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Abstract. This paper discusses localisation and mapping techniques
based on a single camera. After introducing the given problem, which is
known asmonocular SLAM, a new camera agnosticmonocular SLAM sys-
tem (CAM-SLAM) is presented. It was developed within the scope of this
work and is inspired by recently proposed SLAM-methods. In contrast to
most other systems, it supports any central camera model such as for omni-
directional cameras. Experiments show that CAM-SLAM features simi-
lar accuracy as state-of-the-art methods, while being considerably more
flexible.

1 Introduction

The term simultaneous localisation and mapping (SLAM ) denotes the process of
creating or refining a map, while determining the own position at the same time.
SLAM techniques that rely on vision are referred to as visual-SLAM techniques
and their performance increased remarkably in the last decade. This work con-
centrates on omnidirectional monocular visual-SLAM systems, which are SLAM
systems that deploy a single camera1 with a wide field of view. Such a vision
system would correspond to that of a rabbit or horse, as the eyes of these animals
also maximise their field of view at the expense of having monocular vision. There
are several reasons for advocating the use of omnidirectional sensors in computer
vision. First, many algorithms with applications to robotics detect visual land-
marks. These landmarks will be present in many images when an omnidirectional
camera is employed, resulting in a higher robustness. Second, a vision system
with a high field of view collects more data than a traditional vision system in
the same amount of time, although at a lower resolution. This is particularly
useful in robotics or when teleconferencing or performing surveillance. The main
contribution of this work is the design of a new SLAM system for omnidirectional
cameras. In fact, the newly created system makes little assumptions about the
camera model and supports traditional, omnidirectional and every single-view
camera model2. For this reason, it is called camera-agnostic monocular SLAM –
CAM-SLAM. Furthermore, CAM-SLAM supports arbitrary salient image
features and is also capable of reconstructing the environment semi-densely.
1 Or a set of cameras with non-overlapping images.
2 As long as it is possible to extract and track salient image features.
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1.1 Related Work

A substantial amount of the theoretic principles involved in omnidirectional
machine vision has been established during the 1990s [1,9], followed by the
implementation of thorough omnidirectional vision systems [2,22]. The first deci-
sive monocular SLAM systems emerged in the subsequent decade and naturally
inspired omnidirectional monocular SLAM systems.

In a seminal work [5] Andrew Davison applied EKF-SLAM to the domain of
computer vision and his method is able to execute mapping as well as tracking
in real-time. The system, however, was limited in map size and required notice-
able user interaction. These drawbacks were overcome by Klein and Murray in
their seminal PTAM (parallel tracking and mapping) publication [13]. In con-
trast to previous work, Klein and Murray separate the mapping and tracking
task, which allows fast tracking, while the map is refined using bundle adjust-
ment. An alternative approach is to reconstruct a dense 3D map and to use
this for tracking, as proposed by Newcombe et al. [21]. Such methods have the
advantage that more data of the image is effectively used by the SLAM sys-
tem and researchers concluded [6,21] that they are more robust as well as more
accurate than keypoint-based methods. Both techniques, are still subjects of
active research and in the middle of 2015 the state-of-the-art method in terms of
accuracy – ORB-SLAM [19] – was a keypoint-based method.

There has been a trend in recent years to compute visual odometry, i.e. to
estimate the robot motion, using omnidirectional vision [14,27,28]. The advan-
tage of estimating motion with omnidirectional sensors lies in the computation
of the rotational motion component. While rotations are usually a burden when
working with traditional cameras, all methods formerly mentioned exploit omni-
directional peculiarities to compute rotation. Although some of the systems, such
as the one of Scaramuzza and Siegwart [27], exhibit a high accuracy, their esti-
mation will diverge from the ground truth eventually. This happens because
small errors accumulate over time, resulting in an inevitable drift. Furthermore,
some of the systems impose strong constraints to the environment.

In contrast to visual odometry approaches, researchers have also adapted
full-fledged SLAM systems to the domain of omnidirectional vision, often based
on EKF-SLAM [10,23,26] or Fast-SLAM [7]. This might be due to the fact that
landmarks are longer visible when an omnidirectional sensor is used. Hence,
the drawback that EKF-SLAM scales badly with respect to map size is less
prominent. But these methods would not be applicable for a large-scale SLAM
system nevertheless. Even though Fast-SLAM performs more efficiently than
EKF-SLAM, their processes of tracking and mapping are strongly coupled. This
neglects a more profound map optimisation, since tracking has to be executed
at framerate. Other methods, again, put strict assumptions on the environment.
While Burbridge et al. [3], for example, only maintain a 2D map of the envi-
ronment, Schoenbein and Geiger [30] assume an urban Manhattan world and
Scaramuzza and Siegwart [27] presume planar motion. Maxime Lhuillier pre-
sented a generic offline structure from motion system in 2006 [15] that even
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supports non-central cameras. While its level of abstraction is impressive, it is
solving a slightly different problem as no real-time constraint is imposed.

2 System Overview

In order to support consumer quality omnidirectional cameras, CAM-SLAM
relies on a parallel tracking and mapping bundle-adjustment strategy inspired
by PTAM [13] and ORB-SLAM [19]. It internally creates separate tracking and
mapping threads. An additional system thread is created, which handles com-
munication with the user thread and performs some computations in order to
unload the tracking thread. Being able to semi-densely reconstruct the environ-
ment, CAM-SLAM starts at least one more reconstruction thread. When com-
piled with OpenMP support, which is optional, this number can be increased
arbitrarily. Figure 1 illustrates the data flow of a single image frame.

After salient image features were created and assuming that the map is
already initialised, the tracking thread takes over new frames. Tracking involves
bundle-adjustment of the locally visible map, which is accessible by maintaining
a covisibility graph, as suggested by Mei et al. [17]. In the case that tracking
was successful, the mapping thread may further process the frame by converting
it to a keyframe, if required by the system. Here, the decision of the system is
based on the conditions proposed by Mur-Artal et al. [19]. Keyframes are used
during mapping and are subject to more profound optimisation. In this process,
new map points are triangulated, bad ones are removed and existing ones are

Fig. 1. Frame processing flowchart. While the Tracker, Slam System and Mapper lane
each map to one thread in the application, the Dense Reconstructor lane maps to
at least one thread. New frames arrive in the system thread and are subsequently
processed by the tracking, mapping and semi-dense reconstruction thread, according
to the system state.
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refined with bundle-adjustment. Optionally, the system performs a semi-dense
reconstruction of the environment, either online or offline – the latter to increase
accuracy.

3 Camera Models

In general, camera models define two projections: From Cartesian 3D coordinates
to pixel image coordinates, and vice-versa, from pixel coordinates to a 3D direc-
tion. Most visual SLAM systems employ cameras that can be represented with
the pinhole camera model. There is, however, a variety of alternative camera mod-
els [34] and CAM-SLAM aims at supporting as many models as possible. For this
reason it treats the actual camera model as a black-box and solely requires a uni-
form interface of shared characteristics, namely the aforementioned bidirectional
2D-3D mapping. Additionally, for some camera models one has to implement a
function d : R2 × R

2 → R computing the offset between two image space coordi-
nates, which can differ from a simple subtraction. In order to support a wide range
of camera models out of the box, CAM-SLAM implements the model by Scara-
muzza et al. [29], Mei and Rives [16], an equiangular and cylindrical model, and
the pinhole camera model. While optimising, each model is processed in exactly
the same way, usually by employing numerical optimisations.

4 Mapping

A central role of the mapping thread is to generate new map points. This is
accomplished by identifying and triangulating corresponding salient image fea-
tures of different keyframes. Some popular triangulation methods, like linear
triangulation [11], are restricted to the pinhole camera model, though. Methods
that allow arbitrary camera models include angular triangulation [25], midpoint
triangulation and triangulation based on angular disparity [2]. During exper-
iments, triangulation based on angular disparity was rejected rather quickly,
as it is more expensive than midpoint triangulation and did not perform bet-
ter. Tests revealed that CAM-SLAM is able to execute stably with midpoint as
well as angular triangulation. This is because triangulated map-point positions
only serve as an initialisation and get optimised by bundle-adjustment, when-
ever a new keyframe is created – including the moment of map initialisation. As
long as a triangulated map point is not rejected as an outlier, which happens
more frequently with midpoint triangulation, its position will be optimised by
the mapper. With respect to efficiency, midpoint triangulation executes around
60× faster than angular triangulation, but both methods are real-time capable.
In order to gain robust triangulation, the following pre- and post-triangulation
(distinguished by �,�) checks are performed for each potential map point:

� The angle between the back-projections of both image coordinates that are
subject to triangulation, has to be larger than a threshold λα. This way,
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map points with a high depth uncertainty are effectively rejected. An alterna-
tive approach is to parametrise map points by their inverse depth, as discussed
in [4].

� Inspired by ORB-SLAM, the scale consistency is confirmed by verifying that
the ratio of distances to both camera centers corresponds to the feature pyra-
mid levels. For instance, when the features are on the same level, the ratio
has to be in a range close to 1.

� The projection of the newly created map point to both image spaces u1,2 has
to be valid.

� The error between the keypoint positions and u1,2 has to be lower than a
threshold λe which is based on the image-space covariance of the camera
model.

Notice that in contrast to regular visual SLAM methods, a maximal re-
projection error is enforced instead of the epipolar constraint3. Enforcing the
epipolar constraint has been avoided, as it would be dependent on a specific
camera model and possibly expensive to evaluate.

When CAM-SLAM is newly started or when it lost tracking, it tries to ini-
tialise mapping. In the course of this, an essential matrix estimation is performed
in a RANSAC-fashion. Even if this approach is less usual than the fundamental
matrix estimation, it again offers the advantage of being camera model indepen-
dent – as long as it is central. The first step of map initialisation is to select
a reference keyframe, usually the first input frame. Afterward, each new frame
is treated as a potential keyframe and keypoints are matched to the reference
keyframe, which is necessary to employ the 8-point algorithm. The matching is
based on a feature tracker that locally searches the best matching descriptor
in two immediately consecutive frames for each previously matched keypoint of
the older frame, and when a match succeeds it is back-propagated to the ref-
erence keyframe. This can be understood as a survival of the fittest scheme, as
the number of keypoints available for back-tracing is monotonically decreasing.
When the number of matches falls below a threshold, a new reference keyframe
is selected.

Due to the local search, camera movements should not be too aggressive until
being initialised. It is common practice to pre-define a threshold for good features
in order to remove outliers. Since this reduces flexibility – thresholds are only
valid for one descriptor type and could also be scene dependent – CAM-SLAM
follows another strategy. It is assumed that keypoints that were successfully
traced back several frames tend to correspond to good matches and that after
Λi = 4 consecutive frames without switching the reference keyframe, descrip-
tor distances are approximately normally distributed around a good threshold.
Then, after observing Λi consecutive frames, the threshold λf is learned based
on a generous χ2 test. As soon as the map is initialised, another χ2 test is per-
formed to refine the threshold. This scheme has been tested successfully with
binary ORB and real-valued SURF descriptors.
3 One could argue that this is an implicit epipolar check, since the re-projected position

is located on the epipolar line.
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When the map is successfully initialised, the mapper performs local bundle-
adjustment to optimise map points and keyframe positions. The implementation
is based on the g2o graph optimisation framework and adopts a double window
approach [32]. As with ORB-SLAM, the optimisation process is performed twice:
At a coarse scale first, that is with few Levenberg-Marquardt iterations, and at
a finer scale after outliers are removed.

Map points are created whenever a new keyframe is created. This time, point
correspondences are found using FLANN [18], and if applicable, also using the
tracking method employed during initialisation.

5 Tracking

The tracking-component is responsible for locating the camera in space and has
to operate as fast as possible. Should a new image frame arrive before the last
one is processed, the new frame is skipped. Initially, the pose of a new frame is
estimated using a constant motion model that also incorporates skipped frames.
A more sophisticated guess would be possible, for instance with Kalman filtering,
but the constant model showed to be sufficient.

Given the initial estimate, feature matching is performed with the currently
selected keyframe by projecting available map points to the new frame. This
is possible because the keyframe has keypoints associated to map points and
map points, as well as the new frame, are already located in 3D space. The
distance between the projected and the actual keypoint position has to fall below
a threshold however, and the descriptor distance is tested using the threshold
learned during map initialisation. If the number of successful matches is lower
than the threshold λm, the new frame is labeled as untrackable. In this case,
the system tries to create a new keyframe as fast as possible, because this could
assist future tracking. After receiving Λt untrackable frames in a row, tracking
is set to be lost. During experiments Λt = 1 was specified. Hence, tracking was
lost at the first untrackable frame.

In the case that enough matches are found, bundle-adjustment is performed
to refine the initial pose estimate. This process is again divided into two steps –
first, before outlier removal; and second, with outlier removal. In contrast to the
bundle-adjustment of the mapping-component, map point positions are unal-
tered and fewer points are used.

Finally, as with ORB-SLAM, the tracker requests a new keyframe when less
than ΛvNfk map points associated to the keyframe were found in the frame,
where Nfk is the number of map points in the keyframe and 0 < Λv < 1, here
Λv = 0.9. This can be understood as a visual change condition.

5.1 Semi-dense Reconstruction

A comprehensive representation of the environment is crucial for mobile robots
and CAM-SLAM implements a semi-dense reconstruction method for this pur-
pose. The procedure is based on the one introduced by Mur-Artal and Tards [20],
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but a generalised algorithm it presented, which only assumes a central camera
model. Given this assumption, epipolar line searches are possible, but the para-
metrisation of these lines is not predefined. Capturing hyperbolic or parabolic
mirrors yields conical epipolar lines, while the cylindrical model results in sinu-
soid, for instance. Our matching, depth estimation and depth fusion follows the
approach of Mur-Artal and Tardos, but the epipolar lines are sampled using a
line simplification scheme, following the same principle as the Ramer–Douglas–
Peucker [24] algorithm. Given the target keyframe K with the inverse depth
range dmin < dk < dmax, a reference keyframe Ki and a pixel coordinate u of
interest, the back-projection of u at depth dmin and dmax is projected to the
image space of Ki and referred to as v1,2. Here, the extremes dmin and dmax

are chosen as the 5 %- and 95 %-quantiles of the depth values of all map points
associated with K, which effectively narrows the search and removes outliers.
The direct line between v1 and v2 is then sub-sampled by projecting interme-
diate 3D points of the declared depth range to Ki. Sub-sampling is repeated
iteratively until subsequent line-segments are nearly straight or until the length
of segments falls below a threshold. After completing the semi-dense inverse
depth-map, hole filling and regularisation are applied to improve the quality,
similarly as in LSD-SLAM [6]. While LSD-SLAM averages those depth values in
the window, however, that are not further away than 2σ from the current one.
CAM-SLAM, on the other hand, performs a χ2 test at 95 %, which is effectively
the same, but allows to avoid some computational expensive divisions in the
implementation. Also, CAM-SLAM checks image intensity consistency during
hole filling and regularisation. A result of the triangulation procedure is shown
in Fig. 2d.

6 Experiments

In order to evaluate the performance of CAM-SLAM in terms of accuracy, speed
and robustness, a variety of comparisons to ground-truth data have been car-
ried out. As flexibility is the major objective of CAM-SLAM, experiments have
been executed on diverse datasets and omnidirectional data has explicitly been
included. The used datasets are characterised as follows:

1. TUM-RGBD datasets [33]: Pinhole camera, handheld
2. KITTI datasets [8]: Pinhole camera, car-motion
3. Catadioptric RGB-D dataset [31]: Catadioptric camera, car-motion
4. V360 dataset : Cylindrical camera, handheld
5. Room dataset : Equiangular camera, synthetic images and motion
6. Mars dataset : Equiangular camera, synthetic images and motion

While datasets 1–3 are publicly available, sets 4–6 were created within the
scope of this work. To capture set 4, a cylindrical camera was rigidly coupled
with a marker and externally tracked. Datasets 5 and 6 were generated using
the computer graphics software Blender with an equiangular camera model. Syn-
thetic datasets have the advantage of providing perfect ground-truth trajectories,
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but introduce appearance-related difficulties. For instance, while most real sur-
faces exhibit structure due to imperfections, synthetic ones can be completely
smooth, and hence, featureless. The setup for acquiring set 4, as well as render-
ings of the synthetic sets are shown in the supplementary thesis.

6.1 Accuracy

Experiments are grouped in two categories: Small- and large-scale experiments.
A good measure of performance for the former category is the absolute trajectory
error (ATE), as described by Sturm et al. [33]. It is computed by determining
the absolute differences of camera positions, after aligning the ground-truth with
the SLAM-produced trajectory. Here, either a 6D- or 7D-alignment is performed,
for example, using the method of Horn [12]. The absolute trajectory error is less
suited for large-scale data, however. Imagine a SLAM system always produced
the perfect trajectory, but failed in one curve so that every subsequent position
had a major offset to the ground truth. Compare this to the case in which
a system continuously produces errors, but luckily, did not misinterpret the
rotation. In a large-scale scenario, the second system might obtain an ATE which
is several orders of magnitude less than the system that made one mistake only.
As CAM-SLAM – just like other monocular SLAM-methods – suffers from scale-
drift, only segments of large-scale datasets are investigated. For a more profound
evaluation on large-scale data, loop-closing would be required, which has not
been performed during experiments.

Table 1 compares the root mean squared ATE produced by CAM-SLAM to
the ones produced by PTAM, LSD-SLAM and ORB-SLAM. Sequences start-
ing with fr... belong to the popular TUM-RGBD benchmarking datasets. While
the sequences fr1 xyz and fr2 desk present a static environment with a moving
camera, a person is interacting in sequence fr2 desk person. Processing non-static
environments is difficult for visual SLAM systems, which is shown in PTAM fail-
ing to handle the scene and LSD-SLAM producing large errors. Figures 2b and c

Table 1. Comparison of root mean square absolute trajectory errors in cm, using
small-s cale datasets. With the exception of CAM-SLAM measurements, the data is
provided by Mur-Artal et al. [19]

CAM-SLAM PTAM LSD-SLAM ORB-SLAM

fr1 xyz 2.60 1.15 9.00 0.90

fr2 desk 3.53 × 4.57 0.88

fr2 desk person 2.29 × 31.73 0.63

fr3 long office 16.83 × 38.53 3.45

synth room 2.84 × × ×
v360 sequence1 16.21 × × ×
v360 sequence2 14.92 × × ×
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Fig. 2. Plots that highlight the differences between CAM-SLAM estimated trajectories
and ground-truth trajectories. While ground-truth trajectories are black, estimated
trajectories are blue and differences between associated positions are plotted red. Gaps
in the graphs correspond to missing associations, mainly because ground-truth data is
missing. Figure (d) shows the result of a semi-dense reconstruction of the environment
(Color figure online)

show related plottings of the ground-truth and estimated trajectories as well as
their differences.

The results presented in Table 1 show that CAM-SLAM has a comparable
performance as state-of-the-art methods. It outperformed LSD-SLAM in all test-
sequences and it was robuster than PTAM. ORB-SLAM, on the other hand,
consistently produced better results than CAM-SLAM, which is not surprising as
it is more finely tuned with respect to the camera model and keypoint descriptors.
Furthermore, ORB-SLAM performs loop-closing, while CAM-SLAM did not in
the experiments. Nevertheless, CAM-SLAM benefits from its flexibility. Neither
of the other methods is able to handle omnidirectional data, while CAM-SLAM
performed as well on the omnidirectional synthetic room sequence as on the
other sequences. The corresponding trajectory is shown in Fig. 2a.
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Fig. 3. Plotting of large-scale trajectories

In addition to evaluating the accuracy of CAM-SLAM in small-scale
sequences, the applicability to large-scale sequences has been tested. Figure 3
presents the corresponding trajectories, which were generated using three dif-
ferent camera models. The according ground-truth trajectory is evenly approxi-
mated by CAM-SLAM, despite a modest drift. Due to the more complex camera
movement, a more serious drift occurred in the catadioptric dataset. That the
estimated trajectory suffers from a drift in scale becomes clear when observing
the pulling in and out of the dead-end road in Fig. 3b. One has to consider,
however, that the catadioptric camera is not mounted centrally on the car and
that a certain offset is expected for this reason. The remaining plot shown in
Fig. 3c resembles experiments with the KITTI dataset that uses a pinhole cam-
era. In this dataset, the most severe drift occurred, which might be related to the
shorter visibility of map points. Interestingly, SURF feature matching was more
reliable than ORB matching, given catadioptric images. This could be related
to the higher degree of distortion, which clearly affects keypoint descriptors, but
an in-depth analysis remains future work.

7 Conclusion

This work presented CAM-SLAM, a new monocular SLAM system that focuses
on flexibility. It supports any type of central camera model and is also able to
perform a semi-dense reconstruction of the environment. Being research soft-
ware though, CAM-SLAM can still be improved. For instance, the initialisation
procedure assumes a non-planar environment. Furthermore, Mur-Artal et al.
[19] already realised that their method might profit from representing points at
infinity, as described by Civera et al. [4]. The same argumentation holds true for
CAM-SLAM: Especially on sequences that exhibit camera transformations with
a rotational component only, an inverse depth representation during tracking
can stabilise the SLAM execution.
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