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Abstract. Detection, segmentation, and quantification of individual cell
nuclei is a standard task in biomedical applications. Due to the increas-
ing volume of acquired image data, it is not possible to rely on man-
ual labeling and object counting. Instead, automated image processing
methods have to be applied. Especially in three-dimensional data, one of
the major challenges is the separation of touching cell nuclei in densely
packed clusters. In this paper, we propose a method for automated detec-
tion and segmentation of immunostained cell nuclei in ultramicroscopy
images. Our algorithm utilizes interactive learning and voxel classifica-
tion to obtain a foreground segmentation and subsequently performs the
splitting process for each cluster using a multi-step watershed approach.
We have evaluated our results using reference images manually labeled by
domain experts and compare our approach to state-of-the art methods.

1 Introduction

Detection and segmentation of individual cell nuclei is a standard procedure in
many biomedical applications as it is often essential for the quantitative analysis
of biological processes. Due to the increasing amount of accumulated image
data, manual labeling is usually not a viable option in practice. This problem is
aggravated even more due to the difficulty of segmenting three-dimensional data
as well as cases of closely juxtaposed or touching cell nuclei, which may form
densely packed clusters that can be difficult to separate even for experts. Despite
the large body of work and vast methodological diversity (see Sect. 2), no general
approach for tackling the segmentation of cell nuclei seems to be available, which
is likely due to the variation among different cell types regarding shape and size,
as well as the diverse characteristics of the available imaging techniques.

Our images have been obtained using ultramicroscopy, which is based on the
principle of light sheet fluorescence microscopy. In this imaging technique the
specimen, in our case optically cleared murine fetal tissue, is illuminated by a
thin sheet of light, which may be generated by a scanned laser beam or cylinder
lenses [12]. This light sheet is projected into the focal plane of an orthogonally
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(a) This 2D slice view shows an example (b) This image shows a 3D rendering using
of the large variation in fluorescence in- maximum intensity projection (MIP). Cell
tensity within ultramicroscopy images. Re- nuclei can form dense clusters which have
gions containing cell nuclei have been ex- to be separated to segment and quantify
emplarily marked using the red ellipses. individual cell nuclei in the tissue.

Fig. 1. Example images of immunostained cell nuclei in ultramicroscopy images

oriented detection objective which collects fluorescence signals from the speci-
men. Moving the sample through the light sheet in a stepwise fashion allows to
generate image stacks from which high resolution 3D data sets can be recon-
structed [17]. In contrast to confocal laser scanning microscopes, the light sheet
setup uncouples the illumination from the detection light path which allows
nearly isotropic resolution while keeping the illumination intensity of the sample
minimal [22]. Light sheet microscopes can be realized with low magnification
lenses, allowing the inspection of large samples with volumes of up to 1cm? at
still subcellular resolution. In our samples, mouse embryo wholemount prepara-
tions were immunostained using an antiserum against a homeobox transcription
factor to identify expressing cells. For subsequent light sheet imaging the speci-
men were optically cleared using the BABB protocol [26].

Several challenges arise in the segmentation of cell nuclei in ultramicroscopy
image data which are due to the properties of the imaging modality and the
biological samples. The images often suffer from a large variation of fluorescence
intensity both in the labeled objects as well as the background (see Fig.1(a)),
which prohibits the application of global thresholding approaches, especially
since the background intensity in dense regions is higher than foreground inten-
sities in other regions. Moreover, foreground objects usually have fuzzy or blurry
contours. One of the largest challenges, however, is the separation of touching
cell nuclei of seemingly arbitrary orientation which form dense clusters extending
in all directions within the three-dimensional data (see Fig. 1(b)).

Our main contribution is a pipeline specifically designed for ultramicroscopy
images which combines machine learning and watershed segmentation as well as
the integration of a geometric marker extension into the cluster splitting.

In the remainder of this paper, we first give an overview of existing methods for
three-dimensional segmentation of clustered cell nuclei, followed by the workflow of
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our method. Next, we focus on the main part of our algorithm, the cluster splitting
step, and subsequently evaluate the performance of our algorithm.

2 Related Work

Cell nuclei segmentation and quantification is one of the fundamental problems
in biomedical image processing. The large diversity of imaging modalities and
cell types as well as the complexity of the task have led to a large body of work
and a tremendous variety of approaches for over more than ten years.

One of the most basic methods for segmentation is thresholding which is
usually based on the intensity histogram of the image. An overview of thresh-
olding techniques is given by Sezgin and Sankur [19]. Often, thresholding is
applied to obtain an initial foreground segmentation which is followed by fur-
ther refinement and cluster splitting computations. Lin et al. [10] have proposed
an algorithm which relies on thresholding followed by several post-processing
steps. Afterwards, they apply a 3D watershed segmentation on the gradient-
weighted distance transform of the thresholded image. To compensate for over-
segmentation of the cell nuclei clusters, this is followed by a model-based merging
step relying on a priori knowledge about the size and shape of the cell nuclei.
Wihlby et al. [24] have also proposed a method which is based on watershed
segmentation. Initially, they detect foreground seeds in the original image by
applying a h-maxima transform. The watershed segmentation is then performed
on the gradient magnitude image of the data. To improve the cluster separation
results, they perform an additional watershed segmentation step on the distance
transform of the previous result. Gertych et al. [7] have recently proposed an
algorithm which combines a 3D radial symmetry transform for seed detection
with a watershed-based segmentation after an initial background removal step.

Another approach for cell nuclei segmentation is the application of machine
learning techniques. Fehr et al. [5] have proposed a method for segmentation and
classification of cell nuclei in 3D fluorescence microscopy data which performs a
voxel-wise classification on gray scale invariant features using a support vector
machine (SVM). Tek et al. [23] have applied an interactively trained random
forest classifier to perform a voxel-wise foreground segmentation, which is after-
wards improved by morphological post-processing and the application of a size
filter for the connected components.

Another class of cell nuclei segmentation methods is based on graph cuts.
Danék et al. [4] have proposed a two-stage graph cut method which performs
the foreground segmentation using a two-terminal graph cut where initial seed
labels are determined using histogram analysis. Afterwards, each connected com-
ponent of the binary image is processed separately using a multi-terminal graph
cut where seeds are identified by computing local maxima in the distance trans-
form. Al-Kofahi et al. [2] have proposed an approach which utilizes a graph cut
relying on initial foreground class probabilities computed by bimodal histogram
analysis to perform the foreground segmentation. Afterwards, for each connected
component in the binary image a multi-scale Laplacian-of-Gaussian (LoG) filter
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is applied to obtain seed points for the individual nuclei and perform a clustering
step. The result of this step is then refined using a multi-terminal graph cut.

There are also several methods for cell nuclei segmentation that are based
on level set active contours. Harder et al. [8] have proposed an approach which
initializes the contours using local adaptive thresholding followed by a distance
transform and a 3D watershed segmentation. Bergeest and Rohr [3] have pro-
posed a method based on minimizing a convex energy functional using a level set
representation and applying the 3D Laplacian operator for the cluster splitting.

The problem of separating densely packed cell nuclei has also been addressed
using geometric approaches, usually based on a convexity-concavity analysis of
the binary image obtained by applying one of the various foreground segmen-
tation methods. Such approaches rely on the fact that cell nuclei, although not
necessarily round, can be considered approximately convex. However, often these
methods are based on analyzing two-dimensional contours to find concave split-
ting points (e.g., [16,25]) and are not directly applicable to three-dimensional
images. Indhumathi et al. [9] have applied this principle to 3D images by per-
forming the concavity analysis and detection of splitting paths slice-wise while
taking into account the relationship with the previous slice as a reference.
Mathew et al. [11] have proposed a different approach for three-dimensional
data which performs an approximate convex decomposition of a cluster of cell
nuclei. Their method detects local maxima in the distance transform to establish
the number k of components in the cluster. Afterwards, a set of line segments
between sampled surface points is defined and Lines of Sight (LoS), i.e., line
segments which do not leave the foreground component, are selected from this
set. The LoS are then clustered into k clusters which are used to label the surface
points. Afterwards, the label of each voxel is chosen by majority voting of the
nearest surface points.

In our proposed method, we combine machine learning by interactively train-
ing a voxel classifier to obtain a binary image with a multi-step watershed app-
roach which consists of a seed detection step, a geometric component involving
the distance transform of the binary image, and a marker-based watershed seg-
mentation step to compute the final labeling for each individual voxel.

3 Workflow Overview

Our approach uses a well-established workflow consisting of three basic steps.
First, foreground segmentation is performed to obtain a binary image. Next, a
connected component labeling is computed on the binary image. In the last step,
the cell nuclei cluster splitting is applied separately for each component.

As outlined above, global thresholding does not perform well on ultrami-
croscopy images due to the intensity inhomogeneities in the fluorescence signal.
Moreover, the histograms of our images do not show a bimodal distribution.
This prohibits the use of several methods relying on modeling the histogram
using a mixture of Gaussian or Poisson distributions such as in [4] or [2] to
conveniently initialize more sophisticated methods segmentation algorithms like
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(a) Original data (b) Result of the voxel classification

Fig. 2. 3D rendering example of the foreground segmentation.

graph cuts. Instead, we perform the foreground segmentation step using voxel
classification by interactively training a random forest classifier, which has been
shown to be among the classifiers with the best overall performance [6]. For the
interactive training, we use the open source tool Ilastik [21], which has already
been applied in a similar way (although on different data) by Tek et al. [23]. We
set up a binary (foreground vs. background) classification problem and interac-
tively label voxels in a training data set while inspecting the intermediate results.
Since Ilastik provides the option to visualize regions of high uncertainty in the
classification, an expert performing the labeling can directly locate such regions
of interest in the training data. After finishing the interactive training phase,
the classifier can be used for batch processing of the actual data sets. We use a
set of rotation-invariant features (smoothed raw data, gradient magnitude, and
Hessian eigenvalues) at three-different Gaussian scales with o1 = 1.0,09 = 1.6,
and o3 = 3.5. An example of the foreground segmentation is depicted in Fig. 2.

After foreground segmentation, we apply a median filter on the binary image
as a post-processing step. Then, we perform connected component analysis on
the result. We discard components below a size threshold of 200 voxels which
might originate from staining artifacts or false positives output by the voxel
classifier. The choice of this threshold results from a size distribution of cell
nuclei derived from a test data set which has been labeled voxel-wise by a domain
expert (see Sect.5). Each of the resulting connected components corresponds to
either a single cell nucleus or a cluster of touching cell nuclei. The cluster splitting
is then computed separately for each of the connected components, which will
be outlined in detail throughout the following section.

4 Cluster Splitting

Our cluster splitting consists of three basic steps. First, we detect seeds which
correspond to local maxima in the fluorescence intensities within the cluster. In
the next step, the seeds are extended geometrically to spheres before labeling the
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Fig. 3. Workflow of our proposed cluster splitting approach. The original image and the
binary image obtained from foreground segmentation are depicted using the stippled
boxes. The key steps of our method are indicated by the double borders of the boxes.

remaining voxels of the cluster using a marker-based watershed segmentation.
The complete workflow of our proposed cluster splitting method is depicted in
Fig. 3. In the following, the three key steps will be discussed in detail.

4.1 Seed Detection

In the first step, seeds for the individual nuclei in the cluster are detected. Due
to the (approximative) convexity of cell nuclei, this is often done by finding
local maxima in the distance transform of the binary image. Unfortunately, this
method did not perform well on our images, which is due to the relatively small
radius of the nuclei as well as the blurry contours of the foreground which might
significantly influence the result of the foreground segmentation and thus modify
the convexity and concavity properties of the cluster. Moreover, the clusters are
often very dense so that convex subsets can not be identified anymore.

Since fluorescence intensity in our images increases towards the centers of cell
nuclei, we detect local maxima in the original image intensities instead of apply-
ing the distance transform. After smoothing the image with a 3D Gaussian filter
kernel, we apply watershed by rainfall simulation [15] to the three-dimensional
image. This method is based on the idea of rain falling on terrain and flowing
along the path of steepest descent until reaching a catchment basin correspond-
ing to a local minimum. In our case, we invert the flow direction of the algorithm.
For each voxel in the smoothed image masked by the foreground segmentation,
we start a path which will always flow to the neighbor voxel with the highest
intensity value of its three-dimensional 26-neighborhood until reaching a local
maximum (see Fig.4(a)). Each of the detected local maxima is then considered
a seed point. In contrast to the common application of this procedure, we do
not label any of the start voxels to create a segmentation, but only use the
method for detecting the local maxima. Moreover, for each maximum m we can
easily compute the number s, of start voxels with a flow path ending in m.
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(a) Two-dimensional example of the wa- (b) Example of the spherical marker ex-
tershed by rainfall computation. The back- tension for three seed points v, v1,v2. For
ground voxels are masked (and set to zero) wo, the radius ro of the sphere corresponds
by the foreground segmentation. For two to the distance to the background é(wo),
voxels, the path to the local maximum is for v1 and ve, it is restricted to half of their
depicted using arrows. Euclidean distance d(v1,v2) = d(va, v1).

Fig. 4. Schematic examples of the seed detection and marker extension steps.

This information can then be used to remove m from the list of seeds if s,, is
below a threshold ¢, e.g., if the local maximum results from an artifact in the
foreground segmentation. Since the local maxima correspond to the centers of
cell nuclei, the number k of seed points corresponds to the number of detected
cell nuclei within the cluster.

4.2 Marker Extension

For each seed point v;,0 < ¢ < k detected in the previous step, the label 4
should be assigned to all of the voxels within the cluster which belong to the
corresponding cell nucleus. Before assigning all of the voxels to a seed, we perform
a geometric marker extension which is based on the fact that cell nuclei are
approximately convex. For each seed v;, we compute a sphere ¢; with center
v; which contains voxels that can unquestionably be assigned the label i. The
radius r; of the sphere ¢; is given by

r; = min {6(%), % min {d(vi,'u]-)}} ,0< 4,5 < k,i# 7, (1)

where 6(v;) is the Euclidean distance of v; to the background, and d(v;,v;) is
the Euclidean distance between v; and v;. For the first part, we compute the
distance transform of the binary image obtained in the foreground segmentation,
and compute §(v;) by sampling the distance transform at v;. The second term
is a constraint which accounts for the fact that, depending on the density of the
cluster and orientation of the nuclei, spheres centered in the seed points with
just the distance to the background might overlap and in such cases restricts
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the radius to half of the distance of v; to its nearest neighbor in the set of seed
points. Figure4(b) illustrates an example of the marker extension computation.
All of the voxels within the sphere ¢; are assigned the label ¢ and act as an
initialization for the next step.

4.3 Marker-Based Watershed

Using the spheres computed in the previous step, a marker-controlled watershed
segmentation [20] is applied to label all of the remaining voxels in the cluster.
This method floods the image from the markers (i.e., the spheres which have
already been labeled) using the intensity values of the smoothed image. In each
step, we select the voxel with the highest intensity value from the set of unla-
beled voxels and assign a neighboring label to it. When viewed topologically, the
markers derived from the local maxima correspond to hills from which the labels
flow down while the boundaries between the labels (i.e., cell nuclei) correspond
to basins. Some examples of the cluster splitting results are shown in Fig. 5.

Fig. 5. 3D examples of cluster splitting results. Left: original image with silhouettes of
the foreground segmentation, right: resulting segmentation.

5 Performance Evaluation

We have evaluated the performance of our segmentation approach using two
reference data sets which have been manually labeled by domain experts, which
took an effort of several weeks. The first data set with a size of 195 x 168 x
129 voxels containing 139 cell nuclei has been labeled voxel-wise, while in the
second data set with a size of 425 x 276 x 129 voxels containing 190 cell nuclei
the centroids of the nuclei have been marked. All of the data sets are 16-bit
images and have a resolution of 1 um in z—,y—, and z—direction. In all tests,
the Gaussian smoothing of the original data in the cluster splitting step has been
performed using a 5 x 5 x 5 filter kernel with ¢ = 0.6. For the post-processing step
of the foreground segmentation, two successive median filter operations using a
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3 x 3 x 3 kernel have been used. The threshold ¢, in the seed detection has been
set to 1 so that no filtering of local maxima was applied.

From the voxel-wise labeled cell nuclei we have calculated the mean volume in
voxels as well as the standard deviation. We have only incorporated nuclei which
do not contain any border voxels to avoid cases where nuclei are only partially
visible. Additionally, we have excluded one outlier with a volume of 3339 voxels
which had been identified to include a lot of background at its boundary. From
the remaining 105 nuclei we have calculated the mean volume of 1094 voxels and
the standard deviation of 533 voxels. Since the smallest cell nucleus in the manual
labeling had a volume of 266 voxels, we conservatively chose a size threshold of
200 voxels for the connected components in the foreground segmentation.

Unfortunately, no definitive ground truth can be generated for the data, since
even manual segmentation is a very time-consuming and error-prone task due to
the three-dimensional nature of the images, a certain amount of ambiguity, and
the overall complexity of the cluster splitting task, especially for a voxel-wise
labeling. Outliers in the size distribution of the nuclei might thus indicate cases
of over- and under-segmentation in the manual labeling.

For the quantitative performance evaluation we adopt the method of [11]
which is based on the well-established metrics Recall, Precision, Accuracy, and F-
measure. To calculate the metrics, we match the centroids of the cell nuclei in the
manual reference segmentation (RS) to the centroids computed by the automated
segmentation (AS). For each centroid in the RS, a spherical neighborhood of
9 voxels was considered. If a single centroid of the AS was found within the
radius, it is counted as a true positive (TP) and removed from the list. For
multiple matches, the closest is counted as a TP. Based on those matches, the
false negatives (FN), i.e., centroids in the RS for which no match was found, and
false positives (FP), i.e., centroids in the AS which have not been selected as a
TP, are computed. The four metrics can then be calculated as follows:

TP TP
11 = — Precision = —_—
Reca TP 1 FN recision TP £ TP
Precision - Recall TP
F-Measure = recision - eea Accuracy =

TP + FN 4+ FP

We compare our method to three different state-of-the art approaches, a 3D
watershed algorithm proposed by Ollion et al. [14] which is available as a Fiji plu-
gin [18], the Lines-of-Sight (LoS) decomposition method by Mathew et al. [11],
and the graph-cut based method proposed by Al-Kofahi et al. [2] which has been
implemented in the FARSight toolkit [1]. Where required, the best parameter
sets for the methods have been determined by parameter scanning. For the FAR-
Sight implementation, the images had to be converted to 8-bit. For the first data
set, the voxel-wise manual segmentation was used as a foreground segmentation
(except for the FARSight implementation of the method of Al-Kofahi) to solely
evaluate the cluster splitting. For the LoS method, this foreground segmenta-
tion was additionally processed using a 3 x 3 x 3 median filter to improve the
results. On this data set, our cluster splitting method achieved an accuracy of

" Precision + Recall
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Table 1. Quantitative evaluation of our proposed method in comparison to three state-
of-the-art methods on two data sets (DS). For DS 1, the manual labeling was used
as a foreground segmentation except for FARSight (*). The second column shows the
number of cell nuclei in the reference segmentation (RS). The metrics Recall, Precision,
Accuracy, and F-measure range from 0 (worst performance) to 1 (best performance).

Data set | #cells (RS) | Algorithm #cells | TP | FP | FN | Recall | Prec. | Acc. | F-Measure
DS1 139 Proposed 116 111 5 28 | 0.80 0.96 |0.77 | 0.87
LoS 68 57 |11 82 |0.41 0.84 |0.38 | 0.55
FARSight™) | 92 70 |22 | 69 | 0.50 |0.76 |0.43 |0.60
3D Watershed | 154 117 | 37 22 10.84 0.76 |0.66 | 0.80
DS 2 190 Proposed 145 143 2 47 1 0.75 0.99 |0.75 | 0.85
LoS 68 67 1 123 | 0.35 0.99 |0.35|0.52
FARSight 106 87 |19 | 103 | 0.46 0.82 |0.42 | 0.59
3D Watershed | 192 155 | 37 35 | 0.82 0.81 |0.68 | 0.81

0.77 and an F-measure of 0.87 and considerably outperformed all of the other
algorithms. On the second data set, we have computed the foreground segmen-
tation using our voxel classification method. For both the LoS method as well
as the 3D watershed, we have used the foreground segmentation computed by
our random forest classifier since using the proposed thresholding approaches
further diminished the performance. Again, our method outperformed all of the
other approaches. On the second data set, we achieved an accuracy of 0.75 and
an F-measure of 0.85. All of the results of our quantitative evaluation are listed
in Table 1. It should be noted that in contrast to other approaches our method
generally produces almost no false positives.

We have also tested the influence of the marker extension in the cluster split-
ting workflow on the second data set. When leaving out the marker extension,
the accuracy slightly decreases to 0.73 and the F-measure decreases to 0.84.
Moreover, while the mean volume of the segmented cell nuclei in both variants
of our methods is 1205 voxels, without the marker extension step the standard
deviation increases from 848 to 876.

6 Conclusion

We have proposed a method for automated detection and segmentation of clus-
tered immunostained cell nuclei in three-dimensional ultramicroscopy images.
Our approach yields good overall results and outperforms several other state-of-
the art algorithms on our images, which we have evaluated using reference data
that has been manually labeled by domain experts. Our method produces almost
no false positives, so that errors in the segmentation are almost exclusively due
to cases of under-segmentation. To improve the applicability of the algorithm
in quantification applications, an additional uncertainty computation could be
derived from the size distribution of the cell nuclei by analyzing the number of
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detected cell nuclei in relation to the total volume of a cluster. This information
could then be integrated into the workflow in form of a guided manual correction.

Acknowledgments. This work has been partly supported by the Deutsche
Forschungsgemeinschaft, CRC 656 “Cardiovascular Molecular Imaging”. The images
in this paper have been rendered using the framework Voreen [13].
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