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1 Introduction

Flow of miscible fluids in a porous medium is found in a wide range of natural
processes as well as industrial applications [5]. These displacement flows feature
an interfacial instability that occurs when a less viscous fluid invades into the
more viscous one. Finger like patterns are resulted at the interface, hence this
is called viscous fingering (VF) instability. This hydrodynamic instability which
is also known as Saffman–Taylor instability [14] has been a subject of many
theoretical and experimental studies [3, 8, 10, 12] for many years. Stability analysis
of VF has been performed extensively over the years [1, 5, 7, 11]. Traditionally,
the modal analysis along with quasi-steady-state approximation (QSSA) has been
used in different coordinate systems [7, 11]. Although, at the early times QSSA
in a self-similar coordinate system successfully predicts the unconditional stability
of perturbations, it fails to describe the early period dynamics of the disturbances
[6]. Another approach which is more practical is the amplification theory (AT), in
which the linear equations are solved as an initial value problem. However, this
approach has a drawback of choosing the representative initial condition. In this
article, using non-modal stability theory, we unify the frozen time method and AT to
explore two important aspects of VF instability, namely the effect of non-normality
of the governing non-autonomous linear operators and the optimal amplifications
of the disturbances. The paper is organized as follows. In Sect. 2, the mathematical
formulation of the physical model is presented. Section 3 describes the non-modal
stability analysis and the numerical method to calculate the energy growth function
G.t/. In Sect. 4 we present the results and discussions. Finally, the conclusions are
given in Sect. 5.
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Fig. 1 Schematic of the flow
configuration with coordinate
system. Initially the interface
is flat (dotted line) and then a
wave like infinitesimal
perturbation is applied

2 Mathematical Formulations

Consider a uniform rectilinear displacement of miscible fluids in a two-dimensional,
homogeneous, porous medium with constant permeability [see Fig. 1]. The fluids
are assumed to be incompressible, miscible, non-reactive, and neutrally buoyant
and the dispersion is isotropic. The non-dimensional governing equations for the
prescribed two-dimensional flow in a reference frame moving with velocity U
are given by the following coupled nonlinear partial differential equations (PDEs)
[5, 16]:

r � u D 0; rp D ��.c/.u C i/;
@c

@t
C u � rc D r2c; (1)

where p is the dynamic pressure, u D .u; v/ is the Darcy’s velocity, c is
the concentration of the solvent, i is the unit vector along the x (downstream)
direction, and �.c/ is the fluid viscosity which depends exponentially on the solute
concentration, i.e., �.c/ D exp.Rc/ [16]. Here R D ln.�2=�1/ is the log-mobility
ratio, where �1 and �2 correspond to the viscosity of the less and more viscous
fluid, respectively. The coupled PDEs (1) are provided with the following initial and
boundary conditions in the moving frame of reference [5, 11]:

Initial conditions:

u D .0; 0/; c.x; y; t D 0/ D
(

0; x � 0

1; x > 0;
8y: (2)

Boundary conditions:

u D .0; 0/;
@c

@x
D 0; jxj ! 1; streamwise direction (3)

u is arbitrary;
@c

@y
D 0 D @v

@y
; 8x; spanwise direction (4)
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The base state of the flow is assumed to be a pure diffusion of the concentration
along the axial direction that can be written as

ub D .ub; vb/ D 0; cb.�/ D 1

2

�
1 C erf

�
�

2

��
; �b D �b.�/; (5)

where erf.z/ D 2p
�

R z
0

e��2
d� is the error function and � WD x=

p
t is the similarity

variable transformation. Introducing the infinitesimal perturbations in terms of the
Fourier modes of the form .u0; c0/.�; y; t/ D .u0; c0/.�; t/eiky and using standard
procedure of linear stability analysis along with central difference scheme to
discretize the spatial variable, � , the nonlinear coupled PDEs (1) can be written
as [6, 11]

dc0

dt
D A.k; R; t/c0; (6)

where k is the non-dimensional wave number and A D A.k; R; t/ is the stability
matrix.

For such non-autonomous system [Eq. (6)], there are two distinct regions in the
evolution of disturbances [15]. The first is the transient region, and the second is
the asymptotic long time region. In mathematical sense, instability behaviors in the
second region are determined by the eigenvalues of the stability matrix A. In the
first region, the transient growth may be quite substantial, such that the nonlinear
region may be reached before the growth of eigenvalue mode. Thus, the eigenvalue
approach is insufficient to study the stability analysis. For nonnormal and time
independent matrices, A, the stability analysis have explored by many researchers
(see [15] and the references within). Recently, few works have discussed non-modal
stability analysis (NMA) with unsteady base state flow [2, 4, 6, 13]. But in the case
of VF, many aspects of stability matrix A.k; t/ remained unexplored compared to
its autonomous counterpart.

3 Transient Behaviors and Non-modal Analysis

In the framework of NMA, there are two major and broader aspects which are of
ample interest, the responses to external excitations and the transient energy growth
of initial conditions. Mathematically, the former can be studied from the structure
of “�-pseudospectra” [17] which is given by ��.A/ D fz 2 C W �min.z � A/ � �g,
where �min.A/ denotes the smallest singular value of A, and 0 < � � 1. And
the latter can be analysed from the energy growth function G.t/ that identifies the
optimal growth of energy at time t. In addition, it is often useful in hydrodynamic
stability problem to know the initial growth rate of the energy growth function. This
can be obtained from numerical abscissa of the stability matrix A [17]. Following
[6, 13] G.t/ can be described as
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G.t/ D G.t; k; R/ WD max
c0

0

k˚.t0I t/c0
0k2 D k˚.t0I t/k D sup

j
sj.t/; (7)

where ˚.t0I t/ is the propagator matrix or matrizant satisfying the matrix differential
equation

d

dt
˚.t0I t/ D A.k; R; t/˚.t0I t/; (8)

and it is related to the concentration perturbation field by c0.t/ D ˚.t0I t/c0
0 with

c0.t0/ D c0
0 being an arbitrary function. Here, sj’s are the singular values of

˚.t0I t/ and k � k2 is the standard Euclidean norm. It is important to note that the
pseudospectra and the growth function are dependent on the definition of norm [17].
From mathematical and physical considerations, an appropriate measure of the
disturbance is indispensable. In this article the standard Euclidean norm k � k2 and
associated inner product have been used. Further, as the velocity perturbation is
slaved to the concentration perturbation, the optimal amplification G.t/ has been
calculated only for the concentration perturbation c0 [4]. For stability analysis we
consider the following quantities: the spectral abscissa and numerical abscissa are
given by ˛.A/ � maxf<.	.A//g; �.A/ � maxf	.A C AT /=2g, respectively,
where 	.A/ denotes the eigenspectrum of A, < denotes the real part, and AT

denotes the transpose of the matrix A. In the present paper, the computational
domain has been chosen to be Œ�50; 50
 with step size 0:2. The initial value problem
(8) is solved by Runge–Kutta fourth order method, and a matlab GUI EigTool [17]
has been used to draw the pseudospectra of the stability matrix A. The detail of the
numerical procedure can be found in [6].

4 Results and Discussion

In stability analysis, the eigenspectrum 	.A/ is the principal aid to give an insight
into how a system behaves. If the stability matrix A is non-normal (i.e., AAT ¤
AT A), then the pseudospectra ��.A/ are likely to explain the system behavior
better than the eigenvalues, 	.A/. Thus, ��.A/ will help us to understand the
response to the external excitations in the parameter space k and R. Figure 2 shows
the parabolic profile (the dashed line) of the numerical range, W.A/ D fxT Ax W
kxk D 1, of the stability matrix A. It is clearly visible that the boundary of
W.A/ strictly contains the spectrum of A. This reflects that A cannot be unitarily
diagonalizable; or in other words, their eigenfunctions are not orthogonal. In the
inset figures (Fig. 2), it is illustrated that the pseudospectra protrude strongly into
the right half-plane, which imply that the evolution process will be susceptible
to large transient effects. This is due to the non-normality of the stability matrix,
and it signifies that the system is unstable, which is not captured by analysing the
spectrum alone. This implies that at the initial time the energy of the disturbance is
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Fig. 2 �-pseudospectra of A for (a) R D 1; k D 0:08; t D 31, (b) R D 4; k D 0:3; t D 2:5. Black
dots (�): eigenvalues; black square (�): numerical abscissa; dashed line: boundary of the numerical
range; solid lines: contours from innermost to outermost representing levels from � D 10�2:5 to
10�0:5 with increment 10�0:5. 	i; 	r are the imaginary and real part of eigenvalues, respectively.
Inset figure shows the numerical abscissa, �.A/ (�), and spectral abscissa, ˛.A/(�)
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Fig. 3 (a) Optimal amplification G.t/ for different R and the corresponding critical wave numbers.
The black dot denotes the onset ton. (b) The variation of the onset of instability ton and the critical
wave number kc (inset), for different values of R determined from NMA. The circles (ı) are
simulation data and continuous lines are fitted curves

growing faster than what is anticipated from the spectral abscissa ˛.A/. It can be
conjectured that with increasing R, the boundary of numerical range becomes wider
and the eigenvalues are more sensitive to the external forcing, as confirmed from the
contours of pseudospectra.

Next, we present the optimal amplification of the perturbations to understand
the transient effects. For this purpose we plot the energy growth function G.t/ for
.R; k/ 2 f.3; 0:225/; .4; 0:3/; .5; 0:35/g in Fig. 3a. This figure shows that after a
initial diffusion dominated period and each curve experiences a substantial energy
growth. The onset of instability is the time when G.t/ starts increasing (the first local
minimum) and it is shown as black dot (�). Thus, NMA clearly distinguishes the
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domain where initial perturbations are damped or have no time to grow significantly
due to diffusion, and a domain exhibiting strong convection. Further, to understand
how the VF mechanism responses to external forcing, the spatial structures of
the optimal input can be obtained from the singular value decomposition of the
propagator matrix ˚.t0I t/ [6, 13, 15]. Using matlab curve fitting tool (cftool), with
95 % confidence bounds, we found empirical relationships between the onset of
instability, ton, and R, as well as the critical wave number, kc (the minimum wave
number at which the instability sets in), and R. The obtained results are shown in
Fig. 3b. It is shown that ton � R�1:9, i.e., nearly a inverse square of R, whereas
kc � R0:82. This empirical relationships are in good agreement with Tan and Homsy
[16], who measured ton � R�2, and kc � R, for a step-like initial concentration
profile. The non-normality of the stability matrix A could be the source of observed
difference between the two cases.

5 Conclusion

A unified approach of linear stability analysis for the VF is presented. It is shown
that at early times diffusion dominates, which causes the energy decay before
it starts amplifying due to strong convection. For this purpose we have studied
different components of the spectrum, such as the spectral abscissa, boundary of
numerical range, and �-pseudospectra. To understand the transient growth of energy,
we studied the optimal amplification of disturbances for various flow parameters. It
can be concluded that such approach not only presents a comprehensive stability
analysis algorithm, but also explains the physical mechanism appropriately. It will
be very interesting to apply this procedure for other unsteady base state problems
such as VF in liquid chromatographic condition [12], analysing the effect of
precipitation reactions in CO2 sequestration techniques [10], or in understanding
the effect of external forces, e.g., magnetic field [9] to VF to name a few.

6 Scientific Validation

This paper has been unanimously validated in a collaborative review mode with the
following reviewers:

– Agota Toth, from University of Szeged
– Denis Grebenkov
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