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Abstract. We address the problem of semantic segmentation of objects
in weakly supervised setting, when only image-wide labels are available.
We describe an image with a set of pre-trained convolutional features and
embed this set into a Fisher vector. We apply the learned image classifier
on the set of all image regions and propagate the region scores back to the
pixels. Compared to the alternatives the proposed method is simple, fast
in inference, and especially in training. The method displays very good
performance of on two standard semantic segmentation benchmarks.

1 Introduction

Semantic segmentation is one of the most challenging computer vision tasks
with wide range of applications in scene and image understanding, class-specific
attention, robot perception and autonomous navigation and planning. The goal
of semantic segmentation is to assign a label to each pixel, where the label corre-
sponds to an object class, e.g. “cat”, “sofa” or “person”. Semantic segmentation
is difficult because the set of semantic concepts is very diverse, and objects may
be located across a wide range of scales and poses. The segmentation model
training in strongly supervised setting assumes that each image pixel is accom-
panied with its target class label. At test time the learned model is used to infer
class labels for each pixel in a given input image. The main drawback of the
strongly-supervised approach is the need for pixel-level annotations, because the
acquisition of such precise labels is costly and requires substantial effort and
time. A complex image may require more than 15 min of human attention. The
best results are obtained with models based on deep convolutional nets which
are known to be especially data hungry.

This is one of the main reasons for recent interest in approaches that relax the
annotation effort [13–15,17,26]. These can be grouped into two main categories:
weakly- and semi-supervised approaches. Weakly-supervised approaches learn
the classification models without any pixel-level training data, which can be
done by relying on bounding-box and image-wide annotations. Semi-supervised
approaches assume that the bulk of the training data is weakly-supervised or
unsupervised while a small part of the training dataset is annotated on the pixel-
level. Due to the need to leverage weakly-supervised data, each semi-supervised
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approach is typically built on top of a weakly-supervised engine. This justifies
further research in weakly-supervised approaches even though semi-supervised
approaches are able to offer better performance.

In this paper we are concerned with semantic segmentation in the weakly-
supervised setting, where we have access only to image-wide labels. The train-
ing phase requires only images annotated with image-wide labels, while at test
time one should predict a class label for each pixel. Our method relies on a sin-
gle per-class hyper-parameter m(c) which modulates the extent of background
in the processed images. The recent surge of interest for this very challenging
problem is motivated by excellent performance of convolutional neural networks
on related computer vision tasks: image categorization [10], object detection [19]
and strongly-supervised semantic segmentation [12]. Convnets have significantly
improved state-of-the-art in weakly-supervised semantic segmentation, but meth-
ods that employ them require either large amounts of weakly-annotated images
[17] or suffer from computationally complex training [13] and inference [26].

We propose a simple yet very effective method for weakly-supervised seman-
tic segmentation. The method is based on Fisher vector embedding of pre-trained
convolutional features and linear classifiers learned from image-wide labels. We
apply the learned classifier to all image regions, and employ a novel method to
aggregate region-level scores into pixel-level decisions. To determine the class-
specific hyper-parameters for the model we use a few tens of bounding box
annotations per object class. The method requires only a hundreds of weakly-
annotated images and a few tens bounding box annotations per class and displays
fair performance and fast execution. The results are competitive compared to
state-of-the-art methods as displayed by performance on standard and challeng-
ing semantic segmentation benchmarks.

2 Related Work

Most approaches to semantic segmentation operate in a strongly supervised con-
text where training images are densely annotated on the pixel-level [2,5,21].
Impressive results in this context have recently been obtained using fully convo-
lutional neural networks [12]. However, strongly-supervised approaches require
pixel-level labels that are costly to obtain. Much recent interest has therefore
been directed towards relaxing the annotation effort. This work can be grouped
into two main categories: weakly-supervised approaches [13–15,17,26] and semi-
supervised approaches [9,13,14,24]. Weakly supervised approaches relax the
extent of supervision from ground-truth segmentation masks to image-level
[13,14,17] or box-level [6,13,14,24] labels.

Much semantic segmentation work relies on bottom-up segmentation, since
similar neighboring pixels are likely to share the common class. Some of these
approaches score the segments indirectly, by averaging pixel-based evidence, and
redistribute the scores back to the pixels [5,26]. This often improves the results
by regularizing the semantic segmentation and aligning it with the natural
image boundaries. However, most recent bottom-up segmentation approaches
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have been trained on pixel-level annotations [1,23], which makes the weakly-
supervised qualification questionable.

Many recent approaches improve weakly supervised segmentation results by
fitting various hyper-parameters. For example, one can set the relative size of
the objects with respect to the background [13,14], or the inherent difficulty
of the particular class (per-class thresholds of pixel scores [17]). Setting these
hyper-parameters requires cross-validation on a pixel-level annotated validation
set [17] or an insight into inherent dataset bias [13,14].

Most semantic segmentation approaches smooth the produced segmentation
masks with some kind of a conditional random field (CRF) [13,14,26]. The CRF
parameters can be learned from the image-wide labels [26] or from a small held-
out set of fully-annotated images [13].

Advanced weakly-supervised approaches train semantic segmentation mod-
els exclusively with image-wide labels [13–15,17,26]. One way to tackle this
problem is to leverage the information recovered with a multi-label image clas-
sification model [17]. Fisher vector image representation [20] offers interesting
opportunities along these lines due to capability to relate an image-wide clas-
sification model to the contributions at the patch-level [5,25]. Applications of
Fisher vectors to semantic segmentation have so for been researched only in the
strongly-supervised setting and with SIFT features [5]. Here, following [3], we
use Fisher vectors in conjunction with convolutional features and use the learned
object classification models for weakly-supervised semantic segmentation.

3 Method

Here we describe the proposed method for weakly-supervised semantic segmen-
tation. First, we explain the Fisher vector embedding and the advantages over
embedding given by deep neural nets. Next, we describe how to infer pixel-level
predictions from a set of region scores obtained by applying the learned classifier
to all image regions. Finally, we show how to convert multi-label pixel predictions
to multi-class pixel predictions.

3.1 Learning the Image Classifier

The task of image classifier is to learn the mapping from a set of images X into a
set of class labels Y. This mapping is learned from a set of images associated with
class labels {(Xi,yi)}Ni=1. Each image is represented by a set of local descriptors
Xi = {xi,1, · · · ,xi,Ni

}, e.g. convolutional features extracted from an inner layer
of convolutional net. In the remainder of the paper we call patch the central
part of convolutional feature’s receptive field. Label vector yi has 1 on positions
corresponding to the classes that are present in the image. We assume a general
multi-label setting where labels are not mutually exclusive, so yi can have more
than one non-zero entry. Recently it has been shown that Fisher vector embed-
ding of image represented with a set of convolutional features in conjunction
with linear classifiers yields very good classification performance, comparable to
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the performance of embedding produced by a fully-connected (FC) part of the
net [3]. In this approach a patch descriptor x is first explicitly embedded in a
higher-dimensional space defined by the parameters of a pre-trained generative
model via function Φ. Next, all patch embeddings are averaged by spatial pooling
into the global image representation Φ(Xi):

Φ(Xi) =
1
Ni

Ni∑

j=1

Φ(xij), (1)

where Ni is the number of patches in the image Xi. The additivity of patch
Fisher vectors along with linearity of the learned one-vs-all classifier entails the
additivity of patch scores s(c|·) for class c:

s(c|Xi) = w�
c Φ(Xi) = w�

c

Ni∑

j=1

Φ(xij) =
Ni∑

j=1

s(c|xij). (2)

Thus the score of an image s(c|X) is given as the sum of patch scores. This allows
us to determine the contribution of each patch to the image score, and therefore
propagate the image score back to the patches, which is the main advantage of
Fisher vector embedding over the FC part of the net. We use a logistic regression
classifier so the posterior for a class is pc(c = 1|Xi) = σ(s(c|Xi)). Note that
we do not use improved Fisher vector [16], since preliminary experiments have
shown only a marginal classification performance improvement, and using non-
linear normalizations would break linearity of the image score w.r.t. patch scores.

3.2 From Image-Level Predictions to Pixel-Level Predictions

The classifier learned on the full images is then applied to image regions. We
consider two settings: in the first setting regions correspond to patches, while
in the second setting we consider all rectangular regions in the image. We first
normalize region descriptor by the number of patches the region contains, and
then apply the classifier learned on full images. This classifier score is computed
at the resolution of convolutional feature maps and upsampled using nearest
neighbor interpolation to the resolution of the full image. In the first setting the
classifier learned on images is applied to patches. In case of general object classes
displayed against complex backgrounds this setting is not likely to produce good
results. In the second setting one has to arrive at patch scores from a set of region
scores. We do this by considering the scores of all regions that contain the patch.
To efficiently compute the scores for all image regions and all classifiers we use
integral images, as in [11]. The score for each pixel is then computed as:

pc(c = 1|x,m) =
M∏

k=1

pc(c = 1|Zk)
m
M (3)

where Zi is the Fisher vector of the ith out of M regions that contain image
patch described by x. The scoring is illustrated in Fig. 1. When m = M we
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Fig. 1. Illustration of pixel scoring based on the regions that contain it. First the
convolutional features x are extracted and embedded in the Fisher vector Φ(x). Then,
Fisher vector is computed for each Rk that contains location of feature x, using integral
images. Finally, the class prediction for the pixel at location of feature x is computed
by combining the predictions of all regions that contain it.

assume that the region descriptors are independent, which is clearly invalid as
region overlap contains at least region descriptor x, so we alleviate this by setting
m < M . For smaller objects we would like to put more weight on independent
decisions of regions, which means that we expect that higher m yields better
performance. For larger objects we would like to put more weight on the interplay
of overlapping regions, which means that we expect that smaller m yields better
performance. In the remainder of the section we leave out dependence on m.

3.3 From Multi-label to Multi-class Pixel Predictions

Class posteriors that we propagate from an image to the pixels are based on
learned one-vs-all classifiers, which are learned in multi-label setting, so in gen-
eral

∑C
c=1 pc(c = 1|x) �= 1. On the other hand, the semantic segmentation is a

multi-class problem since each pixel belongs to only one semantic class. Thus, we
need to arrive at probability distribution over C + 1 class labels for each pixel.
To this end we couple the predictions of one-vs-all classifiers by first determining
the probability that a pixel belongs to the background via noisy-and model [18]:

pb(b = 1|x) =
C∏

c=1

1 − pc(c = 1|x), (4)

and then we normalize the probabilities to obtain class posteriors for each pixel:

pC(C = c|x) =
pc(c = 1|x)∑

c=1..C,b

pc(c = 1|x)
(5)

The use of noisy-and model discourages assignment of a pixel to the background
if any of one-vs-all classifiers has high class posterior. In other words, pixel can
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have high background posterior pb(b = 1|x) only if all C classifiers have low
pc(c = 1|x). Finally, we determine the class for each pixel using MAP:

ĉ(x) = arg max
c={1..C,b}

pC(C = c|x) (6)

4 Experimental Evaluation

We perform evaluation on two standard semantic segmentation benchmarks:
Pascal VOC 2007 (VOC’07) and Pascal VOC 2012 (VOC’12) [8]. When training
the classifier we also include the image-wide labels from the objects designated as
“difficult” and “truncated”, since Cinbis et al. [4] showed that this improves the
results of weakly-supervised localization. Both datasets contain 20 same classes,
VOC’07 contains 9963 images, divided in approximately equal train and test
splits. VOC’12 is around two times the size of VOC’07. We report intersection-
over-union (IoU) averaged over all classes as the standard performance measure
for semantic segmentation [8].

4.1 Experimental Setup

We used convolutional features from the conv5.4 layer of the 19-layer convo-
lutional network VGG-E [22] pre-trained on ImageNet [7]. The number of fea-
ture maps in the selected convolutional layer is d = 512 which corresponds to
the dimensionality of the feature vector. Each feature in the output map has
a receptive field of 252 × 252 pixels, but we consider that a feature vector is
mostly influenced by a small central patch. The patch size is determined from
the number of max-pooling layers and the size of the pooling region: there are
4 2 × 2 max pooling layers up to 5th convolutional layer net, so a pixel in the
selected feature map corresponds to the patch of size 16×16 in the input image.
The maximal size of images in both datasets is 500 × 500 pixels so the size of
the largest feature map is 32 × 32. Unlike [3] we use just one scale. Preliminary
results showed that classification performance with single scale features drops
only slightly, while significantly reducing the run-time per image. We use con-
volutional part of the net just as local pre-trained feature extractor and do not
perform any fine-tuning.

We use the Fisher vector embedding instead of fully-connected layers and
use the same setting as in [3]: GMM with K = 64 components with diagonal
covariance matrices. We also noticed that PCA on convolutional features yields
lower classification performance, so we do not perform any pre-processing of
convolutional features. This yields D = K(1 + 2d) dimensional Fisher vectors
for each image patch. Following standard Fisher vector classification pipeline [16]
these are pooled by mean pooling into an image representation. We use additive
normalization (zero-mean) and multiplicative normalization with the inverse of
the Fisher matrix, which we assume diagonal. However we do not use non-linear
normalizations of improved Fisher vector [16], to be able to keep additivity of the
patch classification scores into the image classification score. Differently from [3],
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we use logistic regression instead of SVM, as our method requires class posterior
estimates, as described in Sects. 3.2 and 3.3.

4.2 Results

Our first set of experiments quantitatively explores the influence of parameter m
on results. Figure 2 shows the influence of m on the performance for particular
classes. In Fig. 3 we display segmentations for different values of m. Parameter
m influences the spatial extent of the segmented object: for small objects a
higher value of m yields better performance, while for larger objects a lower m
is better. High value of m yields high precision, indicating that classifier assigns
high scores to class-specific patches. However, a classifier assigns low scores to
large non-specific object parts, which for high m results in poor recall. Our region
scoring allows propagation of scores from small class-specific parts to the greater
spatial extent, increasing thus recall.

In Table 1 (left) we demonstrate the influence of region scoring on the results.
When pixels’ class posteriors are determined from a limited spatial extent cor-
responding to the the patch that covers it, the performance is poor. The perfor-
mance is improved by including image level prior (ILP), as in [17]: the classes
not detected in the image are downweighted, so the number of false positives is
reduced.

From Fig. 2 it is clear that the best m depends on the class. For each class
we determine the value m(c) that maximizes segmentation IoU by treating a
the bounding boxes from VOC’07 dataset as ground-truth segmentations. How-
ever, setting the determined m(c) for each class in each image would yield dif-
ferent ranges of estimated class posteriors pc(c = 1|x). This would adversely

Fig. 2. Semantic segmentation performance on VOC’07 when varying the value of
parameter m. Optimal value of m depends on the object class: classes with smaller
objects e.g. airplanes and tv monitor benefit from higher m, while bigger objects benefit
from low value of m e.g. motorbikes and buses.
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Fig. 3. The demonstration of different values of parameter m to the semantic segmen-
tation. High m suppresses the influence of the regions with low prediction of the class.
Therefore the parts of the sky, although highly correlated with airplane are removed
when more weight is put on the contribution of smaller regions and individual patches.
On the other hand, objects that cover large parts of the image benefit from the inter-
play of many larger object regions to propagate the decision from class-specific object
parts to full spatial extent of the object, benefiting from lower values of parameter m.

influence segmentation performance because it introduces a bias towards classes
with smaller m(c). To this end we propose that m is determined per-image in
inference as expectation over the classes, where the distribution over the classes
is estimated by full image classifier: m̂(X) = E[m|X] =

∑
c pC(C = c|X)m(c).

For each class we randomly select the same number of bounding boxes, and
explore the influence of the number and the random box sampling on segmenta-
tion performance by reporting mean and standard deviation. Using more boxes
results in significantly better performance, so in the remainder of the paper we
use per-class values of m determined from 20 training bounding boxes. We think
that annotating 20 bounding boxes per class presents a modest effort compared
to the benefit of improved segmentation performance.

In Table 1 (right) we compare our method to the state-of-the-art on chal-
lenging VOC’12 dataset. We use per-class m values that give best segmentation
performance for 20 bounding boxes per class on VOC’07. We already achieve very
competitive result without any post-processing. Pinheiro and Collobert [17] uses
760000 images from ImageNet (76x more than training set of VOC’12) to learn
the segmentation model. Their model is trained in multi-class setting, which
assumes one object per image, our training works in a more general multi-label
setting. The per-class thresholds are determined from the ground-truth anno-
tations of the VOC’12 train split. Finally, to improve precision, they use bot-
tom up segmentation for post-processing. Their best results are achieved with
costly multiscale combinatorial grouping (MCG) [1] segmentation. When super-
pixel segmentation is used, the proposed model outperforms their method, even
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Table 1. Left : Results on VOC’07 show the proposed region voting significantly
improves the segmentation performance. As little as 5 bounding boxes per class are
sufficient for good performance. Right : Results on VOC’12: the proposed method gives
comparable performance to the state-of-the-art methods that use more data, are more
computationally complex and apply post-processing steps. Per-class performance is
available at Pascal submission server.

Patch scores IoU × 100

Patches only 10.63
Patches + ILP 18.66

Region scores
IoU × 100

(bboxes/class)

5 32.24 ± 0.80
10 33.17 ± 0.65
20 33.59 ± 0.32

Method IoU × 100

[17] with superpixel 36.6
[17] with MCG 42.0
[13] with CRF 39.6

Region score pooling (our) 38.0

Fig. 4. Examples of segmentation produced by the proposed method.

though we do not perform any post-processing. We also achieve results compara-
ble to the ones of Papandreou et al. [13] trained on the same data. Their method
employs costly iterative training to fine-tune network weights, and a conditional
random field (CRF) for post-processing.

http://host.robots.ox.ac.uk:8080/anonymous/7NFDQN.html


386 J. Krapac and S. Šegvić

In Fig. 4 we show some successful segmentations and some failure cases. The
method is able to segment multiple objects in the image, either when they belong
to the same of different classes. In some cases our method detects the objects that
are not in ground-truth segmentations, e.g. part of the bottle that is seen through
the glass. The main failure cases are due to the weak response of classification
model which causes misdetections and due to the context of the object that
occurs frequently with the object, e.g. water is not frequently seen in images that
do not contain boats, and characteristic horseback-riding obstacles are not seen
in images that do not contain horses. The problem of over and under segmenta-
tion is mostly due to the use of inappropriate value of parameter m indicating
that better results can be obtained with better selection of hyper-parameters.

5 Conclusion

We have presented a simple and effective method for semantic segmentation
of objects a in weakly supervised setting. Our method learns from image-wide
labels and delivers pixel-level annotation of test images. Similarly to most other
recent computer vision approaches, we build on the success of convolutional
features learned on large image collections such as ImageNet. The novelty in
our method addresses the heart of the weakly supervised segmentation prob-
lem: relating the pixel-level class posterior with a model trained on image-wide
labels. Many previous works address that problem by aggregating independent
pixel-level evidence. However, such formulation results in many false positives
and relies on an image-level prior to alleviate this problem. We propose to relate
the pixel-level posterior with the posteriors of all encompassing regions as deter-
mined by the image-wide classification model: a pixel is considered foreground if
most of encompassing regions classify as foreground. This requirement effectively
reduces the problem of both false positives and false negatives and significantly
improves the performance. The proposed approach requires fast calculation of
region-level classification scores, which we solve efficiently by using linear clas-
sifiers on top of Fisher embedding and integral images. The main advantages of
our approach are conceptual simplicity and the capability to deliver competitive
results without any kind of post-processing. The resulting method has only one
per-class hyper-parameter which can be validated on few bounding box annota-
tions. Experiments show competitive semantic segmentation performance on the
standard test datasets of PASCAL VOC 2007 and 2012. Interesting directions
for the future work include integration of information from multiple scales at
region and pixel level via binary and higher-order CRFs.
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