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Abstract. The big data model has been shown to be very useful for transforming
human-generated data and producing value-added business services. On the other
hand, much less research has been performed on applying big data models towards
machine-generated data such as from large-scale networked sensor systems. This
paper surveys the use of big data models towards networked sensor systems and
its application towards smart cities and urban informatics. We discuss use-cases
for big sensor data research and summarize the common strategies and solutions,
identify key techniques and challenges, and discuss a practical framework for
handling big sensor data. The paper concludes with a discussion on future trends
and research challenges of networked-based sensor systems. The aim of this
survey paper is to be useful for researchers and designers to get insights into this
emerging area, and motivate the development of practical solutions for applica‐
tion towards smart cities.

Keywords: Big data · Sensor data · Sensor networks

1 Introduction

Big data techniques are targeted towards solving system level problems that cannot be
solved by conventional methods and technologies. With the emergence of new
networked sensor technologies (e.g. large scale wireless sensor networks, body sensor
networks [1–4], Internet/Network/Web/Vehicle-of-Things [5]), the next generation of
big data systems will need to deal with machine-generated data from these forms of
networked sensor systems [6–9]. This paper is focused on big sensor data systems (a
term to conceptualize the application of big data models towards networked sensors)
and surveys its applications towards smart cities and urban informatics. This is becoming
an important research area [10]. An estimate from IBM is that the volume of machine-
generated data sources will increase to 42 % of all data by 2020, up from 11 % in
20051. Much less research has been conducted for big sensor data systems compared
with conventional big data systems [11].

1 http://www.ibm.com/big-data/au/en/big-data-and-analytics/operationsmanagement.html.

© Springer International Publishing AG 2016
W. Li et al. (Eds.): IDCS 2016, LNCS 9864, pp. 155–166, 2016.
DOI: 10.1007/978-3-319-45940-0_14

http://www.ibm.com/big-data/au/en/big-data-and-analytics/operationsmanagement.html


Recently, there has been much research for smart cities. Many smart cities have been
established in the world such as in Santander [12], Barcelona [13], and Singapore [14].
In Australia, the state of Tasmania is experimenting with the world’s first economy-wide
intelligent sensor network technology (Sense-T)2. Smart city applications would
generate huge amounts of data from a wide variety of data sources ranging from envi‐
ronmental sensors, mobile phones, localization sensors, to data generated by people from
social networks. While there is general agreement that the use of these big sensor data
would lead to improved services in smart cities, many research challenges remain on
how to integrate and utilize these big sensor data. In this survey paper, we take a bottom-
up approach and use representative use-cases for big sensor data research, deconstruct
the studies to identify key techniques and challenges, and attempt to summarize the
common strategies and solutions utilized by different researchers. The use-cases selected
for study have been implemented in the real-world.

Figure 1 illustrates the boom of the global data volume. While the amount of large
datasets is drastically rising, it also brings about many challenging problems demanding
prompt solutions.

Fig. 1. The continuously increasing big data

2 http://www.sense-t.org.au/.
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2 Domains of Big Sensor Data

A definition3 for big data is given by as “Big data is high-volume, high-velocity, and
high-variety information assets that demand cost-effective, innovative forms of infor‐
mation processing for enhanced insight and decision making”. An extended definition
is that big data systems would involve the five Vs: (1) big volume of data (e.g. involving
datasets of terabytes/petabytes), (2) variety of data types, (3) high velocity of data
generation and updating, (4) veracity (uncertainty and noise) of acquired data, and
(5) big value, as shown in Fig. 2. The first four V’s are concerned about data collection,
preprocessing, transmission, and storage. The final V focuses on extracting value from
the data using statistical and analytical methods.

Volume Velocity

Variety
Veracity

12 terabytes
of Tweets 
create daily

5 million
trade events 
per second

100's
of video feeds from 
surveillance cameras

Fig. 2. The 4Vs feature of big data

3 Big Sensor Data Generation and Acquisition

If we take data as a raw material, data generation and data acquisition are an exploitation
process, data storage is a storage process, and data analysis is a production process that
utilizes the raw material to create new value.

3 http://www.gartner.com/it-glossary/big-data.
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3.1 Data Generation

The data collection process consists of three modules: (1) data acquisition, (2) infor‐
mation extraction and cleaning, and (3) data integration, aggregation and representation.
The inputs into the data collection process are the raw sensor data values s(x,y,t)
harvested from (multiple) sensor farms. The output of the process are the cleaned and
aggregated data values s’(x,y,t). The number of output data points would not be more
than the number of input data points. The number of output data points may be less than
the number of input data points due to data sampling and aggregation. Another charac‐
teristic is that the data collection process does not involve utilization of other data
sources.

Data generation is the first step of big data. Given Internet data as an example, huge
amount of data in terms of searching entries, Internet forum posts, chatting records, and
microblog messages, are generated. Those data are closely related to people’s daily life,
and have similar features of high value and low density [15, 16]. Such Internet data may
be valueless individually, but, through the exploitation of accumulated big data, useful
information such as habits and hobbies of users can be identified, and it is even possible
to forecast users’ behaviors and emotional moods [17–20].

Moreover, generated through longitudinal and/or distributed data sources, datasets
are more large-scale, highly diverse, and complex. Such data sources include sensors,
videos, clickstreams, and/or all other available data sources. At present, main sources
of big data are the operation and trading information in enterprises, logistic and sensing
information in the IoT [21, 22], human interaction information and position information
in the Internet world, and data generated in scientific research, etc. The information far
surpasses the capacities of IT architectures and infrastructures of existing enterprises,
while its real time requirement also greatly stresses the existing computing capacity [23].

3.2 Big Data Acquisition

As the second phase of the big data system, big data acquisition includes data collection,
data transmission, and data pre-processing. During big data acquisition, once we collect the
raw data, we shall utilize an efficient transmission mechanism to send it to a proper storage
management system to support different analytical applications. The collected datasets
may sometimes include much redundant or useless data, which unnecessarily increases
storage space and affects the subsequent data analysis. For example, high redundancy is
very common among datasets collected by sensors for environment monitoring. Data
compression technology can be applied to reduce the redundancy. Therefore, data pre-
processing operations are indispensable to ensure efficient data storage and exploitation:

1. Data Collection: Data collection is to utilize special data collection techniques to
acquire raw data from a specific data generation environment. In addition to the
aforementioned three data acquisition methods of main data sources, there are many
other data collect methods or systems. For example, in scientific experiments, many
special tools can be used to collect experimental data, such as magnetic spectrome‐
ters and radio telescopes. We may classify data collection methods from different
perspectives. From the perspective of data sources, data collection methods can be
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classified into two categories: collection methods recording through data sources
and collection methods recording through other auxiliary tools.
Participator sensing is considered as an emerging application scenario for efficient
data crowdsourcing from smart device equipped ordinary citizens. Liu et al. in [24–
26] presented a novel resource negotiation scheme bridging between dynamic
sensing tasks and heterogeneous sensors. Liu et al. in [27–29] proposed a novel
framework and subsequent participant selection and incentive mechanism for partic‐
ipatory crowdsourcing including the smart device users, central platform and
multiple task publishers. In [30], existing incentive mechanism are extensively
surveyed and future research directions are clearly given. Liu et al. [31] extensively
analyzed the relationship between energy consumption and smart device user behav‐
iors, and then proposed a novel approach to select the optimal amount of participant
while considering possible user rejections. Song et al. [32] introduced an energy
consumption index to quantify the average degree of how participants feels disturbed
by the energy cost, and proposed a suboptimal approach for participant selection
under the multi-task sensing environment. Liu et al. [33] presented a quite novel
family-based healthcare monitoring system for long-term chronical disease caring.
Event detection systems and energy efficient approaches are given in [34, 35]
including both centralized optimal approach and fully distributed suboptimal solu‐
tions by participatory sensing. Furthermore, Zhang et al. [36] focused on privacy
leakage issues of participatory sensing and presented a participant coordination
based architecture and flow to successfully protect user privacy. Finally, Yurur et al.
in [37] presented a few posture detections schemes by using the sensor equipped
smart devices. Finally, Liu et al. [38] presented a novel concept of quality of service
(QoS) index to integrate the multi-dimensional QoS requirements to ensure the
degree of QoS satisfactions

2. Data Transportation: Upon the completion of raw data collection, data will be
transferred to a data storage infrastructure for processing and analysis.. As we
known, big data is mainly stored in a data center. The data layout should be adjusted
to improve computing efficiency or facilitate hardware maintenance [39]. In other
words, internal data transmission may occur in the data center. Therefore, data
transmission consists of two phases: Inter-DCN transmissions and Intra-DCN trans‐
missions [40–42].

3. Data Pre-processing: Because of the wide variety of data sources, the collected
datasets vary with respect to noise, redundancy, and consistency, etc., and it is
undoubtedly a waste to store meaningless data. In addition, some analytical methods
have serious requirements on data quality. Therefore, in order to enable effective
data analysis, we shall pre-process data under many circumstances to integrate the
data from different sources, which can not only reduces storage expense, but also
improves analysis accuracy.
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4 Big Data Storage and Analysis

4.1 Data Storage

The explosive growth of data has more strict requirements on storage and management.
In this section, we focus on the storage of big data. Big data storage refers to the storage
and management of large-scale datasets while achieving reliability and availability of
data accessing. We will review important issues including massive storage systems,
distributed storage systems, and big data storage mechanisms. On one hand, the storage
infrastructure needs to provide information storage service with reliable storage space;
on the other hand, it must provide a powerful access interface for query and analysis of
a large amount of data.

Traditionally, as auxiliary equipment of server, data storage device is used to store,
manage, look up, and analyze data with structured Relational DataBase Management
Systems (RDBMSs). With the sharp growth of data, data storage device is becoming
increasingly more important, and many Internet companies pursue big capacity of
storage to be competitive. Therefore, there is a compelling need for research on data
storage.

4.2 Data Analysis

The analysis of big data mainly involves analytical methods for traditional data and big
data, analytical architecture for big data, and software used for mining and analysis of
big data. Data analysis is the final and the most important phase in the value chain of
big data, with the purpose of extracting useful values, providing suggestions or decisions
[43]. Different levels of potential values can be generated through the analysis of datasets
in different fields. However, data analysis is a broad area, which frequently changes and
is extremely complex. In this section, we introduce the methods, architectures and tools
for big data analysis.

Traditional data analysis means to use proper statistical methods to analyze massive
data, to concentrate, extract, and refine useful data hidden in a batch of chaotic datasets,
and to identify the inherent law of the subject matter, so as to maximize the value of
data. Data analysis plays a huge guidance role in making development plans for a
country, understanding customer demands for commerce, and predicting market trend
for enterprises. Big data analysis can be deemed as the analysis technique for a special
kind of data. Therefore, many traditional data analysis methods may still be utilized for
big data analysis.

In the dawn of the big data era, people are concerned how to rapidly extract key
information from massive data so as to bring values for enterprises and individuals.
Although the parallel computing systems or tools, such as MapReduce or Dryad, are
useful for big data analysis, they are low levels tools that are hard to learn and use.
Therefore, some high-level parallel programming tools or languages are being devel‐
oped based on these systems. Such high-level languages include Sawzall, Pig, and Hive
used for MapReduce, as well as Scope and Dryad LINQ used for Dryad.
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5 Big Data Applications

The works in [44–47] used technical sensors embedded in the environment. The work
in [44] for Barcelona aimed to expose the daily routines and patterns of people using
the city bicycling program. The system collected data on when a bike is picked up or
parked. The work in [45] embeds sensor into the city infrastructure. The data collected
would be useful for studying the impact of air pollution on respiratory disease, and
generating data to inform cycleway development. The work in [46] for Amsterdam used
2400 vehicle detector stations and 60 number plate recognition cameras to decrease the
vehicle loss hours. The works in [48–52] used humans as sensors and collect data as
people go about their daily routines. The work in [48] used Call Detail Records (CDRs)
from a cellular network to characterize the human mobility. The work in [49] collects
fine-grained environmental information in the city using data mined from crowdsourced
bicycles. The work in [50] used the geolocation from photos on the Flickr social
networking website to uncover the movements of tourists in Rome. The work in [51]
optimize the 5G small cell networks accounting for the big data from user mobility in
urban region. The works in [53, 54] are examples where both technical and human
sensors are used. The work in [53] used a combination of GPS data and radio channel
measurements from a cellphone network to give the instantaneous position of each
mobile element. The work in [54] is for flood risk management in Brazil and used a
combination of in-situ water sensors and human participatory sensing to give the water
level height.

6 Conclusion, Open Issues, and Outlook

6.1 Data Collection

There are three important challenges for data gathering or collection in big sensor data
systems: (1) Other than the 5V’s found in conventional big data, big sensor data systems
also need to consider an E (energy efficiency) to be fulfilled [55]. This requirement of
energy efficiency should be applied at all stages in the big data pipeline whenever there
is a non-rechargeable power source to be negotiated [56]. (2) Big sensor data systems
will require the collection of data from hundreds of thousands of sensors which could
be embedded in “Things” (e.g. garbage cans, street lights, etc.) which could be located
and scattered anywhere in the environment. It is prohibitively expensive to implement
a sensor relay infrastructure everywhere in the city for data gathering [57]. (3) The third
challenge for data collection is to find ways to utilize available sensing infrastructures
for new tasks or applications.

6.2 Data Inference

From the paper discussions, we see that a strong emphasis for big sensor data systems
is towards using a variety of heterogeneous data sources or historical data to infer
missing data or predict future trends in the spatial temporal sensing field. The challenge
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is to find suitable models and techniques to integrate the various sources of data to solve
the big data problem. They used an application from systems biology and showed the
diverse data modalities which can be extracted from a single instance of DNA (e.g. the
high dimensional expression data, the sparse protein interaction data, the sequence data,
the annotation data, and the text mining data). Their approach used the kernel trick where
data which has diverse data structures is all transformed into kernel matrices with the
same size for combination.

6.3 Value Generation

We find an emphasis towards data-driven research especially using machine learning
and complex network techniques. Whereas mathematical models and simulation tech‐
niques have been useful for studying the characteristics and behaviors of smaller scale
systems, the move to study large-scale systems necessitate the development of new data-
driven modeling techniques. Conventional mathematical and simulation models face
difficulty in acquiring the correct parameters or in dealing with unpredictable and
unknown factors. Amongst, the machine learning approaches, the emergence of deep
learning and crossdomain techniques show potential to discover hidden insights and
trends in big sensor data systems [58].

6.4 Real-World Applications

Many applications for smart cities (e.g. for earthquake/disaster early warning system,
air pollution monitoring) require (near) real-time performance to serve its function [59].
Table 1 presents various typical big sensor data applications. This will drive the

Table 1. Typical Big Sensor data applications

Project City Sensors Data Analysis Value
U-Air [60] Beijing GPS,

environmental
sensors, cell
phone

Meteorological
data, traffic
data, human
mobility data,
Point-of-
Interest data,
road network
data

Neural
Network,

Conditional
Random
Field
(CRF).

Achieved the
inferring of
PM10 for entire
Beijing in five
minutes (near
real-time
performance)
with an accuracy
of 82 %.

Sensing city
[61]

Christchurch Environmental
Sensors

Air pollution
levels, noise
levels, water
use, traffic flow

Incorporate sensors
into building
infrastructure

Amsterdam
smart city
[62]

Amsterdam 2400 vehicle
detector
stations, 60
number plate
recognition
cameras

Traffic flow Traffic flow
management to
decrease vehicle
loss hours by as
much as 10 %
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“Velocity” characteristic for big sensor data systems. Currently, most (if not all) research
on big sensor data systems do not consider this aspect (are performed offline), and
research is conducted using historical or past data. In the future, we anticipate the
research and development of big sensor data systems where real-time analytics will be
performed on large volumes of recently acquired data from multiple sensor farms, and
using a number of diverse and historical sources.
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