Verification of AUTOSAR Software
Architectures with Timed Automata

Steffen Beringer'®™) and Heike Wehrheim?

! ASPACE GmbH, Paderborn, Germany
sberinger@dspace.de
2 Paderborn University, Paderborn, Germany

Abstract. Today, automotive software is getting increasingly complex
while at the same time development cycles are shortened due to time
and cost constraints. For the validation of electronic control unit soft-
ware, this results in a major challenge. Especially for safety critical soft-
ware, like automotive software, high quality must be guaranteed. Formal
verification of automotive software architecture models enables early ver-
ification of safety constraints, before the complete system is assembled
and ready for simulation. One option for formal verification of safety
critical software is modeling and verification using timed automata. In
this paper, we present a method for the verification of AUTOSAR soft-
ware models by transforming the software architecture as well as the
corresponding AUTOSAR timing constraints into timed automata.

1 Introduction

Complexity of electronic control units (ECUs) and controller algorithms in cars
increases, for example due to more comfort functionalities and more complex
controllers for electric vehicles. Therefore development and test of these types
of systems becomes time consuming. Late availability of prototype ECUs hin-
ders the early validation of the overall system. One necessary condition for the
integration of various controller functionalities from different vendors into a com-
bined system is to have a standardized description of the software architecture
and integration methodology. In this regard, AUTOSAR [1] has become the de
facto standard in the automotive domain as it provides a common infrastructure
for automotive systems of all vehicle domains based on standardized interfaces.

The company dSPACE!, in which this work has been carried out, is the
world’s leading provider of solutions for developing ECU software and mecha-
tronic controls. The dSPACE product area Virtual Validation comprises tools
for using virtual (i.e. software-based) ECUs for testing and validating ECU soft-
ware throughout the whole development process by a PC-based simulation. By
using virtual validation, development, verification and validation tasks can be
performed much earlier and also reduce the number of additional tests, prototype
systems and ECU prototypes needed. Virtual Validation needs a virtual ECU

! http://www.dspace.de.

© Springer International Publishing AG 2016
M.H. ter Beek et al. (Eds.): FMICS-AVoCS 2016, LNCS 9933, pp. 189-204, 2016.
DOI: 10.1007/978-3-319-45943-1_13

http://www.dspace.de

190 S. Beringer and H. Wehrheim

(V-ECU) for the PC-based simulation. Therefore in a first step, the V-ECU has
to be configured, generated and compiled out of an existing AUTOSAR software
architecture. However, this step takes some time to execute. Furthermore, when
errors in the simulation are detected, it is necessary to repeat this step. Another
point is that all controller algorithms have to be fully implemented, but in early
validation phases this case is rather rare.

Therefore for the early validation of an AUTOSAR architecture, analysis
methods have to be investigated, which exclusively rely on the existing software
architecture, because controller software is not available. Furthermore model
properties exist which even cannot be validated by elaborated simulation sce-
narios. This applies for example for timing requirements which have to be met
under all possible circumstances. The validation of timing requirements there-
fore needs special analysis methods, which cover all possible corner cases. An
established method for verification of timed systems is modeling and verification
of the system as a network of timed automata and the specification of properties
with the help of temporal logic.

This work presents an approach for the transformation of AUTOSAR archi-
tecture models into a network of timed automata. Furthermore, AUTOSAR
timing constraints as part of the AUTOSAR model are transformed. By exclu-
sively considering the architecture model and not the controller functionalities,
analysis can be performed early in the development process. Model checking
of timed automata in addition can prove correctness of the architecture with
respect to the timing requirements.

Related Work. There are different methods for the analysis of timing require-
ments. Besides the modeling and verification of timed systems via timed
automata, methods exists that are based on scheduling analysis methods. In
the works presented in [2,3] a compositional scheduling approach based on tradi-
tional scheduling theory in real-time systems is presented. The approach assumes
that signals can arrive at components only in a restricted fashion, e.g. with fixed
frequency and maximum jitter. The arrivals are specified in event functions. If
signal arrivals do not match the predefined models, timing analysis becomes
imprecise [4]. Real-Time Calculus is a framework for performance analysis of
real-time systems, which is based on the network calculus [4]. By specification
of an Fvent Stream Model a signal flow through a system can be analyzed. This
is a more generic framework than the one in [2]. Both methods apply a different
sort of abstraction on analysis level than our method. Furthermore, we directly
apply our method to AUTOSAR timing extensions, while other methods only
partly describe the application onto the AUTOSAR, standard. A similar app-
roach described in the work presented in [5] also utilizes timed automata for the
analysis of AUTOSAR architectures. In contrast to this approach, the transfor-
mations enable general timing error detections, but do not apply transforma-
tions to the AUTOSAR Timing Constraints, which is nessessary for the analy-
sis of timing requirements. Further approaches for timed automata suggest the
method of constructing test automata (or Scenario-Automata) for the specifica-
tion of requirements [6], but also do not consider AUTOSAR Timing Extensions.

Verification of AUTOSAR Software Architectures with Timed Automata 191

In the work presented in [7] tool support for the verification of AUTOSAR tim-
ing requirements is presented. The requirements are verified by comparing them
against specified timing guarantees. For this approach, timing guarantees have to
be specified, which is not necessary in our approach. Besides methods for timing
analysis of software architectures there is a lot of work dealing with timing based
on single program tasks available as code snippets or binary artifacts [8]. These
methods can determine upper bounds for the Worst-Case Execution Time and
thus are a necessary prerequisite for the analysis on architecture level, where the
artifacts are assembled.

2 Background

This chapter discusses the foundations of AUTOSAR and the integrated timing
extensions, because most of the software in automotive contexts is currently
AUTOSAR-based. Furthermore, foundations of timed automata are treated.
Timed automata are used for the verification of the AUTOSAR architecture.

2.1 Introduction to AUTOSAR

AUTOSAR? is short for AUTomotive Open System ARchitecture and is the
established standard for the development of automotive software. AUTOSAR
defines the architecture and interfaces of the software as meta-model as well
as the file format for data exchange. Furthermore, the standard defines its own
development methodology. The concepts of this paper are based on the current
AUTOSAR version 4.2.

On the outer level AUTOSAR software is structured as layered architecture
(see Fig.1). There are three different layers:

— The application layer is the upper software layer. It contains the actual con-
troller software, which includes mostly controller algorithm implementations
in the automotive domain. Inside of this layer software is structured in a
component-based architecture. Therefore software components are modeled,
which can communicate via ports and connections.

— The Runtime Environment layer (RTE) administrates the communication
between software components, and furthermore the communication between
software components and basic software parts (see below). It realizes a stan-
dardized interface for the software on application level.

— The basic software layer incudes modules for basic functions of ECUs. The
basic software layer is subdivided into a Service Layer (purple), an ECU
abstraction layer (green) and a Microcontroller Abstraction Layer, MCAL
(red) (see Fig. 1). The service layer contains the main ECU services like oper-
ating system, ECU state management, services for diagnosis, memory services
and communication services. The ECU abstraction layer realizes an abstrac-
tion between ECU hardware for the upper layers and contains modules for the

2 http://www.autosar.org.

http://www.autosar.org

192 S. Beringer and H. Wehrheim

Application Layer

Runtime Environment

E==u

Fig. 1. AUTOSAR layered architecture taken from [9] (Color figure online)

Microcontroller

access of hardware peripherials. The MCAL provides low level driver modules
and acesses the hardware directly. A detailed description of all modules can
be found in [9].

The AUTOSAR Authoring Tool SystemDesk®. SystemDesk®? is the tooling
environment for AUTOSAR models from dSPACE. It supports sophisticated
and extensive modeling of AUTOSAR architectures by providing a rich graphi-
cal user interface as well as code generation for virtual ECUs. Graphical model
representations are available for important elements. For example software com-
ponents, ports and connections within a software composition can be visualized
in a Composition Diagram. Furthermore, single software components with their
ports, interfaces and data types can be visualized in a Component Diagram.
Other model elements are ordered hierarchically in a tree structure.

Example 1. In the following we will consider a simple example AUTOSAR soft-
ware architecture, which manages the left and right direction indicators of a
vehicle. The application layer consists of several software components, which
comprise several so-called runnable entities, which contain executable software.
The example architecture is shown in Fig. 2. The two software components on
the left read in sensor data and check for errors before forwarding the signal data
to the next software component. The IndicatorComposition software component
receives the raw sensor values and encapsulates several runnable entities for pre-
processing of the signal values as well as the logic of the system. The actuator
software components on the right are responsible for activating the left respec-
tively right bulb of the direction indicator. Furthermore, the example contains a
configuration of the RTE, and on the basic software layer the configuration for
the Operating System. Other basic software modules are not considered in this
example.

3 http://www.dspace.com/en/pub/home/products/sw/system _architecture_software,/
systemdesk.cfm.

http://www.dspace.com/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm
http://www.dspace.com/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm

Verification of AUTOSAR Software Architectures with Timed Automata 193

TurnSwitchSensor &

FrontLeftActuator .5
io_tss out_tss [>>

{> bulb .y i0_bulb

BulbRunnable “}

oo

TssRunnable

FrontRightActuator .
{> bulb " io_bulb

.
BulbRunnable }

WarnLightsSensor (&)

P io_wis 5 out_wis [>
WisRunnable

Operating System
Task_WIs-
Preprocesing

Task_10ms

Task_100ms

A P P I T P T T A AT I I A P I T T p =
A T o T AAI I III, s A % A 7 PP o
Uiz HGIIEL

Fig. 2. Example software architecture

2.2 Timed Automata

While AUTOSAR specifies a formal syntax defined as an OMG meta model,
its semantics is only described in a textual manner. To formally verify timing
requirements on AUTOSAR, we need to define a formal semantics for the tim-
ing relevant meta model elements. Here, we employ timed automata as they
are capable of formally describing timing behavior. Timed Automata were first
introduced 1994 by Alur and Dill [10]; in the following, we follow the notation
of [11].

Definition 1 (Timed Automata). A timed automaton is a tuple A =
(L,B,B*X,I,U, E, I,;;;) with a finite set of locations L, a set of signals commu-
nicating via handshake B, a set of signals communicating via broadcast channels
B*, a set of clocks X, an assignment of invariants to locations: I : L — &(X), a
mapping for the locations whether they are urgent (so that time is not allowed to
increase) : U : L — {true, false}, a set of edges labeled with an action, a guard
and a set of clocks, which need to be reset: E C Lx BUB* x #(X) x P(X) x L,
and an initial location I;,; € L.

Here, ¢(X) specifies a set of clock constraints (like z < 3, see [11]). A con-
figuration of a timed automaton is a pair of a location and a clock valuation
v: X — Time, where Time € R(Z% are the real numbers. We use v |= ¢ for
a clock constraint ¢ € @(X) if the constraint is true for the clock valuation. In
Fig.4 an example automaton is shown.

Definition 2 (Semantics of Timed Automata). The operational seman-
tics of a timed automaton A is defined as a labelled transition system T(A) =
(Conf(A),—,Cini), where Conf(A) = {(l,v) | I € Liv : X — Time,

194 S. Beringer and H. Wehrheim

v = 1(1)}, an initial configuration Cini = {{lini, Vini)} and a transition relation
— C Conf(A) x (Time U B) x Conf(A) with two different types of transitions:

— delay-transition: (I,v) 5 (Lv+t) if v+t = IV € [0,) AVl € L:U(l) =
false

— action-transition: (I,v) = (I',v") iff (I,,¢,Y,l') € E with v |= ¢ and V' =
vlY :=0] and V' = I(l')

Single timed automata can be combined using parallel composition resulting in a
network of timed automata. In the network, automata can communicate in two
ways: synchronously via handshake communication (like in the process algebra
CCS [12]) or in a broadcast manner. The sender in a broadcast communication
can communicate with an abitrary number of receivers, namely all of those which
are currently enabled for a communication. In the following, we will use synchro-
nous communication as a means of synchronising the behaviour of components
in the AUTOSAR architecture while we use broadcast for synchronisation with
test automata modelling timing requirements.

To express properties on Timed Automata the query language Timed Com-
putation Tree Logic (TCTL) is used. It allows specifying real-time constraints on
Timed Automata, which can be checked in tools like UPPAAL* [13]. In TCTL,
different types of formulas can be expressed: In state formulas properties on
states can be specified, while path formulas quantify over paths or traces of the
model [13,14].

3 Transformation of AUTOSAR Models

In this section we describe the transformation of AUTOSAR meta-model ele-
ments into timed automata. The AUTOSAR meta-model is very large. However,
many model elements do not influence the dynamic behavior of the system. Fur-
thermore, many specialized classes exist, but only for some of them the specified
transformations are performed. Therefore we only give an introduction for timing
relevant meta model elements and afterwards give a simplified formalization of
the meta model. In this work we focus on the timing of ECUs and abstract from
bus communication. As there is no formal semantics defined for AUTOSAR, we
cannot prove the correctness of the transformations.

Timing on Application Layer. The AUTOSAR application layer consists of
application software. Software is encapsulated in so-called RunnableEntities
(abbreviated: runnable). For modeling timing behavior on application layer
it is necessary to represent the runnables, variable accesses and their inter-
connections by appropriate timed automata. We abstract from the concept
of software components and ports as it is not relevant for the timing whether
two runnables in different software components are connected via ports or
directly in a single software component as we assume that all software com-
ponents are mapped onto a single ECU.

4 http://www.uppaal.org.

http://www.uppaal.org

Verification of AUTOSAR Software Architectures with Timed Automata 195

Timing on RTE Layer. The RTE-Layer is a standardized interface for the soft-
ware on application layer and is responsible for triggering runnables as speci-
fied in the operating systen, which is located on the basic software layer. The
operating system has a scheduler and maintains the execution of resources
by OSTasks. For this reason runnables have to be mapped onto OSTasks to
specify the execution order of runnables. This is done in the RTE config-
uration using the so-called RTEFEventToTaskMapping, which maps events,
representing the triggering of a runnable, onto tasks.

Timing on Basic Software Layer. On the basic software layer AUTOSAR
specifies many modules, which can be specified for every ECU. Most impor-
tant for the runtime behavior are the modules which have influence on the
execution order of the runnable entities. This is mainly the AUTOSAR oper-
ating system, which is based on the OSEK standard®.

We consider the following parts of an AUTOSAR architecture during transfor-
mation.

Definition 3 (AUTOSAR Architecture). The simplified formal AUTOSAR
architecture AR = (R, C, VA, T, TRM) consists of

1. a set of VariableAccess elements VA,
2. a set of RunnableEntities

R C {(VAsead, VAwrite, weet, beet) | VAreaa € VA, VAyrite C VA, beet < weet}

with VAyeaq a set of variable read accesses, VAyrite a set of variable write
accesses With VAyeqqd N VAwrite = 0, weet € N the worst case and becet € N
the best case execution time,
3. a set of AssemblyConnections C C {(left, right) | left € VA, right € VA},
which connect two variable access elements,
a set of periodically triggered tasks T with period p and
a Task-Runnable-Mapping TRM : R — T mapping runnables to operating
system tasks.

Sihe

3.1 Transformation

For the verification of timing requirements in AUTOSAR, a mapping from
AUTOSAR models onto timed automata was modelled, where the AUTOSAR
model contains the software architecture and timing requirements, which are for-
mulated as AUTOSAR timing extensions. The AUTOSAR software architecture
is transformed into a network of timed automata, while each timing requirement
is transformed into a test automaton and a TCTL-query (see Fig.3). In the
resulting overall network test automata and architecture automata communi-
cate via broadcast channels.

For a given AUTOSAR model AR = (R,AC, VA, T, TRM) a network of
timed automata N = (4; || .. || An) is constructed. Below the transformations
are described in a bit more detail, where we — due to lack of space — however
cannot formally define all parts.

5 http://osek-vdx.org/.

http://osek-vdx.org/

196 S. Beringer and H. Wehrheim

Specification Model Analysis Model
(SystemDesk) (UPPAAL)
Timed
AUTOSAR Automata
Network

Software

Timing Test-Automata J TN
i +TCTL Query O==@€

=

Fig. 3. Transformation of AUTOSAR models into a set of timed automata and TCTL
queries

RunnableEntities. RunnableEntities represent the code fragments which are
integrated into the architecture. Triggering is controlled by the RTE. Further-
more, runnables have access to a defined set of variables. Variables with reading
access are read directly when a runnable is started, while write accesses are
executed before termination®. Execution of runnable code requires time.

For every RunnableEntity in the analysis model a timed automaton is gen-
erated, which considers the variable accesses as well as the runtime behavior. In
the case that all software components are executed on the same ECU, it is neg-
ligible whether the runnable entities communicate via interrunnable variables
in a single software component or via ports. The generation of locations and
transitions is therefore identical for ports and interrunnable variables.

For every RunnableEntity » € R with r = (VA,eqd, VAwrite, weet, beet) a
timed automaton A = (L,B,B*,X,I,U, E, I;,;) is generated. Let VA, cqq =
{r-VAseadys---,7-VArecad, } be the set of read accesses (VA rite analogously). In
the following, we use an arbitrary ordering 1 to n of these sets.

— Locations: L = {r_readyloc,r_runningloc} U {r_Va,eqqloc | Vareaa €
VAread}
U {T—Vawrite—loc | Vayrite € VAwrite}a
— Handshake Communication: B = {r_start,r_finished},
— Broadcast Communication: B* = {r teaq | Varead € VAread}
U {r—vawm‘te ‘ Vawrite € VAwrite}
— Clocks: X = {z}, Invariants: I(r_running-locc) = {x <= wcet},
— Urgency: YVa € VA, eqa U VAyrite : U(r_Va) = true,
U(r-ready) = false,U(r_running) = false,
— Edges: E = {(r_ready, r_start?, 0, {z},7-Vareaq,),
(r-Varead, s T-Vareaq, ', 0,0, r_running) } U
{(T—Va'readjar—vareadj!; 07 Q]v T—Vareadj+1)|1 <] < |VAread| - 1} U
{(T—Va/w'ritej) I'-VQwrite; 10,0, T—Vaw'ritej+1)|1 <j< |VAwrite| - 1} U

6 This is called implicit variable access and in this work only implicit access will be
considered, while there is also an explicit access method where the access is not
controlled by the RTE.

Verification of AUTOSAR Software Architectures with Timed Automata 197

{(rorunning, r Vayrite, |, {x > beet}, r Vayrite,)} U
{(r_-Vawrite, ,r-finished!, 0,0, r_ready) },
— Initial location: I;,,; = r_ready.

The generated timed automaton consists of at least the locations ready and run-
ninng (prefixed by the name of the runnable). The automaton is in location
ready when the RunnableEntity is currently not running and in location run-
ning otherweise. Initially, the RunnableEntity is in location ready. Every implicit
variable access of a RunnableEntity is also represented as a location. Identifi-
cation of the access is done by signals on the transitions. These signals are not
only used for synchronization, but also, if available, for existing test automata,
which need to detect the data flow in the architecture. Therefore channels (for
communication) are defined as broadcast channels.

Figure 4 exemplifies a transformed runnable with one incoming and two out-
going variable accesses. It shows the runnable TssPreprocessing located in the
software component IndicatorLogic (see Fig. 2), which reads the raw turn switch
sensor value tss_value, preprocesses it and writes its results in tss_status. Fur-
thermore wcet and bcet are assumed to be 5ms and 2 ms respectively.

AssemblyConnections. AssemblyConnections C' = (left, right) connect write
and read accesses of variable access elements. For every AssemblyConnec-
tion a timed automaton is generated which describes the data flow between
runnables. There is one location, and for the variable accesses left and right,
there is a transition to track the connections in the software architecture.
Thus, for each AssemblyConnection C' = (left, right) we get a timed automaton
A=(L,B,B*,X,I,U,E, I;;;) with:

Locations: L = {ac_start}, Signals: B = {left, right}, B* = {},

— Clocks: X = (), Invariants I : @, Urgency: U(ac_start) = false,

Edges: E = {(ac_start, left?, 0,0, ac_start), (ac_start, right?, 0,0, ac_start)},
— Initial location: I;,,; = ac_start.

TaskRunnableMapping. For the correct execution order of runnables in the
analysis model, a timed automaton A is generated for every OsTask. This
automaton triggers the contained runnables in an OsTask in the defined order.

tss_value_loc

tss_value!

TssPreprocessing_start? TssPreprocessing_running

TssPreprocessing_ready x<=5

tss_status!
TssPreprocessing_finished!

tss_status_loc

Fig. 4. Timed automata for the runnable preprocessing turn switch sensor values

198 S. Beringer and H. Wehrheim

The automata sends Start-signals to the receiving runnable automata. After-
wards the runnable is set to running-location and it leaves the running-location
when the runnable automaton sends the finish-signal back to the runnable map-
ping automaton. Since no time passes between starting and stopping, the corre-
sponding locations are marked as wurgent locations.

Let T be the set of all OsTasks and for every OsTask t € T, let R; = {r €
R | TRM(r) =t} be the set of all RunnableEntities, which are triggered by the
OsTask ¢. Again we impose an arbitrary ordering on the set Ry, using indexes 1
to n. Then for every OsTask t € T', a timed automaton A in the analysis model
exists with

L = {t_ready, t_running} U {t_r_start,t_r_stopped | r € R;}
— B = {t_run, t_processed} U {t_r_start,t_r_finished | r € R,}, B* = {},
— Clocks: X = {}, Invariants: I(t_running) = {z == 0},
— Urgency: Vr € Ry : U(t_r_finished) = true, U(t_running) = true,
- E ={(tready,t-run?, 0,0, t_running),
(t_running, t_ry_start!, 0,0, t_r _running),
(t_r,_stopped, t_processed!, 0, 0, t_processed),
U{(t_r_stopped, t r_start!, 0,0, t_r_running),
(t_r_running,t_r_finished?, 0,0, t_r_stopped) | r € Ry},
— Initial location: I;,,; = t_ready.

0S Tasks. Every AUTOSAR-based ECU includes an AUTOSAR-compliant
OSEK operating system, which maintains the execution of OsTasks on the ECU.
OSEK differentiates between Basic-Tasks, which can only be interrupted by the
operating system itself, and Eztended- Tasks. Extended tasks can be interrupted
and set into waiting state. For this work we focus on basic tasks. Basic tasks
have states suspended, ready and running. A task is in state ready, if it can be
scheduled by the scheduler. If the scheduler selects the task for running, it is set
in running state. After termination, but before the timing period is passed, the
task is set to state suspended.
For every OsTask t € T a timed automaton A is generated:

— L = {t_ready, t_starting, t_running, t_terminating, t_suspended},
— B = {t_startTask,t_run,t_processed, t_terminateT ask,t_isNotReady},
B =} X = {a,
— I(torunning) = {x <= p}, I(t_suspended) = {x <= p},
— U(ready) = false, U(starting) = true, U(running) =
false, U(terminating) = true,U(suspended) = false,
- E ={(tready,t_startTask?,0,0,t_starting),
(t_starting,t_run!, 0,0, t_running),
(t-running, t_processed?, 0, 0, t_terminating),
(t_terminating, t_terminateTask!, 0,), t_suspended),
(t_suspended, ¢, {x == p}, {z},t_ready),
(t_suspended, t_isNotReady!,), t_suspended)},
— Lin; = t_ready.

Verification of AUTOSAR Software Architectures with Timed Automata 199

The behavior of an OsTask is modeled by generation of locations for ready, run-
ning and suspended and additional (urgent)-locations for sending and receiv-
ing multiple signals for synchronization with the RunnableToTask-Mapping-
automaton. The OsTask starts in the ready-location and can be triggered by the
Task Scheduler. By receiving the signal startTask the EventToTaskMapping is
signaled and the OsTask is set to running. Afterwards the EventToTaskMapping
is executed, i.e. all RunnableEntities have been executed, the signal processed is
received and the signal terminate Task is sent to the Scheduler. The OsTask then
stays in suspended until the period of the OsTask is due. In between the automa-
ton only synchronizes via the signal isNotReady to the scheduler. Afterwards the
OsTask is set back to ready and can again be executed by the scheduler.

4 AUTOSAR Timing Extensions

The transformations described before cover the behavior of the AUTOSAR sys-
tem. To verify timing constraints on the system, the requirements also need to
be formalized. To this end, for each timing requirement specified as AUTOSAR
timing constraint, a test automaton as well as a TCTL-query for checking the
requirement are created.

We start with explaining timing requirements. AUTOSAR Timing Exten-
sions extends the AUTOSAR meta model with timing annotations for different
model elements [15]. A TimingEztension contains a set of TimingDescriptions
and TimingConstraints. TimingDescriptions are elements that describe events
and event chains within a system, whereas TimingConstraints formulate timing
requirements and timing guarantees for these events.

4.1 Timing Events

Formally, the set of Timing Events E C (RUVAUT) is a subset of the AUTOSAR
model elements, for which the dynamic behavior needs to be observed. Thus,
runnables, variable accesses and tasks can be observed.

Requirements for Data Latency on Events. A LatencyTimingConstraint des-
cribes the latency requirement from the start to the event of a sequence of events.

Formally, a LatencyTimingConstraint is defined as lc = (chain, mazimum)
where
— chain = (eq,...,e,) is an ordered sequence of events,

— maximum € N is the maximum time for the constraint.

In the transformation of the TimingFxtension with LatencyTimingConstraint
the event chain is transformed to a test automaton, which models the event
chain as chain of locations. In between every location a transition is generated
which receives the corresponding signal defined in the event chain. Verification of
the required latency is achieved by a clock which measures the time spent in the
event chain and which is reset when the event chain is due. Maximum latency

200 S. Beringer and H. Wehrheim

is checked by a TCTL-query which checks the maximum clock value in the test
automaton. Hence for every LatencyTimingConstraint lc, a timed automaton A
is generated as follows:

— Locations: L = {lcele € chain}, Signals: B* = {ele € chain}, Clocks:
X = {a,

— Invariants I(lc_e;) = {z < 1},

E = {(lcej,e;?,0,0,lc.ej41)|1 < j <n—1}

U{lc_en, en, 0, {x},lc.e; U{(lceer,e1?,0,{z},lcer)},

Initial location: I;,; = lc_e;.

In the first location lc_e; (i.e. before the first event is received) the automaton
cyclically resets its clock (implemented by a self-transition and invariant on lep)
so that the clock value only exeeds 1, when the first event is received. Note
that according to the definition of B*, the generated signals are using broad-
cast communication. Additionally the TCTL-query ¢ = AG(x < mazimum) is
generated. Here, AG requires the property to hold always on all paths.

Figure5 shows a latency timing constraint automaton measuring the time
from the start event when the turn switch sensor receives the raw signal to the
bulb actuator which switches the indicator bulbs.

Requirements for Ordered Execution of Runnables. Requirements on the ordered
execution of runnables are captured by the ExecutionOrderConstraint. An Eze-
cutionOrderConstraint eoc = (r1,...,7n),7 C R, is defined by an ordered
sequence of a subset of the available runnable entities for which the execution
order is specified.

For every EzecutionOrderConstraint eoc a timed automaton is generated as
follows:

— Locations: L = {r;_.EOC_started,r; . EOC_finished | 1 < i < n} U
{init, error},

— Broadcast Communication: B* = {r_EOC_start,r . EOC_finished | i =
1,...,n}, Handshake Communication: B = {},

— Clocks: X = {}, Invariants: I is true for all locations,

— Urgency: U(r,-EOC_finished) = true,

— E = {init,ry_start?,0,0,r, _EOC _started}U
{ri_.EOC _started, r;_finished?,0,,r;,_EOC _finished | i =1,...,n}U
{ri_LEOC_finished,r;11_start?,0,0,r, 1 _FOC started | i =1,...,n}U
{rn-EOC _finished,T,0, 0, init}

io_bulb_value?

x:=0
x:=0 oftssﬁva\ue7r\outftssfva\ue}\ tssfvalue?\m \eftfsignaﬁmbulbfs\gnal?
x<=1| (© O O O O

Ic_io_tss_value Ic_out tss Ic_tss_value Ic_left_signal Ic_bulb_signal Ic_io_bulb

Fig. 5. Timed automaton of a latency timing constraint

Verification of AUTOSAR Software Architectures with Timed Automata 201

Note that according to the definition of B*, the generated signals are using
broadcast communication. Furthermore, for every location [€ L, a TCTL-query
@ = AF(l) is generated. This property requires that on all paths of the system
run every location is eventually visited eventually (i.e., the events are received
in the specified order).

Requirements for Synchronized FExecution of FEvents. A Synchronization-
TimingEvent sc = (scopeEvents, tolerance) consists of

— scopeEvents C F describing the set of events, which have to occur only nearly
simultaneously and

— tolerance € N describing the maximum time which may occur between all
scope Fvents, so that the execution can still be categorized as being simulta-
neous.

The requirement is fulfilled if Ve;, e; € scopeEvents : |t., — t.;| < tolerance,
where t; is the time when event ¢ occurs.
For every sc, a timed automaton is generated as follows:

— Locations: L = {sc_init}, Signals: B* = {e|e € scopeEvents}B = {},
— Clocks: X = {z}, Invariants: I = {0}, Urgency: U is false for all locations
— Edges: E = {sc_init,e?,0,0, sc_init}, I;n; = {sc_init}.

Again, the generated signals are using broadcast communication. Furthermore,
for the generated transitions functions are specified which are called each time
the transition is taken. For each transition e; € E the function e_i_receiving is
called. In addition, local declarations are defined for each automaton as described
in Listing 1.

Listing 1: Local declarations in UPPAAL

bool e_i_received = false;
void e_i_receiving ()
{isRunning (); e-i-received = true; isCompleted();}

clock x;
bool running = false;

void isRunning ()
{if (!running){x=0;running=true;}}

[
OO WU W -

=
=

void isCompleted (){ if (e-l_received && ..e_n_received)
{e_i_received = false;
x=0; running=false;}}

[
w N

Finally, a TCTL-query is generated as follows: AG(running — z <
tolerance). Figure 6 exemplifies the transformation of a Synchronization Tim-
ing Constraint which requires the runnables for the left and right actuator to
be triggered synchronously. Analogously to the automaton the required local

202 S. Beringer and H. Wehrheim

Bulb1_Start? Bulb2_Start?
Bulb1_receiving() Bulb2_receiving()

Fig. 6. Example for a SynchronizationTimingConstraint synchronizing the bulb lights

declarations are generated, i.e., two flags BulbI_received and Bulb2_received, two
functions Bulb1_receiving and Bulb2_receiving.

For the verification of the AUTOSAR architecture all generated automata
A; = (L, By, X5, I;, E; I;,) are connected to a network of timed automata
N = (A1 || .. || 4n). Then a TimingConstraint T is fulfilled by the model, iff
(M| T) E ¢, that is the automaton for a single timing constraint is connected
to the network of timed automata representing the software architecture and the
network is checked according to the specified TCTL-formula.

5 Implementation and Evaluation

The transformations were implemented as an independent tool, which uses the
automation feature of SystemDesk®to retrieve AUTOSAR model informations.
It includes separated components for model conversion and export. The export-
ing module comprises functionalities to compile an XML file out of the timed
automata model, which is compatible to the UPPAAL [13] model checker.

The efficiency of the approach was evaluated by transforming three scenar-
ios while measuring the time for model transformation and model checking via
UPPAAL. The measurements were performed on an Intel i7-4810MQ @ 2.8 GHz
with 16 GB RAM and Windows 7 Professional. UPPA AL version 4.0.13 was used
with BFS search order, conservative state space reduction and DBM state space
representation.

Table 1 shows the model sizes and runtime measurements for three different
AUTOSAR models, namely a tutorial project, a model of a fueling system and
the already mentioned model for direction indication. For each demo project at
least one constraint of each type was modeled and verified. In Fig. 7, the runtime
results split into transformation and constraint checking time are visualized. The

Runtime
15
10
Tutorial Project AR_FuelSys AR_PosContro

m Transformaion m Latency

Execution Order m Synchronization

Fig. 7. Transformation and verification runtime

Verification of AUTOSAR Software Architectures with Timed Automata 203

table given below gives exact numbers. Transformation and verification runtime
is highest for the AR_FuelSys demo although it is not the biggest AUTOSAR
model. The reason is that it contains more model elements for which timed
automata have to be generated.

Table 1. Model size and runtime

Test system Tut.Project | AR_FuelSys | AR_PosControl
AUTOSAR elements 748 723 503

Timed automata 26 38 23
Transformation time (s) 7.56 7.96 5.9

Latency constraint (s) 0.33 0.74 0.39

Execution order constraint (s) | 0.4 0.53 0.5
Synchronization constraint (s) | 0.95 1.13 0.94
Verification time) 9.24 10.36 7.73

The first results show that for these type of systems timing analysis is promis-
ing as the runtime is sufficiently low for real world use. Most of the time is spent
in the transformation process. But as the transformation has polynomial runtime
in the size of model elements, also larger models should be manageable.

6 Conclusion

In this work, an approach for the verification of timing requirements of
AUTOSAR-based software architectures has been presented. Utilizing this
method, timing requirements can be checked early and without access to source
code. Only timing annotations (best case and worst case execution times) for
runnable entites are required. They have to be introduced with the help of expert
knowledge in a conservative fashion, or upper bounds for execution have to be fig-
ured out by static code analysis methods. For the verification of the AUTOSAR
architecture existing tools for the verification of timed automata (like UPPAAL)
can then be used.

By transforming AUTOSAR-architectures to timed automata a formal ver-
ification of timing requirements gets possible. The modeling of the AUTOSAR
architecture and the required model elements for the analysis, however, have to
be done manually. For example, timing requirements have to be specified. For this
there is currently no tool available, which makes modeling time consuming and
error prone. As future work, we will thus investigate how timing requirements
can be precisely but easily (graphically) specified. Until now formal verification
is only seldomly used in the software development process for automotive sys-
tems, because a successive application not only requires sound analysis methods,
but also easy integration into existing development processes. Simplification of
the formal specification and the quality analysis of timing requirements are thus
crucial steps for the acceptance in industry.

204

S. Beringer and H. Wehrheim

References

10.

11.

12.

13.

14.

15.

AUTOSAR. http://www.autosar.org

. Richter, K.: Compositional scheduling analysis using standard event models: the

SymTA/S approach. Ph.D. thesis, Braunschweig (2005)

Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A compositional framework
for end-to-end path delay calculation of automotive systems under different path
semantics. In: IEEE Real-Time Systems Symposium 2008, vol. 29 (2008)

. Perathoner, S., Wandeler, E., Thiele, L., Hamann, A., Schliecker, S., Henia, R.,

Racu, R., Ernst, R., Harbour, M.G.: Influence of different system abstractions on
the performance analysis of distributed real-time systems. J. Des. Autom. Embed.
Syst. 13(1-2), 27-49 (2009)

Neumann, S., Kluge, N., Watzoldt, S.: Automatic transformation of abstract
autosar architectures to timed automata. In: Proceedings of the 5th International
Workshop on Model Based Architecting and Construction of Embedded Systems,
ACES-MB 2012, pp. 55-60. ACM, New York (2012)

Gehrke, M., Nawratil, P., Niggemann, O., Schéfer, W., Hirsch, M.: Scenario-based
verification of automotive software systems. In: Giese, H., Rumpe, B., Schitz, B.
(eds.) Dagstuhl-Workshop MBEES. Daghstuhl-Workshop MBEES, vol. 2, pp. 35—
42. TU Braunschweig, Institut fiir Software Systems Engineering (2006)

Scheickl, O., Ainhauser, C., Gliwa, P.: Tool support for seamless system develop-
ment based on autosar timing extensions. In: Embedded Real-Time Software and
Systems 2012 (2012)

Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static
program analysis. In: Jacquart, R. (ed.) Building the Information Society. IFIP
Advances in Information and Communication Technology, vol. 156, pp. 377-383.
Springer, Heidelberg (2004)

AUTOSAR: Layered software architecture (2013). http://www.autosar.org/
fileadmin/files/releases/4-2/software-architecture/general /auxiliary /AUTOSAR _
EXP_LayeredSoftwareArchitecture.pdf

Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126, 183-235
(1994)

Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic
Verification (2008)

Milner, R.R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Berlin (1980)

Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200-236. Springer,
Heidelberg (2004)

Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

AUTOSAR: Autosar timing extensions template (2013). http://www.autosar.org/
fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/
AUTOSAR-TPS_TimingExtensions.pdf

http://www.autosar.org
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf

	Verification of AUTOSAR Software Architectures with Timed Automata
	1 Introduction
	2 Background
	2.1 Introduction to AUTOSAR
	2.2 Timed Automata

	3 Transformation of AUTOSAR Models
	3.1 Transformation

	4 AUTOSAR Timing Extensions
	4.1 Timing Events

	5 Implementation and Evaluation
	6 Conclusion
	References

