
Chapter 6
Self-organized Periodic Processes: From
Macro-layers to Micro-world of Diffusion
and Down to the Quantum Aspects
of Light

Jaroslav Šesták, Pavel Hubík, Jiří J. Mareš and Jiří Stávek

Abstract Self-similarity and the orderly crystal (often dendritic) growth are an
important parts of nature as well as the source of solid-state thermal chemistry
under nonequilibrium (undercooling) conditions providing theoretical roots of
chemical swinging clock. Such oscillation processes known in chemistry and
biology apply for systems far from equilibrium involving special cases of oscilla-
tions extending from the self-organized periodic chemical reactions (such as
Liesegang’s or Belousov–Zhabotinsky’s reactions) to ordered solid-state processes,
from liquids to atmosphere, from macro to micro, indispensable in biology. The
chapter deals with a remarkable problem of thermal physics, unresolved for more
than 70 years, concerning class of diffusion-controlled periodic chemical reactions,
where macroscopically observed diffusion action attains, with appreciable accuracy,
the value of Planck’s quantum. Because the classical and quantum diffusions are
processes, which are indistinguishable in the configuration space, a quantum cri-
terion in terms of diffusion constants is valid. This criterion enables one to find out
conditions under which the quantum behaviour of self-organized periodic reactions
can be observed. Examples are shown for the subcritical and critical oscillatory
regimes; a special kind of self-organized Liesegang’s rings—annual growth rings of
a trunk of larch tree is discussed. The text even involves a thinkable hypothesis of
the light self-organization based on the previously analysed principle on least time
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(Fermat) and of the least action (Maupertuis). It was already noticed by Galileo who
opened this problem aware that the cycloid curve yields the quickest descent
leading to the so-called brachistochrone. The chapter contains 130 references.

6.1 Introduction

Generally, the process of coordination arising out of the local interactions between
smaller component parts of an initially disordered larger system is identified as self-
organization. Such a principle is called “order from noise” as first formulated by
the cyberneticist Heinz von Foerster in 1960 [1]. He noted that self-organization is
facilitated by random perturbations (i.e. noise) that allow the system exploration
throughout a variety of states in its state-space. This increases the chance of internal
organization during the system influx into a set of certain (e.g. numerical)
denominations towards which a system tends to evolve (called attractor). It is often
triggered by random fluctuations that are amplified by positive feedback, which
would then allow entering the attractor stipulation itself.

A similar principle was formulated by the thermodynamists Ilya Prigogine and
named “order out of chaos” [2]. Consequently, Georgi and Georgiev [3] utilized
the stationary principle of least action within the concept of physics defining inner
organization of a complex system as the state of the constraints determining the
total action of the individual elements in such a system. There simultaneously
emerges an elementary constant which value can be identified as the Planck
quantum of action. The mechanism of such a mode of self-organization sustains the
interaction between the elements and constrains leading to the minimization of
constraints [2]. This is consistent with the Gauss’ principle of least constraint [4]
saying that more elements minimize the constraints faster which is another aspect of
the mechanism in the course of quantity accumulation. As a result, the paths of the
elements are straightened, which is also consistent with the Hertz’s principle of
least curvature [5] recently applied elsewhere [6].

In the 1940s, the forward-looking concept of self-organization was innovatory
discussed by the cyberneticist Ashby [7]. In 1992, it was followed by above
mentioned Förster [1] within his ides of cybernetics of second order as well as by
Heylighen [8]. During the 1990s, the idea was picked up by physicists and chemists
while studying phase transitions and other phenomena of spontaneous ordering of
molecules and particles [9–12]. These include Ilya Prigogine [2, 13] who received a
Nobel Prize for his investigation of self-organization of dissipative structures and
Haken [14] who dubbed his approach as synergetics. In the 1980s, this tradition was
cross-fertilized with the emerging mathematics of nonlinear dynamics and theory of
chaos [2, 12, 13], producing such an investigation of complex systems that comes
up quantitative, mathematical and predictable by physicists. However, the same
period saw the appearance of a parallel approach, research into so-called complex
adaptive systems [10] taking its inspiration more from biology and the social sci-
ences than from physics and chemistry, thus helping to create another new
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disciplines of artificial life and social simulation, which falls beyond the scope of
this chapter.

In the down-to-earth sphere of experimental chemistry, the naturally synchro-
nized oscillating processes are among the most fascinating reactions [15, 16]. In one
type of reaction, a mixture of chemicals goes through a sequence of colour changes,
and this sequence repeats periodically; in another, the mixture periodically emits a
burst of gas foaming up or even affects the stoichiometry of solid-state reactions. To
many laypersons, these self-oscillating reactions are engaging examples of chemical
magic; to others, having already some acquaintance with chemistry, these reactions
still being the mystery and a challenge. Under a given set of conditions, experience
tells us that chemical reactions go in only one direction rarely finding a chemical
reaction that appears to reverse itself, much less to do so repeatedly. When we do
encounter such a reaction, we may be inclined to draw an analogy to a simple
physical oscillator such as a pendulum. A pendulum oscillates from side to another
side through its equilibrium position, and these oscillations can be attributed to the
inter-conversion between the potential and kinetic energy of the pendulum.
Analogously to this physical process, the chemical oscillator may seems to swing
through its equilibrium composition; but it contradicts to the second law of ther-
modynamics which asserts that, once a chemical system reaches equilibrium, it
cannot deviate from that condition spontaneously. Therefore, oscillations in
chemical reactions cannot be like the oscillations of a pendulum because chemical
reactions cannot simply oscillate throughout the equilibrium condition. More links
can be found between the oscillation processes and self-similar branching of den-
drite arms resulting from unstable temperature and concentration gradients [17].

6.2 Self-Similarity and the Orderly Dendritic Growth

Rates of general processes are coupled with flows initiating growths, which asso-
ciate off-equilibria subordinated with supersaturations, DC and undercoolings, DT.
They are closely related by the functions whose forms depend upon the processes
controlling transformation (atomic arrangement, heat and electrical conduction or
mass and viscous flow) [17–20]. In each case, the growth rate increases with
increasing degree of out-of-equilibrium and inherent perturbations on the reaction
interface. The driving force for such an accelerated growth can be usually expressed
by the negative value of the first derivative of the Gibbs energy change, DG, with
respect to the reaction remoteness (from equilibrium), labelled as the distance,
r. For small undercooling, we can still adopt the concept of constancy of the first
derivatives, so that dDG equals to the product of the entropy change, DS, and the
temperature gradient, DT, which is the difference between the thermodynamic
temperature gradient (associated with transformation) and the heat-imposed gradi-
ent at the reaction interface as a consequence of external and internal heat fluxes.
Because DS is often negative, a positive driving force will exist to allow pertur-
bations to grow, only if DT is positive [20]. At the critical wavelength linked to
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minimum undercooling at the solidification front depending on the surface tension
thus lamellar eutectic oscillatory instability arises, leading to the formation of
secondary arms called dendrites [17–20]. Illustrative view on self-similarity on the
subject of such structures on gradual span ranking is best imagined by the
sequential duplication of certain geometrical motives; see Fig. 6.1, simulating thus
various natural objects.

Regimes displaying spatial or temporal order, we call dissipative structures [18],
often associated with the formation of a dendrite which begins with the recurrent
breakdown of an unstable planar solid/liquid interface. Perturbations are amplified

Fig. 6.1 Upperline growth of a snow crystal under near-constant weather conditions is primarily
dependent on temperature, pressure, and vapour density and their interaction with environment.
Growth [21] is based on a strong convexifying force up to micrometer size and three physically
reasonable mechanisms: diffusion of water molecules off the crystal, exchange between attached
and unattached molecules at the boundary and heat evolved interplay. Throughout dendritic
crystallization, the lower vapour density first leads to lower frequency of side branches, then to
sandwich instabilities and relatively thick plates. The melting rate regulates the ability of attached
molecules at the boundary to detach. Other sketches and photos are described in the text
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until a marked difference in growth of the tips and depressions occurs. The tem-
perature gradient must be deformed in the liquid as the tip increases, therefore, more
heat will flow into the tip and less will flow out of it. Moreover, the equilibrium
temperature at the interface, determined mainly by intermediate composition C, is
changed as a consequence of the local interface curvature. Because the tip can also
reject the solute in lateral direction, it will tend to grow more rapidly than a
depression which tends to accumulate the excess solute rejected by the tips.
Therefore, the form of the perturbation is no longer (initially) oscillatory but adopts
the form of cells which are ellipsoid-like crystals growing anti-parallel to the net
flux direction. If the growth conditions continue close to the limit of constitutional
undercooling of the corresponding planar interface, tree-like formation occurs and
the cells rapidly change to dendrites, which then exhibit secondary arms and
crystallographic governing growth directions [17–20]. This pseudo-thermodynamic
approach gives the same result as that deduced from the concept of zone consti-
tutional undercooling. Its analysis, important for the manufacturing of advanced
materials (such as fine-metals, nano-composed assets, formation of quantum dots
and composite whiskers and growth of oriented biological structures) falls, how-
ever, beyond the scope of this chapter. Self-similarity is caused by periodic pro-
cesses but the true sphere of the formation of oscillating reactions is, however, due
to another nonequilibrium factors as will be shown later.

Self-similarity (and/or self-affinity) is exhibited, in various scales, by all natural
plants (broccoli is a right example) and by crystals. It can be simulated upon a
geometrical construction by repeating and duplicating patterns of various bifurca-
tion processes known in vegetation, tree growth, etc. The typical feature of this
growth is the so-called allometric scaling, the logarithms of the inverse compass
setting (precision) as linearly dependent on logarithm of the length (e.g. measuring
the circumference of leafs, live organs or more traditional length of the coast). The
popular construction of Pythagorean tree starts by simple children-like drawing of a
square with an attached right-angled triangle. Then two squares are attached along
the free sides of triangle followed by repeating attachment of squares and triangles,
see Fig. 6.1, middle line, inset of the left sketch. It certainly can be modified in
various ways; the triangles need not be right-angled providing another degree of
freedom. After as many as 50 iterations, the results cannot look more different:
when the applied angle is greater than 90° (see middle line, the large sketch on left),
we can envisage the structures like broccoli in comparison with a natural broccoli;
cf. the middle line of Fig. 6.1, left photo; while right is electrodeposited metallic
tantalum. Bottom left is a fern or even a pine tree. In other cases, it can remind us of
a spiralling leaf or decorated coiled shell (Fig. 6.1, bottom middle), worth noting
that the size of triangles in the bottom are the same in both exampled portrayals.
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6.3 Chemical Swinging Clock and the Emergence
of Planck Constant

In certain solute concentrations range (often from *1020 to *1023 ions per dm−3),
the nonlinear coupling between chemical reaction and ionic diffusion leads under
some circumstances to the appearance of succession of chemical waves. When a
Russian scientist B.P. Belousov discovered in the year 1952 such an unpredictably
spontaneous product of self-organization in the form of sequence changes of colour
in some chemically reacting system; it took him several years to convince scientific
officials to believe it. He was able to publish his finding in an obscure nonreviewed
journal [22]. Belousov’s research was followed and enhanced by Zhabotinsky [22]
and Tyson [23]. They discovered mostly inorganic reactions, which surprisingly
deny the traditional view on chemical kinetics (characterized by the natural ten-
dency to reach by the shortest way the state of equilibrium). They were interpreted
even as a precursor of life processes [24–26] (cf. Bautrieb due to the Lebenskraft
[25]).

A well-defined periodic precipitation patterns were traditionally obtained by
chemists a long time ago. In early nineteenth century, Fechner published [27] a
report on the regular swinging in a chemical system, describing an electrochemical
cell that produced an oscillating current. Later in nineteenth century, Ord [28]
prepared 1D precipitation patterns and Pringsheim [29] introduced the concept of
osmotic pressure to this field late in eighties. Famous is Liesegang [30] who pre-
pared various 2D patterns (often called Liesegang rings) and Leduc [31] who
developed the concept of osmotic pressure waves. There are many other researchers
who contributed significantly better awareness of this subject. Creative incentive
appeared already in middle of nineteenth century when Runge [32] shown sub-
stances interactions associated with various self-grown pictures; while in the 1930s,
Nikiforov [33] proposed to characterize the spatial and temporal development of
chemical waves by the Principle of the least action. It was expressed in 1744 by
Maupertuis [34]: “when some change takes place in nature, the quantity of action
necessary for the change is the smallest possible. The quantity of action is the
product obtained by multiplying the mass of the bodies by their velocity and the
distance travelled”, factually extending the earlier Fermat’s similarly attuned
principle of least time [35–39].

Several research groups followed this approach and evaluated the quantities of
action during the Liesegang rings formation [40–47]. They found that during the
evolution of successive waves, the product of instantaneous propagation speed
u and the wavelength k converges to a constant value. It was found that this value
depends on the type and the concentration of the used polymer. When trying to
describe diffusing front of the process, a crucial role of a characteristic particle mass
m was established. The product of the characteristic mass m, propagation speed
u and the wavelength, k, was termed as the diffusion action [37–39, 46, 47].

More than one hundred different combinations of cations and anions were uti-
lized for the Liesegang rings formation from liquid phase, and the calculated values
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of their diffusion action, ukm, were in the order *10−34 Js. Küster [40] and
Schaafs [44] analyzed periodic structures in various biological materials by means
of the principle of least action and approved a very surprising coincidence with the
quantum of the least action [37–39], too. Recently, Stávek et al. [46] evaluated the
diffusion action during the diffusion of 1D Belousov–Zhabotinsky waves and found
the value of diffusion action of these chemical waves self-organized to fall close to
the Planck constant.

Several physicists [48–51] contributed to this topic and several decades of long
experimental and theoretical research can be condensed into the following equation
[37–39, 46–53]:

Kjð Þm k u ¼ h ð6:1Þ

where K is the diffusivity factor, j is the tortuosity factor, m is the particle mass, k is
the wavelength, u is the propagation speed and h is a characteristic constant of the
diffusion action lying close to the value of Planck constant. The parameter
K (diffusivity factor) describes the geometrical arrangement of the experiment. For
one-dimensional space (thin glass tubes) K = 1, for two dimensional space (thin
layer in a Petri dish) K = 2, in case of the three-dimensional experiment the value
K depends on the space angle available for the diffusion of Brownian particles from
their source. If the whole space is available for the propagation of the chemical
waves, then K = 4p. Many studies of the dispersion relations were performed in
gels, membranes, resin beads, glasses in order to prevent hydrodynamic distur-
bances from the reacting media. These media help to localize the propagating
bands; on the other hand, they modify the diffusion path of ions. The diffusion field
in these restricted environments changes upon the tortuosity factor j, characterizing
thus the diffusivity in permeable (porous) media.

There is no consensus concerning relation (6.1) in scientific community at all
[37–40, 44, 46, 47]. It was found by various scholars to be either accidental without
any deeper physical meaning (pointing to the experimental difficulties in the esti-
mation of mass of diffusing units) or enigmatic, with something very important on
behind. Such diversity in opinions is partially due to the traditional, rather sub-
jective discrimination between macroscopic and microscopic phenomena. The
quantities u and k on the left-hand side of Eq. (6.1) stay explicitly in contrast to
m which is essentially macroscopic; they are accessible to the observation by
unaided eye, while the Planck quantum of action h, on the right-hand side of
Eq. (6.1) is regarded to be characteristic of tiny quantum processes on an atomic
scale. There are several attempts for its explanation, cf. Fig. 6.2.

For example, there is a very straightforward interpretation of relation (6.1) using
a concept of the de Broglie wave known from elementary quantum mechanics
[49–51] as a wave controlling the probability amplitude of a particle. Accordingly,
we have reputedly to do with the de Broglie probability pilot wave of an abstract
particle [49] of mass equal to the mass m of the end-product molecule moving with
the speed of diffusion�u. It is further assumed ad hoc that the wavelength h=mu of
this de Broglie-like wave [49] coincides with some integer multiple of the period of
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precipitation, what is just that meets the want. Such a simplistic exploitation of
quantum ideas and quite formal approach to the problem, tolerable in pioneering
works, together with the obscure concepts involved is, as we believe, the very
reason which has led to the scepticism aimed against the quantum theoretical
interpretation of Eq. (6.1) and for years effectively damped the activities in this
interesting field.

6.4 Diffusion Action of Brownian Particles

Curiosity of self-organization attracted deserved attention in a wider analysis of
time-symmetry breaking associated with the emergence of time-periodic solutions
known as limit cycles whose period and amplitude are stable and independent of the
initial conditions. The importance of self-organization was approved, as they can
constitute models of rhythmic phenomena observed in nature, such as chemical
clocks in more important biological or other evolution processes [54–57]. It became
a model focus in generalized theory of chaos expressing its minute ordering
[58–60]. Curiously even the attempt to imagine a self-organizing ether (primeval
matter) became also source of a related reaction-diffusion model of space-time
creation [50] based on 1887 Cu-t’ung subatomic wave theory. He proposed the
subnuclear wave theory of ether based on Konfuciou’s idea of transmutation-bipolar
ether of mutually transmuting states of “Jin” and “Jang”.

Let us turn our attention to the stable waves observed in this so-called
yet-classical Belousov–Zhabotinsky [15, 22, 23] reactions resulting from the

Fig. 6.2 A schematic diagram showing the subcritical and critical oscillatory regimes
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possibility of cascade splitting (called bifurcation [17]) which opens the way to
gradual increase in complexity by a mechanism of successive transitions, leading
either to the loss of stability of a primary branch and the subsequent evolution to a
secondary solution displaying asymmetry in space and/or in time. It is worth
mentioning that such transitions are sometimes accompanied by some remarkable
trends, e.g. certain classes of reaction-diffusion systems under zero-flux boundary
conditions may exhibit no net entropy production change when the system switches
from the thermodynamic branch to a dissipative structure [37]. On the other hand,
there is a systematic decrease in entropy in the vicinity of bifurcation points known
in the associated fields, e.g. chaos [13, 17, 57–59, 61] or even traditional field of
predicting weather.

A lot of research was given to the detailed observation of properties of these
chemical waves, and a great number of theories were proposed in order to char-
acterize the behaviour of these structures. There can be applied a very useful
criterion enabling one to decide whether a particular physical problem belongs to
the domain of classical and/or quantum physics [62–73]. Making use of A.J.W.
Sommerfeld’s criterion [50, 51, 64, 68], we can assume that in every case where the
quantity of type of action is relevant to a given physical problem occurring com-
parable with the Planck’s quantum of action (*h), the problem can be solved
consistently only within the frame of the quantum theory. There, however, is no
further requirement put on the absolute scale of the system; it can be either of
microscopic or macroscopic origin.

Assuming that the decisive process controlling the periodic precipitation or
oscillating reactions is the diffusion of reactants (i.e. we consider the so-called
Nernst–Brunner limit of chemical kinetics [51]); we need for the construction of the
corresponding “relevant quantity of type action” the definition of something like the
instant speed of diffusion. If we, for the sake of simplicity, confine ourselves only to
one dimension, the diffusion can be described by the following differential equation
(traditional Fick’s law) ∂n/∂t = D (∂2n/∂x2) leading to the relation for the position of
extreme concentration x2 = 2Dt which in time derivative is x u = D, where
u = (∂x/∂t) has physical meaning of the instant speed of transfer of concentration
maximum. It is quite reasonable just to call u the “instant speed of diffusion” [64–67].

These results can be identified as counterpart to random walk of a single
Brownian particle (�molecule) [68–73]. The only differences are that here is x no
more the position of the concentration maximum but the mean square root

phx2i of
the position of a particular Brownian particle at time t and u has a meaning of its
mean square root of stochastic speed

phU2i. For these quantities, the validity of the
relation

phx2iphU2i � D can be easily proved [51]. The diffusion constants
D must naturally be identical for the microscopic as well as for the macroscopic
cases and simultaneously the relations u =

phU2i and x =
phx2i must be valid.

We can thus conclude that a typical “average” Brownian particle [51, 70–72]
follows the position of the concentration maximum or in other words that the most
significant packet of diffusing molecules consists of average Brownian particles.
Therefore, if the microscopic movement of a Brownian particle of mass m would be
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controlled by a purely quantum process, where the diffusion constant in three
dimensions should have Fürth’s limiting value [69] of D = DQ = h/ 4pm which can
formally attain the same form as empirical Eq. (6.1), i.e. 4pm ux = h provided that
the experimentally observed quantities u and k are identified with u =

phU2i
(speed of diffusion) and x =

phx2i (distance spanned by diffusion), respectively.
It seems thus plausible that to prove the quantum nature of Eq. (6.1), it is

sufficient to make clear conditions under which the numerical value of diffusion
constant D attains Fürth’s value DQ [51]. The key is provided by the close analogy
between the diffusion equation and Schrödinger equation proposed by Fürth [69].
Accordingly, these equations may be mapped one onto another by substituting for
diffusion coefficient the value

iDQ ¼ ih=4pm ð6:2Þ

and/or identifying tentatively the universal noise source behind the assumed
stochastic process with electromagnetic zero-point fluctuations of vacuum [63].

The fact that the Brownian and quantum diffusions are impossible to differentiate
by intermittent examinations performed in configuration space which is just the
equivalent of experimental techniques by means of which the periodic chemical
reactions are investigated. It justifies the direct comparison of empirical diffusion
coefficients with the Fürth’s value DQ = h/4pm. Assuming, namely, that the noise
sources behind classical and quantum stochastic behaviour are independent, the
resulting diffusion has to be given by a superposition of quantum and classical
stochastic diffusions which are described by coefficients DQ and DS, respectively.
Obviously, the diffusion coefficient attains its maximal value (theoretically D!∞)
just if the ambient puts no constrains on the free movement of a particle, and
consequently this quantity is formally analogous to working example of electric
conductance [64]. Two simultaneous diffusion processes with coefficients DS and
DQ are thus represented by a diffusion coefficient D corresponding to DS and DQ

connected in series, i.e.:

D ¼ DSDQ= DS þDQð Þ ð6:3Þ

Then, it is easy to show by comparison with empirical data that there are
numerous cases where D�DQ (e.g. H+, Na+, Ca2+ and Ag+ ions in aqueous solu-
tions at room temperature). Moreover, in accordance with formula (6.3), the
accessibility of Fürth’s limit may be formally expressed as follows [51]: DS > DQ.
The very physical meaning of this condition is to provide a quantitative estimate for
the partial decoupling of particle from the sources of classical noise, which is
sufficient for reaching a quantum diffusion regime DS ¼ kT=6p gR[ h=4pm in a
real system.

Although somewhat formal, the application of correspondence principle in terms
of diffusion constant provides the superposition of quantum and classical diffusion
again. While DS is meaningful only to the mean-free path d of the molecule
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MvFd� h=2p; ð6:4Þ

if the mean-free path exceeds the de Broglie wavelength [49], the process is
exclusively controlled by quantum effects only.

Very small Brownian particles (without observable persistency in motion) in
medium of small viscosity, η, gives very high DS, in other words they decouple
from the stochastic environment and their quantum-like behaviour starts to be
apparently observable. Rough estimate is valid for the quantum performance

DS ¼ kT=6p gR[ h=4pm ð6:5Þ

Evaluation for ball-like molecules of effective radius R within aqueous solutions
at room temperature (T = 300 K) and viscosity η�10−3 kg m−1 s−1provides
estimate of quantum behaviour for 7.0 � 10−12 � R/m. Supposing
m = 1.67 � 10−27 kg multiplied by molecular weight of a given molecule we arrive
to the same ion candidates of Na+, Ca2+ and Ag+ as above. Making an estimate for
diffusion constant of H+ ions (protons) which are the most active and mobile par-
ticles in aqueous solutions and applying Eq. (6.5) for an effective proton radius in
water (�10−11 m) and for η (�10−3 kg m−1 s−1), we obtain for the room temper-
ature estimate of diffusion constant DS � 2.2 � 10−8 m2s−1 which is within an error
comparable with the numerical value of quantum diffusion constant for protons with
m = 1.67 � 10−27 kg providing DQ � 3.1 � 10−8 m2s−1. It indicates that diffusion
of protons needs to be treated by more extended, fully quantum approach.

Based on the classical Einstein–von Smoluchowski description of diffusion as a
particular case of the Brownian motion and on the fact that the Brownian and
quantum movements are indistinguishable by intermitted measurements in con-
figuration space, we have shown [51–53] that a certain class of self-organized
periodic reactions characterized by the empirical dispersion relation (6.1) are to be
very likely controlled by the Fürth’s quantum diffusion of reactants.

To conclude this section and to further illustrate a validity of Eq. (6.1), let us
consider a nice example of growth with an evident oscillatory character [53], a saw
off slab from an old tree (cut down in Šesták’s owned forest), see Fig. 6.3. It is clear
that we have to do with a special kind of Liesegang’s reaction with a cylindrical
symmetry for which the following variation of the Eq. (6.1) is expected

2mk2=s ¼ h ð6:6Þ

where m is the molecular weight of precipitating cellulose, k the distance between
the neighbouring annual rings, s the growth period and h = 6.63 � 10−34 Js is the
Planck universal constant. Then, taking into account that the glucose-based polymer
cellulose having empirical formula (C6H10O5) N is known to create, in wood, the
chains of average polymerization degree N � 400, its molecular weight may be
determined immediately as m � 400 � 162 � 1.67 � 10−27 = 1.08 � 10−22 kg.
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Admitting further for the distance between annual rings a value k = 5 � 10−3 m
and for the duration of the season an estimate s = 8 � 106 s, we obtain an
incredibly exact figure for the Planck constant, namely h = 6.7 � 10−34 Js.

6.5 Oscillation Processes in Chemistry and Biology:
Systems Far from Equilibrium

We should also focus our attention to a specific case often encountered when an
experimentalist faces chaotic trends in his resulting data while studying chemical
reactions in an apparently closed system. Such results are frequently refused by
reasoning that the experiment was not satisfactorily completed due to ill-defined
reaction conditions, unknown disturbing effects from surroundings, etc. This atti-
tude has habitual basis in traditional view common in classical thermodynamics that
the associated dissipation of energy should be steadily decelerated to reach its
minimum (often close to zero) at a certain stable state (adjacent to equilibrium). In
many cases, however, the reaction is initiated to start far away from its equilibrium
or external contributions are effectual (in a partly open system), or reaction inter-
mediates play a role of doorway agents (i.e. feedback catalysis). In such a case, the
seemingly chaotic (in fact oscillatory) behaviour is not an artefact but real scientific
output worth of a more detailed inspection where the reaction mechanism should
not only be understood in its traditional terms of time-continuous progress, but also
as a reflection of reaction time-rejoinder which feedback character yields rather
complex structure of self-organization. Statistics show that the stability of
nonequilibrium steady state is reflected in the behaviour of the molecular/atomic
fluctuations that became larger and larger as the steady state becomes more and
more unstable, finally becoming cooperative on a long-range order. In many cases,

Fig. 6.3 Cross-section of a
trunk of larch tree showing
annual growth rings,
reputedly showing a special
kind of self-organized
Liesegang’s rings [53]
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this effect is hidden by our insensitive way of observations. Particularly it becomes
apparent for those reactions that we let start far from equilibrium; which first exhibit
nonequilibrium phenomena but later they either decay (disappear) close to their
steady state or are abruptly stopped (freeze-in) by quenching phenomena (often
forming the reinforced amorphous state of noncrystallites).

The oscillatory Belousov–Zhabotinsky processes [15, 22, 23] were also suc-
cessfully simulated by the use of computers, and the most famous is a simple
scheme known as “Brussellator” which is a theoretical model for a type of auto-
catalytic reaction proposed by Ilya Prigogine [2, 13] and his collaborators at the
Université Libre de Bruxelles. It describes autocatalysis of the following variety: A
! X; 2X + Y ! 3X and B + X ! Z + D; X ! E which, however, can be
simplified in the following scheme shown in Table 6.1 (left) as the so-called
cross-catalytic reactions. It is involving two reactants A and B and two products Z
and P with the intermediates X and Y. The catalytic loop is caused by multiplication
of the intermediates X, well illustrating the input effect of reactant concentration
within the given reaction mechanism (at the threshold concentration of A the steady
subcritical region changes from the sterile to the fertile course of action capable of
oscillations in supercritical region, see Fig. 6.2). Although first assumed hypo-
thetically, it enabled to visualize the autocatalytic nature of many processes and
gave to them the necessary practical dimension when applied to various reality
situations: This scheme is typical for many biological systems such as the glycolytic
energetic cycles where the oscillatory energy intermediates are
adenosine-tri-phosphate (ATP) and adenosine-di-phosphate (ADP). It is also likely
to explain the functioning of periodic flashes of the biogenic (cold) light produced
by some microorganisms where the animated transformation is fed by oxygen
whose energy conversion to light exhibit high efficiency [75]. Also the
chromophore-assisted light inactivation offers the only method capable of modu-
lating specific protein activities in localized regions and at particular times [76].

Another theoretical model is labelled “Oregonator” which is a simple realistic
model of the chemical dynamics of the oscillatory processes [79–81]. The so-called
Lotka–Volterra equations are known as the predator–prey equations in the form of a
pair of first-order, nonlinear, differential equations frequently used to describe the
dynamics of biological systems in which two species interact, one as a predator and

Table 6.1 Schematic portrait of the simplest self-organized reactions
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the other as prey. One of the basic schemas is the diffusional model, see the
Table 6.1 right, which provides all-purpose source for oscillations [62, 64, 74].

Picturesque world of assorted bayaderes endowed with various seashells and
other organized structures provided by different living organisms such as butterflies
or animal skin ornamentation (zebra) was elaborated by cyberneticist Turing [81],
formulating the hypothesis that such decorative patterns are, in general, the result of
diffusion based reactions presented in Table 6.1 right, which are mostly functional
at the early stages of the cell growth.

It is clear that the basic phenomenon of life [77–81] is a self-replicating mutable
macro-molecular system capable to interact [77–80] inside itself as well as with its
surroundings (supply of energy). It involves autocatalysis that is a process in which
the given compound serves as a catalyst of its own synthesis. Certain biopoly-
mers exhibit such an inquisitive property that is basis for self-reproduction, i.e.
the feature enabling agglomerates of molecules (possessing similar starting
capability—concentration) to develop preferentially for those molecules that grow
to be dominant (morphogenesis [81]). It means that particular linear sequences of
nucleotides must code for nonrandom sequences of amino acids having autocat-
alytic properties furthering their replication to a preferential reproduction. Other
coding, providing less effective proteins, would have replicated more slowly. By
mutual cooperative actions of autocatalytic reactions a larger self-regulating sys-
tems can be created by gastrulating to show the cyclic reproduction under its fixed
repeating time—an important attribute of life. Most important role is played by
enzymes that are big proteins molecules acting as biological catalysts and accel-
erating chemical reactions without being consumed themselves. Their activity is
specific for a certain set of chemical substrates and it is dependent on various
boundary conditions (concentration, acidity-pH, temperature, etc.). Such a system is
again evidently far from equilibrium and its fertile behaviour cannot be explained
by the classically viewed off-equilibrium thermodynamics that is sufficient to
describe the formation of stable static structures (as crystals). Unlike standard
equilibrium states, such self-catalysed states, that are far away from equilibrium,
can be unstable because a small perturbation may lead precipitously to new states
rich in their variety, seen not only within the above mentioned biologic systems,
bust also in less known, but less significant physical and chemical systems of
inorganic world. It is worth mentioning that such dynamic (dissipative) structures
are linked with all kinds of flows shifting from linear (laminar) to nonlinear (tur-
bulent) regimes, as for example, in fluid hydrodynamics (boundary friction),
oscillations in electric gas discharges or in electron flow (local overheating known
as the Kohler effect in resistors or mobility versus velocity control in
semiconductors).

In order to find a best example in biology, the Ranvier nodes [82] (also known as
myelin sheath gaps) can be exploited using the distance of the gap periodicity in the
insulating myelin sheaths of myelinated axons where the axonal membrane is
exposed to the extracellular space. This self-organization facilitates nerve con-
duction in myelinated axons, which is referred to as saltatory conduction (from the
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Latin saltare, to hop or leap) because of the manner in which the action potential
comes out jumping from one node to the next along the length of the axon.

Beside the above discussion of quantum diffusion, further notes on relation
between biology and quantum phenomena should be added. Quantum effects in
biology do not seem bizarre at all. There is no additional strangeness, just quantum
approach applied to minute biological processes from the bird navigation to pho-
tosynthesis. The actual questions of why we need quantum physics rather than
classical physics can be explained exploring how a cell can maintain quantum
coherence (i.e. preserve of a quantum state necessary for quantum effects) long
enough to allow the process to complete when physics labs cannot maintain
quantum coherence for nearly as long despite massive equipment. Such a minute
events can have a profound influence on living beings which are vastly bigger
despite a general expectation that something tinier than a hair on a dog’s tail could
not possibly wag the dog. The recent innovative books [83, 84] show what is
speculative and what has been supported by research conducted in labs around the
world supporting ample reasoning to believe that quantum physics plays an
important function in biological processes.

Quantum world represented by the Planck constant enters in chemistry and
biology also when information aspect of the processes is considered. It is conve-
nient to convert information coded, as usual, in binary units C2 (bits) into the
information Cp expressed in physical units [52]. This relation obviously reads as
follows:

Cp ¼ k ln2ð ÞC2 ð6:7Þ

where k is Boltzmann’s constant (k = 1.38 � 10−23 J K−1). We assume now that
there is no information “an sich” or in other words information needs in all cases a
material carrier [52]. From the point of view of macroscopic thermal physics there
is, however, a fundamental difference between, e.g. genetic information inscribed in
the DNA and information provided by a gravestone inscribed with personal data.
Whereas in the former case for coding of information structural units on molecular
level are used, which should be described by microscopic many-body formalism, to
the latter case rather a macroscopic description in terms of boundary–value problem
is adequate. To distinguish without ambiguity between these two extreme cases we
need, however, a criterion which, having a sign of universality, specifies what the
“molecular level” is. As far as we know, a good candidate for such a criterion is
modified Sommerfeld’s condition [68] distinguishing between classical and quan-
tum effects [51–55]. It reads as X = 2pℏ = h, where X is phase space occupied by a
structural unit (qubit) where minimally 1 bit information is stored and h is the
Planck universal constant again. Direct computation of the action X corresponding
to one atom built in an ordinary crystal, liquid or gas confirms the validity of
condition (7) in these cases. It proves the fact that every atom together with its
nearest neighbourhood should be treated as a quantum structural unit responsible
for information storage on a “molecular level”. Generalizing this result, we can
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conclude that the very nature of the entropy-like quantity, Carnot’s caloric [85] is
the destructed information originally coded in occupied quantum states of structural
units of which the macroscopic system under investigation consists.

6.6 Special Cases of Oscillation Processes: From
Solid-State to Atmosphere

Oscillatory pattern can be found on various microscopic and mesoscopic cases of
gemstones, shell ripening up to the macroscopic scale of geological sediment layers
(see Fig. 6.4), and there arise a question why this separation is regular and what is
its cause. Normally, we are looking for a reaction mechanism in the view of the
processes sequences and its space distribution.

In some cases, the authors use for the description of autocatalytic reactions
overall phenomenological models and fractal geometry [17, 86, 87]. However,
inorganic solid-state reactions are not often assumed to proceed via branching [88]
or oscillations. In order to show a kind of self-organization in solid phase, let us
assume a simple synthesis of cement as an illustration of ideal and real reactions,
supposed to follow processes taking place during cement formation [89]. There are
two starting solid reactants A (CaO) and B (SiO2) undergoing synthesis according
the scheme below (left) to yield the final product AB (CaSiO3) either directly or via
transient products A2B (CaSi2O4) and A3B (CaSi3O5). The formation of these
intermediate products depends, beside the standard thermodynamic and kinetic
factors, on the local concentrations. If A is equally distributed and so covered by the
corresponding amount of B, the production of AB follows standard kinetic por-
trayal (arrows in Fig. 6.5). For a real mixture, however, the component A may not
be statistically distributed everywhere so that the places rich in A may affect the
reaction mechanism preferring the formation of A2B (or even A3B) the later
decomposition of which is due to delayed reacting with deficient B that is becoming
responsible for the time prolongation of reaction completion. If the component A

Fig. 6.4 Self-organization in various scales from silica colloids in opals, to agates, from calcite in
shells to geological layers (not in scale)
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tends to agglomerate the condition of synthesis of intermediates become more
favourable taking thus the role of rate controlling process, and the entire course of
reaction can consequently exhibit oscillation regime due to the temporary con-
sumption of the final product AB. If intermediates act as the process catalyst, the
oscillation course can even show a regular nature which localized micro-character
is, however, difficult to be detected by direct macro-observations and can be
assumed upon secondary characteristics of final morphology only. Introduction of
diffusion is an important factor that may affect many of interface reaction (below
scheme on right) to become oscillatory [88–91].

The entire course of reaction can consequently exhibit an oscillation regime due
to the temporary consumption of the final product AB, which is limited to small
neighbouring areas. If the intermediates act as the process catalyst, the oscillation
course is pronounced showing a more regular nature. Their localized fluctuation
micro-character is, however, difficult to be detected by direct physical
macro-observations and can be only believed upon secondary characteristics
read-out from the resulting structure (final morphology).

Similarly, some glasses may exhibit a crystallization pendulum [92]: after pro-
ceeding very fast in certain direction(s), the growth often stops due to the changes
in concentration and converts into dissolution while in the other direction(s), where
the growth rate was initially lower, it never becomes negative even if it decelerates

Fig. 6.5 Portrayal of ideal and actual courses of a potential solid-state reaction where two
reactants, A and B, undergo synthesis to the product, AB, via transient products, A2B and A3B
(rights). Left: the characteristic plots of reaction progress. The creation of the intermediates
depends, besides the standard thermodynamic and kinetic factors, on the local concentration
(particle closeness) dependent to the degree of segregation. If the agglomeration is effective, the
synthesis becomes helpful to produce intermediates, self-organizes, and the entire course of
reaction becomes self-catalysed, possibly exhibiting oscillatory character
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effectively. Hence, a competition between several simultaneous processes takes
often place, typical for such a nonequilibrium system and leading to curious
morphology (plate or needle-shaped crystals [92, 93]. Another working example is
well known, resistor carrying large electrical current exhibiting negative differential
resistance, i.e. currents that even decrease with increasing voltage supporting
oscillations, rather than steady currents [39]. Instabilities also occur in thin wafers
of certain semiconductors (GaAs, InP). If the electrical potential across the semi-
conductor exceeds a critical value the steady current that is stable at lower poten-
tials, abruptly gives way to periodical changes in the current, often called Gunn
oscillations [39, 94, 95]. There are other cases worth mentioning reaching the
sphere of solid-state reactions [95–99].

Directional solidification of the PbCl2-AgCl eutectic [39, 100] provides
swinging lamellar structure separated regularly at almost equal severance which can
be compared with dynamic structures caused by Bernoulli instabilities well known
in hydrodynamics [39, 101]. Atmosphere is another source of oscillatory effects
when billow clouds are created from instability associated with air flows having
marked vertical shear and weak thermal stratification. The common name for these
fluctuations is Kelvin–Helmholtz instability often visualized as a row of horizontal
eddies aligned within this layer of vertical shear.

The Kelvin–Helmholtz instability results from a turbulence of two air layers
lying close to each other, which move with different speed and/or direction.
According to Bernoulli’s principle, the pressure inside an air layer with the higher
wind velocity is smaller than in the environment. Consequently, there is a force,
which pulls the barrier shape (wave comb or hill summit) in the direction of the
faster air flow [101]. Such an external perturbation may provide an oscillation of
the vortex sheet where the pressure in concavities is higher than that in convexities.
The amplitude of the oscillation grows up and the upper part of the sheet is carried
by upper fluid instead the lower part of the sheet is carried by lower fluid. So a
tautening of the front occurs, and there is a phenomenon of rolling up of the
interface with a direction corresponding to the vorticity direction of the mixing
layer. It is worth mentioning that such dynamic (dissipative) structures are linked
with all kinds of flows shifting from linear (laminar) to nonlinear (turbulent)
regimes; besides fluid hydrodynamics (boundary friction), they are oscillations in
electric gas discharges or in electron flow (local overheating known as the Kohler
effect in resistors or mobility versus velocity control efficient from semiconductors
to traffic mentioned above [6, 94, 101–103]) (Fig. 6.6).

This approach may even touches spheres of thermal analysis [39]. Often
experimental trouble was a noisy heat flow signal obtained by flow differential
scanning calorimetry that appeared random but dependent on the sample mass
(internal heat production) and seemingly too low in frequency to be of electric in
origin. For a high-resolution temperature derivative, there was found a straight-
forward match to the “noise” in the heat flow signal. Instead standard way of
eliminating such a kind of “fluctuations” by more appropriate tuning of instrument,
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the advanced but also more logical approach was to deliberately incorporate such
fluctuations in a controlled and regular way to entire experimentation, i.e. the
temperature oscillation were imposed on the heating curve and the response was
evaluated through a deconvolution. Thus, received cyclic reaction could be treated
in a manner known before and applied for the method of DMA.

6.7 Thinkable Hypothesis of the Light Self-Organization

When talking on the subject of light let us first mention the Michelson and Morley’s
article in the American Journal of Science which has been by some means portrayed
as a most famous failed experiment in history instead providing insight into the
properties of the aether. It compared the speed of light in perpendicular directions,
in an attempt to detect the relative motion of matter through the stationary
luminiferous aether. Although the small velocity was measured, it was considered
far too small to be used as evidence of a speed relative to the aether, and it was
understood to be within the range of an experimental error that would allow the
speed to actually be zero [104, 105].

Now, we should first return to the previously noted Fermat Principle on least
time, t [36–39] preceding the Maupertuis Principle of the least action [34]. It was
already noticed by Galileo (1564–1642) who opened this problem by using formula
t = d/√dv � √(2/g) where d is direct distance, dv is vertical distance and g is
gravitational acceleration (9.8 ms−2) aware that the cycloid curve yields the
quickest descent. Historically this archetype problem introducing the calculus of
variations is called “brachistochrone” (from Ancient Greek bqάvirso1vqόmo1—
brakhistoskhrónos), meaning shortest time which is consistent with the Fermat’s
principle. It interprets the actual path of a beam of light between two points taken
by the one which is traversed in the least time. In 1697, Johann Bernoulli (1667–
1748) already used this principle to derive the brachistochrone curve [106–110] by

Fig. 6.6 Humorous picture
of self-organized perturbation
of cigarette smoke oscillations
showing general impact of
Bernoulli–Kelvin–Helmholtz
instabilities proficient on any
scale
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considering the trajectory of a beam of light in a medium where the speed of light
increases following a constant vertical acceleration of gravity g. Supposing that a
particle of mass m moves along some curve under the influence of gravity imag-
ining that the mass point is like a bead that moves along a rigid wire without friction
(Fig. 6.7).

The question is: What is the shape of the assumed wire for which the time to get
from the start a to the end b is minimized? Whittaker [111] promoted the source of
non-Euclidean geometry (e.g. Veričák’s theory [112]) capable to show how to
express relativity formulas using hyperbolic function in 3D space namely
employing the Bolyai–Lobachevski geometry of hyperbolic function for rapidity,
i.e. the inverse tangent in the form [112–114]

u ¼ tan h�1 v=cð Þ; ð6:8Þ

giving way to the access of general formulas [109]

eu ¼ p
1þ v=cð Þ= 1�v=cð Þf g and e�u ¼ p

1� v=cð Þ= 1þ v=cð Þf g; ð6:9Þ

Fig. 6.7 Characteristic descending curves of a point mass free fall under the action of gravity
(mg). Clearly, the straight line between the start A and the end B, the violet line, is the shortest
distance, but it does not lead to the quickest descent. Below (orange) is parabola, below (green) is
circle, yet below (black) is cycloid which has the fastest descent. At the bottom (blue) is a six order
polynomial. Insert shows the characteristic (red) for the shortest time of travel along the
brachistochrone on the Earth’s surface. Any solution is, therefore, a compromise between
travelling further and travelling faster due to gravitational acceleration so that as helping the
expression for the time of travel along the brachistochrone between two points on Earth’s surface
[126, 127]
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where u is the rapidity, v is the velocity and c is the limiting speed of light
following the Latin word “celerites” meaning “swiftness”.

For the interpretation of the observed photon properties, the old concepts physics
[109, 111, 115] is employed where the photon with mass m (Lavoisierian caloric
mass m concept where v2/v1 = m1/m2 and c2/c1 = m1/m2) self-organizes its sur-
roundings with the wavelength k (Aristotelian space time t concept where v2/
v1 = t2/t1 and c2/c1 = k2/k1) and the frequency f (Galilean time distance d concept
where v2/v1 = d2/d1 and c2/c1 = f1/f2) assuming validity of c2/c1 = (1 + v/c)/(1 −
v/c). The so-called Doppler–Voigt–Einstein self-organization [109, 116, 117]
transmits information about the relative velocity of the source and the observer. The
photon as particle m moves simultaneously with its self-organized surroundings
with wavelength k and frequency f, and observable events are summarized in the
Table 6.2.

In the redshifted DVE self-organization, one should observe the diffusion of
caloric mass from the photon mass to the surface of the moving object. In the
blueshifted DVE self-organization, one should observe the diffusion of the caloric
mass from the moving object to the photon mass (the radiation of the moving
particle). The total energy of a moving particle which is the total sum of energies of
the redshifted and blueshifted self-organizations gives the identical result as it was
found by Einstein [118–120]. Presumably, his enthusiasm would have been even
greater had he known that the same curve describes radial gravitational freefall
versus proper time in general relativity. Entanglement plays a fundamental role in
the brachistochrone evolution of composite quantum probability density. Brownian
motion under brachistochrone-type of metrics [121], quantum adiabatic brachis-
tochrone [109, 122, 123] as well as the situation of dry (*Coulomb) and viscous
friction with the coefficient that arbitrarily depends on speed [124–127] and other
solutions [128–130]. The subject discussed in this last section is still under the
progress; the study shown here is more or less a curiosity that probably would not
be publishable elsewhere but is worth of attention.
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Table 6.2 Three tuning
mechanisms in the
Doppler–Voigt–Einstein
(DVE) self-organization
[109, 116, 117]

Tuning of the light speed constancy, c

c1, rel1 ==k1f1 == * k2f2 == c2, rel2
Tuning of the Maupertuis equation h == mk c

h/c1, rel1 == k1m1 == * k2m2 == h/c2, rel2
Tuning of the energy equation h f = mc2

h=c21;rel1 == m1/f1 == * m2/f2 == h=c22;rel2
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