p.

As we mentioned before, p is the sum of two squares if it divides the sum
of two squares and neither of the squares are divisible by p, and so we are
looking for integers a and b such that

a2 + b2 ≡ 0 mod p

and

a �≡ 0 �≡ b mod p.

After multiplying the first congruence by the square of the inverse of b mod
p, it follows that p is the sum of two squares if and only if the congruence

x 2 + 1 ≡ 0 mod p

has a solution, i.e., −1 is a residue of p. We now invoke Theorem 2.4 of
Chap. 2, which asserts that −1 is a residue of p if and only if p ≡ 1 mod 4,
to conclude that a positive integer n is the sum of two squares if and only if
either n is a square or each prime factor of n of odd multiplicity is congruent
to 1 mod 4.

Another way of saying that the congruence x 2+1 ≡ 0 mod p has a solution
is to say that the polynomial x 2 + 1 factors over Z/pZ as (x + c)(x − c) for
some (nonzero) c ∈ Z, i.e., x 2 + 1 splits over Z/pZ (in the remainder of
this section, we follow the exposition as set forth in the very nice paper
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of Wyman [64]). Our previous discussion hence shows that the problem of
deciding when an integer is the sum of two squares comes down to deciding
when a certain polynomial with integer coefficients splits over Z/pZ. It is
therefore of considerable interest to further study this splitting phenomenon.
For that purpose, we will start more generally with a polynomial f (x ) with
integral coefficients that is irreducible over Q, and for an odd prime p, we let
fp(x ) denote the polynomial over Z/pZ obtained from f (x ) by reducing all
of its coefficients modulo p. We will say that f (x ) splits modulo p if fp(x ) is
the product of distinct linear factors over Z/pZ, and if f (x ) splits modulo p,
we will call p a slitting modulus of f (x ).

Suppose now that f (x ) = ax 2 + bx + c is a quadratic polynomial, the case
that is of most interest to us here. If p is an odd prime then the congruence

f (x ) ≡ 0 mod p

has either 0, 1, or 2 solutions, which occur, according to Proposition 1.1 of
Chap. 1, if the discriminant b2 − 4ac of f (x ) is, respectively, a non-residue
of p, is divisible by p, or is a residue of p. Because this congruence also has
exactly 2 solutions if and only if f (x ) splits modulo p, it follows that f (x )
splits modulo p if and only if the discriminant of f (x ) is a residue of p. We
saw before that x 2 +1 splits modulo p if and only if p ≡ 1 mod 4, and using
Theorem 2.6 from Chap. 2 in a similar manner, one can prove that x 2 − 2
splits modulo p if and only if p ≡ 1 mod 8. Another amusing example, which
we will let the reader work out, asserts that x 2+ x +1 splits modulo p if and
only if p ≡ 1 mod 3.

In light of these three examples, we will now, for a fixed prime q, look for
the splitting moduli of x 2 − q. We wish to determine these moduli by means
of congruence conditions that are similar to the conditions which described
the splitting moduli of x 2 + 1, x 2 − 2 and x 2 + x + 1. If p is a prime then,
over Z/pZ, x 2− q is the square of a linear polynomial only if p = q, and also
if p = 2, hence we may assume that p is an odd prime distinct from q. It
follows that x 2−q splits modulo p if and only if q is a quadratic residue of p,
i.e., the Legendre symbol χp(q) is 1. Hence we must find a way to calculate
χp(q) as p varies over the odd primes.

This translation of the splitting modulus problem for x 2 − q does not
really help much. The Legendre symbol χp is not easy to evaluate directly,
and changing the value of p would require a direct calculation to begin again
from scratch. Because there are infinitely many primes, this approach to the
problem quickly becomes unworkable.

A way to possibly overcome this difficulty is to observe that in this
problem q is fixed while the prime p varies, and so if it was possible to
somehow use χq(p) in place of χp(q) then only one Legendre symbol would be
required. Moreover, the values of χq(p) are determined only by the ordinary
residue class of p modulo q, and so we would also have open the possibility
of calculating the splitting moduli of x 2 − q in terms of ordinary residue



24 3 Gauss’ Theorema Aureum: The Law of Quadratic Reciprocity

classes determined in some way by q, as per the descriptions of the splitting
moduli in our three examples. This suggests looking for a computationally
efficient relationship between χp(q) and χq(p), i.e., is there a useful reciprocal
relation between the residues (respectively, non-residues) of p and the residues
(respectively, non-residues) of q? The answer: yes there is, and it is given
by the Law of Quadratic Reciprocity, one of the fundamental principles of
elementary number theory and one of the most powerful tools that we have
for analyzing the behavior of residues and non-residues. As we will see (in
Chap. 4), it completely solves the problem of determining the splitting moduli
of any quadratic polynomial by means of congruence conditions which depend
only on the discriminant of the polynomial.

We will begin our study of quadratic reciprocity in the next section, but
before we do that, it is natural to wonder if there is a similar principle which
can be used to study the splitting moduli of polynomials of degree larger than
2. Using what we have discussed for quadratic polynomials as a guide, we
will say that a polynomial f (x ) with integer coefficients satisfies a reciprocity
law if its splitting moduli are determined solely by congruence conditions
which depend only on f (x ). This way of formulating these higher-degree
reciprocity laws is the main reason that we used the idea of splitting moduli
of polynomials in the first place.

As it turns out, higher reciprocity laws exit for many polynomials. A
particularly nice class of examples are provided by the set of cyclotomic
polynomials. There is a cyclotomic polynomial corresponding to each integer
n ≥ 2, defined by a primitive n-th root of unity, say ζn = exp(2πi/n).
The number ζn is algebraic over Q, and is the root of a unique irreducible
monic polynomial Φn(x ) with integer coefficients of degree ϕ(n), where ϕ
denotes Euler’s totient function. The polynomial Φn(x ) is the n-th cyclotomic
polynomial. For example, if n = q is prime, one can show that

Φq(x ) = 1 + x + · · ·+ x q−1

(Chap. 3, Sect. 3.8). The degree of Φn(x ) is at least 4 when n ≥ 7, and Φn(x )
satisfies the following very nice reciprocity law (for a proof, consult Wyman
[64]):

Theorem 3.1 (A Cyclotomic Reciprocity Law) The prime p is a
splitting modulus of Φn(x ) if and only if p ≡ 1 mod n.

It turns out that not every polynomial with integer coefficients satisfies a
reciprocity law, but there is an elegant way to characterize the polynomials
with rational coefficients which do satisfy one. If f (x ) is a polynomial of
degree n with coefficients in Q then f (x ) has n complex roots, counted
according to multiplicity, and these roots, together withQ, generate a subfield
of the complex numbers that we will denote by Kf . The set of all field
automorphisms of Kf forms a group under the operation of composition of
automorphisms. The Galois group of f (x ) is defined to be the subgroup of all
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automorphisms σ of Kf which fix each rational number, i.e., σ(r) = r for all
r ∈ Q. The next theorem neatly characterizes in terms of their Galois groups
the polynomials which satisfy a reciprocity law.

Theorem 3.2 (Existence of Reciprocity Laws) If f (x ) is a polynomial
with integer coefficients and is irreducible over Q then f (x ) satisfies a
reciprocity law if and only if the Galois group of f (x ) is abelian.

The polynomials x 4 + 4x 2 + 2, x 4 − 10x 2 + 4, x 4 − 2, and x 5 − 4x + 2
are all irreducible over Q, and one can show that their Galois groups are,
respectively, the cyclic group of order 4, the Klein 4-group, the dihedral group
of order 8, and the symmetric group on 5 symbols (Hungerford [29], Sect. V.4).
We hence conclude from Theorem 3.2 that x 4 + 4x 2 + 2 and x 4 − 10x 2 + 4
satisfy a reciprocity law, but x 4 − 2 and x 5 − 4x + 2 do not.

Two natural questions now arise: how do you prove Theorem 3.2, and if
you have an irreducible polynomial with integer coefficients and an abelian
Galois group, how do you find the congruence conditions which determine its
splitting moduli? The answers to these questions are far beyond the scope of
what we will do in these lecture notes, because they make use of essentially
all of the machinery of class field theory over the rationals. We will not even
attempt an explanation of what class field theory is, except to say that it
originated in a program to find reciprocity laws which are similar in spirit to
the reciprocity laws for polynomials that we have discussed here, but which
are valid in much greater generality. This program, which began with the work
of Gauss on quadratic reciprocity, was eventually completed in the 1920s and
1930s by Tagaki, E. Artin, Furtwängler, Hasse, and Chevalley. We now turn
to the theorem which inspired all of that work.

3.2 The Law of Quadratic Reciprocity

Theorem 3.3 (Law of Quadratic Reciprocity (LQR)) If p and q are
distinct odd primes then

χp(q)χq(p) = (−1)
1
2 (p−1) 1

2 (q−1).

We will begin our study of the LQR by unpacking the information that
is encoded in the elegant and efficient way by which Theorem 3.3 states it.
Note first that if n ∈ Z is odd then 1

2 (n− 1) is even (respectively, odd) if and
only if n ≡ 1 mod 4 (respectively, n ≡ 3 mod 4). Hence

χp(q)χq (p) = 1 iff p or q ≡ 1 mod 4,

χp(q)χq (p) = −1 iff p ≡ q ≡ 3 mod 4,
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i.e.,

χp(q) = χq(p) iff p or q ≡ 1 mod 4,

χp(q) = −χq(p) iff p ≡ q ≡ 3 mod 4.

Thus the LQR states that

if p or q ≡ 1 mod 4 then p is a residue of q if and only if q is a residue of p,

and

if p ≡ q ≡ 3 mod 4 then p is a residue of q if and only if q is a non-residue of p.

This is why the theorem is called the law of quadratic reciprocity. The
classical quotient notation for the Legendre symbol makes the reciprocity
typographically explicit: in that notation, the conclusion of Theorem 3.3 reads

as

(
p

q

)(
q

p

)
= (−1)

1
2 (p−1) 1

2 (q−1).

We next illustrate the usefulness of the LQR in determining whether or
not a specific integer is or is not the residue of a specific prime. We can do no
better than taking the example which Dirichlet used himself in his landmark
text Vorlesungen über Zahlentheorie [12]. We wish to know whether 365 is a
residue of the prime 1847. The first step is to factor 365 = 5 · 73, so that

χ1847(365) = χ1847(5) χ1847(73).

Because 5 ≡ 1 mod 4, the LQR implies that

χ1857(5) = χ5(1857)

and as 1857 ≡ 2 mod 5, it follows that

χ1857(5) = χ5(2) = −1.

Since 73 ≡ 1 mod 4, it follows in the same manner from the LQR and the
fact that 1847 ≡ 22 mod 73 that

χ1847(73) = χ73(1847) = χ73(22) = χ73(2) χ73(11).

But now 73 ≡ 1 mod 8, hence it follows from Theorem 2.6 that

χ73(2) = 1
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hence

χ1847(73) = χ73(11).

Using the LQR once more, we have that

χ73(11) = χ11(73) = χ11(7),

and because 7 and 11 are each congruent to 3 mod 4, it follows from the LQR
that

χ11(7) = −χ7(11) = −χ7(4) = −χ7(2)
2 = −1.

Consequently,

χ1847(73) = χ73(11) = χ11(7) = −1,

and so finally,

χ1847(365) = χ1847(5) χ1847(73) = (−1)(−1) = 1.

Thus 365 is a residue of 1847; in fact

(±496)2 = 246016 = 365 + 133 · 1847.

Quadratic reciprocity can also be used to calculate the splitting moduli of
polynomials of the form x 2−q, q a prime, as we alluded to in Sect. 3.1 above.
For example, let q = 5. Then the residues of 5 are 1 and 4 and so

χ5(1) = χ5(4) = 1

and

χ5(2) = χ5(3) = −1.

Hence

χ5(p) = 1 iff p ≡ 1 or 4 mod 5.

Because 5 ≡ 1 mod 4, it follows from the LQR that

χp(5) = χ5(p),
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hence

5 is a residue of p iff p ≡ 1 or 4 mod 5.

Consequently, x 2 − 5 splits modulo p if and only if p is congruent to either 1
or 4 mod 5.

For a different example, take q = 11. Then calculation of the residues of
11 shows that

χ11(p) = 1 iff p ≡ 1, 3, 4, 5, or 9 mod 11.

We have that 11 ≡ 3 mod 4, hence by the LQR,

χp(11) = ±χ11(p),

with the sign determined by the equivalence class of p mod 4. For example, if
p = 23 then 23 ≡ 1 mod 11 and 23 ≡ 11 ≡ 3 mod 4, hence the LQR implies
that

χ23(11) = −χ11(23) = −χ11(1) = −1,

while if p = 89 then 89 ≡ 1 mod 11 and 89 ≡ 1 mod 4, and so the LQR
implies in this case that

χ98(11) = χ11(89) = χ11(1) = 1.

Use of the Chinese remainder theorem shows that the value of χp(11) depends
on the equivalence class of p modulo 4 · 11 = 44, and after a few more
calculations we see that

χp(11) = 1 iff p ≡ 1, 5, 7, 9, 19, 25, 35, 37, 39, or 43 mod 44.

Thus x 2 − 11 splits modulo p if and only if p ≡ 1, 5, 7, 9, 19, 25, 35, 37, 39,
or 43 mod 44. We will have much more to say about the utility of quadratic
reciprocity in Chap. 4, but these examples already give a good indication of
how the LQR makes computation of residues and non-residues much easier.

3.3 Some History

At the end of Sect. 3.1, we indicated very briefly that many important and
far-reaching developments in number theory can trace their genesis to the
Law of Quadratic Reciprocity. Thus it is instructive to discuss the history of
some of the ideas in number theory which led up to it. In order to do that,
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we will follow the account of that story as presented in Lemmermeyer [38].
Lemmermeyer’s book contains a wealth of information about the development
of reciprocity laws in many of their various manifestations, with a penetrating
and comprehensive analysis, both mathematical and historical, of the circle
of ideas, techniques, and approaches which have been brought to bear on that
subject.

The first foreshadowing of quadratic reciprocity appears in the work of
Fermat. Fermat’s results on the representation of integers as the sum of two
squares, as we saw in Sect. 3.1, leads directly to the problem of determining
the quadratic character of −1, which was solved in Chap. 2 by Theorem 2.4.
Fermat also studied the representation of primes by quadratic forms of the
form x 2 + ny2, for n = ±2,±3, and −5. One can show that when n = 2 or
3 then a prime p which divides x 2 + ny2 but divides neither x nor y is of
the form a2 + nb2 for a pair of integers a and b. It now follows from this
fact, using the same reasoning that we employed in Sect. 3.1, that p can be
represented by either x 2 + 2y2 or x 2 + 3y2 if and only if −2 or, respectively,
−3, is a residue of p. We hence see that the quadratic character of ±2 and
±3 is also implicit in Fermat’s work on quadratic forms.

Euler apparently began to seriously study Fermat’s work when he started
his mathematical correspondence with Christian Goldbach in 1729. As a
result of that study, Euler became interested in the divisors of integers which
are represented by quadratic forms nx 2 + my2, which eventually led him
after several years to the Law of Quadratic Reciprocity. The LQR was first
conjectured by Euler [15] in an equivalent form in 1744, based on extensive
numerical evidence, but he could not prove it. Research done by Lagrange
during the years from 1773 to 1775, in particular his work on a general theory
of binary quadratic forms, inspired Euler to return to the study of quadratic
residues, and in a paper [17] published in 1783 after his death, Euler gave,
still without proof, a formulation of the LQR that is very close to that which
is used most commonly today.

Euler’s original formulation of quadratic reciprocity in 1744 can be stated
(using more modern notation) as follows:

Theorem 3.4 Suppose that p is an odd prime and a is a positive integer not
divisible by p. If q is a prime such that p ≡ ±q mod 4a then χp(a) = χq(a).

This says that the value of the Legendre symbol χp(a) depends only on the
ordinary residue class of p modulo 4a, and that the value of χp(a) is the
same for all primes p with a fixed remained r or 4a − r when divided by 4a.

In Sect. 3.6 below, we will deduce the LQR by proving Theorem 3.4 directly
by means of Gauss’ Lemma (Theorem 2.7), and so it makes sense to verify
that the LQR is equivalent to Theorem 3.4, which is what we will do now.
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Proposition 3.5 The Law of Quadratic Reciprocity is equivalent to Theo-
rem 3.4.

Proof Suppose that Theorem 3.4 is true. Assume that p > q are odd primes.
We need to verify that

χp(q)χq(p) = (−1)
1
2 (p−1) 1

2 (q−1). (3.1)

Suppose first that p ≡ q mod 4, and let a = (p − q)/4 > 0. Then we have
that

χq(p) = χq(p − q) = χp(a)

and

χp(q) = χp(−1)χp(p − q) = χp(−1)χp(a).

Because p does not divide a, it follows from Theorem 3.4 that

χp(a) = χq(a),

and so

χq(p)χp(q) = χp(−1).

Equation (3.1) is now a consequence of this equation, Theorem 2.4, and the
assumption that p ≡ q mod 4.

On the other hand, if p �≡ q mod 4 then p ≡ −q mod 4, hence we set
a = (p + q)/4 > 0 and so deduce that

χq(p) = χq(p + q) = χq(a)

and

χp(q) = χp(p + q) = χp(a).

As p does not divide a, we conclude by way of Theorem 3.4 that

χq(p)χp(q) = 1,

and (3.1) follows from this equation because p ≡ −q mod 4.
In order to verify the converse, we assume that the LQR is valid and then

for an odd prime p, a positive integer a not divisible by p, and a prime q for
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which p ≡ ±q mod 4a, we seek to verify that

χp(a) = χq(a). (3.2)

By virtue of the multiplicativity of the Legendre symbol (Proposition
2.3(ii) of Chap. 2), we immediately reduce to the case that a is prime.
Suppose first that a = 2. Then p ≡ ±q mod 8, hence (3.2) is true by Theorem
2.6.

Now let a be a fixed odd prime, and assume first that p ≡ q mod 4a. Then
a is neither p nor q, p ≡ q mod a, and p ≡ q mod 4. Hence

χa(q)χa (p) = 1

and

p − 1

2
+

q − 1

2
≡ 0 mod 2.

It hence follows from the LQR that

χp(a)χq (a) = (−1)
1
2 (a−1)· 12 (p−1)(−1)

1
2 (a−1)· 12 (q−1)χa(p)χa (q)

= (−1)
1
2 (a−1)

(
p−1
2 + q−1

2

)

= 1,

i.e., (3.2) is valid.
Assume next that p ≡ −q mod 4a. Then p ≡ −q mod 4 and p ≡ −q mod

a, hence

p − 1

2
+

q − 1

2
≡ 1 mod 2,

and, because of Theorem 2.4,

χa(p)χa (q) = (−1)
1
2 (a−1).

As a is again neither p nor q, from the LQR it therefore follows that

χp(a)χq (a) = (−1)
1
2 (a−1)· 12 (p−1)(−1)

1
2 (a−1)· 12 (q−1)χa(p)χa (q)

= (−1)
1
2 (a−1)

(
1+ p−1

2 + q−1
2

)

= 1

in this case as well. QED
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The formulation of the LQR which appears in modern texts, including
the one before the reader, was introduced by Legendre [36] in 1785. In this
paper and in his influential book [37], Legendre discussed the LQR at length
and in depth. In particular, he gave a proof of the LQR that depended
on the assumption of primes which satisfy certain auxiliary conditions, but
as Legendre was unable to rigorously verify these conditions, as he himself
admitted [36, p. 520], his argument is not complete. Interestingly enough,
one of the auxiliary conditions posited the existence of infinitely many primes
in any arithmetic progression whose initial term and common difference are
relatively prime, a very important result which Dirichlet would prove in 1837,
and which we will have much more to say about later (see Sect. 4.4 of Chap. 4).
Legendre introduced his symbol in [36] as a particularly elegant way to state
the LQR.

Lagrange’s role in the history of quadratic reciprocity also needs to be
mentioned, and comes from his work [33, 34] in refining and generalizing
Euler’s work on the representation of integers by quadratic forms. For
example, Lagrange proved that if p is a prime which is congruent to either
1 or 9 mod 20 then p = x 2 + 5y2, a result that was conjectured without
proof by Euler, and he also showed that if p and q are primes each of which
are congruent to 3 or 7 mod 20 then pq = x 2 + 5y2. From these two results
the quadratic character of −5 can be deduced. Lagrange also used quadratic
residues to study the existence of nontrivial solutions to certain Diophantine
equations of the form ax 2 + by2 + cz 2 = 0.

The important role which the theory of quadratic residues played in the
work of Euler and Lagrange on quadratic forms and the extensive discussion
of the LQR by Legendre all contributed to making the proof of the LQR
one of the major unsolved problems of number theory in the eighteenth
century. The first rigorous and correct proof was discovered by Gauss in 1796.
He considered this result one of his greatest contributions to mathematics,
returning to it again and again throughout his career. Gauss eventually
found eight different proofs of the LQR and published six of them (although
the two unpublished proofs, usually referred to as proofs 7 and 8, are not
complete, according to Gröger [26]; I am grateful to an anonymous referee
for this reference). A major goal of Gauss’ later work in number theory was
to generalize quadratic reciprocity to higher powers, in particular to cubic
and biquadratic (fourth-power) residues, and he sought out different ways of
verifying quadratic reciprocity in order to gain as much insight as he could
into ways to achieve that goal. We will discuss with a bit more detail in the
next section the six proofs of the LQR which Gauss published.

The establishment of generalizations of quadratic reciprocity that covered
arbitrary power residues, the so-called higher reciprocity laws, was a major
theme of number theory in the nineteenth century and led to many of the most
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important advances in the subject during that time. Further generalizations
to number systems extending beyond the integers, in particular and most
importantly, to rings of algebraic integers in algebraic number fields (see
Sect. 3.8 of this chapter and Sect. 5.1 of Chap. 5 for the relevant definitions),
was a major theme of twentieth-century number theory and led to many of
the most important advances during that time. For an especially apt example
of this latter development which closely follows the theme of this chapter,
we direct the reader’s attention to Hecke’s penetrating analysis of quadratic
reciprocity in an arbitrary algebraic number field [27, Chap. VIII].

3.4 Proofs of the Law of Quadratic Reciprocity

The Law of Quadratic Reciprocity has inspired more proofs, by far, than
any other theorem of number theory. Lemmermeyer [38] documents 196
different proofs which have appeared up to the year 2000 and the web site
at http://www.rzuser.uni-heidelberg.de/∼hb3/fchrono.html summarizes 266
proofs, with still more being found (I am grateful to an anonymous referee for
this web-site reference). Many of these arguments have been used as a basis
for developing new methods and opening up new areas of study in number
theory. In this book we will give seven different proofs of the LQR, with our
primary emphasis being on the six proofs which Gauss himself published. As
an introduction to what we will do in that regard, we will briefly discuss next
these six proofs of Gauss.

Gauss’ first proof of the LQR, which involved an extremely long and com-
plicated induction argument, was published in Disquisitiones Arithmeticae
([19], articles 135–145) (for a very readable account of a simplified version
of Gauss’ argument, see Dirichlet [12], Chap. 3, Sect. 48–51). It is similar
to a proof attempted by Legendre, in that it also requires an “auxiliary”
prime. The complexity of Gauss’ argument stems from the necessity of
rigorously establishing the existence of this prime, and the formidable
technical calculations which Gauss had to use there caused his argument to
garner little attention for many years thereafter. However, those calculations
were found to be useful in the development of algebraicK -theory in the 1970s;
in fact a proof of quadratic reciprocity can be deduced from certain results
in the K -theory of the rational numbers (Rosenberg [49], Theorem 4.4.9 and
Corollary 4.4.10)!

Gauss’ second proof also appeared in the Disquisitiones (article 262) and
uses his genus theory of quadratic forms, a classification of forms that is
closely related to Lagrange’s classification of quadratic forms by means of
unimodular substitutions (see Sect. 3.12 of this chapter and also Sect. 8.3
of Chap. 8). The main point of the argument here is the verification of an
inequality for the number of genera. This proof has a very nice modern

http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html
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formulation using the concept of narrow equivalence of ideals in a quadratic
number field, and we will present this argument in Sects. 3.10–3.12 below.

Gauss’ Lemma (Theorem 2.7) is the main idea underlying the third and
fifth proofs ([20] and [22], respectively) which Gauss gave of the LQR. In
the next section, we will present a simplification of Gauss’ third proof due
to Eisenstein; it is one of the most elegant and elementary proofs that we
have of quadratic reciprocity and it has become the standard argument. In
Sect. 3.6, Theorem 3.4 will be deduced directly from Gauss’ Lemma, thereby
proving the LQR after an appeal to Proposition 3.5; this approach is in a
spirit similar to the idea use by Gauss in his fifth proof.

We make our first contact in these notes with the theory of algebraic
numbers in our account in Sects. 3.7–3.9 of Gauss’ sixth proof [23] of the LQR.
The main idea in this proof and Gauss’ fourth proof [21] is the employment
of quadratic Gauss sums (without and, respectively, with the determination
of the signs). Gauss did not himself make use of algebraic number theory
in any modern sense but we will use it in order to more clearly arrange the
rather ingenious calculations that are a signal feature of these techniques. We
end in Sect. 3.13 with a proof of quadratic reciprocity by means of the Galois
theory of cyclotomic fields, an approach which foreshadows the way to more
general formulations of reciprocity laws that are the subject of research in
number theory today.

3.5 A Proof of Quadratic Reciprocity via Gauss’
Lemma

The first proof that we will give of Theorem 3.3 is a simplification, due to
Eisenstein, of Gauss’ third proof [20]. It is by now the standard argument and
uses an ingenious application of Theorem 2.7 (Gauss’ lemma). Theorem 2.7
enters the reasoning by way of

Lemma 3.6 If a ∈ Z is odd and gcd(a, p) = 1 then

χp(a) = (−1)S(a,p),

where

S (a, p) =

1
2 (p−1)∑
k=1

[ka
p

]
.
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Assume Lemma 3.6 for the time being, with its proof to come shortly.
We begin our first proof of Theorem 3.3 by outlining the strategy of the

argument. Let p and q be distinct odd primes and consider the set L of
points (x , y) in the plane, where x , y ∈ [1,∞), 1 ≤ x ≤ 1

2 (p − 1), and 1 ≤
y ≤ 1

2 (q − 1), i.e., the set of lattice points inside the rectangle with corners
at (0, 0), (0, 12 (q − 1)), (12 (p − 1), 0), (12 (p − 1), 12 (q − 1)).

Let l be the line with equation qx = py. To prove Theorem 3.3, one shows
first that

no point of L lies on l . (3.3)

Hence

L = set of all points of L which lie below l

∪ set of all points of L which lie above l

= L1 ∪ L2,

consequently

1

2
(p − 1)

1

2
(q − 1) = |L| = |L1|+ |L2|. (3.4)

This geometry is illustrated in Fig. 3.1.

Fig. 3.1 The
lattice-point count

1
2(q − 1)

1
2(p − 1)

py = qx
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The next step is to

count the number of points in L1 and L2. (3.5)

The result is

|L1| = S (q, p), |L2| = S (p, q),

hence from (3.4),

1

2
(p − 1)

1

2
(q − 1) = S (q, p) + S (p, q).

It then follows from Lemma 3.6 that

(−1)
1
2 (p−1) 1

2 (q−1) = (−1)S(q,p)(−1)S(p,q) = χp(q)χq (p),

which is the conclusion of Theorem 3.3. Thus, we need to verify (3.3),
implement (3.5), and prove Lemma 3.6.

Verification of (3.3). Suppose that (x , y) ∈ L satisfies qx = py. Then q,
being prime, must divide either p or y. Because p is prime and q �= p, q must
divide y, which is not possible because 1 ≤ y ≤ 1

2 (q − 1) < q.
Implementation of (3.5).

L1 = {(x , y) ∈ L : qx > py}

= {(x , y) ∈ L : 1 ≤ x ≤ 1

2
(p − 1), 1 ≤ y <

qx

p
}

=
⋃

1≤x≤ 1
2 (p−1)

{(x , y) : 1 ≤ y ≤
[qx
p

]
},

and this union is pairwise disjoint. Hence

|L1| =
1
2 (p−1)∑
x=1

[qx
p

]
= S (q, p).

In Fig. 3.1, L1 is the set of lattice points which lie below the line py = qx .
On the other hand,

L2 = {(x , y) ∈ L : qx < py}

= {(x , y) ∈ L : 1 ≤ y ≤ 1

2
(q − 1), 1 ≤ x <

py

q
}

=
⋃

1≤y≤ 1
2 (q−1)

{(x , y) : 1 ≤ x ≤
[py
q

]
},
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hence

|L2| =
1
2 (q−1)∑
y=1

[py
q

]
= S (p, q).

Here, L2 is the set of lattice points in Fig. 3.1 which lie above the line py = qx .
Note that this part of the proof contains no number theory but is instead a

purely geometric lattice-point count. All of the number theory is concentrated
in the proof of Lemma 3.6, which is still to come. Indeed, that is the main
idea in Gauss’ third proof: divide the argument into two parts, a number-
theoretic part (Lemma 3.6) and a geometric part (the lattice-point count).
Coupling geometry to number theory is a very powerful method for proving
things, which Gauss pioneered in much of his work.

Proof of Lemma 3.6 We set up shop in order to apply Gauss’ lemma: take
the minimal positive ordinary residues mod p of the integers a, . . . , 1

2 (p−1)a,
observe as before that none of these ordinary residues is p/2, as p is odd, and
they are all distinct as gcd(a, p) = 1, hence let

u1, . . . , us be those ordinary residues that are > p/2,

v1, . . . , vt be those ordinary residues that are < p/2.

By the division algorithm, for each j ∈ [1, 12 (p − 1)],

ja = p
[ ja
p

]
+ rj ,

rj = a uk or a vl .

Adding these equations together, we obtain

a

1
2 (p−1)∑
j=1

j = p

1
2 (p−1)∑
j=1

[ ja
p

]
+

s∑
j=1

uj +

t∑
j=1

vj . (3.6)

Next, recall from (2.9) of Chap. 2 that

{p − u1, . . . , p − us , v1, . . . , vt} = [1,
1

2
(p − 1)].

Hence

1
2 (p−1)∑
j=1

j = sp −
s∑

j=1

uj +

t∑
j=1

vj . (3.7)
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Subtracting (3.7) from (3.6) yields

(a − 1)

1
2 (p−1)∑
j=1

j = pS (a, p) − sp + 2

s∑
j=1

uj .

Hence

p(S (a, p) − s) is even (a is odd!),

and so

S (a, p) − s is even (p is odd!),

whence

(−1)S(a,p) = (−1)s .

Gauss’ lemma now implies that

χp(a) = (−1)s ,

and so

χp(a) = (−1)S(a,p).

QED

3.6 Another Proof of Quadratic Reciprocity
via Gauss’ Lemma

The proof of Theorem 3.3 that we will do here is similar to the first proof that
we presented in Sect. 3.5, in that it also uses Gauss’ Lemma as a crucial tool.
However, the strategy for the argument in this section is different from the
one that was used in Sect. 3.5; we will deduce Theorem 3.4, Euler’s version
of Theorem 3.3, directly from Gauss’ Lemma, and then use the equivalence
of Theorem 3.4 and Theorem 3.3 that was established in Proposition 3.5 to
conclude that Theorem 3.3 is valid (the details of the following argument, as
well as those of the proof of Proposition 3.5, are taken from some lecture notes
of F. Lemmermeyer posted at www.fen.bilkent.edu.tr/∼franz/nt/ch6.pdf).

We proceed to implement this strategy. Let p > q be odd primes, let a be
a positive integer not divisible by p, and suppose that p ≡ ±q mod 4a. We
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wish to show that

χq(a) = χp(a).

Suppose that p ≡ q mod 4a(when p ≡ −q mod 4a, a straightforward
modification of the following argument, which we will leave to the interested
reader, can be used to also verify that χq(a) and χp(a) are the same). In
order to apply Gauss’ Lemma to calculate χp(a), we need to find (the parity
of) the number s of all integers a, 2a, . . . ,

(
(p − 1)/2

)
a which have positive

minimal ordinary residue modulo p between p/2 and p. If

(x ) = x − [x ]

denotes the fractional part of a real number x , then we observe that s is the
cardinality of the set

P(a) =

{
r ∈ [1, (p − 1)/2] :

(
arp−1

)
>

1

2

}
.

This set is the pairwise disjoint union of sets Pm(a),m ∈ [0, a − 1], where
Pm(a) consists of all integers r ∈ [1, (p − 1)/2] such that

m

2
<

ar

p
<

m + 1

2
p and

(
arp−1

)
>

1

2
.

From this definition of Pm(a), we conclude that Pm(a) is empty when m is
even, and we also observe that the condition (arp−1) > 1

2 is automatically
satisfied when m is odd. Hence

Pm(a) =

{
r ∈ Z :

m

2a
p < r <

m + 1

2a
p

}
,

when m is odd, and

s =
∑

0≤m<a, m odd

|Pm(a)|.

Similarly, it follows that

χq(a) = (−1)t ,
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where

t =
∑

0≤m<a, m odd

|Qm(a)|,

Qm(a) =

{
r ∈ Z :

m

2a
q < r <

m + 1

2a
q

}
.

We have that p − q = 4an, for some positive integer n, and so when m is
odd,

Pm(a) =

{
r ∈ Z :

m

2a
p < r <

m + 1

2a
p

}

=

{
r ∈ Z :

m

2a
(q + 4an) < r <

m + 1

2a
(q + 4an)

}

=

{
r ∈ Z :

m

2a
q + 2mn < r <

m + 1

2a
q + 2mn + 2n

}

=

{
r ′ ∈ Z :

m

2a
q < r ′ <

m + 1

2a
q + 2n

}
,

where r ′ = r − 2mn. Hence

|Pm(a)| = |Qm(a)| + 2n.

We conclude that s ≡ t mod 2, whence

χp(a) = (−1)s = (−1)t = χq(a).

QED

3.7 A Proof of Quadratic Reciprocity via Gauss
Sums: Introduction

The third proof of Theorem 3.3 that we will give is a version of Gauss’ sixth
proof. It uses ingenious calculations based on some basic facts from algebraic
number theory, and anticipates some important techniques that we will use
later to study various properties of residues and non-residues in greater depth.

Gauss’ sixth proof of quadratic reciprocity [23] appeared in 1818. He
mentions in the introduction to this paper that for years he had searched
for a method that would generalize to the cubic and bi-quadratic cases and
that finally his untiring efforts were crowned with success. The purpose of
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publishing this sixth proof, he states, was to bring to a close this part of
the higher arithmetic dealing with quadratic residues and to say, in a sense,
farewell. Our third proof of Theorem 3.3 is a reworking of Gauss’ argument
from [23] using some basic facts from the theory of algebraic numbers. We
start first with a rather detailed discussion of the algebraic number theory
that will be required; this is the content of the next section. This information
is then used in Sect. 3.9 to prove Theorem 3.3, following the development
given in Ireland and Rosen [30], Sects. 6.2 and 6.3.

3.8 Algebraic Number Theory

In the introduction to his great memoirs [24] and [25] on biquadratic
reciprocity, Gauss asserts that the theory of quadratic residues had reached
such a state of perfection that no more improvement was necessary. However,
he said “The theory of biquadratic residues is by far more difficult”. After
struggling with this problem for a long time, he had been able to derive
satisfactory results in only a few special cases, with the proofs being so
difficult that he realized “. . . the previously accepted principles of arithmetic
are in no way sufficient for the foundations of a general theory, that rather
such a theory necessarily demands that to a certain extent the domain of the
higher arithmetic needs to be endlessly enlarged. . . ”. In modern language,
Gauss is calling for a theory of algebraic numbers. He began to answer that
call himself in the second paper [25], where he used the subring of the complex
numbers Z + iZ, what is now called the Gaussian integers, to formulate a
precise statement of the Law of Biquadratic Reciprocity. Subsequently, Gauss’
call has been so resoundingly answered by the work of Dirichlet, Dedekind,
Kummer, Kronecker, Hilbert, and many others, that today the theory of
algebraic numbers is indispensable in virtually all areas of number theory. In
this section we establish some basic facts from the theory of algebraic numbers
which will be required in our third proof of Theorem 3.3. This information will
also play an important role in further developments in subsequent chapters
of these notes.

Let C denote the set of complex numbers.

Definition A field of complex numbers is a nonzero subfield of C.

N. B. Every field of complex numbers contains the field Q of rational
numbers.

Notation: if A is a commutative ring then A[x ] will denote the ring of all
polynomials in x with coefficients in A.

Definitions Let F be a field of complex numbers. A complex number θ is
algebraic over F if there exists f ∈ F [x ] such that f �≡ 0 and f (θ) = 0. If θ is
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algebraic over F , let

M (θ) = {f ∈ F [x ] : f is monic and f (θ) = 0}

(N.B. M (θ) �= ∅). An element of M (θ) of smallest degree is a minimal
polynomial of θ over F.

Proposition 3.7 The minimal polynomial of a complex number algebraic
over a field of complex numbers F is unique and irreducible over F .

Proof Let r and s be minimal polynomials of the number θ algebraic over F .
Use the division algorithm in F [x ] to find d , f ∈ F [x ] such that

r = ds + f , f ≡ 0 or degree of f < degree of s.

Hence

f (θ) = r(θ)− d(θ)s(θ) = 0.

If f �≡ 0 then, upon dividing f by its leading coefficient, we get a monic
polynomial over F of lower degree than s and not identically 0 which has θ
as a root, which is not possible because s is a minimal polynomial of θ over
F . Hence f ≡ 0 and so s divides r over F , Similarly, r divides s over F .
Hence r = αs for some α ∈ F , and as r and s are both monic, α = 1, and so
r = s . This proves that the minimal polynomial is unique.

To show that the minimal polynomialm is irreducible over F , suppose that
m = rs , where r and s are non-constant elements of F [x ]. Then the degrees
of r and s are both less than the degree of m, and θ is a root of either r or
s . Hence a constant multiple of either r or s is a monic polynomial in F [x ]
having θ as a root and is of degree less than the degree of m, contradicting
the minimality of the degree of m. QED

Definition Let θ be algebraic over F . The degree of θ over F is the degree
of the minimal polynomial of θ over F .

Lemma 3.8 If θ ∈ C, F is a field of complex numbers, and f ∈ F [x ] is
monic, irreducible over F , and f (θ) = 0 then f is the minimal polynomial of
θ over F.

Proof Let m be the minimal polynomial of θ over F . The division algorithm
in F [x ] implies that there exits q, r ∈ F [x ] such that

f = qm + r , r ≡ 0 or degree of r < degree of m.

But

r(θ) = f (θ) − q(θ)m(θ) = 0,
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and so if r �≡ 0 then we divide r by its leading coefficient to get a monic
polynomial over F that is not identically 0, has θ as a root, and is of degree
less than the degree of m, which is impossible by the minimality of the degree
of m. Hence r ≡ 0 and so f = qm. But f is irreducible over F , and so either
q or m is constant. If m is constant then m ≡ 1 (m is monic), not possible
because m(θ) = 0. Hence q is constant, and because f ,m are both monic,
q ≡ 1. Hence f = m. QED

We will now discuss two examples that will be of major importance in
subsequent work.

(1) Let m ∈ Z \ {1} be square-free, i.e., m does not have a square �= 1
as a factor. Then

√
m is irrational, hence x 2 − m is irreducible over Q.

Lemma 3.8 implies that x 2 − m is the minimal polynomial of
√
m over

Q and so
√
m is algebraic over Q of degree 2.

(2) Let q be a prime and let

ζq = exp
(2πi

q

)
.

Then ζqq = 1, ζq �= 1, hence we deduce from the factorization

x q − 1 = (x − 1)
( q−1∑

k=0

x k
)

that ζq is a root of
∑q−1

k=0 x k .

We claim that
∑q−1

k=1 x k is irreducible over Q. To see this, note first that
a polynomial f (x ) is irreducible if and only if f (x +1) is irreducible, because
f (x + 1) = g(x )h(x ) if and only if f (x ) = g(x − 1)h(x − 1). Hence

q−1∑
k=0

x k =
x q − 1

x − 1
is irreducible if and only if

(x + 1)q − 1

x
is irreducible.

It follows from the binomial theorem that

(x + 1)q − 1

x
=

q∑
k=1

(
q

k

)
x k−1.

We now recall the following fact about binomial coefficients: if q is a prime

then q divides the binomial coefficient

(
q

k

)
, k = 1, . . . , q − 1. Hence

(x + 1)q − 1

x
= x q−1 + q(x q−2 + . . . ) + q,

and this polynomial is irreducible over Q by way of
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Lemma 3.9 (Eisenstein’s Criterion) If q is prime and f (x ) =∑n
k=0 akx

k is a polynomial in Z[x ] whose coefficients satisfy: q does not
divide an , q

2 does not divide a0, and q divides ak , k = 0, 1, . . . ,n − 1, then
f (x ) is irreducible over Q.

Thus ζq has minimal polynomial
∑q−1

k=0 x k and hence is algebraic over Q of
degree q − 1.

Proof of Lemma 3.9 We assert first that if a polynomial h ∈ Z[x ] does not
factor into a product of polynomials in Z[x ] of degree lower than the degree
of h then it is irreducible over Q. In order to see this, suppose that h is not
constant (otherwise the assertion is trivial) and that h = rs , where r and
s are polynomials in Q[x ], both not constant and of lower degree than h.
By clearing denominators and factoring out the greatest common divisors
of appropriate integer coefficients, we find integers a, b, c, and polynomials
g, u, v in Z[x ] such that h = ag, degree of r = degree of u, degree of s =
degree of v,

abg = cuv,

and all of the coefficients of g (respectively, u, v) are relatively prime, i.e.,
the greatest common divisor of all of the coefficients of g (respectively, u, v)
is 1.

We claim that the coefficients of the product uv are also relatively prime.
Assume this for now. Then |ab| = the greatest common divisor of the
coefficients of abg = the greatest common divisor of the coefficients of
cuv = |c|, hence ab = ±c. But then h = ±auv and this is a factorization of
h as a product of polynomials in Z[x ] of lower degree..

We must now verify our claim. Suppose that the coefficients of uv have a
common prime factor r . Let Fr denote the field of ordinary residue classes
mod r . If s ∈ Z[x ] and if we let s̄ denote the polynomial in Fr [x ] obtained from
s by reducing the coefficients of s mod r , then s → s̄ defines a homomorphism
of Z [x ] onto Fr [x ]. Because r divides all of the coefficients of uv, it hence
follows that

0 = uv = ū v̄ in Fr [x ].

Because Fr is a field, Fr [x ] is an integral domain, hence we conclude from
this equation that either ū or v̄ is 0 in Fr [x ], i.e., either all of the coefficients
of u or of v are divisible by r . This contradicts the fact that the coefficients
of u (respectively, v) are relatively prime. The assertion that the product of
two polynomials in Z[x ] has all of its coefficients relatively prime whenever
the coefficients of each polynomial are relatively prime is often referred
to as Gauss’ lemma, not to be confused, of course, with the statement in
Theorem 2.7.
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Next suppose that f (x ) =
∑n

k=0 akx
k ∈ Z[x ] satisfies the hypotheses of

Lemma 3.9. By virtue of what we just showed, we need only prove that f does
not factor into polynomials of lower degree in Z[x ]. Suppose, on the contrary,
that

f (x ) =
( s∑

k=0

bkx
k
)( t∑

k=0

ckx
k
)

is a factorization of f in Z[x ] with bs �= 0 �= ct and s and t both less than
n. Because a0 ≡ 0 mod q, a0 �≡ 0 mod q2 and a0 = b0c0, one element of
the set {b0, c0} is �≡ 0 mod q and the other is ≡ 0 mod q. Assume that b0 is
the former element and c0 is the latter. As an �≡ 0 mod q and an = bsct , it
follows that bs �≡ 0 �≡ ct mod q. Let m be the smallest value of k such that
ck �≡ 0 mod q. Then m > 0, hence

am =

m−i∑
j=0

bj cm−j

for some i ∈ [0,m − 1]. Because b0 �≡ 0 �≡ cm mod q and cm−1, . . . , ci are
all ≡ 0 mod q, it follows that am �≡ 0 mod q, and so m = n. Hence t = n,
contradicting the assumption on t and n. QED

The crucial fact about algebraic numbers that we will need in order to
prove the LQR is that the set of all algebraic integers (see the definition after
the proof of Theorem 3.10) forms a subring of the field of complex numbers.
The verification of that fact is the goal of the next two results.

For use in the proof of the next theorem, we recall that if n is a positive
integer, then the elementary symmetric polynomials in n variables are the
polynomials in the variables x1, . . . , xn defined by

σ1 =
n∑

i=1

xi ,

...

σi = sum of all products of i different xj ,

...

σn =
n∏

i=1

xi .

The elementary symmetric polynomials have the property that if π is a
permutation of the set [1, n] then σi(xπ(1), . . . , xπ(n)) = σi(x1, . . . , xn), i.e.,
σi is unchanged by any permutation of its variables.
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Theorem 3.10 If F is a field of complex numbers then the set of all complex
numbers algebraic over F is a field of complex numbers which contains F.

Proof Let α and β be algebraic over F . We want to show that α ± β, αβ,
and α/β, provided that β �= 0, are all algebraic over F . We will do this by
the explicit construction of polynomials over F that have these numbers as
roots.

Start with α + β. Let f and g denote the minimal polynomials of,
respectively, α and β, of degree m and n, respectively. Let α1, . . . , αm and
β1, . . . , βn denote the roots of f and g in C, with α1 = α and β1 = β. Now
consider the polynomial

m∏
i=1

n∏
j=1

(x − αi − βj ) = xmn +

mn∑
i=1

ci(α1, . . . , αm , β1, . . . , βn)x
mn−i , (3.8)

where each coefficient ci is a polynomial in the αi ’s and βj ’s over F (in fact,
over Z). We claim that

ci(α1, . . . , αm , β1, . . . , βn) ∈ F , i = 1, . . . ,mn. (3.9)

If this is true then the polynomial (3.8) is in F [x ] and has α1 + β1 = α + β
as a root, whence α+ β is algebraic over F .

In order to verify (3.9), we will make use of the following result from
the classical theory of equations (see Weisner [59], Theorem 49.10). Let
τ1, . . . , τm , σ1, . . . , σn denote, respectively, the elementary symmetric poly-
nomials in m and n variables. Suppose that the polynomial h over F in the
variables x1, . . . , xm , y1, . . . , yn has the property that if π (respectively, ν) is
a permutation of [1,m] (respectively, [1, n]) then

h(x1, . . . , xm , y1, . . . , yn) = h(xπ(1), . . . , xπ(m), yν(1), . . . , yν(n)),

i.e., h remains unchanged when its variables xi and yj are permuted
amongst themselves. Then there exist a polynomial l over F in the variables
x1, . . . , xm , y1, . . . , yn such that

h(x1, . . . , xm , y1, . . . , yn) = l(τ1(x1, . . . , xm), . . . , τm(x1, . . . , xm),

σ1(y1, . . . , yn), . . . σn(y1, . . . , yn)).

Observe next that the left-hand side of (3.8) remains unchanged when the
αi ’s and the βj ’s are permuted amongst themselves (this simply rearranges
the order of the factors in the product), and so the same thing is true for each
coefficient ci . It thus follows from our result from the theory of equations that
there exists a polynomial li over F in the variables x1, . . . , xm , y1, . . . , yn such
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that

ci(α1, . . . , αm , β1, . . . , βn) = li(τ1(α1, . . . , αm), . . . , τm(α1, . . . , αm),

σ1(β1, . . . , βn), . . . , σn(β1, . . . , βn)).

If we can prove that each of the numbers at which li is evaluated in this
equation is in F then (3.9) will be verified. Hence it suffices to prove that
if θ is a number algebraic over F of degree n, θ1, . . . , θn are the roots of
the minimal polynomial m of θ over F , and σ is an elementary symmetric
polynomial in n variables, then σ(θ1, . . . , θn) ∈ F . But this last statement
follows from the fact that all the coefficients of m are in F and

m(x ) =

n∏
i=1

(x − θi) = xn +

n∑
i=1

(−1)iσi(θ1, . . . , θn)x
n−i ,

where σ1, . . . , σn are the elementary symmetric polynomials in n variables.
A similar argument shows that α− β and αβ are algebraic over F .
Suppose next that β �= 0 is algebraic over F and let

xn +

n−1∑
i=0

aix
i

be the minimal polynomial of β over F . Then 1/β is a root of

1 +

n−1∑
i=0

aix
n−i ∈ F [x ],

and so 1/β is algebraic over F . Then α/β = α · (1/β) is algebraic
over F . QED

Notation: A(F ) denotes the field of all complex numbers algebraic over F .

Definition An element of A(Q) is an algebraic integer if its minimal
polynomial over Q has all of its coefficients in Z.

By virtue of examples (1) and (2), all square-free integers and
exp(2πi/q), q a prime, are algebraic integers.

Theorem 3.11 The set of all algebraic integers is a subring of A(Q)
containing Z.

Proof Let α and β be algebraic integers. We need to prove that α ± β and
αβ are algebraic integers. This can be done by first observing that the result
from the theory of equations that we used in the proof of Theorem 3.10 holds
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mutatis mutandis if the field F there is replaced by the ring Z of integers
(Weisner [59], Theorem 49.9). If we then let α1, . . . , αm and β1, . . . , βn denote
the roots of the minimal polynomial over Q of α and β, respectively, then the
proof of Theorem 3.10, with F replaced in that proof by Z, verifies that α±β
and αβ are roots of monic polynomials in Z[x ]. We now invoke the following
fact: if a complex number θ is the root of a monic polynomial in Z[x ] then it
is an algebraic integer.

In order to prove the last statement about θ, let f ∈ Z[x ] be monic with
f (θ) = 0. If m is the minimal polynomial of θ over Q then we must show
that m ∈ Z[x ]. It follows from the proof of Proposition 3.7 that there is a
q ∈ Q[x ] such that f = qm and so we can find a rational number a/b and
u, v ∈ Z[x ] such that f = (a/b)uv, u (respectively, v) is a constant multiple of
m (respectively, q), and u (respectively, v) has all of its coefficients relatively
prime.

We have that

bf = auv.

As f is monic and u, v ∈ Z[x ], we conclude that a divides b in Z, say b = ak
for some k ∈ Z. Hence

kf = uv.

Because f ∈ Z[x ], it follows that k is a common factor of all of the coefficients
of uv. Because of the claim that we verified in the proof of Lemma 3.9, the
coefficients of uv are relatively prime, hence k = ±1, and so

f = ±uv.

As f is monic, the leading coefficient of u is ±1. But u is a constant multiple
of m and m is monic, hence m = ±u ∈ Z[x ], and so θ is an algebraic
integer. QED

Notation: R will denote the ring of algebraic integers.

The proof of Theorem 3.3 that we will give in the next section requires
the following simple lemma:

Lemma 3.12 R∩Q = Z.

Proof If q ∈ R∩Q then x − q is the minimal polynomial of q over Q, hence
x − q ∈ Z[x ], hence q ∈ Z. QED
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3.9 Proof of Quadratic Reciprocity via Gauss Sums:
Conclusion

As a warm-up for our third proof of Theorem 3.3, and also as a first
illustration of how useful algebraic number theory is to what we will do
subsequently, we will reprove Theorem 2.6, which assets that

χp(2) = (−1)ε, where ε ≡ p2 − 1

8
mod 2,

by using algebraic number theory. Let

ζ = eπ/4 =
1√
2
+

1√
2
i .

Then

ζ−1 = e−π/4 =
1√
2
− 1√

2
i ,

hence

τ = ζ + ζ−1 =
√
2 ∈ R,

and so we can work in the ring R of algebraic integers.
If p is an odd prime then we let

(p) = the ideal in R generated by p = pR = {pα : α ∈ R}.

If α, β ∈ R, then we will write

α ≡ β mod p

if α− β ∈ (p). Euler’s criterion (Theorem 2.5) implies that

τp−1 = (τ2)(p−1)/2 = 2(p−1)/2 ≡ χp(2) mod p,

hence

τp ≡ χp(2)τ mod p. (3.10)

We now make use of the following lemma, which follows from the binomial

theorem and the fact that p divides the binomial coefficient

(
p

k

)
, k =

1, . . . , p − 1.
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Lemma 3.13 If α, β ∈ R then

(α+ β)p ≡ αp + βp mod p.

Hence

τp = (ζ + ζ−1)p ≡ ζp + ζ−p mod p. (3.11)

The next step is to calculate ζp + ζ−p . Begin by noting that

ζ8 = 1,

hence if p ≡ ±1 mod 8, then

ζp + ζ−p = ζ + ζ−1 = τ,

and if p ≡ ±3 mod 8, then

ζp + ζ−p = ζ3 + ζ−3

= −(ζ−1 + ζ)

= −τ,

where the second line follows from the first because ζ4 = −1 implies that
ζ3 = −ζ−1, and so ζ−3 = −ζ. Hence

ζp + ζ−p = (−1)ετ, ε ≡ p2 − 1

8
mod 2. (3.12)

As a consequence of the congruences (3.10)–(3.12), it follows that

χp(2)τ ≡ ζp + ζ−p ≡ (−1)ετ mod p.

Multiply this congruence by τ and use τ2 = 2 to derive

2χp(2) ≡ 2(−1)ε mod p. (3.13)

Now this congruence is in R, so there exits α ∈ R such that

2χp(2) = 2(−1)ε + αp,

hence

α =
2(χp(2)− (−1)ε)

p
∈ R ∩Q = Z (by Lemma 3.12).
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Hence (3.13) is in fact a congruence in Z, and so

χp(2) ≡ (−1)ε mod p in Z,

whence, as before,

χp(2) = (−1)ε.

This proof of Theorem 2.6 depends on the equation τ2 = 2. Can one get a
similar equation with an odd prime p replacing the 2 on the right-hand side
of this equation? Yes one can, and a proof of the LQR will follow in a similar
way from the ring structure of R.

In order to see how that goes, let ζ = e2πi/p and set

g =

p−1∑
n=0

χp(n)ζ
n ,

p∗ = (−1)(p−1)/2p.

The sum g is called a Gauss sum; these sums were first used by Gauss in his
famous study of cyclotomy which concluded Disquisitiones Arithmeticae [19,
Sect. VII]. The analogue of the equation τ2 = 2 is given by

Theorem 3.14 g2 = p∗.

Assume this for now; we deduce LQR from it like so: let q be an odd prime,
q �= p. Then

gq−1 = (g2)(q−1)/2 = (p∗)(q−1)/2 ≡ χq(p
∗) mod q,

where the last equivalence follows from Euler’s criterion. Hence

gq ≡ χq(p
∗)g mod q, (3.14)

where this congruence is now in R, because g ∈ R. If n ∈ Z then χp(n)
q =

χp(n) because χp(n) ∈ [−1, 1] and q is odd; consequently Lemma 3.13 implies
that

gq =
(∑

n

χp(n)ζ
n
)q

(3.15)

≡
∑
n

χp(n)
qζqn mod q

≡
∑
n

χp(n)ζ
qn mod q,

We now need
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Lemma 3.15 If a ∈ Z then

∑
n

χp(n)ζ
an = χp(a)g.

The sum on the left-hand side of this equation is another Gauss sum.
Lemma 3.15 records a very important relation satisfied by Gauss sums; in
addition to the use that we make of it here, it will also play an important role
in some calculations that are performed in Chap. 7, where we study certain
distributions of residues and non-residues.

Assume Lemma 3.15 for now; this lemma and (3.15) imply that

gq ≡ χp(q)g mod q. (3.16)

A consequence of (3.14) and (3.16) is that

χq(p
∗)g ≡ χp(q)g mod q.

Multiply by g and use g2 = p∗ to derive

χq(p
∗)p∗ ≡ χp(q)p

∗ mod q,

and then apply Lemma 3.12 and the fact that χq(p
∗), χp(q) are both ±1 as

before to get

χq(p
∗) = χp(q). (3.17)

Theorem 2.4 implies that

χq(−1) = (−1)(q−1)/2,

hence, because of (3.17),

χp(q) = χq(−1)
1
2 (p−1)χq(p)

= (−1)
1
2 (q−1) 1

2 (p−1)χq(p),

which is the LQR.
We must now prove Theorem 3.14 and Lemma 3.15. Since Lemma 3.15 is

used in the proof of Theorem 3.14, we verify Lemma 3.15 first.

Proof of Lemma 3.15 Suppose first that p divides a. Then ζan = 1, for all n
and χp(0) = 0 so

∑
n

χp(n)ζ
an =

p−1∑
n=1

χp(n).
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Half of the terms of the sum on the right-hand side are 1 and the other half
are −1 (Proposition 2.1), and so this sum is 0. Because χp(a) = 0 (p divides
a), the conclusion of Lemma 3.15 is valid.

Suppose that p does not divide a. Then

χp(a)
∑
n

χp(n)ζ
an =

∑
n

χp(an)ζ
an . (3.18)

Observe next that whenever n runs through a complete system of ordinary
residues mod p, so does an, and also that χp(an) and ζan depend only on the
residue class mod p of an. Hence the sum on the right-hand side of (3.18) is

p−1∑
n=0

χp(n)ζ
n = g.

Hence

χp(a)
∑
n

χp(n)ζ
an = g.

Now multiply through by χp(a) and use the fact that χp(a)
2 = 1, since p

does not divide a. QED

Proof of Theorem 3.14 We must prove that g2 = p∗.
Suppose that gcd(a, p) = 1 and let

g(a) =

p−1∑
n=0

χp(n)ζ
an .

The idea of this argument is to calculate

p−1∑
a=0

g(a)g(−a)

in two different ways, equate the expressions resulting from that, and see
what happens.

For the first way, use Lemma 3.15 to obtain

g(a)g(−a) = χp(a)χp(−a)g2

= χp(−a2)g2

= χp(−1)g2, a = 1, . . . , p − 1,
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Hence this and the fact that g(0) =
∑p−1

0 χp(n) = 0 imply that

p−1∑
a=0

g(a)g(−a) = (p − 1)χp(−1)g2. (3.19)

Now for the second way. We have that

g(a)g(−a) =
∑

1≤x ,y≤p−1

χp(x )χp(y)ζ
a(x−y).

Hence

p−1∑
a=0

g(a)g(−a) =
∑

1≤x ,y≤p−1

χp(x )χp(y)
∑
a

ζa(x−y). (3.20)

The next step is to calculate

∑
a

ζa(x−y)

for fixed x and y. If x �= y then

1 ≤ |x − y| ≤ p − 1

and so p does not divide x − y, hence ζx−y �= 1, hence

∑
a

ζa(x−y) =
ζ(x−y)p − 1

ζx−y − 1
= 0, (ζp = 1 !).

Hence

∑
a

ζa(x−y) =

{
p, if x = y ,

0, if x �= y .
(3.21)

Because of (3.20) and (3.21), it follows that

p−1∑
a=0

g(a)g(−a) = (p − 1)p. (3.22)

Equations (3.19) and (3.22) imply that

(p − 1)χp(−1)g2 = (p − 1)p,
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hence from Theorem 2.4,

g2 = χp(−1)p = (−1)(p−1)/2p.

QED

As Ireland and Rosen point out, the main idea of Gauss’ sixth proof of
quadratic reciprocity is to consider the polynomial

fk (x ) =

p−1∑
t=0

χp(t)x
kt ,

and then to show, as Gauss did without using any roots of unity, that

1 + x + · · ·+ x p−1

divides

f1(x )
2 − (−1)

1
2 (p−1)p and fq (x )− χp(q)f1(x ).

Quadratic reciprocity then follows by noting that

fq(x ) ≡ f1(x )
q mod q.

The proof which we have presented in this section amounts to setting x =
exp(2πi/p) in this argument and then performing the necessary calculations
by means of congruences in the ring of algebraic integers. This observation
was also made by Eisenstein and Jacobi, who used it as a stepping stone to
the proof of higher-degree reciprocity laws via Gauss sums.

3.10 A Proof of Quadratic Reciprocity via Ideal
Theory: Introduction

The second proof which Gauss gave for quadratic reciprocity rests on his
genus theory for quadratic forms, developed (along with his theory of
composition of forms) in articles 231–261 of the Disquisitiones. A primary
goal of genus theory is the determination of the number of genera of quadratic
forms with a given discriminant, and Gauss deduced the LQR from a formula
which he established for the number of genera. The argument which Gauss
used here to deduce the LQR is quite elegant, but the proof of the formula
for the number of genera on which it is based is much more involved, as
it uses virtually all of the formidable mathematical technology involved in
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Gauss’ development of his composition of forms. Fortunately, the ideas and
techniques which Gauss employed can be given a formulation that is much
easier to follow using the modern theory of ideals in the ring of algebraic
integers in a quadratic number field. This is the approach that we will take
in our fourth proof of Theorem 3.3; the necessary information about this ideal
theory will be given in the next section, and we will then deduce Theorem 3.3
from that ideal theory in Sect. 3.12.

3.11 The Structure of Ideals in a Quadratic Number
Field

Let F be a field of complex numbers. With respect to its addition and
multiplication, F is a vector space over Q, and we say that F has
degree n (over Q) if n is the dimension of F over Q. The following definition
singles out the subfields of the complex numbers which will be most important
for the number theory which we will be most concerned with in all of what
follows.

Definition F is an algebraic number field if the degree of F is finite.

We let F denote an algebraic number field of degree n that will remain
fixed in the discussion until indicated otherwise. Because the non-negative
integral powers of a nonzero element of F cannot form a set that is linearly
independent over Q, every element of F is algebraic over Q; this fact is the
primary reason why fields of complex numbers which are finite dimensional
over Q are called algebraic number fields.

The structure of the ideals in the ring R = R∩ F of all algebraic integers
contained in F will play a very important role in many situations in which
we will be interested. We begin our discussion of those matters by recalling
that if A is a commutative ring with identity then an ideal of A is a subring
I of A such that ab ∈ I whenever a ∈ A and b ∈ I . If s ∈ A then the set
{as : a ∈ A} is an ideal of A, called the principal ideal generated by s. We
will denote this ideal by either sA or (s). In a slight generalization of the
principal-ideal notation which will be useful, for two elements s and t of A,
we will let (s , t) denote the ideal of A generated by s and t , i.e., the set
{as + bt : (a, b) ∈ A × A}. This notation should not be confused with the
ordered pair (s , t); the meaning of the notation will always be clear from the
context in which it is employed. An ideal I of A is prime if {0} �= I �= A and
if a, b are elements of A such that ab ∈ I then a ∈ I or b ∈ I . An ideal M
of A is maximal if {0} �= M �= A and whenever I is an ideal of A such that
M ⊆ I then M = I or I = A.
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A basic fact in the theory of commutative rings with identity asserts
that all maximal ideals in such rings are prime ideals (Hungerford [29],
Theorem III.2.19), with the converse false in general. However, in the ring R
of algebraic integers in F this converse is true, i.e.,

(i) an ideal of R is prime if and only if it is maximal.

This fact will be proved in Sect. 5.1 of Chap. 5. We will also show in Sect. 5.1
of Chap. 5 that in R,

(ii) if I is a nonzero ideal of R then the quotient ring R/I has finite
cardinality,

and also that

(iii) if P is a prime ideal of R then P contains a unique rational prime
q and the cardinality of R/P is qk , for a positive integer k uniquely
determined by P . The integer k is called the degree of P.

By far the most important feature of the structure of proper, nonzero ideals
of R is the fact that they can be factored in a unique way as the product of
prime ideals. We now explain precisely what this means.

Definition Let A be a commutative ring with identity, I , J (not necessarily
distinct) ideals of A. The (ideal) product IJ of I and J is the ideal of A
generated by the set of products

{xy : (x , y) ∈ I × J},

i.e., IJ is the smallest ideal of A, relative to subset inclusion, which contains
this set of products.

One can easily show that IJ consists precisely of all sums of the form∑
i xiyi , where xi ∈ I and yi ∈ J , for all i . It is also easy to show that the

ideal product is commutative and associative. We then have

Theorem 3.16 (Fundamental Theorem of Ideal Theory) Every
nonzero, proper ideal I of R is a product of prime ideals and this factorization
is unique up to the order of the factors. Moreover, the set of prime ideal
factors of I is precisely the set of prime ideals of R which contain I, i.e.,
the set of prime ideals of R containing I is nonempty and finite, and if
{P1, . . . ,Pk} is this set then there exist a k-tuple (m1, . . . ,mk ) of positive
integers, uniquely determined by I, such that I = Pm1

1 · · ·Pmk

k .

Theorem 3.16, one of the most important theorems in algebraic number
theory, was proved by R. Dedekind in 1871, and appeared as Supplement
X in his famous series of addenda to Dirichlet’s landmark text Vorlesungen
über Zahlentheorie [12]. Because the proof of Theorem 3.16 requires a rather
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substantial effort, and also because we will not make use of it at its full
strength until Sect. 5.2 of Chap. 5, we will defer its proof until Sect. 5.5 of
Chap. 5.

Our fourth proof of Theorem 3.3 will require detailed information about
how ideals factor according to Theorem 3.16 for a special class of algebraic
number fields. Let m �= 1 be a square-free integer. Then

√
m is an algebraic

integer with minimal polynomial x 2 − m over Q. It is not difficult to
show that the field of complex numbers generated by

√
m over Q, i.e., the

smallest subfield of the complex numbers containing
√
m and Q, the so-called

quadratic number field determined by m, is

Q(
√
m) = {u + v

√
m : (u, v) ∈ Q×Q}.

It is an immediate consequence of this equation that the set {1,
√
m} is a

vector-space basis of Q(
√
m) over Q, hence Q(

√
m) has degree 2. With a bit

more effort, one can also show that

R∩Q(
√
m) = {k + nω : (k , n) ∈ Z× Z},

where

ω =

⎧
⎨
⎩

√
m , if m ≡ 2 or 3 or mod 4,

1 +
√
m

2
, if m ≡ 1 mod 4

(Hecke [27], pp. 95, 96).
Let F = Q(

√
m),R = R ∩ F . The proof of Theorem 3.3 which we will

present in the next section requires the determination of the prime-ideal
factorization of each ideal qR of R, q a rational prime, and the calculation of
the degree of each factor, in accordance with the conclusions of Theorem 3.16.
This is done in

Proposition 3.17 (Decomposition Law in Q(
√
m)) Let p be an odd

prime.

(i) If χp(m) = 1 then pR factors into the product of two distinct prime
ideals, each of degree 1. Moreover, for any a ∈ Z such that a2 ≡
m mod p, we can take the prime-ideal factors of pR to be

(p, a +
√
m) and (p, a −

√
m).

(ii) If χp(m) = 0 then pR is the square of a prime ideal I, and the degree
of I is 1. Moreover, we can take I to be the ideal (p,

√
m).

(iii) If χp(m) = −1 then pR is prime in R, of degree 2.
If m ≡ 1 mod 8 then
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(iv) 2R factors into the product of two distinct prime ideals, each of degree
1. Moreover, we can take the prime-ideal factors of 2R to be

(
2,

1 +
√
m

2

)
and

(
2,

1−
√
m

2

)
,

If m ≡ 5 mod 8 then
(v) 2R is prime in R of degree 2.

If m ≡ 2 mod 4 then
(vi) 2R is the square of a prime ideal I, and the degree of I is 1. Moreover,

we may take I to be the ideal (2,
√
m).

If m ≡ 3 mod 4 then
(vii) 2R is the square of a prime ideal I, and the degree of I is 1. Moreover,

we may take I to be the ideal (2, 1 +
√
m).

Proof Hecke [27], Sect. 29, Theorem 90. QED

Let us return now to the general situation of an algebraic number field with
its subring R of algebraic integers. The next bit of mathematical technology
that we have need of is the ideal class group of R. In order to define this
group, we first declare that the ideals I and J of R are equivalent, and write
I ∼ J , if there exist nonzero elements α and β of R such that αI = βJ .
This defines an equivalence relation on the set of all ideals of R, and we refer
to the corresponding equivalence classes as the ideal classes of R. If we let
[I ] denote the ideal class which contains the ideal I then we can define a
multiplication on the set of ideal classes by declaring that the product of
[I ] and [J ] is [IJ ]. It can be shown that when endowed with this product
(which is well-defined), the ideal classes of R form an abelian group, called
the ideal-class group of R (Hecke [27], Sect. 33). It is easy to see that the set
of all principal ideals of R, i.e., the set of all ideals of the form αR, α ∈ R,
is an ideal class of R, called the principal class, and one can prove that the
principal class is the identity element of the ideal-class group. It is one of the
fundamental theorems of algebraic number theory that the ideal-class group
is always finite (see Hecke [27], Sect. 33, Theorem 96), and the order of the
ideal-class group of R is called the class number of R.

Proposition 3.17, when combined with some additional mathematical
technology, can be used effectively to compute ideal-class groups and class
numbers for quadratic number fields. We illustrate how things go with three
examples. But first, the additional technology that is required.

Let F = Q(
√
m) be a fixed quadratic number field, with R = A ∩ F . A

subset {ω1, ω2} of R is an integral basis of R if every element α in R can be
expressed uniquely in the form

α = a1ω1 + a2ω2, where (a1, a2) ∈ Z× Z.
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The ring R always has an integral basis (Hecke [27], Sect. 22, Theorem 64),
so we select one, say {ω1, ω2}, let α ∈ R, write α = a1ω1 + a2ω2 for some
(a1, a2) ∈ Z× Z, and then set

N (α) = (a1ω1 + a2ω2)(a1ω
′
1 + a2ω

′
2),

where the superscripted primes denote the algebraic conjugate taken over Q.
The number N (α) defined by this formula is called the norm of α, it does
not depend upon the integral basis of R used to define it, it maps R into Z

and it is multiplicative in the sense that

N (αβ) = N (α)N (β) for all (α, β) ∈ R × R.

One can show that either the subset {1, 12 (1 +
√
m)} or the subset {1,

√
m}

of R is an integral basis of R, if either m is, or, respectively, is not, congruent
to 1 mod 4. It follows that if (a1, a2) ∈ Z× Z then either

N

(
a1 + a2

1 +
√
m

2

)
= a2

1 + a1a2 +
1−m

4
a2
2

or

N (a1 + a2
√
m) = a2

1 −ma2
2 ,

if either m is, or, respectively, is not, congruent to 1 mod 4. We also observe
that when m ≡ 1 mod 4, then

N

(
a1 + a2

1 +
√
m

2

)
= N

(
x + y

√
m

2

)
=

x 2 −my2

4
,

where

x = 2a1 + a2 and y = a2.

If I is an ideal of R then we extend the definition of the norm of numbers
in R to ideals by defining the norm N(I) of I to be the cardinality of R/I .
N.B. It follows from observation (ii) above that N (I ) < +∞ for all nonzero
ideals I of R. We also extend the norm to all elements of F by first noting
that any integral basis {ω1, ω2} of R is a vector-space basis of F over Q, and
so if w ∈ F , we chose the uniquely determined element (r1, r2) ∈ Q×Q such
that w = r1ω1+ r2ω2 and then set N (w) equal to (r1ω1+ r2ω2)(r1ω

′
1+ r2ω

′
2)

as before. This definition of the norm on F also is independent from the
integral basis of R used to define it, it maps F into Q, and it is multiplicative
on F .
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The following lemma is what we require for the calculation of ideal-class
groups and class numbers of quadratic fields. It asserts that the norm on
ideals of R is multiplicative with respect to the product of ideals, it explains
exactly how the norm on ideals extends the norm on elements of R, and it
concludes with a very useful inequality that will be used to limit the ideals
in R which can determine elements of the ideal-class group. The interested
reader can consult Hecke [27], Theorem 29 for a proof of statement (i) of
Lemma 3.18, Hecke [27], pp. 87–88 for a proof of statement (ii), and Marcus
[40], Corollary 2, p. 136 for a proof of (iii). It will also be convenient here
and subsequently to define the discriminant of Q(

√
m) as either m or 4m, if

m is or, respectively, is not congruent to 1 mod 4.

Lemma 3.18 (i) If I and J are ideals of R, then

N (IJ ) = N (I )N (J ).

(ii) If 0 �= α ∈ R then the norm of the principal ideal generated by α is
|N (α)|.

(iii) In each ideal class of R there is an ideal I such that

N (I ) ≤ λ =
1

2

(
4

π

)s√
|d |,

where d is the discriminant of F and s is either 0, if m is positive, or 1,
if m is negative.

The constant
1

2

(
4

π

)s√
|d | is called Minkowski’s constant, and arises in

the study of the geometry of numbers.
In order to gain some insight into the techniques that we will employ

to prove Theorem 3.3 in the next section, we will now calculate the ideal-
class group and the class number of three quadratic number fields using
Proposition 3.17 and Lemma 3.18.

Example 1 Let F = Q(
√
2 ), R = A ∩ F . Then s = 0 and d = 8, hence the

value of Minkowski’s constant λ in Lemma 3.18(iii) is

1

2

√
8 < 2,

and so by Lemma 3.18(iii), every ideal class of R contains an ideal I with
N (I ) ≤ 1 hence |R/I | = N (I ) = 1, hence I = (1). Conclusion: R has only
one ideal class, the principal class, and so R has class number 1.
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Example 2 Let F = Q(
√
−5 ), R = A ∩ F = Z +

√
−5 Z. Then s = 1 and

d = −20, so λ =
4
√
5

π
< 3, hence every ideal class of R contains an ideal I

such that N (I ) is either 1 or 2.
If N (I ) = 1 then I = (1). Suppose that N (I ) = 2. Then the additive

group of R/I has order 2, and so

2(α+ I ) = I , for all α ∈ R,

and taking α = 1, we obtain 2 ∈ I . Hence all of the prime factors of I must
contain 2, so we factor the ideal (2) by way of Proposition 3.17(vii) as

(2) = (2, 1 +
√
−5)2.

It follows that I must be a power J k of J = (2, 1 +
√
−5). The degree of

J is 1, hence N (J ) = 2. But then Lemma 3.18(i) implies that 2 = N (I ) =
N (J )k = 2k , hence k = 1 and so I = J . Conclusion: there are at most two
ideal classes of R, namely [(1)] and [J ].

We claim that J is not principal. If this claim is true then the ideal-class
group of R is {[(1)], [J ]} and R has class number 2.

In order to verify our claim, suppose there exits α ∈ R such that J = (α).
Lemma 3.18(ii) implies that

|N (α)| = N (J ) = 2,

hence N (α) = 2 (all nonzero elements of R have positive norm). But there
exist a, b ∈ Z such that α = a + b

√
−5, hence

a2 + 5b2 = N (α) = 2,

and this is clearly impossible.

Example 3 Let F = Q(
√
−23 ), R = A ∩ F = Z +

(
1
2 (1 +

√
−23)

)
Z. Then

s = 1 and d = −23 hence λ =
2
√
23

π
< 4, and so every ideal class contains an

ideal with norm 1, 2, or 3. As in Example 2, every ideal of norm 2 (respectively,
3) must have all of its prime factors containing 2 (respectively, 3), and so
factoring via Proposition 3.17 (i) and (iv), we obtain

(2) =

(
2,

1 +
√
−23

2

)(
2,

1−
√
−23

2

)
= I1I2,

(3) = (3, 1 +
√
−23)(3, 1−

√
−23) = I3I4,

hence the ideals of norm 2 are I1, I2 and the ideals of norm 3 are I3, I4.
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It is easily verified that the elements of R are either of the form a+b
√
−23,

where a, b ∈ Z or 1
2 (a+b

√
−23), where a and b are odd elements of Z. Hence

the norm of an element of R is either a2 +23b2 or 1
4 (a

2 +23b2) for a, b ∈ Z,
neither of which can be 2 or 3. Hence I1, I2, I3, and I4 are all not principal.
It follows that in order to calculate the ideal-class group of R, we must
determine the inequivalent ideals among I1, I2, I3, and I4.

We first look at I1 and I4. I1 ∼ I4 if and only if [I1][I4]
−1 = [(1)]. But

I3I4 = (3) ∼ (1), and so [I4]
−1 = [I3], hence we need to see if I1I3 is principal.

Lemma 3.18(i) implies that

N (I1I3) = N (I1)N (I3) = 2 · 3 = 6. (3.23)

Claim: an ideal I �= {0} of R is principal if and only if there exits α ∈ R such
that N (α) = N (I ) and there is a generating set S of I such that s/α ∈ R,
for all s ∈ S .

The necessity of this is clear. For the sufficiency, let α ∈ R satisfy the
stated conditions. Then J = (1/α)I is an ideal of R and Lemma 3.18 (i), (ii)
imply that

N (I ) = N
(
(α)J

)
= N (I )N (J ).

hence N (J ) = 1 and so J = (1), whence I = (α).
So in light of (3.23), we must look for elements of R of norm 6. If a, b ∈ Z

then a2 + 23b2 �= 6; on the other hand,

6 =
a2 + 23b2

4

if and only if a2 = 1 = b2. Hence there are exactly two principal ideals of

norm 6:
(
1
2 (1±

√
−23 )

)
. Let α =

1 +
√
−23

2
. We have that

I1I3 =

(
6, 2 + 2

√
−23,

3

2

(
1 +

√
−23

)
,
1

2

(
1 +

√
−23

)2)
.

Now divide each of these generators by α: you always get an element of R.
Hence by the claim, I1I3 = (α), and so I1 ∼ I4. Following the same line of
reasoning also shows that I2 ∼ I3.

We now claim that I1 is not equivalent to I2. Otherwise, [(1)] = [(2)] =
[I1I2] = [I 21 ], hence there exits α ∈ R such that I 21 = (α), and so N (α) =
N (I 21 ) = 4, whence α = ±2. But then (2)I1 = I 21 I2 = (2)I2, hence I1 = I2,
which contradicts the fact that these ideals are distinct.
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It follows that the ideal-class group of R is {[(1)], [I1], [I2]}, and R has class
number 3. Since the ideal-class group is of prime order, it is cyclic, and since
the order is 3, both ideal classes [I1] and [I2] are generators of the group.

3.12 Proof of Quadratic Reciprocity via Ideal
Theory: Conclusion

Let F = Q(
√
m) be a quadratic number field. The proof of Theorem 3.3

which we give in this section depends on an equivalence relation defined on
the ideals of R = A ∩ F which is similar to, but possibly different from, the
equivalence relation ∼ which determines the ideal classes of R. If I and J
are ideals of R then we declare that I is equivalent to J in the narrow sense,
and write I ≈ J , if there exists an element s ∈ F such that N (s) > 0 and
I = sJ . The relation ≈ is clearly an equivalence relation, and we will call the
corresponding set of equivalence classes narrow ideal classes of R. Because
each element of F is the quotient of two elements of R, it follows that I ≈ J
implies that I ∼ J , hence each narrow ideal class is a subset of some ideal
class. If the norm function N is always positive on F , which occurs when
m < 0, then there is no difference between ordinary equivalence of ideals and
equivalence in the narrow sense.

On the other hand, when m > 0 the difference between these two
equivalence relations is mediated by the units in R, i.e., the elements of R
which have a multiplicative inverse in R. It is easy to see that an element u
in R is a unit if and only if N (u) = ±1. If R has a unit of norm −1 then there
is also no difference between the two equivalence relations because if I = kJ
for some k ∈ F , then upon multiplication of the element k by a suitable unit
of norm −1, one can insure that the element k in this equation has positive
norm. On the other hand, if there is no unit with a negative norm then it
follows easily from this assumption and the fact that N (

√
m) = −m < 0 that

every nonzero ideal I of R is not narrowly equivalent to
√
m I . Hence each

ideal class [I ] in the ordinary sense in the union of exactly two ideal classes in
the narrow sense, namely the narrow ideal class containing I and the narrow
ideal class containing

√
m I . If we let h denote the class number of R and h0

denote the number of narrow ideal classes of R, i.e., h0 is the narrow class
number of R, it follows that either h0 = h or h0 = 2h; in particular the
number of narrow ideal classes is finite.

The set of all narrow ideal classes can be given an abelian group structure
using multiplication of ideals in the same way as we did for the ideal-class
group, with the set of all nonzero principal ideals (μ) with N (μ) > 0 acting
as the identity element. We call this group the narrow ideal-class group of
R. The algebraic relationship between the ideal-class group and the narrow
ideal-class group can be described by considering the set I of all nonzero
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ideals of R as an abelian semigroup under the ideal product and containing
the semigroup H of all nonzero principal ideals of R. The quotient semigroup
I/H is then in fact a group which is isomorphic to the ideal-class group.
If we let H0 denote the semigroup of all nonzero principal ideals (μ) with
N (μ) > 0 then the quotient semigroup I/H0 is a group which is isomorphic
to the narrow ideal-class group.

The next theorem is the basis for the proof of Theorem 3.3 that will
be presented here. The proof of the theorem, rather long and technical,
employs several results from algebraic number theory that would take us
too far afield to clearly explain, so we will be content to cite Hecke [27],
proof of Theorem 132, for the details. We will use the theorem to deduce two
corollaries from which Theorem 3.3 will follow by an elegant argument.

The statement of the theorem requires a bit of terminology from the theory
of finite abelian groups. If G is such a group whose order exceeds 1 then G
is isomorphic to a uniquely determined finite direct sum of cyclic groups
of prime-power order. If q is a prime number then the basis number of q
belonging to G is the number b(q) of cyclic summands of G whose orders
are all divisible by q. It follows that if b(q) = 0 then the order of G is not
divisible by q.

Theorem 3.19 If t denotes the number of distinct prime ideals in R which
contain the discriminant of F then the basis number of 2 belonging to the
narrow ideal-class group of R is t − 1.

Corollary 3.20 If the discriminant of F is divisible by a single prime then
the order of the narrow ideal-class group is odd.

Proof If the discriminant of F = Q(
√
m) is divisible by a single prime then

either m = ±2 or m ≡ 1 mod 4 and either m or −m is prime. If m = ±2
then the discriminant is ±8 and so from Proposition 3.17(vi), it follows that
(±8) = (2)3 has only a single prime-ideal factor, i.e., t = 1. If m ≡ 1 mod 4
and eitherm or−m is prime then it follows from Proposition 3.17(ii) that (m)
has only a single prime-ideal factor, hence t = 1 here as well. Theorem 3.19
then implies that the basis number of 2 belonging to the narrow ideal-class
group is 0. Hence the order of the narrow ideal-class group is not divisible
by 2. QED

Corollary 3.21 If the discriminant of F is the product of two positive primes
p and q, each congruent to 3 mod 4, then either p or q is the norm of an
element of R.

Proof We prove first that the norm of each unit of R is 1. If not, i.e., there
is an element α of R with norm −1, then there exist rational integers x and
y such that

x 2 − pqy2 = −4
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(pq ≡ 1 mod 4), hence

−4 ≡ x 2 mod pq,

and so −1 is a quadratic residue of p. However, Theorem 2.4 implies that
χp(−1) = −1, which is not possible.

Now use Proposition 3.17(ii) to factor (p) and (q) as

(p) = I 2, (q) = J 2, (3.24)

where I and J are prime ideals such that

N (I ) = p, N (J ) = q. (3.25)

The discriminant of Q(
√
pq) is pq, hence any prime ideal which is a factor of

(pq) must contain either p or q, and hence must be equal to either I or J .
If (pq) has only a single prime factor Q , say, then Q ∩ Z is a prime ideal of
Z which contains both p and q, which is not possible. It hence follows that
t = 2 in Theorem 3.19, and consequently, the proof of Theorem 3.19 (Hecke
[27], pp. 160–162) implies that

I ε1J ε2 ≈ (1), (3.26)

where εi ∈ {0, 1}, i = 1, 2, and ε1 �= 0 �= ε2.
If ε1 = ε2 = 1, then (3.24) and (3.26) imply that

(
√
pq) = IJ ≈ (1),

and so the definition of equivalence in the narrow sense implies that there
exists α ∈ R with N (α) > 0 such that

(
√
pq) = (α).

We conclude the existence of a unit u of R such that u
√
pq = α, hence

N (u) =
N (α)

N (
√
pq)

= −N (α)

pq
< 0,

which cannot happen because every unit of R has norm 1. Hence either ε1 or
ε2 is 1 and the other is 0, and consequently from (3.26) it follows that either
I or J is principal and is generated by an element γ of R of positive norm.
Hence by (3.25) and Lemma 3.18(ii), either p or q is the norm of γ. QED
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With Corollaries 3.20 and 3.21 in hand, we can now prove Theorem 3.3.
Given distinct odd primes p and q, we wish to prove that

χp(q)χq(p) = (−1)
1
2 (p−1) 1

2 (q−1). (3.27)

It will be most convenient to divide the reasoning into the three cases
which determine the sign on the right-hand side of (3.27).

Case 1.

Suppose that p ≡ q ≡ 1 mod 4. We will show that χp(q) and χq(p) are
simultaneously 1, hence also simultaneously −1, hence both sides of (3.27)
are 1.

Assume that χp(q) = 1. Then according to Proposition 3.17(i), the ideal
(p) in R = R∩Q(

√
q) factors as IJ with each of the factors having degree 1.

If h0 is the narrow class number of R then I h0 is in the narrow principal class
of R, hence there exists an element α in R of positive norm such that

I h0 = (α). (3.28)

Because there are rational integers x and y such that α = 1
2 (x + y

√
q), we

take the norm of both sides of (3.28) and use the facts that p ∈ I , the degree
of I is 1, and α has positive norm to conclude that

ph0 =
x 2 − qy2

4
,

from which it follows that

4ph0 ≡ x 2 mod q.

This means that 4ph0 is a residue of q, hence

χq(p)
h0 = χq(4p

h0) = 1.

Because Q(
√
q) has discriminant q, it follows from Corollary 3.20 that h0 is

odd, and so this equation implies that χq(p) = 1. An interchange of the roles
of p and q in this argument also shows that χq(p) = 1 implies that χp(q) = 1.

Case 2.

Suppose that q ≡ 1 mod 4 and p ≡ 3 mod 4. The argument in Case 1
shows that if χp(q) = 1 then χq(p) = 1. Hence by Theorem 2.4,

χq(−p) = χq(−1)χq(p) = 1
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Conversely, if χq(−p) = 1, then we can apply the argument in Case 1, using
the field Q(

√−p), to obtain χp(q) = 1. It follows that

χp(q) = χq(−p) = χq(p),

and both sides of (3.27) are again equal to 1.

Case 3.

Suppose that p ≡ q ≡ 3 mod 4. Applying the same reasoning as we did
in Case 1 or 2, it follows that χq(−p) = 1 implies that χp(−q) = −1, but
verification of the converse cannot be proved in that way. Instead, we work
in the field Q(

√
pq), in which, according to Corollary 3.21, p or q is the norm

of an algebraic integer 1
2 (x + y

√
pq). If p is that norm then

4p = x 2 − pqy2.

This equation implies that x is divisible by p, say x = ap, and so it follows
that 4 = pa2 − qy2. Upon observing that a is not divisible by q and y is not
divisible by p, it hence follows from this equation that

χq(p) = χq(pa
2) = χq(pa

2 − qy2) = χq(4) = 1,

and similarly,

χp(−q) = 1.

Hence by Theorem 2.4 again, it follows that

χp(q) = χp(−1)χp(−q) = −1.

If q is the prime that is the norm of an element of R, the same argument
applies to show that χp(q) and χq(p) still have opposite signs. Thus (3.27)
is verified for this final case. QED

Before we move on to the last proof of Theorem 3.3 that will be presented
in this chapter, we will explain how the proof that we just gave is related to
Gauss’ second proof of quadratic reciprocity. In order to do that we need
to describe how to get quadratic forms from ideals of quadratic number
fields. In the discussion which follows, we will eschew the proof of the results
mentioned; for those please consult Landau [35], Part 4, Chaps. I–IV or Hecke
[27], Sect. 53.

Recall from Chap. 1 that a (binary) quadratic form is a polynomial in the
variables x and y of the form

ax 2 + bxy + cy2
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where (a, b, c) ∈ Z × Z × Z, and we will denote this form by [a, b, c]. The
discriminant of [a, b, c] is the familiar algebraic invariant d = b2 − 4ac, and
in the classical theory, one presupposes the form is irreducible, i.e., it is not a
product of linear factors with integer coefficients, so that the discriminant is
not a perfect square and is congruent to either 0 or 1 mod 4. A discriminant is
fundamental if gcd(a, b, c) = 1. It can be shown that the set of fundamental
discriminants consists of precisely the integers, positive and negative, which
are either square-free and congruent to 1 mod 4 or are of the form 4n, where
n is square-free and congruent to 2 or 3 mod 4. Thus the set of fundamental
discriminants of quadratic forms coincides with the set of discriminants of
quadratic number fields.

For each fundamental discriminant d , let Q(d) denote the set of all
irreducible quadratic forms with discriminant d , so that Q(d) consists of
all irreducible forms [a, b, c] such that gcd(a, b, c) = 1 and b2 − 4ac = d . It
transpires that there is a way to manufacture certain elements of Q(d) from
the ideals in the ring of algebraic integers in Q(

√
m(d)), where m(d) = d

if d ≡ 1 mod 4, and m(d) = d/4 if d ≡ 0 mod 4. In order to describe this
procedure, we first single out the forms in Q(d) that will arise from it.

The set of quadratic forms that we need is determined by the manner in
which quadratic forms represent the integers. If n is an integer and q(x , y)
is a quadratic form, we will say that n is represented by q(x , y) if there exist
integers x and y such that n = q(x , y). The sign of the integers which a
given quadratic form q = [a, b, c] in Q(d) represents depends on the sign
of the discriminant d . If d > 0 then q represents both positive and negative
integers. If d < 0 and a > 0 then q represents no negative integers, and q(x , y)
represents 0 only if x = y = 0. If d < 0 and a < 0 then q represents no positive
integers, and q(x , y) represents 0 only if x = y = 0. Hence forms with positive
discriminant are called indefinite and forms with negative discriminant are
called positive or negative definite if a is, respectively, positive or negative
(Hecke [27], Sect. 53, Theorem 153).

Now let R = R ∩ Q(
√
m(d)) and let I(d) denote the set of all nonzero

ideals of R. For each I ∈ I(d), we choose an integral basis {α, β} of I
such that αβ′ − α′β = N (I )

√
d is positive or pure imaginary with positive

imaginary part (an integral basis with this property always exits, according
to Hecke [27], p.190). If (x , y) ∈ Z× Z then we let

QI (x , y) =
(xα+ yβ)(xα′ + yβ′)

N (I )
.

One can show that if I ∈ I(d) then QI ∈ Q(d). Moreover, if d > 0, and
f ∈ Q(d) then there is an I ∈ I(d) such that QI = f , and if d < 0 then for
each positive definite form f ∈ Q(d), there is an I ∈ I(d) such that QI = f
(Hecke [27], pp.190–192).

The relation of narrow equivalence of ideals in I(d) has an important
connection to an equivalence relation on the set Q(d). We declare that forms
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q(x , y) = ax 2 + bxy + cy2 and q1(X ,Y ) = a1X
2 + b1XY + c1Y

2 in Q(d) are
equivalent if there is a linear transformation defined by

x = αX + βY , y = γX + δY ,

where α, β, γ, and δ are integers satisfying αδ − βγ = 1, such that

q(αX + βY , γX + δY ) = q1(X ,Y ).

These transformations are called modular substitutions, and each modular
substitution maps Q(d) bijectively onto Q(d). It is a classical result of
Lagrange that each equivalence class of forms determined by this equivalence
relation contains a form [a, b, c] whose coefficients satisfy

|b| ≤ |a| ≤ |c|,

and it follows from this fact that the number of equivalence classes is finite
(Landau [35], Theorem 197). There is always at least one form in Q(d), called
the principal form, defined by

x 2 − 1

4
dy2, if d ≡ 0 mod 4,

or

x 2 + xy − 1

4
(d − 1)y2, if d ≡ 1 mod 4,

hence the number of equivalence classes is a positive integer. In what follows,
when we speak of a class of quadratic forms, we will mean one of these
equivalence classes.

One can now prove the following very important theorem:

Theorem 3.22 For each I ∈ I(d) the class of the form QI does not depend
on the integral basis of I used to define it, and ideals I and J in I(d) are in
the same narrow ideal class if and only if QI and QJ are in the same class
of forms in Q(d).

Proof Hecke [27], Sect. 53, Theorem 154. QED

As we mentioned in Sect. 3.10, the second proof which Gauss gave for the
LQR uses his genus theory of quadratic forms. The genus which a quadratic
form belongs to is an equivalence class determined by yet another equivalence
relation that Gauss defined on Q(d). The definition of this equivalence
relation is based on a very subtle and detailed analysis of the manner by which
a quadratic form represents odd integers, even integers, and the residues
and non-residues of primes which divide the discriminant of the form. It
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is done in such a way that each genus is the union of certain classes of
forms determined by modular substitutions. Because of the rather daunting
complexity of Gauss’ definition, we are instead going to define a notion of
genus on the set I(d), which can be done rather more transparently, and
then lift it to Q(d) via Theorem 3.22. What we will end up with is Gauss’
definition of genera of quadratic forms.

Toward that end, we declare that nonzero ideals I and J of R such that
I + (d) = R = J + (d) have the same genus if there exists a number γ in
Q(
√
m(d)) such that

N (I ) ≡ |N (γ)|N (J ) mod (d).

On the set of nonzero ideals which are relatively prime to (d), i.e., the nonzero
ideals whose sum with (d) is R, this congruence defines an equivalence
relation which partitions the nonzero ideals relatively prime to (d) into
genera. The genera form an abelian group in the usual way with the identity
in this group given by the genus containing (1), thus called the principal
genus, and hence containing the set of all principal ideals which are generated
by the elements of R of positive norm. It is not difficult to see that ideals
that are equivalent in the narrow sense belong to the same genus if they are
all relatively prime to (d); consequently each genus is the union of certain
narrow ideal classes. The narrow classes belonging to the principal genus form
a subgroup of the narrow ideal-class group, and so if f is the order of this
subgroup, g is the number of genera, and h0 is the narrow class number of R,
then each genus is the union of exactly f narrow ideal classes and h0 = fg.

Returning to Q(d), we take forms q1 and q2 in Q(d) (both positive definite
if d < 0), choose ideals I1 and I2 in I(d) such that qj = QIj for j = 1, 2,
and we define the class containing q1 and the class containing q2 to be in the
same genus if I1 and I2 have the same genus. By virtue of Theorem 3.22, this
relation is well-defined, each genus of forms in Q(d) is the union of f classes
of forms, the number of genera is g, and the total number of classes of forms
(classes of positive definite forms if d < 0) is fg.

The fundamental problem of genus theory is the determination of the
number of genera. The solution to this problem is given in the following
theorem:

Theorem 3.23 If t is the number of distinct prime ideals of R which contain
d then the number of genera is 2t−1. Moreover, a narrow ideal class is the
square of a narrow ideal class if and only if it is contained in the principle
genus.

Proof Hecke [27], Sect. 48, Theorem 145. QED

This theorem, due to Gauss in an equivalent form [19, articles 261, 286,
287], is the basis of his second proof of quadratic reciprocity. Actually Gauss
only used the fact that the number of genera does not exceed 2t−1 in his
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argument, because if d has at most two prime factors, then this inequality
implies that there are only at most two genera in Q(d), one of which is
always the principal genus. Gauss then used his definition of genera to deduce
quadratic reciprocity from this fact by means of an argument whose line of
reasoning, when converted into the language of ideals, is very similar to the
one that is used in the proof of quadratic reciprocity given in this section.
Interestingly enough, Gauss then used quadratic reciprocity and his theory
of composition of forms to derive the reverse inequality that the number of
genera can be no less that 2t−1.

3.13 A Proof of Quadratic Reciprocity via Galois
Theory

The proof of Theorem 3.3 which we gave in the last section shows that
quadratic reciprocity results from certain factorization properties of the
ideals in a quadratic number field. In this final section of Chap. 3, we
derive quadratic reciprocity from the structure of the Galois group of certain
cyclotomic number fields.

We preface the argument by recalling some relevant facts from Galois
theory. Let K ⊆ F be an inclusion of fields; we say that F is an extension
of K. An automorphism σ of F is Galois over K if each element of K is
fixed by σ, i.e., σ(k) = k for all k ∈ K . The set of all automorphisms of F
which are Galois over K forms a group under composition of automorphisms,
called the Galois group of F over K, and denoted by GK (F ). Now let E be
an intermediate field, i.e., a subfield of F which contains K , and also let H
be a subgroup of GK (F ). We let

E ′ = {σ ∈ GK (F ) : σ(ξ) = ξ, for all ξ ∈ E},

H ′ = {ξ ∈ F : σ(ξ) = ξ, for all σ ∈ H }.

It is clear that E ′ = GE (F ) is a subgroup ofGK (F ) and H ′, the fixed set of H ,
is an intermediate subfield of F . The field F is Galois over K if GK (F )′ = K ,
i.e., the fixed field of GK (F ) is K .

The field F is naturally a vector space over K with respect to the addition
and multiplication in F ; the dimension of F as a vector space over K is called
the degree of F over K and is denoted by [F : K ]. F is a finite extension of
K if the degree of F over K is finite. The following theorem, often called
the Fundamental Theorem of Galois Theory, plays, as the name connotes, a
central role in the theory of fields.

Theorem 3.24 If F is a finite Galois extension of K then the mapping E →
E ′ is a bijection of the set of all intermediate fields E onto the set of all
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subgroups of GK (F ) whose inverse mapping is H → H ′ and which has the
following properties:

(i) F is a Galois extension of E ′ and the order of GE ′(F ) is [F : E ′]. In
particular, the order of GK (F ) is [F : K ].

(ii) E is a Galois extension of K if and only if E ′ is a normal subgroup
of GK (F ), and if E is Galois over K then GK (E ) is isomorphic to the
quotient group GK (F )

/
E ′.

Proof Hungerford [29], Theorem V.2.5. QED

In particular, if F is a finite Galois extension of K and GK (F ) is abelian,
i.e., F is an abelian extension of K, then all intermediate subfields E are
Galois extensions of K ,

the order of GK (E ) is [E : K ] and

GK (E ) is isomorphic to GK (F )
/
GE (F ).

We now specialize to the case when F is an algebraic number field, the
situation that is of most interest to us. A natural question that arises after
one contemplates Theorem 3.24 asks: when is an algebraic number field a
Galois extension of Q? The answer involves the concept of a splitting field of
a polynomial, an idea that we have already encountered in Sect. 3.1 of this
chapter.

If K ⊆ F are fields of complex numbers, then F is a splitting field over K
if F is generated over K by the roots of a polynomial f (x ) ∈ K [x ], in other
words, F is the smallest subfield of the complex numbers which contains K
and all the roots of f (x ). In particular, if this holds we also say that F is
the splitting field of f (x ) over K. The next theorem is true in much greater
generality, but it will be more than sufficient to meet our needs.

Theorem 3.25 An algebraic number field is Galois over Q if and only if it
is the splitting field of a polynomial in Q[x ].

Proof Hungerford [29], Theorem V.3.11. QED

In order to verify Theorem 3.3, we are going to work in the algebraic
number field Q(ζ) generated over Q by the p-th root of unity ζ = exp(2πi/p),
for a fixed odd prime p, the cyclotomic number field determined by p. As we
saw in the examples from Sect. 3.8, ζ is an algebraic integer with minimal
polynomial over Q given by

1 + x + · · ·+ x p−1.

It follows from this fact and it is not too difficult to prove that

Q(ζ) =

{
p−1∑
i=0

riζ
i : (r0, . . . , rp−1) ∈ Q

p

}
(3.29)
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(Hecke [27], Sect. 30, p. 98). It is also true that

R(ζ) = R∩Q(ζ) =

{
p−1∑
i=0

ziζ
i : (z0, . . . , zp−1) ∈ Z

p

}
, (3.30)

although the proof of this requires quite a bit more work, for instance, see
Marcus [40], Theorem 10, p. 30.

From the factorization

1 + x + · · ·+ x p−1 =

p−1∏
i=0

(x − ζi),

(3.29), and Theorem 3.25 it follows that Q(ζ) is Galois over Q. We proceed
to calculate the Galois group G of Q(ζ) over Q. Recall that U (p) denotes
the group of units in Z/pZ; this group is cyclic of order p − 1.

Proposition 3.26 There is an isomorphism θ of G onto U (p) such that for
σ ∈ G,

σ(ζ) = ζθ(σ).

Proof Because ζp = 1, it follows that σ(ζ)p = 1. Hence

σ(ζ) = ζθ(σ),

where θ(σ) is an integer determined uniquely by σ modulo p. If τ = σ−1 then

ζ = τσ(ζ) = τ
(
ζθ(σ)

)
= ζθ(τ)θ(σ),

hence θ(τ)θ(σ) is in the coset in Z/pZ containing 1. It follows that θ maps
G into U (p). If τ, σ ∈ G then

ζθ(τσ) = (τσ)(ζ) = τ
(
σ(ζ)

)
= ζθ(τ)θ(σ),

hence θ(τσ) ≡ θ(τ)θ(σ) mod p and so θ is a homomorphism. If θ(σ) ≡ 1 mod
p then σ(ζ) = ζ, hence by (3.29), σ(α) = α, for all α ∈ Q(ζ), whence θ is a
monomorphism. As Q(ζ) is Galois over Q, we have that

∣∣U (p)
∣∣ = p − 1 = [Q(ζ) : Q] = |G|,

hence θ is surjective. QED
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It is a consequence of Proposition 3.26 that for every integer a ∈ Z not
divisible by p, there exists σa ∈ G such that

σa (ζ) = ζa ,

and the map a → σa is the inverse of θ.

Lemma 3.27 If q is a prime distinct from p then for all w ∈ R(ζ), σq(w) ≡
wq mod qR(ζ).

Proof From (3.30), we have that

w =
∑
i

ziζ
i ,

where zi ∈ Z, for all i . Since σq(ζ) = ζq , it follows from Fermat’s little
theorem that

σq(w) ≡
∑
i

z qi ζ
qi mod qR(ζ).

Because the ring R(ζ)/qR(ζ) has characteristic q, the q-th power map in this
ring is additive, hence

σq(w) ≡
∑
i

z qi ζ
qi mod qR(ζ)

≡
(∑

i

ziζ
i
)q

mod qR(ζ)

≡ wq mod qR(ζ).

QED

The way is now clear to the proof of Theorem 3.3. We begin by looking for
a square root of (−1)

1
2 (p−1)p = p∗ in Q(ζ). This can be found by applying

Theorem 3.14, but we want to avoid the use of Gauss sums. Instead, we will
find this square root via the equation

p =

p−1∏
i=1

(1− ζi).

If the terms corresponding to i and p − i are combined, then

(1− ζi )(1− ζp−i ) = (1− ζi)(1 − ζ−i) = −ζ−i(1− ζi )2.
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Hence

p = (−1)
1
2 (p−1)ζn

1
2 (p−1)∏
i=1

(1− ζi)2, where n = −
1
2 (p−1)∑
i=1

i .

Now choose z ∈ Z such that 2z ≡ 1 mod p. Then ζn = (ζnz )2, and so

p∗ =

⎛
⎝ζnz

1
2 (p−1)∏
i=1

(1 − ζi)

⎞
⎠

2

,

whence p∗ = τ2 for some τ ∈ Q(ζ).
Let q be an odd prime distinct from p. Then

σq (τ)
2 = σq(τ

2) = σq(p
∗) = p∗ = τ2,

hence σq(τ) = ±τ , with the plus sign holding if and only if σq is in the Galois
group of Q(ζ) over Q(τ). Proposition 3.26 implies that G is cyclic of order
p − 1, hence abelian, and so we conclude from Theorem 3.24 that

G
/
GQ(τ)

(
Q(ζ)

)
is isomorphic to GQ

(
Q(τ)

)

and

∣∣GQ

(
Q(τ)

)∣∣ = [Q(τ) : Q].

As the minimal polynomial of τ over Q is x 2 − p∗, it follows that [Q(τ) :
Q] = 2, and so G

/
GQ(τ)

(
Q(ζ)

)
is cyclic of order 2. Because G is cyclic of

even order, we conclude that GQ(τ)

(
Q(ζ)

)
consists of all the squares of the

elements of G. Hence σq(τ) = τ if and only if σq is a square in G. Since the
map a → σa is an isomorphism of U (p) onto G, it follows that σq is a square
in G if and only if q is a square in Z/pZ. In other words,

σq(τ) = χp(q)τ.

Let Q be a prime ideal of R(ζ) containing q. Lemma 3.27 implies that

χp(q)τ = σq(τ) ≡ τq mod Q , i.e.,

(χp(q) − τq−1)τ ∈ Q .
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If τ ∈ Q then p = (−1)
1
2 (p−1)τ2 ∈ Q , and this is not possible because q is

the only rational prime which Q contains. We conclude that

χp(q) ≡ τq−1 mod Q . (3.31)

On the other hand, it follows from Euler’s criterion that

τq−1 = (p∗)
1
2 (q−1) ≡ χq(p

∗) mod q. (3.32)

Because q ∈ Q , it follows from (3.31) and (3.32) that

χp(q) ≡ χq(p
∗) mod Q ,

hence

χp(q) = χq(p
∗)

because 2 /∈ Q . The LQR is now an immediate consequence of this equation
and Theorem 2.4. QED

The argument which we have given here (taken from [30, Sect. 13.3]),
shows that quadratic reciprocity results from the fact that the cyclotomic
number field Q

(
exp(2πi/p)

)
is an abelian extension of Q with a cyclic Galois

group. We also know from Theorem 3.2 that an irreducible polynomial f (x ) ∈
Z[x ] satisfies a reciprocity law if and only if the splitting field of f (x ) is an
abelian extension of Q. This path to higher reciprocity laws by way of the
Galois theory of abelian extensions eventually became one of the principal
thoroughfares to the creation of class field theory.



Chapter 4

Four Interesting Applications
of Quadratic Reciprocity

Gauss called the Law of Quadratic Reciprocity the golden theorem of number
theory because, when it is in hand, the study of quadratic residues and non-
residues can be pursued to a significantly deeper level. We have already seen
some examples of how useful the LQR can be in answering questions about
the calculation of specific residues or non-residues. In this chapter, we will
study four applications of the LQR which illustrate how it can be used to
shed further light on interesting properties of residues and non-residues.

Our first application will use quadratic reciprocity to completely solve
the Basic Problem and the Fundamental Problem for Odd Primes that we
introduced in Chap. 2. If z is an integer, recall that the Basic Problem is
to determine all primes p such that z is a quadratic residue of p and to
determine all primes p such that z is a quadratic non-residue of p. The Basic
Problem must be solved in order to determine when the quadratic congruence
ax 2+ bx + c ≡ 0 mod p has a solution, as we saw in Chap. 1, and it must also
be solved in order to determine the splitting moduli of quadratic polynomials,
as we explained in Sect. 3.1 of Chap. 3. Theorems 2.4 and 2.6 solve the Basic
Problem for, respectively, z = −1 and z = 2 and in Chap. 2 we also showed
how to reduce the solution of the Basic Problem to its solution when z is
an odd prime, which we call the Fundamental Problem for Odd Primes. In
Sect. 4.1 of this chapter, the LQR will be used to solve the Fundamental
Problem for Odd Primes and this solution will then be used in Sect. 4.2 to
solve the Basic Problem.

The second application, which we will discuss in Sect. 4.3, employs
quadratic reciprocity to investigate when finite, nonempty subsets of the
positive integers occur as sets of residues of infinitely many primes. In
addition to the LQR, the key lemma which we will use to answer that question
also employs Dirichlet’s theorem on primes in arithmetic progression. We
take the appearance of Dirichlet’s theorem here as an opportunity to discuss
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Dirichlet’s proof of that theorem in Sect. 4.4, because many of the ideas and
techniques of his reasoning will be used extensively in much of the work that
we will do in subsequent chapters.

If S is a finite, nonempty subset of the positive integers which is a set
of residues for infinitely many primes, a natural question that immediately
occurs asks: how large is the set of all primes p such that S is a set of
residues of p? In order to answer that question, one must find a way to
accurately measure the size of an infinite set of primes. A good way to make
that measurement is provided by the concept of the natural or asymptotic
density of a set of primes, which we will discuss in Sect. 4.5. In Sect. 4.6, we
apply quadratic reciprocity a third time in order to deduce a very nice way
to calculate the asymptotic density of the set of all primes p such that S is
a set of residues of p.

Number theory, and in particular, quadratic residues, has been applied
extensively in modern cryptology. As one example of those applications,
suppose that you receive an identification number from person A and you
want to verify that A validly is in possession of the identification number, i.e.,
you want to be sure that A really is who he claims to be, without knowing
anything else about A. Or, for a more mathematical example, A wants to
convince you that he knows the prime factors of a very large number, without
telling you what the prime factors are. This second example is actually used
by smart cards to verify personal identification numbers. In Sect. 4.7, we will
describe methods, known as zero-knowledge or minimum-disclosure proofs,
which use quadratic residues to securely verify the identity of someone and to
convince someone that you are who you say you are. Jacobi symbols and our
fourth application of the LQR are used in Sects. 4.8 and 4.9 to describe and
verify an algorithm for fast and efficient computation of Legendre symbols
that is required for the calculations in the zero-knowledge proof of Sect. 4.7.

4.1 Solution of the Fundamental Problem for Odd
Primes

We will now use quadratic reciprocity to solve the Fundamental Problem for
Odd Primes. Let q be an odd prime, and recall from Chap. 2 that the sets
X±(q) are defined by

X±(q) = {p : χp(q) = ±1}.

The Fundamental Problem for Odd Primes requires that the primes p in
these sets be found in some explicit and concrete manner.

Let r+i (respectively, r−i ), i = 1, . . . , 1
2 (q − 1) denote the residues

(respectively, non-residues) of q in [1, q − 1]. Note, as we pointed out in
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Chap. 2, that the residues and non-residues of q can be found by simply
calculating the integers 12, 22, . . . , ( q−1

2 )2 and then reducing mod q. The
integers that result from this computation are the residues of q inside [1, q−1].
We consider the two cases which are determined by whether q is congruent
to 1 or 3 mod 4.

Case 1: q ≡ 1 mod 4.
In this case, the LQR implies immediately that

X±(q) = {p : χp(q) = ±1}

= {p : χq(p) = ±1}

=

1
2 (q−1)⋃
i=1

{p : p ≡ r±i mod q}.

Example q = 17.
We find that the residues of 17 are 1, 2, 4, 8, 9, 13, 15, and 16 and the

non-residues of 17 are 3, 5, 6, 7, 10, 11, 12, and 14. Hence

X+(17) = {p : p ≡ 1, 2, 4, 8, 9, 13, 15, or 16 mod 17},

X−(17) = {p : p ≡ 3, 5, 6, 7, 10, 11, 12, or 14 mod 17}.

(Recall that p always denotes an odd prime.)

Case 2: q ≡ 3 mod 4.
Note first (from Theorem 2.4) that

X±(−1) = {p : p ≡ ±1 mod 4}.

Hence as a consequence of the LQR,

X+(q) =
(
X+(−1) ∩ {p : χq(p) = 1}

)
∪
(
X−(−1) ∩ {p : χq(p) = −1}

)
.

(4.1)

Now for i = 1, . . . , 1
2 (q − 1), let

x ≡ x±
i mod 4q, 1 ≤ x±

i ≤ 4q − 1,

be the simultaneous solutions of

x ≡ ±1 mod 4,

x ≡ r±i mod q,
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obtained from the Chinese remainder theorem (Theorem 1.3). If we set

V (q) = {x+
1 , . . . , x+

1
2 (q−1)

, x−
1 , . . . , x−

1
2 (q−1)

}

then (4.1) implies that

X+(q) =
⋃

n∈V (q)

{p : p ≡ n mod 4q}.

In order to calculate X−(q), recall that U (4q) denotes the set {n ∈ [1, 4q−
1] : gcd(n, 4q) = 1} and then observe that

V (q) ⊆ U (4q),

{p : p �= q} =
⋃

n∈U (4q)

{p : p ≡ n mod 4q}.

Hence

X−(q) = {p : p �= q} \X+(q)

=
⋃

n∈U (4q)\V (q)

{p : p ≡ n mod 4q}.

Example q = 7.
The residues of 7 are 1, 2, and 4 and the non-residues are 3, 5, and 6.

Because of the Chinese remainder theorem, the simultaneous solutions of the
congruence pairs

p ≡ 1 mod 4 and p ≡ 1 mod 7,

p ≡ 1 mod 4 and p ≡ 2 mod 7,

p ≡ 1 mod 4 and p ≡ 4 mod 7,

p ≡ −1 mod 4 and p ≡ 3 mod 7,

p ≡ −1 mod 4 and p ≡ 5 mod 7,

p ≡ −1 mod 4 and p ≡ 6 mod 7,

are, respectively,

p ≡ 1 mod 28,

p ≡ 9 mod 28,

p ≡ 25 mod 28,
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p ≡ 3 mod 28,

p ≡ 19 mod 28,

p ≡ 27 mod 28.

Hence

X+(7) = {p : p ≡ 1, 3, 9, 19, 25, or 27 mod 28}.

We have that

U (28) = {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27},

V (7) = {1, 3, 9, 19, 25, 27},

hence,

U (28) \V (7) = {5, 11, 13, 15, 17, 23},

and so

X−(7) = {p : p ≡ 5, 11, 13, 15, 17, or 23 mod 28}.

4.2 Solution of the Basic Problem

If d is a fixed but arbitrary integer, we recall formulae (2.2) and (2.5) for
X+(d) from Chap. 2. Suppose first that d > 0. Let

E = {E ⊆ πodd(d) : |E | is even},

where πodd(d) denotes the set of all prime factors of d of odd multiplicity. If
E ∈ E , let RE denote the set of all p such that

χp(q) =

{
−1, if q ∈ E ,

1, if q ∈ πodd(d) \ E .

Then formula (2.2) of Chap. 2 is

X+(d) =
( ⋃

E∈E
RE

)
\ πeven(d),
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where πeven(d) denotes the set of all prime factors of d of even multiplicity,
and this union is pairwise disjoint. Moreover

RE =
( ⋂

q∈E

X−(q)
)
∩
( ⋂

q∈πodd(d)\E
X+(q)

)
.

Suppose next that d < 0, and let

E−1 = {E ⊆ {−1} ∪ πodd(d) : |E | is even}.

Then formula (2.5) of Chap. 2 is

X+(d) =
( ⋃

E∈E−1

RE

)
\ πeven(d),

where

RE =
( ⋂

q∈E

X−(q)
)
∩
( ⋂

q∈({−1}∪πodd(d))\E
X+(q)

)
,E ∈ E−1.

We can now use formula (2.2) or (2.5) of Chap. 2 in concert with the
solution of the Fundamental Problem for Odd Primes to calculate X±(d),
thereby solving the Basic Problem. The formulae that we have derived for
the calculation of X±(q) where q is either −1 or a prime show that each of
these sets is equal to a union of certain equivalence classes mod 4, 8, an odd
prime, or 4 times an odd prime. It follows that when we employ formula (2.2)
or (2.5) of Chap. 2 to calculate X+(d), each of the sets RE occurring in those
formulae can hence be calculated by the method of successive substitution,
a generalization of the Chinese remainder theorem that can be used to solve
simultaneous congruences when the moduli of the congruences are no longer
pairwise relatively prime.

The method of successive substitution works as follows. We have a series
of congruences of the form

x ≡ ai mod mi , i = 1, . . . , k , (4.2)

where (m1, . . . ,mk ) is a given k -tuple of moduli and (a1, . . . , ak ) is a given
k -tuple of integers, which we wish to solve simultaneously. Denoting by
lcm(a, b) the least common multiple of the integers a and b, one starts with

Proposition 4.1 The congruences

x ≡ a1 mod m1, x ≡ a2 mod m2
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have a simultaneous solution if and only if gcd(m1,m2) divides a1 − a2. The
solution is unique modulo lcm(m1,m2) and is given by

x ≡ a1 + x0m1 mod lcm(m1,m2),

where x0 is a solution of

m1x0 ≡ a2 − a1 mod m2.

The congruences (4.2) are then solved by first using Proposition 4.1 to solve
the first two congruences in (4.2), then, if necessary, pairing the solution so
obtained with the third congruence in (4.2) and applying Proposition 4.1
to solve that congruence pair, and continuing in this manner, successively
applying Proposition 4.1 to the pair of congruences consisting of the solution
obtained from step i − 1 and the i-th congruence in (4.2). This procedure
confirms that (4.2) has a simultaneous solution if and only if gcd(mi ,mj )
divides ai − aj for all i and j , and that the solution is unique modulo the
least common multiple of m1, . . . ,mk . Proposition 4.1 is not difficult to verify,
and so we will leave that to the interested reader.

Consequently, once the residues and non-residues of each integer in πodd(d)
are determined, X+(d) can be calculated by repeated applications of the
method of successive substitutions. In particular, one finds a positive integer
m(d) and a subset V (d) of U

(
m(d)

)
such that

X+(d) =
( ⋃

n∈V (d)

{p : p ≡ n mod m(d)}
)
\ πeven(d).

The modulusm(d) is determined like so: if d > 0 and πodd(d) contains neither
2 nor a prime ≡ 3 mod 4, then m(d) is the product of all the elements of
πodd(d); otherwise, m(d) is 4 times this product.

The formula for X−(d) can now be obtained from the one for X+(d) by
first observing that as a consequence of the above determination of m(d),

π
(
m(d)

)
∪ {2} = πodd(d) ∪ {2},

and so

π(d) ∪ {2} = π
(
m(d)

)
∪ {2} ∪ πeven(d).

Upon recalling that P denotes the set of all primes, it follows that

X−(d) = P \
(
X+(d) ∪ {2} ∪ π(d)

)

= P \
(
π
(
m(d)

)
∪ {2} ∪ X+(d) ∪ πeven(d)

)

=
[
P \

(
π
(
m(d)

)
∪ {2}

)]
\
[
X+(d) ∪ πeven(d)

]
.
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Because

P \
(
π
(
m(d)

)
∪ {2}

)
=

⋃
n∈U (m(d))

{p : p ≡ n mod m(d)},

X+(d) ∪ πeven(d) =
( ⋃

n∈V (d)

{p : p ≡ n mod m(d)}
)
∪ πeven(d),

it hence follows that

X−(d) =
( ⋃

n∈U (m(d))\V (d)

{p : p ≡ n mod m(d)}
)
\ πeven(d).

The set V (d) that appears in the formulae which calculate X±(d) is
obtained from applications of the method of successive substitution to
the calculation of each of the sets RE which appears in (2.2) or (2.5) of
Chap. 2. A natural question which arises asks: are all of the integers in V (d)
and U

(
m(d)

)
\ V (d) which arise from these calculations required for the

determination of X±(d)? The answer is yes, if for each pair of relatively
prime positive integers m and n, the set {z ∈ Z : z ≡ n mod m} contains
primes. Remarkably enough, {z ∈ Z : z ≡ n mod m} in fact always contains
infinitely many primes. This is a famous theorem of Dirichlet [10], and
the connection of that theorem to the calculation of X±(d) was Dirichlet’s
primary motivation for proving it. Much more is to come (in Sect. 4.4 below)
about Dirichlet’s theorem and its use in the study of residues and non-
residues.

We next illustrate the procedure which we have described for the solution
of the Basic Problem by calculating X±(126). From the calculations using
this example that we preformed in Sect. 2.2 of Chap. 2, it follows that

X+(126) =
((

X+(2) ∩ X+(7)
)
∪
(
X−(2) ∩X−(7)

))
\ {3}.

hence we must calculate X+(2) ∩X+(7) and X−(2) ∩ X−(7).
Calculation of X+(2) ∩ X+(7).
Theorem 2.6 implies that

X+(2) = {p : p ≡ 1 or 7 mod 8},

and we have from the calculation of X+(7) above that

X+(7) = {p : p ≡ 1, 3, 9, 19, 25, or 27 mod 28}.

In order to calculate X+(2) ∩ X+(7), we need to solve at most 12 (but in
fact exactly six) pairs of simultaneous congruences. We do this by applying
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Proposition 4.1. We have that gcd(8, 28) = 4, lcm(8, 28) = 56, and so
Proposition 4.1 implies that X+(2) ∩ X+(7) consists of the union of all odd
prime simultaneous solutions of the congruence pairs

x ≡ 1 mod 8, x ≡ 1 mod 28,

x ≡ 1 mod 8, x ≡ 9 mod 28,

x ≡ 1 mod 8, x ≡ 25 mod 28,

x ≡ 7 mod 8, x ≡ 3 mod 28,

x ≡ 7 mod 8, x ≡ 19 mod 28,

x ≡ 7 mod 8, x ≡ 27 mod 28,

whose odd prime solutions are, respectively,

p ≡ 1 mod 56,

p ≡ 9 mod 56,

p ≡ 25 mod 56,

p ≡ 31 mod 56,

p ≡ 47 mod 56,

p ≡ 55 mod 56.

Calculation of X−(2) ∩ X−(7).
From Theorem 2.6 and the calculation of X−(7) above, it follows that

X−(2) = {p : p ≡ 3 or 5 mod 8},

X−(7) = {p : p ≡ 5, 11, 13, 15, 17, or 23 mod 28}.

Hence, again according to Proposition 4.1, X−(2) ∩ X−(7) consists of the
union of all odd prime simultaneous solutions of the congruence pairs

x ≡ 3 mod 8, x ≡ 11 mod 28,

x ≡ 3 mod 8, x ≡ 15 mod 28,

x ≡ 3 mod 8, x ≡ 23 mod 28,

x ≡ 5 mod 8, x ≡ 5 mod 28,

x ≡ 5 mod 8, x ≡ 13 mod 28,

x ≡ 5 mod 8, x ≡ 17 mod 28,
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whose odd prime solutions are, respectively,

p ≡ 11 mod 56,

p ≡ 43 mod 56,

p ≡ 51 mod 56,

p ≡ 5 mod 56,

p ≡ 13 mod 56,

p ≡ 45 mod 56.

From this calculation of X+(2)∩X+(7) and X−(2)∩X−(7), it hence follows
that

X+(126) = {p : p ≡ 1, 5, 9, 11, 13, 25, 31, 43, 45, 47, 51, or 55 mod 56}.

In order to calculate X−(126), we simply delete from U (56) the minimal
positive ordinary residues mod 56 that determine X+(126): the integers
resulting from that are 3, 15, 17, 19, 23, 27, 29, 33, 37, 39, 41, and 53.
Hence

X−(126) = {p �= 3 : p ≡ 3, 15, 17, 19, 23, 27, 29, 33, 37, 39, 41, or 53 mod 56}.

4.3 Sets of Integers Which Are Quadratic Residues
of Infinitely Many Primes

In this section we will use the LQR to investigate when a finite non-empty
subset of positive integers is the set of residues for infinitely many primes.
We start by looking at singleton sets. Obviously, if a ∈ Z is a square then a
is a residue of all primes. Is the converse true, i.e., if a positive integer is a
residue of all primes, must it be a square? The answer is yes; in fact a slightly
stronger statement is valid:

Theorem 4.2 A positive integer is a residue of all but finitely many primes
if and only if it is a square.

This theorem implies that if S is a nonempty finite subset of [1,∞) then
S is a set of residues for all but finitely many primes if and only if every
element of S is a square. What if we weaken the requirement that S be a set
of residues of all but finitely many primes to the requirement that S be a set
of residues for only infinitely many primes? Then the somewhat surprising
answer is asserted by

Theorem 4.3 If S is any nonempty finite subset of [1,∞) then S is a set of
residues of infinitely many primes.
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Theorems 4.2 and 4.3 are simple consequences of

Lemma 4.4 (Basic Lemma) If Π = {p1, . . . , pk} is a nonempty finite set
of primes and if ε : Π → {−1, 1} is a fixed function then there exits infinitely
many primes p such that

χp(pi ) = ε(pi), i ∈ [1, k ].

N.B. This lemma asserts that if all of the integers in the set S of
Theorem 4.3 are prime, then for any pattern of +1’s or −1’s attached to
the elements of S , the Legendre symbol χp reproduces that pattern on S
for infinitely many primes p. Thus the conclusion of Theorem 4.3 can be
strengthened considerably when S is a set of primes.

Assume Lemma 4.4 for now. We will use it to first prove Theorems 4.2
and 4.3 and then we will use quadratic reciprocity (and Dirichlet’s theorem
on primes in arithmetic progression) to prove Lemma 4.4.

Proof of Theorem 4.2 Suppose that n ∈ [1,∞) is not a square. Then
πodd(n) �= ∅ and

χp(n) =
∏

q∈πodd(n)

χp(q), for all p /∈ π(n). (4.3)

Now take any fixed q0 ∈ πodd(n) and define ε : πodd(n) → {−1, 1} by

ε(q) =

{
−1, if q = q0,

1, if q �= q0.

Lemma 4.4 implies that there exists infinitely many primes p such that

χp(q) = ε(q), for all q ∈ πodd(n),

and so the product in (4.3), and hence χp(n), is −1 for all such p /∈ π(n).
QED

Proof of Theorem 4.3 Let S be a fixed nonempty subset of positive integers
and let

X =
⋃
z∈S

πodd(z ).

We may assume that X �= ∅; otherwise all elements of S are squares and
Theorem 4.3 is trivially true in that case. Then Lemma 4.4 implies that
there exists infinitely many primes p such that

χp(q) = 1, for all q ∈ X ,
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hence for all such p which are not factors of an element of S ,

χp(z ) =
∏

q∈πodd(z)

χp(q) = 1, for all z ∈ S .

QED

Proof of Lemma 4.4 It follows from our solution of the Fundamental Problem
for all primes (Theorem 2.6 and the calculation of X±(q), q an odd prime,
in Sect. 4.1) that Lemma 4.4 is valid when Π is a singleton, so assume that
k ≥ 2. We will make use of arithmetic progressions in this argument, and so
if a, b ∈ [1,∞), let

AP(a, b) = {a + nb : n ∈ [0,∞)}

denote the arithmetic progression with initial term a and common difference
b. We will find the primes that will verify the conclusion of Lemma 4.4
by looking inside certain arithmetic progressions, hence we will need the
following theorem, one of the basic results in the theory of prime numbers:

Theorem 4.5 (Dirichlet’s Theorem on Primes in Arithmetic Pro-
gression) If {a, b} ⊆ [1,∞) and gcd(a, b) = 1 then AP(a, b) contains
infinitely many primes.

The key ideas in Dirichlet’s proof of Theorem 4.5 will be discussed in due
course. For now, assume that the elements of the set Π in the hypothesis of
Lemma 4.4 are ordered as p1 < · · · < pk and fix ε : Π → {−1, 1}. We need to
verify the conclusion of Lemma 4.4 for this ε. Suppose first that p1 = 2 and
ε(2) = 1. If i ∈ [2, k ] and ε(pi ) = 1, let ki = 1, and if ε(pi) = −1, let ki be
an odd non-residue of pi such that gcd(pi , ki) = 1 (if ε(pi) = −1 then such a
ki can always be chosen: simply pick any non-residue x of pi in [1, pi − 1]; if
x is odd, set ki = x , and if x is even, set ki = x + pi).

Now, suppose that i ∈ [2, k ] , p ≡ 1 mod 8, and p ∈ AP(ki , 2pi), say
p = ki + 2pin, for some n ∈ [1,∞). Then LQR implies that

χp(pi) = χpi (p) = χpi (ki + 2pin) = χpi (ki ).

It follows from Theorem 2.6 and the choice of ki that

χp(2) = 1 and χp(pi) = ε(pi ).

Hence

if p ≡ 1 mod 8 and p ∈
k⋂

i=2

AP(ki , 2pi), then χp(pi ) = ε(pi), for all i ∈ [1, k ].

(4.4)
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We prove next that there are infinitely many primes ≡ 1 mod 8 inside⋂k
i=2 AP(ki , 2pi). To see this, we first use the fact that each ki is odd and

an inductive construction obtained from solving an appropriate sequence of
linear Diophantine equations (Proposition 1.4) to obtain an integer m such
that

AP(k2 + 2m, 8p2 · · · pk ) ⊆ AP(1, 8) ∩
( k⋂

i=2

AP(ki , 2pi)
)
. (4.5)

We then claim that gcd(k2+2m, 8p2 · · · pk ) = 1. If this is true then by virtue
of Theorem 4.5, we have that AP(k2+2m, 8p2 · · · pk ) contains infinitely many
primes p, hence for any such p, it follows from (4.4) and (4.5) that

χp(pi ) = ε(pi), i ∈ [1, k ], (4.6)

the conclusion of Lemma 4.4. To verify the claim, assume by way of
contradiction that q is a common prime factor of k2 + 2m and 8p2 · · · pk .
Then q �= 2 because k2 is odd, hence there is a j ∈ [2, k ] such that q = pj .
But (4.5) implies that there exists n ∈ [0,∞) such that

k2 + 2m + 8p2 · · · pk = kj + 2npj ,

and so pj divides kj , contrary to the choice of kj .

If p1 = 2 and ε(2) = −1, a similar argument shows that
⋂k

i=2 AP(ki , 2pi)
contains infinitely many primes p ≡ 5 mod 8, hence (4.6) is true for all such
p. If p1 �= 2, simply adjoin 2 to Π and repeat this argument. QED

4.4 Intermezzo: Dirichlet’s Theorem on Primes
in Arithmetic Progression

In addition to the LQR, Theorem 4.5 also played a key role in the proof of
the basic Lemma 4.4, and thus also in the proofs of Theorems 4.2 and 4.3.
Because they will play such an important role in our story, we will now discuss
the key ingredients of Dirichlet’s proof of Theorem 4.5. Dirichlet [10] proved
this in 1837, and it would be hard to overemphasize the importance of this
theorem and the methods Dirichlet developed to prove it. As we shall see, he
used analysis, specifically the theory of infinite series and infinite products of
complex-valued functions of a real variable, and in subsequent work [11] also
the theory of Fourier series, to discover properties of the primes (for the reader
who may benefit from it, we briefly discuss analytic functions, Fourier series,
and some of their basic properties in Chap. 7). His use of continuous methods
to prove deep results about discrete sets like the prime numbers was not only
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a revolutionary insight, but also caused a sensation in the nineteenth century
mathematical community. Dirichlet’s results founded the subject of analytic
number theory, which has become one of the most important areas and a
major industry in number theory today. Later (in Chaps. 5 and 7) we will
also see how Dirichlet used analytic methods to study important properties
of residues and non-residues.

Dirichlet is a towering figure in the history of number theory not only
because of the many results and methods of fundamental importance which
he discovered and developed in that subject but also because of his role
as an expositor of that work and the work of Gauss. We have already
given an indication of how the work of Gauss, especially the Disquisitiones
Arithmeticae, brought about a revolutionary transformation in number
theory. However, the influence of Gauss’ work was rather slow to be realized,
due primarily to the difficulty that many of his mathematical contemporaries
had in understanding exactly how Gauss had done what he had done in the
Disquisitiones. Dirichlet is said to have been the first person to completely
master the Disquisitiones, and legend has it that he was never without a
copy of it within easy reach. Many of the results and techniques that Gauss
developed in the Disquisitiones were first explained in a more accessible
way in Dirichlet’s great text [12], the Vorlesungen über Zahlentheorie; John
Stillwell, the translator of the Vorlesungen into English, called it one of
the most important mathematics books of the nineteenth century: the link
between Gauss and the number theory of today. If a present-day reader of
the Disquisitiones finds much of it easier to understand than a reader in the
early days of the nineteenth century did, it is because that modern reader
learned number theory the way that Dirichlet first taught it.

Now, back to primes in arithmetic progression. In 1737, Euler proved that
the series

∑
q∈P

1
q diverges and hence deduced Euclid’s theorem that there

are infinitely many primes. Taking his cue from this result, Dirichlet sought
to prove that

∑
p≡a mod b

1

p

diverges, where a and b are given positive relatively prime integers, thereby
showing that the arithmetic progression with constant term a and difference
b contains infinitely many primes. To do this, he studied the behavior as
s → 1+ of the function of s defined by

∑
p≡a mod b

1

ps
.
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This function is difficult to get a handle on; it would be easier if we could
replace it by a sum indexed over all of the primes, so consider

∑
p

δ(p)p−s , where δ(p) =

{
1, if p ≡ a mod b,

0, otherwise.

Dirichlet’s profound insight was to replace δ(p) by certain functions which
capture the behavior of δ(p) closely enough, but which are more amenable
to analysis relative to primes in the ordinary residue classes mod b. We now
define these functions.

Begin by recalling that if A is a commutative ring with identity 1 then a
unit u of A is an element of A that has a multiplicative inverse in A, i.e.,
there exists v ∈ A such that uv = 1. The set of all units of A forms a
group under the multiplication of A, called the group of units of A. Consider
now the ring Z/bZ of ordinary residue classes of Z mod b. Proposition 1.2
implies that the group of units of Z/bZ consists of all ordinary residue classes
that are determined by the integers that are relatively prime to b. If we hence
identify Z/bZ in the usual way with the set of ordinary non-negative minimal
residues [0, b−1] on which is defined the addition and multiplication induced
by addition and multiplication of ordinary residue classes, it follows that

U (b) = {n ∈ [1, b − 1] : gcd(n, b) = 1}

is the group of units of Z/bZ, and we set

ϕ(b) = |U (b)|;

ϕ is called Euler’s totient function.
Let T denote the circle group of all complex numbers of modulus 1, with

the group operation defined by ordinary multiplication of complex numbers.
A homomorphism of U (b) into T is called a Dirichlet character modulo b.
We denote by χ0 the principal character modulo b, i.e., the character which
sends every element of U (b) to 1 ∈ T . If χ is a Dirichlet character modulo b,
we extend it to all integers z by setting χ(z ) = χ(n) if there exists n ∈ U (b)
such that z ≡ n mod b, and setting χ(z ) = 0, otherwise. It is then easy to
verify

Proposition 4.6 A Dirichlet character χ modulo b is

(i) of period b, i.e., χ(n) = 0 if and only if gcd(n, b) > 1 and χ(m) = χ(n)
whenever m ≡ n mod b, and is

(ii) completely multiplicative, i.e., χ(mn) = χ(m)χ(n) for all m, n ∈ Z.

We say that a Dirichlet character is real if it is real-valued, i.e., its range
is either the set {0, 1} or [−1, 1]. In particular the Legendre symbol χp is a
real Dirichlet character mod p.
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For each modulus b, the structure theory of finite abelian groups can be
used to explicitly construct all Dirichlet characters mod b; we will not do this,
and instead refer the interested reader to Hecke [27], Sect. 10 or Davenport
[6], pp. 27–30. In particular there are exactly ϕ(b) Dirichlet characters mod b.

The connection between Dirichlet characters and primes in arithmetic
progression can now be made. If gcd(a, b) = 1 then Dirichlet showed that

1

ϕ(b)

∑
χ

χ(a)χ(p) =

{
1, if p ≡ a mod b,

0, otherwise,

where the sum is taken over all Dirichlet characters χmod b. These are the so-
called orthogonality relations for the Dirichlet characters. This equation says
that the characteristic function δ(p) of the primes in an ordinary equivalence
class mod b can be written as a linear combination of Dirichlet characters.
Hence

∑
p≡a mod b

1

ps
=
∑
p

δ(p)p−s

=
∑
p

( 1

ϕ(b)

∑
χ

χ(a)χ(p)
)
p−s

=
1

ϕ(b)

∑
p

p−s +
1

ϕ(b)

∑
χ�=χ0

χ(a)
(∑

p

χ(p)p−s
)
.

After observing that

lim
s→1+

∑
p

p−s = +∞,

Dirichlet deduced immediately from the above equations the following lemma:

Lemma 4.7 lims→1+
∑

p≡a mod b p
−s = +∞ if for each non-principal

Dirichlet character χ mod b,
∑

p χ(p)p
−s is bounded as s → 1+.

Hence Theorem 4.5 will follow if one can prove that

for all non-principal Dirichlet characters χ mod b,
∑
p

χ(p)p−s is bounded as s → 1+. (4.7)

Let χ be a given Dirichlet character. In order to verify (4.7), Dirichlet
introduced his next deep insight into the problem by considering the function

L(s , χ) =

∞∑
n=1

χ(n)

ns
, s ∈ C,
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which has come to be known as the Dirichlet L-function of χ. We will prove
in Chap. 7 that L(s , χ) is analytic in the half-plane Re s > 1, satisfies the
infinite-product formula

L(s , χ) =
∏
q∈P

1

1− χ(q)q−s
, Re s > 1,

the Euler-Dirichlet product formula, and is analytic in Re s > 0 whenever
χ is non-principal. One can take the complex logarithm of both sides of the
Euler-Dirichlet product formula to deduce that

logL(s , χ) =

∞∑
n=2

χ(n)Λ(n)

log n
n−s ,Re s > 1,

where

Λ(n) =

{
log q, if n is a power of q, q ∈ P ,

0, otherwise.

Using algebraic properties of the character χ and the function Λ, Dirichlet
proved that (4.7) is true if

logL(s , χ) is bounded as s → 1+whenever χ is non-principal. (4.8)

We should point out that Dirichlet did not use functions of a complex variable
in his work, but instead worked only with real values of the variable s
(Cauchy’s theory of analytic functions of a complex variable, although fully
developed by 1825, did not become well-known or commonly employed until
the 1840s). Because L(s , χ) is continuous on Re s > 0, it follows that

lim
s→1+

logL(s , χ) = logL(1, χ),

hence (4.8) will hold if

L(1, χ) �= 0 whenever χ is non-principal.

We have at last come to the heart of the matter, namely

Lemma 4.8 If χ is a non-principal Dirichlet character then L(1, χ) �= 0.

If χ is not real, Lemma 4.8 is fairly easy to prove, but when χ is real,
this task is much more difficult to do. Dirichlet deduced Lemma 4.8 for real
characters by using results from the classical theory of quadratic forms; he
established a remarkable formula which calculates L(1, χ) as the product of a
certain parameter and the number of equivalence classes of quadratic forms
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(Sect. 3.12, Chap. 3); because this parameter and the number of equivalence
classes are clearly positive, L(1, χ) must be nonzero. At the conclusion of
Chap. 7, we will give an elegant proof of Lemma 4.8 for real characters due
to de la Vallée Poussin [45], and then in Chap. 8 we will prove Dirichlet’s
class-number formula for the value of L(1, χ).

Finally, we note that if χ0 is the principal character mod b then it is a
consequence of the Euler-Dirichlet product formula that

L(s , χ0) = ζ(s)
∏
q|b

(
1− q−s

)
,

where

ζ(s) =

∞∑
n=1

1

ns

is the Riemann zeta function.
At this first appearance in our story of ζ(s), probably the single most

important function in analytic number theory, we cannot resist briefly
discussing the

Riemann Hypothesis : all zeros of ζ(s) in the strip 0 < Re s < 1 have real
part 1

2 .
Generalized Riemann Hypothesis (GRH): if χ is a Dirichlet character then

all zeros of L(s , χ) in the strip 0 < Re s ≤ 1 have real part 1
2 .

Riemann [47] first stated the Riemann Hypothesis (in an equivalent form) in
a paper that he published in 1859, in which he derived an explicit formula
for the number of primes not exceeding a given real number. By general
agreement, verification of the Riemann Hypothesis is the most important
unsolved problem in mathematics. One of the most immediate consequences
of the truth of the Riemann Hypothesis, and arguably the most significant, is
the essentially optimal error estimate for the asymptotic approximation of the
cardinality of the set {q ∈ P : q ≤ x} given in the Prime Number Theorem
(see the statement of this theorem in the next section). This estimate asserts
that there is an absolute, positive constant C such that for all x sufficiently
large,

∣∣∣∣∣∣∣∣

∣∣{q ∈ P : q ≤ x}
∣∣

∫ x

2

1

log t
dt

− 1

∣∣∣∣∣∣∣∣
≤ C√

x
.

The integral
∫ x

2
1

log t dt appearing in this inequality, the logarithmic integral

of x, is generally a better asymptotic approximation to the cardinality of {q ∈
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P : q ≤ x} than the quotient x/ log x . Hilbert emphasized the importance of
the Riemann Hypothesis in Problem 8 on his famous list of 23 open problems
that he presented in 1900 in his address to the second International Congress
of Mathematicians. In 2000, the Clay Mathematics Institute (CMI) published
a series of seven open problems in mathematics that are considered to be of
exceptional importance and have long resisted solution. In order to encourage
work on these problems, which have come to be known as the Clay Millennium
Prize Problems, for each problem CMI will award to the first person(s) to
solve it $1,000,000 (US). The proof of the Riemann Hypothesis is the second
Millennium Prize Problem (as currently listed on the CMI web site).

4.5 The Asymptotic Density of Primes

Theorem 4.3 gives rise to the following natural and interesting question: if S
is a nonempty, finite subset of [1,∞), how large is the necessarily infinite set
of primes

{p : χp ≡ 1 on S} ?

(The meaning of the symbol ≡ used here is as an identity of functions, not
as a modular congruence; in subsequent uses of this symbol, its meaning will
be clear from the context.) To formulate this question precisely, we need a
good way to measure the size of an infinite set of primes. This is provided
by the concept of the asymptotic density of a set of primes, which we will
discuss in this section.

If Π is a set of primes and P denotes the set of all primes then the
asymptotic density of Π in P is

lim
x→+∞

∣∣{p ∈ Π : p ≤ x}
∣∣∣∣{p ∈ P : p ≤ x}
∣∣ ,

provided that this limit exists. Roughly speaking, the density of Π is the
“proportion” of the set P that is occupied by Π. Since the asymptotic
density of any finite set is clearly 0 and the asymptotic density of any set
whose complement in P is finite is clearly 1, only sets of primes which are
infinite and have an infinite complement in P are of interest in terms of their
asymptotic densities. We can in fact be a bit more precise: recall that if a(x )
and b(x ) denote positive real-valued functions defined on (0,+∞), then a(x )
is asymptotic to b(x ) as x → +∞, denoted by a(x ) ∼ b(x ), if

lim
x→+∞

a(x )

b(x )
= 1.
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The Prime Number Theorem (LeVeque [39], Chap. 7; Montgomery and
Vaughn [41], Chap. 6) asserts that as x → +∞,

|{q ∈ P : q ≤ x}| ∼ x

log x
,

consequently, if d is the density of Π then as x → +∞,

|{q ∈ Π : q ≤ x}| ∼ d
x

log x
.

Hence the asymptotic density of Π provides a way to measure precisely the
“asymptotic cardinality” of Π.

4.6 The Density of Primes Which Have a Given
Finite Set of Quadratic Residues

Theorem 4.3 asserts that if S is a given nonempty finite set of positive integers
then the set of primes {p : χp ≡ 1 on S} is infinite. In this section, we will
prove a theorem which provides a way to calculate the density of the set
{p : χp ≡ 1 on S}. This will be given by a formula which depends on a
certain combinatorial parameter that is determined by the prime factors of
the elements of S . In order to formulate this result, let F denote the Galois
field GF (2) of 2 elements, which can be concretely realized as the field Z/2Z
of ordinary residue classes mod 2. Let A ⊆ [1,∞). If n = |A|, then we let
Fn denote the vector space over F of dimension n, arrange the elements
a1 < · · · < an of A in increasing order, and then define the map v : 2A → Fn

like so: if B ⊆ A then

the i-th coordinate of v(B) =

{
1, if ai ∈ B ,

0, if ai /∈ B .

If we recall that πodd(z ) denotes the set of all prime factors of odd multiplicity
of the integer z then we can now state (and eventually prove) the following
theorem:

Theorem 4.9 If S is a nonempty, finite subset of [1,∞),

S = {πodd(z ) : z ∈ S},

A =
⋃
X∈S

X ,

n = |A|,
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and

d = the dimension of the linear span of v(S) in Fn ,

then the density of {p : χp ≡ 1 on S} is 2−d .

Theorem 4.9 reduces the calculation of the density of {p : χp ≡ 1 on S}
to prime factorization of the integers in S and linear algebra over F . If
we enumerate the nonempty elements of S as S1, . . . ,Sm (if S has no such
elements then S consists entirely of squares, hence the density is clearly 1)
then d is just the rank over F of the m × n matrix

⎛
⎜⎝

v(S1)(1) . . . v(S1)(n)
...

...

v(Sm)(1) . . . v(Sm)(n)

⎞
⎟⎠ ,

where v(Si)(j ) is the j -th coordinate of v(Si). This matrix is often referred
to as the incidence matrix of S. Because there are only two elementary row
(column) operations over F , namely row (column) interchange and addition
of a row (column) to another row (column), the rank of this matrix is easily
calculated by Gauss-Jordan elimination. However, this procedure requires
that we first find the prime factors of odd multiplicity of each element of S ,
and that, in general, is not so easy!

A few examples will indicate how Theorem 4.9 works in practice. Observe
first that if S is a finite set of primes of cardinality n, say, then the incidence
matrix of S is just the n × n identity matrix over F , hence the dimension of
v(S) in Fn is n, and so the density of {p : χp ≡ 1 on S} is 2−n . Now chose
four primes p < q < r < s , say, and let

S1 = {p, pq, qr , rs}.

The incidence matrix of S1 is

⎛
⎜⎜⎝

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

⎞
⎟⎟⎠ ,

which is row equivalent to

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ .
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It follows from Theorem 4.9 that the density of {p : χp ≡ 1 on S1} is 2−4. If

S2 = {p, ps , pqr , pqrs},

then the incidence matrix of S2 is

⎛
⎜⎜⎝

1 0 0 0

1 0 0 1

1 1 1 0

1 1 1 1

⎞
⎟⎟⎠ ,

which is row equivalent to

⎛
⎜⎜⎝

1 0 0 0

0 1 1 1

0 0 0 1

0 0 0 0

⎞
⎟⎟⎠ ,

hence Theorem 4.9 implies that the density of {p : χp ≡ 1 on S2} is 2−3.
Because a 2-dimensional subspace of F 4 contains exactly 3 nonzero vectors,
it follows that if S consists of 4 nontrivial square-free integers such that S is
supported on 4 primes, then the density of {p : χp ≡ 1 on S} cannot be 2−2.
However, for example, if

S3 = {ps , qr , pqrs},

then the incidence matrix of S3 is

⎛
⎝

1 0 0 1

0 1 1 0

1 1 1 1

⎞
⎠ ,

which is row equivalent to

⎛
⎝

1 0 0 1

0 1 1 0

0 0 0 0

⎞
⎠ ,

and so the density of {p : χp ≡ 1 on S3} is 2−2.
We turn now to the

Proof of Theorem 4.9 We first establish a strengthened version of Theo-
rem 4.9 in a special case, and then use it (and another lemma) to prove
Theorem 4.9 in general.
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Lemma 4.10 (Filaseta and Richman [18], Theorem 2) If Π is a nonempty
set of primes and ε : Π → {−1, 1} is a given function then the density of the
set {p : χp ≡ ε on Π} is 2−|Π|.

Proof Let

X = {p : χp ≡ ε on Π},

K = product of the elements of Π.

If n ∈ Z then we let [n] denote the ordinary residue class mod 4K which
contains n. The proof of Lemma 4.10 can now be outlined in a series of three
steps.

Step 1. Use the LQR to show that

X =
⋃

n∈U (4K ):X∩[n] �=∅
{p : p ∈ [n]}.

Step 2 (and its implementation). Here we will make use of the Prime
Number Theorem for primes in arithmetic progressions, to wit, if a ∈ Z ,
b ∈ [1,∞), gcd(a, b) = 1, and AP(a, b) denotes the arithmetic progression
with initial term a and common difference b, then as x → +∞,

|{p ∈ AP(a, b) : p ≤ x}| ∼ 1

ϕ(b)

x

log x
.

For a proof of this important theorem, see either LeVeque [39], Sect. 7.4,
or Montgomery and Vaughn [41], Sect. 11.3. In our situation it asserts that
if n ∈ U (4K ) then as x → +∞,

|{p ∈ [n] : p ≤ x}| ∼ 1

ϕ(4K )

x

log x
.

From this it follows that

the density dn of {p : p ∈ [n]} is
1

ϕ(4K )
, for all n ∈ U (4K ). (4.9)

Because the decomposition of X in Step 1 is pairwise disjoint, (4.9) implies
that

density of X =
∑

n∈U (4K ):X∩[n] �=∅
dn =

|{n ∈ U (4K ) : X ∩ [n] �= ∅}|
ϕ(4K )

.

(4.10)
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Step 3. Use the group structure of U (4K ) and the LQR to prove that

|{n ∈ U (4K ) : X ∩ [n] �= ∅}| = ϕ(4K )

2|Π| . (4.11)

From (4.10) and (4.11) it follows that the density of X is 2−|Π|, as desired,
hence we need only implement Steps 1 and 3 in order to finish the proof.
Implementation of Step 1. We claim that

if p, p′ are odd primes and p ≡ p′ mod 4K then χp ≡ χp′ on Π. (4.12)

Because X is disjoint from {2} ∪ Π and

P \ ({2} ∪Π) =
⋃

n∈U (4K )

{p : p ∈ [n]}, (4.13)

the decomposition of X as asserted in Step 1 follows immediately
from (4.12).

We verify (4.12) by using the LQR. Assume that p ≡ p′ mod 4K and let
q ∈ Π. Suppose first that p or q is ≡ 1 mod 4. Then p′ or q is ≡ 1 mod 4,
and so the LQR implies that

χp(q) = χq(p)

= χq(p
′ + 4kK ) for some k ∈ Z

= χq(p
′), since qdivides 4kK

= χp′(q).

Suppose next that p ≡ 3 ≡ q mod 4. Then p′ ≡ 3 mod 4 hence it follows
from the LQR that

χp(q) = −χq(p) = −χq(p
′) = −(−χp′(q)) = χp′(q).

Implementation of Step 3. Define the equivalence relation ∼ on the set of
residue classes {[n] : n ∈ U (4K )} like so:

[n] ∼ [n ′] if for all odd primes p ∈ [n], q ∈ [n ′], χp ≡ χq on Π.

We first count the number of equivalence classes of ∼. It is a consequence
of (4.12) that the sets

{q ∈ Π : χp(q) = 1}
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are the same for all p ∈ [n], and so we let I (n) denote this subset of Π. Now if
n ∈ U (4K ) and p ∈ [n] then (4.13) implies that p /∈ Π. Hence for all p ∈ [n],
χp takes only the values ±1 on Π. It follows that

[n] ∼ [n ′] if and only if I (n) = I (n ′).

On the other hand, by virtue of Lemma 4.4, if S ⊆ Π then there exits infinitely
many primes p such that

S = {q ∈ Π : χp(q) = 1},

and so we use (4.13) to find n0 ∈ U (4K ) such that [n0] contains at least one
of these primes p, hence

S = I (n0).

We conclude that

the number of equivalence classes of ∼ is 2|Π|. (4.14)

Let En denote the equivalence class of ∼ which contains [n]. We claim that

multiplication by n maps E1 bijectively onto En . (4.15)

If this is true then |En | is constant as a function of n ∈ U (4K ), hence (4.14)
implies that

ϕ(4K ) = 2|Π||En |, for all n ∈ U (4K ). (4.16)

If we now choose p ∈ X then there is n0 ∈ U (4K ) such that p ∈ [n0], hence
it follows from (4.12) that

En0 = {[n] : X ∩ [n] �= ∅},

and so, in light of (4.16),

ϕ(4K ) = 2|Π||{n ∈ U (4K ) : X ∩ [n] �= ∅}|,

which is (4.11).
It remains only to verify (4.15). Because U (4K ) is a group under the

multiplication induced by multiplication of ordinary residue classes mod 4K ,
it is clear that multiplication by n on E1 is injective, so we need only prove
that nE1 = En .
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We show first that nE1 ⊆ En . Let [n
′] ∈ E1. We must prove: [nn ′] ∈ En ,

i.e., [nn ′] ∼ [n], i.e.,

if p ∈ [nn ′], q ∈ [n] are odd primes then χp ≡ χq on Π. (4.17)

In order to verify (4.17), let p ∈ [nn ′], q ∈ [n], p′ ∈ [n ′], q ′ ∈ [1] be odd
primes. Because [n ′] ∼ [1],

χp′ ≡ χq′ on Π. (4.18)

The choice of p, q, p′, q ′ implies that

pq ′ ≡ p′q mod 4K .

This congruence and the LQR when used in an argument similar to the one
that was used to prove (4.12) imply that

χpχq′ ≡ χp′χq on Π. (4.19)

Because χq′ and χp′ are both nonzero on Π, we can use (4.18) to cancel χq′

and χp′ from each side of (4.19) to obtain

χp ≡ χq on Π.

We show next that En ⊆ nE1. Let [n ′] ∈ En . The group structure of
U (4K ) implies that there exits n0 ∈ U (4K ) such that

[nn0] = [n ′], (4.20)

so we need only show that [n0] ∈ E1, i.e.,

χp ≡ χq on Π, for all odd primes p ∈ [n0], q ∈ [1]. (4.21)

Toward that end, choose odd primes p′ ∈ [n], q ′ ∈ [n ′]. Because [n] ∼ [n ′],

χp′ ≡ χq′ on Π, (4.22)

and so because of (4.20), we have that for all p ∈ [n0], q ∈ [1],

pp′ ≡ qq ′ mod 4K .

Equation (4.21) is now a consequence of this congruence, (4.22), and our
previous reasoning. QED

We will prove Theorem 4.9 by combining Lemma 4.10 with the next
lemma, a simple result in enumerative combinatorics.
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Lemma 4.11 If A is a nonempty finite subset of [1,∞), n = |A|,S ⊆
2A,F = the Galois field of order 2, v : 2A → Fn is the map defined at
the beginning of this section, and

d = the dimension of the linear span of v(S) in Fn ,

then the cardinality of the set

N = {N ⊆ A : |N ∩ S | is even, for all S ∈ S}

is 2n−d .

Proof Without loss of generality take A = [1, n]. Observe first that if N ,T ⊆
A, then

|N ∩ T | is even if and only if
∑
i=1

v(N )(i)v(T )(i) = 0 in F .

Hence there is a bijection of the set of all solutions in Fn of the system of
linear equations

n∑
1

v(S )(i)xi = 0, S ∈ S, (∗)

onto N given by

(x1, . . . , xn) → {i : xi = 1}.

If m = |S| and σ : Fn → Fm is the linear transformation whose representing
matrix is the coefficient matrix of the system (∗) then

the set of all solutions of (∗) in Fn = the kernel of σ.

But d is the rank of σ and so the kernel of σ has dimension n − d . Hence

|N | = |the set of all solutions of (∗) in Fn | = |kernel of σ| = 2n−d .

QED

We proceed to prove Theorem 4.9. Let S ,S,A, n, and d be as in the
hypothesis of that theorem, let

X = {p : χp ≡ 1 on S},

N = {N ⊆ A : |N ∩ S | is even, for all S ∈ S},
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and for each prime p, let

N (p) = {q ∈ A : χp(q) = −1}.

Then since X is disjoint from A,

p ∈ X iff 1 = χp(z ) =
∏

q∈πodd(z)

χp(q), for all z ∈ S ,

iff |N (p) ∩ πodd(z )| is even, for all z ∈ S ,

iff N (p) ∈ N .

Hence

X =
⋃

N∈N
{p : N (p) = N }

and this union is pairwise disjoint. Hence

density of X =
∑
N∈N

density of {p : N (p) = N }.

Lemma 4.10 implies that

density of {p : N (p) = N } = 2−n for all N ∈ N ,

and so

density of X = 2−n |N |

= 2−n(2n−d ), by Lemma 4.11

= 2−d .

QED
The next question which naturally arises asks: what about a version

of Theorem 4.9 for quadratic non-residues, i.e., for what finite, nonempty
subsets S of [1,∞) is it true that S is a set of non-residues of infinitely
many primes? In contrast to what occurs for residues, this can fail to be true
for certain finite subsets S of [1,∞), and there is a simple obstruction that
prevents it from being true. Suppose that there is a subset T of S such that
|T | is odd and

∏
i∈T i is a square, and suppose that S is a set of non-residues

of infinitely many primes. We can then choose p to exceed all of the prime
factors of the elements of T and such that χp(z ) = −1, for all z ∈ T . Hence

−1 = (−1)|T | =
∏
i∈T

χp(i) = χp

( ∏
i∈T

i
)
= 1,
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a clear contradiction. It follows that the presence of such subsets T of S
prevents S from being a set of non-residues of infinitely many primes. The
next theorem asserts that those subsets are the only obstructions to S having
this property.

Theorem 4.12 If S is a finite, nonempty subset of [1,∞) then S is a set of
non-residues of infinitely many primes if and only if for all subsets T of S
of odd cardinality,

∏
i∈T i is not a square.

This theorem lies somewhat deeper than Theorem 4.9. We will prove it in
Chap. 5, where we will once again delve into the theory of algebraic numbers.
But before we get to that, we will discuss how to use quadratic residues to
design zero-knowledge proofs.

4.7 Zero-Knowledge Proofs and Quadratic Residues

A major issue in modern electronic communication is the secure verification
of identification, namely, guaranteeing that the person with whom you are
communicating is indeed who you think he is. A typical scenario proceeds as
follows: person P sends an electronic message to person V in the form of an
identification number. V wants to securely verify that P validly possesses the
ID number, without knowing anything more about P . Moreover, for security
reasons, P does not want V to be able to find out anything about him during
the verification procedure, i.e., V is to have zero knowledge of P . In addition
to all of this, V wants to make it virtually impossible for any other person
C to use the verification procedure to deceive V into thinking that C is P .
An identity-verification algorithm which satisfies all of these requirements is
called a zero-knowledge proof.

Zero-knowledge proofs which employ quadratic residues were devised in
the 1980s because of the need to maintain security when verifying identifica-
tion numbers using smart cards, electronic banking and stock transactions,
and other similar types of communication. In a zero-knowledge proof there
are two parties, the prover, a person who wants his identity verified without
divulging any other information about himself, and a verifier, a person who
must be convinced that the prover is who he says he is. The identity of the
prover is verified by checking that he has certain secret information that only
he possesses. Security is maintained because the procedures used in the zero-
knowledge proof guarantee that the probability that someone pretending to
be the prover can convince the verifier that she is the prover is extremely
small. Moreover, the verifier checks only that the prover is in possession
of the secret information, without being able to discover what the secret
information is.
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We will describe a zero-knowledge proof discovered by Adi Shamir [53]
in 1985 (we follow Rosen [48], Sects. 11.3 and 11.5 for the exposition in this
section and in Sects. 4.8 and 4.9 below). The prover P starts by choosing
two very large primes p and q such that p ≡ q ≡ 3 mod 4 (to maintain
security, these primes should have hundreds of digits), computing n = pq, and
then sending n to the verifier V . Let I be a positive integer that represents
particular information, e.g. the personal identification number of P . P selects
a positive number c such that the integer w obtained by concatenating I with
c (the integer obtained by writing the digits of I followed by the digits of
c) is a quadratic residue modulo n, i.e., there is a solution in integers of the
congruence x 2 ≡ w mod n, with gcd(x , n) = 1. P sends w to V , and then
finds a solution u of this congruence. Finding u can easily be done by means
of Euler’s criterion. In order to see that, note first that χp(w) = χq(w) = 1
and recall that p ≡ q ≡ 3 mod 4. Euler’s criterion therefore implies that

w
1
2 (p−1) ≡ χp(w) = 1 mod p,

w
1
2 (q−1) ≡ χq(w) = 1 mod q,

hence

(
w

1
4 (p+1)

)2
= w

1
2 (p+1) = w

1
2 (p−1) · w ≡ w mod p,

and similarly,

(
w

1
4 (q+1)

)2 ≡ w mod q.

The prover then finds a solution u of x 2 ≡ w mod n by using the Chinese
remainder theorem to solve the congruences

u ≡ w
1
4 (p+1) mod p,

u ≡ w
1
4 (q+1) mod q.

Of course, in order to find u in this way, one must know the primes p and q.
P convinces V that P knows u by using an interactive proof that is

composed of iterations of the following four-step cycle:

(i) P chooses a random number r and sends V a message containing two
integers: x , where x ≡ r2 mod n, with gcd(x , n) = 1 and 0 ≤ x < n,
and y, where y ≡ wx mod n, 0 ≤ x < n, and x denotes the inverse of
x modulo n.

(ii) V checks that xy ≡ w mod n, then chooses a random bit b equal to
either 0 or 1, and sends b to P .
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(iii) If b = 0, P sends r to V . If b = 1 then P calculates s ≡ ur mod n,
0 ≤ s < n, and sends s to V .

(iv) V computes the square modulo n of what P has sent. If V sent 0, she
checks that this square is x , i.e., r2 ≡ x mod n. If V sent 1 then she
checks that this square is y, i.e., s2 ≡ y mod n.

This cycle can be iterated many times to guarantee security and to
convince V that P knows his private information u, which shows that P
validly possesses the identification number I , i.e., that P is who he says he
is. By passing this test over many cycles, P has shown that he can produce
either r or s upon request. Hence P must know u because in each cycle, he
knows both r and s , and u ≡ rs mod n. Moreover, V is unable to discover
what u is because that would require V to be able to solve the square-root
problem x 2 ≡ w mod n without knowing p and q. This problem is known
in cryptology circles as the quadratic residuosity problem, and is regarded to
be computationally intractable, hence essentially impossible to solve in any
feasible length of time, when the modulus n is the product of two very large
unknown primes.

Because the bit chosen by V is random, the probability that it is a 0
is 1/2 and the probability that it is a 1 is 1/2. If someone does not know
u, the modular square root of w , then the probability that they will pass
one iteration of the cycle is almost exactly 1/2. If an impostor is attempting
to deceive V into believing that she, the impostor, is P , the probability of
the impostor passing, say, 30 iterations of the cycle is hence approximately
1/230, less than one in a billion. This makes it virtually impossible for V to
be deceived in this manner.

We now ask the following question: what has quadratic reciprocity got
to do with all of this? We begin our answer to this question by recalling
that in the initial steps of the Shamir zero-knowledge proof, the prover
needs to find an integer c such that the concatenation w of I with c is a
quadratic residue of n = pq, where p and q are very large primes. This can
be done if and only if χp(w) = χq(w) = 1, hence the prover must be able
to compute Legendre symbols quickly and efficiently. As we have seen, if
one can find sufficiently many factors of w then the LQR can be used to
perform this computation in the desired manner. Unfortunately, one of the
outstanding, and very difficult, unsolved problems in computational number
theory is the design of a computationally fast and efficient algorithm for
factoring very large integers, and the ID number I , and also the integer w
in Shamir’s algorithm, is often taken to be large for reasons of security. This
difficulty precludes quadratic reciprocity from being used directly to compute
Legendre symbols in Shamir’s algorithm. On the other hand, fortunately,
there is a very fast and efficient algorithm for computing Legendre symbols
which avoids factoring, so much so that when using it, one can, using high-
speed computers, of course, very quickly find the quadratic residues required
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in Shamir’s zero-knowledge proof. We will now describe this algorithm for
computing Legendre symbols, and it is in the verification of this algorithm
that quadratic reciprocity will find its application.

4.8 Jacobi Symbols

The device on which our algorithm is based is a generalization of the Legendre
symbol, due to Jacobi. We first define the Jacobi symbol χ1(m) to be 1 for
all integers m. Now let n > 1 be an odd integer, with prime factorization
n = pt1

1 · · · ptk
k . If m is a positive integer relatively prime to n, then the Jacobi

symbol χn(m) is defined as the product of Legendre symbols

χn(m) =

k∏
i=1

χpi (m)ti .

We emphasize here that this notation for the Jacobi symbol is not standard;
we have chosen it to align with the character-theoretic notation we have used
for Legendre symbols.

The Jacobi symbols satisfy exactly the same algebraic properties of the
Legendre symbols, i.e.,

(a) if a and b are both relatively prime to n and a ≡ b mod n then χn(a) =
χn(b);

(b) if a and b are both relatively prime to n then χn(ab) = χn(a)χn (b).

It follows from (a) and (b) that if n > 1 and we define the Jacobi symbol
χn(m) to be zero whenever gcd(m, n) > 1 then χn is a real Dirichlet character
of modulus n. Moreover the Jacobi symbols satisfy an exact analog of the
first and second supplementary laws for the Legendre symbols:

(c) χn(−1) = (−1)
1
2 (n−1);

(d) χn(2) = (−1)
1
8 (n

2−1).

But that is not all! The Jacobi symbols also satisfy an exact analog of the
Law of Quadratic Reciprocity, to wit,

Theorem 4.13 (Reciprocity Law for the Jacobi Symbol) If m and n
are relatively prime odd positive integers then

χm(n)χn(m) = (−1)
1
2 (m−1)· 12 (n−1).

Because they are necessary for the verification of the algorithm for
the computation of Legendre symbols that we require, we will now prove
properties (a), (b) and (d) and Theorem 4.13. As the verification of (a)
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and (b) are easy consequences of the definition of the Jacobi symbol and
the analogous properties of the Legendre symbol, we can safely leave those
details to the reader.

In order to verify (d), begin by letting pt1
1 · · · ptm

m be the prime factorization
of n. Then from Theorem 2.6 it follows that

χn(2) =

m∏
i=1

χpi (2)
ti = (−1)σ,

where

σ =

m∑
i=1

ti(p
2
i − 1)

8
.

We have that

n2 =
m∏
i=1

(
1 + (p2

i − 1)
)ti

.

Because p2
i − 1 ≡ 0 mod 8, for i = 1, . . . ,m, it follows that

(
1 + (p2

i − 1)
)ti ≡ 1 + ti(p

2
i − 1) mod 64

and

(
1 + ti(p

2
i − 1)

)(
1 + tj (p

2
j − 1)

)
≡ 1 + ti(p

2
i − 1) + tj (p

2
j − 1) mod 64.

Hence

n2 ≡ 1 +

m∑
i=1

ti(p
2
i − 1) mod 64,

which implies that

n2 − 1

8
≡

m∑
i=1

ti(p
2
i − 1)

8
= σ mod 8.

Therefore

χn(2) = (−1)σ = (−1)
1
8 (n

2−1).

QED
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We begin the proof of Theorem 4.13 by letting pa1
1 · · · pas

s and qb11 · · · qbrr
be the prime factorizations of m and n. Then

χn(m) =
r∏

i=1

χqi (m)bi =
r∏

i=1

s∏
j=1

χqi (pj )
biaj

and

χm(n) =

s∏
j=1

χpj (n)
aj =

s∏
j=1

r∏
i=1

χpj (qi)
biaj .

Hence

χn(m)χm (n) =

r∏
i=1

s∏
j=1

[
χqi (pj )χpj (qi )

]aj bi
.

Because m and n are odd and relatively prime, all of the primes in the prime
factorizations of m and n are odd and no prime factor of m is a factor of n.
The LQR thus implies that

χqi (pj )χpj (qi) = (−1)
1
2 (pj−1)

1
2 (qi−1).

Hence

χn(m)χm(n) =
r∏

i=1

s∏
j=1

(−1)aj
1
2 (pj−1)bi

1
2 (qi−1) = (−1)κ, (4.23)

where

κ =

r∑
i=1

s∑
j=1

aj (pj − 1)

2
· bi(qi − 1)

2
.

We have that

r∑
i=1

s∑
j=1

aj (pj − 1)

2
· bi(qi − 1)

2
=

s∑
j=1

aj (pj − 1)

2

r∑
i=1

bi(qi − 1)

2
.

Because

m =

s∏
i=1

(
1 + (pi − 1)

)ai



4.9 An Algorithm for Fast Computation of Legendre Symbols 113

and pi − 1 is even, it follows that

(
1 + (pi − 1)

)ai ≡ 1 + ai(pi − 1) mod 4,

and

(
1 + ai(pi − 1)

)(
1 + aj (pj − 1)

)
≡ 1 + ai(pi − 1) + aj (pj − 1) mod 4.

Hence

m ≡ 1 +

s∑
i=1

ai(pi − 1) mod 4,

and so

s∑
i=1

ai(pi − 1)

2
≡ m − 1

2
mod 2.

Similarly,

r∑
i=1

bi(qi − 1)

2
≡ n − 1

2
mod 2.

Therefore,

κ =

r∑
i=1

s∑
j=1

aj (pj − 1)

2
· bi(qi − 1)

2
≡ m − 1

2
· n − 1

2
mod 2. (4.24)

It now follows from (4.23) and (4.24) that

χn(m)χm(n) = (−1)κ = (−1)
1
2 (m−1)· 12 (n−1).

QED

4.9 An Algorithm for Fast Computation of Legendre
Symbols

The key ingredient of the algorithm for the computation of Legendre symbols
that we want is a formula for the computation of certain Jacobi symbols. That
formula uses data given in the form of two finite sequences of integers which
are generated by a successive division and factorization procedure. In order
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to state that formula we start with two relatively prime positive integers a
and b with a > b. We will generate two finite sequences of integers from
a and b by using a modification of the Euclidean algorithm as follows: let
a = R0 and b = R1. Using the division algorithm and then factoring out the
highest power of 2 from the remainder, we obtain

R0 = R1q1 + 2s1R2,

where gcd(R1,R2) = 1 and R2 is odd. Now successively apply the division
algorithm as follows, factoring out the highest power of 2 from the remainders
as you do so:

R1 = R2q2 + 2s2R3

R2 = R3q3 + 2s3R4

...

Rn−2 = Rn−1qn−1 + 2sn−1 · 1

Rn = 1, sn = 0.

Note that Ri is an odd positive integer and si is a nonnegative integer for
i = 1, . . . ,n, and gcd(Ri ,Ri+1) = 1 for i = 0, . . . ,n − 1. Because Ri+1 < Ri

for each i , this division process will always terminate. The formula for the
computation of the Jacobi symbols that is required can now be stated and
proved:

Proposition 4.14 If a and b are relatively prime positive integers such that
a > b, b is odd, and Ri and si , i = 1, . . . ,n, are the sequences of integers
generated by the preceding algorithm, then

χb(a) = (−1)σ,

where

σ =

n−1∑
i=1

(
si
R2

i − 1

8
+

(Ri − 1)(Ri+1 − 1)

4

)
.

Proof From properties (a), (b), and (d) of the Jacobi symbol, it follows that

χb(a) = χR1(R0) = χR1(2
s1R2)

= χR1(2)
s1χR1(R2)

= (−1)s1·
R2
1−1

8 χR1(R2),
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and it follows from Theorem 4.13 that

χR1(R2) = (−1)
R1−1

2
R2−1

2 χR2(R1),

hence

χb(a) = (−1)σ1χR2(R1),

where

σ1 = s1
R2

1 − 1

8
+

(R1 − 1)(R2 − 1)

4
.

In the same manner, we obtain for i = 2 . . . ,n − 1,

χRi (Ri−1) = (−1)σiχRi+1(Ri),

where

σi = si
R2

i − 1

8
+

(Ri − 1)(Ri+1 − 1)

4
.

When all of these equations are combined, the desired expression for χb(a)
is produced. QED

The algorithm for the computation of Legendre symbols can now be
described in a simple three-step procedure like so: let p be an odd prime,
a a positive integer less than p; we wish to compute the Legendre symbol
χp(a).

Step 1. Factor a = 2sb where b is odd (in Shamir’s algorithm, this step can
always be avoided by concatenating an odd integer to the integer I ).
Theorem 2.6 implies that

χp(a) = χp(2)
sχp(b) = (−1)s·

p2−1
8 χp(b). (4.25)

Now use Theorem 4.13 to obtain

χp(b) = (−1)
1
2 (p−1) 1

2 (b−1)χb(p). (4.26)

Substitution of (4.26) into (4.25) yields
Step 2. Write

χp(a) = (−1)εχb(p),
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where

ε =
s(p2 − 1)

8
+

(p − 1)(b − 1)

4
.

Step 3. Use the formula from Proposition 4.14 to compute χb(p) and
substitute that value into the formula for χp(a) in Step 2.

As an example, we use this algorithm to calculate χ311(141) without
factoring the argument 141. Because 141 is odd, Step 1 yields s = 0, hence
from Step 2 we obtain

χ311(141) = χ141(311).

In Step 3, we need the sequence of divisions

311 = 141 · 12 + 20 · 29

141 = 29 · 4 + 20 · 25

29 = 25 · 1 + 22 · 1,

and so the sequences that are required to apply Proposition 4.14 are R1 =
141,R2 = 29,R3 = 25,R4 = 1 and s1 = 0, s2 = 0, s3 = 2. Hence from Step 2,
we see that

χ311(141) = (−1)σ,

where

σ = 0 · 141
2 − 1

8
+ 0 · 29

2 − 1

8
+ 2 · 25

2 − 1

8
+

(141− 1)(29− 1)

4
+

(29− 1)(25− 1)

4

≡ 0 mod 2,

hence

χ311(141) = 1.

Of course in this simple example, we can obviously factor 141 completely
and then use the LQR as before, but the whole point of the example is
to calculate χ311(141) without any factoring. In practical applications of
quadratic residues in cryptology, such as Shamir’s zero-knowledge proof, the
arguments of Legendre symbols are frequently very large, and so complete
factorization of the argument becomes computationally unfeasible.

How can the efficiency of our algorithm for the calculation of Legendre
symbols be measured when it is implemented for computation on modern
high-speed computers? Integer calculations on a computer are done by using
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base-2 expansions of the integers, which are called bit strings. A bit operation
is the addition, subtraction or multiplication of two bit strings of length 1, the
division of a bit string of length 2 by a bit string of length 1 using the division
algorithm, or the shifting of a bit string by one place. The computational
efficiency of an algorithm is measured by its computational complexity, which
is an estimate of the number of bit operations that are needed to carry out
the algorithm when it is programmed to run on a computer. Because our
algorithm for the computation of χp(a) uses a variation of the Euclidean
algorithm in Step 3, which accounts for most of the computational complexity,
one can show that the algorithm requires only O

(
(log2 a)

2
)
bit operations to

compute χp(a), which means that the algorithm is very fast and efficient.
Thus one can very quickly determine the integer w that is needed to
implement Shamir’s algorithm.

In addition to finding a quadratic residue w of n, the initial steps in
Shamir’s algorithm also requires the determination of the square root of
w modulo n. The simple procedure that we described for computing this
square root uses the powers w

1
4 (p+1) and w

1
4 (q+1) in an application of the

Chinese remainder theorem, with the exponents of w here being extremely
large. This situation thus calls for a quick and efficient procedure for the
computation of high-powered modular exponentiation, and so we will now
present an algorithm which does that.

The problem is to compute, for given positive integers b, n, and N with
b < n, the power bN mod n. We do this by first expressing the exponent N in
its base-2 expansion (akak−1 . . . a1a0)base 2. Then compute the nonnegative

minimal ordinary residues mod n of b, b2, . . . , b2
k

by successively squaring
and reducing mod n. The final step is to multiply together the minimal
nonnegative ordinary residues of b2

i

which correspond to ai = 1, reducing
modulo n after each multiplication. It can be shown that the nonnegative
minimal ordinary residue of bN mod n can be computed by this algorithm
using only O

(
(log2 n)

2 log2 N
)
bit operations.

The following example illustrates the calculations which are typically
involved. We wish to compute 15402 mod 1607. The binary expansion of
402 is 110010010. We calculate that

15 ≡ 15 mod 1607

152 ≡ 225 mod 1607

154 ≡ 808 mod 1607

158 ≡ 422 mod 1607

1516 ≡ 1314 mod 1607

1532 ≡ 678 mod 1607
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1564 ≡ 82 mod 1607

15128 ≡ 296 mod 1607

15256 ≡ 838 mod 1607.

It follows that

15402 = 15256+128+16+2

≡ 838 · 296 · 1314 · 225 mod 1607

≡ 570 · 1314 · 225 mod 1607

≡ 118 · 225 mod 1607

≡ 838 mod 1607.



Chapter 5

The Zeta Function of an Algebraic
Number Field and Some Applications

At the end of Sect. 4.6 of Chap. 4, we left ourselves with the problem of
determining the finite nonempty subsets S of the positive integers such that
for infinitely many primes p, S is a set of non-residues of p. We observed
there that if S has this property then the product of all the elements in every
subset of S of odd cardinality is never a square. The object of this chapter is
to prove the converse of this statement, i.e., we wish to prove Theorem 4.12.
The proof of Theorem 4.12 that we present uses ideas that are closely related
to the ones that Dirichlet used in his proof of Theorem 4.5, together with
some technical improvements due to Hilbert. The key tool that we need is an
analytic function attached to algebraic number fields, called the zeta function
of the field. The definition of this function requires a significant amount of
mathematical technology from the theory of algebraic numbers, and so in
Sect. 5.1 we begin with a discussion of the results from algebraic number
theory that will be required, with Dedekind’s Ideal Distribution Theorem as
the final goal of this section. The zeta function of an algebraic number field
is defined and studied in Sect. 5.2; in particular, the Euler-Dedekind product
formula for the zeta function is derived here. In Sect. 5.3 a product formula
for the zeta function of a quadratic number field that will be required in the
proof of Theorem 4.12 is derived from the Euler-Dedekind product formula.
The proof of Theorem 4.12, the principal object of this chapter, is carried out
in Sect. 5.4 and some results which are closely related to that theorem are
also established there. In the interest of completeness, we prove in Sect. 5.5
the Fundamental Theorem of Ideal Theory, Theorem 3.16 of Chap. 3, since it
is used in an essential way in the derivation of the Euler-Dedekind product
formula.
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5.1 Dedekind’s Ideal Distribution Theorem

We have already seen in Sects. 3.11 and 3.12 of Chap. 3 how the factorization
of ideals in a quadratic number field can be used to prove the Law of
Quadratic Reciprocity. The crucial fact on which that proof of quadratic reci-
procity relies is the Fundamental Theorem of Ideal Theory (Theorem 3.16),
the result which describes the fundamental algebraic structure of the ideals
in the ring R of algebraic integers in an algebraic number field F . As we
mentioned in Chap. 3, the Fundamental Theorem of Ideal Theory is due to
Richard Dedekind. In order to define and study the zeta function of F , we will
need another very important theorem of Dedekind which provides a precise
numerical measure of how the ideals of R are distributed in R according
to the cardinality of the quotient rings of R modulo the ideals. This result
is often called Dedekind’s Ideal Distribution Theorem, and the purpose of
this section is to develop enough of the theory of ideals in R so that we can
state the Ideal Distribution Theorem precisely. All of this information will
then be used in the next section to define the zeta function and establish the
properties of the zeta function that we will need to prove Theorem 4.12.

Let F denote an algebraic number field of degree n that will remain fixed in
the discussion until indicated otherwise, and let R denote the ring of algebraic
integers in F . In Sect. 3.11 of Chap. 3, we mentioned that every prime ideal of
R is maximal and that the cardinality of the quotient ring R/I of R is finite
for all nonzero ideals I of R. Consequently, the ideals of R are exceptionally
“large” subsets of R. We begin our discussion here by proving these facts as
part of the following proposition.

Proposition 5.1

(i) An ideal of R is prime if and only if it is maximal.
(ii) If I is a non-zero ideal of R then the cardinality of the quotient ring

R/I is finite.
(iii) If I is a prime ideal of R then there exists a rational prime q ∈ Z such

that I ∩ Z = qZ. In particular q is the unique rational prime contained
in I .

(iv) If I is a prime ideal of R and q is the rational prime in I then R/I
is a finite field of characteristic q, hence there exists a unique positive
integer d such that |R/I | = qd .

Proof The proof of statements (i) and (ii) of Proposition 5.1 depend on the
existence of an integral basis of R. A subset {α1, . . . , αk} of R is an integral
basis of R if for each α ∈ R, there exists a k -tuple (z1, . . . , zk ) of integers,
uniquely determined by α, such that

α =

k∑
i=1

ziαi .
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It is an immediate consequence of the definition that an integral basis
{α1, . . . , αk} is linearly independent over Z, i.e., if (z1, . . . , zk ) is a k -tuple

of integers such that
∑k

i=1 ziαi = 0 then zi = 0 for i = 1, . . . , k . R always
has an integral basis (the interested reader may consult Hecke [27], Sect. 22,
Theorem 64, for a proof of this), and it is not difficult to prove that every
integral basis of R is a basis of F as a vector space over Q; consequently, all
integral bases of R contain exactly n elements.

Now for the proof of (i). Let I be a prime ideal of R: we need to prove that
I is a maximal ideal, i.e., we take an ideal J of R which properly contains I
and show that J = R.

Toward that end, let {α1, . . . , αn} be an integral basis of R, and let 0 �=
β ∈ I . If

xm +

m−1∑
i=0

zix
i

is the minimal polynomial of β over Q then z0 �= 0 (otherwise, β is the root
of a nonzero polynomial over Q of degree less that m) and

z0 = −βm −
m−1∑
1

ziβ
i ∈ I ,

hence ±z0 ∈ I , and so I contains a positive integer a. We claim that each
element of R can be expressed in the form

aγ +

n∑
1

riαi ,

where γ ∈ R, ri ∈ [0, a − 1], i = 1, . . . ,n.
Assume this for now, and let α ∈ J \ I . Then for each k ∈ [1,∞),

αk = aγk +
n∑
1

rikαi , γk ∈ R, rik ∈ [0, a − 1], i = 1, . . . ,n,

hence the sequence (αk − aγk : k ∈ [1,∞)) has only finitely many values;
consequently there exist positive integers l < k such that

αl − aγl = αk − aγk .

Hence

αl (αk−l − 1) = αk − αl = a(γk − γl ) ∈ I (a ∈ I !).
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Because I is prime, either αl ∈ I or αk−l − 1 ∈ I . However, αl �∈ I because
α �∈ I and I is prime. Hence

αk−l − 1 ∈ I ⊆ J .

But k − l > 0 and α ∈ J (by the choice of α), and so −1 ∈ J . As J is an
ideal, this implies that J = R .

Our claim must now be verified. Let α ∈ R, and find zi ∈ Z such that

α =

n∑
i=1

ziαi .

The division algorithm in Z implies that there existmi ∈ Z, ri ∈ [1, a−1], i =
1, . . . ,n, such that zi = mia + ri , i = 1, . . . ,n. Thus

α = a
∑
i

miαi +
∑
i

riαi = aγ +
∑
i

riαi ,

with γ ∈ R.
We verify (ii) next. Let L �= {0} be an ideal of R. We wish to show that

|R/L| is finite. A propos of that, choose a ∈ L ∩ Z with a > 0 (that such
an a exists follows from the previous proof of statement (i)). Then aR ⊆ L,
hence there is a surjection of R/aR onto R/L, whence it suffices to show that
|R/aR| is finite.

We will in fact prove that |R/aR| = an . Consider for this the set

S =
{∑

i

ziαi : zi ∈ [0, a − 1]
}
.

We show that S is a set of coset representatives of R/aR; if this is true then
clearly |R/aR| = |S | = an . Thus, let α =

∑
i ziαi ∈ R. Then there exist

mi ∈ Z, ri ∈ [0, a − 1], i = 1, . . . ,n, such that zi = mia + ri , i = 1, . . . ,n.
Hence

α−
∑
i

riαi =
(∑

i

mi

)
a ∈ aR and

∑
i

riαi ∈ S ,

and so each coset of R/aR contains an element of S .
Let

∑
i aiαi ,

∑
i a

′
iαi be elements of S in the same coset. Then

∑
i

(ai − a′
i)αi = aα, for some α ∈ R.
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Hence there exists mi ∈ Z such that

∑
i

(ai − a′
i)αi =

∑
i

miaαi ,

and so the linear independence (over Z) of {α1, . . . , αn} implies that

ai − a′
i = mia, i = 1, . . . ,n

i.e., a divides ai − a′
i in Z. Because |ai − a′

i | < a for all i , it follows that
ai − a′

i = 0 for all i . Hence each coset of R/aR contains exactly one element
of S .

In order to verify (iii), note first that the proof of statement (i) implies
that I ∩ Z �= {0} and I ∩ Z �= Z because 1 �∈ I . Hence I ∩ Z is a prime ideal
of Z, and is hence generated in Z by a unique prime number q.

Finally, we prove (iv) by concluding from Proposition 5.1(i) that I is a
maximal ideal of R: a standard result in elementary ring theory asserts that if
M is a maximal ideal in a commutative ring A with identity then the quotient
ring A/M is a field (Hungerford [29], Theorem III.2.20), hence R/I is a field,
and is finite by Proposition 5.1(ii).

To see that R/I has characteristic q, note first that I ∩ Z = qZ, and
so there is a natural isomorphism of the field Z/qZ into R/I such that the
identity in Z/qZ is mapped onto the identity of R/I . Because Z/qZ has
characteristic q, it follows that if 1̄ is the identity in R/I then q 1̄ = 0 in R/I ,
and q is the least positive integer n such that n 1̄ = 0 in R/I . Hence R/I has
characteristic q. QED

Remark It is a consequence of Theorem 3.16 and Proposition 5.1 that R
contains infinitely many prime ideals.

It follows from Proposition 5.1(ii) that if I �= {0} is an ideal of R then
|R/I | is finite. We set

N (I ) = |R/I |,

and call this the norm of I (we defined the norm of an ideal in this way
already in Sect. 3.11 of Chap. 3 for ideals in a quadratic number field). The
norm function N on nonzero ideals is multiplicative with respect to the ideal
product, i.e., we have

Proposition 5.2 If I and J are (not necessarily distinct) nonzero ideals of
R then

N (IJ ) = N (I )N (J ).

Proof Hecke [27], Sect. 27, Theorem 79. QED
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The multiplicativity of the norm function on ideals will play a crucial role
in the derivation of a very important product expansion formula for the zeta
function that will be done in the next section.

Now, let

I = the set of all nonzero ideals of R.

If n ∈ [1,∞), let

Z (n) = |{I ∈ I : N (I ) ≤ n}|.

The following proposition states a very important fact about the parameters
Z (n)!

Proposition 5.3 Z (n) < +∞, for all n ∈ [1,∞).

As a result of Proposition 5.3, (Z (1),Z (2),Z (3) . . . ) is a sequence of pos-
itive integers whose behavior determines how the ideals of R are distributed
throughout R in accordance with the cardinality of the quotient rings of
R. Useful information about the behavior of this sequence can hence be
converted into useful information about the distribution of the ideals in R,
and, as we shall see shortly, the Ideal Distribution Theorem gives very useful
information about the behavior of this sequence. We turn now to the

Proof of Proposition 5.3 Perhaps the most elegant way to verify Proposi-
tion 5.3 is to make use of the ideal class group of R. We defined this group in
Sect. 3.11 of Chap. 3, and for the benefit of the reader, we will recall how that
goes. First declare that the ideals I and J of R are equivalent if there exist
nonzero elements α and β of R such that αI = βJ . This defines an equivalence
relation on the set of all ideals of R, and the corresponding equivalence classes
are the ideal classes of R. If we let [I ] denote the ideal class which contains
the ideal I then we define a multiplication on the set of ideal classes by
declaring that the product of [I ] and [J ] is [IJ ]. It can be shown that when
endowed with this product (which is well-defined), the ideal classes of R form
an abelian group, called the ideal-class group of R. It is easy to see that the
set of all principal ideals of R is an ideal class, called the principal class, and
one can prove that the principal class is the identity element of the ideal-class
group. The ideal-class group is always finite, and the order of the ideal-class
group of R is called the class number of R.

We begin the proof of Proposition 5.3 by letting C be an ideal class of R
and for each n ∈ [1,∞), letting ZC (n) denote the set

{I ∈ C ∩ I : N (I ) ≤ n}.

We claim that |ZC (n)| is finite. In order to verify this, let J be a fixed
nonzero ideal in C−1 (the inverse of C in the ideal-class group), and let
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0 �= α ∈ J . Then there is a unique ideal I such that αR = IJ , and since
[I ] = C [IJ ] = C [αR] = C , it follows that I ∈ C ∩ I. Moreover, the map
αR → I is a bijection of the set of all nonzero principal ideals contained in
J onto C ∩ I. Proposition 5.2 implies that

N (αR) = N (I )N (J ),

hence

N (I ) ≤ n if and only if N (αR) ≤ nN (J ).

Hence there is a bijection of ZC (n) onto the set

J = {{0} �= αR ⊆ J : N (αR) ≤ nN (J )},

and so it suffices to show that J is a finite set.
That |J | is finite will follow if we prove that there is only a finite number

of principal ideals of R whose norms do not exceed a fixed constant. Suppose
that this latter statement is false, i.e., there are infinitely many elements
α1, α2, . . . of R such that the principal ideals αiR, i = 1, 2, . . . are distinct
and (N (α1R),N (α2R), . . . ) is a bounded sequence. As all of the numbers
N (αiR) are positive integers, we may suppose with no loss of generality that
N (αiR) all have the same value z .

We now wish to locate z in each ideal αiR. Toward that end, use the
Primitive Element Theorem (Hecke [27], Sect. 19, Theorem 52) to find θ ∈ F ,
of degree n over Q, such that for each element ν of F , there is a unique
polynomial f ∈ Q[x ] such that ν = f (θ) and the degree of f does not exceed
n − 1. For each i , we hence find fi ∈ Q[x ] of degree no larger than n − 1 and
for which αi = fi(θ). If θ1, . . . , θn , with θ1 = θ, are the roots of the minimal
polynomial of θ over Q, then one can show that

N (αiR) =
∣∣∣

n∏
k=1

fi(θk )
∣∣∣

(Hecke [27], Sect. 27, Theorem 76). Moreover, the degree di of αi over Q

divides n in Z, and if α
(1)
i , . . . , α

(di )
i , with α

(1)
i = αi , denote the roots of the

minimal polynomial of αi over Q , then the numbers on the list fi(θk ), k =

1, . . . ,n, are obtained by repeating each α
(j)
i n/di times (Hecke [27], Sect. 19,

Theorem 54). If c0 denotes the constant term of the minimal polynomial of
αi over Q , it follows that

n∏
k=1

fi(θk ) =
( di∏

k=1

α
(k)
i

)n/di

= ((−1)di c0)
n/di ∈ Z.
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Because fi (θk ) is an algebraic integer for all i and k , it hence follows that

z

αi
= ±

n∏
k=2

fi(θk ) ∈ R ∩ F = R,

whence z ∈ αiR, for all i .
If we now let {β1, . . . , βn} be an integral basis of R then the claim in the

proof of Proposition 5.1(i) shows that for each i there exists γi ∈ R and
zij ∈ [0, z − 1], j = 1, . . . ,n, such that

αi = zγi +
n∑
1

zijβj .

Because z ∈ αiR, it follows that

αiR = zR +
( n∑

1

zijβj

)
R, for all i .

However, the sum
∑n

1 zijβj can have only finitely many values; we conclude
that the ideals αiR, i = 1, 2, . . . cannot all be distinct, contrary to their
choice.

We now have what we need to easily prove that Z (n) is finite. Let
C1, . . . ,Ch denote the distinct ideal classes of R. The set of all the ideals of
R is the (pairwise disjoint) union of the Ci ’s hence {I ∈ I : N (I ) ≤ n} is the
union of JC1(n), . . . ,JCh

(n). Because each set JCi (n) is finite, so therefore
is |{I ∈ I : N (I ) ≤ n}| = Z (n). QED

We can now state the main result of this section:

Theorem 5.4 (Dedekind’s Ideal Distribution Theorem) The limit

lim
n→∞

Z (n)

n
= λ

exists, is positive, and its value is given by the formula

λ =
2r+1πeρ

w
√
|d |

h,

where

d = discriminant of F ,

e =
1

2
(number of complex embeddings of F over Q),
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h = class number of R,

r = unital rank of R,

ρ = regulator of F ,

w = order of the group of roots of unity in R.

Thus the number of nonzero ideals of R whose norms do not exceed n is
asymptotic to λn as n → +∞.

The establishment of Theorem 5.4 calls for several results from the theory
of algebraic numbers whose exposition would take us too far from what we
wish to do here, so we omit the proof and instead refer the interested reader
to Hecke [27], Sect. 42, Theorem 122. Although we will make no further use
of them, readers who are also interested in the definition of the discriminant
of F and the regulator of F , should see, respectively, the definition on p. 73
and the definition on p. 116 of Hecke [27]. We will define the parameter e and
the unital rank of R in the two paragraphs after the next one. The integers
d , e, h, r ,w , and the real number ρ are fundamental parameters associated
with F which govern many aspects of the arithmetic and algebraic structure
of F and R; Theorem 5.4 is a remarkable example of how these parameters
work in concert to do that.

Although the parameters which are used in the formula for the value of the
limit λ = limn→∞ Z (n)/n are rather complicated to define for an arbitrary
algebraic number field, they are much simpler to describe for a quadratic
number field, so as to gain a better idea of how they determine the asymptotic
behavior of the sequence Z (1),Z (2), . . . , we will take a closer look at what
they are for quadratic fields. Thus, let Q(

√
m) be the quadratic number field

determined by the square-free integer m �= 0 or 1. As we pointed out in
Sect. 3.11 of Chap. 3, the discriminant of Q(

√
m) is either m or 4m, if m is,

or respectively, is not, congruent to 1 mod 4.
In order to calculate the parameter e in Theorem 5.4, one needs to consider

the embeddings of an algebraic number field, i.e., the ring isomorphisms of
the field into the set of complex numbers which fixes each element of Q. An
embedding is said to be real if its range is a subset of the real numbers,
otherwise, the embedding is said to be complex. It can be shown that the
number of embeddings is equal to the degree of the field and that the number
of complex embeddings is even, and so e is well-defined in Theorem 5.4. It
follows that the quadratic field Q(

√
m) has precisely two embeddings: one is

the trivial embedding which maps each element of Q(
√
m) to itself, and the

other is the mapping on Q(
√
m) induced by the algebraic conjugate of

√
m

which sends the element q+ r
√
m for (q, r) ∈ Q×Q to the element q− r

√
m .

It follows that if m > 0 then there are no complex embeddings of Q(
√
m)

and if m < 0 then there are exactly 2 complex embeddings. Thus if m > 0
then e = 0 and if m < 0 then e = 1.

We have already defined the class number h, and so we turn next to the
unital rank r . This parameter is determined by the structure of the group of
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units in an algebraic number field. It can be shown that the group of units in
the ring of algebraic integers R in the algebraic number field F is isomorphic
to the direct sum of the finite cyclic group of roots of unity that are contained
in F and a free abelian group of finite rank r (Hecke [27], Sect. 34, Theorem
100). The rank r of this free-abelian summand is by definition the unital rank
of R. When we now let F = Q(

√
m), it can be shown that if m < 0 then the

group of units of Q(
√
m) has no free-abelian summand, and so r = 0 in this

case. On the other hand, if m > 0 then there is a unit � of R in the group
of units U (R) such that U (R) = {±�n : n ∈ Z}. If � is chosen to exceed
1 then it is uniquely determined as a generator of U (R) in this way and is
called the fundamental unit of R. It follows that when m > 0, the group of
units of R is isomorphic to the direct sum of the cyclic group of order 2 and
the free abelian group Z, hence the unital rank r is 1 in this case.

The regulator ρ of an algebraic number field F is also determined by the
group of units of R by means of a rather complicated formula that uses a
determinant that is calculated from a basis of the free-abelian summand of
the group of units. For a quadratic number field Q(

√
m) with m < 0, whose

group of units has no free-abelian summand, the regulator is taken to be 1,
and if m > 0 then the regulator of Q(

√
m) turns out to be log�, where � is

the fundamental unit of R.
If m > 0 then the group of roots of unity in Q(

√
m) is simply {−1, 1},

and so the order w of the group of roots of unity is 2. If m < 0 then it can
be shown that w is 2 when m < −4, it is 6 when m = −3, and it is 4 when
m = −1.

Taking all of this information into account, we see that for the quadratic
number field Q(

√
m), the conclusion of Theorem 5.4 can be stated as follows:

if m > 0 and � is the fundamental unit in R = R∩Q(
√
m) then

lim
n→∞

Z (n)

n
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 log�√
m

h, if m ≡ 1 mod 4,

log�√
m

h, if m �≡ 1 mod 4,

and if m < 0 then

lim
n→∞

Z (n)

n
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2π

w
√
|m|

h, if m ≡ 1 mod 4,

π

w
√
|m|

h, if m �≡ 1 mod 4,

where w is 2 when m < −4, 6 when m = −3, and 4 when m = −1. The Ideal
Distribution Theorem for quadratic number fields is in fact due to Dirichlet;
after a careful study of Dirichlet’s result, Dedekind generalized it to arbitrary
algebraic number fields.
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5.2 The Zeta Function of an Algebraic Number Field

We are now in a position to define and study the zeta function. Let F be
an algebraic number field of degree n and let R denote the ring of algebraic
integers in F , as before. Consider next the set I of all nonzero ideals of R. It
is a consequence of Proposition 5.3 that I is countable, and so if s ∈ C then
the formal series

∑
I∈I

1

N (I )s
(∗)

is defined, relative to some fixed enumeration of I. As we shall see, the zeta
function of F will be defined by this series. However, in order to do that
precisely and rigorously, a careful examination of the convergence of this
series must be done first. That is what we will do next.

If we let

L(n) = |{I ∈ I : N (I ) = n}|, n ∈ [1,∞),

then by formal rearrangement of its terms, we can write the series (∗) as

∞∑
n=1

L(n)

ns
. (∗∗)

The series (∗∗) is a Dirichlet series, i.e., a series of the form

∞∑
n=1

an
ns

,

where (an ) is a given sequence of complex numbers. The L-function of a
Dirichlet character is another very important example of a Dirichlet series.

We will determine the convergence of the series (∗) by studying the
convergence of the Dirichlet series (∗∗). This will be done by way of the
following proposition, which describes how a Dirichlet series converges.

Proposition 5.5 Let (an) be sequence of complex numbers, let

S (n) =

n∑
k=1

ak ,

and suppose that there exits σ ≥ 0,C > 0 such that

∣∣∣S (n)
nσ

∣∣∣ ≤ C , for all n sufficiently large.
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Then the Dirichlet series

∞∑
n=1

an
ns

converges in the half-plane Re s > σ and uniformly in each closed and
bounded subset of this half-plane. Moreover, if

lim
n→∞

S (n)

n
= d

then

lim
s→1+

(s − 1)

∞∑
n=1

an
ns

= d .

Proof ( according to Hecke [27], Sect. 42, Lemmas (a), (b), (c)) Let m and h
be integers, with m > 0 and h ≥ 0, and let K ⊆ {s : Re s > σ} be a compact
(closed and bounded) set. Then

m+h∑
n=m

an
ns

=

m+h∑
n=m

S (n)− S (n − 1)

ns

=
S (m + h)

(m + h)s
− S (m − 1)

ms
+

m+h−1∑
n=m

S (n)
( 1

ns
− 1

(n + 1)s

)

=
S (m + h)

(m + h)s
− S (m − 1)

ms
+ s

m+h−1∑
n=m

S (n)

∫ n+1

n

dx

x s+1
.

If we now use the stipulated bound on the quotients S (n)/nσ, it follows that

∣∣∣
m+h∑
n=m

an
ns

∣∣∣ ≤ 2C

mRe s−σ
+ C |s |

∫ ∞

m

dx

xRe s−σ+1

=
2C

mRe s−σ
+

C |s |
Re s − σ

1

mRe s−σ
.

Because K is a compact subset of Re s > σ, it is bounded and lies at a
positive distance δ from Re s = σ, i.e., there is a positive constant C ′ such
that

Re s − σ ≥ δ and |s | ≤ C ′, for all s ∈ K .
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Hence there is a positive constant C ′′, independent of m and h, such that

∣∣∣
m+h∑
n=m

an
ns

∣∣∣ ≤ C ′′
(
1 +

1

δ

) 1

mδ
, for all s ∈ K .

As m and h are chosen arbitrarily and δ depends on neither m nor h, this
estimate implies that the Dirichlet series converges uniformly on K , and as
K is also chosen arbitrarily, it follows that the series converges to a function
continuous in Re s > σ.

We now assume that

lim
n→∞

S (n)

n
= d ;

we wish to verify that

lim
s→1+

(s − 1)
∞∑

n=1

an
ns

= d .

From what we have just shown, it follows that the Dirichlet series now
converges for s > 1. Let

S (n) = dn + εnn, where lim
n→∞

εn = 0,

ϕ(s) =

∞∑
n=1

an
ns

, s > 1.

Then for s > 1, we have that

|ϕ(s)− dζ(s)| = s
∣∣∣

∞∑
n=1

nεn

∫ n+1

n

dx

x s+1

∣∣∣

< s

∞∑
n=1

|εn |
∫ n+1

n

dx

x s
.

Let ε > 0, and choose an integer N and a positive constant A such that
|εn | < ε, for all n ≥ N , and |εn | ≤ A, for all n. Then

|(s − 1)ϕ(s)− d(s − 1)ζ(s)|

< As(s − 1)

N−1∑
n=1

∫ n+1

n

dx

x
+ εs(s − 1) +

∞∑
n=N

∫ n+1

n

dx

x s

= As(s − 1) logN + εs(s − 1)

∫ ∞

N

dx

x s
.
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Because the last expression has limit ε as s → 1, it follows that

lim
s→1+

(
(s − 1)ϕ(s)− d(s − 1)ζ(s)

)
= 0.

We now claim that

lim
s→1+

(s − 1)ζ(s) = 1;

if this is so, then

lim
s→1+

(s − 1)ϕ(s) = d ,

as desired. This claim can be verified upon noting that

∫ n+1

n

dx

x s
<

1

ns
<

∫ n

n−1

dx

x s
, for all n ∈ [2,∞) and for all s > 1.

Hence

1

s − 1
=

∫ ∞

1

dx

x s
<

∞∑
n=1

1

ns
= ζ(s) < 1 +

∫ ∞

1

dx

x s
=

s

s − 1
,

and so

1 < (s − 1)ζ(s) < s , for all s > 1,

from which the claim follows immediately. QED

Because each function an/n
s is an entire function of s , a Dirichlet series

which satisfies the hypotheses of Proposition 5.5 is a series of functions each
term of which is analytic in Re s > σ and which also converges uniformly on
every compact subset of Re s > σ. Hence the sum of the series is analytic in
Re s > σ.

We wish to apply Proposition 5.5 to the series (∗∗), and so we must study
the behavior of the sequence

Z (n) =

n∑
k=1

L(k).

It is here that we make use of Theorem 5.4; it follows from that theorem that
there is a positive constant λ such that

lim
n→∞

Z (n)

n
= λ,
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whence the sequence (Z (n)/n)∞n=1 is bounded. Therefore the hypotheses of
Proposition 5.5 are satisfied for an = L(n) with σ = 1, hence the series (∗∗)
converges to a function analytic in Re s > 1.

We now let s > 1. Because L(n) ≥ 0 for all n, the convergence of (∗∗) is
absolute for s > 1, hence we can rearrange the terms of (∗∗) in any order
without changing its value. It follows that the value of the series

∑
I∈I

1

N (I )s

for s > 1 is finite, is independent of the enumeration of I used to define the
series, and is given by the value of the Dirichlet series (∗∗).

Definition The (Dedekind-Dirichlet) zeta function of F is the function ζF (s)
defined for s > 1 by

ζF (s) =
∑
I∈I

1

N (I )s
.

Remark One can show without difficulty that if
∑

n an/n
s is a Dirichlet series

which satisfies the hypotheses of Proposition 5.5 then
∑

n an/n
s converges

absolutely in Re s > 1 + σ. If we apply this fact to the series (∗∗), it follows
that (∗∗) converges absolutely in Re s > 2. Hence the value of the series

∑
I∈I

1

N (I )s

for Re s > 2 is finite, is independent of the enumeration of I used to define
the series, and is given by the value of the series (∗∗). Although we will make
no use of this fact, it follows that the zeta function of F can be defined by
the series (∗∗) not only for s > 1, but also for Re s > 1, and when so defined,
is analytic in that half-plane.

For emphasis, we record in the following proposition the observation that
we made about the value of the zeta function of F in the paragraph which
immediately preceded its definition:

Proposition 5.6 If

L(n) = |{I ∈ I : N (I ) = n}|, n ∈ [1,∞),

then

ζF (s) =

∞∑
n=1

L(n)

ns
.
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For future reference, we also observe that Proposition 5.5 and Theorem 5.4
imply

Lemma 5.7 If ζF (s) is the zeta function of F and λ is the positive constant
in the conclusion of Theorem 5.4 then

lim
s→1+

(s − 1)ζF (s) = λ.

If F = Q then R = R∩Q = Z, hence the nonzero ideals of R in this case
are the principal ideals nZ, n ∈ [1,∞). Then

N (nZ) = |Z/nZ| = n,

and so

{I ∈ I : |N (I )| = n} = {nZ}.

Hence the zeta function of Q is

ζQ(s) =

∞∑
n=1

1

ns
,

the Riemann zeta function.
The next theorem gives a product formula for ζF (s) that is reminiscent of

the product formula for the Dirichlet L-function of a Dirichlet character that
we pointed out in Sect. 4.4 of Chap. 4. It is a very useful tool for analyzing
certain features of the behavior of ζF (s) and will play a key role in our proof
of Theorem 4.12.

Theorem 5.8 (Euler-Dedekind Product Formula for ζF ) Let Q
denote the set of all prime ideals of R. Then

ζF (s) =
∏
I∈Q

1

1−N (I )−s
, s > 1. (5.1)

Proof Note that because a prime ideal I of R is proper, N (I ) > 1, and so
each term of this product is defined for s > 1. In order to prove the theorem
we will need some standard facts about the convergence of infinite products,
which we record in the following definitions and Proposition 5.9.

Definitions Let (an) be a sequence of complex numbers such that an �= −1,
for all n. The infinite product

∞∏
1

(1 + an)
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converges if

lim
n→∞

n∏
1

(1 + ak )

exists and is finite, and it converges absolutely if

∞∏
1

(1 + |an |)

converges.

Proposition 5.9

(i)
∏

n(1 + an) converges absolutely if and only if the series
∑

n |an |
converges.

(ii) The limit of an absolutely convergent infinite product is not changed by
any rearrangement of the factors.

Proof See Nevanlinna and Paatero [42], Sects. 13.1, 13.2. QED

Returning to the proof of Theorem 5.8, we next consider the product on
the right-hand side of (5.1). Because N (I ) ≥ 2 for all I ∈ Q it follows that
for s > 1,

0 <
1

1−N (I )−s
− 1 =

N (I )−s

1−N (I )−s
≤ 2N (I )−s ,

hence

∑
I∈Q

( 1

1−N (I )−s
− 1
)
≤ 2

∑
I∈Q

N (I )−s < +∞

and so by Proposition 5.9, the product on the right-hand side of (5.1)
converges absolutely for s > 1 and its value is independent of the order
of the factors.

The next step is to prove that this product converges to ζF (s) for s > 1.
Let

Π(x ) =
∏

I∈Q:N (I )≤x

1

1−N (I )−s
;

this product has only a finite number of factors by Proposition 5.3 and

lim
x→+∞

Π(x ) =
∏
I∈Q

1

1−N (I )−s
.
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We have that

1

1−N (I )−s
=

∞∑
n=0

1

N (I )ns
,

hence Π(x ) is a finite product of absolutely convergent series, which we can
hence multiply together and, in the resulting sum, rearrange terms in any
order without altering the value of the sum. Proposition 5.2 implies that
each term of this sum is either 1 or of the form

N (I α1
1 · · · I αr

r )−s ,

where (α1, . . . , αr ) is an r -tuple of positive integers, Ii is a prime ideal for
which N (Ii) ≤ x , i = 1, . . . , r , and all products of powers of prime ideals I
with N (I ) ≤ x of this form occur exactly once. Hence

Π(x ) = 1 +
∑ 1

N (I )s
,

where the sum here is taken over all ideals I of R such that all prime ideal
factors of I have norm no greater than x . Now the Fundamental Theorem
of Ideal Theory (Theorem 3.16) implies that all nonzero ideals of R have a
unique prime ideal factorization, hence

ζF (s)−Π(x ) =
∑ 1

N (I )s
,

where the sum here is taken over all ideals I �= {0} of R such that at least
one prime ideal factor of I has norm greater than x . Hence this sum does not
exceed

∑
n>x

L(n)

ns
,

and so

lim
x→+∞

(ζF (s)−Π(x )) = lim
x→+∞

∑
n>x

L(n)

ns
= 0.

QED
If F = Q then the prime ideals of R = Z are the principal ideals generated

by the rational primes q ∈ Z, and so it follows from Theorem 5.8 that

ζ(s) =
∏
q

1

1− q−s
, s > 1, (5.2)

the Euler-product expansion of Riemann’s zeta.
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We are now going to use Theorem 5.8 to obtain a factorization of ζF
over rational primes that is the analog of the product expansion (5.2)
of the Riemann zeta function. In order to derive it, we first recall from
Proposition 5.1(iii) and (iv) that if I is a prime ideal of R then I contains
a unique rational prime q and there is a unique positive integer d such that
N (I ) is qd . The integer d is called the degree of I and we will denote it by
deg I . We can now state and prove

Theorem 5.10 If Q denotes the set of all prime ideals of R then the zeta
function ζF (s) of F has a product expansion given by

ζF (s) =
∏

q a rational prime

( ∏
I∈Q:q∈I

1

1− q−(deg I )s

)
, s > 1. (5.3)

Proof If n ∈ Z then the ideal nR is contained in a prime ideal of R
(Theorem 3.16) and so Proposition 5.1(iii) implies that Q can be expressed
as the pairwise disjoint union

⋃
q a rational prime

{I ∈ Q : q ∈ I }.

Hence as a consequence of Theorem 5.8 and Proposition 5.9(ii), we can
rearrange the factors in (5.1) so as to derive the expansion (5.3) for
ζF (s). QED

The ideal qR of R is contained in only finitely many prime ideals (because
of Theorem 3.16) and so each product inside the parentheses in (5.3) has
only a finite number of factors; these finite products are called the elementary
factors of ζF .

5.3 The Zeta Function of a Quadratic Number Field

As has been the case frequently in much of our previous work, quadratic
number fields provide interesting and important examples of various phe-
nomena of great interest and importance in algebraic number theory, and
zeta functions are no exception to this rule. In this section we will illustrate
how the decomposition law for the rational primes in a quadratic number
field, Proposition 3.17 from Sect. 3.11 of Chap. 3, and Theorem 5.10 can be
used to derive a very useful product expansion for the zeta function of a
quadratic number field. It is precisely this result that will be used to prove
Theorem 4.12 in the next section.
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For a square-free integer m �= 1, let F = Q(
√
m),R = R ∩ F . We recall

for our convenience what the decomposition law for the rational primes in R
says. First, let p be an odd prime. Then

(i) If χp(m) = 1 then pR factors into the product of two distinct prime
ideals, each of degree 1.

(ii) If χp(m) = 0 then pR is the square of a prime ideal I , and the degree
of I is 1.

(iii) If χp(m) = −1 then pR is prime in R of degree 2.

The decomposition of the prime 2 in R occurs as follows:

(iv) If m ≡ 1 mod 8 then 2R factors into the product of two distinct prime
ideals, each of degree 1.

(v) If m ≡ 2 or 3 mod 4 then 2R is the square of a prime ideal I , and the
degree of I is 1.

(vi) If m ≡ 5 mod 8 then 2R is prime in R of degree 2.

It follows from (i)–(vi) that if p is an odd prime in Z then the corresponding
elementary factor of ζF is

1

(1− p−s)2
, if χp(m) = 1,

1

1− p−s
, if χp(m) = 0,

1

1− p−2s
, if χp(m) = −1,

and the elementary factor corresponding to 2 is

1

(1− 2−s)2
, if m ≡ 1 mod 8,

1

1− 2−s
, if m ≡ 2 or 3 mod 4,

1

1− 2−2s
, if m ≡ 5 mod 8.

Observe next that each of the elementary factors corresponding to p can be
expressed as

1

1− p−s

1

1− χp(d)p−s
.
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Hence from the product expansion (5.2) of the Riemann zeta function and
the product expansion (5.3) of ζF (s) we deduce

Proposition 5.11 The zeta function of Q(
√
m) has the product expansion

ζQ(
√
m)(s) = θ(s)ζ(s)

∏
p

1

1− χp(m)p−s
, s > 1, (5.4)

where

θ(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1

1− 2−s
, if m ≡ 1 mod 8,

1 , if m ≡ 2 or 3 mod 4,
1

1 + 2−s
, if m ≡ 5 mod 8.

We will use this factorization of ζQ(
√
m)(s) to prove, in due course, the

following lemma, the crucial fact that we will need to prove Theorem 4.12.

Lemma 5.12 If a ∈ Z is not a square then

∑
p

χp(a)p
−s

remains bounded as s → 1+.

Note that Lemma 5.12 is very similar in form and spirit to the hypothesis
of Lemma 4.7, which was a key step in Dirichlet’s proof of Theorem 4.5. We
will eventually see that this is no accident!

5.4 Proof of Theorem 4.12 and Related Results

We now have assembled all of the ingredients necessary for a proof of
Theorem 4.12. As we have already verified the “only if” implication in
Theorem 4.12, we hence let S be a nonempty finite subset of [1,∞) and
suppose that for each subset T of S such that |T | is odd,

∏
i∈T

i is not a square.

Let

X = {p : χp ≡ −1 on S}.

We must prove that X has infinite cardinality.
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Consider the sum

Σ(s) =
∑
(p)

(∏
i∈S

(
1− χp(i)

))
· 1

ps
, s > 1, (5.5)

where (p) means that the summation is over all primes p such that p divides
no element of S . Then

Σ(s) = 2|S |
∑
p∈X

1

ps
, s > 1,

hence if we can show that

lim
s→1+

Σ(s) = +∞, (5.6)

then the cardinality of X will be infinite.
In order to get (5.6), we first calculate that

∏
i∈S

(
1− χp(i)

)
= 1 +

∑
∅�=T⊆S

(−1)|T |χp

( ∏
i∈T

i
)
,

substitute this into (5.5) and interchange the order of summation to obtain

Σ(s) =
∑
(p)

1

ps
+

∑
∅�=T⊆S

(−1)|T |
(∑

(p)

χp

( ∏
i∈T

i
)
· 1

ps

)
.

Now divide {T : ∅ �= T ⊆ S} into U ∪ V ∪W , where

U =
{
∅ �= T ⊆ S : |T | is even and

∏
i∈T

i is a square
}
,

V =
{
∅ �= T ⊆ S : |T | is even and

∏
i∈T

i is not a square
}
,

W = {T ⊆ S : |T | is odd}.

Then

Σ(s) = (1 + |U |)
∑
(p)

1

ps
+
∑
T∈V

(∑
(p)

χp

( ∏
i∈T

i
)
· 1

ps

)

−
∑
T∈W

(∑
(p)

χp

( ∏
i∈T

i
)
· 1

ps

)

= Σ1(s) + Σ2(s)− Σ3(s).
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Because the range of the summation here is over all but finitely many primes,
Lemma 5.12, the definition of V and the hypothesis on S imply that Σ2(s)
and Σ3(s) remain bounded as s → 1+, and so (5.6) will follow once we prove
Lemma 5.12 and verify that

lim
s→1+

∑
(p)

1

ps
= +∞. (5.7)

We check (5.7) first. Because the summation range in (5.7) is over all but
finitely many primes, we need only show that

lim
s→1+

∑
p

1

ps
= +∞. (5.8)

To see (5.8), recall from the proof of Proposition 5.5 that

lim
s→1+

(s − 1)ζ(s) = 1,

hence

lim
s→1+

log ζ(s) = lim
s→1+

log
1

s − 1
+ lim

s→1+
log(s − 1)ζ(s) = +∞. (5.9)

Now let s > 1. The mean value theorem implies that

| log(1 + x )| ≤ 2|x | for |x | ≤ 1

2
,

and so

| log(1− q−s )| ≤ 2q−s , for all q ∈ P .

Because
∑

q q
−s <

∑∞
n=1 n

−s < ∞ it follows that the series

∑
q

log(1− q−s)

is absolutely convergent. Hence

log ζ(s) = log
(∏

q

1

1− q−s

)
(from (5.2))

= −
∑
q

log(1− q−s )
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=
∑
q

1

qs
+
∑
q

(
− log(1 − q−s)− 1

qs

)

=
∑
q

1

qs
+
∑
q

(∑
n≥2

1

nqns

)
,

where we use the series expansion log(1−x ) = −
∑∞

1 xn/n, |x | < 1, to obtain
the last equation. Then

0 <
∑
n≥2

1

nqns
=

1

q2s

( ∞∑
n=0

1

(n + 2)qns

)

≤ 1

q2s

∞∑
n=0

q−ns

=
1

q2s
1

1− q−s

<
2

q2
, for all q ≥ 2 and for all s ≥ 1.

and so

0 <
∑
q

(∑
n≥2

1

nqns

)
< 2

∑
q

1

q2
< +∞ for all s ≥ 1.

It follows that

∑
q

1

qs
= log ζ(s) +H (s), H (s) bounded on s > 1,

hence this equation and (5.9) imply (5.8).
It remains only to prove Lemma 5.12. Let d �= 1 be a square-free integer.

Then it is a consequence of the factorization (5.4) of ζF ,F = Q(
√
d) in

Proposition 5.11 that

ζF (s) = θ(s)ζ(s)L(s), where L(s) =
∏
p

1

1− χp(d)p−s
.

By virtue of Lemma 5.7,

lim
s→1+

(s − 1)ζF (s) = λ > 0,
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hence

lim
s→1+

L(s) = lim
s→1+

1

θ(s)

(s − 1)ζF (s)

(s − 1)ζ(s)

=
λ

θ(1)
> 0,

and so

lim
s→1+

logL(s) is finite. (5.10)

Now let s > 1. Then

logL(s) = −
∑
p

log(1− χp(d)p
−s ) (5.11)

=
∑
p

∞∑
n=1

χp(d)
n

npns

=
∑
p

χp(d)p
−s +

∑
p

∞∑
n=2

χp(d)
n

npns
.

Because

∣∣∣∣∣
∑
p

∞∑
n=2

χp(d)
n

npns

∣∣∣∣∣ ≤
∑
p

∑
n≥2

1

npns
,

the second term on the right-hand side of the last equation in (5.11) can
be estimated as before to verify that it is bounded on s > 1. Hence (5.10)
and (5.11) imply that

∑
p

χp(d)p
−s is bounded as s → 1+. (5.12)

The integer d here can be any integer �= 1 that is square-free, but every
integer is the product of a square and a square-free integer, hence (5.12)
remains valid if d is replaced by any integer which is not a square. QED

The technique used in the proof of Theorem 4.12 can also be used to obtain
an interesting generalization of Basic Lemma 4.4 which answers the following
question: if S is a nonempty, finite subset of [1,∞) and ε : S → {−1, 1} is
a given function, when does there exist infinitely many primes p such that
χp ≡ ε on S? There is a natural obstruction to S having this property very
similar to the obstruction that prevents the conclusion of Theorem 4.12 from
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being true for S . Suppose that there exists a subset T �= ∅ of S such that∏
i∈T i is a square. If we choose i0 ∈ T and define

ε(i) =

{
−1, if i = i0,

1, if i ∈ S \ {i0},

then χp �≡ ε on S for all sufficiently large p: otherwise there exits a p exceeding
all prime factors of the elements of T such that

−1 =
∏
i∈T

ε(i) = χp

( ∏
i∈T

i
)
= 1.

By tweaking the proof of Theorem 4.12, we will show that this is the only
obstruction to S having this property.

Theorem 5.13 Let S be a nonempty finite subset of [1,∞). The following
statements are equivalent:

(i) The product of all the elements in each nonempty subset of S is not a
square;

(ii) If ε : S → {−1, 1} is a fixed but arbitrary function, then there exist
infinitely many primes p such that χp ≡ ε on S.

Proof We have already observed that (i) follows from (ii), hence suppose
that S satisfies (i) and let ε : S → {−1, 1} be a fixed function. Consider the
sum

Σε(s) =
∑
(p)

(∏
i∈S

(
1 + ε(i)χp(i)

))
· 1

ps
, s > 1.

If

Xε = {p : χp ≡ ε on S}

then

Σε(s) = 2|S |
∑
p∈Xε

1

ps
.

Also,

Σε(s) =
∑
(p)

1

ps
+

∑
∅�=T⊆S

∏
i∈T

ε(i)
(∑

(p)

χp

( ∏
i∈T

i
)
· 1

ps

)
.
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Lemma 5.12 and the hypotheses on S imply that the second term on the
right-hand side of this equation is bounded as s → 1+, hence from (5.7) we
conclude that

lim
s→1+

Σε(s) = +∞,

and so Xε is infinite. QED

Definition Any set S satisfying statement (ii) of Theorem 5.13 will be said
to support all patterns.

Remark The proof of Theorems 4.12 and 5.13 follows exactly the same
strategy as Dirichlet’s proof of Theorem 4.5. One wants to show that a set
X of primes with a certain property is infinite. Hence take s > 1, attach
a weight of p−s to each prime p in X and then attempt to prove that the
weighted sum

∑
p∈X

1

ps

of the elements of X is unbounded as s → 1+. In order to achieve this (using
ingenious methods!), one writes this weighted sum as

∑
p 1/ps plus a term

that is bounded as s → 1+. The similarity of all of these arguments is no
accident; Theorem 5.13 is in fact also due to Dirichlet, and appeared in his
great memoir [11], Recherches sur diverses applications de l’analyse infinité-
simal à la théorie des nombres, of 1839–40, which together with [10] founded
modern analytic number theory. The proof of Theorem 5.13 given here is
a variation on Dirichlet’s original argument due to Hilbert [28], Sect. 80,
Theorem 111.

A straightforward modification of the proof of Theorem 4.9 can now be
used to establish

Theorem 5.14 If S is a nonempty, finite subset of [1,∞) such that for all
subsets T of S of odd cardinality,

∏
i∈T i is not a square, S and v : 2S → Fn

are defined by S as in the statement of Theorem 4.9, and d is the dimension of
the linear span of v(S) in Fn , then the density of the set {p : χp ≡ −1 on S}
is 2−d .

If p < q < r < s are distinct primes and we let, for example, S1 =
{p, pq, qr , rs} and S2 = {p, ps , pqr , pqrs}, then it follows from Theorem 5.14
and the row reduction of the incidence matrices of S1 and S2 that we
performed in Sect. 4.6 of Chap. 4 that the density of {p : χp ≡ −1 on S1} is
2−4 and the density of {p : χp ≡ −1 on S2} is 2−3. As we pointed out in
Sect. 4.6 of Chap. 4, a 2-dimensional subspace of F 4 contains only 3 nonzero
vectors, and so if S is a set of 4 nontrivial square-free integers such that S
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is supported on 4 primes then the density of {p : χp ≡ −1 on S} cannot be
2−2. But it is also true that all of the vectors in a 2-dimensional subspace
of F 4 must sum to 0 and so if S is a set of 3 nontrivial square-free integers
such that S is supported on 4 primes then {p : χp ≡ −1 on S} is in fact
empty. In order to get a set S from p, q, r , and s such that the density of
{p : χp ≡ −1 on S} is 2−2, S has to have 2 elements, and it follows easily
from Theorem 5.14 that S = {pq, qrs} is one of many examples for which the
density of {p : χp ≡ −1 on S} is 2−2.

A straightforward modification of the proof of Lemma 4.10 can also be
used to establish

Theorem 5.15 (Filaseta and Richman [18], Theorem 2) If S is a nonempty,
finite subset of [1,∞) such that the product of all the elements in each
nonempty subset of S is not a square and ε : S → {−1, 1} is a fixed but
arbitrary function, then the density of the set {p : χp ≡ ε on S} is 2−|S |.

5.5 Proof of the Fundamental Theorem of Ideal
Theory

Because the Fundamental Theorem of Ideal Theory was used at its full
strength in the proof of the Euler-Dedekind product expansion of the zeta
function (Theorem 5.8), and also because of the important role that it played
(although not at full strength) in the results on the factorization of ideals in
a quadratic number field from Chap. 3, we will present a proof of it in this
final section of Chap. 5. Our account follows the outline given by Ore in [43].

Let F be an algebraic number field of degree n and let R be the ring of
algebraic integers in F . We want to prove that every nonzero proper ideal of R
is a product of a finite number of prime ideals and also that this factorization
is unique up to the order of the prime-ideal factors. The strategy of our
argument is to prove first that each nonzero proper ideal of R contains a finite
product of prime ideals. We hence chose for each nonzero proper ideal I a
product of prime ideals with the smallest number of factors that is contained
in I , and then by use of appropriate mathematical technology that we will
develop, proceed by induction on this smallest number of prime-ideal factors
to prove that I is in fact equal to a product of prime ideals. Uniqueness will
then follow by further use of the mathematical technology that we will have
at our disposal. We proceed to implement this strategy.

Let I be an ideal of R, {0} �= I �= R.

Lemma 5.16 There exists a sequence of prime ideals P1, . . . ,Ps of R such
that I ⊆ Pi , for all i and P1 · · ·Ps ⊆ I .
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Proof If I is prime then we are done, with s = 1, hence suppose that I is
not prime. Then there exists a product βγ of elements of R which is in I and
β �∈ I , γ �∈ I . Let {α1, . . . , αn} be an integral basis of I , and set

J = (α1, . . . , αn , β), K = (α1, . . . , αn , γ).

Then

JK ⊆ I , I � J , I � K .

If J ,K are both prime then we are done, with s = 2. Otherwise apply this
procedure to each nonprime ideal that occurs, and continue in this way as
long as the procedure produces nonprime ideals. Note that after each step of
the procedure,

(i) the product of all the ideals obtained in that step is contained in I ,
(ii) I is contained in each ideal obtained in that step, and
(iii) each ideal obtained in that step is properly contained in an ideal from

the immediately preceding step.

Claim: this procedure terminates after finitely many steps.
If this is true then each ideal obtained in the final step is prime; otherwise

the procedure would continue by applying it to a nonprime ideal. If P1, . . . ,Ps

are the prime ideals obtained in the final step then this sequence of ideals
satisfies Lemma 5.16 by virtue of (i) and (ii) above.

Proof of the claim Suppose this is false. Then (ii) and (iii) above imply that
the procedure produces an infinite sequence of ideals J0, J1, . . . , Jn , . . . such
that J0 = I and Ji � Ji+1, for all i . We will now prove that I is contained
in only finitely many ideals, hence no such sequence of ideals is possible.

The proof of Proposition 5.1(i) implies that I contains a positive rational
integer a. We show that a belongs to only finitely many ideals.

Suppose that J is an ideal, with integral basis {β1, . . . , βn}, and a ∈ J .
Then we also have that

J = (β1, . . . , βn , a).

By the claim in the proof of Proposition 5.1(i), for each i , there is γi , δi ∈ R
such that βi = aγi + δi , and δi can take on only at most an values. But then

J = (aγ1 + δ1, . . . , aγn + δs) = (δ1, . . . , δn , a).

Because each δi assumes at most an values, it follows that J is one of only
at most an2 ideals. QED
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The statement of the next lemma requires the following definition:

Definition If J is an ideal of R then

J−1 = {α ∈ F : αβ ∈ R, for all β ∈ J}.

Lemma 5.17 If P is a prime ideal of R then P−1 contains an element of
F \R.

Proof Let x ∈ P . Lemma 5.16 implies that (x ) contains a product P1 · · ·Ps

of prime ideals. Choose a product with the smallest number s of factors.
Suppose that s = 1. Then P1 ⊆ (x ) ⊆ P . P1 maximal (Proposition 5.1(i))

implies that P = P1 = (x ). Hence 1/x ∈ P−1. Also, 1/x �∈ R; otherwise,
1 = x · 1/x ∈ P , contrary to the fact that P is proper.

Suppose that s > 1. Then P1 · · ·Ps ⊆ (x ) ⊆ P , and so the fact that P is
prime implies that P contains a Pi , say P1. P1 maximal implies that P = P1.
P2 · · ·Ps � (x ) by minimality of s , hence there exits α ∈ P2 · · ·Ps such that
α �∈ (x ), and so α/x �∈ R.

Claim: α/x ∈ P−1.
Let β ∈ P . We must prove that β(α/x ) ∈ R. To do that, observe that

(α)P ⊆ P2 · · ·PsP = P1 · · ·Ps ⊆ (x ),

and so there is a γ ∈ R such that αβ = xγ, i.e., β(α/x ) = γ. QED

The next lemma is the key technical tool that allows us to prove the
Fundamental Theorem of Ideal Theory; it will be used to factor an ideal into
a product of prime ideals and to show that this factorization is unique up to
the order of the factors. In order to state it, we need to extend the definition
of products of ideals to products of arbitrary subsets of R like so:

Definition If S and T are subsets of R then the product ST of S and T is

the set consisting of all sums of the form
∑
i

si ti , where (si , ti) ∈ S × T for

all i .

This product is clearly commutative and associative, and it agrees with
the product defined before when S and T are ideals of R.

Lemma 5.18 If P is a prime ideal of R and I is an ideal of R then P−1PI =
I .

Proof It suffices to show that P−1P = (1). It is straightforward to show that
J = P−1P is an ideal of R. As 1 ∈ P−1, it follows that P ⊆ J and so P
maximal implies that P = J or J = (1).
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Suppose that J = P . Let {α1, . . . , αn} be an integral basis of P , and use
Lemma 5.17 to find γ ∈ P−1, γ �∈ R. Then γαi ∈ P , for all i , and so

γαi =
∑
j

aijαj , where aij ∈ Z for all i , j .

As a consequence of these equations, γ is an eigenvalue of the matrix
[aij ], hence it is a root of the characteristic polynomial of [aij ], and this
characteristic polynomial is a monic polynomial in Z[x ]. As we showed in the
proof of Theorem 3.11, this implies that γ is an algebraic integer, contrary
to its choice. Hence P �= J , and so J = (1). QED

The Fundamental Theorem of Ideal Theory is now a consequence of the
next two lemmas.

Lemma 5.19 Every nonzero proper ideal of R is a product of prime ideals.

Proof Lemma 5.16 implies that every nonzero proper ideal of R contains a
product P1 · · ·Pr of prime ideals, where we choose a product with the smallest
number r of factors. The argument now proceeds by induction on r .

Let {0} �= I �= R be an ideal with r = 1, i.e., I contains a prime ideal P .
P maximal implies that I = P , and we are done.

Assume now that r > 1 and every nonzero, proper ideal that contains a
product of fewer than r prime ideals is a product of prime ideals.

Let {0} �= I �= R be an ideal that contains a product P1 · · ·Pr of
prime ideals, with r the smallest number of prime ideals with this property.
Lemma 5.16 implies that I is contained in a prime ideal Q . Hence P1 · · ·Pr ⊆
Q , and so Q contains a Pi , say P1. P1 maximal implies that Q = P1. Hence
I ⊆ P1. Then IP−1

1 is an ideal of R; I ⊆ IP−1
1 (1 ∈ P−1), and so IP−1

1 �= {0}.
IP−1

1 �= R; otherwise, P1 ⊆ I , hence I = P1, contrary to the fact that r > 1.
Lemma 5.18 implies that

P2 · · ·Pr = P−1
1 P1 · · ·Pr ⊆ IP−1

1 ,

hence by the induction hypothesis, IP−1
1 is a product P ′

1 · · ·P ′
k of prime ideals,

and so by Lemma 5.18 again,

I = (IP−1
1 )P1 = P ′

1 · · ·P ′
kP1

is a product of prime ideals. QED

Lemma 5.20 Factorization as a product of prime ideals is unique up to the
order of the factors.

Proof Suppose that P1 · · ·Pr = Q1 · · ·Qs are products of prime ideals, with
r ≤ s , say. Q1 · · ·Qs ⊆ Q1, hence P1 · · ·Pr ⊆ Q1 and so the fact that Q1 is a
prime ideal and the maximality of the Pi ’s imply, after reindexing one of the



150 5 The Zeta Function of an Algebraic Number Field and Some Applications

Pi ’s, that Q1 = P1. Then Lemma 5.18 implies that

P2 · · ·Pr = P−1
1 P1 · · ·Pr = Q−1

1 Q1 · · ·Qs = Q2 · · ·Qs .

Continuing in this way, we deduce, upon reindexing of the Pi ’s, that Pi = Qi ,
i = 1, . . . r , and also, if r < s , that

(1) = Qr+1 · · ·Qs .

But this equation implies that R = (1) ⊆ Qr+1, which is impossible as Qr+1

is a proper ideal. Hence r = s . QED

Dedekind’s own proof of The Fundamental Theorem of Ideal Theory in
[8], Chap. 4, Sect. 25, is a model of clarity and insight which amply repays
careful study. We strongly encourage the reader to take a look at it.



Chapter 6

Elementary Proofs

After providing in Sect. 6.1 of this chapter some motivation for the use of
elementary methods in number theory, we present proofs of Theorems 4.12
and 5.13 in Sects. 6.3 and 6.2, respectively, which employ only Lemma 4.4
from Chap. 4 and linear algebra over the Galois field of order 2, thereby
avoiding the use of zeta functions.

6.1 Whither Elementary Proofs in Number Theory?

Dirichlet’s incorporation of transcendental methods into number theory
allowed him to establish many deep and far-reaching results in that subject.
The importance of Dirichlet’s work led to a very strong desire to understand it
in as many different ways as possible, and this desire naturally motivated the
search for different ways to prove his results. As the years passed, particular
attention was focused on removing any use of methods which relied on
mathematical analysis, replacing them instead by ideas and techniques which
deal with or stem directly from the fundamental structure of the integers, as
this was sometimes viewed as being more suitable for the development of
the most important results of the theory. The viewpoint that the preferred
methods in number theory should be based only on fundamental properties of
the integers was originally held evidently by none other than Leonard Euler
(see the remarks by Gauss in [19], article 50 about Euler’s proof of Fermat’s
little theorem), and much of the fundamental contributions to number theory
by Euler, Lagrange, Legendre, Gauss, Dedekind, and many others can be
seen as evidence of the value of that philosophy. The subject of elementary
number theory, i.e., the practice of number theory using methods which have
their basis in the algebra and/or the geometry of the integers, and which, in
particular, avoid the use of any of the infinite processes coming from analysis,
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has thus attained major importance. Indeed, among the results of twentieth-
century number theory which generated exceptional excitement and interest
is the discovery by Selberg [51, 52] and Erdös [14] in 1949 of the long-sought
elementary proofs of the Prime Number Theorem, Dirichlet’s theorem on
primes in arithmetic progression, and the Prime Number Theorem for primes
in arithmetic progression.

The philosophical spirit of elementary number theory resonates with
particular force in the mind of anyone who compares the way that we proved
Theorems 4.2 and 4.3 to the way that we proved Theorems 4.12 and 5.13.
The proof of the former two results are easy consequences of Lemma 4.4,
which in turn depends on an elegant application of quadratic reciprocity
and Dirichlet’s theorem on primes in arithmetic progression. In contrast to
that line of reasoning, our proof of Theorems 4.12 and 5.13 requires, by
comparison, a rather sophisticated application of transcendental methods
based on the Riemann zeta function and the zeta function of a quadratic
number field. Because all of these results are very similar in content, this raises
a natural question: can we give elementary proofs of Theorems 4.12 and 5.13
which, in particular, avoid the use of zeta functions and are more in line with
the ideas used in the proof of Theorems 4.2 and 4.3? The answer: yes we can,
and that will be done in this chapter by proving Theorem 4.12, in Sect. 6.3,
and Theorem 5.13, in Sect. 6.2, using only Lemma 4.4 and linear algebra over
GF (2). Taking into account the fact that Dirichlet’s theorem and the Prime
Number Theorem for primes in arithmetic progression also have elementary
proofs, the proofs that we have given of Theorems 4.2, 4.3, 4.9, 5.14, and 5.15
are already elementary.

6.2 An Elementary Proof of Theorem 5.13

We begin with Theorem 5.13: let S be a nonempty finite subset of [1,∞)
such that

for all ∅ �= T ⊆ S ,
∏
i∈T

i is not a square. (6.1)

We wish to prove that for each function ε : S → {−1, 1}, the cardinality of
{p : χp ≡ ε on S} is infinite.

The first step in our reasoning is to reduce to the case in which every integer
in S is square-free. Recall that the square-free part σ(z ) of z ∈ [1,∞) is

σ(z ) =
∏

q∈πodd(z)

q,
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and observe that if ∅ �= T ⊆ [1,∞) is finite then

∏
i∈T

i is not a square if and only if
∏
i∈T

σ(i) is not a square.

(There is an integer n such that
∏

i∈T i =
∏

i∈T σ(i)×n2, so the multiplicity
m of a prime factor q of

∏
i∈T i in

∏
i∈T i is congruent mod 2 to the

multiplicity m ′ of q in
∏

i∈T σ(i) hence m is odd if and only if m ′ is odd.)
Also

χp(z ) = χp(σ(z )), for all p /∈ π(z ).

Hence, upon replacing S by the set formed from the integers σ(z ) for z ∈ S ,
we may suppose with no loss of generality that all elements of S are square-
free. Hence

z =
∏

q∈π(z)

q, z ∈ S ,

π(z ) �= ∅, for all z ∈ S (1 /∈ S ), and if {w , z} ⊆ S then π(w) �= π(z ).
The next step is to look for a purely combinatorial condition on the sets

π(z ), z ∈ S , that is equivalent to condition (6.1). The following notation will
be helpful with regard to that: if T ⊆ S , let

Π(T ) =
⋃
i∈T

π(i),

S(T ) = {π(i) : i ∈ T},

p(T ) =
∏
i∈T

i ,

and let

Π =
⋃
i∈S

π(i),

S = {π(i) : i ∈ S}.

Now

Π(T ) = the set of all prime factors of p(T )

and

the multiplicity in p(T ) of q ∈ Π(T ) = |{X ∈ S(T ) : q ∈ X }|.
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Hence

p(T ) is not a square iff {q ∈ Π(T ) : |{X ∈ S(T ) : q ∈ X }| is odd } �= ∅.
(6.2)

Condition (6.2) can be elegantly expressed by using the symmetric
difference operation on sets. Recall that if A and B are sets then the
symmetric difference A�B of A and B is the set (A \ B) ∪ (B \ A). The
symmetric difference operation is commutative and associative, hence if
A1, . . . ,Ak are distinct sets then the repeated symmetric difference

�i Ai = A1�· · ·�Ak

is unambiguously defined. In fact, one can show that

�i Ai =
{
a ∈

⋃
i

Ai : |{Aj : a ∈ Aj }| is odd
}
. (6.3)

Statements (6.2) and (6.3) imply that

p(T ) is not a square if and only if �i∈T π(i) �= ∅.

Hence

condition (6.1) holds if and only if for all nonempty subsets T of S ,

�i∈T π(i) �= ∅.

As the map i → π(i) is a bijection of S onto S, it follows that

condition (6.1) holds if and only if for all nonempty subsets T of S,
�T∈T T �= ∅. (6.4)

Statement (6.4) is the combinatorial formulation of condition (6.1) that we
want.

In order to express things more concisely, we recall now from Sect. 5.5 of
Chap. 5 that S is said to support all patterns if for each function ε : S →
{−1, 1}, the set {p : χp ≡ ε on S} is infinite. Consequently from (6.4), in
order to prove Theorem 5.13, we must show that

if �T∈T T �= ∅ for all ∅ �= T ⊆ S then S supports all patterns. (6.5)
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Hence we next look for a combinatorial condition on S which guarantees that
S supports all patterns. This is provided by

Lemma 6.1 Suppose that S satisfies the following condition:

for each nonempty subset T of S, there exists a subset N of Π such that
(6.6)

T = {S ∈ S : |N ∩ S | is odd}.

Then S supports all patterns.

Proof Let ε be a function of S into {−1, 1}. We must prove: {p : χp ≡ ε on S}
is infinite.

The map π(i) → ε(i), i ∈ S defines a function ε′ of S into {−1, 1}. Let

T = (ε′)−1(−1).

If T = ∅ then ε ≡ 1, hence apply Theorem 4.3. Suppose that T �= ∅, and then
find N ⊆ Π such that N satisfies the conclusion of (6.6) for this T . Basic
Lemma 4.4 implies that there are infinitely many primes p for which

{q ∈ Π : χp(q) = −1} = N . (6.7)

Let p be any one of these primes which divides no element of S .
We claim that χp ≡ ε on S . To verify this, note first that because of (6.7),

χp(i) = (−1)|N∩π(i)|, for all i ∈ S .

Hence

i ∈ S ∩ χ−1
p (−1) if and only if |N ∩ π(i)| is odd.

Since the conclusion of (6.6) holds for N and T , it follows that

|N ∩ π(i)| is odd if and only if π(i) ∈ T , for all i ∈ S .

The definition of ε′ implies that

π(i) ∈ T if and only if i ∈ ε−1(−1),

Hence

S ∩ χ−1
p (−1) = ε−1(−1),

and so χp ≡ ε on S . QED
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Remark The converse of Lemma 6.1 is valid.

In order to verify statement (6.5), and hence prove Theorem 5.13, it suffices
by virtue of Lemma 6.1 to prove that if

�T∈T T �= ∅ for all ∅ �= T ⊆ S (6.8)

then

for each ∅ �= T ⊆ S, there exitsN ⊆ Π such that T = {S ∈ S : |N∩S | is odd}.
(6.9)

We have now completely removed residues and non-residues from the scene
and have reduced everything to proving the following purely combinatorial
statement about finite sets:

if A is a nonempty finite set, ∅ �= S ⊆ 2A \ {∅}, and S satisfies (6.8) ,

then, with Π replaced by A,S satisfies (6.9) .

This can be done via linear algebra over F = GF (2), by means of the same
idea that we used in the proof of Lemma 4.11. We may suppose with no loss
of generality that A = [1, n] for some n ∈ [1,∞). Let

v : 2A → Fn

be the map defined in Sect. 4.6 of Chap. 4. If S = {S1, . . . ,Sm}, note that if
∅ �= T ⊆ S then there is a bijection of the set of solutions over F of the m×n
system of linear equations

∑
i

v(T )(i)xi = 1, T ∈ T ,

∑
i

v(S )(i)xi = 0, S ∈ S \ T ,

onto the set

{N ⊆ [1, n] : N satisfies the conclusion of (6.9) (withΠ replaced byA) forT }

given by

(x1, . . . , xn) → {i : xi = 1}.
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Hence (6.9) holds with Π replaced by A if and only if the linear transformation
of Fn → Fm with matrix

B =

⎛
⎜⎝

v(S1)(1) . . . v(S1)(n)
...

...

v(Sm)(1) . . . v(Sm)(n)

⎞
⎟⎠

is surjective, i.e., B has rank m, i.e., the row vectors of B are linearly
independent over F .

We now show that

the row vectors of B are linearly independent over F if and only if S
satisfies (6.8); (6.10)

this will prove Theorem 5.13 using only Lemma 4.4 and linear algebra over F !
If w = (w1, . . . ,wn) ∈ Fn , recall that the support supp(w) of w is the set

supp(w) = {i : wi = 1}.

It is easy to see that if ∅ �= U ⊆ Fn then

supp
( ∑

w∈U

w
)
= �w∈U supp(w),

and so

∑
w∈U

w �= 0 if and only if �w∈U supp(w) �= ∅. (6.11)

Observe now that

U is linearly independent overF if and only if for all ∅ �=W⊆U ,
∑
w∈W

w �=0.

(6.12)

Statement (6.10) is now a consequence of (6.11), (6.12), and the fact that

supp
(
v(T )

)
= T , for all T ∈ S.

QED
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6.3 An Elementary Proof of Theorem 4.12

Now for the proof of Theorem 4.12. Let S be a nonempty finite subset of
[1,∞) such that

p(T ) is not a square for all T ⊆ S with |T | odd. (6.13)

We need to prove that the set {p : χp ≡ −1 on S} is infinite.
If we replace S by the set S ′ of integers formed by the square-free parts

of the elements of S then (6.13) is true with S replaced by S ′ hence we may
again suppose with no loss of generality that all integers in S are square-free.

The argument now proceeds along the same line of reasoning that we used
to prove Theorem 5.13. It follows as before that, with S = {π(i) : i ∈ S},

condition (6.13) holds if and only if �T∈T T �= ∅ for all T ⊆ S with |T | odd.
(6.14)

We then look for a combinatorial condition on S which implies that the set
of primes

{p : χp ≡ −1 on S}

is infinite, in analogy with Lemma 6.1. Such a condition is provided by

Lemma 6.2 If there exists a subset N of Π =
⋃

i∈S π(i) such that

|N ∩ π(i)| is odd for all i ∈ S ,

then

{p : χp ≡ −1 on S}

is infinite.

Proof Let N be a subset of Π which satisfies the hypothesis of Lemma 6.2.
As before, use Lemma 4.4 to find infinitely many primes p such that

{q ∈ Π : χp(q) = −1} = N ;

then for all such p which divides no element of S ,

χp(i) = (−1)|N∩π(i)| = −1, for all i ∈ S .

QED
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The final step is to prove that if A is a nonempty finite set, ∅ �= S ⊆
2A \ {∅}, and

�T∈T T �= ∅ for all T ⊆ S with |T | odd, (6.15)

then there is a subset N of A such that

|N ∩ S | is odd, for all S ∈ S,

which can be done again by linear algebra over F .
We may take A = [1, n], list the elements of S as S = {S1, . . . ,Sm} and

then observe that, as in the proof just given of Theorem 5.13, there is a
bijection of the set of solutions in Fn of the system of equations

∑
i

v(Sj )(i)xi = 1, j = 1, . . . ,m,

onto the set

{N ⊆ [1, n] : |N ∩ S | is odd, for all S ∈ S}.

This system has a solution if and only if the matrices

B =

⎛
⎜⎝

v(S1)(1) . . . v(S1)(n)
...

...

v(Sm)(1) . . . v(Sm)(n)

⎞
⎟⎠

and

B ′ =

⎛
⎜⎝

v(S1)(1) . . . v(S1)(n) 1
...

...
...

v(Sm)(1) . . . v(Sm)(n) 1

⎞
⎟⎠

have the same rank (over F ), hence we must verify that if (6.15) holds then
B and B ′ have the same rank.

Assuming that (6.15) is valid, we let v1, . . . , vm , v′1, . . . , v
′
m denote the row

vectors of B and B ′, respectively. We will use (6.15) to prove that

for all ∅ �= T ⊆ [1,m],
∑
i∈T

vi = 0 iff
∑
i∈T

v′i = 0. (6.16)

Statement (6.16) implies that if L (respectively, L′) is the set of all sets
of linearly independent rows of B (respectively, B ′) then the map vi → v′i
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induces a bijection Λ of L onto L′ such that

|Λ(L)| = |L|, for all L ∈ L,

and so

rank of B = max
L∈L

|L| = max
L∈L′

|L| = rank of B ′.

In order to verify (6.16), note first that if ∅ �= T ⊆ [1,m] then

i-th coordinate of
∑
j∈T

vj = i-th coordinate of
∑
j∈T

v′j , i = 1, . . . ,n, (6.17)

and so if
∑

j∈T v′j = 0 then
∑

j∈T vj = 0. Conversely, if
∑

j∈T vj = 0
then (6.15) implies that |T | is even. Consequently,

(n + 1)-th coordinate of
∑
j∈T

v′j = |T | · 1 = 0,

hence this equation and (6.17) imply that
∑

j∈T v′j = 0. QED
We close this chapter by discussing what happens if instead of subsets

of [1,∞) we allow nonempty, finite subsets of Z \ {0} in the hypotheses
of all of the theorems in Chaps. 4 and 5. Theorem 4.2 remains valid if the
positive integer in its hypothesis is replaced by a non-zero integer, and
Theorems 4.3, 4.12, 5.13, and 5.15 remain valid with no change in their
statements if the set S in the hypotheses there is replaced by an arbitrary
nonempty, finite subset of Z \ {0}. In this more general situation, the integer
−1 behaves like an additional prime, and once that is taken into account, all of
our arguments, both elementary and non-elementary, can be modified without
too much additional effort to verify these more general results. If the subset of
[1,∞) in the hypotheses of Theorems 4.9 and 5.14 is replaced by a nonempty,
finite subset S of Z \ {0} and if the dimension d is determined by S as in the
statements of those theorems, then the density of the sets in their conclusions
is now either 2−d or 2−(1+d), with the latter value occurring if either −1 ∈ S
or the sets πodd(z ), z ∈ S , possess a certain combinatorial structure. However,
the proof of this version of Theorems 4.9 and 5.14 proceeds along the same
lines as the arguments that we have given, with only a few additional technical
adjustments (see Wright [61], Sect. 3 for the details).



Chapter 7

Dirichlet L-Functions and the
Distribution of Quadratic Residues

In Sect. 7.4 of Chap. 4, we saw how the non-vanishing at s = 1 of the L-
function L(s , χ) of a non-principal Dirichlet character χ played an essential
role in the proof of Dirichlet’s theorem on prime numbers in arithmetic
progression (Theorem 4.5). In this chapter, the fact that L(1, χ) is not
only nonzero, but positive, when χ is real and non-principal, will be of
central importance. The positivity of L(1, χ) comes into play because we are
interested in the following problem concerning the distribution of residues
and non-residues of a prime p. Suppose that I is an interval of the real line
contained in the interval from 1 to p. Are there more residues of p than
non-residues in I , or are there more non-residues than residues, or is the
number of residues and non-residues in I the same? We will see that this
question can be answered if we can determine if certain sums of values of the
Legendre symbol of p are positive, and it transpires that the positivity of the
sum of these Legendre-symbol values, for certain primes p, are determined
precisely by the positivity of L(1, χ) for certain Dirichlet characters χ. We
make all of this precise in Sect. 7.1, where the principal theorem of this
chapter, Theorem 7.1, is stated and then used to obtain some very interesting
answers to our question about the distribution of residues and non-residues.
In the next section, the proof of Theorem 7.1 is outlined; in particular we will
see how the proof can be reduced to the verification of formulae, stated in
Theorems 7.2–7.4, which express the relevant Legendre-symbol sums in terms
of the values of L-functions at s = 1. Sections 7.3–7.7 are devoted to the
proof Theorems 7.2–7.4. In Sect. 7.3, the fact that L(1, χ) > 0 for real, non-
principal Dirichlet characters is established, and Sects. 7.4–7.6 are devoted
to discussing various results concerning Gauss sums, analytic functions of a
complex variable, and Fourier series which are required for the arguments we
take up in Sect. 7.7. Because it plays such an important role in the results of
this chapter, we prove in Sect. 7.8 Dirichlet’s fundamental Lemma 4.8 on the
non-vanishing of L(1, χ) for real, non-principal characters. Motivated by the
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result on the convergence of Fourier series that is proved in Sect. 7.6, we give
yet another proof of quadratic reciprocity in Sect. 7.9 that uses finite Fourier
series expansions.

7.1 Positivity of Sums of Values of a Legendre
Symbol

Dirichlet [11] proved the following theorem in 1839:

Theorem 7.1

(i) If p ≡ 3 mod 4 then

∑
0<n<p/2

χp(n) > 0.

(ii) If p ≡ 1 mod 4 then

∑
0<n<p/4

χp(n) > 0.

(iii) If p > 3 then

∑
0<n<p/3

χp(n) > 0.

This result initiated a line of intense research on the positivity of various
sums of values of a Dirichlet character, and of characters on more general
groups, that continues unabated to the present day. The importance to us
of Theorem 7.1 lies in its connection with the distribution of residues and
non-residues of a prime p throughout the interval [1, p − 1]. In order to see
how that goes, we consider an interval I of the real line of finite length and,
following Berndt [1], we define the quadratic excess of I to be the sum

q(I ) =
∑
n∈I

χp(n).

If q(I ) > 0 (respectively, q(I ) < 0) then the number of residues (respectively,
non-residues) of p inside I exceeds the number of non-residues (respectively,
residues) of p there, and if q(I ) = 0 then the number of residues and non-
residues are the same. Hence Theorem 7.1 implies that if p ≡ 3 mod 4 then
the number of residues inside the interval (0, p/2) exceeds the number of
non-residues there, or if p ≡ 1 mod 4 then the number of residues inside
the interval (0, p/4) exceeds the number of non-residues there, or if p > 3
then the number of residues inside the interval (0, p/3) exceeds the number
of non-residues there.
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By taking Proposition 2.1 and Theorem 2.4 of Chap. 2 into account, we
can say more. If {X1, . . . ,Xk} is a set of pairwise disjoint intervals of finite
length such that [1, p− 1] = Z∩

(⋃
i Xi

)
then because of Proposition 2.1, we

have that

∑
i

q(Xi) = 0. (7.1)

Now, let

I1 = (0, p/3), I2 = (p/3, 2p/3), I3 = (2p/3, p),

J1 = (0, p/4), J2 = (p/4, p/2), J3 = (p/2, 3p/4), J4 = (3p/4, p).

Assume first that p ≡ 3 mod 4. Theorem 2.4 implies that χp(−1) = −1,
hence

q(I1) =
∑

0<n<p/3

χp(n) (7.2)

= −
∑

0<n<p/3

χp(−n)

= −
∑

0<n<p/3

χp(p − n)

= −
∑

2p/3<n<p

χp(n)

= − q(I3),

and so by (7.1) and Theorem 7.1 (iii),

q(I2) = 0 and q(I3) < 0.

It follows that (p/3, 2p/3) contains the same number of residues as non-
residues of p and the number of non-residues in (2p/3, p) exceeds the number
of residues there.

Assume next that p ≡ 1 mod 4. Theorem 2.4 implies that χp(−1) = 1
hence the minus signs in (7.2) can be dropped to conclude that

q(I1) = q(I3),
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and so by (7.1) and Theorem 7.1(iii) yet again,

q(I3) > 0 and q(I2) = −q(I1)− q(I3) < 0.

It follows that the number of non-residues of p in (p/3, 2p/3) exceeds the
number of residues there and the number of residues of p in (2p/3, p) exceeds
the number of non-residues there.

Similar arguments show that if p ≡ 1 mod 4 then

q(J1) = q(J4), q(J2) = q(J3), q(J1) = −q(J3), (7.3)

hence we conclude from (7.3) by way of Theorem 7.1(ii) that the number
of residues of p in each of the intervals (0, p/4) and (3p/4, p) exceeds the
number of non-residues there and the number of non-residues in each of the
intervals (p/4, p/2) and (p/2, 3p/4)) exceeds the number of residues there.

Figures 7.1, 7.2, 7.3, and 7.4 below display graphically the distribution of
the residues and non-residues in each of the cases that we have discussed.
A + above an interval indicates that the number of residues in that interval
exceeds the number of non-residues there, a − indicates that the number
of non-residues exceeds the number of residues, and a 0 indicates that the
number of residues and non-residues are the same. We now turn to the proof
of Theorem 7.1.

Fig. 7.1 p ≡ 3 mod 4
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7.2 Proof of Theorem 7.1: Outline of the Argument

The proof of Theorem 7.1 depends on formulae for the quadratic excesses in
the statement of that theorem which are given in terms of certain Dirichlet
L-functions. Recall from Sect. 4.4 of Chap. 4 that if χ is a Dirichlet character
then the L-function of χ is defined by the Dirichlet series

L(s , χ) =
∞∑

n=1

χ(n)

ns
, s ∈ C.

The property of these L-functions that will be essential for our proof of
Theorem 7.1 is the fact that when χ is real and non-principal, L(1, χ) > 0. It
follows from Dirichlet’s fundamental Lemma 4.8 in Chap. 4 that L(1, χ) �= 0
for any non-principal Dirichlet character χ, and we will show (among other
things) in the next section that when χ is also real, L(1, χ) ≥ 0, whence
L(1, χ) > 0. Consequently, if we can prove that each of the sums in
Theorem 7.1 can be expressed as a positive multiple of the value at s = 1 of
the L-function of a real non-principal Dirichlet character, then Theorem 7.1
will follow from the positivity of that L-function value. That is the line of
reasoning which we will follow to the proof of Theorem 7.1.

In order to carry out this argument, we therefore require formulae which
express the quadratic excesses q(0, p/2), q(0, p/4), and q(0, p/3) in terms of
the value of L-functions at s = 1. The formula for q(0, p/2) is given in

Theorem 7.2 If p ≡ 3 mod 4 then

q(0, p/2) =

√
p

π

(
2− χp(2)

)
L(1, χp).

This theorem implies that statement (i) of Theorem 7.1 is true.
In order to state the L-function formulae that will verify Theorem 7.1(ii)

and (iii), we will need to make use of the fact that if χm and χn are Dirichlet
characters of modulus m and n, and if gcd(m, n) = 1, then the point-wise
product χmχn is a Dirichlet character of modulus mn. This follows from the
fact that if gcd(m, n) = 1 then the Chinese remainder theorem implies that
U (mn) is isomorphic to the direct product U (m)×U (n), and so the point-
wise product χmχn clearly defines a homomorphism of U (mn) into the circle
group.

Our proof of Theorem 7.1 (ii) will make use of the character χ4p of modulus
4p given by point-wise multiplication of χp and the character χ4 of modulus
4 defined by

χ4(n) =

{
(−1)(n−1)/2 , n odd,

0 , n even.
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Also, if p > 3 then we let χ3p denote the point-wise product of χ3 and χp .
It is clear that the characters χ3p and χ4p are real and non-principal.

Theorem 7.1(ii) and (iii) now follow, respectively, from

Theorem 7.3 If p ≡ 1 mod 4 then

q(0, p/4) =

√
p

π
L(1, χ4p).

Theorem 7.4 Let p > 3.

(i) If p ≡ 1 mod 4 then

q(0, p/3) =

√
3p

2π
L(1, χ3p).

(ii) If p ≡ 3 mod 4 then

q(0, p/3) =

√
p

2π

(
3− χp(3)

)
L(1, χp).

We have now reduced the proof of Theorem 7.1 to the proof of Theo-
rems 7.2–7.4. The proof of these results will require quite a bit of preliminary
preparation. The facts about Dirichlet L-functions that will be needed are set
forth in Sect. 7.3. Our arguments will also require the calculation of a very
useful Gauss sum, which will be carried out in Sect. 7.4 (we used Gauss sums
in Sect. 3.9 of Chap. 3 to verify the Law of Quadratic Reciprocity). Our proof
of Theorems 7.2 and 7.4(ii) will follow a very nice argument of Bruce Berndt
[1] which employs the theory of analytic functions of a complex variable,
and so we will discuss the relevant facts from that subject in Sect. 7.5. The
convergence of Fourier series is the subject of Sect. 7.6, required because we
will use Fourier series to prove Theorems 7.3 and 7.4(i), in the same spirit as
Dirichlet’s original proof of those theorems. Finally, we will bring all of this
together for the proof of Theorems 7.2–7.4 in Sect. 7.7.

7.3 Some Useful Facts About Dirichlet L-Functions

The information concerning L-functions of Dirichlet characters that we will
need are recorded in

Lemma 7.5 Let χ be a Dirichlet character mod m.

(i) If χ is non-principal then L(s , χ) is analytic in the half-plane Re s > 0.
(ii) L(s , χ) has the absolutely convergent Euler-Dirichlet product expansion

given by



7.3 Some Useful Facts About Dirichlet L-Functions 167

L(s , χ) =
∏
q

1

1− χ(q)q−s
, Re s > 1,

where the product is taken over all prime numbers q.
(iii) If χ is real-valued and non-principal then L(1, χ) > 0.

Proof

(i) This will follow immediately from Proposition 5.5 after we prove that
the sums

n∑
k=1

χ(k)

are uniformly bounded as a function of n. To see this, we claim first
that

∑
χ(k) = 0, whenever this sum is taken over any complete system of

ordinary residues mod m. (7.4)

Assuming this is true, we take n ∈ [1,∞), write n = r+ lm, 0 ≤ r < m,
and then calculate that

n∑
1

χ(k) =

lm−1∑
1

χ(k) +

r∑
k=0

χ(k + lm)

=
r∑

k=0

χ(k + lm), by (7.4)

=

r∑
k=0

χ(k),

hence

∣∣∣
n∑
1

χ(k)
∣∣∣ ≤

r∑
0

|χ(k)| ≤ m − 1.

In order to verify (7.4) use the fact that χ is periodic of period m
(Proposition 4.6) and the fact that k in (7.4) runs through a complete
set of ordinary residues mod m to write

∑
k

χ(k) =
∑

k∈U (m)

χ(k),

so we need only show that this latter sum is 0.
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Because χ is non-principal, there is a k0 ∈ U (m) such that χ(k0) �= 1.
The map k → kk0 is a bijection of U (m) onto U (m), hence

∑
k∈U (m)

χ(k) =
∑

k∈U (m)

χ(kk0) = χ(k0)
∑

k∈U (m)

χ(k),

hence

(1− χ(k0))
∑

k∈U (m)

χ(k) = 0.

As 1− χ(k0) �= 0, it follows that

∑
k∈U (m)

χ(k) = 0.

(ii) This product formula can be derived by appropriate modifications of
our proof of Theorem 5.8, which verified the product formula for the
zeta function of an algebraic number field. Note first that

∣∣∣ 1

1− χ(q)q−s
− 1
∣∣∣ =

∣∣∣ χ(q)q−s

1− χ(q)q−s

∣∣∣

≤ q−Re s

1− q−Re s

≤ 2q−Re s , for all q ≥ 2, Re s > 1,

consequently Proposition 5.9 implies that the product in (ii) is abso-
lutely convergent for Re s > 1. The proof of Theorem 5.8 can now
be easily modified by replacing the set of prime ideals of R, the set
of nonzero ideals of R, Proposition 5.2 and the Fundamental Theorem
of Ideal Theory in that proof by, respectively, the set P of all primes,
the set [1,∞), the complete multiplicativity of χ, and the Fundamental
Theorem of Arithmetic to obtain

∞∑
n=1

χ(n)

ns
=
∏
q

1

1− χ(q)q−s
, for Re s > 1.

(iii) If χ is real then every value of χ is 0 or ±1, hence each factor in the
Euler product expansion of L(s , χ) is positive for s > 1. Consequently
L(s , χ) is not less than 0, and so by the continuity of L(s , χ) on s > 0
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it follows that

L(1, χ) = lim
s→1+

L(s , χ) ≥ 0.

But L(1, χ) �= 0, because of Dirichlet’s fundamental Lemma 4.8, hence
L(1, χ) > 0. QED

7.4 Calculation of a Gauss Sum

In addition to L-functions, our derivation of the formulae in Theorems 7.2–
7.4 will also employ some very useful properties of Gauss sums. Recall from
the proof of quadratic reciprocity in Sect. 3.9 of Chap. 3 the Gauss sums

G(n, p) =

p−1∑
j=0

χp(j ) exp
(2πinj

p

)
.

In that proof (Lemma 3.15 and Theorem 3.14), we showed that

G(n, p) = χp(n)G(1, p) (7.5)

and that

G(1, p)2 =

{
p, if p ≡ 1 mod 4,

−p, if p ≡ 3 mod 4.

Determining the sign of G(1, p) from this equation turns out to be a very
difficult problem, and was solved by Gauss in 1805 after four long years of
intense effort on his part. The plus sign is the correct one in both cases; we
will present a very nice proof of this fact due to L. Kronecker, according to
the account of it given in Ireland and Rosen [30], Sect. 6.4.

Theorem 7.6

G(1, p) =

{ √
p , if p ≡ 1 mod 4,

i
√
p , if p ≡ 3 mod 4.

Proof Let ζ = exp(2πi/p). The argument proceeds through a series of claims
and their verifications.

Claim 1

(−1)(p−1)/2p =

(p−1)/2∏
k=1

(ζ2k−1 − ζ−2k+1)2.



170 7 Dirichlet L-Functions and the Distribution of Quadratic Residues

Claim 2

(p−1)/2∏
k=1

(ζ2k−1 − ζ−2k+1) =

{ √
p , if p ≡ 1 mod 4,

i
√
p , if p ≡ 3 mod 4.

Once that Claim 1 is verified, we deduce from Theorem 3.14 that

G(1, p) = ε

(p−1)/2∏
k=1

(ζ2k−1 − ζ−2k+1).

where ε = ±1. The conclusion of Theorem 7.6 will then be at hand once we
verify Claim 2 and prove that ε = 1. Hence we make

Claim 3 ε = 1.

To verify Claim 1, start with the factorization

x p − 1 = (x − 1)

p−1∏
j=1

(x − ζj ).

Divide this equation by x − 1 and set x = 1 to derive that

p =
∏
r

(1 − ζr ),

where this product is taken over any complete system of ordinary residues
mod p. It is easy to see that the integers ±(4k − 2), k = 1, . . . , (p − 1)/2, is
such a system of residues, and so

p =

(p−1)/2∏
1

(1− ζ4k−2)

(p−1)/2∏
1

(1− ζ−(4k−2))

=

(p−1)/2∏
1

(ζ−(2k−1) − ζ2k−1)

(p−1)/2∏
1

(ζ2k−1 − ζ−(2k−1))

= (−1)(p−1)/2

(p−1)/2∏
1

(ζ2k−1 − ζ−2k+1)2.

Now for Claim 2. Claim 1 implies that

( (p−1)/2∏
1

(ζ2k−1 − ζ−2k+1)
)2

= (−1)(p−1)/2p,
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hence Claim 2 will follow from this equation once the sign of the product in
Claim 2 is determined. That product is

i(p−1)/2

(p−1)/2∏
1

2 sin
(4k − 2)π

p
.

Observe now that for k ∈ [1, (p − 1)/2],

sin
(4k − 2)π

p
< 0 iff

p + 2

4
< k ≤ p − 1

2
,

hence this product has precisely (p−1)/2−[(p+2)/4] negative factors, and so
the number of negative factors is either (p−1)/4 or (p−3)/4 if, respectively,
p ≡ 1 or 3 mod 4. It is now easy to see from this that the product in Claim 2
is a positive number if p ≡ 1 mod 4 or is i×(a positive number) if p ≡ 3 mod
4.

In order to verify Claim 3, consider the polynomial

f (x ) =

p−1∑
j=1

χp(j )x
j − ε

(p−1)/2∏
k=1

(x 2k−1 − x p−2k+1).

Then

f (ζ) = G(1, p)− ε

(p−1)/2∏
1

(ζ2k−1 − ζ−2k+1) = 0

and

f (1) =

p−1∑
j=1

χp(j ) = 0.

Now the minimal polynomial of ζ over Q is
∑p−1

k=0 x
k , and so we conclude

from the proof of Proposition 3.7 that
∑p−1

k=0 x
k divides f (x ) in Q[x ]. As x−1

and
∑p−1

k=0 x
k are both irreducible over Q, they are relatively prime in Q[x ].

Because x − 1 divides f (x ) in Q[x ], it follows that x p − 1 = (x − 1)(
∑p−1

k=0 x
k)

must also divide f (x ) in Q[x ]. Hence there exists h ∈ Q[x ] such that f (x ) =
(x p − 1)h(x ). Now replace x by ez to obtain the equation

p−1∑
j=1

χp(j )e
jz − ε

(p−1)/2∏
k=1

(
e(2k−1)z − e(p−2k+1)z

)
= (epz − 1)h(ez ).
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Insert the power series expansion of ez into this equation and then deduce
that the coefficient of z (p−1)/2 on the left-hand side of the equation is

1(
(p − 1)/2

)
!

p−1∑
j=1

χp(j )j
(p−1)/2 − ε

(p−1)/2∏
k=1

(4k − p − 2),

while the coefficient of z (p−1)/2 on the right-hand side is of the form pA/B ,
where A and B are integers and gcd(B , p) = 1. Now equate coefficients,
multiply through by B

(
(p − 1)/2

)
! and reduce mod p to derive

p−1∑
j=1

χp(j )j
(p−1)/2 ≡ ε

(p − 1

2

)
!

(p−1)/2∏
k=1

(4k − 2)

≡ ε

(p−1)/2∏
k=1

2k

(p−1)/2∏
k=1

(2k − 1)

≡ ε(p − 1)!

≡ −ε mod p,

where the last congruence follows from Wilson’s theorem. But then by Euler’s
criterion (Theorem 2.5),

j (p−1)/2 ≡ χp(j ) mod p,

hence

p − 1 =

p−1∑
j=1

χp(j )
2 ≡ −ε mod p,

and so

ε ≡ 1 mod p.

Because ε = ±1, it follows that ε = 1. QED
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7.5 Some Useful Facts About Analytic Functions of
a Complex Variable

The proof of Theorems 7.2 and 7.4(ii) that we will present uses an elegant
application of contour integration from complex analysis due to Bruce Berndt.
In this section we will discuss the requisite facts from that subject.

Let ∅ �= U ⊆ C be an open set. A function f : U → C is analytic in U if
for each z ∈ U ,

lim
w→z

f (w)− f (z )

w − z
= f ′(z )

exists and is finite, i.e., f has a complex derivative at each point of U . A
complex-valued function with domain C is said to be entire if it is analytic
in C. We will use the following fundamental theorem about analytic functions
in our proof of Lemma 4.8 for real Dirichlet characters that we will present
in Sect. 7.8:

Theorem 7.7 (Taylor-Series Expansion of Analytic Functions) If f
is analytic in U then the n-th order derivative f (n)(z ) exists and is finite for
all z ∈ U and for all n ∈ [1,∞). Moreover, if a ∈ U and r > 0 is the distance
of a to the boundary of U then

f (z ) =

∞∑
n=0

f (n)(a)

n!
(z − a)n , |z − a| < r .

Theorem 7.7 highlights the remarkable regularity which all analytic func-
tions possess: not only is an analytic function always infinitely differentiable,
but it even has a convergent Taylor-series expansion in a neighborhood of
each point in its domain. This is far from true for differentiable functions of
a real variable.

Now let I denote the closed unit interval on the real line, and let γ : I → U
be a contour in U, i.e., a continuous, piecewise-smooth function defined on I
with range in U . Let {γ} denote the range of γ. If g : {γ} → C is a function
continuous on {γ}, u = Re(g), and v = Im(g), then the contour integral of
g along γ, denoted by

∫

γ

g(z ) dz ,

is defined by

∮

γ

(u dx − v dy) + i

∮

γ

(v dx + u dy),



174 7 Dirichlet L-Functions and the Distribution of Quadratic Residues

where, from multi-variable calculus,
∮
γ denotes standard line integration in

the plane along γ of real-valued functions continuous on {γ}. Since it would
take us too far afield to give a detailed account of the properties of this
integral, we instead refer to Conway [3], Sect. IV.1 for that. We will need
only the basic estimate

∣∣∣
∫

γ

g(z ) dz
∣∣∣ ≤ (max

{
|g(z )| : z ∈ {γ}

})
(length of γ). (7.6)

A contour γ is closed if γ(0) = γ(1). The next theorem is one of the most
important and most useful in all of complex analysis.

Theorem 7.8 (Cauchy’s Integral Theorem) If f is analytic in U and γ
is a closed contour in U which does not wind around any point in C\U then

∫

γ

f (z ) dz = 0.

The next theorem provides a very useful formula for computing certain
contour integrals of functions which are analytic outside of a finite set of
points. In order to state it, some terminology needs to be defined, and so we
will do that first.

A closed contour γ is a Jordan contour if γ is an injective function on the
set I \{1}. Geometrically, this says that the path {γ} does not cross itself (see
Fig. 7.5). If γ is a Jordan contour then γ divides C into a pairwise disjoint
union

V ∪ {γ} ∪W ,

where V and W are open sets and

the boundary of V = {γ} = the boundary of W .

Suppose that as t increases from 0 to 1, γ(t) traverses {γ} in the counter-
clockwise direction: we then say that γ is positively oriented. If γ is positively
oriented then as t increases from 0 to 1, for exactly one of the sets V or W ,
γ(t) winds around each of the points in that set exactly once. The set for
which this occurs, either all of the points of V or all of the points of W , is
called the interior of γ. The set C \

(
{γ} ∪ (interior of γ)

)
is the exterior of

γ. It can be shown that the interior of γ is a bounded set and the exterior
of γ is unbounded. All of the facts in this paragraph are the contents of the
Jordan Curve Theorem: for a proof, consult Dugundji [13], Sect. XVII.5.
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Interior of γ

Exterior of γ

{γ}

Fig. 7.5 Geometry and topology of a positively oriented Jordan contour γ

A function f has an isolated singularity at a point a if there is an r > 0
such that f is analytic in 0 < |z−a| < r , but f ′(a) does not exist. An isolated
singularity of f at a is a pole of order m ∈ [1,∞) if there exists δ > 0 and a
function g analytic in |z − a| < δ such that g(a) �= 0 and

f (z ) =
g(z )

(z − a)m
, 0 < |z − a| < δ.

The residue of f at this pole, denoted Res(f , a), is the number

g(m−1)(a)

(m − 1)!
.

If the order of the pole at a is 1 then it is called a simple pole, and its residue
there is

g(a) = lim
z→a

(z − a)f (z ).

We can now state the result on the calculation of contour integrals that we
need.

Theorem 7.9 (The Residue Theorem) Let U be an open subset of C,
f a function analytic in U except for poles located in U . If γ is a positively
oriented Jordan contour in U which does not wind around a point in C \ U
and which does not pass through any of the poles of f, and if a1, . . . , an are
the poles of f that are in the interior of γ, then

1

2πi

∫

γ

f (z )dz =

n∑
k=1

Res(f , ak ).

For proof of Theorems 7.7, 7.8, and 7.9, consult, respectively, Conway [3],
Sects. IV.2, IV.5, and V.2.
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We will apply Theorems 7.8 and 7.9 in the following situation. Let U be
an open set, h and g functions analytic in U , and suppose that a ∈ U is
a zero of g, i.e., g(a) = 0. Moreover suppose that a is a simple zero, i.e.,
g ′(a) �= 0. Then h/g has a simple pole at a if and only if h(a) �= 0, and if
h(a) �= 0 then by way of L’Hospital’s rule,

Res(h/g, a) = lim
z→a

(z − a)h(z )

g(z )
=

h(a)

g ′(a)
.

Hence Theorems 7.8 and 7.9 imply

Lemma 7.10 Let U be an open subset of C, let h and g be analytic in U,
and suppose g has only simple zeros in U. If γ is a positively oriented Jordan
contour in U which does not wind around a point in C \U and does not pass
through any of the zeros of g, and a1, . . . , an are the zeros of g in the interior
of γ, then

1

2πi

∫

γ

h(z )

g(z )
dz =

n∑
k=1

h(ak )

g ′(ak )
.

In Sect. 7.7, Theorems 7.2 and 7.4(ii) will be deduced by integrating
around rectangles a cleverly designed function analytic except for poles and
then applying Lemma 7.10.

7.6 The Convergence of Fourier Series

Theorems 7.3 and 7.4(i) will be deduced by appeals to certain facts
concerning the convergence of Fourier Series. We therefore preface the proof
proper with a brief discussion of Fourier series and their convergence.

If f is a real-valued function defined and integrable over −π ≤ x ≤ π, then
the Fourier series S (f , x ) of f is the series defined by

a0
2

+

∞∑
n=1

(an cosnx + bn sinnx ),

where

a0 =
1

π

∫ π

−π

f (x )dx ,

an =
1

π

∫ π

−π

f (x ) cosnx dx ,

bn =
1

π

∫ π

−π

f (x ) sinnx dx , n = 1, 2, . . . ;

an and bn are called, respectively, the Fourier cosine and sine coefficients of f.
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Recall that a real-valued function f defined on a closed and bounded
interval J = {x : c ≤ x ≤ d} of the real line is piecewise differentiable
on J if there is a finite partition of {x : c ≤ x < d} into subintervals such
that for each subinterval a ≤ x < b, there exists a function g differentiable
on a ≤ x ≤ b such that f ≡ g on a < x < b. A function f that is piecewise
differentiable on J is clearly piecewise continuous there, hence if c < x < d
then the one-sided limits

f±(x ) = lim
t→x±

f (t), lim
t→c+

f (t), and lim
t→d−

f (t)

exist and are finite. It follows that if f is defined on the entire real line, is
periodic of period 2π, and is piecewise differentiable on −π ≤ x ≤ π then
both one-sided limits of f at any real number exist and are finite, and so
the functions f±(x ) = limt→x± f (t) are both defined and real-valued on the
entire real line. Figure 7.6 illustrates what the graph of a typical piecewise
differentiable function looks like.

Fig. 7.6 A piecewise differentiable function

Piecewise differentiable functions exist in abundance and examples are
very easy to come by; functions continuous but not piecewise differentiable
on an interval are not difficult to construct either. Probably the simplest
such example of the latter is to take a closed and bounded interval J on the
real line, and let (an )

∞
n=1 be a strictly increasing sequence of elements of J

converging to the right-hand endpoint d of J , with a1 equal to the left-hand
endpoint of J , say. On each closed interval with endpoints an and an+1 define
the function fn which is 0 at an and an+1, is 1/n at (an + an+1)/2, and is
linear and continuous on each of the closed intervals with left-hand endpoints
an and (an +an+1)/2 and corresponding right-hand endpoints (an +an+1)/2
and an+1, n = 1, 2, . . . . Then define f on J to equal fn on the closed interval
with endpoints an and an+1 for n = 1, 2, . . . , and set f (d) = 0. The function
f is continuous on J , it is not differentiable at each point an , n = 2, 3, . . . ,
and because an → d , f is not piecewise differentiable on J . In Fig. 7.7, we
indicate what the graph of a continuous, non-piecewise differentiable function
constructed along these lines would look like.
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· · ·

Fig. 7.7 A continuous, non-piecewise differentiable function

We will use the following basic theorem on the convergence of Fourier
series, a variant of which was first proved by Dirichlet [9] in 1829.

Theorem 7.11 If f is defined on the real line R, is periodic of period 2π,
and is piecewise differentiable on −π ≤ x ≤ π, then the Fourier series S (f , x )
of f converges to

f+(x ) + f−(x )

2
, x ∈ R.

In particular, if f is continuous at x then S (f , x ) converges to f (x ).

Proof Let

Sn(x ) =
a0
2

+
n∑

k=1

(ak cos kx + bn sin kx ),

denote the n-th partial sum of the Fourier series of f . The key idea of this
argument, due to Dirichlet, and used more or less in all convergence proofs
of Fourier series, is to first express Sn(x ) in an integral form that is more
amenable to an analysis of the convergence involved. Using the definition of
the Fourier cosine and sine coefficients of f , we thus calculate that

Sn(x ) =
1

π

∫ π

−π

f (t)
(1
2
+

n∑
k=1

(cos kx cos kt + sin kx sin kt)
)
dt

=
1

π

∫ π

−π

f (t)
(1
2
+

n∑
k=1

cos k(x − t)
)
dt .
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Using the trigonometric identity

1

2
+

n∑
k=1

cos kθ =
sin
(
n + 1

2

)
θ

2 sin
(
θ
2

) ,

it follows that

Sn(x ) =
1

π

∫ π

−π

f (t)Dn(x − t)dt ,

where

Dn(θ) =
sin
(
n + 1

2

)
θ

2 sin
(
θ
2

)

is the Dirichlet kernel of Sn(x ) (at θ = kπ, k an even integer, we define Dn(θ)
to be n + 1

2 , so as to make Dn a function continuous on R). Using the facts
that f and Dn are of period 2π and Dn is an even function, we can rewrite
the integral formula for Sn as

Sn(x ) =
1

π

∫ π

0

(
f (x + t) + f (x − t)

)
Dn(t)dt , x ∈ R.

If we now let f ≡ 1 in this equation and check that for this f , Sn ≡ 1, we
find that

1 =
2

π

∫ π

0

Dn(t)dt .

After multiplying this equation by 1
2 (f+(x )+ f−(x )) and then subtracting the

equation resulting from that from the equation given by the above integral
formula for Sn , it follows that

Sn(x )−
f+(x ) + f−(x )

2
=

1

π

∫ π

0

(
f (x + t)− f+(x )+ f (x − t)− f−(x )

)
Dn(t)dt .

(7.6)
Now let

Ξ(x , t) =
f (x + t)− f+(x ) + f (x − t)− f−(x )

2 sin

(
t

2

) , 0 < t ≤ π.

With an eye toward defining Ξ(x , ·) at t = 0 so as to make Ξ(x , ·) right-
continuous there, we study the behavior of Ξ(x , t) as t → 0+. To that end,
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first rewrite Ξ(x , t) as

Ξ(x , t) =

(
f (x + t)− f+(x )

t
+

f (x − t)− f−(x )

t

)
· t

2 sin

(
t

2

) , 0 < t ≤ π.

Because f is periodic of period 2π and f is piecewise differentiable on −π ≤
ξ ≤ π, there exists subintervals a ≤ ξ < b, b ≤ ξ < c of the real line and
functions g and h differentiable on a ≤ ξ ≤ b and b ≤ ξ ≤ c, respectively,
such that b ≤ x < c and f (ξ) equals, respectively, g(ξ) or h(ξ) whenever,
respectively, a < ξ < b or b < ξ < c. A moment’s reflection now confirms
that

lim
t→0+

f (x + t)− f+(x )

t
= h′(x ),

lim
t→0+

f (x − t)− f−(x )

t
=

{
−h′(x ) , if x > b,

−g ′(b) , if x = b,

and so we conclude that limt→0+ Ξ(x , t) exists and is finite. If we take Ξ(x , 0)
to be this finite limit, then Ξ(x , ·) is defined and piecewise continuous on
0 ≤ t ≤ π.

It follows that the functions

Ξ(x , t) sin
(
n +

1

2

)
t , 0 ≤ t ≤ π,

and

(
f (x + t)− f+(x ) + f (x − t)− f−(x )

)
Dn(t), 0 ≤ t ≤ π,

are both piecewise continuous on 0 ≤ t ≤ π and agree on 0 < t ≤ π. The
latter function can hence be replaced by the former function in the integrand
of the integral on the right-hand side of (7.6) to obtain the equation

Sn(x )−
f+(x ) + f−(x )

2
=

1

π

∫ π

0

Ξ(x , t) sin
(
n +

1

2

)
t dt .

The conclusion of Theorem 7.11 will now follow if we prove that

lim
n→+∞

1

π

∫ π

0

Ξ(x , t) sin
(
n +

1

2

)
t dt = 0.
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In order to do that, use the formula for the sine of a sum to write

∫ π

0

Ξ(x , t) sin
(
n +

1

2

)
t dt =

∫ π

−π

α(t) sinnt dt +

∫ π

−π

β(t) cosnt dt ,

where

α(t) =

⎧
⎨
⎩

0 , if − π ≤ t < 0,

Ξ(x , t) cos

(
t

2

)
, if 0 ≤ t ≤ π,

β(t) =

⎧
⎨
⎩

0 , if − π ≤ t < 0,

Ξ(x , t) sin

(
t

2

)
, if 0 ≤ t ≤ π.

Because α and β are functions piecewise continuous on −π ≤ t ≤ π, our
proof will be done upon verifying that if a function ψ is piecewise continuous
on −π ≤ t ≤ π and if an and bn are the Fourier cosine and sine coefficients
of ψ then

lim
n

an = 0 = lim
n

bn

(This very important fact is known as the Riemann-Lebesgue lemma). In

order to see that, note that the set of functions
{

1√
2π

}
∪
{

1√
π
cosnt :

n ∈ [1,∞)
}
∪
{

1√
π
sinnt : n ∈ [1,∞)

}
is orthonormal with respect to the

inner product defined by integration over the interval −π ≤ t ≤ π, hence a
straightforward calculation using this fact shows that if σn denotes the n-th
partial sum of the Fourier series of ψ then

0 ≤ 1

π

∫ π

−π

(ψ − σn)
2 dx =

1

π

∫ π

−π

ψ2 dx −
(a2

0

2
+

n∑
k=1

(a2
k + b2k )

)
,

and so

a2
0

2
+

n∑
k=1

(a2
k + b2k ) ≤

1

π

∫ π

−π

ψ2 dx < +∞, for all n ∈ [1,∞)

(this is Bessel’s inequality). Hence the series

a2
0

2
+

∞∑
n=1

(a2
n + b2n)

converges, and so an and bn both tend to 0 as n → +∞. QED
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Remarks

(1) Another very useful class of real-valued functions for which the conclusion
of Theorem 7.11 is also valid is the functions f that are defined on the
whole real line, periodic of period 2π, and are of bounded variation on
−π ≤ x ≤ π. This means that the supremum of the sums

m∑
i=1

|f (xi)− f (xi−1)|

as {−π = x0 < x1 < · · · < xm = π} varies over all divisions of the
interval −π ≤ x ≤ π by a finite number of points x0, . . . , xm is finite.
A result from elementary real analysis asserts that if f is of bounded
variation on −π ≤ x ≤ π then f is the difference of two functions
both of which are non-decreasing on −π ≤ x ≤ π, and so if f is also
defined on the entire real line and is periodic of period 2π then the
one-sided limits f±(x ) exist and are finite for all x . That Theorem 7.11
is valid for all functions of bounded variation on −π ≤ x ≤ π is in
fact what Dirichlet proved in his landmark paper [9]. This version of
Theorem 7.11 also works in our proof of Theorems 7.3 and 7.4 infra; we
have proved Theorem 7.11 for piecewise differentiable functions because
the argument which covers that situation is a bit more elementary than
the one which suffices for functions of bounded variation. For a proof
of the latter theorem, the interested reader should consult Zygmund
[65], Theorem II.8.1. However, note well: a function that is piecewise
differentiable need not be of bounded variation and a function of bounded
variation is not necessarily piecewise differentiable.

(2) It transpires that if f is a complex-valued function defined on the
integers which is periodic in the sense that for some integer m > 1,
f (a) = f (b) whenever a ≡ b mod m, then f can be expanded in terms
of a finite Fourier series in complete analogy with the expansion into
infinite Fourier series that we have just discussed. When this finite Fourier
series expansion is applied to Gauss sums, another proof of the Law of
Quadratic Reciprocity results, as we will see in Sect. 7.9 below.

7.7 Proof of Theorems 7.2, 7.3, and 7.4

We begin this section with the proof of Theorem 7.2. Let p ≡ 3 mod 4: we
must prove that

q(0, p/2) =

√
p

π

(
2− χp(2)

)
L(1, χp).
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Toward that end, consider the functions F (z ) and f (z ) defined by

F (z ) =
∑

0<j<p/2

χp(j ) cos

((
1− 4j

p

)
πz

)
,

f (z ) =
πF (z )

z cos(πz )
.

We will prove Theorem 7.2 by integrating f (z ) around rectangles and then
applying Lemma 7.10.

Note first that the numerator and denominator of f are entire functions,
then that the zeros of the denominator of f occur at z = 0, zn = (2n −
1)/2, n ∈ Z, and that they are all simple. In order to apply Lemma 7.10 to
f , we therefore need to calculate

πF (z )
d
dz (z cosπz )

at z = 0, zn , n ∈ Z.

At z = 0 this is

πF (0) = π
∑

0<j<p/2

χp(j ) = πq(0, p/2), (7.7)

and at z = zn , it is

(−1)n
F (zn)

zn
.

We claim that

(−1)n
F (zn)

zn
= −

√
p

2n − 1
χp(2n − 1), n ∈ Z. (7.8)

In order to check this, we will first use the elementary identity

cos z =
eiz + e−iz

2
(7.9)

to calculate F (zn ) as a Gauss sum. Toward that end, let αj = 1 − (4j/p);
then

exp

(
i
2n − 1

2
αjπ

)
= exp

(
i
2n − 1

2
π

)
exp

(
−i

2πj (2n − 1)

p

)

= (−1)n+1i exp

(
−i

2πj (2n − 1)

p

)
,



184 7 Dirichlet L-Functions and the Distribution of Quadratic Residues

and similarly

exp

(
−i

2n − 1

2
αjπ

)
= (−1)n i exp

(
i
2πj (2n − 1)

p

)
,

Hence from (7.9) we deduce that

F (zn) =
(−1)n+1i

2

∑
0<j<p/2

χp(j ) exp

(
−2πij (2n − 1)

p

)

+
(−1)n i

2

∑
0<j<p/2

χp(j ) exp

(
2πij (2n − 1)

p

)
.

Observe now that the exponential factors here are periodic of period p in
the variable j and, as p ≡ 3 mod 4, χp(−1) = −1. We can hence shift the
summation in the first term on the right-hand side of this equation to express
that term as

(−1)n i

2

∑
p/2<j<p

χp(j ) exp

(
2πij (2n − 1)

p

)
,

hence

F (zn) =
(−1)n i

2

∑
0<j<p

χp(j ) exp

(
2πij (2n − 1)

p

)
=

(−1)n i

2
G(2n − 1, p).

(7.10)
Hence (7.10), (7.5), and Theorem 7.6 imply

(−1)n
F (zn)

zn
=

i

2zn
G(2n − 1, p)

=
i

2n − 1
χp(2n − 1) G(1, p)

= −
√
p

2n − 1
χp(2n − 1).

This verifies (7.8).
Now for the contour around which we will integrate f . Let γN denote

the positively oriented rectangle centered at the origin, with horizontal side
length 4pN and vertical side length 2

√
N , where N is a fixed positive integer.

γN is clearly a Jordan contour, and the zeros of z cosπz inside γN are 0 and
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zn , n ∈ [−pN + 1, pN ]. Hence (7.7), (7.8), and Lemma 7.10 imply that

1

2πi

∫

γN

f (z )dz = πq(0, p/2)−√
p

pN∑
n=−pN+1

χp(2n − 1)

2n − 1
. (7.11)

Because χp(−1) = −1,

χp(k)

k
=

χp(−k)

−k
, for all k ∈ Z \ {0},

hence

pN∑
n=−pN+1

χp(2n − 1)

2n − 1
= 2

pN∑
n=1

χp(2n − 1)

2n − 1
. (7.12)

We claim that

lim
N→∞

1

2πi

∫

γN

f (z ) dz = 0. (7.13)

Assuming this for a moment, we deduce from (7.11)–(7.13) that

q(0, p/2) =
2
√
p

π
lim

N→∞

pN∑
n=1

χp(2n − 1)

2n − 1
. (7.14)

In order to evaluate the limit on the right-hand side of (7.14), note that for
each integer M > 1,

χp(2)

2

M−1∑
1

χp(k)

k
=

M−1∑
1

χp(2k)

2k
,

hence

2M−1∑
1

χp(k)

k
− χp(2)

2

M−1∑
1

χp(k)

k
=

M∑
1

χp(2n − 1)

2n − 1
.

Letting M → ∞ in this equation, we obtain

lim
M→∞

M∑
1

χp(2n − 1)

2n − 1
=

(
1− χp(2)

2

) ∞∑
1

χp(k)

k

=

(
1− χp(2)

2

)
L(1, χp).
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Hence from (7.14) it follows that

q(0, p/2) =

√
p

π

(
2− χp(2)

)
L(1, χp),

the conclusion of Theorem 7.2.
We now need only to verify (7.13). This requires appropriate estimates of

f along the sides of γN . Consider first the function

g(z ) =
cos(απz )

cos(πz )
, α = 1− 4j

p
,

coming from a term of F (z )/ cosπz . Using (7.9), we calculate that for z =
x + iy,

|g(z )|2 = h(z )e2π(α−1)|y|, where

h(z ) =
e−4πα|y| + 2e−2π(α−1)|y| cos 2x + 1

e−4π|y| + 2e−2π|y| cos 2x + 1
.

We have

α− 1 ≤ −4/p, for all α,

h(z ) < 4/(1/2) = 8, for all |y| ≥ 1,

and so

|g(z )| < 2
√
2 e−(4π/p)|y|, for all |y| ≥ 1.

Hence

∣∣∣∣
F (z )

cos(πz )

∣∣∣∣ < p
√
2 e−(4π/p)|y|, for all |y| ≥ 1. (7.15)

From (7.15) it follows that

|f (z )| < p
√
2 e−(4π/p)

√
N

√
N

, for all z on the horizontal sides HN of γN .

(7.16)
By (7.15), F (z )/ cos(πz ) is bounded on the vertical line Re z = 2p.
But F (z )/ cos(πz ) is periodic of period 2p, hence there is a constant C ,
independent of N , such that

∣∣∣∣
F (z )

cos(πz )

∣∣∣∣ ≤ C , for all z on the vertical sides VN of γN .
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Hence

|f (z )| ≤ C

2pN
, for all z on the vertical sides VN of γN . (7.17)

The estimates (7.6), (7.16), and (7.17) now imply that

∣∣∣∣
∫

γN

f (z ) dz

∣∣∣∣ ≤
∣∣∣∣
∫

HN

f (z ) dz

∣∣∣∣+
∣∣∣∣
∫

VN

f (z ) dz

∣∣∣∣

≤ p
√
2 e−(4π/p)

√
N

√
N

· 8pN +
C

2pN
· 4
√
N

→ 0, as N → ∞.

QED
Now for the proof of Theorem 7.3. Here p ≡ 1 mod 4 and we must show

that

q(0, p/4) =

√
p

π
L(1, χ4p).

The proof we give is based on the convergence of Fourier series and is
very much in the same spirit as Dirichlet’s original argument. Let f be the
function defined on R which is

1, for 0 ≤ x < π/2, 3π/2 < x ≤ 2π,

0, for x = π/2, 3π/2,

− 1, for π/2 < x < 3π/2,

and is periodic of period 2π. Clearly f is piecewise differentiable on −π ≤
x ≤ π, hence calculation of the Fourier series of f and Theorem 7.11 imply
that

f (x ) = − 4

π

∞∑
n=1

(−1)n

2n − 1
cos(2n − 1)x , −∞ < x < +∞. (7.18)

Next, let χ = χ4p = χ4χp . Multiply the equation of Gauss sums

G(2n − 1, χp) = χp(2n − 1)G(1, p),

from (7.5), by

(−1)n

2n − 1
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to obtain

(−1)nχp(2n − 1)

2n − 1
G(1, p) =

p−1∑
j=1

χp(j )
(−1)n

2n − 1
exp

(
2πi(2n − 1)j

p

)
.

(7.19)
By virtue of Theorem 7.6,

G(1, p) =
√
p,

and so, upon taking the real part of (7.19), we arrive at

√
p

(−1)nχp(2n − 1)

2n − 1
=

p−1∑
j=1

χp(j )
(−1)n

2n − 1
cos

(
(2n − 1) · 2πj

p

)
. (7.20)

The definition of χ4 implies that

χ(k) = 0, k even,

χ(2n − 1) = (−1)n+1χp(2n − 1),

hence

∞∑
n=1

(−1)nχp(2n − 1)

2n − 1
= −

∞∑
k=1

χ(k)

k
= −L(1, χ). (7.21)

On the other hand, we have from (7.18) that

− π

4
f

(
2πj

p

)
=

∞∑
n=1

(−1)n

2n − 1
cos

(
(2n − 1) · 2πj

p

)
, j = 1, . . . , p−1. (7.22)

Consequently, we can sum (7.20) from n = 1 to ∞, interchange the order of
summation on the right-hand side of the equation that results from that, and
then use (7.21) and (7.22) to deduce that

√
p L(1, χ) =

π

4

p−1∑
j=1

f

(
2πj

p

)
χp(j ). (7.23)

The final step is to evaluate the right-hand side of (7.23). Note that

0 < j <
p

4
iff 0 <

2πj

p
<

π

2
,
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p

4
< j <

p

2
iff

π

2
<

2πj

p
< π,

p

2
< j <

3p

4
iff π <

2πj

p
<

3π

2
,

3p

4
< j < p iff

3π

2
<

2πj

p
< 2π.

Hence, according to the definition of f ,

right-hand side of (7.23) =
π

4

(
q(0, p/4)− q(p/4, p/2)− q(p/2, 3p/4)

+ q(3p/4, p)
)
.

But by way of (7.3),

q(0, p/4) = q(3p/4, p),

q(p/4, p/2) = −q(0, p/4),

q(p/2, 3p/4) = −q(0, p/4),

and so

right-hand side of (7.23) = πq(0, p/4),

whence

q(0, p/4) =

√
p

π
L(1, χ).

QED
The proof of Theorem 7.4 naturally divides into the verification of each of

the statements (i) and (ii), and so we will verify each of these in turn
Begin with statement (i). We have here that p ≡ 1 mod 4, we want to

verify that

q(0, p/3) =

√
3p

2π
L(1, χ3p),

and we will use Fourier series once more. Let f be the function that is

1, for 0 ≤ x < 2π/3, 4π/3 < x ≤ 2π,

1/2, for x = 2π/3, 4π/3,

0, for 2π/3 < x < 4π/3,
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and is periodic of period 2π. Calculation of the Fourier series of f and
Theorem 7.11 imply that

f (x ) =
2

3
+

√
3

π

∞∑
n=1

an
n

cosnx , −∞ < x < +∞,

where

an =

⎧
⎨
⎩

0, if 3 divides n,

1, if n ≡ 1 mod 3,

−1, if n ≡ 2 mod 3.

Observe now that

an = χ3(n), for all n,

and so

f (x ) =
2

3
+

√
3

π

∞∑
n=1

χ3(n)
cos nx

n
, −∞ < x < +∞. (7.24)

Now multiply both sides of

G(n, χp) = χp(n)G(1, p)

by

√
3

πn
χ3(n),

equate real parts in the equation which results, and then use Theo-
rem 7.6, (7.24), and summation of the resulting terms from n = 1 to ∞
as was done in the proof of Theorem 7.3 to obtain

√
3p

π
L(1, χ3p) =

√
3

π
G(1, p)

∞∑
n=1

χ3(n)χp(n)

n
=

p−1∑
j=1

(
f

(
2πj

p

)
− 2

3

)
χp(j ).

Because
∑p−1

1 χp(j ) = 0, the sum on the right is

p−1∑
j=1

f

(
2πj

p

)
χp(j ) =

∑
0<j<p/3

χp(j ) +
∑

2p/3<j<p

χp(j ), by definition of f ,
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= 2
∑

0<j<p/3

χp(j ), because χp(−1) = 1,

= 2q(0, p/3).

Hence

q(0, p/3) =

√
3p

2π
L(1, χ3p),

which is the conclusion of Theorem 7.4(i).
The verification of statement (ii) of Theorem 7.4 follows by either contour

integration or the method of Fourier series along the same lines of argument
that we have used before. We will outline the main ideas in the contour-
integration proof and leave the rest of the details (and the proof via Fourier
series) as an instructive exercise for the interested reader.

Let

f (z ) =
πF (z )

z sinπ

(
z +

1

3

) ,

where

F (z ) = 2i
∑

0<j<p/3

χp(j ) sin

(
πz +

π

3
− 6πjz

p

)
+e−3πiz

∑
p/3<j<2p/3

χp(j )e
6πijz/p.

We must calculate

πF (z )

d

dz

(
z sinπ

(
z +

1

3

))

at z = 0, n − 1
3 , n ∈ Z. At z = 0, we obtain

πF (0)

sin
(π
3

) = 2πi q(0, p/3),

and at z = n − 1
3 , we find that the value is

3(−1)n

3n − 1
F

(
n − 1

3

)
= − 3

3n − 1
G(3n − 1, p) = − 3

3n − 1
χp(3n − 1)G(1, p).
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We now integrate f (z ) over a suitable rectangle γN as in the proof of

Theorem 7.2, apply Lemma 7.10 using the values of
πF (z )

d
dz

(
z sinπ

(
z + 1

3 )
)) that

we have calculated, and then let N → +∞ as before to deduce that

0 = 2πi q(0, p/3)− 3G(1, p)

∞∑
n=−∞

χp(3n − 1)

3n − 1

= 2πi q(0, p/3)− 3G(1, p)

( ∞∑
n=1

χp(3n − 1)

3n − 1
+

∞∑
n=0

χp(3n + 1)

3n + 1

)

= 2πi q(0, p/3)− 3G(1, p)

( ∞∑
n=1

χp(n)

n
−

∞∑
n=1

χp(3n)

3n

)
,

from which Theorem 7.4(ii) follows easily after another application of
Theorem 7.6. QED

Remarks

(1) Berndt’s paper [1] is well worth studying; in it, he establishes many
other results on positivity and negativity of the quadratic excess over
various intervals: for example if p ≡ 11, 19 mod 40 then q(0, p/10) > 0
and if p ≡ 5 mod 24 then q(3p/8, 5p/12) < 0. He also gives a very
interesting discussion of the history of this problem with numerous
pertinent references to the literature.

(2) Because the statements in Theorem 7.1 are so important in the theory of
quadratic residues, elementary proofs of them would be of great interest.
However, despite numerous efforts by many people during the intervening
175 years, those proofs continue to remain elusive.

7.8 An Elegant Proof of Lemma 4.8 for Real
Dirichlet Characters

Because of the crucial role that it has played in the work done in this chapter,
we will now prove Lemma 4.8 for real, non-principal Dirichlet characters χ,
i.e., we will show that if χ(Z) = [−1, 1] then L(1, χ) �= 0. The proof that we
will present is due to de la Valleé Poussin [45] and is one of the most elegant
arguments available for this. Following Davenport [6, pp. 32–34], we start
by recalling some well-known facts about analytic continuation of Riemann’s
zeta.

Following long tradition in these matters, we let s = σ + it denote a
complex variable. Proposition 5.5 implies that ζ(s) is analytic in σ > 1; we
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want to show that ζ can be extended to a function analytic in σ > 0 except
for a simple pole at s = 1. In order to do that, let σ > 1 and then write

ζ(s) =

∞∑
n=1

n−s =

∞∑
n=1

n(n−s − (n + 1)−s)

= s

∞∑
n=1

n

∫ n+1

n

x−(s+1)dx

= s

∫ ∞

1

[x ]x−(s+1)dx ,

where [x ] denotes the greatest integer which does not exceed x . Now let
[x ] = x − (x ), so that (x ) denotes the fractional part of x . This gives

ζ(s) =
s

s − 1
− s

∫ ∞

1

(x )x−(s+1)dx , σ > 1. (7.25)

The integral on the right is absolutely convergent for σ > 0, uniformly
convergent for σ ≥ ε > 0, and all Riemann sums of the integrand are
entire functions of s , hence this integral defines a function analytic in σ > 0.
Consequently the right-hand side of (7.25) extends ζ(s) to a function analytic
in σ > 0 except for a simple pole at s = 1. It hence follows that

lim
s→1+

ζ(s) = +∞. (7.26)

Next we observe that the proof of the Euler-Dedekind product expansion
of the zeta function of an algebraic number field F given in Theorem 5.8 can
be easily modified to show that that product expansion is valid for all σ > 1.
If we hence take the number field F in that theorem to be Q, we deduce that
ζ has the Euler-product expansion

ζ(s) =
∏
q

(1 − q−s)−1, σ > 1.

We also have from the estimate in the proof of (5.7) in Chap. 5 that the series

∑
q

log(1 + q−σ)

is absolutely convergent for σ > 1. Hence

|ζ(s)| ≥
∏
q

(1 + q−σ)−1 = exp

(
−
∑
q

log(1 + q−σ)

)
> 0, σ > 1,



194 7 Dirichlet L-Functions and the Distribution of Quadratic Residues

and so ζ(s) never vanishes in σ > 1.
Now let χ be a real, non-principal Dirichlet character, and suppose by

way of contradiction that L(1, χ) = 0. Because L(s , χ) is analytic in σ > 0
(Lemma 7.5(i)) and ζ has a simple pole at s = 1 as its only singularity in
σ > 0, it follows that

L(s , χ)ζ(s) is analytic in σ > 0.

Because ζ(2s) �= 0 in σ > 1/2, the function

ψ(s) =
L(s , χ)ζ(s)

ζ(2s)

is analytic in σ > 1/2. Equation (7.26) implies that lims→ 1
2
+ ζ(2s) = +∞,

hence

lim
s→ 1

2
+
ψ(s) = 0. (7.27)

For σ > 1, ψ has the Euler product expansion

ψ(s) =
∏
q

(1− χ(q)q−s )−1(1− q−s)−1

(1− q−2s)−1
.

Let m = the modulus of χ. χ(q) = 0 if and only if q divides m, and the factor
of the Euler product corresponding to such q is

1 + q−s .

If χ(q) = −1 then the factor corresponding to q is

(1 + q−s )−1(1− q−s )−1

(1− q−2s )−1
= 1.

Hence

ψ(s)∏
q|m

(1 + q−s)
=

∏
q:χ(q)=1

1 + q−s

1− q−s
, σ > 1. (7.28)

(We note incidentally that X = {q : χ(q) = 1} must be infinite; otherwise

ψ(s) =
∏
q|m

(1 + q−s )
∏
q∈X

1 + q−s

1− q−s
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and this product has only a finite number of factors, hence lims→ 1
2
+ ψ(s) > 0,

contrary to (7.27)).
Next let

φ(s) =
ψ(s)∏

q|m
(1 + q−s)

.

As the denominator here is nonzero in σ > 0, φ(s) is analytic in σ > 1/2,
and (7.27) implies that

lim
s→ 1

2
+
φ(s) = 0. (7.29)

We will now show that the product expansion (7.28) of φ implies that

φ(s) > 1 for
1

2
< s < 2. (7.30)

This contradicts (7.29) and so Lemma 4.8 follows for real non-principal
characters.

In order to verify (7.30), observe that

1 + q−s

1− q−s
= 1 + 2

∞∑
n=1

q−ns , σ > 1,

hence we can use (7.28) to express φ(s) as a Dirichlet series

φ(s) =

∞∑
n=1

an
ns

, σ > 1,

where the coefficients an are calculated like so: a1 = 1, and if n ≥ 2 then

an =

{
2|π(n)| , if π(n) ⊆ {q : χ(q) = 1},

0 , otherwise.

In particular, an ≥ 0, for all n.
Because φ is analytic in σ > 1

2 , it is a consequence of Theorem 7.7 that
φ has a Taylor series expansion centered at 2 with radius of convergence at
least 3

2 , i.e.,

φ(s) =
∞∑

m=0

φ(m)(2)

m!
(s − 2)m , |s − 2| < 3

2
.
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We can calculate φ(m)(2) by term-by-term differentiation of the Dirichlet
series: this series is locally uniformly convergent in σ > 1 and so we can
apply the theorem which asserts that a series of functions analytic in an
open set U and locally uniformly convergent there has a sum that is analytic
in U and the derivative can be calculated by term-by-term differentiation of
the series. The result is

φ(m)(2) = (−1)m
∞∑

n=1

an(log n)
m

n2
= (−1)mbm , bm ≥ 0.

Hence

φ(s) =

∞∑
m=0

bm
m!

(2− s)m , |s − 2| < 3

2
.

If 1
2 < s < 2 then all terms of this series are non-negative, hence φ(s) ≥

φ(2) > 1 for 1
2 < s < 2. QED

7.9 A Proof of Quadratic Reciprocity via Finite
Fourier Series

In this section we will apply a finite Fourier series expansion to powers of the
Gauss sums

p−1∑
n=0

χp(n)ζ
nm , ζ = exp(2πi/p),

to derive once more the Law of Quadratic Reciprocity. This proof is due to
H. Rademacher, and we follow his account of it from [46].

The Fourier series expansion to which we are referring is given in the
following lemma:

Lemma 7.12 If m > 1 is an integer, F (t) is a (complex-valued) function
defined on Z of period m, and ζm = exp(2πi/m), then

F (t) =

m−1∑
n=0

a(n)ζntm ,

where

a(n) =
1

m

m−1∑
t=0

F (t)ζ−nt
m .
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In order to see why the expansion of F in Lemma 7.12 can be viewed
as a discrete Fourier series, we need to consider the complex version of the
real-valued Fourier series that was defined and studied in Sect. 7.6. To that
end, for a complex-valued function f (x ) defined on the interval −π ≤ x ≤ π
of the real line, define the (complex) Fourier series of f as

∞∑
n=−∞

fne
inx , (∗)

where

fn =
1

2π

∫ π

−π

f (x )e−inx , n = 0,±1,±2, . . . ,

are the (complex) Fourier coefficients of f. When f is real-valued, the Fourier
series S (f ) that we defined in Sect. 7.6 can be recovered from the series (∗) by
grouping the terms with indices −n and n together and formally rewriting
the series as

f0 +
∞∑

n=1

(fne
inx + f−ne

−inx ).

If the Fourier series of f converges to f (x ) then we can write

f (x ) =

∞∑
n=−∞

fne
inx . (7.31)

We now proceed to discretize this continuous picture. First, replace the
continuous variable x by the discrete variable t = 0, 1, 2, . . . ,m − 1. Second,
substitute the exponential function ζtm = exp(2πit/m) and the function
F (t) in Lemma 7.12 for the exponential function eix and the function f (x ),
respectively. The analog of the Fourier coefficient fn , which is the mean value
of the function f (x )e−inx over the interval −π ≤ x ≤ π, is then the mean a(n)
of the values at t = 0, 1, 2, . . . ,m−1 of the function F (t)ζ−nt

m . It follows that
the discrete version of (7.31), in other words, a finite Fourier series expansion
of F (t), is precisely the conclusion of Lemma 7.12.

Proof of Lemma 7.12 By direct substitution using the stated formula for
a(n), we compute that

m−1∑
n=0

a(n)ζntm =
1

m

m−1∑
n=0

(
m−1∑
s=0

F (s)ζ−ns
m

)
ζntm
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=
1

m

m−1∑
s=0

F (s)
m−1∑
n=0

ζn(t−s)
m

= F (t),

where the last line follows by the same calculation that we used to derive
(3.21) in Sect. 3.9 of Chap. 3. QED

N.B. We will refer to the coefficients a(n) in the conclusion of Lemma 7.12
as the Fourier coefficients of F. We also note that it follows from the fact
that F (t) and ζ±nt

m are periodic of period m that the sums in the formulae
for F (t) and a(n) in Lemma 7.12 can be taken over any complete set of
ordinary residues modulo m without a change in their values; we will use
this observation without further reference in the rest of this section.

Let p and q be distinct odd primes, with ζ = exp(2πi/p). In order to make
the writing less cumbersome, we change the notation slightly as follows: for
each t ∈ Z, let

G(ζt ) =

p−1∑
n=0

χp(n)ζ
tn .

Recall from Theorem 3.14 that

G(ζ)2 = (−1)
1
2 (p−1)p,

and so

G(ζ)q−1 =
(
G(ζ)2

) 1
2 (q−1)

= (−1)
1
2 (p−1) 1

2 (q−1)p
1
2 (q−1).

We conclude from Euler’s criterion (Theorem 2.5) that

G(ζ)q−1 ≡ (−1)
1
2 (p−1) 1

2 (q−1)χq(p) mod q. (7.32)

The LQR will follow from (7.32) if we can prove that

G(ζ)q−1 ≡ χp(q) mod q, (7.33)

because then (7.32) and (7.33) will imply that

(−1)
1
2 (p−1) 1

2 (q−1)χq(p) ≡ χp(q) mod q,

and this congruence must in fact be an equality since the difference of both
sides must be either 0 or ±2 and also divisible by the odd prime q. In order
to deduce the LQR, we must therefore verify (7.33).
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This verification will be done by expanding the function G(ζt )q as a finite
Fourier series by way of Lemma 7.12 with m = p. Thus, we calculate that

G(ζt )q =
∑

u mod p

aq(u)ζ
ut , (7.34)

with Fourier coefficients

aq(u) =
1

p

∑
v mod p

G(ζv)qζ−vu

=
1

p

∑
v mod p

∑
m1 mod p

χp(m1)ζ
vm1 · · ·

∑
mq mod p

χp(mq)ζ
vmq ζ−vu

=
1

p

∑
v mod p

∑
v,m1,...,mq

mod p

χp(m1m2 · · ·mq)ζ
v(m1+m2+···+mq−u)

=
1

p

∑
v,m1,...,mq

mod p

χp(m1m2 · · ·mq)
∑

v mod p

ζv(m1+m2+···+mq−u).

Thus

aq(u) =
∑

mj mod p
m1+m2+···+mq≡u mod p

χp(m1m2 · · ·mq). (7.35)

We will now use the equation

G(ζt ) = χp(t)G(ζ), t ∈ Z, (7.36)

from Lemma 3.15 to calculate aq(u) in a different way. Because q is odd, it
follows from (7.36) that

G(ζv)q = χp(v)G(ζ)q .

Hence

aq (u) =
1

p
G(ζ)q

∑
v mod p

χp(v)ζ
−vu

=
1

p
G(ζ)qG(ζ−u )

=
1

p
G(ζ)qχp(u)G(ζ−1),
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where in the last line, we have applied (7.36) again, this time with ζ replaced
by ζ−1. Comparing the last formula with its own special case u = 1, we find
that

aq(u) = χp(u)aq(1). (7.37)

Next, insert (7.37) into (7.34) to deduce that

G(ζt )q = aq (1)
∑

u mod p

aq(u)ζ
ut = aq(1)G(ζt ).

Because G(ζ) �= 0 it follows from this equation and another application
of (7.37) that

G(ζ)q−1 = aq(1) = χp(q)aq (q). (7.38)

We will use (7.35) and (7.38) to deduce (7.33); that will complete this proof
of the LQR. Toward that end, we substitute (7.35) into (7.38) to obtain

G(ζ)q−1 = χp(q)
∑

mj mod p
m1+m2+···+mq≡q mod p

χp(m1m2 · · ·mq). (7.39)

This equation must be reduced modulo q. In order to do that, we first examine
the possibilities for the set of summation variables m1 . . . ,mq . Suppose that

m1 ≡ m2 ≡ · · · ≡ mq mod p.

This requires that

m1 +m2 + · · ·+mq ≡ qmj ≡ q mod p,

hence mj ≡ 1 mod p, yielding only the one summand

χp(1) = 1. (7.40)

All other solutions m1, . . . ,mq of

m1 +m2 + · · ·+mq ≡ q mod p

must contain non-congruent integers. If such a solution is cyclically permuted,
then another solution of this type will be obtained. Indeed, a cyclic
permutation of

m1,m2, . . .mq
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can be expressed as

m1+s ,m2+s , . . . ,mq+s ,

for some s , 1 ≤ s < q, with the subscripts here being taken modulo q. If this
set of solutions is of the same kind as the previous one, then

mj ≡ mj+s mod p.

Hence, upon successively setting j = s , 2s , . . . , (q − 1)s , we obtain

ms ≡ m2s ≡ · · · ≡ mqs mod p,

where the subscripts here form a complete set of ordinary residues mod q, and
this puts us in the case that we have already considered. It follows that those
solutions of m1 + m2 + · · ·mq ≡ q mod p in which non-congruent numbers
appear produce the term

qχp(m1m2 · · ·mq)

and these terms sum to a number congruent to 0 mod q. Consequently, when
the sum

∑
mj mod p

m1+m2+···+mq≡q mod p

χp(m1m2 · · ·mq)

is reduced modulo q, the only nonzero term is the single term (7.40).
Therefore by (7.39),

G(ζ)q−1 ≡ χp(q) mod q,

which verifies (7.33), and hence also the LQR. QED
In analogy with the Fourier-series expansion of a function f (x ) of a real

variable x , the functions ζntm in Lemma 7.12 can be viewed as the harmonics of
the function F (t), with the amplitude of the harmonics given by the Fourier
coefficients a(n). The proof of quadratic reciprocity that we have presented
here can thus be interpreted as showing that the LQR comes from the fact
that, modulo the prime q, the dominant harmonic of G(ζt )q is ζqt with
amplitude congruent to 1 modulo q.



Chapter 8

Dirichlet’s Class-Number Formula

Although De la Valleé Poussin’s proof of Lemma 4.8 is elegant and efficient,
it fails to explain exactly why the values of L-functions at s = 1 are positive,
and consequently the actual reason why the sums in Theorem 7.1 turn out
to be positive is not yet clear. Often in number theory, integers which occur
in interesting situations are in fact positive because they count something,
and it transpires that this is the case in Theorem 7.1. The sums there in fact
count equivalence classes of binary quadratic forms, or, to say the same thing
in a different way, ideal classes in quadratic number fields. In order to see
this, we will now present a second proof of Lemma 4.8 that uses Dirichlet’s
famous class-number formula, which formula calculates the value of L(1, χ)
when χ is a real (primitive) Dirichlet character in terms of the number of
certain equivalence classes of quadratic forms. As we did in our first proof of
Lemma 4.8, we will follow the exposition for this as set forth in Davenport
[6].

We begin things in this chapter by using some structure theory of
Dirichlet characters in the first section to reduce the problem of proving
that L(1, χ) �= 0 for an arbitrary real non-principal Dirichlet character χ
to proving that that is true for an arbitrary real primitive character. This
highlights the importance of real primitive characters in our discussion, and
so the facts concerning the structure of those characters that will be required
are recorded in Sect. 8.2. In order to precisely state what the class-number
formula asserts, we need to explain what a class number is, and that is the
subject of Sects. 8.3 and 8.4. Section 8.3 recalls the fundamental equivalence
relation defined on the set of all primitive and irreducible quadratic forms
with a given discriminant that we first discussed in Sect. 3.12 of Chap. 3, and
Sect. 8.4 uses the equivalence classes coming from this equivalence relation
and some information on the representation of integers by quadratic forms to
define the class number. Dirichlet’s class-number formula is stated precisely
and proved in Sect. 8.5. Dirichlet’s formula calculates the value at s = 1 of the

© Springer International Publishing Switzerland 2016
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L-function of a primitive Dirichlet character as the product of a canonically
determined positive constant and the class number of an appropriate set of
quadratic forms, thereby providing the definitive explanation of the positivity
of that value of the L-function. In Sect. 8.7, we reformulate the class-number
formula in terms of the class number determined by the ideal classes in
quadratic number fields, and we also give class-number formulae for the sums
of the Legendre symbols in Theorem 7.1. As an extra bonus from the theory
discussed in Sect. 8.1, we give in the last section of this chapter our seventh
and final proof of the Law of Quadratic Reciprocity.

8.1 Some Structure Theory for Dirichlet Characters

We begin by discussing some useful facts regarding the structure of Dirichlet
characters. Let χ be a Dirichlet character of modulus b, and let d be a positive
divisor of b. The number d is an induced modulus of χ if χ(n) = 1 whenever
gcd(n, b) = 1 and n ≡ 1 mod d . In other words, d is an induced modulus of χ
if χ acts like a character with modulus d on the integers in an ordinary residue
class of 1 mod d which are relatively prime to b. One can show without too
much difficulty that a positive divisor d of b is an induced modulus of χ if
and only if there exists a Dirichlet character ξ of modulus d such that

χ(n) = χ1(n)ξ(n), for all n ∈ Z, (8.1)

where χ1 denotes the principal character of modulus b. Hence the induced
moduli of χ are precisely the moduli of Dirichlet characters which “induce”
the character χ in the sense of (8.1). It is a straightforward consequence
of (8.1) that χ is non-principal if and only if ξ is non-principal. Because d
is a factor of b, it also follows from (8.1) and the Dirichet product formula
for L-functions (Lemma 7.5(ii)) that the L-function of χ is a factor of the
L-function of ξ.

The modulus b is clearly an induced modulus of χ, and if b is the only
positive divisor of b which is an induced modulus, χ is said to be primitive.
If d is the smallest positive divisor of b that is an induced modulus of χ
i.e., d is the conductor of χ, then one can show that the factor ξ in (8.1)
is a primitive character modulo d . Taking the character ξ in (8.1) to be the
character modulo the conductor of χ, it follows from (8.1) that χ is real if and
only if ξ is real, and so from this fact and our observations in the previous
paragraph, we conclude that in order to show that the value at s = 1 of the L-
function of an arbitrary real and non-principal Dirichlet character is nonzero,
and hence positive by the proof of Lemma 7.5(iii), it suffices to prove that
this is true for all real primitive Dirichlet characters. It hence behooves us to
take a closer look at the structure of those characters, and that is what we
will do in the next section.
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8.2 The Structure of Real Primitive Dirichlet
Characters

The structure of a real primitive Dirichlet character is of a very particular
type; in this section we will describe that structure precisely. It is here that
we will also begin to see how the classical theory of quadratic forms enters the
picture. We begin by noting that every Legendre symbol is real, and because
the modulus is prime, they are also primitive. However, there are also real
primitive characters of modulus 4 and 8, and so we will describe those next.

For the modulus 4, there is only one non-principal character, defined by

χ4(n) =

{
1, if n ≡ 1 mod 4,

−1, if n ≡ −1 mod 4,

and χ4 is obviously real and primitive. For the modulus 8, there are only two
real primitive characters, defined by

χ8(n) =

{
1, if n ≡ ±1 mod 8,

−1, if n ≡ ±3] mod 8.

and

χ−8(n) =

{
1, if n ≡ 1 or 3 mod 8,

−1, if n ≡ −1 or − 3 mod 8.

In fact, we have that χ−8 = χ4χ8.
It can be shown that the prime-power moduli for which real primitive

characters exist are: any odd prime p, with corresponding character χp

(the Legendre symbol of p), 4, with corresponding character χ4, and 8,
with corresponding characters χ±8. Following Davenport, we will call the
moduli 4, 8, p, p > 2, the basic moduli and the corresponding real primitive
characters the basic characters. More generally, the following theorem asserts
that the moduli for which real primitive characters exist are determined by
the products of basic moduli and the real primitive characters are determined
by the products of the basic characters which correspond to the basic moduli.
For a proof of the theorem, we refer the interested reader to Davenport [6],
pp. 38–40.

Theorem 8.1 Let

M = {4, 8} ∪ {p ∈ P : p > 2}

denote the set of basic moduli. If b > 1 is an integer then b is the modulus of
a real primitive Dirichlet character if and only if b is the product of relatively
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prime factors from M. If b is such a modulus and B is the set of basic moduli
into which b factors, then the real primitive Dirichlet characters of modulus
b are given precisely by the product (or products)

∏
n∈B

χn ,

where χn is a basic character of modulus n.

It follows from Theorem 8.1 that if b is a modulus as specified in that
theorem then there is exactly one real primitive Dirichlet character of
modulus b, unless 8 is a factor of b, in which case there are exactly two such
characters. Real primitive characters can also be used to give yet another
proof of the Law of Quadratic Reciprocity, as we will see in Sect. 8.7.

If χ is a real primitive Dirichlet character of modulus b then we let dχ
denote the parameter

χ(−1)b.

It is a consequence of Theorem 8.1 that as χ varies over all real primitive
characters, dχ varies over all integers, positive or negative, that are either

(a) square-free and congruent to 1 mod 4, or
(b) of the form 4n, where n is square-free and n ≡ 2 or 3 mod 4

(Davenport [6], pp. 40–41).
The range of the parameter dχ marks the first occurrence of what we

will eventually see as an intimate connection between real primitive Dirichlet
characters and the classical theory of quadratic forms. If

ax 2 + bxy + cy2

is a quadratic form with integer coefficients a, b, c, then the discriminant of
the form is the familiar algebraic invariant b2− 4ac. In this theory, the forms
which are not a product of linear factors are the primary objects of study,
and in this case, the discriminant is not a perfect square, and is hence a non-
square integer which is congruent to 0 or 1 mod 4. A discriminant b2 − 4ac
is said to be a fundamental discriminant if gcd(a, b, c) = 1. It is then not
difficult to see that the set of fundamental discriminants consists precisely
of the integers which satisfy the conditions (a) and (b) above, i.e., the set of
fundamental discriminants coincides with the range of dχ as χ varies over all
real primitive Dirichlet characters.

The range of dχ can also be used to make an important connection between
Dirichlet characters and quadratic number fields. As we saw in Sect. 3.11 of
Chap. 3, a quadratic number field is generated over Q by the square root of
a square-free integer m, and the discriminant of the quadratic field is defined
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as m or 4m if m is, respectively, congruent to 1 mod 4 or congruent to 2 or
3 mod 4. Consequently, the range of dχ also coincides with the discriminants
of the set of all quadratic number fields.

The proof of Dirichlet’s class-number formula that we will present makes
use of a canonical representation of the real primitive Dirichlet characters
that is parameterized by the set of fundamental discriminates coming from
the theory of quadratic forms. In order to explain what this parameterization
is, let d denote a fundamental discriminant, which we understand at this
point as simply an integer that satisfies either of the conditions (a) or (b)
described above. It can be shown (Landau [35], pp. 221–222) that d has a
unique factorization into a product of relatively prime factors taken from the
set of primary discriminants

−4, 8, −8, (−1)
1
2 (p−1)p, p an odd prime;

we call this factorization the primary factorization of d . To each primary
discriminant, we associate one of the basic characters introduced in this
section: to the integer −4 we associate the character χ4, to 8 and −8 the
character χ8 and χ−8, respectively, and to each integer (−1)

1
2 (p−1)p, we

associate the Legendre symbol χp . If D is the set of primary discriminants in
the primary factorization of d , we let χ(d) denote the real primitive character
of modulus |d | given by the product

χ(d) =
∏
n∈D

χn ,

where χn is the character that we have associated with n above. We will call
χ(d) the character determined by d. A proof of the following theorem can be
found in Davenport [6], pp. 38–41:

Theorem 8.2 The map d → χ(d) is a bijection of the set of fundamental
discriminants onto the set of all real primitive Dirichlet characters, and its
inverse map is given by χ → χ(−1)(modulus of χ).

The correspondence given in Theorem 8.2 is a special case of the
correspondence from Z \ {0} into the set of all real Dirichlet characters
defined by the Kronecker symbol, a generalization of the Legendre and Jacobi
symbols, which is a very useful device in the study of real Dirichlet characters.
We will make no further use of the Kronecker symbol in these notes; for its
definition and basic properties, the interested reader is referred to either
Landau [35], Definition 20 and Theorems 96–101 or Cohen [2], Sect. 2.2.2.

We now have at our disposal all of the information about real primitive
Dirichlet characters that we need in order to state and prove Dirichlet’s class-
number formula. In addition to that information, we will also require some
results from the classical theory of quadratic forms, to which we turn next.
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8.3 Elements of the Theory of Quadratic Forms

Let d be a fundamental discriminant, i.e., an integer which is not a square
and which is either square-free and congruent to 1 mod 4 or of the form
4n, where n is square-free and is congruent to either 2 or 3 mod 4. The
classes to which Dirichlet’s class-number formula originally referred are the
equivalence classes determined by the basic equivalence relation on quadratic
forms defined by modular substitutions, which we discussed in Sect. 3.12 of
Chap. 3. For the reader’s convenience, we will recall the essential features of
that equivalence relation.

We begin with some convenient notation. If (a, b, c) is an ordered triple of
integers then [a, b, c] will denote the quadratic form ax 2 + bxy + cy2 and if d
is a fundamental discriminant then Q(d) will denote the set of all irreducible
and primitive quadratic forms of discriminant d , i.e., the set of all quadratic
forms [a, b, c] of discriminant d which do not factor into linear forms with
integer coefficients and for which gcd(a, b, c) = 1. In particular, if [a, b, c] ∈
Q(d) then acd �= 0. On the set Q(d) we will declare that two forms q(x , y) =
ax 2+ bxy+ cy2 and q1(X ,Y ) = a1X

2+ b1XY + c1Y
2 in Q(d) are equivalent

if there is a linear transformation defined by

x = αX + βY , y = γX + δY ,

where α, β, γ, and δ are integers satisfying αδ − βγ = 1, such that

q(αX + βY , γX + δY ) = q1(X ,Y ).

These transformations are called modular substitutions, and each modular
substitution mapsQ(d) bijectively onto Q(d). As we pointed out in Sect. 3.12
of Chap. 3, it follows from classical results of Lagrange that the number of
equivalence classes is finite. There is always at least one form in Q(d), called
the principal form, defined by

x 2 − 1

4
dy2, if d ≡ 0 mod 4,

or

x 2 + xy − 1

4
(d − 1)y2, if d ≡ 1 mod 4,

hence the number of equivalence classes is a positive integer.
An important parameter which enters into Dirichlet’s formula for the

class number is determined by the automorphs of a form in Q(d). These
automorphs are the modular substitutions which leave a given form invariant.
There are always two automorphs for every form: the trivial substitution
x = X , y = Y and the negative of the trivial substitution, x = −X , y = −Y .
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If d ≤ −5 then there are no other automorphs. If d = −3 or −4 then there
is only one equivalence class of forms, represented by the principal form.
If d = −3, this is the form x 2 + xy + y2, with the additional automorphs
x = −Y , y = X + Y and x = X + Y , y = −X and their negatives. If
d = −4 then the principal form is x 2 + y2, and this form has, in addition to
the ones already mentioned, the automorph x = Y , y = X and its negative.
We denote the number of automorphs by w , so that

w =

⎧
⎨
⎩

2, if d < −4,

4, if d = −4,

6, if d = −3.

(8.2)

On the other hand, if d > 0 then each form of discriminant d has infinitely
many automorphs, which are determined by the integral solutions (t , u) of
the associated Pell’s equation

t2 − du2 = 4.

This equation has the trivial solution t = ±2, u = 0, and if (t0, u0) is the
solution for which t0 > 0 and u0 is positive and is as small as possible,
the so-called minimal positive solution of Pell’s equation, then all nontrivial
solutions (t , u) are generated from the minimal positive solution via the
equation

1

2

(
t + u

√
d
)
= ±

[
1

2

(
t0 + u0

√
d
)]n

,

where n varies over all positive and negative integers. For a form [a, b, c] of
discriminant d , it can be shown that all automorphs of the form are given by

x =
1

2
(t − bu)X − cuY , y = auX +

1

2
(t + bu)Y ,

with the trivial automorphs determined by the trivial solutions of Pell’s
equation. For a proof of the results in this paragraph, the interested reader
should consult Landau [35], Theorems 111 and 202.

8.4 Representation of Integers by Quadratic Forms
and the Class Number

Let n be an integer, q(x , y) a quadratic form. We say that n is represented
by q(x , y) if there exist integers x and y such that n = q(x , y), and two
representations q(x , y) and q(X ,Y ) of n are distinct if the ordered pairs
(x , y) and (X ,Y ) are distinct. In this section we will be interested in the
number of distinct ways a positive integer can be represented by quadratic
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forms in Q(d). The problem of determining what integers are represented
by a given quadratic form, which is naturally closely related to the number
of such representations, was one of the main motivations for the theory of
quadratic forms which Gauss developed in Sect. V of the Disquisitiones. The
number of representations of a positive integer will also be a crucial idea in
the proof of the class-number formula.

As we mentioned in Sect. 3.12 of Chap. 3, the manner in which a given
quadratic form q = [a, b, c] in Q(d) represents integers depends on the
sign of the discriminant d . If d > 0 then q represents both positive and
negative integers. If d < 0 and a > 0 then q represents no negative integers,
and q(x , y) represents 0 only if x = y = 0. If d < 0 and a < 0 then q
represents no positive integers, and q represents 0 only if x = y = 0. Hence
forms with positive discriminant are called indefinite and forms with negative
discriminant are called positive or negative definite if a is, respectively,
positive or negative. A straightforward calculation shows that any unimodular
substitution transforms a positive definite form into a positive definite form,
and multiplication of a form by −1 transforms a positive definite form into
a negative definite form. When d < 0, it hence follows that the equivalence
classes of Q(d) which are determined by modular substitutions are divided
evenly into a positive number of classes consisting of positive definite forms
and a positive number of classes consisting of negative definite forms. When
d < 0, we define the class number of d to be the number of equivalence classes
of positive definite forms, and we denote it by h(d). When d > 0, we define
the class number of d to be the number of all equivalence classes of Q(d),
and we also denote it by h(d). As we shall see, this is the number to which
Dirichlet’s class-number formula refers and in the context of understanding
why the value of L-functions at s = 1 is positive, it is the most important
parameter in that formula.

When d > 0 then each form q(x , y) is indefinite, and so we can chose
a positive integer k such that k = q(x0, y0) with gcd(x0, y0) = 1. It can
then be shown that q(x , y) is equivalent to a form with k as the coefficient
of its x 2-term (Landau [35], Theorem 201), and so we can choose a form
[a, b, c] from each equivalence class with a > 0. When d < 0, we can
chose such a form from each equivalence class of positive definite forms. We
formalize this procedure by defining a representative system of forms as a set
of representatives [a, b, c], one from each equivalence class (positive definite
if d < 0), such that each representative has a > 0.

When d < 0 then, as per the convention that we will now follow, all
forms are positive definite, and so the number of representations of a positive
integer n is finite. We hence denote by R(n) the total number of (distinct)
representations of n by all forms from a representative system. We observe
that R(n) does not depend on the representative system use to define it.

On the other hand, when d > 0, each representation of the positive integer
n by a fixed form gives rise to infinitely many representations of n by that
form, obtained by applying the automorphs of the form. We are going to
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circumvent this difficulty by restricting the representations of n to ones which
satisfy a particular condition which we will specify next, and which is designed
to canonically select a finite set of representations of n by each quadratic
form.

Let q = [a, b, c] be a quadratic form of discriminant d > 0. Let (t0, u0) be
the minimal positive solution of the associated Pell’s equation

t2 − du2 = 4,

and let

ε =
t0 + u0

√
d

2
.

If n is a positive integer then the representation n = q(x , y) of n by q is said
to be primary if

2ax + (b −
√
d)y > 0,

and

1 ≤ 2ax + (b +
√
d)y)

2ax + (b −
√
d)y

< ε2.

It can then be shown that the number of primary representations of n by q is
finite (Landau [35], Theorem 203 and the remark after this theorem). When
d > 0, we hence denote by R(n) the total number of primary representations
of n by all forms from a representative system, and we also note that, as
before, R(n) is independent of the representative system of forms used to
define it.

One of the fundamental results in the classical theory of quadratic forms
gives a formula for the calculation of R(n) by means of Dirichlet characters,
and this theorem provides the link between quadratic forms and Dirichlet
characters on which the derivation of the class-number formula is based. It
goes like so: for a proof, see Landau [35], Theorem 204:

Theorem 8.3 Let d be a fundamental discriminate and let χ(d) be the
character determined by d via Theorem 8.2. If n is a positive integer that
is relatively prime to d and R(n) denotes the total number of representations
of n (primary if d > 0) by a representative system of quadratic forms in
Q(d), then the value of R(n) is given by the formula

R(n) = w
∑
m|n

χ(d)(m),

where w is given by (8.2) if d < 0, and w = 1 if d > 0.
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As Davenport summarizes, this theorem is deduced by expressing R(n) in
terms of the number of solutions of the congruence x 2 ≡ d mod 4n and then
evaluating that sum using appropriate characters defined by the Legendre
symbol. With Theorem 8.3 in hand, we now have all the ingredients required
for the statement and proof of the class-number formula.

8.5 The Class-Number Formula

If χ is a real primitive Dirichlet character of modulus b and if d = χ(−1)b then
it follows from Theorem 8.2 that d is a fundamental discriminant. Dirichlet’s
class-number formula calculates the value at s = 1 of the L-function of χ
as the product of a certain positive parameter and the class number of d .
In this sense, we can hence interpret this result to say that L(1, χ) counts
the equivalence classes of quadratic forms in Q(d), thereby providing the
definitive reason why L(1, χ) is positive. We now state and prove Dirichlet’s
remarkable formula.

Theorem 8.4 (Dirichlet’s Class-Number Formula) Let χ be a real
primitive Dirichlet character of modulus b, let d = χ(−1)b, and let h(d)
denote the class number of d.

(i) Suppose that d < 0. Then

L(1, χ) =
2π

w
√
|d |

h(d),

where w is determined by (8.2).
(ii) Suppose that d > 0. Let (t0, u0) be the minimal positive solution of t2 −

du2 = 4, and let ε = 1
2 (t0 + u0

√
d ) > 1. Then

L(1, χ) =
log ε√

d
h(d).

Proof Let χ, d , and h(d) be as given in the statement of Theorem 8.4.
Starting with a positive integer n relatively prime to d and the formula

R(n) = w
∑
m|n

χ(m) (8.3)

for R(n) as given by Theorem 8.3, the key idea of this argument is to calculate
the asymptotic average value of R(n) as n → +∞ in two different ways and
compare the results. The first way is to use (8.3) and the fact that χ is non-
principal to deduce that the asymptotic average value of R(n) as n → +∞
is wL(1, χ). The second way is to directly use the definition of R(n) and an
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integer-lattice count in the plane to express the asymptotic average value
of R(n) as the product of a positive parameter and the class number of d .
Setting the two expressions of the asymptotic average equal to each other
produces the class-number formula that we desire.

In order to implement the first way, we begin by using the formula (8.3)
to write the sum

1

w

N∑
n=1

gcd(n, d)=1

R(n) =
∑

m1m2≤N
gcd(m1m2, d)=1

χ(m1). (8.4)

We then split the sum on the right-hand side of this equation into

∑

m1≤
√
N

χ(m1)
( ∑

m2≤N/m1

gcd(m2, d)=1

1
)
+

∑

m2<
√
N

gcd(m2, d)=1

( ∑
√
N<m1≤N/m2

χ(m1)
)
,

because the sum on the left is summed over all pairs m1,m2 such that m1 ≤√
N and the sum on the right ranges over all pairs for which m1 >

√
N . The

inner sum in the sum on the left is

N

m1

ϕ(|d |)
|d | +O

(
ϕ(|d |)

)
,

where ϕ is Euler’s totient, hence the double sum on the left is estimated by

N
ϕ(|d |)
|d |

∑

m1≤
√
N

χ(m1)

m1
+O(

√
N ).

We now exploit the fact that χ is non-principal, to wit, the sum of the values
χ(m) as m varies throughout any finite interval is bounded (as was shown
in the proof of Proposition 7.5(i), Chap. 7). Hence the double sum on the
right is O(

√
N ). Inserting these estimates into (8.3) and then multiplying the

resulting equation by w/N , we obtain the estimate

1

N

N∑
n=1

gcd(n, d)=1

R(n) = w
ϕ(|d |)
|d |

∑

m≤
√
N

χ(m)

m
+O(N− 1

2 ).

The sum on the right-hand side of this equation, when extended from m =
1 to +∞, has a remainder that, when estimated by a summation-by-parts
argument, is

∑

m>
√
N

χ(m)

m
= O(N− 1

2 ).
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It follows that

lim
N→+∞

1

N

N∑
n=1

gcd(n, d)=1

R(n) = w
ϕ(|d |)
|d |

∞∑
m=1

χ(m)

m
= w

ϕ(|d |)
|d | L(1, χ).

(8.5)

As Davenport points out, the quotient ϕ(|d |)/|d | measures the density of the
integers that are relatively prime to |d |, and so this equation asserts that the
asymptotic average of R(n) with respect to n is wL(1, χ).

We now want to calculate the limit

lim
N→+∞

1

N

N∑
n=1

gcd(n, d)=1

R(n)

in the second way, i.e., by means of the definition of R(n) as the total number
of representations of n by quadratic forms in Q(d) from a representative
system. Hence we let R(n, f ) denote the number of representations of n
(primary when d > 0) by a particular form f ∈ Q(d), so that, by definition,

R(n) =
∑
f

R(n, f ),

where the sum here is taken over all quadratic forms f from a representative
system. Note that the number of terms in this sum is therefore h(d). We now
wish to calculate the limit

lim
N→+∞

1

N

N∑
n=1

gcd(n, d)=1

R(n, f ), (8.6)

and it will transpire that this limit has a value κ(d) independent of f . Hence

lim
N→+∞

1

N

N∑
n=1

gcd(n, d)=1

R(n) = κ(d)h(d). (8.7)

It follows from (8.5) and (8.7) that

L(1, χ) =
|d |

wϕ(|d |)κ(d)h(d), (8.8)

and so in order to complete the proof of Theorem 8.4, we must calculate κ(d).
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Suppose first that d < 0. Let f = [a, b, c]. The sum

N∑
n=1

gcd(n, d)=1

R(n, f )

is the number of ordered pairs of integers (x , y) satisfying

0 < ax 2 + bxy + cy2 ≤ N , gcd(ax 2 + bxy + cy2, d) = 1.

As x and y each run through a complete set of ordinary residues mod |d |,
there are exactly |d |ϕ(|d |) of the numbers ax 2 + bxy + cy2 that are relatively
prime to d (Landau [35], Theorem 206). It therefore suffices to fix a pair of
integers (x0, y0) for which

gcd(ax 2
0 + bx0y0 + cy2

0 , d) = 1,

and consider the number of pairs of integers (x , y) which satisfy

ax 2 + bxy + cy2 ≤ N , x ≡ x0, y ≡ y0 mod |d |.

The first inequality asserts that the point (x , y) is in an ellipse centered at the
origin and passing through the points (±

√
N /a, 0) and (0,±

√
N /c), with

the ellipse expanding uniformly as N → +∞. Figures 8.1 and 8.2 exhibit two
typical elliptical regions which arise in this manner.

β

−β

α

−α

α =
√

N
a

β =
√

N
c

Fig. 8.1 Elliptical region,
b

a − c
< 0
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β

−β

α
−α

α =
√

N
a

β =
√

N
c

Fig. 8.2 Elliptical region,
b

a − c
> 0

Using the fact that the area enclosed by an ellipse is π times the product
of the lengths of the semi-axes, we find that the area of the ellipse is

2π√
4ac − b2

N =
2π√
|d |

N .

By dividing the plane into squares of side length |d | centered at the points
of the integer lattice, it can be shown without difficulty that as N → +∞,
the number of points in the integer lattice and lying inside the ellipse is
asymptotic to

1

|d |2
2π√
|d |

N .

This must now be multiplied by |d |ϕ(|d |) in order to account for the number
of points (x0, y0). It follows that κ(d), the value of the limit (8.5), is

ϕ(|d |)
|d |

2π√
|d |

.

Substituting this value of κ(d) into (8.8) yields the conclusion (i) of
Theorem 8.4.
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Now let d > 0. The lattice-point count here is a bit more involved
than the one that was done for d < 0 because we need to count primary
representations. If we set

θ =
−b +

√
d

2a
, θ′ =

−b −
√
d

2a
, ε =

1

2
(t0 + u0

√
d ) > 1,

where (t0, u0) is the positive minimal solution of Pell’s equation t2 − du2 = 4
as before, then an integer pair (x , y) determines a primary representation of
an integer if

x − θy > 0 and 1 ≤ x − θ′y

x − θy
< ε2.

Arguing as we did in the case of negative d , for a fixed pair of integers (x0, y0)
for which

gcd(ax 2
0 + bx0y0 + cy2

0 , d) = 1,

we need to count the number of integer points (x , y) such that

ax 2 + bxy + cy2 ≤ N , x − θy > 0, 1 ≤ x − θ′y

x − θy
< ε2,

and

x ≡ x0, y ≡ y0 mod d .

The set of conditions

ax 2 + bxy + cy2 ≤ N , x − θy > 0, 1 ≤ x − θ′y

x − θy
< ε2,

determines a hyperbolic sector in the upper half-plane of two possible types:
one is bounded by the nonnegative x -axis, the branch of the hyperbola ax 2+
bxy + cy2 = N passing through the point

√
N /a on the x -axis, and the ray

emanating from the origin and lying along the line νx = (νθ + 1)y, ν =
a(ε2 − 1)√

d
, and the other is bounded by the nonpositive x -axis, the branch of

the hyperbola ax 2 + bxy + cy2 = N passing through the point −
√
N /a on

the x -axis, and the ray emanating from the origin and lying along the line
νx = (νθ+ 1)y. Figures 8.3, 8.4, and 8.5 illustrate typical hyperbolic sectors
which arise in the first way; we invite the reader to provide figures for the
hyperbolic sectors arising in the second way.
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Fig. 8.3 Hyperbolic
sector, c > 0, νθ + 1 > 0
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β

α =
√

N
a

β =
√

N
c

Fig. 8.4 Hyperbolic
sector, c > 0, νθ + 1 < 0

α

β

α =
√

N
a

β =
√

N
c

Fig. 8.5 Hyperbolic
sector, c < 0

α

α =
√

N
a
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We need to calculate the area of this sector, which we will do by using the
change of variables

ξ = x − θy, η = x − θ′y.

Because of the fact that

ax 2 + bxy + cy2 = a(x − θy)(x − θ′y),

it follows that the hyperbolic sector is mapped onto the sector in the η, ξ
plane given by

ηξ ≤ N

a
, ξ > 0, ξ ≤ η < ε2ξ,

or equivalently,

0 < ξ ≤
√

N

a
, ξ ≤ η < min

(
ε2ξ,

N

aξ

)
.

The Jacobian of the change of variables is

√
d

a
,

hence, upon setting ξ1 = ε−1
√
N /a, the area of the sector in the x , y plane

is

a√
d

(∫ ξ1

0

(ε2ξ − ξ)dξ +

∫ εξ1

ξ1

(
N

aξ
− ξ

)
dξ

)
=

N log ε√
d

.

Following the argument that we outlined when d < 0, we conclude that the
number of integer points inside the hyperbolic sector is asymptotic to

1

d2

log ε√
d
N

as N → +∞. When this is multiplied by dϕ(d), in order to account for the
number of choices of the pair (x0, y0), the value of κ(d) is now

ϕ(d)

d

log ε√
d
,
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hence we obtain the conclusion (ii) of Theorem 8.4 from (8.8) using this value
of κ(d). QED

8.6 The Class-Number Formula and the Class
Number of Quadratic Fields

As we alluded to in the introduction to this chapter, the class-number formula
can also be used to count ideal classes in quadratic number fields in exactly
the same way that it counts equivalence classes of quadratic forms, and this
provides another good explanation of the positivity of L-functions at s = 1.
In this section, we will discuss in more detail exactly how this goes.

Recall from Sect. 3.11 of Chap. 3 that if K is an algebraic number field
and R is the ring of algebraic integers in K , then the ideals I and J of R are
said to be equivalent if there exists nonzero elements α and β of R such that
αI = βJ . The number of equivalence classes of ideals with respect to this
equivalence relation is finite, and that number is called the class number of
R.

As we saw in Sects. 3.11 and 3.12 of Chap. 3, there is a very close connection
between the theory of ideals in quadratic number fields and the classical
theory of quadratic forms. For the reader’s convenience, we will recapitulate
the principal features of that connection here.

Let d be a fundamental discriminant. Then d is either odd and square-free,
or d is divisible by 4 and d/4 is square-free. If we let m = d in the former case
and m = d/4 in the latter case, then the quadratic number field F generated
over Q by

√
m has discriminant d . In order to relate the ideal theory of F

to quadratic forms of discriminant d , as we did in Sect. 3.11 of Chap. 3, we
will need to recall the definition of the norm of an element of F . One starts
by taking an integral basis {ω1, ω2} of F , letting k ∈ F , and then expressing
k uniquely as k = rω1 + sω2, for some ordered pair (r , s) ∈ Q×Q. We then
define the norm of k as the number defined by N (k) = (rω1+sω2)(rω

′
1+sω′

2),
where {ω′

1, ω
′
2} denotes the algebraic conjugates of {ω1, ω2} over Q. This

definition of N (k) does not depend on the integral basis used to define it,
hence selecting either the standard integral basis {1, 12 (1+

√
m)} or {1,√m},

depending on whether m is or, respectively, is not congruent to 1 mod 4
(Sect. 3.11, Chap. 3), a simple calculation shows that if d < 0 then N (k) > 0
whenever k �= 0.

If I is an ideal in R = R ∩ F then the norm mapping N maps I into Z,
and if {α, β} is an integral basis of I and ξ = xα+ yβ, (x , y) ∈ Z× Z, then
we also have that

N (ξ) = (xα+ yβ)(xα′ + yβ′).
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The right-hand side of this equation defines a quadratic form q(x , y) with
integer coefficients. When we recall that the norm N (I ) of I is defined as
the cardinality of the finite quotient ring R/I (Sect. 5.1 of Chap. 5), it can be
shown that all coefficients of q(x , y) are divisible by N (I ), and that if we let

N (ξ)

N (I )
= ax 2 + bxy + cy2,

then this form is in Q(d). The equivalence class of Q(d) which contains this
form can be shown to be independent of the integral basis of I which is used
to define the form.

As we discussed in Sect. 3.12 of Chap. 3, the map which sends an ideal
I of R to the quadratic form N (ξ)/N (I ) = ax 2 + bxy + cy2 induces a
bijective correspondence between the equivalence classes of ideals of R in
the narrow sense and the forms in a representative system of discriminant d
(Theorem 3.22). This correspondence will now be used to express the class
number of d in terms of the class number of R.

Recall from Sect. 3.12 of Chap. 3 that if I and J are ideals of R then I is
said to be equivalent to J in the narrow sense if there exists k ∈ F such that
N (k) > 0 and I = kJ . If d < 0 then there is no difference between ordinary
equivalence of ideals and equivalence in the narrow sense because the values
of N are all positive on F \ {0}. When d > 0 then the difference between
these two equivalence relations is mediated by the units in R. If R has a
unit of norm −1 then there is also no difference between the two equivalence
relations. On the other hand, if d > 0 and there is no unit with a negative
norm then it can be shown that each ideal class in the ordinary sense in the
union of exactly two ideal classes in the narrow sense (Sect. 3.12, Chap. 3).

It follows that if we denote the class number of R by h1(d) and recall that
h(d) denotes the class number of d as determined from the classes of forms
in Q(d), then h(d) = h1(d) whenever either d < 0 or d > 0 and R has a unit
of norm −1, and h(d) = 2h1(d), otherwise.

The parameters w and ε = 1
2 (t0+u0

√
d ) which occur in the class-number

formula can be calculated by means of the units in R. When d < 0, the
parameter w is defined by the values as stipulated for it by (8.2), and those
values are also the number of roots of unity in R . As for ε, which enters
the class-number formula when d > 0, its value can be calculated by the
fundamental unit in the group of units U (R) of R. Recall from Sect. 3.12 of
Chap. 3 that when d > 0, there is a unit � of R such that

U (R) = {±�n : n ∈ Z}.

If � is chosen to exceed 1 then it is uniquely determined as a generator
of U (R) in this sense and is called the fundamental unit of R. If � is the
fundamental unit, then it can be shown that ε = � if N (�) = 1 and ε = �2

if N (�) = −1.
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Combining all of these results leads to the conclusion that

h(d) = h1(d), if d < 0,

and

h(d) log ε = 2h1(d) log�, if d > 0.

When these equations are combined with Dirichlet’s class-number formula
it follows that if χ is a real primitive Dirichlet character of modulus b and
d = χ(−1)b, then

L(1, χ) =
2π

w
√
|d |

h1(d), if d < 0,

and

L(1, χ) =
2 log�√

d
h1(d), if d > 0.

Using the first of these formulae for L(1, χ), we can now calculate the
quadratic excesses in Theorems 7.2–7.4 in terms of class numbers of quadratic
fields. If p ≡ 3 mod 8 then

q(0, p/2) = 3h1(−p),

if p ≡ 7 mod 8 then

q(0, p/2) = h1(−p),

if p ≡ 1 mod 4 then

q(0, p/4) =
1

2
h1(−p),

if p > 3 and p ≡ 1 mod 4 then

q(0, p/3) =
1

2
h1(−3p),

if p > 3 and p ≡ 7 mod 12 then

q(0, p/3) = 2h1(−p),

and if p > 3 and p ≡ 11 mod 12 then

q(0, p/3) = h1(−p).
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A noteworthy consequence of these equations is that h1(−p) is even if p ≡ 1
mod 4 and h1(−3p) is even if p > 3 and p ≡ 1 mod 4. As a matter of fact,
it is an interesting open problem to determine if similar sums of this type
which are positive are always linear combinations of class numbers; for further
information on sums and congruences for L-functions, consult Urbanowicz
and Williams [56] (I thank an anonymous referee for calling my attention to
this problem and this reference).

8.7 A Character-Theoretic Proof of Quadratic
Reciprocity

In this section, we will present our final proof of quadratic reciprocity. The
main idea of this approach is to define Gauss sums for a general Dirichlet
character and then use computations with these sums and the structure
theory for Dirichlet characters that was discussed in Sect. 8.1 to derive a
formula which calculates the value of a real primitive character χ at odd
primes p as an appropriate value of the Legendre symbol χp . If we then set
χ equal to χq for an odd prime q distinct from p into that formula, the LQR
will immediately result from that choice of χ. This argument reveals how
quadratic reciprocity is caused by the fact that the Legendre symbols are
real primitive characters which can reproduce the value at the primes of an
arbitrary real primitive character. We follow the exposition as recorded in
Cohen [2], Sects. 2.1 and 2.2.

Let χ be a Dirichlet character of modulus b, let a ∈ Z, set ζb = exp(2πi/b),
and define the Gauss sum of χ at a by

G(χ, a) =
∑

x mod b

χ(x )ζaxb ,

where the sum is taken over all x in a complete set of ordinary residues mod b.
It is clear, because of the periodicity of χ(x ) and ζaxb in x , that this sum does
not depend on the set of ordinary residues mod b used to define it. We first
encountered Gauss sums in Chap. 3; in particular, the proof of Lemma 3.15
can be easily modified to establish

Lemma 8.5 If a and b are relatively prime then

G(χ, a) = χ(a)G(χ, 1),

where the bar over χ(a) denotes the complex conjugate.

The next lemma records a useful condition on a which implies that
G(χ, a) = 0.
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Lemma 8.6 Let d = gcd(a, b) and suppose that b/d is not an induced
modulus of χ. Then G(χ, a) = 0.

Proof Because b/d is not an induced modulus, there is an integerm such that
m ≡ 1 mod b/d , gcd(m, b) = 1, and χ(m) �= 1. Upon letting m−1 denote the
inverse of m mod b, we have that

χ(m)G(χ, a) =
∑

x mod b

χ(mx )ζaxb =
∑

y mod b

χ(y)ζaym
−1

b .

Because m ≡ 1 mod b/d , it follows that

aym−1 =
a

d
dym−1 ≡ ay mod b,

hence

χ(m)G(χ, a) =
∑

y mod b

χ(y)ζayb = G(χ, a),

so that G(χ, a) = 0, as χ(m) �= 1. QED

The next result shows that when χ is primitive, Lemma 8.5 holds for all
integers a, and not just the integers that are relatively prime to b.

Lemma 8.7 If χ is primitive then

G(χ, a) = χ(a)G(χ, 1), for all a ∈ Z.

Proof We need only check this equation if d = gcd(a, b) > 1. But then
χ(a) = 0, and b/d cannot be induced modulus of χ, hence G(χ, a) = 0 by
Lemma 8.6. QED

If χ is a primitive character then we can use Lemma 8.7 to calculate
|G(χ, 1)| as follows:

|G(χ, 1)| =
(
G(χ, 1)G(χ, 1)

) 1
2

=

( ∑
a mod b

χ(a)G(χ, 1)ζ−a
b

) 1
2

=

( ∑
a mod b

G(χ, a)ζ−a
b

) 1
2

, by Lemma 8.7

=

(
b∑

x=1

χ(x )

(
b∑

a=1

ζ
a(x−1)
b

)) 1
2

=
√
b,
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where the last line follows because the inner sum here is a geometric series,
which is 0 if b does not divide x − 1, i.e., if x �= 1, and is b if x = 1. This
calculation now has the following corollary, which is a direct generalization
of Theorem 3.14.

Corollary 8.8 If χ is a primitive character of modulus b then

G(χ, 1)G(χ, 1) = χ(−1)b.

In particular, if χ is also real then

G(χ, 1)2 = χ(−1)b.

Proof From Lemma 8.5 (applied to χ), we have that

G(χ, 1) = G(χ,−1) = χ(−1)G(χ, 1).

Now multiply this equation by χ(−1)G(χ, 1) and then calculate that

χ(−1)b = χ(−1)G(χ, 1)G(χ, 1) = χ(−1)2G(χ, 1)G(χ, 1) = G(χ, 1)G(χ, 1).

QED

The next result shows that the value of a real primitive character at the
odd prime p can be calculated by the Legendre symbol χp of p; it is a direct
generalization of (3.17) in Chap. 3. Note also that its proof follows the same
ideas used in the third proof of the LQR that we gave in Chap. 3.

Theorem 8.9 If χ is a real primitive character of modulus b then for all
odd primes p,

χ(p) = χp

(
χ(−1)b

)
.

Proof Since both sides of the equation to be verified are 0 when p divides b,
we may assume that p is an odd prime not dividing b. Let R denote the ring
of algebraic integers. Since the quotient ring R/pR has characteristic p, the
map which sends an element of that ring to its p-th power is additive, and
we also have that ζb ∈ R. Hence

G(χ, 1)p ≡
∑

x mod b

χ(x )pζpxb mod pR.

As χ is real and p is odd, χ(x )p = χ(x ), and so it follows from Lemma 8.5
that

G(χ, 1)p ≡ χ(p)G(χ, 1) mod pR.
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On the other hand, χ is real and primitive, hence by Corollary 8.8,G(χ, 1)2 =
χ(−1)b, and so multiplication of this congruence by G(χ, 1) yields the
congruence

χ(−1)b
(
(χ(−1)b)

1
2 (p−1) − χ(p)

)
≡ 0 mod pR.

If we now multiply this congruence by the inverse of χ(−1)b in Z/pZ to
obtain

(χ(−1)b)
1
2 (p−1) ≡ χ(p) mod pR

and then use the congruence

(χ(−1)b)
1
2 (p−1) ≡ χp(χ(−1)b) mod pZ

that we get from Euler’s criterion, it follows that

χ(p) ≡ χp(χ(−1)b) mod pR.

Hence

χ(p) − χp(χ(−1)b)

p
∈ R ∩Q = Z.

Because the numerator of this rational integer is either 0 or ±2 and p is
odd, it follows that the numerator must be 0, whence the conclusion of the
theorem. QED

The LQR can now be deduced immediately from Theorems 8.9 and 2.4.
Let p and q be distinct odd primes. We take χ = χq in Theorem 8.9 and
then apply Theorem 2.4 twice to calculate that

χq(p) = χp(χq(−1)q)

= χp

(
(−1)

1
2 (q−1)q

)

= χp(−1)
1
2 (q−1)χp(q)

= (−1)
1
2 (p−1) 1

2 (q−1)χp(q).



Chapter 9

Quadratic Residues and Non-Residues
in Arithmetic Progression

The distribution problem for residues and non-residues has been intensively
studied for 175 years using a rich variety of formulations and techniques.
The work done in Chap. 7 gave a window through which we viewed one of
these formulations and also saw a very important technique used to study it.
Another problem that has been studied almost as long and just as intensely
is concerned with the arithmetic structure of residues and non-residues. In
this chapter, we will sample one aspect of that very important problem
by studying when residues and non-residues form very long sequences in
arithmetic progression. The first major advance in that problem came in 1939
when Harold Davenport proved the existence of residues and non-residues
which form arbitrarily long sets of consecutive integers. As an introduction
to the circle of ideas on which the work of this chapter is based, we briefly
discuss Davenport’s results and the technique that he used to obtain them
in Sect. 9.1. Davenport’s approach uses another application of the Dirichlet-
Hilbert trick, which we used in the proofs of Theorems 4.12 and 5.13 presented
in Chap. 5, together with an ingenious estimate of the absolute value of
certain Legendre-symbol sums with polynomial values in their arguments.
Davenport’s technique is quite flexible, and so we will adapt it in order to
detect long sets of residues and non-residues in arithmetic progression. In
Sect. 9.2, we will formulate our results precisely as a series of four problems
which will eventually be solved in Sects. 9.4 and 9.10. This will require
the estimation of the sums of values of Legendre symbols with polynomial
arguments a la Davenport, which estimates we will derive in Sect. 9.3 by
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making use of a very important result of André Weil concerning the number
of rational points on a nonsingular algebraic curve over Z/pZ. In addition to
these estimates, we will also need to calculate a term which will be shown
to determine the asymptotic behavior of the number of sets of residues
or non-residues which form long sequences of arithmetic progressions, and
this calculation will be performed in Sects. 9.6–9.9. Here we will see how
techniques from combinatorial number theory are applied to study residues
and non-residues. In Sect. 9.11, an interesting class of examples will be
presented, and we will use it to illustrate exactly how the results obtained
in Sect. 9.10, together with some results of Sect. 9.11, combine to describe
asymptotically how many sets there are of residues or non-residues which form
long arithmetic progressions. Finally, the last section of this chapter discusses
a result which, in certain interesting situations, calculates the asymptotic
density of the set of primes which have residues and non-residues which form
long sets of specified arithmetic progressions.

9.1 Long Sets of Consecutive Residues
and Non-Residues

The following question began to attract interest in the early 1900s: if s is a
fixed positive integer and p is sufficiently large, does there exist an n ∈ [1,∞)
such that {n, n + 1, . . . ,n + s − 1} is a set of residues (respectively, non-
residues) of p inside [1, p − 1], i.e., for all sufficiently large primes p, does
[1, p − 1] contain arbitrarily long sets of consecutive residues, (respectively,
non-residues) of p? For s = 2, 3, 4, and 5, various authors showed that the
answer is yes; in fact it was shown that if Rs(p) (respectively, Ns(p)) denotes
the number of sets of s consecutive residues (respectively, non-residues) of p
inside [1, p − 1] then as p → +∞,

Rs(p) ∼ 2−sp ∼ Ns(p), for s = 2, 3, 4, and 5. (9.1)

This shows in particular that for s = 2, 3, 4, and 5, not only are Rs(p) and
Ns(p) both positive, but as p → +∞, they both tend to +∞. Based on this
evidence and extensive numerical calculations, the speculation was that (9.1)
in fact is valid without any restriction on s , and in 1939, Harold Davenport
[5] proved that this is indeed the case.

Davenport established the validity of (9.1) in general by yet another
application of the Dirichlet-Hilbert trick that was used in the proof of
Theorems 4.12 and 5.13. Let Fp denote the field Z/pZ of p elements. Then
U (p) can be viewed as the group of nonzero elements of Fp , and if ε ∈ {−1, 1}
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then, a la Dirichlet-Hilbert, the sum

2−s

p−s∑
x=1

s−1∏
i=0

(
1 + εχp(x + i)

)

is Rs(p) (respectively, Ns(p)) when ε = 1(respectively, ε = −1). Davenport
rewrote this sum as

2−s(p − s) + 2−s
∑

∅�=T⊆[0,s−1]

ε|T |

(
p−s∑
x=1

χp

(∏
i∈T

(x + i)

))
, (9.2)

and then proceeded to estimate the size of the second term of the expres-
sion (9.2). This term is a sum of terms of the form

±
p−s∑
x=1

χp

(
f (x )

)
,

where f is a monic polynomial of degree at most s over Fp with distinct roots
in Fp . Using results from the theory of certain L-functions due to Hasse,
Davenport found absolute constants C > 0 and 0 < σ < 1 such that

∣∣∣∣∣
p−s∑
x=1

χp

(
f (x )

)
∣∣∣∣∣ ≤ Csp−σ , for all p large enough.

This estimate, the heart of Davenport’s argument, implies that the modulus
of the second term in (9.2) does not exceed Cspσ , and so

|Rs(p)− 2−s(p − s)| ≤ Cspσ , for all p large enough.

Hence

∣∣∣∣
Rs(p)

2−sp
− 1

∣∣∣∣ ≤
s

p
+ Cs2spσ−1

→ 0 as p → +∞.

The same argument also works for Ns(p)
It transpires that Davenport’s technique is quite flexible and can be

used to investigate the occurrence of residues and non-residues with specific
arithmetical properties. We are going to use it to detect arbitrarily long
arithmetic progressions of residues and non-residues of a prime.
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9.2 Long Sets of Residues and Non-Residues
in Arithmetic Progression

Our point of departure from Davenport’s work is to notice that the sequence
{x , x + 1, . . . , x + s − 1} of s consecutive positive integers is an instance of
the sequence{x , x + b, . . . , x + b(s − 1)}, an arithmetic progression of length
s and common difference b, with b = 1. Thus, if (b, s) ∈ [1,∞)× [1,∞), and
we set

AP(b; s) =
{
{n + ib : i ∈ [0, s − 1]} : n ∈ [1,∞)

}
,

the family of all arithmetic progressions of length s and common difference
b, it is natural to inquire about the asymptotics as p → +∞ of the number
of elements of AP(b; s) that are sets of quadratic residues (respectively, non-
residues) of p that occur inside [1, p − 1]. We also consider the following
related question: if a ∈ [0,∞), set

AP(a, b; s) =
{
{a + b(n + i) : i ∈ [0, s − 1]} : n ∈ [1,∞)

}
,

the family of all arithmetic progressions of length s taken from a fixed
arithmetic progression

AP(a, b) = {a + bn : n ∈ [1,∞)}.

We then ask for the asymptotics of the number of elements of AP(a, b; s)
that are sets of quadratic residues (respectively, non-residues) of p that occur
inside [1, p − 1]. Solutions of these problems will provide interesting insights
into how often quadratic residues and non-residues appear as arbitrarily long
arithmetic progressions.

We will in fact consider the following generalization of these questions. For
each m ∈ [1,∞), let

a = (a1, . . . , am) and b = (b1, . . . , bm)

be m-tuples of nonnegative integers such that (ai , bi) �= (aj , bj ), for all i �= j .
Let s ∈ [1,∞). When the bi ’s are distinct and positive, we set

AP(b; s) =
{ m⋃

j=1

{n + ibj : i ∈ [0, s − 1]} : n ∈ [1,∞)
}
,
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and when the bi ’s are all positive (but not necessarily distinct), we set

AP(a,b; s) =
{ m⋃

j=1

{aj + bj (n + i) : i ∈ [0, s − 1]} : n ∈ [1,∞)
}
.

The elements of AP(b; s) are formed by taking an n ∈ [1,∞), then
selecting an arithmetic progression of length s with initial term n and
common difference bi for each i = 1, . . . ,m, and then taking the union of the
arithmetic progressions so chosen. Elements of AP(a,b; s) are obtained by
taking an n ∈ [1,∞), choosing from the arithmetic progression{ai+bim : m ∈
[1,∞)} the arithmetic progression with initial term ai + bin and length s for
each i = 1, . . . ,m, and then forming the union of the arithmetic progressions
chosen in that way. If m = 1 then we recover our original sets AP(b; s) and
AP(a, b; s). We now pose

Problem 1 (respectively, Problem 2): determine the asymptotics as p →
+∞ of the number of elements of AP(b; s) (respectively, AP(a,b; s)) that
are sets of quadratic residues of p inside [1, p − 1].

We also pose as Problem 3 and Problem 4 the problems which result
when the phrase “quadratic residues” in the statements of Problems 1 and 2
is replaced by the phrase “quadratic non-residues”.

As we saw in Sect. 9.1, the main step of Davenport’s solution to the
problem of finding long sets of consecutive residues and non-residues was
finding good estimates of sums of the form

p−1∑
x=0

χp

(
f (x )

)

for certain polynomials f (x ) ∈ Fp [x ]. In order to solve Problems 1–4, we will
use a variant of Davenport’s reasoning, tailored to detect long sets of residues
and non-residues in arithmetic progression. Our techniques will also require
appropriate estimation of these sums. Estimates very much like Davenport’s
will suffice to solve Problems 1 and 3, but, for technical reasons, they are
not sufficient to solve Problems 2 and 4. For those problems, we will need to
obtain good estimates, which do not depend on N , for sums of the form

N∑
x=0

χp

(
f (x )

)
,

where N can be any integer in [0, p − 1]. As preamble to our solution of
Problems 1–4, we show in the following section how some results of A. Weil
can be used to efficiently and elegantly derive the estimates that we require.
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9.3 Weil Sums and Their Estimation

In order to solve Problems 1–4, we will require estimates of sums of the form

N∑
x=1

χp

(
f (x )

)
, (∗)

where f is a polynomial in Fp [x ] and N is a fixed integer in [1, p − 1].
Suppose first that N = p − 1. In this case there is an elegant way to

calculate the sum (∗) in terms of the number of rational points on an algebraic
curve over Fp .

If F is a field, F is an algebraic closure of F , and g(x , y) is a polynomial
in two variables with coefficients in F , then the set of points

C = {(x , y) ∈ F × F : g(x , y) = 0}

is an algebraic curve over F. A point (x , y) ∈ C is a rational point of C over F
if (x , y) ∈ F ×F . If F is finite then the set of rational points on an algebraic
curve over F is evidently finite, and so the determination of the cardinality
of the set of rational points is an interesting and very important problem
in combinatorial number theory. In 1948, A. Weil’s great treatise [57] on the
geometry of algebraic curves over finite fields was published, which contained,
among many other results of fundamental importance, an upper estimate
of the number of rational points in terms of

√
|F | and certain geometric

parameters associated with an algebraic curve. The Weil bound has turned
out to be very important for various problems in number theory; in particular,
we will now show how it can be employed to obtain good estimates of the
sums (∗) when N = p − 1.

Let f ∈ Fp [x ] and consider the algebraic curve C over Fp defined by the
polynomial

y2 − f (x ).

We will calculate the so-called complete Weil sum

p−1∑
x=0

χp

(
f (x )

)

in terms of the number of rational points of C over Fp .
Let R(p) denote the set of rational points of C , i.e.,

R(p) = {(x , y) ∈ Fp × Fp : y2 = f (x )},
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and let

S0 = {x ∈ Fp : f (x ) = 0},

S+ = {x ∈ Fp \ S0 : χp(f (x )) = 1},

S− = {x ∈ Fp \ S0 : χp(f (x )) = −1}.

If x ∈ S+ then there are exactly two solutions ±y0 �= 0 of y2 = f (x ) in
Fp , hence (x ,±y0) ∈ R(p). Conversely, if (x , y) ∈ R(p) and y �= 0 then
0 �= y2 = f (x ), hence x ∈ S+ and y = ±y0. We conclude that

|R(p)| = |S0|+ 2 |S+| . (9.2)

Because Fp is the pairwise disjoint union of S0, S+, and S−,

|S0|+ |S+|+ |S−| = p. (9.3)

Observe now that

p−1∑
x=0

χp

(
f (x )

)
= |S+| − |S−| . (9.4)

Equations (9.2)–(9.4) imply

|R(p)| = |S0|+ |S+|+ |S−|+
p−1∑
x=0

χp

(
f (x )

)

= p +

p−1∑
x=0

χp

(
f (x )

)
,

i.e.,

p−1∑
x=0

χp

(
f (x )

)
= |R(p)| − p. (9.5)

We are ready to apply Weil’s estimate of |R(p)|. In this case, Weil [57,
Corollaire IV.3] proved that if y2−f (x ) is non-singular over Fp , which means
essentially that f is monic of degree at least 1 and there does not exist a
polynomial g ∈ Fp [x ] such that f = g2, then

|R(p)| = 1 + p − r(p), where 1 ≤ r(p) < d
√
p, d = degree of f (9.6)
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(for an elementary proof of (9.6), see Schmidt [50], Theorem 2.2C). If f ∈
Fp [x ] is monic with distinct roots in Fp then f cannot be the square of a
polynomial over Fp , and so y2 − f (x ) is non-singular over Fp . Hence (9.5)
and (9.6) imply

Theorem 9.1 (Complete Weil-Sum Estimate) If f ∈ Fp [x ] is monic of
degree d ≥ 1 and f has distinct roots in Fp then

∣∣∣
p−1∑
x=0

χp

(
f (x )

)∣∣∣ < d
√
p.

As its definition makes clear, a Weil sum is nothing more than the sum
of a certain sequence of 0’s and ±1’s. The content of Theorem 9.1 (and also
Theorem 9.2 to follow) is that for certain polynomials f ∈ Fp [x ], a remarkable

cancellation occurs in the terms of
∑p−1

x=0 χp

(
f (x )

)
so that the absolute value

of this sum, ostensibly as large as p, is in fact less that d
√
p, where d is the

degree of f .
The work of Weil in [57] is another seminal development in modern number

theory. There Weil used methods from algebraic geometry to study number-
theoretic properties of curves, thereby founding the subject of arithmetic
algebraic geometry. This not only introduced important new techniques in
both number theory and geometry, but it also led to the formulation of
innovative strategies for attacking a wide variety of problems which until
then had been intractable. Certainly one of the most spectacular examples
of that is the proof of Fermat’s Last Theorem by Andrew Wiles [60] in 1995
(with an able assist from Richard Taylor [55]), which employed arithmetic
algebraic geometry as one of its crucial tools.

We now turn to the problem of estimating the sums (∗) when N < p − 1.
An incomplete Weil sum is a sum of the form

N∑
x=M

χp

(
f (x )

)
, (∗∗)

where f ∈ Fp [x ], and either 0 ≤ M ≤ N < p− 1 or 0 < M ≤ N ≤ p− 1. Our
solution of Problems 2 and 4 will require an estimate of incomplete Weil sums
similar to the estimate of complete Weil sums provided by Theorem 9.1, and
also independent of the parameters M and N . When f (x ) = x , Polya proved
in 1918 that

∣∣∣
N∑

x=M

χp(x )
∣∣∣ ≤ √

p log p,
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and Vinogradov in the same year showed that if χ is a non-principal Dirichlet
character mod m then

∣∣∣
N∑

x=M

χ(x )
∣∣∣ ≤ 6

√
m logm.

Assuming the Generalized Riemann Hypothesis, in 1977 Montgomery and
Vaughn improved this to

∣∣∣
N∑

x=M

χ(x )
∣∣∣ ≤ C

√
m log logm.

By an earlier result of Paley (which holds without assuming GRH), this
estimate, except for the choice of the constant C , is best possible. It follows
that an estimate of (∗∗) that is independent of M and N will most likely
behave more or less like (an absolute constant)×√

p log p. In fact, we will
prove

Theorem 9.2 (Incomplete Weil-Sum Estimate) There exists p0 > 0
such that the following statement is true: if p ≥ p0, if f ∈ Fp [x ] is monic of
degree d ≥ 1 with distinct roots in Fp, and N ∈ [0, p − 1], then

∣∣∣
N∑

x=0

χp

(
f (x )

)∣∣∣ ≤ d(1 + log p)
√
p.

Our proof of Theorem 9.2 will make use of certain homomorphisms of the
additive group of Fp into the circle group, defined like so. Let

ep(θ) = exp

(
2πiθ

p

)
.

If n ∈ Z then we set

ψ(m) = ep(mn), m ∈ Z.

Because ψ(m) = ψ(m ′) whenever m ≡ m ′ mod p, ψ defines a homomorphism
of the additive group of Fp into the circle group, hence ψ is called an additive
character mod p.

Now for each n ∈ Z, ζ = ep(n) is a p-th root of unity, i.e., ζp = 1, and
from the factorization

(1− ζ)
( p−1∑

k=0

ζk
)
= 1− ζp = 0
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we see that

p−1∑
k=0

ζk = 0,

unless ζ = 1. Applying this with ζ = ep(n − a), we obtain

1

p

p−1∑
x=0

ep(−ax )ep(nx ) =

{
1, if n ≡ a mod p,

0, otherwise,
(9.7)

the so-called orthogonality relations of the additive characters. These rela-
tions are quite similar to the orthogonality relations satisfied by Dirichlet
characters (Sect. 4.4 of Chap. 4), the latter of which Dirichlet used to prove
Lemma 4.7, on his way to the proof of Theorem 4.5.

Proof of Theorem 9.2 Let f ∈ Fp [x ] be monic of degree d ≥ 1, with distinct
roots in Fp , let N ∈ [1, p − 1] and set

S (N ) =

N∑
x=1

χp

(
f (x )

)
.

The strategy of this argument is to use the orthogonality relations of the
additive characters to express S (N ) as a sum of terms λ(x )S (x ), x =
0, 1, . . . , p − 1, where λ(x ) is a sum of additive characters and S (x ) is
a sum that is a “twisted” or “hybrid” version of a complete Weil sum.
Appropriate estimates of these terms are then made to obtain the conclusion
of Theorem 9.2.

We first decompose S (N ) like so:

S (N ) =

N∑
k=1

p−1∑
j=0

δjkχp

(
f (j )

)
, δjk =

{
1 , if j = k ,

0 , if j �= k .

=
N∑

k=1

p−1∑
j=0

χp

(
f (j )

)(1

p

p−1∑
x=0

ep(xk)ep(−xj )

)
, by (9.7)

=
1

p

p−1∑
x=0

(
N∑

k=1

ep(xk)

)
p−1∑
j=0

χp

(
f (j )

)
ep(−xj )

=
1

p

p−1∑
x=0

λ(x )S (x ),
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where

λ(x ) =
N∑

k=1

ep(xk), S (x ) =

p−1∑
k=0

ep(−xk)χp

(
f (k)

)
.

The next step is to estimate |λ(x )| and |S (x )|, x = 0, 1, . . . , p − 1. To get
a useful estimate of |λ(x )|, use the trigonometric identities

N∑
k=1

cos kθ =
sin
((
N + 1

2

)
θ
)
− sin

(
θ
2

)

2 sin
(
θ
2

) ,

N∑
k=1

sin kθ =
cos
(
θ
2

)
− cos

((
N + 1

2

)
θ
)

2 sin
(
θ
2

) ,

to calculate that

|λ(x )| =
∣∣∣∣
sin (N πx/p)

sin (πx/p)

∣∣∣∣ .

Now use the estimate

2|θ|
π

≤ | sin θ| , |θ| ≤ π

2
,

to get

|λ(x )| ≤ p

2|x | , 0 < |x | < p

2
. (9.8)

The sums λ(x ) and S (x ) are periodic in x of period p, hence

S (N ) =
1

p

∑
|x |<p/2

λ(x )S (x ). (9.9)

Note that λ(0) = N , hence (9.8), (9.9) imply that

∣∣∣∣S (N )− N

p
S (0)

∣∣∣∣ ≤
1

2

∑
0<|x |<p/2

|x |−1|S (x )|.

An estimate of each sum S (x ) is now required. These are so-called hybrid
or mixed Weil sums, and consist of terms ep(−xy)χp

(
f (y)

)
, y = 0, 1, . . . , p −

1, which are the terms of the complete Weil sum
∑p−1

y=0 χp

(
f (y)

)
that are

“twisted” by the multiplier ep(−xy). As Perel’muter [44] proved in 1963 by
means of the arithmetic algebraic geometry of Weil (see also Schmidt [50],
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Theorem 2.2G for an elementary proof), this twisting causes no problems,
i.e., we have the estimate

|S (x )| ≤ d
√
p, for all x ∈ Z.

Hence

|S (N )| ≤ N

p
|S (0)|+ 1

2

∑
0<|x |<p/2

|x |−1|S (x )|

≤ d
√
p
(
1 +

∑
1≤n<p/2

1

n

)
.

Because

lim
p→+∞

(
γ + log

[p
2

]
−

∑
1≤n<p/2

1

n

)
= 0,

where γ = 0.57721. . . is Euler’s constant, we are done. QED

9.4 Solution of Problems 1 and 3

Now that we have Theorem 9.1 at our disposal, Problems 1 and 3 can be
solved, i.e., the asymptotic behavior, as the prime p → +∞, of the number
of elements of

AP(b; s) =
{ k⋃

j=1

{n + ibj : i ∈ [0, s − 1]} : n ∈ [1,∞)
}

that are sets of residues (respectively, non-residues) of p inside [1, p − 1]
can be determined. We begin with some terminology and notation that will
allow us to state our results precisely and concisely. Let W = {z1, . . . , zr} be
a nonempty, finite subset of [0,∞) with its elements indexed in increasing
order zi < zj for i < j . We let

S(W ) =
{
{n + zi : i ∈ [1, r ]} : n ∈ [1,∞)

}
,

the set of all shifts of W to the right by a positive integer. Let ε be a choice
of signs for [1, r ], i.e., a function from [1, r ] into {−1, 1}. If S = {n + zi : i ∈
[1, r ]} is an element of S(W ), we will say that the pair (S , ε) is a residue
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pattern of p if

χp(n + zi) = ε(i), for all i ∈ [1, r ].

The set S(W ) has the universal pattern property if there exists p0 > 0
such that for all p ≥ p0 and for all choices of signs ε for [1, r ], there is a
set S ∈ S(W ) ∩ 2[1,p−1] such that (S , ε) is a residue pattern of p. S(W )
hence has the universal pattern property if and only if for all p sufficiently
large, S(W ) contains a set that exhibits any fixed but arbitrary pattern of
quadratic residues and non-residues of p. This property is inspired directly
by Davenport’s work: using this terminology, we can state the result of
Davenport [5, Corollary of Theorem 5] for quadratic residues as asserting
that if s ∈ [1,∞) then S([0, s − 1]) has the universal pattern property, and
moreover, for any choice of signs ε for [1, s ], the cardinality of the set

{S ∈ S([0, s − 1]) ∩ 2[1,p−1] : (S , ε) is a residue pattern of p}

is asymptotic to 2−sp as p → +∞. Note that if ε is the choice of signs that
is either identically 1 or identically −1 on [1, s ], then we recover the results
that were discussed in Sect. 9.1.

Suppose now that there exists nontrivial gaps between elements of W ,
i.e., zi+1 − zi ≥ 2 for at least one i ∈ [1, r − 1]. It is then natural to search
for elements S of S(W ) such that the quadratic residues (respectively, non-
residues) of p inside [minS ,maxS ] consists precisely of the elements of S , so
that S acts as the “support” of quadratic residues or non-residues of p inside
the minimal interval of consecutive integers containing S . We formalize this
idea by declaring S to be a residue (respectively, non-residue) support set of
p if S = (the set of all residues of p inside [1, p−1])∩ [minS ,maxS ] (respec-
tively, S = (the set of all non-residues of p inside [1, p−1])∩ [minS ,maxS ]).
We then define S(W ) to have the residue (respectively, non-residue) support
property if there exist p0 > 0 such that for all p ≥ p0, there is a set
S ∈ S(W ) ∩ 2[1,p−1] such that S is a residue (respectively, non-residue)
support set of p.

We now use Davenport’s method to establish the following proposition,
which generalizes [5, Corollary of Theorem 5], for quadratic residues.

Proposition 9.3 If W is any nonempty, finite subset of [0,∞), then S(W )
has the universal pattern property and both the residue and non-residue
support properties. Moreover, if ε is a choice of signs for [1, |W |],

cε(W )(p) =
∣∣∣{S ∈ S(W ) ∩ 2[1,p−1] : (S , ε) is a residue pattern of p}

∣∣∣ , and

cσ(W )(p) = |{S ∈ S(W ) ∩ 2[1,p−1] : S is a residue (respectively, non-residue)

support set of p}|,
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then as p → +∞,

cε(W )(p) ∼ 2−|W |p and cσ(W )(p) ∼ 2−(1+maxW−minW )p.

Proof Suppose that the asserted asymptotics of cε(W )(p) has been estab-
lished for all nonempty, finite subsets W of [0,∞). Then the asserted
asymptotics for cσ(W )(p) can be deduced from that by means of the following
trick. Let W ⊆ [0,∞) be nonempty and finite. Define the choice of signs ε
for [min W , max W ] to be 1 on W and −1 on [min W , max W ]\ W . Now
for each p, let

S(p) = {S ∈ S(W ) ∩ 2[1,p−1] : S is a residue support set of p},

R(p) = {S ∈ S([minW ,maxW ]) ∩ 2[1,p−1] : (S , ε) is a residue pattern of p}.

If to each E ∈ R(p) (respectively, F ∈ S(p)), we assign the set f (E ) = E∩(set
of all residues of p inside [1, p − 1]) (respectively, g(F ) = [minF ,maxF ]),
then f (respectively, g) maps R(p) (respectively, S(p)) injectively into S(p)
(respectively,R(p)). HenceR(p) and S(p) have the same cardinality. Because
of our assumption concerning the asymptotics of cε([minW ,maxW ])(p), it
follows that as p → +∞,

cσ(W )(p) = |S(p)| = |R(p)| ∼ 2−|[minW ,maxW ]| p = 2−(1+maxW−minW ) p.

This establishes the conclusion of the proposition with regard to residue
support sets, and the conclusion with regard to non-residue support sets
follows by repeating the same reasoning after ε is replaced by −ε.

If ε is now an arbitrary choice of signs for[1, |W |], it hence suffices to deduce
the asserted asymptotics of cε(W )(p). Letting r(p) = p − maxW − 1, we
have for all p sufficiently large that

cε(W )(p) = 2−|W |
r(p)∑
x=1

|W |∏
i=1

(
1 + ε(i)χp(x + zi)

)
.

This sum can hence be rewritten as

2−|W |r(p) + 2−|W |
∑

∅ �= T ⊆ [1,|W |]

∏
i∈T

ε(i)
( r(p)∑

x=1

χp

( ∏
i∈T

(x + zi)
))

.

The asserted asymptotics for cε(W )(p) now follows from an application of
Theorem 9.1 to the Weil sums in the second term of this expression. QED
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Now, let (k , s) ∈ [1,∞)×[1,∞), {b1, . . . , bk} ⊆ [1,∞) and b = (b1, . . . , bk ).
We will apply Proposition 9.3 to the family of sets defined by

AP(b; s) =
{ k⋃

j=1

{n + ibj : i ∈ [0, s − 1]} : n ∈ [1,∞)
}
;

we need only to observe that

AP(b; s) = S
( k⋃

j=1

{ibj : i ∈ [0, s − 1]}
)
,

for then the following theorem is an immediate consequence of Proposi-
tion 9.3. In particular, if the choice of signs ε in the theorem is taken to
be either identically 1 or identically −1, we obtain the solution of Problems 1
and 3.

Theorem 9.4 (Wright [62], Theorem 2.3) If (k , s) ∈ [1,∞)×[1,∞), {b1, . . . ,
bk} ⊆ [1,∞) and b = (b1, . . . , bk ), then AP(b; s) has the universal pattern
property and both the residue and non-residue support properties. Moreover,
if b = max{b1, . . . , bk},

γ =
∣∣∣

k⋃
j=1

{ibj : i ∈ [0, s − 1]}
∣∣∣,

ε is a choice of signs for [1, γ],

cε(p) = |{S ∈ AP(b; s) ∩ 2[1,p−1] : (S , ε) is a residue pattern of p}|, and

cσ(p) = |{S ∈ AP(b; s) ∩ 2[1,p−1] : S is a residue (respectively, non-residue)

support set of p}|,

then as p → +∞,

cε(p) ∼ 2−γp and cσ(p) ∼ 2−(1+b(s−1))p.

As an example of Theorem 9.4 in action, take k = 5, s = 6, and b =
(b1, b2, b3, b4, b5) = (1, 2, 3, 5, 7). Then

1 + b(s − 1) = 1 + 7 · 5 = 36
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and

γ =
∣∣∣

5⋃
j=1

{ibj : i ∈ [0, 5]}
∣∣∣

=
∣∣{0} ∪ {1, 2, 3, 5, 7} ∪ {2, 4, 6, 10, 14} ∪ {3, 6, 9, 15, 21}

∪{4, 8, 12, 20, 28} ∪ {5, 10, 15, 25, 35}
∣∣

=
∣∣{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 25, 28, 35}∣∣

= 19.

We have that

AP(b; 6) =
{
{n + z : z ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20,

21, 25, 28, 35}
}
: n ∈ [1,∞)

}
,

and so if ε is a choice of signs for [1, 19] then Theorem 9.4 implies that as
p → +∞,

cε(p) ∼ 2−19p and cσ(p) ∼ 2−36p.

9.5 Solution of Problems 2 and 4: Introduction

Let (m, s) ∈ [1,∞) × [1,∞), let a = (a1, . . . , am), (respectively, b =
(b1, . . . , bm)) be an m-tuple of nonnegative (respectively, positive) integers
such that (ai , bi) �= (aj , bj ) for i �= j , let (a,b) denote the 2m-tuple
(a1, . . . , am , b1, . . . , bm) (we will call (a,b) a standard 2m-tuple) , and recall
from Sect. 9.2 that

AP(a,b; s) =
{ m⋃

j=1

{aj + bj (n + i) : i ∈ [0, s − 1]} : n ∈ [1,∞)
}
.

Problems 2 and 4 ask for the asymptotic behavior as p → +∞ of the number
of elements of AP(a,b; s) ∩ 2[1,p−1] which are sets of residues (respectively,
non-residues) of p. Because of certain arithmetical interactions which can
take place between the elements of the sets in AP(a,b; s), the asymptotic
behavior of this sequence is somewhat more complicated than what occurs
for AP(b; s) as per Theorem 9.4.
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In order to explain the situation, we set

qε(p) = |{A ∈ AP(a,b; s) ∩ 2[1,p−1] : χp(a) = ε, for all a ∈ A}|

and note that the value of qε(p) for ε = 1 (respectively, ε = −1) counts the
number of elements of AP(a,b; s) that are sets of residues (respectively,
non-residues) of p which are located inside [1, p − 1]. As we mentioned
before, it will transpire that the asymptotic behavior of qε(p) depends on
certain arithmetic interactions that can take place between the elements of
AP(a,b; s). In order to see how this goes, first consider the set B of distinct
values of the coordinates of b. If we declare the coordinate ai of a and the
coordinate bi of b to correspond to each other, then for each b ∈ B , we let
A(b) denote the set of all coordinates of a whose corresponding coordinate
of b is b. We then relabel the elements of B as b1, . . . , bk , say, and for each
i ∈ [1, k ], set

Si =
⋃

a∈A(bi)

{a + bi j : j ∈ [0, s − 1]},

and then let

α =
∑
i

|Si |, b = max{b1, . . . , bk}.

Next, suppose that

(∗ ∗ ∗) if (i , j ) ∈ [1, k ] × [1, k ] with i �= j and (x , y) ∈ A(bi) × A(bj ), then
either bibj does not divide ybi − xbj or bibj divides ybi − xbj with a quotient
that exceeds s − 1 in modulus.

Then we will show in Sect. 9.10 that as p → +∞, qε(p) is asymptotic to
(b · 2α)−1p. On the other hand, if the assumption (∗ ∗ ∗) does not hold then
we will also show in Sect. 9.10 that the asymptotic behavior of qε(p) falls into
two distinct regimes, with each regime determined in a certain manner by
the integral quotients

ybi − xbj
bibj

, (x , y) ∈ A(bi)×A(bj ), (�)

whose moduli do not exceed s − 1. More precisely, these quotients determine
a positive integer e < α and a collection S of nonempty subsets of [1, k ] such
that each element of S has even cardinality and for which the following two
alternatives hold:

(i) if
∏

i∈S bi is a square for all S ∈ S, then as p → +∞, qε(p) is asymptotic
to (b · 2α−e)−1p, or
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(ii) if there is an S ∈ S such that
∏

i∈S bi is not a square, then there exist
two disjoint, infinite sets of primes Π+ and Π− whose union contains all
but finitely many of the primes and such that qε(p) = 0 for all p ∈ Π−,
while as p → +∞ inside Π+, qε(p) is asymptotic to (b · 2α−e)−1p. Thus
we see that when (∗ ∗ ∗) does not hold and p → +∞, either qε(p) is
asymptotic to (b · 2α−e)−1p or qε(p) asymptotically oscillates infinitely
often between 0 and (b · 2α−e)−1p.

In light of what we have just discussed, it will come as no surprise that
the solution of Problems 2 and 4 for AP(a,b; s) involves a bit more effort
than the solution of Problems 1 and 3 for AP(b; s). In order to analyze the
asymptotic behavior of qε(p), we follow the same strategy as before: using
an appropriate sum of products involving χp , qε(p) is expressed as a sum of
a dominant term and a remainder. If the dominant term is a non-constant
linear function of p and the remainder term does not exceed an absolute
constant ×√

p log p, then the asymptotic behavior of qε(p) will be in hand.
We in fact will implement this strategy when the set AP(a,b; s) in the

definition of qε(p) is replaced by a slightly more general set; for a precise
statement of what we establish, see Theorem 9.9 in Sect. 9.10. Also in
Sect. 9.10, we then deduce the solution of Problems 2 and 4 from this more
general result, where, in particular, we indicate more precisely the manner in
which the integral quotients (�) whose moduli do not exceed s − 1 determine
the parameter e and collection of sets S discussed above.

9.6 Preliminary Estimate of qε(p)

We begin the analysis of qε(p) by taking a closer look at the structure of
AP(a,b; s). Let J denote the set of all subsets J of [1,m] that are of maximal
cardinality with respect to the property that bj is equal to a fixed integer bJ
for all j ∈ J . We note that {J : J ∈ J } is a partition of [1,m] and that
bJ �= bJ ′ whenever {J , J ′} ⊆ J . Because (ai , bi) �= (aj , bj ) whenever i �= j ,
it follows that if J ∈ J then the integers aj for j ∈ J are all distinct. Let

SJ =
⋃
j∈J

{aj + bJ i : i ∈ [0, s − 1]}, J ∈ J .

Then

m⋃
j=1

{aj + bj (n + i) : i ∈ [0, s − 1]} =
⋃
J∈J

bJn + SJ , for all n ∈ [1,∞).

(9.11)
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It follows that AP(a,b; s) is a special case of the following more general
situation. Let k ∈ [1,∞), let B = {b1, . . . , bk} be a set of positive integers,
and let S = (S1, . . . ,Sk ) be a k -tuple of finite, nonempty subsets of [0,∞). By
way of analogy with the expression of the elements of AP(a,b; s) according
to (9.11), we will denote by AP(B ,S) the collection of sets defined by

{ k⋃
i=1

bin + Si : n ∈ [1,∞)
}
.

We are interested in the number of elements of AP(B ,S) that are sets of
quadratic residues or, respectively, quadratic non-residues of a prime p, and
so if ε ∈ {−1, 1}, we replace AP(a,b; s) by AP(B ,S) in the definition of
qε(p) and retain the same notation, so that now

qε(p) = |{A ∈ AP(B ,S) ∩ 2[1,p−1] : χp(a) = ε, for all a ∈ A}|.

The problem is to find an asymptotic formula for qε(p) as p → +∞.
We can now begin to implement the strategy for determining the

asymptotic behavior of qε(p) as set forth in Sect. 9.5. Our goal here is to find
an initial estimate of qε(p) in terms of an expression that we will eventually
denote by Σ4(p) such that qε(p) − Σ4(p) = O(

√
p log p) as p → +∞. In

Sects. 9.7–9.9, we will then prove that Σ4(p) is a non-constant linear function
of p for enough primes p so that the precise asymptotic behavior of qε(p) is
captured.

Toward that end, begin by noticing that there is a positive constant C ,
depending only on B and S, such that for all n ≥ C ,

the sets bin + Si , i ∈ [1, k ], are pairwise disjoint, and (9.12)

k⋃
i=1

bin + Si is uniquely determined by n. (9.13)

Because of (9.12) and (9.13), if

α =
∑
i

|Si | and r(p) = min
i

[
p − 1−max Si

bi

]
,

then the sum

2−α

r(p)∑
x=1

k∏
i=1

∏
j∈Si

(
1 + εχp(bix + j )

)
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differs from qε(p) by at most O(1), hence, as per the strategy as outlined in
Sect. 9.5, this sum can be used to determine the asymptotics of qε(p).

Apropos of that strategy, let

T =

k⋃
i=1

{(i , j ) : j ∈ Si},

and then rewrite the above sum as

2−αr(p) + 2−α
∑

∅�=T⊆T
ε|T |

k∏
i=1

χp(bi)
|{j :(i,j)∈T}|

r(p)∑
x=1

χp

( ∏
(i,j)∈T

(x + b̄i j )
)
,

(9.14)

where b̄i denotes the inverse of bi modulo p, which clearly exists for all
p sufficiently large. Our intent now is to estimate the modulus of certain
summands in the second term of (9.14) by means of Theorem 9.2.

Let Σ(p) denote the second term of the sum in (9.14). In order to carry out
the intended estimate, we must first remove from Σ(p) the terms to which
Theorem 9.2 cannot be applied. Toward that end, let

E (p) = {∅ �= T ⊆ T : the distinct elements, modulo p, in the list b̄i j , (i , j ) ∈
T , each occurs an even number of times}.

We then split Σ(p) into the sum Σ1(p) of terms taken over the elements of
E (p) and the sum Σ2(p) = Σ(p)− Σ1(p). The sum Σ2(p) has no more than
2α − 1 terms each of the form

±2−α

r(p)∑
x=1

χp

( ∏
(i,j)∈T

(x + b̄i j )
)
, ∅ �= T ∈ 2T \ E (p).

Since ∅ �= T /∈ E (p), the polynomial in x in this term at which χp is evaluated
can be reduced to a product of at least one and no more than α distinct monic
linear factors in x over Fp , and so the sum in each of the above terms of Σ2(p)
is an incomplete Weil sum to which Theorem 9.2 can be applied. It therefore
follows from that theorem that

Σ2(p) = O(
√
p log p) as p → +∞.

We must now estimate

Σ3(p) = 2−αr(p) + Σ1(p),

and, as we shall see, it is precisely this term that will produce the dominant
term which determines the asymptotic behavior of qε(p).
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Since each element of E (p) has even cardinality,

Σ1(p) = 2−α
∑

T∈E(p)

k∏
i=1

χp(bi)
|{j :(i,j)∈T}|

r(p)∑
x=1

χp

( ∏
(i,j)∈T

(x + b̄i j )
)
.

We now examine the sum over x ∈ [1, r(p)] on the right-hand side of this
equation. Because T ∈ E (p), each term in this sum is either 0 or 1, and
a term is 0 precisely when the value of x in that term agrees with the
minimal nonnegative ordinary residue mod p of −b̄i j , for some element (i , j )
of T . However, there are at most α/2 of these values at which x can agree
for each T ∈ E (p) and so it follows that Σ3(p) differs by at most O(1)
from

Σ4(p) = 2−αr(p)
(
1 +

∑
T∈E(p)

k∏
i=1

χp(bi)
|{j :(i,j)∈T}|

)
.

Consequently,

for all p sufficiently large, qε(p) − Σ4(p) = O(
√
p log p), (9.15)

and so it suffices to calculate Σ4(p) in order to determine the asymptotics of
qε(p).

9.7 Calculation of Σ4(p): Preliminaries

The calculation of Σ4(p) requires a careful study of E (p). In order to pin
this set down a bit more firmly, we make use of the equivalence relation ≈
defined on

T =

k⋃
i=1

{(i , j ) : j ∈ Si}

as follows: if ((i , j ), (l ,m)) ∈ T × T then (i , j ) ≈ (l ,m) if bl j = bim. For all
p sufficiently large, (i , j ) ≈ (l ,m) if and only if b̄i j ≡ b̄lm mod p, and so if
we let E(A) denote the set of all nonempty subsets of even cardinality of a
finite set A, then

for all p sufficiently large, E (p) consists of all subsets T of T such
that there exists a nonempty subset S of equivalence classes of ≈ and



248 9 Quadratic Residues and Non-Residues in Arithmetic Progression

elements ES ∈ E(S ) for S ∈ S such that

T =
⋃
S∈S

ES . (9.16)

In particular, it follows that for all p large enough, E (p) does not depend
on p, hence from now on, we delete the “p” from the notation for this set.

The description of E given by (9.16) mandates that we determine the
equivalence classes of the equivalence relation ≈. In order to do that in a
precise and concise manner, it will be convenient to use the following notation:
if b ∈ [1,∞) and S ⊆ [0,∞), we let b−1S denote the set of all rational
numbers of the form z/b, where z is an element of S . We next let

K =
{
∅ �= K ⊆ [1, k ] :

⋂
i∈K

b−1
i Si �= ∅

}
.

If K ∈ K then we set

T (K ) =
( ⋂

i∈K

b−1
i Si

)
∩
( ⋂

i∈[1,k ]\K
(Q \ b−1

i Si)
)
.

Let

Kmax = {K ∈ K : T (K ) �= ∅}.

Using Proposition 1.4, it is then straightforward to verify that the equivalence
classes of ≈ consist precisely of all sets of the form

{(i , tbi) : i ∈ K},

where K ∈ Kmax and t ∈ T (K ).
Observe next that if the set

{
{(i , tbi) : i ∈ K} : K ∈ K, t ∈

⋂
i∈K

b−1
i Si

}

is ordered by inclusion then the equivalence classes of ≈ are the maximal
elements of this set. Hence T (K ) ∩ T (K ′) = ∅ whenever {K ,K ′} ⊆ Kmax.
Consequently, if (K ,K ′) ∈ Kmax ×Kmax, ∅ �= σ ⊆ K , ∅ �= σ′ ⊆ K ′, t ∈ T (K ),
and t ′ ∈ T (K ′), then {(i , tbi) : i ∈ σ} and {(i , t ′bi) : i ∈ σ′} are each
contained in distinct equivalence classes of ≈ if and only if t �= t ′ . The
following lemma is now an immediate consequence of (9.16) and the structure
just obtained for the equivalence classes of ≈.
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Lemma 9.5 If T ∈ E then there exists a nonempty subset S of Kmax , a
nonempty subset Σ(S ) of E(S ) for each S ∈ S and a nonempty subset T (σ, S )
of T (S ) for each σ ∈ Σ(S ) and S ∈ S such that

the family of sets
{
T (σ, S ) : σ ∈ Σ(S ), S ∈ S

}
is pairwise disjoint, and

T =
⋃
S∈S

[ ⋃
σ∈Σ(S)

( ⋃
t∈T(σ,S)

{(i , tbi) : i ∈ σ}
)]

.

We have now determined via Lemma 9.5 the structure of the elements of E
precisely enough for effective use in the calculation of Σ4(p). However, if we
already know that qε(p) = 0, the value of Σ4(p) is obviated in our argument.
It would hence be very useful to have a way to mediate between the primes
p for which qε(p) = 0 and the primes p for which qε(p) �= 0. We will now
define and study a gadget which does that.

9.8 The (B ,S)-Signature of a Prime

Denote by Λ(K) the set

⋃
K∈Kmax

E(K ).

Then Λ(K) is empty if and only if every element of Kmax is a singleton.
Suppose that Λ(K) is not empty. We will say that p is an allowable prime

if no element of B has p as a factor. If p is an allowable prime, then the
(B ,S)-signature of p is defined to be the multi-set of ±1’s given by

{
χp

(∏
i∈I

bi

)
: I ∈ Λ(K)

}
.

We declare the signature of p to be positive if all of its elements are 1, and
non-positive otherwise. Let

Π+(B ,S) (respectively, Π−(B ,S)) denote the set of all allowable primes
p such that the (B ,S)-signature of p is positive (respectively, non-
positive).

We can now prove the following two lemmas: the first records some
important information about the signature, and the second implies that we
need only calculate Σ4(p) for the primes p in Π+(B ,S).
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Lemma 9.6

(i) The set Π+(B ,S) consists precisely of all allowable primes p for which
each of the sets

{bi : i ∈ I }, I ∈ Λ(K), (�)

is either a set of residues of p or a set of non-residues of p. In particular,
Π+(B ,S) is always an infinite set.

(ii) The set Π−(B ,S) consists precisely of all allowable primes p for which
at least one of the sets (�) contains a residue of p and a non-residue of
p, Π−(B ,S) is always either empty or infinite, and Π−(B ,S) is empty
if and only if for all I ∈ Λ(K),

∏
i∈I bi is a square.

Proof Suppose that p is an allowable prime such that each of the sets (�) is
either a set of residues of p or a set of non-residues of p. Then

χp

(∏
i∈I

bi

)
= 1

whenever I ∈ Λ(K) because |I | is even, i.e., p ∈ Π+(B ,S). On the other
hand, let p ∈ Π+(B ,S) and let I = {i1, . . . , in} ∈ Λ(K). Then because
p ∈ Π+(B ,S),

χp(bij bij+1) = 1, j ∈ [1, n − 1],

and these equations imply that {bi : i ∈ I } is either a set of residues of p
or a set of non-residues of p. This verifies the first statement in (i), and the
second statement follows from the fact (Theorem 4.3) that there are infinitely
many primes p such that B is a set of residues of p.

Statement (ii) of the lemma follows from (i), the definition of Π−(B ,S),
and the fact (Theorem 4.2) that a positive integer is a residue of all but
finitely many primes if and only if it is a square. QED

It is a consequence of the following lemma that we need only calculate
Σ4(p) for the primes p which are in Π+(B ,S). As we will see in the next
section, this greatly simplifies that calculation.

Lemma 9.7 If p ∈ Π−(B ,S) then qε(p) = 0.

Proof If p ∈ Π−(B ,S) then there is an I ∈ Λ(K) such that

χp

(∏
i∈I

bi

)
= −1.
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Because I is nonempty and of even cardinality, there exists {m, n} ⊆ I such
that

χp(bmbn) = −1. (9.17)

Because {m, n} is contained in an element of Kmax, it follows that b
−1
m Sm ∩

b−1
n Sn �= ∅, and so we find a non-negative rational number r such that

rbm ∈ Sm and rbn ∈ Sn . (9.18)

By way of contradiction, suppose that qε(p) �= 0. Then there exists a
z ∈ [1,∞) such that bmz + Sm and bnz + Sn are both contained in [1, p − 1]
and

χp(bmz + u) = χp(bnz + v), for all u ∈ Sm and for all v ∈ Sn . (9.19)

If d is the greatest common divisor of bm and bn then there is a non-negative
integer t such that r = t/d . Hence by (9.18) and (9.19),

χp(bm/d)χp(dz + t) = χp(bm z + rbm)

= χp(bn z + rbn)

= χp(bn/d)χp(dz + t).

However, dz + t ∈ [1, p − 1] and so χp(dz + t) �= 0. Hence

χp(bm/d) = χp(bn/d),

and this value of χp , as well as χp(d), is nonzero because d , bm/d , and bn/d
are all elements of [1, p − 1]. But then

χp(bmbn) = χp(d
2)χp(bm/d)χp(bn/d) = 1,

contrary to (9.17). QED

9.9 Calculation of Σ4(p): Conclusion

With Lemmas 9.5 and 9.7 in hand, we now calculate the sum Σ4(p) that
arose in (9.15). By virtue of Lemma 9.7, we need only calculate Σ4(p) for
p ∈ Π+(B ,S), hence let p be an allowable prime for which

χp

(∏
i∈I

bi

)
= 1, for all I ∈ Λ(K). (9.20)
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We first recall that

Σ4(p) = 2−αr(p)
(
1 +

∑
T∈E

k∏
i=1

χp(bi )
|{j :(i,j)∈T}|

)
, (9.21)

where

r(p) = min
i

[
p − 1−maxSi

bi

]
,

and so we must evaluate the products over T ∈ E which determine the
summands of the third factor on the right-hand side of (9.21). Toward that
end, let T ∈ E and use Lemma 9.5 to find a nonempty subset S of Kmax,
a nonempty subset Σ(S ) of E(S ) for each S ∈ S and a nonempty subset
T (σ, S ) of T (S ) for each σ ∈ Σ(S ) and S ∈ S such that

the sets T (σ, S ), σ ∈ Σ(S ), S ∈ S, are pairwise disjoint, and

T =
⋃
S∈S

[ ⋃
σ∈Σ(S)

( ⋃
t∈T(σ,S)

{(n, tbn) : n ∈ σ}
)]

.

Then

{j : (i , j ) ∈ T} =
⋃
S∈S

( ⋃
σ∈Σ(S):i∈σ

{tbi : t ∈ T (σ, S )}
)

and this union is pairwise disjoint. Hence

|{j : (i , j ) ∈ T}| =
∑
S∈S

∑
σ∈Σ(S):i∈σ

|T (σ, S )|.

Thus from this equation and (9.20) we find that

k∏
i=1

χp(bi)
|{j :(i,j)∈T}| =

∏
i∈∪S∈S∪σ∈Σ(S) σ

χp(bi)
∑

S∈S
∑

σ∈Σ(S):i∈σ |T(σ,S)|

=
∏
S∈S

( ∏
σ∈Σ(S)

(
χp

(∏
i∈σ

bi

))|T(σ,S)|)

= 1.
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Hence

∑
T∈E

k∏
i=1

χp(bi)
|{j :(i,j)∈T}| = |E |, (9.22)

and so we must count the elements of E . In order to do that, note first that
the pairwise disjoint decomposition (9.16) of an element T of E is uniquely
determined by T , and, obviously, uniquely determines T . Hence if D denotes
the set of all equivalence classes of ≈ of cardinality at least 2 then

|E | =
∑

∅�=S⊆D

∏
S∈S

|E(S )|

= −1 +
∏
D∈D

(1 + |E(D)|)

= −1 +
∏
D∈D

2|D|−1

= −1 + 2−|D| · 2
∑

D∈D |D|.

However, D consists of all sets of the form

{(i , tbi) : i ∈ K}

where K ∈ Kmax, |K | ≥ 2, and t ∈ T (K ). Hence

|D| =
∑

K∈Kmax:|K |≥2

|T (K )|,

∑
D∈D

|D | =
∑

K∈Kmax:|K |≥2

|K ||T (K )|,

and so if we set

e =
∑

K∈Kmax

|T (K )|(|K | − 1),

then

|E | = 2e − 1. (9.23)



254 9 Quadratic Residues and Non-Residues in Arithmetic Progression

Equations (9.21)–(9.23) now imply

Lemma 9.8 If

α =
∑
i

|Si |, e =
∑

K∈Kmax

|T (K )|(|K |−1), and r(p) = min
i

[
p − 1−maxSi

bi

]
,

then

Σ4(p) = 2e−αr(p), for all p ∈ Π+(B ,S).

If we set b = max
i

{bi} then it follows from Lemma 9.8 that as p → +∞
inside Π+(B ,S),

Σ4(p) ∼ (b · 2α−e)−1p.

When we insert this asymptotic approximation of Σ4(p) into the esti-
mate (9.15), and then recall Lemma 9.7, we see that (b · 2α−e)−1p is a linear
function of p which should work to determine the asymptotic behavior of
qε(p). We will now show in the next section that it does work in exactly that
way.

9.10 Solution of Problems 2 and 4: Conclusion

All of the ingredients are now assembled for a proof of the following theorem,
which determines the asymptotic behavior of qε(p).

Theorem 9.9 (Wright [62], Theorem 6.1) Let ε ∈ {−1, 1}, k ∈ [1,∞), and
let B = {b1, . . . , bk} be a set of positive integers and S = (S1, . . . ,Sk) a
k-tuple of finite, nonempty subsets of [0,∞). If Kmax is the set of subsets of
[1, k ] defined by B and S as in Sect. 9.7, let

Λ(K) =
⋃

K∈Kmax

E(K ),

α =
∑
i

|Si |, b = max
i

{bi}, e =
∑

K∈Kmax

|T (K )|(|K | − 1), and

qε(p) = |{A ∈ AP(B ,S) ∩ 2[1,p−1] : χp(a) = ε, for all a ∈ A}|.
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(i) If the sets b−1
1 S1, . . . , b

−1
k Sk are pairwise disjoint then

qε(p) ∼ (b · 2α)−1p as p → +∞.

(ii) If the sets b−1
1 S1, . . . , b

−1
k Sk are not pairwise disjoint then

(a) the parameter e is positive and less than α;
(b) if

∏
i∈I bi is a square for all I ∈ Λ(K) then

qε(p) ∼ (b · 2α−e)−1p as p → +∞;

(c) if there exists I ∈ Λ(K) such that
∏

i∈I bi is not a square then

(α) the set Π+(B ,S) of primes with positive (B ,S)-signature and
the set Π−(B ,S) of primes with non-positive (B ,S)-signature
are both infinite,

(β) qε(p) = 0 for all p in Π−(B ,S), and
(γ) as p → +∞ inside Π+(B ,S),

qε(p) ∼ (b · 2α−e)−1p .

Proof If the sets b−1
1 S1, . . . , b

−1
k Sk are pairwise disjoint then every element of

Kmax is a singleton set, hence all of the equivalence classes of the equivalence
relation ≈ defined above on

⋃k
i=1 {(i , j ) : j ∈ Si} by the set B are singletons.

It follows that the set E which is summed over in (9.21) is empty and so

Σ4(p) = 2−αr(p), for all p sufficiently large. (9.24)

Upon recalling that

r(p) = min
i

[
p − 1−max Si

bi

]
,

and then noting that as p → +∞, r(p) ∼ p/b, the conclusion of (i) is an
immediate consequence of (9.15) and (9.24).

Suppose that the sets b−1
1 S1, . . . , b

−1
k Sk are not pairwise disjoint. Then

Λ(K) is not empty and so conclusion (a) is an obvious consequence of the
definition of e. If

∏
i∈I bi is a square for all I ∈ Λ(K) then it follows from its

definition that Π+(B ,S) contains all but finitely many primes, and so (b) is
an immediate consequence of (9.15) and Lemma 9.8. On the other hand, if
there exists I ∈ Λ(K) such that

∏
i∈I bi is not a square then (α) follows from

Lemma 9.6, (β) follows from Lemma 9.7, and (γ) is an immediate consequence
of (9.15) and Lemma 9.8. QED

Theorem 9.9 shows that the elements of Λ(K) contribute to the formation
of quadratic residues and non-residues inside AP(B ,S). If no such elements
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exist then qε(p) has the expected minimal asymptotic approximation (b ·
2α)−1p as p → +∞. In the presence of elements of Λ(K), the parameter e is
positive and less than α, the asymptotic size of qε(p) is increased by a factor
of 2e , and whenever Π−(B ,S) is empty, qε(p) is asymptotic to (b · 2α−e)−1p
as p → +∞. However, the most interesting behavior occurs when Π−(B ,S) is
not empty; in that case, as p → +∞, qε(p) asymptotically oscillates infinitely
often between 0 and (b · 2α−e)−1p.

Remark If we observe that the cardinality of the set

k⋃
i=1

b−1
i Si

is equal to the number of equivalence classes of the equivalence relation ≈
that was defined on the set

T =
k⋃

i=1

{(i , j ) : j ∈ Si},

then it follows that

∣∣
k⋃

i=1

b−1
i Si

∣∣ =
∑

K∈Kmax

|T (K )|.

But we also have that

α = |T | =
∑

K∈Kmax

|T (K )||K |.

Consequently, the exponents in the power of 1/2 that occur in the asymptotic
approximation to qε(p) in Theorem 9.9 are in fact all equal to the cardinality

of
⋃k

i=1 b−1
i Si .

Theorem 9.9 will now be applied to the situation of primary interest to us
here, namely to the family of sets AP(a,b; s) determined by a standard 2m-
tuple (a,b). In this case, the decomposition (9.11) of the sets in AP(a,b; s)
shows that there is a set B = {b1, . . . , bk} of positive integers (the set of
distinct values of the coordinates of b), a k -tuple (m1, . . . ,mk ) of positive
integers such that m =

∑
i mi , and sets

Ai = {ai1, . . . , aimi }
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of non-negative integers, all uniquely determined by (a,b), such that if we let

Si =

mi⋃
j=1

{aij + bi l : l ∈ [0, s − 1]}, i ∈ [1, k ], (9.25)

and set

S = (S1, . . . ,Sk)

then

AP(a,b; s) = AP(B ,S).

It follows that

b−1
i Si =

⋃

q∈b−1
i Ai

{q + j : j ∈ [0, s − 1]}, i ∈ [1, k ].

These sets then determine the subsets of [1, k ] that constitute

K = {∅ �= K ⊆ [1, k ] :
⋂
i∈K

b−1
i Si �= ∅}}

and hence also the elements of Kmax, according to the recipe given in Sect. 9.7.
The sets in Kmax, together with the parameters

α =
∑
i

|Si |, b = max
i

{bi}, and e =
∑

K∈Kmax

|T (K )|(|K | − 1),

when used as specified in Theorem 9.9, then determine precisely the
asymptotic behavior of the sequence qε(p) that is defined upon replacement
of AP(B ,S) by AP(a,b; s) in the statement of Theorem 9.9, thereby solving
Problems 2 and 4. In particular, the sets b−1

1 S1, . . . , b
−1
k Sk are pairwise

disjoint if and only if

if (i , j ) ∈ [1, k ]× [1, k ] with i �= j and (x , y) ∈ Ai ×Aj , then either

bibj does not divide ybi − xbj or bibj divides ybi − xbj

with a quotient that exceeds s − 1 in modulus. (9.26)

Hence the conclusion of statement (i) of Theorem 9.9 holds for AP(a,b; s)
when condition (9.26) is satisfied, while the conclusions of statement (ii) of
Theorem 9.9 hold for AP(a,b; s) whenever condition (9.26) is not satisfied.
In the following section we will present several examples which illustrate how
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Theorem 9.9 works in practice to determine the asymptotic behavior of qε(p).
We will see there, in particular, that for each integer m ∈ [2,∞) and for each
of the hypotheses in the statement of Theorem 9.9, there exists infinitely
many standard 2m-tuples (a,b) which satisfy that hypothesis.

9.11 An Interesting Class of Examples

In order to apply Theorem 9.9 to a standard 2m-tuple (a,b), we need to
calculate the parameters α and e, the set Λ(K), and the associated signatures
of the allowable primes. In general, this can be somewhat complicated, but
there is a class of standard 2m-tuples for which these computations can be
carried out by means of easily applied algebraic and geometric formulae,
which we will discuss next.

Let k ∈ [2,∞). We will say that a standard 2k -tuple (a,b) of integers is
admissible if it satisfies the following two conditions:

the coordinates of b are distinct, and, (9.27)

aibj − aj bi �= 0 for i �= j . (9.28)

If s ∈ [1,∞) and (a,b) is admissible then it follows trivially from (9.27) that

Si = {ai + bi j : j ∈ [0, s − 1]}, i ∈ [1, k ],

hence

|Si | = s , i ∈ [1, k ],

and so the parameter α in the statement of Theorem 9.9 for AP(a,b; s) is ks .
We turn next to the calculation of the parameter e. Let qi = ai/bi , i ∈

[1, k ]; (9.28) implies that the qi ’s are distinct, and without loss of generality,
we suppose that the coordinates of a and b are indexed so that qi < qi+1

for each i ∈ [1, k − 1]. Let R denote the set of all subsets R of {q1, . . . , qk}
such that |R| ≥ 2 and R is maximal relative to the property that w − z is an
integer for all (w , z ) ∈ R×R. We note that R is just the set of all equivalence
classes of cardinality at least 2 of the equivalence relation ∼ defined on the set
{q1, . . . , qk} by declaring that qi ∼ qj if qi−qj ∈ Z. After linearly ordering the
elements of each R ∈ R, we let D(R) denote the (|R| − 1)-tuple of positive
integers whose coordinates are the distances between consecutive elements
of R. Then if MR(s) denotes the multi-set formed by the coordinates of
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D(R) which do not exceed s − 1, it can be shown that

e =
∑
R∈R

∑
r∈MR(s)

(s − r) (9.29)

(see Wright [62], Sect. 8). We note in particular that e = 0 if and only if
the set {R ∈ R : MR(s) �= ∅} is empty and that this occurs if and only
if the sets b−1

i Si , i ∈ [1, k ], are pairwise disjoint. Formula (9.29) shows that
e can be calculated solely by means of information obtained directly and
straightforwardly from the set {q1, . . . , qk}.

In order to calculate the signature of allowable primes, the set Λ(K) must
be computed. There is an elegant geometric formula for this computation
that is based on the concept of what we will call an overlap diagram, and so
those diagrams will be described first.

Let (n, s) ∈ [1,∞) × [1,∞) and let g = (g(1), . . . , g(n)) be an n-tuple of
positive integers. We use g to construct the following array of points. In the
plane, place s points horizontally one unit apart, and label the j -th point
as (1, j − 1) for each j ∈ [1, s ]. This is row 1. Suppose that row i has been
defined. One unit vertically down and g(i) units horizontally to the right of
the first point in row i , place s points horizontally one unit apart, and label
the j -th point as (i + 1, j − 1) for each j ∈ [1, s ]. This is row i + 1. The
array of points so formed by these n + 1 rows is called the overlap diagram
of g, the sequence g is called the gap sequence of the overlap diagram, and a
nonempty set that is formed by the intersection of the diagram with a vertical
line is called a column of the diagram. N.B. We do not distinguish between
the different possible positions in the plane which the overlap diagram may
occupy. A typical example with n = 3, s = 8, and gap sequence (3, 2, 2) looks
like

· · · · · · · ·
· · · · · · · ·

· · · · · · · ·
· · · · · · · ·

An overlap diagram

We need to describe how and where rows overlap in an overlap diagram.
Begin by first noticing that if (g(1), . . . , g(n)) is the gap sequence, then row
i overlaps row j for i < j if and only if

j−1∑
r=i

g(r) ≤ s − 1;

in particular, row i overlaps row i + 1 if and only if g(i) ≤ s − 1. Now let
G denote the set of all subsets G of [1, n] such that G is a nonempty set of
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consecutive integers maximal with respect to the property that g(i) ≤ s − 1
for all i ∈ G. If G is empty then g(i) ≥ s for all i ∈ [1, n], and so there is no
overlap of rows in the diagram. Otherwise there exists m ∈ [1, 1+ [(n−1)/2]]
and strictly increasing sequences (l1, . . . , lm) and (M1, . . . ,Mm) of positive
integers, uniquely determined by the gap sequence of the diagram, such that
li ≤ Mi for all i ∈ [1,m], 1 +Mi ≤ li+1 if i ∈ [1,m − 1], and

G = {[li ,Mi ] : i ∈ [1,m]}.

In fact, li+1 > 1+Mi if i ∈ [1,m − 1], lest the maximality of the elements of
G be violated. It follows that the intervals of integers [li , 1 +Mi ], i ∈ [1,m],
are pairwise disjoint.

The set G can now be used to locate the overlap between rows in the
overlap diagram like so: for i ∈ [1,m], let

Bi = [li , 1 +Mi ],

and set

Bi = the set of all points in the overlap diagram whose labels are in

Bi × [0, s − 1].

We refer to Bi as the i-th block of the overlap diagram; thus the blocks of the
diagram are precisely the regions in the diagram in which rows overlap.

We will now use the elements ofR to construct a series of overlap diagrams.
Let R be an element of R such that D(R) has at least one coordinate that
does not exceed s − 1. Next, consider the nonempty and pairwise disjoint
family of all subsets V of R such that |V | ≥ 2 and V is maximal with
respect to the property that the distance between consecutive elements of
V does not exceed s − 1. List the elements of V in increasing order and
then for each i ∈ [1, |V | − 1] let qV (i) denote the distance between the i-th
element and the (i + 1)-th element on that list. N.B. qV (i) ∈ [1,∞), for all
i ∈ [1, |V |−1]. Finally, let D(V ) denote the overlap diagram of the (|V |−1)-
tuple (qV (i) : i ∈ [1, |V | − 1]). Because qV (i) ≤ s − 1 for all i ∈ [1, |V | − 1],
D(V ) consists of a single block.

Using a suitable positive integer m, we index all of the sets V that arise
from all of the elements of R in the previous construction as V1, . . . ,Vm

and then define the quotient diagram of (a,b) to be the m-tuple of overlap
diagrams (D(Vn) : n ∈ [1,m]). We will refer to the diagrams D(Vn) as the
blocks of the quotient diagram.

The quotient diagram D of (a,b) will now be used to calculate the set
Λ(K) determined by (a,b) and hence the associated signature of an allowable
prime. In order to see how this goes, we will need to make use of a certain
labeling of the points of D which we describe next. Let V1, . . . ,Vm be
the subsets of {q1, . . . , qk} that determine the sequence of overlap diagrams
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D(V1), . . . ,D(Vm) which constitute D, and then find the subset Jn of [1, k ]
such that Vn = {qj : j ∈ Jn}, with j ∈ Jn listed in increasing order (note
that this ordering of Jn also linearly orders qj , j ∈ Jn).The overlap diagram
D(Vn) consists of |Jn | rows, with each row containing s points. If i ∈ [1, |Jn |]
is taken in increasing order then there is a unique element j of Jn such that
the i-th element of Vn is qj . Proceeding from left to right in each row, we
now take l ∈ [1, s ] and label the l -th point of row i in D(Vn) as (j , l−1). N.B.
This labeling of the points of D(Vn) does not necessarily coincide with the
labeling of the points of an overlap diagram that was used before to define
the blocks of the diagram.

Next let C denote a column of one of the diagrams D(Vn) which
constitute D. We identify C with the subset of [1, k ]× [0, s − 1] defined by

{(i , j ) ∈ [1, k ]× [0, s − 1] : (i , j ) is the label of a point in C}, (9.30)

let Cn denote the set of all subsets of [1, k ]× [0, s − 1] which arise from all
such identifications, and then set C =

⋃
n Cn . If θ denotes the projection

of [1, k ] × [0, s − 1] onto [1, k ] then one can show (Wright [63], Lemma 2.5)
that K ∈ Kmax if and only if there exists a T ∈ C such that K = θ(T ), and
so

Λ(K) =
⋃
T∈C

E(θ(T )). (9.31)

When this formula for Λ(K) is now combined with (9.29), it follows that
all of the data required for an application of Theorem 9.9 can be easily
read off directly from the set {q1, . . . , qk} and the quotient diagram of
(a,b).

At this juncture, some concrete examples which illustrate the mathe-
matical technology that we have introduced are in order. But before we
get to those, recall that if (a,b) is an admissible 2k -tuple, B is the
set formed by the coordinates b1, . . . , bk of b, Si = {ai + bi j : j ∈
[0, s − 1]}, where ai is the i-th coordinate of a, i ∈ [1, k ], and S is
the k -tuple of sets (S1, . . . ,Sk ), then the pair (B ,S) determines by way
of Theorem 9.9 the asymptotic behavior of |{A ∈ AP(a,b; s) ∩ 2[1,p−1] :
χp(a) = ε, for all a ∈ A}|, ε ∈ {−1, 1}. Hence for this pair, we use the
more specific notation Π±(a,b) for the sets Π±(B ,S) in the statement of
Theorem 9.9.

Now for the examples. We start with a simple example which illustrates
how the parameter e and the set Λ(K) are calculated from (9.29) and (9.31).
Suppose that s = 5 and the quotient diagram of the admissible 8-tuple (a,b)
consists of the single overlap diagram located in the plane as follows (Fig. 9.1):
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q1 q2 q3 q4

Fig. 9.1 Location of the quotient diagram

Then k = 4, q2 = q1 + 2, q3 = q2 + 2, and q4 = q3 + 3, hence the set R
consists of the single set R = {q1, q2, q3, q4}, whence D(R) = (2, 2, 3) and
MR(5) = {2, 2, 3}. It therefore follows from (9.29) that

e = (5− 2) + (5− 2) + (5− 3) = 8.

Consequently,

α− e = 4 · 5− 8 = 12.

We have that

b−1
i Si = {qi + j : j ∈ [0, 4]}, i = 1, 2, 3, 4,

and so 12 is also the cardinality of the union
⋃4

i=1 b
−1
i Si .

Turning to the calculation of Λ(K) by means of (9.31), note first that
the quotient diagram of (a,b) consists of a single block D(V ) with V =
{q1, q2, q3, q4}. The set of indices of the elements of V is J = {1, 2, 3, 4}, and
so the points of D(V ) are labeled as indicated in Fig. 9.2:

q1

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

q2

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

q3

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

q4

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

Fig. 9.2 Labeled points of the quotient diagram

The columns in C, identified as subsets of {1, 2, 3, 4} × {0, 1, 2, 3, 4} are
hence
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{(1, 0)}, {(1, 1)}, {(1, 2), (2, 0)}, {(1, 3), (2, 1)}, {(1, 4), (2, 2), (3, 0)}, {(2, 3),
(3, 1)}, {(2, 4), (3, 2)}, {(3, 3), (4, 0)}, {(3, 4), (4, 1)}, {(4, 2)}, {(4, 3)} and
{(4, 4)}.

From this, we find that the sets θ(T ),T ∈ C, are

{1}, {1, 2}, {1, 2, 3}, {2, 3}, {3, 4}, and {4},

and so Λ(K), according to (9.31), consists of the sets

{1, 2}, {1, 3}, {2, 3}, and{3, 4}.

Consequently, the (a,b)-signature of an allowable prime p is

{χp(b1b2), χp(b1b3), χp(b2b3), χp(b3b4)}.

Next, let m ∈ [1,+∞) and for each n ∈ [1,m], let D(n) be a fixed but
arbitrary overlap diagram with kn rows, kn ≥ 2, and gap sequence (d(i , n) :
i ∈ [1, kn − 1]), with no gap exceeding s − 1. Let k0 = 0, k =

∑m
n=0 kn . We

will now exhibit infinitely many admissible 2k -tuples (a,b) whose quotient
diagram is Δ = (D(n) : n ∈ [1,m]). This is done by taking the (k − 1)-tuple
(d1, . . . , dk−1) in the following lemma to be

di=

{
d
(
i−
∑n

0 kj , n+1
)
, if n ∈ [0,m−1] and i ∈

[
1+
∑n

0 kj ,−1+
∑n+1

0 kj

]

s , elsewhere,

}

and then letting (a,b) be any 2k -tuple obtained from the construction in the
lemma.

Lemma 9.10 For k ∈ [2,∞), let (d1, . . . , dk−1) be a (k − 1)-tuple of
positive integers. Define k-tuples (a1, . . . , ak ), (b1, . . . , bk ) of positive integers
inductively as follows: let (a1, b1) be arbitrary, and if i > 1 and (ai , bi) has
been defined, choose ti ∈ [2,∞) and set

ai+1 = ti(ai + dibi), bi+1 = tibi .

Then

ai
bi

− aj
bj

=
i−1∑
r=j

dr , for all i > j .

Proof This is a straightforward calculation using the recursive definition of
the k -tuples (a1, . . . , ak ) and (b1, . . . , bk ). QED
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We can use Lemma 9.10 to also find infinitely many admissible 2k -tuples
(a,b) with quotient diagram Δ and such that the set Π−(a,b) is empty.
To do this, simply choose the integer b1 and all subsequent ti ’s used in
the above construction from Lemma 9.10 to be squares. This shows that
there are infinitely many admissible 2k -tuples with a specified quotient
diagram which satisfy the hypotheses of Theorem 9.9(ii)(b). On the other
hand, if b1 and all the subsequent ti ’s are instead chosen to be distinct
primes, it follows that the 2k -tuples determined in this way all have quotient
diagram Δ and each have Π−(a,b) of infinite cardinality, and so there are
infinitely many admissible 2k -tuples with specified quotient diagram which
satisfy the hypotheses of Theorem 9.9(ii)(c). We also note that if all of the
coordinates of (d1, . . . , dk−1) in Lemma 9.10 are chosen to exceed s − 1 then
we obtain infinitely many admissible 2k -tuples which satisfy the hypothesis
of Theorem 9.9(i).

For example, suppose we want to find infinitely many admissible 16-tuples
(a,b) whose quotient diagram consists of two copies of the overlap diagram in
Fig. 9.1, and for which Π−(a,b) is empty. We note first that the gap sequence
of the overlap diagram is (2, 2, 3), then take the 7-tuple in Lemma 9.10 to
be (2, 2, 3, 5, 2, 2, 3), select n ∈ [2,∞), set ti = n2 and a1 = b1 = 1 in the
recursive formulae for ai+1 and bi+1, i = 1, 2, 3, 4, 5, 6, 7, to obtain

(a,b) = (1, 3n2, 5n4, 8n6, 13n8, 15n10, 17n12, 20n14, 1, n2, n4, n6, n8, n10,

n12, n14).

If we also wish to find infinitely many admissible 16-tuples (a,b) with this
quotient diagram, but for which Π−(a,b) is infinite, then in this same recipe,
let {p1, p2, p3, p4, p5, p6, p7} be any set of 7 primes and take ti = pi for i =
1, 2, 3, 4, 5, 6, 7 to obtain

(a,b) =
(
1, 3p1, 5

∏2
i=1 pi , 8

∏3
i=1 pi , 13

∏4
i=1 pi , 15

∏5
i=1 pi , 17

∏6
i=1 pi ,

20
∏7

i=1 pi , 1, p1,
∏2

i=1 pi ,
∏3

i=1 pi ,
∏4

i=1 pi ,
∏5

i=1 pi ,
∏6

i=1 pi ,
∏7

i=1 pi
)
.

Finally, to find infinitely many admissible 16-tuples (a,b) which satisfy
the hypothesis of Theorem 9.9(i), take the 7-tuple in Lemma 9.10 to be (5,
5, 5, 5, 5, 5, 5) and ti = n for i = 1, 2, 3, 4, 5, 6, 7 for n ∈ [2,∞) to obtain

(a,b) = (1, 6n, 11n2, 16n3, 21n4, 26n5, 31n6, 36n7, 1, n, n2, n3, n4, n5, n6, n7).

With this cornucopia of examples in hand, for ε ∈ {−1, 1}, we let qε(p)
denote the cardinality of the set

{A ∈ AP(a,b; s) ∩ 2[1,p−1] : χp(a) = ε, for all a ∈ A},
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where (a,b) is admissible. We will now use the quotient diagram of (a,b),
formulae (9.29), (9.31), and Theorem 9.9 to study how (a,b) determines
the asymptotic behavior of qε(p) in specific situations. We will illustrate how
things work when k = 2 and 3, and for when “minimal” or “maximal” overlap
is present in the quotient diagram of (a,b).

When k = 2, there is only at most a single overlap of rows in the quotient
diagram of (a,b), and if, e.g., a1b2 − a2b1 = qb1b2 with 0 < q ≤ s − 1, then
the quotient diagram looks like (Fig. 9.3)

· · · · · · · ·
q

Fig. 9.3 A quotient diagram for k = 2

We have that α = 2s and, because of (9.29), e = s − q. Formula (9.31)
shows that the signature of p is {χp(b1b2)}, and so we conclude from
Theorem 9.9 that when b1b2 is a square,

qε(p) ∼ (b · 2s+q)−1p, as p → +∞,

and when b1b2 is not a square, Π+(a,b) is the set of all allowable primes p
such that {b1, b2} is either a set of residues of p or a set of non-residues of
p, Π−(a,b) is the set of all allowable primes p such that {b1, b2} contains a
residue of p and a non-residue of p,

qε(p) = 0, for all p in Π−(a,b),

and as p → +∞ inside Π+(a,b),

qε(p) ∼ (b · 2s+q)−1p.

When k = 3 there are exactly three types of overlap possible in the quotient
diagram of (a,b), determined, e.g., when either

(i) exactly one,
(ii) exactly two, or
(iii) exactly three

of b1b2, b2b3, and b1b3 divide, respectively, a2b1 − a1b2, a3b2 − a2b3, and
a3b1 − a1b3 with positive quotients not exceeding s − 1.

In case (i), with a2b1−a1b2 = qb1b2, say, the block in the quotient diagram
of (a,b) is formed by a single overlap between rows 1 and 2, and this block
looks exactly like the overlap diagram that was displayed for k = 2 above. It
follows that the conclusions from (9.29), (9.31), and Theorem 9.9 in case (i)
read exactly like the conclusions in the k = 2 case described before, except
that the exponent of the power of 1/2 in the coefficient of p in the asymptotic
approximation is now 2s + q rather than s + q.
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In case (ii), with a2b1 − a1b2 = qb1b2 and a3b2 − a2b3 = rb2b3, say, the
block in the quotient diagram is formed by an overlap between rows 1 and 2
and an overlap between rows 2 and 3, but no overlap between rows 1 and 3.
Hence the diagram looks like (Fig. 9.4)

· · · · · · · ·
← q → · · · · · · · ·

Fig. 9.4 A quotient diagram for k = 3

Here α = 3s , and, because of (9.29) and (9.31), e = 2s − q − r and the
signature of p is {χp(b1b2), χp(b2b3)}. We hence conclude from Theorem 9.9
that if b1b2 and b2b3 are both squares then

qε(p) ∼ (b · 2s+q+r)−1p as p → +∞. (9.32)

On the other hand, if either b1b2 or b2b3 is not a square then Π+(a,b) consists
of all allowable primes p such that {b1, b2, b3} is either a set of residues of p
or a set of non-residues of p, Π−(a,b) consists of all allowable primes p such
that {b1, b2, b3} contains a residue of p and a non-residue of p,

qε(p) = 0, for all p ∈ Π−(a,b), and (9.33)

qε(p) ∼ (b · 2s+q+r )−1p as p → +∞ inside Π+(a,b). (9.34)

In case (iii), with the quotients q and r determined as in case (ii), and, in
addition, a3b1 − a1b3 = tb1b3, say, the block in the quotient diagram is now
formed by an overlap between each pair of rows, and so the diagram looks
like (Fig. 9.5)

· · · · · · · ·
← q → · · · · · · · ·

Fig. 9.5 Another quotient diagram for k = 3

It follows that α = 3s , e = 2s − q − r , and the signature of p
is {χp(b1b2), χp(b1b3), χp(b2b3)}. In this case, the asymptotic approxima-
tion (9.32) holds whenever b1b2, b1b3, and b2b3 are all squares, and when
at least one of these integers is not a square, Π+(a,b) and Π−(a,b) are
determined by {b1, b2, b3} as before and (9.33) and (9.34) are valid.
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Minimal Overlap. Here we take the quotient diagram to consist of a single
block with gap sequence (s − 1, s − 1, . . . , s − 1), so that the overlap between
rows is as small as possible: a typical quotient diagram for s = 4 and k = 5
looks like (Fig. 9.6)

· · · ·
· · · ·

· · · ·
· · · ·

Fig. 9.6 A quotient diagram with minimal overlap

Here α = ks , e = k−1, and the signature of p is {χp(bibi+1) : i ∈ [1, k−1]}.
Hence via Theorem 9.9 , if bibi+1, i ∈ [1, k − 1], are all squares then

qε(p) ∼ (b · 21+k(s−1))−1p as p → +∞,

and if at least one of those products is not a square, then Π+(a,b) consists
of all allowable primes p such that {b1, . . . , bk} is either a set of residues of p
or a set of non-residues of p, Π−(a,b) consists of all allowable primes p such
that {b1, . . . , bk} contains a residue of p and a non-residue of p,

qε(p) = 0, for all p ∈ Π−(a,b), and (9.35)

qε(p) ∼ (b · 21+k(s−1))−1p as p → +∞ inside Π+(a,b).

Maximal Overlap (k ≥ 3). Here we take the quotient diagram to consist of
a single block with gap sequence (1, 1, . . . , 1) and k = s , so that the overlap
between each pair of rows is as large as possible: the diagrams for k = 3, 4,
and 5 look like (Fig. 9.7)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · ·

Fig. 9.7 Quotient diagrams with maximal overlap
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We have in this case that α = k2, e = (k − 1)2, and the signature of p is

{
χp

(∏
i∈I

bi

)
: I ∈ E([1, k ])

}
.

Hence if
∏

i∈I bi is a square for all I ∈ E([1, k ]) then

qε(p) ∼ (b · 22k−1)−1p as p → +∞,

and if one of these products is not a square then Π+(a,b) and Π−(a,b) are
determined by {b1, . . . , bk} as before, (9.35) holds, and

qε(p) ∼ (b · 22k−1)−1p as p → +∞ inside Π+(a,b).

It follows from our discussion after the proof of Theorem 9.9 that an
increase in the number of overlaps between rows in the quotient diagram
of (a,b) leads to an increase in the asymptotic number of elements of
AP(a,b; s) ∩ 2[1,p−1] that are sets of residues or non-residues of p, and
these examples now verify that principle quantitatively. In order to make
this explicit, note first that Lemma 9.10 can be used to generate examples in
which the (k − 1)-tuple (d1, . . . , dk−1) varies arbitrarily, while at the same
time b = max{b1, . . . , bk} always takes the same value. Hence we may
assume in the discussion to follow that the value of b is constant in each
set of examples, and so the only parameter that is relevant when comparing
asymptotic approximations to qε(p) is the exponent of the power of 1/2 in
the coefficient of that approximation. When k = 2, there is either no overlap
between rows or exactly 1 overlap; in the former case, the exponent in the
power of 1/2 that occurs in the asymptotic approximation to qε(p) is 2s and
in the latter case this exponent is less than 2s . When k = 3 there are 0, 1, 2, or
3 possible overlaps between rows, with the last three possibilities occurring,
respectively, in cases (i), (ii), and (iii) above. It follows that q < s in case
(i), q + r ≥ s in case (ii) and q + r < s in case (iii). Hence the exponent
in the power of 1/2 that occurs in the asymptotic approximation to qε(p) is
3s when no overlap occurs, is greater than 2s and less than 3s in case (i),
is at least 2s and less than 3s in case (ii), and is less than 2s in case (iii).
If we also take k = s when there is minimal overlap in the quotient diagram
and compare that to what happens when there is maximal overlap there,
we see that the exponent in the power of 1/2 that occurs in the asymptotic
approximation of qε(p) is quadratic in k , i.e., k2 − k + 1, in the former case,
but only linear in k , i.e., 2k − 1, in the latter case.
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9.12 The Asymptotic Density of Π+(a, b)

Suppose that (a,b) is a standard 2k -tuple and assume that there exists
an I ∈ Λ(K) such that

∏
i∈I bi is not a square. Then, in accordance with

Theorem 9.9, the sets Π+(a,b) and Π−(a,b) are both infinite, and so it
is of interest to calculate their asymptotic density. Because Π+(a,b) and
Π−(a,b) are disjoint sets with only finitely many primes outside of their
union, it follows that

the density of Π+(a,b) + the density of Π−(a,b) = 1,

so it suffices to calculate only the density of Π+(a,b).
In order to keep the technicalities from becoming too complicated, we will

describe this calculation for the following special case: assume that

(a,b) is admissible, the square-free parts σi = σ(bi) of the coordinates

bi of b are distinct and for each nonempty subset of T of [1, k ],
∏
i∈T

σi

is not a square. (9.36)

This condition is satisfied, for example, if

bi is square-free for all i and π(bi) is a proper subset of π(bi+1),

for all i ∈ [1, k − 1]. (9.37)

Moreover for each k ∈ [2,∞), Lemma 9.10 can be used to construct infinitely
many admissible 2k -tuples with a fixed but arbitrary quotient diagram which
satisfy (9.37).

Let (D(V1), . . . ,D(Vm)) be the quotient diagram of (a,b) and let Di be
the subset of [1, k ] such that Vi = {qj : j ∈ Di}, i ∈ [1,m]; as the sets
V1, . . . ,Vm are pairwise disjoint, so also are the sets D1, . . . ,Dm .

Now, let Ci denote the set of columns of the overlap diagram D(Vi),
realized as subsets of [1, k ]× [0, s−1] as per the identification given by (9.30),
and let

Λi(K) =
⋃

C∈Ci

E(θ(C )).

Then

⋃
I∈Λi (K)

I =
⋃

C∈Ci

θ(C ) = Di , i ∈ [1,m], (9.38)
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and so it follows from the pairwise disjointness of the Di ’s, these equations,
and (9.31) that

Λ(K) =
⋃
i

Λi(K), and this union is pairwise disjoint. (9.39)

Next, for each I ∈ Λ(K) let

S (I ) = {σi : i ∈ I },

and then set

M1 = {I ∈ Λ(K) : 1 ∈ S (I )}.

If M1 �= ∅ then there is a unique element n0 of
⋃

i Di such that σn0 = 1,
hence it follows from (9.38) and (9.39) that there is a unique element i0 of
[1,m] such that

M1 = {I ∈ Λi0(K) : n0 ∈ I }.

It can then be shown that if

σ =
∑
i

|Di |

and

m = the number of blocks in the quotient diagram of (a,b),

then the density of Π+(a,b) is

2m−σ, if M1 = ∅ or M1 = Λi0(K), or (9.40)

21−σ(2m − 1), if ∅ �= M1 �= Λi0(K). (9.41)

It follows that whenever (a,b) is an admissible 2k -tuple for which the
square-free parts of the coordinates of b are distinct and satisfy condi-
tion (9.36), the cardinality of

⋃
i Di , the number of blocks m in the quotient

diagram, and the set M1 completely determine the density of Π+(a,b) by
means of formulae (9.40) and (9.41). Those formulae show that each element
of
⋃

i Di contributes a factor of 1/2 to the density of Π+(a,b) and each
block of the quotient diagram of (a,b) contributes essentially a factor of
2 to the density. Because |Vi | ≥ 2 for all i , it follows that |Di | ≥ 2 for
all i and so σ ≥ 2m; in particular, the density of Π+(a,b) is at most 2−m

wheneverM1 = ∅ orM1 = Λi0(K) and is at most (2m−1)/22m−1, otherwise.
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This gives an interesting number-theoretic interpretation to the number of
blocks in the quotient diagram. In fact, if for each k ∈ [2,∞), we let Ak

denote the set of all admissible 2k -tuples which satisfy condition (9.36), set
A =

⋃
k∈[2,∞)Ak , and take m ∈ [1,∞), then Lemma 9.10 can be used to

show that there exists infinitely many elements (a,b) of A such that the
quotient diagram of (a,b) has m blocks and the density of Π+(a,b) is 2

−m

(respectively, (2m − 1)/22m−1). One can also show that if {l , n} ⊆ [1,∞),
with l ≥ 2n, then there are infinitely many elements (a,b) of A such that
the density of Π+(a,b) is 2

1−l(2n − 1).
For more details in this situation and for what transpires for arbitrary

standard 2m-tuples, we refer the interested reader to Wright [63].



Chapter 10

Are Quadratic Residues Randomly
Distributed?

The purpose of this chapter is to provide evidence that the answer to the
question in the title is yes. By examining tables of residues and non-residues
of certain primes in Sect. 10.1, we observe that residues can occur in very
irregular patterns. In Sect. 10.2, we will show how to view sums of the values
of Legendre symbols χp as random variables and then we will employ the
Central Limit Theorem from probability theory to determine a condition
under which, at least when p is sufficiently large, the values of χp can
be interpreted to behave randomly and independently. In Sect. 10.3, a very
interesting result of Davenport and Erdös on the distribution of residues will
then be employed to verify that the condition from Sect. 10.2 that detects
random behavior of residues and non-residues does indeed hold. Interestingly
enough, the Weil-sum estimates from Theorem 9.1, which were so useful in
our work in Chap. 9, will also be very useful in our proof of Davenport and
Erdös’ result.

10.1 Irregularity of the Distribution of Quadratic
Residues

Extensive numerical calculations performed over the years indicate that,
at least in certain subintervals of [1, p − 1], residues and non-residues of
p occur in very irregular patterns. For example, we present below four
tables (Tables 10.1–10.4) which exhibit the residues and non-residues of the
primes 41, 79, 101, and 139. A 0 indicates that the corresponding entry is a
residue of the indicated prime and 1 indicates that the corresponding entry
is a non-residue. The tables for 41 and 101 are palindromic, i.e., they read

© Springer International Publishing Switzerland 2016
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in Mathematics 2171, DOI 10.1007/978-3-319-45955-4 10
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the same from left to right, starting from the first entry in the table, as from
right to left, starting from the last entry (note that 41 and 101 are congruent
to 1 mod 4), and the tables for 79 and 139 become palindromic if the 0 and
1 entries in the last half of the tables are switched to 1 and 0, respectively
(note that 79 and 139 are congruent to 3 mod 4). However, the entries in
various subintervals of consecutive integers in the first half of the tables are
fairly irregular and do not appear to exhibit any predictable pattern.

Table 10.1 Residues and Non-residues of 41

1–20: 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0

21–40: 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0

Table 10.2 Residues and Non-residues of 79

1–20: 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0

21–40: 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0

41–60: 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1

61–78: 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1

Table 10.3 Residues and Non-residues of 101

1–20: 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0

21–40: 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1

41–60: 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1

61–80: 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0

81–100: 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0

Table 10.4 Residues and Non-residues of 139

1–20: 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0

21–40: 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1

41–60: 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1

61–80: 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0

81–100: 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0

101–120: 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0

121–138: 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1
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This has led to speculation about whether residues occur more or less
randomly in certain intervals of consecutive integers. In the following section,
we set up a procedure which can be used to provide positive evidence for the
contention that residues are in fact distributed in this manner.

10.2 Detecting Random Behavior Using the Central
Limit Theorem

The method which we will use to detect random behavior in the distribution
of residues employs the Central Limit Theorem from the mathematical theory
of probability. In order to set the stage for that result, we will briefly review
some basic facts and terminology from probability theory.

One starts with a probability space, i.e., a triple (Ω,M, μ) consisting of a
set Ω (the sample space), a distinguished σ-algebra M of subsets of Ω (the
events), and a non-negative, countably additive measure μ defined on M such
that μ(Ω) = 1 (the probability measure). A random variable X on Ω is an
extended real-valued function defined on Ω such that for each real number r ,
the set {ω ∈ Ω : X (ω) < r} is in M, i.e., X is measurable with respect to M.
The mean and variance of a random variable X is the value of the integral

X =

∫

Ω

X dμ and

∫

Ω

(X −X )2 dμ, respectively. The distribution function

of X is the function defined on the real line R by

λ → μ
(
{ω ∈ Ω : X (ω) ≤ λ}

)
, λ ∈ R.

It can be shown that a non-negative function F defined on R is the
distribution function of a random variable if and only if F is non-decreasing,
right continuous, limλ→−∞ F (λ) = 0 and limλ→+∞ F (λ) = 1 (Chung [4],
Theorem 2.2.4).

A set {X1, . . . ,Xn} of random variables on the probability space (Ω,M, μ)
is (stochastically) independent if for any n-tuple (B1, . . . ,Bn) of Borel subsets
of the real line, we have that

μ
( n⋂

i=1

{ω ∈ Ω : Xi(ω) ∈ Bi}
)
=

n∏
i=1

μ
(
{ω ∈ Ω : Xi(ω) ∈ Bi}

)
.

An infinite sequence (Xn) of random variables is independent if every finite
subset of the Xi ’s is independent.

Stochastic independence is a way of making mathematically precise the
intuitive notion of describing how events are determined by the outcomes
of random trials. An unbiased coin is tossed, the two possible outcomes are
recorded as 0 or 1, with roughly probabilities of 1/2 each, and repeated
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tossings generate a sequence of outcomes. In a similar way, we may repeatedly
cast a fair die, or draw colored beads (with replacement) from an urn, or
take repeated measurements of a certain quantity from a sample population,
each process generating values for a sequence of random variables. As Chung
[4] states, “it is very easy to conceive of undertaking these various trials
under conditions such that their respective outcomes do not appreciably
effect each other. . .. In this circumstance, idealized trials are carried out
“independently of one another” and the corresponding [random variables] are
“independent” according to definition”. In fact, according to Chung, “it may
be said that no one could have learned the subject of probability properly
without acquiring some feeling for the intuitive content of the concept of
stochastic independence.”

Sequences of independent random variables exist in abundance. One
can in fact prove that if, for each positive integer n, Yn is a fixed but
arbitrary random variable defined on a fixed but arbitrary probability space
(Ωn ,Mn , μn), then there exists a probability space (Ω,M, μ) and a sequence
of independent random variables (Xn) on (Ω,M, μ) such that, for all n,
Xn and Yn have the same mean, variance, and distribution function. The
construction of (Ω,M, μ) and the sequence of independent random variable
(Xn) uses the measure-theoretic infinite product of the probability spaces
(Ωn ,Mn , μn) and is hence too involved to go into further here; for complete
details of this construction, we refer the reader interested in them to Chung
[4], Theorem 3.3.4 and its proof.

Now, suppose that X1,X2, . . . is a sequence of random variables defined on
a probability space (Ω,M, μ) which is independent, identically distributed,
i.e., all Xn ’s have the same distribution function, and each random variable
has mean 0 and variance 1. If we set

Sn =

n∑
k=1

Xk , n ∈ [1,∞),

then the Central Limit Theorem (Chung [4], Theorem 6.4.4) asserts that for
each real number λ,

lim
n→+∞

μ
({

ω ∈ Ω :
Sn(ω)√

n
≤ λ
})

=
1√
2π

∫ λ

−∞
e−t2/2dt , (10.1)

i.e., as n → +∞, Sn/
√
n tends to becomes normally distributed with mean 0

and variance 1.
Now let p be a prime. We convert the set [0, p−1] into a (discrete and finite)

probability space by assigning probability 1/p to each element of [0, p − 1].
This induces the probability measure μp on [0, p − 1] defined by

μp(S ) =
|S |
p

, S ⊆ [0, p − 1]. (10.2)
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For each positive integer h < p, consider the sums

Sh(x ) =

x+h∑
n=x+1

χp(n), x = 0, . . . , p − 1,

which is just the quadratic excess of the interval (x , x+h+1) that we studied
in Chap. 7. The function Sh is a random variable on ([0, p − 1], μp), and so
by way of analogy with (10.1), we consider the distribution function

λ → μp

({
x ∈ [0, p − 1] :

Sh(x )√
h

≤ λ
})

, λ ∈ R, (10.3)

of Sh/
√
h.

We next let h = h(p) be a function of p and look for conditions on the growth
of h(p) which guarantee that for each real number λ,

lim
p→+∞

1

p

∣∣∣
{
x ∈ [0, p − 1] :

Sh(p)(x )√
h(p)

≤ λ
}∣∣∣ = 1√

2π

∫ λ

−∞
e−t2/2dt , (10.4)

It is easy to see that a necessary condition for (10.4) to occur is that
limp→+∞ h(p) = +∞. If (10.4) is valid then, as we see from (10.2) and (10.3),
when p → +∞ the sums Sh(p) satisfy a “central limit theorem” relative to
the probability spaces ([0, p − 1], μp). If (10.4) can be verified, then upon
comparing it to (10.1), we conclude that for p sufficiently large, at least
with respect to sampling using χp in the intervals [x + 1, x + h(p)], x =
0, 1, . . . , p − 1, residues and non-residues of p appear to behave as if they are
distributed randomly and independently!

10.3 Verifying Random Behavior via a Result
of Davenport and Erdös

The following theorem of Davenport and Erdös [7, Theorem 5] provides
conditions on h(p) which imply that (10.4) is true:

Theorem 10.1 If h : P → [1,∞) is any function such that

lim
q→+∞

h(q) = +∞, lim
q→+∞

h(q)r
√
q

= 0, for all r ∈ [1,∞)
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(e.g., h(q) = [logN q], where N is any fixed positive integer), then for each
real number λ,

lim
p→+∞

1

p

∣∣∣
{
x ∈ [0, p − 1] :

Sh(p)(x )√
h(p)

≤ λ
}∣∣∣ = 1√

2π

∫ λ

−∞
e−t2/2dt .

As a consequence of this theorem and our discussion in Sect. 10.2, we conclude
that, at least for sufficiently large primes p, residues and non-residues do
appear to be distributed randomly within intervals whose length does not
increase too fast as p → +∞.

The proof of Theorem 10.1 relies on the following lemma: we will first state
the lemma, use it to prove Theorem 10.1, and then prove the lemma.

Lemma 10.2 Let r be a fixed positive integer, and let h be an integer and p
a prime such that r < h < p. Then there exists numbers 0 ≤ θ ≤ 1, 0 ≤ θ′ ≤ 1
such that

∣∣∣
p−1∑
x=0

Sh(x )
2r − (p − θr)(h − θ′r)r

r∏
i=1

(2i − 1)
∣∣∣ ≤ 2rh2r√p, (10.5)

∣∣∣
p−1∑
x=0

Sh(x )
2r−1

∣∣∣ ≤ 2rh2r√p. (10.6)

Proof of Theorem 10.1 Let r be a fixed positive integer. Then by the
hypotheses satisfied by h(p), we have that r < h(p) < p for all p sufficiently
large, hence Lemma 10.2 implies that for all such p,

∣∣∣ 1
p

p−1∑
x=0

(h(p)−1/2Sh(p)(x ))
2r −

(
1− θr

p

)(
1− θ′r

h(p)

)r r∏
i=1

(2i − 1)
∣∣∣ ≤ 2r

h(p)r√
p

,

∣∣∣ 1
p

p−1∑
x=0

(h(p)−1/2Sh(p)(x ))
2r−1

∣∣∣ ≤ 2r
h(p)r
√
p

.

Letting p → +∞ in these inequalities, we deduce from the growth conditions
on h(p) that if r is any positive integer and

μr =

⎧⎪⎨
⎪⎩

r/2∏
i=1

(2i − 1), if r is even,

0, if r is odd,
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then

lim
p→+∞

1

p

p−1∑
x=0

(h(p)−1/2Sh(p)(x ))
r = μr . (10.7)

Now for each real number s , let

Np(s) =
1

p

∣∣{x ∈ [0, p − 1] : Sh(p)(x ) ≤ s
}∣∣.

The function Np is nondecreasing in s , constant except for possible disconti-
nuities at certain integral values of s , and is right-continuous at every value
of s . Because

∣∣Sh(p)(x )
∣∣ ≤ h(p), for all x ,

it follows that

Np(s) =

{
0, if s < −h(p),

1, if s ≥ h(p).

We also have that

1

p

∑
x

(
h(p)−1/2Sh(p)(x )

)r
=

1

p

h(p)∑
s=−h(p)

( ∑
x :Sh(p)(x)=s

(h(p)−1/2s)r
)

(10.8)

=
1

p

h(p)∑
s=−h(p)

(h(p)−1/2s)r |{x : Sh(p)(x ) = s}|

=

h(p)∑
s=−h(p)

(h(p)−1/2s)r (Np(s)−Np(s − 1)),

and so if we let

Φp(t) = Np(th(p)
−1/2),

then the last sum in (10.8) can be written as the Stieltjes integral

∫ ∞

−∞
trdΦp(t).
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Putting

Φ(t) =
1√
2π

∫ t

−∞
e−u2/2du,

we have

∫ ∞

−∞
trdΦ(t) =

1√
2π

∫ ∞

−∞
tre−t2/2dt = μr ,

hence (10.7), (10.8) imply that

lim
p→+∞

∫ ∞

−∞
trdΦp(t) =

∫ ∞

−∞
trdΦ(t), for all r ∈ [0,∞). (10.9)

By virtue of the definition of Φp , the conclusion of Theorem 10.1 can be
stated as

lim
p→+∞

Φp(λ) = Φ(λ), for all real numbers λ. (10.10)

We will deduce (10.10) from (10.9) by an appeal to the classical theory of
moments.

Suppose by way of contradiction that (10.10) is false for some λ; then there
exists δ > 0 such that

|Φp(λ)− Φ(λ)| ≥ δ for infinitely many p. (10.11)

Using the first and second Helly selection theorems (Shohat and Tamarkin
[54], Introduction, Sect. 3),we find a subsequence of these p, say p′, and a
nondecreasing real-valued function Φ∗ defined on R such that

lim
t→−∞

Φ∗(t) = 0, lim
t→+∞

Φ∗(t) = 1, (10.12)

Φ∗ is right-continuous at all points of R, (10.13)

lim
p′→+∞

Φp′(t) = Φ∗(t), for all points t at which Φ∗ is continuous, (10.14)

and

lim
p′→+∞

∫ ∞

−∞
trdΦp′(t) =

∫ ∞

−∞
trdΦ∗(t), for all r ∈ [0,∞). (10.15)
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By way of (10.9) and (10.15),

∫ ∞

−∞
trdΦ∗(t) =

∫ ∞

−∞
trdΦ(t), for all r ∈ [0,∞). (10.16)

The Weierstrass approximation theorem, which asserts that each function
continuous on a closed and bounded interval of the real line is the uniform
limit on that interval of a sequence of polynomials, and (10.16) imply

∫ ∞

−∞
fdΦ∗(t) =

∫ ∞

−∞
fdΦ(t), (10.17)

for all real-valued functions f continuous on R of compact support. Equa-
tions (10.12), (10.13), and (10.17) imply that

Φ∗(t) = Φ(t), for all t ∈ R. (10.18)

Hence Φ∗ is continuous everywhere in R, and so by (10.14) and (10.18),

lim
p′→+∞

Φp′(λ) = Φ(λ),

and this contradicts (10.11).
It remains to prove Lemma 10.2. The argument here makes use of another

interesting application of the Weil-sum estimates available from Theorem 9.1.
Consider first the case with 2r as the exponent. We have that

p−1∑
x=0

(Sh(x ))
2r =

∑
(n1,...,nr )∈[1,h]2r

p−1∑
x=0

χp

( 2r∏
i=1

(x + ni)
)
. (10.19)

In order to estimate the absolute value of this sum, we divide the elements
(n1, . . . ,n2r ) of [1, h]2r into two types: (n1, . . . ,n2r ) is of type 1 if it has at
most r distinct coordinates, each of which occurs an even number of times;
all other elements of [1, h]2r are of type 2.

If (n1, . . . ,n2r ) is of type 1 then the polynomial
∏

i(x + ni) is a perfect
square in (Z/pZ)[x ]. If s is the number of distinct coordinates of (n1, . . . ,n2r ),

then χp

(∏
i(x + ni)

)
= 0 whenever there is a distinct coordinate nj of

(n1, . . . ,n2r ) such that x ≡ −nj mod p, and χp

(∏
i(x + ni)

)
= 1 otherwise.

It follows that the value of the sum

p−1∑
x=0

χp

( 2r∏
i=1

(x + ni)
)
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is at least p − r , and this value is clearly at most p. Hence there exists a
number 0 ≤ θ ≤ 1 such that the sum (10.19) is

F (h, r)(p − θr),

where F (h, r) denotes the cardinality of the set of all elements of [1, h]2r of
type 1.

On the other hand, if (n1, . . . ,n2r ) is of type 2 then the polynomial
∏

i(x+
ni) reduces modulo p to a product of at least one and at most 2r distinct
linear factors over Z/pZ, hence Theorem 9.1 implies that

∣∣∣
p−1∑
x=0

χp

( 2r∏
i=1

(x + ni)
)∣∣∣ ≤ 2r

√
p.

Hence the contribution of the elements of type 2 to the sum (10.19) has an
absolute value that does not exceed 2rh2r√p.

An appropriate estimate of the size of F (h, r) is now required. Following
Davenport and Erdös, we note first that the number of ways of choosing
exactly r distinct integers from [1, h] is h(h − 1) · · · (h − r + 1), and the
number of ways of arranging these as r pairs is

∏r
i=1(2i − 1). Hence

F (h, r) ≥ h(h − 1) . . . (h − r + 1)
r∏

i=1

(2i − 1)

> (h − r)r
r∏

i=1

(2i − 1).

On the other hand, the number of ways of choosing at most r distinct elements
from [1, h] is at most hr , and when these have been chosen, the number of
different ways of arranging them in 2r places is at most

∏r
i=1(2i − 1). Hence

F (r , h) ≤ hr
r∏

i=1

(2i − 1).

Hence there is a number 0 ≤ θ′ ≤ 1 such that

F (r , h) = (h − θ′r)r
r∏

i=1

(2i − 1).

The conclusion of Lemma 10.2 for odd exponents follows from these estimates,
and when the sum has an even exponent, the desired conclusion is now
obvious, because in this case there are no elements of type 1. QED



10.3 Verifying Random Behavior via a Result of Davenport and Erdös 283

Remark More recently, Kurlberg and Rudnick [32] and Kurlberg [31] have
provided further evidence of the random behavior of quadratic residues
by computing the limiting distribution of normalized consecutive spacings
between representatives of the squares in Z/nZ as |π(n)| → +∞. In order to
describe their work there, let Sn ⊆ [0, n− 1] denote the set of representatives
of the squares in Z/nZ, i.e., the set of quadratic residues modulo n inside
[0, n − 1] (N.B. It is not assumed here that a quadratic residue mod n is
relatively prime to n). Order the elements of Sn as r1 < · · · < rN and
then let xi = (ri+1 − ri)/s , where s = (rN − r1)/N is the mean spacing;
xi , i = 1, . . . ,N − 1, are the distances between consecutive elements of Sn

normalized to have mean distance 1. If t is any fixed positive real number
then it is shown in [31] and [32] that

lim
|π(n)|→+∞

|{xi : xi ≤ t}|
|Sn | − 1

= 1− e−t ,

i.e., for all n with |π(n)| large enough, the normalized spacings between
quadratic residues of n follow (approximately) a Poisson distribution. Among
many other things, the Poisson distribution governs the number of customers
and their arrival times in queueing theory, and so the results of Kurlburg and
Rudnick can be interpreted to say that if the number of prime factors of n is
sufficiently large then quadratic residues of n appear consecutively in the set
[0, n − 1] in the same way as customers arriving randomly to join a queue.
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