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Abstract. This article presents a method to detect lines in fisheye and
distorted perspective images. The detection is performed with subpixel
accuracy. By detecting lines in the original images without warping the
image with a reverse distortion, the detection accuracy can be noticeably
improved. The combination of the edge detection and the line detection
to a single step provides a more robust and more reliable detection of
larger line segments.

1 Introduction

The purpose of this research is the development of a line detector which can
handle highly distorted images, in particular fisheye images, without undistorting
these images. This should lead to greater accuracy since the detection takes place
in the original image and no warping is necessary. In addition, the entire image
area can be used. The focus is on the detection of line segments that are suitable
for use in line-based structure from motion (SfM).

To achieve a high accuracy in the reconstruction, the lines should be detected
with subpixel accuracy. Furthermore, a complete, fast and robust detection of the
entire line without interruptions is important, even if the background changes
or the surfaces are heavily textured. In the reconstruction short line segments
often lead to inaccurate triangulation results and multiple edges. In addition,
the matching of many small line segments is time-consuming and error-prone.

1.1 Related Work

Line Detection. Accurate detection of lines is relevant for many areas of image
processing. Lines are an important low-level feature, especially in man-made
environments. They are used e.g. to describe the objects in images, pose esti-
mation [19], structure from motion [16,18] and stereo matching [3] but also for
object detection [10] or camera calibration [17].

The aim of the line detection is to find edge pixels belonging to the same
straight line segments. Edges are contours or borders of different image regions.
A classical approach to edge detection is the Canny edge detector [8].

Simple approaches to detect lines are RANSAC [13] or the Hough trans-
form [2]. There are many improved and optimized variants which use the Hough
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transform, e.g. [12]. However, these approaches usually require a binary edge
map and detect infinitely long lines, that need to be split into line segments. To
obtain good results, the parameters have to be adjusted for each scene.

First attempts at line segment detection by grouping pixel based on the
gradient magnitude and gradient direction were described by Burns et al. [7].
The line segment detector presented by Gioi et al. [14] enables detection of lines
in images without tuning parameters. The EDLine detector [1] presented by
Akinlar and Topal uses the Edge Drawing algorithm instead of a classical edge
detector, e.g. Canny edge detector, to find edges in the image. The detector is
capable of real time and also requires no parameter tuning.

The condition for the application of these algorithms is the presence of per-
spective input images without distortion.

Some works deal with the detection of lines in fisheye images. Examples are
e.g. [4,5]. They detect great circles on the equivalence sphere. Other approaches
detect arcs in fisheye images [6,20].

Fisheye Camera Model. In this work the fisheye camera model from OpenCV
is used for the calibration of the fisheye cameras. It is based on the generic camera
model proposed by [15]. The model, however, can easily be replaced by any other
distortion model.

Contribution. In this paper, we propose a line detector, which is capable of
processing both distorted perspective images and fisheye images, without requir-
ing them to be undistorted. The detection is done with subpixel accuracy. We
combine the edge and line detection to a single detection step. The advantage of
this approach is that the line is already used as a model for the detection. In this
way a reliable and robust detection is achieved, which makes it possible to detect
continuous line segments, that usually were fragmented in current approaches.

2 Methods

2.1 Line Detection on Fisheye Images

Approach. The standard methods used for detecting lines in images expect
undistorted images as input. Therefore, the conventional approach to detect
lines in distorted perspective or fisheye images is to correct those distortions
by warping the image with a reverse distortion and use this software-corrected
images as input (Fig. 1).

To use a software-corrected image instead of the original image for the line
detection has many disadvantages and should be avoided. The reason for this
is on the one hand the performance, because the image has to be warped, and
on the other hand, the accuracy because the original image is transformed e.g
using a bilinear interpolation. Without adjusting the focal length, the software-
corrected fisheye image either gets very large or large parts of the images are cut.
An adjustment of the focal length means that the image center, which usually
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Fig. 1. Application of line detection for fisheye images

contains the relevant image content, is scaled down, so that information is lost
here. Another aspect is that errors in the calibration directly affect the detection
accuracy of the lines, if the image is warped with a inaccurate reverse distortion.
If the intrinsic camera parameters are corrected in a later processing step, for
example, by a bundle adjustment, the complete detection including the software
correction of all images and the calculation of the descriptors must be performed
again.

For these reasons we do not use a software-corrected image but use the orig-
inal image as input to the line detection (Fig. 1).

Algorithms. Our approach is based on the EDLines algorithm [1]. Its advan-
tages over other line-segment detectors are that it provides robust and accurate
results and is also very fast. Unlike classical edge detectors, the Edge Drawing
step produces contiguous and exactly one pixel wide, well localized edges.

The EDLines algorithm consists of three sub-steps: First, edge detection is
done with Edge Drawing (ED) algorithm. This generates continuous chains of
pixels. Line segments are then extracted from the generated pixel chains. The
line candidate are finally validated by the Helmholtz principle [11].

In order to perform the approach to fisheye images, some adjustments are
needed. The Edge Drawing step detects edges that do not necessarily correspond
to straight lines so it can also be used for fisheye images. But for the line fitting
step undistorted pixel coordinates are needed.

We undistort the edge coordinates for the line-fit instead of fitting circle arcs.
We do this because in our case the calibrations of the cameras are already known
and so any distortions can be considered. The approach can be used both for
perspective images as well as fisheye images and it is ensured that only straight
line segments are detected.

Adjustments to the Line Detection Process. The edge detection with
Edge Drawing consists of several steps. First, the image is smoothed with a
Gaussian filter to reduce noise (Fig. 2(a)). Subsequently, the gradient magnitude
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(a) smoothed image (b) gradient map (c) anchor points (d) edge chains

Fig. 2. Process flow of the edge detection with edge drawing

(Fig. 2(b)), and the gradient direction are calculated for each pixel. In the gra-
dient image anchor points are extracted (Fig. 2(c)), which are pixels with high
probability of being edge elements. Specifically, these are the peaks in the gradi-
ent image. The anchor points are connected with smart routing (Fig. 2(d)). The
gradient magnitude and gradient direction are used in this step. This produces
a set of edge segments, which are connected chains of edge pixels.

The edge segments obtained are the input to the line extraction step. Here,
the edge segments are split into one or more line segments. The basic idea is to
run along the chain of edge pixel and fit line segments using a least-squares line
fitting method. If the deviation of the pixels of the line is below a threshold value,
the line is extended. If the threshold is exceeded, the line segment is terminated
and the remaining pixels of the chain are then processed to extract further line
segments. We choose the parameters according to the recommendations for the
EDLines algorithm [1].

To enable line detection for fisheye images, in our approach, the pixel coor-
dinates are undistorted during the line extraction step (Listing 1.1). In order to
increase the robustness and prevent the premature breaking off of line segments,
we allow some outlier pixels during the line fitting step in addition. Outliers are
pixels that are connected to the chain, but do not fit to the line. Up to 3 pixels are
skipped if thereafter again are pixels in the chain, which can be added to the line.

Listing 1.1. Pseudocode for the adjusted line extraction step

ExtractLineFisheye:

undistort edge pixels

while number of edge pixels greater than or equal n

fit line to first n pixels

if residual of fit greater than threshold

remove first edge pixel

else

set first n edge pixels as line pixels

while number of edge pixels greater than 0 and max. of iterations not reached

fit line to line pixels

set number of outliers to 0

while number of edge pixels greater than 0

if distance between next edge pixel and line greater than threshold

increment number of outliers

if number of outliers greater than outlier threshold

break

else

add pixel to line

remove first edge pixel

store line
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2.2 Line Detection with Subpixel Accuracy

So far, the detection of the line pixel is only done with pixel accuracy. The line
equation is, however, set as the best-fit line through all discrete pixel positions
so that the start and the end of the line can be specified with subpixel positions.

In the detection step only the pixels with the maximum gradient in the local
environment are considered. If the local environment of the line is taken into
account, a higher detection accuracy could be achieved. Possible approaches
include an analysis of the distribution of the gradient magnitude perpendicular
to the line or a subpixel localization of each line pixel before the line fit. We
use the second approach, since in this case the rotation can be corrected and no
warping of the line environment is required.

For each pixel of a line, the local environment (4-neighborhood or 8-
neighborhood) is considered. The subpixel position is the average of the positions
of the pixels in the neighborhood weighted by the gradient magnitude of the pixels.

2.3 Optimized Line Detection

Problems with High-Resolution Images. In high-resolution images, the
lines often split into several individual segments. These short line segments have
numerous disadvantages, especially for use in SfM: A triangulation of short line
segments is more susceptible to noise, so that the position of the triangulated
lines is inaccurate. A real line is described by a plurality of segments in the
image, which are triangulated individually by line-based structure from motion
applications. This leads to redundant lines in the reconstruction.

The Causes of Fragmented Lines. The fragmentation of the lines is caused
by the Edge Drawing step. Here, contiguous pixel chains are formed starting
from anchor points. The edge always follows the strongest gradient magnitude.
By doing so, the edge chain kinks in the case of irregularities along the line and
the pixel chains tear off. The reasons for such irregularities can be e.g. a junction
of two lines, structured surfaces such as wood, but also noise. In the subsequent
line-fitting step only short pixel chains are available. The result is that only short
line segments are extracted.

Figure 3(a) shows the gradient map of a junction of two lines. The intersecting
edge has a stronger gradient magnitude, therefore the pixel chain (red) kinks at
the junction and does not form a continuous line.

Through gaps in the gradient (Fig. 3(b)), the pixel chains tear off and the
lines fragment into several pieces.

An additional problem occurs with closed contours. The detection of edges
starts from the anchor point in one direction and as long as pixels can be added,
and then in the opposite direction. For closed contours the starting point is also
the end point. If the start point is in the middle of a line, this line is unnecessarily
divided into two parts.

Our goal to use lines for the reconstruction requires a reliable detection of
lines. The lines should be detected without interruptions, even with a change of
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(a) Junction of two lines (b) Gap in gradient

Fig. 3. Gradient map of challenging locations for the line detection (Color figure online)

the background or along heavily textured surfaces, which have a strong influence
on the gradient magnitude and the gradient direction along the edge.

Our Optimized Detection Approach. To solve these problems, we developed
a method that combines the detection of edge pixels and lines to one step (Fig. 4).
This makes it possible that only the relevant edges, i.e. lines, are detected. At
the same time the approach prevents the premature chipping of the pixel chains
and thus the fragmentation of the lines.

In the first step, the gradient magnitude and the gradient direction per pixel
are calculated and the anchor points are determined as in the Edge Drawing
method. Starting from the anchor points, chains of edge pixels are determined.
Once a minimum length (e.g. 15 pixels) is achieved, the fitting of an initial line
is attempted.

If an initial line is found, the next step is the extension of the line (Listing 1.2).
For this purpose, the linear equation of the initial line segment is determined.
The linear equation is used to predict the search directions. The extension of
the line is performed simultaneously at both ends of the line segment. The pixel
with the strongest gradient is selected from the neighboring pixels in the search
direction. Subsequently, the linear equation is updated. If all neighboring pixels
are below the threshold for an edge or if an already detected edge is reached,
up to 3 pixels can be skipped in line direction, to bridge gaps or intersections in
the gradient map. Thus, the line is detected continuously. The advantage of this
approach is that the line is already used as a model for the detection.

Camera
calibration

Detect and fit
line segmentes

Detected line
segments

Distorted
input image

Optimized approach

Fig. 4. Optimized line detection approach
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Listing 1.2. Pseudocode for the optimized line detection

ExtendInitialLineSegments:

fit line to line pixels

if line has a slope between +1 and -1

while extension of the line possible

calculate next y-value at end of line segment , based on line equation

if gradient magnitude at [x, floor(y)] greater than value at [x, ceil(y)]

set y to floor(y)

else

set y to ceil(y)

calculate distance between [x, y] and line

if gradient magnitude at [x, y] equal 0 or distance greater than threshold

increment number of outliers

if number of outliers greater than outlier threshold

stop extending the end of the line

fit line to line pixels

else

add [x, y] to line pixels

set number of outliers to 0

[...] // the beginning of the line segment is extended analogously

else

[...] // similar: use equation x = my + c

3 Evaluation

3.1 Evaluation of Detection Accuracy on Fisheye Images

To examine the detection and localization accuracy, synthetic test data were
generated that contain simple geometric shapes, e.g. triangles and rectangles
(Fig. 5). The configuration of the scene corresponds to images of 3 m large objects
from different positions from a distance of 5 m to 7 m. The camera has a fish-
eye lens with an aperture angle of 120◦. Apart from a slight smoothing (5× 5
Gaussian filter, σ = 1) the data contains no errors except from the discretization.
For each distance 50 images were generated.

The edges of the objects were detected by the proposed method. To evalu-
ate the detection accuracy, the points of intersection of the detected lines are
calculated, and the residuals to the real corner points are determined.

The evaluation is performed on the generated fisheye images without and
with the additional subpixel localization. Furthermore, the conventional app-
roach is used for comparison. Software-corrected images are calculated for that

(a) 2 m (b) 7 m

Fig. 5. Two examples of the generated images from different distances
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(a) Influence of the distance (b) Effects of Gaussian noise (at 5 m)

Fig. 6. Detection accuracy (in pixel) of the methods in comparison

and used as input for the normal EDLines algorithm. The software-corrected
images are calculated by warping the generated fisheye image with a reverse
distortion. Here, the same distortion model is used as for the generation of the
fisheye images. This way, no calibration error occurs in the evaluation.

The results (Fig. 6(a)) show that the mean residual is significantly larger on
the software-corrected image data. The causes of the rather large deviation in the
software-corrected images are partly due to the fact that the focal length is adjusted
during the warping to get a large part of the fisheye image without the image size
increasing excessively. Thus, the resolution is reduced in the center of the image.

The detection accuracy is less precise at increasing distances, i.e for shorter
lines, especially for the software-corrected images.

The localization accuracy can be further improved by the additional subpixel
refinement. In particular, at large distances, i.e. for shorter lines, the improve-
ment is bigger. The precise localization of each pixel is important in this case to
achieve a high accuracy because the line is not fitted over many pixels.

A precise detection is important for a reconstruction of the lines with SfM,
because the detection error greatly affects the accuracy of triangulated lines,
since there is a quadratic relationship.

To analyze the effects of noise on the line detection, another synthetic data
set was generated. The distance is fixed at 5 m, but we add different levels of
additive white Gaussian noise. The standard deviation of the noise is varied from
0 to 25. We use 8-bit images, i.e. the pixel values are between 0 and 255.

The evaluation (Fig. 6(b)) shows that the methods are quite robust against
noise. The detection accuracy hardly deteriorates even with a high level of noise.
This is partly due to the fact that one of the first steps of the algorithms is the
Gaussian smoothing of the image.

Number and Quality of the Detected Lines. Figure 7 shows the difference
between the line detection on a software-corrected fisheye image and the direct
detection on the original fisheye image with our method. On the cabinet and on
the rear wall of the room significantly more lines are detected. In total 81 lines are
found on the software-corrected image. With our approach 165 lines can be found.
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(a) Software-corrected image (b) Our approach

Fig. 7. Qualitative results of the line detection on a real fisheye image

3.2 Qualitative Evaluation of the Optimized Line Detection

For the evaluation of the optimized line detection, we proposed in Sect. 2.3, we
use the public data set from [9]. It contains 9 sets of perspective images of
building facades. We use one image from each sequence. Figure 8(a) shows the
detected lines on one image from the data set.

For comparison, we use the EDLines algorithm again. With both methods,
lines are detected in similar areas. A detailed view of a part of the image shows
the differences. At intersections lines are often divided in two line segments by
the EDLines algorithm (mark A in Fig. 8(b)). With our approach, these lines are
detected as one continuous line segment (Fig. 8(c)). The reason for the splitting
of the lines is that the edge detector follows the locally strongest gradient magni-
tude and not the direction of the line. Our approach prevents this by predicting
the search direction. Another difference is recognizable in areas of low contrast
(mark B). In these areas lines often break because of gaps in the gradient. With
our approach, gaps can be bridged. So, the lines are more reliably and robustly
detected over the entire length.

(a) (b) (c)

Fig. 8. Qualitative results of the line detection on one image from the dataset from [9].
(a) Entire Image. (b) Detail view (marked in (a)) of the detected lines with the EDLines
algorithm. (c) Detail view of the detected lines with our approach
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Table 1. Evaluation of the number and the average length of the detected lines on the
data set of [9] and the ratio of the average lengths between our approach and EDLines

EDLines Our approach Ratio of avg.
lengths

Building Number Avg. length [pixel] Number Avg. length [pixel]

1 2582 93.65 1761 168.41 1.80

2 2011 79.66 1133 170.59 2.14

3 2365 86.24 1209 186.68 2.16

4 2214 83.39 1380 158.39 1.90

5 3335 63.08 1238 180.62 2.86

6 7037 47.29 1603 174.08 3.68

7 1772 81.48 991 170.27 2.09

8 1044 93.00 537 208.56 2.24

9 2461 95.10 1247 201.42 2.12

Mean 2758 80.32 1233 179.89 2.24

For a statistical analysis, we have determined the number and the average
length of the detected lines for all buildings of the data set. The results are shown
in Table 1. With our approach, the number of detected lines is lower, but the
average lengths are almost twice as long. As seen already in the images, the lines
are detected reliably and fragmented significantly less into several sub-segments.

4 Conclusion

In this paper we have presented a method to detect lines in fisheye and distorted
perspective images. The detection accuracy can be significantly improved by
detecting lines in the original images without warping the image with a reverse
distortion. The combination of the edge and line detection to a single step and
the prediction of the search direction, provides a more robust and more reliable
detection of larger line segments. This is an advantage in the reconstruction
because short line segments often lead to inaccurate triangulation results and
the matching of many small line segments is time-consuming and error-prone.
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