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Abstract. Future transportation systems are expected to be Systems of
Systems (SoSs) composed of vehicles, pedestrians, roads, signs and other
parts of the infrastructure. The boundaries of such systems change fre-
quently and unpredictably and they have to cope with different degrees
of uncertainty. At the same time, these systems are expected to function
correctly and reliably. This is why designing for resilience is becoming
extremely important for these systems.

One example of SoS collaboration is the vehicle platooning, a promis-
ing concept that will help us dealing with traffic congestion in the near
future. Before deploying such scenarios on real roads, vehicles must be
guaranteed to act safely, hence their behaviour must be verified. In this
paper, we describe a vehicle platooning protocol focusing especially on
dynamic leader negotiation and message propagation. We have repre-
sented the vehicles behaviours with timed automata so that we are able
to formally verifying the correctness through the use of model checking.

1 Introduction

Intelligent and connected vehicles will be key elements of future of transporta-
tion systems. Within these systems, vehicles will act as standalone systems and
at the same time they will interact each other as well as with pedestrians, roads,
signs and other parts of the infrastructure to achieve (even temporarily) some
common objectives. Future transportation systems might be then seen as Sys-
tems of Systems (SoSs) [10] in which the boundaries will change frequently and
unpredictably. Moreover, these systems will need to cope with different degrees
of uncertainty both at the level of single constituent systems and the entire SoS.
Intelligent transport systems promise to solve issues related to road congestion,
environment pollution and accidents for a better and more sustainable future [2].
In order to increase safety, reduce traffic congestion and enhance driving com-
fort, vehicles will cooperate exchanging information among each other and with
the surrounding environment as well.

In this paper, we focus on a specific scenario, namely on-the-fly and oppor-
tunistic platooning, i.e. an unplanned platooning composed of cars that tem-
porarily join in an ensemble to share part of their journey. Platooning is one
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of the promising concepts to help us dealing with traffic jams and at the same
time to increase the overall safety while driving. A platoon consists of reducing
the distances among following vehicles; it consists of a leading vehicle driving
manually and one or more following vehicles automatically driving and follow-
ing the leader one after another. This concept has been studied and applied
especially in trucks for the transportation of goods [1] with the aim of reduc-
ing the impact with air and consume less fuel, but not as much work has been
done regarding normal vehicles platooning. Each vehicle must be able to com-
municate with the others, or at least with the cars adjacent in the platoon. The
communication is important because each vehicle needs to adjust the speed and
the distance according to the other vehicles information. Also, the leader of the
platoon is responsible for managing the overall platoon formation, by accepting
new vehicles or responding to vehicles leaving.

Platooning is also a way towards autonomous vehicles since, except for the
leader, the vehicles do not need human intervention during the travel jour-
ney. Since human intervention is no longer needed, all decisions must be taken
autonomously by the vehicle, and this is a huge challenge for safety assurance.
Consequently, on the one side the use of platooning promises to enhance safety,
and on the other side safety is exposed to new threats and challenges. It is
important to notice that nowadays most of the systems are guaranteed to oper-
ate correctly only in certain configurations and within the system boundaries.
When these boundaries are removed and the system is exposed to unpredictable
and uncontrollable scenarios and environments, safety guarantees no longer hold.
This will be one of the greatest challenges of future autonomous and connected
vehicles that will cooperate with other vehicles, pedestrians, roads, etc. in a SoS
setting.

Although there are different levels of autonomy of vehicles1, autonomous
vehicles can be considered as particular self-adaptive systems [4] since they are
capable of adapting themselves at runtime. A connected vehicle beside being
self-adaptive is also open to interactions with other vehicles and other elements
of the external environment. The unpredictability and uncontrollably of the envi-
ronment hamper the complete understanding of the system at design time. Often
uncertainty is resolved only at runtime when vehicles will face with concrete and
specific instantiations of the pre-defined environment parameters. This implies
that the certification process for safety has to be extended also to runtime phases.

In this paper, we focus on a platooning scenario where the different vehicle’s
behaviours are organized in various modes [16]. A mode is a concept for struc-
turing the overall behaviour of the system into a set of different behaviours,
each of them activated at different times according to specific circumstances.
The behaviour of each mode is then represented in terms of a state machine
that captures the behaviour of the system in a specific modality, e.g. during the

1 The National Highway Traffic Safety Administration (NHTSA) has proposed a for-
mal classification system based on five levels: “U.S. Department of Transportation
Releases Policy on Automated Vehicle Development. National Highway Traffic Safety
Administration, 2013”.
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selection of a leader of the platoon, leaving a platoon, etc. Transitions among
states can be triggered by timing constraints or external events. A special transi-
tion can lead the system to a different mode: in this case the two states involved
are border states of the modes. Figure 1 shows a vehicle platooning scenario
that involves different heterogeneous vehicles. Each vehicle is in a certain mode
according to its behaviour; we will describe the modes in more detail later. The
communication among the vehicles is represented with dotted blue lines.

Fig. 1. Dynamic vehicle platooning scenarios. Each vehicle is in a certain mode accord-
ing to its behaviour in the platoon. (Color figure online)

In this paper, we formally verify the on-the-fly vehicle platooning protocol
through the use of the Uppaal [6] model checker. More precisely we verify the
absence of deadlocks in the mode-switching protocol as well as other interesting
properties.

The rest of the paper is structured as follows: Sect. 2 presents all the modes
of our platooning scenario, Sect. 3 describes some parts of the Uppaal model,
and Sect. 4 describes the properties we checked on our model. In Sect. 5 we show
the results of a concrete simulation of our model in Uppal. Section 6 presents
the results of the validation we performed through the use of the model checker
Uppaal. Section 7 discusses works that are related to our work and finally Sect. 8
concludes the paper with directions for our future work.

2 Multi-mode System

Partitioning a system into multiple modes, each of which describing a specific
behaviour of the system, is a common approach in system design. It leads to a
series of advantages, such as reducing the software complexity and easing the
addition of new features [16]. A self-adaptive system can be considered as a multi-
mode system; if something happens in the environment, the system switches
mode in order to adapt to the new conditions. This is the design strategy we
follow in this paper.

We start by partitioning our system into different operational modes, recog-
nizing different system behaviours. We have defined the different modes as a set
of connected states with common behaviours. There are particular states that we
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call border states: to pass from one mode to another, the system passes through
these states. All the modes have one or more border states that allow the mode
switching of the system. Switching from one mode to another means that the
system is passing from one border state of the current mode to a border state
of another mode. For each vehicle taking part in the platoon we have identified
the following modes:

– Discovering : this is the entering mode of the vehicle that wants to take part
in a platoon and searches for other vehicles that have the same goals (e.g.
common destination).

– Forming : the first two vehicles that want to form a new platoon enter into
this mode. To do that, they decide who will be the leading vehicle of the
platoon.

– Joining : a vehicle has found an existing platoon and it wants to join it. The
vehicle can be accepted in the platoon within a certain time interval;

– Leading : the vehicle with the best safety attributes is elected as leader of
the platoon. We have assumed that each vehicle shares its safety attributes
with the other vehicles. Once in this mode, the vehicle has to steer the fol-
lowing vehicles, propagate information, keep track of the list of the followers,
accept new vehicles that want to join, and, finally, manage the leaving of the
followers.

– Following : all the vehicles drive in automated manner and follow the leader.
A follower can receive information from the leader and propagate it to the
other members of the platoon. It also supports the changing of the leader and
if the leader leaves then the vehicle goes into the discovering mode again.

– Leaving : all the vehicles can leave the platoon at arbitrary time. When the
leader leaves, the platoon dissolves. When a follower leaves, it must advise
the leader and receive acknowledgement.

– Dissolving : vehicle goes in the dissolving mode when (i) it is a follower and
does not have a leader anymore or (ii) it is a leader and does not have followers
anymore. From this mode, it can either leave or go back to the discovering
mode and start a new platoon.

– Negotiation: when a new vehicle wants to take part of an existing platoon,
either it becomes a follower or it has to negotiate the leadership with the
current leader. The vehicle with the highest safety attributes will always be
the leader. Leadership negotiation can also be triggered by two platoons that
want to merge.

3 Uppaal Model Description

Our strategy to model the behaviour of the on-the-fly platooning is to build a
generic Uppaal template that incorporates all the modes. This template can be
then instantiated for each vehicle that will take part to a specific scenario. More
precisely, this model can be instantiated by all the vehicles regardless of their
role in the platoon. We can then simulate a variety of scenarios by tuning the
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vehicles intrinsic properties. This solution is more scalable than having multiple
models for different roles of the platoon (leader, follower) (Fig. 2).

The dynamic leader negotiation is a property of our scenario since we do not
know who is going to be the leader beforehand. Furthermore, the leader can be
changed during the platoon life. In order to this, we assume that each vehicle
has associated a parameter representing its safety characteristics, called safety
index, before it enters the platoon. Our models and protocol assure that the
leader is always the vehicle with the highest safety index. The safety index it is
just a value and it represents the overall safety score of the vehicle, the higher the
better. We can assume that this value is calculated taking into consideration all
safety-related parameters of the vehicle, either static ones such as the year of the
vehicle, the size or dynamic ones taking into consideration the driver experience
and the people on board.

In our model every vehicle starts from a discovering mode where it looks for
other vehicles or platoons to join. In fact, the formation of a platoon can happen
in different ways:

– Two vehicles negotiating with each other and forming one platoon with one
leader and one follower. The two vehicles negotiate the leadership according
to their safety index.

– One vehicle joining an existing platoon if there is already a formed platoon
and the new vehicle is in discovery mode.

– Two existing platoons merging into one after the two leaders have performed
a re-negotiation of their leadership.

If the joining of a platoon takes more than the pre-defined constant time
(JOINING TIME) to a vehicle, then it goes into discovering mode again. After
the formation phase a vehicle can be either in Leaving or in Following state.
The leader keeps track of all its followers at any time by listening to new join-
ing or leaving requests. It can also send messages to all its followers. Message
propagation can happen in two ways:

– The leader can reach all its followers and communicate with them all.
– The leader sends a message to the follower immediately behind him and then

the message will propagate from follower to follower until reaching the last
vehicle in the platoon.

We also take into consideration the propagation time that is needed for a
vehicle to pass on the message to the next vehicle. The time is, in fact, crucial for
safety-related messages; we want to be sure that the message reaches the whole
platoon in the shortest time. We guarantee this by formulating and verifying
time-related properties on the message propagation as described in the section
below. Another feature of our model is the dynamic leader negotiation also after
the platoon has been formed. This can happen in two cases:

– Two platoons want to merge. The platoon with the leader having the highest
safety index will take the leadership while the other leader activates the join-
ing procedure to the new leader that has to be completed in CHANGE LEADER
TIME and afterward it becomes a follower of the newly elected leader.
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– A vehicle wants to join an existing platoon and it has a safety index higher
than the platoon leader. The current leader passes its followers to the new
leader and itself becomes a follower.

4 Requirement Specifications Verified with Model
Checking

The main purpose of a model-checker is to verify the model with respect to a
requirement specification. With the timed-automata representation of the sys-
tem, it is possible to verify safety and behavioural properties of our model such
as the absence of deadlocks or the propagation of a safety-critical message within
a certain time. Like the model, the requirement specification (or properties) to
be checked must be expressed in a formally well-defined and machine readable
language. Uppaal utilizes a subset of TCTL (timed computation tree logic) [3,7].
The path formulae A <> ϕ (or equivalently A <> ϕ = ¬E[ ]¬ϕ) expresses that
ϕ will be eventually satisfied or more precisely that in each path will exist a
state that satisfies ϕ. The path formulae A[ ]ϕ expresses that ϕ should be true
in all reachable states.

In order to verify the safety requirements, we have to build a scenario first,
i.e., a particular instantiation of the system. Our model is made in order to
be configured according to the scenario we want to verify. We first need to set
the number of vehicles involved and for each vehicle we need to configure few
parameters such as its arrival time, leaving time, and safety index. We have
automated the configuration process by assigning random values to these values
as we explain in the following section. The automation process involves also the
properties that are tuned according to the scenario we want to verify. Once we
have configured our scenario we can formally verify the following properties:

– Property 1: If a vehicle is in the leading mode then its safety index is higher
then all other vehicles involved in the platoon.
Assuming a scenario where Vehicle 3 has the highest safety index the instan-
tiated property would be expressed as:

A[] (Vehicle(3).Leading =⇒ ∀(i:id v) S[3]>=S[i])

– Property 2: The propagation of a message from the leader to the last follower
happens in a bounded amount of time.
The time in which the propagation has to happen varies according to the size
of the platoon and the maximum acceptable delay is kept by the predefined
variable MAX PROP DELAY.

A[](b==1 =⇒ time<=MAX PROP DELAY)

A boolean variable b and a clock variable time are two global variables that
are used to measure the propagation time from when a message is fired. In
order to measure that, when a message starts propagating, the variable b is
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set to 1 while time is reset. The properties assures that time will always be
inferior to the constant MAX PROP DELAY while b is kept to 1. The variable b
will be reset when the message has reached the last follower of the platoon.

– Property 3: For each vehicle in the following state exists at least one vehicle
in leading mode.

A[](∀(k:id v) Vehicle(k).Following =⇒
∃ (i:id v) Vehicle(i).All Leading States)

Since the leading mode is formed by a series of states this property is verified
by including all the states of the leading mode (as a series of or elements).
We did not write the full property for readability purposes.

– Property 4: Whenever the vehicle with the highest safety index starts partici-
pating in the platooning it will eventually become the leader.
Assuming that Vehicle 1 is the one with the highest safety index, the property
becomes:

Vehicle(1).Start =⇒ <> Vehicle(1).Leading

– Property 5: For all the path, the vehicle with the highest safety index goes into
the leading state.
Assuming the Vehicle 1 is the one with the highest safety index, the property
becomes:

A<> Vehicle(1).Leading

– Property 6: All vehicles will eventually leave the platoon.
Since all the vehicles have a leaving time we can verify that:

A<> (∀(i:id v) Vehicle(i).Start =⇒
∀(k:id v)Vehicle(k).Left)

– Property 7: If a leader leaves the platoon then all its followers leave as well.

A[]((∃(i:id v) Vehicle(i).Leaving Leader ∧
∀(k:id v) Vehicle(k).Following) =⇒

∀(j:id v) Vehicle(j).Dissolving Platoon)

– Property 8: The model is deadlock free.
Finally, this property assures that for all possible paths there are no deadlocks
in our model:

A[]¬ deadlock

In Sect. 6 we present the verification times of the properties described above.
We have noticed that properties apparently very similar require a very different
amount of processing time in order to be verified. For example, both properties 4
and 5 verify the leadership of the vehicle with the highest safety index. Property
5 is always verified in less than 1 second, with the time increasing linearly with
the number of vehicles. Property 4, instead, can take up to hundreds of seconds
with an exponential increase with respect to the number of vehicles.
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5 Simulation

Latest versions of Uppaal offer the possibility to perform a concrete simulation
of the model. It is a verification tool that enables examination of the dynamic
executions of a system. The simulation is based on concrete traces, e.g., one
can choose a specific time to fire a transition. The tool helps to see at which
time a transition can be fired. We have modeled some transition to fire with a
uniform probability distribution. For example, in the propagation of the mes-
sage, the transition will fire somewhere between PROPAGATE TIME-BOUND and
PROPAGATE TIME+BOUND time units. We have used these time constraints to ver-
ify time properties based on the worst case scenarios when a message has to be
propagated from the leader throughout the entire platoon.

In order to perform a simulation, we have to configure our model specifying
parameters such as the number of vehicles, starting times, leaving times, and
safety indexes. Each vehicle is an instance of the general vehicle template and
by launching the simulation we can see how the vehicles interact with each other.
All instances start from the same state and as the time flows Uppaal randomly
selects which edge to fire among the available ones of each state. Some edges
have guards and invariant in order to model the time of the transition from one
state to another as a uniform probability distribution.

Fig. 3. Concrete simulation with Gantt Chart in Uppaal. (Color figure online)

Figure 3 shows the Gantt chart of a simulation. The horizontal axis repre-
sents the time span and in the vertical axis the list of vehicles instantiated in
the simulation. A vertical line is used to represent the current time (which cor-
responds to the one displayed in the Simulation Trace-combo box). Horizontal
bars of varying lengths and colours represent the different modes of the vehicles.
Due to the limited amount of colours we are only able to show a limited amount
of modes, specifically: discovering (purple), leading (blue), and following modes
(green).

In the simulation showed in Fig. 3 we can see 5 vehicles participating in the
platooning, each with a different safety index. vehicle0 starts first stays in the
discovering mode until other vehicles enter in the platoon. When vehicle1 and
vehicle4 enter, the three vehicles perform a leader negotiation and vehicle4
goes starts leading the platoon since it has the highest index. At time 4 vehicle3
joins the existing platoon until vehicle2 comes into play and renegotiate the
leadership with vehicle4 and so on. It is also interesting to see the message
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propagation of a hazard from the leader to all its following vehicles (marked in
red).

6 Verification Results

The simulation shown in Fig. 3 refers exclusively to a particular scenario. In
this section, we instead report the results of an exhaustive verification that we
performed on a number of different scenarios. This is obtained by automating
the verification process with an external script that is able to generate different
scenarios by changing the number of vehicles involved in the platoon and by
randomly selecting independent variables within each vehicle, such as:

– Arrival time: the arrival time of a vehicle;
– Leaving time: the leaving time of a vehicle;
– Safety index : the safety index of a vehicle.

We are then able to verify all the properties described in Sect. 4 with a
number of vehicles from 2 to 5 and for each vehicle configuration we run 100
tests with random scenarios. The height properties are verified by each generated
configuration.

Fig. 4. Average verification times for 100 iterations. X-axes represent the property
being verified. Y-axes the time to verifying it (in seconds). 2-3-4 vehicles scenario
respectively

The script generates different models of the system based on a progressive
number of the vehicles N and random values of some attributes. It executes
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two big loops, one to change the random values and one to increment the num-
ber of vehicles N. Thanks to the standalone Uppaal verifier, the script verifies
the above-mentioned properties with random attribute values of all the models
generated. If one property is not satisfied, the standalone verifier generates the
counterexample, which is useful to understand why the property is not satisfied.
Counterexample files can be open within the GUI of Uppaal. In the end, the
script generates a report of the verification, i.e., a text file that traces all the
properties, both if they are satisfied or not.

Fig. 5. Average times of 100 iterations for verifying the properties 5 vehicles

Figure 4 reports the time required to verify the 8 properties. The time shown
in the figure is the average time required in 100 iterations. Since the time to
complete the verification is exponential with respect to the number of vehicles
the figure shows the time required by configurations of 2, 3, and 4 vehicles
for verifying the 8 properties. For readability purpose, the verification time for
configurations of 5 vehicles is not shown in the figure and the average times for
100 iterations are shown in Fig. 5. As we can see from the figure properties 5
and 6 have times comparable with the verifications times of 2, 3 and 4 vehicles.
In fact, these two properties scale linearly while the others scale exponentially.

We have seen how changing the number of vehicles affects the verification
time although these change a lot also for every configuration taken into consid-
eration. Within the same number of vehicles, we have performed 100 iterations
assigning random values to the vehicle attributes. Figure 6 shows how the veri-
fication time of a single property with a 5 vehicles configuration is affected by
the random assignment of the vehicle attributes.
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Fig. 6. Verification times of the deadlock free property for 5 vehicles scenario in 100
iterations.

7 Related Works

Kamali et al. [9] have also investigated the verification of vehicle platooning
representing it as a multi-agents system. They verified the behaviour partly on
the actual agent code and partly with Uppaal with timed-automata abstractions
by using two different models, one for the follower and one for the leader.

One of the main challenges in open and self-adaptive systems is to certify that
the system is always in a safe state. Since safety cannot be completely evaluated
and assured at design time, at least part of the safety assurance must be shifted
at run-time. The first ideas for certifying safety at runtime were introduced
by Rushby [13,14]. He proposes an initial idea to certification based on formal
analysis at runtime; however much work must be done to produce a solution
that can be used concretely.

A promising approach to deal with safety certification at runtime is Con-
Sert [15]. ConSert introduces the idea of Conditional Safety Certificates to facil-
itate the certification of open adaptive systems. Each subsystem is certified by a
modular safety certificate based on a contract-like approach. The evaluation and
the composition of the modular certificates happen at runtime. This framework
offers flexibility as allows designers to specify safety through variable safety-
certificates. Within the approach, all the configurations that a component of
the system can assume must be predefined at design time in order to be cer-
tified “safe” at runtime. It allows emergent adaptive behaviours only if they
can be tamed in certain boundaries with the concept of safety cages. Fully emer-
gent behaviours are not possible to certify with ConSert hence ensuring safety in
these cases is a much more difficult problem. A possible research direction can be
investigating the theoretical assume-guarantee framework proposed in [8]. This
framework allows one to efficiently define under which conditions adaptation can
be performed by still preserving desired properties. The framework might pro-
vide the infrastructure to automatically calculate at runtime which properties
are verified in specific scenarios. For instance, this might suggest excluding some
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vehicles from the platooning since their inclusion might compromise important
properties.

Regarding the automotive domain a more practical approach is the one
proposed by Kenneth Östberg and Magnus Bengtsson [11]; they deal with
run-time safety by extending the AUTomotive Open System Architecture
(AUTOSAR [5]). Claudia Priesterjahnr et al. [12] tackle the runtime safety prob-
lem at a component level performing a runtime risk analysis. When a system is
trying to connect to another system (for example in a platoon) it computes all
reachable configurations and, for each of them, it computes the hazard proba-
bilities at runtime in order to judge whether the configuration is safe or not.

8 Conclusion

In this paper, we have presented the formal verification of on-the-fly vehicle
platooning. We have modeled the vehicle behaviours with timed-automata so
that we were able to verify the correctness of the protocol with model checking.
We were able to verify that some properties always hold for a different number
of vehicles each with random attributes. All the vehicles are modeled with a
unique generic Uppaal model that can be instantiated for each specific vehicle.
In this way, it is possible to simulate different scenarios and the verification is
easily scalable to more vehicles. Each scenario has been generated with a script,
which changes parameters such as the number of vehicles and the attributes for
each vehicle and then it verifies that all the properties hold. We have focused our
attention only to some interesting part of the model such as the dynamic leader
negotiation and the message propagation of the vehicles leaving other parts to
be further exploited. As future work, we plan to refine our model by releasing
some assumptions made during the creation of the model and verifying more
properties. As a long term goal, we plan to experiment with the protocol by
using a set of miniature vehicles.
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ject and by the Wallenberg Autonomous Systems Program(WASP).
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11. Östberg, K., Bengtsson, M.: Run time safety analysis for automotive systems in an
open and adaptive environment. In: SAFECOMP 2013-Workshop, NA, September
2013

12. Priesterjahnr, C.: Runtime safety analysis for safe reconfiguration, pp. 1–6, June
2013

13. Rushby, J.: Just-in-time certification. In: 12th IEEE International Conference on
Engineering Complex Computer Systems, pp. 15–24. IEEE (2007)

14. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008)

15. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems.
ACM Trans. Auton. Adapt. Syst. 8(2), 1–20 (2013)

16. Hansson, H., Hang, Y., Carlson, J.: Towards mode switch handling in component-
based multi-mode systems. In: Proceedings of 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, CBSE 2012, Bertinoro,
Italy, pp. 183–188, June 2012


	Formal Verification of the On-the-Fly Vehicle Platooning Protocol
	1 Introduction
	2 Multi-mode System
	3 Uppaal Model Description
	4 Requirement Specifications Verified with Model Checking
	5 Simulation
	6 Verification Results
	7 Related Works
	8 Conclusion
	References


