
 123

LN
CS

 9
82

3

8th International Workshop, SERENE 2016
Gothenburg, Sweden, September 5–6, 2016
Proceedings

Software Engineering
for Resilient Systems

Ivica Crnkovic
Elena Troubitsyna (Eds.)

Lecture Notes in Computer Science 9823

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ivica Crnkovic • Elena Troubitsyna (Eds.)

Software Engineering
for Resilient Systems
8th International Workshop, SERENE 2016
Gothenburg, Sweden, September 5–6, 2016
Proceedings

123

Editors
Ivica Crnkovic
Chalmers University of Technology
Gothenburg
Sweden

Elena Troubitsyna
Abo Akademi University
Turku
Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45891-5 ISBN 978-3-319-45892-2 (eBook)
DOI 10.1007/978-3-319-45892-2

Library of Congress Control Number: 2016950363

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the 8th International Workshop on Software
Engineering for Resilient Systems (SERENE 2016). SERENE 2016 took place in
Gothenburg, Sweden on September 5–6, 2016. The SERENE workshop is an annual
event, which has been associated with EDCC, the European Dependable Computing
Conference, since 2015. The workshop brings together researchers and practitioners
working on the various aspects of design, verification, and assessment of resilient
systems. In particular it covers the following areas:

• Development of resilient systems;
• Incremental development processes for resilient systems;
• Requirements engineering and re-engineering for resilience;
• Frameworks, patterns, and software architectures for resilience;
• Engineering of self-healing autonomic systems;
• Design of trustworthy and intrusion-safe systems;
• Resilience at run-time (mechanisms, reasoning, and adaptation);
• Resilience and dependability (resilience vs. robustness, dependable vs. adaptive

systems);
• Verification, validation, and evaluation of resilience;
• Modelling and model based analysis of resilience properties;
• Formal and semi-formal techniques for verification and validation;
• Experimental evaluations of resilient systems;
• Quantitative approaches to ensuring resilience;
• Resilience prediction;
• Case studies and applications;
• Empirical studies in the domain of resilient systems;
• Methodologies adopted in industrial contexts;
• Cloud computing and resilient service provisioning;
• Resilience for data-driven systems (e.g., big-data-based adaption and resilience);
• Resilient cyber-physical systems and infrastructures;
• Global aspects of resilience engineering: education, training, and cooperation.

The workshop was established by the members of the ERCIM working group
SERENE. The group promotes the idea of a resilient-explicit development process. It
stresses the importance of extending the traditional software engineering practice with
theories and tools supporting modelling and verification of various aspects of resi-
lience. The group is continuously expanding its research interests towards emerging
areas such as cloud computing and data-driven and cyber-physical systems. We would
like to thank the SERENE working group for their hard work on publicizing the event
and contributing to its technical program.

SERENE 2016 attracted 15 submissions, and accepted 10 papers. All papers went
through a rigorous review process by the Program Committee members. We would like

to thank the Program Committee members and the additional reviewers who actively
participated in reviewing and discussing the submissions.

Organization of a workshop is a challenging task that besides building the technical
program involves a lot of administrative work. We express our sincere gratitude to the
Steering Committee of EDCC for associating SERENE with such a high-quality
conference. Moreover, we would like to acknowledge the help of Mirco Franzago from
the University of L’Aquila, Italy for setting up and maintaining the SERENE 2016 web
page and the administrative and technical personnel of Chalmers University of Tech-
nology, Sweden for handling the workshop registration and arrangements.

July 2016 Ivica Crnkovic
Elena Troubitsyna

VI Preface

Organization

Steering Committee

Didier Buchs University of Geneva, Switzerland
Henry Muccini University of L’Aquila, Italy
Patrizio Pelliccione Chalmers University of Technology and University

of Gothenburg, Sweden
Alexander Romanovsky Newcastle University, UK
Elena Troubitsyna Åbo Akademi University, Finland

Program Chairs

Ivica Crnkovic Chalmers University of Technology and University
of Gothenburg, Sweden

Elena Troubitsyna Åbo Akademi University, Finland

Program Committee

Paris Avgeriou University of Groningen, The Netherlands
Marco Autili University of L’Aquila, Italy
Iain Bate University of York, UK
Didier Buchs University of Geneva, Switzerland
Barbora Buhnova Masaryk University, Czech Republic
Tomas Bures Charles University, Czech Republic
Andrea Ceccarelli University of Florence, Italy
Vincenzo De Florio University of Antwerp, Belgium
Nikolaos Georgantas Inria, France
Anatoliy Gorbenko KhAI, Ukraine
David De Andres Universidad Politecnica de Valencia, Spain
Felicita Di

Giandomenico
CNR-ISTI, Italy

Holger Giese University of Potsdam, Germany
Nicolas Guelfi University of Luxembourg, Luxembourg
Alexei Iliasov Newcastle University, UK
Kaustubh Joshi At&T, USA
Mohamed Kaaniche LAAS-CNRS, France
Zsolt Kocsis IBM, Hungary
Linas Laibinis Åbo Akademi, Finland
Nuno Laranjeiro University of Coimbra, Portugal
Istvan Majzik Budapest University of Technology and Economics,

Hungary

Paolo Masci Queen Mary University, UK
Marina Mongiello Technical University of Bari, Italy
Henry Muccini University of L’Aquila, Italy
Sadaf Mustafiz McGill University, Canada
Andras Pataricza Budapest University of Technology and Economics,

Hungary
Patrizio Pelliccione Chalmers University of Technology and University

of Gothenburg, Sweden
Markus Roggenbach Swansea University, UK
Alexander Romanovsky Newcastle University, UK
Stefano Russo University of Naples Federico II, Italy
Peter Schneider-Kamp University of Southern Denmark, Denmark
Marco Vieira University of Coimbra, Portugal
Katinka Wolter Freie Universität Berlin, Germany
Apostolos Zarras University of Ioannina, Greece

Subreviewers

Alfredo Capozucca University of Luxembourg
David Lawrence University of Geneva, Switzerland
Benoit Ries University of Luxembourg

VIII Organization

Contents

Mission-critical Systems

A Framework for Assessing Safety Argumentation Confidence 3
Rui Wang, Jérémie Guiochet, and Gilles Motet

Configurable Fault Trees . 13
Christine Jakobs, Peter Tröger, and Matthias Werner

A Formal Approach to Designing Reliable Advisory Systems. 28
Luke J.W. Martin and Alexander Romanovsky

Verification

Verifying Multi-core Schedulability with Data Decision Diagrams. 45
Dimitri Racordon and Didier Buchs

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 62
Piergiuseppe Mallozzi, Massimo Sciancalepore, and Patrizio Pelliccione

Engineering Resilient Systems

WRAD: Tool Support for Workflow Resiliency Analysis and Design 79
John C. Mace, Charles Morisset, and Aad van Moorsel

Designing a Resilient Deployment and Reconfiguration Infrastructure
for Remotely Managed Cyber-Physical Systems . 88

Subhav Pradhan, Abhishek Dubey, and Aniruddha Gokhale

cloud-ATAM: Method for Analysing Resilient Attributes
of Cloud-Based Architectures . 105

David Ebo Adjepon-Yamoah

Testing

Automated Test Case Generation for the CTRL Programming Language
Using Pex: Lessons Learned. 117

Stefan Klikovits, David P.Y. Lawrence, Manuel Gonzalez-Berges,
and Didier Buchs

A/B Testing in E-commerce Sales Processes. 133
Kostantinos Koukouvis, Roberto Alcañiz Cubero, and Patrizio Pelliccione

Author Index . 149

http://dx.doi.org/10.1007/978-3-319-45892-2_1
http://dx.doi.org/10.1007/978-3-319-45892-2_2
http://dx.doi.org/10.1007/978-3-319-45892-2_3
http://dx.doi.org/10.1007/978-3-319-45892-2_4
http://dx.doi.org/10.1007/978-3-319-45892-2_5
http://dx.doi.org/10.1007/978-3-319-45892-2_6
http://dx.doi.org/10.1007/978-3-319-45892-2_7
http://dx.doi.org/10.1007/978-3-319-45892-2_7
http://dx.doi.org/10.1007/978-3-319-45892-2_8
http://dx.doi.org/10.1007/978-3-319-45892-2_8
http://dx.doi.org/10.1007/978-3-319-45892-2_9
http://dx.doi.org/10.1007/978-3-319-45892-2_9
http://dx.doi.org/10.1007/978-3-319-45892-2_10

Mission-critical Systems

A Framework for Assessing Safety
Argumentation Confidence

Rui Wang, Jérémie Guiochet(B), and Gilles Motet

LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
{Rui.Wang,Jeremie.Guiochet,Gilles.Motet}@laas.fr

Abstract. Software applications dependability is frequently assessed
through degrees of constraints imposed on development activities. The
statement of achieving these constraints are documented in safety argu-
ments, often known as safety cases. However, such approach raises several
questions. How ensuring that these objectives are actually effective and
meet dependability expectations? How these objectives can be adapted or
extended to a given development context preserving the expected safety
level? In this paper, we investigate these issues and propose a quantita-
tive approach to assess the confidence in assurance case. The features of
this work are: (1) fully consistent with the Dempster Shafer theory; (2)
considering different types of arguments when aggregating confidence; (3)
a complete set of parameters with intuitive interpretations. This paper
highlights the contribution of this approach by an experiment application
on an extract of the avionics DO-178C standard.

Keywords: Dependability · Confidence assessment · Assurance case ·
Goal structuring notation · Belief function theory · DO-178C

1 Introduction

Common practices to assess the software system dependability can be classi-
fied in three categories [12]: quantitative assessment, prescriptive standards, and
rigorous arguments. Quantitative assessment of software system dependability
(probabilistic approach) has always been controversial due to the difficulty of
probability calculation and interpretation [13]. Prescriptive standard is a regu-
lation for software systems required by many government institutions. Never-
theless, in these standards, little explanations are given regarding to the justifi-
cation and rationale of the prescriptive requirements or techniques. Meanwhile,
the prescriptive standards limit to great extent the flexibility of system devel-
opment process and the freedom for adopting alternative approaches to provide
safety evidence. Rigorous argument might be another approach to deal with the
drawbacks of quantitative assessment and prescriptive standard. It is typically
presented in an assurance case [12]. This kind of argumentation is often well
structured and provides the rationale how a body of evidence supports that a
system is acceptably safe in a given operating environment [2]. It consists of
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-45892-2 1

4 R. Wang et al.

the safety evidence, objectives to be achieved and safety argument. A graphical
argumentation notation, named as Goal Structuring Notation (GSN), has been
developed [10] to represent the different elements of an assurance case and their
relationships with individual notations. Figure 1 provides an example that will
be studied later on. Such graphical assurance case representation can definitely
facilitates the reviewing process. However, it is a consensus that safety argument
is subjective [11] and uncertainties may exist in safety argument or supporting
evidence [9]. Therefore, the actual contribution of safety argument has to be
evaluated.

A common solution for assessing the safety argument is to ask an expert
to judge whether the argument is strong enough [1]. However, some researchers
emphasize the necessity to qualitatively assess the confidence in these arguments
and propose to develop a confidence argument in parallel with the safety argu-
ment [9]. Besides, various quantitative assessments of confidence in arguments
are provided in several works (using the Bayesian Networks [5], the belief func-
tion theory [3], or both [8]). In the report [7], authors study 12 approaches for
quantitative assessments of confidence in assurance case. They study the flaws
and counterarguments for each approaches, and conclude that whereas quantita-
tive approaches for confidence are of high interest, no method is fully applicable.
Moreover, these quantitative approaches lack of tractability between assurance
case and confidence assessment, or do not provide clear interpretation of confi-
dence calculation parameters.

The preliminary work presented in this paper is a quantitative approach to
assess the confidence in a safety argument. Compared to other works, we take
into account different types of inference among arguments and integrate them
in the calculation. We also provide calculation parameters with intuitive inter-
pretation in terms of confidence in argument, weights or dependencies among
arguments. Firstly, we use GSN to model the arguments; then, the confidence
of this argumentation is assessed using the belief function theory, also called
the Dempster-Shafer theory (D-S theory) [4,15]. Among the uncertainty theo-
ries (including probabilistic approaches), we choose the belief function theory,
as it is particularly well-adapted to explicitly express uncertainty and calculate
human’s belief. This paper highlights the contribution of assessing the confidence
in safety argument and the interpretation of each measurement, by studying an
extract of the DO-178C standard as a fragment of an assurance case.

2 DO-178C Modeling

DO-178C [6] is a guidance for the development of software for airborne systems
and equipment. For each Development Assurance Level (from DAL A, the high-
est, to DAL D, the lowest), it specifies objectives and activities. An extract of
objectives and activities demanded by the DO-178C are listed in Table 1. There
are 9 objectives. The applicability of each objective depends on the DAL. In
Table 1, a black dot means that “the objective should be satisfied with indepen-
dence”, i.e. by an independent team. White dots represent that “the objective

A Framework for Assessing Safety Argumentation Confidence 5

Table 1. Objectives for “verification of verification process” results, extracted from
the DO-178C standard [6]

should be satisfied” (it may be achieved by the development team) and blank
ones mean that “the satisfaction of objectives is at applicant’s discretion”.

This table will serve as a running example for all the paper. The first step
is to transfer this table into a GSN assurance case. In order to simplify, we
will consider that this table is the only one in the DO-178C to demonstrate
the top goal: “Correctness of software is justified”. We thus obtain the GSN
presented in Fig. 1. S1 represents the strategy to assure the achievement of the
goal. With this strategy, G1 can be broken down into sub-claims. Table 1 contains
9 lines relative to 9 objectives. They are automatically translated into 9 solutions
(Sn1 to Sn9). These objectives can be achieved by three groups of activities:
reviews and analyses of test cases, procedures and results (Objectives 1 and 2),
requirements-based test coverage analysis (Objectives 3 and 4), and structure
coverage analysis (Objectives 5 to 9). Each activity has one main objective,
annotated by G2, G3 and G4 in Table 1, which can be broken down into sub-
objectives. In Fig. 1, G2, G3 and G4 are the sub goals to achieve G1; meanwhile,
they are directly supported by evidence Sn1 to Sn9. As this paper focuses on the
confidence assessment approach, the other elements in GSN (such as context,
assumption, etc.) are not studied here, which should be also considered for a
complete study.

6 R. Wang et al.

S1

Argument by achievement

(ref. 6.4)

Sn2

Review results
of test results
(ref. 6.4.5.c)

Sn1

Review results
of test

procedures
(ref. 6.4.5.b)

Sn9

results of
additional code

(ref. 6.4.4.c)

G1

Correctness of

Sn3

Results of high-
level reqs.
coverage

analysis (ref.
6.4.4.a)

w_G1S1

G2

Test procedure and
results are correct (ref.
6.4.5)

G3

Requirements-based
test coverage is
achieved (ref. 6.4.4.1)

G4

Structural coverage
analysis is achieved
(ref. 6.4.4.2)

Results of
structural

coverage (MC/
DC) analysis
(ref. 6.4.4.c)

Sn5

Results of
structural coverage

(statement
coverage) analysis

(ref. 6.4.4.c)

Sn7
Results of
structural

coverage (DC)
analysis (ref.

6.4.4.c)

Sn6

Results of structural
coverage (data

coupling and control
coupling) analysis

(ref. 6.4.4.d)

Sn8

Results of low-
level reqs.
coverage

analysis (ref.
6.4.4.a)

Sn4

gG1

gS1

gG4gG3gG2

wS1G2 wS1G3
wS1G4

wG2Sn1 wG2Sn2

wG3Sn3
wG3Sn4

wG4Sn5

wG4Sn6

wG4Sn7

wG4Sn8

wG4Sn9

gSn1

gSn2

gSn3

gSn4

gSn5

gSn6 gSn7 gSn8

gSn9

of verification objectives

Verification

software is justified

Fig. 1. GSN model of a subset of the DO-178C objectives

3 Confidence Assessment with D-S Theory

3.1 Confidence Definition

We consider two types of confidence parameters in an assurance case, which are
similar to those presented in [9] named “appropriateness” and “trustworthiness”,
or “confidence in inference” and “confidence in argument” in [8]. In both cases,
a quantitative value of confidence will lead to manage complexity of assurance
cases. Among uncertainty theories (such as probabilistic approaches, possibility
theory, fuzzy set, etc.), we avoid to use Bayesian Networks to express this value,
as it requires a large number of parameters, or suffers from a difficult inter-
pretation of parameters when using combination rules such as Noisy OR/Noisy
AND. We propose to use the D-S theory as it is able to explicitly express uncer-
tainty, imprecision or ignorance, i.e., “we know that we don’t know”. Besides, it
is particularly convenient for intuitive parameter interpretation.

Consider the confidence gSnx in a Solution Snx. Experts might have some
doubts about its trustworthiness. For instance, the solution Sn2 “review results of
test results” might not be completely trusted due to uncertainties in the quality
of the expertise, or the tools used to perform the tests. Let X be a variable taking
values in a finite set Ω representing a frame of discernment. Ω is composed of all
the possible situations of interest. In this paper, the binary frame of discernment
is ΩX = {X̄,X}. An opinion about a statement X is assessed with 3 measures
coming from DS-Theory: belief (bel(X)), disbelief (bel(X̄)), and the uncertainty.
Compared to probability theory where P (X) + P (X̄) = 1, in the D-S theory a

A Framework for Assessing Safety Argumentation Confidence 7

third value represents the uncertainty. This leads to m(X) + m(X̄) + m(Ω) = 1
(belief + disbelief + uncertainty = 1). In this theory, a mass m(X) reflects the
degree of belief committed to the hypothesis that the truth lies in X. Based on
D-S theory, we propose the following definitions:

⎧
⎨

⎩

bel(X̄) = m(X̄) = fX represents the disbelief
bel(X) = m(X) = gX represents the belief
m(Ω) = 1 − m(X) − m(X̄) = 1 − gX − fX represents the uncertainty

(1)

where gX , fX ∈ [0, 1].

3.2 Confidence Aggregation

As introduced in Eq. 1, the mass gX is assigned for the belief in the statement
X. When X is a premise of Y, interpreted as “Y is supported by X” (represented
with a black arrow in Fig. 1, from a statement X towards a statement Y), we
assigned another mass to this inference which is (note that we use m(X) for
m(X = true)):

m((X̄, Ȳ), (X,Y)) = wY X (2)

This mass actually represents the “appropriateness” i.e. the belief in the inference
“Y is supported by X” (i.e. the mass of having Y false when X is false, and Y
true when X true). Using the the Dempster combination rule [15], we combine
the two masses from Eqs. 1 and 2 to obtain the belief (result is quite obvious but
detailed calculation is given in report [16]):

bel(Y) = m(Y) = gX · wY X

Nevertheless, in situations with 2 or more premises supporting a goal (e.g. G3 is
supported by Sn3 and Sn4), we have to consider the contribution of the combi-
nation of the premises. Additionally to the belief in the arguments as introduced
in Eq. 1 (m1(X) = gX and m2(W) = gW where m1 and m2 are two independent
sources of information), we have to consider a third source of information, m3

to express that each premise contributes alone to the overall belief of Y, or in
combination with the other premises. Let us consider that X and W support the
goal Y, and use the notation (W,X, Y) for the vector where the three statements
are true, and (∗,X, Y) when W might have any value (we do not know its value).
We then define the weights:

⎧
⎨

⎩

m3((W̄ , ∗, Ȳ), (W, ∗, Y)) = wYW

m3(∗, X̄, Ȳ), (∗,X, Y)) = wY X

m3((W̄ , X̄, Ȳ), (W̄ ,X, Ȳ), (W, X̄, Ȳ), (W,X, Y)) = 1 − wYW − wY X = dY
(3)

where wYW , wY X ∈ [0, 1], and wYW + wY X ≤ 1.
The variable dY actually represents the contribution of the combination

(similar to an AND gate) of W and X to the belief in Y. We propose to use
this value as the assessment of the dependency between W and X to contribute

8 R. Wang et al.

to belief in Y, that is, the common contribution of W and X on demand to
achieve Y. In this paper we will use three values for dependency, dY = 0 for
independent premises, dY = 0.5 for partial dependency, and dY = 1 for full
dependency. At this step of our study, we did not find a way to extract from
expert judgments a continuous value of d. Examples of interpretation of these
values are given in next section. We then combine m1, m2 and m3 using the DS
rule (complete calculation and cases for other argument types are presented in
report [16]):

bel(Y) = m(Y) = gY = dY · gX · gW + wY X · gW + wYW · gX (4)

Where gW , gX , wY X , wYW ∈ [0, 1], dY = 1 − wY X − wYW ∈ [0, 1].
When applied to G2, we obtain:

gG2 = dG2 · gSn1 · gSn2 + wSn1 · gSn1 + wSn2 · gSn2 (5)

Furthermore, a general Eq. (6) is obtained for goal Gx supported by n solu-
tions Sni. The deduction process is consistent with D-S Theory and its extension
work [14]:

gGx = dGx ·
n∏

i=1

gSni +
n∑

i=1

gSni · wGxSni (6)

Where n > 1, gSni, wSni ∈ [0, 1], and dGx = 1 − ∑n
i=1 wSni ∈ [0, 1].

4 DO-178C Confidence Assessment

In the GSN in Fig. 1, black rectangles represent belief in elements (gSni) and
weights on the inferences (wGiSni). The top goal is “Correctness of software
is justified” and our objective is to estimate the belief in this statement. The
value of dependency between argument (dGi) are not presented in this figure for
readability. In order to perform a first experiment of our approach, we propose
to consider the belief in correctness of DAL A software as a reference value 1.
We attempt to extract from Table 1, the expert judgment of their belief in an
objective to contribute to obtain a certain DAL. Table 1 is then used to calculate
the weight (wGiSni), belief in elements (gSni) and dependency (dGi).

4.1 Contributing Weight (wGiSni)

We propose to specify the contributing weights (wY X), based on an assessment of
the effectiveness of a premise X (eX) to support Y. When several premises support
one goal, their dependency (dY) is also used together to estimate the contributing
weights. Regarding G2, Sn1 and Sn2 are full dependent arguments, as confidence
in test results rely on trustworthy test procedures, i.e., dG2 = 1. dG3 for Sn3 and
Sn4 is estimated over a first phase to 0.5. For structural coverage analysis (G4), the
decision coverage analysis and theMC/DCanalysis are extensions to the statement

A Framework for Assessing Safety Argumentation Confidence 9

coverage analysis. Their contribution to the correctness of software is cumulative,
i.e., dG4= 0. Similarly, in order to achieve the top objective (G1), the goals G2, G3
and G4 are independent, i.e., dG1= 0.

For each DAL, objectives were defined by safety experts depending on their
implicit belief in technique effectiveness. For each objective, a recommended
applicability is given by each level (dot or not dot in Table 1), as well as the
external implementation by an independent team (black or white dot). Ideally,
all possible assurance techniques should be used to obtain a high confidence
in the correctness of any avionics software application. However, practically, a
cost-benefit consideration should be regarded when recommending activities in a
standard. Table 1 brings this consideration out showing that experts considered
the effectiveness of a technique, but also its efficiency.

Only one dot is listed in the column of level D: “Test coverage of high-level
requirements is achieved”. This objective is recommended for all DALs. We infer
that, for the given amount of resource consumed, this activity is regarded as the
most effective one. Thus, for a given objective, the greater the number of dots is,
the higher is the belief of experts. Hence, we propose to measure the effectiveness
(eX) in the following way: each dot is regarded as 1 unit effectiveness; and the
effectiveness of an objective is measured by the number of dots listed in the
Table 1. Of course, we focus on the dots to conduct an experimental application
of our approach, but a next step is to replace them by expert judgment.

Based on rules in the D-S Theory, the sum of dependency and contributing
weights is 1. Under this constraint, we deduced the contributing weights of each
objective from its normalized effectiveness and the degree of dependency (see
Table 2).

Table 2. Confidence assessment for DAL B

G1

G2 G3 G4

Sn1 Sn2 Sn3 Sn4 Sn5 Sn6 Sn7 Sn8 Sn9

gSni 0.8 0.8 0.8 0.8 0 1 1 1 0

eSni 3 3 4 3 1 2 3 3 1

dGi 1 0.5 0

wGiSni 0 0 2/7 1.5/7 1/10 1/10 2/10 3/10 1/10

eGi 6 7 10

dG1 0

wG1Gi 6/23 7/23 10/23

gG1 0.7339

10 R. Wang et al.

Table 3. Overall belief in system correctness

DAL A B C D

gDALx 1 0.7339 0.5948 0.1391

4.2 Confidence in Argument (gi)

Coming back to Table 1, the black dot, which means the implementation of
the activity needs to be deemed by another team, implies higher confidence
in achieving the corresponding objective. The activities marked with the white
dot are conducted by the same developing team, which give relatively lower
confidence in achieving the goal. In order to calculate a reference value of 1
for the DAL A, we specify that we have a full confidence when the activity is
implemented by an independent team (gSni = 1), an arbitrary value of 80 %
confidence when the activity is done by the same team (gSni = 0.8), and no
confidence when the activity is not carried out (gSni = 0, see the gSni example
for DAL B in Table 2).

4.3 Overall Confidence

Following the confidence aggregation formula given in Sect. 3.2, the confidence
in claim G1 (“Correctness of software is justified”) on DAL B is figured out as
gG1 in Table 2. Objective 5 and 9 are not required for DAL B. Thus, we remove
Sn5 and Sn9, which decrease the confidence in G4.

We perform the assessment for the four DAL levels. The contributing weights
and dependency (wGiSni, wG1Gi and dGi) remain unchanged. The confidence in
each solution depend on the verification work done by internal or external team.
The different combinations of activities implemented within the development
team or by an external team provide different degrees of confidence in software
correctness. Table 3 gives the assessment of the confidence deduced from the
DO-178C, with a reference value of 1 for DAL A.

Our first important result is that compared to failure rates, such a calculation
provides a level of confidence in the correctness of the software. For instance,
the significant difference between confidence in C and D, compared to the oth-
ers differences, clearly makes explicit what is already considered by experts in
aeronautics: level A, B and C are obtained through costly verification methods,
whereas D may be obtained with lower efforts. Review of test procedures and
results (Objectives 1, 2), components testing (Objective 4) and code structural
verification (statement coverage, data and control coupling) (Objectives 7, 8)
should be applied additionally to achieve the DAL C. The confidence in cor-
rectness of software increases from 0.1391 to 0.5948. From DAL C to DAL B,
decision coverage (Objective 6) is added to code structural verification and all
structural analysis are required to be implemented by an independent team.

A Framework for Assessing Safety Argumentation Confidence 11

5 Conclusion

In this paper, we provide a contribution to the confidence assessment of a safety
argument, and as a first experiment we apply it to the DO-178C objectives.
Our first results show that this approach is efficient to make explicit confidence
assessment. However, several limitations and open issues need to be studied.
The estimation of the belief in an objective (gX), its contribution to a goal
(wY X) and the dependency between arguments (dY) based on experts opinions
is an important issue, and needs to be clearly defined and validated through
several experiments. We choose here to reflect what is in the standard considering
the black and white dots, but it is surely a debating choice, as experts are
required to effectively estimate the confidence in arguments or inferences. This
is out of the scope of this paper. The dependency among arguments is also an
important concern to make explicit expert judgment on confidence. As a long-
term objective, this would provide a technique to facilitate standards adaptation
or extensions.

References

1. Ayoub, A., Chang, J., Sokolsky, O., Lee, I.: Assessing the overall sufficiency of
safety arguments. In: 21st Safety-Critical Systems Symposium (SSS 2013), pp.
127–144 (2013)

2. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Red-
mill, F., Anderson, T. (eds.) Industrial Perspectives of Safety-critical Systems:
Proceedings of the Sixth Safety-critical Systems Symposium, Birmingham 1998,
pp. 194–203. Springer, London (1998)

3. Cyra, L., Gorski, J.: Support for argument structures review and assessment.
Reliab. Eng. Syst. Safety 96(1), 26–37 (2011)

4. Dempster, A.P.: New methods for reasoning towards posterior distributions based
on sample data. Ann. Math. Stat. 37, 355–374 (1966)

5. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases.
In: International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 380–383. IEEE (2011)

6. DO-178C/ED-12C. Software considerations in airborne systems and equipment
certification, RTCA/EUROCAE (2011)

7. Graydon, P.J., Holloway, C.M.: An Investigation of Proposed Techniques for Quan-
tifying Confidence in Assurance Arguments, 13 August 2016. http://ntrs.nasa.gov/
archive/nasa/casi.ntrs.nasa.gov/20160006526.pdf

8. Guiochet, J., Do Hoang, Q.A., Kaaniche, M.: A model for safety case confidence
assessment. In: Koornneef, F., van Gulijk, V. (eds.) SAFECOMP 2015. LNCS, vol.
9337, pp. 313–327. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24255-2 23

9. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems Safety,
pp. 3–23. Springer, London (2011)

10. Kelly, T.: Arguing safety - a systematic approach to safety case management. Ph.D.
thesis, Department of Computer Science, University of York (1998)

11. Kelly, T., Weaver, R.: The goal structuring notation-a safety argument notation.
In: Proceedings of the Dependable Systems and Networks (DSN) workshop on
assurance cases (2004)

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160006526.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160006526.pdf
http://dx.doi.org/10.1007/978-3-319-24255-2_23

12 R. Wang et al.

12. Knight, J.: Fundamentals of Dependable Computing for Software Engineers. CRC
Press, Boca Raton (2012)

13. Ledinot, E., Blanquart, J., Gassino, J., Ricque, B., Baufreton, P., Boulanger, J.,
Camus, J., Comar, C., Delseny, H., Quéré, P.: Perspectives on probabilistic assess-
ment of systems and software. In: 8th European Congress on Embedded Real Time
Software and Systems (ERTS) (2016)

14. Mercier, D., Quost, B., Denœux, T.: Contextual discounting of belief functions. In:
Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 552–562. Springer,
Heidelberg (2005)

15. Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press,
Princeton (1976)

16. Wang, R., Guiochet, J., Motet, G., Schön, W.: D-S theory for argument confidence
assessment. In: The 4th International Conference on Belief Functions, BELIEF
2016. Springer, Prague (2016). http://belief.utia.cz

http://belief.utia.cz

Configurable Fault Trees

Christine Jakobs(B), Peter Tröger, and Matthias Werner

Operating Systems Group, TU Chemnitz, Chemnitz, Germany
{christine.jakobs,peter.troeger}@informatik.tu-chemnitz.de

Abstract. Fault tree analysis, as many other dependability evaluation
techniques, relies on given knowledge about the system architecture and
its configuration. This works sufficiently for a fixed system setup, but
becomes difficult with resilient hardware and software that is supposed to
be flexible in its runtime configuration. The resulting uncertainty about
the system structure is typically handled by creating multiple depend-
ability models for each of the potential setups.

In this paper, we discuss a formal definition of the configurable
fault tree concept. It allows to express configuration-dependent variation
points, so that multiple classical fault trees are combined into one repre-
sentation. Analysis tools and algorithms can include such configuration
properties in their cost and probability evaluation. The applicability of
the formalism is demonstrated with a complex real-world server system.

Keywords: Fault tree analysis · Reliability modeling · Structure
formulas · Configurable · Uncertainty

1 Introduction

Dependability modeling is an established tool in all engineering sciences. It helps
to evaluate new and existing systems for their reliability, availability, maintain-
ability, safety and integrity. Both research and industry have proven and estab-
lished procedures for analyzing such models. Their creation demands a correct
and detailed understanding of the (intended) system design.

For modern complex combinations of configurable hardware and software,
modeling input is available only late in the development cycle. In the special
case of resilient systems, assumptions about the logical system structure may
be even invalidated at run-time by reconfiguration activities. The problem can
be described as uncertainty of information used in the modeling attempt. Such
sub-optimal state of knowledge complicates early reliability analysis or renders it
even impossible. Uncertainty is increasingly discussed in dependability research
publications, especially in the safety analysis community. Different classes of
uncertainty can be distinguished [16], but most authors focus on structural or
parameter uncertainty, such as missing event dependencies [18] or probabilities.

On special kind of structural uncertainty is the uncertain system configura-
tion at run-time. From the known set of potential system configurations, it is
unclear which one is used in practice. This problem statement is closely related
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 13–27, 2016.
DOI: 10.1007/978-3-319-45892-2 2

14 C. Jakobs et al.

to classical phased mission systems [2] and feature variation problems known
from software engineering.

Configuration variations can be easily considered in classical dependability
analysis by creating multiple models for the same system. In practice, however,
the number of potential configurations seems to grow heavily with the increas-
ing acceptance of modularized hardware and configurable software units. This
demands increasing effort in the creation and comparison of all potential system
variations. Alternatively, the investigation and certification of products can be
restricted to very specific configurations only, which cuts down the amount of
functionality being offered.

We propose a third way to tackle this issue, by supporting configurations as
explicit uncertainty in the model itself. This creates two advantages:

– Instead of creating multiple dependability models per system configuration,
there is one model that makes the configuration aspect explicit. This simply
avoids redundancy in the modeling process.

– Analytical approaches can vary the uncertain structural aspect to determine
optimal configurations with respect to chosen criterias, such as redundancy
costs, performance impact or resulting reliability.

The idea itself is generic enough to be applied to different modeling tech-
niques. In this paper, we focus on the extension of (static) fault tree modeling
for considering configurations as uncertainty.

This article relies on initial ideas presented by Tröger et al. [23]. In com-
parison, we present here a complete formal definition with some corrections that
resulted from practical experience with the technique. We focus on the structural
uncertainty aspect only and omit the fuzzy logic part from the original proposal
here.

2 Clarifying Static Fault Trees

Fault trees are an ordered, deductive and graphical top-down method for depend-
ability analysis. Starting from an undesired top event, the failure causes and their
interdependencies are examined.

A fault tree consists of logical symbols which either represent basic fault
events, structural layering (intermediate events) or interdependencies between
root causes (gates). Classical static fault trees only offer gates that work inde-
pendent of the ordering of basic event occurence. Later extensions added the
possibility for sequence-dependent error propagation logic [26].

Beside the commonly understood AND- and OR gates, there are some non-
obvious cases in classical fault tree modeling.

One is the XOR-gate that is typically only used with two input elements.
Pelletrier and Hartline [19] proposed a more general interpretation we intend to
re-use here:

Configurable Fault Trees 15

P (t) =
n∑

i=1

⎡

⎢
⎢
⎣Pi(t) ·

⎡

⎢
⎢
⎣

n∏

j=1
j �=i

(1 − Pj(t))

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦ (1)

The formula for an XOR-gate sums up all variants where one input event is
occurring and all the other ones are not. This fits to the linguistic definition of
fault trees as model where “exactly one input event occurs” at a time [1].

The second interesting case is the Voting OR-gate, which expresses an error
propagation when k-out-of-n input failure events occur. Equations for this gate
type often assume equal input event probabilities [14], rely on recursion [17],
rely on algorithmic solutions [4] or calculate only approximations [12,13] for the
result. We use an adopted version of Heidtmanns work to calculate an exact
result with arbitrary input event probabilities:

P (k, n) =
n∑

i=k

(−1)i−k ·
(

i − 1
k − 1

)

·
∑

I∈Nj

∏

i∈I

Pi(t) (2)

As usual, if k = 1, the Voting OR-gate can be treated as an OR-gate. For
k = n, the AND-gate formula can be used.

3 Configurable Fault Trees

Configurable fault trees target the problem of modeling architectural variation.
It is assumed that the amount of possible system configurations is fixed and that
it is only unknown which one is used. A configuration is thereby defined as set
of decisions covering each possible architectural variation in the system. Opting
for one possible configuration creates a system instance, and therefore also a
dependability model instance. A system may operate in different instances over
its complete life-time.

3.1 Variation Points

The configuration-dependent variation points are expressed by additional fault
tree elements (see Table 1):

A Basic Event Set (BES) is a model element summarizing a group of basic
events with the same properties. The cardinality is expressed through natural
numbers κ and may be explicitly given by the node itself, or implicitly given by
a parent RVP element (see below). It can be a single number, list, or range of
numbers.

The parent node has to be a gate. The model element helps expressing an
architectural variation point, typically when it comes to a choice of spatial redun-
dancy levels. A basic event set node with a fixed κ is equivalent to κ basic event
nodes.

16 C. Jakobs et al.

Table 1. Additional symbols in configurable fault trees.

Basic Event Set (BES): Set of basic events with identical properties. Car-
dinality is shown with a # symbol.

Intermediate Event Set (IES): Set of intermediate events having identical
subtrees. Cardinality is shown with a # symbol.

Feature Variation Point (FVP): 1-out-of-N choice of a subtree, depending
on the configuration of the system.

Redundancy Variation Point (RVP): Extended Voting OR-gate with a
configuration-dependent number of redundant units.

Inclusion Variation Point (IVP): Event or event set that is only part of
the model in some configurations, expressed through dashed lines.

An Intermediate Event Set (IES) is a model element summarizing a group of
intermediate events with the same subtree. When creating instances of the con-
figurable fault tree, the subtree of the intermediate event set is copied, meaning
that the replicas of basic events stand for themselves. A typical example would
be a complex subsystem being added multiple times, such as a failover cluster
node, that has a failure model on its own. An intermediate event set node with
a fixed κ is equivalent to κ transfer-in nodes.

A Feature Variation Point (FVP) is an expression of architectural variations
as choice of a subtree. Each child represents a potential choice in the system
configuration, meaning that out of the system parts exactly one is used.

An interesting aspect are event sets as FVP child. Given the folding semantic,
one could argue that this violates the intended 1-out-of-N configuration choice
of the gate, since an instance may have multiple basic events being added as one
child [23]. This argument doesn’t hold when considering the resolution time of
parent links. The creation of an instance can be seen as recursive replacement
activity, were a chosen FVP child becomes the child of a higher-level classical
fault tree gate. Since the BES itself is the child node, the whole set of ‘unfolded’
basic events become child nodes of the classical gate. Given that argument, it is
valid to allow event sets as FVP child.

A Redundancy Variation Point (RVP) is a model element stating an unknown
level of spatial redundancy. As extended Voting OR-gate, it has the number of
elements as variable N and a formula that describes the derivation of k from a
given N (e.g. k = N − 2). All child nodes have to be event sets with unspecified
cardinality, since this value is inherited from the configuration choice in the parent
RVP element. N can be a single number, list or range of numbers. A RVP with a
fixed N is equivalent to a Voting OR-gate. If a transfer-in element is used as child
node, the included fault tree is inserted as intermediate event set.

Configurable Fault Trees 17

An Inclusion Variation Point (IVP) is an event or event set that, depending
on the configuration, may or may not be part of the model. In contrast to house
events, the failure probability is known and only the occurrence in the instance
is in doubt. An IVP is slightly different to the usage of an FVP, since the former
allows configurations where none of the childs is a part of the failure model. In this
case, the parent gate is (probably recursively) vanished from the model instance.

Classical Voting OR-gates with an IVP child can no longer state an explicit
N , since this is defined from the particular configuration. This is the only mod-
ification of classical fault tree semantics reasoned by our extension.

3.2 Mathematical Representation

A configuration can be understood as a set of mappings from a variation point node
to some specific choice. Depending on the node type, an inclusion variation point
can be enabled or disabled, one child has to be selected at a feature variation point,
or N and therefore also k is specified for a redundancy variation point.

Event sets, whether BES or IES, are a folded group that translate to single
events in one instance. Since there is no difference between an event and an event
set with cardinality of one, it is enough to discuss the formal representation of
the latter only. The cardinality of event sets is represented through # in the
model, while in the mathematical description κ is used.

The formal representation of classical AND and OR gates needs to include
the cardinality κ of a potential BES or IES child:

P (t) =
n∏

i=1

Pi(t)κi ;κi ∈ N (3)

P (t) = 1 −
n∏

i=1

[1 − Pi(t)]κi ;κi ∈ N (4)

For classical XOR gates, we rely on Eq. 1 as starting point. In addition, the
κ value of child nodes also has to be considered:

P (t) =
n∑

i=1

[

κi ·
[

Pi(t) ·
∏n

l=1(1 − Pl(t))κl

(1 − Pi(t))

]]

; (5)

for κi, κl ∈ N; Pi(t) �= 1

The summation term goes over each gate (i = 1 to n) and declares a sum-
mation part for the output = true case in the truth table for this gate. As the
child can be a BES with a cardinality greater than one, there would be one
summation part for each cardinality, which can be rewritten as κi times the
output = true line in the truth table. Also the product part of the formula needs
to be exponentiated. All other combinations are eliminated from the calculation.

To make the equation valid for general use in algorithms, the event proba-
bility processed at the very moment has to be divided once from the product

18 C. Jakobs et al.

part of the formula. This makes it unnecessary to clarify which event given what
cardinality is processed at the moment. Such an approach is only valid as long as
the component probability is smaller than one, which seems to be a reasonable
assumption in dependability modeling.

The Voting OR-gate has to be analyzed by calculating all possible failure
combinations. With Eq. 2 in mind, a reduced calculation is possible. When using
BES nodes as child, the different instances according to the cardinality have to
be considered. This is done by defining first a set of sub-sets Nx which represents
the combinations of the event indexes and the cardinality indexes. Given that,
we redefine the specification of Nj to be the set of all combinations of sub-sets
of Nx:

P (k, n) =
m∑

i=k

(−1)i−k ·
(

i − 1
k − 1

)

·
∑

I∈Nj

∏

i∈I

Pi(t) (6)

For special cases k = 1 or k = N , the according equations for OR and AND
gates can be used respectively.

The FVP represents a variable point in the calculation that is defined by one
sub-equation and the κ value for a given instance. This allows to represent the
FVP with a single indexed variable.

The RVP expresses uncertainty about the needed level of redundancy. It is an
extended form of the Voting OR-gate. The structural uncertainty is represented
by the possibilities for the N value that influence the k-formula. A new variable
is therefore defined which gets the different results as a value, so that the impact
of the redundancy variation is kept till the end of the analysis. An RVP with a
single value for N is a Voting OR-gate.

The IVP states an uncertainty about whether the events or underlying sub-
trees will be part of the system or not. It is formally represented by a variable
that can either stand for the event probability or the neutral probability in case
the IVP acts as non-included.

4 Use Case Example

The use case example is a typical high-performance server system available in
multiple configurations1. The main tree is shown in Fig. 1. Two subtrees are
included by the means of standard transfer-in gates. We only show a qualitative
fault tree here, but the formula representations can be used to derive quantitative
results, too.

It should be noted that intermediate events only serve as high-level descrip-
tion of some event combination, although they map to higher-order configura-
tions in the example case.

The server has a hot swap power supply, so the machine fails if both power
supplies are failing at the same time. The cardinality is defined by the BES node
itself, so:
1 https://www.thomas-krenn.com/en/wiki/2U Intel Dual-CPU RI2212+ Server.

https://www.thomas-krenn.com/en/wiki/2U_Intel_Dual-CPU_RI2212+_Server

Configurable Fault Trees 19

E5-2695v3
14-Core
2,3 GHz
(cpu2695)

#2

E5-2690v3
12-Core
2,6 GHz
(cpu2690)

#2

E5-2670v3
12-Core
2,3 GHz
(cpu2670)

#2

E5-2650v3
10-Core
2,3 GHz
(cpu2650)

#2

E5-2640v3
8-Core
2,6 GHz
(cpu2640)

#2

E5-2630v3
8-Core
2,4 GHz
(cpu2630)

#2

E5-2643v3
6-Core
3,4 GHz
(cpu2643)

#2

E5-
2630Lv3
8-Core
1,8 GHz
(cpu2630L)

#2

E5-2623v3
4-Core
3,0 GHz
(cpu2623)

#2

E5-2620v3
6-Core
2,4 GHz
(cpu2620)

#2

E5-2609v3
6-Core
1,9 GHz
(cpu2609)

#2

E5-2603v3
6-Core
1,6 GHz
(cpu2603)

#2

Supermicro
X10DRC-
LN4+
Main-
board

(mainboard)

4-Port
LAN
(τlan4)

2-Port
LAN
(τlan2)

1-Port
LAN
(τlan1)

RAM
Failure

RAID
Failure

Hot Swap
Power
Supply

(hotswap)

920 W
(pwr)
#2

Server
Failure

CPU Con-
figuration

(τcpu)

Fig. 1. Main tree for RI2212+ server

hotswap = pwr2 (7)

For the CPU variation point, a variable is defined based on the current con-
figuration choice, expressed by the function ch():

τcpu =

⎧
⎪⎪⎨

⎪⎪⎩

cpu2623, κcpu = 2; if ch(τcpu) = 1
cpu2603, κcpu = 2; if ch(τcpu) = 2
...

(8)

The server can be optionally equipped with additional LAN cards, which is
described in a similar way.

20 C. Jakobs et al.

32 GB
ECC
DDR4
(m32gb)
#24

32GB
ECC
DDR4

Premium
(m32gbp)

#2,4,8,16,24

Standard
/ Pre-
mium

32 GB
Modules
(ms32gb)

16GB
ECC
DDR4
(m16gb)
#2,4,8,16

16 GB
Modules
(ms16gb)

8GB ECC
DDR4
(m8gb)
#2,24

8GB ECC
DDR4

Premium
(m8gbp)

#2

Standard
/ Pre-
mium

8 GB
Modules
(ms8gb)

4GB ECC
DDR4
(m4gb)
#2,4

4 GB
Modules
(ms4gb)

RAM
Config-
uration
(τram)

RAM
Failure

Fig. 2. Subtree for server RAM configurations

As for the CPU, the RAM can be configured in many different ways (see
Fig. 2). The failure events for single modules are expressed as event sets with a
direct list of cardinalities. This is reflected in the related equation system:

τm4gb =

{
m4gb, κm4gb = 2; if ch(τm4gb) = 1
m4gb, κm4gb = 4; if ch(τm4gb) = 1

(9)

ms4gb = 1 − (1 − m4gb)κm4gb (10)

τm8GB =

{
m8gb, κm8gb = 2; if ch(τm8gb) = 1
m8gb, κm8gb = 24; if ch(τm8gb) = 1

(11)

τms8gb =

⎧
⎪⎨

⎪⎩

1 − (1 − m8gb)κm8gb ;
if ch(τms8gb) = 1
1 − (1 − m8gbp)2; if ch(τms8gb) = 2

(12)

ms8gb = τms8gb (13)
. . .

Configurable Fault Trees 21

τRAM =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ms4gb; if ch(τRAM) = 1
ms8gb; if ch(τRAM) = 2
ms16gb; if ch(τRAM) = 3
ms32gb; if ch(τRAM) = 4

(14)

The RAID subtree (see Fig. 3) in combination with the hard disc subtree
(ommitted due to space restrictions) expresses configuration modes of the RAID
controller, were each of them relies on some predefined variation for the number
of discs.

The determination of τdisc works similarly to the approach shown with τcpu

(see Eq. 8). The more interesting aspect is the representation of the different
RAID configurations.

Cache
Vault

Module
(τcache)

RAID
Controller

Discs

N: 4, k: 3

subraid6

Nraid60 :
1 − 2

k : N − 1

raid60

Discs

N: 3, k: 2

subraid5

Nraid50 :
2 − 4

k : N − 1

raid50

Discs

N: 2, k: 2

subraid1

Nraid10 :
2 − 6
k : 1

raid10

Discs

Nraid6 :
4 − 12
k : 3

raid6

Discs

Nraid5 :
3 − 12
k : 2

raid5

Discs

Nraid1 :
2 − 12
k : N

raid1

Discs

Nraid0 :
2 − 12
k : 1

raid0

RAID
Config-
uration
(τRAID)

RAID
Failure

Fig. 3. Sub tree for server RAID configurations.

22 C. Jakobs et al.

RAID 0 and RAID 1 are special cases. In the RAID 0 case, the variation
point can be interpreted as OR-gate. For RAID 1, the variation point can be
interpreted as AND-gate:

raid0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[1 − (1 − τdisc)2]; if ch(Nraid0) = 2
[1 − (1 − τdisc)3]; if ch(Nraid0) = 3
...
[1 − (1 − τdisc)12]; if ch(Nraid0) = 12

(15)

raid1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(τdisc)2; if ch(Nraid1) = 2
(τdisc)3; if ch(Nraid1) = 3
...
(τdisc)12; if ch(Nraid1) = 12

(16)

RAID 5 and RAID 6 are based on striping and parity bits and fail if two
respectively three disks fail. Since both RAID types lead to the same mathemat-
ical representation, we show only one here:

raid5 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= τdisc1,1τdisc1,2 + τdisc1,1τdisc1,3+
τdisc1,2τdisc1,3 − 2 · (τdisc1,1τdisc1,2

τdisc1,3); if ch(Nraid5) = 3

= τdisc1,1τdisc1,2+
τdisc1,1τdisc1,3 + τdisc1,1τdisc1,4+
τdisc1,2τdisc1,3 + τdisc1,2τdisc1,4+
τdisc1,3τdisc1,4 − 2 · (τdisc1,1τdisc1,2

τdisc1,3 + τdisc1,1τdisc1,2τdisc1,4+
τdisc1,1τdisc1,3τdisc1,4 + τdisc1,2

τdisc1,3τdisc1,4) + 3(τdisc1,1τdisc1,2

τdisc1,3τdisc1,4); if ch(Nraid5) = 4
...

(17)

RAID 10, 50 and 60 are based on two levels. The lower one is an RAID 1, 5
or 6 and the upper one is RAID 0. We show the RAID 10 case as example, the
others are comparable:

Configurable Fault Trees 23

subraid1 = τ2
disc (18)

raid10 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[1 − (1 − subraid1)2];
if ch(Nraid10) = 2
[1 − (1 − subraid1)3];
if ch(Nraid10) = 3
...

(19)

The FVP node expresses the single choice for one of the RAID configurations:

τmodraid =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

raid0; if ch(modraid) = 1
raid1; if ch(modraid) = 2
...
raid60; if ch(modraid) = 7

(20)

The Cache Vault Module can be added to the server to get a battery-backed
write cache in the RAID controller. It is represented as IVP. Similar to the voter
in a triple modular redundancy setup, it can act both as source of reliability and
additional root cause for a system failure. Since the parent node is an OR-gate,
the value may become 0, since this is the neutral element for OR-parents:

τcache =

{
cache; if ch(cache) = 1 (true)
0; if ch(cache) = 0 (false)

(21)

The complete RAID system then ends up being expressible like this:

τRAID = 1 − [(1 − RAIDController)·
(1 − τmodraid) · (1 − τcache)]

(22)

At last, the server itself can be evaluated through the OR-gate equation.
Combining all sub parts, the overall server structure formula representing the
configurable fault tree looks like this:

Server Failure = 1 − [(1 − hotswap) · (1 − mainboard)·
(1 − τcpu) · (1 − τRAM) · (1 − τlan1)·
(1 − τlan2) · (1 − τlan4) · (1 − τRAID)]

(23)

The stated set of expressions represents 4.259.520 possible server configura-
tions, which would otherwise needed to be modeled in single fault trees. Based
on the given expression, it would now be interesting to determine configuration-
dependent and independent cut sets. Furthermore, each configuration may be
related to some costs, f.e. based on the components being involved. The following
section discussed some options for such analysis tasks.

24 C. Jakobs et al.

5 Analyzing Configurable Fault Trees

Configurable fault trees can obviously be analyzed by enumerating all possible
configurations, creating the structure formula for each of them and treating the
resulting set as equation system [23]. By iterating over the complete configuration
space, best and worst cases can be identified in terms of their variation point
settings. Especially if configuration parameters depend on each other, this kind
of analysis can be helpful to deduct system design decisions.

Similarly, it is possible to do an exhaustive analysis of cut sets for each
of the configurations. This allows to identify configuration-dependent and
configuration-independent cuts sets for the given fault tree model as a whole.

An easy addition to the presented concept is a cost function. It may express
component or manufacturing costs, energy needed for operating the additional
component, repair costs if the component fails, or — in case of the top event —
the cost introduced by the occurrence of a failure.

The opposite approach is also possible. Each failure model element can be
extended with a performance factor, which should be maximized for the whole
system. Adding some system part in a configuration may then decrease the failure
probability and decrease the performance at the same time. This again allows
automated trade-off investigations for the system represented by the configurable
fault tree.

A typical analysis outcome in classical fault trees are importance metrics.
They determine basic events that have the largest impact to the failure proba-
bility of the system [8,20]. Classical importance metrics assume a coherent fault
tree that is translated to a linear structure formula. In case of configurable fault
trees, there are two factors that may have impact: Basic events and configura-
tion changes. One algebraic way for such analysis is the Birnbaum reliability
importance measure in its rewritten version for pivotal decomposition [5]. It can
determine the importance of a configurable element in the structure formula.

The creation of a combined importance metric for basic events and config-
uration changes raises some challenges. The reason for the non-applicability of
classical importance measures here is the discontinuity in an importance func-
tion in combination with possibly existing trade-offs between configuration and
basic probabilities. The impact of selecting a specific configurations may depend
on the probability of basic events. A simple example is a feature variation point
that either enables or disables the usage of a Triple Modular Redundancy (TMR)
structure. Depending on the failure probability of the voter and the replicated
modules, the configuration with TMR might decrease or increase the system
failure probability. This leads to an interesting set of new questions:

– Is there a dominating configuration that always provides the best (worst)
result for the overall space of basic event probabilities?

– If so, how can it be identified without enumerating the complete space of
configurations?

– If not, what are the numerical dependencies between configuration choices,
basic event probabilities and the resulting configuration rankings?

Configurable Fault Trees 25

– Given that, how is the importance of a particular event related to configuration
choices?

The answer to these questions as well as a general importance metric is part
of our future work on the topic.

6 Related Work

Ruijters and Stoelinga [21] created an impressive summary of fault tree modeling
approaches and their extensions, covering things such as the expression of timing
constraints or unknown basic probabilities. Although many different kinds of
uncertainty seemed to be discussed for fault trees, we found no consideration of
parametric uncertainty.

Bobbio et al. [6] addressed the problem of fault trees for big modern systems.
They propose the folding of redundant fault tree parts, but their approach can-
not handle true architecture variations. Buchacker [10] uses finite automata at the
leaves of the fault tree to model interactions of basic events. The automata can be
chosen from a predefined set or custom sub-models. This makes it possible to model
basic events affecting each other, but only in one configuration. Kaiser et al. [15]
introduced the concept of components in fault trees, by modeling each of them in a
separate tree. This supports a modular and scalable system analysis, but does not
target the problem of parametric uncertainties.

An interesting attempt for systems with dynamic behavior is given by Walter
et al. [25]. The proposed textual notation for varying parts may serve as suitable
counterpart for the graphical notation proposed here. In [9], continuous gates are
used to model relationships between elements of a fault tree. This is divergent
to our uncertainty focus, but the approach might be useful as an extension in
future work.

There are several existing approaches for considering uncertainty in impor-
tance measures, which “reflect to what degree uncertainty about risk and reliabil-
ity parameters at the component level influences uncertainty about parameters
at the system level” [11].

Walley [24] gives an overview over different uncertainty measures which can
be used in expert systems. The presented metrics are based on Bayesian proba-
bilities, coherent lower previsions, belief functions and possibility measures. Bor-
gonovo [7] examined different uncertainty importance measures based on Input-
Output correlation or Output variance. Suresh et al. [22] proposed to modify
importance measures for the use with fuzzy numbers. Baraldi et al. [3] proposed
a component ranking by Birnbaum importance in systems with uncertainty in
the failure event probabilities. All these approaches do examine the value of the
output uncertainty which respect to the uncertain input values, which relates to
parameter, but not parametric uncertainty as in our case.

7 Conclusion and Future Work

We presented an approach for expressing different system configurations directly
as part of a fault tree model. The resulting configurable fault tree allows the

26 C. Jakobs et al.

derivation of failure model instances, where each of them describes the depend-
ability of a particular system configuration. Based on clarified semantics for
XOR and Voting OR-gates, we have shown how configurable fault trees can be
represented both graphically and mathematically.

We offer a web-based tool2 for evaluating the modeling concept. The under-
lying open source project3 is available for public use and further development.

The most relevant next step is the formal definition of analytical metrics that
comply with the configuration idea. Unfortunately, dependencies in the config-
uration space can not yet be expressed explicitly. This flaw already appeared in
the presented use case, where certain CPU models are only usable with certain
RAM constellations. We can imagine to express such dependencies by abusing
house events as ‘switches’, but it doesn’t seem to be appropriate. Instead, we
intend to extend the modeling approach in the future for supporting an explicit
expression of the relations, either at modeling or analysis time.

References

1. DIN EN 61025:2007 Fehlzustandsbaumanalyse (2007)
2. Band, R.A.L., Andrews, J.D.: Phased mission modelling using fault tree analysis.

In: Proceedings of the Institution of Mechanical Engineers (2004)
3. Baraldi, P., Compare, M., Zio, E.: Component ranking by Birnbaum importance

in presence of epistemic uncertainty in failure event probabilities. IEEE Trans.
Reliab. 62, 37–48 (2013)

4. Barlow, R.E., Heidtmann, K.D.: Computing k-out-of-n reliability. IEEE Trans.
Reliab. R–33(4), 322 (1984)

5. Birnbaum, Z.: On the importance of different components in a multicomponent sys-
tem. Laboratory of Statistical Research, Department of Mathematics, University
of Washington, Seattle, Washington (1968). No. 54

6. Bobbio, A., Codetta-Raiteri, D., Pierro, M.D., Franceschinis, G.: Efficient analysis
algorithms for parametric fault trees. In: 2005 Workshop on Techniques, Method-
ologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF
2005), pp. 91–105 (2005)

7. Borgonovo, E.: Measuring uncertainty importance: investigation and comparison
of alternative approaches. Risk Anal. 26(5), 1349–1361 (2006)

8. van der Borst, M., Schoonakker, H.: An overview of PSA importance measures.
Reliab. Eng. Syst. Safety 72(3), 241–245 (2001)

9. Brissaud, F., Barros, A., Bérenguer, C.: Handling parameter and model uncertain-
ties by continuous gates in fault tree analyses. Proc. Inst. Mech. Eng. Part O J.
Risk Reliab. 224(4), 253–265 (2010)

10. Buchacker, K.: Modeling with extended fault trees. In: Fifth IEEE International
Symposium on High Assurance Systems Engineering (HASE 2000), pp. 238–246
(2000)

11. Flage, R., Terje, A., Baraldi, P., Zio, E.: On imprecision in relation to uncertainty
importance measures. In: ESREL, pp. 2250–2255 (2011)

2 https://www.fuzzed.org.
3 https://github.com/troeger/fuzzed.

https://www.fuzzed.org
https://github.com/troeger/fuzzed

Configurable Fault Trees 27

12. Heidtmann, K.D.: A class of noncoherent systems and their reliability analysis. In:
11th Annual Symposium on Fault Tolerant Computing, pp. 96–98 (1981)

13. Heidtmann, K.D.: Improved method of inclusion-exclusion applied to k-out-of-n
systems. IEEE Trans. Reliab. R–31(1), 36–40 (1982)

14. Hoang, P., Pham, M.: Optimal designs of {k, n−k+1}-out-of-n: F systems (subject
to 2 failure modes). IEEE Trans. Reliab. 40(5), 559–562 (1991)

15. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software (SCS 2003), vol. 33, pp. 37–46 (2003)

16. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat.
Soc. Ser. B (Statistical Methodology) 63(3), 425–464 (2001)

17. Malinowski, J.: A recursive algorithm evaluating the exact reliability of a circular
consecutive k-within-m-out-of-n: F system. Microelectron. Reliab. 36(10), 1389–
1394 (1996)

18. Pedroni, N., Zio, E.: Uncertainty analysis in fault tree models with dependent basic
events. Risk Anal. 33(6), 1146–1173 (2013)

19. Pelletier, F.J., Hartline, A.: Ternary exclusive OR. Logic J. IGPL 16(1), 75–83
(2008)

20. Rausand, M., Høyland, A.: System Reliability Theory: Models, Statistical Methods
and Applications. Wiley-Interscience, Hoboken (2004)

21. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 224(4),
253–265 (2010)

22. Suresh, P.V., Babar, A.K., Raj, V.V.: Uncertainty in fault tree analysis: a fuzzy
approach. Fuzzy Sets Syst. 83, 135–141 (1996)

23. Tröger, P., Becker, F., Salfner, F.: Fuzztrees - failure analysis with uncertainties. In:
2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing,
pp. 263–272 (2013)

24. Walley, P.: Measures of uncertainty in expert systems. Artif. Intell. 83(1), 1–58
(1996)

25. Walter, M., Gouberman, A., Riedl, M., Schuster, J., Siegle, M.: Lares — a novel
approach for describing system reconfigurability in dependability models of fault-
tolerant systems. In: Proceedings of European Safety and Reliability Conference
(ESREL 2009) (2009)

26. Xiang, F., Machida, F., Tadano, K., Yanoo, K., Sun, W., Maeno, Y.: A static analy-
sis of dynamic fault trees with priority-and gates. In: 2013 Sixth Latin-American
Symposium on in Dependable Computing (LADC), pp. 58–67 (2013)

A Formal Approach to Designing Reliable
Advisory Systems

Luke J.W. Martin(&) and Alexander Romanovsky

Centre for Software Reliability, School of Computing Science,
Newcastle University, Newcastle-upon-Tyne, UK

{luke.burton,alexander.romanovsky}@ncl.ac.uk

Abstract. This paper proposes a method in which to formally specify the
design and reliability criteria of an advisory system for use within
mission-critical contexts. This is motivated by increasing demands from
industry to employ automated decision-support tools capable of operating as
highly reliable applications under strict conditions. The proposed method
applies the user requirements and design concept of the advisory system to
define an abstract architecture. A Markov reliability model and real-time
scheduling model are used to effectively capture the operational constraints of
the system and are incorporated to the abstract architectural design to define an
architectural model. These constraints describe component relationships, data
flow and dependencies and execution deadlines of each component. This model
is then expressed and proven using SPARK. It was found that the approach
useful in simplifying the design process for reliable advisory systems, as well as
effectively providing a good basis of a formal specification.

Keywords: Advisory systems � Artificial intelligence � Formal methods �
High-integrity software development � Reliability � Real-Time systems �
SPARK

1 Introduction

Advisory systems are a type of knowledge-based system that provides advice to support
a human decision-maker in identifying possible solutions to complex problems [1].
Typically, any derived recommendation for a potential solution or description that
accurately details a problem and its implications, requires a degree of embedded expert
knowledge of a specific domain. Advisory systems are often disregarded as examples of
expert systems since there are several distinctive properties and characteristics between
the two, despite sharing a similar architectural design [1]. The main difference is that an
expert system may exist as an autonomous problem-solving system, which is applied to
well-defined problems that requires specific expertise to solve [1]. An advisory system,
in contrast, is limited to working in collaboration with a human decision-maker, who
assumes final authority in making a decision [3]. Thus, the main objective of an advisory
system is to synthesise domain specific knowledge and expertise, in a form that can be
readily used to determine a set of realistic solutions to a broad range of problems within
the domain area. The user is effectively guided by the system to identify potentially

© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 28–42, 2016.
DOI: 10.1007/978-3-319-45892-2_3

appropriate solutions that may maximise the possibility of producing a positive outcome
and minimise the degree of risk.

This objective is supported by the basic architecture of advisory systems [1], which
compromises of four core components. These are: (1) the knowledge base that lists
domain specific knowledge; (2) a data monitoring agent that collects (stream) data;
(3) the inference engine that interprets problems from the data and uses expert
knowledge to deduce suitable solutions and (4) the user interface for supporting
human-computer interactions. In the literature, there are many examples of advisory
systems that are deployed in various industrial settings using this architecture, such as
finance, medicine and process control [3–10]. However, since system failures in these
settings can result in potentially serious consequences, such as loss of revenue, loss of
productivity and damage to property, it is important to ensure that advisory systems are
both reliable and dependable [13]. In particular, it is imperative to ensure that advisory
systems are properly verified and validated, as well as ensuring that the system is
appropriately designed for reliability, where it may continue to perform correctly within
its operational environment over its lifespan. Currently, there have been many pro-
posals and applications of verification and validation (V&V) tools and techniques that
focus on ensuring correctness in the design and implementation of knowledge-based
systems [12–16]. It is frequently noted that current approaches in V&V for
knowledge-based systems are limited as it is unclear if the system requirements have
been adequately met [13]. This is primarily as a result of the presence of requirements
that are difficult to formulate precisely, where reliability is considered to be one such
requirement.

This paper proposes a formal design method that aims to develop and evaluate a
reliable design of an advisory system, which may be used as part of a formal speci-
fication. The method simply establishes a general correctness criteria, based on the
requirements specification and initial design concept, and develops an abstract archi-
tecture that incorporates operational constraints. The purpose of these constraints is to
describe the correct operational behaviour of each component within the system, with
respect to the correctness criteria, where violations of these suggest conditions for
system failures. These constraints are captured through well-established reliability
modelling techniques, such as the Markov model, and the likeliness of successful
operation under these constraints is examined. The abstract architecture and operational
constraints are formally expressed using SPARK. The formal verification and valida-
tion tools within the Ada development environment, are useful in proving the opera-
tional constraints and thus can be useful in describing how reliability may be achieved
in advisory systems.

This paper is structured as follows: Sect. 2 provides a very brief background of
advisory systems, in terms of general architecture, real-world applications and current
development techniques. Section 3 provides an overview of the proposed design
method. Sections 4, 5 and 6 discuss the application of this method to a current advisory
system that has designed for use within the railway industry. Respectively, these
section discuss: the user requirements and design concept; development of the archi-
tectural model and the implementation of this model using SPARK, which is applied to
prove the constraints. Section 7 concludes the paper.

A Formal Approach to Designing Reliable Advisory Systems 29

2 Background

The basic purpose of an advisory system is to assist the end-user in identifying suitable
solutions to complex, unstructured problems [1–10]. In decision-making, an unstruc-
tured problem is one that is characterised with contextual uncertainty, where there are
no definite processes in place for predictably responding to a problem – that is,
well-defined actions that do not necessarily lead to predictable outcomes [2]. As such,
problems of this nature require an analysis of all available information in order to
properly describe the problem and to attribute suitable and realistic actions that min-
imises risk and maximises the possibility of yielding a positive outcome [1, 9]. This
enables the decision-maker to form an assessment that would lead to a decision. The
extent at which risk is minimised and the probability of a positive outcome is increased,
determines the overall quality of a decision [4], where a good decision is one that
significantly minimises risk and increases the possibility of desirable out-comes.

The architecture of an advisory system, which is illustrated in Fig. 1 is structured
according to three fundamental processes [1]: knowledge acquisition; cognition and
interface. Knowledge acquisition is the process in which domain knowledge is
extracted from experts and domain literature by a knowledge engineer, and is repre-
sented in a logical computer-readable format. The knowledge representation scheme
used in advisory systems formalises and organises the knowledge so that it can be used
to support the type of case-based reasoning implemented in the system. The cognition
process encapsulates active data monitoring and problem recognition [4]. Data is
processed and analysed to identify problems, based on types of statistical deviations.
The cause of the problem can potentially be diagnosed by the system using intelligent
machine learning algorithms or solutions to the problem can be identified based on
case-based reasoning. The results of this are presented to the user through the interface,
which essentially provides various features and facilities to ensure suitable
human-computer interactions. This includes formatting the output in a human readable
form, explanation facilities to enable transparency in the reasoning process of the
system and facilities for user input, such as data or queries.

As previously noted, current literature has many detailed applications for advisory
systems in a variety of industrial sectors, including finance, transportation, energy,
space exploration, agriculture, healthcare, business management and tourism. From
these applications, it is clear that designs of advisory systems are based on the illus-
trated architecture and perform according to one of two main styles. These are:
(1) monitoring and evaluation and (2) diagnosis and recovery [2–9]. In the monitoring
and evaluation style, advisory systems simply monitor data streams to identify statis-
tical anomalies that may represent a potential problem or to identify predictive beha-
viour patterns. In either case, data is modelled and analysed to provide some
information, which is then interpreted through an evaluation procedure. This behaviour
is described in the trading advisory system presented by Chu et al. [4], in which the
system monitors and evaluates stock market data to identify specific movements in the
market that may provide lucrative trading opportunities. The system uses various
economic rules and principles as expert knowledge to assist traders in making decisions
on ideal types of stocks to buy and sell.

30 L.J.W. Martin and A. Romanovsky

In the diagnosis and recovery style, parameters are manually input to the advisory
system to frame a problem, where potential causes and/or solutions are automatically
generated by the system from an analysis procedure. An example of advisory systems
that adopt this style is described by Kassim and Abdullah [5]. Here, the advisory
system is designed for use within agriculture is proposed for advising farmers on the
most suitable rural areas and seasons in which to cultivate crops, as well as the types of
crops that should be grown. Farmers provide the system with values for various input
parameters to frame the problem, where expert knowledge is applied to infer possible
solutions on which area a farmer is most likely to be successful and the types of crops
that should be grown. In a final example, presented by Engrand and Mitchell [6], a set
of advisory systems embedded in shuttle flight computer systems are described, where
separate advisory systems are used for diagnosing malfunctions and handling faults.
The user interacts with these systems to determine the cause of malfunctions and
identify how these may be repaired. Data concerning the physical condition of the
shuttle, is provided to these systems through the control system as a continuous stream,
where there is an immediate need for the advisory systems to respond in real-time.
Various other examples of applications are also described in [2, 3, 7–10].

As advisory systems continue to be applied to various industrial settings, where
failures can potentially have serious effects, reliability and dependability become
important factors. This is to ensure that the software is likely to continue its intended
function, without errors, and under specific conditions over a period of time [17]. There
are many examples of software reliability models in the literature that can be applied to
predict or estimate reliability in the software applications, where these approaches can
provide meaningful results [18]. However, ensuring reliability in software is difficult to
achieve as a result of high complexity, where advisory systems are considered to be
very complex systems. This is because, unlike conventional software, there is a
knowledge base that is used to provide various parameters for deducing conclusions,
where the margin for error is greater. This has been the main reason why considerable

Fig. 1. Advisory System Architecture, presented in [1]

A Formal Approach to Designing Reliable Advisory Systems 31

emphasis has been placed on ensuring correctness in the representation and application
of knowledge through advanced V&V methods and techniques [13–16]. Although
various advancements have been made, V&V in knowledge based systems is a
developing area of research, where many approaches are still in their infancy. Con-
sequently, the focus of reliability has received little attention, although, there is a clear
need to ensure that advisory systems are designed for reliability.

3 Method Description

The proposed method in this paper aims to provide a simple and thorough approach in
which the design of an advisory system may be effectively described, in terms of user
requirements, operational (or functional) requirements and overall system structure –

which is the primary reason for focusing on advisory systems from an architectural
perspective as each of these can be captured to an extent. As for the design of each specific
component, this is only considered in terms of the architectural style for that component
and the types of mechanisms that are expected to be present in order for the functional
requirements to be successfully addressed. In effect, this provides specific guidelines for
the implementation of the system and can potentially be useful when developing a formal
specification. The process model of the method is presented in Fig. 2.

As can be seen from the diagram, the first process is the documentation of the user,
non-functional and functional requirements, which are encapsulated in the system
requirements. It is also expected that the requirements specification would also consist of
a high-level design concept in which to begin considering an appropriate software

Fig. 2. Method process model

32 L.J.W. Martin and A. Romanovsky

solution. The next phase is the development of an abstract architecture that lists each of
the core components for the system, with suitable descriptions of the function of these –
particularly in terms of input and generated output, dependencies and basic function. This
allows the designer to consider the structure of each component in which such functions
may be achieved, which can easily be represented through a state machine. These state
machines begin to become connected as dependencies are introduced into the model,
which establishes an architectural model. This can be extended by simply translating the
architectural model into a Markov model, where probabilities of state transitions are
defined. To ensure reliability, operational constraints are also used to extend the model
which to define specific conditions that must be adhered to in order to ensure successful
state transitions for the majority of cases. This can be in terms of ensuring the correct
input format, defining conditions of failure and conditions for recovery.

It is appreciated that not every advisory system will be required to perform in
real-time, therefore inclusion of a real-time scheduling model is optional. The purpose
of this is to simply set deadlines for each component and conditions for execution time.

With a description of the architectural model, it is then translated into a formal
simulation prototype in which each of the constraints may be proven in concept,
ensuring that there are no deadlocks, the system performs in accordance to the original
requirements that were documented and performs correctly. Essentially, the formal
prototype is to ensure correctness of the constraints in terms of their ability to satisfy
the reliability criteria, which to ensure proof of termination, proof of correctness (which
respect to requirements) and proof of real-time – which, at the design phase, can only
be achieved in theory.

4 System Requirements and Design Concept

Given the description of the method, as described in the previous section, the remainder
of this paper considers the application to an active research project concerned with the
design and development of next generation advisory systems. The requirements and
design concept that is described in this section is for an advisory system that has been
designed for use within the railway domain. The design and development of this
system is the focus of an ongoing PhD project that is sponsored by Siemens Rail
Automation and the Engineering and Physical Sciences Research Council (EPSRC).
The purpose of this system is to identify ongoing or potential delays in an area of the
railway network that is monitored by the traffic control system and to advise the traffic
coordinator, as the decision-maker, on possible rescheduling strategies that may be
applied to allow for (partial) recovery of a delay or to avoid potential future delays. The
advisory system, in this context, is required to ensure that a reasonable degree of
dependability in the railway network is maintained. This objective is motivated by
active demands within the railway industry for systems that can provide automated
support, particularly for dispatchers, who are mainly responsible for managing delays.
Currently, dispatchers often rely on experience and intuition to make predictions of a
train’s arrival time to a station based on the last known delays that were recorded and

A Formal Approach to Designing Reliable Advisory Systems 33

the train’s relative position. This method, as discussed in Martin [12], is considered
imprecise since it does not account for partial recoveries or extended delays as it
assumes that a train would maintain its current trajectory. A level of automation is
therefore necessary to ensure improved accuracy in predictions of train arrival and
departure times for each controllable point in its path. The potential of this proposed
advisory system is the degree in which operational reliability may be improved by
providing dispatchers with more accurate information, which can be incorporated in
planning and re-planning processes.

The user requirements for this system are particularly extensive, especially in terms
of human-computer interactions. However, the key requirements are that the advisory
system must extend the functionality of current operational control systems, such as the
European Traffic Control System (ETCS), by providing advice that ensures robustness
of the original timetable when disruptions to services occur. This directly states that all
advice should be produced for the purpose of recommending a rerouting strategy for
any disrupted services to ensure that each train is capable of arriving as close to the
original timetabled deadline as possible. A delay of up to a maximum of 10 min is
generally acceptable. The advice is also expected to be produced in real-time, which
has been specifically defined as a time period between 2–5 min. This is to allow time
for decision to be made by the traffic coordinator, dispatcher or signal operator. Finally,
the advice itself must be robust enough to ensure that any unintentional delays do not
occur. This means that if a potential or ongoing delay has been recognized at a point in
time in a specific section of the railway network, the advice should not list any sug-
gestions that are likely to cause a delay later in the future. Other requirements also
include enabling the user the easily understand and interpret the advice that is pro-
duced, where delays and problems can instantly be recognized and initiate the con-
tingency planning process that takes place to accommodate for expected disruptions, as
well provide some prompts on actions that may be taken to minimizes the effect of the
disruption.

5 System Architecture

The abstract architecture, which implements the specification, for the rail advisory
system, as illustrated in Fig. 3, is structured into four major components, which are the
knowledge base, the inference engine, the data processing agent (or monitoring agent)
and the interface. This architecture is based on the general advisory system architecture
and the system concepts that were presented by Beemer and Gregg [1], where it has
been modified specifically for addressing the key requirements outlined in the previous
section.

As with general advisory systems, the role of the knowledge base is to simply store
domain specific knowledge that is referenced by the inference engine, which frames the
problem and identifies possible solutions that are both presented to the user via the
interface. The inference engine is constructed from three main algorithmic sub-
components, which are the prediction, rescheduling and advice generation algorithms.

34 L.J.W. Martin and A. Romanovsky

Respectively, these algorithms: receive information from the data processing agent to
predict possible train delays that are likely to occur as well as to predict the potential
impact of delays that are either ongoing or are likely; to use the predicted impact as a value
for a cost metric to define cost of paths, where the cheapest and most feasible path is
identified; and to use information of possible delays, the effects of these and the most
suitable path(s) to generate understandable advice for the user. The advice generation
algorithm is also expected to cross check the advice against previous advice to ensure that
the results are consistent. To ensure speed in processing, there is separate driver algorithm
that extracts specific information from the knowledge base to provide the necessary
heuristics that are required by both the prediction and the rescheduling algorithms.
Finally, the data processing agent is responsible for extracting raw data from the control
system and to process it to identify key statistical and stochastic information that can be
used for prediction.

5.1 Markov Reliability Model

The Markov model consists of a list of the possible states of the advisory system, the
possible transition paths between those states and the rate parameters of those transi-
tions [16]. Figure 4 presents a Markov state machine (sometimes called a Markov

Fig. 3. Abstract architecture of the rail advisory system with data flow annotations

A Formal Approach to Designing Reliable Advisory Systems 35

chain) with four distinct states. This general class of systems may be described at any
time as being in one of a set of n distinct states, s1, s2, s3,…, sn. The system undergoes
changes of state, with the possibility of it remaining in the same state, at regular
discrete time intervals. We describe the ordered set of times t that are associated with

the discrete intervals as t1, t2, t3, …, tn. The system changes state according to the
distribution of probabilities associated with each state. We denote the actual state of the
machine at time t as st. The states represent the following: S1 is data processing; s2 is
prediction; s3 is knowledge query and s4 is rescheduling.

A full probabilistic description of this system requires, in the general case, the
specification of the present state st, in terms of all its predecessor states. Thus, the
probability of the system being in any particular state st is: p(st) = p(st | st − 1, st − 2, st
− 3, …) where the st − 1 are the predecessor states of st. In a first-order Markov chain,
the probability of the present state is a function only of its direct predecessor state: p(st)
= p(st | st − 1) where st − 1 is the predecessor of st. We next assume that the right side
of this equation is time invariant, that is, we hypothesise that across all time periods of
the system, the transitions between specific states retain the same probabilistic rela-
tionships. Based on these assumptions, we now can create a set of state transition
probabilities aij between any two states si and sj as follows: aij = p(st = si | st − 1 = sj),
1 ≥ i, j ≥ N Note that i can equal j, in which case the system remains in the same state.
The traditional constraints remain on these probability distributions; for each state si: N
aij ≥ 0, and for all j, Σ aij = 1 i = 1. The system we have just described is called a
first-order observable Markov model since the output of the system is the set of states at

3

4 2

1

1

1 11

1 1

1

1

Fig. 4. Markov model of cognition process

36 L.J.W. Martin and A. Romanovsky

each discrete time interval. The transition probabilities are observed from the opera-
tional profile and are independent of component reliabilities. If component ci connects
to n subsequent components { i k c | 1≤ k ≤ n }, the transition probability Pij between
components ci and i j c is equal to ∑= n k t i j t i k 1 (,) (,). Here, t(i,j) is the total
number of invocations or control transfers from component ci to i j c. In this section,
we describe reliability modeling of software with single architectural style. For sim-
plicity, the connector reliabilities will not be considered until the modeling of
heterogeneous architecture in the next section. Four architectural styles are used to
demonstrate how to model reliability of software with single architectural style. These
styles include batch-sequential, parallel/pipe-filter, call-and-return, and fault tolerance
styles.

5.2 Real-Time Scheduling Model

The performance criteria of the advisory system is classified as firm, where each
component must perform according to a firm deadline. The term firm is used as the
system must produce an output that is important for ensuring the dependability of the
railway, however, complete failure to produce on time is expected to result in incon-
venience and loss of productivity, rather a failure in the railway. There are many
mathematical models available to represent scheduling that are used to implement
scheduling algorithms. For the purpose of this paper, we refer to a simple static
scheduling model, where each component in the advisory system, except for the
knowledge base, performs a process that is described as being a sequence of tasks. The
schedule is an assignment of the tasks to be processed so that each task is able to
execute until completion. In the case study, it has been explicitly stated from potential
end-users that a best execution time is any time that less than, or equal to 2 min. The
worst case execution time was stated as being at most 5 min. Any advice that was
produced after 5 min would not be considered useful as it would require the dispatcher
at least 10 min to make a decision, where 15 min would have elapsed before any
decision was made and implemented, by which time the situation may be different
given the constantly changing state of the railway network. In particular, time periods
of up to 20 min in European national railway lines is considered significant as this the
minimum time required to observe any real change in state [11]. The average execution
time, therefore, would be any time between 2 and 5 min. The schedule for each
component. Development of the scheduling model is described in detail in [19], where
we simply use the preemptive fixed priority scheduling model to assess the feasibility
of developing a fixed priority schedule. Here, each component is to execute according
to a priority, where the data processing has the highest priority until execution, where
prediction has the next highest priority. Each component must perform according to a
deadline, where we evenly distribute the time for each component, where the best case
for each is 30 s and the worst is 1 min. The performance time of the system is the sum
of execution of each component, where if it is proven that each component can perform
to the deadline, then the system can also perform against the deadline as well.

A Formal Approach to Designing Reliable Advisory Systems 37

Whist the work described in [19] is very important, it is not complete in the sense
that it ignores the impact of the time required to perform system tasks. And there are
reasons to believe that such overhead in not negligible, since interrupt handling, task
switching and preemption are vital to fixed priority scheduling and may occur fre-
quently. Two implementations are possible for a fixed priority scheduler [19]:
event-driven and time-driven. In event-driven scheduling, all tasks are initiated by
internal or external events.

6 SPARK Prototype

This section presents the final phase of the formal design method, in which the abstract
architecture and operational constraints are implemented for the purpose of defining a
formal prototype. The aim of the prototype is to conduct various simulations to ensure
correct operational behaviour, mainly in terms of real-time execution and data flow
control. As the operational constraints are captured to describe correct operational
behaviour, it is important that these are proven for correctness using V&V and are
formally expressed, which is achieved using SPARK.

SPARK is based on the principle of Correctness by Construction, an efficient and
mathematically rigorous approach to software development that avoids defects, or
detects and removes them quickly. Correctness by Construction involves strong static
verification as the system is being implemented and allows the cumulative develop
ment of certification-oriented evidence.

SPARK is an Ada subset augmented with a notation for specifying contracts (an-
notations in the form of Ada comments) that are analysed statically. The current version
of SPARK is based on Ada 2005 and includes a large portion of Ada’s static semantic
facilities such as packages/encapsulation, subprograms, most types, and some
Object-Oriented Programming features, as well as the Ravenscar tasking profile.
Features such as exceptions, goto statements, and dynamic binding are excluded
because they would complicate formal verification; other features such as access types
(pointers), dynamically sized arrays, and recursion are excluded because they would
interfere with time or space predictability.

Below is a brief example of the coded implementation used in building the pro-
totype, which focuses specifically in controlling the execution of tasks by stopping and
starting them in response to events that occur. Each event is scheduled according to a
specified deadline, where a simple scheduling algorithm is implemented. For sim-
plicity, the tasks

38 L.J.W. Martin and A. Romanovsky

This code extract is applied to the scheduling algorithm to specify tasks, and the
order of tasks, that are to be scheduled. The result of the code is that very abstract
definitions of tasks, which simply represent data processing, knowledge query, pre-
diction and rescheduling, are scheduled, where the task control extract ensures that the
next task proceeds when the previous task has completely executed. The priority of

A Formal Approach to Designing Reliable Advisory Systems 39

scheduling changes after the completion of each task, where initially data processing
has the highest priority and after its completion, the prediction and knowledge query
are then given priority. The algorithm iterates in a cycle to represent a continuous
stream of data that is provided to the advisory system and performs over 100000
iterations before terminating.

The final coded solution also includes various procedures that regulate data flow
control, particularly in terms of ensuring that each component, as a defined process,
sends and receives data in the correct format, which is defined as an object for sim-
plicity, and that the data object is initialised with some value. If the value is null an
exception is thrown and the process is unable to complete, however, to ensure that the
system doesn’t crash, the final output is simply an exception message.

7 Conclusions

This paper proposed a formal design method for designing reliable advisory systems,
where the basic concepts of this were presented. The results that were accumulated
demonstrated some potential in applying this approach to the development of a formal
specification of industrial advisory systems in settings where reliability and depend-
ability are important requirements. The development of this method, and improvement
thereof, is an ongoing work, where there are many avenues in which to improve that
will be explored in the future. A key concern in this approach, which is to be addressed
in subsequent work, is that while the method aims to provide a thorough design for
reliability and evaluation of the design, there is a risk that too much time can be spent
in developing expressive models. It is important that the reliability models capture as
much detail as possible, in terms of component dependencies and execution deadlines.
However, significant levels of abstraction are required to develop these models and
capture the operational constraints. It is felt that the description is an oversimplified
view of the system and, therefore, may be limited in its practical use. This is especially
true when developing the formal prototype. Although, it is useful in demonstrating the
relationship between each component, the order of execution, expected time period of
execution and data control procedures.

In terms of real-time performance, it is not possible to identify if a component will be
able to perform in real-time solely by its abstract specification. This is because concrete
specifications and algorithm designs are typically analysed to estimate realtime capa-
bility, which are not available from an architectural perspective. A difficulty is that the
architectural style of many components, defined by the specification, are fault-tolerant –
which impacts on real-time performance as recovery processes can be costly in exe-
cution time. However, some processes are also concurrent and a predictable finite
process model is defined, which provides some confidence of real-time execution at an
architectural level. At this stage, it is believed to be possible to extend the constraints of
the process model by defining a scheduling model. A more accurate estimate, however,
and indeed a proof, can be derived from the analysis of the algorithms that are used and
empirical evidence can be gathered post-implementation. Nevertheless, time constraints
are defined and incorporated into the model, where a predictable and deterministic
performance is required to ensure that these constraints are met.

40 L.J.W. Martin and A. Romanovsky

References

1. Beemer, B.A., Gregg, D.G.: Advisory systems to support decision making. In: Handbook on
Decision Support Systems 1: Basic Themes, 2007, chapt. 24, pp. 361–377. Springer (2007)

2. Fensel, D., Groenboom, R.: A software architecture for knowledge-based systems. Knowl.
Eng. Rev. 14(2), 153–173 (1999)

3. Dunkel, J., Bruns, R.: Software architecture of advisory systems using agent and semantic
web technologies. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2005), pp. 418–421 (2005)

4. ElAlfi, A.E.E., ElAlami, M.E.: Intelligent advisory system for supporting university
managers in law. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 3(1), 123–128 (2009)

5. Chu, S.C.W., Ng, H.S., Lam, K.P.: Intelligent trading advisor. In: Proceedings of the 2000
IEEE International Conference on Management of Innovation Technology, pp. 53–58
(2000)

6. Kassim, J.M., Abdullah, R.: Advisory system architecture in agricultural environment to
support decision making process. In: 2nd International Conference on Digital Information
and Communication Technology and its Applications, pp. 453–456 (2012)

7. Mburu, C., Lee, H., Mbogho, A.: E-Health advisory system for HIV/AIDS patients in South
Africa. In: 7th International Conference on Appropriate Healthcare Technologies for
Developing Countries, IET, pp. 1–4 (2012)

8. Engrand, P., Mitchell, T., Fowler, T., Melichar, T.: The development of a dvisory systems
for shuttle slight computer systems at the kennedy space center. In: IEEE International
Conference on Systems, Man and Cybernetics Conference Proceedings 1991, vol. 3,
pp. 1685–1690 (1991)

9. Sadek, A.W.: Artificial Intelligence Applications in Trans portation. Artificial Intelligence in
Transportation: Information for Application, Transportation Research Circular, No. E -C113,
Transportation Research Board of the National Academies, pp. 1–6 (2007)

10. Spring, G.: Knowledge-based systems in transportation. Artificial Intelligence in
Transportation: Information for Application, Transportation Research Circular,
No. E-C113, Transportation Research Board of the National Academies, 2007, pp. 7–16
(2007)

11. Martin, L.J.: Predictive reasoning and machine learning for the enhancement of reliability in
railway systems. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 178–188. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33951-1_13

12. Ayel, M., Laurent, J.P.: Validation, verification and test of knowledge-based systems. IEEE
Trans. Knowl. Data Eng. 11(1), 292–312 (1999)

13. Serrano, J.A.: Formal specifications of software design methods. In: IW-FM 1999
Proceedings of the 3rd Irish Conference on Formal Methods, British Computer Society,
Swindon, UK, pp. 208–224 (1999)

14. Meseguer, P., Preece, A.D.: Verification and validation of knowledge-based systems with
formal specifications. Knowl. Eng. Rev. 4(1) (1995)

15. Antoniou, G., van Harmelen, F., Plant, R., Vanthienen, J.: Verification and validation of
knowledge-based systems. AI Mag. 19(3), 123–126 (1998)

16. Tsai, W.T., Vishnuvajjala, R., Zhang, D.: Verification and validation of knowledge-based
systems. IEEE Trans. Knowl. Data Eng. 11(1), 202–212 (1999)

17. Kitchin, J.F.: Practical markov modelling for reliability analysis. In: Proceedings of the
Annual Reliability and Maintainability Symposium, pp. 290–296 (1988)

A Formal Approach to Designing Reliable Advisory Systems 41

http://dx.doi.org/10.1007/978-3-319-33951-1_13

18. Wang, W.L., Pan, D., Chen, M.H.: Architecture-based software reliability modeling. J. Syst.
Softw. 79(1), 132–146 (2006)

19. de Magalhães, A.J.P., Costa, C.J.A.: Real-Time Scheduling Models. Technical report,
Controlo 2000, 4th Portuguese Conference on Automatic Control (2000)

20. Dross, C., Efstathopoulos, P., Lesens, D., Mentré, D., Moy, Y.: Rail, space, security: three
case studies for SPARK 2014. In: Proceedings of the ERTS (2014)

42 L.J.W. Martin and A. Romanovsky

Verification

Verifying Multi-core Schedulability
with Data Decision Diagrams

Dimitri Racordon(B) and Didier Buchs

Centre Universitaire d’Informatique, University of Geneva, Geneva, Switzerland
{dimitri.racordon,didier.buchs}@unige.ch

Abstract. Over the past few years, numerous real-time and embedded
systems have been adopting multi-core architectures for either better
performances, or energy efficiency. For the case of real-time applica-
tions, where tasks can have critical deadlines, it is desirable to ensure
the schedulability of the application statically, taking into account the
possible software and hardware failures. While a lot of effort have been
made to handle software misbehaviours, resilience to hardware failures
has often been overlooked.

In this paper, we propose to study the schedulability of multi-core
applications. Specifically, we want to check statically whether or not a
real-time system will be able to meet the deadlines of its most critical
tasks, even when one or more of its cores are offline. In order to achieve
this goal, we translate the schedulability problem into a state space explo-
ration, using Data Decision Diagrams to support the computation and
analysis of such state space.

1 Introduction

Multi-core architectures appear to have been the ultimate answer to the constant
increase of computational power required by modern applications. Over the past
few years, numerous real-time and embedded systems have been adopting those
architectures for either better performances, or energy efficiency. This shift intro-
duced new challenges to be met, as to provide efficient and reliable scheduling
methods. In particular for the case of real-time applications, it is desirable to
ensure the schedulability of the application statically, taking into account timing
and energy constraints, as well as possible software and hardware failures. While
a lot of effort have been made to handle software misbehaviours [3], resilience to
hardware failures has often been overlooked.

In this paper, we propose to address this issue by verifying the schedulability
of multi-core systems, with respect to core failures. Specifically, we want to check
statically whether or not a real-time system will be able to meet the deadlines of
its most critical tasks, even when one or more of its cores are offline. In order to
achieve this goal, our approach consists of translating the schedulability problem
into a state space exploration, thus enabling us to use well-proven model checking
techniques to compute and examine very large state spaces. Namely, we build
the set of all possible schedulings so we can check if at least one of them satisfies
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 45–61, 2016.
DOI: 10.1007/978-3-319-45892-2 4

46 D. Racordon and D. Buchs

a set of properties, despite one or more core failures. We represent this scheduling
space in a Data Decision Diagram (DDD), a very compact structure that have
been successfully used to tackle large software verification problems [12].

The remaining of this paper is organized as follows. Section 2 gives an
overview of related literature. Section 3 defines the schedulability problem.
Section 4 introduces DDDs and the operations we will use to manipulate them.
Sections 5 and 6 respectively describe our translation of the schedulability prob-
lem into a state space exploration, and the schedulability properties of such state
space. Section 7 presents our experimental results. Finally, concluding remarks
and future works are given in Sect. 8.

2 Related Literature

One angle of schedulability analysis is the study of mode changes. A system is
either in its normal mode in the absence of failure, and switches to a degraded
mode when a failure occurs. Our work fits very well into this category, as we seek
to statically verify the schedulability of the tasks of a system (or its most critical
ones) in degraded mode, after a core failure. A similar approach was studied by
Baruah and Guo, who proposed a formal framework to model degradation in
processor speed [1]. However, they focused on single-core architectures, while we
support multi-core architectures as well.

A more prominent approach to schedulability analysis is the use of time
and/or space redundancy [15]. In the former, a task is executed multiple times
on the same core while in the latter, it is executed on different cores. In both
cases, the results produced by the multiple copies are then compared to spot and
hopefully correct potential errors. In [5], Cirinei et al. proposed a technique to
allow the software designer to tune the trade-off between parallelism and fault-
tolerance, so as to guarantee the schedulability of a subset of critical tasks in the
event of a transient error. In the same area, Pathan proposed an algorithm to
compute the minimum number of cores required by a system to be schedulable,
with respect to a maximum number of transient errors [17]. More recently, Nikolic
et al. improved on the aforementioned works to study permanent core failures
as well [16]. However, these approaches focus solely on the timing constraints,
whereas our method can also consider other constraints, such as the energy
consumption.

With respect to the representation of the scheduling problem with decision dia-
grams, Jensen et al. proposed to compute the state space of schedulingswithBinary
Decision Diagrams (BDDs) [11]. However, their model only supports homogeneous
architectures, whereas ours can also support heterogeneous architectures. More
recently,Cire andHoeve proposed to useMulti-ValuedDecisionDiagrams (MDDs)
to optimise the decision of a scheduler [4], but their method focuses on finding an
optimal scheduling, rather than determining the schedulability.

Verifying Multi-core Schedulability with Data Decision Diagrams 47

3 The Schedulability Problem

In this section, we define the schedulability problem for multi-core architectures.
We first define our task model. Then we formulate the schedulability problem as
to determine whether or not there exists at least one scheduling respecting the
task model constraints.

3.1 The Task Model

Let T = {t1, . . . , tn} be a finite set of tasks. A function μ associates a quadruple
〈r, c, d, k〉 to each task t ∈ T , where r ∈ N denotes its release time (i.e. the earliest
time it is available to be processed), c ∈ N denotes its worst case execution time,
d ∈ N denotes its deadline (i.e. the latest time it should finish), and k ∈ N

denotes its criticality level. If μ(t) = 〈r, c, d, k〉, we write μr(t) = r, μc(t) = c,
μd(t) = d and μk(t) = k. Let ≺ ⊆ T × T denote the dependency relationship
between the tasks, such that t ≺ u means that u can only start after t was
executed. This relation is transitive, i.e. ∀t, u, v ∈ T, t ≺ u ∧ u ≺ v =⇒ t ≺ v.
Given a dependency relationship ≺, we write D(t) = {u ∈ T | u ≺ t} the set of
tasks t depends on. We do not allow dependency cycles, i.e. ∀t ∈ T, t
∈ D(t).
Finally, we define our task model:

Definition 1. A task model is triple M = 〈T, μ,≺〉 where T is a finite set of
tasks, μ is a function that gives the task constraints and ≺ is the dependency
relationship between the tasks.

Remark 1. A task model M = 〈T, μ,≺〉 can be seen as a directed acyclic graph
G = 〈T,E〉 where E ⊆ {(t, u) ∈ T × T | t ≺ u} denote the direct dependencies,
and where each node t ∈ T is annotated with μ(t).

Figure 1 gives an example of a task model consisting of five tasks, represented
as a graph. Tasks t0, t2 and t4 do not have any dependencies, while t1 depends
on t0 and t2, and t3 depends on t1, in addition to t0 and t2 by transitivity.
The constraints of the tasks μ are given as node annotations. For instance,
μ(t1) = 〈4, 2, 10, 0〉, meaning that it will be released at time 4, takes at most 2
units of time to be executed, must be completed before time 10 and has criticality
level 0.

Note that our model is very similar to the one described in [3]. The main
difference lies in the fact that their model handles what they call sporadic tasks,
which must be executed periodically. This can give rise to unbounded sequences
of tasks and cannot be handled by our state space exploration. However, if we
restrict ourselves to a time window, we can explicitly enumerate all occurrences
of sporadic tasks. For instance, the tasks t0, t2 and t4 of Fig. 1 could be seen as
a single sporadic task released every 4 units of time.

3.2 The Schedulability Problem

Let C = {c1, . . . , cn} be a finite set of cores. We can define a scheduling as follows:

48 D. Racordon and D. Buchs

t0

0, 3, 4, 1

t1 4, 2, 10, 0

t2

4, 3, 8, 1

t4

8, 3, 12, 1

t3

5, 4, 15, 2

Fig. 1. Example of a task model consisting of 5 tasks.

Definition 2. Given a task model M = 〈T, μ,≺〉 and a set of cores C, a schedul-
ing is a partial function S : T → C × N that assigns a task to a core at a specific
starting time.

If S(t) = 〈c, τ〉, we write Sc(t) = c and Sτ (t) = τ . Note that the above definition
does not require a scheduling to assign all task, nor to respect all task constraints.
We say that a scheduling is feasible if it does, and we define it as follows:

Definition 3. A scheduling S is feasible for M and C if and only if:

– all tasks are scheduled after their dependencies finished their execution,
i.e. ∀t ∈ T,∀u ∈ D(t), Sτ (u) + μc(u) ≤ Sτ (t)

– all tasks are scheduled after their release time,
i.e. ∀t ∈ T, Sτ (t) ≥ μr(t)

– all deadlines are met,
i.e. ∀t ∈ T, Sτ (t) + μc(t) ≤ μd(t)

Definition 4. A scheduling S is consistent if and only if there are no tasks
scheduled on the same core at the same time, i.e.
∀t, u ∈ T, t
= u ∧ Sc(t) = Sc(u) ∧ Sτ (t) ≤ Sτ (u) =⇒ Sτ (t) + μc(t) ≤ Sτ (u)

The schedulability problem consists in determining whether or not there
exists at least one feasible and consistent scheduling, given a task model M and
a set of cores C.

Figure 2 shows two examples of scheduling for the task model of Fig. 1. The
scheduling on the left considers a two-core architecture. It is feasible, since it

c0

c1

t0 t2 t1 t3

t4

(a) With two cores.

c0 t0 t2 t1 t3 t4

(b) With only one core.

Fig. 2. Two examples of schedulings.

Verifying Multi-core Schedulability with Data Decision Diagrams 49

respects all tasks constraints and dependencies, and consistent since it does not
schedule more than one task on a given core, at a given time. The scheduling
on the right considers a one-core architecture. It is also consistent but is not
feasible, since it does not respect the deadline of t4 (hatched in the figure). Note
that the gap between t0 and t2 is introduced by the release time of t2.

There exist two kinds of schedulers, namely preemptive ones which can pause
a running task to execute another one instead, and cooperative ones which can-
not. For the sake of simplicity, we will focus on the latter in this paper

3.3 k-relaxed Schedulability

It is not hard to see that the task model of Fig. 1 is actually not schedulable
on a one-core architecture. The reason is that it is not possible to schedule t3
on time without making t4 late, and vice versa. One way to tackle this problem
is to relax our definition of feasibility to consider only the most critical tasks.
In our model, t3 is more critical than t4. Hence, it could be reasonable to give
priority to t3, and forget about t4. This could be seen as a kind of degraded
mode, in which we only care about the most critical tasks until the system can
be restored.

Given a task model M = 〈T, μ,≺〉, we say that a task t is k-critical if either
its criticality level μk(t) is greater or equal to k, or if one its dependencies is
k-critical. We define T≥k = {t ∈ T | ∃u ∈ {t} ∪ D(t), μk(u) ≥ k} as the set of
k-critical tasks, and we say that a scheduling S≥k is k-feasible if and only if it is
feasible for all tasks in T≥k. Finally, we can define the k-relaxed schedulability
problem as determining whether or not there exists at least one k-feasible and
consistent scheduling, given a task model M and a set of cores C.

Back to our task model example, we can now see that Fig. 2b depicts a 2-
feasible and consistent scheduling.

4 Data Decision Diagrams

Data Decision Diagrams were introduced by Couvreur et al. in [7] as a data
structure capable of representing large sets of sequences of assignments of discrete
values (as opposed to BDDs that represents sequences of binary assignments [2]).
They take advantage of the similarities between those sequences to compact their
representation in a graph-like structure, and are also equipped with a class of
operators called homomorphisms that can manipulate them.

4.1 Definition of Data Decision Diagrams

A DDD is a directed acyclic graph where non-terminal nodes correspond to a
variable in a given set E, terminal nodes denote the existence or absence of a
sequence in the represented set, and edges correspond to the value x ∈ dom(e)
a variable e ∈ E can take. Hence, a path from the root to a terminal indi-
cates whether a particular sequence of assignments 〈e1 = x1, . . . , en = xn〉 where

50 D. Racordon and D. Buchs

e1, . . . , en ∈ E and x1 ∈ dom(e1), . . . , xn ∈ dom(en) exists in the represented
set. Namely, if the path ends on the terminal 0, then the sequence does not
exist; if it ends on the terminal 1, then sequence does exist. For the purpose
of this paper, we assume that E is a finite set equipped with a total ordering
< ⊆ E × E. We assume that ∀e ∈ E, dom(e) is discrete, but not necessarily
finite. We write E< = [e1, . . . , en] the ordered sequence such that n = |E| and
∀ei, ej ∈ E<, i < j =⇒ ei < ej . Then we define the set of DDDs inductively as
follows:

Definition 5. Let E be a finite set of variables and n = |E|. The set of DDDs
D is the union of all Di for 0 ≤ i ≤ n where:

– D0 = {0, 1}
– ∀ei ∈ E<, Di = {(ei, α) | α : dom(ei) → Di−1 and supp(α) is finite}
with supp(α) = {x ∈ dom(e) | α(x)
= 0} for some e ∈ E.

Note that this definition implies that for any node in a DDD, all successor nodes
represent either the assignments of smaller variables, or a terminal symbol. We
write e

x−→ d the DDD (e, α) ∈ D where α(x) = d and for all y
= x, α(y) = 0.
Because all paths ending on the terminal 0 represent the empty set of

sequences of assignment, there is an infinite number of representations for it
if ∃e ∈ E, dom(e) is infinite. Therefore, we introduce the notion of vanishing
terminal, as proposed in [13].

Definition 6. Let 0 ∈ D be vanishing. α ∈ Di is vanishing if and only if ∀x ∈
dom(ei), α(x) is vanishing.

As a result, we can reduce any DDD to its most compact representation by
removing all vanishing nodes and edges leading to them.

Figure 3 presents three examples of DDDs. The total ordering on E is
given by c < b < a. All three DDDs are canonical. The left DDD (Fig. 3a)
encodes the following four sequences of assignments, namely 〈a = 0, b = 2, c = 2〉,
〈a = 0, b = 2, c = 6〉, 〈a = 3, b = 4, c = 2〉 and 〈a = 3, b = 4, c = 6〉.

4.2 Operations on Data Decision Diagrams

DDDs support all usual set-theoretic operations, i.e. the union, the product and
the difference. For the purpose of this paper, we will only describe the union.
Please refer to [7] for the two others.

Definition 7. The union ∪ of two DDDs is defined inductively as follows:

– 1 ∪ 1 = 1
– ∀d ∈ Di, 0 ∪ d = d ∪ 0 = d
– ∀(e1, α1), (e2, α2) ∈ Di, (e1, α1) ∪ (e2, α2) = (e1, α1 ∪ α2, where ∀x ∈

dom(ei), (α1 ∪ α2)(x) = α1(x) ∪ α2(x)

Verifying Multi-core Schedulability with Data Decision Diagrams 51

a

b b

c

1

0 3

2 4

2 6

(a)

a

b

c c

1

0

3 2

2 6

(b)

a

b b

c c

1

0 3

3 2 4

2 2 6

(c)

Fig. 3. Three examples of a DDDs.

Note that we do not define the union for DDDs of different lengths (except for
empty set 0), so as to avoid incompatibilities between variable orderings.

The DDD of Fig. 3c is equivalent to the union of those of Fig. 3a and b. In
other words, it represents all their sequences of assignments.

In addition to the union operation, we introduce the notion of homomor-
phism, so as to allow the definition of specific operations on the DDDs:

Definition 8. A homomorphism is a mapping Φ : D → D such that Φ(0) ≡ 0
and ∀d1, d2 ∈ D, Φ(d1 ∪ d2) = Φ(d1) ∪ Φ(d2).

We define two homomorphisms, namely the identity id, as ∀d ∈ D, id(d) = d,
and the fixed point �, as Φ�(d) = Φn(d) where Φ is any homomorphism and n
is the smallest integer such that Φn = Φn−1. Other specific operations can be
defined as inductive homomorphisms. For those, it is sufficient to define Φ(1) ∈ D

and Φ(e, x) as a homomorphism (possibly inductive as well), for any (e, x) ∈
E × dom(e). Then, the application of an inductive homomorphism on (e, α) is
given by:

Φ((e, α)) =
⋃

x∈dom(e)

Φ′(e, x)(α(x))

Example 1. Consider the following inductive homomorphisms that increments
the value assigned to the variable e1 ∈ E:

inc(e1)(e, x) =

{
e

x + 1−−−−−→ id if e = e1

e
x−−−−−→ inc(e1) otherwise

inc(e1)(1) = 1

Let us detail its application over a simple DDD:

inc(b)(a 0−→ b
3−→ c

2−→ 1) = a
0−→ inc(b)(b 3−→ c

2−→ 1)

= a
0−→ b

4−→ id(c 2−→ 1)

= a
0−→ b

4−→ c
2−→ 1

52 D. Racordon and D. Buchs

5 Schedulability as a State Space Exploration

Model Checking is a technique that typically consists of verifying if a system
meets a given specification by checking all its possible states [6]. This process is
called a state space exploration. In this section, we define how to translate the
schedulability problem we defined in Sect. 3 into a state space exploration, and
how to represent it in a DDD.

5.1 Schedulings as States

To translate our schedulability problem into a state space exploration, we first
need to define how to represent a scheduling as a state. Recalling Definition 2,
given a task model M = 〈T, μ,≺〉 and a set of cores C a scheduling is a function
S : T → C ×N. If we write a scheduling as the cartesian product T ×C ×N, then
the state space of schedulings is given by A = P(T × C × N). As a result, given
a set of tasks T and state space of schedulings A, the schedulability problem
boils down to the existential quantification ∃S ∈ A such that S is feasible and
consistent for all tasks in T . Note that A is infinite, as long as neither T nor
C is an empty set. However, as our schedulability problem states that we are
interested in feasible schedulings only, we can bound the starting time of a task
by the earliest release and latest possible starting time.

Lemma 1. If we write a scheduling as the cartesian product T × C × N, then
all feasible schedulings are members of the finite state space A = P(T × C ×
{τ | mint∈T (μr(t)) ≤ τ ≤ maxt∈T (μd(t) − μc(t))}).

Proof. A scheduling is feasible only if all tasks are scheduled after their release
time. Hence, the earliest time any task can be scheduled cannot be smaller than
the smallest release time amongst all tasks. Similarly, a scheduling is feasible only
if all deadlines are met. Hence, the latest time any task can be scheduled cannot
be greater than the greatest time a task can start and still meet its deadline,
amongst all tasks. ��

5.2 Representing Schedulings in a DDD

Let M = 〈T, μ,≺〉 be a task model and C a set of cores. For each core c ∈ C,
we associate a value τ ∈ N that represents the next time the core is available.
For each task t ∈ T we associate either a tuple 〈c, τ〉 ∈ C × N or the value ε.
The former indicates that the task t is scheduled on core c and will start at
time τ . The latter simply means that the task is not scheduled yet. We use this
value so that tasks can still be assigned to a value in the k-relaxed schedulings
represented in a DDD.

Remark 2. Given a task model M = 〈T, μ,≺〉 and a set of cores C, we can
represent a set of schedulings in a DDD where the set of variables E is given
by T ∪ C, and the domains of variables are given by ∀c ∈ C, dom(c) = N and
∀t ∈ T, dom(t) = (C × N) ∪ {ε}.

Verifying Multi-core Schedulability with Data Decision Diagrams 53

The variable order can have a huge impact on the amount of shared nodes the
DDD will have. Finding the order with the best sharing factor has been shown to
be an NP-complete problem, and the motivation for numerous heuristics [8,18].
Defining a good heuristic for our schedulability problem is out of the scope of
this paper, but a good rule of thumb is to place the core variables at the top,
followed by the tasks ordered by how tight their constraints are (the tasks with
the tightest constraints last). The rationale is that the fewer options there are
to schedule a task, the more likely it is for it to be scheduled on the same core
and at the same time on many schedulings. Similarly, the value assigned to the
cores is likely to differ from one scheduling to another.

c0

c1 t4

c1 t4

t0 t2 t1 t3 1

13

11

c1, 8

16

0

c0, 13

c0, 0 c0, 4 c0, 7 c0, 9

Fig. 4. Two schedulings represented as a DDD.

Figure 4 depicts a DDD that encodes the two schedulings we presented in
Fig. 2. The path on the top encodes the scheduling on a two-core architecture,
while that of the bottom is equivalent to a one-core architecture, where the
second core is never used. The variable order is given by t3 < t1 < t2 < t0 <
t4 < c1 < c0 and is optimal for this problem. This order perfectly shares the
identical part of both schedulings, which would not have been possible if we had
swapped t4 and t3, for instance.

5.3 Computing the State Space

Roughly speaking, our state space computing method consists of iteratively refin-
ing the set of schedulings we have computed so far by trying to schedule more
and more tasks, on every possible core. At each step, for each combination
of task and core 〈t, c〉, we first filter out the schedulings, where t has already
been scheduled, where the dependencies of t have not been executed yet and
where it is not possible to satisfy the deadline of t. Then, we schedule t on c
in all remaining schedulings at once, before we move on to the next pair. Let
A0 = c1

0−→ c2
0−→ . . . t1

ε−→ t2
ε−→ . . . 1 be the DDD representing the singleton

composed of a scheduling where no task is scheduled. Then, our state space
computation can be summarized as the algorithm presented in Fig. 5. As we
can see, this algorithm corresponds to a fixed point computation on the set of
schedulings A. Line 6 generates all the aforementioned filters and line 7 refines
the remaining schedulings by scheduling t on c. This process computes the state

54 D. Racordon and D. Buchs

space of consistent schedulings that are also feasible for all T ′ ∈ P(T). This is an
important property as it will allow us to extract schedulability properties simply
by applying more filters on the resulted state space. The formal proof for this
property is quite lengthy so we only sketch it here. All schedulings are consistent
because we never schedule a task before the next available time of a core. As
for the feasibility, we schedule a new task at each step as long as we respect
its constraints, effectively computing all the schedulings for a larger subset of T
than the schedulings we computed at the previous step.

1: A ← A0

2: A ← 0
3: while A A do
4: A ← A
5: for all t, c T × C do
6: Φ ← fltrt(t) ◦ fltrd(D(t)) ◦ fltrc(t, c)
7: A ← A ∪ (sch(t, c) ◦ Φ)(A)
8: end for
9: end while

Fig. 5. State space computation algorithm

Let us now describe the filter and scheduling operations as homomorphisms.
Let t ∈ T be a task and c ∈ C be a core. We first define the filter that removes
schedulings where t has already been scheduled:

fltrt(t)(e, x) =

{
e

x−−→ id if (e = t) ∧ (x = ε)
e

x−−→ fltrt(t) otherwise

fltrt(t)(1) = 0

(1)

Let D = D(t) be the dependencies of t. The filter that removes schedulings where
the dependencies of t have not been executed yet is given by:

fltrd(D)(e, x) =

{
e

x−−→ fltrd(D − {e}) if (e ∈ D) ∧ (x
= ε)
e

x−−→ fltrd(D) otherwise

fltrd(D)(1) =

{
0 ifD
= ∅

1 otherwise

(2)

Let ets(t, c, τ) = max(τ, μr(t)) be a function that gives the time at which a task
t is expected to start, if scheduled on a core c that is next available at time τ ,
Similarly Let eta(t, c, τ) = ets(t, c, τ) + μc(t) give the time at which a task is
expected to finish. The filter that removes schedulings where the constraints of
t cannot be satisfied on c is given by:

fltrc(t, c)(e, x) =

{
e

x−−→ id if (e = c) ∧ (eta(t, c, x) ≤ μd(t))
e

x−−→ fltrc(t, c) otherwise

fltrc(t, c)(1) = 0

(3)

Verifying Multi-core Schedulability with Data Decision Diagrams 55

Next, we define the homomorphism that schedules t on c, at its next available
time. This must be split into two operations. The first takes care of the task
scheduling, i.e. it updates the assignment of the task variable:

schτ (t, c, τ)(e, x) =

{
e

c, τ−−→ id if e = t

e
x−−→ schτ (t, c, τ) otherwise

schτ (t, c, τ)(1) = 0

(4)

The second takes care of updating the next available time of the core, before it
calls the second:

sch(t, c)(e, x) =

{

e
eta(t, c, x)−−−−−−−−→ schτ (t, c, ets(t, c, x)) if e = c

e
x−−→ sch(t, c) otherwise

sch(t, c)(1) = 0

(5)

Finally, let fltr(t, c) = fltrt(t) ◦ fltrd(D(t)) ◦ fltrc(t, c) be the composition of
all filters, we can define the state space computation:

Definition 9. Let A0 = c1
0−→ c2

0−→ . . . t1
ε−→ t2

ε−→ . . . 1 be the DDD representing
the singleton composed of a scheduling where no task is scheduled. Given a task
model M = 〈T, μ,≺〉, a set of cores C and the homomorphisms fltrt, fltrd,
fltrc and sch, we can compute the state space of schedulings as the fixed point
application of

state space(M, C) =
(
id ∪

⋃

t∈T

⋃

c∈C
sch(t, c) ◦ fltr(t, c)

)�

(6)

starting with A0.

5.4 Dealing with Heterogeneous Cores

In the above, we have been assuming that it takes the same amount of time to
execute the same task on any core. While this is a reasonable assumption for
homogeneous multi-core architectures, it is not for heterogeneous ones, where
some cores can be faster than others (e.g. ARM big.LITTLE [10]).

However, it is easy to adapt our state space computing technique to accom-
modate such architectures. Let γ : C → R be a function that assigns a scaling
factor to each core, such that a task t will take �μc(t)/γ(c)� time units to run
on c. Then, we simply need to modify the eta function such that:

eta(t, c, τ) = ets(t, c, τ) +
⌈

μc(t)
γ(c)

⌉

With that modification, eta takes into account the scaling factor of c, which in
turn will reflect in the behaviours of fltrc and sch.

56 D. Racordon and D. Buchs

6 Schedulability Properties

Once we have computed the state space of schedulings for a given task model,
we can extract various properties about its schedulability. We first describe how
to extract the feasible (or k-relaxed feasible) and consistent schedulings from
our state space, considering the optional failure of one or more cores. Then, we
generalise this extraction process to the schedulings with arbitrary properties,
such as a an upper bound on the time to complete all tasks.

6.1 Extracting Feasible Schedulings

Recalling Sect. 5, we know that given a set of tasks T and state space of schedul-
ings A, the schedulability problem boils down to the existential quantification
∃S ∈ A such that S is feasible and consistent for all tasks in T . In practice,
if we built A with our state space homomorphism, this can be carried out by
the means of a filter on A that removes all paths where there is t ∈ T that is
not scheduled, i.e. it is assigned to ε. This is because all schedulings in A are
consistent, and that applying such a filter would keep only those that are feasible
for T . We can reuse the fltrd filter we defined in (2) to do that, applying it on
the set of all tasks T .

Proposition 1. Let M = 〈T, μ,≺〉 be a task model and C a set of cores. Let
A = state space(M, C) be the state space of schedulings. M is schedulable on C
if and only if fltrd(T)(A)
≡ 0.

To model the failure of a particular core c ∈ C, it suffices to further reduce the
set of schedulings to those where c is not used. In order to do that, we can define
a filter that works on the core variables, removing all the schedulings that use c
beyond a certain point in time τ ∈ N. For the case of a purely static analysis,
one could argue that the value of τ cannot be set as anything but 0, as it is not
possible to guess when a core will fail. However, if we were to use a dynamic
scheduler, we could make use of our state space to help our scheduler make an
informed decision in the event of a core failure.

fltrf(c, τ)(e, x) =

{
e

x−−→ id if (e = c) ∧ (x ≤ τ)
e

x−−→ fltrf(c, τ) otherwise

fltrf(c, τ)(1) = 0

(7)

Proposition 2. If A′ = fltrd(T)(A) represents the set of feasible and consis-
tent schedulings for all tasks in T , then fltrf(c, τ)(A′) ⊆ A′ is the subset of
schedulings that tolerate the failure of c ∈ C after time τ ∈ N.

Note that we could apply several instances of this homomorphism with different
cores to model multiple core failures. Furthermore, the order in which we would
apply any of our filters does not influence the result it will produce.

Similarly, k-relaxed schedulability can be deduced by the application of a
series of filters on the state space of schedulings. In fact, we only need to slightly
change our Proposition 1 to consider only the k-critical tasks.

Verifying Multi-core Schedulability with Data Decision Diagrams 57

Proposition 3. Let M = 〈T, μ,≺〉 be a task model and C a set of cores. Let A =
state space(M, C) be the state space of schedulings. M is k-relaxed schedulable
on C if and only if fltrd(T≥k)(A)
≡ 0.

a

b b

t1 t1 t1 t1

t0 t0 t0

1

0 3

0 3 0 3

b, 0
a, 0 a, 0 b, 0

b, 0 a, 0

(a) fltrd(T)(A)

a

b b

t1 t1 t1 t1

t0 t0 t0

1

0 3

0 3 0 3

b, 0
a, 0 a, 0 b, 0

b, 0 a, 0

(b) (fltrd(T≥1) ◦ fltrf(a, 0))(A)

Fig. 6. Two examples of schedulability verification.

Example 2. Let us illustrate our schedulability verification with a simple exam-
ple. Let T = {t0, t1} be a set of tasks, where μ(t0) = 〈0, 3, 4, 0〉 and μ(t1) =
〈0, 3, 4, 1〉. Let there be no dependencies between the tasks. Let C = {a, b} be a
set of homogeneous cores. The DDDs of Fig. 6 depict the state space of schedul-
ings A = state space(M, C). The left DDD shows the result of the application
of fltrd for all tasks in T , where all removed nodes and arcs are greyed out.
In other words, it reveals the two feasible and consistent schedulings in A; one
with t0 assigned on a at time 0 and t1 assigned on b at time 0, and reversely.
The right DDD shows the result of the composition of fltrd on all 1-critical
tasks with fltrf on core a at time 0. In other words, it reveals the sole 1-relaxed
feasible and consistent scheduling in A that tolerates the failure of the core a.
This scheduling assigns t1 on core b and ignores t0.

6.2 Extracting Other Properties

We saw that extracting schedulings that respect some property such as the
tolerance to a core failure amounts to applying an additional filter on the set of
schedulings. Actually, we can generalise this approach to any kind of property.
For instance, we could be interested in giving an upper bound on the total

58 D. Racordon and D. Buchs

makespan of our schedulings, thus filtering out those that would exceed it. Such
filter would be expressed as follows, with τ ∈ N the upper bound:

fltrms(τ)(e, x) =

{
e

x−−→ 0 if (e ∈ C) ∧ (x > τ)
e

x−−→ fltrms(τ) otherwise

fltrms(τ)(1) = 1

Another interesting user-defined filter could be to apply a bound on the total
energy consumption. Let ζ : C → N be a function that gives the amount of energy
consumed per second for each core. Let ω ∈ N

n with n = |C| be a vector indexed
by C such that ω = [ωc1 , . . . , ωcn]. Let ωmax ∈ N be the maximum amount of
energy our system is allowed to consume. Then we can define a maximum energy
consumption filter as follows:

fltrω(ωmax,ω)(e, x) =

{
e

c, τ−−→ fltrω(ωmax,ω
′) if e ∈ T

e
x−−→ fltrω(ωmax,ω) otherwise

fltrω(ωmax,ω)(1) =

{
0 if

∑
c∈C ωc > ωmax

1 otherwise

where for the DDD e
c,τ−−→ d, ω′ is given by ∀c ∈ C − {e} , ω′

c = ωc and ω′
e =

ωe + ζ(c) · μc(t). Let A = state space(M, C) be a state space of schedulings,
A′ = fltrω(ωmax,0)(A) is the subset of schedulings not using more than ωmax

units of energy.

7 Experimental Results

We implemented our schedulability verification technique in C++ with libsdd
(https://github.com/ahamez/libsdd), a generic library for decision diagrams.
Our implementation is as close as possible to the approach we described in
Sect. 5, with the exception of some minor optimizations. We used a task model
generator that chooses task constraints and dependencies at random. We ran
our tests for a 2-core and a 4-core architecture, with various number of tasks,
on a 3.5 GHz Intel Xeon E5, with 64 GB memory and on a single thread.

Because we used random task models, we sometimes got broadly different
results between executions, as the duration of the state space computation
depends on the level of sharing the DDD can expose, which in turn depends
on the constraints and dependencies of the tasks. We also noticed that the time
to determine the non-schedulability of a task model was usually much smaller
than the time to determine its schedulability. The reason is that our technique
can quickly realise that there is no possible scheduling, after it tried to schedule
all tasks at least once. When the system is schedulable, our method continues
until it finished exploring all the possible schedulings, which can take significantly
more time. So as to alleviate these discrepancies, for each number of tasks we
averaged our result on a set of 10 model instances that were found schedulable.
We aborted the runs that took more than 24 h. Our results are depicted in Fig. 7.

https://github.com/ahamez/libsdd

Verifying Multi-core Schedulability with Data Decision Diagrams 59

0 5 10 15 20 25 30 35

10−6

10−3

100

103

Tasks

T
im

e
[s
]

10−3

100

103

106

S
ch

ed
u
li
n
g
s

Time

Schedulings

(a) 2-core architecture

0 5 10 15 20 25 30 35

10−4

10−1

102

105

108

Tasks

T
im

e
[s
]

100

103

106

109

1012

S
ch

ed
u
li
n
g
s

Time

Schedulings

(b) 4-core architecture

Fig. 7. Experimental results on tight models.

0 5 10 15 20 25 30 35

10−6

10−3

100

103

106

Tasks

T
im

e
[s
]

100

103

106

109

1012

S
ch

ed
u
li
n
g
s

Time

Schedulings

(a) 2-core architecture

0 5 10 15 20 25 30 35
10−5

10−2

101

104

107

Tasks

T
im

e
[s
]

102

105

108

1011

S
ch

ed
u
li
n
g
s

Time

Schedulings

(b) 4-core architecture

Fig. 8. Experimental results on loose models.

As we can see from those results, our technique does not scale well with
the number of cores. The main reason for this is obviously the combinatorial
explosion of the possible schedulings. It averaged at roughly 400 on a 2-core
architecture for 15 tasks, while it was a million times more on a 4-core architec-
ture. Furthermore, because of our variable ordering, adding more cores tends to
create very wide DDDs. Indeed, we have to consider all possible times at which
they will be next available, which is likely to create a lot of arcs just to represent
all possible combination of cores utilisation.

Our task models used quite tight deadlines, so as to create hugely constrained
problems. In order to see how our technique would perform with more loose
models, we ran a second series of tests on a set of task models with very late
deadlines. Our results are depicted in Fig. 8. As we can see, our method was able
to compute fairly large state spaces but quickly failed to finish in a reasonable
time on the 4-core architecture.

60 D. Racordon and D. Buchs

8 Conclusion and Future Works

We presented a translation of the task scheduling problem for homogeneous and
heterogeneous multi-core architectures as a state space exploration. We used
DDDs to compute and analyse this state space, so as to extract the schedula-
bility of a task model on a given architecture under various assumptions on the
failure of one or multiple cores. Furthermore, we relaxed the notion of schedu-
lability to represent the situations where a system cannot be fully scheduled,
but still guarantees the execution of its critical tasks. We generalized our app-
roach to extract user-defined properties as well, such as the optimal makespan
or the minimum energy consumption. Finally, we implemented our state space
exploration as a proof of concept, so as to show how it would perform on various
scheduling problems.

One axis of future work would be to handle transient errors. Defining a filter
(i.e. a homomorphism) for that is not enough, as our state space exploration
does not have a way to explicitly ignore a core for an arbitrary amount of time.
One possibility would be to include fake tasks in the task model, so as to model
the temporary failure of a core. A second approach would be to add arbitrary
delays during the state space computation.

Another axis of future work would be to refine the encoding of a scheduling.
As we saw from our experimental results, including the core variables in the
representation tends to create very wide DDDs, which can have a negative effect
on the computation time. A possible lead would be to anonymise those variables
[8], so as to increase the level of sharing. It might also be worth investigating
other kind of decision diagrams, such as Σ Decision Diagrams [9]. Similarly to
what we achieved with homomorphisms, set-rewriting techniques might also be
considered [14].

Finally, it could be interesting to abstract the notion of user-defined filter, so
as to provide a schedulability analysis framework. One good abstraction would
be the definition of a domain specific language that could express the the system
and its constraints (the tasks) as well as the properties and possible failures to
consider.

References

1. Baruah, S., Guo, Z.: Mixed-criticality scheduling upon varying-speed processors.
In: 2013 IEEE 34th Real-Time Systems Symposium (RTSS), pp. 68–77. IEEE
(2013)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. C–35(8), 677–691 (1986)

3. Burns, A., Davis, R.: Mixed criticality systems-a review. Department of Computer
Science, University of York, Technical report (2013)

4. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Oper. Res. 61(6), 1411–1428 (2013)

5. Cirinei, M., Bini, E., Lipari, G., Ferrari, A.: A flexible scheme for scheduling fault-
tolerant real-time tasks on multiprocessors. In: 2007 IEEE International Parallel
and Distributed Processing Symposium, pp. 1–8 (2007)

Verifying Multi-core Schedulability with Data Decision Diagrams 61

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

7. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.:
Data decision diagrams for Petri Net analysis. In: Esparza, J., Lakos, C.A. (eds.)
ICATPN 2002. LNCS, vol. 2360, pp. 101–120. Springer, Heidelberg (2002)

8. Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S.: Computing a hierarchical
static order for decision diagram-based representation from P/T Nets. In: Jensen,
K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 121–140.
Springer, Heidelberg (2012)

9. Hostettler, S., Marechal, A., Linard, A., Risoldi, M., Buchs, D.: High-level petri net
model checking with alpina. Fundam. Inform. 113(3–4), 229–264 (2011). http://
dx.doi.org/10.3233/FI-2011-608

10. Jeff, B.: Big. little system architecture from arm: saving power through hetero-
geneous multiprocessing and task context migration. In: Proceedings of the 49th
Annual Design Automation Conference, pp. 1143–1146. ACM (2012)

11. Jensen, A.R., Lauritzen, L.B., Laursen, O.: Optimal task graph scheduling with
binary decision diagrams (2004)

12. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Linard, A., Beccuti, M.,
Hamez, A., Lopez-Bobeda, E., Jezequel, L., Meijer, J., Paviot-Adet, E., Rodriguez,
C., Rohr, C., Srba, J., Thierry-Mieg, Y., Wolf, K.: Complete Results for the 2015
Edition of theModel Checking Contest (2015). http://mcc.lip6.fr/2015/results.php

13. Linard, A., Paviot-Adet, E., Kordon, F., Buchs, D., Charron, S.: polydd: Towards
a framework generalizing decision diagrams. In: 10th International Conference on
Application of Concurrency to System Design, ACSD 2010, Braga, Portugal, 21–25
June 2010. pp. 124–133 (2010). http://dx.doi.org/10.1109/ACSD.2010.17

14. Lopez-Bobeda, E., Colange, M., Buchs, D.: Building a symbolic model checker from
formal language description. In: 2015 15th International Conference on Application
of Concurrency to System Design (ACSD), pp. 50–59 (2015)

15. Mushtaq, H., Al-Ars, Z., Bertels, K.: Survey of fault tolerance techniques for shared
memory multicore/multiprocessor systems. In: 2011 IEEE 6th International Design
and Test Workshop (IDT), pp. 12–17 (2011)

16. Nikolic, B., Bletsas, K., Petters, S.M.: Hard real-time multiprocessor scheduling
resilient to core failures. In: 2015 IEEE 21st International Conference on Embedded
and Real-Time Computing Systems and Applications, pp. 122–131 (2015)

17. Pathan, R.M.: Fault-tolerant real-time scheduling using chip multiprocessors. Proc.
Suppl. vol. EDCC (2008)

18. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient
bdd/mdd construction. University of California, Technical report (2008)

http://dx.doi.org/10.3233/FI-2011-608
http://dx.doi.org/10.3233/FI-2011-608
http://mcc.lip6.fr/2015/results.php
http://dx.doi.org/10.1109/ACSD.2010.17

Formal Verification of the On-the-Fly
Vehicle Platooning Protocol

Piergiuseppe Mallozzi1,2(B), Massimo Sciancalepore1,2,
and Patrizio Pelliccione1,2

1 Chalmers University of Technology, Gothenburg, Sweden
mallozzi@chalmers.se, massimosciancalepore@gmail.com

2 University of Gothenburg, Gothenburg, Sweden
patrizio.pelliccione@gu.se

Abstract. Future transportation systems are expected to be Systems of
Systems (SoSs) composed of vehicles, pedestrians, roads, signs and other
parts of the infrastructure. The boundaries of such systems change fre-
quently and unpredictably and they have to cope with different degrees
of uncertainty. At the same time, these systems are expected to function
correctly and reliably. This is why designing for resilience is becoming
extremely important for these systems.

One example of SoS collaboration is the vehicle platooning, a promis-
ing concept that will help us dealing with traffic congestion in the near
future. Before deploying such scenarios on real roads, vehicles must be
guaranteed to act safely, hence their behaviour must be verified. In this
paper, we describe a vehicle platooning protocol focusing especially on
dynamic leader negotiation and message propagation. We have repre-
sented the vehicles behaviours with timed automata so that we are able
to formally verifying the correctness through the use of model checking.

1 Introduction

Intelligent and connected vehicles will be key elements of future of transporta-
tion systems. Within these systems, vehicles will act as standalone systems and
at the same time they will interact each other as well as with pedestrians, roads,
signs and other parts of the infrastructure to achieve (even temporarily) some
common objectives. Future transportation systems might be then seen as Sys-
tems of Systems (SoSs) [10] in which the boundaries will change frequently and
unpredictably. Moreover, these systems will need to cope with different degrees
of uncertainty both at the level of single constituent systems and the entire SoS.
Intelligent transport systems promise to solve issues related to road congestion,
environment pollution and accidents for a better and more sustainable future [2].
In order to increase safety, reduce traffic congestion and enhance driving com-
fort, vehicles will cooperate exchanging information among each other and with
the surrounding environment as well.

In this paper, we focus on a specific scenario, namely on-the-fly and oppor-
tunistic platooning, i.e. an unplanned platooning composed of cars that tem-
porarily join in an ensemble to share part of their journey. Platooning is one
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 62–75, 2016.
DOI: 10.1007/978-3-319-45892-2 5

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 63

of the promising concepts to help us dealing with traffic jams and at the same
time to increase the overall safety while driving. A platoon consists of reducing
the distances among following vehicles; it consists of a leading vehicle driving
manually and one or more following vehicles automatically driving and follow-
ing the leader one after another. This concept has been studied and applied
especially in trucks for the transportation of goods [1] with the aim of reduc-
ing the impact with air and consume less fuel, but not as much work has been
done regarding normal vehicles platooning. Each vehicle must be able to com-
municate with the others, or at least with the cars adjacent in the platoon. The
communication is important because each vehicle needs to adjust the speed and
the distance according to the other vehicles information. Also, the leader of the
platoon is responsible for managing the overall platoon formation, by accepting
new vehicles or responding to vehicles leaving.

Platooning is also a way towards autonomous vehicles since, except for the
leader, the vehicles do not need human intervention during the travel jour-
ney. Since human intervention is no longer needed, all decisions must be taken
autonomously by the vehicle, and this is a huge challenge for safety assurance.
Consequently, on the one side the use of platooning promises to enhance safety,
and on the other side safety is exposed to new threats and challenges. It is
important to notice that nowadays most of the systems are guaranteed to oper-
ate correctly only in certain configurations and within the system boundaries.
When these boundaries are removed and the system is exposed to unpredictable
and uncontrollable scenarios and environments, safety guarantees no longer hold.
This will be one of the greatest challenges of future autonomous and connected
vehicles that will cooperate with other vehicles, pedestrians, roads, etc. in a SoS
setting.

Although there are different levels of autonomy of vehicles1, autonomous
vehicles can be considered as particular self-adaptive systems [4] since they are
capable of adapting themselves at runtime. A connected vehicle beside being
self-adaptive is also open to interactions with other vehicles and other elements
of the external environment. The unpredictability and uncontrollably of the envi-
ronment hamper the complete understanding of the system at design time. Often
uncertainty is resolved only at runtime when vehicles will face with concrete and
specific instantiations of the pre-defined environment parameters. This implies
that the certification process for safety has to be extended also to runtime phases.

In this paper, we focus on a platooning scenario where the different vehicle’s
behaviours are organized in various modes [16]. A mode is a concept for struc-
turing the overall behaviour of the system into a set of different behaviours,
each of them activated at different times according to specific circumstances.
The behaviour of each mode is then represented in terms of a state machine
that captures the behaviour of the system in a specific modality, e.g. during the

1 The National Highway Traffic Safety Administration (NHTSA) has proposed a for-
mal classification system based on five levels: “U.S. Department of Transportation
Releases Policy on Automated Vehicle Development. National Highway Traffic Safety
Administration, 2013”.

64 P. Mallozzi et al.

selection of a leader of the platoon, leaving a platoon, etc. Transitions among
states can be triggered by timing constraints or external events. A special transi-
tion can lead the system to a different mode: in this case the two states involved
are border states of the modes. Figure 1 shows a vehicle platooning scenario
that involves different heterogeneous vehicles. Each vehicle is in a certain mode
according to its behaviour; we will describe the modes in more detail later. The
communication among the vehicles is represented with dotted blue lines.

Fig. 1. Dynamic vehicle platooning scenarios. Each vehicle is in a certain mode accord-
ing to its behaviour in the platoon. (Color figure online)

In this paper, we formally verify the on-the-fly vehicle platooning protocol
through the use of the Uppaal [6] model checker. More precisely we verify the
absence of deadlocks in the mode-switching protocol as well as other interesting
properties.

The rest of the paper is structured as follows: Sect. 2 presents all the modes
of our platooning scenario, Sect. 3 describes some parts of the Uppaal model,
and Sect. 4 describes the properties we checked on our model. In Sect. 5 we show
the results of a concrete simulation of our model in Uppal. Section 6 presents
the results of the validation we performed through the use of the model checker
Uppaal. Section 7 discusses works that are related to our work and finally Sect. 8
concludes the paper with directions for our future work.

2 Multi-mode System

Partitioning a system into multiple modes, each of which describing a specific
behaviour of the system, is a common approach in system design. It leads to a
series of advantages, such as reducing the software complexity and easing the
addition of new features [16]. A self-adaptive system can be considered as a multi-
mode system; if something happens in the environment, the system switches
mode in order to adapt to the new conditions. This is the design strategy we
follow in this paper.

We start by partitioning our system into different operational modes, recog-
nizing different system behaviours. We have defined the different modes as a set
of connected states with common behaviours. There are particular states that we

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 65

call border states: to pass from one mode to another, the system passes through
these states. All the modes have one or more border states that allow the mode
switching of the system. Switching from one mode to another means that the
system is passing from one border state of the current mode to a border state
of another mode. For each vehicle taking part in the platoon we have identified
the following modes:

– Discovering : this is the entering mode of the vehicle that wants to take part
in a platoon and searches for other vehicles that have the same goals (e.g.
common destination).

– Forming : the first two vehicles that want to form a new platoon enter into
this mode. To do that, they decide who will be the leading vehicle of the
platoon.

– Joining : a vehicle has found an existing platoon and it wants to join it. The
vehicle can be accepted in the platoon within a certain time interval;

– Leading : the vehicle with the best safety attributes is elected as leader of
the platoon. We have assumed that each vehicle shares its safety attributes
with the other vehicles. Once in this mode, the vehicle has to steer the fol-
lowing vehicles, propagate information, keep track of the list of the followers,
accept new vehicles that want to join, and, finally, manage the leaving of the
followers.

– Following : all the vehicles drive in automated manner and follow the leader.
A follower can receive information from the leader and propagate it to the
other members of the platoon. It also supports the changing of the leader and
if the leader leaves then the vehicle goes into the discovering mode again.

– Leaving : all the vehicles can leave the platoon at arbitrary time. When the
leader leaves, the platoon dissolves. When a follower leaves, it must advise
the leader and receive acknowledgement.

– Dissolving : vehicle goes in the dissolving mode when (i) it is a follower and
does not have a leader anymore or (ii) it is a leader and does not have followers
anymore. From this mode, it can either leave or go back to the discovering
mode and start a new platoon.

– Negotiation: when a new vehicle wants to take part of an existing platoon,
either it becomes a follower or it has to negotiate the leadership with the
current leader. The vehicle with the highest safety attributes will always be
the leader. Leadership negotiation can also be triggered by two platoons that
want to merge.

3 Uppaal Model Description

Our strategy to model the behaviour of the on-the-fly platooning is to build a
generic Uppaal template that incorporates all the modes. This template can be
then instantiated for each vehicle that will take part to a specific scenario. More
precisely, this model can be instantiated by all the vehicles regardless of their
role in the platoon. We can then simulate a variety of scenarios by tuning the

66 P. Mallozzi et al.

F
ig
.
2
.
U

p
p
a
a
l
m

o
d
el

w
it

h
m

o
d
es

.

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 67

vehicles intrinsic properties. This solution is more scalable than having multiple
models for different roles of the platoon (leader, follower) (Fig. 2).

The dynamic leader negotiation is a property of our scenario since we do not
know who is going to be the leader beforehand. Furthermore, the leader can be
changed during the platoon life. In order to this, we assume that each vehicle
has associated a parameter representing its safety characteristics, called safety
index, before it enters the platoon. Our models and protocol assure that the
leader is always the vehicle with the highest safety index. The safety index it is
just a value and it represents the overall safety score of the vehicle, the higher the
better. We can assume that this value is calculated taking into consideration all
safety-related parameters of the vehicle, either static ones such as the year of the
vehicle, the size or dynamic ones taking into consideration the driver experience
and the people on board.

In our model every vehicle starts from a discovering mode where it looks for
other vehicles or platoons to join. In fact, the formation of a platoon can happen
in different ways:

– Two vehicles negotiating with each other and forming one platoon with one
leader and one follower. The two vehicles negotiate the leadership according
to their safety index.

– One vehicle joining an existing platoon if there is already a formed platoon
and the new vehicle is in discovery mode.

– Two existing platoons merging into one after the two leaders have performed
a re-negotiation of their leadership.

If the joining of a platoon takes more than the pre-defined constant time
(JOINING TIME) to a vehicle, then it goes into discovering mode again. After
the formation phase a vehicle can be either in Leaving or in Following state.
The leader keeps track of all its followers at any time by listening to new join-
ing or leaving requests. It can also send messages to all its followers. Message
propagation can happen in two ways:

– The leader can reach all its followers and communicate with them all.
– The leader sends a message to the follower immediately behind him and then

the message will propagate from follower to follower until reaching the last
vehicle in the platoon.

We also take into consideration the propagation time that is needed for a
vehicle to pass on the message to the next vehicle. The time is, in fact, crucial for
safety-related messages; we want to be sure that the message reaches the whole
platoon in the shortest time. We guarantee this by formulating and verifying
time-related properties on the message propagation as described in the section
below. Another feature of our model is the dynamic leader negotiation also after
the platoon has been formed. This can happen in two cases:

– Two platoons want to merge. The platoon with the leader having the highest
safety index will take the leadership while the other leader activates the join-
ing procedure to the new leader that has to be completed in CHANGE LEADER
TIME and afterward it becomes a follower of the newly elected leader.

68 P. Mallozzi et al.

– A vehicle wants to join an existing platoon and it has a safety index higher
than the platoon leader. The current leader passes its followers to the new
leader and itself becomes a follower.

4 Requirement Specifications Verified with Model
Checking

The main purpose of a model-checker is to verify the model with respect to a
requirement specification. With the timed-automata representation of the sys-
tem, it is possible to verify safety and behavioural properties of our model such
as the absence of deadlocks or the propagation of a safety-critical message within
a certain time. Like the model, the requirement specification (or properties) to
be checked must be expressed in a formally well-defined and machine readable
language. Uppaal utilizes a subset of TCTL (timed computation tree logic) [3,7].
The path formulae A <> ϕ (or equivalently A <> ϕ = ¬E[]¬ϕ) expresses that
ϕ will be eventually satisfied or more precisely that in each path will exist a
state that satisfies ϕ. The path formulae A[]ϕ expresses that ϕ should be true
in all reachable states.

In order to verify the safety requirements, we have to build a scenario first,
i.e., a particular instantiation of the system. Our model is made in order to
be configured according to the scenario we want to verify. We first need to set
the number of vehicles involved and for each vehicle we need to configure few
parameters such as its arrival time, leaving time, and safety index. We have
automated the configuration process by assigning random values to these values
as we explain in the following section. The automation process involves also the
properties that are tuned according to the scenario we want to verify. Once we
have configured our scenario we can formally verify the following properties:

– Property 1: If a vehicle is in the leading mode then its safety index is higher
then all other vehicles involved in the platoon.
Assuming a scenario where Vehicle 3 has the highest safety index the instan-
tiated property would be expressed as:

A[] (Vehicle(3).Leading =⇒ ∀(i:id v) S[3]>=S[i])

– Property 2: The propagation of a message from the leader to the last follower
happens in a bounded amount of time.
The time in which the propagation has to happen varies according to the size
of the platoon and the maximum acceptable delay is kept by the predefined
variable MAX PROP DELAY.

A[](b==1 =⇒ time<=MAX PROP DELAY)

A boolean variable b and a clock variable time are two global variables that
are used to measure the propagation time from when a message is fired. In
order to measure that, when a message starts propagating, the variable b is

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 69

set to 1 while time is reset. The properties assures that time will always be
inferior to the constant MAX PROP DELAY while b is kept to 1. The variable b
will be reset when the message has reached the last follower of the platoon.

– Property 3: For each vehicle in the following state exists at least one vehicle
in leading mode.

A[](∀(k:id v) Vehicle(k).Following =⇒
∃ (i:id v) Vehicle(i).All Leading States)

Since the leading mode is formed by a series of states this property is verified
by including all the states of the leading mode (as a series of or elements).
We did not write the full property for readability purposes.

– Property 4: Whenever the vehicle with the highest safety index starts partici-
pating in the platooning it will eventually become the leader.
Assuming that Vehicle 1 is the one with the highest safety index, the property
becomes:

Vehicle(1).Start =⇒ <> Vehicle(1).Leading

– Property 5: For all the path, the vehicle with the highest safety index goes into
the leading state.
Assuming the Vehicle 1 is the one with the highest safety index, the property
becomes:

A<> Vehicle(1).Leading

– Property 6: All vehicles will eventually leave the platoon.
Since all the vehicles have a leaving time we can verify that:

A<> (∀(i:id v) Vehicle(i).Start =⇒
∀(k:id v)Vehicle(k).Left)

– Property 7: If a leader leaves the platoon then all its followers leave as well.

A[]((∃(i:id v) Vehicle(i).Leaving Leader ∧
∀(k:id v) Vehicle(k).Following) =⇒

∀(j:id v) Vehicle(j).Dissolving Platoon)

– Property 8: The model is deadlock free.
Finally, this property assures that for all possible paths there are no deadlocks
in our model:

A[]¬ deadlock

In Sect. 6 we present the verification times of the properties described above.
We have noticed that properties apparently very similar require a very different
amount of processing time in order to be verified. For example, both properties 4
and 5 verify the leadership of the vehicle with the highest safety index. Property
5 is always verified in less than 1 second, with the time increasing linearly with
the number of vehicles. Property 4, instead, can take up to hundreds of seconds
with an exponential increase with respect to the number of vehicles.

70 P. Mallozzi et al.

5 Simulation

Latest versions of Uppaal offer the possibility to perform a concrete simulation
of the model. It is a verification tool that enables examination of the dynamic
executions of a system. The simulation is based on concrete traces, e.g., one
can choose a specific time to fire a transition. The tool helps to see at which
time a transition can be fired. We have modeled some transition to fire with a
uniform probability distribution. For example, in the propagation of the mes-
sage, the transition will fire somewhere between PROPAGATE TIME-BOUND and
PROPAGATE TIME+BOUND time units. We have used these time constraints to ver-
ify time properties based on the worst case scenarios when a message has to be
propagated from the leader throughout the entire platoon.

In order to perform a simulation, we have to configure our model specifying
parameters such as the number of vehicles, starting times, leaving times, and
safety indexes. Each vehicle is an instance of the general vehicle template and
by launching the simulation we can see how the vehicles interact with each other.
All instances start from the same state and as the time flows Uppaal randomly
selects which edge to fire among the available ones of each state. Some edges
have guards and invariant in order to model the time of the transition from one
state to another as a uniform probability distribution.

Fig. 3. Concrete simulation with Gantt Chart in Uppaal. (Color figure online)

Figure 3 shows the Gantt chart of a simulation. The horizontal axis repre-
sents the time span and in the vertical axis the list of vehicles instantiated in
the simulation. A vertical line is used to represent the current time (which cor-
responds to the one displayed in the Simulation Trace-combo box). Horizontal
bars of varying lengths and colours represent the different modes of the vehicles.
Due to the limited amount of colours we are only able to show a limited amount
of modes, specifically: discovering (purple), leading (blue), and following modes
(green).

In the simulation showed in Fig. 3 we can see 5 vehicles participating in the
platooning, each with a different safety index. vehicle0 starts first stays in the
discovering mode until other vehicles enter in the platoon. When vehicle1 and
vehicle4 enter, the three vehicles perform a leader negotiation and vehicle4
goes starts leading the platoon since it has the highest index. At time 4 vehicle3
joins the existing platoon until vehicle2 comes into play and renegotiate the
leadership with vehicle4 and so on. It is also interesting to see the message

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 71

propagation of a hazard from the leader to all its following vehicles (marked in
red).

6 Verification Results

The simulation shown in Fig. 3 refers exclusively to a particular scenario. In
this section, we instead report the results of an exhaustive verification that we
performed on a number of different scenarios. This is obtained by automating
the verification process with an external script that is able to generate different
scenarios by changing the number of vehicles involved in the platoon and by
randomly selecting independent variables within each vehicle, such as:

– Arrival time: the arrival time of a vehicle;
– Leaving time: the leaving time of a vehicle;
– Safety index : the safety index of a vehicle.

We are then able to verify all the properties described in Sect. 4 with a
number of vehicles from 2 to 5 and for each vehicle configuration we run 100
tests with random scenarios. The height properties are verified by each generated
configuration.

Fig. 4. Average verification times for 100 iterations. X-axes represent the property
being verified. Y-axes the time to verifying it (in seconds). 2-3-4 vehicles scenario
respectively

The script generates different models of the system based on a progressive
number of the vehicles N and random values of some attributes. It executes

72 P. Mallozzi et al.

two big loops, one to change the random values and one to increment the num-
ber of vehicles N. Thanks to the standalone Uppaal verifier, the script verifies
the above-mentioned properties with random attribute values of all the models
generated. If one property is not satisfied, the standalone verifier generates the
counterexample, which is useful to understand why the property is not satisfied.
Counterexample files can be open within the GUI of Uppaal. In the end, the
script generates a report of the verification, i.e., a text file that traces all the
properties, both if they are satisfied or not.

Fig. 5. Average times of 100 iterations for verifying the properties 5 vehicles

Figure 4 reports the time required to verify the 8 properties. The time shown
in the figure is the average time required in 100 iterations. Since the time to
complete the verification is exponential with respect to the number of vehicles
the figure shows the time required by configurations of 2, 3, and 4 vehicles
for verifying the 8 properties. For readability purpose, the verification time for
configurations of 5 vehicles is not shown in the figure and the average times for
100 iterations are shown in Fig. 5. As we can see from the figure properties 5
and 6 have times comparable with the verifications times of 2, 3 and 4 vehicles.
In fact, these two properties scale linearly while the others scale exponentially.

We have seen how changing the number of vehicles affects the verification
time although these change a lot also for every configuration taken into consid-
eration. Within the same number of vehicles, we have performed 100 iterations
assigning random values to the vehicle attributes. Figure 6 shows how the veri-
fication time of a single property with a 5 vehicles configuration is affected by
the random assignment of the vehicle attributes.

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 73

Fig. 6. Verification times of the deadlock free property for 5 vehicles scenario in 100
iterations.

7 Related Works

Kamali et al. [9] have also investigated the verification of vehicle platooning
representing it as a multi-agents system. They verified the behaviour partly on
the actual agent code and partly with Uppaal with timed-automata abstractions
by using two different models, one for the follower and one for the leader.

One of the main challenges in open and self-adaptive systems is to certify that
the system is always in a safe state. Since safety cannot be completely evaluated
and assured at design time, at least part of the safety assurance must be shifted
at run-time. The first ideas for certifying safety at runtime were introduced
by Rushby [13,14]. He proposes an initial idea to certification based on formal
analysis at runtime; however much work must be done to produce a solution
that can be used concretely.

A promising approach to deal with safety certification at runtime is Con-
Sert [15]. ConSert introduces the idea of Conditional Safety Certificates to facil-
itate the certification of open adaptive systems. Each subsystem is certified by a
modular safety certificate based on a contract-like approach. The evaluation and
the composition of the modular certificates happen at runtime. This framework
offers flexibility as allows designers to specify safety through variable safety-
certificates. Within the approach, all the configurations that a component of
the system can assume must be predefined at design time in order to be cer-
tified “safe” at runtime. It allows emergent adaptive behaviours only if they
can be tamed in certain boundaries with the concept of safety cages. Fully emer-
gent behaviours are not possible to certify with ConSert hence ensuring safety in
these cases is a much more difficult problem. A possible research direction can be
investigating the theoretical assume-guarantee framework proposed in [8]. This
framework allows one to efficiently define under which conditions adaptation can
be performed by still preserving desired properties. The framework might pro-
vide the infrastructure to automatically calculate at runtime which properties
are verified in specific scenarios. For instance, this might suggest excluding some

74 P. Mallozzi et al.

vehicles from the platooning since their inclusion might compromise important
properties.

Regarding the automotive domain a more practical approach is the one
proposed by Kenneth Östberg and Magnus Bengtsson [11]; they deal with
run-time safety by extending the AUTomotive Open System Architecture
(AUTOSAR [5]). Claudia Priesterjahnr et al. [12] tackle the runtime safety prob-
lem at a component level performing a runtime risk analysis. When a system is
trying to connect to another system (for example in a platoon) it computes all
reachable configurations and, for each of them, it computes the hazard proba-
bilities at runtime in order to judge whether the configuration is safe or not.

8 Conclusion

In this paper, we have presented the formal verification of on-the-fly vehicle
platooning. We have modeled the vehicle behaviours with timed-automata so
that we were able to verify the correctness of the protocol with model checking.
We were able to verify that some properties always hold for a different number
of vehicles each with random attributes. All the vehicles are modeled with a
unique generic Uppaal model that can be instantiated for each specific vehicle.
In this way, it is possible to simulate different scenarios and the verification is
easily scalable to more vehicles. Each scenario has been generated with a script,
which changes parameters such as the number of vehicles and the attributes for
each vehicle and then it verifies that all the properties hold. We have focused our
attention only to some interesting part of the model such as the dynamic leader
negotiation and the message propagation of the vehicles leaving other parts to
be further exploited. As future work, we plan to refine our model by releasing
some assumptions made during the creation of the model and verifying more
properties. As a long term goal, we plan to experiment with the protocol by
using a set of miniature vehicles.

Acknowledgement. This work was partially supported by the NGEA Vinnovapro-
ject and by the Wallenberg Autonomous Systems Program(WASP).

References

1. Current State of EU Legislation - Cooperative Dynamic Formation of Platoons for
Safe and Energy-optimized Goods Transportation. http://www.companion-
project.eu/wp-content/uploads/COMPANION-D2.2-Current-state-of-the-
EU-legislation.pdf

2. Intelligent transport systems - Innovating for the transport of the future. http://
ec.europa.eu/transport/themes/its/index en.htm

3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
LICS 1990, pp. 414–425. IEEE (1990)

4. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-
Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)

http://www.companion-project.eu/wp-content/uploads/COMPANION-D2.2-Current-state-of-the-EU-legislation.pdf
http://www.companion-project.eu/wp-content/uploads/COMPANION-D2.2-Current-state-of-the-EU-legislation.pdf
http://www.companion-project.eu/wp-content/uploads/COMPANION-D2.2-Current-state-of-the-EU-legislation.pdf
http://ec.europa.eu/transport/themes/its/index_en.htm
http://ec.europa.eu/transport/themes/its/index_en.htm

Formal Verification of the On-the-Fly Vehicle Platooning Protocol 75

5. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: Autosar-a worldwide standard is on
the road. In: 14th International VDI Congress Electronic Systems for Vehicles,
Baden-Baden, vol. 62 (2009)

6. David, A., Behrmann, G., Larsen, K.G.: A tutorial on uppaal 4.0, 28 November
2006

7. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994)

8. Inverardi, P., Pelliccione, P., Tivoli, M.: Towards an assume-guarantee theory for
adaptable systems. In: Proceedings of the ICSE Workshop on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS 2009, pp. 106–115. IEEE
Computer Society, Washington, DC (2009)

9. McAree, O., Fisher, M., Kamali, M., Dennis, L.A., Veres, S.M.: Formal verification
of autonomous vehicle platooning, 5 February 2016

10. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of
systems engineering: basic concepts, model-based techniques, and research direc-
tions. ACM Comput. Surv. 48(2), 18:1–18:41, September 2015

11. Östberg, K., Bengtsson, M.: Run time safety analysis for automotive systems in an
open and adaptive environment. In: SAFECOMP 2013-Workshop, NA, September
2013

12. Priesterjahnr, C.: Runtime safety analysis for safe reconfiguration, pp. 1–6, June
2013

13. Rushby, J.: Just-in-time certification. In: 12th IEEE International Conference on
Engineering Complex Computer Systems, pp. 15–24. IEEE (2007)

14. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008)

15. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems.
ACM Trans. Auton. Adapt. Syst. 8(2), 1–20 (2013)

16. Hansson, H., Hang, Y., Carlson, J.: Towards mode switch handling in component-
based multi-mode systems. In: Proceedings of 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, CBSE 2012, Bertinoro,
Italy, pp. 183–188, June 2012

Engineering Resilient Systems

WRAD: Tool Support for Workflow Resiliency
Analysis and Design

John C. Mace(B), Charles Morisset, and Aad van Moorsel

School of Computing Science, Newcastle University,
Newcastle upon Tyne NE1 7RU, UK

{john.mace,charles.morisset,aad.vanmoorsel}@ncl.ac.uk

Abstract. Designing efficient workflows is complex especially when con-
sidering security constraints that restrict which users can perform which
tasks. This is further exacerbated when considering users could become
unavailable at runtime, which is known as the workflow resiliency prob-
lem. Ideally, designers undertake resiliency analysis at the design stage
so that the likely impact of security constraints on a workflow can be
assessed before its execution. In this paper, we describe a new tool called
Workflow Resiliency Analysis and Design (WRAD) which automatically
encodes a textual description of a workflow into the probabilistic model-
checker PRISM, and carries out a resiliency evaluation. WRAD also
computes optimal change sets for security constraints to assure a given
resiliency threshold is reached.

Keywords: Workflow satisfiability problem · Probabilistic model
checker · User availability

1 Introduction

Workflow is a concept used widely by business to formally represent and auto-
matically manage day to day business processes [3]. Designing a workflow gen-
erally consists of two main design elements. The first is a workflow specifica-
tion, which captures the business process structure in terms of tasks (the work)
and the order (the flow) in which tasks should be performed to reach the busi-
ness goal. The second design element is a workflow security policy containing
constraints restricting which users can perform which tasks in each workflow
execution.

Productivity and security are often a source of tension as one commonly
impacts the other [10]. Productivity may be impacted even further when con-
sidering users may become unavailable at runtime (e.g., sickness, vacation, other
tasks) and the security constraints prohibit all users who remain available from
completing the workflow. A measure of workflow productivity assuming possible
user unavailability is workflow resiliency, defined as the maximum probability of
finding a complete and valid plan, that is an assignment of users to tasks such
that all tasks are assigned and all constraints are satisfied [6].
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 79–87, 2016.
DOI: 10.1007/978-3-319-45892-2 6

80 J.C. Mace et al.

Workflow resiliency analysis can help workflow and security policy designers
understand the impact of their design elements on workflow completion. Such
analysis at the design stage could help avoid the (costly) need for policy redesign
after a workflow is found unworkable. Computing the resiliency of a workflow
requires a designer to establish the existence of a plan, a problem shown in
general to be NP hard even before considering user unavailability, meaning all
possible combinations of users to tasks may need to be tried [11].

To overcome this complexity we present a new tool called Workflow
Resiliency Analysis and Design (WRAD), which helps workflow and security
policy designers predict how resiliency is impacted by changes in a workflow.
In [6] we showed that resiliency could be computed by solving a Markov decision
process encoding the assignment process of a workflow. WRAD incorporates
this approach by automatically encoding an inputted textual workflow descrip-
tion into the probabilistic model checker PRISM which provides an efficient way
to solve Markov decision processes [5]. WRAD then evaluates and outputs the
resiliency of the workflow.

If the resiliency is insufficient, the security policy designer may need to
change security constraints. WRAD computes optimal ‘change sets’ for three
types of security constraints that can be added or removed in order to reach
a required resiliency threshold, and evaluates the expected resiliency for each
change set. Once all optimal change sets have been found, the designer may
choose which one(s) to implement, for instance in order to reach a satisfactory
productivity-security trade-off. Section 2 describes some formal background on
workflow resiliency, Sect. 3 gives an overview of our tool WRAD, and Sect. 4
contains related work and concluding remarks.

2 Workflow Fundamentals

In this section we give formal background of workflow and workflow resiliency.

Definition 1. A workflow is a tuple W = ((T,≺), U, (A,S,B)) where its speci-
fication is the partially ordered set of tasks (T,≺), users the set U , and security
policy the tuple of relations (A,S,B).

Each pair (t, t′) ∈≺ indicates a sequential flow of tasks where t must be
performed before t′ in every instance of the workflow. A parallel flow of tasks is
indicated if t ⊀ t′ and t′ ⊀ t such that t and t′ may be performed in either order
and we assume this choice on ordering to be non-deterministic. The relation
A ⊆ T × U denotes authorisation constraints such that (t, u) ∈ A indicates
user u is authorised to be assigned to task t. The relation S ⊆ T × T denotes
separation of duty constraints where for any (t, t′) ∈ T , different users must be
assigned to t and t′, and B ⊆ T × T denotes binding of duty constraints where
for any (t, t′) ∈ B, the same user must be assigned to t and t′.

Definition 2. Given a workflow W = ((T,≺), U, (A,S,B)) and availability con-
figuration θ, workflow resiliency is the maximum probability of finding a complete
and valid plan.

WRAD: Tool Support for Workflow Resiliency Analysis and Design 81

A plan specifies a runtime assignment of users to workflow tasks, represented
as a relation P ⊆ T ×U , such that (t, u) ∈ P indicates user u assigned to task t.
A plan P is complete if it contains a user assignment for all tasks, otherwise P is
partial. A plan P is valid in respect to a workflow W if it satisfies all constraints
in the workflow’s security policy (A,S,B). One approach to finding a plan is to
select and assign each ‘ready’ task t to a valid and available user u. All previous
assignments are defined as a valid partial plan P meaning t is deemed ‘ready’
only if all tasks t′ ordered before t have already been assigned, in other words
there exists an assignment (t′, u′) ∈ P . User u is valid if P ∪ {(t, u)} is also a
valid partial plan. Ready tasks are selected and assigned until either a complete
and valid plan is found, or a task is selected for which no users are valid or all
valid users are unavailable, meaning no such plan exists.

User availability in workflow is a complex notion and we discuss different
ways this may be modelled in [8]. We abstract the notion of availability as an
availability configuration function θ : N × U → [0, 1] which given the number
of assigned tasks 0 ≤ N ≤ (|T | − 1) and a user u returns the probability of u
being available after N tasks have been assigned and executed. The number of
assigned tasks at any point in a workflow instance is equivalent to the number
of assignments defined in the current valid partial plan, that is N = |P |. We
encapsulate workflow resiliency as a function δ : W × θ → [0, 1] which given a
workflow W and an availability configuration θ returns a resiliency value between
0 and 1, where 1 indicates a plan will always be found whilst 0 indicates a plan
will never be found. Note the security constraints we consider are independent
of task order when finding a valid plan. However, we still consider task order in
Definition 1 as it can have an impact on the resiliency of a workflow.

3 WRAD

In this section we introduce our new tool Workflow Resiliency Analysis and
Design (WRAD), define the optimal constraints problem, and describe the
process WRAD undertakes to evaluate the resiliency of a workflow and all opti-
mal changes to the three types of security constraint we consider. An overview
of WRAD’s main components is also given.

Optimal Constraints Problem. WRAD provides security policy design-
ers with optimised changes to security constraints, which ensure a minimum
resiliency threshold is reached. WRAD automatically generates all such changes
by solving the optimal constraints problem.

Definition 3. Given a workflow W = ((T,≺), U, (A,S,B)), availability config-
uration θ, a size bound q, and resiliency threshold r, the optimal constraints
problem consists of finding all feasible and optimal change sets.

A change set CX is a set of security constraints that can be added (CA →
authorisations) or removed (CS → separations, or CB → bindings) to a workflow

82 J.C. Mace et al.

Algorithm 1. Optimal changes to authorisation constraints where CA is the
set of all optimal change sets
1: Inputs:

W = ((T, ≺), U, (A, S, B)), θ, δ, q, r
2: Initialize:

CA = ∅, V = ∅
3: if δ(W, θ) ≥ r then return CA

4: else V = {(t, u) | t ∈ T, u ∈ U}
5: if δ(((T, ≺), U, (V, S, B)), θ) < r then return CA

6: else
7: for i = 1 → q do
8: F = {|F | = i | F ∈ P(V \ A)}
9: if F = ∅ then break

10: else
11: for F ∈ F do
12: if δ(((T, ≺), U, (A ∪ F, S, B)), θ) ≥ r then
13: CA ∪ {F}
14: V = V \ F

15: return CA

W , and we write W ± CX to denote such a change. A change set CX is feasible
iff:

|CX | ≤ q, δ(W ± CX , θ) ≥ r

Where q is a size bound indicating the maximum number of constraints allowed
in each change set and r is a minimum resiliency threshold between 0 and 1. A
change set CX is considered optimal iff:

� C ′
X ⊂ CX , δ(W ± C ′

X , θ) ≥ r

We write CA, CS , and CB for the respective sets of feasible and optimal change
sets for authorisation, separation and binding constraints. Algorithm 1 shows
how CA is generated given a workflow W , availability configuration θ, resiliency
function δ, size bound q, and resiliency threshold r. The set CA contains subsets
of V \ A where V is the set of all possible authorisation constraints and A is
the set of current authorisation constraints. Two algorithms similar in nature to
Algorithm 1 exist for computing CS , and CB which contain subsets of S and B
respectively.

WRAD Analysis Process. Figure 1 shows the main components of WRAD
and the resiliency analysis process: (1) a textual description of a workflow W and
availability configuration θ (e.g., Fig. 2) is inputted to WRAD together with a
size bound q and resiliency threshold r; (2) the workflow encoder automatically
encodes the workflow description as a Markov decision process (MDP) written
in the state-based PRISM language; (3) the probabilistic model checker PRISM

WRAD: Tool Support for Workflow Resiliency Analysis and Design 83

Workflow
description

Size
bound q

Resiliency
threshold r

Workflow
encoder

Change
sets

Resiliency
analyser

Current
resiliency

Optimal
change sets

PRISM
encoding

PRISM
model checker

Workflow
resiliency

1
2

3

4

5

Fig. 1. Analysis process of WRAD which takes a workflow description, size bound q,
and resiliency threshold r as input and outputs current resiliency and optimal change
sets for security constraints.

solves the MDP encoding to compute the current resiliency of the workflow; (4)
the resiliency analyser generates the optimal change sets for security constraints
A,S and B; (5) the resiliency analyser outputs both the current resiliency of the
workflow and the optimal change sets. We now describe the main components
of WRAD in more detail.

Workflow Description. WRAD requires as input a textual workflow descrip-
tion expressing a workflow W = ((T,≺), U, (A,S,B)) and availability configura-
tion θ. A workflow description is written as a six line (.wrad) file, which can be
mapped directly from the formal definitions of W and θ given in Sect. 2:

Wi → wi is a workflow identifier.

(T,≺) → n : |i, j| . . . |i′, j′| where n = |T | is the number of tasks and for
each pair |i, j|, ti ≺ tj .

A → k : |i, j| . . . |i′, j′| where k = |U | is the number of users and for
each pair |i, j|, (ti, uj) ∈ A.

S → |i, j| . . . |i′, j′| where for each pair |i, j|, (ti, uj) ∈ S.

B → |i, j| . . . |i′, j′| where for each pair |i, j|, (ti, uj) ∈ B.

θ → |i, j,m| . . . |i′, j′,m′| where for each triple |i, j,m|, θ(i, uj) =
m.

Figure 2 provides a workflow description for a small workflow example W1

and availability configuration θ1 we use throughout the remainder of this section
to illustrate various concepts. The workflow description file is inputted to WRAD
at the command line together with a size bound q and resiliency threshold r.

Workflow Encoder. In [6] we showed that computing the optimal policy of
a Markov decision process (MDP) modelling a workflow’s assignment process is

84 J.C. Mace et al.

texttt

w1
5 : |1, 2|1, 4|2, 3|3, 5|4, 5|
3 : |1, 1|1, 2|1, 3|2, 3|3, 1|3, 2|3, 3|4, 1|4, 2|5, 1|5, 2|
|1, 2|2, 3|2, 4|3, 5|
|3, 4|
|0, 1, 0.96|0, 2, 0.86|0, 3, 0.94|1, 1, 0.89|1, 2, 0.85|1, 3, 0.91|2, 1, 0.80|2, 2, 0.85|2, 3, 0.89
|3, 1, 0.69|3, 2, 0.74|3, 3, 0.75|4, 1, 0.64|4, 2, 0.72|4, 3, 0.69|

Fig. 2. Workflow description file for workflow example W1 and availability configura-
tion θ1, which is inputted to WRAD for resiliency evaluation.

equivalent to finding a plan maximising the MDP’s value function. The value
function returns 0 ≤ v ≤ 1 where v indicates the resiliency of the workflow and
provides an implementation of the resiliency function δ. WRAD encodes the
inputted workflow description as an MDP in the state-based PRISM language,
an example of which can be found in [7]. Each state of the MDP encoded in
PRISM is essentially a tuple of the form (a, t, P, θ) where: (1) a is the current
action being performed (e.g., select task t, find valid users for t, assign t); (2) t
is the ‘ready’ task selected for assignment; (3) P is a partial plan indicating all
valid task assignments previous to t; (4) θ is the users’ availability configuration.
A set of modules in the PRISM encoding contain commands which update a,
t or P when guards placed on those commands become true. The commands
essentially transition the encoded MDP to a next valid state. The availability
configuration θ is encoded as a set of modules, one per user, which update each
user’s probabilistic availability after each task assignment accordingly.

PRISM Model Checker. There are many ways to solve an MDP includ-
ing dynamic programming (e.g. value iteration) [4]. This technique is provided
by the probabilistic model checking tool PRISM enables the specification, con-
struction and analysis of probabilistic models such as MDPs [5]. PRISM is an
intuitive choice as it can model both non-deterministic (e.g., task selection) and
probabilistic (e.g. user availability) choice, and gives an efficient way to solve an
MDP. WRAD inputs an MDP encoding into PRISM which verifies the maxi-
mum probability that a state can eventually be reached such that a valid and
complete plan exists, that is all tasks are assigned a user and all constraints are
satisfied. This property is inputted into PRISM as Pmax=? [F "plan"], where
F is the eventually operator.

Policy Analyser. The policy analyser outputs the current resiliency of
a workflow W and the sets CA, CS , and CB of all optimal change sets
for the three types of security constraint we consider. Figure 3 illustrates
Algorithm 1 for our example workflow W1 where the size bound q = 3,
resiliency threshold r = 0.55, and resiliency δ(W1, θ) = 0.4325. WRAD
generates three optimal authorisation constraint change sets where CA =

WRAD: Tool Support for Workflow Resiliency Analysis and Design 85

W1

0.4325
q = 3, r = 0.55

{(t2, u2)}
0.4722

{(t4, u3)}
0.4325

{(t2, u1)}
0.4621

{(t5, u3)}
0.5741

{(t2, u1), (t4, u3)}
0.6134

{(t2, u2), (t4, u3)}
0.6099

{(t2, u1), (t2, u2)}
0.4735

Fig. 3. Illustration of algorithm to find optimal change sets CA of size q ≤ 3 where
resiliency δ(W1 + CA, θ) ≥ 0.55.

{{(t5, u3)}, {(t2, u1), (t4, u3)}, {(t2, u2), (t4, u3)}}. Note Algorithm 1 need only
consider change sets of sizes 1 and 2. Table 1 shows all optimal change sets CS

and CB for W1 also generated by WRAD. We assume the final selection of which
change set to implement will be the choice of the security policy designer. For
instance the designer may select {(t5, u3)} from CA to minimise changes to the
security policy, or {(t2, u1), (t4, u3)} to maximise resiliency, or {(t2, u2), (t4, u3)}
because users u2 and u3 are only qualified to perform t2 and t4 respectively.

Computation Time. Computation time for the above analysis was 39.4 s run-
ning WRAD on a MacBook Pro with 2.7 GHz Intel Core i5 processor and
16 MB RAM, running OS X version 10.11.4. and PRISM version 4.3.1. To
give an indication of how computation time can change we analysed workflow
W2 = W1 + {(t2, u2), (t4, u3)} with r = 0.70. A single change set of binding con-
straints {(t3, t4)} was found in a total computation time of 10.4s. Next analysing
W3 = W2 − {(t3, t4)} with r = 0.80 found four singleton change sets for autho-
risation constraints in 21.8 s. In [7] we observed resiliency computation time is
closely coupled with the complexity of a workflow in terms of its number of
tasks, users and constraints. We showed that adding or removing particular sets
of constraints can increase resiliency computation time whilst other sets may
reduce it.

4 Final Remarks

Related and Future Work. To the best of our knowledge no tool support
exists for policy designers to automatically evaluate workflow resiliency and com-
pute optimal security constraint changes. Existing work on workflow resiliency
has focused on understanding its complexity [11] and finding efficient solutions
to the problem [1]. The scalability of WRAD is bounded by the size of models
PRISM can evaluate, that is the number of reachable states in the MDP encod-
ing. Although no definitive answer is provided, the developers of PRISM suggest

86 J.C. Mace et al.

Table 1. Optimal change sets CS and CB for workflow W1’s separation and binding
constraints, where q is a bound on change set size and r is the resiliency threshold.

q r δ(W1, θ) CS δ(W1 − CS , θ) CB δ(W1 − CB , θ)

W1 3 0.55 0.4325 {(t3, t5)} 0.5792 {(t3, t4)} 0.5697

{(t1, t2), (t2, t3)} 0.5823

{(t1, t2), (t2, t4)} 0.5823

{(t2, t3), (t2, t4)} 0.5823

models with up to 108 states can be evaluated on a ‘typical PC’. Encoding the
example workflow from Sect. 3 into PRISM produces a model with 760 states.
We look to carry out scalability testing of WRAD to understand the limitations
on resiliency evaluation in terms of a workflow’s complexity, and explore ways
our encoding in PRISM can be refined to reduce the reachable state space. Scala-
bility testing will be informed by understanding more the size and complexity of
workflows being designed in real-life scenarios. Any scalability restrictions may
be overcome by implementing an approach inspired by the work in [2] which
connects security policies across modular workflows. We also look to implement
finding optimal change sets of mixed constraint types and handling workflows
with choice as defined in [9].

Conclusion. Workflow resiliency provides a measure of workflow productiv-
ity when assuming users may become unavailable at runtime. In this paper we
have introduced a new tool Workflow Resiliency Analysis and Design (WRAD)
for workflow designers to automatically evaluate the resiliency of security con-
strained workflows and help reach acceptable productivity-security trade-offs
before execution. WRAD computes optimal changes to three types of security
constraints which assure a required resiliency threshold is reached.

References

1. Crampton, J., Gutin, G., Watrigant, R.: An approach to parameterized resiliency
problems using integer linear programming. CoRR, abs/1605.08738 (2016)

2. dos Santos, D.R., Ponta, S.E., Ranise, S.: Modular synthesis of enforcement mech-
anisms for the workflow satisfiability problem: scalability and reusability. In: SAC-
MAT 2016 (2016, to appear)

3. Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management:
from process modeling to workflow automation infrastructure. Distrib. Parallel
Databases 3(2), 119–153 (1995)

4. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge (1960)

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

WRAD: Tool Support for Workflow Resiliency Analysis and Design 87

6. Mace, J.C., Morisset, C., van Moorsel, A.P.A.: Quantitative workflow resiliency.
In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp.
344–361. Springer, Heidelberg (2014)

7. Mace, J.C., Morisset, C., van Moorsel, A.P.A.: Impact of policy design on workflow
resiliency computation time. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015.
LNCS, vol. 9259, pp. 244–259. Springer, Heidelberg (2015)

8. Mace, J.C., Morisset, C., van Moorsel, A.P.A.: Modelling user availability in work-
flow resiliency analysis. In: HotSoS 2015, pp. 1–10 (2015)

9. Mace, J.C., Morisset, C., van Moorsel, A.P.A.: Resiliency variance in workflows
with choice. In: Fantechi, A., Pelliccione, P. (eds.) SERENE 2015. LNCS, vol.
9274, pp. 128–143. Springer, Heidelberg (2015)

10. Post, G.V., Kagan, A.: Evaluating information security tradeoffs: restricting access
can interfere with user tasks. Comput. Secur. 26(3), 229–237 (2007)

11. Wang, Q., Li, N.: Satisfiability, resiliency in workflow authorization systems. ACM
Trans. Inf. Syst. Secur. 13(4), 40:1–40:35 (2010)

Designing a Resilient Deployment
and Reconfiguration Infrastructure

for Remotely Managed Cyber-Physical Systems

Subhav Pradhan(B), Abhishek Dubey, and Aniruddha Gokhale

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA

{subhav.m.pradhan,abhishek.dubey,a.gokhale}@vanderbilt.edu

Abstract. Multi-module Cyber-Physical Systems (CPS), such as satel-
lite clusters, swarms of Unmanned Aerial Vehicles (UAV), and fleets
of Unmanned Underwater Vehicles (UUV) provide a CPS cluster-as-
a-service for CPS applications. The distributed and remote nature of
these systems often necessitates the use of Deployment and Configura-
tion (D&C) services to manage the lifecycle of these applications. Fluctu-
ating resources, volatile cluster membership and changing environmental
conditions necessitate resilience. Thus, the D&C infrastructure does not
only have to undertake basic management actions, such as activation of
new applications and deactivation of existing applications, but also has
to autonomously reconfigure existing applications to mitigate failures
including D&C infrastructure failures. This paper describes the design
and architectural considerations to realize such a D&C infrastructure for
component-based distributed systems. Experimental results demonstrat-
ing the autonomous resilience capabilities are presented.

Keywords: Self-reconfiguration · Autonomous resilience · Deployment
and reconfiguration · Component-based distributed systems

1 Introduction

Cyber-Physical Systems (CPS) are a class of distributed, real-time and embed-
ded systems that tightly integrate the cyber dimension with the physical dimen-
sion whereby the physical system and its constraints control the way the cyber
infrastructure operates and in turn the latter controls the physical objects [10].
Fractionated spacecraft, swarms of Unmanned Aerial Vehicles (UAVs), and
fleets of Unmanned Underwater Vehicles (UUVs), represent a new class of
highly dynamic, cluster-based, distributed CPS. These systems often operate
in unwieldy environments where resources are very limited, the dynamic nature
of the system results in ever-changing cluster properties, such as membership,
failures and fluctuation in resource availability is common, and human interven-
tion to address these problems is rarely feasible.

c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 88–104, 2016.
DOI: 10.1007/978-3-319-45892-2 7

Designing a Resilient Deployment and Reconfiguration Infrastructure 89

Resilience is thus a key requirement for such cyber physical systems. A
resilient system is defined as a system that is capable of maintaining and recover-
ing its functionality when faced with failures and anomalies. Since human inter-
vention is extremely limited resilience should be autonomous. As such, resilience
can be provided either by using redundancy or by using a self-reconfiguration
(self-adaptation) mechanism. In this paper, we are concerned with the self-
reconfiguration aspect. The goal is to achieve a self-adaptive system [20] for
which following requirements must be met:

– Requirement 1: an adaptation capability that can maintain and recover the
system’s functionality by adapting applications hosted on the system.

– Requirement 2: the adaptation capability itself should be resilient such that
any failure or anomaly does not effect the adaptability of the overall system.

We are concerned with those CPS where the cyber functionalities are imple-
mented using the Component-Based Software Engineering (CBSE) [8] approach,
where applications are realized by composing, deploying and configuring software
components with well-defined interaction ports. A number of different component
models (providing the interaction and execution semantics for the components)
exist: Fractal [3], CORBA Component Model (CCM) [14], LwCCM [13] etc. Simi-
larly, there exists different Deployment and Configuration (D&C) infrastructures
that are compatible with different component modes.

Since the D&C capability is a key artifact of any component-based system, we
surmise that resilience can be improved by enhancing the D&C infrastructure so
that it can provide the adaptation capability. This means the D&C infrastructure
should not only be able to manage the lifecycle of applications, it should also
be able to reconfigure existing applications and do so in a resilient manner [19].
However, existing D&C infrastructures do not support both these requirements.
Either they are not capable of performing runtime reconfiguration [5,7,16,17]
or others that are capable of performing runtime reconfiguration are themselves
not resilient [1,2].

This paper overcomes limitations of existing solutions by presenting a novel
and resilient D&C infrastructure that satisfies both the aforementioned require-
ments. In doing so, we make the following contributions:

– We present the key challenges in achieving a resilient D&C infrastructure.
– We present an architecture for a resilient D&C infrastructure that addresses

these key challenges.
– We present experimental results to demonstrate application adaptability of

our new D&C infrastructure.

The remainder of this paper is organized as follows: Sect. 2 presents existing
work related to this paper and explains how our approach is different; Sect. 3
describes the target system model, D&C model, and fault model to present the
problem at hand; Sect. 4 presents the key challenges that needs to be addressed in
order to achieve a resilient D&C infrastructure; Sect. 5 presents detailed descrip-
tion of our solution and how it addresses aforementioned challenges; Sect. 6

90 S. Pradhan et al.

presents experimental results; finally, Sect. 7 provides concluding remarks and
alludes to future work.

2 Related Work

Deployment and configuration of component-based software is a well-researched
field with existing works primarily focusing on D&C infrastructure for grid
computing and Distributed Real-time Embedded (DRE) systems. Both Deploy-
Ware [7] and GoDIET [5] are general-purpose deployment frameworks targeted
towards deploying large-scale, hierarchically composed, Fractal [3] component
model-based applications in a grid environment. However, both of these deploy-
ment frameworks are not resilient and they lack support for application reconfig-
uration. As such, they do not satisfy the two requirements essential for realizing
autonomous resilience.

The Object Management Group (OMG) has standardized the Deployment
and Configuration (D&C) specification [15]. Our prior work on the Deployment
And Configuration Engine (DAnCE) [17] describes a concrete realization of
the OMG D&C specification for the Lightweight CORBA Component Model
(LwCCM) [13]. LE-DAnCE [17] and F6 DeploymentManager [6] are some of our
other previous works that extend the OMG’s D&C specification. LE-DAnCE
deploys and configures components based on the Lightweight CORBA Compo-
nent Model [13] whereas the F6 Deployment Manager does the same for compo-
nents based on F6-COM component model [16]. The F6 Deployment Manager,
in particular, focused on the deployment of real-time component-based applica-
tions in highly dynamic DRE systems, such as fractionated spacecraft. However,
similar to the work mentioned above, these infrastructures also lack support for
application adaptation and D&C infrastructure resilience.

A significant amount of research exists in the field of dynamic reconfiguration
of component-based applications. In [2], the authors present a tool called Planit
for deployment and reconfiguration of component-based applications. Planit uses
AI-based planner to come up with application deployment plan for both - ini-
tial deployment, and subsequent dynamic reconfigurations. Planit is based on a
sense-plan-act model for fault detection, diagnosis and reconfiguration to recover
from failures. Another work presented in [1], supports dynamic reconfiguration
of applications based on J2EE components. Although these solutions support
application reconfiguration, none of them focus on resilience of their respective
adaptation engine.

The authors in [4] present the DEECo (Distributed Emergent Ensembles
of Components) component model, which is based on the concept of Ensemble-
Based Component System (EBCS). In general, this approach replaces traditional
explicit component architecture by the composition of components into ensem-
bles. An ensemble is an implicit, inherently dynamic group of components where
each component is an autonomic entity facilitating self-adaptive and resilient
operation. In [9], authors present a formal foundation for ensemble modeling.
However, they do not focus on the management infrastructure required to deploy
and reconfigure these components.

Designing a Resilient Deployment and Reconfiguration Infrastructure 91

3 Problem Description

This section describes the problem at hand by first presenting the target system
model. Second, we present the Deployment and Configuration (D&C) model.
Third, we present the fault model related to system model. Finally, we describe
the problem of self-adaptation in the context of the D&C infrastructure.

3.1 System Model

The work described in this paper assumes a distributed CPS consisting of mul-
tiple interconnected computing nodes that host distributed applications. For
example, we consider a distributed system of fractionated spacecraft [6] that
hosts mission-critical component-based applications with mixed criticality levels
and security requirements. Fractionated spacecraft represents a highly dynamic
CPS because it is a distributed system composed of nodes (individual satel-
lites) that can join and leave a cluster at any time resulting in volatile group
membership characteristics.

A distributed application in our system model is a graph of software com-
ponents that are partitioned into processes1 and hosted within a “component”
server. This graph is then mapped to interconnected computing nodes. The
interaction relationship between the components are defined using established
interaction patterns such as (a) synchronous and asynchronous remote method
invocation, and (b) group-based publish-subscribe communication.

3.2 Deployment and Configuration Model

To deploy distributed component-based applications2 onto a target environ-
ment, the system needs to provide a software deployment service. A Deployment
and Configuration (D&C) infrastructure serves this purpose; it is responsible
for instantiating application components on individual nodes, configuring their
interactions, and then managing their lifecycle. The D&C infrastructure should
be viewed as a distributed infrastructure composed of multiple deployment enti-
ties, with one entity residing on each node.

OMG’s D&C specification [15] is a standard for deployment and configura-
tion of component-based applications. Our prior work on the Locality-Enabled
Deployment And Configuration Engine (LE-DAnCE) [17] is an open-source
implementation of this specification. As shown in Fig. 1, LE-DAnCE implements
a strict two-layered approach comprising different kinds of Deployment Managers
(DM). A DM is a deployment entity. The Cluster Deployment Manager (CDM)
is the single orchestrator that controls cluster-wide deployment process by co-
ordinating deployment among different Node Deployment Managers (NDM).

1 Components hosted within a process are located within the same address space.
2 Although we use the component model described in [13], our work is not constrained

by this choice and can be applied to other component models as well.

92 S. Pradhan et al.

Fig. 1. Orchestrated deployment approach in LE-DAnCE [17]

Similarly, a NDM controls node-specific deployment process by instantiating
component servers that create and manage application components.

LE-DAnCE, however, is not resilient and it does not support run-time appli-
cation adaptation as well. Therefore, our work presented in this paper modifies
and extends LE-DAnCE to achieve a D&C infrastructure capable of facilitating
autonomous resilience.

3.3 Fault Model

Failure can be defined as a loss of functionality in a system. The goal of a
resilient system is to ensure that subsystem or component-level faults do not
lead to loss of system functionality, i.e. a failure, for an unacceptable length of
time. The system is expected to recover from a failure, and the threshold on time
to recovery is typically a requirement on the system. Recovering from failures
involves adapting the failed subsystem such that its functionality is restored. For
example, in software intensive systems this process primarily involves adaptation
of applications that are deployed in the failed subsystem.

In the systems under consideration, we observe that subsystem failures can
be categorized as infrastructure or application failures. Infrastructure failures are
failures that arise due to faults affecting a system’s network, participating nodes,
or processes that are running in these nodes. Usually, infrastructure failures
can be classified as primary failures. Whereas, application failures are failures
pertaining to the application itself. We assume that application components
have been thoroughly tested before deployment and therefore classify application
failures as secondary failures caused due to infrastructure failures.

3.4 Problem Statement

For the prescribed system and fault model, the D&C infrastructure should, first
and foremost, be capable of dealing with infrastructure failures. Conceptually, a

Designing a Resilient Deployment and Reconfiguration Infrastructure 93

Fig. 2. Self-adaptive system as a control system

resilient infrastructure can be modeled as a resilient feedback control loop that
observes the system state and compensates for disturbances in the system to
achieve a desired behavior as shown in Fig. 2.

To find similarities with the traditional self-adaptive loop and the system
under discussion, consider that a failure in the infrastructure can be consid-
ered as a disturbance. This failure can be detected by behavior such as “node
is responding to pings” (indicating there is infrastructure failure) or not. Once
the failure has been detected, the loss of functionality needs to be restored by
facilitating reconfiguration, for example, re-allocating components to a function-
ing node, etc.; this needs to be done in a resilient manner. The presence of the
controller and its actuation ability enables the self-adaptive property needed of
an autonomously resilient system.

4 Key Considerations and Challenges

To correctly provide resilient D&C services to a CPS cluster, the D&C infrastruc-
ture must resolve the challenges described below:

Challenge 1 (Distributed group membership): Recall that the CPS domain illus-
trates a highly dynamic environment in terms of resources that are available for
application deployment: nodes may leave unexpectedly as a result of a failure
or as part of a planned or unplanned partitioning of the cluster, and nodes may
also join the cluster as they recover from faults or are brought online. To pro-
vide resilient behavior, the DMs in the cluster must be aware of changes in group
membership, i.e., they must be able to detect when one of their peers has left
the group (either as a result of a fault or planned partitioning) and when new
peers join the cluster.

Challenge 2 (Leader election): As faults occur in CPS, a resilient system must
make definitive decisions about the nature of that fault and the best course of
action necessary to mitigate and recover from that fault. Since CPS clusters
often operate in mission- or safety-critical environments where delayed reaction
to faults can severely compromise the safety of the cluster, such decisions must be
made in a timely manner. In order to accommodate this requirement, the system
should always have a cluster leader that will be responsible for making decisions

94 S. Pradhan et al.

and performing other tasks that impact the entire cluster.3 However, a node that
hosts the DM acting as the cluster leader can fail at any time; in this scenario,
the remaining DMs in the system should decide among themselves regarding the
identity of the new cluster leader. This process needs to be facilitated by a leader
election algorithm.

Challenge 3 (Deployment sequencing): Applications in CPS may be composed of
several cooperating components with complex internal dependencies that are dis-
tributed across several nodes. Deployment of such an application requires that
deployment activities across several nodes proceed in a synchronized manner.
For example, connections between two dependent components cannot be estab-
lished until both components have been successfully instantiated. Depending on
the application, some might require stronger sequencing semantics whereby all
components of the application need to be activated simultaneously.

Challenge 4 (D&C State Preservation): Nodes in a CPS may fail at any time
and for any reason; a D&C infrastructure capable of supporting such a clus-
ter must be able to reconstitute those portions of the distributed applica-
tion that were deployed on the failed node. Supporting resilience requires the
D&C infrastructure to keep track of the global system state, which consists of
(a) component-to-application mapping, (b) component-to-implementation map-
ping4, (c) component-to-node mapping, (d) inter-component connection infor-
mation, (e) component state information, and (f) the current group membership
information. Such state preservation is particularly important for a new leader.

5 A Resilient D&C Infrastructure

Figure 3 presents an overview of our solution. Infrastructure failures are detected
using the Group Membership Monitor (GMM). Application failure detection is
outside the scope of this paper, however, we refer readers to our earlier work [11]
in this area. The controller is in fact a collection of DMs working together to
deploy and configure as well as reconfigure application components. The specific
actuation commands are redeployment actions taken by the DMs.

5.1 Solution Architecture

Figure 4 presents the architecture of our resilient D&C infrastructure. Each node
consists of a single Deployment Manager (DM). A collection of these DMs forms
the overall D&C infrastructure. Our approach supports distributed, peer-to-peer
application deployment, where each node controls its local deployment process.
Each DM spawns one or more Component Servers (CSs), which are processes
responsible for managing the lifecycle of application components. Note that our

3 Achieving a consensus-based agreement for each adaptation decision would likely be
inefficient and violate the real-time constraints of the cluster.

4 A component can have multiple implementations.

Designing a Resilient Deployment and Reconfiguration Infrastructure 95

Fig. 3. Overview of a resilient D&C infrastructure.

Fig. 4. Architecture of a resilience D&C infrastructure.

approach does not follow a centralized coordinator for deployment actions; rather
the DMs are independent and use a publish/subscribe middleware to communi-
cate with each other.

In our architecture, we use the GMM to maintain up-to-date group mem-
bership information, and to detect failures via a periodic heartbeat monitor-
ing mechanism. The failure detection aspect of GMM relies on two important
parameters – heartbeat period and failure monitoring period. These configurable
parameters allows us to control how often each DM asserts its liveliness and how
often each DM monitors failure. For a given failure monitoring period, a lower

96 S. Pradhan et al.

Fig. 5. A three-node deployment and configuration setup

heartbeat period results in higher network traffic but lower failure detection
latency, whereas a higher heartbeat period results in lower network traffic but
higher failure detection latency. Tuning these parameters appropriately can also
enable the architecture to tolerate intermittent failures where a few heartbeats
are only missed for a few cycles and are established later. This can be done by
making the fault monitoring window much larger compared to the heartbeat
period. Addressing intermittent failures is out of scope for this paper.

Figure 5 shows an event diagram demonstrating a three node deployment
process of our new D&C infrastructure. An application deployment is initiated
by submitting a global deployment plan to one of the three DMs. This global
deployment plan contains information about different components (and their
implementation) that make up an application. It also contains information about
how different components should be connected. Once this global deployment plan
is received by a DM, that particular DM becomes the deployment leader for that
particular deployment plan. A deployment leader is only responsible for initiat-
ing the deployment process for a given deployment plan by analyzing the plan
and allocating deployment actions to other DMs in the system. The deploy-
ment leader is not responsible for other cluster-wide operations such as failure
mitigation; these cluster-wide operations are handled by a cluster leader. Two
different global deployment plans can be deployed by two different deployment
leaders since we do not require a centralized coordinator in our approach.

Deployment and configuration in our scheme is a multi-staged approach.
Table 1 lists the different D&C stages in our approach. The INITIAL stage is
where a deployment plan gets submitted to a DM and ACTIVATED stage is
where the application components in the deployment plan is active. In the rest
of this section, we describe how information in this table is used in our solution
to address the key challenges.

Designing a Resilient Deployment and Reconfiguration Infrastructure 97

Table 1. D&C Stages

Stage Description

INITIAL (1) Global deployment plan is provided to one of the DMs

(2) DM that is provided with a global deployment plan becomes the
leader DM and loads that deployment plan and stores it in a
binary format

PREPARING (1) Plan loaded in the previous stage is split into node-specific plans
and they are published to the distributed data space using
pub/sub middleware

(2) Node-specific plans published above are received by all DMs and
only the ones that are relevant are further split into component
server (CS)-specific plans

STARTING (1) CS-specific plans created in the previous stage are used to create
CSs (if required) and components

(2) For components that provide service via a facet, the DM will
publish its connection information so that other components that
require this service can connect to it using their receptacle. This
connection however is not established in this stage

(3) In this stage, barrier synchronization is performed to make sure
that no individual DMs can advance to the next stage before all
of the DMs have reached this point

FINISHING (1) Components created in the previous stage are connected (if
required). In order for this to happen, the components that
require a service use connection information provided in the
previous stage to make facet-receptacle connections

ACTIVATING (1) Synchronization stage to make sure all components are created
and connected (if required) before activation

ACTIVATED (1) Stage where a deployment plan is activated by activating all the
related components

(2) At this point all application components are running

TEARDOWN (1) De-activation stage

5.2 Addressing Resilient D&C Challenges

Resolving Challenge 1 (Distributed Group Membership): To support distrib-
uted group membership, our solution requires a mechanism that allows detection
of joining members and leaving members. To that end our solution uses a dis-
covery mechanism to detect the former and a failure detection mechanism to
detect the latter as described below.

Discovery Mechanism: Since our solution approach relies on an underly-
ing pub/sub middleware, the discovery of nodes joining the cluster leverages
existing discovery services provided by the pub/sub middleware. To that end
we have used OpenDDS (http://www.opendds.org) – an open source pub/sub

http://www.opendds.org

98 S. Pradhan et al.

middleware that implements OMG’s Data Distribution Service (DDS) specifica-
tion [12]. To be more specific, we use the Real-Time Publish Subscribe (RTPS)
peer-to-peer discovery mechanism specified by DDS.

Failure Detection Mechanism: To detect the loss of existing members, we
need a failure detection mechanism that detects different kinds of failures. In our
architecture this functionality is provided by the GMM. The GMM residing on
each node uses a simple heartbeat-based protocol to detect DM (process) failure.
Recall that any node failure, including the ones caused due to network failure,
results in the failure of its DM. This means that our failure detection service uses
the same mechanism to detect all three different kinds of infrastructure failures.

Resolving Challenge 2 (Leader Election): Leader election is required in order to
tolerate cluster leader failure. We do this by implementing a rank-based leader
election algorithm. Each DM is assigned a unique numeric rank value and this
information is published by each DM as part of its heartbeat. Initially the DM
with the least rank will be picked as the cluster leader. If the cluster leader fails,
each of the other DMs in the cluster will check their group membership table
and determine if it is the new leader. Since, we associate a unique rank with
each DM, only one DM will be elected as the new leader.

Resolving Challenge 3 (Proper Sequencing of Deployment): Our D&C infra-
structure implements deployment synchronization using a distributed barrier
synchronization algorithm. This mechanism is specifically used during the
STARTING stage of the D&C process to make sure that all DMs are in the
STARTING stage before any of them can advance to the FINISHING stage.
This synchronization is performed to ensure that all connection information of
all the components that provide a service is published to the distributed data
space before components that require a service try to establish a connection. We
realize that this might be too strong of a requirement and therefore we intend to
further relax this requirement by making sure that only components that require
a service wait for synchronization. In addition, our current solution also uses bar-
rier synchronization in the ACTIVATING stage to make sure all DMs advance to
the ACTIVATED stage simultaneously. This particular synchronization ensures
the simultaneous activation of a distributed application.

Resolving Challenge 4 (D&C State Preservation): In our current implementa-
tion, once a deployment plan is split into node-specific deployment plans, all
of the DMs receive the node-specific deployment plans. Although any further
action on a node-specific deployment plan is only taken by a DM if that plan
belongs to the node in which the DM is deployed, all DMs store each and every
node-specific deployment plans in its memory. This ensures that deployment-
related information is replicated throughout a cluster thereby preventing single
point of failure. However, this approach is vulnerable to DM process failures since
deployment information is stored in memory. To resolve this issue, we are cur-

Designing a Resilient Deployment and Reconfiguration Infrastructure 99

rently working on extending our solution to use a persistent backend distributed
database to store deployment information.

6 Experimental Results

This section presents results to demonstrate the autonomous resilience capabil-
ities of our D&C infrastructure. We show how our resilient D&C infrastructure
adapts applications as well as itself after encountering a node failure during
deployment-time, and runtime.

6.1 Testbed

For all of our experiments, we used a multi-computing node cluster setup that
consisted of three nodes, each with a 1.6 GHz Atom N270 processor and 1 GB
of RAM. Each node runs vanilla Ubuntu server image 13.04 which uses Linux
kernel version 3.8.0-19.

The application we used for self-adaptability experiments presented in
Sects. 6.2 and 6.3 is a simple two-component client-server experiment presented
earlier in Fig. 4. The Sender component (client) is initially deployed in node-1,
the Receiver component (server) is initially deployed in node-2, and node-3 has
nothing deployed on it. For both experiments, we consider node-2 to be the node
that fails. Furthermore, we configure our infrastructure with heartbeat period
set to 2 s and failure monitoring period set to 5 s.

6.2 Node Failure During Deployment-Time

Figure 6 presents a time sequence graph of how our D&C infrastructure adapts
itself to tolerate failures during deployment-time. As can be seen, node 2 and
therefore DM-2 fails at Event 5. Once the failure is detected by both DM-1 in
node-1 and DM-3 in node-3, DM-1 being the leader initiates the recovery process
(Event 6 - Event 7). During this time, DM-1 determines the part of the applica-
tion that was supposed to be deployed by DM-2 in node-2, which is the Receiver
component. Once DM-1 determines this information, it completes the recovery
process by republishing information about the failure affected part of application
(Receiver component) to DM-3. Finally, DM-3 deploys the Receiver component
in node-3 and after this point, the deployment process resumes normally.

6.3 Node Failure During Application Run-Time

Figure 7 presents a time sequence graph that demonstrates how our D&C
infrastructure adapts applications at run-time to tolerate run-time node fail-
ures. Unlike the scenario presented before where the initial deployment of the
application has to be adapted to tolerate deployment-time failure, here the ini-
tial deployment completes successfully at Event 19 after which the application is

100 S. Pradhan et al.

Fig. 6. Node failure during application deployment time.

Designing a Resilient Deployment and Reconfiguration Infrastructure 101

Fig. 7. Node failure during application run-time

102 S. Pradhan et al.

active. However, node-2 and therefore DM-2 fails at Event 20 and the notifica-
tion of this failure is received by DM-1 at Event 21 after which DM-1 performs
the recovery process similar to the way it did for deployment-time failure.

The one significant difference between the deployment-time failure mitigation
and run-time failure mitigation is that dynamic reconfiguration of application
components is required to mitigate application run-time failure. To elaborate,
once DM-3 deploys the Receiver component in node-3 it needs to publish new
connection information for the Receiver component allowing DM-1 to update
Sender the component’s connection.

7 Conclusions and Future Work

This paper described a resilient Deployment and Configuration (D&C)
infrastructure for highly dynamic and remote CPS. This dynamic and remote
nature calls for autonomous resilience in such systems. The D&C infrastructure is
the right artifact to architect such a solution as these systems are commonly built
using Component-Based Software Engineering (CBSE) approach using appropri-
ate component models and their corresponding D&C infrastructure. However,
existing D&C infrastructures do not meet the requirements essential to facili-
tate autonomous resilience. As such, in this paper we presented a novel D&C
infrastructure that is resilient and capable of reconfiguring existing applications.

The work presented in this paper incurs a few limitations: (1) As mentioned
in Sect. 5.2, our current implementation for D&C state preservation is suffi-
cient but not ideal. In our on-going research effort [18], we look into using a
distributed database to store relevant D&C state resulting in a stateless D&C
infrastructure. We plan to add similar concept to extend the work presented in
this paper. (2) The D&C infrastructure presented in this paper performs recon-
figuration without any smartness,i.e., we randomly decide where a component
should be migrated. However, this is not sufficient for systems that can host mul-
tiple applications. We require the D&C infrastructure to utilize available system
information to make a more educated decision on how a system should be recon-
figured. Again, some initial work towards achieving such an infrastructure has
been presented as part of our on-going research effort [18].

Acknowledgment. This work was supported by the DARPA System F6 Program
under contract NNA11AC08C, USAF/AFRL under Cooperative Agreement FA8750-
13-2-0050, and Siemens Corporate Technology. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsors.

Designing a Resilient Deployment and Reconfiguration Infrastructure 103

References

1. Akkerman, A., Totok, A.A., Karamcheti, V.: Infrastructure for automatic dynamic
deployment of J2EE applications in distributed environments. In: Dearle, A.,
Savani, R. (eds.) CD 2005. LNCS, vol. 3798, pp. 17–32. Springer, Heidelberg (2005)

2. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration
planning for distributed software systems. In: Proceedings of 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pp. 39–46. IEEE (2003)

3. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java. Softw. Pract. Exp. 36(11–12), 1257–
1284 (2006)

4. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
Deeco: an ensemble-based component system. In: Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-Based Software Engineering, pp.
81–90. ACM (2013)

5. Caron, E., Chouhan, P.K., Dail, H.: Godiet: a deployment tool for distributed
middleware on grid’5000. Ph.D. thesis, INRIA (2006)

6. Dubey, A., Emfinger, W., Gokhale, A., Karsai, G., Otte, W., Parsons, J., Szabo,
C., Coglio, A., Smith, E., Bose, P.: A software platform for fractionated spacecraft.
In: Proceedings of the IEEE Aerospace Conference 2012, pp. 1–20. IEEE, Big Sky,
MT, USA, March 2012

7. Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the grid with deploy-
ware. In: 8th IEEE International Symposium on Cluster Computing and the Grid,
CCGRID 2008, pp. 177–184. IEEE (2008)

8. Heineman, G.T., Councill, W.T. (eds.): Component-based Software Engineer-
ing: Putting the Pieces Together. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2001)

9. Hennicker, Rolf, Klarl, Annabelle: Foundations for ensemble modeling – the
Helena approach. In: Iida, Shusaku, Meseguer, José, Ogata, Kazuhiro (eds.) Speci-
fication, Algebra, and Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg
(2014)

10. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

11. Mahadevan, N., Dubey, A., Karsai, G.: Application of software health manage-
ment techniques. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 1–10. ACM (2011)

12. Object Management Group: Data Distribution Service for Real-time Systems Spec-
ification, 1.0 edn., March 2003

13. Object Management Group: Light Weight CORBA Component Model Revised
Submission, OMG Document realtime/03-05-05 edn., May 2003

14. Object Management Group: The Common Object Request Broker: Architecture
and Specification Version 3.1, Part 3: CORBA Component Model, OMG Document
formal/2008-01-08 edn., January 2008

15. OMG: Deployment and Configuration Final Adopted Specification. http://www.
omg.org/members/cgi-bin/doc?ptc/03-07-08.pdf

16. Otte, W.R., Dubey, A., Pradhan, S., Patil, P., Gokhale, A., Karsai, G.,
Willemsen, J.: F6COM: a component model for resource-constrained and dynamic
space-based computing environment. In: Proceedings of the 16th IEEE Interna-
tional Symposium on Object-oriented Real-time Distributed Computing (ISORC
2013), Paderborn, Germany, June 2013

http://www.omg.org/members/cgi-bin/doc?ptc/03-07-08.pdf
http://www.omg.org/members/cgi-bin/doc?ptc/03-07-08.pdf

104 S. Pradhan et al.

17. Otte, W., Gokhale, A., Schmidt, D.: Predictable deployment in component-based
enterprise distributed real-time and embedded systems. In: Proceedings of the 14th
International ACM Sigsoft Symposium on Component Based Software Engineer-
ing, pp. 21–30. ACM (2011)

18. Pradhan, S., Dubey, A., Levendovszky, T., Kumar, P.S., Emfinger, W.A.,
Balasubramanian, D., Otte, W., Karsai, G.: Achieving resilience in distributed
software systems via self-reconfiguration. J. Syst. Softw. (2016)

19. Pradhan, S., Gokhale, A., Otte, W., Karsai, G.: Real-time fault-tolerant deploy-
ment and configuration framework for cyber physical systems. In: Proceedings of
the Work-in-Progress Session at the 33rd IEEE Real-time Systems Symposium
(RTSS 2012). IEEE, San Juan, Puerto Rico, USA, December 2012

20. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. (TAAS) 4(2), 14 (2009)

cloud-ATAM : Method for Analysing Resilient
Attributes of Cloud-Based Architectures

David Ebo Adjepon-Yamoah(B)

School of Computing Science, Centre for Software Reliability, Newcastle University,
Newcastle-upon-Tyne NE1 7RU, UK
d.e.adjepon-yamoah@ncl.ac.uk

Abstract. In this work, we argue that the existing architecture
evaluation methods have limitations when assessing architectures inter-
facing with unpredictable environments such as the Cloud. The unpre-
dictability of this environment is attributed to the dynamic elasticity,
scale, and continuous evolution of the cloud topology. As a result, archi-
tectures interfacing such unpredictable environments are expected to
encounter many uncertainties. It is however, important to focus on, and
present holistic approaches combining aspects of both dynamic and sta-
tic analysis of architecture resilience attributes. This paper introduces an
ATAM derived methodology - cloud-ATAM - for evaluating the trade-
off between multiple resilience quality attributes (i.e. availability and
performance) of a cloud-based Reactive Architecture for Global Software
Development.

Keywords: ATAM · Resilient architectures · Cloud computing · GSD

1 Introduction

Service Oriented Architecture (SOA) [1] might be treated as a state of the art
approach to the design and implementation of enterprise software, which is driven
by business requirements. Within the last decade a number of concepts related to
SOA have been developed, including enterprise service bus, web services, design
patterns, service orchestration and choreography, and various security standards.
Due to the fact that there are many technologies that cover the area of SOA,
the development and evaluation of SOA compliant architectures is especially
interesting [2]. The buzzing concept of cloud computing represents a mix of
most of these concepts and hence, serves as a good SOA example.

In this work, we argue that the existing architecture evaluation methods have
limitations when assessing architectures interfacing with unpredictable environ-
ments such as the Cloud [3]. The cloud environment is fundamentally different
from the classical environments for which most software evaluation methods
were developed [3,4]. The unpredictability of this environment is attributed
to the dynamic elasticity, scale, and continuous evolution of the Cloud topol-
ogy (e.g. due to new services, mash-ups, unpredictable modes of service use,
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 105–114, 2016.
DOI: 10.1007/978-3-319-45892-2 8

106 D.E. Adjepon-Yamoah

fluctuations in QoS provision due to unpredictable load/growth etc.) [4]. As a
result, architectures interfacing such unpredictable environments are expected
to encounter many uncertainties. These challenges call for holistic approaches
combining aspects of both dynamic and static evaluation. The aim of this
research is to present a methodology - cloud-ATAM - for evaluating the trade-
off between multiple resilience quality attributes of small-to-medium size (i.e.
ISO/IEC 14143:1998 & COSMIC Full FP 2.2 for classifying system size) archi-
tectures in unpredictable environments such as the Cloud. Our approach applies
a well established method in software architecture analysis called Architectural
Trade-off Analysis Method (ATAM) [5]. ATAM generates a number of outputs
such as: a prioritised list of quality attributes, a list of architectural decisions
made, a map linking architectural decisions to attributes, lists of risk and non-
risks, and lists of sensitivities and trade-offs. In this work, we use the derived
cloud-ATAM to design the Reactive Architecture [6], and to analyse the trade-off
between the availability and performance attributes. To support the analysis of
the Reactive Architecture, cloud-ATAM considers a non-trivial set of scenarios,
and plan to use a particular specialisation of architectural styles called attribute-
based architectural styles (ABASs) [7]. We answer the research question: “What
is the trade-off between availability and performance quality attributes identified
by the cloud-ATAM for the cloud-based Reactive Architecture?”

2 Background

A brief overview of the ATAM, and ABAS are presented as a precursor for our
discussion about the cloud-ATAM in the following section.

2.1 Quality Attribute Trade-Off Analysis with ATAM

Architectural analysis is a key practice for organisations that use Software
Architectures (SAs). This is essential because SAs are complex and involve
many design trade-offs, and ensures that architectural decisions appropriately
mitigate risks. The ATAM is considered as a matured and validated scenario-
based SA evaluation method [8]. The inputs of the ATAM are scenarios elicited
by stakeholders and documented descriptions of the architecture. The ATAM
is typically constituted with nine steps: (1) Present the ATAM, (2) Present
the Business Drivers, (3) Present the Architecture, (4) Identify Architectural
Approaches, (5) Generate the Quality Attribute Utility Tree, (6) Analyse the
Architectural Approaches, (7) Brainstorm and Prioritise Scenarios, (8) Analyse
the Architectural Approaches, and (9) Present Results. The goal of the ATAM
is to analyse architectural approaches with respect to scenarios generated from
business drivers for the purpose of identifying risk points in the architecture.
This is achieved by a disciplined reasoning about SA relating to multiple qual-
ity attributes. There are two important classifications of risk points namely
sensitivity points and trade-off points. A sensitivity point affects the achieve-
ment of one quality attribute; a trade-off point affects the achievement of more
than one quality attributes, where one improves and the other degrades. These

cloud-ATAM : Method for Analysing Resilient Attributes 107

Fig. 1. cloud-ATAM : Adapted ATAM with defined 3-step analysis approach

risk points, together with extensive documentations of the architecture, scenar-
ios, and quality-attributes analysis are the products of ATAM. The ATAM also
explicitly relates architectural risks and trade-offs to business drivers.

2.2 Attribute-Based Architectural Style

An Attribute-Based Architectural Styles (ABASs) [7] is an architectural style
in which the constraints focus on component types and patterns of interac-
tion that are particularly relevant to quality attributes. ABASs aid architecture
evaluation by focusing the stakeholders’ attention on the patterns that domi-
nate the architecture, by suggesting attribute-specific questions associated with
the style. Such questions are, in turn, inspired by the attribute characterisa-
tions. Each attribute characterisation is divided into three categories: external
stimuli, architectural parameters, and responses. With regards to the availability
attribute, its stimuli are from source (i.e. hardware or software faults), and type
(i.e. value, timing, and stopping). Its parameters are the hardware redundancy,
software redundancy, voting, retry, and failover. Finally, the responses gener-
ated are availability, reliability, levels of service, and mean time to failure. Also,
the stimuli of the performance attribute are mode, source, and frequency regular-
ity. The performance parameters considered in architectural decisions are mainly
resource such as CPUs, sensors, networks, memories, actuators, etc. and resource
arbitration in the form of queuing and pre-emption. Finally, the responses from
the performance characterisation are latency, throughput, and precedence.

3 cloud-ATAM

The cloud-ATAM (see Fig. 1) is motivated by the complex and iterative nature
of the ATAM even for small-to-medium size architectures (classed with ISO/IEC
14143:1998 & COSMIC Full FP 2.2). Typically, such architectures do not need
to undertake all the steps of the ATAM. Due to the size of such projects, some
steps can be combined into a new step, and some activities of some steps can be
optional. Here, generating the quality attribute utility tree process of Step 5 can
be combined with the prioritising scenarios process of Step 7 in ATAM. Also,
the analysing the architectural approaches process of Step 6 and 8 are repeated,
and can be extended with noting the impact of scenarios on the architectural

108 D.E. Adjepon-Yamoah

Fig. 2. Overview of reactive architecture

approaches of Step 8. These changes are particularly important especially in
addressing the perceived weakness of ATAM due to its iterative nature which
requires a substantial number of human experts on the team at different times
[3]. It is often expensive to speculate the availability of such domain experts for
such projects due to budgetary or time constraints [3]. Here, we adapt ATAM
into a seven-step methodology. The analysis of the architecture is undertaken in
two phases: Phase 1 (Steps 1–5) and Phase 2 (Steps 6–7). Phase 1 is architect-
centric and concentrates on eliciting and analysing architectural information.
Here, the cloud-ATAM uses a non-trivial set of scenarios to analyse the cloud-
based architecture. Phase 2 is stakeholder-centric and elicits points of view from
a more diverse and larger group of stakeholders, and verifies, and then builds on
the results of Phase 1. cloud-ATAM presents an enrichment in terms of coverage
(i.e. unpredictable behaviour) to ATAM in the form of a three-step scenario-
based analysis approach: (1) Utility Tree, (2) Stakeholders’ Brainstorming, and
(3) guideline utilising ABAS to quantitatively reason about quality attributes.

3.1 Reactive Architecture for cloud-ATAM Analysis

The designed set of scenarios is presented based on a Reactive Architecture (RA)
[6] (see Fig. 2). The RA is for global software development (GSD), where the cloud
is the best facilitating environment. This RA is composed of systems such as the
Reactive Middleware (RM), the Cloud Accountability System (CAS), the Formal
Decomposition System (FDS), the Shared Artefacts Repository (SAR), and the
System Engineering Toolbox (SET). These systems are designed as web services
(WSs). Web services are necessary to support the deployment and operation on a
cloud platform. The RA stands to benefit from the scalability, cost-effectiveness,
flexibility, multi-user access, etc. provided by cloud computing. The collective
mission of the systems is to facilitate artefact-driven and role-based support for
cloud-based GSD. To this end, the RM which plays a central role in the RA
to provide cloud-based services towards change management and traceability in
projects involving distributed teams. The RM aims to assist system engineers
to manage changes and trace the cause-and-effect of these changes on artefacts
created or used in the various system engineering processes.

4 Evaluating the Reactive Architecture

Here, we analyse the cloud-based Reactive Architecture using the scenario-based
utility tree approach of the three-step cloud-ATAM analysis (see Fig. 1).

cloud-ATAM : Method for Analysing Resilient Attributes 109

Table 1. Mapping requirements to quality attributes of reactive architecture

Attribute Goals ID Attribute-Specific Requirements

Operability O1 The Reactive Architecture must store all artefacts created in the

composing systems

O2* It must monitor and trace all changes to these artefacts to inform

system stakeholders (also P1)

O3 The System Engineering Toolbox must facilitate sequential and parallel

execution of tools in a workflow manner

O4 The Formal Decomposition System must provided a high capacity and

dedicated channel to coordinate real-time analysis on artefacts for

local client computers and on remote cloud environment (also P3)

O5 The Cloud Accountability System must gather dependability metrics

from several virtual machines, and perform a synchronous analysis of

these metrics

Performance P1* It must monitor and trace all changes to these artefacts to inform

system stakeholders (also O2)

P2* The Reactive Middleware must enable heterogeneous access and analysis

operations on artefacts in the Shared Artefacts Repository (also A2)

P3 The Formal Decomposition System must provided a high capacity and

dedicated channel to coordinate real-time analysis on artefacts for

local client computers and on remote cloud environment (also O4)

P4 Security mechanisms must not degrade defined performance threshold.

Specifically, response time for create, delete, update, and display

artefact/data operations should not exceed 5 s at peak cloud (i.e.

architecture) period and less than 1 s during off-peak period (also S1)

P5 The Reactive Architecture must do all this while meeting the

performance and availability requirements to allow it to keep up

with the sturdy stream of data and operations on artefacts from the

system engineering processes (also A4)

Scalability Sc1 The Reactive Architecture must support multiple users concurrently

Sc2* The Reactive Architecture must provide capacity to scale quickly to

accommodate changing demands of system developers, and failures

(also A1)

Availability A1* The Reactive Architecture must provide capacity to scale quickly to

accommodate changing demands of system developers, and failures

(also Sc2)

A2* The Reactive Middleware must enable heterogeneous access and analysis

operations on artefacts in the Shared Artefacts Repository (also P2)

A3 Critical systems such as the Reactive Middleware must not constitute a

single point of failure which will affect the uptime of the system and

the architecture (also R1)

A4 The Reactive Architecture must do all this while meeting the

performance and availability requirements to allow it to keep up

with the sturdy stream of data and operations on artefacts from the

system engineering processes (also P5)

Maintainability M1 The Shared Artefacts Repository must be backed up asynchronously to

facilitate roll-back of repository artefacts

Reliability R1 Critical systems such as the Reactive Middleware must not constitute a

single point of failure which will affect the uptime of the system and

the architecture (also A3)

Security S1 Security mechanisms must not degrade defined performance threshold.

Specifically, response time for create, delete, update, and display

artefact/data operations should not exceed 5 s at peak cloud (i.e.

architecture) period and less than 1 s during off-peak period (also

P4)

110 D.E. Adjepon-Yamoah

Table 2. Classified attribute-specific questions

Attribute
Specific
Questions ID

Attribute Specific Questions

ASQ1 What facilities exist in the software architecture (if any) for
self-testing and monitoring of software components?
(Availability)

ASQ2 What facilities exist in the software architecture (if any) for
redundancy, liveness monitoring, and fail-over? (Availability)

ASQ3 How is data consistency maintained so that one component can take
over from another and be sure that it is in a consistent state
with the failed component? (Availability)

ASQ4 What is the process and/or task view of the system, including
mapping of these processes/tasks to hardware and
communication mechanisms between them? (Performance)

ASQ5 What functional dependencies exist among the software
components? (Performance)

ASQ6 What data is kept in the database? How big is it, how much does it
change, who reads/writes it? (Performance)

ASQ7 How are resources allocated to service requests? (Performance)

ASQ8 What are the anticipated frequency and volume of data transmitted
among the system components? (Performance)

4.1 Present the ATAM

The ATAM has been introduced in Sect. 2.1, and cloud-ATAM in Sect. 3.

4.2 Present Business Drivers

We briefly present the business drivers (i.e. requirements) of the Reactive
Architecture (RA) which cover several quality attributes: operability - [O], per-
formance - [P], scalability - [Sc], availability - [A], maintainability - [M], relia-
bility - [R], and security - [S] (see Table 1). We focus on the availability (A1, A2,
A3, A4, A5) and performance (P1, P2, P3, P4, P5) related requirements.

4.3 Present the Architecture

The Reactive Architecture [6] has been introduced in Sect. 3.1.

4.4 Identify Architectural Approaches

Here, some attribute-specific questions (see Table 2) are asked to draw attention
to the patterns that dominate the Reactive Architecture. We also identify some
architectural approaches in Table 3 which inspires the presented questions.

cloud-ATAM : Method for Analysing Resilient Attributes 111

Table 3. Architectural approaches for the reactive architecture

Architectural
Approach ID

Architectural Approaches

AD1 We use the component-and-connector architectural style to
represent the various components and connections/interfaces of
the Reactive Architecture. This is particularly relevant because
it expresses the run-time behaviour of the architecture under
review. Also, interfaces are defined as application programming
interfaces (APIs)

AD2 We avoid the distributed data repository approach in designing the
Shared Artefacts Repository. This avoids issues with database
consistency and possible modifiability concerns

AD3 The client-server approach is best fit for the data-centric Shared
Artefacts Repository system

AD4 The Reactive Middleware will be adequately represented using the
client-server approach

AD5 Since the Reactive Middleware and the Shared Artefacts Repository
constitute a single point of failure, we present the following
approaches:

AD6 - Backup of artefacts in the Shared Artefacts Repository

- Distributed services for the components of the Reactive
Middleware

AD7 Schema-free NoSQL data management system (DMS) is necessary
for the Shared Artefacts Repository to minimise or remove
bottlenecks

AD8 An independent communication components approach for
communication among the Reactive middleware, Shared
Artefacts Repository, Cloud Accountability System, and the
Formal Decomposition System. Such communication approach is
particularly relevant for the distributed components of the Cloud
Accountability System

Fig. 3. Attribute utility tree of reactive architecture (adapted from [8])

112 D.E. Adjepon-Yamoah

Table 4. Prioritised quality attribute scenarios (ordered)

No. Quality Attribute Scenarios ScenarioID Numbered
Value

1 Disk (i.e. data repository) crash must have a
back-up that takes over in less than 3 s

A2 1

2 Deliver change requests and reports in
real-time

P1 1

3 Reduce storage latency for users to 200 ms P2 1

4 Accommodate over 500 queries per second P4 1

5 Network failure is detected and recovered in 10 s A3 2

6 COTS/Third party software update with bug
that causes failures is reverted to stable
version in less than 5 s

A4 2

7 One system (e.g. Reactive Middleware) should
not constitute a lag greater than 1 s

P3 2

8 Power outage at Availability Zone 1* requires
traffic redirect to Availability Zone 2* in less
than 5 s

A1 3

4.5 Generate the Quality Attribute Utility Tree and Scenarios

At this point, we identify, prioritise, and refine the most important quality
attribute goals in a utility tree format (i.e. Fig. 3). We also created scenarios
that are used to precisely elicit the specific quality goals against which the archi-
tecture is analysed. Also, the quality attribute scenarios are prioritised based on
(1) how important they are to the overall mission of the architecture, and (2) the
perceived difficulty in realising them in the architecture (see Table 4).

4.6 Analyse the Architectural Approaches

We probed the architectural approaches in light of the quality attributes and
identified risks, non-risks, and trade-offs using quality attribute questions, while
noting the impact of each scenario on the architectural approaches (see Table 5).
In this paper, we only analyse scenario P1, and this is shown in Table 6.

4.7 Present Results

The cloud-ATAM delivers the main products: sensitivities, trade-offs, and archi-
tectural risks in Table 5. From Table 6, the cloud-ATAM completed a full cycle
by linking the architectural decisions to the quality attributes (i.e. availability,
performance), and back to the business goals of the Reactive Architecture.

cloud-ATAM : Method for Analysing Resilient Attributes 113

Table 5. Analysis of sensitivities, trade-offs, risks & non-risks for the utility tree

Sensitivities: * S1: Concern over network latency

* S2: Using a data-centric and client-server approach for the
central repository can facilitate data integrity and consistency,
but it makes the architecture sensitive to its faults and
bottlenecks

* S3: Similarly, the central role played by the Reactive
Middleware makes the architecture sensitive to faults, resource
(i.e. CPU, memory) malfunctions or unavailability

Trade-offs: * T1: Availability (+) vrs Performance (-) vrs Reliability (-):
defining a central artefacts repository makes artefacts readily
available, but may be faced with bottlenecks when there are a
burst of queries on the repository

* T2: Availability (+) vrs Performance (+): using APIs for
component interfaces facilitate readily access to resources, and
boosts performance

* T3: Availability (+) vrs Performance (-): client-server approach
for the Reactive Middleware allows for multi-client service, but
there can be an overwhelming network management
performance constraint

* T4: Availability (+) vrs Performance (-) vrs Reliability (+):
backing up the artefacts in the primary Shared Artefacts
Repository allows for fail-over assurance and increased
reliability, but the asynchronous back-up process can affect
performance

Risks: * R1: Data integrity

* R2: The risk is that the Reactive Middleware and the Shared
Artefacts Repository constitute a single point of failure

Non-Risks: * N1: The non-risk is the use of application programming
interface (API) approach which should stay compatible

* N2: The independent communication connections should enable
real-time data transfer

Table 6. Analysis of performance scenario - P1 - (see Table 5 for the description of S1, S2, T1,
etc.) and (C&C + API: Component-and-connector architectural style and API, SAR: Shared Artefacts Repository,
RM: Reactive Middleware, and ICC: Independent Communication Components)

114 D.E. Adjepon-Yamoah

5 Conclusion

In this paper, we have motivated the need for architecture evaluation meth-
ods suitable for the dynamic unpredictable cloud environments. In particular,
we have presented an evaluation method - cloud-ATAM - derived from ATAM
for evaluating the availability and performance quality attributes of a cloud-
based Reactive Architecture. The results from Tables 5 and 6 indicate that the
cloud-ATAM found some trade-offs (i.e. T1, T3, T4). This answers our research
question, and validates our hypothesis that the cloud-ATAM is able to iden-
tify trade-offs between the availability and performance quality attributes for the
Reactive Architecture. A detailed discussion of the evaluation products is limited.

References

1. Josuttis, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly Media
Inc., Sebastopol (2007)

2. Szwed, P., Skrzynski, P., Rogus, G., Werewka, J.: Ontology of architectural decisions
supporting ATAM based assessment of SOA architectures. In: Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 287–290, September
2013

3. Faniyi, F., Bahsoon, R., Evans, A., Kazman, R.: Evaluating security properties of
architectures in unpredictable environments: a case for cloud. In: 2011 9th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pp. 127–136, June 2011

4. Ardagna, D.: Cloud, multi-cloud computing: current challenges and future applica-
tions. In: 2015 IEEE/ACM 7th International Workshop on Principles of Engineering
Service-Oriented and Cloud Systems (PESOS), pp. 1–2, May 2015

5. Kazman, R., Klein, M., Clements, P., Compton, N.L., Col, L.: ATAM: Method for
Architecture Evaluation (2000)

6. Adjepon-Yamoah, D., Romanovsky, A., Iliasov, A.: A reactive architecture for cloud-
based system engineering. In: Proceedings of the 2015 International Conference on
Software, System Process, ICSSP 2015, Tallinn, Estonia, pp. 77–81. ACM (2011)

7. Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci, M., Lipson, H.: Attribute-
based architecture styles. In: Donohoe, P. (ed.) Software Architecture. IFIP, vol. 12,
pp. 225–243. Springer, New York (1999)

8. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

Testing

Automated Test Case Generation for the CTRL
Programming Language Using Pex:

Lessons Learned

Stefan Klikovits1,2(B), David P.Y. Lawrence1, Manuel Gonzalez-Berges2,
and Didier Buchs1

1 Centre Universitaire d’Informatique, Université de Genève, Carouge, Switzerland
{stefan.klikovits,david.lawrence,didier.buchs}@unige.ch

2 CERN, European Organization for Nuclear Research, Geneva, Switzerland
{stefan.klikovits,manuel.gonzalez}@cern.ch

Abstract. Over the last decade code-based test case generation tech-
niques such as combinatorial testing or dynamic symbolic execution have
seen growing research popularity. Most algorithms and tool implemen-
tations are based on finding assignments for input parameter values in
order to maximise the execution branch coverage. In this paper we first
present ITEC, a tool for automated test case generation in CTRL, as
well as initial results of test cases executions on one of CERN’s SCADA
frameworks. Our tool relies on Microsoft’s Pex for its code exploration.
For the purpose of using this existing test generation tool, we have to
translate the proprietary CTRL code into C#, one of Pex’s operating
languages. Our main contribution lies in detailing a formal foundation
for this step through source code decomposition and anonymization. We
then propose a quality measure that is used to determine our confidence
into the translation and the generated test cases.

Keywords: Automated test case generation · Resilience · Software
testing · Translation validation · Execution environment resilience

1 Introduction

At the Large Hadron Collider (LHC), its experiments and several other installa-
tions at CERN physicists and engineers employ a Supervisory Control And Data
Acquisition (SCADA) system to mediate between operators and controllers/fron-
tend computers which connect to the sensors and actuators. As such applications
require hundreds of controllers to be configured, CERN has developed two frame-
works on top of Siemens’ Simatic WinCC Open Architecture (WinCC OA) [4]
SCADA platform to facilitate their creation.

Due to lack of tool support for the WinCC OA’s scripting language Control
(CTRL) [5], it was so far not possible to write and execute unit tests in an
efficient manner. Recently CERN started the development of such a unit testing
framework to fill this need. However, after more than ten years of development,
c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 117–132, 2016.
DOI: 10.1007/978-3-319-45892-2 9

118 S. Klikovits et al.

CERN is left with over 500,000 lines of CTRL code for which only a very small
set of unit tests exist. Hence, the verification of the source code remains a mainly
manual task leading to high testing costs in terms of manpower and slower release
times.

This situation is especially tedious during the frequent changes in the WinCC
OA execution environment. Before every introduction of a new operating system
version, the installation of patches or the release of a new framework version the
code base needs to be re-tested. Over the lifetime of the LHC, these environ-
ment changes happen repeatedly (often annually) and involve a major testing
overhead. To overcome this issue, we decided to look into automatic test case
generation. Since no tool exists that natively supports CTRL code we faced the
choice between two solutions: 1. Develop an automatic test case generation tool
specifically for CTRL; 2. Translate the CTRL code into the operating language
of an existing automatic test case generation tool.

In order to reuse the theoretical knowledge gained over the years by estab-
lished tools, we chose to translate CTRL code to C# in order to use Microsoft
Research’s Pex tool [11], a program that performs test case generation through
dynamic symbolic execution [3]. To support this solution, we developed a tool
called Iterative TEst Case system (ITEC). This tool helped to build up regres-
sion tests that can then be reused on the evolving system to ensure its quality.
ITEC works on the assumption that the current system reached a stable state
after 13 years of continuous use.

After finishing the first version of the tool, we applied it on a large part of
the CTRL code base at CERN and had initial execution results. Based on this,
we are now able to cast a critical eye over the quality of our approach.

The cornerstone of the chosen solution is the translation from CTRL to C#
in order to use Pex. Evidently, if this translation is erroneous, the generated test
cases would not be trustworthy. To ensure the quality of our approach, we must
be able to validate the translation.

In this paper, we will shortly introduce how ITEC works and show first
execution results. Based on these results and our experience, we will mainly
focus on the validation of the translation from CTRL code to C#. Finally, we
will discuss the translation and test quality metrics that take our translation
validity study into consideration.

This paper is structured as follows: Sect. 2 discusses of the related work in
terms of language translations and their verification, Sect. 3 presents an overview
of ITEC and its individual components, Sect. 4 shows our execution results on
one of the frameworks used in production, Sect. 5 presents our methodology to
verify our language translation, addressing first general concepts before diving
into the applied translation from CTRL to C#, Sect. 6 discusses a metric to
express the overall quality of the tests based on coverage metrics, finally Sect. 7
gives an outlook on future work and concludes.

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 119

2 Related Work

As the main contribution of this paper lies in the verification of translation
validity, we address in this section related works on this subject. Due to spacial
constraints and the large amount of research in this field, we will however not
be able to give an exhaustive description of all related works, but instead select
the ones that are most closely related to our works.

The translation of CTRL code falls into the domain of source-to-source com-
pilers or transpilers. The field of compiler verification has been extensively stud-
ied for compilations from high-level to low-level languages, including optimizing
compilers using formal correctness proofs for the compiler software. An alterna-
tive approach introduced by [13] and extended by [12,15] is called translation
validation. These works are based on the idea to check the translation output
for equivalence to the input, rather than the compiler itself.

Since the translation is based on the abstract syntax tree (AST) that we
obtain from parsing CTRL, the translation can also be seen as a model trans-
formation. While many approaches to validation of model transformations have
been proposed, we found the white box approach to validation of model trans-
formation given in [9] of interest for our cases, as the authors argue for the use
of large sets of generated test cases to perform validation. [6] introduces a test
adequacy criterion for model transformations of the model driven architecture.
They discuss partitioning and the choice of representative values as a means
to gain trust in the model transformation program. Although their example is
based on UML models, we see their approach as a general enough for our code
translation purposes.

Another approach treats the translation as specific generation of code from
an AST. The design, creation and also validation of code generators has been
extensively discussed in [7], where a detailed overview on the topic of testing of
code generators is given.

3 Tool Description

There exist different approaches to automatic test case generation and a lot of
tools have been implemented for various programming languages. Unfortunately,
none of these tools natively supports CTRL code with all its particularities,
such as implicit castings, special data types and reference parameters. When
facing the choice whether it was preferable to implement our own automated
test case generation (ATCG) tool for CTRL or to adapt our code to be able
to use an existing tool, we chose the latter solution in order to build upon
the experience and the knowledge others earned through the years. CTRL’s
language specificities led us in choosing Microsoft’s Pex tool and the underlying
C# language. Amongst the other options, this one seems to be the most flexible
in terms of language constructs and supports. Furthermore, C# and CTRL are
similar in many points, reducing the effort required to translate the code.

In the following subsections we will give a brief overview of the ITEC work-
flow, depicted in Fig. 1.

120 S. Klikovits et al.

Fig. 1. ITEC workflow. The figure depicts ITEC’s components (nodes) and the infor-
mation passed between them (arrows). The dashed boxes separate the components
logically into two types: generic and Pex-specific components.

3.1 Semi-purification and CUT Isolation

The first step is the isolation of code under test (CUT). Code dependencies such
as function calls other CTRL routines, accesses to global variables or data stored
in a database complicate the testing process.

In order to effectively generate unit test cases, we have to remove these
dependencies and replace them with predefined values. For this purpose we use
semi-purification [8], an approach where dependencies are replaced by additional
input parameters to the CUT. The values generated for the new parameters will
then be used to specify test doubles for the test execution.

3.2 Translation

The semi-purified code is then translated to the ATCG tool’s operating lan-
guage – in our case this is C#. The translation process is non-trivial, as state-
ments and constructs need to be mapped from one language to another.

To mention two examples for which the translation required adaptations:
1. C# does not allow indexers (index references to list elements) to be passed
as reference parameters; 2. CTRL variables are automatically initialized with a
default value, while C# requires explicit initialization. Additionally we manually
implemented most of the built-in CTRL standard library, including missing data
types in C#. More details on the translation validity will be given in Sect. 5.

3.3 ATCG Execution

Following the translation, the C# code is combined with the manually translated
artefacts and the parameterized unit test (PUT). The PUT can be thought of
as a parameterized routine that executes the CUT and subsequently performs
assertions. PUTs are not Pex-specific but can be found in many modern unit
testing frameworks such as JUnit, NUnit and others.

After the compilation of these resources, the ATCG tool (Pex) is triggered.

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 121

Fig. 2. Test case generation from Pex output

3.4 Test Case Creation

In this phase, the values from the generated test input sets are re-translated
into CTRL. The next step is to use the semi-purification knowledge to sepa-
rate the Pex-produced values into CUT parameters, parameters added by semi-
purification and other observations. Depending on the category, the values are
used for different parts of the test case. Figure 2 shows the three categories of
values that Pex produces and their transformation to code. It is to be said, that
since CTRL does not support reflection natively, mock specifications have to be
transformed into mock functions at execution time.

3.5 TC Execution, Mock Generation

At test run time, the mock specifications (see Fig. 2) are used to create func-
tion doubles which simulate the dependencies’ expected behaviour. The current
version of mock specifications are fairly simple, but an extension has been pro-
posed to allow for more complex behaviour (different behaviour based on timing,
iterations, etc.). Function doubles replace dependencies during test execution
and return predefined values. They can also perform some simple assertions, if
specified.

4 Results

To test the effectiveness of ITEC we executed it on 1111 functions found in
JCOP [2], one of CERN’s two WinCC OA frameworks. The test case generation
was performed with eight concurrent threads on a Windows 7 virtual machine
with eight CPUs (each 2.4 GHz) and 16 GB RAM. The generation and execution
of test cases had a time out of two and one minute, respectively. We ended up
with 602 functions that were successfully translated to C# and used for test
input generation.

The remaining 509 functions were not translated due to the following reasons
(texts in brackets provide references in Fig. 3): 166 contained unsupported fea-
tures or functions (Unsupported), 159 could not be translated due to unavailable
dependencies (SP Err), 184 invalid translations (Translation Err) that led to
compilation errors.

122 S. Klikovits et al.

Fig. 3. Sankey diagram, displaying the quantitative analysis of the execution on a
subset of the JCOP framework

For the 602 successful translated functions Pex produced 3972 test inputs.
During translation of these inputs to CTRL, filtering of invalid and untranslat-
able input removed 294 errors (TCGen Err), leaving 3678 implemented CTRL
test cases.

An analysis of the test case executions showed that 2465 test cases had a
matching between CTRL execution result and Pex’ predictions, whereas 1184
did not (no match between CTRL and Pex execution), 29 test cases crashed
during execution.

We further analysed the code coverage of the respective CUTs using WinCC
OA’s built-in line coverage reporting. Table 1 shows the number of functions
grouped by their line coverage. The first column displays the coverage ranges,
the second column shows the number of functions with that coverage when
executing all test cases and the third column the number of functions when only
taking test cases with matching oracles into account.

The first row of the table indicates that over a third of the functions reach
100% code coverage, both with all test cases and when only taking test cases
with matching oracles into account. In general the coverage of relatively few
functions drops due to restricting the coverage calculation to only test cases
with matching oracles. However, one thing is clearly noticeable. In total, there
are only 15 functions with 0% coverage, meaning that there exist no tests at all
for these functions. The reason for this could be that either no test inputs were
generated, due to too complex constraints, or that only invalid test inputs were
created which could not be translated to CTRL. When only looking at matching
oracle test cases this number grows to 51, indicating that there are 36 functions
that only have test cases which mismatch the expected results.

It seems though that Pex works well to achieve high code coverage (56% of
the functions have ≥ 75% line coverage).

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 123

Table 1. Code (line) coverage: all test cases and test cases with matching results only
and total

Line coverage # Functions (all TCs) # Functions (with matching oracle)

100 % 230 (38 %) 215 (36 %)

75 % - 99 129 (21 %) 120 (20 %)

50 % - 74 % 110 (18 %) 111 (18 %)

1 % - 49 % 118 (20 %) 105 (17 %)

0 % 15 (2 %) 51 (8 %)

It should be noted that even though the number of test cases with mismatch-
ing results between CTRL and C# is high, the effort put into their generation
is not wasted. One can easily see that automatically updating the expected out-
come of the test cases could produce a powerful regression test suite. Clearly,
our translation from CTRL to C# is not entirely correct, as we would not have
test cases with mismatching oracles otherwise.

We did however also identify several caveats. Firstly, producing “sensible”
input data seems to be a difficult task for the generation tool (Pex). In our case
it would have been beneficial to have Pex produce a list of strings with certain
format. Even though theoretically Pex is capable of doing this, the processing
time increases dramatically as a result and in many cases the added constraints
on the produced data lead to a very low number of test cases and coverage.
The execution cost in terms of time and memory grows exponentially with the
number of constraints.

Another problem is that Pex’s working principle is based on block coverage.
This means that Pex will try to procude the smallest set of inputs to cover
the CUT. However, this also includes that boundary values or mutation con-
siderations are not taken into account. This results in testsuites that verify the
corresponding outcome (same input produces same output) but not the negative
cases (changed CUT leads to failing tests).

5 Translation Validation

At the time of writing, the translation from CTRL to C# has not yet been
formally verified. In fact, the translation to the ATCG tool’s (Pex’) operating
language represents an essential step in the workflow of our test case generation
system. It seems self-evident that an erroneous translation from CTRL to C#
would not only lead to a misguided exploration but also invalidate the produced
test cases and results. Hence, a validation is required. Unfortunately Siemens
does not provide a clear semantic for the CTRL language. For that reason,
proofs cannot be utilized to show the validity of our translation.

In this section we will show how to verify a translation from one language to
another, using testing and decomposition.

124 S. Klikovits et al.

5.1 Syntactical Translation

To start, we need to clearly define the meaning of code translation from a source
language to a target language.

Definition 1 (Syntactical translation of a source code in a language to
another language). A syntactical translation is a partial function st : Lsrc →
Ldst that takes a piece of code c1 written in a source language Lsrc, c1 ∈ Lsrc,
and translates it to a piece of code c2 written in a destination language Ldst,
c2 ∈ Ldst:

c2 = st(c1), c1 ∈ Lsrc and c2 ∈ Ldst (1)

Note that this translation is purely syntactic. Although the translation aims to
preserve the code’s semantics, the definition above does not take this equivalence
into account.

Our next goal is therefore to show this syntactical translation validity. Con-
ceptually, we would like to show an equivalence between the source code and the
destination code. However, we cannot show this equivalence in the syntactical
domain.

5.2 Semantic Equivalence

We must therefore observe the semantic, denoted with the symbol �.� in the
following definitions, of each piece of code in their respective language.

Definition 2 (Semantic of source and destination code). Given a code c1
written in the language Lsrc, its execution with a given parameter interpretation
σ is denoted as:

�c1�
σ
Lsrc

= fsrc (2)

fsrc : domLsrc
× ...× domLsrc

→ domLsrc
(3)

Similarly, for a code c2 written in the language Ldst, its execution with a given
parameter interpretation σ′ is denoted as:

�c2�
σ
Ldst

= fdst (4)

fdst : domLdst
× ...× domLdst

→ domLdst
(5)

To show the semantic equivalence of two codes c1 and c2 in their respective
languages Lsrc and Ldst, we must also be able to map the data types defined in
both languages. This mapping defines a relationship between values of equivalent
domains in both languages.

Definition 3 (Lsrc and Ldst domains mapping). There exists a partial func-
tion h such that it maps a variable value defined in the language Lsrc to a variable
value defined in the language Ldst:

h : domLsrc
→ domLdst

(6)

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 125

To ease the definition of the partial function H that applies the mapping for all
parameters of a given function, we first define the parameters themselves in both
domains:

domLsrc
× ...× domLsrc

∈ PLsrc
(7)

domLdst
× ...× domLdst

∈ PLdst
(8)

Now we can define the partial function H over these parameters:

H : domLsrc
× ... × domLsrc

→ domLdst
× ...× domLdst

(9)

Given the parameters psrc, the semantic of H is the following:

psrc ∈ domLsrc
× ...× domLsrc

(10)

H(psrc) = 〈h(pi)|pi ∈ psrc, 0 ≤ i ≤ |psrc|〉 (11)

To introduce the translation validity, let’s first consider the picture depicted
on Fig. 4. Three main parts can be distinguished on this picture.

– The top arrow leading from c1 to c2 depicts the translation st of the code c1
written with the language Lsrc to the code c2 written in Ldst;

– The second arrow shows the domains mapping H between Lsrc and Ldst. This
mapping is used to adapt values chosen for the interpretation σ in domsrc to
the interpretation made in domdst;

– Finally, the bottom arrow shows the wanted equality between the execution
of the code c1 and c2.

Formally, we could define this semantic equivalence with the Definition 4.

Definition 4 (Semantic equality).

h(�c1�σ
Lsrc

) = �c2�
σ′
Ldst

,∀σ,∀c1 ∈ Lsrc, c2 = st(c1) ∈ Ldst, σ
′ = H(σ) (12)

Take note that in order to define the translation correctness, one must consider
all possible codes c1 written in the language Lsrc and all possible parameter
interpretations σ.

Although it is theoretically correct, this is impractical. In fact, constructs or
data types of the source language might not be translatable to the destination
language. If we take a step back to Definition 1, the syntactical translation is

Fig. 4. High level picture of the translation validity

126 S. Klikovits et al.

defined as a partial function for this reason. In our translation, we did not find
any construct that cannot be translated from CTRL to C#. However, in some
cases, the translation can be really arduous and could easily lead to translation
errors.

Furthermore, the domains mapping functions h/H are also partial functions
(Definition 3). In fact, some data types of the language Lsrc might not be map-
pable to types in Ldst. In our translation, we came across the data type shape
that is virtually impossible to translate to C#, as illustrated in Example 1.

Example 1 (Domains not existing or not translatable). CTRL provides the data
type shape. Shapes are pointers to graphics elements, that are used to display
information in user interface panels. Which element is pointed to is identified by
the graphical object’s name. As these names can be set and modified at runtime,
it is impossible to know the shape’s type, state and attributes.

Based on the previous remarks, proving the validity is close to impossible,
especially since a full mapping between the source and the destination languages
might not exist. Dániel Várro et al. discuss on that matter when considering
model transformation verification in [14]. He mentioned two main concepts as
requirements to verify model transformation:

1. Syntactic completeness: the source language covers the destination language
in terms of constructs;

2. Syntactic correctness: the translation leads to a syntactical correct model.

In our case, both requirements can be violated. In fact, one can violate syntac-
tic completeness if the source language does not cover the destination language,
as it is the case with the data type shape for example. We can however argue
that this requirement can be satisfied since both languages are Turing-complete,
yet it would be very arduous to do so. As for syntactic correctness, this can be
violated due to an erroneous translation that leads to a code that is syntactical
incorrect. Furthermore, combinatorial explosion threatens to quickly become a
problem if we assume that we need to exercise all possible codes with all input
combinations to verify our translation.

5.3 Testing to Increase Confidence

However, we can still increase our confidence in the translation using both testing
and the execution of the source code as an oracle.

Definition 5 (Defining tests to increase translation’s confidence).
Assuming a function sel that selects a relevant set of interpretations σ for a
given source code written with the language Lsrc:

sel : Lsrc → P(σ) (13)

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 127

To increase our confidence in the translation, we need to show that for all
chosen interpretations sel(c1) the execution of both source and destination code
are equal, given the domains mapping h/H.

h(�c1�σ
Lsrc

) = �st(c1)�
H(σ)
Ldst

,∀σ ∈ sel(c1), c1 ∈ Lsrc (14)

Note that the selection methodology implemented by the function sel is cru-
cial to increase our confidence in the translation, yet we will not address this
matter in this paper. We could mention test input generation techniques such
anti-random [10] for example or selection hypothesis such as [1] that address the
selection of a relevant set of test inputs. For the sake of the argument, we will
assume that the methodology chosen is of the greatest quality.

According to our current definition, we must generate tests every time we
translate a new source code. Even if this technique works, one can understand
that this is a labour intensive activity. Hence, we are now able to increase our
confidence in the translation for a source code that satisfies the two requirements
previously mentioned, even though it is still cumbersome.

One can make a reasonable assumption saying that the overall semantic of
a function is given by the composition of the semantic of its basic block. For
that purpose, we assume that no compiler optimizations are applied in order to
keep the current structure of the code and satisfy our previous assumption. This
assumption eases the overall verification of the translation. In fact, we don’t have
to check every piece of source code to ensure the quality of our translation, but
only to check basic blocks.

Let us now formally define how to verify basic blocks for the translation.

Definition 6 (Structure of a piece of code). In our case, a piece of code c1
written in the language Lsrc is a function. This function can be decomposed in
a signature sig and a block of statements body:

c1 = 〈sig, body〉 with c1 ∈ Lsrc (15)

The body itself is composed of either control blocks, i.e. loop and conditional
blocks, or statements:

body ⊆ P(block)
stmt : statement → block

ift : statement × block → block (16)
while : statement × block → block

Note that block is part of the source language:

block ∈ Lsrc (17)

From this code structure, we can therefore decompose a source code into its
basic blocks.

128 S. Klikovits et al.

Definition 7 (Decomposing a source code in basic blocks). To be able to
decompose a source code, we need first to define how to decompose basic blocks.

dec : block → P(statement) (18)

dec(stmt(stmt1)) = {stmt1}
dec(ift(stmt1, block1)) = stmt1 ∪ dec(block1) (19)
dec(while(stmt1, block1)) = stmt1 ∪ dec(block1)

The overall decomposition of a source code is therefore given by:

decomposition : Lsrc → P(statement)

decomposition(〈sig, body〉) =
⋃

∀block∈body

dec(block) (20)

Furthermore, we generalize the later decomposition by anonymizing variables
and constants in statements to only preserve data types. The following example
should clarify the decomposition with anonymization:

Example 2 (Decomposition of a source code c1). Considering the following
code c1:

Listing 1. Example code for decomposition

void func (int abc) {
abc = abc + 1 ;
i f (abc == 2) {

abc = 10 ;
}

}
The decomposition with anonymization of the example code into basic blocks

leads to the following result:

anonymize(decomposition(c1)) =anonymize(
dec(stmt(abc = abc + 1))

∪ dec(ift(stmt(abc == 2), stmt(abc = 10)))

anonymize(decomposition(c1)) = {int = int+ int, int == int, int = int} (21)

Based on this source code decomposition, we are able to know the anonymized
statements that are executed and we can therefore generate tests for each of these
statements independently.

Definition 8 (Verifying translation semantic by testing it on basic
blocks). As we were previously addressing tests selection over a whole function,
one can therefore define a new selection function addressing only anonymized
statements:

selstmt : stmt → P(σ) (22)

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 129

The set of statements of a given source code c1 that must be verified is:

stmts = anonymize(decomposition(c1)), c1 ∈ Lsrc (23)

One can now redefine the semantic equivalence required for the translation over
all statements from the source code c1 with domains mapping h/H:

h(�stmt�σ
Lsrc

) = �st(stmt)�H(σ)
Ldst

,∀stmt ∈ stmts,∀σ ∈ selstmt(stmt) (24)

As we discussed before, this verification can be partial if we have syntactical
incompleteness between our languages. However, we can ensure the quality of
the translation up to a certain level. We will discuss of that matter in the next
section.

6 Quality Metric

Based on the process described in Sect. 5, we base our confidence of a CUT on
the validity of its individual statements’ translations. We must therefore take
them into consideration when addressing tests generation results. In fact, we
cannot pragmatically consider that a code coverage of 100 % is trustable if none
of the individual statement translations have been verified.

For that purpose, we define a quality metric φ that represents our confidence
in the translation and its correctness.

Definition 9 (Correctness confidence measure for code). Given a piece
of code c written in a given language L, the function φ represents the correctness
confidence as a boolean value defining that the code for the translation is tested
(1) or not (0).

φ : L → B (25)

This means that for individual statements φ denotes whether the basic blocks
have been tested or not, as defined in the previous section.

Based on a confidence of a (CUT’s) basic block’s individual confidence mea-
sures, we then define our confidence into the composition of blocks (such as a
function) as follows:

Definition 10 (Correctness confidence of a composition). Let c1 be a
code under test. Let further stmts be the body of the function, consisting of indi-
vidual statements stmt1, . . . , stmtn. We define that our confidence in the entire
code as the mean average of the anonymized statements’ correctness confidence.

φ(c1) =
∑n

i=1 φ(anoni)
n

, anoni ∈ anons (26)

where anons is {anonymize(stmt1), . . . , anonymize(stmtn)}, the set of
anonymized statements occurring in c1.

130 S. Klikovits et al.

In a case where multiple statements have the same anonymous representation
(e.g. multiple integer additions), only one of them is chosen for the calculation.
This is to avoid repeated statements or loops to influence the measure.

We then further define our confidence into the correctness of an individual
testcase execution.

Definition 11 (Confidence in test case results). Let tc be a test case using
input interpretation σ that executes the code under test c1. Let stmts be the
statements stmt1, . . . , stmtn of c1. We define our confidence in the correctness
of a result obtained by executing tc as the product of the confidence values of the
executed statements denoted as stmts|σ.

φtests : Lsrc × domsrc × ... × domsrc → B (27)

φtests(c1, σ) =
∏

∀stmti∈stmts|σ
φ(anonymize(stmti)) (28)

Note that for test case executions, the confidence calculation of every statement
is taken into account, even if multiple statements have the same anonymization.
For repeated execution of the same statement, such as in a loop, every execution
is taken into account. This is possible, since the usage of coverage measures
provides the execution count for each individual statement.

6.1 Example Calculation of Correctness Confidence

Listing 2 displays a function for which we want to calculate the correctness con-
fidence and Listing 3 shows this function with anonymized statements. For this
example we will assume that the anonymized functions int + +, int + int, int =
int + int, have been fully tested (φ = 1), while int > int and int%int have not
been validated (φ = 0).

First we will calculate the correctness confidence for the entire translated
function. According to Definition 10 we will calculate the mean of the individual
types of anonymized statements. For our example, we therefore will end up with
the following calculation (subscript texts indicate the line numbers).

φ(func) =
1L2 + 1L4 + 0L5 + 0L6

4
= 0.5 (29)

Assuming the existence of a passing test case tc that would assert that the
result of func(x, y) with σ = 〈3, 5〉 is 8, we would calculate its correctness
confidence as follows:

φ(func, σ) = 1L2 ∗ 1L3 ∗ 1L4 ∗ 0L5 ∗ 1L8 = 0 (30)

Automated Test Case Generation for CTRL Using Pex: Lessons Learned 131

Listing 2. Example function

1 int func (int a , int b) {
2 a++
3 a++
4 b = b+2
5 i f (a > b){
6 return a
7 } else {
8 return a + b
9 }

10 }

Listing 3. Anonymized function

1 int func (int , int){
2 int++
3 int++
4 int = int + int
5 i f (int > int) {
6 return int
7 } else {
8 return int + int
9 }

10 }

7 Conclusion and Future Work

This paper presents the lessons learned during the creation and the execution of
our tool, ITEC.

First, we shortly describe ITEC’s workflow and the individual steps that are
taken for the test cases generation. Based on this, we present our initial results
of the test case generation and execution for one of CERN’s CTRL frameworks
(more than 1000 individual functions). We realize from these results that we
could obtain test cases with mismatching oracles when executing equivalent
CTRL and C# codes individually with similar inputs. These results outline
possible problems in the translation of CTRL code to C#.

To address this issue, we present formal foundations on the validation of
the CTRL to C# translation in order to increase our confidence in the chosen
approach. Finally, we discuss of a quality measure that allows us to determine
the confidence we put into our translations and hence further into our generated
test cases.

Based on the work done so far, we aim to extend this research into sev-
eral areas: 1. Build an extensive test suite of translation validations for basic
blocks, and empirically compare the quality metric’s predictions with real data;
2. Improve the translation, both to and from C#, to generate fewer failing test
cases; 3. Research into ways to improve test case generation in presence of com-
plex constraints, such as input data matching domain formats; 4. Verify the test
cases’ effectiveness by systematically executing them on mutated versions of the
CUT; 5. Study and introduce a way to make these generated regression tests
evolve with time as the code is changing.

References

1. Bernot, G., Gaudel, M., Marre, B.: Software testing based on formal specifications:
a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991). http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=120426

2. CERN: The JCOP Framework, August 2014. https://j2eeps.cern.ch/wikis/
display/EN/JCOP+Framework

3. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: dynamic symbolic execution
for invariant inference. In: Proceedings of the 30th International Conference on
Software Engineering, ICSE 2008, pp. 281–290. ACM, New York (2008). http://
doi.acm.org/10.1145/1368088.1368127

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=120426
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=120426
https://j2eeps.cern.ch/wikis/display/EN/JCOP+Framework
https://j2eeps.cern.ch/wikis/display/EN/JCOP+Framework
http://doi.acm.org/10.1145/1368088.1368127
http://doi.acm.org/10.1145/1368088.1368127

132 S. Klikovits et al.

4. ETM Professional Control: WinCC OA at a glance. Siemens AG (2012)
5. ETM Professional Control: Control script language (2015). http://etm.at/index

e.asp?id=2&sb1=54&sb2=118&sb3=&sname=&sid=&seite id=118
6. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: testing

model transformations. In: First International Workshop on Model, Design and
Validation, Proceedings, pp. 29–40, November 2004

7. Jörges, S. (ed.): Construction and Evolution of Code Generators. LNCS, vol. 7747,
pp. 207–213. Springer, Heidelberg (2013)

8. Klikovits, S., Lawrence, D.P.Y., Gonzalez-Berges, M., Buchs, D.: Considering exe-
cution environment resilience: a white-box approach. In: Fantechi, A., Pelliccione,
P. (eds.) SERENE 2015. LNCS, vol. 9274, pp. 46–61. Springer, Heidelberg (2015)

9. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations – first expe-
riences using a white box approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 193–204. Springer, Heidelberg (2007). http://dx.doi.org/10.1007/
978-3-540-69489-2 24

10. Malaiya, Y.K.: Antirandom testing: getting the most out of black-box testing. In:
Sixth International Symposium on Software Reliability Engineering, ISSRE 1995,
Toulouse, France, 24–27 October 1995, pp. 86–95. IEEE (1995). http://dx.doi.org/
10.1109/ISSRE.1995.497647

11. Microsoft Research: Pex, Automated White box Testing for .NET. http://research.
microsoft.com/en-us/projects/pex/

12. Pnueli, A., Siegel, M.D., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

13. Samet, H.: Automatically proving the correctness of translations involving opti-
mized code. Memo AIM, Stanford University (1975). https://books.google.ch/
books?id=1sI-AAAAIAAJ

14. Varró, D., Pataricza, A.: Automated formal verification of model transformations.
In: Jürjens, J., Rumpe, B., France, R., Fernandez, E.B. (eds.) CSDUML 2003:
Critical Systems Development in UML; Proceedings of the UML 2003 Workshop,
pp. 63–78. No. TUM-I0323 in Technical report, Technische Universitüt München,
Technische Universität München, September 2003. http://www.inf.mit.bme.hu/
FTSRG/Publications/varro/2003/csduml2003 vp.pdf

15. Zuck, L.D., Pnueli, A., Goldberg, B.: VOC: a methodology for the translation
validation of optimizing compilers. J. UCS 9(3), 223–247 (2003). http://dx.doi.
org/10.3217/jucs-009-03-0223

http://etm.at/index_e.asp?id=2&sb1=54&sb2=118&sb3=&sname=&sid=&seite_id=118
http://etm.at/index_e.asp?id=2&sb1=54&sb2=118&sb3=&sname=&sid=&seite_id=118
http://dx.doi.org/10.1007/978-3-540-69489-2_24
http://dx.doi.org/10.1007/978-3-540-69489-2_24
http://dx.doi.org/10.1109/ISSRE.1995.497647
http://dx.doi.org/10.1109/ISSRE.1995.497647
http://research.microsoft.com/en-us/projects/pex/
http://research.microsoft.com/en-us/projects/pex/
https://books.google.ch/books?id=1sI-AAAAIAAJ
https://books.google.ch/books?id=1sI-AAAAIAAJ
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2003/csduml2003_vp.pdf
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2003/csduml2003_vp.pdf
http://dx.doi.org/10.3217/jucs-009-03-0223
http://dx.doi.org/10.3217/jucs-009-03-0223

A/B Testing in E-commerce Sales Processes

Kostantinos Koukouvis, Roberto Alcañiz Cubero, and Patrizio Pelliccione(B)

Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden
patrizio.pelliccione@gu.se

Abstract. E-commerce has traditionally been a field where online con-
trolled experiments, such as A/B testing, take place. Most of these
experiments focus on evaluating the front-end of the application and
specifically different visual aspects, e.g. creating variations of the lay-
outs, fonts, colors of the site, etc. In this paper we want to experiment
whether A/B testing can be used to evaluate e-commerce sales processes
and to improve the resilience of these processes. To achieve this goal we
developed a tool in collaboration with a company, called Sonician AB,
which is focused on marketing automation. The tool has been designed to
empower business owners with a virtual assistant able to help customers
understanding their needs and making decisions while purchasing prod-
ucts or services. The tool has been evaluated within the company and
instantiated in two different business flow cases. Two experiments under
real-life conditions show promising results. The paper concludes with
lessons learned and a set of guidelines designed to help companies with
interest of conducting similar experiments.

1 Introduction

The world-wide-web has evolved to being the perfect playground for evaluat-
ing different ideas through controlled experiments. This type of experiments can
be called by different names with only slight differences between them, such as
randomized experiments, A/B tests, split tests, Control/Treatment tests, Mul-
tiVariable Tests (MVT) and parallel flights. One of the earliest examples of run-
ning an online A/B test was an experiment carried by Linden1. The controlled
experiments embody the best scientific design for establishing a causal relation-
ship between changes and their influence on user-observable behavior [10]. In
the context of online experimentation, A/B testing can be utilized in order to
analyse user behaviour. The idea behind A/B testing in an online environment
is to create two variants of a single website and then randomly assigning to each
visiting user one of the variants. Those variants are usually called (i) the control,
which is usually the currently existing version, and (ii) the treatment, which is
usually a new version that needs to be evaluated.

The variants could also be two completely new versions of a service. Differ-
ent aspects can be measured spanning from runtime performance to implicit and

1 http://goo.gl/8r9X3P.

c© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 133–148, 2016.
DOI: 10.1007/978-3-319-45892-2 10

http://goo.gl/8r9X3P

134 K. Koukouvis et al.

explicit user behaviors. The results of those tests, as well as possibly some survey
data (collected by prompting users to fill questionnaires evaluating their interac-
tion with the website), are collected. Afterwards statistical tests are conducted
to evaluate the existence of statistically significant differences between the two
variants, thus leading to the acceptance or rejection of the null hypothesis, i.e.
that there is no significant difference between the two versions [9]. A key issue
is that the users should have a consistent experience for the service: they should
always see the same variant when coming back to the service.

Although the efficacy and the value of A/B testing are testified by several
years of use in multiple sites, it is mostly devoted to evaluate the usability aspects
of a website [1] In light of evaluating A/B testing and its effect on e-commerce
sales process, we identified the following research questions:

RQ1: How can the use of A/B testing be extended from visual aspects of online
services in order to optimize sales processes in the E-commerce domain?
RQ2: Can the aforementioned use of A/B testing be generalized to produce a
framework that can be exploited by companies to create virtual assistants?

To provide an answer to these questions we developed the Decision Assistant
tool (DA tool) together with the company Sonician AB. DA tool provides to
business owners the instruments to develop their own virtual assistants. This
allows business owners to gain knowledge on their customer needs and to provide
them with the product that fits them. To do this they can use the tool to create a
step-wise process, which their customers have to follow. The steps composing the
process are highly customizable, thus bearing the potential of creating several
processes with different questions, number of steps and/or required information
from the customer. This complex system offers an ideal base to conduct testing
over the process itself, instead of conducting traditional user interface or usability
tests, e.g., in terms of testing simpler processes against more complex ones.

The main conclusion of our work is that A/B testing is a promising technique
for testing not only usability aspects (e.g. creating variations of the GUI of the
site, such as different layouts, fonts, colours) but also aspects related to business
processes. Thus, A/B testing might be exploited to enhance systems with a
continuous verification and validation infrastructure allowing to experiment with
the involvement of end users. Through such infrastructure the system itself can
be able to experiment the parameters for triggering certain actions as a way to
learn from large numbers of customers what the best response is.

The paper contributes also a list of lessons learned that should be taken into
account to develop a framework to help companies creating their own virtual
business assistants.

Paper structure: The remainder of this paper is structured as follows. Section 2
discusses related works in the field of controlled experiments in the web with
particular focus on A/B testing approaches. Section 3 presents DA tool and its
validation made by people working in Sonician AB. The performed experiments
are presented in Sect. 4. Section 5 provides an answer to research questions and

A/B Testing in E-commerce Sales Processes 135

Sect. 6 presents lessons learned. Section 7 provides concluding remarks and future
work directions.

2 Related Works: Controlled Experiments in the Web

Although customer decision support systems are viewed as a promising selling
tool, until recently, they had very limited application [4]. In the web 2.0 era,
a system can offer a significant value to the entire sales process, guiding the
customer to reach a buy-or-not decision [12]. Those systems find heavy use in
the context of product configuration. Customer satisfaction can be determined
in part by the easiness of the process the customer follows [5]. Another study
shows that the customer is willing to pay more for a product when the effort to
evaluate it took less, especially in cases where the customer is less skilled [3]. In
general, the use of customer decision support systems can facilitate a solution
driven approach to marketing [4].

Davenport expresses the importance of testing as a tool to make tactical
decisions in a range of business settings, from banks to retailers to dot-coms,
and stresses the need to create a testing mind-set in companies in order to move
testing “out of the laboratory and into the boardroom” [2].

In online environments the goal of hosting controlled experiments is to per-
form the evaluation of new ideas in order to try and find out if those new ideas
will grant any benefits compared to the previous arrangement of the system when
applied [15]. As this is usually performed by companies or organizations, the ulti-
mate benefit of conducting experiments is to increase return-on-investment [9].
This matter has been widely discussed in scientific literature, with the partic-
ularity that for web development this technique has been traditionally used to
evaluate user experience aspects.

A/B testing has been widely used in web development as a kind of controlled
experiment. When it comes to A/B testing, this has been applied to aspects
concerning user experience or interaction with the website [7,8,15].

The idea of expanding A/B testing in online services from its initial (and
somehow) traditional perspective of user experience has also been recently pro-
posed by Hynninen and Kauppinen [6]. They conclude saying that A/B testing
is a promising method in customer value evaluation. In this paper we provide a
confirmation that A/B testing is a valid instrument to support the evaluation of
E-commerce sales processes. Specifically, our aim is to prove its suitability not
only in testing for webservice front-ends but also on evaluating sales process,
specifically in the Business-to-Business (B2B) or Business-to-Consumer (B2C)
perspective of automated sales.

A/B testing requires a large number of users involved in the experimenta-
tion [8,9]. This is especially true when dealing with variances that may be expe-
rienced by only a small share of the website users. It might actually be difficult
to implement the testing infrastructure, since the experiments might involve an
unusually large collection of data which must be managed in a reliable way. DA
tool provides the testing infrastructure together with mechanisms to instantiate
it to the specific needs of a certain company.

136 K. Koukouvis et al.

3 Decision Assistant Tool

DA tool has been conceived by closely working with a company focused in mar-
keting automation in order to elicit the needed requirements for the development.
This company is Sonician2, which was originally established in 2008 as Sonician
UK Limited, and from 2013 the main company is Swedish Sonician AB. The
company is fully focused on marketing automation and helps other companies
to get up and running using all aspects of marketing automation, i.e. Lead Cap-
turing, Nurturing and Scoring.

DA tool has two types of users, the tool administrators and the end-users.
The tool administrator is the business owner that wants to sell a product or a
service; he is responsible for creating a flow of steps, called a Decision Assistant
Flow or simply DA Flow. The end-user can either be a business or a private
person, and his goal is to go through the Decision Assistant Flow in order to
get information about a product or service. With the help of the DA tool an
end-user comes to a decision on whether this product or service fits his needs.

3.1 Decision Assistant Flow

A DA Flow can provide information to the users through a wide array of items,
such as images, videos, HTML formatted text, and diverse types of questions.
DA tool supports the following types of questions:

Open questions - they do not have any predefined answer, instead the user
inputs his text to describe either a problem or a situation or in general to provide
feedback.

Single choice questions - the user must choose only one answer among a set
of predefined answers.

Multiple choice questions - these questions are presented in a similar way as
single choice ones, but with the particularity that the user is allowed to choose
more than one answer.

The purpose of the flow can be to help the visitor of the website (i.e. the end-
user) to ascertain whether the proposed product or service is exactly what he is
looking for, or in its simplest use, to just inform the visitor about the product or
service. The administrator of the flow can also assign a weight to each possible
answer.

Once the visitor enters the flow and advances through it, the system keeps
track of the selected answers, in order to conduct calculations with the weights.
By the end of the flow the weight of each selected answer can be added up, and
compared to a threshold value defined by the administrator in order to provide
the visitor with either a positive or a negative suggestion.

Each step of the sales process can be represented within a Decision Assis-
tant flow. It can either take an unaware visitor and inform him on the specific

2 Sonician http://www.sonician.com/en.

http://www.sonician.com/en

A/B Testing in E-commerce Sales Processes 137

product/service, or take a business contact and turn him into a client by suc-
cessfully calculating his needs and suitability. The flow can start by making an
introduction of the product or service, presenting some general information on
its field of use and also the advantages that it can give to a potential owner.
The visitors that decide to follow the flow can then be taken through a number
of steps containing questions designed to assist him in order to gain any kind of
information he needs.

A demonstration of the product can follow, either through a video presenta-
tion or images and text. By the end of the flow the visitor can learn whether his
answers indicate that he would gain from using the product/service or not and
also be required to enter his personal information in order to continue, or get
more personalized feedback by email. The flow can also contain an order form to
eliminate the need of any redirections if the visitor is about to make a purchase.
It can be also utilized to represent the next steps of support and feedback as it
can save the visitor ID for his later visits. Moreover, DA tool is engineered to
enable future extensions, like for example a live chat tool to better facilitate the
support step.

3.2 DA Tool Architecture

DA tool was designed using the Model-View-Controller (MVC) architecture.
The Model part of the architecture includes a database module that contains all
the building blocks needed to create DA tool. The database module is wrapped
by another module that has the task of connecting the database tables to their
model representations in the back-end of the tool. Any read/write operation on
the database is going through that module. The Controller part of the archi-
tecture includes a module that is responsible for manipulating the models and
passing the information to the graphical user interface. Also in the Controller
there is a module responsible for handling the A/B tests, and one responsible
for rendering the Decision Assistant flows. The View part of the architecture
includes the two variations of the graphical user interface: the administrator
side (flow editing tool) and the end-user side (flow display tool). The bulk of the
development is made using the open source Laravel PHP framework (Controller).
MySQL is used for the database (Model) and HTML5 along with jQuery, CSS3
and Bootstrap are used for the front-end of the web application (View). Also a
lot of minor open source JavaScript libraries are used mostly for cosmetic reasons
on the front-end side of the web application.

3.3 A/B Testing Capabilities of the Tool

The Decision Assistant tool offers A/B testing capabilities for the sales process
part of the flow. It can range from variant sequence of questions and/or steps
to status aids for the visitors. When the administrator is ready with the design
of his Decision Assistant flow he has the option of cloning the whole flow and
modifying this clone in order to produce the second variant (Treatment variant).

138 K. Koukouvis et al.

After choosing from one or more of the above possible modifications the
newly created clone will be connected to the hash url of Control variant. When-
ever there is a new visitor, one of the two variants of the flow is presented to
them randomly with 50 % probability. Recurring visitors will always get the same
variant they were first assigned to (provided of course they allow cookies or use
the same system and browser to view the flow website). The results of each vari-
ant can be then reviewed individually and be compared in order to define which
of the two can be more successful (in terms of successful outcomes), and help
guiding the administrator in the design tactics for his future Decision Assistant
flows.

3.4 Validation of DA Tool

Having a validated and approved DA tool is of key importance for the success
of this research. Our goal is to validate the capability or suitability of the tool
to conduct sales processes and help both the seller (the provider of the goods or
services) and the customer into better understanding his needs. The validation
has been performed through semi-structured interviews conducted with selected
people within the Sonician AB company.

The selection of the appropriate subjects to be involved in the evaluation
was decided in a meeting with our contact within the company, who, proposed
a few candidates based on their role and suitability. This selection was further
expanded during a general meeting of the company in which the authors pre-
sented the developed software. After this presentation, a brainstorming session
was hosted in which participants were asked to provide ideas and target groups
for the experiments. One of the managers offered himself to act as a contact
person or “gatekeeper” [14] during the interviewing process, ensuring that all
participants were informed and coordinating the different schedules and inter-
views. The selected subjects are shown in Table 1.

Table 1. Interviewees and their role in the company

Interviewee Role

Number 1 (N1) CEO & founder

Number 2 (N2) Managing Director

Number 3 (N3) Chief of Operations

Number 4 (N4) Delivery Manager

Number 5 (N5) Company Partner

Number 6 (N6) Company Advisor

Number 7 (N7) Company Advisor

In order to collect data, semi-structured interviews were conducted with all
the participants. The purpose of the interviews was to validate DA tool and to

A/B Testing in E-commerce Sales Processes 139

assess whether it could be of help to the company. Interviews were also exploited
to gain insight on factors that are important for creating online sales processes
and Decision Assistant Flows. This will be particularly important for answering
RQ2, as discussed in Sects. 5 and 6.

The interviews were conducted in accordance to guidelines proposed by
Runeson and Höst [13]. Every session started with a semi-structured approach
with very few questions predetermined. The semi-structured protocol strength-
ens the exploratory nature of the study. The structure of the interview might
be found in [11]. Every session started with a semi-structured approach with
seven predetermined questions. According to the answers on those questions the
discussion was expanded to gather more feedback. Following recommendations
in [13], and after asking for permission to each individual interviewee, each ses-
sion was recorded in an audio format, since even though one of the interviewers
was focusing on taking notes, it is hard to keep on all details. The interviews
lasted about 25 min on average, with the longest lasting 45 min and the shortest
15 min.

Summarizing, the validation shows that DA tool received high praises from
the company personnel and partners. Something highlighted in their responses
was their certainty that DA tool could help them achieving their goals in market-
ing automation. Most of them had either heard of or had some experience with
the tool before the interviews and thus they could actually verify that they tried
and achieved what they wanted to do. A successful online process is, according
to most of the interviewees, a process that is able to transmit to the customer
a believable profit or benefit when the customer is looking for a product or a
service. It must show this benefit in a clear way so that the purchasing decision
is done without doubts by the customer. In turn, from the seller’s perspective,
a successful process is one that leads to a comparatively good number of con-
versions (purchases, acceptances). A successful process also must be tailored to
the needs of each customer or customer group. The interviewees recognized that
DA tool can support these beliefs through its’ customization features and its’
adaptability to any kind of sales environment.

4 Experiments

In order to provide an answer to the research questions RQ1 and RQ2 presented
in the introduction we created two Decision Assistant flows in two different
business domains. In the two experiments the AD flow creators created a flow
using DA tool; more precisely, through the tool they defined a control and a
treatment variant. The differences in those variants were based on the thoughts
and ideas collected during the interviews described in Sect. 3.4.

According to Kohavi [9], the tests were carried out anonymously. This means
that the subjects of the experiments did not know that they were being part
of an online experiment. As part of the development of the tool, the authors
created a script which acted as a load balancer; it distributed all participants
randomly to one of the variants.

140 K. Koukouvis et al.

Once the participants entered the flow, there were two possible outcomes:
finish the flow or drop-out at some point. Since the criteria to consider an experi-
ment successful was for the participant to finish it, special care was taken in order
to track the participant’s status regarding completion of the flow. To achieve this,
the tool would provide continuous tracking information to the authors, stating
how many different participants started the flow and their status (seen, doing, or
finished). In case of the ‘doing’ status, there might be two different possibilities:
(i) the participant has stopped completing it but intends to resume it later, or
(ii) the participant decided to drop out and will not complete the flow.

We also prepared a very short survey intended to obtain further feedback
from the subjects (the target group) of the experiment. The survey was sent
to each experiment participant approximately two to three weeks after the first
send out. The reason was to get some insight on the cause for their completion
or dropout of the flow, and suggestions on how to improve the process and the
tool. Details about the survey might be found in [11].

First experiment - The first experiment was created by the first two authors
of the paper also to test the tool and its functionalities. The purpose of the
experiment was for testing the suitability of a future product that they are
currently developing.

Characteristics of the variants: Both variants of the flow consisted of 5
steps, one of which was a “finishing/thank you” step. For the Control variant
the questions were asked in a formal manner, and only relevant information
was inquired. In the Treatment variant the questions were formed more relaxed
using also a bit of humour. Some questions were added to each step that were
focused on gathering more private information. With those two variants of the
flow the authors want to see the differences between using a formal language or a
more casual one but with the addition of more intrusive questions. This was for
testing one hypothesis of one interviewed that asking for irrelevant question or
for personal information would affect the behaviour of the interviewees. Another
hypothesis we tested is that using language variations tailored to the target
population might help.

Target group: The experiment involved 166 people, with age of the participants
spanning from 18 to 35. Participants comes from different backgrounds, country
of origin, and socio-economic environments.

Time span: The experiment started on 10th of September and ended on 18th
of September, with the link of the flow posted in a social network.

Second experiment - This experiment was created by interviewee Number
7. The purpose of the experiment was to help the interviewee’s company cal-
culate its’ client base’s suitability for their product. Since the target group was
completely comprised by Swedish speakers the flows were created in Swedish in
order to facilitate their interaction with the flow.

A/B Testing in E-commerce Sales Processes 141

Characteristics of the variants: The control variant consisted of 9 steps one
of which was a “finishing/thank you” step. The first two steps had one question
each while the rest consisted of 3 to 5 questions. Each answer had a specified
weight with the end calculations leading to either a high suitability (success) or
low suitability (failure). The visitors could get information about their status in
the flow by a bar on the top of the screen, which showed the percentage of the
flow that was completed at their current step. The treatment variant was made
by merging some of the steps together resulting to a flow with 4 question steps.
That way the visitors that were exposed to the treatment variant would see a
bigger completion progress whenever they moved to a new step.

Target group: The experiment involved 141 persons from the client-base of the
company.

Time span: The experiment started on Thursday 10th of September with the
send-out of the link to the target group. The experiment was deemed finished
at Friday 18th of September.

4.1 Results

Each experiment was examined individually through statistical analysis with the
objective of reaching an understanding in whether there is a significant difference
in the conversions among both the treatment and the control groups. In order
to conduct this analysis, and since the values obtained from the experiments
are categorical, the starting points are the contingency tables created during
the analysis of the experiments. These contingency tables present the figures
for both outcomes of the experiment, success or fail, and the variant to which
they belong. Afterwards, a Pearson’s Chi Squared test for fitness is conducted,
in order to test whether there is statistical significance between the control and
the treatment groups. Pure fails refers to participants who finished the flow
and obtained a fail outcome, not accounting those participants who dropped-
out. However, since the test is carried out using categorical variables, and the
authors are only testing success and fail, dropouts will be added to those pure
fails in the contingency tables created to account for total fails. The contingency
tables show absolute numbers, which refer to actual participants tested on each
group, and not percentages, even though for better understanding of the reader,
we also use percentages to describe each experiment’s result. Regarding whether
the Yates’s correction should be applied or not to a Chi-squared test, the decision
is not to apply it, given the fact that both the sample size and the cell count
are large enough (cell count refers to the figure in each cell) in the experiments,
and also it tends to give very conservative p-values.

First experiment - This experiment, as explained above, was created by
the first two authors. A target audience of mostly young people, aged 18–35,
was selected for this experiment. While most of those participants are based in
Europe, some of them are based in North and South America as well as Africa.
Also, some of those based in Europe have origins in other regions, and this adds

142 K. Koukouvis et al.

for a more diverse sample. The tracking tool included in the Decision Assistant
showed that, out of the 166 participants, 91 and 75 participants were respectively
redirected to Variant A and Variant B. The conversion goal set for this experi-
ment was to achieve as many successful complete interactions as possible. The
created flow was configured in the Decision Assistant using weights to measure
the answers provided by the subjects of the experiment. Upon completion of the
flow, and based on the calculations of the final score with the weights of the
answers selected, the subject was tested either as successful or failed. Regarding
the 91 participants that conducted Variant A, 79 % of them finished the flow and
21 % dropped out during the process. DA tool shows that 65 % of the test were
successful, and 14 % failed. Combining pure fails and dropouts, a total of 35 %
of participants are hence considered as fail (see Fig. 1). Extrapolating the data
to focus only on the results for finished flows, a total of 82 % of those were suc-
cessful, while only 18 % were tested as failed. Regarding Variant B, 75 % of the
75 subjects who participated finished the flow, while 25 % of them dropped-out.
Over the total figures, a 68 % of the sample tested as successful, while a com-
paratively low 7 % tested as pure failed. The combined pure fails and drop-outs
make the total failures rising to a 32 % (see Fig. 1). Focusing on only-finished
cases, a quite high 90 % of the participants who finished tested positive, leaving
a 10 % as failed.

Fig. 1. Experiment 1

Variant A was presented with a formal language, and it boasted a lower rate of
drop-outs. However, even though Variant B presented a more vulgar language,
the fact that the target was predominantly a young audience helped to keep
both comparatively high finish and conversion rates. Another characteristic of
Variant B was to ask for more private questions such as personal information
on economic stability, with the idea of getting an insight on whether this would
make participants wary or suspicious about giving this kind of information. Of
those who finished Variant A with successful results, eight participants refused

A/B Testing in E-commerce Sales Processes 143

Table 2. First experiment: contingency table

Non converted (Fail) Converted (Success)

Variant A 32 59

Variant B 24 51

to give their personal information, while for Variant B with positive results, all
of them provided the personal information requested. More discussion about this
can be found in Sect. 5. The corresponding contingency table for this experiment
might be found in Table 2.

The test was performed using an online tool called Graphpad3. The resulting
figures show a sufficiently large sample size and cell count, resulting in a χ2 =
0.184 and a p-value of p = 0.3339 with one degree of freedom. Thus the null
hypothesis is accepted and the result for this test is that there is no significant
difference between the two groups.

Second experiment - As described above, this experiment targets real cus-
tomers of a company. DA tool showed that out of the 142 subjects, 78 and 64
of them were taken to Variant A and Variant B, respectively. As specified in
the description of the experiment Variant B had fewer steps with comparatively
more questions each than Variant A. DA tool shows that for Variant A 23 %
of the participants completed the flow, having a high rate of success. Thus, as
shown in Fig. 2, in total, 77 % of the subjects dropped-out at the beginning or
during the process. 22 % of those that ended the process are successes and only
1 % result as pure fails. Combined, the total number of failures sums up 78 %
of participants. Focusing on those that completed the process, 95 % of them
successfully completed and 5 % failed completing, although this figures are not
accounted for the statistical test performed.

Variant B shows a lower 11 % of finished processes out of the total size,
however with a 100 % success rate among those, and consequently no rejections
in this partial analysis. In total, this variant makes up for an 11 % of conversions,
with a total of 89 % of participants achieving a fail status (see Fig. 2).

Regardless of the apparent success of Variant B over finished processes, the
analysis is based on the total data, including those who did not finish the flow as
failed. Then, data show a big difference among variants, indicating that shorter
steps adequately classified and separated might make up for a more dynamic
interaction with the system, and thus encouraging participants to stay and com-
plete the process. With these values, the contingency table for the second exper-
iment is shown in Table 3.

In appearance, variant A shows a higher rate of conversions with a compara-
tively close sample size. However, statistical analysis will show whether there is
an actual difference between variants. Having plotted the figures obtained from
the experiment, a Chi-squared test was performed. The null hypothesis presented

3 http://graphpad.com/quickcalcs/contingency1/.

http://graphpad.com/quickcalcs/contingency1/

144 K. Koukouvis et al.

Fig. 2. Experiment 2

Table 3. Second experiment: contingency table

Non converted (Fail) Converted (Success)

Variant A 61 17

Variant B 57 7

was that there is no significant difference between the two groups. The test was
performed using, as for the first experiment, the Graphpad tool. The resulting
one-tailed p-value of this test is p = 0.0429 and χ2 = 2.951, which is lower than
0.05. Therefore, we can reject the null hypothesis, and it can be considered that
there is a significant difference among control and treatment variances, with
Variant A obtaining a better conversion rate.

4.2 Threats to Validity

For what concerns construction validity, as the research aims to provide conclu-
sions based on quantitative data, the need for a sufficient sample size is essential.
In our experiments we have a good number of people participating to the exper-
iment and the experiments are conducted over real samples. Also to reduce bias
during the selection of subjects for the interviews a “gatekeeper” at the company
was used.

Another potential threat can be found on internal validity. Internal validity
refers to the risk of interference in causal relations within the research. Since the
first part of the study has been performed cooperating with seven employees of
the company, there is a threat of them manipulating the variants of the web sites
so that the experiment will throw the results they personally aim for, instead of
real business objectives. The first two authors of the paper revised and supervised
the experiment 2 and the third author supervised the experiment 1 in order to
reduce this threat to validity.

A/B Testing in E-commerce Sales Processes 145

One potential threat can also be found with regards to the external valid-
ity and specifically to what extend can the findings be generalized in order to
produce a suitable answer for the second research question. This is alleviated by
the fact that the company in which the experiments took place cooperates with
other companies which would allow the experiments to have a much more wider
target group than just that of a single company.

Finally, Kohavi [10] points out that while carrying split tests it is possible to
know which variant is better, but not the reason why it is better. This limitation
can be solved by additionally collecting users’ comments. This study addresses
this limitation by providing a short questionnaire to the experimental subjects,
in order to complement the experiments.

5 Discussion

In this section we provide an answer to the research questions RQ1 and RQ2 by
considering the answers from the interviews and the results of the experiments.
RQ1: How can the use of A/B testing be extended from visual aspects of online
services in order to optimize sales processes in the E-commerce domain? The
results of the interviews showed a promising perspective into integrating this type
of split testing in the E-commerce domain. All sources agreed on the suitability
of DA tool in order to create online sales processes, and they all provided a
good insight on what they believe a successful online sales process must offer
to the end customer. Among them, the most cited are to provide a believable
benefit, an easy to use system, a relation with the customer based on trust in the
form of being transparent about your process, and having a good strategy. The
second experiment shows a significant difference between the two tested variants.
Variant A obtains a better conversion rate, as corroborated by the statistical
analysis of the data gathered. This gives the authors the idea that shorter steps
encourage people to engage in completing the process in a successful way.

To sum up, A/B testing is a promising instrument for the optimization of
sales processes; more experiments might be needed to understand advantages
and limitations of using A/B testing in this domain.
RQ2: Can the aforementioned use of A/B testing be generalized to produce
a framework that can be exploited by companies in the field to create virtual
assistants? Based on the conducted study, A/B testing is a promising way to
test out improvements when conducting online sales processes. The most cited
characteristic to create a successful online sales process was to avoid using irrel-
evant questions. The irrelevancy of the questions might put users in fear of the
real intentions of the owner of the process, such as the intention of acquiring
unnecessary data from the users, be it personal data or directly useless informa-
tion.

This request for useless information might also give the user the impression of
a poor strategy from the business side, or even worse, the fact that the business is
incapable of communicating the features of a product or the details of a service.
From the experimentation it could also be inferred that steps featuring a short

146 K. Koukouvis et al.

number of questions tend to lead to more conversions than hosting a process
with fewer, more dense steps. It is worth, nonetheless, to test more extensively
this characteristic in order to obtain a better understanding of its benefit in
different settings.

Another characteristic that arose from the interviews is the possibility of
reordering questions, since it was stated that it is often difficult to come up with
a good logical order for them in the beginning. Testing with variants hosting
the same questions but organized in different patterns or paths can help to solve
this situation. Moreover, the possibility of having different paths for the user
adds for more variety in the treatments, which further expands the possibilities
of A/B Testing.

Summarizing, the study made in this paper represents a first step towards
the creation of a framework that can be used by business owners to create virtual
assistants to exploit A/B testing for checking e-commerce sales processes.

6 Lessons Learned

This section reports lessons learned from (i) our collaboration with Sonician
AB, (ii) the performed interviews, (iii) the two experiments, and (iv) feedbacks
received from the participants to the experiments.

Having a good Strategy: Before initiating the online sales process a factor
that could lead to its success is the strategy of the seller. The plan of action
must be decided beforehand.

Need of Trust: Being able to achieve a certain level of trust with the website
visitor is also something required for a successful online sales process.

Size matters and Easy next step: The second experiment testifies that
the size of the flow should be as small as possible. Having a too long process
might cause a user to drop out. This effect can be made worse by combining
long processes with irrelevant questions or not giving the user feedback on his
progress. Ease of use during the sales process is also a very important factor.
The visitor must be able to easily find his way through the order forms and
product/service information so that he can take the next step without much
confusion.

Creating Believable Benefit: A believable benefit would mean that the vis-
itor of the website can get something either for free or for a bargain price by
buying the product that is offered. This believable benefit could also be tailored
for each specific visitor. Another issue that was noted was that the flow does not
feature an I don’t know answer. This reinforces the belief that when making a
flow that helps the customer identify his needs, it should be taken into consider-
ation that not all customers are aware of everything that surrounds the product.
Providing answers such as I don’t know could help figuring out the customer’s
level of knowledge on the subject, which in turn can help the decision assistant
in providing better results.

A/B Testing in E-commerce Sales Processes 147

Capture Leads: Just as the lead capturing system can lead the visitor to the
information he wants it is equally important that this information exists and
is of a certain standard that is easily understandable and relevant. Feedbacks
received on the first experiment highlight that the major reason to dropout the
experiment is related to a lack of interest from the participants. This means
that in order to improve the response ratio in a decision assistant flow a lot
of consideration must be placed in the format in which it will be presented to
potential customers.

Professional website and proper language: A professional looking website
is obviously of the utmost important for a successful online sale. A professional
looking website can never exist without showing user testimonies and references
from well known persons or organizations that use the service that is on sale.
The main issue with communication is to know who is the target audience, with
the objective of using an appropriate language.

7 Conclusion and Future Work

In this paper we investigated and experimented the use of A/B testing out of the
traditional visual aspects. Our study shown that there are positive indications
on the suitability of A/B testing experiments that focus on sales processes.
Interviews conducted with the Sonician AB personnel concluded that, using DA
tool developed specifically for this purpose, A/B testing could be an interesting
instrument for evaluating sales processes.

As future work it would be valuable to perform further experiments to better
assess the suitability and the limitations of A/B testing into a domain which
is different from visual aspects, and especially into E-commerce environments.
The authors suggest experimentation to be carried into a wide variety of target
groups, including B2B and B2C environments.

References

1. Bosch, J.: Building products as innovation experiment systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012)

2. Davenport, T.H.: How to design smart business experiments. Harvard Bus. Rev.
87(2), 68–76 (2009)

3. Garbarino, E.C., Edell, J.A.: Cognitive effort, affect, and choice. J. Consum. Res.
24(2), 147–158 (1997)

4. Grenci, R.T., Todd, P.A.: Solutions-driven marketing. Commun. ACM 45(3), 64–
71 (2002)

5. Huffman, C., Kahn, B.E.: Variety for sale: Mass customization or mass confusion?
J. Retail. 74(4), 491–513 (1998)

6. Hynninen, P., Kauppinen, M.A.: B testing: a promising tool for customer value
evaluation. In: Proceedings of RET 2014, pp. 16–17, August 2014

7. Kaufmann, E., Cappé, O., Garivier, A.: On the complexity of A/B testing. In:
Proceedings of the Conference on Learning Theory, Junuary 2014

148 K. Koukouvis et al.

8. Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T., Xu, Y.: Trustworthy
online controlled experiments: Five puzzling outcomes explained. In: Proceedings
of KDD 2012, pp. 786–794. ACM, New York, NY, USA (2012)

9. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experi-
ments on the web: listen to your customers not to the hippo. In: Proceedings of
KDD 2007, pp. 959–967. ACM, New York, NY, USA (2007)

10. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.: Controlled experiments
on the web: survey and practical guide. Data Min. Knowl. Discovery 18(1), 140–
181 (2009)

11. Koukouvis, K., Alcañiz Cubero, R.: Towards extending A/B Testing in E-
Commerce sales processes. Master thesis, Chalmers University of Technology,
Department of Computer Science and Engineering, Gothenburg, Sweden (2015)

12. O’Keefe, R.M., McEachern, T.: Web-based customer decision support systems.
Commun. ACM 41(3), 71–78 (1998)

13. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

14. Shenton, A.K., Hayter, S.: Strategies for gaining access to organisations and infor-
mants in qualitative studies. Educ. Inf. 22(3–4), 223–231 (2004)

15. Young, S.W.H.: Experience, improving library user with A, B testing: principles
and process. Weave J. Libr. User Experience 1(1), (2014). doi:12535642.0001.101

http://dx.doi.org/10.3998/weave.12535642.0001.101

Author Index

Adjepon-Yamoah, David Ebo 105

Buchs, Didier 45, 117

Cubero, Roberto Alcañiz 133

Dubey, Abhishek 88

Gokhale, Aniruddha 88
Gonzalez-Berges, Manuel 117
Guiochet, Jérémie 3

Jakobs, Christine 13

Klikovits, Stefan 117
Koukouvis, Kostantinos 133

Lawrence, David P.Y. 117

Mace, John C. 79
Mallozzi, Piergiuseppe 62

Martin, Luke J.W. 28
Morisset, Charles 79
Motet, Gilles 3

Pelliccione, Patrizio 62, 133
Pradhan, Subhav 88

Racordon, Dimitri 45
Romanovsky, Alexander 28

Sciancalepore, Massimo 62

Tröger, Peter 13

van Moorsel, Aad 79

Wang, Rui 3
Werner, Matthias 13

	Preface
	Organization
	Contents
	Mission-critical Systems
	A Framework for Assessing Safety Argumentation Confidence
	1 Introduction
	2 DO-178C Modeling
	3 Confidence Assessment with D-S Theory
	3.1 Confidence Definition
	3.2 Confidence Aggregation

	4 DO-178C Confidence Assessment
	4.1 Contributing Weight (wGiSni)
	4.2 Confidence in Argument (gi)
	4.3 Overall Confidence

	5 Conclusion
	References

	Configurable Fault Trees
	1 Introduction
	2 Clarifying Static Fault Trees
	3 Configurable Fault Trees
	3.1 Variation Points
	3.2 Mathematical Representation

	4 Use Case Example
	5 Analyzing Configurable Fault Trees
	6 Related Work
	7 Conclusion and Future Work
	References

	A Formal Approach to Designing Reliable Advisory Systems
	Abstract
	1 Introduction
	2 Background
	3 Method Description
	4 System Requirements and Design Concept
	5 System Architecture
	5.1 Markov Reliability Model
	5.2 Real-Time Scheduling Model

	6 SPARK Prototype
	7 Conclusions
	References

	Verification
	Verifying Multi-core Schedulability with Data Decision Diagrams
	1 Introduction
	2 Related Literature
	3 The Schedulability Problem
	3.1 The Task Model
	3.2 The Schedulability Problem
	3.3 k-relaxed Schedulability

	4 Data Decision Diagrams
	4.1 Definition of Data Decision Diagrams
	4.2 Operations on Data Decision Diagrams

	5 Schedulability as a State Space Exploration
	5.1 Schedulings as States
	5.2 Representing Schedulings in a DDD
	5.3 Computing the State Space
	5.4 Dealing with Heterogeneous Cores

	6 Schedulability Properties
	6.1 Extracting Feasible Schedulings
	6.2 Extracting Other Properties

	7 Experimental Results
	8 Conclusion and Future Works
	References

	Formal Verification of the On-the-Fly Vehicle Platooning Protocol
	1 Introduction
	2 Multi-mode System
	3 Uppaal Model Description
	4 Requirement Specifications Verified with Model Checking
	5 Simulation
	6 Verification Results
	7 Related Works
	8 Conclusion
	References

	Engineering Resilient Systems
	WRAD: Tool Support for Workflow Resiliency Analysis and Design
	1 Introduction
	2 Workflow Fundamentals
	3 WRAD
	4 Final Remarks
	References

	Designing a Resilient Deployment and Reconfiguration Infrastructure for Remotely Managed Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 System Model
	3.2 Deployment and Configuration Model
	3.3 Fault Model
	3.4 Problem Statement

	4 Key Considerations and Challenges
	5 A Resilient D&C Infrastructure
	5.1 Solution Architecture
	5.2 Addressing Resilient D&C Challenges

	6 Experimental Results
	6.1 Testbed
	6.2 Node Failure During Deployment-Time
	6.3 Node Failure During Application Run-Time

	7 Conclusions and Future Work
	References

	cloud-ATAM: Method for Analysing Resilient Attributes of Cloud-Based Architectures
	1 Introduction
	2 Background
	2.1 Quality Attribute Trade-Off Analysis with ATAM
	2.2 Attribute-Based Architectural Style

	3 cloud-ATAM
	3.1 Reactive Architecture for cloud-ATAM Analysis

	4 Evaluating the Reactive Architecture
	4.1 Present the ATAM
	4.2 Present Business Drivers
	4.3 Present the Architecture
	4.4 Identify Architectural Approaches
	4.5 Generate the Quality Attribute Utility Tree and Scenarios
	4.6 Analyse the Architectural Approaches
	4.7 Present Results

	5 Conclusion
	References

	Testing
	Automated Test Case Generation for the CTRL Programming Language Using Pex: Lessons Learned
	1 Introduction
	2 Related Work
	3 Tool Description
	3.1 Semi-purification and CUT Isolation
	3.2 Translation
	3.3 ATCG Execution
	3.4 Test Case Creation
	3.5 TC Execution, Mock Generation

	4 Results
	5 Translation Validation
	5.1 Syntactical Translation
	5.2 Semantic Equivalence
	5.3 Testing to Increase Confidence

	6 Quality Metric
	6.1 Example Calculation of Correctness Confidence

	7 Conclusion and Future Work
	References

	A/B Testing in E-commerce Sales Processes
	1 Introduction
	2 Related Works: Controlled Experiments in the Web
	3 Decision Assistant Tool
	3.1 Decision Assistant Flow
	3.2 DA Tool Architecture
	3.3 A/B Testing Capabilities of the Tool
	3.4 Validation of DA Tool

	4 Experiments
	4.1 Results
	4.2 Threats to Validity

	5 Discussion
	6 Lessons Learned
	7 Conclusion and Future Work
	References

	Author Index

