
Chapter 9
How Do Crystals Nucleate and Grow:
Ostwald’s Rule of Stages and Beyond

Jürn W.P. Schmelzer and Alexander S. Abyzov

Abstract W. Ostwald predicted with the “rule of stages” formulated by him that
phase formation processes in complex condensed matter systems may proceed step
by step via different evolution paths involving a discrete series of metastable states,
which can be formed in a macroscopic form at the given thermodynamic condi-
tions, until finally, the most stable phase will be reached. Advancing this idea, it
was shown in recent years by us that in condensation and boiling, as well as in
segregation and crystallization processes in multi-component liquid and solid
solutions, critical clusters may be formed and evolve via a continuous sequence of
states with properties which may differ from the properties of any of the macro-
scopic phases present in the respective phase diagram. The kinetics of nucleation
proceeds hereby via a scenario similar to spinodal decomposition, i.e., via a con-
tinuous amplification of density and/or composition differences accompanied
eventually by sequential discrete changes of the structure of the system. The basic
ideas and results of this theoretical approach developed by us are described in the
present chapter. Recently published experimental results on crystal nucleation are
discussed in detail giving additional confirmation of these conclusions. As a second
man topic devoted also to the theoretical description of crystal nucleation, the
relevance of the concepts of fragility of the liquid for the understanding of crystal
nucleation and growth in glass-forming liquids is explored. Finally, a number of
directions of research are discussed which may lead to new insights into the
complex phenomena of crystal formation and growth processes.
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9.1 Introduction

The properties of materials are significantly affected by the volume fraction, shape,
size distribution, orientation, and degree of dispersion of the different phases
formed during their fabrication. Crystallization is particularly important in glass
technology, where, in addition to the aforementioned features, the rates of crystal
nucleation and growth of the glass-forming melts determine whether a given liquid
can be vitrified or is likely to crystallize on the cooling path to a glass. By this
reason, a detailed knowledge of the laws governing crystal nucleation and growth is
of basic relevance.

The theoretical interpretation of crystal nucleation and growth experiments is
performed till now in most cases based on the classical thermodynamic theory of
heterogeneous systems as developed by Gibbs [1] in the period 1875–78. In the
subsequent decades, van der Waals advanced an alternative continuum’s approach
to the description of heterogeneous systems. In discussing his results, in 1893/94,
van der Waals [2, 3] described his work and stated that in its main consequences,
his theory is equivalent to Gibbs’ approach, however, much wider applicable. In
particular, he noted: “Schon von Gibbs ist eine thermodynamische Theorie der
Kapillarität aufgestellt worden. Ein grosser Teil seiner Abhandlung” On the
equilibrium of heterogeneous substances “ist der Kapillarität gewidmet … In einer
Fußnote … bemerkt Gibbs, dass man die Erscheinungen in ganz anderer Weise
würde behandeln können. Wirklich haben Umstände … mich dazu geführt, die
Theorie der Kapillarität in ganz anderer Weise in Angriff zu nehmen … Dazu
kommt noch, dass die Gibbssche Theorie die kapillaren Erscheinungen als von der
Voraussetzung der Diskontinuität bedingt betrachtet … Im Gegensatz dazu ist die
Methode, welche ich in den folgenden Seiten zu entwickeln wünsche, nur dann
anwendbar, falls eine kontinuierliche Dichteänderung angenommen wird”, or, in
the English translation, “A thermodynamic theory of capillarity has already been
developed by Gibbs. His paper ‘On the equilibrium of heterogeneous substances’,
is in the main devoted to these phenomena … According to Gibbs’ theory, capil-
larity phenomena are present only if there is a discontinuity between the portions of
fluid that are face-to-face … In contrast, the method that I propose to develop … is
not a satisfactory treatment unless the density of the body varies continuously at
and near its transition layer. It will not be without interest to show that the two
apparently contradictory hypotheses lead to values of the same order of magnitude
for the capillary tension and energy.”

In this statement, van der Waals emphasizes as an advantage of his treatment that
it is more accurate as compared to Gibbs’ approach since it refers more appropri-
ately to the real situation. Similar statements can be found also in the modern
literature supposing that Gibbs’ theory is not correct since it does not account, as a
rule, for the continuous change of density and/or composition in the transient
interfacial layer between both considered phases. However, such statement is not
correct. Gibbs was, of course, fully aware of the real situation. But he describes
heterogeneous systems in terms of a model system consisting of two homogeneous
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phases divided by a mathematical surface of zero thickness. All thermodynamic
parameters are considered as the sum of the contributions of the two homogeneous
phases and appropriate correction terms assigned to the mathematical interface.
This approach allows one to employ the well-established laws of thermodynamics
for homogeneous equilibrium systems. The main problem is then to compute
appropriately the correction terms. So, Gibbs’ approach is fundamentally correct,
and the only problem remains is to account correctly for the above-mentioned
corrections due to the existence of the interface. Provided Gibbs would have really
assumed that systems consist of two homogeneous phases, there would not be need
to introduce the correction terms, in particular, for the number of particles of the
different components. In order to compute mentioned correction terms, Gibbs
introduced a fundamental equation for the superficial quantities interconnecting the
mentioned superficial thermodynamic parameters. In his approach, Gibbs restricted
his considerations to systems in thermodynamic equilibrium. We have developed a
different more general approach as compared to the classical Gibbs’ method as
described in more detail in the chapter allowing one to remove several severe
limitations of the classical Gibbs’ approach in application to the description of the
kinetics of phase formation.

Despite his critical remarks concerning Gibbs’ classical theory, van der Waals
mentioned that in their consequences—describing the properties of planar interfaces
—his and Gibbs’ methods lead to similar results. However, as can be shown, in
application to nucleation and growth of small clusters, Gibbs’ and van der Waals’
methods lead to highly different consequences [4, 5]. These differences can be
removed as shown by us by generalizing Gibbs’ classical method. This general-
ization accounts also for the need to have a tool to describe clusters which are not in
equilibrium with the ambient phase. Such thermodynamic treatment is however
essential in order to describe the growth and decay of the clusters. In addition, it is
also a prerequisite to appropriately determine the properties of the critical clusters,
i.e., of the cluster being in unstable equilibrium with the ambient phase and
determining the nucleation rate. The description of the basic ideas of the general-
ized Gibbs’ approach as it is denoted by us and an illustration of its power in
application to recent experimental investigations of crystal formation is the first aim
of the present chapter.

The second part of the chapter is devoted to another aspect of the theoretical
description of crystallization connected with the interplay of glass transition and
crystallization-growth processes. It is devoted to the concept of fragility and its
relevance to the understanding of crystallization. Based on a detailed analysis of
crystallization processes in glass-forming melts, it is demonstrated that classical
fragility in the form as introduced by Angell can be relevant for the understanding
of the crystallization behavior only if several severe conditions are fulfilled that are
rarely met. However, as shown as well, introducing an appropriate modification of
the classical definition, fragility becomes one of the main factors determining the
temperatures and magnitudes of the maxima of nucleation, growth, and overall
crystallization rates. In addition, an analysis is performed specifying the conditions
at which classical fragility can be considered as a measure of deviations of the
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viscosity from an Arrhenius type of temperature dependence. Finally, a number of
directions of research are discussed which may lead to new insights into the
well-established but anyway intensively developing field of experimental and
theoretical research devoted to crystal formation and growth processes.

9.2 Ostwald’s Rule of Stages and Its Generalization

In Ref. [6], the results of sophisticated experiments on the crystallization behavior
of metal phosphates are presented. In this transformation, an amorphous material
transforms into a stable crystalline phase via a sequence of intermediate crystalline
phases. The authors assert—supported by [7]—that these experimental results
directly prove the validity of Ostwald’s rule of stages formulated by W. Ostwald in
the form [8] “in the course of transformation of an unstable (or meta-stable) state
into a stable one the system does not go directly to the most stable conformation
(corresponding to the modification with the lowest free energy) but prefers to reach
intermediate stages (corresponding to other possible meta-stable modifications)
having the closest free energy difference to the initial state.” In the discussion in [7],
it is also noted that a number of problems remain open as follows: (i) Is such type of
behavior always to be expected in crystallization in complex systems? (ii) Can there
be given a sound theoretical basis for such general principle as Ostwald’s rule of
stages? (iii) Is a similar behavior also observed for phase formation from the melt?
A variety of other questions can be added. A very important additional one is—to
our opinion—the following problem.

The classical theory of nucleation and growth assumes—in agreement with the
theory of heterogeneous systems developed by Gibbs [1]—that the bulk properties
of the critical clusters, the embryos of the newly evolving phases (see Fig. 9.1a),
coincide widely with the properties of the respective macroscopic phases. In such a
description, clusters of the new phase form and grow by changing its size with
nearly size-independent bulk and surface properties. This classical model of phase
formation is illustrated in Fig. 9.1a. However, in particular, since the work of
Hillert [9], and then Cahn and Hilliard [10] on phase separation processes in solid
solutions, employing the same density functional approach as developed earlier by
van der Waals [2, 3], it is well-established that the properties of the critical clusters
deviate, and as a rule considerably, from the properties of the respective macro-
scopic phases. So, the question arises why the existence of different metastable or
stable macroscopic phases can affect nucleation at all once anyway the properties of
the critical clusters differ from the properties of the respective macroscopic phases?

This and a variety of related problems could be resolved generalizing the clas-
sical Gibbs’ method of description of heterogeneous systems [4, 5]. In this gen-
eralization, the classical method of description as developed by Gibbs is basically
retained, but it is extended (first new element in the generalization) to clusters being
not in equilibrium with the ambient phase (Gibbs restricted his analysis—as evident
already from the title of his publications—to “equilibrium of heterogeneous
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substances”, exclusively; cf. also [11, 12]). Hereby, it is taken into account (second
new element in the generalization) that the specific interfacial energy of the clusters
of the new phase has to depend, in general, on the properties of both the clusters
and the ambient phase. Based on this more general thermodynamic approach, in the
next step, the properties of critical clusters are determined. As it turns out, the
respective predictions differ from the predictions of the classical Gibbs’ approach,
and they are in agreement with the predictions of density functional computations
[13].

This method of determination of critical cluster properties was based originally
on a postulate we denoted as “generalized Ostwald’s rule of stages.” It reads in the
formulation given by us in [4]: “In phase transformation processes, the structure
and properties of the critical nucleus may differ qualitatively from the properties of
the evolving macroscopic phases. Those classes of critical clusters determine the
process of the transformation, which correspond to a minimum of the work of
critical cluster formation (as compared with all other possible alternative struc-
tures and compositions, which may be formed at the given thermodynamic con-
straints).” Some similarity in this approach with the classical explanation of
Ostwald’s rule of stages in its original form as given by Stranski and Totomanov
[14] is evident. However, our approach is more general not restricting the selection
rule for the properties of the critical clusters to different stable or metastable phases
which can be formed in a macroscopic form at the given thermodynamic constraints
but allowing for the occurrence of a much wider spectrum of possible states not
realized for macroscopic samples.
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Fig. 9.1 Comparison of the classical model of phase separation in multi-component solutions
illustrated in (a) with the scenario as developed based on the generalized Gibbs’ approach (b).
According to the classical picture (a), clusters evolve by changing its size, R (it is assumed here
that the clusters are of spherical shape with a radius, R), retaining nearly the same density,
composition, and structure. The critical cluster (specified by the subscript c) corresponds to the
maximum of the Gibbs’ free energy, DG. Clusters with sizes R > Rc are capable to a further
deterministic growth representing in this way “embryos” of the newly evolving phase, cluster with
a size R < Rc decay. According to the generalized Gibbs’ approach (b), crystals are formed via
amplification of composition differences to the ambient phase supplemented by discrete changes in
the structure. Here, the thermodynamic potential barrier in nucleation is overcome mainly via
changes of the state of the precursors of the new phase at nearly constant size
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As we became aware about a decade after the publication of Ref. [4], similar
ideas have been expressed already in 1951 by Scheil [15] and Hobstetter [16] in
application to nucleation-growth processes in metal physics, where this approach is
denoted as Scheil–Hobstetter model [17]. As it turned out, this suggestion was fully
correct. Indeed, Scheil started his paper of 1950 with the observation of Gerlach
[18] that in segregation of nickel–gold particles from a solid solution, as a rule,
particles are formed which do not have the equilibrium composition. He cited also
the observation of Masing [19] in his book on metal physics that such effect—the
difference between the composition of the clusters and the composition of the
macroscopic phases—is not an exception but the rule in metal physics. Employing,
similar to our analysis in Ref. [4], Becker’s equation [20] for the description of the
interfacial energy in dependence on composition, he came to the conclusion again
in full agreement with our approach that the critical cluster composition is, in
general, different from the equilibrium composition of macroscopic samples and
determined by the condition of the minimum of the work of critical cluster for-
mation; i.e., he had really expressed the same idea as advanced by us 50 years later
not being aware then of this earlier work. However, Scheil presumably did not
recognize that this approach is in deep conflict to Gibbs’ classical theory which
leads—if correctly employed—to different results. Consequently, in the analysis of
Scheil, the question remains unanswered: How one can employ on one side Gibbs’
theory but replace one of its inherent consequences by a different assumption
contradicting the conclusions of Gibbs’ classical approach? The solution to these
problems has been given by us by developing the generalization of Gibbs’ approach
mentioned above.

By the way, as mentioned by Scheil as well, Becker, developing and employing
the relation for the description of the surface tension in dependence on composition,
employed in the analysis Gibbs’ classical theory; i.e., he identified the composition
of the newly evolving critical clusters with the composition of the newly forming
macroscopic phase. In addition, Scheil supposed that eventually, the state of the
critical cluster may refer to some metastable phase which under certain conditions
may be formed macroscopically remaining in this way to some extent at the level of
the classical Ostwald’s rule of stages (but leaving open also the possibility that such
metastable states may not exist). According to our treatment formulated in the
generalized Ostwald’s rule of stages, the composition of the critical clusters is from
the very beginning supposed to refer to transient states (composition, density,
structure etc.) having, as the rule, no macroscopic analog.

In contrast to the classical Gibbs’ approach, the generalized Gibbs’ theory allows
one to describe also phase formation processes in solutions proceeding from un-
stable initial states [21], and the results are in agreement with the predictions of the
Cahn–Hilliard theory and more advanced density functional computations. In
addition, a variety of experimental data on crystal nucleation of glass-forming melts
could be explained straightforwardly, which cannot be interpreted in classical
terms. An overview on these results is given in [22, 23], and some others are
described below.
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In addition to the understanding of crystal nucleation, the process of formation of
critical clusters, the generalized Gibbs’ approach allows one to determine the most
probable whole path of evolution of the clusters in size-composition space [23, 24].
For segregation processes in solutions, we come to the conclusion that the evolution
to the new phase does not proceed via the classical picture, illustrated in Fig. 9.1a,
but in a way as shown in Fig. 9.1b. In a certain region of the ambient solution with
spatial dimensions of the critical cluster size, an amplification of cluster composi-
tion is observed. Only after this process is completed, the further evolution is
governed by the classical picture, again, i.e., by a change in size with nearly
constant bulk parameters of the clusters. So, according to the generalized Gibbs’
approach nucleation-growth processes in solutions and similar systems proceed via
a scenario to some extent typical for processes known as spinodal decomposition.

A direct experimental verification of the predictions of the generalized Gibbs’
approach as illustrated in Fig. 9.1b is shown in Fig. 9.2 [25, 26]. It was inten-
tionally designed and performed as a test of these predictions. On this figure, the
results of ASAXS investigations of the primary crystallization of Ni(P) particles in
a hypoeutectic Ni-P amorphous alloy are shown. It is evident that—in agreement
with the predictions of the generalized Gibbs’ approach—the crystals change their
composition continuously at nearly constant sizes of the crystals. Only after this
process is completed, classical growth processes (change in size with nearly con-
stant composition) start to dominate the growth behavior. So, the evolution to the
new phase proceeds here via a continuous sequence of states not realized for
macroscopic samples at the given thermodynamic constraints.

Having now a close look at the data given in Ref. [6] on the crystallization
behavior of metal phosphates it becomes evident that as the initial step of the
transformation, the first phase crystallizes from the amorphous phase. As we can
see from Fig. 9.1 in Ref. [6], a cluster consolidation process takes place (which is
related to the disappearance of lattice defects—stacking faults). It is followed by a
successive change of the crystallographic structure of the cluster (Fig. 9.2 in [6]).
Note that all these transformations occur without significant changes in the cluster
size; that is, cluster evolution mainly proceeds via changing its structure. Only after
the formation of the stable olivine crystallographic structure is completed, clusters
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begin to grow in size, again. Obviously, this sequence fits much better the scenario
given in Fig. 9.1b here and then, a sequence of processes evolving via the classical
picture is shown in Fig. 9.1a preferred by the authors of Ref. [6].

In more detail, a schematic diagram showing the most probable free energy
change during this crystallization process is shown in Fig. 9.3b of the present
contribution (Fig. 6 from [6] has been reproduced in Fig. 9.3a for comparison
giving the interpretation of the authors of Ref. [6]). Here, DGi are the free energy
barrier values for the intermediate crystalline phases referred to the amorphous state
level, DG�

i are the activation barriers for the formation of the next in the sequence
crystalline phase (for the first phase, DG1 ¼ DG�

1). We see that this scenario
(Fig. 9.3b) is very different from the scenario as proposed in [6] (see Fig. 9.3a):
instead of the inequalities DG�

1\DG�
2\DG�

3\DG�
4, the inequalities

DG�
1 [ 0;DG�

2;3 � 0;DG�
4\DG�

2 hold. Ostwald’s rule of stages in its classical form
can be employed for the interpretation only for the transition 3 ! 4 in the third
series of experiments in [6], but for the transitions amorphous state ! 1 ! 2 ! 3
(and for the whole cycle in the second series of experiments reported in [6]), the
generalized Gibbs’ approach gives a more adequate interpretation: Near to the
critical size, the cluster structure (corresponding to composition as the appropriate
parameter for phase formation in a solution) is changing without significant changes
in the cluster size, and only after the formation of the structure, which corresponds
to the bulk phase, the cluster begins to grow in size. The difference to segregation
processes in solutions is here merely that the intensive state parameter (composi-
tion) describing the state of a solution and the developing from it clusters is
changing continuously. For crystallization, such parameter variations are supple-
mented by changes in the type of the crystal structure of the newly evolving phase,
which can vary only in discrete steps. In general, both changes in crystal structure
and composition will govern the behavior as realized in the example of primary
crystallization of Ni(P) particles shown here in Fig. 9.2, and the spectrum of states
the system may evolve through is much wider as suggested by the classical for-
mulation of Ostwald’s rule of stages. A more detailed overview on the basic ideas
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Fig. 9.3 Schematic diagram showing the free energy change during the crystallization process as
discussed in [6]: (a) scenario as proposed in Ref. [6] (see Fig. 6 in [6]) and (b) scenario derived via
the generalized Gibbs approach
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of the generalized Gibbs’ approach to crystal nucleation and growth processes and
its application to different phase formation processes can be found in Refs. [27–30].

The topics discussed up to now refer to thermodynamic aspects of
nucleation-growth processes. Here, we would like to analyze also another topic—
connectedwith kinetic parameters determining crystal nucleation and growth—which
is of major current interest in the analysis of crystal nucleation and growth processes,
the possible correlation between crystallization intensity and fragility index.

9.3 Crystal Nucleation and Growth, and Fragility

The concept of fragility index introduced by Angell (cf. [31, 32]) and related
questions (cf. [33–42]) have been widely discussed in the literature with contro-
versial conclusions concerning the ability of the classically defined fragility index to
describe appropriately the crystallization tendency of glass-forming melts. By this
reason, a critical analysis of this problem is of basic scientific interest and has been
performed in [40–42]. Here, we give first a brief review of the basic ideas and
results in order to further advance some of the considerations outlined in these
papers.

The fragility index m ¼ m Tg
� �

was originally defined by Angell as follows:

m ¼ d log g

d Tg
T

� � : ð9:1Þ

Hereby, m has to be identified with the value of the derivative taken at the
temperature, T, equal to the glass transition temperature Tg. Moreover, as will be
discussed in detail below, implicitly, it is supposed that Tg has to be defined in a
particular way corresponding to Tammann’s definition of the glass transition
temperature [43].

The viscosity g can be generally expressed as

g ¼ g0 exp
Eg

kBT

� �
: ð9:2Þ

Here, Eg ¼ Eg Tð Þ is the activation energy for the viscous flow depending in
general on T, the temperature, kB the Boltzmann constant, and g0 a kinetic
pre-factor only weakly dependent on temperature as compared to the exponential
term in Eq. (9.2). From the conventional definition of fragility, we obtain then

m ¼ log eð Þ Eðeff Þ
g Tg
� �

kBTg

 !

: ð9:3Þ
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The effective activation energy for viscosity, Eðeff Þ
g Tð Þ, is hereby defined as

Eðeff Þ
g Tð Þ ¼ EgðTÞ � T

dEgðTÞ
dT

: ð9:4Þ

For the specification of the classical fragility index, it has to be computed at
T ¼ Tg.

The possible correlations of fragility and crystallization behavior are intensively
discussed in the literature (cf., e.g., [33–35]). On the other hand, it is well known
that, in general, diffusion is the main kinetic factor affecting both crystal nucleation
and growth described by a diffusion coefficient, which can be generally expressed
similar to Eq. (9.2) as

D ¼ D0 exp �ED Tð Þ
kBT

� �
: ð9:5Þ

So, the first principal limitation in the applicability of fragility concepts in the
traditional form is that it is not the activation energy for viscosity but the activation
energy for diffusion, ED Tð Þ, which primarily determines crystal nucleation and
growth. By this reason, it is the activation energy for diffusion and not the effective
activation energy for viscosity which should determine the crystallization behavior.
Only in cases when the Stokes–Einstein–Eyring (SEE) equation (allowing one to
replace the diffusion coefficient D by the inverse of the Newtonian viscosity) holds,
the diffusion coefficient can be replaced by viscosity. In such cases, viscosity can be
considered as the main kinetic factor affecting both crystal nucleation and growth.
Usually, such replacement is possible above a certain decoupling temperature, Td ,
located frequently in the range T � Td ffi 1:15� 1:25Tg (where Tg is determined by
typical experimental methods in conventional laboratory time and size scales). But
even in such cases, it is not the effective activation energy for viscosity but the
activation energy which seems to be basically relevant for the description of both
nucleation and diffusion. From such considerations, it becomes highly questionable
whether fragility can be of relevance at all, even more, taking into account that its
value is supposed to be taken at Tg.

However, as shown in Refs. [40–42], the location and magnitude of the maxima
of the rates of nucleation, growth, and overall crystallization are determined in
addition to the thermodynamic factors not only by the activation energy but also by
the effective activation energy of diffusion and, in the range of temperatures where
the SEE relation holds, also of viscosity (in this range, the activation energies for
diffusion and viscosity coincide). So, for these maxima fragility concepts really
enter the description but in order to arrive at correct correlations, fragility has to be
defined in a new way. This new definition of the fragility index as proposed in Ref.
[41] based on the results of the analysis performed in Ref. [40] is characterized by
three new elements as compared to the classical definition as given by Eq. (9.1):
(i) We define the fragility index for both diffusion coefficient and viscosity to
include all possible cases. (ii) We take as a measure of temperature not the ratio
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Tg=T but Tm=T , i.e., replace Tg by the thermodynamically well-defined melting or
liquidus temperature, Tm. (iii) We do not connect the fragility with its value at glass
transition but compute it for the specific temperatures of maximum rates of
nucleation, growth, and overall crystallization in dependence on the particular
process analyzed. Following such considerations, the modified diffusion fragility
index was defined as [41]

m m:d:ð Þ
D ðTÞ ¼ � d logD

d Tm
T

� � ¼ Eðeff Þ
D Tð Þ
kBTm

ð9:6Þ

and the modified viscosity fragility as

m m:d:ð Þ
g ðTÞ ¼ d log g

d Tm
T

� � ¼ Eðeff Þ
g Tð Þ
kBTm

: ð9:7Þ

It is shown in [41] that the modified diffusion fragility is one of the main factors
determining magnitude and location of the maxima of nucleation, growth, and
overall crystallization rates. In cases that the SEE equation holds, the modified
diffusion fragility can be replaced by the modified viscosity fragility. Even in latter
case, the modified viscosity fragility computed at the temperatures referring to the
maxima of the respective different processes will be quite different from the clas-
sical fragility computed at T ¼ Tg. Consequently, as a rule, classical fragility will
be of very minor relevance to the crystal nucleation and growth.

9.4 Fragility Index and Deviations from Arrhenius-Type
Temperature Dependence of Viscosity

Long ago, Tammann [44] stated that “the higher the melt viscosity at the melting
temperature, the lower its crystallizability” (cf. also Fig. 9.5a in [34] which pro-
vides additional support to Tammann’s suggestion). However, as we have
demonstrated here, crystallizability is affected not only by the activation energy at
the melting temperature but also by the rate of change of the activation energy with
temperature. By this reason, one could expect possibly some qualitative correlation
of classical fragility and nucleation-growth behavior if the classical fragility index
would appropriately describe changes in activation energy of diffusion and vis-
cosity in the case that the SEE relation holds. In this connection, we consider it of
interest to examine in more detail whether this is the case or not, i.e., whether
classical fragility is really a measure of deviations from Arrhenius-type temperature
dependence of the viscosity.

Indeed, frequently, one comes across statements such as “the fragility of a
supercooled liquid quantifies the extent to which the viscosity of the liquid has an
Arrhenius temperature dependence” ([44], cf., e.g., also [40, 45]). This statement is

9 How Do Crystals Nucleate and Grow: Ostwald’s Rule … 205



true but only under certain conditions specified below. First of all, the classical
fragility index refers to one particular temperature, the glass transition temperature.
Consequently, it can be correlated with the activation energy and its temperature
derivatives, i.e., with deviations from Arrhenius-type behavior, strictly speaking,
only at T ¼ Tg. Second, the fragility index in Angell’s definition is proportional to
the effective activation energy for viscosity (cf. Equations (9.1)–(9.4)) taken both at
T ¼ Tg. Consequently, it depends on the sum of the activation energy, EgðTgÞ, and
an additional term, �T dEgðTgÞ

dT . This second term, which is proportional to the
temperature derivative of the activation energy, is the primary measure of devia-
tions of the temperature dependence of the viscosity from Arrhenius-type behavior.
Consequently, the fragility in Angell’s definition can be a measure of deviations
from Arrhenius-type behavior only if the first term, the activation energy at Tg, has
widely the same value for all glass-forming systems. If this condition is not ful-
filled, then classical fragility is, in general, not a measure of mentioned deviations
of the viscosity from Arrhenius-type behavior.

As will be shown below, the second criterion is fulfilled exclusively for a very
special specification of the glass transition temperature. Consequently, fragility is,
in general, not a measure of the deviations of the viscosity from Arrhenius-type
behavior: (i) It refers to one particular temperature, the glass transition temperature,
Tg; (ii) it holds only if a very specific definition of the glass transition temperature is
employed.

The above-cited statement concerning the correlation of fragility and deviations
from Arrhenius-type behavior appears at a first glance to be plausible by examining
the so-called Angell plot (cf. Fig. 9.4) giving the dependence of the Newtonian
viscosity, η, on the ratio Tg=T . It is assumed, however, in these plots, that for all
systems and cooling and heating conditions, Tg refers to the same value of vis-
cosity, η = 1012 Pa s. Only at such assumption, all viscosity curves coincide at Tg.
Consequently, this representation utilizes implicitly the definition of the glass
transition temperature proposed by Tammann [30, 43] (identifying the glass tran-

sition temperature with values of the viscosity of the order of g Tð12Þ
g

� �
¼ 1012 Pa s).

In this case, g Tg
� �

and, consequently, Eg Tg
� �

, in Eq. (9.2), have nearly the same
values for all glasses. In such situations (but only for them), the differences in the
fragility index defined in the classical way are then really caused by the derivatives
of the activation energy with respect to temperature at Tg.

In general, however, Tg can be realized for different cooling rates at very different
values of the viscosity [30, 45, 46] and, consequently, at different values of the
activation energy of viscous flow. In these more general situations, the statement
mentioned above concerning the existence of a direct correlation between classical
fragilitym at Tg and deviation fromArrhenius behavior ceases to be true. The classical

fragility index m, when calculated at a viscosity g T ð12Þ
g

� �
¼ 1012 Pa s, can be corre-

lated with departures from an Arrhenius behavior but, at mentioned more general

conditions, T ð12Þ
g does not correspond to the glass transition temperature.
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For illustration, in Fig. 9.5, the dependence of viscosity with respect to both
reduced temperatures, Tg=T and Tm=T , is shown. Reduced coordinates Tg=T have
been employed earlier already by Oldekop [36], Laughlin and Uhlmann [37].
Laughlin and Uhlmann presented viscosity data for different systems as functions of
both these reduced variables. These authors classified the presentation of viscosity
in terms of Tm=T as a “superior normalization” of viscosity data but went over then
to Tm=T considering it as “difficult to rationalize a priori the dependence of liquid
on characteristics other than those of the liquid phase alone.” For the analysis of
nucleation and growth processes, it is shown here, however, that the description of
the temperature dependence of diffusion and viscosity in terms of Tm=T is
preferable.
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9.5 Summary of Results and Discussion

In the present chapter, a critical overview on some of the basic assumptions of the
classical theory of crystal nucleation and growth is given. It is shown how the
classical theory can be generalized in order to overcome contradictions between
theoretical predictions and experimental data. The generalizations discussed here
refer in the first part of our analysis to the method of determination of the work of
formation of clusters of sub-, super-, and critical sizes being essential ingredients of
the theoretical description of nucleation-growth phenomena. In particular, gener-
alizing the classical Gibbs’ theory of heterogeneous systems to thermodynamic
non-equilibrium states, it is shown that the properties of the clusters change sig-
nificantly in dependence on their sizes. In particular, it is shown that the properties
of the critical clusters deviate, as a rule, from the properties of the newly evolving
macroscopic phases. As a result, it turns out that the classical nucleation theory
assuming validity of the capillarity approximation overestimates the work of critical
cluster formation and underestimates the value of the steady-state nucleation rate
[5]. As an additional consequence, it follows that the temperature of the critical
clusters may differ from the temperature of the ambient phase where the phase
formation proceeds [46, 47]. In addition, it allows one to describe in a new way
heterogeneous nucleation accounting for changes of the wetting angle in depen-
dence on the bulk state parameters of the critical clusters [48]. As demonstrated
here as well by analyzing several new experimental results, the application of the
generalized Gibbs’ approach to the phase formation allows one in addition a new
interpretation of a variety of phenomena in crystallization processes of
glass-forming melts, which could not be given a satisfactory explanation in terms of
the classical theory so far, retaining on the other side the advantages of the classical
approach.

It is shown further, in the present chapter, why fragility concepts—defined in a
new way—may be of relevance to the understanding of crystal nucleation and
growth processes. This correlation is due to the fact that the location and the mag-
nitude of the maximum rates of nucleation, growth, and overall crystallization are
determined by the expressions where the effective activation energy computed at the
respective maximum temperatures is one of the main factors determining these
maxima. The classical definition of fragility can, as shown, be of relevance only if a
set of conditions is fulfilled which are however rarely met. Classical fragility is
shown, in addition, to be not a parameter describing properties of the glass-forming
liquids at glass transition. It can be a measure of deviations of the temperature
dependence of viscosity from an Arrhenius law only if for all considered systems the
glass transition proceeds at the same value of viscosity, restricting its applicability in
latter respect to cases when Tammann’s classical definition of the glass transition
temperature is appropriate. Taking into account the dependence of the glass tran-
sition temperature on cooling and heating rates [30, 45, 49], the glass transition will
not proceed as a rule at temperatures corresponding to Tammann’s definition.

Consequently, the fragility computed at a viscosity g Tð12Þ
g

� �
¼ 1012 Pa s can be
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correlated with departures from an Arrhenius behavior but, at mentioned more
general conditions, Tð12Þ

g does not correspond to the glass transition temperature.
There exist some further problems the solution of which is expected to shed

some new light on crystal nucleation and growth processes as follows (cf. also
[50]): (i) description of the driving force of critical cluster formation accounting for
the deviations of the bulk (structure, composition, density) and surface properties of
critical nuclei; (ii) determination of the kinetics of change of the bulk and surface
properties of sub- and supercritical crystals in their evolution to the critical size,
respectively, to the macroscopic phase; (iii) description of the temperature depen-
dence of the crystal nucleus–liquid interfacial energy and the degree of validity of
the Stefan–Skapski–Turnbull equation; (iv) applicability of the Stokes–Einstein–
Eyring relation in calculating the effective diffusion coefficients that control the
crystal nucleation and growth; (v) account of the effect of decoupling on charac-
teristic size parameters entering classical nucleation theory; (vi) a clear under-
standing of the causes of the breakdown of the SEE equation reported to occur for
the crystal growth somewhat above Tg; (vii) a deeper understanding of the rela-
tionship, if any, between the molecular structure of glass-forming melts and the
nucleation and growth mechanisms [51]; (viii) the relation between the sizes of
supercritical nuclei vis-à-vis the sizes of co-operatively rearranging regions (CRRs)
of the configurational entropy theory and of the domains of heterogeneous
dynamics (DHD) envisaged in the structure of viscous liquids [52]; (ix) develop-
ment of sufficiently accurate analytical expressions for the description of crystal-
lization at cooling and heating. Consequently, not only with respect to the analysis
of the properties of glasses and the glass transition [53] but also with respect to
crystallization, “the melody still lingers on”!
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