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1 Introduction

Recent years have seen a trend in moving large computational tasks to collections
of inexpensive, commercial off-the-shelf (COTS) computers that are geographically
distributed. This has contributed significantly to the advancement of science by
providing access to large-scale shared computing resources on which to solve
computationally expensive problems. Some common examples are SETI@home
[1] which runs tasks on millions of computers worldwide and Google MapReduce
[9] which distributes calculation of web crawled metrics among thousands of
computers. This move towards distributed computing has created a need for efficient
task allocation and scheduling algorithms. Such algorithms should be very scalable
since these systems typically have thousands to millions of computers. They should
also be robust to single-point failures and be adaptive to task demand. Recent
research on grid resource allocation has focused on volunteer resource allocation,
agreement-based resource allocation, and economic resource allocation [17]. Multi-
agent decentralized systems offer an exciting approach to distributed resource
allocation. They have emergent global properties which arise from local interactions
and have been previously used to model biological phenomena [2-7, 16, 19] and
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solve real-world problems [11-15]. Here we use such a decentralized computing
approach to allocate and schedule tasks on a grid. The remainder of the paper is
organized as follows: Sect.2 formalizes the problems and states the assumptions,
Sect. 3 briefly reviews decentralized computing and the advantages it can afford
to a distributed allocation problem, Sect. 4 introduces multi-agent systems, Sect. 5
introduces the simulator used for the experiments in this paper, Sect. 6 discusses the
dRAP algorithm, Sect.7 deals with analysis of the cost of searching through the
global queue, Sect. 8 discusses some dRAP optimization techniques influenced by
the immune system, Sect.9 deals with experiments and results, Sect. 10 discusses
related work in this area, and Sect. 11 presents concluding remarks and outlines
future work.

2 Statement of Problem and Assumptions

Assume there is a queue Q of processes waiting to be allocated to processors.
Each process is required to declare a priori its resource requirements viz. the
number of threads into which it can be parallelized (TH,) and the number of system
resources it requires (the number of CPUs is assumed to be equal to the number of
threads which can be run in parallel, CPU,q). Our system departs from traditional
resource allocation techniques in that there is no centralized dispatcher. Instead, we
dynamically organize a system of geographically distributed computers into clusters
to service each process in Q. Over time, clusters of computers are dynamically
created, dissociated, and created again in order to serve the resource requirements
of the processes in Q. We define a cluster as a network of computers which together
can completely service the resource requirements of a single process. Clusters of
computers are created so as to be proximal to each other in order to reduce latency
and communication costs.
We acknowledge the following assumptions in our system:

. Distributed computers can communicate with each other.

. There are advantages to computing with geographically proximal computers due

to network latency and bandwidth limitations.

3. A new process P; that comes in the system will declare a priori the number of
threads that it can be parallelized into and its resource requirements (e.g., the
number of CPUs it will require, I/O devices required, amount of memory, etc.).

4. The approach will become viable in the asymptotic region of millions or billions

of geographically dispersed computers, when there will be expected benefits

from a decentralized computing approach that exploits geographical proximity
and reduces latency costs, as opposed to a centralized monitor.

[\ R
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3 Decentralized Computing

The extreme size of the computing grid and an ever-increasing demand for
computational power places exacting demands on any scheduling, allocation, and
load-balancing algorithm. Here we argue that a decentralized computing paradigm
presents an ideal solution to the bottlenecks and single-point failures inherent to
a centralized monitor tasked with allocating resources and balancing loads in the
grid:

1. The workload assigned to a centralized monitor increases as computers are added
to the computing grid. A decentralized approach can alleviate the computing load
on monitors. In this approach, each individual computer, or cluster of computers,
will do some computation.

2. A centralized monitor makes the system susceptible to single-point failures.
Distributing load-balancing and resource allocation tasks to individual computers
will increase system robustness.

3. Individual computing nodes are naturally aware of their own workloads. As
a result, the decentralized paradigm can achieve application-level resource
management with significantly less communication overhead than a centralized
monitor.

4. A decentralized system uses peer-to-peer networking to scale communication as
the system grows, whereas a centralized monitor has to communicate with an
increasing number of nodes.

5. A decentralized system is more robust to single node disruptions and failures,
whether malicious or benign.

6. A decentralized system may be able to better respond to fluctuations in pro-
cess requirements, e.g., in a scenario where the scheduler has to “forget” past
process requirements and completely rebuild new clusters after servicing one
process, i.e., there is no locality in process requirements.

4 Multi-agent Systems

Multi-agent systems use distributed agents to either model or solve a problem. An
agent is an entity which matches some real-world object. It could be a biological
cell, a virus particle, an ant, or in our case an individual computer. A computer
program encodes simple rules or behaviors for interacting with other agents. The
agents move about in space and interact with other agents in their neighborhood
according to the encoded rules. Thus the behavior of low-level entities is specified
and high-level behaviors evolve as simulation time progresses. Multi-agent systems
emphasize local interactions based on first principles, and these interactions give rise
to the complex high-level emergent properties of interest. Such systems have been
used to model biological phenomenon such as the human immune system [16], as
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well as solve real-world problems like communication between distributed radar
transmitters [13] and efficient resource collection in swarms of foraging robots [11,
12, 14, 15].

There is no centralized dispatcher to facilitate the formation and dissociation of
clusters in the proposed dRAP algorithm. Instead, the algorithm relies on the self-
emergent properties of a multi-agent system. A multi-agent or agent-based system
is an architecture in which the global properties of the system emerge from local
interactions.

The concept of a decentralized system presents a powerful counterpoint to the
more common centralized control model often seen in business, government, and
military organizations. Decentralization provides a number of important advantages
over closed systems, such as robustness, adaptability, flexibility, innovation, and
distributed intelligence. The key to this compelling architecture is the impressive
ability of a decentralized system to react, mutate, or grow in response to challenging
situations.

In any such decentralized system, the agent represents the base unit of computing
power for the system. It behaves according to very simple rules. At each unit of
model time (or time step), the agent senses its immediate local environment and
takes actions based on its encoded rules. One rule might instruct the agent to divide
if the number of neighbors is greater than 3, while another would cause it to die and
be removed from the simulation if the number of neighbors is less than 2. These
two examples are rules in the “Game of Life” [10], a paradigmatic system where
complex patterns arise from local interactions and simple rules.

If we recast each agent’s local sensing functionality as a peer-to-peer commu-
nication protocol with other nearby agents, then we can define a new set of rules
for each agent that induces actions based on the state of these other, neighboring
agents. Using this localized communication scheme, such rule-action pairs can be
viewed as instructions for individual agents that produce decentralized computation
across the system. There is no centralized monitor and yet this system is capable
of performing complex computations. In fact, the computational power of such a
system of distributed agents acting on simple rules has been proven to be Turing-
complete [8].

We use such an agent-based system to dynamically create and dissociate clusters
based on the resource requirements of each process. A snapshot of this system is
shown in Figs. 1 and 2.

5 Software Platform

For this project we utilize the multi-agent simulation toolkit MASON [18]. MASON
consists of a fairly small and portable set of Java library files that provide for design
of both model (the “algorithm” component) and visualization (the “graphical user
interface” component).
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Fig. 1 Agents in large
clusters; 1 free agent
([
Fig. 2 Agents in several
smaller clusters ./.
]

The agent, the base component of computation in MASON (as in any multi-
agent system), is coded in the familiar object-oriented programming format: the
class “Agent” that contains all generalized methods and parameters needed for the
object “agent” that is simply an instantiation of the Agent class. Following this
format, each instantiated agent may contain a unique set of parameters, thereby
allowing for minor variation in the replicated objects.

Agents are allowed to make decisions (and even communicate with one another)
in a randomized batch lock-step. That is, the MASON scheduler moves through the
(randomized) queue of all agents at each time step of the simulation. Scheduling of
agents continues as long as the simulation itself is running, although the user may
interrupt at any point by pausing or stopping the model.

MASON in particular was selected because of its all-in-one toolkit approach,
making multi-agent simulation much easier than if done from scratch, as well as the
authors’ familiarity and experience with the MASON system.
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6 dRAP Algorithm

The distributed resource allocation protocol (dARAP) is described below and some
intended optimizations are suggested for future work. An agent in our system is
simply a computer. Each agent has a vector containing the time remaining to finish
executing its current process (timeen,) and the number of CPUs in its current cluster
(CPU,puster)- Each agent (or node) is guaranteed to be in exactly 1 of 4 modes
(or states) during the simulation:

Mode 1:  An agent/node that is currently not part of a cluster and has no task
assigned to it

1. The agent scans the queue Q, considers the resource requirements CPUq
of unallocated tasks, and takes on the task which minimizes the equation
|CPUpeq — 11.

Mode 2: An agent/node that is currently not part of a cluster and has a task
assigned to it

1. The agent continues executing the task and updates its information vector
(timerem, CPUcluster)-

2. If the task requirements are not completely satisfied (i.e., if CPUrq > 1),
the agent will query its neighbors and attempt to form a cluster such that
CPUreq = CPU,uster-

3. When the agent finishes executing the task, it returns to Mode 1.

Mode 3: An agent/node that is currently part of a cluster and has no task assigned
to it

1. The agent scans the queue Q, considers the unallocated tasks, and takes on the
task which minimizes the equation |CPU,eq — CPUygter|-

Mode 4: An agent/node that is currently part of a cluster and has a task assigned
to it

1. The agent continues executing the task and updates its information vector
(timerem, CPUcluster)-

2. When the task completes, the agent dissociates from the cluster and returns to
Mode 1.

A key feature of our algorithm is that nodes query their neighbors (other
nodes that are close to them physically) in order to form clusters. This has the
effect of reducing latency and communication costs. One optimization to consider
would be to delay cluster dissociation in Mode 4. This would lead to learning or
memory in the system where the scheduler would be able to remember past process
requirements.
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7 Analysis of Queue Cost

The dRAP algorithm requires a traversal through the global task queue in Mode 1
and Mode 3. The algorithmic complexity is given by Y (n — i)ym = O(n*m) where
m = the number of tasks in the global task queue, and n = the average number of
clusters. At a given timestep, the worst case can be approximated as O(nm).

8 Optimizations Inspired by the Immune System

The immune system is able to find rare spatially localized pathogens and eliminate
them in a timely manner [5, 6]. Similar to how in our system clusters of computers
find processes, the immune system uses specialized cells to find pathogens in
anatomical regions called lymph nodes. In previous work we showed how a sub-
modular arrangement of lymph nodes could lead to fast elimination of pathogens
in the immune system and also faster search for solutions in immune inspired
distributed systems of computers [5, 6, 19]. Let an artificial lymph node be
composed of a number of clusters and a process queue. Also let there be a number
of such artificial lymph nodes that have the capability of communicating with each
other. An “artificial lymph node” is supposed to be a computer in charge of a number
of clusters. This computer will store the process queue and also will have some
memory and CPU to communicate with other “lymph nodes.”

We are interested in making the system sub-modular so that we can minimize the
total time to find a cluster. There is a tradeoff between the local cost and the global
cost; the local cost is O(n?) and the global cost O(N/n). The total cost of traversing
through the queue in a lymph node and the cost of communicating with other lymph
nodes can be summed up as:

Ttotal = focal + Tglobal (1)
o = O(n*) + O(N/n) )

where 7 is the number of clusters in a single lymph node and N is the total number
of clusters in the complete system. We assume that the global cost of finding
another cluster in another lymph node that can service some process requirement
is proportional to the number of lymph nodes (where N/n is the number of lymph
nodes in the system).

Minimizing the total time cost, we get 2n — N/n?> = 0

n=0N'") 3)
This implies that in larger systems (more computers, more clusters, and more

lymph nodes), the number of clusters within a single lymph node should grow
larger but only sub-linearly in the number of total clusters in the system. This would
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balance local costs of queue traversal and global costs of finding another lymph
node with another cluster that can service the process. The key point here is that the
number of clusters in a lymph node should scale sub-linearly with the size of the
whole system, i.e., if a system of networked artificial lymph nodes were to grow a
1000 times bigger (1000 times more clusters), then the number of clusters within a
lymph node need only increase by a factor of 10. Such sub-modular systems inspired
by the immune system have been proposed previously for mobile ad hoc networks,
control of mobile robots, intrusion detection systems, and peer-to-peer networks
[5, 6, 19].

More generally, if the local and global communication costs scale with exponents
a and B, we have

howt = O(n%) + O(N” [nf) @)
Minimizing the expression with respect to N, we get

nzo@#ﬂ (5)

. If y < a + B we have sub-linear scaling.

. If y > a + B we have super-linear scaling.

. If y = o + B we have linear scaling.

. If y/(a + B) = 0 we have no scaling (constant).
. If y/(a + B) < 0 we have negative scaling.

D AW =

9 Experiments

We conduct several experiments that compare our dRAP algorithm to a null model,
i.e., a first-in first-out (FIFO) scheduling system. Additionally, we measure the
effective computational complexity of queue traversals and examine the scaling
properties of our system by varying the number of nodes and measuring the effect
on performance. We define two timing metrics on which our system performance
will be judged: Teompiete 1s the time required to complete all tasks in the queue, and
Twait 1s the average wait time for a task added to the queue. Unless otherwise noted,
system parameters are defined as such: number of nodes = 100, number of tasks
= 1000, tasks are randomly selected from a normal distribution s.t. CPU,q varies
from 1 to 5, with initial time,,, varying from 25 to 125 in increments of 25. That is,
a task #; with CPU,q = 1 has an initial timern, = 25, and a task #; with CPUq = 5
has an initial time., = 125. All averages are computed across ten trials.
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Table 1 Average timing comparison of dRAP and FIFO
scheduling algorithms with 95 % confidence intervals

Tcomplete Tyt
dRAP | 845.60 (861.94,829.26) | 342.54 (349.30,335.78)
FIFO |1071.20(1088.99,1053.41) | 475.31 (485.79,464.82)

Table 2 Average cluster

o . Mecluster
utilization of dRAP and FIFO
scheduling algorithms with dRAP | 100 %
95 % confidence intervals FIFO |56 % (54 %,58 %)

9.1 Comparison to Null Model

Here we present three separate experiments which compare the dRAP and FIFO
algorithms. The first is a simple timing comparison that looks at Teomplete and Tyajt
for each case. Values are presented in Table 1 (including 95 % confidence intervals).

We observe an approximate 20 % reduction in T¢omplete and an approximate 25 %
reduction in Ty, when comparing dRAP to FIFO.

Our second experiment comparing dRAP and FIFO involves average cluster
utilization. Because dRAP assigns tasks s.t. CPUyser == CPUpq, this ensures
that all nodes in the cluster will be utilized. However, the FIFO scheduling system
hands out tasks to the first available cluster, meaning it allows for the possibility
that CPUjyger > CPUyeq. For example, a task with CPU,q = 2 that is assigned to
a cluster with CPU ey = 5 will leave three unused nodes. Thus, we present an
analysis of cluster utilization using the metric in Eq. (6):

CPUpeq

= (6)
CPUcluster

Mcluster =

If CPU¢uster < CPUyeq, we simply set fieuseer = 1. Values are presented as
percentages in Table 2 (note that dRAP’s ft¢jugeer 1S always 100 % by definition).

Finally, our third experiment is designed to measure global node utilization over
the time of the simulation. Here we simply document the number of nodes that do
computation on a given timestep and normalize by the total number of nodes in the
system. Results are displayed in Fig. 3 (taken from a single simulation run).

We observe that the dRAP algorithm utilizes approximately 90-95 % of the
nodes for the majority of the simulation, while FIFO utilizes approximately
70-75 %.
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9.2 Effective Complexity

For this experiment, we estimate the “effective” computational complexity of the
dRAP algorithm. That is, in comparison to the qualitative O(nm) worst case runtime
per timestep, we are interested in how much of the task queue must be traversed in
order to properly fit the CPUjyser == CPUpq requirement. Total tasks traversed
per timestep from one selected simulation run are presented in Fig. 4. Note that the
initial traversal (timestep “0”), although difficult to see, is approximately 11,000.

“Worse case” here, as addressed above, is O(nm), or 100,000 tasks traversed per
timestep if n = number of clusters = number of nodes = 100 and m = number
of tasks = 1000. From this plot (plus additional runs not included here), we can
conclude that effective computational complexity is no more than approximately
10 % of the worst case runtime O(nm).
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9.3 Scaling

For our last experiment, we are interested in collecting information on the scaling
ability of our algorithm. Our goal in this test is to increase the number of nodes (in
intervals of 50), while also maintaining an equal number of neighbors for each node.
That is, we ensure that the neighborhood size parameter defined in the simulation
scales inversely with the number of nodes s.t. a given node has approximately the
same number of neighbors regardless of the total nodes in the system. Results are
presented for our two timing metrics: Teomplete SCaling in Fig. 5 and Ty, scaling in
Fig. 6. Data in both figures are log,-transformed in order to correlate doubling of
nodes with halving of the timing metrics.

We note a near-perfect scaling for both timing metrics, as shown in the fitted
power law equations inset into each plot (Figs. 5 and 6). Note that the Ty,,;; exponent
above 1 is most likely a result of inexact tuning of the neighborhood size with
increasing nodes, and this issue will rectified in future work.

Fig- 5 Scahng of Tcomplete Scaling of Tcomplete
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10 Related Work

Resource allocation for grid computing is an active area of research. For example,
SLURM [20] is a configurable Linux utility for cluster allocation that uses static
allocation of nodes to clusters, called partitions, in contrast to the dynamic
cluster allocation presented in this paper. LSF [21] is another proprietary cluster
management facility; however, details of its allocation algorithm are not publicly
available.

11 Conclusions and Future Work

In this paper we have presented an algorithm for allocating, scheduling, and load-
balancing processes on a massively distributed system. This is very relevant to
current research in operating systems, especially with a trend of moving compu-
tation tasks onto inexpensive, distributed hardware. The proposed decentralized
algorithm draws inspiration from biology, adaptively creating, and dissociating
clusters from nodes to match task demand. Decentralization enables scalability,
robustness, alleviation of computing load on monitor, better response and adapt-
ability to process queue fluctuations, and learning about process requirements. The
dRAP algorithm outperforms a FIFO scheduling algorithm on time to complete all
tasks, average waiting time, and CPU utilization. The scheduling is also shown to
be robust to a malicious adversary that might permute the order of the tasks such
that high demand tasks would be queued first followed by low demand tasks. A key
feature of our procedure is that nodes communicate with neighboring computers
in order to dynamically form clusters. Hence our algorithm also holds promise in
areas where it is advantageous to communicate with immediate neighbors due to
network latency, e.g., Google MapReduce uses a locality optimization to reduce
latency due to network communication [9]. The comparison of this algorithm to
other scheduling algorithms like Shortest Remaining Time First (SRTF) on other
metrics like response time, as well as collection of data on the exact distribution of
process demand in a queue in a real-world scenario, will be the subject of future
investigation.

12 Scientific Validation

This paper has been unanimously validated in a collaborative review mode with the
following reviewers:

¢ Cyrille Bertelle, from Université du Havre (France)
¢ Pierre Collet, from Strasbourg University
¢ Carlos Jaime Barrios Hernandez.
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